
USENIX Association

July 14–16, 2021

Proceedings of the
15th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’21)

© 2021 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-22-9

Conference Organizers
Program Co-Chairs
Angela Demke Brown, University of Toronto
Jay Lorch, Microsoft Research
Program Committee
Atul Adya, Google
Deniz Altinbüken, Google
Nadav Amit, VMware Research
Thomas Anderson, University of Washington
Sebastian Angel, University of Pennsylvania
Behnaz Arzani, Microsoft Research
Mahesh Balakrishnan, Facebook
Sujata Banerjee, VMware Research
Sorav Bansal, Indian Institute of Technology Delhi
Andrew Baumann, Microsoft Research
Adam Belay, Massachusetts Institute of Technology
Theophilus A. Benson, Brown University
Pramod Bhatotia, Technische Universität Munich
James Bornholt, The University of Texas at Austin
Edouard Bugnion, EPFL
George Candea, EPFL
Kang Chen, Tsinghua University
Rong Chen, Shanghai Jiao Tong University
Mosharaf Chowdhury, University of Michigan
Moshe Gabel, University of Toronto
Ada Gavrilovska, Georgia Institute of Technology
Manya Ghobadi, Massachusetts Institute of Technology
Garth A. Gibson, Vector Institute, Carnegie Mellon University,

and University of Toronto
Ashvin Goel, University of Toronto
Joseph Gonzalez, University of California, Berkeley
Ronghui Gu, Columbia University
Haryadi Gunawi, University of Chicago
Chuanxiong Guo, ByteDance
Chris Hawblitzel, Microsoft Research
Jon Howell, VMware Research
Yu Hua, Huazhong University of Science and Technology
Ryan Huang, Johns Hopkins University
Michael Isard, Google Research
Joe Izraelevitz, University of Colorado, Boulder
Manos Kapritsos, University of Michigan
Baris Kasikci, University of Michigan
Sam King, University of California, Davis
Orran Krieger, Boston University
Arvind Krishnamurthy, University of Washington
Amit Levy, Princeton University
Jialin Li, National University of Singapore
Wyatt Lloyd, Princeton University
Shan Lu, University of Chicago
Harsha V. Madhyastha, University of Michigan
Petros Maniatis, Google
Z. Morley Mao, University of Michigan
Changwoo Min, Virginia Tech
Radhika Mittal, University of Illinois at Urbana–Champaign
Dushyanth Narayanan, Microsoft Research
Ravi Netravali, University of California, Los Angeles
Kay Ousterhout, Lightstep

Aurojit Panda, New York University
Gennady Pekhimenko, University of Toronto and Vector

Institute
Amar Phanishayee, Microsoft Research
Peter Pietzuch, Imperial College London
Don Porter, The University of North Carolina at Chapel Hill
Oriana Riva, Microsoft Research
Malte Schwarzkopf, Brown University
Vyas Sekar, Carnegie Mellon University
Michael Stumm, University of Toronto
Lalith Suresh, VMware Research
Doug Terry, Amazon
Alexey Tumanov, Georgia Institute of Technology
Amin Vahdat, Google
Shivaram Venkataraman, University of Wisconsin—Madison
Rashmi Vinayak, Carnegie Mellon University
Marko Vukolić, IBM Research - Zurich
Andrew Warfield, Amazon
Gala Yadgar, Technion—Israel Institute of Technology
Junfeng Yang, Columbia University
Ding Yuan, University of Toronto
Irene Zhang, Microsoft Research
Yiying Zhang, University of California, San Diego
Wenting Zheng, University of California, Berkeley, and

Carnegie Mellon University
Yuanyuan Zhou, University of California, San Diego
Preview Session Co-Chairs
Sangeetha Abdu Jyothi, University of California, Irvine, and

VMware Research
Deniz Altinbüken, Google
Dilma Da Silva, Texas A&M University
Aurojit Panda, New York University
Mentoring Co-Chairs
Baris Kasikci, University of Michigan
Amy Ousterhout, University of California, Berkeley
Malte Schwarzkopf, Brown University
Networking Session Co-Chairs
Reto Achermann, University of British Columbia
Zsolt István, IT University of Copenhagen
Adriana Szekeres, VMware Research
Vasily Tarasov, IBM Research - Almaden
Steering Committee
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Jason Flinn, Facebook
Casey Henderson, USENIX Association
Jon Howell, VMware Research
Kimberly Keeton
Hank Levy, University of Washington
Shan Lu, University of Chicago
James Mickens, Harvard University
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Margo Seltzer, University of British Columbia
Geoff Voelker, University of California, San Diego

External Reviewers
Adam Chlipala
Aditya Akella
Adriana Szekeres
Ana Klimovic
Carmela Troncoso

Cristina Nita-Rotaru
Harry Xu
James Mickens
James R. Wilcox
Jonathan Mace

Kim Laine
Philip Levis
Rebecca Isaacs
Ryan Stutsman
Sarah Meiklejohn

Srinath Setty
Steven Hand
Ulfar Erlingsson

Message from the OSDI ’21 Program Co-Chairs
Dear colleagues,

Welcome to the 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’21)!

This is the oddest year ever for an OSDI, thanks to the laudable efforts of several members of our community to move OSDI
to an annual rather than bi-annual cadence. We hope this experiment is successful and we can continue having this higher-
bandwidth and lower-latency channel for sharing the excellent research done by the OSDI community.

This year’s program offers 31 exceptional papers. These papers represent the many strengths of our community and cover a
wide range of topics, including systems support for machine learning, memory management, file and storage systems, data
management, operating systems, hardware, security, privacy, distributed systems, correctness, and formal verification of systems.

Given the exceptionally high number of submissions received by the previous OSDI, we recruited a large PC of 75 full members
including academics, industrial researchers, and industrial practitioners. We also recruited 50 people to serve as an external
review committee, providing a larger pool of expertise that we could draw on when needed; we called on 18 of them to provide
additional expert reviews. We are grateful to all the committee members for agreeing to serve on relatively short notice after
OSDI was added to the 2021 conference calendar in late Summer 2020.

Our program committee received 165 submissions and reviewed them in two rounds. Papers received three reviews in the
first round; 110 advanced to round two, where they received an additional three reviews. For a small number of papers, where
opinions were divided or where a paper was particularly specialized, we solicited additional expert reviews from our external
review committee. In total, the PC and external reviewers wrote more than 770,000 words in more than 850 thoughtful reviews.

The PC conducted extensive discussions to select which papers to accept. This began with a rigorous asynchronous online
discussion phase across the full PC, which resulted in 14 acceptances. The 41 papers that didn’t reach an accept-or-reject
consensus during the asynchronous online phase were discussed during a two-day PC meeting conducted via videoconference.
The PC chairs strove to ensure that all papers received full and fair consideration. All discussions reached a consensus
agreement, and a PC member wrote a summary of that discussion for the authors. Across all discussion stages, our reviewers
wrote over 1,800 comments in HotCRP containing nearly 200,000 words. Ultimately, the PC selected 31 papers for presentation
at the conference, resulting in a 19% acceptance rate, similar to prior years. Each of the accepted papers was allocated two
additional pages and shepherded by a member of the PC to help the authors address the reviewers’ comments in the camera-
ready version.

After finalizing the program, we created a separate committee to decide the Jay Lepreau Best Paper Awards composed of PC
members with no conflicts with the papers under consideration. PC members nominated papers for these awards. We selected
seven papers with at least two nominations for best paper as candidates for the award. After reading the nominated papers and
considering the reviews from the full PC, the awards committee chose the Jay Lepreau Best Paper Award recipients.

OSDI ’21 featured an artifact-evaluation process organized by Artifact Evaluation Committee Co-Chairs Guyue (Grace) Liu,
Manuel Rigger, and Lalith Suresh. Of the 31 papers accepted at OSDI ’21, 26 had artifacts submitted by their authors, and
all 26 of these earned the “Available” badge. In addition, 23 artifacts earned the “Functional” badge and 20 earned the most
challenging “Results Reproduced” badge. For more details, see the Message from the OSDI ’21 Artifact Evaluation Committee
Co-Chairs.

As PC co-chairs, we stand on the shoulders of so many who did a tremendous amount of hard work to make OSDI ’21 a
success. First, we thank the authors of all submitted papers for choosing to send their work to OSDI. Thanks also to the program
committee for their hard work in reviewing and discussing the submissions and in shepherding the accepted papers. We’re
also grateful to the external reviewers who provided additional perspectives. We thank the Artifact Evaluation Committee
Co-Chairs mentioned in the previous paragraph as well as all the members of the Artifact Evaluation Committee who helped
conduct thorough evaluations. We thank Baris Kasikci, Amy Ousterhout, and Malte Schwarzkopf for organizing OSDI/ATC
mentoring; Deniz Altınbüken, Dilma Da Silva, Sangeetha Abdu Jyothi, and Aurojit Panda for organizing the joint OSDI/ATC
preview session; Reto Achermann, Zsolt István, Adriana Szekeres, and Vasily Tarasov for organizing the joint OSDI/ATC
networking session; and Irina Calciu and Geoff Kuenning, the Program Committee Co-Chairs of ATC ’21, for coordinating with
us efficiently, productively, and enjoyably. We thank the USENIX staff, who have been fundamental in organizing OSDI ’21 in
an especially difficult year. The logistics of the online PC meeting were facilitated by PhD students Christina Christodoulakis,
Eric Munson, and Upamanyu Sharma, whose assistance we greatly appreciate. Finally, OSDI wouldn’t be what it is without our
attendees—thank you for listening to our speakers, asking challenging and insightful questions, sharing your ideas with others,
and networking with one another online!

We hope you will find OSDI ’21 interesting, educational, and inspiring!

Angela Demke Brown, University of Toronto
Jay Lorch, Microsoft Research
OSDI ’21 Program Co-Chairs

Message from the OSDI ’21
Artifact Evaluation Committee Co-Chairs

We are happy to report about the OSDI ’21 artifact evaluation process. This is the second time that OSDI conducted such
a process and we hope to keep improving it so that artifact evaluation will become more common in our community’s
conferences.

Process
We continued to use the three-badge approach (vs. the single-badge approach) from OSDI ’20 to evaluation and these three
badges include:

• Artifacts Available: To earn this badge, the AEC must judge that the artifacts associated with the paper have been made
available for retrieval, permanently and publicly.

• Artifacts Functional: To earn this badge, the AEC must judge that the artifacts conform to the expectations set by the
paper in terms of functionality, usability, and relevance.

• Results Reproduced: To earn this badge, the AEC must judge that they can use the submitted artifacts to obtain the main
results presented in the paper.

Evaluation
We had 28 reviewers and we assigned 2 or 3 artifacts for each reviewer so that each artifact was evaluated by 3 reviewers. The
evaluation process had two key phases: the kick-the-tires phase and the in-depth evaluation phase. During the kick-the-tires
phase, reviewers made a quick first pass over all assignments to identify and report obvious problems and communicated them
with the authors. After the kick-the-tires phase, reviewers evaluated each assignment thoroughly and wrote detailed reviews.
Finally, reviewers coordinated and communicated with fellow AEC members and decided which badges should be awarded to
each artifact.

Results
OSDI ’21 accepted 31 papers and 26 papers participated in the AE, a significant increase in the participation ratio: 84%,
compared to OSDI ’20 (70%) and SOSP ’19 (61%).

Of the 26 submitted artifacts:

• 26 artifacts received the Artifacts Available badge (100%).
• 23 artifacts received the Artifacts Functional badge (88%).
• 20 artifacts received the Results Reproduced badge (77%).

Key Takeaways
CloudLab Resources: Our experience showed that CloudLab (https://cloudlab.us/) can effectively facilitate the evaluation
process. We suggest future AEC chairs prepare and make CloudLab resources available from the beginning of the evaluation
process.

Usage of Screencasts: Some artifacts could only be evaluated based on the screencasts due to various constraints. This posed a
few challenges around identifying a consistent standard for evaluating screencasts. We suggest future AEC chairs provide clear
guidance on screencasts to authors and announce ahead of time whether they count for different badges.

Finally, we deeply thank the authors and the AEC committee for all their efforts in making the OSDI ‘21 artifact evaluation
possible, especially during a pandemic.

Guyue (Grace) Liu, Carnegie Mellon University
Manuel Rigger, ETH Zürich
Lalith Suresh, VMware Research
OSDI ’21 Artifact Evaluation Committee Co-chairs

15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’21)

July 14–16, 2021
Wednesday, July 14
Optimizations and Scheduling for Machine Learning
Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning .1
Aurick Qiao, Petuum, Inc. and Carnegie Mellon University; Sang Keun Choe and Suhas Jayaram Subramanya, Carnegie
Mellon University; Willie Neiswanger, Petuum, Inc. and Carnegie Mellon University; Qirong Ho, Petuum, Inc.; Hao
Zhang, Petuum, Inc. and UC Berkeley; Gregory R. Ganger, Carnegie Mellon University; Eric P. Xing, MBZUAI, Petuum,
Inc., and Carnegie Mellon University

Oort: Efficient Federated Learning via Guided Participant Selection .19
Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury, University of Michigan

Pet: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections 37
Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, and Liyan Zheng, Tsinghua University; Yuanzhi Li,
Carnegie Mellon University; Kaiyuan Rong and Yuanyong Chen, Tsinghua University; Zhihao Jia, Carnegie Mellon
University and Facebook

Privacy Budget Scheduling .55
Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, and Roxana Geambasu, Columbia University; Mathias Lécuyer,
Microsoft Research

Storage
Modernizing File System through In-Storage Indexing .75
Jinhyung Koo, Junsu Im, Jooyoung Song, and Juhyung Park, DGIST; Eunji Lee, Soongsil University; Bryan S. Kim,
Syracuse University; Sungjin Lee, DGIST

Nap: A Black-Box Approach to NUMA-Aware Persistent Memory Indexes .93
Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu, Tsinghua University

Rearchitecting Linux Storage Stack for µs Latency and High Throughput .113
Jaehyun Hwang and Midhul Vuppalapati, Cornell University; Simon Peter, UT Austin; Rachit Agarwal, Cornell
University

Optimizing Storage Performance with Calibrated Interrupts .129
Amy Tai, VMware Research; Igor Smolyar, Technion – Israel Institute of Technology; Michael Wei, VMware Research;
Dan Tsafrir, Technion – Israel Institute of Technology and VMware Research

ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage Zone Compaction .147
Kyuhwa Han, Sungkyunkwan University and Samsung Electronics; Hyunho Gwak and Dongkun Shin, Sungkyunkwan
University; Joo-Young Hwang, Samsung Electronics

Data Management
DMon: Efficient Detection and Correction of Data Locality Problems Using Selective Profiling 163
Tanvir Ahmed Khan and Ian Neal, University of Michigan; Gilles Pokam, Intel Corporation; Barzan Mozafari
and Baris Kasikci, University of Michigan

CLP: Efficient and Scalable Search on Compressed Text Logs .183
Kirk Rodrigues, Yu Luo, and Ding Yuan, University of Toronto and YScope Inc.

Polyjuice: High-Performance Transactions via Learned Concurrency Control . 199
Jiachen Wang, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Shanghai AI Laboratory;
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China; Ding Ding,
Department of Computer Science, New York University; Huan Wang, Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University; Shanghai AI Laboratory; Engineering Research Center for Domain-specific Operating
Systems, Ministry of Education, China; Conrad Christensen, Department of Computer Science, New York University;
Zhaoguo Wang and Haibo Chen, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Shanghai
AI Laboratory; Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China;
Jinyang Li, Department of Computer Science, New York University

Retrofitting High Availability Mechanism to Tame Hybrid Transaction/Analytical Processing .219
Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong
University; Shanghai Artificial Intelligence Laboratory; Engineering Research Center for Domain-specific Operating
Systems, Ministry of Education, China

Thursday, July 15
Operating Systems and Hardware
The nanoPU: A Nanosecond Network Stack for Datacenters . 239
Stephen Ibanez, Alex Mallery, Serhat Arslan, and Theo Jepsen, Stanford University; Muhammad Shahbaz, Purdue
University; Changhoon Kim and Nick McKeown, Stanford University

Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator .257
A.H. Hunter, Jane Street Capital; Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley, and Parthasarathy
Ranganathan, Google

Scalable Memory Protection in the Penglai Enclave .275
Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, and Xueqiang Jiang, Institute of Parallel and Distributed Systems, Shanghai
Jiao Tong University; Engineering Research Center for Domain-specific Operating Systems, Ministry of Education,
China; Yubin Xia, Binyu Zang, and Haibo Chen, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong
University; Shanghai AI Laboratory; Engineering Research Center for Domain-specific Operating Systems, Ministry of
Education, China

NrOS: Effective Replication and Sharing in an Operating System .295
Ankit Bhardwaj and Chinmay Kulkarni, University of Utah; Reto Achermann, University of British Columbia; Irina
Calciu, VMware Research; Sanidhya Kashyap, EPFL; Ryan Stutsman, University of Utah; Amy Tai and Gerd Zellweger,
VMware Research

Security and Privacy
Addra: Metadata-private voice communication over fully untrusted infrastructure .313
Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta, University of California,
Santa Barbara

Bringing Decentralized Search to Decentralized Services .331
Mingyu Li, Jinhao Zhu, and Tianxu Zhang, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong
University; Shanghai AI Laboratory; Engineering Research Center for Domain-specific Operating Systems, Ministry
of Education, China; Cheng Tan, Northeastern University; Yubin Xia, Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University; Shanghai AI Laboratory; Engineering Research Center for Domain-specific Operating
Systems, Ministry of Education, China; Sebastian Angel, University of Pennsylvania; Haibo Chen, Institute of Parallel
and Distributed Systems, Shanghai Jiao Tong University; Shanghai AI Laboratory; Engineering Research Center for
Domain-specific Operating Systems, Ministry of Education, China

Finding Consensus Bugs in Ethereum via Multi-transaction Differential Fuzzing . 349
Youngseok Yang, Seoul National University; Taesoo Kim, Georgia Institute of Technology; Byung-Gon Chun, Seoul
National University and FriendliAI

MAGE: Nearly Zero-Cost Virtual Memory for Secure Computation . 367
Sam Kumar, David E. Culler, and Raluca Ada Popa, University of California, Berkeley

Zeph: Cryptographic Enforcement of End-to-End Data Privacy . 387
Lukas Burkhalter, Nicolas Küchler, Alexander Viand, Hossein Shafagh, and Anwar Hithnawi, ETH Zürich

Friday, July 16
Correctness
DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols . 405
Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan, Columbia University

GoJournal: a verified, concurrent, crash-safe journaling system .423
Tej Chajed, MIT CSAIL; Joseph Tassarotti, Boston College; Mark Theng, MIT CSAIL; Ralf Jung, MPI-SWS;
M. Frans Kaashoek and Nickolai Zeldovich, MIT CSAIL

Storm: Refinement Types for Secure Web Applications .441
Nico Lehmann and Rose Kunkel, UC San Diego; Jordan Brown, Independent; Jean Yang, Akita Software; Niki Vazou,
IMDEA Software Institute; Nadia Polikarpova, Deian Stefan, and Ranjit Jhala, UC San Diego

Horcrux: Automatic JavaScript Parallelism for Resource-Efficient Web Computation .461
Shaghayegh Mardani, UCLA; Ayush Goel, University of Michigan; Ronny Ko, Harvard University; Harsha V. Madhyastha,
University of Michigan; Ravi Netravali, Princeton University

Sanrazor: Reducing Redundant Sanitizer Checks in C/C++ Programs .479
Jiang Zhang, University of Southern California; Shuai Wang, HKUST; Manuel Rigger, Pinjia He, and Zhendong Su,
ETH Zurich

Graph Embeddings and Neural Networks
Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless Threads495
John Thorpe, Yifan Qiao, Jonathan Eyolfson, and Shen Teng, UCLA; Guanzhou Hu, UCLA and University of Wisconsin,
Madison; Zhihao Jia, CMU; Jinliang Wei, Google Brain; Keval Vora, Simon Fraser; Ravi Netravali, Princeton
University; Miryung Kim and Guoqing Harry Xu, UCLA

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs . .515
Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding, University of California,
Santa Barbara

Marius: Learning Massive Graph Embeddings on a Single Machine .533
Jason Mohoney and Roger Waleffe, University of Wisconsin-Madison; Henry Xu, University of Maryland, College Park;
Theodoros Rekatsinas and Shivaram Venkataraman, University of Wisconsin-Madison

P3: Distributed Deep Graph Learning at Scale .551
Swapnil Gandhi and Anand Padmanabha Iyer, Microsoft Research

Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning

Aurick Qiao1,2 Sang Keun Choe2 Suhas Jayaram Subramanya2 Willie Neiswanger1,2

Qirong Ho1 Hao Zhang1,3 Gregory R. Ganger2 Eric P. Xing4,1,2

1Petuum, Inc. 2Carnegie Mellon University 3UC Berkeley 4MBZUAI

Abstract
Pollux improves scheduling performance in deep learning

(DL) clusters by adaptively co-optimizing inter-dependent

factors both at the per-job level and at the cluster-wide level.

Most existing schedulers expect users to specify the number of

resources for each job, often leading to inefficient resource use.

Some recent schedulers choose job resources for users, but do

so without awareness of how DL training can be re-optimized

to better utilize the provided resources.

Pollux simultaneously considers both aspects. By moni-

toring the status of each job during training, Pollux models

how their goodput (a metric we introduce to combine system

throughput with statistical efficiency) would change by adding

or removing resources. Pollux dynamically (re-)assigns

resources to improve cluster-wide goodput, while respecting

fairness and continually optimizing each DL job to better

utilize those resources.

In experiments with real DL jobs and with trace-driven

simulations, Pollux reduces average job completion times

by 37–50% relative to state-of-the-art DL schedulers, even

when they are provided with ideal resource and training

configurations for every job. Pollux promotes fairness among

DL jobs competing for resources, based on a more meaningful

measure of useful job progress, and reveals a new opportunity

for reducing DL cost in cloud environments. Pollux is

implemented and publicly available as part of an open-source

project at https://github.com/petuum/adaptdl.

1 Introduction

Deep learning (DL) training has rapidly become a dominant

workload in many shared resource environments such as

datacenters and the cloud. DL jobs are resource-intensive and

long-running, often demanding distributed execution using

expensive hardware devices (eg. GPUs or TPUs) in order to

complete within reasonable amounts of time. To meet this

resource demand, dedicated clusters are often provisioned for

deep learning [31, 67], with a scheduler that mediates resource

sharing between many competing DL jobs.

Existing schedulers require users to manually configure

their jobs, which if done improperly, can greatly degrade

training performance and resource efficiency. For example,

allocating too many GPUs may result in long queuing times

and inefficient resource usage, while allocating too few GPUs

may result in long runtimes and unused resources. Such

decisions are especially difficult to make in a shared-cluster

setting, since optimal choices are dynamic and depend on the

cluster load while a job is running.

Even though recent elastic schedulers can automatically

select an appropriate amount of resources for each job, they do

so blindly to inter-dependent training-related configurations

that are just as important. For example, the batch size and

learning rate of a DL job influence the amount of computation

needed to train its model. Their optimal choices vary between

different DL tasks and model architectures, and they have

strong dependence on the job’s allocation of resources.

The amount of resources, batch size, and learning rate are

difficult to configure appropriately without expert knowledge

about both the cluster hardware performance and DL model

architecture. Due to the inter-dependence between their

optimal values, they should be configured jointly with each

other. Due to the dynamic nature of shared clusters, their

optimal values may change over time. This creates a complex

web of considerations a user must make in order to configure

their job for efficient execution and resource utilization.

How can a cluster scheduler help to automatically con-

figure user-submitted DL jobs? Fundamentally, a properly-

configured DL job strikes a balance between two often oppos-

ing desires: (1) system throughput, the numberof training exam-

ples processed per wall-clock time, and (2) statistical efficiency,

the amount of progress made per training example processed.

System throughput can be increased by increasing the

batch size, as illustrated in Fig. 1a. A larger batch size enables

higher utilization of more compute resources (e.g., more

GPUs). But, even with an optimally-retuned learning rate,

increasing the batch size often results in a decreased statistical

efficiency [46,57]. For every distinct allocation of GPUs, there

is potentially a different batch size that best balances increasing

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 1

https://github.com/petuum/adaptdl

(a) Job scalability (and thus

resource utilization) depends on

the batch size.

(b) The most efficient batch

size depends on the allocated

resources and stage of training.

Figure 1: Trade-offs between the batch size, resource

scalability, and stage of training (ResNet18 on CIFAR-10).

The learning rate is separately tuned for each batch size.

system throughput with decreasing statistical efficiency, as

illustrated in Fig. 1b. Furthermore, how quickly the statistical

efficiency decreases with respect to the batch size depends on

the current training progress. A job in a later stage of training

can potentially tolerate 10x or larger batch sizes without de-

grading statistical efficiency, than earlier during training [46].

Guided by these insights, this paper presents Pollux, a hybrid

resource scheduler that co-adaptively allocates resources and

tunes the batch size and learning rate for all DL jobs in a shared

cluster. Pollux achieves this by jointly managing several

system-level and training-related parameters, including the

number of GPUs, co-location of workers, per-GPU batch size,

gradient accumulation, and learning rate scaling. In particular:

⋆ We propose a formulation of goodput for DL jobs, which

is a holistic measure of training performance that takes into

account both system throughput and statistical efficiency.

⋆ We show that a model of a DL job’s goodput can be

learned by observing its throughput and statistical behavior

during training, and used for predicting the performance given

different resource allocations and batch sizes.

⋆We design and implement a scheduling architecture that uses

such models to configure the right combination of resource al-

location and training parameters for each pending and running

DL job. This includes locally tuning system-level and training-

related parameters for each DL job, and globally optimizing

cluster-wide resource allocations. The local and global com-

ponents actively communicate and cooperate with each other,

operating based on the common goal of goodput maximization.

⋆ We evaluate Pollux on a cluster testbed using a workload

derived from a Microsoft cluster trace. Compared with recent

DL schedulers, Tiresias [22] and Optimus [52], Pollux reduces

the average job completion time by up to 73%. Even when

all jobs are manually tuned beforehand, Pollux reduces the

average job completion time by 37%–50%. At the same time,

Pollux improves finish-time fairness [43] by 1.5×–5.4×.

⋆ We show that, in cloud environments, using goodput-driven

auto-scaling based on Pollux can potentially reduce the cost

of training large models by 25%.

2 Background: Distributed DL Training

Training a deep learning model typically involves minimizing

a loss function of the form

L(w)=
1

|X | ∑
xi∈X

ℓ(w,xi), (1)

where w ∈ R
d are the model parameters to be optimized, X

is the training dataset, xi is an individual sample in X , and ℓ
is the loss evaluated at a single sample.

The loss function can be minimized using stochastic

gradient descent (SGD) or its variants like AdaGrad [15] and

Adam [36]. For the purpose of explaining system throughput

and statistical efficiency, we will use SGD as the running

example. SGD repeatedly applies the following update until

the loss converges to a stable value: w(t+1) = w(t)−ηĝ(t). η
is known as the learning rate, which is a scalar that controls

the magnitude of each update, and ĝ(t) is a stochastic gradient

estimate of the loss function L , evaluated using a random

mini-batch M (t)⊂X of the training data:

ĝ(t)=
1

M
∑

xi∈M (t)

∇ℓ(w(t),xi). (2)

The learning rate η and batch size M = |M (t)| are training

parameters which are typically chosen by the user.

2.1 System Throughput

The system throughput of DL training can be defined as the

number of training samples processed per unit of wall-clock

time. When a DL job is distributed across several nodes, its

system throughput is determined by several factors, including

(1) the allocation and placement of resources (e.g. GPUs)

assigned to the job, (2) the method of distributed execution

and synchronization, and (3) the batch size.

Data-parallel execution. Synchronous data-parallelism is a

popular method of distributed execution for DL training. The

model parameters w(t) are replicated across a set of distributed

GPUs 1, ... , K, and each mini-batch M (t) is divided into

equal-sized partitions per node, M
(t)

1 ,...,M
(t)

K . Each GPU k

computes a local gradient estimate ĝ
(t)
k using its own partition:

ĝ
(t)
k =

1

m
∑

xi∈M
(t)
k

∇ℓ(w(t),xi), (3)

where m = |M (t)
k | is the per-GPU batch size. These local

gradient estimates are then averaged across all GPUs to obtain

the desired ĝ(t). Finally, each node applies the same update

using ĝ(t) to obtain the new model parameters w(t+1).

The run-time of each training iteration is determined

by two main components. First, the time spent computing

each ĝ
(t)
k , which we denote by Tgrad . Second, the time spent

2 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

averaging ĝ
(t)
k (e.g. using collective all-reduce [51, 56]) and/or

synchronizing w(t) (e.g. using parameter servers [8,11,26,53])

across all GPUs, which we denote by Tsync. Tsync is influenced

by the size of the gradients, performance of the network, and

is typically shorter when the GPUs are co-located within the

same physical node or rack.

Limitations due to the batch size. When the number of GPUs

is increased, Tgrad decreases due to a smaller per-GPU batch

size. On the other hand, Tsync, which is typically independent

of the batch size, remains unchanged. By Amdahl’s Law,

no matter how many GPUs are used, the run-time of each

training iteration is lower bounded by Tsync. To overcome this

scalability limitation, a common strategy is to increase the

batch size. Doing so causes the local gradient estimates to be

computed over more training examples and thereby increasing

the ratio of Tgrad to Tsync. As a result, using a larger batch size

enables higher system throughput when scaling to more GPUs

in the synchronous data-parallel setting.

2.2 Statistical Efficiency

The statistical efficiency of DL training can be defined as the

amount of training progress made per unit of training data pro-

cessed, influenced by parameters such as batch size or learning

rate; for example, a larger batch size normally decreases the sta-

tistical efficiency. The ability to predict statistical efficiency is

key to improving said statistical efficiency, because we can use

the predictions to better adapt the batch sizes and learning rates.

Gradient noise scale. Previous work [32, 46] relate the

statistical efficiency of DL training to the gradient noise

scale (GNS), which measures the noise-to-signal ratio of

the stochastic gradient. A larger GNS means that training

parameters such as the batch size and learning rate can be

increased to higher values with relatively less reduction of

the statistical efficiency. The GNS can vary greatly between

different DL models [19]. It is also non-constant and tends to

gradually increase during training, by up to 10× or more [46].

Thus, it is possible to attain significantly better statistical

efficiency for large batch sizes later on during training.

The gradient noise scale mathematically captures an

intuitive explanation of how the batch size affects statistical

efficiency. When the stochastic gradient has low noise,

adding more training examples to each mini-batch does not

significantly improve each gradient estimate, which lowers

statistical efficiency. When the stochastic gradient has high

noise, adding more training examples to each mini-batch

reduces the noise of each gradient estimate, which maintains

high statistical efficiency. Near convergence, the stochastic

gradients have relatively lower signal than noise, and so larger

batch sizes can be more useful later in training.

Learning rate scaling. When training with an increased total

batch size M, the learning rate η should also be increased,

otherwise the final trained model quality/accuracy can be

significantly worse [57]. How to increase the learning rate

varies between different models and training algorithms (e.g.

SGD, Adam [36], AdamW [42]), and several well-established

scaling rules may be used. For example, the linear scaling

rule [21], which prescribes that η be scaled proportionally with

M, or the square-root scaling rule [40, 69] (commonly used

with Adam), which prescribes that η be scaled proportionally

with
√

M. More recent scaling rules such as AdaScale [32]

may scale the learning rate adaptively during training.

In addition to decreasing statistical efficiency, using large

batch sizes may also degrade the final model quality in terms

of validation performance [19, 35, 60], although the reasons

behind this effect are not completely understood at the time of

this paper. However, for each of the learning rate scaling rules

mentioned above, there is usually a problem-dependent range

of batch sizes that achieve similar validation performances.

Within these ranges, the batch size may be chosen more freely

without significantly degrading the final model quality.

2.3 Existing DL Schedulers

We broadly group existing DL schedulers into two categories,

to put Pollux in context. First, non-scale-adaptive schedulers

are agnostic to the performance scalability of DL jobs with

respect to the amount of allocated resources. For example, Tire-

sias [22] requires users to specify the number of GPUs at the

time of job submission, which will be fixed for the lifetime of

the job. Gandiva [66] also requires users to specify number of

GPUs, but enhances resource utilization through fine-grained

time sharing and job packing. Although Gandiva may dynam-

ically change the number of GPUs used by a job, it does so op-

portunistically and not based on knowledge of job scalability.

Second, scale-adaptive schedulers automatically decide

the amount of resources allocated to each job based on how

well they can be utilized to speed up the job. For example,

Optimus [52] learns a predictive model for the system

throughput of each job given various amounts of resources,

and optimizes cluster-wide resource allocations to minimize

the average job completion time. SLAQ [71], which was

not evaluated on DL, uses a similar technique to minimize

the average loss values for training general ML models.

Gavel [48] goes further by scheduling based on a throughput

metric that is comparable across different accelerator types.1

AntMan [67] uses dynamic scaling and fine-grained GPU

sharing to improve cluster utilization, resource fairness, and

job completion times. Themis [43] introduces the notion of

finish-time fairness, and promotes fairness between multiple

DL applications with a two-level scheduling architecture.

Crucially, existing schedulers are agnostic to the statistical

efficiency of DL training and the inter-dependence of resource

decisions and training parameters. Pollux explicitly co-adapts

these inter-dependent values to improve goodput for DL jobs.

1Pollux’s current throughput model does not consider accelerator

heterogeneity. We believe that extending with Gavel’s metric would allow

Pollux to co-adapt for goodput in heterogeneous DL clusters.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 3

3 The Goodput of DL Training and Pollux

In this section, we define the goodput2 of DL jobs, which is

a measure of training performance that takes into account both

system throughput and statistical efficiency. We then describe

how the goodput can be measured during training and used

as a predictive model, which is leveraged by Pollux to jointly

optimize cluster-wide resource allocations and batch sizes.

Definition 3.1. (Goodput) The goodput of a DL training job

at iteration t is the product between its system throughput and

its statistical efficiency at iteration t,

GOODPUTt(⋆)=THROUGHPUT(⋆)×EFFICIENCYt(M(⋆)), (4)

where ⋆ represents any configuration parameters that jointly

influence the throughput and batch size during training, and M

is the total batch size summed across all allocated GPUs.

While the above definition is general across many training

systems, we focus on three configuration parameters of par-

ticular impact in the context of efficient resource scheduling,

i.e. ⋆=(a,m,s), where:

• a∈ZN : the allocation vector, where an is the number of

GPUs allocated from node n.

• m∈Z: the per-GPU batch size.

• s∈Z: number of gradient accumulation steps (§3.2).

The total batch size is then defined as

M(a,m,s)=SUM(a)×m×(s+1).

Pollux’s approach. An initial batch size M0 and learning rate

(LR) η0 are selected by the user when submitting their job.

Pollux will start each job using a single GPU, m = M = M0,

s=0, and η=η0. As the job runs, Pollux profiles its execution

to learn and refine predictive models for both THROUGHPUT

(§3.2) and EFFICIENCY (§3.1). Using these predictive models,

Pollux periodically re-tunes (a,m,s) for each job, according

to cluster-wide resource availability and performance (§4.2).

EFFICIENCYt is measured relative to the initial batch size

M0 and learning rate η0, and Pollux only considers batch

sizes that are at least the initial batch size, ie. M ≥ M0. In

this scenario, EFFICIENCYt(M) is a fraction (between 0 and

1) relative to EFFICIENCYt(M0). Therefore, goodput can be

interpreted as the portion of the throughput that is useful for

training progress, being equal to the throughput if and only

if perfect statistical efficiency is achieved.

Plug-in Learning Rate Scaling. Recall from §2.2 that

different training jobs may require different learning rate

scaling rules to adjust η in response to changes in M. In order

2Our notion of goodput for DL is analogous to the traditional definition

of goodput in computer networks, ie. the useful portion of throughput as

benchmarked by training progress per unit of wall-clock time.

to support a wide variety of LR scaling rules, including state-of-

the-art rules such as AdaScale [32], Pollux provides a plug-in

interface that can be implemented using a function signature

SCALE_LR(M0,M)−→λ.

SCALE_LR is called before every model update step, and λ is

used by Pollux to scale the learning rate. The implementation

of SCALE_LR can utilize metrics collected during training,

such as the gradient noise scale. Using this interface, one can

implement rules including AdaScale, square-root scaling [40],

linear scaling [21] and LEGW [69].

3.1 Modeling Statistical Efficiency

We model EFFICIENCYt(M) as the amount of progress made

per training example using M, relative to using M0. For

SGD-based training, this quantity can be expressed in terms

of the gradient noise scale (GNS) [46]. To support popular

adaptive variants of SGD like Adam [36] and AdaGrad [64],

we use the pre-conditioned gradient noise scale (PGNS),

derived by closely following the original derivation of the GNS

(“simple” noise scale in [46]) starting from pre-conditioned

SGD3 rather than vanilla SGD. The PGNS, which we denote

by ϕt , is expressed as

ϕt =
tr(PΣPT)

|Pg|2 , (5)

where g is the true gradient, P is the pre-conditioning matrix

of the adaptive SGD algorithm, and Σ is the covariance

matrix of per-example stochastic gradients. The PGNS is a

generalization of the GNS and is mathematically equivalent

to the GNS for the special case of vanilla SGD.

Similar to the GNS (Appendix D of [46]), it takes 1+ϕt/M

training iterations to make a similar amount of training progress

across different batch sizes M. Therefore, we can use the PGNS

ϕt to define a concrete expression for EFFICIENCYt(M) as

EFFICIENCYt(M)=
ϕt+M0

ϕt+M
. (6)

Intuitively, Eqn. 6 measures the contribution from each train-

ing example to the overall progress. If EFFICIENCYt(M)=E,

then (1) 0 < E ≤ 1, and (2) training using batch size M will

need to process 1/E times as many training examples to make

the same progress as using batch size M0.

During training, Pollux estimates the value of ϕt , then uses

Eqn 6 to predict the EFFICIENCYt at different batch sizes. The

measured value of ϕt varies according to the training progress

at iteration t, thus EFFICIENCYt(M) reflects the lifetime-

dependent trends exhibited by the true statistical efficiency.

3Pre-conditioned SGD optimizes L(Pw) instead of L(w), where P is

known as a pre-conditioning matrix. Adaptive variants of SGD such as Adam

and AdaGrad may be viewed as vanilla SGD (with momentum) applied

together with a particular pre-conditioning matrix P.

4 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) ImageNet (b) YoloV3 (c) DeepSpeech2 (d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 2: Statistical efficiency for all models described in Table 1. TOP: validation metric vs training progress for three different

batch sizes: M0, an intermediate batch size, and the max batch size limit we set for each DL task. Metrics are as defined in

Table 1 except for YoloV3 for which validation loss is shown. MIDDLE: measured statistical efficiency vs. training progress

for two different batch sizes. Training progress (x-axis) in the top two rows is shown in terms of “statistical epochs”, defined

as M
|X | ∑t EFFICIENCYt(M) where |X | is the size of the training dataset. BOTTOM: measured EFFICIENCYt vs. predicted

EFFICIENCYt for a range of batch sizes (log-scaled), using ϕt measured using the median batch size from each range, during

an early-training epoch (roughly 1/8th of the way through training).

Fig. 2 (TOP) shows the validation metrics on a held-out

dataset for a variety of DL training tasks (details in Table

1) versus their training progress. “Statistical epochs”4 is the

number of training iterations normalized by EFFICIENCYt so

that each statistical epoch makes theoretically, as projected

by our model, the same training progress across different

batch sizes. Thus, the degree of similarity between validation

curves at different batch sizes is an indicator for the accuracy

of EFFICIENCYt as a predictor of actual training progress.

Although there are differences in the validation curves for

several DL tasks (especially in earlier epochs), they achieve

similar best values across the different batch sizes we evaluated

(±1% relative difference for all tasks except DeepSpeech2

at±4%). We note that these margins are within the plateau of

high-quality models expected from large-batch training [45].

Fig. 2 (MIDDLE and BOTTOM) show the measured

and predicted EFFICIENCYt during training and for a range

of different batch sizes. In general, larger batch sizes have

lower EFFICIENCYt early in training, but close the gap

4Similar to the notion of “scale-invariant iterations” defined in [32].

later on in training. The exceptions being BERT, which

is a fine-tuning task starting from an already pre-trained

model, and recommendation, which uses a much smaller

and shallower model architecture than the others. How

EFFICIENCYt changes during training varies from task to

task, and depends on specific properties like the learning rate

schedule. For example, EFFICIENCYt for ImageNet, which

uses step-based learning rate annealing, experiences sharp

increases whenever the learning rate is annealed.

Finally, we note that the EFFICIENCYt function (which is

supplied with estimates of ϕt by Pollux) is able to accurately

model observed values at a range of different batch sizes. This

means that ϕt measured using batch size M can be used by

Pollux to predict the value of EFFICIENCYt at a different batch

size M′ without needing to train using M′ ahead of time.

Upper batch size limit. In some cases, as the batch size in-

creases, the chosen LR scaling rule may break down before the

statistical efficiency decreases, which degrades the final model

quality. To address these cases, the application may define

a maximum batch size limit that will be respected by Pollux.

Nevertheless, we find that a batch size up to 32× larger works

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 5

well in most cases. Furthermore, limits for common models

are well-studied for popular LR scaling rules [21, 32, 57, 69].

As better LR scaling rules are developed, they may be

incorporated into Pollux using its plug-in interface (§3).

Estimating ϕt . The PGNS ϕt can be estimated in a similar

fashion as the GNS by following Appendix A.1 of [46],

except using the pre-conditioned gradient Pg instead of

the gradient g. This can be done efficiently when there are

multiple data-parallel processes by using the different values

of ĝ
(t)
k already available on each GPU k. However, this method

doesn’t work when there is only a single GPU (and gradient

accumulation is off, i.e. s = 0). In this particular situation,

Pollux switches to a differenced variance estimator [63] which

uses consecutive gradient estimates ĝ(t−1) and ĝ(t).

3.2 Modeling System Throughput

To model and predict the system throughput for data-parallel

DL, we aim to predict the time spent per training iteration,

Titer, and then calculate the throughput as

THROUGHPUT(a,m,s)=M(a,m,s)/Titer(a,m,s). (7)

We start by separately modeling Tgrad , the time in each

iteration spent computing local gradient estimates, and Tsync,

the time in each iteration spent averaging gradient estimates

and synchronizing model parameters across all GPUs. We

also start by assuming no gradient accumulation, i.e. s=0.

Modeling Tgrad . The local gradient estimates are computed

using back-propagation, whose run-time scales linearly with

the per-GPU batch size m. Thus, we model Tgrad as

Tgrad(m)=αgrad+βgrad ·m, (8)

where αgrad ,βgrad are fittable parameters.

Modeling Tsync. When allocated a single GPU, no synchro-

nization is needed and Tsync=0. Otherwise, we model Tsync as a

linear function of the number of GPUs since in data-parallelism,

the amount of data sent and received from each replica is

typically only dependent on the size of the gradients and/or pa-

rameters. We include a linear factor to account for performance

retrogressions associated with using three or more GPUs, such

as increasing likelihood of stragglers or network delays.

Co-location of GPUs on the same node reduces network

communication, which can improve Tsync. Thus, we use

different parameters depending on GPU placement. Letting

K=SUM(a) be the number of allocated GPUs,

Tsync(a,m)=

0 if K=1

αlocal
sync +βlocal

sync ·(K−2) if N=1, K≥2

αnode
sync +βnode

sync ·(K−2) otherwise,

(9)

where N is the number of physical nodes occupied by at least

one replica. αlocal
sync and βlocal

sync are the constant and retrogression

parameters for when all processes are co-located onto the

same node. αnode
sync and βnode

sync are the analogous parameters

for when at least two process are located on different nodes.

Note that our model for Tsync can be extended to account for

rack-level locality by adding a third pair of parameters.

Combining Tgrad and Tsync. Modern DL frameworks can

partially overlap Tgrad and Tsync by overlapping gradient

computation with network communication [70]. The degree

of this overlap depends on structures in the specific DL model

being trained, like the ordering and sizes of its layers.

Assuming no overlap, then Titer =Tgrad+Tsync. Assuming

perfect overlap, then Titer =max(Tgrad ,Tsync). A realistic value

of Titer is somewhere in between these two extremes. To

capture the overlap between Tgrad and Tsync, we model Titer as

Titer(a,m,0)=
(

Tgrad(a,m)γ+Tsync(a)
γ
)1/γ

, (10)

where γ≥1 is a learnable parameter. Eqn. 10 has the property

that Titer =Tgrad+Tsync when γ=1, and smoothly transitions

towards Titer =max(Tgrad ,Tsync) as γ→∞.

Gradient Accumulation. In data-parallelism, GPU memory

limits the per-GPU batch size, and many DL models hit this

limit before the batch size is large enough for Tgrad to over-

come Tsync (or experience diminishing statistical efficiency),

resulting in suboptimal scalability. Several techniques exist for

overcoming the GPU memory limit [9,10,27,30]; we focus on

gradient accumulation, which is easily implemented using pop-

ular DL frameworks. Per-GPU gradients are aggregated locally

over s forward-backward passes before being synchronized

across all GPUs during the (s+1)th pass, achieving a larger to-

tal batch size. Thus, one iteration of SGD spans s accumulation

steps followed by one synchronization step, modeled as

Titer(a,m,s)=s×Tgrad(a,m)+
(

Tgrad(a,m)γ+Tsync(a)
γ
)1/γ

. (11)

Throughput model validation. Fig. 3 shows an example of

our THROUGHPUT function fit to measured throughput values

for a range of resource allocations and batch sizes. Each DL

task was implemented using PyTorch [51], which overlaps the

backward pass’ computation and communication. Gradients

are synchronized with NCCL 2.7.8, which uses either ring all-

reduce or tree all-reduce depending on the detected GPUs and

their placements and its own internal performance estimates.

Overall, we find that our model can represent the observed

data closely, while varying both the amount of resources as

well as the batch size. In particular, all models we measured

except ImageNet exhibited high sensitivity to inter-node

synchronization, indicating that they benefit from co-location

of GPUs. Furthermore, YOLOv3 and BERT benefit from

using gradient accumulation to increase their total batch sizes.

These detailed characteristics are well-represented by our

THROUGHPUT function, and can be optimized for by Pollux.

In addition to the configurations in Fig. 3, we fitted the

THROUGHPUT function on a diverse set of GPU placements

and batch sizes in a 64-GPU cluster. Across all DL tasks, the

average error of the fitted model was at most 10%, indicating

that it represents the observed throughput measurements well.

6 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) ImageNet (b) YoloV3 (c) DeepSpeech2 (d) BERT (fine-tune) (e) CIFAR10 (f) Recommendation

Figure 3: System throughput for all models described in Table 1, as measured using g4dn.12xlarge instances in AWS each with

4 NVIDIA T4 GPUs and created within the same placement group. Eqn. 11 was fitted using the observed data that appeared in each

plot. TOP: time per training iteration vs. the number of allocated GPUs (log-scaled), with the per-GPU batch size held constant.

The GPUs are placed in as few 4-GPU nodes as possible, which causes a sharp increase beyond 4 GPUs (when inter-node network

synchronization becomes required). BOTTOM: system throughput (examples per second) vs. total batch size (log-scaled), with

the number of GPUs held constant. To the left of the vertical dashed line, the entire mini-batch fits within GPU memory. To the

right, the total batch size is achieved using gradient accumulation.

Limits of the throughput model. Pollux models data-parallel

training throughput only in the dimensions it cares about,

i.e. number and co-locality of GPUs, batch size, and gradient

accumulation steps. The simple linear assumptions made in

Eqn. 11, although sufficiently accurate for the settings we

tested, may diverge from reality for specialized hardware [33],

sophisticated synchronization algorithms [7, 65, 72], different

parallelization strategies [28,47,58,59], at larger scales [6,68],

or hidden resource contention not related to network used for

gradient synchronization. Rather than attempting to cover

all scenarios with a single throughput model, we designed

GOODPUTt (Eqn. 4) to be modular so that different equations

for THROUGHPUT may be easily plugged in without interfering

with the core functionalities provided by Pollux.

4 Pollux Design and Architecture

Pollux adapts DL job execution at two distinct granularities.

First, at a job-level granularity, Pollux dynamically tunes the

batch size and learning rate for best utilization of the allocated

resources. Second, at the cluster-wide granularity, Pollux

dynamically (re-)allocates resources, driven by the goodput of

all jobs sharing the cluster combined with cluster-level goals

including fairness and job-completion time. To achieve this

co-adaptivity in a scalable way, Pollux’s design consists of

two primary components, as illustrated in Fig. 4.

First, a PolluxAgent runs together with each job. It fits the

EFFICIENCYt and THROUGHPUT functions for that job, and

tunes its batch size and learning rate for efficient utilization

Figure 4: Co-adaptive scheduling architecture of Pollux.

of its current allocated resources. PolluxAgent periodically

reports the goodput function of its job to the PolluxSched.

Second, the PolluxSched periodically optimizes the

resource allocations for all jobs in the cluster, taking into

account the current goodput function for each job and

cluster-wide resource contention. Scheduling decisions made

by PolluxSched also account for the overhead associated

with resource re-allocations, slowdowns due to network

interference between multiple jobs, and resource fairness.

PolluxAgent and PolluxSched co-adapt to each other.

While PolluxAgent adapts each training job to make efficient

use of its allocated resources, PolluxSched dynamically

re-allocates each job’s resources, taking into account the

PolluxAgent’s ability to tune its job.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 7

4.1 PolluxAgent: Job-level Optimization

An instance of PolluxAgent is started with each training job.

During training, it continually measures the job’s gradient

noise scale and system throughput, and it reports them to

PolluxSched at a fixed interval. It also uses this information

to determine the most efficient batch size for its job given its

current resource allocations, and adapts its job’s learning rate

to this batch size using the appropriate plug-in LR scaling rule

(e.g. AdaScale for SGD or square-root scaling for Adam).

Online model fitting. In §3.2, we defined the system

throughput parameters of a training job as the 7-tuple

θsys=
(

αgrad ,βgrad ,α
local
sync ,β

local
sync ,α

node
sync ,β

node
sync ,γ

)

, (12)

which are required to construct the THROUGHPUT function. To-

gether with the PGNS ϕt (for predicting EFFICIENCYt) and ini-

tial batch size M0, the triple (θsys,ϕt ,M0) specifies theGOODPUT

function. While M0 is a constant configuration provided by

the user, and ϕt can be computed according to §3.1, θsys is

estimated by fitting the THROUGHPUT function to observed

throughput values collected about the job during training.

PolluxAgent measures the time taken per iteration, Titer, and

records the tuple (a,m,s,Titer) for all combinations of resource

allocations a, per-GPU batch size m, and gradient accumu-

lation steps s encountered during its lifetime. Periodically,

PolluxAgent fits the parameters θsys to all of the throughput

data collected so far. Specifically, we minimize the root

mean squared logarithmic error (RMSLE) between Eqn. 11

and the collected data triples, using L-BFGS-B [73]. We set

constraints for each α and β parameter to be non-negative,

and γ to be in the range [1,10]. PolluxAgent then reports the

updated values of θsys and ϕt to PolluxSched.

Prior-driven exploration. At the beginning of each job,

throughput values have not yet been collected. To ensure that

Pollux finds efficient resource allocations through systematic

exploration, we impose several priors which bias θsys towards

the belief that throughput scales perfectly with more resources,

until such resource configurations are explored.

In particular, we set αlocal
sync = 0 while the job had not used

more than one GPU, αlocal
sync =βlocal

sync =0 while the job had not

used more than one node, and βlocal
sync =βnode

sync =0 while the job

had not used more than two GPUs. This creates the following

behavior: each job starts with a single GPU and is initially

assumed to scale perfectly to more GPUs. PolluxSched is then

encouraged to allocate more GPUs and/or nodes to the job,

naturally as part of its resource optimization (§4.2), until the

PolluxAgent can estimate θsys more accurately. Finally, to

prevent a job from being immediately scaled out to arbitrarily

many GPUs, we restrict the maximum number of GPUs that

can be allocated to at most twice the maximum number of

GPUs the job has been allocated in its lifetime.

Although other principled approaches to exploration can

be applied (e.g., Bayesian optimization), we find that this

simple prior-driven strategy is sufficient in our experiments.

Sec. 5.3.2 shows that prior-driven exploration performs close

(within 2-5%) to an idealized scenario in which the model is

fitted offline for each job before being submitted to the cluster.

Training job tuning. With θsys, ϕt , and M0, which fully

specify the DL job’s GOODPUT function at its current training

progress, PolluxAgent determines the most efficient per-GPU

batch size and gradient accumulation steps,

(m∗,s∗)=argmax
m,s

GOODPUT(a,m,s), (13)

where a is the job’s current resource allocation.

Once a new configuration is found, the job will use it for

its subsequent training iterations, using the plug-in LR scaling

rule to adapt its learning rate appropriately. As the job’s

EFFICIENCYt function changes over time, PolluxAgent will

periodically re-evaluate the most efficient configuration.

4.2 PolluxSched: Cluster-wide Optimization

The PolluxSched periodically allocates (and re-allocates)

resources for every job in the cluster. To determine a set of

efficient cluster-wide resource allocations, it maximizes a

fitness function that is defined as a generalized (power) mean

across speedups for each job:

FITNESSp(A)=

(

1

J

J

∑
j=1

SPEEDUP j(A j)
p

)1/p

. (14)

A is an allocation matrix with each row A j being the allocation

vector for a job j, thus A jn is the number of GPUs on node

n allocated to job j, and J is the total number of running and

pending jobs sharing the cluster. We define the speedup of

each job as the factor of goodput improvement using a given

resource allocation over using a fair-resource allocation, ie.

SPEEDUP j(A j)=
maxm,sGOODPUT j(A j,m,s)

maxm,sGOODPUT j(a f ,m,s)
, (15)

where GOODPUT j is the goodput of job j at its current training

iteration, and a f is a fair resource allocation for the job, defined

to be an exclusive 1/J share of the cluster.5

In §3, we described how the GOODPUT function can be fitted

to observed metrics during training and then be evaluated as a

predictive model. PolluxSched leverages this ability to predict

GOODPUT to maximize FITNESS via a search procedure, and

then it applies the outputted allocations to the cluster.

Fairness and the effect of p. When p = 1, FITNESSp is

the average of SPEEDUP values across all jobs. This causes

PolluxSched to allocate more GPUs to jobs that achieve a high

SPEEDUP when provided with many GPUs (i.e., jobs that scale

5We note that SPEEDUP has similarities with finish-time fairness [43]. But,

SPEEDUP is related to training performance at a moment in time, whereas

finish-time fairness is related to end-to-end job completion time.

8 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

well). However, as p→−∞, FITNESSp smoothly approaches

the minimum of SPEEDUP values, in which case maximizing

FITNESSp promotes equal SPEEDUP between training jobs,

but ignores the overall cluster goodput and resource efficiency.

Thus, p can be considered a “fairness knob”, with larger

negative values being more fair. A cluster operator may select

a suitable value, based on organizational priorities. In our

experience and results in §5, we find that p = −1 achieves

most goodput improvements and reasonable fairness.

Re-allocation penalty. Each time a job is re-allocated to a

different set of GPUs, it incurs some delay to re-configure

the training process. Using the the popular checkpoint-restart

method, we measured between 15 and 120 seconds of delay

depending on the size of the model being trained and other

initialization tasks in the training code. To prevent an excessive

number of re-allocations, when PolluxSched evaluates the

fitness function for a given allocation matrix, it applies a

penalty for every job that needs to be re-allocated,

SPEEDUP j(A j)←−SPEEDUP j(A j)×REALLOC_FACTOR j(δ).

