i @e -
‘.|||||ﬁ1|||||||||||||||u

usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Low-latency Job Scheduling with Preemption

for the Development of Deep Learning

Hidehito Yabuuchi, The University of Tokyo,; Daisuke Taniwaki
and Shingo Omura, Preferred Networks, Inc.

https://www.usenix.org/conference/opml19/presentation/yabuuchi

This paper is included in the Proceedings of the
2019 USENIX Conference on
Operational Machine Learning (OpML '19).

May 20, 2019 - Santa Clara, CA, USA
ISBN 978-1-939133-00-7

Open access to the Proceedings of the
2019 USENIX Conference on
Operational Machine Learning

is sponsored by USENIX.

1 |||||||||||"'|]
w|||||||||||||IIIIL|-|I||||'

8
k + .. +he

Low-latency Job Scheduling with Preemption
for the Development of Deep Learning

Hidehito Yabuuchi *
The University of Tokyo
yabuuchi@os.ecc.u-tokyo.ac. jp

Abstract

Efficient job scheduling of trial-and-error (TE) jobs is a chal-
lenging problem in deep learning projects. Unfortunately,
existing job schedulers to date do not feature well-balanced
scheduling for the mixture of TE and best-effort (BE) jobs,
or they can handle the mixture in limited situations at most.
To fill in this niche, we present an algorithm that efficiently
schedules both TE and BE jobs by selectively preempting the
BE jobs that can be, when the time comes, resumed without
much delay. In our simulation study with synthetic workloads,
we were able to reduce the 95th percentile of the slowdown
rates for the TE jobs in the standard FIFO strategy by 96.6%
while compromising the median of the BE slowdown rates by
only 18.0% and the 95th percentile by only 23.9%.

1 Introduction

Efficient job scheduling of clusters is in high demand these
days, especially due to the recent explosive development of
deep learning (DL) algorithms. One important type of jobs in
the development of DL is trial-and-error (TE) jobs, in which
the users conduct small-scale experiments on a trial basis
for the debugging and the testing of prototype algorithms. In
fact, for the private cluster at the authors’ institution, TE jobs
account for approximately 30% of all jobs in six months. Start-
ing the TE jobs with low latency is critical because the users
often want to monitor the learning curves of the prototypes im-
mediately in order to save time for exploring numerous other
options. The other jobs can be executed in the best-effort (BE)
manner, but their delay should be minimized.

Unfortunately, most scheduling algorithms to date can han-
dle the mixture of TE and BE jobs in certain situations at
most. Big-C [2], a container-based preemptive job scheduler,
does not handle multiplexing of GPUs. Optimus [5] and Gan-
diva [6] are efficient job schedulers for DL jobs, but they are
only compatible with select DL frameworks. Reservation-
based schedulers such as Hawk [4] reserve a separate portion

*Work done during an internship at Preferred Networks, Inc.

Daisuke Taniwaki ~ Shingo Omura
Preferred Networks, Inc.
{dtaniwaki, omura}@preferred. jp

of a cluster to guarantee the immediate scheduling for short
jobs. Given highly diverse workload, however, it is often chal-
lenging to find the optimal reservation factor.

In this paper, we take the novel strategy of systematically
suspending a selected set of BE jobs in favor of the TE jobs.
Our proposed algorithm can handle any DL jobs that can
be suspended, and it can be used in a variety of situations.
We also take special care not to neglect the BE jobs. By
selectively preempting the BE jobs for which the scheduler
can re-schedule its execution in relatively short time, our
algorithm makes sure not to greatly delay the BE jobs.

2 Proposed Preemption Algorithm
2.1 System Model

We built our preemption algorithm on the FIFO principle,
which is widely used in production (e.g., Kubernetes [1]), so
that we can easily integrate our algorithm into the existing
frameworks. For simplicity, we assume that each job consists
of a single task. Unlike big-data processing, a typical job that
trains a DL model does not have multiple tasks.

When submitting a job, the users are asked to specify its
type, either TE or BE, along with the types and the amount of
the resource demanded for the job. When a TE job arrives at a
job queue, one or more BE jobs are suspended to make room
for the incoming TE job if the resource is insufficient. The
preempted BE jobs are placed back on the top of the queue to
observe the FIFO. Some jobs demand the time for suspension
processing (e.g., storing data) before being suspended. We
therefore allow a grace period (GP) of user-specified length
for each suspension prompt. In this study, we propose an
efficient rule for deciding which BE jobs shall be preempted.

