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Example of Resource Allocation

Route demands in the WAN
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SWAN (Microsoft), B4 (Google)



Requirements

Efficient Fair Fast

Utilize Resources Across Tenants React to changes
Maximize Profit and Services quickly



Existing Fair and Efficient Allocators are Slow

Fairness

B Previous schemes

Run time (log scale)
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Slow Allocator: 30% drop in Efficiencuy.

60% drop in Fairness.




Existing Fair and Efficient Allocators are Slow
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Max-Min Fair Resource Allocation

Common in practice:

B4 (Google)
SWAN (Microsoft) D‘E&
Cannot allocate moreto A and D. — —p——— — —

Cannot allocate more to B. —_—]— —
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Demand A Demand B Demand C Demand D




Existing Max-Min Fair Allocators

(1) Maximize the minimum allocation among

remaining demands.
Iterate

(2) Fix the demands that cannot receive more.
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Demand A Demand B Demand C Demand D



Existing Max-Min Fair Allocators

Single-Path Waterfilling

Example: K-waterfilling

- Fast
- Unfair and Inefficient

Iterative Optimization-based

Example: SWAN
o

Multi-Path — Optimization

- Fair and Efficient
- Slow



Our Solution: Soroush

Multi-path Waterfilling Fast single-shot optimization

Adaptive Waterfiller Geometric Binner
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Equi-depth Binner
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Soroush Empirically Pareto-dominates Prior Work
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Our Solution: Soroush

Fast single-shot optimization

Geometric Binner




Towards Single-Shot
Max-Min Fair Allocation




. (1) Maximize the minimum allocation
among remaining demands.

max min  allocation,
demand u

Iterate s.t. capacity constraints (1)

demand constraints (2)

| (2) Fix the demands that can not
receive more.

Goal: Single Fast Optimization




. (1) Maximize the minimum allocation
among remaining demands.

‘ max min allocation,,
demand u
Iterate s.t. capacity constraints (1)

demand constraints (2)

| (2) Fix the demands that cannot
receive more.

—> 1) Find demand with minimum allocation — sort the demands
[terate

~— 2) Maximize the minimum demand’s allocation.



Single-Shot Max-Min Fair Allocator

1) Find the demand with minimum allocation — Sorting Network

2) Maximize the minimum demand’s allocation.



Assume we know the order of allocations

- i

Demand A Demand B Demand C
Iterative max allocationy —— max allocationg ——>{ max allocation ¢
X 1 X €l X €2
v v v
€-welghting allocation 4 + e x allocationg + € x allocation ¢

(0<e<1)

Key: Incentivize the solver to assign in order



Single-Shot Max-Min Fair Optimization

maz Z e f. g The.or.em:‘for s.mall enough €, tlr.le
demand & op.tlmlzat.lon yields the max-min
fair solution.
s.t.
demand constraints (1) Slow

capacity constraints (2)

. Numerical Issues

sorting network constraints (3) (~ million demands)



Can we make it



Approx Max-Min Fair instead of Per-User

D_EB Max

Bin 3 A

Bin 2 Range Qf
Allocations

Bin 1
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Demand A Demand B Demand C Demand D



Approx Max-Min Fair instead of Per-User

Max
Bin 3 A
Bin 2 Range Qf
Allocations
Bin 1

* a8 o 4o O

Demand A Demand B Demand C Demand D



Approx Max-Min Fair instead of Per-User

Iterative

(1) Maximize the total allocation from a bin.
(next bin) E

(2) Fix the demands that do not receive full rate.

Max
Bin 3 A
Bin 2 Range of
Allocations
Bin 1

* a8 o 4o O

Demand A Demand B Demand C Demand D



Single-Shot Approx Max-Min Fair

Bin 1 Bin 2 Bin 3
Demand A
Iterative max allv::acamtiongfiIl 1 » max a,llocad:iongfjrl 2) » max allc:ncationﬂ{Jin 5
x 1 X el X €2
4 \ 4 4
e-weighting . (bin1) . (bin?2) 2 . (bin3)
allocation + e X . X
(0<e<1) A allocation , + € allocation ,

Incentivize the solver to allocate bins in order



Our Fast Approximate Max-Min Fair Solver
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Geometric Binner (GB):
Binning + € -weighting + Geometric sizes.

GB’s allocation is always within a a factor of
optimal allocation for every demand.

Empirically and theoretically faster than existing
methods.



Our Method is Deployed in Microsoft WAN

- Matches the efficiency and fairness of the previous iterative allocator.

- On average, 2.4x and up to more than 5x faster.
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A Graph Model for Resource Allocation

Route demands in the WAN

SWAN (Microsoft), B4 (Google)

Demand o
ﬁ
s L
D qd
€ma ®

Resources: Links

Demands: Network demands

Path: Group of links we allocate together

Split jobs over multiple servers

Gavel (OSDI’20)

Resources: CPU, GPU, Memory

Demands: Jobs

Path: Group of resources we allocate together
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Soroush Empirically Pareto-dominates Prior Work

- Danna et al — exact
Traffic engineering < - SWAN — a-approximate
- 1-waterfilling — heuristic
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Soroush Empirically Pareto-dominates Prior Work

Traffic engineering

- Danna et al — exact
- SWAN — a-approximate
- l-waterfilling — heuristic

1.001 x
0.951 Adapt Water(10) . Danna
0.90 {5 =izt =——mmm T
u Adapt Water(3)-"
0 | , EB
$ 0.85 '@ SWAN —
£ 0.801 27 (J
2 0.75 1 ,’, % GB Faster
e
0.701 1-waterfillin e our methods
0.65 fipprox Water 2 = baseline
0.60 T " T T
100 10t 102 103 104
run time (s)

c
=

©
Y—

1.0
0.9
t 0.81
(O]

£0.71
0.6
0.5+

0.4

Cluster scheduling

- Gavel w/ waterfilling — exact
- Gavel — heuristic
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Soroush: General & Scalable Max-Min Fair Allocator

4 General Graph N\ Fast & Scalable ) /Users can controﬁ
Model (TE, CS) the trade-off.
S
e —_—
S
\- O\ /
Future Work:

(1) Other domains

(2) Distributed setting

Contact: namyar@usc.edu Code: github.com /microsoft /Soroush
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