+ 80 -
.I* ¥
.|||||ﬁ1|||||r||||||||| [

usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Disdat: Bundle Data Management
for Machine Learning Pipelines

Ken Yocum, Sean Rowan, and Jonathan Lunt, Intuit, Inc.;
Theodore M. Wong, 23andMe, Inc.

https://www.usenix.org/conference/opml19/presentation/yocum

This paper is included in the Proceedings of the
2019 USENIX Conference on
Operational Machine Learning (OpML "19).

May 20, 2019 - Santa Clara, CA, USA
ISBN 978-1-939133-00-7

Open access to the Proceedings of the
2019 USENIX Conference on
Operational Machine Learning

is sponsored by USENIX.

| |||||||||||f[| [

1||||||||||||||||L|J|||||

8
B

= —
r ws—
| ']
N el a
" — N -

Disdat: Bundle Data Management for Machine Learning Pipelines

Sean Rowan
Intuit, Inc.

Ken Yocum
Intuit, Inc.

Abstract

Modern machine learning pipelines can produce hundreds
of data artifacts (such as features, models, and predictions)
throughout their lifecycle. During that time, data scientists
need to reproduce errors, update features, re-train on specific
data, validate / inspect outputs, and share models and predic-
tions. Doing so requires the ability to publish, discover, and
version those artifacts.

This work introduces Disdat, a system to simplify ML
pipelines by addressing these data management challenges.
Disdat is built on two core data abstractions: bundles and con-
texts. A bundle is a versioned, typed, immutable collection of
data. A context is a sharable set of bundles that can exist on lo-
cal and cloud storage environments. Disdat provides a bundle
management API that we use to extend an existing workflow
system to produce and consume bundles. This bundle-based
approach to data management has simplified both authoring
and deployment of our ML pipelines.

1 Introduction

Managing data artifacts associated with ML pipelines remains
challenging for data scientists, even with existing tools for
code versioning, continuous deployment, and application con-
tainer execution. The development and deployment lifecycle
of a pipeline may create thousands of artifacts, including fea-
tures, trained models, and predictions. At any point in time,
the data science team may need to share inputs to reproduce
errors, re-train on specific data, or validate model behavior.

Naming and storing data artifacts is frequently an ad-hoc
and error-prone process in which data is managed per project,
found via tribal knowledge, and shared by e-mail or instant
messaging. This leads to significant data scatter across local
computers (such as laptops) and cloud storage (such as AWS
S3 [4]). Worse, data science team members often convolve
naming and versioning. For example, where one expects a
logical name like financials for a data set, one instead finds
a taxonomy of names like financials_v_1-20190520.

Jonathan Lunt
Intuit, Inc.

Theodore M. Wong
23andMe, Inc.

We introduce Disdat, a system that leverages two practi-
cal abstractions—the bundle and context—to strike a balance
between prescription and the need for data scientists to use
the latest tools when authoring and deploying ML pipelines.
The bundle is a named collection of files and literals, and is
the unit at which data is produced, versioned, and consumed.
The context is a view abstraction that gathers together one
or more bundles, and assists with managing bundles across
multiple locations. Bundles and contexts are minimally pre-
scriptive in the same sense as high-level pipelining systems
such as Luigi [9], Airflow [1], and Pinball [8] that encode
dependencies between user-defined tasks.

Bundles and contexts in Disdat together support common
data science activities. Conceptually, Disdat accomplishes
for data what Docker does for application images. Bundles
allow users to find the latest version of related pipeline data
with a single “human” name instead of parsing ad-hoc names.
Contexts facilitate simple sharing and synchronization of
bundles between different users and across local and cloud
storage locations through intuitive “push”/“pull” operations.