2.2 Proposed Algorithm

Our algorithm is based on the following observations:

Minimizing the re-scheduling intervals. Since a pre-
empted BE job is placed back on the top of the queue, it
will be re-scheduled without much delay. However, if a BE

USENIX Association

2019 USENIX Conference on Operational Machine Learning 27

job that demands large resource is preempted without any
consideration, other BE jobs waiting in the queue must wait
until the scheduler secures a large room for the resumption of
the preempted large BE job.

Minimizing the number of preemptions. On the other
hand, preempting too small a BE job can also increase the
overall slowdown of BE jobs. If a single preemption cannot
make enough room for an incoming TE job, the scheduler has
to preempt still another BE job. Many numbers of preemp-
tions increase the total time loss incurred by the re-scheduling.

Minimizing the preemption-incurred time loss. It is also
not preferable to preempt a BE job with too long a GP, because
the length of GP affects the time until the execution of the
incoming TE jobs.

Thus, we shall always preferentially preempt BE jobs with
(1) small resource demand, (2) an ability to offer enough re-
source for the incoming TE job, and (3) short GPs. Our Fitting
Grace Period Preemption (FitGpp) algorithm evaluates the
following score for each BE job j:

1Dl GP;
maxjc g GPj

Score(j) := (1)

max ey ||Dj|
where D; is the vector of resource quantities demanded by the
job j ', and 7 is the set of all running BE jobs. The parameter
s determines the importance of the GP relative to the resource
demand. At all time, FitGpp preempts the BE job that solves:

argmin {Score(j) | Drg <D;j+N A PC; <P} (2)

where N is the amount of free resource of the node on which
J is running, PC; is the number of times that j has been
preempted, and P is the maximum number of times a given BE
job can be preempted, which guards the job against starvation.
Note that the FitGpp’s criterion of preemption does not
depend on the execution time of jobs, so that it is not affected
by the algorithm’s ability to estimate the execution time. This
is an important advantage of FitGpp because the estimation is
generally hard [3]. This is especially true for DL jobs, whose
execution time are sensitive to the hyper-parameters.

3 Evaluation

Here we briefly describe our simulation study. The more
comprehensive evaluation can be found in our report [7].
We evaluated our FitGpp algorithm in a simulated envi-
ronment, which consisted of 84 nodes, each having 32 CPUs,
256 GB RAM, and 8 GPUs. We compared FitGpp against
(non-preemptive) vanilla FIFO, Longest Remaining Time Pre-
emption (LRTP), and RAND. LRTP is the algorithm used
in Big-C [2], and it preferentially preempts the job with the
longest remaining execution time. RAND is an algorithm that

Each coordinate entry of D j is the amount of a type of resource (e.g.,
CPU and RAM) relative to the capacity of the node.

preempts a randomly selected running BE job. We compared
the performance of the algorithms based on the slowdown
rate computed by the formula 1+ %

In order to synthesize a realistic set of workloads, we ana-
lyzed a trace of the cluster at the authors’ institution, which
consists of over 50,000 jobs. We approximated the mixture of
TE and BE jobs in the trace with a mixture of truncated nor-
mal distributions. For the lengths of GPs, we used a normal
distribution with the mean of 3 min. We set the maximum
preemption limit P to 1. We evaluated the algorithms on a set
of 219 jobs generated from the distributions with 30% of them
being TE. In the simulation, the jobs were submitted at such
a rate that the cluster load would be kept at 2.0 if they were
scheduled by FIFO. Additional details are in Appendix A.

The results are given in Fig. 1. FitGpp with s = 4.0 was
able to reduce the 95th percentile of the slowdown rates of
the TE jobs by 96.6% relative to that of FIFO. Our algorithm
increased the median of the slowdown rates of BE jobs by
only 18.0% and the 95th percentile by only 23.9%.

1.007 o I — S - Sa— e—— -
* -
0.75
w FIFO, BE
K LRTP, TE
8 050 LRTP, BE
ke --A= RAND, TE
0.25 —#- RAND, BE
K 4+ FitGpp (s=4.0), TE
0.001 @pi—e=....... . ~4= FitGpp (s=4.0), BE
1 10 100

Job slowdown rate

Figure 1: Job slowdown rates with synthetic workloads.

The superiority of FitGpp in this experiment was most
likely due to its ability to shorten the intervals between pre-
emptions and re-scheduling. In fact, the median of the inter-
vals with FitGpp was almost half compared to that of LRTP
and RAND, and the 95th percentile was 20% shorter than that
of LRTP and 33% shorter than that of RAND. We shall also
not forget that FitGpp makes an effort to reduce the total num-
ber of preemptions. When P = 1, it reduced the total number
of preempted jobs to less than 7.0% relative to that of LRTP
and RAND.