We define REALLOC_FACTOR j(δ) = (Tj − R jδ)/(Tj + δ),
where Tj is the age of the training job, R j is the number of

re-allocations incurred by the job so far, and δ is an estimate

of the re-allocation delay. Intuitively, REALLOC_FACTOR j(δ)
scales SPEEDUP j(A j) according to the assumption that the

historical average rate of re-allocations for job j will continue

indefinitely into the future. Thus, a job that has historically

experienced a higher rate of re-allocations will be penalized

more for future re-allocations.

Interference avoidance. When multiple distributed DL jobs

share a single node, their network usage while synchronizing

gradients and model parameters may interfere with each other,

causing both jobs to slow down [31]; Xiao et al. [66] report

up to 50% slowdown for DL jobs which compete with each

other for network resources. PolluxSched mitigates this issue

by disallowing different distributed jobs (each using GPUs

across multiple nodes) from sharing the same node.

Interference avoidance is implemented as a constraint

in Pollux’s search algorithm, by ensuring at most one

distributed job is allocated to each node. We study the effects

of interference avoidance in §5.3.2.

Supporting non-adaptive jobs. In certain cases, a user may

want to run a job with a fixed batch size, i.e. M =M0. These

jobs are well-supported by PolluxSched, which simply fixes

EFFICIENCYt for that job to 1 and can continue to adapt its

resource allocations based solely on its system throughput.

4.3 Implementation

PolluxAgent is implemented as a Python library that is im-

ported into DL training code. We integrated PolluxAgent with

PyTorch [51], which uses all-reduce as its gradient synchro-

nization algorithm. PolluxAgent inserts performance profiling

code that measures the time taken for each iteration of training,

as well as calculating the gradient noise scale. At a fixed

time interval, PolluxAgent fits the system throughput model

(Eqn. 10) to the profiled metrics collected so far, and reports the

fitted system throughput parameters, along with the latest gra-

dient statistics, to PolluxSched. After reporting to PolluxSched,

PolluxAgent updates the job’s per-GPU batch size and gradient

accumulation steps, by optimizing its now up-to-date goodput

function (Eqn. 4) with its currently allocated resources.

PolluxSched is implemented as a service in Kubernetes [2].

At a fixed time interval, PolluxSched runs its search algorithm,

and then applies the resultant allocation matrix by creating and

terminating Kubernetes Pods that run the job workers. To find

a good allocation matrix, PolluxSched uses a population-based

search algorithm that perturbs and combines candidate alloca-

tion matrices to produce higher-value allocation matrices, and

finally modifies them to satisfy node resource constraints and

interference avoidance. The allocation matrix with the highest

fitness score is applied to the jobs running in the cluster.

Both PolluxAgent and PolluxSched require a sub-procedure

that optimizes GOODPUTt(a,m, s) given a fixed a (Eqn. 13).

We implemented this procedure by first sampling a range

of candidate values for the total batch size M, then finding

the smallest s such that m = ⌈M/s⌉ fits into GPU memory

according to a user-defined upper-bound, and finally taking

the configuration which results in the highest GOODPUT value.

5 Evaluation

We compare Pollux with two state-of-the-art DL sched-

ulers using a testbed cluster with 64 GPUs. Although one

primary advantage of Pollux is automatically selecting

the configurations for each job, we find that Pollux still

reduces average job completion times by 37–50% even when

the baseline schedulers are supplied with well-tuned job

configurations (a scenario that strongly favors the baseline

schedulers). Pollux is able to dynamically adapt each job

by trading-off between high-throughput/low-efficiency and

low-throughput/high-efficiency modes of training, depending

on the current cluster state and training progress.

Using a cluster simulator, we evaluate the impact of specific

settings on Pollux, including the total workload intensity, prior-

driven exploration, scheduling interval, and interference avoid-

ance. With its fairness knob, Pollux can improve finish-time

fairness [43] by 1.5–5.4× compared to baseline DL schedulers.

We also reveal a new opportunity for auto-scaling in the cloud

by showing that a Pollux-based auto-scaler can potentially re-

duce the cost of training large models (e.g. ImageNet) by 25%.

5.1 Experimental Setup

Testbed. We conduct experiments using a cluster consisting

of 16 nodes and 64 GPUs. Each node is an AWS EC2

g4dn.12xlarge instance with 4 NVIDIA T4 GPUs, 48

vCPUs, 192GB memory, and a 900GB SSD. All instances

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 9

are launched within the same placement group. We deployed

Kubernetes 1.18.2 on this cluster, along with CephFS 14.2.8

to store checkpoints for checkpoint-restart elasticity.

Synthetic Workload Construction. We randomly sampled

160 jobs from the busiest 8-hour range (hours 3–10) in the

deep learning cluster traces published by Microsoft [31]. Each

job in the orginal trace has information on its submission time,

number of GPUs, and duration. However, no information is

provided on the model architectures being trained or dataset

characteristics. Instead, our synthetic workload consists of

the models and datasets described in Table 1.

We categorized each job in the trace and in Table 1 based

on their total GPU-time: Small (0–1 GPU-hours), Medium

(1–10 GPU-hours), Large (10–100 GPU-hours), and XLarge

(100–1000 GPU-hours). For each job in the trace, we picked

a training job from Table 1 that is in the same category.

Manually-tuned jobs for baseline DL schedulers. We

manually tuned the number of GPUs and batch sizes for each

job in our synthetic workload, as follows. We measured the

time per training iteration for each model in Table 1 using a

range of GPU allocations and batch sizes, and fully trained

each model using a range of different batch sizes (see §5.3 for

details). We considered a number of GPUs valid if using the

optimal batch size for that number of GPUs achieves 50% –

80% of the ideal (i.e., perfectly linear) scalability versus using

the optimal batch size on a single GPU. For each job submitted

from our synthetic workload, we selected its number of GPUs

and batch size randomly from its set of valid configurations.

Our job configurations assume that the users are highly

rational and knowledgeable about the scalability of the models

they are training. Less than 50% of the ideal scalability would

lead to under-utilization of resources, and more than 80% of

the ideal scalability means the job can still utilize more GPUs

efficiently. We emphasize that this assumption of uniformly

sophisticated users is unrealistically biased in favor of the

baseline schedulers and only serves for comparing Pollux with

the ideal performance of baseline systems.

Comparison of DL schedulers. We compare Pollux to two re-

cent deep learning schedulers, Tiresias [22] and Optimus [52],

as described in §2.3. Whereas Pollux dynamically co-adapts

the number of GPUs and batch sizes of DL training jobs,

Optimus only adapts the number of GPUs, and Tiresias adapts

neither. To establish a fair baseline for comparison, for all

three schedulers, we scale the learning rate using AdaScale for

SGD, and the square-root scaling rule for Adam and AdamW.

Pollux. We configured PolluxSched to use a 60s scheduling

interval, and compute REALLOC_FACTOR(δ) using δ = 30s.

PolluxAgent reports its most up-to-date system throughput

parameters and gradient statistics every 30s. Unless otherwise

specified, the default fairness knob value of p=−1 is used.

Tiresias. We configured Tiresias as described in the testbed

experiments of Gu et al. [22], with two priority queues

and the PromoteKnob disabled. We manually tuned the

queue threshold to perform well for our synthetic workload.

Whenever possible, we placed jobs onto as few different nodes

as possible to promote worker locality.

Optimus+Oracle. Optimus leverages a throughput predic-

tion model that is specific to jobs using the parameter server

architecture. To account for differences due to the perfor-

mance model, our implementation of Optimus uses our own

throughput model as described in §3.2. Furthermore, Optimus

predicts the number of training iterations until convergence

by fitting a simple function to the model’s convergence curve.

Since this method does not work consistently for all models

in our synthetic workload, we run each job ahead of time and

provide Optimus with the exact number of iterations until

completion. We call this version of Optimus Optimus+Oracle.

For each job, Tiresias uses the number of GPUs and batch

size specified in our synthetic workload. Optimus+Oracle uses

the batch size specified, but determines the number of GPUs

dynamically. Each job uses gradient accumulation if they are

allocated too few GPUs to support the specified batch size.

5.2 Testbed Macrobenchmark Experiments

Table 2 summarizes the results of our testbed experiments for

seven configurations: Pollux compared with, first, baseline

schedulers using well-tuned job configurations; second,

baseline schedulers using more realistic job configurations;

third, Pollux using two alternate values for its fairness knob.

Comparisons using well-tuned job configurations. Even

when Optimus+Oracle and Tiresias are given well-tuned

job configurations as described in §5.1, they are still signif-

icantly behind Pollux. In this setting, Pollux (with p = −1)

achieved 50% and 37% shorter average JCT, 27% and 27%

shorter tail (99th percentile) JCT, and 20% and 33% shorter

makespan, in comparison to Optimus+Oracle+TunedJobs and

Tiresias+TunedJobs, respectively. As we previously noted,

this setting highly favors the baseline schedulers, essentially

mimicking users who possess expert knowledge about system

throughput, statistical efficiency, and how their values change

with respect to resource allocations and batch sizes.

One key source of improvement for Pollux is its ability

to trade-off between high-throughput/low-efficiency and

low-throughput/high-efficiency modes during training. Fig. 5

shows the total number of allocated GPUs and average

EFFICIENCYt during the execution of our synthetic workload.

During periods of low cluster contention, Pollux can allocate

more GPUs (indicated by (A)) and use larger batch sizes to

boost training throughput, even at the cost of lower statistical

efficiency, because doing so results in an overall higher

goodput. On the other hand, during periods of high cluster

contention, Pollux may instead use smaller batch sizes to

increase statistical efficiency (indicated by (B)).

Comparisons using realistic job configurations. Without

assistance from a system like Pollux, users are likely to try

various numbers of GPUs and batch sizes, before finding a

configuration that is efficient. Other users may not invest time

10 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Task Dataset Model Optimizer LR Scaler M0 Validation Size Frac. Jobs

Image Classification ImageNet [12] ResNet-50 [24] SGD AdaScale 200 imgs 75% top1 acc. XL 2%

Object Detection PASCAL-VOC [16] YOLOv3 [55] SGD AdaScale 8 imgs 84% mAP L 6%

Speech Recognition CMU-ARCTIC [38] DeepSpeech2 [3] SGD AdaScale 20 seqs 25% word err. M 10%

Question Answering SQuAD [54] BERT (finetune) [14] AdamW Square-Root 12 seqs 88% F1 score M 10%

Image Classification Cifar10 [39] ResNet18 [24] SGD AdaScale 128 imgs 94% top1 acc. S 36%

Recommendation MovieLens [23] NeuMF [25] Adam Square-Root 256 pairs 69% hit rate S 36%

Table 1: Models and datasets used in our evaluation workload. Each training task achieves the provided validation metrics. The

fraction of jobs from each category are chosen according to the public Microsoft cluster traces.

Policy
Job Completion Time

Makespan
Average 99%tile

Pollux (p=−1) 0.76h 11h 16h

Optimus+Oracle+TunedJobs 1.5h 15h 20h

Tiresias+TunedJobs 1.2h 15h 24h

Optimus+Oracle 2.7h 22h 28h

Tiresias 2.8h 25h 31h

Pollux (p=+1) 0.83h 10h 16h

Pollux (p=−10) 0.84h 12h 18h

Table 2: Summary of testbed experiments.

Figure 5: Comparison between Pollux (p=−1), Optimus, and

Tiresias while executing our synthetic workload (with tuned

jobs). TOP: average cluster-wide allocated GPUs over time.

BOTTOM: average cluster-wide statistical efficiency over

time. Tiresias+TunedJobs dips between hours 16 and 20 due

to a 24-GPU job blocking a 48-GPU job from running.

into configuring their jobs well in the first place.

To set a more realistically configured baseline, we ran

Optimus+Oracle and Tiresias on a version of our synthetic

workload with the number of GPUs exactly as specified in the

Microsoft cluster trace. The batch size was chosen to be the

baseline batch size M0 times the number of GPUs, which is

how we expect most users to initially configure their distributed

training jobs. We find that these jobs typically use fewer GPUs

and smaller batch sizes than their well-configured counterparts.

Using this workload, we find that Pollux has 72% and 73%

shorter average JCT, 50% and 56% shorter tail JCT, and 43%

and 48% shorter makespan, in comparison to Optimus+Oracle

and Tiresias, respectively. Even though Optimus+Oracle can

dynamically increase the GPU allocation of each job, it still

only slightly outperforms Tiresias because it does not also

increase the batch size to better utilize those additional GPUs.

A closer look at co-adapted job configurations. Fig. 6

(LEFT) shows the configurations chosen by Pollux for one Im-

ageNet training job as the synthetic workload progresses. (A)

during the initial period of low cluster contention, more GPUs

are allocated to ImageNet, causing a larger batch size to be used

and lowering statistical efficiency. (B) during the subsequent

period of high cluster contention, fewer GPUs are allocated to

ImageNet, causing a smaller batch size to be used and raising

statistical efficiency. (C) when the cluster contention comes

back down, ImageNet continues to be allocated more GPUs

and uses a larger batch size. However, we note that the batch

size per GPU is much higher than in the first low-contention pe-

riod, since the job is now in its final, high-statistical-efficiency

phase of training. We see similar trade-offs being made over

time for two YOLOv3 jobs (RIGHT).

Effect of the fairness knob. We ran Pollux using three values

of the fairness knob, p = 1,−1,−10. Compared with no

fairness (p = 1), introducing a moderate degree of fairness

(p = −1) improved the average job completion time (JCT)

but degraded the tail JCT. This is because6, in our synthetic

workload, the tail JCT comprises of long but scalable jobs (i.e.

ImageNet), which take a large number of GPUs away from

other jobs in the absence of fairness (p=1). However, further

increasing fairness (p=−10) degraded performance in aver-

age JCT, tail JCT, and makespan. In §5.3.1, we present a more

detailed analysis of the impact of p on scheduling fairness.

System overheads. During each 60s scheduling interval, Pol-

luxSched spent an average of 1 second on 1 vCPU computing

the cluster allocations by optimizing the FITNESSp function.

On average, each job was re-allocated resources once every

7 minutes, resulting in an average 8% run-time overhead due

to checkpoint-restarts. Each PolluxAgent fits its throughput

model parameters on its latest observed metrics every 30 sec-

onds, taking an average of 0.2 seconds each time. Finding the

6We note that p = −1 (harmonic mean over speedups) may be more

suitable than p=1 (arithmetic mean) when optimizing for the average JCT.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 11

Figure 6: Co-adaptation over time of one ImageNet job (LEFT)

and two YOLOv3 jobs (RIGHT) using Pollux (p=−1). ROW

1: number of jobs actively sharing the cluster. ROW 2: number

of GPUs allocated to the job. ROW 3: batch size (images) used.

ROW 4: statistical efficiency (%).

optimal per-GPU batch size and gradient accumulation steps

by optimizing GOODPUTt takes an average of 0.4 milliseconds.

5.3 Simulator Experiments

We built a discrete-time cluster simulator in order to evaluate

a broader set of workloads and settings. Our simulator is con-

structed by measuring the performance and gradient statistics

of each model in Table 1, under many different resource and

batch size configurations, and re-playing them for each sim-

ulated job. This way, we are able to simulate both the system

throughput and statistical efficiency of the jobs in our workload.

Unless stated otherwise, each experiment in this section is

repeated on 8 different workload traces generated using the

same duration, number of jobs, and job size distributions as

in §5.2, and we report the average results across all 8 traces.

Simulator construction. For each job in Table 1, we mea-

sured the time per training iteration for 146 different GPU

allocations+placements in our testbed cluster of 16 nodes

and 64 total GPUs. For each allocation, we measured a range

of batch sizes up to the GPU memory limit. To simulate the

throughput for a job, we queried a multi-dimensional linear

interpolation on the configurations we measured. For each

model, we also measured the (pre-conditioned) gradient noise

scale during training using a range of batch sizes, and across

every epoch. To simulate the statistical efficiency for a job

using a certain batch size, we linearly interpolated its value of

the PGNS between the two nearest batch sizes we measured.

Simulator fidelity. The data we collected about each job

enables our simulator to reproduce several system effects, in-

cluding the performance impact of different GPU placements.

We also simulate the overhead of checkpoint-restarts by

Figure 7: CDF of Finish Time Fairness (ρ).

injecting a 30-second delay for each job that has its resources

re-allocated. Unless stated otherwise, we do not simulate any

network interference between different jobs. We study the

effects of interference in more detail in §5.3.2.

Compared with our testbed experiments in §5.2, we find

that our simulator obtains similar factors of improvement,

showing that Pollux reduces the average JCT by 48% and 32%

over Optimus+Oracle+TunedJobs and Tiresias+TunedJobs.

5.3.1 Scheduling Fairness

We evaluate the scheduling fairness of Pollux using finish-time

fairness [43] (denoted by ρ), which is defined to be the ratio

of a job’s JCT running on shared resources to that of the job

running in an isolated and equally-partitioned cluster. Under

this metric, jobs with ρ<1 have been treated better-than-fair

by the cluster scheduler, while jobs with ρ > 1 have been

treated worse-than-fair.

In Fig. 7, we compare the finish-time fairness of Pollux

with Optimus+Oracle+TunedJobs and Tiresias+TunedJobs.

Pollux with p = 1 results in poor fairness, similar to Tire-

sias+TunedJobs, which is apparent as a long tail of jobs with

ρ>4. Optimus+Oracle+TunedJobs obtains better fairness due

to its allocation algorithm which attempts to equalize the JCT

improvement for each job. Pollux with p=−1 provides the best

fairness, with 99% of jobs achieving ρ<2, and does so while

still providing significant performance increases (Table 2). For

p=−10, we observe slightly worse fairness overall, caused by

PolluxSched incurring a larger number of re-allocations due to

ignoring the cost in favor of equalizing speedups at all times.

To provide context, we note that the curves for Tiresias

and Optimus are consistent with those reported (for different

workloads) by Mahajan et al. [43]. Although their Themis

system is not available for direct comparison, the ρ range for

Pollux with p=−1 is similar to the range reported for Themis.

The max-ρ improvements (1.5× and 5.4×) over Tiresias and

Optimus are also similar.

5.3.2 Other Effects on Scheduling

Sensitivity to job load. We compare the performance of

Pollux, Optimus+Oracle+TunedJobs, and Tiresias+TunedJobs

12 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Varying the workload intensity.

(b) Varying scheduling interval. (c) Varying job interference.

Figure 8: Effects of various parameters on Pollux, error bars

and bands represent 95% confidence intervals.

for increasing workload intensity in terms of rate of job

submissions. Fig. 8a shows the results. As expected, all three

scheduling policies suffer longer average JCT and makespan

as the load is increased. Across all job loads, Pollux maintains

similar relative improvements over the baseline schedulers.

Impact of prior-driven exploration. Pollux explores GPU

allocations for each DL job from scratch during training

(Sec. 4.1). We evaluated the potential improvement from more

efficient exploration by seeding each job’s throughput models

using historical data collected offline. We observed minor

(2–5%) reduction in JCT for short jobs like CIFAR10, but

no significant change for longer running jobs, indicating low

overhead from Pollux’s prior-driven exploration.

Impact of scheduling interval. We ran Pollux using a range

of values for its scheduling interval, as shown in Fig. 8b. We

find that Pollux performs similarly well in terms of average

JCT for intervals up to 2 minutes, while longer intervals

result in performance degradation. Since newly-submitted

jobs can only start during the next scheduling interval, we

would expect an increase in the average queuing time due to

longer scheduling intervals. However, we find that queuing

contributed to roughly half of the performance degradation

observed, indicating that Pollux still benefits from a relatively

frequent adjustment of resource allocations.

Impact of interference avoidance. To evaluate the impact

of PolluxSched’s interference avoidance constraint, we artifi-

cially inject various degrees of slowdown for distributed jobs

sharing the same node. Fig. 8c shows the results. With interfer-

ence avoidance enabled, the average JCT is unaffected by even

severe slowdowns, because network contention is completely

mitigated. However, without interference avoidance, the av-

erage JCT is 1.4× longer when the interference slowdown is

50%. On the other hand, in the ideal scenario when there is zero

slowdown due to interference, PolluxSched performs similarly

whether or not interference avoidance is enabled. This indicates

that PolluxSched is still able to find efficient cluster allocations

while obeying the interference avoidance constraint.

5.4 More Applications of Pollux

5.4.1 Cloud Auto-scaling

In cloud environments, computing resources can be obtained

and released as required, and users pay for the duration they

hold onto those resources. Goodput-driven scheduling presents

a unique opportunity: when a DL model’s statistical efficiency

increases during training, it may be more cost-effective to

provision more cloud resources and use larger batch sizes

during the later epochs of a large training job, rather than

earlier on. We present some preliminary evidence using our

cluster simulator, and note that a full design of an auto-scaling

system based on goodput may be the subject of future work.

Auto-scaling ImageNet training. We implemented a simple

auto-scaling policy using Pollux’s goodput function. During

training, we scaled up the number of nodes whenever

maxm,sGOODPUTt(a,m,s)/SUM(a)>U ·maxm,sGOODPUTt(1,m,s), i.e.

the goodput exceeds some fraction U of the predicted ideal

goodput assuming perfect scalability. We set U = 2/3, and

increased to a number of nodes such that the predicted goodput

is approximately L=1/2 of the predicted ideal goodput.

Fig. 9 compares our Pollux-based auto-scaler with the auto-

scaler proposed by Or et al. [50], which allows the batch size

to be increased during training, but models job performance

using the system throughput rather than the goodput. Since

the system throughput does not change with training progress,

throughput-based autoscaling (Or et al.) quickly scales out

to more nodes and a larger batch size (Fig. 9a), which remains

constant thereafter. On the other hand, Pollux starts with a

small number of nodes, and gradually increases the number of

nodes as the effectiveness of larger batch sizes improves over

time. Fig. 9b shows that Pollux maintains a high statistical

efficiency throughout training. Overall, compared to Or et al.’s

throughput-based auto-scaling, Pollux trains ImageNet with

25% cheaper cost, with only a 6% longer completion time.

5.4.2 Hyper-parameter Optimization (HPO)

Hyper-parameter optimization (HPO) is an important DL

workload. In HPO, the user defines a search space over

relevant model hyper-parameters. A HPO algorithm (aka a

trial scheduler) submits many training jobs (trials) to evaluate

the effectiveness of particular hyper-parameters, in terms of

objectives such as model accuracy or energy efficiency.

Different HPO algorithm types manage trials differently.

For example, Bayesian optimization algorithms [37, 62] may

submit a few training jobs at a time, and determine future

trials based on the fully-trained results of previous trials.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 13

(a) Number of nodes over time. (b) Statistical efficiency over time.

Figure 9: Goodput-based auto-scaling (Pollux) vs throughput-

based auto-scaling (Or et al.) for ImageNet training.

Policy Accuracy (Top 5 trials) Avg JCT Makespan

Pollux 95.4±0.2 25min 10h

Baseline 95.5±0.3 34min 14h

Table 3: Summary of HPO experiments.

Bandit-based algorithms [41] may launch a large number of

trials at once and early-stop ones that appear unpromising.

A full evaluation on how Pollux affects different HPO algo-

rithm types is future work. Table 3 shows results from tuning a

ResNet18 model trained on the CIFAR10 dataset, using a popu-

lar Bayesian optimization-based HPO algorithm known as the

Tree-structured Parzen Estimator (TPE) [5]. The search space

covers the learning rate and annealing, momentum, weight de-

cay, and network width hyper-parameters. We configured TPE

so that 4 trials run concurrently with each other, and 100 trials

are run in total. The testbed consists of two NVIDIA DGX

A100 nodes, each with 8 A100 GPUs. The baseline scheduler

assigns a static allocation of 4 GPUs (all on the same node)

to each trial and uses a fixed per-GPU batch size for every trial.

As expected, similar accuracy values are achieved, but Pollux

completes HPO 30% faster due to adaptive (re-)allocation of

resources as trials progress and adaptive batch sizes.

5.5 Artifact

We provide an artifact containing the full implementation of

Pollux, benchmark model implementations (Table 1), testbed

experiment scripts (Sec. 5.2), cluster simulator implemen-

tation and results (Sec. 5.3), available at https://github.

com/petuum/adaptdl/tree/osdi21-artifact. The raw

testbed experiment (Sec. 5.2) logs and analysis scripts are pro-

vided at https://github.com/petuum/pollux-results.

6 Additional Related Work

Prior DL schedulers are discussed in §2.3.

Adaptive batch size training. Recent work on DL training

algorithms have explored dynamically adapting batch sizes

for better efficiency and parallelization. AdaBatch [13]

increases the batch size at pre-determined iterations during

training, while linearly scaling the learning rate. Smith et

al. [61] suggest that instead of decaying the learning rate

during training, the batch size should be increased instead.

CABS [4] adaptively tunes the batch size and learning rate

during training using similar gradient statistics as Pollux.

These works have a common assumption that extra com-

puting resources are available to parallelize larger batch sizes

whenever desired, which is rarely true inside shared-resource

environments. Pollux complements existing adaptive batch

size strategies by adapting the batch size and learning rate in

conjunction with the amount of resources currently available.

Alternatively, anytime minibatch [17] adapts the batch size

to mitigate stragglers in distributed training.

KungFu [44] supports adaptive training algorithms, includ-

ing adaptive batch sizes, by allowing applications to define

custom adaptation policies and enabling efficient adaptation

and monitoring during training. Although KungFu is directed

at single-job training and Pollux at cluster scheduling, we

believe KungFu offers useful tools which can be used to

implement the adaptive policies used by the PolluxAgent.

Hyper-parameter tuning. A large body of work focuses on

tuning the hyper-parameters for ML and DL models [5, 18,

29, 34, 49], which typically involves many training jobs [1, 20]

as discussed earlier. Although batch size and learning rate are

within the space of hyper-parameters often optimized by these

systems, Pollux’s goal is fundamentally different. Whereas

HPO algorithms search for the highest model quality, Pollux

adapts the batch size and learning rate for the most efficient

execution for each job, while not degrading model quality.

7 Conclusion

Pollux is a DL cluster scheduler that co-adaptively allocates

resources, while at the same time tuning each training job

to best utilize those resources. We present a formulation of

goodput that combines system throughput and statistical

efficiency for distributed DL training. Based on the principle of

goodput maximization, Pollux automatically and jointly tunes

the resource allocations, batch sizes, and learning rates for DL

jobs, which can be particularly difficult for users to configure

manually. Pollux outperforms and is more fair than recent DL

schedulers, even if users can configure their jobs well, and pro-

vides even bigger benefits with more realistic user knowledge.

8 Acknowledgements

We thank our shepherd, Michael Isard, and the anonymous

OSDI reviewers for their insightful comments and suggestions

that improved our work. We also thank our colleagues from

Petuum — Omkar Pangarkar, Richard Fan, Peng Wu, Jayesh

Gada, and Vishnu Vardhan — for their invaluable contributions

toward the open source implementation of Pollux.

14 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/petuum/adaptdl/tree/osdi21-artifact
https://github.com/petuum/adaptdl/tree/osdi21-artifact
https://github.com/petuum/pollux-results

References

[1] Introduction to katib. https://www.kubeflow.

org/docs/components/hyperparameter-tuning/

overview/. Accessed: 2020-05-18.

[2] Production-grade container orchestration - kubernetes.

https://kubernetes.io/. Accessed: 2020-05-18.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita

Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,

Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang

Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike

Chrzanowski, Adam Coates, Greg Diamos, Ke Ding,

Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,

Linxi Fan, Christopher Fougner, Liang Gao, Caixia

Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes,

Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby

Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li,

Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair,

Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan,

Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David

Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop

Sriram, Haiyuan Tang, Liliang Tang, Chong Wang,

Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang,

Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen

Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan,

and Zhenyao Zhu. Deep speech 2: End-to-end speech

recognition in english and mandarin. In Proceedings

of the 33rd International Conference on International

Conference on Machine Learning - Volume 48, ICML’16,

page 173–182. JMLR.org, 2016.

[4] Lukas Balles, Javier Romero, and Philipp Hennig.

Coupling adaptive batch sizes with learning rates. CoRR,

abs/1612.05086, 2016.

[5] James S Bergstra, Rémi Bardenet, Yoshua Bengio,

and Balázs Kégl. Algorithms for hyper-parameter

optimization. In Advances in neural information

processing systems, pages 2546–2554, 2011.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott

Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. Language models are few-shot learners.

In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,

and H. Lin, editors, Advances in Neural Information

Processing Systems, volume 33, pages 1877–1901.

Curran Associates, Inc., 2020.

[7] J. Canny and Huasha Zhao. Butterfly mixing: Accelerat-

ing incremental-update algorithms on clusters. In SDM,

2013.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,

and Zheng Zhang. Mxnet: A flexible and efficient

machine learning library for heterogeneous distributed

systems. CoRR, abs/1512.01274, 2015.

[9] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos

Guestrin. Training deep nets with sublinear memory

cost. CoRR, abs/1604.06174, 2016.

[10] Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B.

Gibbons, and Eric P. Xing. Geeps: Scalable deep learning

on distributed gpus with a gpu-specialized parameter

server. In Proceedings of the Eleventh European Con-

ference on Computer Systems, EuroSys ’16, New York,

NY, USA, 2016. Association for Computing Machinery.

[11] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,

Matthieu Devin, Mark Mao, Marc'aurelio Ranzato,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and

Andrew Y. Ng. Large scale distributed deep networks.

In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 1223–1231. Curran

Associates, Inc., 2012.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer vi-

sion and pattern recognition, pages 248–255. Ieee, 2009.

[13] Aditya Devarakonda, Maxim Naumov, and Michael

Garland. Adabatch: Adaptive batch sizes for training

deep neural networks. CoRR, abs/1712.02029, 2017.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding, 2019.

[15] John Duchi, Elad Hazan, and Yoram Singer. Adaptive

subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research,

12(61):2121–2159, 2011.

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (voc)

challenge. International Journal of Computer Vision,

88(2):303–338, June 2010.

[17] Nuwan Ferdinand, Haider Al-Lawati, Stark Draper,

and Matthew Nokleby. ANYTIME MINIBATCH:

EXPLOITING STRAGGLERS IN ONLINE DIS-

TRIBUTED OPTIMIZATION. In International

Conference on Learning Representations, 2019.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 15

https://www.kubeflow.org/docs/components/hyperparameter-tuning/overview/
https://www.kubeflow.org/docs/components/hyperparameter-tuning/overview/
https://www.kubeflow.org/docs/components/hyperparameter-tuning/overview/
https://kubernetes.io/

[18] Matthias Feurer, Aaron Klein, Katharina Eggensperger,

Jost Springenberg, Manuel Blum, and Frank Hutter.

Efficient and robust automated machine learning. In

Advances in neural information processing systems,

pages 2962–2970, 2015.

[19] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir

Feinberg, Amir Gholami, Kai Rothauge, Michael W.

Mahoney, and Joseph Gonzalez. On the computational

inefficiency of large batch sizes for stochastic gradient

descent. CoRR, abs/1811.12941, 2018.

[20] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,

Greg Kochanski, John Karro, and D. Sculley. Google

vizier: A service for black-box optimization. In

Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

KDD ’17, page 1487–1495, New York, NY, USA, 2017.

Association for Computing Machinery.

[21] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter

Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew

Tulloch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch SGD: training imagenet in 1 hour. CoRR,

abs/1706.02677, 2017.

[22] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo

Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and

Chuanxiong Guo. Tiresias: A GPU cluster manager for

distributed deep learning. In 16th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 19), pages 485–500, Boston, MA, February 2019.

USENIX Association.

[23] F. Maxwell Harper and Joseph A. Konstan. The

movielens datasets: History and context. ACM Trans.

Interact. Intell. Syst., 5(4), December 2015.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2016.

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. Neural collaborative filter-

ing. In Proceedings of the 26th International Conference

on World Wide Web, WWW ’17, page 173–182, Republic

and Canton of Geneva, CHE, 2017. International World

Wide Web Conferences Steering Committee.

[26] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee,

Jin Kyu Kim, Phillip B. Gibbons, Garth A Gibson, Greg

Ganger, and Eric P Xing. More effective distributed ml

via a stale synchronous parallel parameter server. In

C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 26, pages 1223–1231.

Curran Associates, Inc., 2013.

[27] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor:

Pushing deep learning beyond the gpu memory limit

via smart swapping. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support

for Programming Languages and Operating Systems,

ASPLOS ’20, page 1341–1355, New York, NY, USA,

2020. Association for Computing Machinery.

[28] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan

Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan

Ngiam, Quoc V Le, Yonghui Wu, and zhifeng Chen.

Gpipe: Efficient training of giant neural networks using

pipeline parallelism. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc., 2019.

[29] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.

Sequential model-based optimization for general

algorithm configuration. In International conference on

learning and intelligent optimization, pages 507–523.

Springer, 2011.

[30] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-

lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer, and

Ion Stoica. Checkmate: Breaking the memory wall with

optimal tensor rematerialization. In I. Dhillon, D. Papail-

iopoulos, and V. Sze, editors, Proceedings of Machine

Learning and Systems, volume 2, pages 497–511, 2020.

[31] Myeongjae Jeon, Shivaram Venkataraman, Amar

Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang.

Analysis of large-scale multi-tenant GPU clusters for

DNN training workloads. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), pages 947–960,

Renton, WA, July 2019. USENIX Association.

[32] Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, and Carlos

Guestrin. Adascale {sgd}: A scale-invariant algorithm

for distributed training, 2020.

[33] N. Jouppi, C. Young, Nishant Patil, David A. Patterson,

Gaurav Agrawal, R. Bajwa, Sarah Bates, Suresh Bhatia,

N. Boden, Al Borchers, Rick Boyle, Pierre luc Cantin,

Clifford Chao, Chris Clark, Jeremy Coriell, Mike

Daley, M. Dau, J. Dean, Ben Gelb, T. Ghaemmaghami,

R. Gottipati, William Gulland, R. Hagmann, C. Ho,

Doug Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,

A. Jaffey, Alek Jaworski, Alexander Kaplan, Harshit

Khaitan, Daniel Killebrew, Andy Koch, N. Kumar, Steve

Lacy, J. Laudon, James Law, Diemthu Le, Chris Leary,

Z. Liu, Kyle A. Lucke, Alan Lundin, G. MacKean,

A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,

Ravi Narayanaswami, Ray Ni, K. Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, A. Phelps,

J. Ross, Matt Ross, Amir Salek, E. Samadiani, C. Severn,

16 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

G. Sizikov, Matthew Snelham, J. Souter, D. Steinberg,

Andy Swing, Mercedes Tan, G. Thorson, Bo Tian,

H. Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter,

W. Wang, Eric Wilcox, and D. Yoon. In-datacenter

performance analysis of a tensor processing unit. 2017

ACM/IEEE 44th Annual International Symposium on

Computer Architecture (ISCA), pages 1–12, 2017.

[34] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie

Neiswanger, Biswajit Paria, Christopher R Collins, Jeff

Schneider, Barnabas Poczos, and Eric P Xing. Tuning

hyperparameters without grad students: Scalable and

robust bayesian optimisation with dragonfly. arXiv

preprint arXiv:1903.06694, 2019.

[35] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge

Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.

On large-batch training for deep learning: Generalization

gap and sharp minima. CoRR, abs/1609.04836, 2016.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization, 2017.

[37] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp

Hennig, and Frank Hutter. Fast bayesian optimization

of machine learning hyperparameters on large datasets.

In Artificial Intelligence and Statistics, pages 528–536.

PMLR, 2017.

[38] John Kominek and Alan Black. The cmu arctic speech

databases. SSW5-2004, 01 2004.

[39] Alex Krizhevsky. Learning multiple layers of features

from tiny images. University of Toronto, 05 2012.

[40] Alex Krizhevsky. One weird trick for parallelizing con-

volutional neural networks. CoRR, abs/1404.5997, 2014.

[41] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin

Rostamizadeh, and Ameet Talwalkar. Hyperband:

A novel bandit-based approach to hyperparameter

optimization. The Journal of Machine Learning

Research, 18(1):6765–6816, 2017.

[42] Ilya Loshchilov and Frank Hutter. Decoupled weight

decay regularization, 2019.

[43] Kshiteej Mahajan, Arjun Balasubramanian, Arjun

Singhvi, Shivaram Venkataraman, Aditya Akella,

Amar Phanishayee, and Shuchi Chawla. Themis:

Fair and efficient {GPU} cluster scheduling. In 17th

{USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI} 20), pages 289–304, 2020.

[44] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos

Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch.

Kungfu: Making training in distributed machine learning

adaptive. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages

937–954. USENIX Association, November 2020.

[45] Dominic Masters and Carlo Luschi. Revisiting small

batch training for deep neural networks, 2018.

[46] Sam McCandlish, Jared Kaplan, Dario Amodei, and

OpenAI Dota Team. An empirical model of large-batch

training. CoRR, abs/1812.06162, 2018.

[47] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,

Phillip B. Gibbons, and Matei Zaharia. Pipedream:

Generalized pipeline parallelism for dnn training. In

Proceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP ’19, page 1–15, New York,

NY, USA, 2019. Association for Computing Machinery.

[48] Deepak Narayanan, Keshav Santhanam, Fiodar

Kazhamiaka, Amar Phanishayee, and Matei Zaharia.

Heterogeneity-aware cluster scheduling policies for deep

learning workloads. In 14th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 20),

pages 481–498. USENIX Association, November 2020.

[49] Willie Neiswanger, Kirthevasan Kandasamy, Barnabas

Poczos, Jeff Schneider, and Eric Xing. Probo: a frame-

work for using probabilistic programming in bayesian

optimization. arXiv preprint arXiv:1901.11515, 2019.

[50] Andrew Or, Haoyu Zhang, and Michael Freedman.

Resource elasticity in distributed deep learning. In

Proceedings of Machine Learning and Systems 2020,

pages 400–411. 2020.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Sys-

tems 32, pages 8026–8037. Curran Associates, Inc., 2019.

[52] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,

and Chuanxiong Guo. Optimus: An efficient dynamic

resource scheduler for deep learning clusters. In

Proceedings of the Thirteenth EuroSys Conference,

EuroSys ’18, New York, NY, USA, 2018. Association

for Computing Machinery.

[53] Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang

Chen, Qirong Ho, Garth A. Gibson, and Eric P. Xing.

Litz: Elastic framework for high-performance distributed

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 17

machine learning. In 2018 USENIX Annual Technical

Conference (USENIX ATC 18), pages 631–644, Boston,

MA, July 2018. USENIX Association.

[54] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. Squad: 100,000+ questions for machine

comprehension of text, 2016.

[55] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. CoRR, abs/1804.02767, 2018.

[56] Alexander Sergeev and Mike Del Balso. Horovod: fast

and easy distributed deep learning in tensorflow. CoRR,

abs/1802.05799, 2018.

[57] Christopher J. Shallue, Jaehoon Lee, Joseph M.

Antognini, Jascha Sohl-Dickstein, Roy Frostig, and

George E. Dahl. Measuring the effects of data parallelism

on neural network training. CoRR, abs/1811.03600,

2018.

[58] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin

Tran, Ashish Vaswani, Penporn Koanantakool, Peter

Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff

Young, Ryan Sepassi, and Blake Hechtman. Mesh-

tensorflow: Deep learning for supercomputers. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 31.

Curran Associates, Inc., 2018.

[59] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley,

J. Casper, and Bryan Catanzaro. Megatron-lm: Training

multi-billion parameter language models using model

parallelism. ArXiv, abs/1909.08053, 2019.

[60] S. L. Smith and Quoc V. Le. A bayesian perspective on

generalization and stochastic gradient descent. ArXiv,

abs/1710.06451, 2018.

[61] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.

Le. Don’t decay the learning rate, increase the batch size.

CoRR, abs/1711.00489, 2017.

[62] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.

Practical bayesian optimization of machine learning

algorithms. Advances in neural information processing

systems, 25:2951–2959, 2012.

[63] WenWu Wang and Ping Yu. Asymptotically optimal

differenced estimators of error variance in nonparametric

regression. Computational Statistics & Data Analysis,

105:125 – 143, 2017.

[64] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Ada-

grad stepsizes: Sharp convergence over nonconvex

landscapes. In International Conference on Machine

Learning, pages 6677–6686. PMLR, 2019.

[65] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Heng-

gang Cui, Gregory R Ganger, Phillip B Gibbons, Garth A

Gibson, and Eric P Xing. Managed communication and

consistency for fast data-parallel iterative analytics. In

Proceedings of the Sixth ACM Symposium on Cloud

Computing, pages 381–394, 2015.

[66] Wencong Xiao, Romil Bhardwaj, Ramachandran

Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua

Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu

Zhang, Fan Yang, and Lidong Zhou. Gandiva: Intro-

spective cluster scheduling for deep learning. In 13th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), pages 595–610, Carlsbad,

CA, October 2018. USENIX Association.

[67] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,

Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and

Yangqing Jia. Antman: Dynamic scaling on GPU clusters

for deep learning. In 14th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 20),

pages 533–548. USENIX Association, November 2020.

[68] Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi,

Takumi Honda, Masahiro Miwa, Naoto Fukumoto,

Tsuguchika Tabaru, Atsushi Ike, and Kohta Nakashima.

Yet another accelerated sgd: Resnet-50 training on

imagenet in 74.7 seconds, 2019.

[69] Yang You, Jonathan Hseu, Chris Ying, James Demmel,

Kurt Keutzer, and Cho-Jui Hsieh. Large-batch training

for LSTM and beyond. CoRR, abs/1901.08256, 2019.

[70] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong

Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao

Xie, and Eric P. Xing. Poseidon: An efficient communi-

cation architecture for distributed deep learning on GPU

clusters. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17), pages 181–193, Santa Clara, CA,

July 2017. USENIX Association.

[71] Haoyu Zhang, Logan Stafman, Andrew Or, and

Michael J. Freedman. Slaq: Quality-driven scheduling

for distributed machine learning. In Proceedings of the

2017 Symposium on Cloud Computing, SoCC ’17, page

390–404, New York, NY, USA, 2017. Association for

Computing Machinery.

[72] Huasha Zhao and J. Canny. Kylix: A sparse allreduce for

commodity clusters. 2014 43rd International Conference

on Parallel Processing, pages 273–282, 2014.

[73] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge

Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines

for large-scale bound-constrained optimization. ACM

Trans. Math. Softw., 23(4):550–560, December 1997.

18 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Oort: Efficient Federated Learning via Guided Participant Selection

Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, Mosharaf Chowdhury
University of Michigan

Abstract
Federated Learning (FL) is an emerging direction in dis-
tributed machine learning (ML) that enables in-situ model
training and testing on edge data. Despite having the same end
goals as traditional ML, FL executions differ significantly in
scale, spanning thousands to millions of participating devices.
As a result, data characteristics and device capabilities vary
widely across clients. Yet, existing efforts randomly select FL
participants, which leads to poor model and system efficiency.

In this paper, we propose Oort to improve the performance
of federated training and testing with guided participant selec-
tion. With an aim to improve time-to-accuracy performance
in model training, Oort prioritizes the use of those clients who
have both data that offers the greatest utility in improving
model accuracy and the capability to run training quickly.
To enable FL developers to interpret their results in model
testing, Oort enforces their requirements on the distribution
of participant data while improving the duration of federated
testing by cherry-picking clients. Our evaluation shows that,
compared to existing participant selection mechanisms, Oort
improves time-to-accuracy performance by 1.2×-14.1× and
final model accuracy by 1.3%-9.8%, while efficiently enforc-
ing developer-specified model testing criteria at the scale of
millions of clients.

1 Introduction
Machine learning (ML) today is experiencing a paradigm
shift from cloud datacenters toward the edge [18, 40]. Edge
devices, ranging from smartphones and laptops to enterprise
surveillance cameras and edge clusters, routinely store appli-
cation data and provide the foundation for machine learning
beyond datacenters. With the goal of not exposing raw data,
large companies such as Google and Apple deploy federated
learning (FL) for computer vision (CV) and natural language
processing (NLP) tasks across user devices [2, 24, 30, 77];
NVIDIA applies FL to create medical imaging AI [49]; smart
cities perform in-situ image training and testing on AI cam-
eras to avoid expensive data migration [32, 38, 51]; and video
streaming and networking communities use FL to interpret
and react to network conditions [10, 76].

Although the life cycle of an FL model is similar to that
in traditional ML, the underlying execution in FL is spread

across thousands to millions of devices in the wild. Similar to
traditional ML, the FL developer often first prototypes model
architectures and hyperparameters with a proxy dataset. After
selecting a suitable configuration, she can use federated train-
ing to improve model performance by training across a crowd
of participants [18, 40]. The wall clock time for training a
model to reach an accuracy target (i.e., time-to-accuracy) is
still a key performance objective even though it may take sig-
nificantly longer than centralized training [40]. To circumvent
biased or stale proxy data in hyperparameter tuning [57], to
inspect these models being trained, or to validate deployed
models after training [75,76], developers may want to perform
federated testing on the real-life client data, wherein enforcing
their requirements on the testing set (e.g., N samples for each
category or following the representative categorical distribu-
tion1) is crucial for them to reason about model performance
under different data characteristics [20, 57].

Unfortunately, clients may not all be simultaneously avail-
able for FL training or testing [40]; they may have heteroge-
neous data distributions and system capabilities [18, 34]; and
including too many may lead to wasted work and suboptimal
performance [18] (§2). Consequently, a fundamental problem
in practical FL is the selection of a “good” subset of clients
as participants, where each participant locally processes its
own data, and only their results are collected and aggregated
at a (logically) centralized coordinator.

Existing works optimize for statistical model efficiency
(i.e., better training accuracy with fewer training rounds)
[22, 47, 59, 72] or system efficiency (i.e., shorter rounds)
[54, 68], while randomly selecting participants. Although ran-
dom participant selection is easy to deploy, unfortunately, it
results in poor performance of federated training because of
large heterogeneity in device speed and/or data characteristics.
Worse, random participant selection can lead to biased testing
sets and loss of confidence in results. As a result, developers
often resort to more participants than perhaps needed [57,73].

We present Oort for FL developers to enable guided partic-
ipant selection throughout the life cycle of an FL model (§3).
Specifically, Oort cherry-picks participants to improve time-
to-accuracy performance for federated training, and it enables

1A categorical distribution is a discrete probability distribution showing
how a random variable can take the result from one of K possible categories.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 19

developers to specify testing criteria for federated model test-
ing. It makes informed participant selection by relying on the
information already available in existing FL solutions [40]
with little modification.

Selecting participants for federated training is challenging
because of the trade-off between heterogeneous system and
statistical model utilities both across clients and of any spe-
cific client over time (as the trained model changes). First,
simply picking clients with high statistical utility can lead to
longer training rounds due to the coupled nature of client data
and system performance. The challenge is further exacerbated
by the large population, as capturing the latest utility of all
clients is impractical. As such, we identify clients with high
statistical utility, which is measured in terms of their most
recent aggregate training loss, adjusted for spatiotemporal
variations, and penalize the utility of a client if her system
speed is likely to elongate the duration necessary to complete
global aggregation. To navigate the sweet point of jointly max-
imizing statistical and system efficiency, we adaptively allow
for longer training rounds to admit clients with higher statisti-
cal utility. We then employ an online exploration-exploitation
strategy to probabilistically select participants among high-
utility clients for robustness to outliers. Our design can accom-
modate diverse selection criteria (e.g., fairness), and deliver
improvements while respecting privacy (§4).

Although FL developers often have well-defined require-
ments on their testing data, satisfying these requirements is
not straightforward. Similar to traditional ML, developers may
request a testing dataset that follows the global distribution
to avoid testing on all clients [35, 57]. However, clients’ data
characteristics in some private FL scenarios may not be avail-
able [27, 77]. To preserve the deviation target of participant
data from the global, Oort performs participant selection by
bounding the number of participants needed. Second, for cases
where clients’ data characteristics are provided [51], develop-
ers can specify specific distribution of the testing set to debug
model efficiency (e.g., using balanced distribution) [15, 78].
At scale, satisfying this requirement in FL suffers large over-
head. Therefore, we propose a scalable heuristic to efficiently
enforce developer requirements, while optimizing the dura-
tion of testing (§5).

We have integrated Oort with PySyft (§6) and evaluated
it across various FL tasks with real-world workloads (§7). 2

Compared to the state-of-the-art selection techniques used in
today’s FL deployments [21, 73, 77], Oort improves time-to-
accuracy performance by 1.2×-14.1× and final model accu-
racy by 1.3%-9.8% for federated model training, while achiev-
ing close to upper-bound statistical performance. For feder-
ated model testing, Oort can efficiently respond to developer-
specified data distribution across millions of clients, and im-
proves the end-to-end testing duration by 4.7× on average
over state-of-the-art solutions.

2Oort is available at https://github.com/SymbioticLab/Oort.

Overall, we make the following contributions in this paper:
1. We highlight the tension between statistical and systems

efficiency when selecting FL participants and present Oort
to effectively navigate the tradeoff.

2. We propose participant selection algorithms to improve
the time-to-accuracy performance of training and to scal-
ably enforce developers’ FL testing criteria.

3. We implement and evaluate these algorithms at scale in
Oort, showing both statistical and systems performance
improvements over the state-of-the-art.

2 Background and Motivation
We start with a quick primer on federated learning (§2.1),
followed by the challenges it faces based on our analysis of
real-world datasets (§2.2). Next, we highlight the key short-
comings of the state-of-the-art that motivate our work (§2.3).

2.1 Federated Learning

Training and testing play crucial roles in the life cycle of an
FL model, whereas they have different criteria.

Federated model training aims to learn an accurate model
across thousands to potentially millions of clients. Because
of the large population size and diversity of user data and
their devices in FL, training runs on a subset of clients (hun-
dreds of participants) in each round, and often takes hun-
dreds of rounds (each round lasts a few minutes) and several
days to complete. For example, in Gboard keyboard, Google
runs federated training of NLP models over weeks across
1.5 million end devices [4, 77]. For a given model, achiev-
ing a target model accuracy with less wall clock time (i.e.,
time-to-accuracy) is still the primary target [47, 63].

To inspect a model’s accuracy during training (e.g., to de-
tect cut-off accuracy), to validate the trained model before
deployment [21, 73, 77], or to circumvent biased proxy data
in hyperparameter tuning [15, 62], FL developers sometimes
test model’s performance on real-life datasets. Similar to tra-
ditional ML, developers often request the representativeness
of the testing set with requirements like “50k representative
samples" [15], or “x samples of class y" to investigate model
performance on specific categories [78]. When the data char-
acteristics of participants are not available, coarse-grained yet
non-trivial requests, such as “a subset with less than X% data
deviation from the global" are still informative [53, 57].

2.2 Challenges in Federated Learning

Apart from the challenges faced in traditional ML, FL intro-
duces new challenges in terms of data, systems, and privacy.

Heterogeneous statistical data. Data in each FL partici-
pant is typically generated in a distributed manner under dif-
ferent contexts and stored independently. For example, images
collected by cameras will reflect the demographics of each
camera’s location. This breaks down the widely-accepted as-
sumption in traditional ML that samples are independent and
identically distributed (i.i.d.) from a data distribution.

20 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SymbioticLab/Oort

0.25 0.50 0.75 1.00
Normalized Data Size

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

OpenImage
StackOverflow
Reddit
Speech

(a) Unbalanced data size.

0.25 0.50 0.75 1.00
Pairwise Data Divergence

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

OpenImage
StackOverflow
Reddit
Speech

(b) Heterogeneous data distribution.

Figure 1: Client data differs in size and distribution greatly.

101 102 103

Inference Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

(a) Heterogeneous compute capacity.

102 103 104 105

Network Throughput (kbps)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

(b) Heterogeneous network capacity.

Figure 2: Client system performance differs significantly.

We analyze four real-world datasets for CV (OpenIm-
age [3]) and NLP (StackOverflow [9], Reddit [8] and Google
Speech [74]) tasks. Each consists of thousands or up to mil-
lions of clients and millions of data points. In each individual
dataset, we see a high statistical deviation across clients not
only in the quantity of samples (Figure 1(a)) but also in the
data distribution (Figure 1(b)).3

Heterogeneous system performance. As individual data
samples are tightly coupled with the participant device, in-situ
computation on this data experiences significant heterogeneity
in system performance. We analyze the inference latency of
MobileNet [65] across hundreds of mobile phones used in a
real-world FL deployment [77], and their available bandwidth.
Unlike the homogeneous setting in datacenter ML, system
performance across clients exhibits an order-of-magnitude
difference in both computational capabilities (Figure 2(a))
and network bandwidth (Figure 2(b)).

Enormous population and pervasive uncertainty. While
traditional ML runs in a well-managed cluster with a number
of machines, federated learning often involves up to millions
of clients, making it challenging for the coordinator to ef-
ficiently identify and manage valuable participants. During
execution, devices often vary in system performance [18,40] –
they may slow down or drop out – and the model performance
varies in FL training as the model updates over rounds.

Privacy concerns. Inquiring about the privacy-sensitive in-
formation of clients (e.g., raw data or even data distribution)
can alienate participants in contributing to FL [24, 66, 67].

3We report the pairwise deviation of categorical distributions between
two clients, using the popular L1-divergence metric [55].

Breakdown-Round to accuracy (Prox)

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 87.5 89.4 1.6 1.3

YoGi 75.7 77.6 1.7 1.6

Prox 74.9 76.1 1.4 1.4 52.9 53.3 53.0 54.4 53.6 54.5

Target: 77.8

Breakdown-Round to accuracy (Prox)-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 64 53 7 6 70 62 73 70 57 61

YoGi 317 231 22 16 245 265 234 197 206 180

Prox 372 256 29 18 330 380 315 330 345 415

(b
)

Fi
na

l
A

cc
ur

ac
y

(%
)

0

45

90

MobileNet ShuffleNet

76.174.9 77.675.7

89.487.5

Centralized YoGi Prox

(a
)

 o

f
R

ou
nd

s

0

100

200

300

400

MobileNet ShuffleNet

256

372

231

317

5364

248
243

317

192

382

1

Figure 3: Existing works are suboptimal in: (a) round-to-
accuracy performance and (b) final model accuracy. (a) reports
number of rounds required to reach the highest accuracy of Prox
on MobileNet (i.e., 74.9%). Error bars show standard deviation.

Hence, realistic FL solutions have to seek efficiency improve-
ments but with limited information available in practical FL,
and their deployments must be non-intrusive to clients.

2.3 Limitations of Existing FL Solutions

While existing FL solutions have made considerable progress
in tackling some of the above challenges (§8), they mostly
rely on hindsight – given a pool of participants, they optimize
model performance [48,59] or system efficiency [54] to tackle
data and system heterogeneity. However, the potential for
curbing these disadvantages by cherry-picking participants
before execution has largely been overlooked. For example,
FL training and testing today still rely on randomly picking
participants [18], which leaves large room for improvements.

Suboptimality in maximizing efficiency. We first show
that today’s participant selection underperforms for FL solu-
tions. Here, we train two popular image classification models
tailored for mobile devices (i.e., MobileNet [65] and Shuf-
fleNet [80]) with 1.6 million images of the OpenImage dataset,
and randomly pick 100 participants out of more than 14k
clients in each training round. We consider a performance up-
per bound by creating a hypothetical centralized case where
images are evenly distributed across only 100 clients, and train
on all 100 clients in each round. As shown in Figure 3, even
with state-of-the-art optimizations, such as YoGi [63] and
Prox [47],4 the round-to-accuracy and final model accuracy
are both far from the upper-bound. Moreover, overlooking the
system heterogeneity can elongate each round, further exacer-
bating the suboptimality of time-to-accuracy performance.

Inability to enforce data selection criteria. While an FL
developer often fine-tunes her model by understanding the
input dataset, existing solutions do not provide any systems
support for her to express and reason about what data her FL
model was trained or tested on. Even worse, existing partici-
pant selection not only inflates the execution, but can lead to
bias and loss of confidence in results [20, 34].

