= i +

ASSOCIATION

usenix
.' THE ADVANCED
COMPUTING SYSTEMS

RIANN: Real-time Incremental Learning
with Approximate Nearest Neighbor on
Mobile Devices

Jiawen Liu and Zhen Xie, University of California, Merced; Dimitrios Nikolopoulos,
Virginia Tech; Dong Li, University of California, Merced

https://www.usenix.org/conference/opml20/presentation/liu

This paper is included in the Proceedings of the
2020 USENIX Conference on Operational Machine Learning.
July 28-August 7, 2020
978-1-939133-15-1

Open access to the Proceedings of the
2020 USENIX Conference on Operational
Machine Learning is possible thanks to the

generous support of

QRN |]

CEELEEEEET] G

ar

RIANN: Real-time Incremental Learning with Approximate Nearest Neighbor on
Mobile Devices

Jiawen Liu®, Zhen Xie®, Dimitrios Nikolopoulos* , Dong Li'
"University of California, Merced *Virginia Tech

Abstract

Approximate nearest neighbor (ANN) algorithms are the
foundation for many applications on mobile devices. Real-
time incremental learning with ANN on mobile devices is
emerging. However, incremental learning with current ANN
algorithms on mobile devices is hard, because data is dy-
namically and incrementally generated and as a result, it is
difficult to reach high timing and recall requirements on in-
dexing and search. Meeting the high timing requirements is
critical on mobile devices because of the requirement of short
user response time and because battery lifetime is limited.

We introduce an indexing and search system for graph-
based ANN on mobile devices called RIANN. By construct-
ing ANN with dynamic ANN construction properties, RI-
ANN enables high flexibility for ANN construction to meet
the strict timing and recall requirements in incremental learn-
ing. To select an optimal ANN construction property, RIANN
incorporates a statistical prediction model. RIANN further
offers a novel analytical performance model to avoid runtime
overhead and interaction with the device. In our experiments,
RIANN significantly outperforms the state-of-the-art ANN
(2.42x speedup) on Samsung S9 mobile phone without com-
promising search time or recall. Also, for incrementally in-
dexing 100 batches of data, the state-of-the-art ANN satisfies
55.33% batches on average while RIANN can satisfy 96.67%
with minimum impact on recall.

1 Introduction

Approximate nearest neighbor (ANN) is an essential algo-
rithm for many applications, e.g., recommendation systems,
data mining and information retrieval [2, 4, 7, 10, 15-17]
on mobile devices. For example, applications on mobile
devices often provide recommendation functionalities to
help users quickly identify interesting content (e.g., videos
from YouTube [6], images from Flickr [14], or content from
Taobao [9]). To meet user requirements, it is important to
incrementally construct ANN on mobile devices in real-time.
For example, it is essential to recommend to users new con-
tent that is of interest while the content is still fresh, as there
is a clear tendency for users to prefer newer content. This ne-
cessitates real-time incremental learning for ANN on mobile
devices.

However, real-time incremental learning for ANN on mo-
bile devices imposes two challenges. First, current ANN mod-
els cannot meet the real-time requirement of high recall for
incremental learning due to static graph construction. Specifi-
cally, with different size of batches in incremental learning,
current ANN algorithms either index batches of data with high
recall without meeting the real-time requirement or index data
in real-time with low recall.

Second, current ANN algorithms perform end-to-end index-
ing hence indexing time, query time and recall are unknown to
users prior to or during ANN indexing, while these results are
required to reach high recall in real-time incremental learning.

To address the above challenges, we propose RIANN, a
system to enabling real-time ANN incremental learning on
mobile devices. To achieve our goals, we propose a dynamic
ANN indexing structure based on HNSW [13]. With the dy-
namic ANN graph construction, we can target different in-
dexing times, query times and recall on the fly. Next, we
propose a statistical performance model to guide dynamic
ANN construction over millions of possible properties. We
further propose an analytical performance model to avoid
interaction with mobile devices and runtime overhead.

2 Framework Design

Dynamic ANN graph construction. Currently, most graph-
based ANN algorithms work in the following manner: during
graph construction, the algorithms build a graph G = (P,E)
based on the geometric properties of points in dataset P with
connecting edges E between the points. At search time, for
a query point p € P, ANN search employs a natural greedy
traversal on G. Starting at some designated point d € P, the
algorithms traverse the graph to get progressively closer to p.
The state-of-the-art ANN algorithm HNSW exploits the above
procedure with building a multi-layer structure consisting of
hierarchical set of proximity graphs (layers) for nested subsets
of the stored elements.

