Solving Max-Min Fair Resource
Allocations Quickly on Large Graphs

Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santiago Segarra,
Daniel Crankshaw, Umesh Krishnaswamy, Ramesh Govindan, Himanshu Raj

USCVierii me BYRICE

Microsoft

Example of Resource Allocation

Route demands in the WAN

Demand (bit/s)g

—
2 o
Demand (bit/s)

SWAN (Microsoft), B4 (Google)

Requirements

Efficient Fair Fast

Utilize Resources Across Tenants React to changes
Maximize Profit and Services quickly

Existing Fair and Efficient Allocators are Slow

Fairness

B Previous schemes

Run time (log scale)

o)
4
@
D
QL
=
Q)

©
o~

o
N

norm change
in traffic

ters 1n Fair and Efficient Allocation

un
o

100 150 200 250 300
Time (minutes)

Slow Allocator: 30% drop in Efficiencuy.

60% drop in Fairness.

Existing Fair and Efficient Allocators are Slow

Fairness

7!
| /
< —~lswaN
a-approx
o

B Previous schemes

Run time (log scale)

Max-Min Fair Resource Allocation

Common in practice:

B4 (Google)
SWAN (Microsoft) D‘E&
Cannot allocate moreto A and D. — —p——— — —

Cannot allocate more to B. —_—]— —

2 £ & &

Demand A Demand B Demand C Demand D

Existing Max-Min Fair Allocators

(1) Maximize the minimum allocation among

remaining demands.
Iterate

(2) Fix the demands that cannot receive more.

2 £ & &

Demand A Demand B Demand C Demand D

Existing Max-Min Fair Allocators

Single-Path Waterfilling

Example: K-waterfilling

- Fast
- Unfair and Inefficient

Iterative Optimization-based

Example: SWAN
o

Multi-Path — Optimization

- Fair and Efficient
- Slow

Our Solution: Soroush

Multi-path Waterfilling Fast single-shot optimization

Adaptive Waterfiller Geometric Binner

A\ J
Y

Equi-depth Binner

10

Soroush Empirically Pareto-dominates Prior Work

Fairness

Ideal . o
Af Marker size = Efficiency Exact Methods
Soroush __“/"_ .
heur;si;f __:.;)_: — /,
-~ Vs
S -
’ Soroush /' . Faster with ‘ /
’ ush /&4t <--------
same guarantee
,’ Q-approx & / Vs ""JSWAN
/ \ ! 7 7 a-approx
/ > |/ ! <
I I /
| I /
P / B Previous schemes
// B Soroush (a-approx)
/7 Soroush (heuristics)
L >

Run time (log scale)

11

Our Solution: Soroush

Fast single-shot optimization

Geometric Binner

Towards Single-Shot
Max-Min Fair Allocation

. (1) Maximize the minimum allocation
among remaining demands.

max min allocation,
demand u

Iterate s.t. capacity constraints (1)

demand constraints (2)

| (2) Fix the demands that can not
receive more.

Goal: Single Fast Optimization

. (1) Maximize the minimum allocation
among remaining demands.

‘ max min allocation,,
demand u
Iterate s.t. capacity constraints (1)

demand constraints (2)

| (2) Fix the demands that cannot
receive more.

—> 1) Find demand with minimum allocation — sort the demands
[terate

~— 2) Maximize the minimum demand’s allocation.

Single-Shot Max-Min Fair Allocator

1) Find the demand with minimum allocation — Sorting Network

2) Maximize the minimum demand’s allocation.

Assume we know the order of allocations

- i

Demand A Demand B Demand C
Iterative max allocationy —— max allocationg ——>{ max allocation ¢
X 1 X €l X €2
v v v
€-welghting allocation 4 + e x allocationg + € x allocation ¢

(0<e<1)

Key: Incentivize the solver to assign in order

Single-Shot Max-Min Fair Optimization

maz Z e f. g The.or.em:‘for s.mall enough €, tlr.le
demand & op.tlmlzat.lon yields the max-min
fair solution.
s.t.
demand constraints (1) Slow

capacity constraints (2)

. Numerical Issues

sorting network constraints (3) (~ million demands)

Can we make it

Approx Max-Min Fair instead of Per-User

D_EB Max

Bin 3 A

Bin 2 Range Qf
Allocations

Bin 1

2 £ £ & °

Demand A Demand B Demand C Demand D

Approx Max-Min Fair instead of Per-User

Max
Bin 3 A
Bin 2 Range Qf
Allocations
Bin 1

* a8 o 4o O

Demand A Demand B Demand C Demand D

Approx Max-Min Fair instead of Per-User

Iterative

(1) Maximize the total allocation from a bin.
(next bin) E

(2) Fix the demands that do not receive full rate.