To better understand how existing works fall short, we

4These two adapt traditional stochastic gradient descent algorithms to
tackle the heterogeneity of the client datasets.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 21

101 102 103

of Sampled Clients

0.00

0.25

0.50

0.75

1.00

D
ev

ia
tio

n
fr

om
G

lo
ba

l

(a) Data deviation vs. participant size.

101 102 103

of Sampled Clients

40

60

80

Te
st

in
g

A
cc

ur
ac

y
(%

)
(b) Accuracy vs. participant size.

Figure 4: Participant selection today leads to (a) deviations
from developer requirements, and thus (b) affects testing result.
Shadow indicates the [min, max] range of y-axis values over 1000
runs given the same x-axis input; each line reports the median.

take the global categorical distribution as an example require-
ment, and experiment with the above pre-trained ShuffleNet
model. Figure 4(a) shows that: (i) even for the same num-
ber of participants, random selection can result in noticeable
data deviations from the target distribution; (ii) while this
deviation decreases as more participants are involved, it is
non-trivial to quantify how it varies with different number
of participants, even if we ignore the cost of enlarging the
participant set. Worse, when even selecting many participants,
developers can not enforce other distributions (e.g., balanced
distribution for debugging [15]) with random selection. One
natural effect of violating developer specification is bias in
results (Figure 4(b)), where we test the accuracy of the same
model on these participants. We observe that a biased testing
set results in high uncertainties in testing accuracy.

3 Oort Overview
Oort improves FL training and testing performance by judi-
ciously selecting participants while enabling FL developers
to specify data selection criteria. In this section, we provide
an overview of how Oort fits in the FL life cycle to help the
reader follow the subsequent sections.

3.1 Architecture

At its core, Oort is a participant selection framework that
identifies and cherry-picks valuable participants for FL train-
ing and testing. It is located inside the coordinator of an
FL framework and interacts with the driver of an FL exe-
cution (e.g., PySyft [7] or Tensorflow Federated [11]). Given
developer-specified criteria, it responds with a list of partici-
pants, whereas the driver is in charge of initiating and manag-
ing execution on the Oort-selected remote participants.

Figure 5 shows how Oort interacts with the developer and
FL execution frameworks. 1 Job submission: the developer
submits and specifies the participant selection criteria to the
FL coordinator in the cloud. 2 Participant selection: the
coordinator enquires the clients meeting eligibility proper-
ties (e.g., battery level), and forwards their characteristics
(e.g., liveness) to Oort. Given the developer requirements
(and execution feedbacks in case of training 2a), Oort se-

…

① Job
submission

③ Execution ④ Aggregation

Client Pool

Selection

Participants Participants

Coordinator
Execution

Driver

Info update2a

2b
Selector

Oort

Metastore

Figure 5: Oort architecture. The driver of the FL framework in-
teracts with Oort using a client library.

lects participants based on the given criteria and notifies the
coordinator of this participant selection (2b). 3 Execution:
the coordinator distributes relevant profiles (e.g., model) to
these participants, and then each participant independently
computes results (e.g., model weights in training) on her data;
4 Aggregation: when participants complete the computation,
the coordinator aggregates updates from participants.

During federated training, where the coordinator initiates
the next training round after aggregating updates from enough
number of participants [18], it iterates over 2 - 4 in each
round. Every few training rounds, federated testing is often
used to detect whether the cut-off accuracy has been reached.

3.2 Oort Interface

Oort employs two distinct selectors that developers can access
via a client library during FL training and testing.

Training selector. This selector aims to improve the time-
to-accuracy performance of federated training. To this end,
it captures the utility of clients in training, and efficiently
explores and selects high-utility clients at runtime.

1 import Oort
2
3 def federated_model_training():
4 selector = Oort.create_training_selector(config)
5
6 # Train to target testing accuracy
7 while federated_model_testing() < target:
8
9 # Train 50 rounds before testing

10 for _ in range(50):
11 # Collect feedbacks of last round
12 feedbacks = engine.get_participant_feedback()
13
14 # Update the utility of clients
15 for clientId in feedbacks:
16 selector.update_client_util(
17 clientId , feedbacks[clientId])
18
19 # Pick 100 high -utility participants
20 participants = selector.select_participant (100)
21 ... # Activate training on remote clients

Figure 6: Code snippet of Oort interaction during FL training.

Figure 6 presents an example of how FL developers and
frameworks interact with Oort during training. In each train-
ing round, Oort collects feedbacks from the engine driver, and
updates the utility of individual clients (Line 15-17). There-
after, it cherry-picks high-utility clients to feed the underlying
execution (Line 20). We elaborate more on client utility and

22 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the selection mechanism in Section 4.

Testing selector. This selector currently supports two types
of selection criteria. When the individual client data char-
acteristics (e.g., categorical distribution) are not provided,
the testing selector determines the number of participants
needed to cap the data deviation of participants from the
global. Otherwise, it cherry-picks participants to serve the
exact developer-specified requirements on data while mini-
mizing the duration of testing. We elaborate more on selection
for federated testing in Section 5.

4 Federated Model Training
In this section, we first outline the trade-off in selecting par-
ticipants for FL training (§4.1), and then describe how Oort
quantifies the client utility while respecting privacy (§4.2
and §4.3), how it selects high-utility clients at scale despite
staleness in client utility as training evolves (§4.4).

4.1 Tradeoff Between Statistical and System Efficiency

Time-to-accuracy performance of FL training relies on two
aspects: (i) statistical efficiency: the number of rounds taken to
reach target accuracy; and (ii) system efficiency: the duration
of each training round. The data stored on the client and the
speed with which it can perform training determine its utility
with respect to statistical and system efficiency, which we
respectively refer to as statistical and system utility.

Due to the coupled nature of client data and system perfor-
mance, cherry-picking participants for better time-to-accuracy
performance requires us to jointly consider both forms of ef-
ficiency. We visualize the trade-off between these two with
our breakdown experiments on the MobileNet model with
OpenImage dataset (§7.2.1). As shown in Figure 7, while
optimizing the system efficiency (“Opt-Sys. Efficiency”) can
reduce the duration of each round (e.g., picking the fastest
clients), it can lead to more rounds than random selection as
that client data may have already been overrepresented by
other participants over past rounds. On the other hand, using a
client with high statistical utility (“Opt-Stat. Efficiency”) may
lead to longer rounds if that client turns out to be the system
bottleneck in global model aggregation.

Challenges. To improve time-to-accuracy performance,
Oort aims to find a sweet spot in the trade-off by associating
with every client its utility toward optimizing each form of
efficiency (Figure 7). This leads to three challenges:
• In each round, how to determine which clients’ data would

help improve the statistical efficiency of training the most
while respecting client privacy (§4.2)?
• How to take a client’s system performance into account

to optimize the global system efficiency (§4.3)?
• How to account for the fact that we don’t have up-to-date

utility values for all clients during training (§4.4)?
Next, we integrate system designs with ML principles to

tackle the heterogeneity, the massive scale, the runtime uncer-

① Exploit high statistical
 util. clients

1

A
vg

. D
ur

at
io

n
of

 R
ou

nd
s

(m
in

)

Oort

Opt-Stat.
Efficiency

of Rounds Taken for Target Accuracy

Opt-Sys.
Efficiency

Random

② Prioritize high system
util. clients

0 100 200 300 400

2

4

6

500

Better

Figure 7: Existing FL training randomly selects participants,
whereas Oort navigates the sweet point of statistical and system
efficiency to optimize their circled area (i.e., time to accuracy).
Numbers are from the MobileNet on OpenImage dataset (§7.2.1).

tainties and privacy concerns of clients for practical FL.

4.2 Client Statistical Utility

An ideal design of statistical utility should be able to effi-
ciently capture the client data utility toward improving model
performance for various training tasks, and respect privacy.

To this end, we leverage importance sampling used in the
ML literature [41, 81]. Say each client i has a bin Bi of train-
ing samples locally stored. Then, to improve the round-to-
accuracy performance via importance sampling, the optimal
solution would be to pick bin Bi with a probability propor-
tional to its importance |Bi|

√
1
|Bi| ∑k∈Bi ‖ ∇ f (k) ‖2, where

‖ ∇ f (k) ‖ is the L2-norm of the unique sample k’s gradi-
ent ∇ f (k) in bin Bi. Intuitively, this means selecting the bin
with larger aggregate gradient norm across all of its samples.

However, taking this importance as the statistical utility is
impractical, since it requires an extra time-consuming pass
over the client data to generate the gradient norm of every
sample,5 and this gradient norm varies as the model updates.

To avoid extra cost, we introduce a pragmatic approxima-
tion of statistical utility instead. At its core, the gradient is
derived by taking the derivative of training loss with respect
to current model weights, wherein training loss measures the
estimation error between model predictions and the ground
truth. Our insight is that a larger gradient norm often attributes
to a bigger loss [39]. Therefore, we define the statistical utility
U(i) of client i as U(i) = |Bi|

√
1
|Bi| ∑k∈Bi Loss(k)2, where the

training loss Loss(k) of sample k is automatically generated
during training with negligible collection overhead. As such,
we consider clients that currently accumulate a bigger loss to
be more important for future rounds.

Our statistical utility can capture the heterogeneous data
utility across and within categories and samples for various
tasks. We present the theoretical proof for its effectiveness
over random sampling in our technical report [45], and em-
pirically show its close-to-optimal performance (§7.2.2).

5ML models generate the training loss of each sample during training,
but calculate the gradient of the mini-batch instead of individual samples.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 23

How Oort respects privacy? Training loss measures the
prediction confidence of a model without revealing the raw
data and is often collected in real FL deployments [30, 77].
We further provide three ways to respect privacy. First, we
rely on aggregate training loss, which is computed locally
by the client across all of her samples without revealing the
loss distribution of individual samples either. Second, when
even the aggregate loss raises a privacy concern, clients can
add noise to their loss value before uploading, similar to ex-
isting local differential privacy [27]. Third, we later show that
Oort can flexibly accommodate other definitions of statistical
utility used in our generic participant selection framework
(§4.4). We provide detailed theoretical analyses for each strat-
egy (e.g., using gradient norm of batches) of how Oort can
respect privacy (e.g., amenable under noisy utility value) in
our technical report [45], while empirically showing its su-
perior performance even under noisy utility value (§7.2.3).

4.3 Trading off Statistical and System Efficiency

Simply selecting clients with high statistical utility can ham-
per the system efficiency. To reconcile the demand for both
efficiencies, we should maximize the statistical utility we can
achieve per unit time (i.e., the division of statistical utility and
its round duration). As such, we formulate the utility of client
i by associating her statistical utility with a global system
utility in terms of the duration of each training round:

Util(i) = |Bi|
√

1
|Bi| ∑

k∈Bi

Loss(k)2

︸ ︷︷ ︸
Statistical utility U(i)

× (
T
ti
)1(T<ti)×α︸ ︷︷ ︸

Global sys utility

(1)

where T is the developer-preferred duration of each round, ti
is the amount of time that client i takes to process the training,
which has already been collected by today’s coordinator from
past rounds,6 and 1(x) is an indicator function that takes value
1 if x is true and 0 otherwise. This way, the utility of those
clients who may be the bottleneck of the desired speed of
current round will be penalized by a developer-specified factor
α, but we do not reward the non-straggler clients because their
completions do not impact the round duration.

This formulation assumes that all samples at a client are
processed in that training round. Even if the estimated ti for
a client is greater than the desired round duration T , Oort
might pick that client if the statistical utility outweighs its
slow speed. Alternatively, if the developer wishes to cap every
round at a certain duration [54], then either only clients with
ti < T can be considered (e.g., by setting α→ ∞) or a subset
of a participant’s samples can be processed [47, 63], and only
the aggregate training loss of those trained data in that round
is considered in measuring the statistical utility.

6We only care whether a client can complete by the expected duration T .
So, a client can even mask its precise speed by deferring its report.

Navigating the trade-off. Determining the preferred round
duration T in Equation (1), which strikes the trade-off be-
tween the statistical and system efficiency in aggregations,
is non-trivial. Indeed, the total statistical utility (i.e., ∑U(i))
achieved by picking high utility clients can decrease round
by round, because the training loss decreases as the model
improves over time. If we persist in suppressing clients with
high statistical utility but low system speed, the model may
converge to suboptimal accuracy (§7.2.2).

To navigate the optimal trade-off – maximizing the total sta-
tistical utility achieved without greatly sacrificing the system
efficiency – Oort employs a pacer to determine the preferred
duration T at runtime. The intuition is that, when the accumu-
lated statistical utility in the past rounds decreases, the pacer
allows a larger T ← T +∆ by ∆ to bargain with the statistical
efficiency again. We elaborate more in Algorithm 1.

4.4 Adaptive Participant Selection

Given the above definition of client utility, we need to address
the following practical concerns in order to select participants
with the highest utility in each training round.
• Scalability: a client’s utility can only be determined after

it has participated in training; how to choose from clients
at scale without having to try all clients once?

• Staleness: since not every client participates in every
round, how to account for the change in a client’s util-
ity since its last participation?

• Robustness: how to be robust to outliers in the presence
of corrupted clients (e.g., with noisy data)?

To tackle these challenges, we develop an exploration-
exploitation strategy for participant selection (Algorithm 1).

Online exploration-exploitation of high-utility clients.
Selecting participants out of numerous clients can be modeled
as a multi-armed bandit problem, where each client is an “arm”
of the bandit, and the utility obtained is the “reward” [14]. In
contrast to sophisticated designs (e.g., reinforcement learn-
ing), the bandit model is scalable and flexible even when the
solution space (e.g., number of clients) varies dramatically
over time. Next, we adaptively balance the exploration and ex-
ploitation of different arms to maximize the long-term reward.

Similar to the bandit design, Oort efficiently explores po-
tential participants under spatial variation, while intelligently
exploiting observed high-utility participants under temporal
variation. At the beginning of each selection round, Oort re-
ceives the feedback of the last training round, and updates
the statistical utility and system performance of clients (Line
6). For the explored clients, Oort calculates their client utility
and narrows down the selection by exploiting the high-utility
participants (Line 9-15). Meanwhile, Oort samples ε(∈ [0, 1])
fraction of participants to explore potential participants that
had not been selected before (Line 16), which turns to full
exploration as ε→ 1. Although we cannot learn the statistical

24 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Input: Client set C, sample size K, exploitation factor ε,
pacer step ∆, step window W , penalty α

Output: Participant set P

/* Initialize global variables. */
1 E← /0; U← /0 . Explored clients and statistical utility.
2 L← /0; D← /0 . Last involved round and duration.
3 R← 0; T ← ∆ . Round counter and preferred round duration.

/* Participant selection for each round. */
4 Function SelectParticipant(C, K, ε, T , α)
5 Util← /0; R← R+1

/* Update and clip the feedback; blacklist outliers. */
6 UpdateWithFeedback(E, U, L, D)

/* Pacer: Relaxes global system preference T if the
statistical utility achieved decreases in last W rounds. */

7 if ∑U(R−2W : R−W) > ∑U(R−W : R) then
8 T ← T +∆

/* Exploitation #1: Calculate client utility. */
9 for client i ∈ E do

10 Util(i)← U(i) +
√

0.1logR
L(i) . Temporal uncertainty.

11 if T < D(i) then . Global system utility.

12 Util(i)←Util(i)× (T
D(i))

α

/* Exploitation #2: admit clients with greater than c% of
cut-off utility; then sample (1− ε)K clients by utility. */

13 Util← SortAsc(Util)
14 W← CutOffUtil(E, c×Util((1− ε)×K))
15 P← SampleByUtil(W, Util, (1− ε)×K)

/* Exploration: sample unexplored clients by speed. */
16 P← P ∪ SampleBySpeed(C−E, ε×K)

17 return P

Alg. 1: Participant selection w/ exploration-exploitation.

utility of not-yet-tried clients, one can decide to prioritize the
unexplored clients with faster system speed when possible
(e.g., by inferring from device models), instead of performing
random exploration (Line 16).

Exploitation under staleness in client utility. Oort em-
ploys two strategies to account for the dynamics in client
utility over time. First, motivated by the confidence interval
used to measure the uncertainty in bandit reward, we intro-
duce an incentive term, which shares the same shape of the
confidence in bandit solutions [37], to account for the stale-
ness (Line 10), whereby we gradually increase the utility of
a client if she has been overlooked for a long time. So those
clients accumulating high utility since their last trial can still
be repurposed again. Second, instead of picking clients with
top-k utility deterministically, we allow a confidence inter-
val c on the cut-off utility (95% by default in Line 13-14).
Namely, we admit clients whose utility is greater than the c%

1 def federated_model_testing():
2 selector = Oort.create_testing_selector()
3
4 # Type 1: subset w/ < X deviation from the global
5 participants = selector.select_by_deviation(
6 dev_target , range_of_capacity , total_num_clients)
7
8 # Provide individual client data characteristics
9 selector.update_client_info(client_id , client_info)

10 # Type 2: [5k, 5k] samples of category [i, j]
11 participants = selector.select_by_category(
12 request_list , testing_config)

Figure 8: Key Oort APIs for supporting federated testing.

of the top ((1−ε)×K)-th participant. Among this high-utility
pool, Oort samples participants with probability proportional
to their utility (Line 15). This adaptive exploitation mitigates
the uncertainties in client utility by prioritizing participants
opportunistically, thus relieving the need for accurate estima-
tions of utility as we do not require the exact ordering among
clients, while preserving a high quality as a whole.

Robust exploitation under outliers. Simply prioritizing
high utility clients can be vulnerable to outliers in unfavor-
able settings. For example, corrupted clients may have noisy
data, leading to high training loss, or even report arbitrarily
high training loss intentionally. For robustness, Oort (i) re-
moves the client in selection after she has been picked over a
given number of rounds. This helps to remove the perceived
outliers in terms of participation (Line 6); (ii) clips the utility
value of a client by capping it to no more than an upper bound
(e.g., 95% value in utility distributions). With probabilistic
participant selection among the high-utility client pool (Line
15), the chance of selecting outliers is significantly decreased
under the scale of clients in FL. We show that Oort outper-
forms existing mechanisms while being robust (§7.2.3).

Accommodation to diverse selection criteria. Our adap-
tive participant selection is generic for different utility defi-
nitions of diverse selection criteria. For example, developers
may hope to reconcile their demand for time-to-accuracy effi-
ciency and fairness, so that some clients are not underrepre-
sented (e.g., more fair resource usage across clients) [40, 48].
Although developers may have various fairness criterion
f airness(·), Oort can enforce their demands by replacing the
current utility definition of client i with (1− f)×Util(i)+
f × f airness(i), where f ∈ [0,1] and Algorithm 1 will nat-
urally prioritize clients with the largest fairness demand as
f → 1. For example, f airness(i) = max_resource_usage−
resource_usage(i) motivates fair resource usage for each
client i. Note that existing participant selection provides no
support for fairness, and we show that Oort can efficiently
enforce diverse developer-preferred fairness while improving
performance (§7.2.3).

5 Federated Model Testing
Enforcing developer-defined requirements on data distribu-
tion is a first-order goal in FL testing, whereas existing mech-
anisms lead to biased testing results (§2.3). In this section, we

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 25

elaborate on how Oort serves the two primary types of queries.
As shown in Figure 8, we start with how Oort preserves the
representativeness of testing set even without individual client
data characteristics (§5.1), and how it efficiently enforces de-
veloper’s testing criteria for specific data distribution when
the individual information is provided (§5.2).

5.1 Preserving Data Representativeness

Learning the individual data characteristics (e.g., categorical
distribution) can be too expensive or even prohibited [25, 64].
Without knowing data characteristics, the developer has to
be conservative and selects many participants to gain more
confidence for query “a testing set with less than X% data
deviation from the global", as selecting too few can lead to
a biased testing result (§2.3). However, admitting too many
may inflate the budget and/or take too long because of the
system heterogeneity. Next, we show how Oort can enable
guided participant selection by determining the number of
participants needed to guarantee this deviation target.

We consider the deviation of the data formed by all par-
ticipants from the global dataset (i.e., representative) using
L1-distance, a popular distance metric in FL [34, 35, 57]. For
category X , its L1-distance (|X̄−E[X̄]|) captures how the av-
erage number of samples of all participants (i.e., empirical
value X̄) deviates from that of all clients (i.e., expectation
E[X̄]). Note that the number of samples Xn that client n holds
is independent across clients. Namely, the number of samples
that one client holds will not be affected by the selection of
any other clients at that time, so it can be viewed as a random
instance sampled from the distribution of variable X .

Given the developer-specified tolerance ε on data deviation
and confidence interval δ (95% by default [56]), our goal is
to estimate the number of participants needed such that the
deviation from the representative categorical distribution is
bounded (i.e., Pr[|X̄−E[X̄]|< ε]> δ). To this end, we formu-
late it as a problem of sampling stochastic variables, and apply
the Hoeffding bound [16] to capture how this data deviation
varies with different number of participants. We attach our
theoretical results and proof in our technical report [45].

Estimating the number of participants to cap deviation.
Even when the individual data characteristics are not available,
the developer can specify her tolerance ε on the deviation from
the global categorical distribution, whereby Oort outputs the
number of participants needed to preserve this preference. To
use our model, the developer needs to input the global range
(i.e., global maximum - global minimum) of the number of
samples that one client can hold, and the total number of
clients. Learning this global information securely is well-
established [23,64], and the developer can assume a plausible
limit (e.g., according to the capacity of device models) too.

Our model does not require any collection of the distribu-
tion of global or participant data. As a straw-man participant
selection design, the developer can randomly distribute her
model to this Oort-determined number of participants. After

collecting results from this number of participants, she can
confirm the representativeness of computed data.

5.2 Enforcing Diverse Data Distribution

When the individual data characteristics are provided (e.g., FL
across enterprise AI cameras [35, 51]), Oort can enforce the
exact data preference on specific categorical distribution, and
improve the duration of testing by cherry-picking participants.

Satisfying queries like “[5k, 5k] samples of class [x, y]"
can be viewed as a multi-dimensional bin covering problem,
where a subset of data bins (i.e., participants) are selected to
cover the requested quantity of data. For each category i(∈ I)
of interest, the developer has preference pi (preference con-
straint), and an upper limit B (referred to as budget) on how
many participants she can have [15]. Each participant n(∈ N)
can contribute ni samples out of her capacity cn

i (capacity
constraint). Given her compute speed sn, the available band-
width bn and the size of data transfers dn, we aim to minimize
the duration of model testing:

min
{

max
n∈N

(
∑i∈I ni

sn
+ dn

bn

)}
. Minimize duration

s.t. ∀i ∈ I, ∑
n∈N

ni = pi . Preference Constraint

∀i ∈ I,∀n ∈ N,ni ≤ ci
n . Capacity Constraint

∀i ∈ I, ∑
n∈N

1(ni > 0)≤ B . Budget Constraint

The max-min formulation stems from the fact that testing
completes after aggregating results from the last participant.
While this mixed-integer linear programming (MILP) model
provides high-quality solutions, it has prohibitively high com-
putational complexity for large N.

Scalable participant selection. For better scalability, we
present a greedy heuristic to scale down the search space of
this strawman. We (1) first group a subset of feasible clients
to satisfy the preference constraint. To this end, we iteratively
add to our subset the client which has the most number of
samples across all not-yet-satisfied categories, and deduct the
preference constraint on each category by the corresponding
capacity of this client. We stop this greedy grouping until the
preference is met, or request a new budget if we exceed the
budget; and (2) then optimize job duration with a simplified
MILP among this subset of clients, wherein we have removed
the budget constraint and reduced the search space of clients.
We show that our heuristic can outperform the straw-man
MILP model in terms of the end-to-end duration of model
testing owing to its small overhead (§7.3.2).

6 Implementation
We have implemented Oort as a Python library, with 2617
lines of code, to friendly support FL developers. Oort pro-
vides simple APIs to abstract away the problem of participant
selection, and developers can import Oort in their application

26 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

codebase and interact with FL engines (e.g., PySyft [7] or
TensorFlow Federated [11]).

We have integrated Oort with PySyft. Oort operates on and
updates its client metadata (e.g., data distribution or system
performance) fed by the FL developer and PySyft at runtime.
The metadata of each client in Oort is an object with a small
memory footprint. Oort caches these objects in memory dur-
ing executions and periodically backs them up to persistent
storage. In case of failures, the execution driver will initiate
a new Oort selector, and load the latest checkpoint to catch
up. We employ Gurobi solver [5] to solve the MILP. The
developer can also initiate a Oort application beyond coordi-
nators to avoid resource contention. We use xmlrpc library
to connect to the coordinator, and these updates will activate
Oort to write these updates to its metastore. In the coordinator,
we use the PySyft API model.send(client_id) to direct which
client to run given the Oort decision, and model.get(client_id)
to collect the feedback.

7 Evaluation
We evaluate Oort’s effectiveness for four different ML models
on four CV and NLP datasets. We organize our evaluation by
the FL activities with the following key results.

FL training results summary:
• Oort outperforms existing random participant selection

by 1.2×-14.1× in time-to-accuracy performance, while
achieving 1.3%-9.8% better final model accuracy (§7.2.1).

• Oort achieves close-to-optimal model efficiency by adap-
tively striking the trade-off between statistical and system
efficiency with different components (§7.2.2).

• Oort outperforms its counterpart over a wide range of pa-
rameters and different scales of experiments, while being
robust to outliers (§7.2.3).

FL testing results summary:
• Oort can serve testing criteria on data deviation while

reducing costs by bounding the number of participants
needed without individual data characteristics (§7.3.1).

• With the individual information, Oort improves the testing
duration by 4.7× w.r.t. Mixed Integer Linear Program-
ming (MILP) solver, and is able to efficiently enforce
developer preferences across millions of clients (§7.3.2).

7.1 Methodology

Experimental setup. Oort is designed to operate in large
deployments with potentially millions of edge devices. How-
ever, such a deployment is not only prohibitively expensive,
but also impractical to ensure the reproducibility of experi-
ments. As such, we resort to a cluster with 68 NVIDIA Tesla
P100 GPUs, and emulate up to 1300 participants in each
round. We simulate real-world heterogeneous client system
performance and data in both training and testing evaluations
using an open-source FL benchmark [43]: (1) Heterogeneous

Dataset # of Clients # of Samples

Google Speech [74] 2,618 105,829

OpenImage-Easy [3] 14,477 871,368

OpenImage [3] 14,477 1,672,231

StackOverflow [9] 315,902 135,818,730

Reddit [8] 1,660,820 351,523,459
Table 1: Statistics of the dataset in evaluations.

device runtimes of different models, network throughput/con-
nectivity, device model and availability are emulated using
data from AI Benchmark [1] and Network Measurements
on mobiles [6]; (2) We distribute each real dataset to clients
following the corresponding raw placement (e.g., using <au-
thors_ID> to allocate OpenImage), where client data can vary
in quantities, distribution of outputs and input features; (3)
The coordinator communicates with clients using the parame-
ter server architecture. These follow the PySyft and real FL
deployments. To mitigate stragglers, we employ the widely-
used mechanism specified in real FL deployments [18], where
we collect updates from the first K completed participants out
of 1.3K participants in each round, and K is 100 by default.
We report the simulated clock time of clients in evaluations.

Datasets and models. We run three categories of applica-
tions with four real-world datasets of different scales, and
Table 1 reports the statistics of each dataset:

• Speech Recognition: the small-scale Google speech
dataset [74]. We train a convolutional neural network
model (ResNet-34 [31]) to recognize the command among
35 categories.

• Image Classification: the middle-scale OpenImage [3]
dataset, with 1.5 million images spanning 600 categories,
and a simpler dataset (OpenImage-Easy) with images
from the most popular 60 categories. We train MobileNet
[65] and ShuffleNet [80] models to classify the image.

• Language Modeling: the large-scale StackOverflow [9]
and Reddit [8] dataset. We train next word predictions
with Albert model [46] using the top-10k popular words.

These applications are widely used in real end-device appli-
cations [75], and these models are designed to be lightweight.

Parameters. The minibatch size of each participant is 16 in
speech recognition, and 32 in other tasks. The initial learning
rate for Albert model is 4e-5, and 0.04 for other models. These
configurations are consistent with those reported in the litera-
ture [29]. In configuring the training selector, Oort uses the
popular time-based exploration factor [14], where the initial
exploration factor is 0.9, and decreased by a factor 0.98 after
each round when it is larger than 0.2. The step window of
pacer W is 20 rounds. We set the pacer step ∆ in a way that it
can cover the duration of next W×K clients in the descending
order of explored clients’ duration, and the straggler penalty
α to 2. We remove a client from Oort’s exploitation list once

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 27

Task Dataset
Accuracy

Model
Speedup for Prox [47] Speedup for YoGi [63]

Target Stats. Sys. Overall Stats. Sys. Overall

OpenImage-Easy [3] 74.9%
MobileNet [65] 3.8× 3.2× 12.1× 2.4× 2.4× 5.7×

Image ShuffleNet [80] 2.5× 3.5× 8.8× 1.9× 2.7× 5.1×

Classification
OpenImage [3] 53.1%

MobileNet 4.2× 3.1× 13.0× 2.3× 1.5× 3.3×

ShuffleNet 4.8× 2.9× 14.1× 1.8× 3.2× 5.8×

Language Modeling
Reddit [8] 39 perplexity Albert [46] 1.3× 6.4× 8.4× 1.5× 4.9× 7.3×

StackOverflow [9] 39 perplexity Albert 2.1× 4.3× 9.1× 1.8× 4.4× 7.8×

Speech Recognition Google Speech [74] 62.2% ResNet-34 [31] 1.1× 1.1× 1.2× 1.2× 1.1× 1.3×
Table 2: Summary of improvements on time to accuracy.7We tease apart the overall improvement with statistical and system ones, and
take the highest accuracy that Prox can achieve as the target, which is moderate due to the high task complexity and lightweight models.

she has been selected over 10 times.

Metrics. We care about the time-to-accuracy performance
and final model accuracy of model training tasks on the testing
set. For model testing, we measure the end-to-end testing
duration, which consists of the computation overhead of the
solution and the duration of actual computation.

For each experiment, we report the mean value over 5 runs,
and error bars show the standard deviation.

7.2 FL Training Evaluation

In this section, we evaluate Oort’s performance on model
training, and employ Prox [47] and YoGi [63]. We refer Prox
as Prox running with existing random participant selection,
and Prox + Oort is Prox running atop Oort. We use a similar
denotation for YoGi. Note that Prox and YoGi optimize the
statistical model efficiency for the given participants, while
Oort cherry-picks participants to feed them.

7.2.1 End-to-End Performance

Table 2 summarizes the key time-to-accuracy performance
of all datasets. In the rest of the evaluations, we report the
ShuffleNet and MobileNet performance on OpenImage, and
Albert performance on Reddit dataset for brevity. Figure 9
reports the timeline of training to achieve different accuracy.

Oort improves time-to-accuracy performance. We no-
tice that Oort achieves large speedups to reach the target
accuracy (Table 2). Oort reaches the target 3.3×-14.1× faster
in terms of wall clock time on the middle-scale OpenImage
dataset; speedup on the large-scale Reddit and StackOverflow
dataset is 7.3×-9.1×. Understandably, these benefits decrease
when the total number of clients is small, as shown on the
small-scale Google Speech dataset (1.2×-1.3×).

7We set the target accuracy to be the highest achievable accuracy by all
used strategies, which turns out to be Prox accuracy. Otherwise, some may
never reach that target.

0 10 20 30 40
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)
Prox
YoGi
Oort + Prox
Oort + YoGi

(a) MobileNet (Image).

0 10 20 30 40
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Prox
YoGi
Oort + Prox
Oort + YoGi

(b) ShuffleNet (Image).

0 10 20 30 40 50
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Prox
YoGi
Oort + Prox
Oort + YoGi

(c) ResNet (Speech).

0 20 40 60 80
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Prox
YoGi

Oort + Prox
Oort + YoGi

(d) Albert (LM).

Figure 9: Time-to-Accuracy performance. A lower perplexity is
better in the language modeling (LM) task.

These time-to-accuracy improvements stem from the com-
parable benefits in statistical model efficiency and system
efficiency (Table 2). Oort takes 1.8×-4.8× fewer training
rounds on OpenImage dataset to reach the target accuracy,
which is better than that of language modeling tasks (1.3×-
2.1×). This is because real-life images often exhibit greater
heterogeneity in data characteristics than the language dataset,
whereas the large population of language datasets leaves a
great potential to prioritize clients with faster system speed.

Oort improves final model accuracy. When the model
converges, Oort achieves 6.6%-9.8% higher final accuracy
on OpenImage dataset, and 3.1%-4.4% better perplexity on
Reddit dataset (Figure 9). Again, this improvement on Google
Speech dataset is smaller (1.3% for Prox and 2.2% for YoGi)

28 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 10 20 30
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Random
Oort w/o Sys
Oort w/o Pacer
Oort

(a) MobileNet (Image).

0 10 20 30
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Random
Oort w/o Sys
Oort w/o Pacer
Oort

(b) ShuffleNet (Image).

0 20 40 60 80
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Random
Oort w/o Sys

Oort w/o Pacer
Oort

(c) Albert (LM).

Figure 10: Breakdown of Time-to-Accuracy performance with YoGi, when using different participant selection strategies.

due to the small scale of clients. These improvements attribute
to the exploitation of high statistical utility clients. Specif-
ically, the statistical model accuracy is determined by the
quality of global aggregation. Without cherry-picking partici-
pants in each round, clients with poor statistical model utility
can dilute the quality of aggregation. As such, the model may
converge to suboptimal performance. Instead, models running
with Oort concentrate more on clients with high statistical
utility, thus achieving better final accuracy.

7.2.2 Performance Breakdown

We next delve into the improvement on middle- and large-
scale datasets, as they are closer to real FL deployments. We
break down our knobs designed for striking the balance be-
tween statistical and system efficiency: (i) (Oort w/o Pacer):
We disable the pacer that guides the aggregation efficiency. As
such, it keeps suppressing low-speed clients, and the training
can be restrained among low-utility but high-speed clients; (ii)
(Oort w/o Sys): We further totally remove our benefits from
system efficiency by setting α to 0, so Oort blindly prioritizes
clients with high statistical utility. We take YoGi for analysis,
because it outperforms Prox most of the time.

Breakdown of time-to-accuracy efficiency. Figure 10 re-
ports the breakdown of time-to-accuracy performance, where
Oort achieves comparable improvement from statistical and
system optimizations. Taking Figure 10(b) as an example, (i)
At the beginning of training, both Oort and (Oort w/o Pacer)
improve the model accuracy quickly, because they penalize
the utility of stragglers and select clients with higher statisti-
cal utility and system efficiency. In contrast, (Oort w/o Sys)
only considers the statistical utility, resulting in longer rounds.
(ii) As training evolves, the pacer in Oort gradually relaxes
the constraints on system efficiency, and admits clients with
relatively low speed but higher statistical utility, which ends
up with the similar final accuracy of (Oort w/o Sys). How-
ever, (Oort w/o Pacer) relies on a fixed system constraint and
suppresses valuable clients with high statistical utility but low
speed, leading to suboptimal final accuracy.

Oort achieves close to upper-bound statistical perfor-
mance. We consider an upper-bound statistical efficiency
by creating a centralized case, where all data are evenly dis-

Breakdown-Round to accuracy (Prox)

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 65.8 66.9 0.6 0.3

YoGi 55.6 57.3 0.7 0.6

Prox 53.1 54.1 0.4 0.4 52.9 53.3 53.0 54.4 53.6 54.5

Breakdown-Round to accuracy-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6

Kuiper 122 107 7 6 130 115 122 105 115 102

Kuiper - Pacer 130 110 9 10 125 136 131 98 113 121

Kuiper - Sys 113 97 8 9 124 105 112 90 95 108

Random 248 194 12 14

Target: 53.1

Breakdown-Round to accuracy (Prox)-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6 70 62 73 70 57 61

YoGi 248 194 12 14 245 265 234 197 206 180

Prox 341 363 27 37 330 380 315 330 345 415

(b
)

Fi
na

l
A

cc
ur

ac
y

(%
)

0

35

70

MobileNet ShuffleNet

54.153.1
57.355.6

66.965.8

Centralized YoGi Prox

(a
)

 o

f
R

ou
nd

s

0

150

300

450

MobileNet ShuffleNet

363

341

194

248

6268

248
194

341
363

 o

f
R

ou
nd

s

0

70

140

210

280

MobileNet ShuffleNet

62

68

Centralized Oort Oort w/o Pacer Oort w/o Sys Random

68

122

 o

f
R

ou
nd

s

0

350

700

Albert

374

Breakdown-Round to accuracy-1-1

Albert Std

Centralized 374 11 390 409 385

Kuiper 421 19 430 421 442

Kuiper - Pacer 485 23 478 497 481

Kuiper - Sys 403 13 395 403 411

Random 622 27 585 640

62

130
113

248

107 110 97

194

374
421

485
403

622

Malicious

0.00 5.00 10.00 15.00 20.00 25.00

Kuiper 62.04 62.18 59.25 57.51 55.96 52.62 0.50 0.36 0.48 0.38 0.50 0.42

Kuiper - 60.04 55.34 54.58 53.11 52.62 49.67 0.60 0.61 0.53 0.47 0.41 0.45

Random 56.70 55.63 53.98 52.37 50.34 48.91 0.30 0.35 0.30 0.61 0.41 0.50

1

Figure 11: Number of rounds to reach the target accuracy.

Malicious-shufflenet

Kuiper Random Kuiper-std Random-std

0% 64.1 57.2 0.2 0.3 10.0

5% 62.4 55.7 0.6 0.2 20.0

10% 60.4 54.0 0.2 0.2 30.0

15% 58.3 53.1 0.4 0.4 40.0

20% 56.5 50.9 0.4 0.2 50.0

25% 54.0 49.7 0.2 0.3 60.0

Fi
na

l A
cc

ur
ac

y
(%

)

0

25

50

75

Percentage of Corrupted Clients

0% 5% 10% 15% 20% 5%

49.750.953.15455.757.2 5456.558.360.462.464.1

Kuiper Random

Accuracy_breakdown

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 65.8 66.9 0.6 0.3 64.8 66.1 66.4 65.9 66.9 67.0 66.8

Kuiper 62.5 64.2 0.4 0.4 62.6 62.6 62.3 63.7 64.2 63.9 64.8

Kuiper - Pacer 60.1 61.1 0.3 0.5 60.0 60.6 59.9 60.4 61.1 61.7

Kuiper - Sys 62.5 64.2 0.2 0.2 62.4 62.7 62.5 64.4 64.0 64.2

Random 55.6 57.3 0.7 0.6 56.5 55.2 54.5 56.1 57.6 57.1 57.2

Fi
na

l
A

cc
ur

ac
y

(%
)

0

35

70

MobileNet ShuffleNet

57.355.6
64.262.5 61.160.1

64.262.5
66.965.8

Centralized Oort Oort w/o Pacer Oort w/o Sys Random

Accuracy_breakdown-Albert

Albert Std

Centralized 34.7 0.4 34.8 34.4 35.1

Kuiper 36.4 0.4 36.7 36.4

Kuiper - Pacer 37.3 0.5 37.0 37.4

Kuiper - Sys 36.2 0.3 36.2 36.6 36.0

Random 38.0 0.6 37.8 38.0 38.3

Fi
na

l
Pe

rp
le

xi
ty

0

10

20

30

40

Albert

38.036.237.336.434.7

1

Figure 12: Breakdown of final model accuracy.

tributed to K participants. Using the target accuracy in Table
2, Oort can efficiently approach this upper bound by incor-
porating different components (Figure 11). Oort is within
2× of the upper-bound to achieve the target accuracy, and
(Oort w/o Sys) performs the best in statistical model effi-
ciency, because (Oort w/o Sys) always grasps clients with
higher statistical utility. However, it is suboptimal in our tar-
geted time-to-accuracy performance because of ignoring the
system efficiency. Moreover, by introducing the pacer, Oort
achieves 2.4%-3.1% better accuracy than (Oort w/o Pacer),
and is merely about 2.7%-3.3% worse than the upper-bound
final model accuracy (Figure 12).

7.2.3 Sensitivity Analysis

Impact of number of participants K. We evaluate Oort
across different scales of participants in each round, where
we cut off the training after 200 rounds given the diminishing
rewards. We observe that Oort improves time-to-accuracy
efficiency across different number of participants (Figure 13),
and having more participants in FL indeed receives diminish-
ing rewards. This is because taking more participants (i) is

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 29

0 5 10 15
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Random (K=1000)
Oort (K=1000)
Random (K=10)
Oort (K=10)

(a) ShuffleNet (Image).

0 5 10 15 20 25
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Random (K=1000)
Oort (K=1000)

Random (K=10)
Oort (K=10)

(b) Albert (LM).

Figure 13: Oort outperforms in different scales of participants.

0 10 20 30 40

Training Time (hours)

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort(α=0)

Oort(α=1)

Oort(α=2)

Oort(α=5)

(a) ShuffleNet (Image).

0 20 40 60 80

Training Time (hours)

0

25

50

75

P
er

p
le

x
it

y

Random

Oort(α=0)

Oort(α=1)

Oort(α=2)

Oort(α=5)

(b) Albert (LM).

Figure 14: Oort improves performance across penalty factors.

similar to having a large batch size, which is confirmed to be
even negative to round-to-accuracy performance [50]; (ii) can
lead to longer rounds due to stragglers when the number of
clients is limited (e.g., K=1000 on OpenImage dataset).

Impact of penalty factor α on stragglers. Oort uses the
penalty factor α to penalize the utility of stragglers in partici-
pant selection, whereby it adaptively prioritizes high system
efficiency participants. Figure 14 shows that Oort outperforms
its counterparts across different α. Note that Oort orchestrates
its components to automatically navigate the best performance
across parameters: larger α (i.e., overemphasizing system effi-
ciency) drives the Pacer to relax the system constraint T more
frequently to admit clients with higher statistical efficiency,
and vice versa. As such, Oort achieves similar performance
across all non-zero α.

Impact of outliers. We investigate the robustness of Oort
by introducing outliers manually. Following the popular ad-
versarial ML setting [26], we randomly flip the ground-truth
data labels of the OpenImage dataset to any other categories,
resulting in artificially high utility. We consider two practical
scenarios with the ShuffleNet model: (i) Corrupted clients:
labels of all training samples on these clients are flipped (Fig-
ure 15(a)); (ii) Corrupted data: each client uniformly flips a
subset of her training samples (Figure 15(b)). We notice Oort
still outperforms across all degrees of corruption.

Impact of noisy utility. We next show the superior per-
formance of Oort over its counterparts under noisy utility
value. In this experiment, we add noise from the Gaussian
distribution Gaussian(0,σ2), and investigate Oort’s perfor-
mance with different σ. Similar to differential FL [27], we

0 5 10 15 20 25
Percentage of Corrupted Clients

30

40

50

60

Fi
na

lA
cc

ur
ac

y
(%

)

Random
Oort

(a) Corrupted clients.

0 5 10 15 20 25
Percentage of Corrupted Data

30

40

50

60

Fi
na

lA
cc

ur
ac

y
(%

)

Random
Oort

(b) Corrupted data.

Figure 15: Oort still improves performance under outliers.

0 100 200 300 400

Training Rounds

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(a) Round to accuracy (MobileNet).

0 10 20 30

Training Time (hours)

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(b) Time to accuracy (MobileNet).

0 100 200 300 400

Training Rounds

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(c) Round to accuracy (ShuffleNet).

0 10 20 30

Training Time (hours)

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(d) Time to accuracy (ShuffleNet).

Figure 16: Oort improves performance even under noise.

define σ = ε×Mean(real_value), where Mean(real_value)
is the average real value without noise. Note that we take
this real_value as reference for the ease of presentations, and
developers can refer to other values. As such, a large ε im-
plies larger variance in noise, thus providing better privacy by
disturbing the real value significantly. We report the statistical
efficiency after adding noise to the statistical utility (Fig 16(a)
and Fig 16(c)), as well as the time-to-accuracy performance
(Fig 16(b) and Fig 16(d)). We observe that Oort still improves
performance across different amount of noise, and is robust
even when the noise is large (e.g., ε = 5 is often considered
to be very large noise [12]).

Oort can respect developer-preferred fairness. In this
experiment, we expect all clients should have participated
training with the same number of rounds (Table 3), imply-
ing a fair resource usage [40]. We train ShuffleNet model
on OpenImage dataset with YoGi. To this end, we sweep
different knobs f to accommodate the developer demands
for the time-to-accuracy efficiency and fairness. Namely,
we replace the current utility definition of client i with
(1 − f) ×Util(i) + f × f airness(i), where f airness(i) =

30 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Strategy TTA (h) Final Accuracy (%) Var. (Rounds)

Random 36.3 57.3 0.39

f = 0 5.8 64.2 6.52
f = 0.25 6.1 62.4 5.1
f = 0.5 13.1 59.7 2.03

f = 0.75 25.4 58.6 0.65
f = 1 30.1 57.2 0.31

Table 3: Oort improves time to accuracy (TTA) across different
fairness knobs (f). Random reports the performance of random
participant selection. The variance of rounds reports how fairness
is enforced in terms of the number of participating rounds across
clients. A smaller variance implies better fairness.

0.00 0.25 0.50 0.75 1.00
Deviation Target

101

102

103

#
of

Sa
m

pl
ed

C
lie

nt
s Oort

Empirical Dev.

(a) Google Speech.

0.00 0.25 0.50 0.75 1.00
Deviation Target

101

102

103

#
of

Sa
m

pl
ed

C
lie

nt
s Oort

Empirical Dev.

(b) Reddit.

Figure 17: Oort can cap data deviation for all targets. Shadow
indicates the empirical [min, max] range of the x-axis values over
1000 runs given the y-axis input.

max_resource_usage− resource_usage(i). Understandably,
time-to-accuracy efficiency significantly decreases as f → 1,
since we gradually end up with round-robin participant selec-
tion, totally ignoring the utility of clients. Note that Oort still
achieves better time-to-accuracy even when f → 1 as it prior-
itizes high system utility clients at the beginning of training,
thus achieving shorter rounds. Moreover, Oort can enforce dif-
ferent fairness preferences while improving efficiency across
fairness knobs.

7.3 FL Testing Evaluation

7.3.1 Preserving Data Representativeness

Oort can cap data deviation. Figure 17 reports Oort’s per-
formance on serving different deviation targets, with respect
to the global distribution. We sweep the number of selected
clients from 10 to 4k, and randomly select each given num-
ber of participants over 1k times to empirically search their
possible deviation. We notice that for a given deviation target,
(i) different workloads require distinct number of participants.
For example, to meet the target of 0.05 divergence, the Speech
dataset uses 6× less participants than the Reddit attributing
to its smaller heterogeneity (e.g., tighter range of the number
of samples); (ii) with the Oort-determined number of partic-
ipants, no empirical deviation exceeds the target, showing
the effectiveness of Oort in satisfying the deviation target,
whereby Oort reduces the cost of expanding participant set
arbitrarily and improves the testing duration.

0 250 500 750 1000
End-to-End Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Q
ue

ri
es

Kuiper
MILP
Oort

(a) OpenImage (Testing duration).

0 250 500 750 1000
Overhead (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Q
ue

ri
es

Oort
MILP

(b) OpenImage (Overhead).

Figure 18: Oort outperforms MILP in clairvoyant FL testing.

101 102 103

of Queried Categories

100

101

102

O
ve

rh
ea

d
(s

)

Oort

(a) StackOverflow (0.3M clients).

101 102 103

of Queried Categories

101

102

103

O
ve

rh
ea

d
(s

)

Oort

(b) Reddit (1.6M clients).

Figure 19: Oort scales to millions of clients, while MILP did not
complete on any query.

7.3.2 Enforcing Diverse Data Distribution

Oort outperforms MILP. We start with the middle-scale
OpenImage dataset and compare the end-to-end testing du-
ration of Oort and MILP. Here, we generate 200 queries us-
ing the form “Give me X representative samples”, where we
sweep X from 4k to 200k and budget B from 100 participants
to 5k participants. We report the validation time of MobileNet
on participants selected by these strategies.

Figure 18(a) shows the end-to-end testing duration. We
observe Oort outperforms MILP by 4.7× on average. This is
because Oort suffers little computation overhead by greedily
reducing the search space of MILP. As shown in Figure 18(b),
MILP takes 274 seconds on average to complete the partici-
pant selection, while Oort only takes 15 seconds.

Oort is scalable. We further investigate Oort’s performance
on the large-scale StackOverflow and Reddit dataset with mil-
lions of clients, where we take 1% of the global data as the
requirement, and sweep the number of interested categories
from 1 to 5k. Figure 19 shows even though we gradually
magnify the search space of participant selection by introduc-
ing more categories, Oort can serve our requirement in a few
minutes at the scale of millions of clients, while MILP fails
to generate the solution decision for any query.

8 Related Work
Federated Learning Federated learning [40] is a dis-
tributed machine learning paradigm in a network of end de-
vices, wherein Prox [47] and YoGi [63] are state-of-the-art
optimizations in tackling data heterogeneity. Recent efforts
in FL have been focusing on improving communication effi-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 31

ciency [33,54] or compression schemes [13], ensuring privacy
by leveraging multi-party computation (MPC) [19] and differ-
ential privacy [27], or tackling heterogeneity by reinventing
ML algorithms [48, 72]. However, they underperform in FL
because of the suboptimal participant selection they rely on,
and lack systems supports for developers to specify their par-
ticipant selection criteria.

Datacenter Machine Learning Distributed ML in datacen-
ters has been well-studied [36, 58, 60], wherein they assume
relatively homogeneous data and workers [28, 52]. While de-
veloper requirements and models can still be the same, the het-
erogeneity of client system performance and data distribution
makes FL much more challenging. We aim at enabling them in
FL. To accelerate traditional model training, some techniques
bring up importance sampling to prioritize important training
samples in selecting mini-batches for training [39, 41, 81].
While bearing some resemblance in prioritizing data, Oort
adaptively considers both statistical and system efficiency in
formulating the client utility at scale.

Geo-distributed Data Analytics Federated data analytics
has been a topic of interest in geo-distributed storage [69]
and data processing systems [44, 79] that attempt to reduce
latency [70] and/or save bandwidth [42, 61, 71]. Gaia [33]
reduces network traffics for model training across datacenters,
while Sol [44] enables generic federated computation on data
with sub-second latency in the execution layer. These work
back up Oort with cross-layer system support, whereas Oort
cherry-picks participants before execution.

Privacy-preserving Data Analytics To gather sensitive
statistics from user devices, several differentially private sys-
tems add noise to user inputs locally to ensure privacy [25],
but this can reduce the accuracy. Some assume a trusted third
party, which only adds noise to the aggregated raw inputs [17],
or use MPC to enable global differential privacy without a
trusted party [64]. While our goal is not to address the security
and privacy issue in these solutions, Oort enables informed
participant selection by leveraging the information already
available in today’s FL, and can reconcile with them (e.g., to
deliver improvement under outliers while respecting privacy).

9 Conclusion
While today’s FL efforts have been optimizing the statisti-
cal model and system efficiency by reinventing traditional
ML designs, the participant selection mechanisms they rely
on underperform for federated training and testing, and fail
to enforce diverse data selection criteria. In this paper, we
present Oort to enable guided participant selection for FL
developers. Compared to existing mechanisms, Oort achieves
large speedups in time-to-accuracy performance for feder-
ated training by picking clients with high statistical and sys-
tem utility, and it allows developers to specify their selec-
tion criteria on data while efficiently serving their require-

ments on data distribution during testing even at the scale
of millions of clients. The artifacts of Oort are available at
https://github.com/SymbioticLab/Oort.

Acknowledgments
Special thanks go to the entire ConFlux team and Cloud-
Lab team for making Oort experiments possible. We would
also like to thank the anonymous reviewers, our shepherd,
Gennady Pekhimenko, and SymbioticLab members for their
insightful feedback. This work was supported in part by NSF
grants CNS-1900665 and CNS-1909067.

References
[1] AI Benchmark: All About Deep Learning on Smart-

phones. http://ai-benchmark.com/ranking_
deeplearning_detailed.html.

[2] Federated AI Technology Enabler. https://www.
fedai.org/.

[3] Google Open Images Dataset. https://storage.
googleapis.com/openimages/web/index.html.

[4] Google’s Sundar Pichai: Privacy Should Not Be a Lux-
ury Good. https://www.nytimes.com/2019/05/07/
opinion/google-sundar-pichai-privacy.html.

[5] Gurobi. https://www.gurobi.com/.

[6] MobiPerf. https://www.measurementlab.net/
tests/mobiperf/.

[7] PySyft. https://github.com/OpenMined/PySyft.

[8] Reddit Comment Data. https://files.pushshift.
io/reddit/comments/.

[9] Stack Overflow Data. https://cloud.google.com/
bigquery/public-data/stackoverflow.

[10] Stanford Puffer. https://puffer.stanford.edu/.

[11] TensorFlow Federated. https://www.tensorflow.
org/federated.

[12] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In CCS, 2016.

[13] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. QSGD: Communication-efficient
sgd via gradient quantization and encoding. In NeurIPS,
2017.

[14] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
In Machine Learning, 2002.

32 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SymbioticLab/Oort
http://ai-benchmark.com/ranking_deeplearning_detailed.html
http://ai-benchmark.com/ranking_deeplearning_detailed.html
https://www.fedai.org/
https://www.fedai.org/
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.gurobi.com/
https://www.measurementlab.net/tests/mobiperf/
https://www.measurementlab.net/tests/mobiperf/
https://github.com/OpenMined/PySyft
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/
https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
https://puffer.stanford.edu/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

[15] Sean Augenstein, H Brendan McMahan, Daniel Ramage,
Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen,
Rajiv Mathews, et al. Generative models for effective
ML on private, decentralized datasets. In ICLR, 2020.

[16] Rémi Bardenet and Odalric-Ambrym Maillard. Concen-
tration inequalities for sampling without replacement.
Bernoulli Society for Mathematical Statistics and Prob-
ability, 2015.

[17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis,
Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In SOSP, 2017.

[18] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe
Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale:
System design. In MLSys, 2019.

[19] Keith Bonawitz, Vladimir Ivanov, and et al. Practical se-
cure aggregation for privacy-preserving machine learn-
ing. In CCS, 2017.

[20] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Eui-
jong Whang, and Martin Zinkevich. Data validation for
machine learning. In MLSys, 2019.

[21] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and
Françoise Beaufays. Federated learning of out-of-
vocabulary words. In arxiv.org/abs/1903.10635, 2019.

[22] Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Francoise Beaufays,
and Michael Riley. Federated learning of n-gram lan-
guage models. In ACL, 2019.

[23] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI, 2017.

[24] Apple Differential Privacy Team. Learning with privacy
at scale. In Apple Machine Learning Journal, 2017.

[25] Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized aggregatable privacy-preserving
ordinal response. In CCS, 2014.

[26] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In USENIX
Security Symposium, 2020.

[27] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differ-
entially private federated learning: A client level per-
spective. In NeuIPS, 2017.

[28] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In NSDI, 2019.

[29] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein, Hu-
bert Eichner, Chloé Kiddon, and Daniel Ramage. Fed-
erated learning for mobile keyboard prediction. In
arxiv.org/abs/1811.03604, 2018.

[30] Florian Hartmann, Sunah Suh, Arkadiusz Komarzewski,
Tim D. Smith, and Ilana Segall. Federated learn-
ing for ranking browser history suggestions. In
arxiv.org/abs/1911.11807, 2019.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[32] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

[33] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dim-
itris Konomis, Gregory R. Ganger, Phillip B. Gibbons,
and Onur Mutlu. Gaia: Geo-distributed machine learn-
ing approaching LAN speeds. In NSDI, 2017.

