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Task load balancing

e Clients send queries to Servers:

o Often Clients and Servers contain 100s of tasks each.
o They are connected by a full mesh or using subsetting.

e Clients want to minimize latency by picking servers that are not overloaded.

LN

i/ 1 i\i server tasks

Datacenter

(toy example)

client tasks




How Prequal works

e Based on power-of-d choices paradigm.
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How Prequal works

e Asynchronous background probes; at avg rate ~3 probes / query
e Query is not blocked waiting for probes
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Prequal deployment cases
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Each box is now an entire job with many tasks
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Server Signals

Server tracks:

e RIF: This server's Requests-in-Flight
« L(r): Expected request latency when RIF =r
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Selection
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Life of a Probe
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Remove Worst

e Preserves power-of-d choices guarantees, when reusing probe pool.
e Flushes loaded servers from pool, whose probes are not used up

Query Burst =>
many probes in
pool are used,
even worst ones.




Normalized Latency
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Note: Latency percentiles are each normalized against different baseline.




Normalized CPU Utilization

Requests-in-Flight
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Also: server errors essentially eliminated (down from 0.01-0.1%).

tail CPU: ~2x

tail RIF: ~4.5x
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RAM usage = large constant [for static shard data] + O(RIF) [for per-query state]
.". smaller savings than for RIF



Load Balancing Testbed Environment
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Load Ramp Experiment: Prequal vs WRR Latency
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Load Ramp Experiment: Prequal vs WRR CPU Utilization
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Latency vs Probing Rate
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Probe Rate 2-3x
Query Rate is very
robust
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Latency vs RIF based control
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Comparison with other policies (@ 90% utilization)

Latency (ms)
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WeightedRR: weighted by gps/cpu
LeastLoaded: lowest client RIF (NGINX/Envoy)
LL-Po2C: same as LeastLoaded, but selects
from random 2 servers using client RIF.
YARP-Po2C: all replicas polled every 500ms,
Po2C using server RIF (MS YARP proxy).
Linear: async probing, linear combo of RIF &
Latency.

C3: server score function involving client and
server measurements of latency & rif with cubic
dependence on queue size.
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