Disdat stands in contrast to existing systems for man-
aging pipeline data artifacts. Many are closed, monolithic
ecosystems, providing pipeline authoring, model version-
ing, deployment, feature storage, monitoring, and visualiza-
tion. Examples include Palantir’s Foundry [6], Facebook’s
FBLearner [3], and Uber’s Michelangelo and PyML [10]. Per-
haps closer in spirit to Disdat are MLFlow [2], Pachyderm [5],
and DVC [7], which aim to version pipeline experiments to
enable reproducibility.

Unlike prior approaches, Disdat treats bundles as first-class
citizens. Where Pachyderm and DVC support git-like oper-
ations, Disdat eschews some version control concepts, such
as branching and merging, whose semantics for ML artifacts
remain an open question (e.g., merging ML model weights be-
tween branches). In addition, their units of data versioning are
implementation specific; each Pachyderm container produces
a single commit to a “repository”’, while DVC relies on an
extant git repository to version DVC metadata. Like Disdat,
the MLFlow API captures parameters and data outputs, but

USENIX Association

2019 USENIX Conference on Operational Machine Learning 35

users must still organize and manage their data.

The core of Disdat consists of an API to create and publish
bundles in contexts. We use that API to instrument the Luigi
pipelining system from Spotify [9], allowing data scientists
to author pipelines that automatically produce bundles. By
virtue of this design, Disdat pipelines automatically re-use
prior results where possible and can publish new versions of
data products on a cloud storage service.

A bundle F1 Params F1 bundle
=0 | e
m by credit Lineage Prediction bundle

{A bundle, Model Params

F1 Params}

Lineage score

[predscn |
| wevicscsv |
Lineage

{F1 bundle,

F2 bundle,
Model Params]

Given score, FP,

F2 Params predict held cards

F2 bundle

Fin_profile.pqt

Lineage
{B bundle,
F2 Params}

B bundle

m Financial

Lineage Profile (FP)

Prediction Task

Feature Tasks

Figure 1: An ML pipeline with two featurization tasks feeding
a predictive model and producing three output bundles.

2 Motivating Example

We motivate Disdat’s design with a simple data processing
scenario. Consider a financial services company wishing to
predict credit card ownership among users. To do so, it creates
a three-task ML pipeline shown in Figure . This pipeline
featurizes the input data and applies a trained model to assign
a likelihood of ownership to each user.

In general, ML pipelines consist of tasks that read and
write one or more files. For example, the first featurization
step (“F17) in Figure | reads two .csv files describing the
user population and produces a Parquet . pgt feature file. The
model task consumes the features to produce predictions and
performance metrics. Data scientists may re-run individual
tasks or the whole pipeline many times to explore features,
fix bugs, and tune hyper-parameters.

Many challenges face the data scientist in managing the
flow of data through this example pipeline. They must cre-
ate a naming and file system directory scheme that dis-
ambiguates input, intermediate, and output files relating to
different populations, which usually results in names like
users-popA.csv and users-popB.csv. They often incor-
porate ad-hoc versioning to track updates to populations
or pipeline code changes, which leads to clumsily em-
bedded metadata such as users-popA-20190520.csv or
Crd_scores-with-low-score-cutoff.pgt. Lastly, shar-
ing and re-using data requires mechanisms to find artifacts
across local and cloud locations as well as polices to define
“latest” among multiple versions of the same artifact.

Disdat builds on bundles and contexts to address this chal-
lenge. Bundles organize collections of data items flowing

through pipelines; thus, each task in Figure | produces a sin-
gle bundle. A bundle is an immutable set of tags, lineage
information, and named arrays. Each named array may store
scalar-typed data, file links, or pointers to bundles. File links
are references to files, such as POSIX filenames or S3 URLs.

In Figure 1, the “Prediction” bundle has one named array
with two file links. When Disdat creates the bundle, it places
the files and bundle metadata in the current context (on the
local file system). A context serves as an organizational unit
for bundles—the user decides whether the context represents
a project, pipeline, or data in a test or deploy environment.
Contexts hold any number of bundles and can exist at different
locations—the local file system and a cloud storage service.

