
Load is not what you should balance:

Introducing Prequal
Presenter

Bartek Wydrowski (Google Research)

Co-Authors
Robert Kleinberg (Google Research & Cornell)

Stephen M. Rumble (Google YouTube)
Aaron Archer (Google Research)NSDI 2024 17 Apr 2024

https://www.usenix.org/conference/nsdi24/presentation/wydrowski
https://www.usenix.org/conference/nsdi24/presentation/wydrowski

Task load balancing

● Clients send queries to Servers:
○ Often Clients and Servers contain 100s of tasks each.
○ They are connected by a full mesh or using subsetting.

● Clients want to minimize latency by picking servers that are not overloaded.

client tasks

server tasks

Datacenter

(toy example)

How Prequal works
● Based on power-of-d choices paradigm.

Prequal Client Task

Server

Server

Server

Server

Server

Probe

Query

Probe

Query

Server

Prequal
Algorithm

Prequal Client Task

Probe Pool

Probe Worker Thread Server

Server

Server

Server

Server

ProbeResponse
ProbeResponse

ProbeResponse

Probe

Pick Best ServerQuery

Probe

Query

Server

How Prequal works
● Asynchronous background probes; at avg rate ~3 probes / query
● Query is not blocked waiting for probes

Prequal deployment cases

A

B

C D

E

client

server

balancer

server

client

Prequal

Each box is now an entire job with many tasks

Server Signals

Server tracks:

● RIF: This server’s Requests-in-Flight
● L(r): Expected request latency when RIF = r

Server

Request Response

Request

Request

Request
RIF++ RIF—-

RIF

L(RIF)=tfinish-tstart

tstart tfinish

Probe Pool

Selection

Probe 1 15

Probe 3 10

Probe 4 50

Probe 14 90

Probe 20 210

RIF Latency (ms)

RIF threshold

p80 of recent
RIF values
across all
servers

Hot Servers

Cold Servers
Select Lowest
Latency Cold
Server

Server

D

M

B

F

X

Hot/Cold Lexiographic
selection

Probe Pool

Selection

Probe 15 50

Probe 19 40

Probe 25 80

Probe 40 120

Probe 60 210

RIF threshold
p80 of recent
RIF values

Hot Servers

Select Lowest
RIF Hot Server

RIF Latency (ms) Server

E

A

J

H

W

Probe Pool

Life of a Probe

Probe 1 15

Probe 3 10

Probe 4 50

Probe 14 90

Probe 20 210

RIF ms

Remove
Worst

Remove
Oldest

Remove
OverusedProbe

Replace
or

Remove

pool capacity
(default 16)

1

0

0

0

0

Uses

Remove Worst

● Preserves power-of-d choices guarantees, when reusing probe pool.
● Flushes loaded servers from pool, whose probes are not used up

1

40

50

RIF
Query Burst =>
many probes in
pool are used,
even worst ones.

Probe Pool

ProbeResponse 3 10

ProbeResponse 4 50

ProbeResponse 50 90

RIF ms

0

0

0

Uses

Query

Query

Query

Homepage cutover: Latency

WRR Prequal

Note: Latency percentiles are each normalized against different baseline.

p99.9
p99
p50

Homepage cutover: CPU & RIF
WRR Prequal

tail CPU: ~2x

tail RIF: ~4.5x

Also: server errors essentially eliminated (down from 0.01-0.1%).

Homepage cutover: RAM
WRR Prequal

RAM usage = large constant [for static shard data] + O(RIF) [for per-query state]
∴ smaller savings than for RIF

Load Balancing Testbed Environment

Load Ramp Experiment: Prequal vs WRR Latency

W
R

R

P
requal

W
R

R

P
requal

Load Ramp Experiment: Prequal vs WRR CPU Utilization

W
R

R

P
requal

W
R

R

P
requal

Latency vs Probing Rate

Probe Rate 2-3x
Query Rate is very
robust

Latency vs RIF based control

Slow
Server

Fast
Server

Slow
Server

Fast
Server

Client Client Client Client

99pt

Comparison with other policies (@ 90% utilization)

90pt
Latency percentiles

WeightedRR: weighted by qps/cpu
LeastLoaded: lowest client RIF (NGINX/Envoy)
LL-Po2C: same as LeastLoaded, but selects
from random 2 servers using client RIF.
YARP-Po2C: all replicas polled every 500ms,
Po2C using server RIF (MS YARP proxy).
Linear: async probing, linear combo of RIF &
Latency.
C3: server score function involving client and
server measurements of latency & rif with cubic
dependence on queue size.

Q & A