[34] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and
Phillip B. Gibbons. The Non-IID data quagmire of
decentralized machine learning. In ICML, 2020.

[35] Harry Hsu, Hang Qi, and Matthew Brown. Federated
visual classification with real-world data distribution. In
ECCV, 2020.

[36] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In SOSP, 2019.

[37] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan,
Philip A Chou, Venkata Padmanabhan, Vyas Sekar, Esb-
jorn Dominique, Marcin Goliszewski, Dalibor Kukoleca,
Renat Vafin, et al. Via: Improving internet telephony call
quality using predictive relay selection. In SIGCOMM,
2016.

[38] Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan,
Yuanchao Shu, and Andrew A. Chien. Networked cam-
eras are the new big data clusters. In HotEdgeVideo,
2019.

[39] Tyler B. Johnson and Carlos Guestrin. Training deep
models faster with robust, approximate importance sam-
pling. In NeurIPS, 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 33

[40] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems
in federated learning. In Foundations and Trends in
Machine Learning, 2021.

[41] Angelos Katharopoulos and Francois Fleuret. Not all
samples are created equal: Deep learning with impor-
tance sampling. In ICML, 2018.

[42] Fan Lai, Mosharaf Chowdhury, and Harsha Madhyastha.
To relay or not to relay for inter-cloud transfers? In
10th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 18), Boston, MA, July 2018. USENIX
Association.

[43] Fan Lai, Yinwei Dai, Xiangfeng Zhu, and Mosharaf
Chowdhury. FedScale: Benchmarking model and
system performance of federated learning. In
arxiv.org/abs/2105.11367, 2021.

[44] Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Sol: Fast distributed compu-
tation over slow networks. In NSDI, 2020.

[45] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Oort: Efficient feder-
ated learning via guided participant selection. In
arxiv.org/abs/2010.06081, 2020.

[46] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut. AL-
BERT: A lite BERT for self-supervised learning of lan-
guage representations. In ICLR, 2020.

[47] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. In MLSys,
2020.

[48] Tian Li, Manzil Zaheer, Ahmad Beirami, and Virginia
Smith. Fair resource allocation in federated learning. In
ICLR, 2020.

[49] Wenqi Li, Fausto Milletari, and Daguang Xu. Privacy-
preserving federated brain tumour segmentation. In
Machine Learning in Medical Imaging, 2019.

[50] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and
Martin Jaggi. Don’t use large mini-batches, use local
SGD. In ICLR, 2020.

[51] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang,
Yunfeng Huang, Yang Liu, and Qiang Yang. Real-
world image datasets for federated learning. In
arxiv.org/abs/1910.11089, 2019.

[52] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In NSDI, 2020.

[53] Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Suresh. Three approaches for personal-
ization with applications to federated learning. In
arxiv.org/abs/2002.10619, 2020.

[54] H. Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In AISTATS, 2017.

[55] William Mendenhall, Robert J Beaver, and Barbara M
Beaver. Introduction to probability and statistics. Cen-
gage Learning, 2012.

[56] William Mendenhall, Robert J Beaver, and Barbara M
Beaver. Introduction to probability and statistics. Cen-
gage Learning, 2012.

[57] Mehryar Mohri, Gary Sivek, and Ananda Theertha
Suresh. Agnostic federated learning. In ICML, 2019.

[58] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In SOSP,
2019.

[59] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate
Saenko. Federated adversarial domain adaptation. In
ICLR, 2020.

[60] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In SOSP, 2019.

[61] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Victor Bahl, and Ion
Stoica. Low latency Geo-distributed data analytics. In
SIGCOMM, 2015.

[62] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews,
Galen Andrew, H. Brendan McMahan, and Françoise
Beaufays. Training production language models without
memorizing user data. In arxiv.org/abs/2009.10031,
2020.

[63] Sashank Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated
optimization. In ICLR, 2021.

34 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[64] Edo Roth, Daniel Noble, Brett Hemenway Falk, and An-
dreas Haeberlen. Honeycrisp: Large-scale differentially
private aggregation without a trusted core. In SOSP,
2019.

[65] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In CVPR,
2018.

[66] Supreeth Shastri, Vinay Banakar, Melissa Wasserman,
Arun Kumar, and Vijay Chidambaram. Understanding
and benchmarking the impact of GDPR on database
systems. In VLDB, 2020.

[67] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. The seven sins of personal-data processing
systems under GDPR. In HotCloud, 2019.

[68] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar,
and H. Brendan McMahan. Distributed mean estimation
with limited communication. In ICML, 2017.

[69] Muhammed Uluyol, Anthony Huang, Ayush Goel,
Mosharaf Chowdhury, and Harsha V. Madhyastha. Near-
optimal latency versus cost tradeoffs in geo-distributed
storage. In NSDI, 2020.

[70] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. Clarinet: WAN-aware optimization for
analytics queries. In OSDI, 2016.

[71] Ashish Vulimiri, Carlo Curino, B Godfrey, J Padhye, and
G Varghese. Global analytics in the face of bandwidth
and regulatory constraints. In NSDI, 2015.

[72] Jianyu Wang and Gauri Joshi. Adaptive communication
strategies to achieve the best error-runtime trade-off in
local-update SGD. In MLSys, 2019.

[73] Kangkang Wang, Rajiv Mathews, Chloe Kiddon, Hu-
bert Eichner, Francoise Beaufays, and Daniel Ramage.

Federated evaluation of on-device personalization. In
arxiv.org/abs/1910.10252, 2019.

[74] Pete Warden. Speech commands: A dataset
for limited-vocabulary speech recognition. In
arxiv.org/abs/1804.03209, 2018.

[75] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu
Lin, Yunxin Liu, and Xuanzhe Liu. A first look at deep
learning apps on smartphones. In WWW, 2019.

[76] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized experi-
ment in video streaming. In NSDI, 2020.

[77] Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage,
and Françoise Beaufays. Applied federated learning:
Improving Google keyboard query suggestions. In
arxiv.org/abs/1812.02903, 2018.

[78] Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon,
and Sanjiv Kumar. Federated learning with only positive
labels. In ICML, 2020.

[79] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John
Wawrzynek, and Edward A. Lee. AWStream:
Adaptive wide-area streaming analytics. In SIGCOMM,
2018.

[80] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, 2018.

[81] Peilin Zhao and Tong Zhang. Stochastic optimization
with importance sampling for regularized loss minimiza-

tion. In ICML, 2015.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 35

PET: Optimizing Tensor Programs with Partially Equivalent Transformations
and Automated Corrections

Haojie Wang Jidong Zhai Mingyu Gao Zixuan Ma Shizhi Tang
Liyan Zheng Yuanzhi Li† Kaiyuan Rong Yuanyong Chen Zhihao Jia†‡

Tsinghua University Carnegie Mellon University† Facebook‡

Abstract
High-performance tensor programs are critical for effi-

ciently deploying deep neural network (DNN) models in real-
world tasks. Existing frameworks optimize tensor programs
by applying fully equivalent transformations, which maintain
equivalence on every element of output tensors. This approach
misses possible optimization opportunities as transformations
that only preserve equivalence on subsets of the output tensors
are excluded.

We propose PET, the first DNN framework that optimizes
tensor programs with partially equivalent transformations and
automated corrections. PET discovers and applies program
transformations that improve computation efficiency but only
maintain partial functional equivalence. PET then automati-
cally corrects results to restore full equivalence. We develop
rigorous theoretical foundations to simplify equivalence exam-
ination and correction for partially equivalent transformations,
and design an efficient search algorithm to quickly discover
highly optimized programs by combining fully and partially
equivalent optimizations at the tensor, operator, and graph
levels. Our evaluation shows that PET outperforms existing
systems by up to 2.5×, by unlocking previously missed op-
portunities from partially equivalent transformations.

1 Introduction

Existing deep neural network (DNN) frameworks represent
DNN computations as tensor programs, which are direct
acyclic computation graphs describing the operations applied
to a set of tensors (i.e., n-dimensional arrays). The operators
in tensor programs are mostly linear algebra computations
such as matrix multiplication and convolution. Although ten-
sor programs are specified based on the high-level insights
of today’s DNN algorithms, such constructions do not neces-
sarily offer the best runtime performance. Current practice to
optimize tensor programs in existing DNN frameworks is to
leverage program transformations, each of which identifies
a subprogram that matches a specific pattern and replaces it
with another subprogram that offers improved performance.

To preserve the statistical behavior of DNN models, exist-
ing frameworks only consider fully equivalent program trans-
formations, where the new subprogram is mathematically
equivalent to the original subprogram for arbitrary inputs.
For example, TensorFlow, PyTorch, TensorRT, TVM, and An-
sor all use rule-based optimization strategies that directly
apply manually designed program transformations whenever
applicable [3, 6, 26, 32, 34]. TASO automatically generates
and verifies transformations by taking operator specifications
as inputs, but is still limited to fully equivalent transforma-
tions [15].

Despite the wide use of equivalent program transformations
in conventional compilers and modern DNN frameworks, they
only exhibit limited opportunities for performance optimiza-
tion, especially for tensor programs. Unlike traditional pro-
grams whose primitives are scalars or simple arrays of scalars,
tensor programs operate on high-dimensional tensors with up
to millions of elements. Many transformations can improve
the runtime performance of a tensor program but do not pre-
serve full equivalence on all elements of the output tensors.
We call such transformations partially equivalent. Examples
of performance-optimizing partially equivalent transforma-
tions include (1) changing the shape or linearization ordering
of input tensors to improve computational efficiency, (2) re-
placing less efficient operators with more optimized operators
with similar mathematical behavior, and (3) transforming the
graph structure of a program to enable subsequent perfor-
mance optimizations.

Partially equivalent transformations, despite their high po-
tential, are not exploited in existing DNN frameworks due to
several challenges. First, directly applying partially equivalent
transformations would violate the functional equivalence to
an input program and potentially decrease the model accuracy.
It is necessary to correct any non-equivalent regions of output
tensors, to preserve transparency to higher-level algorithms.
However, quickly examining equivalence to identify these
regions and effectively generating the required correction
kernels are difficult tasks. Second, when partially equivalent
transformations are applied, the design space is substantially

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 37

enlarged compared to existing frameworks under equivalence
constraint. Theoretically, any program transformation, regard-
less of how different the result is from the original one, be-
comes a potential candidate. The generation algorithm for
partially equivalent transformations should carefully manage
its computational complexity. The optimizer must balance the
benefits and overhead and be able to combine fully and par-
tially equivalent transformations to obtain performant tensor
programs.

In this paper, we explore a radically different approach to
optimize tensor programs, by exploiting partially equivalent
transformations. We develop rigorous theorems that simplify
equivalence examination and correction kernel generation,
allowing us to easily restore functional equivalence and prov-
ably preserve the DNN models’ statistical behavior. With a
significantly larger search space of program optimizations that
includes both fully and partially equivalent transformations,
our approach can discover highly optimized tensor programs
that existing approaches miss. Based on these techniques, we
propose PET, the first DNN framework that optimizes tensor
programs with partially equivalent transformations and auto-
mated corrections. PET consists of three main components:

Mutation generator. To discover partially equivalent trans-
formations automatically for an input subprogram, PET uses
a mutation generator to construct potential program mutants.
Each mutant takes the same input tensors as in the original
subprogram and produces output tensors with the same shapes.
This ensures that a mutant can replace the input subprogram
and therefore constitutes a potential transformation.

Mutation corrector. The generated mutants of an input sub-
program may produce different results on some regions of the
output tensors, thus affecting the model accuracy. To preserve
its statistical behavior, PET’s mutation corrector examines
the equivalence between an input subprogram and its mu-
tant and automatically generates correction kernels. These
are subsequently applied to the output tensors to maintain an
end-to-end equivalence to the input subprogram. To reduce
the overhead and heterogeneity introduced by the correction
kernels, PET opportunistically fuses the correction kernels
with other tensor computation kernels.

Examining and correcting a partially equivalent transforma-
tion is difficult, since the output tensors of a program include
up to millions of elements, and each one must be verified
against a large number of input elements. A key contribu-
tion of PET is a set of rigorous theoretical foundations that
significantly simplify this verification process. Rather than
examining program equivalence for all positions in the output
tensors, PET needs to test only a few representative positions.

Program optimizer. PET uses a program optimizer to iden-
tify mutant candidates with high performance, by effectively
balancing the benefits from using better mutants and the over-
heads of extra correction kernels. We first split an arbitrarily
large input program into multiple small subprograms at the

positions of non-linear operators. Each subprogram then con-
tains only linear operators and can be independently mutated.
We support mutations on various subsets of operators in the
subprogram, and can iteratively apply mutations to obtain
mutants that are more complex. Finally, we apply a series of
post-optimizations across subprogram boundaries, including
redundancy elimination and operator fusion.

We evaluate PET on five real-world DNN models. Even
for common and heavily optimized models in existing frame-
works such as Resnet-18 [14], PET can still improve the per-
formance by 1.2×. For new models such as CSRNet [20] and
BERT [12], PET is up to 2.5× faster than the state-of-the-
art frameworks. The significant performance improvement is
enabled by combining fully and partially equivalent transfor-
mations at the tensor, operator, and graph levels.

This paper makes the following contributions.
• We present the first attempt in tensor program optimiza-

tion to exploit partially equivalent transformations with
automated corrections. We explore a significantly larger
search space than existing DNN frameworks.
• We develop rigorous theoretical foundations that sim-

plify the equivalence examination and correction kernel
generation, making it practical to preserve statistical be-
havior even with partially equivalent transformations.
• We propose efficient generation and optimization ap-

proaches to explore the large design space automatically
with both fully and partially equivalent transformations.
• We implement the above techniques into an end-to-end

framework, PET, and achieve up to 2.5× speedup com-
pared to state-of-the-art frameworks.

2 Background and Motivation

To generate high-performance tensor programs, a common
form of optimization in existing DNN frameworks (e.g., Ten-
sorFlow [3], TensorRT [32], and TVM [6]) is fully equivalent
transformations that improve the performance of a tensor pro-
gram while preserving its mathematical equivalence. Exam-
ples of current fully equivalent transformations include opera-
tor fusion [2, 6], layout transformations [18], and automated
generation of graph substitutions [15]. Though effective at
improving performance, fully equivalent transformations ex-
plore only a limited space of program optimizations.

In contrast, Figure 1 shows an example of a partially equiva-
lent transformation for a convolution operator. It concatenates
two individual images into a larger one along the width di-
mension to improve performance. This is because a larger
width, which is typically the innermost dimension for con-
volution on modern accelerators like GPUs, provides more
parallelism and improves computation locality. However, the
new program after this transformation (shown in Figure 1(b))
produces different results on a sub-region of the output tensor
along the boundary of the concatenation (shown as the shaded
boxes in Figure 1(b)), resulting in partial non-equivalence.

38 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

conv

T1

T2

(a) Input program.

co
nv

reshape &
transpose

T1

T3 T4

T5

reshape &
transpose

(b) A partially equivalent transformation.

T5

T2

correction

(c) Correcting results.

Figure 1: A partially equivalent transformation that improves the performance of convolution by manipulating tensor shape
and linearization. The shaded boxes in (b) highlight non-equivalent elements between two programs in the transformation. The
correction kernel in (c) is applied to these elements to recover the functional equivalence of the input program.

In addition to the above example that optimizes a tensor pro-
gram by changing the shape and linearization of its tensors,
partially equivalent transformations also include replacing
less efficient operators with more optimized ones with simi-
lar semantics, and modifying the graph structure of a tensor
program to enable additional optimizations. We provide more
such examples in §4.2 and evaluate them in §8.3.

Although partially equivalent transformations exhibit high
potential for performance improvement, they are not consid-
ered in current DNN frameworks due to their possible impact
on model accuracy. Manually implementing such partially
equivalent transformations is prohibitive. First, it requires
evaluating a large amount of potential partially equivalent
transformations to discover promising ones. Second, to apply
partially equivalent transformations while preserving model
accuracy, we need correction kernels to fix the results for non-
equivalent parts (see Figure 1(c)). Overall, more automated
approaches are needed to discover performance-optimizing
partially equivalent transformations and correct the results,
which are the main focus of this work.

3 Design Overview

PET is the first framework to optimize tensor programs by
exploiting partially equivalent transformations and correcting
their results automatically. To realize this, PET leverages the
multi-linearity of tensor programs.

Multi-linear tensor programs (MLTPs). We first define
multi-linear tensor operators. An operator op with n input
tensors I1, . . . , In is multi-linear if op is linear to all inputs Ik:

op(I1, . . . , Ik−1,X , . . . , In)+op(I1, . . . , Ik−1,Y, . . . , In)

= op(I1, . . . , Ik−1,X +Y, . . . , In)

α ·op(I1, . . . , Ik−1,X , . . . , In) = op(I1, . . . , Ik−1,α ·X , . . . , In)

where X and Y are arbitrary tensors with the same shape as
Ik, and α is an arbitrary scalar. DNN computation generally

Tensor Program

Mutation Generator

Mutation Corrector

Subprogram

Subprogram

Su
bp

ro
gr

am

Optimized Tensor Program

One Subprogram

Mutant Candidates

Corrected Mutants

Subprogram

M
u

ta
n

tMutant

Mutant

Mutant
Co

rr
ec

tio
n

Ke
rn

el

1

Se
ct

io
n

 4
Se

ct
io

n
 5

Se
ct

io
n

 6

2

Program Partitioning

correction

Program Optimizer

Fully Equivalent Transformations

Partially Equivalent Transformations

4

3

Figure 2: PET overview.

consists of multi-linear tensor operators (e.g., matrix multipli-
cation, convolution) and element-wise non-linear operators
(e.g., ReLU [23] and sigmoid). The linear operators consume
the majority of the computation time, due to their high com-
putational complexity. A program P is a multi-linear tensor
program (MLTP) if all operators op ∈ P are multi-linear.

PET overview. Figure 2 shows an overview of PET. The input
to PET is a tensor program to be optimized. Similar to prior
work [6,34], PET first splits an input program into smaller sub-
programs to reduce the exploration space of each subprogram
without sacrificing performance improvement opportunities.
For each subprogram, PET’s mutation generator discovers
partially equivalent transformations by generating possible
mutants for MLTPs in the subprogram. Each mutant has the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 39

Table 1: Multi-linear tensor operators used in PET.
Operator Description

add Element-wise addition
mul Element-wise multiplication
conv Convolution
groupconv Grouped convolution
dilatedconv Dilated convolution
batchnorm Batch normalization
avgpool Average pooling
matmul Matrix multiplication
batchmatmul Batch matrix multiplication
concat Concatenate multiple tensors
split Split a tensor into multiple tensors
transpose Transpose a tensor’s dimensions
reshape Decouple/combine a tensor’s dimensions

same input and output shapes as the original MLTPs, thus
constitutes a partially equivalent transformation (§4).

To maintain the end-to-end equivalence to an input pro-
gram, PET’s mutation corrector examines the equivalence
between a mutant and its original MLTP, and automatically
generates correction kernels to fix the outputs of the mutant.
PET leverages rigorous theoretical foundations to simplify
such challenging tasks (§5).

The corrected mutants are sent to PET’s program optimizer,
which combines existing fully equivalent transformations with
partially equivalent ones to construct a comprehensive search
space of program optimizations. The optimizer evaluates a
rich set of mutants for each subprogram and applies post-
optimizations across their boundaries, in order to discover
highly optimized candidates in the search space (§6).

4 Mutation Generator

This section describes the mutation generator in PET, which
takes an MLTP as input and automatically generates possible
mutants to replace the input MLTP. The generation algorithm
discovers valid mutants up to a certain size. Each generated
mutant does not necessarily preserve mathematical equiva-
lence to the input program on the entire output tensors. To
restore functional equivalence, the mutation corrector (§5)
automatically generates correction kernels.

4.1 Mutation Generation Algorithm

We call an MLTP P1 a mutant of another MLTP P0 if P1 and
P0 have the same number of inputs (and outputs) and each
input (and output) has the same shape. The computations of
P0 and P1 are not necessarily equivalent. Intuitively, if P0 is
a subprogram in a tensor program, then replacing P0 with P1
yields a valid but potentially non-equivalent tensor program.

For a given MLTP P0, PET generates potential mutants of
P0 using a given set of multi-linear operators O as the ba-

Algorithm 1 MLTP mutation generation algorithm.
1: Input: A set of operators O; an input MLTP P0
2: Output: A set of valid program mutants M for P0
3: I0 = the set of input tensors in P0
4: M =∅
5: BUILD(1, ∅, I0)
6: // Depth-first search to construct mutants
7: function BUILD(n, P , I)
8: if P and P0 have the same input/output shapes then
9: M = M +{P}

10: if n < depth then
11: for op ∈ O do
12: for i ∈ I and i is a valid input to op do
13: Add operator op into program P
14: Add the output tensors of op into I
15: BUILD(n+1, P , I)
16: Remove operator op from P
17: Remove the output tensors of op from I
18: return M

sic building blocks. Table 1 lists the operators used in our
evaluation. The list covers a variety of commonly used ten-
sor operators, including compute-intensive operators (conv,
matmul, etc.), element-wise operators (add, mul, etc.), and
tensor manipulation (split, transpose, etc.). This set can
also be extended to include new DNN operators.

Algorithm 1 shows a depth-first search algorithm for con-
structing potential mutants of an MLTP P0. PET starts from
an empty program with no operator and only the set of origi-
nal input tensors to P0. PET iteratively adds a new operator
to the current program P by enumerating the type of operator
from O and the input tensors to the operator. The input tensors
can be the initial input tensors to P0 (i.e., I0 in Algorithm 1)
or the output tensors of previous operators. The depth-first
search algorithm enumerates all potential MLTPs up to a cer-
tain size (called the mutation depth). For each mutant P , PET
checks whether P and P0 have the same number and shapes
of inputs/outputs. P is a valid mutant if it passes this test.

4.2 Example Mutant Categories
While the above mutation generation algorithm is general
enough to explore a sufficiently large design space, we em-
phasize that several mutant categories are of particular impor-
tance to PET and lead to mutants with improved performance.
Note that PET does not rely on manually specified categories.
Rather, these categories are discovered by PET automatically.

Reshape and transpose. It is widely known that the in-
memory layouts of tensors play an important role in opti-
mizing tensor programs [6]. PET leverages the reshape and
transpose operators to transform the shapes of input tensors
and the linearization ordering of tensor dimensions to gen-
erate mutants with better performance. A reshape operator
changes the shape of a tensor by decoupling a single dimen-

40 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

sion into multiple ones or combining multiple dimensions
into one. E.g., a reshape can transform a vector with four
elements into a 2×2 matrix. A transpose operator modifies
the linearization ordering of a tensor’s dimensions, such as
converting a row-major matrix to a column-major one.

Reshape and transpose are generally applied jointly to
transform the tensor layouts. For example, Figure 1 shows
a potential mutant of a convolution operator that concate-
nates two separate images (i.e., T1→ T3 in Figure 1(b)) along
the width dimension to improve the performance of convo-
lution: typically a larger width exhibits more parallelism to
be exploited on modern accelerators such as GPUs. This
concatenation involves a combination of three reshape and
transpose operators. First, a reshape operator splits the
batch dimension of T0 into an inner dimension that groups
every two consecutive images, and an outer dimension that
is half the size of the original. Then, a transpose operator
moves the newly created inner dimension next to the width
dimension and updates the tensor’s linearization ordering ac-
cordingly, so each row of the two images in the same group
is stored consecutively in memory. Finally, another reshape
operator combines the two images.

The mutation generator usually fuses multiple consecu-
tive reshape and transpose operators into a single com-
pound operator, namely reshape & transpose. This fusion
reduces the size of the generated mutants and allows for ex-
ploring much larger and more sophisticated mutants.

Single-operator mutants. PET can also generate mutants
that replace an inefficient operator in a tensor program with a
different and more performant operator. Several standard ten-
sor operators, such as convolution and matrix multiplication,
have been extensively optimized either manually or automati-
cally on modern hardware backends. In contrast, their variants,
such as strided or dilated convolutions [20], are not as effi-
ciently supported. There are performance-related benefits to
mutating them into their standard counterparts with highly
optimized kernels. As an example, Figure 3 shows a mutant
that transforms a dilated convolution into a regular convolu-
tion by reorganizing the linearization ordering of the input
tensor based on the given dilation. However, the mutant is not
fully equivalent to the input program and requires corrections
afterward to restore functional equivalence.

Multi-operator mutants. PET also supports substituting a
subgraph of multiple operators with another more efficient set
of operators. For example, a few independent convolutions
with similar tensor shapes may be combined into a single
larger convolution to improve GPU utilization and reduce ker-
nel launch overhead. This requires manipulating tensor shapes
and adding proper padding (see the examples in §8.3.3).

5 Mutation Corrector

While the mutants generated by PET have potentially higher
performance than the original programs, they may produce
different mathematical results on some regions of the out-
put tensors, potentially leading to accuracy loss. To maintain
transparency at the application level, PET chooses to preserve
the statistical behavior of the input program and guarantees
the same model accuracy, with the help of a mutation cor-
rector. Specifically, the mutation corrector takes as inputs an
MLTP P0 and one of its mutants P , and automatically gener-
ates correction kernels that are applied to the output tensors
of P to maintain functional equivalence to P0.

The goal of the mutation corrector is twofold. First, for any
given MLTP and its mutant, the corrector analyzes the two
programs and identifies all the regions of the output tensors
on which the two programs provide identical results and there-
fore do not need any correction. Second, for the remaining
regions where the two outputs are different, the corrector au-
tomatically generates kernels to fix the output of the mutant
and preserve functional equivalence.

Designing the mutation corrector requires addressing two
challenges. First, the output tensors may be very large, involv-
ing up to many millions of elements that all require equiva-
lence verification. It is infeasible to verify every single ele-
ment of the output tensors individually. Second, the verifica-
tion of each output element may depend on a large number of
input variables in many tensor operators. For example, each
output element of a matrix multiplication is the inner product
of one row and one column of the two input matrices, both
with sizes up to several thousand. Numerically enumerating
all possible values for this many input variables is impractical.

Two theorems that significantly simplify the verification
tasks are central to the PET mutation corrector. Rather than
verifying all output positions with respect to all input value
combinations, PET only needs to verify a few representative
output positions with a small number of randomly generated
input values. This dramatically reduces the verification work-
load. We describe these theoretical foundations in §5.1 and
introduce our mutation correction algorithm in §5.2.

5.1 Theoretical Foundations

To simplify our analysis, we assume an input MLTP P0 and its
mutant P each has one output. Our results can be generalized
to programs with multiple outputs by sequentially analyzing
each one. Let P (I) denote the output tensor of running P on
n input tensors I = (I1, ..., In). Let P (I)[~v] denote the output
value at position ~v, and let I j[~u] denote the input value at
position~u of I j. With these definitions, the computation for a
single output position of an MLTP P is represented as

P (I1, ..., In)[~v] = ∑
~r∈R (~v)

n

∏
j=1

I j[L j(~v,~r)]

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 41

dilated conv

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

W1

T2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

reshape &
transpose

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

T3

co
n

v

T4

T5

reshape &
transpose

correction

T5

T2

(a) Input program.

dilated conv

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

W1

T2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

reshape &
transpose

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

T3

co
n

v

T4

T5

reshape &
transpose

correction

T5

T2

(b) A partially equivalent transformation.

correctiondilated conv

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

W1

T2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

T1

reshape &
transpose

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

3 3 3 3 4 4 4 4

T3

co
n

v

T4

T5

reshape &
transpose

T5

T2

(c) Correcting results.

Figure 3: An example mutant that transforms a dilated convolution to a standard convolution. The red-shaded boxes in (b)
highlight non-equivalent elements between the two programs, which are fixed by the correction kernel in (c).

where R (~v) is the summation interval of~v, which is iterated
over when computing P (I)[~v], and ~u = L j(~v,~r) is a linear
mapping from (~v,~r) to a position ~u of the j-th input tensor
I j. For example, a convolution with a kernel size of 3×3 and
zero padding is defined as

conv(I1, I2)[c,h,w] =
D−1

∑
d=0

min(H−1−h,1)

∑
x=max(−1,−h)

min(W−1−w,1)

∑
y=max(−1,−w)

I1[d,h+ x,w+ y]× I2[d,c,x,y]

(1)

where D, H, and W refer to the number of channels, height,
and width of the input image I1, respectively. The numbers
below and above the summation symbols respectively denote
the lower and upper bounds of the summation interval. The
two linear mappings can be represented as L1(~v,~r) = (d,h+
x,w+ y) and L2(~v,~r) = (d,c,x,y), where ~v = (c,h,w) and
~r = (d,x,y).

Different positions of an output tensor may have different
summation intervals. For the convolution operator defined
above, computing the top-left output position (i.e., h = 0,
w = 0) only involves a 2×2 kernel (i.e., 0≤ x≤ 1, 0≤ y≤ 1)
since that position does not have a left or top neighbor, as
shown in Figure 4. We group the output positions with an
identical summation internal into a box. Formally, a box is a
region of an output tensor whose elements all have the same
summation internal. This convolution has nine boxes overall,
which are depicted in Figure 4.

All output positions in the same box have an identical sum-
mation internal and share similar mathematical properties,
which are leveraged by PET when examining program equiv-
alence. Instead of testing the equivalence of two MLTPs on
all individual positions, PET only needs to verify their equiva-
lence on m+1 specific positions in each box, where m is the
number of dimensions of the output tensor.

Theorem 1 For two MLTPs P1 and P2 with an m-dimension
output tensor, let~e1, . . . ,~em be a set of m-dimension base vec-

conv

0 ≤ x ≤ 1
-1 ≤ y ≤ 0

-1 ≤ x ≤ 1
-1 ≤ y ≤ 0

-1 ≤ x ≤ 0
-1 ≤ y ≤ 0

0 ≤ x ≤ 1
0 ≤ y ≤ 1

-1 ≤ x ≤ 1
0 ≤ y ≤ 1

-1 ≤ x ≤ 0
0 ≤ y ≤ 1

0 ≤ x ≤ 1
-1 ≤ y ≤ 1

-1 ≤ x ≤ 1
-1 ≤ y ≤ 1

-1 ≤ x ≤ 0
-1 ≤ y ≤ 1

Input
Weight

x = -1

x = 0

x = -1

y
=

-1

y
=

0

y
=

1

Figure 4: The nine boxes of a convolution with a 3×3 kernel
and zero padding, as well as their summation intervals. A
convolution has three summation dimensions (i.e., d, x, and y
in Equation (1)). The channel dimension (i.e., d) has the same
internal in all boxes and is thus omitted.

tors. That is,~ei = (0, . . . ,0,1,0, . . . ,0) is an m-tuple with all
coordinates equal to 0 except the i-th.

Let B be a box for P1 and P2, and let~v0 be an arbitrary
position in B . Define~v j =~v0 +~e j,1 ≤ j ≤ m. If ∀I,0 ≤ i ≤
m, P1(I)[~vi] = P2(I)[~vi], then ∀I,~v ∈ B, P1(I)[~v] = P2(I)[~v].

Proof sketch. The proof uses a lemma whereby if P1 and P2
are equivalent for positions~v0 and~v0+~ei, then the equivalence
holds for ~v0 + k ·~ei, where k is an integer. We prove this
lemma by comparing the coefficient matrices of P1 and P2
with respect to the input variables. Using this lemma, we show
that P1 and P2 are equivalent for the entire box B , since any
~v ∈ B can be decomposed to a linear combination of~v0 and
~e0, . . . ,~em. �

Theorem 1 shows that, if P1 and P2 are equivalent for m+1
specific positions in a box, identified by ~v0, ...,~vm, then the
equivalence holds for all other positions in the same box.
This theorem significantly reduces the verification workload:

42 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: Reducing verification workload in PET.

Methods Output positions Input combinations

Original all all
+ Theorem 1 a few positions all
+ Theorem 2 a few positions a few random inputs

instead of examining all positions of an output tensor, PET
only needs to verify m+1 specific positions in each box.

The verification of a single position remains challenging,
nevertheless, as each MLTP generally involves a large number
of input variables. Proving the equivalence of two MLTPs
requires examining all possible combinations of value as-
signments to these input variables. We further address this
challenge using the following theorem.

Theorem 2 For two MLTPs P1 and P2 with n input tensors,
let~v be a position where P1 and P2 are not equivalent, i.e.,
∃I, P1(I)[~v] 6= P2(I)[~v]. Let I′ be a randomly generated input
uniformly sampled from a finite field F. The probability that
P1(I′)[~v] = P2(I′)[~v] is at most n

p , where p is the number of
possible values in F.

Proof sketch. This is a corollary of the Schwartz–Zippel
Lemma [28, 35]. �

Theorem 2 shows that if two MLTPs with n inputs are
not equivalent on a specific position ~v, then the probability
that they produce an identical result on this position with a
random input sampled from a finite field F is low (i.e., at
most n

p , where p is the number of possible values in F). This
theorem shows the sufficiency and effectiveness of random
testing for examining the equivalence of two MLTPs.

Theorem 2 relies on the fact that F is a finite field, from
which the random inputs are sampled, but MLTPs operate on
the infinite field of real numbers. To apply Theorem 2, we
choose F to be a field of integers modulo p, where p is a large
prime number (p = 231−1 in our evaluation). The arithmetic
operations in random testing are performed on integers and
calculated modulo the prime number p. Working with a fi-
nite field provides another desirable property that applying
arithmetic operators does not involve integer overflow.

By combining Theorems 1 and 2, PET reduces the original
verification task of examining all output positions with respect
to all input value combinations to a much more lightweight
task that only requires testing a few representative positions
using several randomly generated inputs, as shown in Table 2.

5.2 Mutation Correction Algorithm
The PET mutation correction algorithm exploits the theorems
in §5.1 to calculate which regions of the output tensors in a
mutant are not equivalent to the input MLTP and, therefore,
need additional correction. In particular, it suffices to examine
the equivalence for each pair of overlapped boxes from the two

conv

T0

T1

(a) Input program P0.

co
nv

R/T

R/T

T0

T2

T3

T1

(b) A potential mutant P1.

Figure 5: Box propagation for the example in Figure 1. The
red arrows indicate the split points of each tensor dimension.

MLTPs, using a small number of random tests. The overall
algorithm works in the following three steps.

Step 1: Box propagation. First, we calculate the boxes of
a given MLTP through box propagation. The idea of box
propagation is similar to forward and backward propagation in
deep learning: we compute the boxes of an operator’s output
tensors based on the boxes of its inputs, and the computation is
conducted following the operator dependencies in a program.
We maintain a set of split points for each dimension of a tensor
to identify the boundaries of its boxes. For a multi-linear
operator, we infer the split points of its output tensors based
on the split points of its input tensors and the operator type
and hyper-parameters. Figure 5 shows the box propagation
procedure for the mutation example in Figure 1.

Step 2: Random testing for each box pair. After obtaining
all boxes of an input MLTP P1 and its mutant P2, PET lever-
ages the theorems in §5.1 to examine the intersected regions
of each pair of boxes from P1 and P2. If two boxes do not have
any overlapped region, they can be skipped. For each box in-
tersection, PET examines the equivalence of the two programs
on m+1 positions identified by Theorem 1, where m is the
number of output tensor dimensions (e.g., m = 4 in Figure 5,
since the output of a convolution has four dimensions).

For each of these m+1 positions, PET runs a set of random
tests by assigning input tensors with values uniformly sam-
pled from a finite field F containing all integers between 0 and
p−1, where p = 231−1 is a prime number. As a result, the
probability that two non-equivalent MLTPs produce identical
outputs on a random input is at most n

p , where n is the number
of inputs to the MLTPs. Finally, two non-equivalent MLTPs
pass all tests with a probability lower than (n

p)
t , where t is the

number of test cases and a hyper-parameter in PET that serves
as a tradeoff between the speed of the corrector and the error
probability that non-equivalent MLTPs pass all random tests.

Our approach introduces an extremely small and control-
lable probability of error that we have to tolerate. That is,
non-equivalent programs may pass random testing with prob-
ability (n

p)
t . We argue that this is an example of how random

testing can enable a tradeoff between the cost of program ver-
ification and a small probability of unsoundness for verifying

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 43

Correction

T0 R/T-0 Conv-1 R/T-1T1 T2

W1

T3

Conv-2

T0’

T4

T3’

T0 Conv-0 T4

Mutation with correction

Fusing correction

T0 R/T-3 Conv-1-2 R/T-4T1’ T2’ T4

(a)

(b)

(c)

Figure 6: Fusing correction kernels with DNN kernels.

tensor program transformations.
To further reduce the verification workload, PET includes a

caching optimization: the tests for all boxes share the same set
of random inputs, and PET caches and reuses all intermediate
results to avoid redundant computations.

Step 3: Correction kernel generation. For each box failing
the random tests, PET generates correction kernels to fix its
outputs and restore the mathematical equivalence between the
original MLTP and its mutant. To fix the outputs, the correc-
tion kernel performs the same set of operations as the original
MLTP but only on those boxes where the two input programs
are not equivalent (shown as the red shaded boxes in Figure 1).
These boxes are regular cubes in the multi-dimensional space
and can be viewed as sub-tensors of the original ones but with
much smaller sizes. Therefore, PET directly leverages existing
DNN libraries [8, 10] or kernel generation techniques [6, 34]
to generate correction kernels. To reduce the correction over-
head, PET opportunistically fuses the correction kernels with
existing tensor operators (§5.3).

5.3 Fusing Correction Kernels

Correction kernels may introduce non-trivial overheads due
to the cost of launching the correction kernels and their lim-
ited degrees of parallelism. For example, some correction
kernels may have similar execution time compared to the cor-
responding full-size tensor operators. This may eliminate the
performance gains from applying partially equivalent transfor-
mations. To reduce the correction overhead, PET opportunis-
tically fuses correction kernels with other tensor operators.

For example, Figure 6(b) shows the tensor program af-
ter applying the partially equivalent transformation in Fig-
ure 1. Conv-2 is the correction kernel for fixing the output
of Conv-1. Since the two convolution operators share the
same weights (i.e., W1), PET fuses them into a single convolu-
tion, shown as Conv-1-2 in Figure 6(c). This fusion requires
concatenating T1 and T ′0 into a single tensor and splitting the
output of Conv-1-2 into T2 and T ′3 . The concatenation and
split only involve direct memory copies and can be fused with
the reshape and transpose operators.

6 Program Optimizer

In this section, we describe the program optimizer in PET,
which explores a large search space of program optimizations,
combining fully and partially equivalent transformations, and
quickly discovers highly optimized programs. The program
optimizer first splits an input program into multiple subpro-
grams with smaller sizes to allow efficient mutation genera-
tion (§6.1). Second, to optimize each individual subprogram,
PET searches for the best mutants in a rich candidate space
by varying both the subsets of operators to mutate together
and the number of iterative rounds of mutation (§6.2). Finally,
when stitching the optimized subprograms back together, PET
applies additional post-optimizations across the boundaries
of the subprograms, including redundancy elimination and
operator fusion (§6.3). The overall program optimization al-
gorithm is summarized in Algorithm 2.

Algorithm 2 Program optimization algorithm.
1: Input: An input tensor program P0
2: Output: An optimized tensor program Popt
3:
4: Split P0 into a list of subprograms
5: Initialize a heap H to record the top-K programs
6: H .insert(P0)
7: // Greedily mutate each subprogram
8: for each subprogram S ∈ P0 do
9: mutants = GETMUTANTS(S)

10: Initialize a new heap Hnew
11: for P ∈H do
12: for M ∈ mutants do
13: Pnew = replace S with M in P
14: Apply post-optimizations on Pnew
15: Hnew.insert(Pnew)

16: H = Hnew

17: Popt = the program with the best performance in H
18: return Popt
19:
20: function GETMUTANTS(S0)
21: O = the set of mutant operators for S0
22: Q = {S0}, mutants = {S0}
23: for r rounds do
24: Qnew = {}
25: for S ∈ Q do
26: for each subset of operators S ′ ∈ S do
27: for M ′ ∈ MUTATIONGENERATOR(O, S ′) do
28: M = replace S ′ with M ′ in S
29: Add M to Qnew and mutants
30: Q = Qnew

31: return mutants

6.1 Program Splitting
The complexity of the mutation generation grows rapidly with
the input program size, as explained in §4. It is nearly im-

44 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

possible to directly mutate a large tensor program with many
hundreds of operators. Instead, PET splits an input program
into multiple disjoint subprograms with smaller sizes.

It is crucial to properly select the split points for an in-
put program, to effectively reduce the mutation complexity
while still preserving most program optimization opportuni-
ties. More split points lead to smaller subprograms with fewer
mutant candidates to be explored. As an extreme case, by
constraining each subprogram to have only a small constant
number of operators, the overall complexity scales linearly
with the program size, rather than the naive exponential trend.
However, an overly aggressive split may result in locally opti-
mized mutants that are limited within subprograms, missing
optimization opportunities across subprogram boundaries.

We use non-linear operators in tensor programs as the split
points. First, non-linear operators such as the activation layers
in DNNs are widely used in tensor programs. Typically, each
one or a few linear operators are followed by a non-linear
activation (e.g., ReLU or sigmoid). This effectively limits the
split subprograms to the small sizes we expect. Second, as
§5 explains, PET’s mutation only applies to MLTPs; any non-
linear operators must be excluded from the mutation. This
makes splitting at the points of non-linear operators a natural
choice for the partially equivalent mutation in PET. Third, our
design is also motivated by an observation that most existing
tensor program transformations [2, 6, 15] also do not include
non-linear operators in their substitution patterns (except for
fusion, which we handle in §6.3).

PET further adjusts the subprogram sizes after splitting
an input program at the non-linear operators. For multiple
individual subprograms without any data dependency, PET
considers the possibility of combining them into a single
subprogram using grouped or batched operators. Examples
include fusing the standard convolutions on different branches
of an Inception network [31] into a grouped convolution, as
shown in Figure 10. On the other hand, if a subprogram is still
too large, PET will only query the mutation generator with a
subset of operators each time (see §6.2).

6.2 Subprogram Optimization

After splitting an input program into multiple individual sub-
programs, PET mutates each subprogram by querying the
mutation generator in §4.1 and keeps the top-K candidates
with the best estimated performance in a heap structure H , as
shown from Lines 7 to 16 in Algorithm 2. A larger K allows
PET to tolerate intermediate performance decreases during
the search but requires more memory to save all K candidates
and involves higher computation cost. At each step, each of
the obtained mutants replaces its corresponding subprogram
in each of the current candidates (i.e., P in Algorithm 2) to
generate a new candidate (i.e., Pnew), which is then applied a
series of post-optimizations (see §6.3).

PET estimates the performance of each new candidate Pnew

SG
-2

SG
-1

i1 w1

R/T-A R/T-B

Conv-C

R/T-D

R/T-E

ReLU-F

R/T-G

R/T-H

w2

R/T-I

o1

Conv-J

i1 w1

R/T-A R/T-B

Conv-C

ReLU-F

R/T-D

R/T-E

R/T-G

R/T-H

w2

R/T-I

o1

Conv-J

i1

w3R/T-A

Conv-ReLU-CF

R/T-DH w4

o1

Conv-J

Operator
reordering Post-optimization

Inverses
elimination Preprocessing

Kernel
fusion

1
2

3

(a) (b) (c)

Figure 7: Post-optimizations applied when stitching two sub-
programs SG-1 and SG-2. R/T refers to a reshape followed
by a transpose. Conv and ReLU denote a convolution and a
ReLU operator, respectively.

using a cost model adapted from TASO [15]. The cost model
measures the execution time of each tensor operator once
for each configuration (e.g., different strides and padding of a
convolution), and estimates the performance of a new program
candidate Pnew by summing up the measured execution time
of its operators. The top-K program candidates with the best
performance thus far are kept in H .

To explore a sufficiently large space of possible mutants
for each subprogram within reasonable time and space cost,
we manage the mutation process with several key features.
First, when the number of operators in a subprogram exceeds
a threshold d (our evaluation uses d = 4), PET breaks the
subprogram into smaller subsets of operators by enumerating
all possible combinations with up to d operators, and only
queries the mutation generator on the subset, while keeping
the remaining operators unchanged (Algorithm 2 Line 26).
Second, we allow iterative mutation on a subprogram for up to
r rounds (Algorithm 2 Line 23), which significantly enlarges
the search space of possible mutants and allows PET to dis-
cover more optimized mutants. All generated mutants in all
rounds are returned to the optimizer as potential candidates.

It is worth noting that PET’s optimizer is compatible with
and can incorporate existing fully equivalent transforma-
tions [2, 15] besides PET’s mutations. Doing so merely re-
quires enhancing the mutation generator to explore and return
fully equivalent transformations as well, which are directly
applicable to the input subprograms in the same way as the
mutations. By combining fully and partially equivalent trans-
formations, PET explores a significantly larger search space
of program optimizations and discovers highly optimized
programs that existing optimizers miss.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 45

6.3 Post-Optimizations

Finally, the optimized mutants for all subprograms need to be
stitched together. In addition to connecting their input and out-
put tensors, we also perform several post-optimizations across
the subprogram boundaries to further improve the overall per-
formance. We observe that the mutation generator in PET
introduces a large number of reshape and transpose (R/T)
operators, especially at the beginning and the end of each sub-
program. There are opportunities to fuse these R/T operators
across subprograms and further fuse the non-linear operators
that are excluded from the above subprogram optimizations.

Figure 7 shows an example with two optimized subpro-
grams. To optimize the boundaries between subprograms, PET
first groups together all R/T operators between subprograms
by reordering the R/T operators with element-wise non-linear
activations (e.g., ReLU and sigmoid), as shown in Figure 7(b).
This reordering is functionally correct, since both reshape
and transpose are commutative with element-wise operators.
The reordering also allows PET to fuse the non-linear activa-
tions with other linear operators, such as fusing a Conv and a
subsequent ReLU into a Conv-ReLU, as shown in Figure 7(c).
We then apply the following three post-optimizations.

Inverses elimination. We eliminate any pairs of R/T oper-
ators that can cancel out each other and therefore are equiva-
lent to a no-op. We call each such pair an inverse group and
directly remove them as part of the post-optimization. An ex-
ample of an inverse group is R/T-E and R/T-G in Figure 7(b).

Operator fusion. As shown in Figure 7(c), PET fuses the
remaining consecutive R/T operators into a single operator
(e.g., R/T-DH) to reduce the kernel launch cost. The non-linear
activations in a tensor program are also fused with an R/T or
with other linear operators. Note that operator fusion is the
most commonly used, if not the only, program optimization
for non-linear operators. PET is able to recover most of the
efficiency that was lost when splitting the tensor program.

Preprocessing. We preprocess any operator if all its input
tensors are statically known. For example, in Figure 7(b), both
R/T-B and R/T-I can be preprocessed on the convolution
weight tensors w1 and w2.

7 Implementation

PET is implemented as an end-to-end tensor program opti-
mization framework, with about 13,000 lines of C++ code
and 1,000 lines of Python code. This section describes our
implementation of the PET mutation generator and corrector.

Mutation operators. Table 1 lists the tensor operators
included in the current implementation of PET. We use
cuDNN [8] and cuBLAS [10] as our backend operator li-
braries. PET can also be extended to include other libraries,
such as TVM [6] and Ansor [34]. In our evaluation, we demon-
strate this extensibility on TVM and Ansor, and show that
they can directly benefit from PET’s partially equivalent opti-

mizations and automated corrections.
Reshape and transpose are two frequently used operators

in partially equivalent transformations. Our implementation
includes a series of optimizations on them, including eliminat-
ing inverse groups of R/T operators and fusing consecutive
R/T operators, as described in §6.3. Since both reshape and
transpose are multi-linear operators, PET directly uses the
random testing method introduced in §5 to examine whether
a sequence of R/T operators forms an inverse group and there-
fore can be eliminated.

Correction kernels. §5.2 describes a generic approach to
generate correction kernels by directly running the original
program on the positions with incorrect results. To reduce the
correction overhead, PET fuses the correction kernels with
other tensor operators, as described in §5.3. The correction
kernel fusion introduces additional memory copies, which are
also fused with the R/T operators during post-optimizations.

8 Evaluation

8.1 Experimental Setup

Platforms. We use a server equipped with two-socket, 28-
core Intel Xeon E5-2680 v4 processors (hyper-thread en-
abled), 256 GB of DRAM, and one NVIDIA Tesla V100
GPU. All experiments use CUDA 10.2 and cuDNN 7.6.5
except for those with TVM and Ansor, which directly use the
best kernels generated by these backends.

PET preserves an end-to-end equivalence between the orig-
inal and optimized programs, same as all the baselines. PET
takes ONNX models as input. TensorRT and TASO directly
support the ONNX format. For TensorFlow and TensorFlow-
XLA, we use the onnx-tensorflow tool [25] for format conver-
sion.

Workloads. We use five DNN architectures. Resnet-18 [14]
is a widely used convolutional network for image classifica-
tion. CSRNet [20] is a dilated convolutional network used for
semantic segmentation. Its sampling rate can be arbitrarily
adjusted to enlarge the receptive field for higher accuracy.
Inception-v3 [31] is an improved version of GoogLeNet [30]
with carefully designed Inception modules to improve accu-
racy and computational efficiency. BERT [12] is a language
representation architecture that obtains state-of-the-art accu-
racy on a wide range of natural language tasks. Resnet3D-
18 [13] is a 3D convolutional network for video processing.

Unless otherwise stated, in all experiments, we use CUDA
events to measure the elapsed time from launching the first
CUDA kernel in a tensor program to receiving the completion
notification of the last kernel. We set the default mutation
generation depth to 4 (i.e., depth = 4 in Algorithm 1) and the
search rounds to 4 (i.e., r = 4 in Algorithm 2). We further
evaluate the scalability of the mutation generator and the
program optimizer in §8.5.

46 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A B C D E
0
1
2
3
4
5

1.04x

Resnet-18

A B C D E
0

1

2

3

2.21x

CSRNet

A B C D E
0

5

10

15

20

1.24x

Inception-v3

A B C D E
0

2.5
5

7.5
10

12.5

1.40x

BERT

A B C D E
0

5

10

15

20

1.00x

Resnet3D-18

A B C D E
0

5

10

15

1.21x

A B C D E
0

2

4

6

8

2.51x

A B C D E
0

20

40

60

1.44x

A B C D E
0

50

100

150

1.19x

A B C D E
0

50

100

150

200

1.28x

(A)TensorFlow (B)TensorFlow-XLA (C)TensorRT (D)TASO (E)PET

Ex
ec

. t
im

e
(m

s)

batch_size=1

Ex
ec

. t
im

e
(m

s)

batch_size=16

Figure 8: End-to-end performance comparison between PET and existing frameworks. For each DNN, the numbers above the
PET bars show the speedups over the best baseline. TASO does not support the 3D convolution operators in Resnet3D-18.

8.2 End-to-End Evaluation
We first compare the end-to-end inference performance be-
tween PET and existing tensor program optimizers, including
TensorFlow [3], TensorFlow XLA [1], TensorRT [32], and
TASO [15]. Figure 8 shows the results under batch sizes of
1 and 16. To eliminate the impact of using different oper-
ator libraries, all optimizers use the same cuDNN [8] and
cuBLAS [10] libraries as the backend. Therefore, the per-
formance differences only come from different optimized
tensor programs produced by PET and the baselines. §8.4 fur-
ther evaluates PET with existing kernel generation techniques,
such as TVM [6] and Ansor [34].

Among the five DNN architectures, Resnet-18 and
Resnet3D-18 are commonly used and heavily optimized in ex-
isting DNN frameworks. However, PET is still able to improve
their performance by up to 1.21× and 1.28×, respectively, by
discovering new partially equivalent transformations not con-
sidered by existing optimizers. For Resnet-18, CSRNet, and
Inception-v3, PET achieves higher speedups with a batch size
of 16. This is because a larger batch size offers more mutation
opportunities across different tensor dimensions for PET to
exploit. Overall, PET outperforms existing DNN frameworks
by up to 2.5×.

To further evaluate the partially equivalent transformations
discovered by PET, we manually add them and correspond-
ing correction kernels as additional graph substitutions into
TASO, and measure by how much these new transformations
improve TASO’s performance. As shown in Figure 9, the
enhanced version of TASO further improves the inference
performance of Inception-v3 and BERT by 1.12× and 1.31×,
respectively. This demonstrates that partially equivalent trans-
formations indeed enlarge the design space of graph trans-
formations, and PET unleashes these benefits automatically.
Some non-trivial partially equivalent transformations are not
leveraged by TASO, due to substantial correction overhead,
while PET is able to avoid this overhead through correction
kernel fusion (§5.3) and post-optimization (§6.3).

A B C
0x

0.5x

1x

1.5x
Resnet-18

A B C
0x

1x

2x

3x
CSRNet

A B C
0x

0.5x

1x

1.5x

2x
Inception-v3

A B C
0x

0.5x

1x

1.5x

2x
BERT

(A)TASO (B)TASO + PET's transformations and corrections (C)PET

Re
la

tiv
e

sp
ee

du
p

Figure 9: Performance benefits after adding PET’s partially
equivalent transformations into TASO.

Table 3: Operator benchmark list.
Operator Input Weight #Op

conv [1, 48, 38, 38] [64, 48, 5, 5] 1

dilatedconv [1, 512, 14, 14] [256, 512, 3, 3] 1

groupconv
[1, 768, 18, 18] [192,768, 1, 1] 2
[1, 768, 18, 18] [160,768, 1, 1] 2

batchmatmul [512, 768] [768, 768] 3

8.3 Case Studies
To understand how partially equivalent transformations dis-
covered by PET optimize DNN computation, we study four
optimization categories in detail.

8.3.1 Tensor-Level Optimization

PET discovers many partially equivalent transformations that
improve DNN computation by optimizing the shapes or lin-
earization of tensors. We evaluate a convolution operator in
Inception-v3, whose configuration is depicted in Table 3 conv.
PET transforms the input tensor shape from [1, 48, 38, 38]
to [16, 48, 10, 10] by splitting both the height and width di-
mensions each into four partitions. IGEMM and FFT are the
most efficient convolution algorithms before and after the
optimization, respectively. Using the transformed input tensor

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 47

Table 4: Case studies on the performance of the conv and
dilatedconv operators in Table 3. IGEMM, FFT, and WINO re-
fer to implicit GEMM, Fast Fourier Transform, and Winograd
convolution algorithms, respectively. For conv, the optimized
program transforms the input tensor shape from [1, 48, 38, 38]
to [16, 48, 10, 10]. For dilatedconv, the optimized program
replaces the dilatedconv with a regular convolution with
the same input and kernel sizes.

Algo Time
(us)

GPU
DRAM

GPU
L2

FLOP

co
nv

Original IGEMM 90 1.51×104 2.80×106 2.26×108

FFT 352 1.06×108 1.15×108 8.75×107

Optimized IGEMM 90 1.52×104 1.46×106 2.46×108

FFT 51 1.09×106 7.44×106 1.26×108

di
la

te
d

co
nv

Original IGEMM 153 1.06×105 2.46×106 1.32×108

WINO N/A N/A N/A N/A

Optimized IGEMM 153 8.54×104 1.80×106 1.32×108

WINO 79 2.23×106 6.36×106 7.20×107

reduces the GPU DRAM and L2 accesses by 100× and 15×,
respectively, and thus reduces the run time by 7× (Table 4).

As another example of tensor-level optimization, for conv
with a stride size larger than 1 (i.e., the output tensor is a
down-sample of the input tensor), PET can reorganize the
linearization of the tensors and reduce the stride size to 1,
which improves the computation locality.