Disdat bundles provide three distinct names by which to
distinguish data versions. These are a human_name, process-
ing_name, and a UUID. The human_name indicates the log-
ical data use; it supports data sharing among colleagues. In
our example, the final output bundle may have human_name
card_predictions. The processing_name is a unique string
computed from the parameterized task; it allows a pipeline to
re-use the most recent upstream task’s output.

Note that each pipeline execution can produce bundles with
the same human_name, but that differ by UUID and creation
date. Thus synchronization between local and cloud locations
is as simple as downloading bundles whose UUIDs are not
present. This allows the data scientist to easily get the latest
version either from a local context or one hosted on AWS S3.

3 Discussion

Disdat is a Python-based system consisting of an API for
creating and managing bundles in contexts, a command-line
interface, and an instrumented pipelining system. Disdat uses
the API to extend Spotify’s Luigi so that tasks transparently
ingest bundles and produce bundles as output. In addition,
Disdat can dockerize pipelines to run on container execution
services like AWS Batch or AWS SageMaker.

At Intuit, we use Disdat for batch prediction pipelines and
have found this approach valuable. Sometimes data scien-
tists may not access raw data on their laptops or their laptop
may have insufficient resources. During development, Disdat
makes it easy to run that portion of a pipeline on the cloud and
retrieve the output to test locally. Similarly, errors often occur
during large-scale tests, and it is easy to find the set of input
bundles that caused failures. Bundles have also simplified
performance monitoring, as any data scientist may pull all
versions of a pipeline’s outputs for analysis (for example, in a
notebook via the Disdat API).

4 Availability

Disdat is open-source (ASL 2.0) software available on github
athttp://github.com/kyocum/disdat.

36 2019 USENIX Conference on Operational Machine Learning

USENIX Association

http://github.com/kyocum/disdat

References

[1]
[2]
[3]

[4]

[5]

M. Beauchemin. Airflow. https://airflow.apache.org/, 2014.
Databricks. Mlflow. https://mlflow.org/, 2019.

Facebook. Introducing FBLearner Flow: Facebook’s AI back-
bone. https://code.facebook.com/posts/1072626246134461/
introducing-fblearner-flow-facebook-s-ai-backbone/,
May 2016.

A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E.
Whang. Goods: Organizing Google’s datasets. SIGMOD, 2016.

Pachyderm. Pachyderm. https://pachyderm.readthedocs.io/,
2019.

(6]

(71

(8]

[9]
[10]

Palantir. Foundry. https://www.palantir.com/palantir—

foundry/, 2018.

D. Petrov. Data version control. https://blog.
dataversioncontrol.com/data-version-control-beta-
release-iterative-machine-learning-a7faf7c8beb7,

2017.

May

Pinterest. Pinball.

2019.

https://github.com/pinterest/pinball,

Spotify. Luigi. https://github.com/spotify/luigi.org, 2016.

Uber. Michelangelo.
September 2017.

https://eng.uber.com/michelangelo/,

USENIX Association

2019 USENIX Conference on Operational Machine Learning 37

https://airflow.apache.org/
https://mlflow.org/
https://code.facebook.com/posts/1072626246134461/introducing-fblearner-flow-facebook-s-ai-backbone/
https://code.facebook.com/posts/1072626246134461/introducing-fblearner-flow-facebook-s-ai-backbone/
https://pachyderm.readthedocs.io/
https://www.palantir.com/palantir-foundry/
https://www.palantir.com/palantir-foundry/
https://blog.dataversioncontrol.com/data-version-control-beta-release-iterative-machine-learning-a7faf7c8be67
https://blog.dataversioncontrol.com/data-version-control-beta-release-iterative-machine-learning-a7faf7c8be67
https://blog.dataversioncontrol.com/data-version-control-beta-release-iterative-machine-learning-a7faf7c8be67
https://github.com/pinterest/pinball
https://github.com/spotify/luigi.org
https://eng.uber.com/michelangelo/

	Introduction
	Motivating Example
	Discussion
	Availability

