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Abstract
This paper presents a trace-driven experimentation and an-
alytics framework that allows researchers and engineers to
devise and evaluate operational strategies for large-scale AI
workflow systems. Analytics data from a production-grade AI
platform developed at IBM are used to build a comprehensive
system and simulation model. Synthetic traces are made avail-
able for ad-hoc exploration as well as statistical analysis of
experiments to test and examine pipeline scheduling, cluster
resource allocation, and similar operational mechanisms.

1 Introduction

Operationalizing AI has become a major endeavor in both re-
search and industry. Automated, operationalized pipelines
that manage the AI application lifecycle will form a sig-
nificant part of infrastructure workloads [6]. AI workflow
platforms [1, 6] orchestrate the heterogeneous infrastructure
required to operate a large number of customer-specific AI
pipelines. It is challenging to fine-tune operational strategies
that achieve application-specific cost-benefit tradeoffs while
catering to the specific domain characteristics of ML models,
such as accuracy, or robustness. A key challenge is to deter-
mine the cost trade-offs associated with executing a pipeline,
and the potential model performance improvement [5–7].

We present a trace-driven experimentation and analytics en-
vironment that allows researchers and engineers to devise and
evaluate such operational strategies for large-scale AI work-
flow systems. Traces from a production-grade AI platform
developed at IBM, recorded from several thousand pipeline
executions over the course of a year are used to build a com-
prehensive simulation model. Our simulation model describes
the interaction between pipelines and system infrastructure,
and how pipeline tasks affect different ML model metrics.
We implement the model in a standalone, stochastic, discrete
event simulator, and provide a toolkit for running experiments.
By integrating a time-series database and analytics front-end,
we allow for ad-hoc exploration as well as statistical analysis
of experiments.
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Figure 1: Conceptual system model of AI ops platforms.

2 System Description

Conceptual Model Automated AI ops pipelines integrate
the entire lifecycle of an AI model, from training, to deploy-
ment, to runtime monitoring [1, 6, 10]. To manage risks and
prevent models from becoming stale, pipelines are triggered
automatically by monitoring runtime performance indicators
of deployed models. It is therefore essential to model both
build-time and run-time aspects of the system. In general, we
say that a model has a set of static and dynamic properties.
Static properties are assigned by the pipeline at build-time,
such as the prediction type (e.g., classification, or regression)
or the model type (e.g., random forests or DNN). Dynamic
properties change during runtime, such as model performance
or robustness scores [13].



Build-time view: AI pipelines are workflows, i.e., graph-
structured compositions of tasks, that create or operate on
machine learning models [6]. At build time, an AI pipeline
generates or augments a trained model by operating on data
assets and using underlying infrastructure resources (e.g.,
data store, cluster compute or GPU nodes).

Run-time view: The outcome of a successful pipeline exe-
cution is usually a deployed model that is being served by the
platform and used by applications for scoring. At runtime, the
deployed model has associated performance indicators that
change over time. Some indicators can be measured directly,
by inspecting the scoring inputs and outputs (e.g., confidence),
whereas other metrics (e.g., bias, or drift [4, 11]) require con-
tinuous evaluation of the runtime data against the statistical
properties of the historical scorings and training data.

Synthesizing & Simulating Pipelines We synthesize plau-
sible pipelines from three common pipeline structures we
have identified by analyzing both commercial and research
use cases [2, 3, 6, 9]. The generated pipelines vary in pa-
rameters such as the type of model they generate, the ML
frameworks they use, or the number of tasks. The parameters
are sampled from distributions we have fitted over analytics
data. In the same way, we sample the metadata of data as-
sets (such as the number of dimensions and instances or the
size in bytes) as input for pipelines. We currently model the
following pipeline steps: (a) data pre-processing (perform-
ing manipulation operations on the training data), (b) model
training, (c) model validation, (d) model compression (e.g.,
removing layers from DNNs [12], changing the model size).
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Figure 2: Observations of compute time for data preprocess-
ing and training tasks based on other known properties.

Figure 3: Average arrivals per hour stratified by hour of day
and weekday (n = 210824). µ shows the average arrivals per
hour overall. Error bars show one standard deviation.

Figure 4: Experiment analytics dashboard showing infrastruc-
ture and pipeline execution metrics of an experiment run

For simulating pipeline executions, we have developed a
stochastic, discrete-event simulator called PipeSim, which im-
plements the conceptual system model and data synthesizers.
We simulate task execution time and resource use based on
our traces. Figure 2 shows examples of ways to simulate the
compute time of data preprocessing and training tasks. For
example, we correlate the size of a data asset with the pre-
processing time Figure 2(a). For a training task, we stratify
the observations into the frameworks they used, and the data
asset size they processed. Figure 2(b) shows a distribution of
compute times for Tensorflow and SparkML tasks.

To generate random workload we model the interarrivals
of pipeline triggers in seconds as a random variable and se-
quentially draw from a fitted exponentiated Weibull distri-
bution, which we found to produce a good fit. We variate
means based on arrival patterns from our observations. Fig-
ure 3 shows pipeline triggers per hour averaged over several
hundred thousand pipeline executions.

Experiment Runner & Explorer PipeSim is based on
SimPy [8] and persists synthetic traces into InfluxDB. Re-
source allocation and scheduling algorithms are integrated
as Python code into the simulator, which can then be evalu-
ated by running PipeSim. The analytics frontend shown in
Figure 4 allows exploratory analysis of experiment results. It
displays the experiment parameters, general statistics about
individual task executions and wait time. The graphs show
the resource utilization of compute resources, individual tasks
arrivals, network traffic, and overall wait time of pipelines,
which allows us to quickly observe the impact of resource
utilization on pipeline wait times.

We modeled the production system with PipeSim and an-
alyzed the active scheduling policies. Experiments allowed
us to approximate the increased execution times of pipelines
given the projected user growth for the next year, and identify
GPU cluster resource bottlenecks. We are now working to sim-
ulate and visualize aggregated model metrics to examine the
effect of pipeline scheduling on overall model performance.
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