8.3.2 Operator-Level Optimization

For operators with less efficient implementations on specific
hardware backends, PET can opportunistically replace them
with semantically similar ones with more optimized imple-
mentations. We study the performance of a dilated convolu-
tion in CSRNet [20], whose configuration is shown in Table 3
dilatedconv. PET replaces it with a regular convolution
operator (as shown in Figure 3) to enable more efficient al-
gorithms on GPUs such as Winograd [17]. This reduces the
execution time by 1.94× (Table 4).

Other examples of operator-level optimizations include
replacing a batch matrix multiplication with a standard matrix
multiplication, a group convolution with a convolution, and
an average pooling with a group convolution or a convolution
if the replacement leads to improved performance, even when
including the correction cost.

8.3.3 Graph-Level Optimization

PET also discovers graph-level optimizations. Figure 10
shows two graph transformations discovered by PET to opti-
mize Inception-v3 [31]. For two parallel conv operators with
different numbers of output channels, Figure 10(a) shows a
non-equivalent transformation that fuses the two conv opera-
tors into a groupconv by padding W2 with zeros, so that the
output of pad has the same shape as W1. The correction splits
and discards the zeros tensor at the end (shown in red).

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

conv conv

O1[n,f,h,w] O2[n,2f,h,w]

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

O1[n,f,h,w] O2[n,2f,h,w]

concat(axis=1) concat(axis=0)

group conv (#g=3)

split(axis=1)

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w] W2[f2,c,r,s]

conv conv

O1[n,f1,h,w] O2[n,f2,h,w]

W2[f2,c,r,s]

O1[n,f1,h,w] O2[n,f2,h,w]

pad

W2[f1,c,h,w]
concat(axis=1)

concat(axis=0)group conv (#g=2)

split (axis=1)

zeros

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w]

(a)

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

conv conv

O1[n,f,h,w] O2[n,2f,h,w]

I1[n,c,h,w] W1[f,c,r,s] I2[n,c,h,w] W2[2f,c,r,s]

O1[n,f,h,w] O2[n,2f,h,w]

concat(axis=1) concat(axis=0)

group conv (#g=3)

split(axis=1)

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w] W2[f2,c,r,s]

conv conv

O1[n,f1,h,w] O2[n,f2,h,w]

W2[f2,c,r,s]

O1[n,f1,h,w] O2[n,f2,h,w]

pad

W2[f1,c,h,w]
concat(axis=1)

concat(axis=0)group conv (#g=2)

split (axis=1)

zeros

mutation

I1[n,c,h,w] W1[f1,c,r,s] I2[n,c,h,w]

(b)

Figure 10: Mutants discovered by PET for Inception-v3. axis
denotes the dimension on which to perform concat and
split.

PET also discovers fully equivalent transformations that are
missed by existing frameworks. The mutation corrector can
successfully verify the equivalence for all output elements, in
which case no correction is needed. Figure 10(b) shows a new
equivalent transformation discovered by PET that optimizes
two conv operators by duplicating the input tensors (i.e., I1
and I2) and fusing the two conv operators into a groupconv.
Note that Figure 10 shows two different mutants of the same
input program. PET’s program optimizer can automatically
select a more efficient one based on the performance of these
mutants on specific devices.

8.3.4 Kernel Fusion

We use CSRNet [20] as an example to study the effective-
ness of PET’s kernel fusion optimization. Figure 11(a) and
Figure 11(b) show the original and optimized model archi-
tectures of CSRNet. The numbers in each operator denote
the input tensor shape. To demonstrate the correction ker-
nel fusion and post-optimization in PET, Figure 11(c) shows
the subprogram of a single dilated convolution before post-
optimization, which contains three correction kernels and six
R/T (i.e., reshape and transpose) operators. These correc-
tion kernels are fused with Conv-4, as described in §5.3. In
addition, the multiple R/T operators between convolutions are
fused into a single one during post-optimization (§6.3).

Fusing correction kernels and R/T operators is critical to
PET’s performance. In an ablation study, disabling kernel
fusion in PET decreases the performance of the final program
by 2.9×, making it even slower than the original one.

8.4 TVM and Ansor
PET improves tensor computations by generating and cor-
recting partially equivalent transformations and is therefore
orthogonal to and can potentially be combined with recent ker-
nel generation techniques, such as TVM [6] and Ansor [34].

We evaluate PET on TVM and Ansor with a set of com-
monly used DNN operators, including conv, dilatedconv,

48 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

T0
DilatedConv-1
[1,512,14,14]

ReLU-1
DilatedConv-2
[1,512,14,14]

ReLU-2
DilatedConv-3
[1,512,14,14]

ReLU-3
DilatedConv-4
[1,512,14,14]

ReLU-4
DilatedConv-5
[1,256,14,14]

ReLU-5
DilatedConv-6
[1,128,14,14]

ReLU-6 T6

(a) CSRNet before optimization.

T0
Fused
R/T-0

Conv-ReLU-1
[2,512,7,15]

Fused
R/T-1

Conv-ReLU-2
[2,512,7,15]

Fused
R/T-2

Conv-ReLU-3
[2,512,7,15]

Fused
R/T-3

Conv-ReLU-4
[2,512,7,15]

Fused
R/T-4

Conv-ReLU-5
[4,256,7,7]

Fused
R/T-5

Conv-ReLU-6
[4,128,7,7]

Fused
R/T-6

T6

(c)

(d)

(b) CSRNet after optimization.

Correction kernels

R/T-A
Conv-4

[2,512,7,14]
R/T-F

DilatedConv-C
[1,512,14,5]

T3 T4R/T-B R/T-E

DilatedConv-B
[1,512,5,14]

R/T-D

Conv-A
[1,512,3,14]

R/T-C TE TF ReLU-3TD

(c) DilatedConv-4’s subprogram after subprogram optimization but before post-optimization.

R/T-D R/T-E R/T-F
TE

[1,256,14,14]
TF

[1,256,14,14]
T4

[1,256,14,14]
R/T-G

TG
[1,256,14,14]

R/T-H
TH

[2,256,7,14]
R/T-I

TI
[4,256,7,7]

TD
[1,256,7,15]

(d) Unfused R/T operators and corresponding tensors’ shape of F R/T-4.

Figure 11: Optimization details in PET for CSRNet.

conv dilatedconv groupconv batchmatmul
0x

1x

2x

3x

4x

5x

6x

Sp
ee

du
p

ov
er

 c
uD

NN
/c

uB
LA

S

cuDNN/cuBLAS
cuDNN/cuBLAS w/ PET

TVM
TVM w/ PET

Ansor
Ansor w/ PET

Figure 12: Performance comparison of PET on the
cuDNN/cuBLAS, TVM, and Ansor backends. The perfor-
mance is normalized to cuDNN/cuBLAS without PET.

groupconv, and batchmatmul, which are obtained from
Resnet-18, CSRNet, Inception-v3, and BERT, respectively.
Their shape configurations are listed in Table 3. To gener-
ate kernels for potential mutants during the search, we allow
TVM and Ansor to run 1024 trials and use the best discovered
kernels to measure the cost of the mutants.

As Figure 12 shows, when combining PET with TVM and
Ansor, PET can improve the performance of the evaluated
operators by up to 1.23× and 1.21×, respectively, compared
to directly generating kernels for these operators. Beyond such
simple combinations, joint optimization of PET and existing
kernel generation techniques would uncover more benefits,
which we leave as future work.

8.5 Ablation and Sensitivity Studies

The key insight of PET is to explore partially equivalent pro-
gram mutants, while state-of-the-art frameworks only capture
fully equivalent transformations [15, 34]. We run several vari-
ants of PET to evaluate the benefits of considering either fully
or partially equivalent program transformations, or both of
them, as PET does. Figure 13 shows the results. When re-
stricting PET to consider only equivalent transformations, it
achieves similar performance gains as previous work such as

Resnet-18 CSRNet Inception-v3 BERT Resnet3D-18
0.0x

0.5x

1.0x

1.5x

2.0x

2.5x
Re

la
tiv

e
sp

ee
du

p

W/o Opt. Equivalent Opt. Non-equivalent Opt. Joint Opt.

Figure 13: Performance comparison of tensor program opti-
mizations using only (fully) equivalent transformations, only
partially equivalent transformations, and both (as in PET).

1 2 3 4 5
depth

0.95x

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x
Resnet-18

1 2 3 4 5
depth

0.8x
1.0x
1.2x
1.4x
1.6x
1.8x
2.0x
2.2x
2.4x

CSRNet
rounds=2 rounds=3 rounds=4

Re
la

tiv
e

sp
ee

du
p

Figure 14: Performance comparison by using PET with differ-
ent mutation depths (§4.1) and rounds (§6.2).

TASO. Partially equivalent transformations, by themselves,
enable noticeable benefits but also miss significant potential.
Finally, PET achieves the highest performance by jointly con-
sidering both fully and partially equivalent transformations.

Finally, PET relies on several heuristic parameters to bal-
ance the search time and the resultant program performance.
The mutation depth in Algorithm 1 limits the maximum num-
ber of operators in a program mutant; the mutation round
in Algorithm 2 specifies the maximum number of iterations
to apply mutations. Larger values of these thresholds allow
larger design spaces of potential mutants but also require

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 49

more time to search. Figure 14 compares the performance of
the optimized programs under different searching depths and
rounds for Resnet-18 and CSRNet. The performance gains
keep increasing with larger rounds values for Resnet-18, due
to the generation of more optimized mutants, while for CSR-
Net, the performance improvement mainly comes from larger
mutation depth. On the other hand, increasing the mutation
depth from two to three improves the performance for both
models significantly, since many mutations PET finds are sub-
programs with three operators. In summary, the key takeaway
is that PET has only moderately high search complexity yet
achieves significant performance gains.

8.6 Searching Time
PET uses a program optimizer to explore the search space of
possible mutants and discover highly optimized candidates.
Typically, it takes under 3 minutes (89 seconds, 88 seconds, 91
seconds, and 165 seconds on Resnet-18, CSRNet, BERT, and
Resnet3D-18, respectively) for PET to find highly optimized
program mutants with a batch size of 1. However, PET spends
about 25 minutes optimizing Inception-v3, due to the multiple
branches in the Inception modules [31]. Although their search
spaces are not directly comparable, PET’s search time is on
par with state-of-the-art DNN optimization frameworks such
as TASO [15] and Ansor [34], and is acceptable because it
is a one-time cost before stable deployment. We leave any
further search optimizations, such as aggressive pruning and
parallelization, to future work.

9 Related work

Graph-level optimizations. TensorFlow [3], TensorRT [32],
TVM [6], and MetaFlow [16] optimize tensor programs by ap-
plying substitutions that are manually designed by domain ex-
perts. TASO [15] generates graph substitutions automatically
from basic operator properties, which significantly enlarges
search space and reduces human effects. The key difference
between PET and these frameworks is that PET can generate
and correct partially equivalent transformations, enabling a
significantly larger space of program optimizations.
Program mutation is a program testing technique designed
to evaluate the quality of existing test cases [11]. By randomly
mutating the input program and running the generated mu-
tants on existing test cases, the technique can quickly estimate
the coverage of these test cases. PET generates mutants for
a different purpose. Instead of testing an input tensor pro-
gram, the mutants generated by PET are used for performance
optimizations on the program.
Code generation. Halide [27] is a programming language
designed for high-performance tensor computing, and several
works are proposed based on its scheduling model [4, 19, 22].
TVM [6,7] uses a similar scheduling language and a learning-
based approach to generate highly optimized code for dif-

ferent hardware backends. Ansor [34] explores larger search
spaces than TVM and finds better optimized kernels. Ten-
sorComprehensions [33] and Tiramisu [5] use polyhedral
compilation models to solve code generation problems in
deep learning. As shown in §8.4, PET’s program-level op-
timizations are orthogonal and can be combined with these
code generation techniques.
Data layout optimization. NeoCPU [21] optimizes CNN
models by changing the data layout and eliminating unnec-
essary layout transformations on CPUs, while Li et al. [18]
explore the memory efficiency for CNNs on GPUs. Chou et
al. [9] introduce a language to describe the different sparse
tensor formats and automatically generate code for convert-
ing data layouts. Many transformations discovered by PET
also involve layout conversions. However, the key differences
between PET and prior work are that PET considers more
complicated layouts and combines tensor layout optimiza-
tions with operator- and graph-level optimizations.
AutoML. Recent work has proposed approaches to search for
accurate neural architectures by iteratively proposing modifi-
cations to the models’ architectures and accepting proposals
with the highest accuracy gain. Examples include automatic
statistician [29] and TPOT [24]. These approaches apply non-
equivalent transformations to a model architecture and rely on
expensive retraining steps to evaluate how each transforma-
tion affects model accuracy. On the contrary, PET leverages
performance optimizations in non-equivalent transformations
and applies automated corrections to preserve an end-to-end
equivalence. As such, PET does not require retraining.

10 Conclusion

We present PET, the first DNN framework that optimizes
tensor programs with partially equivalent transformations
and automated corrections. PET discovers program trans-
formations that improve DNN computations with only par-
tial functional equivalence. Automated corrections are sub-
sequently applied to restore full equivalence with the help
of rigorous theoretical guarantees. The results of our eval-
uation show that PET outperforms existing frameworks by
up to 2.5× by unlocking partially equivalent transformations
that existing frameworks miss. PET is publicly available at
https://github.com/thu-pacman/PET.

Acknowledgments

We would like to thank the anonymous reviewers and
our shepherd, Behnaz Arzani, for their valuable com-
ments and suggestions. This work is partially sup-
ported by National Natural Science Foundation of China
(U20A20226, 62072262) and Beijing Natural Science Foun-
dation (4202031). Jidong Zhai is the corresponding author of
this paper (zhaijidong@tsinghua.edu.cn).

50 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/thu-pacman/PET
mailto:zhaijidong@tsinghua.edu.cn

References

[1] Xla: Optimizing compiler for tensorflow. https://www.
tensorflow.org/xla, 2017.

[2] TensorFlow Graph Transform Tool. https:
//github.com/tensorflow/tensorflow/tree/
master/tensorflow/tools/graph_transforms,
2018.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI, 2016.

[4] Andrew Adams, Karima Ma, Luke Anderson, Riyadh
Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner,
Steven Johnson, Kayvon Fatahalian, Frédo Durand, et al.
Learning to optimize halide with tree search and ran-
dom programs. ACM Transactions on Graphics (TOG),
38(4):1–12, 2019.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for express-
ing fast and portable code. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 193–205. IEEE, 2019.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Q. Yan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018.

[7] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In Advances in Neural Information Processing Systems
31, NeurIPS’18. 2018.

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning.
CoRR, abs/1410.0759, 2014.

[9] Stephen Chou, Fredrik Kjolstad, and Saman Ama-
rasinghe. Automatic generation of efficient sparse
tensor format conversion routines. arXiv preprint
arXiv:2001.02609, 2020.

[10] Dense Linear Algebra on GPUs. https://developer.
nvidia.com/cublas, 2016.

[11] Richard A DeMillo, Edward W Krauser, and Aditya P
Mathur. Compiler-integrated program mutation. In
1991 The Fifteenth Annual International Computer Soft-
ware & Applications Conference, pages 351–352. IEEE
Computer Society, 1991.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR,
abs/1810.04805, 2018.

[13] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh.
Learning spatio-temporal features with 3d residual net-
works for action recognition. In Proceedings of the
IEEE International Conference on Computer Vision
Workshops, pages 3154–3160, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, 2016.

[15] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[16] Zhihao Jia, James Thomas, Todd Warzawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing dnn
computation with relaxed graph substitutions. In Pro-
ceedings of the 2nd Conference on Systems and Machine
Learning, SysML’19, 2019.

[17] Andrew Lavin and Scott Gray. Fast algorithms for con-
volutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 4013–4021, 2016.

[18] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and
Huiyang Zhou. Optimizing memory efficiency for deep
convolutional neural networks on gpus. In SC’16: Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis.
IEEE, 2016.

[19] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo
Durand, and Jonathan Ragan-Kelley. Differentiable pro-
gramming for image processing and deep learning in
halide. ACM Transactions on Graphics (TOG), 37(4):1–
13, 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 51

https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

[20] Yuhong Li, Xiaofan Zhang, and Deming Chen. Csrnet:
Dilated convolutional neural networks for understanding
the highly congested scenes. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1091–1100, 2018.

[21] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma,
and Yida Wang. Optimizing {CNN}model inference on
cpus. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 1025–1040, 2019.

[22] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet,
Jonathan Ragan-Kelley, and Kayvon Fatahalian. Auto-
matically scheduling halide image processing pipelines.
ACM Transactions on Graphics (TOG), 35(4):1–11,
2016.

[23] Vinod Nair and Geoffrey E. Hinton. Rectified linear
units improve restricted boltzmann machines. In Pro-
ceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, ICML’10,
pages 807–814, USA, 2010. Omnipress.

[24] Randal S Olson and Jason H Moore. Tpot: A tree-
based pipeline optimization tool for automating machine
learning. In Workshop on automatic machine learning,
pages 66–74. PMLR, 2016.

[25] TensorFlow Backend for ONNX. https://github.
com/onnx/onnx-tensorflow.

[26] Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://pytorch.org,
2017.

[27] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, 2013.

[28] Jacob T Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. Journal of the
ACM (JACM), 27(4):701–717, 1980.

[29] Christian Steinruecken, Emma Smith, David Janz, James
Lloyd, and Zoubin Ghahramani. The automatic statisti-
cian. In Automated Machine Learning, pages 161–173.
Springer, Cham, 2019.

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[31] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[32] NVIDIA TensorRT: Programmable inference acceler-
ator. https://developer.nvidia.com/tensorrt,
2017.

[33] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR,
abs/1802.04730, 2018.

[34] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: generating
high-performance tensor programs for deep learning.
In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 863–
879, 2020.

[35] Richard Zippel. Probabilistic algorithms for sparse poly-
nomials. In International symposium on symbolic and
algebraic manipulation, pages 216–226. Springer, 1979.

52 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/onnx/onnx-tensorflow
https://github.com/onnx/onnx-tensorflow
https://pytorch.org
https://developer.nvidia.com/tensorrt

A Artifact Appendix

A.1 Abstract

This artifact appendix helps the readers reproduce
the main evaluation results of the OSDI’ 21 paper:
Pet: Optimizing Tensor Programs with Partially
Equivalent Transformations and Automated Correc-
tions.

A.2 Pet Usage

Pet provides C++ API to build the input tensor pro-
gram, and also supports importing input tensor pro-
gram from ONNX1 model. For each input tensor pro-
gram, Pet generates a mathematically equivalent ex-
ecutable that includes the performance optimizations
described in this paper. Pet uses cuDNN/cuBLAS
as backend by default, but users can also export the
mutation subprograms with their corresponding in-
put/output tensor shapes to use different backends
like TVM and Ansor.

A.3 Scope

The artifact can be used for evaluating and repro-
ducing the main results of the paper, including the
end-to-end evaluation, the operator-level evaluation,
the performance comparison across different opti-
mization policies and heuristics parameters, and the
searching time.

A.4 Contents

The artifact evaluation includes the following exper-
iments:
E1: An end-to-end performance comparison between
Pet and other frameworks. (Figure 8)
E2: An operator-level performance comparison
on different backends, including cuDNN/cuBLAS,
TVM, and Ansor. (Figure 12)
E3: A performance comparison across different op-
timization policies, including fully-equivalent trans-
formations, partially-equivalent transformations, and
joint optimization using both. (Figure 13)

1https://onnx.ai/

E4: A performance comparison using different
heuristics. (Figure 14)
E5: Searching time. (Section 8.6)

A.5 Hosting

The source code of this artifact can be found
on GitHub: https://github.com/whjthu/

pet-osdi21-ae, master branch, with commit
ID: 9e07cb1.

A.6 Requirements

Hardware dependencies

This artifact depends on an NVIDIA V100 GPU.

Software dependencies

This artifact depends on the following software li-
braries:

• Pet uses cuDNN and cuBLAS libraries as back-
end. Our evaluation uses CUDA 10.2 and
cuDNN 7.6.5.

• TensorFlow, TensorRT, TASO, TVM and An-
sor are used as baseline DNN frameworks in E1
and E2. Our evaluation on these baseline uses
TensorFlow 1.15, TensorRT 7.0.0.11, TASO with
commit ID f11782c (we add some minor fixes for
TASO to support the tested models), and TVM
with commit ID 3950639.

A.7 Installation

A.7.1 Install Pet from source

• Clone code from git

• Install PET

– mkdir build; cd build; cmake ..
– make -j

• Set the environment for evaluations

– export PET HOME=path to pet home

A.7.2 Install other frameworks

Please refer to the artifact evaluation instruction
(README.pdf in the git repo https://github.

com/whjthu/pet-osdi21-ae) or the installation in-
structions provided by the frameworks.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 53

https://onnx.ai/
https://github.com/whjthu/pet-osdi21-ae
https://github.com/whjthu/pet-osdi21-ae
https://github.com/whjthu/pet-osdi21-ae
https://github.com/whjthu/pet-osdi21-ae

A.8 Experiments workflow

The following experiments are included in this arti-
fact. All DNN benchmarks use synthetic input data
in GPU device memory to remove the side effects
of data transfers between CPU and GPU. The de-
tailed running instruction can be found in the artifact
evaluation instruction (README.pdf in the git repo
https://github.com/whjthu/pet-osdi21-ae).

A.8.1 End-to-end performance (E1)

This experiment reproduces Figure 8 in the paper.
Prerequisite: generate ONNX models

• cd $PET HOME/models-ae

• ./generate onnx.sh

TensorFlow & TensorFlow XLA. The Tensor-

Flow & TensorFlow XLA results of the 4 models are
available in the tensorflow ae folder. The follow-
ing command lines measure the inference latency of
TensorFlow and TensorFlow XLA, respectively:

• cd $PET HOME/tf-ae

• ./run.sh

TensorRT. The TensoRT results of the 4 models are

available in the tensorrt ae folder. The following
command lines measure the inference latency of Ten-
sorRT:

• Load TensorRT environment (add library path
to LD LIBRARY PATH)

• cd $PET HOME/trt-ae

• ./run.sh

TASO. The TASO results of the 4 models are avail-

able in the taso ae folder. The following command
lines measure the inference latency of TASO:

• Load TASO environment

• cd $PET HOME/taso-ae

• ./run e2e.sh

PET. The Pet results of the 4 models are available

in the pet ae folder. The following command lines
measure the inference latency of Pet:

• cd $PET HOME/pet-ae

• ./run e2e.sh

A.8.2 Operator-level performance (E2)

This experiment reproduces Figure 12 in the paper.
The scripts are available in the operator ae folder.
The experiments of TVM and Ansor will take a very
long time to search different mutation kernels.
cuDNN/cuBLAS. The following command lines
measure cuDNN/cuBLAS results for the 4 operator-
level benchmarks:

• cd operator ae/cudnn

• ./run.sh

TVM & Ansor. The scripts in
operator ae/autotvm and operator ae/ansor

search the kernels for the 4 operator-level bench-
marks using TVM and Ansor, respectively.

A.8.3 Different optimization policy (E3)

This experiment reproduces Figure 13 in the paper.
The scripts are available in the pet-ae folder. The
following command lines measure the results:

• cd $PET HOME/pet-ae

• ./run policy.sh

A.8.4 Different heuristic parameters (E4)

This experiment reproduces Figure 14 in the paper.
The scripts are available in the pet-ae folder. The
following command lines measure the results:

• cd $PET HOME/pet-ae

• ./run param.sh

A.8.5 Searching time (E5)

This experiment reproduces Section 8.6 in the pa-
per. The scripts are available in the pet-ae folder.
The same commands for Pet in E1 print the search-
ing time at the same time.

• cd $PET HOME/pet-ae

• ./run e2e.sh

Note that our evaluation platform for AE has differ-
ent CPUs from the platform we used for the paper so
that the searching time could be different. Neverthe-
less, they should be within the same scale.

54 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/whjthu/pet-osdi21-ae

Privacy Budget Scheduling

Tao Luo∗

Columbia University
Mingen Pan∗

Columbia University
Pierre Tholoniat∗

Columbia University
Asaf Cidon

Columbia University

Roxana Geambasu
Columbia University

Mathias Lécuyer
Microsoft Research

Abstract
Machine learning (ML) models trained on personal data

have been shown to leak information about users. Differential
privacy (DP) enables model training with a guaranteed bound
on this leakage. Each new model trained with DP increases
the bound on data leakage and can be seen as consuming part
of a global privacy budget that should not be exceeded. This
budget is a scarce resource that must be carefully managed to
maximize the number of successfully trained models.

We describe PrivateKube, an extension to the popular Ku-
bernetes datacenter orchestrator that adds privacy as a new
type of resource to be managed alongside other traditional
compute resources, such as CPU, GPU, and memory. The
abstractions we design for the privacy resource mirror those
defined by Kubernetes for traditional resources, but there are
also major differences. For example, traditional compute re-
sources are replenishable while privacy is not: a CPU can
be regained after a model finishes execution while privacy
budget cannot. This distinction forces a re-design of the sched-
uler. We present DPF (Dominant Private Block Fairness) – a
variant of the popular Dominant Resource Fairness (DRF) al-
gorithm – that is geared toward the non-replenishable privacy
resource but enjoys similar theoretical properties as DRF.

We evaluate PrivateKube and DPF on microbenchmarks
and an ML workload on Amazon Reviews data. Compared to
existing baselines, DPF allows training more models under
the same global privacy guarantee. This is especially true for
DPF over Rényi DP, a highly composable form of DP.

1 Introduction
Increasing evidence suggests that machine learning (ML)
models trained on sensitive, personal information – such as
auto-complete models trained on users’ emails – expose in-
dividual entries from their training sets [8, 57]. Despite the
evidence, there is an increasing trend to push models to end-
user devices for faster predictions [6,27,54], share them across
teams in a company [36, 56] and even externally [2, 43].

∗First co-authors of the paper with equal, complementary contributions.

Differential privacy (DP) [15] promises to enable safe shar-
ing of models by providing solid guarantees regarding the ex-
posure of individuals’ data through these models. DP random-
izes a computation over a dataset (e.g. training one model) to
bound the leakage of individual entries in the dataset through
the output of the computation (the model). Each new DP com-
putation increases this bound over data leakage, and can be
seen as consuming part of a global privacy budget that should
not be exceeded. DP is mature algorithmically: most popular
ML algorithms have been adapted to individually enforce the
DP guarantee. There are also libraries that implement these
algorithms, including TensorFlow Privacy [21], Opacus for
PyTorch [18], and multiple libraries for statistics [20, 29, 47].

Comparatively, DP research is primitive on systems that
enforce a global DP guarantee across multiple DP algorithms.
Indeed, enforcing a global DP guarantee creates scheduling
challenges that have never been addressed in the literature. For
example, given a dynamic ML workload of multiple models
trained on the same user data stream, how should the global
privacy budget be allocated to maximize the number of mod-
els that are successfully trained with DP? Recently, we pre-
sented Sage, an incipient design of an ML training platform
that maintains a global DP guarantee for a dynamic workload
of ML pipelines operating on a continuous data stream [35].
Our key contribution was to show that by splitting the data
stream into blocks (for example by time), enforcing a global
DP guarantee over the entire stream reduces to enforcing the
guarantee on each block. This showed at a basic level how
to operationalize a global DP guarantee for a dynamic ML
workload. but left the challenging questions related to schedul-
ing unresolved. Moreover, our block notion was rudimentary,
supporting only limited DP semantics (Event DP, which of-
fers non-ideal protection [33, 41]) and basic DP composition
methods (which scale poorly with the number of models).

In this paper, we present PrivateKube, a plug-in extension
to the popular Kubernetes workload orchestrator that can be
used to schedule global privacy budgets for a dynamic work-
load of DP ML pipelines akin to Sage’s. The key insight is
to (1) generalize the notion of private blocks to support a

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 55

wider range of DP semantics and composition methods, and
(2) incorporate private blocks as a new, native resource into
Kubernetes, alongside traditional compute resources (such as
CPU, GPU, and RAM), so they can be scheduled uniformly.
Despite intuitive correspondence of our privacy abstraction
to Kubernetes abstractions for traditional resources, there are
also significant semantic differences that force us to redesign
the scheduling at a fundamental, algorithmic level.

Specifically, private blocks differ from traditional comput-
ing resources in two key dimensions. First, once a portion
of a private block is allocated to a task, it can never be re-
cuperated. Second, in many use cases, the utility of using
private blocks is a step function: if a task has enough privacy
budget it can make progress, but if it does not have sufficient
budget, its accuracy can be affected in complex ways and it
is often preferable to wait to accumulate enough budget be-
fore proceeding. These two properties invalidate assumptions
typically made by scheduling algorithms for traditional com-
puting resources, such as the popular DRF [19], which we
show loses the max-min fairness property if applied directly
to private blocks. In fact, we find that the very definitions of
standard game-theoretical scheduler properties require change
to apply to the characteristics of the privacy resource.

We develop a new algorithm for scheduling private blocks,
called DPF (Dominant Private block Fairness). DPF treats
each private block as a separate resource that can be de-
manded (or not) by tasks. Different tasks can demand differ-
ent private blocks, creating heterogeneous resource demands
and pointing to multi-resource scheduling algorithms, such
as DRF [19], as a basis for DPF. Similar to DRF, DPF allo-
cates private blocks to the user that has the minimal dominant
private block share – the maximum privacy budget requested
by a user across the private blocks. Different from DRF and
other related scheduling algorithms [32, 49], DPF releases
privacy budgets progressively into the blocks, to ensure that
future pipelines have access to the privacy resource in accor-
dance to a fairness policy. Moreover, DPF allocates requested
budgets all-or-nothing to ensure that pipelines can achieve
their accuracy goals. We prove that DPF satisfies several im-
portant game-theoretic properties: sharing incentive, strategy-
proofness, dynamic envy-freedom (a variant of traditional
envy-freedom), and Pareto efficiency.

We evaluate PrivateKube on microbenchmarks and a work-
load on Amazon Reviews data. We find that: (1) DPF grants
more pipelines than baseline policies at a small cost in delay;
(2) stronger DP semantics (such as User DP) require more
budget and data, increasing the need for judicious budget al-
location as with DPF; (3) adapting DPF to Rényi DP [42],
the state-of-the-art composition method, enables allocation of
either many more or much larger pipelines, and (4) our native
integration of the privacy resource into Kubernetes lets us
easily adapt the Grafana compute resource monitor to track
privacy usage on par with compute usage.

Overall, this paper is the first to pose these questions:
(1) what are the characteristics of the “privacy resource” in
ML workloads, (2) how should scheduling algorithms support
this resource, and (3) what kinds of game-theoretical proper-
ties can be guaranteed for this resource? The answers, which
form our primary contributions, are: (1) the abstraction of the
privacy resource as dynamically-arriving, non-replenishable
private blocks, (2) the DPF algorithm, and (3) the theoretical
properties of DPF. All these are integrated into real systems,
Kubernetes and Kubeflow, in a prototype that we have open-
sourced: https://github.com/columbia/privatekube.

2 Threat Model and Background
2.1 Threat Model

We are concerned with the sensitive data exposure that may
occur when pushing models trained over user data to untrusted
locations, such as mobile devices [6,27,54], model stores that
are widely shared among teams in a company [36,56], or even
opened to the world via prediction APIs [2, 43]. Our focus
is not on singular models, pushed once, but rather on work-
loads of many models, trained periodically over increasing
data from user streams. For example, a company may train
an auto-complete model daily or weekly to incorporate new
data from an email stream, distributing the updated models
to mobile devices for fast predictions. Moreover, the com-
pany may use the same email stream to periodically train
and disseminate multiple types of models, for example for
recommendations, spam detection, and ad targeting. This cre-
ates ample opportunity for an adversary to collect models and
perform privacy attacks to siphon personal data.

Two classes of privacy attacks are particularly relevant: (1)
membership inference, in which the adversary infers whether
a particular entry (e.g., user) is in the training set based on
either white-box or black-box access to the model and/or
predictions [4, 17, 28, 57]; and (2) reconstruction attacks,
in which the adversary infers unknown sensitive attributes
about entries in the training set based on similar white-box or
black-box access [8, 14, 16]. We aim to ensure that an entry’s
participation in a company’s model does not increase the risk
of an adversary learning something about that entry.

Of particular concern are attacks that can access multiple
models or statistics trained on the same or overlapping por-
tions of a data stream. While individually these may leak
limited information about specific entries, together they may
leak significant information, especially when combined with
side information about an entry. Consider two statistics: (1)
average value of a sensitive column s (say representing user
salary); and (2) average value of column s across entries
whose ID differs from “1234.” Individually, they reveal noth-
ing specific about any entry in a dataset. Together, they re-
veal the value of sensitive column s for entry “1234.” This
is a trivialized example in which the queries are ideally cho-
sen and the adversary has access to ideal side-information
about their target: the ID. However, research in more practi-

56 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/columbia/privatekube

cal settings has shown that releasing multiple (versions of)
ML models trained over overlapping datasets increases the
attacker’s membership inference power compared to releasing
just one [61]. Moreover, many pieces of information, such
as demographic traits and locations, can be pieced together
to uniquely identify individuals and used as side information
in such attacks [4, 12, 45]. Thus, a significant data exposure
threat stems from the repeated release of models/statistics
from overlapping portions of a stream.
2.2 Differential Privacy

DP is known to address the preceding attacks [8, 16, 31,
57]. At a high level, membership and reconstruction attacks
work by finding data points (which can range from individual
events to entire users) that make the observed model more
likely: if those points were in the training set, the likelihood
of the observed output increases. DP prevents these attacks by
ensuring that no specific data point can drastically increase the
likelihood of the model outputted by the training procedure.

To prevent such information leakage, DP introduces ran-
domness into the computation to hide details of individual en-
tries. A randomized algorithm Q : D→ V is (ε,δ)-DP if for
any neighboring datasets D,D ′ that differ in one row and for
any S ⊆ V , we have: P(Q (D) ∈ S)≤ eεP(Q (D ′) ∈ S)+δ.
Parameters ε > 0 and δ∈ [0,1] quantify the strength of the pri-
vacy guarantee: small values imply that one draw from such
an algorithm’s output gives little information about whether
it ran on D or D′. The privacy budget ε upper bounds an
(ε,δ)-DP computation’s privacy loss with probability (1-δ).

A key strength of DP is its composition property, which in
its basic form, states that the process of running an (ε1,δ1)-
DP and an (ε2,δ2)-DP computation on the same dataset is
(ε1 + ε2,δ1 + δ2)-DP. Therefore, privacy loss accumulates
linearly with the privacy loss of each computation. Compo-
sition lets one account for the privacy loss resulting from
a sequence of DP-computed outputs, such as the release of
multiple models. It is thus critical for enforcing a global DP
guarantee. There are more advanced forms of composition,
such as Rényi DP [42], which permit much tighter analysis
of cumulative privacy loss (sublinear). We discuss those in
the latter parts of the paper, because they are vital to a well-
performing globally DP system, but for the next two sections
we assume basic composition for simplicity.

Multiple DP mechanisms exist, such as the Laplace and
Gaussian mechanisms. They add noise to the computation
from a Laplace/Gaussian distribution scaled by a function of
ε, δ, and the sensitivity of the computation. The noise scale
depends linearly in 1/ε and at most logarithmically in 1/δ.
When enforcing a global DP guarantee, which we denote in
this paper as (εG,δG), both parameters become “resources”
that must be allocated among the individual computations
to ensure that cumulatively the computations do not exceed
either. However, because individual computations are much
more sensitive to the allocated ε than to δ, throughout this
paper we will focus on εG as the sole global resource to

schedule. In evaluation, we set the individual δ requested by
each pipeline small enough in comparison to δG (10−9 and
10−7, respectively) such that εG is always the bottleneck.

The DP semantic can be instantiated at multiple granulari-
ties, the difference being what a “row” corresponds to. Event
DP enforces DP on individual data points (e.g., individual
clicks). User DP enforces DP on all data points contributed
by a user. It is stronger but challenging to sustain when new
models must keep training on new data from the same users.
User-Time DP is a middle-ground that enforces DP on all data
points contributed by a user in a given period (e.g., one day).
2.3 Assumptions

Our overarching goal is to develop infrastructural support
for organizations to enforce a global DP guarantee – at Event,
User, or User-Time level – across the entire ML workload they
operate on sensitive data streams. This would let organiza-
tions control the leakage of personal information through the
models. The focus of this paper is on how to orchestrate the
global privacy budget across competing but trusted ML train-
ing processes, each of which is assumed to be coded by their
programmers to enforce DP. We assume that the program-
mers are trusted to correctly implement DP training processes
and to adhere to the protocols we establish for them. More-
over, we assume that the training processes themselves, plus
the compute infrastructure, are trusted. For example, if our
scheduler refuses to allocate a requested privacy budget to a
training task, the task will not access the data. If the scheduler
allocates the task’s requested budget, ε, then the training pro-
cess will not attempt to use more than ε. On the other hand,
programmers may be incentivised to achieve higher accuracy
for their models by requesting more ε. Therefore, we must
provide users with strong incentives to fairly share εG.

3 PrivateKube Architecture
PrivateKube is a plug-in extension to the popular Kubernetes
workload orchestrator. It can be used to allocate privacy bud-
gets for a dynamic workload of ML pipelines to enforce a
global (εG,δG) DP semantic. Our key insight is to incorporate
the privacy budget as a new, native resource alongside tradi-
tional compute resources so developers can manage compute
and privacy uniformly. Despite one-to-one correspondence
of our privacy resource abstractions to traditional Kubernetes
abstractions, there are also significant semantic differences
that cause us to re-think scheduling for the privacy resource.
This section gives an architectural view of our privacy re-
source abstraction, with the similarities and differences from
Kubernetes’ abstractions. §4 then describes DPF, the first
scheduling algorithm suitable for the privacy resource. §5
presents extensions of DPF to support both Rényi compo-
sition and all three DP semantics: Event, User, User-Time.
These, too, constitute firsts for the DP systems literature.
3.1 Overview

Fig. 1 shows the PrivateKube architecture alongside the
main components of a standard Kubernetes deployment. It

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 57

Private
Pipeline 1

nodes
Id: 00001
CPU:3000
RAM:64G

Id: 000004
CPU:1000
RAM:512G

Id: 000054
CPU:1000
RAM:32G

Sensitive Data StreamPhysical/Virtual Machines

private data blocks
blk_id: 004
desc: Dec1
epsilon:0.01

blk_id: 005
desc: Dec2
epsilon: 0.1

blk_id: 006
desc: Dec3
epsilon: 0.1

PrivateKube ExtensionStandard Kubernetes

K
ub

er
ne

te
s

Privacy Scheduler

Privacy Controller

Ph
ys

ic
al

R

es
.

Scheduler

Controller

M
L

W
or

kl
oa

d

pods privacy claims

...

etcd

Private
Pipeline 2

Non-Private
Pipeline

Fig. 1: PrivateKube architecture. Clear components are standard Kuber-
netes. Highlighted components (yellow) are added by PrivateKube.

underscores the correspondence between traditional and pri-
vacy abstractions. Kubernetes orchestrates the execution of a
workload – in our case an ML workload consisting of multi-
ple training pipelines – onto the physical resources available
to the Kubernetes deployment. In standard Kubernetes, the
physical resources are physical or virtual machines. The main
abstractions that standard Kubernetes provides are: (1) node,
an abstract representation for a physical or virtual machine;
and (2) pod, a containerized unit of execution. A pod specifies
the container image to execute, plus the type and quantity
of compute resources it demands, such as CPU, GPU, RAM,
SSD. A node specifies the type and quantity of compute re-
sources it has available. The primary functions of Kubernetes
are to: (i) monitor for pods with unsatisfied resource demands
(component Controller in Fig. 1) and (ii) bind each pod to one
node that has the demanded resources (component Scheduler).
Once a pod is bound to a node, the pod’s image is executed.

PrivateKube extends Kubernetes to add a new type of phys-
ical resource: sensitive data streams. We correspondingly add
two new abstractions to Kubernetes: (1) private data block
and (2) privacy claim. Private data blocks (or private blocks
for short) constitute non-overlapping portions of a sensitive
data stream, such as daily windows of data from that stream.
Private blocks are the finest granularity at which data can
be requested by a training pipeline, and the level at which
PrivateKube keeps track of the total privacy loss incurred by
an ML workload of multiple pipelines. Private blocks specify
the portion of the data they represent (e.g., the start and end
times of the corresponding window), plus the privacy budget
still available for use in that window. Privacy claims are used
by training pipelines to demand privacy budget for the private
blocks they are interested in. A pipeline specifies in its pri-
vacy claims a selector for the private blocks it is requesting
(such as the window of time from which they want data), plus
the privacy budget it demands for these blocks. The primary
functions of PrivateKube are to: (i) monitor for privacy claims

many-to-many,
all-or-nothing

binding

API: allocate(claim_id, blk_selector, di,j) → Success/Failure
 consume(claim_id, ci,j) → Success/Failure
 release(claim_id)

privacy claim iprivate data block j
claim_id claim unique id

blk_selector time range, blk_ids
status Pending/Allocated

bound_blks bound blk_id vector

di,j privacy demand
vector

ci,j consumed privacy
vector

blk_id block unique id
blk_desc time range, user_id

range
εG

j fixed total budget

εL
j locked budget

εU
j unlocked budget

εA
j allocated budget

εC
j consumed budget

Fig. 2: PrivateKube abstractions and API. Some variables are indexed by
block (j) or claim (i) for consistency with notation needed in §4.

with unsatisfied private block demands (component Privacy
Controller in Fig. 1) and (ii) bind each privacy claim to the
private blocks it demands (component Privacy Scheduler).

In a Kubernetes deployment with PrivateKube enabled, the
workload may consist of a mix of non-private pipelines (which
interact with insensitive data) and private pipelines (which
interact with sensitive data). Each pipeline has multiple steps
organized in a directed acyclic graph, including steps that
read the data, transform it, train models, etc. The non-private
pipeline interacts with standard Kubernetes to schedule its
steps for execution by registering a pod for each step as soon
as the step’s inputs are available. The private pipeline inter-
acts not only with standard Kubernetes (to allocate compute
resources for each step) but also with PrivateKube (to allocate
and consume privacy budget needed to execute the steps on
the sensitive data in a privacy preserving way).
3.2 PrivateKube Abstractions

PrivateKube’s abstractions are implemented natively in
Kubernetes using its Custom Resource Definition extension
API. Fig. 2 shows the state maintained for each abstraction.
As with standard abstractions, state for custom resources is
stored in the fault-tolerant, strongly consistent etcd store.
Private Block (Fig. 2, left): This abstraction has three con-
stant fields: a globally unique block id (blk_id), a descriptor
specifying the portion of the sensitive data stream it represents
(blk_desc), and the global privacy guarantee PrivateKube
is configured to enforce against the entire stream (εG

j = εG).
PrivateKube supports multiple ways of splitting the stream
into private blocks, and splitting determines the type of DP
guarantee PrivateKube enforces: Event, User, or User-Time
DP. §5 shows how splitting works for each.

Each block j also maintains four variable fields. (1) εC
j

denotes the budget that has been consumed for the block. We
leverage the theory we developed for Sage [35] to justify that
enforcing a global εG privacy guarantee over the entire stream
reduces to ensuring that εC

j ≤ εG
j = εG for all blocks j at all

times. Thus, when εC
j reaches εG, we remove private block

j from Kubernetes and it no longer represents a resource.
(2) εA

j denotes the part of block j’s budget that has been al-
located to some claims but not yet consumed. (3) εU

j , called
unlocked budget, is the unallocated and unconsumed bud-
get made presently available for allocation to privacy claims.

58 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(4) εL
j , called locked budget, is the unconsumed and unallo-

cated budget not yet made available for allocation. Our DPF
algorithm (§4) leverages the last two fields to unlock budget
from εG

j progressively to ensure that future pipelines have ac-
cess to the privacy resource in accordance to a fairness policy.
Among all fields, the invariant is: εG

j = εL
j + εU

j + εA
j + εC

j .

Privacy Claim (Fig. 2, right): This abstraction is used by
pipelines to allocate and consume privacy budget from one or
more private blocks. When creating a privacy claim, the pro-
grammer specifies a selector for the data blocks relevant for
their pipeline (blk_selector). Typically, this means specify-
ing a time range from which the programmer wishes to obtain
data samples (e.g., the past year). PrivateKube then maps this
descriptor onto the private blocks that contain data samples
from that time range. In addition to the block selector, the
programmer also specifies the demanded privacy budget for
each of the blocks that match the selector. While often the
demanded privacy budget will be uniform across all selected
blocks, we allow the programmer to specify a demand vector,
di, j, with one separate entry for each selected block.

API (Fig. 2, bottom): We implement three functions on pri-
vacy claims: allocate, consume, and release. A pipeline
can invoke them multiple times on the same claim, and they
will be executed sequentially. allocate invokes the Privacy
Scheduler to allocate privacy demand, di, j, to blocks that
match the blk_selector. The scheduler will perform the
selection, verify that every matching block has sufficient un-
consumed and unallocated budget to potentially honor di, j,
and if so, binds the matching blocks to the claim. It then adds
the claim to its internal list of claims to schedule with the
DPF algorithm. The scheduler will ultimately decide to allo-
cate the request, or not. If it does, allocate succeeds and the
caller is guaranteed that the entire demand vector di, j has been
allocated to the bound blocks. If it does not, the blocks are
unbound, and the caller can assume that none of the requested
budgets in its demand vector were allocated. consume invokes
the Privacy Controller to deduct a part of previously allocated
budget, ci, j, from blocks already bound to the claim. The func-
tion is similarly not guaranteed to succeed, for example if the
caller is asking to consume more than the budget it has left for
a block. release invokes the Privacy Controller to reclaim a
previous unconsumed allocation to a claim. For example, a
pipeline invokes release if it decides to stop early and not
execute some steps. The Privacy Controller can also invoke
release if the pipeline that owns the claim fails.

3.3 Example Pipeline
To exemplify usage of PrivateKube’s abstractions and API,

we describe a pipeline from our evaluation (Product/LSTM in
§6.2). It is built in Kubeflow, an ML pipeline orchestrator for
Kubernetes, and trains an NLP model on Amazon Reviews to
predict a product category. Fig. 3 shows (a) our code in Kube-
flow DSL and (b) the pipeline’s execution graph. Highlighted
are the distinctions between private and non-private versions.

(a) Pseudocode

Allocate

Consume

Download

DP-Train-LSTM

DP-Evaluate

Upload

DP-Preprocess

(b) Execution Graph
Fig. 3: Example private Kubeflow pipeline. Distinctions from the non-
private version are highlighted in yellow background.

The pipeline has three processing steps: Preprocess tok-
enizes the reviews; Train-LSTM trains an LSTM model with
stochastic gradient descent (SGD); Evaluate validates that
the model passes a baseline accuracy. The Kubeflow runtime
executes each step in a separate pod and passes artifacts along
the computation graph [34]. If a step fails, its children in the
graph will not be launched. An important note for PrivateKube
is that in Kubeflow, most steps of a pipeline are pure func-
tions and do not communicate with the outside. Only a few
well-defined Kubeflow components do, including: Download
(loads data from an external source) and Upload (pushes an
artifact to the serving infrastructure).

Focusing on the private version (highlighted parts of Fig. 3),
the distinctions from a non-private pipeline are two-fold. First,
each step is coded by the programmer to enforce DP. For
example, the training step uses DP SGD instead of SGD. The
DP steps take an additional parameter: privacy budget (eps).
The programmer splits eps among the steps to enforce eps
DP at pipeline level. In the example, dp_preprocess gets
25% of eps, dp_train 50%, dp_evaluate 25% (Fig. 3a).

Second, the private pipeline interacts with PrivateKube to
demand and consume eps. This interaction is through drop-in
Kubeflow components that we created to wrap PrivateKube’s
API. This example highlights two such components: (1)
Allocate and (2) Consume, wrappers around allocate and
consume, respectively (Fig. 3b). The protocol is simple: place
Allocate before any component accessing sensitive data
(e.g., Download); place Consume before any component with
externally visible side-effects (e.g., Upload). (1) Allocate
creates a privacy claim and invokes allocate on it with a
block selector and eps privacy budget. If allocate succeeds,
then Download reads the data of the blocks bound to the claim
(bound_blks) and the training process begins. If allocate
fails, then Download is never launched and the sensitive data
never accessed. (2) Consume receives the privacy claim from
Allocate and invokes consume on it with a privacy budget
equal to the one that was consumed. If consume succeeds,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 59

then Upload runs and outputs the model artifact. If consume
fails, then Upload is never launched and the model never ex-
ternalized. Assuming programmers adhere to this protocol
(§2.3), the above ensures that PrivateKube controls the privacy
loss resulting from externalizing ML artifacts.

3.4 Kubernetes – PrivateKube Distinctions
Despite one-to-one mapping of our abstractions with Ku-

bernetes’ – node::private block, pod::privacy claim – there
are also semantic differences. First is the level at which we
make scheduling decisions. Consider the pipeline from §3.3.
The Kubernetes Scheduler performs a scheduling decision for
each step. It schedules our Allocate and Consume pods, as
well as the functional pods. In PrivateKube, we decided to
allocate privacy at the level of entire pipelines. Indeed, after
being allocated compute resources, the Allocate pod creates
a privacy claim and invokes allocate on it. This is when the
Private Scheduler makes a scheduling decision for the privacy
resource. The privacy claim is then kept for the entirety of the
pipeline and passed among its components as needed.

Second, in Kubernetes, the binding of pod to node is many-
to-one: one pod can be bound only to one node, but the same
node can be bound to multiple pods. In PrivateKube, the
binding is many-to-many: a privacy claim can be bound to
many private blocks, and the same block can be bound to
multiple claims. This leads to a question of atomicity for the
binding across multiple blocks. A critical design decision we
have made is an all-or-nothing semantic for scheduling: a
pipeline can expect allocate on its privacy claim to either
fail or guarantee that (1) all the blocks matching the claim’s
selector were bound to the privacy claim, and (2) for each
block, the demanded privacy budget was allocated in full. This
decision, which has significant impact on the scheduling al-
gorithm (§4), should be thought of as a plausible assumption,
though not the only reasonable one. Multiple use cases justify
all-or-nothing. Many DP algorithms have complex interac-
tions with hyper-parameters, such as learning rate and batch
size; programmers may want to run on the budget for which
those were tuned. Other use cases include the need for compa-
rable models and DP budget searches on a fixed schedule (as
proposed in Sage [35]). Furthermore, the non-replenishable
nature of the privacy budget suggests that the scheduler should
grant no more budget than a pipeline demanded, to keep as
much budget available for future pipelines.

4 DPF Algorithm
Given the preceding integration of private blocks as a new re-
source in Kubernetes, we now explore how scheduling should
work for this resource. Can we achieve for privacy the same
types of theoretical guarantees that compute schedulers often
achieve? How should scheduling algorithms change given the
semantic differences between privacy and compute resources?
To obtain initial answers, we focus on max-min fairness guar-
antees and algorithms that support them.

Our idea is to model each private block as a separate re-
source that must be allocated to different pipelines based on
their demands. Demands will differ across pipelines, both in
the blocks they select and in the privacy budgets they request
for selected blocks. Consider four blocks (B0,B1,B2,B3)
and three pipelines requesting: d1 = (0.5,0.5,0.5,0.0);
d2 = (0.0,0.1,0.1,0.1); and d3 = (0.0,0.0,0.0,0.01). The
pipelines could be: a large model (user embedding) regis-
tered before block B3 appeared; a smaller model that needs
recent data (news recommendation) registered after B3 ap-
peared; and a daily statistic invoked on B3. Privacy demands
being heterogeneous, the four blocks will have heterogeneous
capacities left after the pipelines complete.

The preceding formulation points to DRF (Dominant Re-
source Fairness) [19] – an algorithm that achieves max-min
fairness for multiple, heterogeneous compute resources (e.g.,
CPU, memory) – as a basis for scheduling privacy. However,
as we will show, DRF’s max-min fairness guarantees do not
hold for scheduling privacy. We next describe the limitations
of DRF and several variations for privacy scheduling, after
which we present the design and analysis of our new algo-
rithm, DPF (Dominant Private block Fairness).
4.1 Limitations of DRF and Variations

We identify three limitations of DRF with respect to the
privacy resource. First, DRF assumes static resources and
sometimes even static workloads. In PrivateKube, we focus on
a dynamic setting: both pipelines and private blocks arrive to
the system dynamically. If we applied DRF on private blocks,
at every point in time, DRF would try to consume the entire
available budget to satisfy the demands of all present tasks.
This would make it violate the sharing incentive guarantee of
max-min fairness. A new task arriving to the system that asks
for its fair share of privacy budget might not be able to get it,
since DRF had already allocated the budget to previous tasks.

Second, DRF, like most scheduling algorithms for com-
pute resources [9, 23–25, 58], assumes these resources are
replenishable: a resource can grant utility (i.e. via CPU cy-
cles, network bandwidth) indefinitely. For instance, if multiple
pipelines need to time-share a CPU core, prior work assumes
that if a pipeline was assigned to the core in time interval
T1, the core will naturally be available for other pipeline in
time intervals T2, T3, etc. and provide them with the same
amount of CPU cycles per time slot. In contrast, an individual
private block is a non-replenishable resource. If a pipeline
is assigned a budget for a particular private block, that budget
is consumed forever, and there may not be sufficient budget
remaining for another pipeline in that particular block. Dy-
namic DRF [32], a more recent extension of DRF, considers
both dynamic settings and non-replenishable resources. Un-
fortunately, Dynamic DRF has its own limitation, as follows.

Third, as discussed in §3.4, PrivateKube adopts an all-or-
nothing semantic: a pipeline is either allocated all of its de-
manded budget, or none at all. Therefore, pipelines have an
all-or-nothing utility function, where they can only be sched-

60 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

uled (with a utility of 1) if their entire demand vector is allo-
cated, otherwise their utility is 0. Once a pipeline is allocated
its entire demand vector, it leaves the system. Having an all-
or-nothing utility function departs from both Dynamic DRF
and DRF, which assume compute resources with continuous
utility. In fact, an all-or-nothing utility function would break
the Pareto efficiency of Dynamic DRF and DRF alike, which
allocate resources proportionally based on demand (see §7).
4.2 DPF

Due to the dynamic arrival of pipelines and the non-
replenishable nature of private blocks, we need to gradu-
ally unlock privacy budget as pipelines arrive to the system,
in order to award those pipelines their fair share. Therefore,
we need to define a more constrained notion of a fair share
that divides the budget of private blocks over some particular
number of pipelines, or a particular time period. This section
presents a version of DPF that defines a fair share over the first
N pipelines that select particular private blocks, and provides
formal fairness guarantees for those first N pipelines. For any
subsequent pipelines (after the first N) that request a budget
for those particular blocks, PrivateKube will not guarantee
them a fair share, but will make a best-effort to schedule them
with leftover budget. §5 discusses a version of DPF that in-
stead of dividing resources by pipelines, divides resources by
time intervals, and has weaker fairness guarantees. In both
cases we ensure that DPF schedules budget all-or-nothing,
so that no budget is wasted on tasks that will not end up being
scheduled, thus violating Pareto efficiency.

Algorithm 1 gives pseudocode for DPF. When a new block
j is created (ONDATABLOCKCREATION), its per-block bud-
get, εG

j , is determined by the fixed global privacy budget εG.
To ensure that the first N tasks that request j get their fair
share, j’s budget is initially completely locked (εU

j = 0).
Recall that each pipeline in PrivateKube has in its privacy

claim a privacy demand vector, d, whose entries represent the
epsilon demand for the private blocks matching the claim’s
selector. We define the privacy budget fair share of each
private block j as: εFS

j = εG
j /N. DPF guarantees the fair share

of a given private block j to the first N pipelines that arrive to
the system that have a non-zero demand for j.