However, since current graph-based ANN algorithms in-
cluding HNSW are designed using static graph construction
properties, there is little flexibility in controlling graph con-
struction properties for real-time ANN incremental learning.

To address this problem, we propose RIANN to construct
graphs in a dynamic manner. The dynamic graph construc-
tion depends on user requirements and a batch size of data

USENIX Association

2020 USENIX Conference on Operational Machine Learning 25

Online Prediction

Model Training
Prediction
Indexing Time
+

New
Data Model
! Trained 2 Unsatisfied
S
Indexing Properties Performance Model
1

- - User Requirement Satisfied
Train Statistical
Prediction Model Si

lated _ Optimal Properties Indexi
‘ — Offline Stage — ‘

Figure 1: Overview of RIANN.

User Requirement

Properties

ANN on
Mobile Devices

Non-optimal

Annealing

Online Stage

points. To achieve this goal, we build dynamic construction
graph properties (e.g., out-degree edges of each point and
candidates to build those edges). The advantage of dynamic
group construction properties is that we can meet the real-time
requirement while maintaining high recall.

Domain-specific statistical prediction model. The tradi-
tional approach to obtain the optimal indexing properties is to
examine different indexing properties [3, 9, 11, 13]. However,
to obtain the optimal indexing properties, this approach 1) re-
quires an excessive amount of time (days and even weeks) [3]
to obtain the optimum and 2) requests the exact indexing data
size which is impractical in ANN incremental learning.

We propose a statistical prediction model to solve the prob-
lem. Figure |1 presents the overview of our design. The sta-
tistical prediction model is to estimate the recall and index-
ing or query time of each construction property for index-
ing a batch of data. The model is based on gradient boosted
trees [8](GBTs) with simulated annealing [12]. We use XG-
Boost [5] as the GBTs model for training and implement a
light-weighted XGBoost inference engine for mobile devices.
Analytical performance model. Though the prediction
model is promising to predict ANN recall, the model has
two issues to predict indexing/query time: 1) it interacts with
mobile devices frequently to collect training data and 2) it
incurs nonnegligible runtime overhead.

To address those problems, we propose an analytical per-
formance model to predict indexing/query time at runtime.
Equation 1 is used to estimate the time of querying data point
p € P in one layer, where P refers to the set of points in one
batch. The metric is defined as:

Tyyr(cand,deg,N) = Ty * h(cand,Dayg(deg,N)) * Dayg(deg,N) (1)

Where cand represents candidate points, deg is the out-
degree, N is the set of all points in one layer and 7 repre-
sents the time to calculate the distance. h(cand, Dayg(deg,N))
is a function to obtain the average number of hops from
the entry point to the target point. The function can be for-
mulated with small sample profiling offline. Dy,,(deg,N) =
‘N‘ﬁ ():l.]l‘l N; + deg) calculates the average out-degree after
inserting p.

With the number of candidates and out-degree of p, the
query time T, and indexing time Tjy, are defined as follows:

max

Tyry(candy,deg) = Z Tiyr(1,deg,Ny) + Tjy(candy,deg x2,Ny) - (2)
(=2

@
8

1000 15000

1 Default HNSW] [B Optimal HNSW]
100 100

8
g

800 12000

600 9000

a o e
a 8

5

400 6000

Indexing Time (ms)

200 3000

Satisfied Batches (%)
o 8 & 8 8
&

&

o o
°

o 0 0
10 100 1000 500 375 250
Batch Size Indexing Time Requirement (ms)
(a) (b)

Figure 2: (a) Indexing time of RIANN and HNSW with differ-
ent batch size. (b) Percentage of satisfied batches of RIANN
and HNSW with different indexing time requirement.

b b
Tiax(cand;,deg) = Z ler(1,deg,Ny) +Z (ler (cand;,deg,Ny)
=, i=

+ f(deg)) + Ty (cand;,dre «2,Ny) + f(dre) (3)
Where £,,4, is the maximum number of layers, ¢, repre-
sents the indexing layer for p and cand, and cand; repre-
sent the number of candidates for query and indexing. The
time of querying p from /,,, to ¢ can be calculated by
Zf'”“" Tiyr(cand,deg,Ny). The time of updating out-degree of
p is calculated by f(deg) that depends on the implementation
and linear to the number of out-degree.

