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Task load balancing

● Clients send queries to Servers:
○ Often Clients and Servers contain 100s of tasks each.
○ They are connected by a full mesh or using subsetting.

● Clients want to minimize latency by picking servers that are not overloaded.
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How Prequal works
● Based on power-of-d choices paradigm.
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Prequal Client Task
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How Prequal works
● Asynchronous background probes; at avg rate ~3 probes / query
● Query is not blocked waiting for probes



Prequal deployment cases
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Each box is now an entire job with many tasks



Server Signals

Server tracks:

● RIF: This server’s Requests-in-Flight
● L(r): Expected request latency when RIF = r
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Probe Pool
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Remove Worst

● Preserves power-of-d choices guarantees, when reusing probe pool.
● Flushes loaded servers from pool, whose probes are not used up
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Homepage cutover: Latency

WRR Prequal

Note: Latency percentiles are each normalized against different baseline. 

p99.9
p99
p50



Homepage cutover: CPU & RIF
WRR Prequal

tail CPU: ~2x

tail RIF: ~4.5x

Also: server errors essentially eliminated (down from 0.01-0.1%).



Homepage cutover: RAM
WRR Prequal

RAM usage = large constant [for static shard data] + O(RIF) [for per-query state]
∴ smaller savings than for RIF 



Load Balancing Testbed Environment



Load Ramp Experiment: Prequal vs WRR Latency 
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Load Ramp Experiment: Prequal vs WRR CPU Utilization 
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Latency vs Probing Rate

Probe Rate 2-3x 
Query Rate is very 
robust 



Latency vs RIF based control
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99pt

Comparison with other policies (@ 90% utilization)

90pt
Latency percentiles

WeightedRR: weighted by qps/cpu
LeastLoaded: lowest client RIF (NGINX/Envoy)
LL-Po2C: same as LeastLoaded, but selects 
from random 2 servers using client RIF.
YARP-Po2C: all replicas polled every 500ms, 
Po2C using server RIF (MS YARP proxy).
Linear: async probing, linear combo of RIF & 
Latency.
C3: server score function involving client and 
server measurements of latency & rif with cubic 
dependence on queue size.



Q & A