We unlock the budget as pipelines arrive (function
ONPIPELINEARRIVAL): a new pipeline i that requests budget
from a particular block j unlocks εFS

j of that block’s budget,
up until all the block’s budget is unlocked. The scheduler’s
responsibility is to allocate the total unlocked budget (εU)
among the different pipelines.

To determine which pipeline gets scheduled first, the sched-
uler maintains a sorted list of the waiting pipelines, based
on their dominant private block share. This is defined as the
maximum demand within each pipeline’s demand vector:

DominantSharei = max
j

di, j

εG
j
, (1)

where di, j is the demand for block j of pipeline i and εG
j is the

total budget of private block j. The scheduler sorts pipelines

Algorithm 1 DPF (max-min fairness for first N pipelines).

Config.: (εG,δG) global DP guarantee to enforce.
function ONDATABLOCKCREATION(block index j)

εG
j ← εG,εU

j ← 0,εA
j ← 0,εC

j ← 0
end function
function ONPIPELINEARRIVAL(demand vector di)

for ∀ j : di, j > 0 do

εU
j ←min(εG

j , εU
j +

εG
j

N)
end for

end function
function ONSCHEDULERTIMER(waiting pipelines wp)

sorted_pipelines← sortBy(DOMINANTSHARE, wp)
for i in sorted_pipelines do

if CANRUN(di) then
ALLOCATE(di)
Run task i, which either consumes di, j (moving
it to εC

j) or releases it (moving it back to εU
j).

end if
end for

end function
function DOMINANTSHARE(demand vector di)

return max j: di, j>0
di, j

εG
j

end function
function CANRUN(demand vector di)

return ∀ j : di, j ≤ εU
j

end function
function ALLOCATE(demand vector di)

for ∀ j do
εU

j ← εU
j −di, j

εA
j ← εA

j +di, j
end for

end function

by their dominant private block share, with the smallest share
ranked first (function ONSCHEDULERTIMER). If there are
one or more pipelines that have the same dominant private
block share, DPF will sort them by taking the smallest of the
second-most dominant private block share of each pipeline,
followed by the smallest third-most dominant share, etc.

DPF tries to allocate pipelines based on their order in the
list. It tries to allocate all of the demanded privacy budget
vector of the pipeline at once. If it cannot allocate the pipeline
fully (function CANRUN returns false), then it moves to the
next one in the list, until it reaches the end of the list.

Example. Fig. 4 shows an example run of DPF with three
pipelines and two private blocks. Suppose the fair share (εFS)
of each block is equal to 1. Pipeline 1 (P1) arrives at t = 1,
then P2 and P3 at each time unit. The demand vector of P1
is d1 = (0.5,1.5), while the vector of P2 is d2 = (1.0,1.0)
and P3’s demand is d3 = (1.5,1.0). The bottom of the figure
depicts the state of of DPF’s sorted list at each time unit, where

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 61

𝑃! 𝑃" 𝑃! 𝑃! 𝑃#
t=1 t=2 t=3

𝑃𝐵! 𝑃𝐵"

DPF-Sorted
Pipelines

Privacy
Budget

𝜀#
𝜀$
𝜀%

Legend

waiting
scheduled

Demands
𝑃!: 𝑑! = 0.5,1.5 𝑃": 𝑑" = 1.0,1.0 𝑃&: 𝑑& = 1.5,1.0

𝑃𝐵! 𝑃𝐵" 𝑃𝐵! 𝑃𝐵"

time
Fig. 4: DPF example. DPF is scheduling three pipelines (P1,P2,P3) over
two private blocks (PB1, PB2), over time. Shows the state of DPF’s sorted
list, and what portion of each private block is locked (εL), unlocked (εU), and
consumed (εC). Assumes budget is consumed instantaneously (εA = 0).

the shaded pipeline in the list is the one that is scheduled at
that time unit, while the unshaded one remains waiting.

When P1 arrives it unlocks a privacy budget of 1 in each
block. Since it is the only pipeline in the system (and therefore
has the minimum dominant resource), the scheduler tries to
allocate it a budget. However it is unable to do so, since P1
requires a budget of 1.5 from PB2 but only 1 is unlocked.

When P2 arrives, more budget is unlocked. The dominant
resource of P1 is then the second block (with a demand of 1.5)
and the dominant resource of P2 is either block 1 or 2, each
of which has a share of 1. Therefore, the scheduler tries to
allocate budget to P2, and does so successfully. It then tries
to allocate budget to P1, but is unable to (since there is only a
budget of 1 left in PB2). P1 will have to keep waiting. When
P3 arrives, its dominant share is for block 1 (1.5), while the
dominant share for P1 is block 2 (1.5). Since their dominant
share is the same, DPF orders them based on their second
highest share, which is 0.5 for P1 and 1.5 for P2. Therefore,
the scheduler allocates the budget for P1. P3 must wait, since
the remaining unlocked budget for block 2 is only 0.5.
4.3 DPF Analysis

We prove four properties of DPF: sharing incentive,
strategy-proofness, dynamic envy-freeness, and Pareto effi-
ciency. We use the same definitions for these properties de-
fined for dynamic environments based on Kash, et.al. [32].

Definition 1 (fair demand pipeline). A fair demand pipeline
has two properties: (a) the pipeline is within the first N
pipelines that requested some budget for all its requested
blocks, and (b) its demand for each one of the blocks is smaller
or equal to the fair share (i.e. for pipeline i, ∀ j : di, j ≤ εFS

j).

Theorem 1 (sharing incentive). A fair demand pipeline is
granted immediately.
Proof. Consider a fair demand pipeline i with demand di.
We proceed by induction over the number of waiting pipelines.
Base case: no waiting pipelines. di, j > 0⇒ εFS

j ≤ εU
j , since

εFS
j is unlocked by di. di is fair so di, j ≤ εFS

j ≤ εU
j . The

pipeline is granted, and no fair pipeline is waiting. Induc-
tion step: Consider any waiting pipeline k with demand dk
and dominant share DominantSharek. By the induction as-
sumption no fair pipeline is waiting, so DominantSharek >
εFS

j ≥DominantSharei. As before, di, j > 0⇒ di, j ≤ εFS
j ≤ εU

j ,
and di can be granted. di is ordered first so it is granted.

Theorem 2 (strategy-proofness). A pipeline has no incentive
to misreport its demand.
Proof. A pipeline has no incentive to ask for more budget
than its real demand, because: (a) its utility would not increase
if it obtains more budget than it needs, (b) its dominant share
will be greater or equal so it can only become less likely to
get scheduled. A pipeline also has no incentive to ask for less
budget than its real demand, because its utility will drop to
zero if it is not allocated its demanded budget.

Theorem 3 (dynamic envy-freeness). A pipeline present at
time t cannot envy the allocation of another pipeline present
at time t, except if their DominantShares are identical.
Proof. Consider pipeline i. There are two cases. Case
1: i was granted. Its utility cannot improve due to all-or-
nothing utility, there is no envy. Case 2: i is waiting. Con-
sider any pipeline j that i envies and is non identical (i
and j are strictly ordered by DPF). We show by contradic-
tion that j was granted before i entered the system. Sup-
pose that was not the case. When j was granted: either
DominantShare j < DominantSharei and j could be granted;
or DominantShare j > DominantSharei but i could not be
granted while j could. In both bases i cannot be granted from
j’s allocation, which would give i a utility of zero. i cannot
envy j, which is a contradiction.

Theorem 4 (Pareto efficiency). No allocation from unlocked
budget can increase a pipeline’s utility without decreasing
another pipeline’s utility.
Proof. Consider pipeline i. If di was already allocated, its
utility cannot improve due to all-or-nothing utility. If i is
waiting, it cannot be allocated from unlocked budget as DPF
grants pipelines until no pipeline can be allocated. Allocating
di would require extra budget, which can only come from
another allocated pipeline. Since each allocated pipeline has
exactly its requested budget this would decrease its utility
from one to zero, which is not Pareto-improving.

4.4 Best-effort Scheduling for Higher Demands
While DPF only guarantees immediate allocation for fair

demand pipelines, the algorithm has a best-effort approach
to schedule pipelines that do not have a fair demand. There
are two scenarios where pipelines do not have a fair demand.
First, a pipeline’s demand may be higher than its fair share
for at least one block. From Theorem 1, fair demand pipelines
always get immediately scheduled. Therefore, if there is any
leftover unallocated budget after a fair demand pipeline gets
scheduled, that budget can be used to schedule pipelines with
higher demands. This budget will not be needed by any future
fair demand pipeline, since they unlock a budget equal to the
fair share. In Fig. 4, even though pipeline 1 has a higher de-
mand than its fair share for block 1, it still gets scheduled. Sec-
ond, for the same reason, DPF can safely schedule pipelines
that are not among the first N to request budget from some
blocks, if there is leftover unallocated budget in those blocks.

62 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 DPF-T (shows what changes in Alg. 1).

Replace ONPIPELINEARRIVAL with:
function ONPRIVACYUNLOCKTIMER(data lifetime L)

for ∀ j do

εU
j ←min(εG

j , εU
j +

εG
j

L)
end for

end function

4.5 Scheduling Compute Alongside Privacy
DPF only schedules private blocks. However, a pipeline

will also need computing resource. Currently, our PrivateKube
prototype implements two schedulers: the privacy scheduler
(based on DPF) schedules private blocks to private pipelines.
The default Kubernetes scheduler schedules traditional com-
puting resources for non-private pipelines, and for private
pipelines that have been allocated their privacy budget. DPF’s
game theoretic properties hold if the system is bottlenecked
by privacy budget, rather than computing resources. We leave
open the problem of scheduling privacy together with comput-
ing resources while guaranteeing game theoretic properties.

5 DPF Extensions
We have focused so far on the core version of DPF that un-
locks budget based on pipeline arrival, and uses basic DP
composition and Event DP. We consider three extensions of
DPF to address limitations of this core version: unlocking
budget by time, using a stronger DP composition (Rényi) and
stronger DP semantics (User and User-Time DP).
5.1 Time-based DPF

Gradually unlocking privacy budget is key to dealing with a
non-replenishable resource and a dynamic workload. The pre-
ceding DPF algorithm unlocks εFS

j for each requested block
j, whenever a new pipeline arrives. We also define a version
of DPF that unlocks budget over time, regardless of workload.
Many organizations already enforce an expiration period, L,
for collected data. In time-based DPF (Algorithm 2), each
block gradually unlocks its budget over its lifetime L, and the
fair share is defined as εFS

j = t
L εG

j , where t is the interval of
time at which private block budgets are unlocked. The advan-
tage of this version is the budget unlocking is predictable and
independent of the pipeline arrival patterns. Moreover, by pac-
ing budget unlocking over the data’s lifetime, we ensure that
the data will have DP budget remaining while still accessible.

Unfortunately, time-based DPF does not guarantee the shar-
ing incentive. A fair-share pipeline may overlap with many
other, smaller pipelines that are ordered first and consume
budget when it becomes available, forcing it to wait longer
than t or even never be granted.

However, the other three properties are guaranteed by this
policy. We briefly sketch out the proofs for each. Strategy-
proofness is guaranteed because there is no advantage in
demanding more than the real demand, since the pipeline
will need to wait longer for the budget to be unlocked. Envy-

freeness is guaranteed for the same reason as in the base
version of DPF. At any given time DPF will prioritize the
pipeline with minimum dominant private block, so a pipeline
with a higher dominant resource can only be scheduled ear-
lier than another pipeline by being granted before the other
pipeline arrives. Finally, Pareto efficiency is guaranteed by
the combination of all-or-nothing utility and allocation.

5.2 DPF with Rényi DP
Rényi DP [42] is an alternative DP definition that is

stronger than (ε,δ)-DP for δ ∈ (0,1] (in the sense that Rényi
DP always implies (ε,δ)-DP but the converse is not true) and
is weaker than (ε,0)-DP ((ε,0)-DP always implies Rényi DP).
The great benefit of Rényi DP is that it permits convenient
composition of multiple mechanisms that scales much better
than the basic composition we have been assuming so far. We
thus believe it is important for any globally DP system to sup-
port Rényi DP, and for this reason we describe our integration
of it in PrivateKube. However, the definition and formulas
of Rényi DP are more complex than those of (ε,δ)-DP, so
we will not attempt to detail them here. Instead, we include a
Rényi DP primer in our extended paper [38] and only state
here a few facts needed to understand this paper.
Rényi DP Facts. As described in §2.2, DP in general upper
bounds the change in the output distribution of a randomized
algorithm that can be triggered by a small change in its in-
put. Making δ = 0 in the DP definition in §2.2, we see that
(ε,0)-DP puts a multiplicative bound on the change in the out-
put distribution: ∀S . P(Q (D)∈S)

P(Q (D ′)∈S) ≤ eε. (ε,δ)-DP loosens this
multiplicative bound with an additive factor, δ. In contrast to
these definitions, Rényi DP puts an upper bound on the Rényi
divergence, a particular measure of distance between the out-
put distributions: RényiDivergenceα(Q (D),Q (D ′))≤ ε. We
state three facts about this distance and Rényi DP.

First, Rényi divergence is parameterized by a parameter,
α > 1, hence Rényi DP is expressed in terms of two pa-
rameters: (α,ε). Second, for every value of α, there is a di-
rect translation from Rényi DP to (ε,δ)-DP. The formula is:
(α,ε− log(1/δ)

α−1)-Rényi DP implies (ε,δ)-DP for any value of
ε > 0, δ ∈ (0,1], and α > 1. Also, (∞,ε)-Rényi DP is equiva-
lent to (ε,0)-DP for any value of ε > 0. Thus, the α parameter
can be seen as adding a spectrum between pure (ε,0)-DP and
(ε,δ)-DP; from any point on that spectrum, one can recon-
struct back the traditional (ε,δ)-DP guarantee. For our work,
this means that PrivateKube can use Rényi DP internally
while exposing the same (εG,δG)-DP guarantee externally.

Third, Rényi DP allows tighter analysis of the privacy loss
from multiple mechanisms. For example, the scale of the
Gaussian distribution required to achieve (ε,δ)-DP depends
linearly on 1/ε. The scale of the Gaussian required to achieve
(α,ε)-Rényi DP depends on 1/

√
ε (and on α). In traditional

DP, when composing (summing the ε’s of) k Gaussian mech-
anisms with the same scale, σ, the composite mechanism is
equivalent to a Gaussian mechanism with σ/k scale, so it’s

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 63

“k times less private.” But in Rényi DP, when composing the
same k Gaussian mechanisms, the composite mechanism is
equivalent to a Gaussian mechanism with σ/

√
k scale, so it’s

just “
√

k less private.” Thus, Rényi DP scales much better in
the number of computations and should enable more pipelines
to share the global budget.

DPF with Rényi DP. Our goal is to take advantage of Rényi
composition without sacrificing DPF’s game-theoretical prop-
erties. One option is to pick one point in the Rényi DP spec-
trum (one value of α > 1) and apply DPF as is, internally
using Rényi to analyze and compose privacy loss, and ulti-
mately translating the Rényi guarantee back into traditional
DP. Unfortunately, when composing multiple, heterogeneous
mechanisms (think different σ for Gaussian) in Rényi DP, it
is unclear a priori which parameter α will ultimately give
the best traditional-DP guarantee; this is because both the
Rényi analysis of privacy loss and the translation to tradi-
tional DP depend on α, in inverse directions (see [38] for
details). In PrivateKube, we thus choose to track a set A of
α > 1 values, and to use one that ultimately gives the best
traditional-DP guarantee. As the Rényi DP author shows [42],
and as we observed experimentally, fine-grained choice of
values is not important, so we select several values based on
recommendations from [42]: A = {2,3,4,8, ...,32,64}.

Algorithm 3 summarizes the changes DPF requires to sup-
port Rényi. For each private block, j, PrivateKube initializes
a vector of Rényi budgets, with one entry for each value of
α ∈ A, based on the preceding translation formula (function
ONDATABLOCKCREATION). Other privacy variables main-
tained in the block similarly become vectors in α (εU , εA, etc.).
Moreover, a pipeline’s privacy demand also becomes a vector
for each block: di, j(α). In practice, a developer will decide on
the mechanism and noise scale to use (e.g. Gaussian mech-
anism with scale σ), based on which a library can compute
the Rényi privacy demand vector for the tracked α’s. When
a pipeline is allocated (function ALLOCATE), the requested
budget is deducted from each block, and for each α.

With these changes, the question becomes how to schedule
over the α vectors. One approach is to treat each (block,α)
tuple as a separate resource. Since DPF already supports mul-
tiple resources, its game-theoretical guarantees should hold.
Indeed, this is how we compute the DOMINANTSHARE under
Rényi: return the maximum demand over all requested blocks
and α orders. However, treating each (block,α) tuple as a
separate resource does not work when deciding if a pipeline
CANRUN. Indeed, doing so would allocate pipelines only
when enough budget is unlocked for all α values. However,
recall that in Rényi DP, any α with sufficient privacy budget
can be translated to an ε,δ-DP guarantee. Requiring all to
have that would just block progress until the largest α acquires
sufficient budget, which removes the benefits of Rényi com-
position. Instead, we allow allocation of any pipeline in which
each requested block has enough unlocked budget εU

j (α) for
any α (potentially at different α across blocks).

Algorithm 3 DPF-Rényi (shows what changes in Alg. 1).

Config.: (εG,δG): global DP guarantee to enforce;
A: Rényi parameters (default: {2,3,4,8, ...,64}).
function ONDATABLOCKCREATION(block index j)
∀α ∈ A : εG

j (α)← εG− log(1/δG)
α−1

end function
Either ONPIPELINEARRIVAL or ONPRIVACYUNLOCK-
TIMER, modified to unlock budget for each alpha.
function DOMINANTSHARE(demand vector di(α))

return max j:di, j>0 maxα∈A
di, j(α)

εG
j (α)

end function
function CANRUN(demand vector di(α))

return ∀ j : ∃α s.t. di, j(α)≤ εU
j (α)

end function
function ALLOCATE(demand vector di(α))

for ∀ j and ∀α ∈ A do
εU

j (α)← εU
j (α)−di, j(α)

εA
j (α)← εA

j (α)+di, j(α)
end for

end function

Analysis. Under this behavior, the consumed budget at some
α values may be higher than the unlocked budget, and even
the global one. However, for each block j there will always re-
main one α such that 0≤ εU

j (α)≤ εG
j (α). The global (εG,δG)-

DP guarantee is thus preserved (proof in [38]). Moreover,
DPF’s four properties (§4.3) can be proven to hold under the
following definition of a fair pipeline: ∀ j,di, j(α) ≤ εFS

j (α),

where εFS
j (α) =

εG
j (α)

N (proofs in [38]).

5.3 Supporting Varied DP Semantics
Finally, we detail how we incorporate support for all three

DP semantics – Event, User, and User-Time DP – in our pri-
vate block abstraction. To our knowledge, no one has shown
how to support all three with one abstraction, and since we
believe that a DP system should support diverse semantics,
suitable for different cases, we describe here how we do so.

DP conceals a change between neighboring D and D′ that
are identical with a row added or removed. This neighboring
definition, or what we treat as a row that is added or removed,
defines the protection semantic. In Event DP, the most com-
mon but weakest semantic, D and D′ differ in one event (e.g.,
one click). DP thus conceals the impact of adding or remov-
ing one such event (e.g. yesterday’s click on a health related
post about a specific condition), but since one user can con-
tribute a large number of such events, important aspects of a
user’s behavior can still leak though DP computations (e.g.
repeated clicks related to said medical condition). In User
DP, the strongest semantic, neighboring datasets differ by all
the data of one user. User DP conceals the entire contribu-
tion of a user regardless of the amount of data (e.g., many
clicks in a health app). This semantic can be challenging to
enforce on streams, since users with an exhausted privacy

64 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Event DP. Same as Sage [35]. (b) User DP. New in PrivateKube. (c) User-Time DP. New in PrivateKube.
Fig. 5: PrivateKube’s support for diverse DP semantics. Shows how the data is split into blocks and how pipelines request them. Light-gray private blocks
can be requested by pipelines, white blocks are in-progress. A block’s area represents its εG

j budget. Red portions are consumed by pipelines, blue by counters.

budget cannot contribute to new computations, even if they
generate new data. User-Time DP is a middle-ground [33], in
which neighboring datasets D and D′ differ by the addition or
removal of all data from one user in a given time period (e.g.,
one day). Repeated actions of a user in that time period are
protected (e.g., a browsing session with repeated clicks), and
newly generated data in the next period can still be used.

Fig. 5 illustrates how we support all three DP semantics
in our private block abstraction. It requires instantiating two
aspects: (1) how data is split into private blocks and (2) how
blocks are requested by the pipelines.

Event DP (Fig. 5a). (1) Splitting data: At pre-set time inter-
vals (e.g., a day), the data collected in this interval forms a new
private block with a total of εG privacy budget. (2) Request-
ing blocks: Because time is public, we always know which
past blocks have been created and filled with data. Pipelines
registered on PrivateKube can thus request blocks from a
time range of interest without risking consuming budget from
an empty block. In Fig. 5a, blocks for the first three days
are available. The pipeline requests data from the last two
days, thereby consuming budget only for those. This design
is identical to Sage [35], which supports only Event DP.

User DP (Fig. 5b). (1) Splitting data: Computing on any
user’s event must consume DP budget for the entire user;
time-based splitting is therefore insufficient because a user’s
clicks can span large time intervals. Instead, PrivateKube
maintains a private block for each (group of) user id(s) that
will ever exist in the system, lazily instantiated. New data
is added to the block responsible for the corresponding user
without changing its remaining DP budget, or to a newly
created block if this user is new. For instance, in Fig. 5b, only
the first three users contributed data so far.

(2) Requesting blocks: This raises a challenge. Unlike in
Event DP, where we know which past blocks have been cre-
ated and filled with data, in User DP we do not know which
users exist in the system at a given time. Knowing that would
leak information about which users join when, violating User
DP. Instead, PrivateKube maintains a DP counter that esti-
mates, in a user-DP way, the number of users in the system at
any time. The counter is updated periodically (e.g., daily) and
consumes a bit of DP budget from every block (in blue on
Fig. 5b). Since the count is noisy, pipelines requesting user

blocks may sometimes overshoot and consume budget from
users that do not yet exist (and therefore cannot possibly sup-
ply any data). To avoid consuming budget from empty user
blocks, our design has pipelines request user blocks based on
a high probability lower-bound of the true count. This ensures
the true count is under-estimated with high probability, so no
empty user is wastefully requested. Our extended paper [38]
gives the specific formulas to obtain this lower bound.

The counter does consume some εcount-DP budget, which
is a configuration parameter of PrivateKube, fixed when Pri-
vateKube is deployed. The budget is deducted once for each
data block, upon the block’s creation. For example, for Rényi-
DP, ONPRIVATEBLOCKCREATION(j) initializes j’s global

Rényi budget vector to: εG
j (α) = εG− log(1/δG)

α−1 − 2ε2
countα,

where the last term corresponds to the Renyi consumption
of the εcount-DP counter. Since DPF always works from this
εG

j (α), all DPF properties are preserved.
User-Time DP (Fig. 5c). A middle-ground between Event
and User DP, User-Time DP combines both mechanisms.
(1) Splitting data: Data is split over both user and time; newly
collected data is assigned to the block managing the corre-
sponding user and the time range that includes the data cre-
ation. Some of the blocks may be empty (e.g. user 1, day 2),
but since no new data can ever be added to them once their
timeframe passes, there is no cost to the future of using their
DP budget now. (2) Requesting blocks: Blocks are requested
on both time and a continuous DP counter of the number of
users. The counter works similarly to User DP, except that
the first (smallest time) block for a user id is created when
the upper-bound of the user counter reaches this user id. This
corresponds to the first time a user may have contributed data.

6 Evaluation
We implemented PrivateKube on Kubernetes 1.17. Our experi-
ments run on Google Cloud with managed GKE on two pools
of CPU (n1-standard8 machines) and GPU (n1-standard8
machines with one Tesla K80 GPU) servers. Each pool is
autoscaled by Kubernetes up to a cap of 10 servers per pool.

Our evaluation seeks to answer six questions:
Q1: How does DPF compare to baseline scheduling policies?
Q2: How do workload characteristics impact DPF?
Q3: How does Rényi DP impact DPF?

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 65

Q4: How does the DP semantic impact model accuracy?
Q5: How does the DP semantic impact DPF?
Q6: Does native integration facilitate tool reuse?

We develop two methodologies. First, we create a simple,
controlled microbenchmark that helps us explore DPF under
varied workload characteristics (Q1, Q2, Q3). Second, we
create a macrobenchmark consisting of multiple ML pipelines
trained on Amazon Reviews [46] to investigate Q1, and Q4-6.
Metrics and Baselines. Across our experiments, we use the
following metrics. Number of allocated pipelines is the num-
ber of pipelines that were successfully allocated their privacy
budget throughout the experiment. Scheduling delay is the
time measured from when a pipeline arrives to the point where
it is allocated its privacy budget. Accuracy is the percentage
of correct classification of a model.

We compare DPF to two baseline scheduling algorithms.
First-come-first-serve (FCFS) tries to allocate pipelines by
their order of arrival on available privacy budget. All the bud-
get is immediately available to pipelines (i.e. unlocked) from
the outset. Round robin (RR) allocates budget evenly among
pipelines that are currently in the system. We implement two
versions of RR that correspond to the two versions of DPF.
The first one unlocks εFS

j of budget for each pipeline that
arrives that demands a block j, and the second one unlocks
budget in the block over time in proportion to its lifetime. For
example, if the data lifetime is a year, a third of the budget of
a block will be released after four months. This latter policy
is similar to the one used by the Sage system [35].
Evaluation Highlights. DPF is able to grant more pipelines
than the baselines at the cost of a small delay (Q1), especially
over heterogeneous workloads (Q2). Rényi DP enables al-
location of either many more or much larger pipelines (Q3).
Stronger DP semantics require more DP budget and data (Q4),
which increases the need for judicious budget allocation as
with DPF (Q5). Our native integration enables reuse of exist-
ing tooling for privacy resource management, such as using
Grafana to monitor privacy consumption (Q6).
6.1 Microbenchmark (Q1, Q2, Q3)

Our microbenchmarks evaluate the performance of DPF
compared to the two baselines. We assume pipeline arrival fol-
lows the Poisson process. In the single-block experiment, the
pipeline arrival rate is 1 per second. We generate two types
of pipelines, mice and elephants, split 75% to 25% by de-
fault, with respective demands of ε = 0.01εG, and ε = 0.1εG.
In the multi-block experiment, blocks are created every 10
seconds. By default, pipeline’s demand ε follows the same
distribution as single-block. However, it can either request
the last block with probability 0.75, or the last 10 blocks with
probability 0.25, independently of the requested ε. We used
a load that emphasizes the differences between the policies,
where newly arrived pipelines’ average demand is 13.5× of
the newly generated blocks. This results in the basic compo-
sition experiments using an arrival rate of 12.8 per second,

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

N Parameter for DPF and RR

DPF
RR
FCFS

(a) Number of pipelines allocated.

 0.01

 0.1

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

DPF N=175
DPF N=50
FCFS
RR N=100

(b) Scheduling delay.
Fig. 6: DPF behavior on a single block.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

Mice Pipeline Percentage (%)

DPF
FCFS
RR

(a) Number of pipelines allocated.

 0.01

 0.1

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

100% mice,N=125
75% mice,N=125
50% mice,N=125
25% mice,N=125

(b) Scheduling delay.
Fig. 7: DPF with varied workload mix, single block. (b) DPF N=125.

and the Rényi experiments using 234.4 per second. If not
allocated, pipelines timeout after 300 seconds.

6.1.1 DPF Behavior on a Single Block

We first evaluate the performance of DPF in the simplest
possible setup: with a single private block. In this case, the
demand vector of each pipeline will only contain one item,
and DPF will prioritize the pipeline with the lowest demand.

Fig. 6 shows DPF and RR under different N values, and
FCFS. Fig. 6a shows allocated pipelines. With FCFS early ele-
phants take away the budget of many mice, only 28 pipelines
are granted. With RR, a low value of N directly unlocks all
DP budget, behaving like FCFS. When N is high enough to
maintain a large number of mice, but low enough to eventu-
ally grant them, RR is able to grant up to 38 pipelines (more
than FCFS). At large N RR’s proportional allocation creates
multiple partially granted pipelines and only 20 are granted.
Neither outperforms DPF. When N is equal to 1, the first
pipeline unlocks all the budget and DPF behaves like FCFS.
At higher values of N, DPF prefers mice over elephants and
a higher number of pipelines get allocated, up to the max-
imum possible of 100. Since DPF never wastes budget on
unallocated pipelines it outperforms RR when N is large.

As expected, granting more jobs comes at the cost of in-
creased delay (Fig. 6b shows scheduling delay at notable
operating points for each policy). With DPF at N = 50 some
elephants experience scheduling delays before being granted
from unlocked budget. At N = 175 some mice wait since εFS

is higher than the mice requests, but only mice are granted.

To summarize, DPF is always able to allocate budget to
more pipelines than FCFS or RR. N presents a trade-off be-
tween the number of pipelines that are successfully allocated
and the scheduling delay the pipelines experience.

66 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

N Parameter for DPF and RR

DPF
RR
FCFS

(a) Number of pipelines allocated.

 0.01

 0.1

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

DPF N=375
DPF N=75
FCFS

(b) Scheduling delay.
Fig. 8: DPF behavior on multiple blocks.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

0 10 20 30 40 50

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

DPF’s N Parameter

DPF−T’s Data Lifetime Parameter

DPF−T
DPF
FCFS

(a) Number of pipelines allocated.

 0.01

 0.1

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

DPF T=29 sec
DPF N=375
FCFS

(b) Scheduling delay.
Fig. 9: DPF and DPF-T behavior on multiple blocks.

6.1.2 DPF Behavior with Mice Percentage
Fig. 7 compares the three scheduling policies under a vari-

able percentage of mice and elephants. At either extreme, all
pipelines are identical so DPF and FCFS allocate the same
number of pipelines. In this case, the scheduling delay of
FCFS is slightly better, since it always immediately schedules
these pipelines. However, when there is a mix of pipelines,
DPF always allocates more pipelines. RR performance is
mixed: for some workloads it is able to allocate slightly more
pipelines than FCFS, since it assigns a higher percentage of
budget to mice; for others it underperforms FCFS, since it
wastes budget on pipelines that are never scheduled.
6.1.3 DPF Behavior on Multiple Blocks

Fig. 8 shows the multi-block experiment results are similar
to the single-block experiment. The main difference is that
DPF performance with very large N drops, because some
blocks do not see enough requests to unlock all their budget.
For RR, proportional allocation helps cross-blocks pipelines
to be granted (small N), yielding a small improvement over
FCFS and N = 1 DPF. When N > 400, the multiple blocks
create more DP budget spread over ungrantable pipelines, and
there is no high allocation peak: RR grants collapse while
DPF shows a 2× increase over FCFS.
6.1.4 DPF-N vs. DPF-T

Fig. 9 compares DPF-N, the version used throughout the
paper, which unlocks budget based on arriving pipelines, and
DPF-T, which releases budget based on time (§5). We observe
that on low N and T they behave almost identically. This is
because DPF-T will release budget on less queried blocks,
sometimes allowing multi-block pipelines to be prematurely
granted. On large N and T values DPF-T does much better, as
all budget is eventually unlocked and some waiting pipelines
can be granted, even when no new request is made to the

1K

10K

100K

1M

 10 100 1000 10000

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

N Parameter for DPF and RR

DPF Rényi
FCFS Rényi
DPF DP
FCFS DP

(a) Number of pipelines allocated.

 0.01

 0.1

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

DPF Rényi
FCFS Rényi
DPF DP
FCFS DP

(b) Scheduling delay.
Fig. 10: Traditional vs. Rényi DP, multiple blocks. (a) Note log axes. Work-
load is highly amplified to saturate Rényi. (b) DPF N=8875.

blocks they demanded. Fig. 9b shows the delay for equivalent
N and T values.

6.1.5 Traditional DP vs. Rényi DP

Fig. 10 compares the DPF algorithm with traditional DP
(the default DP composition used in the paper), against Rényi
DP, including FCFS with both compositions as a baseline.
The results show that switching to Rényi DP results in much
better pipeline allocation: Rényi DP allows DPF to allocate
more than 17× more pipelines than traditional DP, at their
respective peaks. Even FCFS using Rényi DP significantly
outperforms DPF with traditional DP. Note that DPF provides
a benefit at different values of N for the two compositions,
since Rényi DP requires a higher N value to reach the point
where DPF starts prioritizing small pipelines. We conclude
that switching to Rényi DP leads to much more efficient
privacy budget utilization, regardless of the scheduling policy.

6.2 Macrobenchmark (Q1, Q4, Q5)

We use a subset of Amazon Reviews [46] in which users
and products have 5 reviews or more, and keep product cat-
egories with 1M+ reviews. Each event has a review, times-
tamp, user, 1-5 rating, and product in one of eleven categories
(e.g., books, clothing). We keep the reviews from 01-01-13
to 01-01-18, in total 43.4M reviews from 3.7M users. Tab. 1
specifies our workload: eight ML pipelines and six summary
statistics pipelines. For ML, we define four types of models
for each of two tasks: product classification (assigns a re-
view to its product category) and sentiment analysis (predicts
whether a review is positive). Reviews are embedded using a
Wikipedia-trained GloVe [50] except for the fine-tuned BERT
model. We run non-DP architecture searches for non-DP and
DP pipelines on a 1% hold-out.

We set an accuracy goal for each pipeline: for summary
statistics, 5% relative error; for ML models, an accuracy reach-
able by User DP (e.g., 60% for LSTM/Product). Each pipeline
demands the minimum amount of private blocks necessary
to reach its goal with ε ∈ {0.01,0.05,0.1} (“mice,” i.e. statis-
tics) and ε ∈ {0.5,1,5} (“elephants,” i.e. ML models). The
demands range from 1 to 500 private blocks. Models use
δ = 10−9. The workload draws 75% mice and 25% elephants.
Each private block holds one day of data and has εG = 10. The
experiments replay 50 days of the dataset. Pipelines register

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 67

Task Model Architecture∗ Training
Linear 75; 100; [] Optimizer: Adam

1,111 parameters (for DP, non-DP).
FF†† 60; 100; [185, 150]

Product 48,246 parameters DP algo: DP-SGD
classifi- LSTM 30; 100; [40]† (Opacus).
cation 23,171 parameters

BERT L 4; H 256; A 4§ Epochs: non-DP,
858,379 parameters event/event-time

Linear 50; 100; [] DP: 15; user DP: 60.
101 parameters

FF†† 30; 100; [150, 110] Batch: non-DP: 256;
Sentiment 31,871 parameters DP:

√
N for N train

analysis LSTM 50; 100; [40]† samples (per [1]).
22,761 parameters

BERT L 4; H 256; A 4§ DP clipping: flat,
855,809 parameters max norm = 1.

Reviews: total #, per category # Laplace. Bounded
Statistics Tokens: total #, avg, stdev user contribution:

Rating: avg 20/day, 100 in total
Tab. 1: Macrobenchmark pipelines. ∗: Architecture column: the first line,
x;y;z, shows the input sequence length (x), embedding size (y), and the list
of hidden layers’ size (z). The second line shows the number of trainable
parameters. ††: Fully-connected feed-forward neural network. †: The LSTM
is single directional and has no dropout. §: We use a pretrained BERT model
and fine-tune the last transformer layer with over 850K trainable parameters.

with PrivateKube at exponentially distributed time intervals,
at a rate of 300 pipelines per day.
6.2.1 Accuracy of Individual Models with DP Semantic

Fig. 11 shows the LSTM’s product classification accuracy
with increasing data, with no DP and for ε ∈ {0.5,1,5} for
each DP semantic. Other pipelines show similar trends. We
make two observations. First, DP semantic has a large impact
on accuracy for a given DP budget and data size. As expected,
Event DP, the weakest semantic, provides the highest accu-
racy: 73%, 72%, and 72%, for DP budgets of 5, 1, and 0.5
respectively, on 20M datapoints. The larger budgets get close
to the non-DP baseline, at 77%. User DP requires larger bud-
gets: the largest reaches 72% while the smallest yields 68%.
User-time DP’s behavior is closer to, but lower than, Event
DP, with accuracies of 72%, 71%, and 70%.

Second, increasing data or budget improves accuracy: the
DP models approach the baseline slowly, but can reach it
given enough data and DP budget. The relationship between
accuracy, data, and budget however is non linear. For event DP
with 20M datapoints, increasing the budget from 0.5 to 5 in-
creases accuracy from 72% to 73%, while at 2.5M datapoints
the same increase goes from 68% to 71%. This relationship
also depends on DP semantics, with low budget models being
disproportionately impacted by smaller amounts of data and
budget. For user DP for instance, the accuracies go from 68%
to 72% for 20M datapoints, and from 57% to 68% for 2.5M.
6.2.2 DPF Behavior with Macrobenchmark

Fig. 12 shows the performance of DPF with Rényi DP un-
der our end-to-end workload. Fig. 12a shows the number of
granted pipelines under the different DP semantics. We make
two observations. First, as expected stronger DP semantics
require more private block and DP budget, so fewer pipelines

are granted in total: event, user-time, and user DP can grant
13.8k, 10.4k, and 6.7k pipelines, respectively. Second, as be-
fore, increasing N helps DPF prioritize later mice over current
elephants, increasing the total number of pipelines granted
by 67% (event), 75% (user-time) and 17% (user) compared
to low N and FCFS. Fig. 12b shows the scheduling delay of
user DP for N values of 200 and 400. We see that increase in
pipelines granted comes at a reasonable cost in delay.

Fig. 13 shows the cumulative number of incoming pipelines
below a given DP size in our workload, as well as those
granted under DP and Rényi DP. The DP size of a pipeline
is the sum of ε-DP budget over all requested blocks, and is
a measure of the total amount of budget requested by the
pipeline. The Rényi DP allocates about 29% more pipelines
than DP. This difference is quantitatively smaller than we
obtained in our microbenchmark. However, there is a big
qualitative difference that this graph also illustrates: while
DP only grants mice (cumulative budget below 0.1), Rényi
DP is able to also run some elephants: it grants all pipelines
with a cumulative budget below 2 and some pipelines up to
10. This confirms that Rényi DP is very valuable in realistic
workload settings.
6.3 Kubernetes Tool Reuse (Q6)

To illustrate the value of integrating with Kubernetes, we
extended the Grafana-Kubernetes resource utilization mon-
itor to track privacy usage (screenshot depicted in Fig. 14)
with only 150 lines of code. We envision a suite of tools for
monitoring privacy, on par with compute resources.

7 Related Work
To our knowledge, there is no work on scheduling DP, but our
work builds upon a vast literature in each of these two topics.
Scheduling. Decades of work exist on scheduling compute
resources, such as CPU, network, memory and storage [3,7,9,
10,13,19,22–25,30,37,48,49,51,53,58]. Typically, schedulers
aim for max-min fairness, achieving both high system-wide
utilization and high utility for each tenant. However, compute
resources are replenishable, while privacy budget is not: the
particular budget consumed by task i will never be available
for another task in the future, whereas a CPU core granted to
task i can be granted to another task after i finishes.

The two closets to our work are Dynamic DRF [32] and SE-
QUENTIALMINMAX [49]. Dynamic DRF provides fairness
guarantees for agents arriving over time, consuming a fixed
set of non-replenishable resources. Unfortunately, the all-or-
nothing utility function of private blocks violates Dynamic
DRF’s Pareto efficiency, since Dynamic DRF would waste
budget on tasks that may never get fully allocated. SEQUEN-
TIALMINMAX is an algorithm focused on “indivisible” jobs,
or jobs that have an all-or-nothing utility, and thus, similar
to DPF, it only assigns resources in a sequential fashion and
all-or-nothing fashion ordered by the dominant resource share.
However, unlike DPF, SEQUENTIALMINMAX has static jobs,
it assumes all resources are replenishable, and it does not

68 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400

0 5M 10M 15M 20M

A
c
c
u

ra
c
y

Number of Blocks

Number of Reviews

Non−DP
ε = 0.5
ε = 1
ε = 5

(a) Product/LSTM: Event DP

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400

0 5M 10M 15M 20M

A
c
c
u

ra
c
y

Number of Blocks

Number of Reviews

Non−DP
ε = 0.5
ε = 1
ε = 5

(b) Product/LSTM: User-Time DP

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400

0 5M 10M 15M 20M

A
c
c
u

ra
c
y

Number of Blocks

Number of Reviews

Non−DP
ε = 0.5
ε = 1
ε = 5

(c) Product/LSTM: User DP

 0.4

 0.5

 0.6

 0.7

 0.8

 200 400

0 5M 10M 15M 20M

A
c
c
u

ra
c
y

Number of Blocks

Number of Reviews

Non−DP
BERT
LSTM
FF
Linear

(d) All Product: Event DP
Fig. 11: Performance of macrobenchmark Product models. (a)-(c) Accuracy of the product classification LSTM with various DP semantics. (d) Accuracy of
all four product classification models with ε = 1 and Event DP. The dotted baseline is non-DP BERT, whose accuracy is highest. The y axes start at 0.4, the
accuracy of the naive classifier for this task (i.e. the classifier that returns the most common class).

0

2k

4k

6k

8k

10k

12k

14k

FCFS 100 200 300 400

#
 o

f
A

llo
c
a

te
d

 P
ip

e
lin

e
s

DPF’s N Parameter

Event
User−time
User

(a) Allocated for 3 DP semantics.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6F
ra

c
ti
o

n
 o

f
P

ip
e

lin
e

s
 (

C
D

F
)

Pipeline Scheduling Delay

N=400
N=200
FCFS

(b) Event DP Scheduling delay.
Fig. 12: DPF on macrobenchmark. εG = 10, δG = 10−7.

0

2k

4k

6k

8k

10k

12k

14k

16k

 0.01 0.1 1 10 100

C
u

m
u

la
ti
v
e

 #
 o

f
P

ip
e

lin
e

s

Demand Size (epsilon * num_blocks)

Incoming
Allocated Renyi
Allocated DP

Fig. 13: Distribution of allocated pipeline sizes. Event DP, DPF N=400.

consider dynamically arriving resources (private blocks in
our case). Therefore, it provides no mechanism for gradually
releasing or unlocking these resources, and would not provide
a sharing incentive in our setting.

Even under a static setting, standard DRF [19] violates
Pareto efficiency with all-or-nothing utility. CARBYNE sched-
ules analytics jobs, which depend on the parallel execution of
multiple tasks and have an all-or-nothing utility [24]. How-
ever, it assumes replenishable resources.

Differential privacy. There is vast literature on DP algo-
rithms, which includes versions of most popular ML algo-
rithms (e.g., SGD [1, 60], Federated Learning [39]) and statis-
tics (e.g., contingency tables [5], histograms [59]). There are
also open source implementations available [18,20,21,29,47].
This literature is at a lower level than PrivateKube, and we
leverage it extensively in our pipelines. Some algorithms fo-
cus on workloads [26], including on a data stream [11], but
they remain very limited, supporting only linear queries.

A few DP systems exist, providing DP SQL-like [40, 52]
or MapReduce interfaces [55] to static datasets, as well as
support for summary statistics [44]. None focuses on work-
loads of ML pipelines or supports continuous streams of data.
The only such system is Sage [35], which introduces block
composition for event DP, and proposes a procedure to itera-

Consumed Unlocked Locked

Remaining budget over time (Block 4) Number of pending tasks over time

Privacy budget per block

Fig. 14: Screenshot of Grafana-Kubernetes Privacy Dashboard.

tively increase a model’s privacy budget until reaching a good
accuracy. However, Sage does not support user and user-time
DP, for which we extend block composition, and leaves the
question of scheduling unexplored.

8 Conclusion
For workloads operating on sensitive user data privacy loss
should be carefully orchestrated to enforce a global bound on
personal data leakage. This paper presented PrivateKube, an
extension to the Kubernetes workload orchestrator that adds
differential privacy budget as a new native resource to be man-
aged alongside traditional compute resources. PrivateKube
incorporates a novel scheduling algorithm, DPF, the first one
suitable for the unique characteristics of the privacy resource,
including its all-or-nothing utility and non-replenishable na-
ture. We show that DPF has desirable theoretical properties,
outperforms baseline scheduling algorithms, and that native
integration of privacy into Kubernetes can facilitate reuse of
existing tools to better manage this scarce resource.

Acknowledgments
We thank Su Ji Park for developing and tuning baseline mod-
els for Amazon Reviews. We thank our shepherd, Malte
Schwarzkopf, and the anonymous reviewers for the valuable
comments. This work was funded by the U.S. Department
of Energy (DOE) under award DE-SC-0001234; by the U.S.
Army Research Office (ARO) under award W911NF-21-1-
0078; by Google Research and Cloud awards; and by Sloan,
Microsoft, Google, and Facebook awards.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 69

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proc. of the
ACM Conference on Computer and Communications
Security (CCS), 2016.

[2] AWS. Buy and Sell Amazon SageMaker Al-
gorithms and Models in AWS Marketplace.
https://docs.aws.amazon.com/sagemaker/
latest/dg/sagemaker-marketplace.html. Ac-
cessed: 2020-12-7.

[3] Jens Axboe. Linux block io—present and future. In
Ottawa Linux Symp, pages 51–61, 2004.

[4] Michael Backes, Pascal Berrang, Mathias Humbert, and
Praveen Manoharan. Membership privacy in microRNA-
based studies. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2016.

[5] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork,
Satyen Kale, Frank McSherry, and Kunal Talwar. Pri-
vacy, accuracy, and consistency too: a holistic solution
to contingency table release. In Proc. of the ACM SIG-
MOD International Conference on Management of Data,
2007.

[6] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah
Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal,
Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen
Koo, Lukasz Lew, Clemens Mewald, Akshay Naresh
Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip
Roy, Steven Euijong Whang, Martin Wicke, Jarek
Wilkiewicz, Xin Zhang, and Martin Zinkevich. TFX:
A Tensorflow-based production-scale machine learning
platform. In Proc. of the International Conference on
Knowledge Discovery and Data Mining (KDD), 2017.

[7] Bogdan Caprita, Wong Chun Chan, Jason Nieh, Clifford
Stein, and Haoqiang Zheng. Group ratio round-robin: O
(1) proportional share scheduling for uniprocessor and
multiprocessor systems. In USENIX Annual Technical
Conference, General Track, pages 337–352, 2005.

[8] Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej
Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks.
arXiv:1802.08232, 2018.

[9] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion
Stoica. HUG: Multi-resource fairness for correlated and
elastic demands. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 16),
pages 407–424, Santa Clara, CA, March 2016. USENIX
Association.

[10] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 321–334, Santa
Clara, CA, July 2017. USENIX Association.

[11] Rachel Cummings, Sara Krehbiel, Kevin A Lai, and
Uthaipon Tantipongpipat. Differential privacy for grow-
ing databases. In Proc. of the Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[12] Yves-Alexandre de Montjoye, César A Hidalgo, Michel
Verleysen, and Vincent D Blondel. Unique in the crowd:
The privacy bounds of human mobility. Scientific Re-
ports, 2013.

[13] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queueing algorithm.
ACM SIGCOMM Computer Communication Review,
19(4):1–12, 1989.

[14] Irit Dinur and Kobi Nissim. Revealing information
while preserving privacy. In Proc. of the International
Conference on Principles of Database Systems (PODS),
2003.

[15] Cynthia Dwork. Differential privacy. In Automata,
languages and programming. 2006.

[16] Cynthia Dwork, Adam Smith, Thomas Steinke, and
Jonathan Ullman. Exposed! A survey of attacks on
private data. Annual Review of Statistics and Its Appli-
cation, 2017.

[17] Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan
Ullman, and Salil Vadhan. Robust traceability from
trace amounts. In Proc. of the IEEE Symposium on
Foundations of Computer Science (FOCS), 2015.

[18] Facebook. Opacus. https://opacus.ai/. Accessed:
2020-11-10.

[19] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In David G. Andersen and Sylvia Ratnasamy, edi-
tors, Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011. USENIX
Association, 2011.

[20] Google. Differential Privacy. https://github.com/
google/differential-privacy/. Accessed: 2020-
11-10.

[21] Google. TensorFlow Privacy. https://github.com/
tensorflow/privacy. Accessed: 2020-11-10.

70 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html
https://opacus.ai/
https://github.com/google/differential-privacy/
https://github.com/google/differential-privacy/
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy

[22] Pawan Goyal, Harrick M Vin, and Haichen Chen. Start-
time fair queueing: A scheduling algorithm for inte-
grated services packet switching networks. In Confer-
ence proceedings on Applications, technologies, archi-
tectures, and protocols for computer communications,
pages 157–168, 1996.

[23] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, page 455–466, New York, NY, USA, 2014.
Association for Computing Machinery.

[24] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling
in multi-resource clusters. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 16), pages 65–80, Savannah, GA, November
2016. USENIX Association.

[25] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. Graphene: Packing and
dependency-aware scheduling for data-parallel clusters.
In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’16,
page 81–97, USA, 2016. USENIX Association.

[26] Moritz Hardt and Guy N Rothblum. A multiplicative
weights mechanism for privacy-preserving data analysis.
In Symposium on Foundations of Computer Science,
2010.

[27] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyan-
skiy, Liang Xiong, and Xiaodong Wang. Applied ma-
chine learning at Facebook: A datacenter infrastruc-
ture perspective. In Proc. of International Symposium
on High-Performance Computer Architecture (HPCA),
2018.

[28] Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, Waibhav Tembe, Jill Muehling, John V Pear-
son, Dietrich A Stephan, Stanley F Nelson, and David W
Craig. Resolving individuals contributing trace amounts
of DNA to highly complex mixtures using high-density
SNP genotyping microarrays. PLoS Genetics, 2008.

[29] IBM. Diffprivlib. https://github.com/IBM/
differential-privacy-library. Accessed: 2020-
12-7.

[30] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In

Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276, 2009.

[31] Bargav Jayaraman and David Evans. Evaluating differ-
entially private machine learning in practice. In Proc. of
USENIX Security, 2019.

[32] Ian Kash, Ariel D Procaccia, and Nisarg Shah. No agent
left behind: Dynamic fair division of multiple resources.
Journal of Artificial Intelligence Research, 51:579–603,
2014.

[33] Daniel Kifer, Solomon Messing, Aaron Roth, Abhradeep
Thakurta, and Danfeng Zhang. Guidelines for im-
plementing and auditing differentially private systems.
ArXiv, 2020.

[34] Kubeflow. Overview of Kubeflow Pipelines.
https://www.kubeflow.org/docs/components/
pipelines/overview/pipelines-overview/.
Accessed: 2021-05-11.

[35] Mathias Lécuyer, Riley Spahn, Kiran Vodrahalli, Rox-
ana Geambasu, and Daniel Hsu. Privacy Accounting and
Quality Control in the Sage Differentially Private ML
Platform. In Proc. of the ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[36] Li Erran Li, Eric Chen, Jeremy Hermann, Pusheng
Zhang, and Luming Wang. Scaling machine learning as
a service. In Proc. of The International Conference on
Predictive Applications and APIs, 2017.

[37] Yonghe Liu and Edward Knightly. Opportunistic fair
scheduling over multiple wireless channels. In IEEE IN-
FOCOM 2003. Twenty-second Annual Joint Conference
of the IEEE Computer and Communications Societies
(IEEE Cat. No. 03CH37428), volume 2, pages 1106–
1115. IEEE, 2003.

[38] Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon,
Roxana Geambasu, and Mathias Lécuyer. Privacy
Resource Scheduling (extended version). https://
github.com/columbia/privatekube, 2021.

[39] H. Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. Learning differentially private recurrent
language models. In Proc. of the International Confer-
ence on Learning Representations (ICLR), 2018.

[40] Frank D. McSherry. Privacy integrated queries: An
extensible platform for privacy-preserving data analysis.
In Proc. of the ACM SIGMOD International Conference
on Management of Data, 2009.

[41] Darakhshan Mir, S Muthukrishnan, Aleksandar Nikolov,
and Rebecca N Wright. Pan-private algorithms via statis-
tics on sketches. In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2011.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 71

https://github.com/IBM/differential-privacy-library
https://github.com/IBM/differential-privacy-library
https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/
https://www.kubeflow.org/docs/components/pipelines/overview/pipelines-overview/
https://github.com/columbia/privatekube
https://github.com/columbia/privatekube

[42] I. Mironov. Rényi Differential Privacy. In Computer
Security Foundations Symposium (CSF), 2017.

[43] Model Zoo. https://modelzoo.co/. Accessed: 2020-
12-7.

[44] Prashanth Mohan, Abhradeep Thakurta, Elaine Shi,
Dawn Song, and David Culler. GUPT: Privacy preserv-
ing data analysis made easy. In Proc. of the 2012 ACM
SIGMOD International Conference on Management of
Data, 2012.

[45] Arvind Narayanan and Vitaly Shmatikov. Robust de-
anonymization of large sparse datasets. In Proc. of IEEE
Symposium on Security and Privacy (S&P), 2008.

[46] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justify-
ing recommendations using distantly-labeled reviews
and fine-grained aspects. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).,
pages 188–197, Hong Kong, China, November 2019.
Association for Computational Linguistics. https://
nijianmo.github.io/amazon/index.html.

[47] OpenDP. https://smartnoise.org/. Accessed:
2020-11-10.

[48] Abhay K Parekh and Robert G Gallager. A generalized
processor sharing approach to flow control in integrated
services networks: the single-node case. IEEE/ACM
transactions on networking, 1(3):344–357, 1993.

[49] David C Parkes, Ariel D Procaccia, and Nisarg Shah.
Beyond dominant resource fairness: Extensions, limita-
tions, and indivisibilities. ACM Transactions on Eco-
nomics and Computation (TEAC), 3(1):1–22, 2015.

[50] Jeffrey Pennington, Richard Socher, and Christopher D
Manning. Glove: Global vectors for word representation.
In EMNLP, volume 14, pages 1532–1543, 2014.

[51] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Ion Sto-
ica. FairCloud: Sharing the network in cloud computing.
In Proceedings of the ACM SIGCOMM 2012 confer-
ence on Applications, technologies, architectures, and
protocols for computer communication, pages 187–198,
2012.

[52] Davide Proserpio, Sharon Goldberg, and Frank McSh-
erry. Calibrating data to sensitivity in private data anal-
ysis: a platform for differentially-private analysis of
weighted datasets. Proc. of the International Confer-
ence on Very Large Data Bases (VLDB), 2014.

[53] Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and
Ion Stoica. FairRide: Near-optimal, fair cache sharing.
In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16), pages 393–406,
Santa Clara, CA, March 2016. USENIX Association.

[54] Sujith Ravi. On-device machine intelli-
gence. https://ai.googleblog.com/2017/02/
on-device-machine-intelligence.html, 2017.

[55] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: Security and
privacy for MapReduce. In Proc. of the USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2010.

[56] D. Shiebler and A. Tayal. Making machine learning easy
with embeddings. In Proceedings of the Fourth Con-
ference on Machine Learning and Systems (SysML)s,
2018.

[57] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In Proc. of IEEE Symposium
on Security and Privacy (S&P), 2017.

[58] David Shue, Michael J. Freedman, and Anees Shaikh.
Performance isolation and fairness for multi-tenant
cloud storage. In USENIX Conference on Operating
Systems Design and Implementation (OSDI), pages 349–
362, 2012.

[59] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu,
and Marianne Winslett. Differentially private histogram
publication. In Proc. of the IEEE International Confer-
ence on Data Engineering (ICDE), 2012.

[60] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and
Stacey Truex. Differentially private model publishing
for deep learning. In Proc. of IEEE Symposium on
Security and Privacy (S&P), 2019.