3 Evaluation
Comparison of RIANN and HNSW. We compare RIANN
with HNSW which is the state-of-the-art ANN algorithm [3].
We employ SIFT [1] dataset on a Samsung S9 with Android
9. We use the graph construction properties listed in the pa-
per [13] denoted as default HNSW. The optimal HNSW rep-
resents hypothetical results in which 1) users know the data
size of ANN indexing which is impractical; 2) users spend
a large amount of time (days and even weeks) to obtain the
optimal HNSW. We experiment different batch size (10, 100
and 1000) in batch increments of 10 for incremental learning.
In Figure 2, we observe that RIANN shows significant
performance improvement (2.42 times speedup on average)
than the default HNSW and 8.67% performance less than the
optimal HNSW while RIANN maintains the same recall and
query time compared to the optimal and default HNSW. The
runtime overhead of RIANN is included in Figure 2.
Evaluation with User Requirement. We incrementally in-
dex 100 batches and the batch size starts from 10 to 1000. In
Figure 2, we observe that 55.33% batches are satisfied using
default HNSW while RIANN can satisfy 96.67% with only
2.43% loss in recall.

4 Conclusion

We present RIANN, a real-time graph-based ANN indexing
and search system. It constructs graphs in a dynamic manner
with a statistical prediction model and an analytical perfor-
mance model to incrementally index and search data in real-
time on mobile devices. RIANN significantly outperforms the
state-of-the-art ANN (2.42 x speedup) without compromising
query time or recall in incremental learning. Also, for incre-
mentally indexing 100 batches of data, the state-of-the-art
ANN satisfies 55.33% batches on average while RIANN can
satisfy 96.67% with compromising 2.43% recall.

26 2020 USENIX Conference on Operational Machine Learning

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Datasets for
http://

Laurent Amsaleg and Hervé Jegou.
approximate nearest neighbor search.
corpus-texmex.irisa.fr.

Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab
Bhattacharya. Hd-index: Pushing the scalability-
accuracy boundary for approximate knn search in high-
dimensional spaces. Proceedings of the VLDB Endow-
ment, 11(8):906-919, 2018.

Martin Aumiiller, Erik Bernhardsson, and Alexander
Faithfull. Ann-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. Information
Systems, 87:101374, 2020.

Lei Chen, M Tamer Ozsu, and Vincent Oria. Robust
and fast similarity search for moving object trajecto-
ries. In Proceedings of the 2005 ACM SIGMOD in-
ternational conference on Management of data, pages
491-502, 2005.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785-794, 2016.

James Davidson, Benjamin Liebald, Junning Liu, Palash
Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta,
Yu He, Mike Lambert, Blake Livingston, et al. The
youtube video recommendation system. In Proceedings
of the fourth ACM conference on Recommender systems,
pages 293-296, 2010.

Arjen P de Vries, Nikos Mamoulis, Niels Nes, and Mar-
tin Kersten. Efficient k-nn search on vertically decom-
posed data. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages
322-333, 2002.

Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189-1232, 2001.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai.
Fast approximate nearest neighbor search with the navi-
gating spreading-out graph. Proceedings of the VLDB
Endowment, 12(5):461-474, 2019.

Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang,
and Wilfred Ng. Query-aware locality-sensitive hashing
for approximate nearest neighbor search. Proceedings
of the VLDB Endowment, 9(1):1-12, 2015.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. arXiv preprint
arXiv:1702.08734, 2017.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vec-
chi. Optimization by simulated annealing. science,
220(4598):671-680, 1983.

Yury A Malkov and Dmitry A Yashunin. Efficient and
robust approximate nearest neighbor search using hierar-
chical navigable small world graphs. IEEE transactions
on pattern analysis and machine intelligence, 2018.

Borkur Sigurbjornsson and Roelof Van Zwol. Flickr
tag recommendation based on collective knowledge. In
Proceedings of the 17th international conference on
World Wide Web, pages 327-336, 2008.

George Teodoro, Eduardo Valle, Nathan Mariano, Ri-
cardo Torres, Wagner Meira, and Joel H Saltz. Approx-
imate similarity search for online multimedia services
on distributed cpu—gpu platforms. The VLDB Journal,
23(3):427-448, 2014.

Chong Yang, Xiaohui Yu, and Yang Liu. Continuous
knn join processing for real-time recommendation. In
2014 IEEE International Conference on Data Mining,
pages 640-649. IEEE, 2014.

Yuxin Zheng, Qi Guo, Anthony KH Tung, and Sai Wu.
Lazylsh: Approximate nearest neighbor search for mul-
tiple distance functions with a single index. In Proceed-
ings of the 2016 International Conference on Manage-
ment of Data, pages 2023-2037, 2016.

USENIX Association

2020 USENIX Conference on Operational Machine Learning 27