4 Conclusion

In this paper, we presented FitGpp, a preemption algorithm
that reduces the latency of the TE jobs while controlling
the slowdown of the BE jobs incurred by the preemption
processes. Future directions include extending of this work
to non-FIFO based setting and scheduling of multi-node jobs
in distributed DL. Finally, the application of our algorithm is
not necessarily limited to the scheduling of DL jobs. We shall
be able to extend our algorithm to any type of workload that
consists of a mixture of TE-like jobs and BE-like jobs.

28 2019 USENIX Conference on Operational Machine Learning

USENIX Association

Acknowledgments

‘We thank K. Uenishi, K. Fukuda, S. Maeda, and Y. Doi for
fruitful discussion and reviewing this paper. We also thank M.
Koyama for a help in the composition of the paper.

References

[1]

(2]

—
W
—

=
o

Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
ACM Queue, 14:70-93, 2016.

Wei Chen, Jia Rao, and Xiaobo Zhou. Preemptive, Low
Latency Datacenter Scheduling via Lightweight Virtual-
ization. In Proceedings of 2017 USENIX Annual Techni-
cal Conference (USENIX ATC 17), pages 251-263, 2017.

Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Kairos: Preemptive Data Center Scheduling
Without Runtime Estimates. In Proceedings of ACM Sym-
posium of Cloud Computing conference (SoCC), pages
135-148, 2018.

Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec,
and Willy Zwaenepoel. Hawk: Hybrid Datacenter
Scheduling. In Proceedings of 2015 USENIX Annual
Technical Conference (USENIX ATC 15), pages 499-510,
2015.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: An Efficient Dynamic
Resource Scheduler for Deep Learning Clusters. In Pro-
ceedings of Thirteenth EuroSys Conference (EuroSys ’18),
2018.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
Cluster Scheduling for Deep Learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 515-610, 2018.

Hidehito Yabuuchi, Daisuke Taniwaki, and Singo Omura.
Low-latency job scheduling with preemption for the
development of deep learning. ArXiv e-prints,
arXiv:1902.01613v1 [cs.DC], 2019.

USENIX Association

2019 USENIX Conference on Operational Machine Learning 29

Appendix A Experimental Details

We simulated LongestRemainingTimePreemption (LRTP) al-
gorithm on the assumption that it can perfectly estimate the
execution time of each job. Both LRTP and RAND continue
the preemption process until they can prepare enough resource
for an incoming TE job. For the evaluation of RAND, we re-
peated the same experiment four times and report the average
statistics.

In order to synthesize realistic workloads, we analyzed
a trace of the cluster at the authors’ institution. The trace
consisted of approximately 50,000 jobs with about 30% of
them being TE. Fig. 2 shows the brief statistics of the trace.

To create a realistic sequence of synthetic workloads, we
approximated the empirical distributions of (1) the execution
time, (2) the number of demanded CPUs, (3) the amount of
demanded RAM, and (4) the number of demanded GPUs for
both the TE jobs and the BE jobs with separate normal dis-
tributions, and artificially generated typical jobs from their
truncated versions. The means of the fitted normal distribu-
tions for the execution time of the TE jobs and the BE jobs

were respectively 5 min and 30 min. We truncated these dis-
tributions at 30 min and 24 hours, in this order.

For the lengths of GPs, we prepared the normal distribu-
tion with the mean of 3 min and truncated the distribution at
20 min. We set the length of GPs at such large values for the
following three reasons: (1) typical DL jobs tend to accom-
pany large data to store before the suspension, (2) the data
often requires preprocessing step for the storage, such as seri-
alization, and (3) we expect the developers of DL algorithms
to specify long GPs because a prematurely suspended job is
destined to fail.

50th: 59.8 50th: 1.0
75th: 292.1 75th: 4.0

l 95th: 3632.2 95th: 16.0
l9-9th: 6249.8
-

99th: 23.4
0 20000 0 200 0 1000 2000 O
Exec. time [min] #CPU RAM [GB]

50th: 4.0
75th: 4.0
95th: 40.0
99th: 128.0

Figure 2: Statistics of jobs on the cluster at the authors’ insti-
tution.

30 2019 USENIX Conference on Operational Machine Learning

USENIX Association

	Introduction
	Proposed Preemption Algorithm
	System Model
	Proposed Algorithm

	Evaluation
	Conclusion
	Experimental Details

