DYoulube Google Research

Introducing Prequal

Presenter
Bartek Wydrowski (Google Research)

Co-Authors
Robert Kleinberg (Google Research & Cornell)
Stephen M. Rumble (Google YouTube)

Aaron Archer (Google Research)

NSDI 2024 17 Apr 2024

https://www.usenix.org/conference/nsdi24/presentation/wydrowski
https://www.usenix.org/conference/nsdi24/presentation/wydrowski

Task load balancing

e Clients send queries to Servers:

o Often Clients and Servers contain 100s of tasks each.
o They are connected by a full mesh or using subsetting.

e Clients want to minimize latency by picking servers that are not overloaded.

LN

i/ 1 i\i server tasks

Datacenter

(toy example)

client tasks

How Prequal works

e Based on power-of-d choices paradigm.

/ Prequal Client Task \

Com)

How Prequal works

e Asynchronous background probes; at avg rate ~3 probes / query
e Query is not blocked waiting for probes

/ Prequal Client Task \
[Probe Worker Thread k

Probe Pool

\

\

oy

Pick Best Server

/

Prequal deployment cases

client

client

<

Y

l

balancer

[

server

server

/A

Each box is now an entire job with many tasks

/ Prequal \

Server Signals

Server tracks:

e RIF: This server's Requests-in-Flight
« L(r): Expected request latency when RIF =r

start

finish

Request

Response

RIF++ RIF—-

L (RIF)=t

finish

start

Selection

Hot/Cold Lexiographic
selection

Select Lowest
Latency Cold
Server

Cold Servers

- RIF threshold

p80 of recent
RIF values
across all
servers

Hot Servers

Selection
RIF threshold

p80 of recent
RIF values

\ Select Lowest

Hot Servers RIF Hot Server

K Probe Pool J

Life of a Probe

Replace 4 Remove

or Overused
Remove

pool capacity <

(default 16)

4)

Remove

Oldest

J

4)

Remove

K L Worst)

Remove Worst

e Preserves power-of-d choices guarantees, when reusing probe pool.
e Flushes loaded servers from pool, whose probes are not used up

Query Burst =>
many probes in
pool are used,
even worst ones.

Normalized Latency

I,YouTube Homepage cutover: Latency

WRR Prequal

4
: p99.9
3 P99
25 | MM"MM pS0
2 ol J'f g |
1 Gl WA
05
0

20:00 22:00 21 Apr 02:00 04:00 06:00 08{00 10:00 12:00 14:00 16:00 180

Note: Latency percentiles are each normalized against different baseline.

Normalized CPU Utilization

Requests-in-Flight

I,YouTube Homepage cutover: CPU & RIF

WRR Prequal

25

1.5

1 35 ‘ ‘ :
0'5 . ' " " K

20:00 22:00 27Apr 02:00 04:00 06:00 08:¢0 10:00 12:00 14:00 16:00 18:0

20:00 22:00 27Apr —02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:0

Also: server errors essentially eliminated (down from 0.01-0.1%).

tail CPU: ~2x

tail RIF: ~4.5x

YouTube Homepage cutover: RAM

WRR Prequal

20:00 22:00 27Apr 02:00 04:00 06:00 08:(0 10:00 12:00 14:00 16:00 18:0

RAM usage = large constant [for static shard data] + O(RIF) [for per-query state]
.". smaller savings than for RIF

Load Balancing Testbed Environment

v

. allocation

machine 101 machine 150
client replica 1 © o o client replica 50
query
response
. antagonist B antagonist D
antagonist A * o o

antagonist C empty

server server | server
replica 1 replica 2 replica 100
machine 1 machine 2 machine 100

1.1x utilization spike

KAt

Load Ramp Experiment: Prequal vs WRR Latency

Below Alloc <— - —— Above Alloc

75% 83% 93% 103% 114% 127% 141% 157% 174%
.. ‘ —Query Latency 50pct (us.c) —m(’)’:erv Latency 9039 {usec)i —Query Latency 99pct (usec) —Query Latency 99.9pct (usec) ¥
= = T I (|- ‘ \
M| A -0 @ | | . . b |
2 T S | | | |
2 512 - B W
R e e e e e = e D
200k o) Vi [= B ‘ : ‘- - [t} - -
100k ‘ = ,’_,__,“___4//‘——’;___/. ‘_,,“4
— 05:10 05:20 05:30 05140 05:50 06:00 06:10
(a) Tail Latency

Load Ramp Experiment: Prequal vs WRR CPU Utilization

Below Alloc +—— —— Above Alloc
75% 83% 93% 103% 114% 127% 141% 157% 174%

v

250

200

Hum”
|lenbalid
ddM

|lenbalid

150

100 asane

05:10 05:20 05:30 05:40 05:50 06:00 06:10

(c) Distribution of CPU Utilization

35

30

25

20

15

10

Latency vs Probing Rate

/

Probe Rate 2-3x
Query Rate is very
robust

N

~

=ProbeRate =QuervRate =PickChannelFailures V¥

17T

0S5

)

17:10

17:15

17:20

1725

=Query Latency 99pct (usec) =Query Latency 99.9pct (usec) ¥

300k
280k
260k
240k
220k
200k
180k
160k

\ ‘I g
N A l?

|

]

>

f\ A ,"

|
\ \
B AVAY

L)

17:10

Latency vs RIF based control

RIF Limit Threshold
0 35 39 43 48 .53 .59 .66 .73 .81 90 .99 .999 1.0
=Query Latency 90pct (usec) =Query Latency 99pct (usec) ¥
180k f\f\ﬂ v
100K vl e f
e Wi < .,4'

140k

120k

100k

(a) Tail Latency at 90p, 99p

=50 pct =90 pet =99 pet wrif_limit ¥

B

(b) RIF Quantiles

o | G ol | otan |

Comparison with other policies (@ 90% utilization)

Latency (ms)
200 400 600 800 1000 1200

mm RoundRobin ===] eastlLoaded m=m [.inear
mmm Random mmm][] -Po2C mm C3
mem WeightedRR =mm YARP-Po2C === Prequal

Latency percentiles

WeightedRR: weighted by gps/cpu
LeastLoaded: lowest client RIF (NGINX/Envoy)
LL-Po2C: same as LeastLoaded, but selects
from random 2 servers using client RIF.
YARP-Po2C: all replicas polled every 500ms,
Po2C using server RIF (MS YARP proxy).
Linear: async probing, linear combo of RIF &
Latency.

C3: server score function involving client and
server measurements of latency & rif with cubic
dependence on queue size.

Q&A