[61] Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti
Tople, Victor Rühle, Andrew Paverd, Olga Ohrimenko,
Boris Köpf, and Marc Brockschmidt. Analyzing infor-
mation leakage of updates to natural language models.
In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20,
page 363–375, New York, NY, USA, 2020. Association
for Computing Machinery.

72 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://modelzoo.co/
https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://smartnoise.org/
https://ai.googleblog.com/2017/02/on-device-machine-intelligence.html
https://ai.googleblog.com/2017/02/on-device-machine-intelligence.html

A Artifact Appendix
A.1 Abstract

Our open-source artifact contains the main parts of the
PrivateKube system, a scheduling simulator as well as experi-
mental setups to reproduce our evaluation results.
A.2 Scope

The artifact allows to validate the microbenchmark (Fig. 6,
Fig. 7, Fig. 8, Fig. 9 and Fig. 10) and the macrobenchmark
(Fig. 11 and Fig. 12).

The privacy resource implementation and the DPF sched-
uler can be reused on any Kubernetes cluster, as well as
modified to study other aspects, such as different schedul-
ing algorithms, or the co-scheduling of privacy budgets with
computational resources.
A.3 Contents

We release the following parts of the PrivateKube system:
the privacy resource implementation (for both DP and RDP);
the DPF scheduler (DPF-T and DPF-N); and an example of
Kubeflow pipeline using PrivateKube.

We also release the discrete-event simulator, which we
leverage to study and prototype scheduling algorithms of
privacy and computational resources.

We also provide command line interfaces to reproduce:
the microbenchmark; the DP workloads (dataset, models and
parameters) used for the macrobenchmark; and the evaluation
of the DPF scheduler on the macrobenchmark workloads.

The artifact does not contain: the Grafana dashboard; data
ingestion pipelines and other data management infrastructure;
nor a cloud-agnostic deployment for Kubeflow pipelines. We
can make these components available upon request, but at
the time of this publication they are fairly specific to our
Kubernetes cluster.
A.4 Hosting

The artifact is available at https://github.com/
columbia/privatekube/releases/tag/v1.0.
A.5 Requirements

This artifact requires a Kubernetes cluster. The documen-
tation explains how to set up a small cluster on a laptop and
details the other requirements. Optionally, an NVIDIA GPU
can speed up the evaluation.

The privacy resource implementation, the scheduler and the
macrobenchmark do not require anything else. The Kubeflow
components and the Kubeflow pipeline example require a
Google Cloud Platform Kubernetes cluster with Kubeflow
enabled.

It is highly recommended to reproduce the microbench-
mark with a beefy machine. It normally takes us several hours
to finish it with two 32-core CPUs.
A.6 Additional Evaluation Results

The released artifact supports evaluation of PrivateKube
and DPF beyond the results included in the paper. We include
here a few of the results that we omitted in the paper.

0

2k

4k

6k

8k

10k

12k

14k

0 10k 20k 30k

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

N Parameter for DPF and RR

DPF
FCFS

(a) Number of pipelines allocated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

DPF N=25399
DPF N=14514
FCFS

(b) Scheduling delay.
Fig. 16: Rényi DPF behavior on a single block.

0

2k

4k

6k

8k

10k

12k

14k

 0 20 40 60 80 100

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

Mice Pipeline Percentage (%)

DPF N=25399
FCFS

(a) Number of pipelines allocated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

F
ra

c
.
o
f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

100% mice,N=25399
75% mice,N=25399
50% mice,N=25399
25% mice,N=25399

(b) Scheduling delay.
Fig. 17: Rényi DPF behavior with variable workload mix, single block.
DPF N=25,399.

Additional Microbenchmark Results. §6.1 explores in de-
tail the behavior of DPF with basic composition on one or
multiple blocks, and under varied mice::elephant ratios. Our
artifact allows exploration of these behaviors for DPF with
Rényi composition, as well. For thoroughness, we include the
corresponding graphs here:

Fig. 16 (Rényi version of Fig. 6) shows that, when the load
is amplified appropriately (as described in §6.1.5), Rényi DP
can allocate more than 14× more pipelines than traditional
DP for the optimal values of N, in the single block setting.

Fig. 17 (Rényi version of Fig. 7) shows that increasing the
mice percentage has a similar impact on the number of allo-
cated pipelines for DPF under Rényi DP and traditional DP.
Similar to the basic composition results, FCFS also behaves
the same as DPF when the percentage of Mice is either 0% or
100%.

Fig. 18 (Rényi version of Fig. 9) shows that, similarly to
the traditional DP case, DPF performs better for large N and
T . In addition, T outperforms N for large N values, since all
budget is eventually locked.
Additional Macrobenchmark Results. §6.2 shows the re-
sults from our macrobenchmark evaluation of the Rényi DP
instantiation of our system. Our artifact allows evaluation
of the macrobenchmark against the traditional DP instantia-
tion as well. For completeness, we include here some of the
omitted macrobenchmark results:

First, in the body of the paper, we provided an analytical
description of how we chose privacy demands for our mac-
robenchmark workload. Fig. 15 plots the distribution of these
demands for the pipelines in the Event-DP workload. The

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 73

https://github.com/columbia/privatekube/releases/tag/v1.0
https://github.com/columbia/privatekube/releases/tag/v1.0

 1

 10

 0.01 0.1 1 10

N
u

m
b

e
r

o
f

b
lo

c
k
s

Epsilon

BERT

FF

LSTM

Linear

(a) Product classification demands

 1

 10

 0.01 0.1 1 10

N
u

m
b

e
r

o
f

b
lo

c
k
s

Epsilon

BERT

FF

LSTM

Linear

(b) Sentiment analysis demands

 1

 10

 0.01 0.1 1 10

N
u

m
b

e
r

o
f

b
lo

c
k
s

Epsilon

Stats

(c) Statistics demands

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

c
ti
o

n
 o

f
P

ip
e

lin
e

s
 (

C
D

F
)

Demand Size (epsilon * num_blocks)

(d) Distribution of the demands
Fig. 15: Pipeline demands for the Event-DP workload.

20k

30k

40k

50k

60k

0 10k 20k 30k

0 20 40 60 80 100 120

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

DPF’s N Parameter

DPF−T’s Data Lifetime Parameter

DPF
DPF−T
FCFS

(a) Number of pipelines allocated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

N Parameter for DPF and RR

DPF N=14514
DPF N=30479
DPF T=62s
DPF T=130s
FCFS

(b) Scheduling delay.
Fig. 18: Rényi DPF and DPF-T behaviors on multiple blocks.

0

2k

4k

6k

8k

10k

12k

14k

FCFS 100 200 300 400

#
 o

f
A

llo
c
a
te

d
 P

ip
e
lin

e
s

DPF’s N Parameter

Event
User−time
User

(a) Allocated for 3 DP semantics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6F
ra

c
ti
o
n
 o

f
P

ip
e
lin

e
s
 (

C
D

F
)

Pipeline Scheduling Delay

N=400
N=200
FCFS

(b) Scheduling delay for Event DP
Fig. 19: DPF behavior on the macrobenchmark workload with basic
composition. The global privacy guarantee is εG = 10, δG = 10−7.

x-axis of Fig. 15a, 15b, 15c represents the ε demand in terms
of traditional DP for product classification, sentiment analysis

and statistics pipelines. Each ε also corresponds to the best
possible DP-ε for the Rényi DP version of a given pipeline.
We can see that the demands are scattered across a wide range
of sizes, both in terms of blocks and epsilon, and with finer
granularity than the microbenchmark’s clear-cut mice and ele-
phants. Finally, Fig. 15d shows how these varied demands are
combined to form a workload. This workload gives the incom-
ing load in Fig. 12 and Fig. 13, which evaluate PrivateKube’s
performance with Rényi DP.

Second, under the same workload, we add here the results
from our evaluation of PrivateKube on traditional DP with
basic composition. Fig. 19 (basic composition version of
Fig. 12) shows the performance of DPF for the three DP se-
mantics. We observe the same overall behavior as with Rényi
DP: stronger semantics can allocate less pipelines, and larger
values of N increase the number of granted pipelines. As ex-
pected, Rényi DP allocates more pipelines than traditional
DP. However, as illustrated in Fig. 13, the pipelines allocated
by Rényi DP are qualitatively different from the pipelines
allocated by traditional DP. This effect explains why the gap
in the number of allocated pipelines is smaller than in the
microbenchmark, in particular when the workload contains
larger pipelines (such as under User-DP).

74 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Modernizing File System through In-Storage Indexing

Jinhyung Koo
DGIST

Junsu Im
DGIST

Jooyoung Song
DGIST

Juhyung Park
DGIST

Eunji Lee
Soongsil University

Bryan S. Kim
Syracuse University

Sungjin Lee
DGIST

Abstract
We argue that a key-value interface between a file system and
an SSD is superior to the legacy block interface by presenting
KEVIN. KEVIN combines a fast, lightweight, and POSIX-
compliant file system with a key-value storage device that
performs in-storage indexing. We implement a variant of a
log-structured merge tree in the storage device that not only in-
dexes file objects, but also supports transactions and manages
physical storage space. As a result, the design of a file system
with respect to space management and crash consistency is
simplified, requiring only 10.8K LOC for full functionality.
We demonstrate that KEVIN reduces the amount of I/O traf-
fic between the host and the device, and remains particularly
robust as the system ages and the data become fragmented.
Our approach outperforms existing file systems on a block
SSD by a wide margin – 6.2× on average – for metadata-
intensive benchmarks. For realistic workloads, KEVIN im-
proves throughput by 68% on average.

1 Introduction

Files and directories are the most common way of abstracting
persistent data. Traditionally, storage devices like hard disk
drives simply export an array of fixed-sized logical blocks, and
file systems abstract these blocks into files and directories con-
taining user data by managing the storage space (e.g., bitmaps)
and the locations for the data (e.g., inodes). Whenever files
and directories are created or deleted, the file-system metadata,
such as bitmaps and inodes, must be retrieved and updated
to reflect the newly updated state of the system [3]. Since
these persistent data structures must remain consistent, file
systems need to employ techniques like journaling to ensure
that they are atomically updated [2, 35, 38, 47]. Considering
all of these responsibilities, file systems are highly intricate
and performance-critical software [27, 37, 45].

However, the architecture of complex and sophisticated
file systems that sits on top of storage devices with a simple
array-of-blocks interface is ill-suited for today’s technology
trends. Before processing the actual file operations, file sys-

 0

 5

 10

 15

 20

 25

 30

TAMMUZ

INTEL
960EVO

960PRO

970PRO

PM983

not scalable}

N
o
rm

a
liz

e
d
 I
O

P
S

Rand-R/W (50:50)

Varmail

rmdir

creat

(a) EXT4 performance

 0

 30

 60

 90

TAMMUZ

INTEL
960EVO

960PRO

970PRO

PM983

O
u

ts
ta

n
d

in
g

 r
e

q
u

e
s
ts

 510

 540
Rand-R/W

Others

(b) Number of outstanding requests

Figure 1: The performance of the EXT4 file system with
respect to SSD performance. With the current block interface,
the file system exhibits poor performance scalability under
metadata and fsync intensive workloads.

tems have to perform extra operations on on-disk metadata.
This not only involves many extra I/Os and data transfers over
the host interface, but also causes serious delays owing to I/O
ordering [6,7,52] and journaling [26,32]. The end of Moore’s
Law [50] means that the performance of file systems can no
longer scale with faster CPUs. Moreover, the rise of fast stor-
age devices like solid-state drives (SSDs) further exacerbates
this problem, shifting the system bottleneck from the device
to the host-side software I/O stack.

Figure 1 illustrates this problem by measuring the perfor-
mance of the EXT4 file system as the performance of the
underlying SSD increases: TAMMUZ is the slowest one, while
PM983 is the fastest. We run three benchmarks: creat and
rmdir as the metadata-intensive workload and Varmail [48]
as the fsync-intensive workload. As a performance indicator
for the six SSDs, we also run Rand-R/W that issues random
reads/writes to the SSD which is directly mounted to the
host without the file system. The measured throughput in Fig-
ure 1(a) is normalized to that of the slowest SSD (TAMMUZ).
Under Rand-R/W without any metadata operations, the I/O
performance increases greatly by up to 24.8× as the SSD
gets faster. However, under creat and rmdir, the file sys-
tem’s performance increases by only 1.6× and 2.0×, respec-
tively. Similarly, for Varmail, the measured throughput scales
poorly from TAMMUZ to 970PRO (the second fastest SSD);
the 14.0× improvement for PM983 is only possible because

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 75

the SSD ignores fsync1. Figure 1(b) shows the number of
outstanding requests (measured by iostat) averaged across
the metadata- and fsync-intensive workloads, and compares
it with that of Rand-R/W. For Rand-R/W, the host system can
fully utilize the performance of the underlying SSD by send-
ing a sufficient number of I/Os. Thus, the I/O performance
is mostly decided by the SSD performance. However, under
the metadata- and fsync-intensive workloads, the file system
fails to submit large enough I/Os to fully drive the SSD, in
particular when the underlying SSD is fast, which results in
much lower throughputs. These results indicate that we can-
not increase the overall I/O performance just by improving
the performance of the underlying SSD.

To alleviate this problem, we believe it is necessary to
rethink the storage interface between the file system and the
storage device; an independent improvement at either the file
system or the device cannot solve the issue imposed by the
legacy block interface. We are not the first to put forward this
argument: many prior works have investigated extending the
block interface [6, 16] or exposing a file object interface [23].
However, these either have a limited scope (e.g., OPTR [6]
on ordering and Janus [16] on fragmentation) or require a
significant amount of resources (e.g., DevFS [23] with respect
to memory and CPU) that limit their effectiveness.

In this work, we argue that a key-value interface between
the file system and the SSD is a better choice over the legacy
interface for three primary reasons. First, it is simple and well-
understood: it is widely used not only in databases (e.g., key-
value stores and backend storage engines for databases [12]),
but also as a common programming language construct
(e.g., dict in Python). Second, there is great interest in the
industry with the development of KV-SSD prototypes [22]
and the ratification of key-value storage APIs [46]. Third, the
key-value interface is more expressive than the narrow block
interface and makes exposing atomicity to support transac-
tions considerably easier. This further enhances application
programmability with respect to persistence, as well as, facili-
tates attaining the elusive goal of syscall atomicity.

To demonstrate the effectiveness of the key-value storage
interface, we design KEVIN. KEVIN consists of KEVINFS
(key-value interfacing file system), which translates the user’s
files and their inode-equivalent metadata into key-value ob-
jects, and KEVINSSD (key-value indexed solid-state drive),
which implements a novel in-storage indexing of key-value
objects in the SSD’s physical address space. We observe that
KEVIN has the following quantitative advantages over the
traditional file system on a block SSD. First, KEVIN signifi-
cantly reduces the amount of I/O transfers between the host
and the device. On the other hand, a file system on a block
device must access its many on-disk data structures before the
user’s file, incurring high I/O amplification. Second, KEVIN
simplifies crash consistency without needing to employ jour-

1A number of enterprise-grade SSDs ignore fsync by relying on super-
capacitors to guarantee durability [52].

naling. KEVINSSD supports transactions across key-value
SETs and DELETEs that make it easy to maintain a consistent
and persistent state. Lastly, KEVIN is resilient to performance
degradation caused by file fragmentation. As a traditional file
system ages, its performance drops significantly as its data is
dispersed across a fragmented block address space. In KEVIN,
however, all persistent data are partially sorted and indexed
through a variant of a log-structured merge (LSM) tree that
prevents file fragmentation.

We implement KEVINFS in the Linux kernel v4.15 and
KEVINSSD on an FPGA-based development platform. We
measure our system using both microbenchmark and real-
world applications, and compare it to EXT4 [49], XFS [47],
BTRFS [40], and F2FS [25]. Our experiments reveal that on
average, KEVIN increases system throughput by 6.2× and
reduces I/O traffic by 74% for metadata-intensive workloads.
These results are further accentuated when the file systems are
aged and files are fragmented, highlighting the long-term ef-
fectiveness of our approach. Across eight realistic workloads
(five benchmarks and three applications), KEVIN achieves
68% higher throughput on average. In summary, this paper
makes the following contributions:
• We propose a novel in-storage indexing technique that elim-

inates the metadata management overhead of file systems
by making the storage capable of indexing data.

• We prototype an SSD controller that exposes KV objects
through the KV interface and optimize the LSM-tree in-
storage indexing engine to efficiently service file system
requests with low overhead.

• We develop a full-fledged in-kernel file system in Linux
that operates over the KV interface, supporting efficient
crash recovery.

• We investigate the effectiveness of KEVIN using micro and
realistic benchmarks. Evaluation results show that KEVIN
significantly improves I/O performance, especially under
metadata-intensive scenarios.

2 Background and Related Work

In this section, we review the traditional block I/O interface,
and discuss how our work relates to prior studies [9, 26, 30,
55]. We then describe the basics of the LSM-tree that are
fundamental to our indexing algorithm.

2.1 Traditional Block I/O Interface
Existing block storage devices expose the block I/O interface
that abstracts underlying storage media as a linear array of
fixed-size logical blocks (e.g., 512 B or 4 KB) and provides
block I/O operations. Internally, they employ a simple form
of in-storage indexing to hide the unreliable and unique prop-
erties of the underlying media. HDDs maintain an indirection
table to handle bad blocks [17]. Flash-based SSDs contain
a flash translation layer (FTL) that maps logical blocks to
physical flash pages through the logical-to-physical (L2P)

76 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

S
S

D
F

S

NAND Flash

L2P Indexing

READ Block I/O Interface

TRIM

FS Application

POSIX Interface

Virtual File System

NAND Flash

Embedded File System

FS Application

POSIX-like

Interface

KV Applications

NAND Flash

KV Interface

POSIX Interface

NAND Flash

Ext. L2P Journal

FS Application FS Application

NAND Flash

File & Dir
Indexing

File to Object
Mapping

Transaction Mgmt.

VFS to KV
Translation

Transaction
Support

FSLib KVLib

open()

read()

write()

«

Bitmap
Inode

pointer
Dir.

entries Journal

Virtual File System

Bitmap
Inode

pointer
Dir.

entries
Journal
Mgmt.

Virtual File System

KV KV

KV

KV Indexing

KV KV

KV

KV Indexing

S
S

D
F

S

POSIX Interface

GET()

SET()

ITERATE()

«

Ext. KV Interface

D
e
v

F
S

K
V

-S
S

D

K
E

V
I
N

S
S

D
K

E
V

I
N

F
S

(a) Traditional Block Indexing (b) Extended Block Indexing (c) File Indexing (d) Key-value Indexing (e) Proposed KEVIN

Ext.

Interface

Figure 2: Categories of in-storage indexing technologies

indexing table, so as to emulate over-writable media over
out-of-place updatable NAND devices and to exclude bad
blocks [1] (see Figure 2(a)). To virtualize files and directories
over a block device, file systems maintain various on-disk data
structures (e.g., disk pointers, bitmaps, and directory entries).
However, the management of on-disk data structures is costly,
as it involves moderate extra I/O traffic, requires journaling
to support consistency, and is vulnerable to fragmentation.

2.2 Review of In-Storage Indexing
Extended block I/O interface. There have been various ap-
proaches to enhancing the block I/O interface and the naive
L2P-based indexing. Many have suggested custom interfaces
with transactional SSDs to ensure consistency at a low cost.
While specific designs differ, they commonly aim to offload a
journaling mechanism to storage so that a storage controller
can keep track of journaling records to avoid double-writing
during journal checkpointing [9, 21, 26, 36] (see Figure 2(b)).
Some have proposed an order-preserving interface and corre-
sponding L2P indexing design to shorten I/O ordering delays
for journaling [6]. Resolving fragmentation of disk point-
ers (e.g., EXT4’s extents) at the storage hardware level was
presented by [16]. Those measures have alleviated specific
problems (e.g., journaling, ordering, and fragmentation) but
have been unable to fundamentally eliminate I/O overhead
associated with file-system metadata. And, since the indi-
vidual strategies have specific designs, applying all of them
collectively is also quite difficult.

File indexing & interface. DevFS is a local file system
completely embedded within the storage hardware [23] (see
Figure 2(c)), DevFS exposes the POSIX interface to a user-
level application so that the application can access a file with-
out trapping into and returning from the OS. Since all the
metadata operations are performed inside the storage device,
I/O stacks and communication overhead can be completely
removed. However, moving the entire file system into the stor-
age device has serious drawbacks, such as requiring costly
hardware resources and providing limited file system func-
tionalities. As discussed in [23], it is in fact difficult to run
a full-fledged file system without adding large DRAM and
additional CPU cores to the storage controller. This approach
also limits the implementation of advanced file system fea-

tures, such as snapshot and deduplication. Firmware upgrades
to provide new features add maintenance costs.

Key-value indexing & interface. Kinetic HDD and KV-
SSD implement parts of a key-value store engine in the stor-
age hardware to accelerate KV clients [13] (see Figure 2(d)).
KV-SSDs expose variable-size objects, each of which has a
string key, and provide KV operations to manipulate objects.
Samsung’s KV-SSD indexes KV pairs using the hash because
of its simplicity [22], but it suffers from tail latency and poor
range query speed [41]. To address this, LSM-tree-based in-
dexing is proposed [18]. Some go a step further by showing
that the KV interface can be extended to support compound
commands and transactions [24]. But, its FTL design was not
explained in detail. Needless to say, KV-SSDs speed up KV
clients by doing KV indexing on the storage side. However,
since they target KV clients, existing KV interfaces and al-
gorithms are insufficient to index files and directories. For
example, Samsung’s KV-SSD device based on the hash shows
(i) slow iteration performance, (ii) slow sequential perfor-
mance (= random), and (iii) slow performance on small-value
KV pairs. The atomicity and durability support is limited to
only a single KV object, which makes it difficult to remove
file-system journaling. As a result, naively implementing file
systems over KV-SSDs without fundamental design and in-
terface changes may not promise performance improvement.

KEVIN. KEVIN is the natural extension of existing KV-
SSDs. While maintaining a lean indexing architecture for a
storage controller, our in-storage engine based on an LSM-tree
is designed to efficiently index files and directories, together
with transaction support to remove file-system journaling
(see Figure 2(e)). Over such a KV storage device, we present
a new POSIX-compatible file-system design that translates
VFS calls and maps files and directories to KV objects. In
other words, KEVIN splits the file system into the OS and the
device, proposing an extended KV interface to glue the two
components efficiently.

2.3 File System over Key-value Store
There have been attempts to run file systems over KV
stores [19, 39]. The BY-tree and LSM-tree algorithms often
used in KV stores are write-optimized, so the file system’s
metadata operations or small file writes are handled efficiently.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 77

K2V Index

Persistent Storage

DRAM
Memtable

L1

L2

Lh

«

Compaction

(merge & sort) Value Log

ValueValue Pointer GC

Figure 3: Overall architecture of LSM-tree

BetrFS in particular employs full-path indexing to improve
directory scanning performance. It also adopts zones [56],
range deletion [56], and tree-surgery [57] techniques to im-
prove rename and directory deletion operations. Those stud-
ies, however, still rely traditional file systems (e.g., EXT4) as
a data store and are based on in-kernel (e.g., TokuDB [19])
or user-level (e.g., LevelDB [39]) KV stores. This host-side
indexing inevitably causes I/O traffic between the host and
the device. The write-ahead logging (WAL) to ensure con-
sistency with KV objects also incurs double-writes like the
journaling of traditional file systems. To avoid this, BetrFS
employs late-binding journaling for sequential writes [56]. In
addition, TableFS uses EXT4 as a file store to keep big files,
so it suffers from fragmentation as the file system ages.

2.4 LSM-Tree Basics

We explain the basics of LSM-tree algorithms [31]. The LSM-
tree, as shown in Figure 3, maintains multiple levels, !1, !2,
..., !ℎ−1, and !ℎ , where ℎ is a tree height. Levels are organized
such that !8+1 is) times larger than !8 . Each level contains
unique KV objects sorted by the key. However, the key range
of one level may overlap with those of other levels.

A KV object is first written to a DRAM-resident memtable.
When the memtable becomes full, buffered KV pairs are
flushed out to !1 in persistent storage. The LSM-tree sequen-
tially writes buffered KV objects to free space in !1. Once
!1 becomes full, KV pairs of !1 are flushed out to !2 and
similarly, !8 is flushed out to !8+1 when !8 is full. To satisfy
the tree property, when flushing out !8 to !8+1, the LSM-tree
should perform compaction that merges and sorts the KV
objects of !8 and !8+1. The compaction requires many I/Os
since it has to read all KV pairs from two levels, sort them by
the key, and write sorted KV pairs back to the storage.

To reduce compaction costs, one suggests managing keys
and values separately [28]. It appends a value of a KV object
to a value log; only a key and a value pointer locating a corre-

sponding value in the log are put into the tree. In this paper, a
pair of <key, value pointer> is called a K2V index. Because
object values do not need to be read during compaction, com-
paction costs can be greatly reduced, especially when a value
is larger than a key. The value log contains obsolete values
that must be reclaimed by garbage collection.

For retrieving a KV object, the LSM-tree may look up mul-
tiple levels, which involves extra reads due to the fact that
the key ranges of the levels can overlap. If a candidate KV
object fetched from !8 is not matched with a wanted one, we
should move on to !8+1 and look up another candidate. To
reduce reads for level lookups, bloom filters are used. Ac-
cording to [11], the number of extra reads can be reduced to
around one. Once a desired KV object is found, the LSM-tree
returns a value to the client because a key and its value are
read together. If keys and values are separated, another read
is required to retrieve its value stored in the value log.

3 Overall Architecture of KEVIN

This section explains the architecture of KEVIN, focusing
particularly on its indexing schema to offload file-system
metadata (inode/data bitmaps, disk pointers, and directory en-
tries) to storage. We design two major components of KEVIN,
KEVINFS and KEVINSSD, so that they have specific roles:
(i) the mapping of files and directories to KV objects at the
file-system level (§3.1); (ii) the indexing of KV objects in
flash using the LSM-tree at the storage level (§3.2).

Before explaining the details of our system, we explain
the KV interface in Table 1. KEVINSSD exports basic KV
operations, SET, GET, and ITERATE, to read, write, and iterate
over KV objects. SET and GET also support partial reads and
writes that are useful for dealing with micro reads and writes
on a large object. KEVINFS invokes ITERATE repeatedly to
retrieve KV pairs whose keys are lexicographically equal to or
greater than a given pattern. KEVINSSD supports transac-
tion commands, BeginTX, AbortTX, and EndTX, exploited by
KEVINFS to ensure file-system consistency. A (range) dele-
tion command, DELETE, is included to support object deletion
or truncation. The length of an object key is variable, but is
limited to 256 B. Technically, there is no limit to a value size.

3.1 Mapping of File and Directory
KEVINFS uses only three types of KV objects: superblock,
meta, and data objects. A superblock object keeps file system
information. While a meta object stores attributes of a file or a

KV Command Description
GET(TID,key,off,len) Retrieve a value given key; if off and len are given, read len bytes of data at offset off from a value of key
SET(TID,key,off,len,val) Set key to hold data val; if doesn’t exist, create a new one; partially update a value given off and len
DELETE(TID,key,off,len) Delete an object of key; truncate part of a value given off and len
ITERATE(TID,pattern,cnt) Iterate over objects and return at most cnt objects that are lexicographically equal to or greater than pattern
BeginTx(TID), EndTx(TID), AbortTx(TID) Start a new transaction with TID; commit the transaction; abort the transaction, discard changes (see §5.1)

Table 1: Key KV commands supported by KEVIN

78 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bin/ dev/ home/

(2)

(4) (15)(3)

/

alice/

bob.txt eve/

(50)

(100) (101)

m:2:home/

m:15:alice/

101 0

m:50:eve/

m:50:bob.txt

d:100 �

50 2

15 1

100 32K «

«

«

key

value

«

meta object

data object meta object

meta object

meta object

m:0:/

2 26 «

inode #
meta object

Figure 4: Meta and data objects

directory (e.g., an inode number, size, and timestamps), a data
object holds file data. The sizes of a superblock object and a
meta object are 128 B and 256 B, respectively. Conversely, a
data object can be as large as a file size.

Figure 4 illustrates how files and directories are stored as
the form of KV objects. A regular file consists of a pair with
one part meta object and the other data object. In contrast to
a file, a directory only has a meta object to keep its attributes.
For a regular file, the size field of a meta object represents a file
size; for a directory, it is the total number of subdirectories and
files. All objects are retrieved (GET), stored, or updated (SET)
by KV commands with unique keys. Directory traversals are
supported by ITERATE as well (explained in detail later).

For assigning a key of an object, KEVIN uses two inode-
based key naming rules. Rule #1: a meta object key is a
combination of (i) a prefix ‘m:’, (ii) an inode number of a
parent directory, (iii) a delimiter ‘:’, and (iv) a file or directory
name. Rule #2: a data object key is a combination of (i) a
prefix ‘d:’ and (ii) an inode number of a file. Our naming rules
are based on [39], but is extended to deliver the semantics of
KV objects so that the storage hardware can index them more
efficiently (see §3.2).

Figure 4 shows an example directory tree and associ-
ated KV objects. Consider a file bob.txt in a directory
/home/alice/. The inode numbers of /home/alice/ and
bob.txt are 50 and 100, respectively. According to the
rule #1, the meta object key is m:50:bob.txt. Similarly, fol-
lowing the rule #2, the data object key is d:100. As another
example, consider a directory eve/ in /home/alice/. A di-
rectory has a single meta object only, so a meta object whose
key is m:50:eve/ exists.

KEVINFS has no directory entries, but a list of files
and directories belonging to a specific directory can be re-
trieved by using ITERATE. To list up files and directories in
/home/alice/ whose keys start with m:50:, KEVINFS cre-
ates a new iterator ITERATE(m:50:,2) and sends it to the
storage, which then returns meta objects with the prefix m:50:
(e.g., bob.txt and eve/ in Figure 4). To prevent too many
objects from being fetched at once (which might take so long),
we can specify the maximum object count cnt in the ITERATE

command. In this example, cnt is 2, representing the number
of subdirectories and files in /home/alice/. Traversing an
entire file-system tree is easily implemented. The inode num-
ber of ‘/’ is fixed to 2. KEVINFS retrieves all the files and
directories in ‘/’ with ITERATE(m:2:,26). By repeating the
above steps for directories , it builds up the entire tree.

To efficiently handle small files, KEVINFS packs attributes
and data of a file in a meta object together if their size is
smaller than 4 KB. This reduces I/Os since a small file can be
read or written by one GET or SET to its meta object.

As an alternative to the inode-based indexing, one might
suggest using the full-path indexing [19]. This improves
scan performance when using a KV store based on sorted
algorithms (e.g., BY-trees), as it globally sorts the entire file-
system hierarchy. While this is beneficial on devices with high
seek time such as HDDs, on devices with fast random access
like SSDs, its benefits are diminished. On the other hand, the
inode-based indexing shows good performance on operations
other than directory scans and offers fast directory renaming
without techniques such as zones [56] or tree-surgery [57].
Especially as KEVINSSD performs more efficiently when
key lengths are short (see §3.3), the inode-based indexing that
has shorter key lengths is a more appropriate choice.

3.2 Indexing of KV Objects

KV objects exposed to the file system are managed by our
in-storage indexing engine, KEVINSSD, which makes use
of LSM-tree indexing. KEVINSSD maps KV objects to the
flash, allocating and freeing flash space, and handles read and
write requests on objects which are usually done by an FTL.
In our system, the FTL only does simple tasks (e.g., bad-block
management and wear-leveling). The hardware resources
(e.g., CPU cycles and DRAM) saved by disabling such FTL
features are used to run our indexing algorithm.

Figure 5 shows the architecture of KEVINSSD. For each
level, it maintains a tiny in-memory table (48 MB DRAM
for 1 TB SSD) to keep track of KV objects in the flash. Each
entry of the table has <start key, end key, and pointer>, where
a pointer points to the location of a flash page that holds KV
objects; start and end keys are the range of keys in the page.
Those key ranges can be overlapped on multiple levels. For
fast search operations, all entries are sorted by start keys.

KEVINSSD manages the keys and values of meta and data
objects separately. This is a reasonable choice because a key
size is much smaller than its value size. This is even true for
a small meta object whose value size is 256 B. According to
our analysis, the average length of a meta-object key is 32
B, which is 8× smaller than its value. Since keys and values
are separated, only K2V indices (i.e., <key, value pointer>)
for objects are stored in flash pages, called key-index pages,
which are separated from their values in other flash pages.
Meta and data objects begin with a different prefix (‘m:’ or
‘d:’), so their K2V indices are sorted in different pages.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 79

m:2:var/m:2:bin/d:100:0

Controller DRAM

Flash

L1

L2

Ln d:102:3

m
:2

:v
ar

/

m
:2

:b
in

/

«
m

:2
:d

ev
/

m
:2

:u
sr

/

Value pages½
Directory entries for

/home/

Data

Block

(4-KB)

Start Key

End Key

In-memory index

for key-index pages

NAND page

d
:1

0
0

:1
d

:1
0

0
:0

«

d
:1

0
0

:7

«

d
:1

0
2

:3

Key-index page

¾
Disk pointers for
/home/alice/bob.txt

In
o

d
e

Key Value

«

«

Figure 5: Layout of KV objects in KEVINSSD

Meta object indexing. A meta object key corresponds to a
file or directory name in typical file systems, while meta object
value is equivalent to an inode. Key-index pages for meta
objects thus contain K2V indices, each of which is a pair of
<meta object key, value pointer>. This is similar to a directory
entry, <file or directory name, inode #>, in a directory file.
According to the naming rule #1, K2V indices that belong
to the same parent directory are sorted by the parent’s inode
number and thus are likely to be packed into the same key-
index pages (see 1 in Figure 5).

A list of files and directories belonging to a specific di-
rectory can be retrieved quickly if associated K2V indices
are fully sorted. To get directory entries in /, for example,
KEVINSSD requires one flash read (or a few if directory size
is huge). However, as mentioned in §2, to reach a wanted
key-index page, KEVINSSD should look up multiple levels
of the tree. Moreover, if K2V indices are fragmented across
multiple levels, more than one flash read is required to build
up a complete directory list. We explain how we mitigate this
problem in the storage (§3.3) and the file system levels (§4).

Directory entries are updated efficiently. Existing file sys-
tems read and write a 4 KB block(s) to modify a list of direc-
tory entries. In KEVINSSD, just by writing (SET) or removing
(DELETE) a meta object, we can update directory entries in di-
rectories. This removes the necessity of maintaining directory
files, thereby eliminating data movement costs.

Data object indexing. In contrast to a meta object, a data
object can be very large. Indexing a large object (e.g., 1 GB)
as the form of a single KV pair incurs high I/O overhead when
a small part of it is read or updated. For example, to update
only 512 B of data, KEVINSSD has to read an entire object,
modify it, and write it back to the flash, updating its index in
the tree. To avoid this, KEVINSSD splits a data object into 4
KB subobjects with unique suffixes and manages them as if
they are independent KV pairs. For /home/alice/bob.txt
whose size is 32 KB, its data object is divided into eight 4 KB
subobjects with different suffixes, ‘d:100:0’, ‘d:100:1’, ...,
and ‘d:100:7’, in storage. If a small part of a huge object is
retrieved or updated, only the corresponding subobject needs
to be read from or written to the flash. Please be advised that
there is no additional indirection (or index) for subobjects
because subobject keys are decided by file’s offset.

Since subobject keys and their values are separated, key-
index pages hold K2V indices, each of which is a pair of
<subobject key, pointer>. As one might notice, a K2V in-
dex is like a disk pointer (or extents in EXT4) pointing to a
data block in existing file systems. According to the rule #2,
K2V indices are sorted by file’s inode number and by suf-
fix numbers. Therefore, K2V indices belonging to the same
data object (i.e., the same file) tend to be packed in the same
key-index pages (see 2 in Figure 5).

To retrieve 4 KB data from a data object, KEVINSSD
should look up levels to find a desired key-index page. Once
it is found, KEVINSSD can read a K2V index from the flash
with one page read. Then, actual data are read by referring
to its pointer. Other K2V indices read together are cached in
the controller’s DRAM (see §3.3). This reduces lookup costs
for future requests. This indexing mechanism is similar to the
management of disk pointers (e.g., an extent tree in EXT4).
Existing file systems maintain index blocks that contain point-
ers only, where each pointer points to a data block or another
index block. Before reading file data, index blocks must be
loaded from a disk.

In KEVINSSD, looking for a K2V index for reading data is
done in storage. The update of K2V indices for a data object is
done by writing or deleting a data object via SET and DELETE.
Compared to typical file systems that read and write a 4 KB
block(s) to retrieve and to update disk pointers, KEVINSSD
does not involve any external I/Os to index file data.

3.3 Mitigating Indexing Overhead

As mentioned in §3.2, putting the LSM-tree indexing onto the
storage hardware causes extra I/Os, which never happen in
typical FTLs using a simple L2P indexing table (which is en-
tirely loaded in DRAM). We introduce three main causes that
create internal I/Os and explain how we solve them (see Fig-
ure 6). Note that garbage collection occurs both in KEVIN
and existing SSD controllers, so it is not explained here.

Compaction cost. Compaction is an unavoidable process
and may involve many reads and writes [28]. KEVINSSD
manages meta and data objects in a manner that minimizes
compaction I/Os by separating keys and values. Particularly,
our inode-based naming policy that assigns short keys to data
objects lowers the compaction cost because it enables us to
pack many subobject keys into flash pages. We go one step
further by compressing K2V indices for data objects. Subob-
ject keys have regular patterns (e.g., ‘d:100:0’, ‘d:100:1’,
...), so they are highly compressible even with naive delta-
compression requiring negligible CPU cycles. This reduces
the amount of data read and written during compaction. Ac-
cording to our analysis with write-heavy workloads, the write
amplification factor (WAF) of the compaction was less than
1.19× under the steady-state condition (see §6.2).

Level lookup cost. The LSM-tree inevitably involves mul-
tiple lookups on levels until it finds a wanted KV object (see

80 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 1

 2

0.0030.096

0.096 0.003

Fragmented Sorted

#
 o

f
K

2
V

 P
a

g
e

 R
e

a
d

s LSM+Filter +CACHE +Compress +E-Defrag

Seq
GET

Locality
GET

Rand
GET

Seq
GET

Locality
GET

Rand
GET

Figure 6: The number of reads per KV request to retrieve
a key-index page. The LSM-tree with bloom filters is our
default setting. We add each optimization technique one by
one to understand their impact. The size of bloom filters is
set to 6.5 MB for 40M objects. The cache size is 110 MB.

§2). To avoid useless lookups, KEVINSSD employs small
bloom filters. It reduces the number of extra reads for level
lookups to around one [11]. To further reduce lookup costs,
it also caches popular K2V indices in DRAM. SSDs usually
have a large DRAM (e.g., 1 GB for 1 TB SSD) to keep an
L2P table, but this large L2P mapping table is unnecessary for
KEVINSSD. This enables us to use large DRAM for caching.
To increase an effective DRAM size, KEVIN maintains cached
K2V indices in the compressed form. To make it searchable,
in between compressed indices, we add uncompressed keys
sparsely which can then be used as a pivot index for binary
searching. This optimization shows its strength with large
files. For example, to index a 10 GB file without compres-
sion, 45 MB are required for indexing KV pairs, but with
compression, only 10.8 MB memory is needed.

Fragmented tree cost. The LSM-tree allows each level
to have overlapped key ranges with other levels. Therefore,
K2V indices belonging to the same parent directory or file
can be fragmented across multiple levels, even they have the
same prefix. To retrieve a full list of directory entries or disk
pointers, multiple flash pages on different levels must be read.
This problem is implicitly resolved by compaction that merges
and sorts K2V indices in adjacent levels. KEVIN also provides
an offline user-level tool that explicitly triggers compaction
in storage. Unlike traditional tools (e.g., e4defrag [14]), this
does not involve moving the entire file system’s metadata and
data and is thus much more efficient.

Figure 6 shows the impact of optimization techniques in re-
ducing indexing overhead. For each KV request, we counted
the number of page reads required (i) to find a key-index page
in the LSM-tree and (ii) to read that page from flash. The
I/O cost of reading a value was not included here. Over KV
objects that were fragmented (i.e., unsorted) or fully sorted,
we ran three types of queries: random GET (= point-query),
90:10 localized GET (= point-query), and sequential GET (=
range-query). Sequential GETs over fully-sorted KV objects
required almost zero cost to read a key-index page. This is
because after the first miss on a specific key-index page, fol-
lowing KV requests were hit by the cached indices. Caching
KV indices were also useful when GET requests were local-

Syscalls KEVINFS EXT4
mkdir SET(MO) W(BB + IB + I + DE)
rmdir DELETE(MO) W(BB + IB + DE)
creat SET(MO) W(IB + I + DE)
unlink DELETE(MO + DO) W(BB + IB + DE)
setattr SET(MO) W(I)
write SET(DO) W(BB + D)
open GET(MO) R(I)

lookup GET(MO) R(DE + I)
read GET(DO) R(D)

readdir ITERATE(MO) R(DE + I)

Table 2: I/O operations of KEVIN and EXT4 for basic syscalls.
(MO: meta object, DO: data object, BB: block bitmap, IB:
inode bitmap, I: inode, DE: directory entry, and D: data block)

ized. Regardless of the distribution of KV objects, random
GETs suffered from extra reads, but even in the worst case,
they required about two reads. This is because, with bloom
filters, the number of page reads that happen while searching
for a key-index page in the tree is theoretically limited to
around one, on average [44].

Even with such optimizations, KEVINSSD exhibits slightly
slower read performance than block storage devices that do
not suffer from any extra I/Os for indexing. However, our
entire system exhibits much higher performance than existing
systems thanks to the reduction in metadata I/Os. Moreover,
while metadata I/Os on existing file systems increase as it
ages and gets fragmented, KEVINSSD’s indexing cost is main-
tained constantly through regular compaction of the LSM-tree
in storage and other optimizations.

4 Implementing VFS Operations

We describe how KEVINFS implements VFS operations us-
ing the KV interfaces. KEVINFS is a POSIX-compatible
in-kernel file system and implements 86 out of 102 VFS oper-
ations. We summarize the types of I/O operations to handle
major file syscalls in Table 2, comparing them with EXT4.

Handling write syscalls. All the write-related syscalls can
be handled by two KV commands, SET and DELETE. It is
clear that KEVINFS requires fewer I/O operations than EXT4.
This benefit stems from the fact that KEVINFS does not need
to modify on-disk metadata. Taking the example of unlink,
KEVINFS issues two DELETE commands to remove a meta
object and a data object (which are associated with the file
to be deleted) from storage. On the other hand, EXT4 has
to update data and inode bitmaps to return a data block as
well as an inode. EXT4 needs to update directory entries to
exclude the deleted file from the directory.

KEVINSSD does not involve many internal I/Os for SET
and DELETE. SET first buffers a KV object in the memtable
and then appends to the flash later, leaving the old version if
it exists. DELETE internally involves a small write to leave a
tombstone (4 B) in the tree. Outdated objects (overwritten by
SET) and deleted objects are persistently removed during com-
paction, which is not expensive in our design as we manage
keys and values separately.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 81

Extent-Tree

O(log n)

l

DIR

DATA

DIR

Inode Table

n

Inode

Inode

Inodes

Data

open()

lookup()

read()

readdir()

(a) KEVINFS

LSM-Tree

O(1)

h

meta obj

data obj

GET

ITERATE

dir entries

n

Data

Inode

Inodes

open()

lookup()

read()

readdir() meta obj

(b) EXT4

KEVINSSD

Figure 7: Handling of read syscalls of KEVINFS and EXT4

Handling read syscalls. Read-related syscalls can be im-
plemented by two KV commands, GET and ITERATE. Re-
gardless of the type of data being accessed, KEVINFS needs
to send GET or ITERATE to a designated meta or data ob-
ject as shown in Figure 7(a). open, which retrieves an in-
ode of a file, can be implemented as GET to a meta object.
lookup is the same as open in that, given a full path name
(e.g., /home/alice/), it retrieves inodes of directory com-
ponents (e.g., ‘/’, ‘home/’, and ‘alice/’) by sending GETs
to meta objects. Reading data from a file is also translated
into GET to a data object. Finally, readdir corresponds to
ITERATE, which retrieves a set of meta objects (i.e., inodes)
that belong to the same parent directory.

While the LSM-tree is used as a unified indexing data
structure to service all the read-related syscalls in KEVIN,
EXT4 relies on several on-disk data structures: an inode ta-
ble, an extent tree that indexes disk pointers, and a directory
file that holds directory entries and their inode numbers (see
Figure 7(b)). KEVIN and EXT4 should be comparatively an-
alyzed further because the two systems operate dissimilarly
over different data structures. But, KEVINFS benefits from its
in-storage indexing; all the I/Os associated with the LSM-tree
are performed in storage without any external data transfers.

When opening a file, EXT4 fetches an inode from the inode
table by using its inode number as an index. EXT4 requires a
4 KB block read and is faster than KEVINFS that has to look
up the LSM-tree before reading an inode.

For lookup and read, KEVINFS needs to look up the LSM-
tree to get locations of meta or data objects (i.e., key-index
pages). Similarly, EXT4 needs to search the extent tree to
find disk pointers that locate disk blocks for a directory or
regular file. Both cases may involve extra reads from the disk.
To skip the tree search step for small files, EXT4 embeds a
few disk pointers in an inode. KEVINFS cannot avoid the tree
search. However, it does not require reading a directory file
during lookup, and the data of a small file is preloaded when
its meta object is read. Thus, for lookup and small read, the
two systems exhibit similar performance.

If a file or a directory is huge, the tree search cost could
be high. In KEVINFS, the worst-case I/O cost of looking up

the LSM-tree is $ (ℎ), where ℎ is the tree height. However, as
shown in Figure 6, even under random I/Os, the average I/O
cost is not as high as two reads thanks to bloom filters [11].
In EXT4, the worst-case I/O cost of the extent tree is $ (;),
where ; is the height of the tree (; = 5 by default). The average
I/O cost is $ (;>6 =), where = is the number of extents for
a file which actually decides the tree height. If a file is not
fragmented, = is close to 1, and thus the tree search requires
less than two reads. However, if it is severely fragmented, the
I/O cost could be more than two reads.

Besides the tree lookup cost, KEVINFS has another benefit
in that it is never logically fragmented. In EXT4, once a file
is fragmented, many pieces of file data are scattered across
non-continuous logical blocks. In this case, even when the file
is sequentially read, EXT4 has to issue many read requests to
the disk [10]. As reported by [16], it badly affects I/O through-
put. In KEVINFS, no logical fragmentation happens because
each file is represented as an object, not a set of logical blocks.
Hence, KEVINFS can always perform sequential reads in big
granularity. Also, as explained in §3.3, KEVINSSD shows
high sequential I/O performance on subobjects with index
caching and compression. As a result, EXT4 generally pro-
vides good performance when a file is continuously allocated,
but KEVINFS is more resistant to fragmentation.

Finally, readdir requires retrieving a full list of directory
entries to read the associated inodes. EXT4 offers different
performance depending on the degree of inode table frag-
mentation. If the inodes are allocated together and thus are
stored in the same blocks, only few block I/Os are needed to
retrieve them. However, if they are highly fragmented, EXT4
suffers from high I/O overhead. In KEVINFS, the inodes (i.e.,
values of meta objects) pointed to by the directory entries
are scattered across multiple pages (see 1 in Figure 5). This
inevitably degrades readdir performance. To mitigate this,
KEVINFS uses a simple tweak that rewrites meta objects to
the disk. When meta objects retrieved by ITERATE are evicted
from the page cache, KEVINFS rewrites them to the disk even
if some of them are clean. All of the meta objects that are
evicted together are likely to be written to the same flash pages
so that the next time KEVINFS can retrieve them quickly with-
out multiple page reads. We plan to study a way to sort meta
objects inside KEVINSSD without explicitly rewriting.

5 Crash Consistency

We describe how KEVIN implements transactions to main-
tain consistency. KEVINFS issues fine-grained transactions
by tracking dependency among KV objects so that they are
updated atomically (see §5.1), and KEVINSSD supports trans-
action commands exploited by KEVINFS (see §5.2).

5.1 Maintaining Consistency in KEVINFS
Although an ideal file system would immediately persist data
upon a write without any consistency problems, current file

82 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

systems follow a compromised model for better performance.
That is, file systems provide an explicit interface to the users
(i.e., fsync) by which users can request a barrier across up-
dates or immediate durability enforcement whenever needed.
In addition, file systems such as EXT4 maintain a global trans-
action comprising all associated blocks with write requests
during a time window, and the flush daemon atomically per-
sists them to storage through the journaling. This mechanism
prevents the out-of-execution and/or buffering of write that
may lead to an inconsistent state for the file system.

KEVIN makes data durable through both user-initiated
fsync and the flush daemon, but without the overhead as-
sociated with the journaling mechanism. This is achieved by
KEVINSSD supporting fine-grained transactions.

KEVINFS only builds a transaction associated with de-
pendent KV objects and simply transfers the information to
the underlying storage. KEVINSSD then materializes given
transactions to the physical medium with an SSD-internal
technique (see §5.2). To this end, we extend the KV interface
to support three transaction commands: BeginTX, EndTX, and
AbortTX. Below is an example of a transaction that manages
the KV objects associated with unlink in Table 2. KEVINFS
can instruct the storage to remove meta and data objects atom-
ically by wrapping KV commands in the same transaction:

BeginTX(TID);
DELETE(TID,m:4:c.txt); /* data object */
DELETE(TID,d:5); /* meta object */
EndTX(TID);

KEVINSSD guarantees atomicity and durability for a trans-
action. To ensure file-system consistency, KEVINFS preserves
the order between dependent transactions. As a result, KEV-
INFS ensures the same level of reliability as other journaling
file systems, and also offers the following desired properties.

Transaction disentanglement. The performance of a file
system suffers from a phenomenon known as transaction
entanglement that flushes the entire global transaction when
fsync is requested for only a part of the buffered data. This
not only increases the fsync latency, but lowers the effect
of write buffering. Some attempted to resolve this issue by
splitting a transaction into the smaller ones by files or by sub-
trees [29, 32]. However, it could not be effective in practice
because the transaction disentanglement is impossible when
data is shared across transactions. Typical file systems engrave
small metadata within a fixed-sized block (e.g., inode/bitmap
blocks), and thus chances are high that the metadata updates
in a different context happen to the same block.

In contrast, KEVINFS does not maintain any on-disk meta-
data shared by different files unless they are adjacent in the
file system tree (e.g., a parent directory and a file). This nature
makes transaction disentanglement easy and likely more ef-
fective. KEVINFS basically maintains a single running trans-
action containing all pending KV commands and sends them
at once through periodic flush daemon (a default period is 5s).
However, upon fsync, KEVINFS forks a small transaction

L2

L1

Controller DRAM

Flash

Value

(4-KB)

d
:5

0
:1

d
:1

0
:0

«

d
:2

8
:0

Key-index page

(Sorted)

TxRecovery

d
:3

:1
d

:9
:0

«

d
:8

:4

d
:5

:1
d

:5
:0

«

d
:6

:0

Ln

100
CHECKPOINTED

101
COMMITTED

102
RUNNING

TxTable Skiplist

«

«

«

«

«

«

d
:2

2
:1

0

«

d
:2

9
:3

2
d

:1
9

:1
1

TxLogs

«

Memtable

«

«

«

«

«

checkpointed

TxLogs

(Unsorted)

½

¾

Z

logging

Figure 8: Transaction management of KEVINSSD

that only includes the KV objects associated with the fsynced
file, thereby achieving short latency.

Syscall atomicity guarantee. Current journaling file sys-
tems do not ensure the atomicity of a syscall. Because the
transaction size is limited by the remaining journal size, even
a single syscall can be split into multiple transactions in some
cases [51]. This is rare but possible and thus the user-level
applications should employ another technique (e.g., user-level
journaling) to ensure an atomic write over the file system.
KEVINFS has no such limitation and thus enforces the atom-
icity for each syscall by assuring all of the associated KV
objects reside in the same transaction.

5.2 Transaction Processing in KEVINSSD
We now explain how KEVINSSD supports transaction com-
mands. Our design is essentially based on journaling but we
further optimize it to perform well with KEVINSSD.

Transaction management. Figure 8 shows the transaction
management in KEVINSSD. We employ three data structures:
a transaction table (TxTable), transaction logs (TxLogs), and
a recovery log (TxRecovery). The TxTable keeps the infor-
mation of transactions, while the TxLogs keep K2V indices
of transaction objects. The TxLogs are stored either in the
DRAM or in the flash. They are also used to keep track of
K2V indices committed to !1 in the tree. The TxRecovery is
used to recover or abort transactions during the recovery.

When BeginTx(TID) comes, KEVINSSD creates a new
entry in the TxTable, where each entry keeps a TID, its status,
and locations of K2V indices associated with the transaction.
Many transactions can be activated simultaneously as there
exist multiple entries in the table. Initially, the status of the
transaction is RUNNING, which means that it can be aborted in
the event of a crash (see 1 in Figure 8). When subsequent
commands belonging to the transaction arrive, KEVINSSD
keeps KV indices in the DRAM-resident TxLogs and buffers
associated values in the memtable. Once the TxLogs or the
memtable becomes full, KV indices or values are logged into
the in-flash TxLogs or the flash. All of them are not applied to
the LSM-tree yet as they can be aborted. When EndTx(TID)
is received, the associated transaction is committed, and its
status is changed to COMMITTED (see 2). KEVINSSD then
notifies KEVINFS that the transaction is committed. Even

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 83

though some KV indices and values can still be buffered
in DRAM (i.e., the in-memory TxLogs and the memtable),
KEVINSSD ensures persistence by using a capacitor. Finally,
committed KV indices should be reflected to the permanent
data structure, the LSM-tree, through a checkpoint process.

Unfortunately, the checkpoint cost is high because commit-
ted KV indices should be inserted into !1 in the LSM-tree.
Recall that some of KV indices are stored in the in-flash
TxLogs and are unsorted because they are logged in their
arrival order. Thus, the checkpoint process involves extra I/Os
and sorting overhead. We relieve this cost by treating commit-
ted TxLogs as part of !1 and delaying the writing of their KV
indices to the tree until the compaction between !1 and !2
happens. When the compaction is triggered, KV indices in
the TxLogs and !1 are flushed out to !2 together. In this way,
we can skip writing KV indices to !1. To quickly look up
KV indices in the TxLogs (which are unsorted), KEVINSSD
temporarily builds a small skiplist to index K2V pairs in the
TxLogs. The sorted nature of the skiplist also makes it easy
to apply KV indices into the tree during the compaction.

Later, once associated KV indices are checkpointed to !2
through the compaction, the transaction status is changed into
CHECKPOINTED (see 3), and the associated TxLogs and the
TxTable entry occupied by them are reclaimed.

Recovery. The TxTable, buffered K2V indices, and values
must be materialized to the flash regularly or when a certain
event happens. In our design, KEVINSSD materializes them
when a sudden crash is detected. While power is being sup-
plied by a capacitor, it flushes out buffered K2V indices to the
in-flash TxLogs and buffered values to the flash. The TxTable
is updated to point to the in-flash TxLogs and is then appended
to the TxRecovery. Two specific flash blocks (e.g., blocks #2
and #3) are reserved for the TxRecovery and are treated as
a circular log. When a system reboots, KEVINSSD scans
the TxRecovery, finds the up-to-date TxTable, and checks the
status of each transaction. If a transaction was already commit-
ted, it means that KEVINSSD persistently wrote KV objects
to the flash before. Associated K2V indices are thus pushed
into the skiplist to be searchable. The RUNNING transactions
are aborted, and associated resources are reclaimed.