Max
Bin 3 A
Bin 2 Range of
Allocations
Bin 1

* a8 o 4o O

Demand A Demand B Demand C Demand D

Single-Shot Approx Max-Min Fair

Bin 1 Bin 2 Bin 3
Demand A
Iterative max allv::acamtiongfiIl 1 » max a,llocad:iongfjrl 2) » max allc:ncationﬂ{Jin 5
x 1 X el X €2
4 \ 4 4
e-weighting . (bin1) . (bin?2) 2 . (bin3)
allocation + e X . X
(0<e<1) A allocation , + € allocation ,

Incentivize the solver to allocate bins in order

Our Fast Approximate Max-Min Fair Solver

'__(XZU

—— U

Geometric Binner (GB):
Binning + € -weighting + Geometric sizes.

GB’s allocation is always within a a factor of
optimal allocation for every demand.

Empirically and theoretically faster than existing
methods.

Our Method is Deployed in Microsoft WAN

- Matches the efficiency and fairness of the previous iterative allocator.

- On average, 2.4x and up to more than 5x faster.

n 1.0 —
-8 / ==« speedup
G 0.8 /!
C
3 061 /
5 :
0.4 1
S /
+ 0.2
/
= 0.0+ — - - -
1 2 3 4 5

speed up wrt Production Cloud

A Graph Model for Resource Allocation

Route demands in the WAN

SWAN (Microsoft), B4 (Google)

Demand o
ﬁ
s L
D qd
€ma ®

Resources: Links

Demands: Network demands

Path: Group of links we allocate together

Split jobs over multiple servers

Gavel (OSDI’20)

Resources: CPU, GPU, Memory

Demands: Jobs

Path: Group of resources we allocate together

26

Soroush Empirically Pareto-dominates Prior Work

- Danna et al — exact
Traffic engineering < - SWAN — a-approximate
- 1-waterfilling — heuristic

1.00 X
0.95- Adapt Water(10) . Danna
0.90 {5z miwiziosizy =T
» Adapt Water(3L-"
§ .857 i ,8'(;)' =5 SWAN Fairer
% 080) ,/, x (J
“— 0.75 . % GB Faster
o
0.70 1 1-waterfillin e our methods
0.65 Yipprox Water g # baseline
0.60 - . . :
10° 10! 102 103 104

run time (s)

Soroush Empirically Pareto-dominates Prior Work

Traffic engineering

- Danna et al — exact
- SWAN — a-approximate
- l-waterfilling — heuristic

1.001 x
0.951 Adapt Water(10) . Danna
0.90 {5 =izt =——mmm T
u Adapt Water(3)-"
0 | , EB
$ 0.85 '@ SWAN —
£ 0.801 27 (J
2 0.75 1 ,’, % GB Faster
e
0.701 1-waterfillin e our methods
0.65 fipprox Water 2 = baseline
0.60 T " T T
100 10t 102 103 104
run time (s)

c
=

©
Y—

1.0
0.9
t 0.81
(O]

£0.71
0.6
0.5+

0.4

Cluster scheduling

- Gavel w/ waterfilling — exact
- Gavel — heuristic

Adapt Wate:(}.)"g .
, w-waterfilling
b
“Approx Water i
;-prio-thru-aware
'l P X GB Faster <—T
i Gavel
.' e our methods
Approx Water # baseline
10° 10! 102 103

run time (s)

Soroush: General & Scalable Max-Min Fair Allocator

4 General Graph N\ Fast & Scalable) /Users can controﬁ
Model (TE, CS) the trade-off.
S
e —_—
S
\- O\ /
Future Work:

(1) Other domains

(2) Distributed setting

Contact: namyar@usc.edu Code: github.com /microsoft /Soroush

	Default Section
	Slide 1: Solving Max-Min Fair Resource Allocations Quickly on Large Graphs
	Slide 2: Example of Resource Allocation
	Slide 3: Requirements
	Slide 4: Existing Fair and Efficient Allocators are Slow
	Slide 5: Speed Matters in Fair and Efficient Allocation
	Slide 6: Existing Fair and Efficient Allocators are Slow
	Slide 7: Max-Min Fair Resource Allocation
	Slide 8
	Slide 9: Existing Max-Min Fair Allocators
	Slide 10: Our Solution: Soroush
	Slide 11: Soroush Empirically Pareto-dominates Prior Work
	Slide 12: Our Solution: Soroush
	Slide 13: Towards Single-Shot Max-Min Fair Allocation
	Slide 14
	Slide 15
	Slide 16: Single-Shot Max-Min Fair Allocator
	Slide 17: Assume we know the order of allocations
	Slide 18: Single-Shot Max-Min Fair Optimization
	Slide 19: Can we make it faster?
	Slide 20: Approx Max-Min Fair instead of Per-User
	Slide 21: Approx Max-Min Fair instead of Per-User
	Slide 22: Approx Max-Min Fair instead of Per-User
	Slide 23: Single-Shot Approx Max-Min Fair
	Slide 24: Our Fast Approximate Max-Min Fair Solver
	Slide 25: Our Method is Deployed in Microsoft WAN
	Slide 26: A Graph Model for Resource Allocation
	Slide 27: Soroush Empirically Pareto-dominates Prior Work
	Slide 28: Soroush Empirically Pareto-dominates Prior Work
	Slide 29: Soroush: General & Scalable Max-Min Fair Allocator