KEVINSSD supports the same level of crash consistency as
EXT4 with the ordered mode, but requires much smaller I/Os
by avoiding double writes. Moreover, by leveraging capacitor-
backed DRAM in the controller, it further reduces the over-
head of flushing out KV objects and lowers the delay of mark-
ing journal commits. The DRAM-resident TxLogs is 2 MB in
size in our default setup, so a large capacitor is not required.

6 Experiments
We present experimental results on KEVIN. We seek to an-
swer the following questions: (i) Does KEVIN provide high
performance under various workloads, in particular, metadata
intensive ones? (ii) How much data movement between the
host and the SSD can be reduced? (iii) Does KEVIN provide

high resistance to fragmentation? (vi) Does KEVIN provide
benefits over existing file systems based on KV stores?

6.1 Experimental Setup
All the experiments are performed on a server machine
equipped with Intel’s i9-10920X CPU (12 cores running at
4.6 GHz) and 16 GB DRAM. The Linux kernel v4.15.18 is
used as the operating system. Our SSD platform is based on
a Xilinx VCU108 [53] equipped with a custom flash card
providing 2.4 GB/s and 860 MB/s throughputs for reads and
writes, respectively. The total SSD capacity is set to 128 GB.
The FPGA contains controller logic to manage NAND chips
and to provide the PCIe interface to interact with the server.

Our SSD platform does not have a CPU and has a simi-
lar architecture to an open-channel SSD [5]: it runs the FTL
software on the host system. To emulate the limited resources
of an SSD controller on an x86 host, we implement FTLs
in the guest Linux OS in QEMU/KVM, completely isolated
from the host that runs file systems. We assign 4 cores to the
guest. 128 MB DRAM (0.1% of the SSD capacity [42, 43])
is assigned to the guest, while the rest is used by the host.
The interface throughput between the host and the guest is
about 8 GB/s, which is similar to that of PCIe 4.0 x4. Our de-
fault setup is biased towards existing systems considering its
high interface throughput. Our system setting has a limitation.
LSM-tree’s compaction requires high computation power, but
can easily be accelerated by FPGA or ASIC [18, 58]. Owing
to the lack of those accelerators on our host system, we use
the Intel i9 CPU as a sorting accelerator.

We implement two FTL schemes, the page-level FTL that
uses the simple L2P indexing and the proposed KEVINSSD.
The page-level FTL uses 128 MB DRAM for an L2P map-
ping table. KEVINSSD uses 6.5 MB of DRAM for bloom
filters, 2 MB for TxLogs, 1 MB for memtables, 6 MB for
in-memory index, and 112.5 MB for caching popular entries.
We compare KEVINFS with four kernel file systems, EXT4
with the ordered mode, XFS, BTRFS, and F2FS.

6.2 Experimental Results
We evaluate KEVIN using micro-benchmarks in §6.2.1 and
carry out experiments with realistic workloads in §6.2.2. Per-
formance analysis of aged file systems is presented in §6.2.3.
The benefits of in-storage indexing are analyzed more deeply
in §6.2.4. In graphs, EXT4, XFS, BTRFS, F2FS, and KEVIN
are abbreviated as ‘E’, ‘X’, ‘B’, ‘F’. and ‘K’, respectively.

6.2.1 Results with Micro-benchmarks

We conduct a set of experiments using three types of micro-
benchmarks: metadata-only, small-file, and data-only work-
loads, all of which have different file/directory access patterns.

Metadata-only workloads. They create and delete a large
number of empty files and directories. We use creat, mkdir,
unlink, and rmdir from Filebench [48] that perform inten-
sive updates of on-disk metadata, but do not involve any I/Os

84 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

90

180

270

360

450

mkdir rmdir creat unlink readdir-1st readdir-2nd

T
h
ro

u
g

h
p

u
t

(k
o
p

s
/s

)

E X B F K

(a) Throughput

0

30

60

90

120

150

E X B F K E X B F K E X B F K E X B F K E X B F K E X B F K

mkdir rmdir creat unlink readdir-1st readdir-1st

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

Figure 9: Metadata intensive workloads

on file data. A total of 8M files and directories are created
and deleted. This is almost the maximum number of files and
directories that can be created with EXT4’s default configura-
tion on a 128 GB disk. We also run readdir that iterates over
a large number of directories. 4M files are stored in 800K
directories. To generate sufficient I/Os, we run 16 Filebench
instances in parallel. All of the file systems are initially empty.

Figure 9(a) shows results. KEVIN outperforms other sys-
tems by 6.2× on average. Aside from readdir, KEVIN
achieves up to 43.8× better I/O throughput than EXT4. This
is because KEVIN eliminates almost all of the metadata I/O
traffic. Figure 9(b) depicts the amount of data moved between
the host and the SSD. Compared to the existing file systems,
KEVIN involves tiny data movements because it only needs
to deliver small-sized KV commands.

For readdir, KEVIN performs poorly for the first run be-
cause it requires many reads to retrieve values (i.e., inodes)
from the flash pages. For its second run, KEVIN shows im-
proved performance (from 75kops/s to 120kops/s). As ex-
plained in §4, KEVINFS rewrites a group of meta objects
fetched by ITERATE to store them in the same flash pages,
hoping that it reduces in-storage reads in the future. This
optimization can increase the eviction cost slightly, but it is
imperceptible to users as the I/O traffic incurred by rewrites
is low and is handled in the background. Note that before the
second run, we empty the inode and dentry caches to get rid
of the impact of cached metadata.

KEVIN incurs internal I/Os to manage LSM-tree indices
in storage, which can be categorized into three types: com-
paction I/Os to merge and sort K2V indices, tree lookup reads
to find key-index pages, and garbage collection (GC) I/Os

0

2

4

6

8

D
e
v
ic

e
 T

ra
ff
ic

 (
G

B
) Compaction Lookup

0

2

4

6

8

D
e
v
ic

e
 T

ra
ff
ic

 (
G

B
) Compaction Lookup GC

Figure 10: KEVIN I/O overheads on micro-benchmarks

0

90

180

270

360

450

creat-4K unlink-4K cp

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

E X B F K

(a) Throughput

0

60

120

180

240

300

E X B F K E X B F K E X B F K

creat-4K unlink-4K cp

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

Figure 11: Data & metadata workloads

to reclaim free space. As illustrated in Figure 10, extra I/Os
to manage the LSM-tree are negligible in comparison with
metadata overhead in other file systems (see Figure 9(b)).
Since our experiments are conducted under clean file systems,
compaction and GC I/Os are almost zero. We analyze their
impacts on performance in §6.2.3.

Small-file workloads. They include three scenarios: the
creation (creat-4K) and deletion (unlink-4K) of 4 KB small
files, as well as a copy (cp) of many small files. All of them
create lots of data traffic on both metadata and file data. We
create and delete 8M files and copy 4M files. Figure 11 shows
experimental results. KEVIN exhibits the best performance
when creating and removing small files thanks to its low meta-
data overhead. However, for cp, KEVINFS shows similar
performance to EXT4. We observe that KEVIN shows high
write throughput for small files, but the throughput of reading
small files to copy is slow and becomes a bottleneck. This is
owing to the relatively high tree lookup overheads. For our
experiments, we run 16 Filebench instances in parallel, which
cause random file reads. This eventually results in random
meta object lookups on the KEVINSSD side. Moreover, as a
small 4 KB file contains one subobject, KEVINSSD’s com-
pression optimizations are not effective. This is the reason
why the number of reads to find key-index pages (tree lookup)
is relatively high for cp in Figure 10. Even worse, while 4
KB file data is slightly large to be embedded in a meta object
in KEVINSSD, EXT4 can directly locate a disk block where
data is stored by referring to disk pointers in inodes, thereby
incurring no extents lookup.

Data-only workloads. To assess how efficiently KEVIN
handles a large file, we create a 32 GB file and run various
I/O patterns using the FIO tool [4] on it. We first measure
sequential and random write throughputs. For measuring se-
quential write (SW) throughput, we run a single FIO instance
that sequentially writes 32 GB of data on a single file. For
the measurement of random write (RW) throughput, we run 16
FIO instances that randomly write 4 KB data on a file. Over
each created file (RW or SW), we run FIO instances that read
data sequentially (+SR) or randomly (+RR) to measure their
respective read throughputs.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 85

0

300

600

900

1200

1500

SW SW+SR SW+RR RW RW+SR RW+RR

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

E X B F K

(a) Throughput

0

40

80

120

160

200

E X B F K E X B F K E X B F K E X B F K E X B F K E X B F K

SW SW+SR SW+RR RW RW+SR RW+RR

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

Figure 12: Data intensive workloads

Overall, KEVIN shows similar performance as the other
file systems as depicted in Figure 12(a). However, for random
write (RW), it shows slightly low throughput because of extra
I/Os for compaction (see Figure 10). An interesting observa-
tion is that KEVIN exhibits excellent performance even for
random read workloads (SW+RR and RW+RR). This is because
KEVIN benefits from the highly compressible key format of
data objects. This property enables us to cache almost all KV
indices in DRAM for the 32 GB file, making it possible to
achieve a sufficiently high hit ratio.

6.2.2 Results with Realistic Workloads

To understand the performance of KEVINFS under realis-
tic workloads, we conduct experiments using five Filebench
workloads (Varmail, OLTP, Fileserver, Webserver, and
Webproxy), and four real applications (TPC-C, clone, rsync,
and kernel compilation). Filebench mimics I/O behaviors of
a target application that are modeled by parameters listed in
Table 3. In our experiment, we use default parameters preset
by Filebench, except for the number of operations.

Figures 13 and 14 show our results. For Varmail, KEV-
INFS exhibits 37% higher throughput than EXT4. Varmail
emulates a mail server, so it performs I/Os on many small
files. Metadata-intensive syscalls, creat and unlink, are fre-
quently invoked to create and remove files. To persist user
emails immediately, it calls fsync every time after write,
incurring many I/Os to the journaling area.
OLTP is a write-intensive workload in which more than

100 threads create files and append data to the files. It also
frequently invokes fdatasync, which results in many I/Os
sent to metadata and the journaling area. As a result, KEVIN

Table 3: Filebench parameters. C/U/R/W represents the ratio
of creat, unlink, read, and write operations.

Avg. # of Threads # of C/U/R/W
file size files operations ratio

Varmail 16 KB 3.2 M 16 12.8 M 1:1:2:2
OLTP 10 MB 3.2 K 211 10 M 0:0:1:10

Fileserver 128 KB 800 K 50 8 M 1:1:1:2
Webserver 16 KB 1.6 M 100 12.8 M 0:0:10:1
Webproxy 16 KB 2 M 100 4 M 1:1:5:1

0

40

80

120

160

200

Varmail OLTP Fileserver Webserver Webproxy

T
h
ro

u
g
h

p
u

t
(k

o
p

s
/s

)

E X B F K

(a) Throughput

0

50

100

150

200

250

E X B F K E X B F K E X B F K E X B F K E X B F K

Varmail OLTP Fileserver Webserver Webproxy

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

0

15

30

45

60

Varmail OLTP Fileserver Webserver Webproxy

D
e
v
ic

e
 T

ra
ff
ic

 (
G

B
)

Compaction Lookup GC

(c) KEVIN I/O overheads

Figure 13: Realistic workloads from Filebench

0

15

30

TPC-C

tp
m

C
 (

k
q

u
e

ri
e

s
/m

in
) E X B F K

0

10

20

clone rsync
T

im
e

 (
s
)

0

500

1000

Build

T
im

e
 (

s
)

Figure 14: Application workloads

exhibits 26% higher throughput than F2FS.
KEVINFS shows 23% lower throughput than EXT4 in

Fileserver. Fileserver is a data-intensive workload that
reads and writes a relatively large size of files (128 KB). It
does not invoke fsync, so metadata updates and journaling
I/Os occur only occasionally. Owing to the large amounts of
data written to the disk, KEVINFS suffers from compaction
overhead which slows down its performance over EXT4.
Webserver is a read-dominant workload issuing many

reads to small files (16 KB) with few writes. Syscalls that
update metadata are not invoked in Webserver. Although it
is not preferable to KEVIN, KEVIN shows a slightly slower
performance (10%) than EXT4. Webserver exhibits high
locality in accessing files. Thanks to a high cache hit ratio
(98.3%) in KEVINSSD, the number of page reads to get key-
index pages is relatively small.
Webproxy is also a read-dominant workload, but KEVINFS

exhibits higher throughput compared to EXT4. Our close
examination reveals that this is owing to the high directory
management overhead. Webproxy contains a large number of
files (e.g., 1M files) per directory. Whenever files are created
and removed, it is necessary to update directory entries, which
is costly. KEVINFS does not maintain directory entries, so its
performance is not affected by directory updates.

Finally, we carry out experiments using real applica-

86 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

10

20

30

40

50

T
h
ro

u
g
h

p
u

t
D

e
g
ra

d
a
ti
o
n
 (

%
) E K

(a) Effect of fragmentation on performance

0

10

20

U A U A U A U A

EXT4
unlink

KEVIN
unlink

EXT4
cp

KEVIN
cp

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write

Metadata Read Metadata Write

Journaling I/O

(b) File system traffic

0

15

30

U A U A U A U A

EXT4
unlink

KEVIN
unlink

EXT4
cp

KEVIN
cp

D
e

v
ic

e
 T

ra
ff
ic

 (
G

B
)

Compaction Lookup GC

(c) I/O overhead of device

Figure 15: Write performance on aged file systems. In (b) and
(c), ‘U’/‘A’ shows unaged/aged file system performance.

tions, including TPC-C, clone, rsync, and kernel compilation
(build). For TPC-C, MySQL is used as the DBMS engine.
We create 50 data warehouses run by 100 clients. The DB size
is 14 GB. The overall behavior of TPC-C is similar to OLTP in
that it is write-intensive and frequently invokes fsync. Thus,
KEVIN provides about 31% better throughput (tpmC) than
EXT4. A local 3.1 GB Linux kernel repository is used as the
source for both clone and rsync. They involve the creation
of many small files (as creat-4K in §6.2.1), so KEVIN offers
the best performance. A Linux kernel compilation process
requires many small file reads and writes, along with directory
traversals. Our results, however, reveal that the bottleneck of
the kernel compilation is CPU not I/O. Consequently, all of
the file systems provide similar compilation times.

6.2.3 Results under Aged File Systems
We analyze the performance of the file systems when they
are aged. To age the file systems, we use Geriatrix [20] and
Filebench to write more than 800 GB of data. For performance
measurement, we run the same benchmarks that we use in
§6.2.1. Since the file system space utilization is about 60%,
we reduce the number of files and directories created by half.

Figure 15(a) shows the extent to which the file-system per-
formance degrades after the aging process. We observe that
KEVIN shows smaller performance reductions compared to
EXT4 across almost all of the benchmarks. EXT4 is affected
by high metadata and journaling overhead, which are exac-
erbated by file-system fragmentation. In the case of unlink
in Figure 15(a), metadata and journaling I/Os increase by up
to 2.2× after aging. On the other hand, there are no signifi-
cant changes in file-system level I/O traffic in KEVIN. After
aging, the compaction I/Os in KEVINSSD increase to 7.7×.
Due in part to its very small portion in total I/Os, its nega-
tive impact on I/O performance is not huge. This confirms
that KEVIN is more resistant to fragmentation. Unfortunately,

650

700

750

800

850

0 1 2 3 4 5

T
h

ro
u

g
h

p
u
t

(M
B

/s
)

of Run

E K

(a) FIO

0

50

100

150

200

250

0 1 2 3 4 5M
a
x
im

u
m

 L
a
te

n
c
y
 (

m
s
)

of Run

E K

(b) readdir

Figure 16: Read performance on aged file systems

KEVIN suffers from increased compaction and GC overhead
in data-intensive workloads, creat-4K and cp. Our LSM-
tree indexing algorithm requires more flash space (3∼10%)
than the typical FTL, owing to obsolete objects staying in
the tree before getting reclaimed by compaction. Thus, GC
invocations occur more frequently.

To understand the impact of fragmentation on user-
perceived performance, we measure read throughput and la-
tency while varying the degree of fragmentation. The degree
of fragmentation is controlled by the number of fragmenta-
tion tool runs. For each run, 128 GB data are written to the
file system. We first measure sequential read throughput on a
32 GB large file (see Figure 16(a)). The read throughput of
EXT4 gradually degrades as the run repeats. When the file
system is clean (i.e., the run 0), the file has only one extent.
However, the number of extents increases to 3,798 at run 4.
As explained in §4, this increases not only the tree search cost
but the number of I/O requests to the disk. On the other hand,
KEVIN exhibits consistent read throughput, achieving 16%
higher throughput than EXT4.

We also measure the latency of readdir (see Figure 16(b)).
The performance of readdir is decided by the number of
block reads to fetch inodes from the inode table. As the run
repeats, the inode table is severely fragmented, and thus EXT4
involves more disk accesses to retrieve inodes. This results
in an increase in latency of readdir. On average, KEVIN
shows slower speed for readdir than EXT4, as in Figure 9(a).
However, it is not affected by the fragmentation of the inode
table and can remove data transfers to the host by fetching
inodes internally. Moreover, by reading multiple meta objects
at the same time through SSD’s internal parallelism, it exhibits
much shorter latency when the file system is aged.

6.2.4 Analyzing Effects of In-storage Indexing
Finally, we evaluate the benefits of performing indexing op-
erations in storage. The best way of doing this would be to
move KEVINSSD’s internal indexing engine to KEVINFS.
Since our LSM-tree engine is currently designed to run as
the flash firmware, porting this back to the kernel is a non-
trivial job. As an alternative, we use TokuDB from previous
KV store based file system studies [19, 56, 57]. TokuDB uses
the BY-tree as an internal indexing algorithm which has low
computational complexity and asymptotically performs better
than LSM-trees. We used the TokuDB version included in the
BetrFS’s git repository [33]. To bridge TokuDB with KEV-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 87

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t

 (
k
o
p
s
/s

)

T K

(a) Throughput

0

2

4

6

8

T K T K T K T K T K T K

mkdir rmdir creat unlink readdir-1st readdir-2nd

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic for metadata workloads

0

200

400

600

800

T K T K T K T K T K T K T K T K

creat-4K unlink-4K cp Varmail OLTP Fileserver Webserver Webproxy

F
S

 T
ra

ff
ic

 (
G

B
) Data Read Data Write Metadata Read Metadata Write Journaling I/O

(c) File system traffic for small-file and realistic workloads

Figure 17: Effects of in-storage indexing

INFS, we port the code from v3.11.10 [19] to v4.15.18 kernel.
For a fair I/O traffic comparison, we turn off TokuDB’s value
compression feature and set the internal cache size to 4 GB.
This in-kernel TokuDB operates on a block SSD formatted to
EXT4 [19]. The block SSD uses a page-level FTL.

We conduct experiments with Filebench used from §6.2.1
and §6.2.2. Figure 17(a) shows I/O throughputs. In the graph,
‘T’ represents a setting where KEVINFS uses TokuDB as its
in-kernel indexing engine in the host, while ‘K’ denotes the
proposed KEVIN that uses the in-storage indexing engine.
KEVIN shows an improvement of 7.4× on average even with
readdir which is relatively slow.

To understand why KEVIN performs much better than
KEVINFS+TokuDB, we analyze I/O traffics from the two
settings, which are presented in Figures 17(b) and (c). KEV-
INFS+TokuDB numbers are taken from TokuDB’s statistics.
In KEVINFS+TokuDB, ‘Data Read/Write’ represents the traf-
fic from reading and writing KV objects and ‘Metadata Read-
/Write’ is the extra indexing I/O traffic from the BY-tree
to manage KV objects. ‘Journaling I/O’ includes the traffic
from TokuDB’s WAL logic. Fileserver fails to run on KEV-
INFS+TokuDB owing to the space overhead [19] caused by
the BY-tree algorithm that consumes all disk space.

In the case of the write-intensive workloads, traffic differ-
ences are substantial. This is because TokuDB incurs many
extra I/Os. As mentioned in §2.3, the WAL policy [13,15,34]
has to write all KV objects to logs before materializing them
to the data area. Note that this overhead can be mitigated if the
late-binding journaling is used [56] which is not implemented
yet in this work. In workloads such as Varmail that have
many fsync calls, TokuDB has to flush the logs, increasing
fsync’s latency. KEVIN shows 33.8× shorter latency com-

pared to KEVINFS+TokuDB. The BY-tree also incurs more
traffic because of its inherent behavior that transfers data from
the internal node buffer to the leaf node. Operations involving
many point queries such as cp, Webserver, and Webproxy
show lower read traffic in KEVIN than KEVINFS+TokuDB.
KEVIN performs indexing with the key-index page caching
and compression from the storage device itself, and thus it
offers fast indexing performance without any external I/Os.
readdir shows worse performance on KEVIN. TokuDB man-
ages all KV pairs in a sorted manner without key-value sepa-
ration, and thus ITERATE performs quickly akin to sequential
I/Os. However, when KEVIN rewrites the meta object before
the second run, it shows higher performance, as it does not
need to read multiple value pages. In this case, we expect
the performance will be further improved if KEVIN adopts
full-path indexing that globally sorts the file-system hierarchy.

7 Conclusion

In this paper, we proposed KEVIN, which improved file sys-
tem performance by offloading indexing capability to the
storage hardware. KEVINSSD exposed the KV interface and
supported transaction commands. On top of this, we built
KEVINFS, a new file system that translated VFS calls into KV
objects and exploited storage capabilities to remove metadata
and journaling overhead. Our results showed that, on average,
KEVIN improved I/O throughput by 6.2× and reduced the I/O
traffic by 74% for metadata-intensive workloads.

The idea of KEVIN can be extended in two directions. First,
we focused on porting file systems over the KV device in this
study. However, the proposed KV interface can be extended to
support a broader range of applications, ranging from block-
interface applications [8] to SQL applications [12], giving us
the potential to replace the existing block I/O interface. Ap-
plications running directly over the KV device are expected
to enjoy the same benefits (e.g., small metadata overheads) as
KEVIN. Second, KEVINFS can be implemented in the form
of a user-level file system. KEVINSSD can export KV-APIs
to the user-space (e.g., via SPDK [54]), and KEVINFS ac-
cesses a storage device without going through the deep kernel
stack. The user-level KEVINFS would be faster than existing
user-level file systems because it not only has a lighter-weight
architecture (e.g., free from metadata management and jour-
naling), but is also less affected by fragmentation.

Acknowledgments

We would like to thank our shepherd, Dr. Donald E. Porter,
and five anonymous reviewers for all their helpful comments.
This work was supported by Samsung Electronics Co., Ltd.
and the National Research Foundation (NRF) of Korea (NRF-
2018R1A5A1060031 and NRF-2019R1A2C1090337). We
thank Samsung Electronics for providing KV-SSD prototypes.
(Corresponding author: Sungjin Lee)

88 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance. In Proceedings
of the USENIX Annual Technical Conference, pages 57–
70, 2008.

[2] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces, Crash
Consistency: FSCK and Journaling. Arpaci-Dusseau
Books, 1.01 edition, 2019.

[3] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces, File
System Implementation. Arpaci-Dusseau Books, 1.01
edition, 2019.

[4] Jens Axboe. FIO: Flexible I/O Tester Synthetic Bench-
mark. https://github.com/axboe/fio.

[5] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channel SSD subsystem. In
Proceedings of the USENIX Conference on File and
Storage Technologies, pages 359–374, 2017.

[6] Yun-Sheng Chang and Ren-Shuo Liu. OPTR: Order-
Preserving Translation and Recovery Design for SSDs
with a Standard Block Device Interface. In Proceed-
ings of the USENIX Annual Technical Conference, pages
1009–1024, 2019.

[7] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
without Ordering. In Proceedings of the USENIX Con-
ference on File and Storage Technologies, page 9, 2012.

[8] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and
Sungjin Lee. LightStore: Software-defined Network-
attached Key-value Drives. In Proceedings of the Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
939–953, 2019.

[9] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From ARIES to MARS:
Transaction Support for next-Generation, Solid-State
Drives. In Proceedings of the ACM Symposium on Op-
erating Systems Principles, pages 197–212, 2013.

[10] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Ben-
der, William Jannen, Rob Johnson, Donald E. Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems,
2019.

[11] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-value Store. In Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 79–94, 2017.

[12] Facebook, Inc. MyRocks: A RocksDB storage engine
with MySQL. http://myrocks.io.

[13] Facebook, Inc. RocksDB: A Persistent Key-value Store
for Fast Storage Environments. https://rocksdb.
org.

[14] Akira Fujita and Takashi Sato. e4defrag - Online De-
fragmenter for Ext4 Filesystem. https://man7.org/
linux/man-pages/man8/e4defrag.8.html.

[15] Google, Inc. LevelDB. https://github.com/
google/leveldb.

[16] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving File System Performance of Mo-
bile Storage Systems Using a Decoupled Defragmenter.
In Proceedings of the USENIX Annual Technical Con-
ference, pages 759–771, 2017.

[17] Xiao He, Zhongxia Wang, Jingsheng Zhang, and
Chengzi Ji. Research on security of hard disk firmware.
In Proceedings of International Conference on Com-
puter Science and Network Technology, pages 690–693,
2011.

[18] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and
Sungjin Lee. PinK: High-speed In-storage Key-value
Store with Bounded Tails. In Proceedings of the
USENIX Annual Technical Conference, pages 173–187,
2020.

[19] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-
maul, and Donald E. Porter. BetrFS: A Right-Optimized
Write-Optimized File System. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 301–315, 2015.

[20] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-
gory R. Ganger. Geriatrix: Aging What You See and
What You Don’t See. A File System Aging Approach
for Modern Storage Systems. In Proceedings of the
USENIX Annual Technical Conference, pages 691–704,
2018.

[21] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite Databases. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 97–108, 2013.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 89

https://github.com/axboe/fio
http://myrocks.io
https://rocksdb.org
https://rocksdb.org
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://github.com/google/leveldb
https://github.com/google/leveldb

[22] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel D. G. Lee. Towards Building a
High-performance, Scale-in Key-value Storage System.
In Proceedings of the ACM International Conference on
Systems and Storage, pages 144–154, 2019.

[23] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath
Palani. Designing a True Direct-Access File System
with DevFS. In Proceedings of the USENIX Conference
on File and Storage Technologies, pages 241–256, 2018.

[24] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo
Kim. Transaction Support using Compound Commands
in Key-Value SSDs. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems,
July 2019.

[25] Changman Lee, Dongho Sim, Joo Young Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the USENIX Conference on File
and Storage Technologies, pages 273–286, 2015.

[26] Seung-Ho Lim, Hyun Jin Choi, and Kyu Ho Park. Jour-
nal Remap-based FTL for Journaling File System with
Flash Memory. In Proceedings of the International
Conference on High Performance Computing and Com-
munications, pages 192–203, 2007.

[27] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of Linux file
system evolution. In Proceedings of the USENIX Con-
ference on File and Storage Technologies, pages 31–44,
2013.

[28] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
WiscKey: Separating Keys from Values in SSD-
conscious Storage. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
133–148, 2016.

[29] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Physical disentanglement in a container-based
file system. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation,
pages 81–96, 2014.

[30] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-
Won Lee, and Young Ik Eom. Lightweight application-
level crash consistency on transactional flash storage. In
Proceedings of the USENIX Annual Technical Confer-
ence, pages 221–234, 2015.

[31] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-structured Merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

[32] Daejun Park and Dongkun Shin. iJournaling: Fine-
Grained Journaling for Improving the Latency of Fsync
System Call. In Proceedings of the USENIX Annual
Technical Conference, pages 787–798, 2017.

[33] Percona, Inc. BetrFS Repository. https://github.
com/oscarlab/betrfs.

[34] Percona, Inc. Percona TokuDB. https:
//www.percona.com/software/mysql-database/
percona-tokudb.

[35] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
pages 8–8. USENIX Association, 2005.

[36] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional Flash. In Proceedings of the
USENIX Conference on Operating Systems Design and
Implementation, pages 147–160, USA, 2008.

[37] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagap-
pan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Can Applications Recover from fsync Fail-
ures? In Proceedings of the USENIX Annual Technical
Conference, pages 753–767, 2020.

[38] Reiser, H. ReiserFS. http://www.namesys.com,
2004.

[39] Kai Ren and Garth Gibson. TABLEFS: Enhancing
Metadata Efficiency in the Local File System. In Pro-
ceedings of the USENIX Annual Technical Conference,
pages 145–156, 2013.

[40] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. Trans. Storage, 9:9:1–
9:32, 2013.

[41] Samsung Electronics. Samsung Key Value
SSD enables High Performance Scaling.
https://www.samsung.com/semiconductor/
global.semi.static/Samsung_Key_Value_SSD_
enables_High_Performance_Scaling-0.pdf,
2017.

[42] Samsung Electronics. 860EVO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
global.semi.static/Samsung_SSD_860_EVO_
Data_Sheet_Rev1.pdf, 2018.

90 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/oscarlab/betrfs
https://github.com/oscarlab/betrfs
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
http://www.namesys.com
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf

[43] Samsung Electronics. 960PRO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/ssd960/, 2019.

[44] Russell Sears and Raghu Ramakrishnan. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, pages 217–228, 2012.

[45] Muthian Sivathanu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Somesh Jha. A Logic
of File Systems. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
1–1, 2005.

[46] SNIA. Key Value Storage API Specification Version
1.0. https://www.snia.org/tech_activities/
standards/curr_standards/kvsapi.

[47] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck. Scalability in
the XFS File System. In Proceedings of the USENIX
Annual Technical Conference, pages 1–1, 1996.

[48] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. The USENIX Magazine, 41, 2016.

[49] The Linux Foundation. Ext4 Filesystem documentation.
https://www.kernel.org/doc/Documentation/
filesystems/ext4.txt.

[50] Thomas N Theis and H-S Philip Wong. The end of
moore’s law: A new beginning for information technol-
ogy. Computing in Science & Engineering, 19(2):41–50,
2017.

[51] Rajat Verma, Anton Ajay Mendez, Stan Park,
Sandya Srivilliputtur Mannarswamy, Terence P. Kelly,
and Charles B. Morrey III. Failure-atomic updates of
application data in a linux file system. In Proceedings
of the USENIX Conference on File and Storage
Technologies, pages 203–211, 2015.

[52] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO Stack for Flash Storage. In
Proceedings of the USENIX Conference on File and
Storage Technologies, pages 211–226, 2018.

[53] Xilinxm, Inc. Xilinx Virtex UltraScale FPGA
VCU108 Evaluation Kit. https://www.xilinx.com/
products/boards-and-kits/ek-u1-vcu108-g.
html#hardware.

[54] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:

A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[55] Jeseong Yeon, Minseong Jeong, Sungjin Lee, and Eunji
Lee. RFLUSH: Rethink the Flush. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 201–210, 2018.

[56] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael Bender, Martin
Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and
Donald E. Porter. Optimizing every operation in a write-
optimized file system. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
1–14, 2016.

[57] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr,
Michael A. Bender, Martin Farach-Colton, William Jan-
nen, Rob Johnson, Donald E. Porter, and Jun Yuan. The
full path to full-path indexing. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 123–138, 2018.

[58] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, et al. FPGA-Accelerated Com-
pactions for LSM-based Key-Value Store. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies, pages 225–237, 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 91

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html#hardware

A Artifact Appendix

Abstract
KEVIN is composed of two main elements: KEVINSSD
(providing key-value interface with in-storage indexing) and
KEVINFS (providing file system abstraction). The artifact is
consisted of multiple Git repositories including KEVINSSD,
KEVINFS and others used for evaluation for KEVIN. Please
refer to the README file from https://github.com/dgist-
datalab/kevin.

Scope
The artifact includes all the necessary source code required
to run KEVIN as well as the benchmarks used in this paper.
As it takes several weeks to run all the benchmarks used in
this paper, we also provide exemplary benchmark suite with
tuned parameters.

Contents
We provide four Git repositories related to KEVIN. First, KEV-
INFS provides abstraction of files and directories (see §3.1,
§4 and §5.1). Second, KEVINSSD is the storage engine opti-
mized for in-storage indexing using LSM-tree (see §3.2, §3.3
and §5.2). Third, BLOCKSSD is another storage engine used
for comparison. Its FTL firmware uses page-level mapping
and provides the block interface to the host. BLOCKSSD is
used for comparison of traditional file systems in §6. Lastly,
we provide the kernel source used in this paper. It is based
on Linux kernel v4.15.18 and is further customized to run
KEVIN+TokuDB (see §6.2.4). KEVINFS also runs on this
kernel. Additionally, the DOI for the artifact includes a de-
tailed screencast of the tool along with results with example
workloads to prove the functionality of KEVIN.

Hosting
We provide the public Git URLs and commit hashes for each
repository used during the artifact evaluation.

• KEVINFS

https://github.com/dgist-datalab/kevin

1bd8566c580f8190364008f1a355fe337fcb6309

• KEVINSSD

https://github.com/dgist-datalab/KevinSSD

026e2a9bd274989b1324bdb9d008f2044e6d145d

• BLOCKSSD

https://github.com/dgist-datalab/BlockSSD

f944a94455f56a42ee3a888431b71d7e555b7671

• Kernel source used with KEVIN

https://github.com/dgist-datalab/linux/tree/kevin-4.15

Branch: kevin-4.15

c2b106a1de494c293f33c5f130435c2eaee02dcf

• The DOI for the artifact

10.5281/zenodo.4659803

https://zenodo.org/record/4659803

Requirements
We use the Xilinx Virtex R© UltraScaleTM FPGA VCU108
platform and customized NAND flash modules. The cus-
tomized NAND flash modules used in this paper are not pub-
licly or commercially available. Therefore, you may need
your own NAND modules compatible with VCU108 and ad-
equate modifications to the hardware backend (KEVINSSD
and BLOCKSSD) to replicate this work.

92 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dgist-datalab/kevin
https://github.com/dgist-datalab/kevin
https://github.com/dgist-datalab/kevin
https://github.com/dgist-datalab/KevinSSD
https://github.com/dgist-datalab/BlockSSD
https://github.com/dgist-datalab/linux/tree/kevin-4.15
https://zenodo.org/record/4659803

Nap: A Black-Box Approach to NUMA-Aware Persistent Memory Indexes

Qing Wang, Youyou Lu∗, Junru Li, and Jiwu Shu∗

Department of Computer Science and Technology, Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

Abstract
We present Nap, a black-box approach that converts con-

current persistent memory (PM) indexes into NUMA-aware
counterparts. Based on the observation that real-world work-
loads always feature skewed access patterns, Nap introduces a
NUMA-aware layer (NAL) on the top of existing concurrent
PM indexes, and steers accesses to hot items to this layer. The
NAL maintains 1) per-node partial views in PM for serving
insert/update/delete operations with failure atomicity and 2)
a global view in DRAM for serving lookup operations. The
NAL eliminates remote PM accesses to hot items without
inducing extra local PM accesses. Moreover, to handle dy-
namic workloads, Nap adopts a fast NAL switch mechanism.
We convert five state-of-the-art PM indexes using Nap. Eval-
uation on a four-node machine with Optane DC Persistent
Memory shows that Nap can improve the throughput by up
to 2.3× and 1.56× under write-intensive and read-intensive
workloads, respectively.

1 Introduction

We consider the problem of making persistent memory
(PM) indexes NUMA-aware. Although there has been a
wealth of prior research designing high-performance PM in-
dexes [1–16], the impacts of non-uniform memory access
(NUMA) architecture to PM indexes have not been deeply ex-
plored. Due to limited DIMM slots and cores in a single CPU,
NUMA architecture is a necessity for providing massive band-
width and capacity of PM along with enormous computational
power. In a NUMA machine, the CPU cores and DRAM/PM
DIMMs are grouped into nodes, which connect each other via
inter-node links, e.g., Intel Ultra Path Interconnect (UPI).

The NUMA problem on PM indexes is unique. First, PM
suffers from more severe impacts of NUMA than DRAM.
Specifically, for Intel Optane DC Persistent Memory (i.e.,
Optane DIMM), the first PM product, compared with local

∗Jiwu Shu and Youyou Lu are the corresponding authors.
{shujw, luyouyou}@tsinghua.edu.cn

PM write, the peak bandwidth of remote ones is decreased
to 59%; worse, highly concurrent remote PM writes (i.e., more
than 8 threads) experience a bandwidth cliff (§2.1). Second,
to guarantee failure atomicity (i.e., the system can recover
to a correct state upon system crashes), a PM index should
issue flush instructions for explicitly evicting data from CPU
caches to PM. For data that resides on remote nodes, these
flush instructions expose remote PM writes on the critical
path, degrading the performance. Third, PM has limited band-
width (1/6 and 1/3 of DRAM in terms of writes and reads,
respectively [17]), making replication-based approaches im-
practical. Existing NUMA-aware DRAM indexes always (par-
tially) replicate indexes across NUMA nodes and synchronize
these replicas via compact operation logs [18,19]. Replication
effectively reduces remote accesses; yet, since every update
operation is executed at every node, the number of local ac-
cesses is amplified significantly. Although this amplification
is not a problem for DRAM due to its extremely high local
bandwidth, it is fatal for PM with low local bandwidth.

In this paper, we propose Nap (NUMA-Aware Persistent
Memory Indexes), a black-box approach that converts con-
current PM indexes into NUMA-aware counterparts. Nap is
based on a common observation: real-world workloads al-
ways feature skewed access patterns [20–24], where a small
portion of hot items receive extremely frequent accesses. The
key idea of Nap is making hot accesses NUMA-aware. Nap
introduces a general NUMA-aware layer (NAL), which can
be placed on the top of any existing concurrent PM index.
The NAL absorbs accesses to hot items, while the underly-
ing PM index handles accesses to other items. Specifically,
NAL maintains per-node partial and crash-consistent views
(PC-views) in PM, which serve insert/update/delete opera-
tions from local threads with failure atomicity. NAL does not
synchronize states between PC-views, to avoid remote PM
accesses without inducing extra local PM accesses. Such a
synchronization-less approach brings two challenges: 1) serv-
ing lookup operations to hot items; 2) identifying the latest
values from multiple PC-views upon recovery. For 1), NAL
maintains an additional global view of hot items in DRAM.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 93

For 2), NAL adopts a version-based mechanism to order in-
sert/update/delete operations to the same items, along with
low-overhead methods of failure atomicity.

Upon workloads change, Nap can identify the new set of
hot items and then switch to a new NAL quickly. The hot set
identification is achieved by a combination of accurate and
efficient streaming algorithms (e.g., count-min sketch [25]).
To mitigate blocking of foreground index operations during
NAL switch, Nap introduces a three-phase switch. This mech-
anism detects the states of access threads via a lightweight
grace-period-based method. By leveraging these states, Nap
divides the switch into three phases, and carefully splits tasks
(e.g., initializing new NAL, flushing and recycling old NAL)
into different phases. As a result, only a small portion of index
operations during a small interval are blocked.

Nap approach offers several advantages. First, it is general
and efficient; we convert five state-of-the-art concurrent PM
indexes using Nap, and the Nap-converted counterparts boost
the throughput significantly on a four-node machine. Second,
since the set of hot items is always small, the extra memory
consumption and recovery time induced by Nap are bounded.
Our evaluation on a four-node machine running 72 threads
shows that, when maintaining 100K hot items in the NAL,
Nap uses less than 70MB extra DRAM/PM space, and the
recovery time is less than 1 second.

Nap has some limitations. First, it targets skewed workloads
but not uniform workloads, which appear relatively rarely in
the real world. Second, Nap-converted PM indexes may be
outperformed by a crafted NUMA-aware PM index. However,
when designing and evaluating Nap, we conclude some guide-
lines that may benefit future specialized NUMA-aware PM
indexes, among which the most remarkable is that a NUMA-
aware PM index should reduce remote PM accesses without
consuming extra local PM bandwidth.

In summary, this paper makes the following contributions:
• Nap, a black-box and practical approach that converts con-

current PM indexes into NUMA-aware counterparts.
• A set of techniques that enable Nap’s fast reaction to work-

loads change.
• Experimental evidence showing the efficiency of Nap.

2 Background and Motivation

In this section, we firstly show that access to remote PM
suffers from low performance (§2.1), and how it cripples PM
indexes (§2.2). Then, we analyze why existing approaches for
DRAM indexes are inefficient when applied to PM (§2.3).

2.1 NUMA Impacts on PM
PM is a new memory technology that enjoys benefits of both
storage and memory: it provides byte-addressable storage
with DRAM-comparable performance and high density. With
the release of Optane DIMMs, the first PM product, the system

Ba
nd

w
id

th
 (G

B/
s)

0

10

20

 # of Threads
 (a) Write

 # of Threads
 (b) Read

local access remote access

0

2

4

6

0 5 10 15 20 0 5 10 15 20

Figure 1: Bandwidth of three 128GB Optane DIMMs with
varying threads. local access: threads access Optane DIMMs
that are local to them; remote access: threads access Optane
DIMMs installed on another NUMA node. We use ntstore
instructions for PM write.

community is actively redesigning storage systems to gain full
exploitation of its potential [8,16,26–36]. A NUMA machine
with numerous CPU cores and Optane DIMMs should be an
ideal architecture for fast and large-volume storage; however,
this is not true, due to slow remote PM accesses (i.e., accessing
PM on remote NUMA nodes).

Figure 1 reports the local/remote bandwidth of Optane
DIMMs (3 Optane DIMMs and 18 CPU cores per NUMA
node). Each thread performs sequential access to a 2GB PM
space. We use 32-byte non-temporal stores (ntstore) for
PM write. The peak write bandwidth of remote accesses
(3.5GB/s) is only 59% of that of local accesses (5.9GB/s).
Worse, the bandwidth of remote write collapses (< 250MB/s)
in case of more than 8 concurrent threads. For read opera-
tions, though Optane DIMMs have a relatively smaller gap
(16.9%) between local bandwidth and remote bandwidth, the
extra access latency induced by inter-node links, i.e., UPI,
is considerable (∼100ns), exacerbating the already high PM
read latency (∼300ns, [17]). Based on these observations, we
conclude that a high-performance PM system should avoid
accessing remote PM, especially for writes.

Our experimental result is consistent with recent studies
[17, 36–38]. We attribute the low performance of remote PM
write to two reasons. First, nstore instructions may behave
like cache line read-modify-write instructions, reducing the
available PM bandwidth [38]. Second, due to the read-modify-
write behavior, remote writes may trigger multi-socket cache
coherence traffic, which induces extra PM writes [39].

2.2 NUMA Impacts on PM Indexes

By leveraging the persistence and byte-addressability of PM,
PM indexes can recover instantly in the presence of power
outages. Although there has been an influx of PM indexes
designed for Optane DIMMs, most of them are evaluated in a
single NUMA node environment [8, 11, 13, 14, 29, 42]. Here,
we investigate the NUMA impacts on PM indexes by analyz-
ing CCEH [9], a variant of extendible hashing optimized for
PM. CCEH manages a set of segments, which are pointed by
a global directory. As shown in Figure 2(a), when performing

94 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Directory
n read dir

oacquire lock

psearch segment

kv

qalloc & copy kv

rupdate pointer

srelease lock

Segments

Threads

Node 1 Node 2

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

(a) Insertion in CCEH (b) Performance

Figure 2: NUMA impacts on PM indexes, using CCEH as
an example. We use source code from [40], which relies on
PMDK [41] for PM allocation and supports variable-length
keys. (a) An insert operation. Access threads reside on node
2, while the directory and the targeted segment are on node 1.
This insertion needs 2 remote reads (¶¸) and 3 remote writes
(·º»). (b) Throughput of CCEH. Each thread allocates PM
space from its local node. Vertical lines show the boundaries
between NUMA nodes.

an insertion, a thread may trigger multiple times (up to 2 re-
mote reads and 3 remote writes) of remote PM accesses. Such
remote accesses can significantly degrade the performance of
PM indexes. We measure the performance of CCEH under
multi-node environment with a synthetic workload, where
the ratio of lookup to insert/update is 1:1 and keys follow
the Zipfian distribution with parameter 0.99. We use 15-byte
keys and 8-byte values. Our platform is comprised of four
Intel Xeon Gold 6240M CPUs (18 cores per CPU), each with
three 128GB Optane DIMMs (1.5TB in total). More details of
hardware configurations are shown in §6. Figure 2(b) shows
the result. CCEH scales well within a single NUMA node.
However, the growth rate of throughput slows down signifi-
cantly when the thread number increases from 18 to 36; the
main cause is remote PM accesses. When more NUMA nodes
are added, i.e., thread number increases from 36 to 72, the
throughput fluctuates: it increases first and then decreases.
This is because that a newly added NUMA node brings extra
PM bandwidth resource, boosting the throughput, but soon,
slow PM remote accesses become the key performance deter-
minant, degrading the throughput.

2.3 Limitations of DRAM-orient approaches

A natural question now arises: are existing NUMA-aware
approaches for DRAM indexes still efficient when applied to
PM? We give a negative answer to this question by examin-
ing Node Replication (NR) [18], a state-of-the-art approach
that obtains NUMA-aware DRAM indexes. NR maintains a
global shared log and per-node replicas of DRAM indexes.
Using flat combining [43] within nodes, threads record their
operations into the shared log, and execute the log entries
to make their local replicas consistent between nodes. Three
main limitations leave NR ill-suited for PM indexes.

First, obviously, NR does not consider failure atomicity,

Key Space (Million)

Ac
ce

ss
 R

at
io

Top 10K Top 100K Top 1000K

0
0.2
0.4
0.6
0.8

10 100 200 400 800 1000 2000

Figure 3: Access ratio of hot items (Zipfian 0.99).

which is indispensable for PM indexes. Second, NR experi-
ences severe space overhead: for a machine with n NUMA
nodes, NR consumes n times more PM due to replication. As
important storage system components, PM indexes always oc-
cupy a large portion of PM space; hence, such consumption is
unacceptable. Third, performance of insert/update operations
is limited by PM write bandwidth of a single NUMA node. To
maintain consistent replicas between nodes, each node must
execute the same series of operations, which wastes precious
local PM write bandwidth (only 1/6 of DRAM) and further
bottlenecks the overall throughput.

3 Key Ideas

1) Making hot accesses NUMA-aware. Real-world work-
loads often feature Zipfian popularity distribution [20–24],
where a small portion of hot items receive extremely frequent
accesses. A recent study from Twitter [20] shows that their
in-memory cache workloads are usually even more skewed
than YCSB [44]. We design Nap to target these skewed work-
loads by making accesses to hot items NUMA-aware. To
show potential benefits of such a design, we run a simulation
to present the access ratio of hot items. The key popularity fol-
lows Zipfian distribution with parameter 0.99. From Figure 3,
we observe that under a wide range of key space (from 10M
to 2000M), the top 10K/100K/1000K hottest items receive
more than 39%/50%/61% accesses. Hence, if we can absorb
accesses to hot items (e.g., top 100K) in a NUMA-aware way,
a significant percentage of remote PM accesses are avoided.

Nap introduces a NUMA-aware layer (NAL) to absorb ac-
cesses to these hot items. In addition to reducing remote PM
accesses, the NAL features two advantages. First, since the
set of hot items is always small (e.g., 100K), different from
replication-based approaches (e.g., NR [18]), the DRAM/PM
space used by the NAL is limited. Second, upon system
crashes, the small-sized NAL can be recovered fast, bounding
the recovery time.
2) Black-box approach. Nap exploits hotness of items to han-
dle the NUMA problem, which enables a black-box approach
for converting existing PM indexes into NUMA-aware ones.
Specifically, in Nap, the NAL absorbs accesses to hot items,
and an underlying PM index accommodates a large number of
cold items. Nap requires no inner knowledge of the underly-
ing PM index. Any existing PM index that is crash-consistent
and thread-safe can be used; thus, Nap takes advantage of the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 95

DR
AM

PM

Node 1

Raw PM Index
(e.g., CCEH, FAST_FAIR)

Global & Volatile View

Partial & Crash-consistent View

NUMA-Aware Layer

Insert/Update/Delete

Lookup

Lookup/Insert/Update/Delete

Partial & Crash-consistent View

CPU cores

Node 2

Hot Access
Cold Access CPU cores

Figure 4: Nap’s architecture and interactions.

mature, well-tested codes of PM indexes, which are usually
implemented via myriad engineering efforts.
3) Minimizing state synchronization between PM nodes.
The NAL records updates to hot items into the local PM and
does not synchronize PM-resident states between different
NUMA nodes; thus, in addition to reducing consumption
of remote PM bandwidth, no extra local PM bandwidth is
consumed in Nap. To enable efficient lookup operations in
such a synchronization-less approach, the NAL maintains the
latest values of hot items in the DRAM.
4) Fast reaction to handle hotspot shift. Hotspots change
over time, so Nap adopts several techniques to enable fast
reaction. Specifically, Nap maintains the current hot items in
real time. Upon detecting a new set of hot items, Nap generates
a new NAL and installs it into the system in an atomic manner.

4 Design

4.1 Overview
This paper proposes Nap, an approach that converts concurrent
PM indexes into NUMA-aware ones. Figure 4 presents the
architecture and interactions of Nap. Nap consists of two main
components: a raw PM index and a NUMA-aware layer.
• Raw PM index. The raw PM index can be an arbitrary exist-

ing concurrent PM index (e.g., CCEH [9], FAST_FAIR [7]),
regardless of its concurrency control mechanism (lock-
based or lock-free) and structure (tree-based, hashtable-
based or hybrid). The raw PM index spans multiple NUMA
nodes; it manages cold items (u in Figure 4), which ac-
count for an extremely huge proportion of the total dataset.

• NUMA-aware layer (NAL). Nap steers accesses to hot items
to the NAL, which contains two parts: a global & volatile
view (i.e., GV-view, §4.2) and per-node partial & crash-
consistent views (i.e., PC-views, §4.3). GV-view resides
in DRAM, and maintains the latest values of hot items to
serve lookup requests (H in Figure 4). Per-node PC-views
reside in PM. When a thread issues an insert/update/delete
operation to a hot item, the PC-view in the same NUMA
node absorbs the operation, and persists the operation’s
effect in a crash-consistent manner (¶). Then, the corre-

Node 1
K1

Node 2

K1 lock for concurrency control
val the latest value
pc_pos the position in PC-views
version the next version

val_location
For NAL switch:

0 - in this NAL, val is valid
1 - in raw PM index
2 - in previous NAL

UNLOCK
“V-b”
5
65

0

(a) GV-View in DRAM (b) GV entry’s Format

the content of
K5’s GV entry

K3K2 K4 K5

.. {“V-b”, 64}..

K4

K3

K2 K5

(c) PC-Views in PM

value array

key array K1 K3K2 K4 K5

.. {“V-a”, 63}..

Figure 5: Structures of the GV-view and PC-views.

sponding value in GV-view is updated (·), to ensure the
GV-view always owns the latest values of hot items. To
eliminate remote PM accesses and avoid extra local PM
accesses, we do not synchronize states between different
PC-views, and thus each PC-view only has partial latest
values of hot items. In case of hotspot shift, Nap can timely
identify the new set of hot items (§4.4) and switch to a new
version of NAL (§4.5); meanwhile, hot items in the old
NAL are flushed to the underlying raw PM index.

4.2 Global & Volatile View (GV-View)
Design goals. In addition to serving lookup for hot items, the
DRAM-resident GV-view is also responsible for 1) control-
ling concurrent accesses to the NAL, and 2) checking an item
whether belongs to the hot set 1. Thus, the design of GV-view
must be lightweight and efficient.
Design details. Nap organizes the GV-view as a DRAM-
resident index, which maintains the mapping from key to
GV entry for every hot item. Figure 5(a) shows the GV-view’s
structure. The GV-view uses a hashtable by default; but if
the raw PM index supports range query, it uses a tree-based
data structure. Since the hot set is fixed unless the NAL is
switched (e.g., the hot set is {K1, K2, K3, K4, K5} in Figure 5),
the GV-view’s index is constructed entirely during the NAL’s
initialization and thereafter does not make any changes to
its structure. As a result, any thread-unsafe index with high
performance is applicable (e.g., C++ unordered_map).

For each hot item, the associated GV entry maintains its
runtime information. Figure 5(b) shows the GV entry’s format,
which consists of five fields: 1) a readers-writer lock to control
concurrent accesses to the hot item; 2) the latest value of
the item; 3) a pointer indicating where to persist the item
in PC-views. 4) the version of this item, which is used for
recoverability of PC-views (§4.3); 5) an enumerated value
that assists in NAL switch (§4.5).

1To simplify exposition, we term the set of hot items as hot set. Here, we
assume the content of hot set is known in advance (Obtaining the hot set is
detailed in §4.4).

96 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Lookup operation. In case of no NAL switch, a lookup opera-
tion is performed as the following: the access thread checks
the GV-view for the targeted item; if the targeted item does
not exist, the lookup is redirected to the raw PM index; oth-
erwise, the thread acquires read lock in corresponding GV
entry, copies the value, and finally releases the lock.
Range query operation. Nap complicates the range query, be-
cause items for a targeted range may exist in the GV-view and
raw PM index simultaneously. An access thread performs a
range query as the following: it searches the GV-view, get-
ting the items in the targeted range (S 1); then, it obtains the
S 2 by invoking the range query interface of the raw PM in-
dex; finally, it merges S 1 and S 2 (if an item exists in both
S 1 and S 2, we leave the one in S 1), returning the result.
Like FAST_FAIR [7] and P-Masstree [8], the range query
operations in Nap are not atomic with concurrent insert/up-
date/delete operations; if a system (e.g., database) atop Nap re-
quires a higher isolation level (e.g., repeatable read), it needs
to implement next-key locking or version mechanisms [45].

4.3 Partial&Crash-consistent View (PC-View)

Design goals. The per-node PM-resident PC-views absorb
update/insert/delete operations and ensure the effects of these
operations can survive power outages. PC-views have two
design goals: 1) Recoverability. The states between PC-views
are inconsistent, and thus Nap must be able to identify the
latest values upon recovery. 2) Low-overhead failure atom-
icity. To guarantee failure atomicity, we must explicitly per-
sist data with flush instructions (e.g., clflush, clwb, and
clflushopt) and avoid store reordering with fence instruc-
tions (e.g., sfence). Minimizing the usage of these expensive
instructions is key for high performance.
Design details. Nap organizes each per-node PC-view into
two PM-resident arrays: a read-only key array and a writable
value array (Figure 5(c)). The key array stores all the keys of
the hot set. The value array reserves a PC entry for each hot
item to record values. A hot item’s PC entries are specified via
the pc_pos field of the corresponding GV entry; for example,
in Figure 5, the 5th PC entry in each PC-view belongs to K5.
Note that each PC entry contains a pointer to the associated
key in the key array, to make the NAL recoverable.

Because two threads may update the same hot item but
manipulate different PC-views, values of hot items are incon-
sistent between PC-views. To identify the latest values upon
recovery, we adopt a simple version-based mechanism. Each
hot item has a monotonically increasing 64-bit version, which
is recorded in the GV-view (version field in Figure 5). The
most significant bit of a version is deletion marker.
Insert / Update operation. In case of no NAL switch, an in-
sert/update operation is performed as following steps:
1) The access thread searches the GV-view for the targeted

item; if the targeted item does not belong to the hot set,
the operation is redirected to the raw PM index.

key_ptr key_size val_ptr

version val
Write, Flush, Fence

Write, Flush, Fence

(a) Variable-length Values

key_ptr key_size indicator version[0] version[1]val[0] val[1]

Write

Write

Flush, Fence

(b) Fixed 8-byte Values

Figure 6: The structure of two types of PC entry. key_ptr
points to corresponding key in the key array and key_size
stands for the size of the key. (a) For variable-length val-
ues, we use copy-on-write for failure atomicity. Each PC
entry is 24-byte. The grey space of [version,val] is allo-
cated from PM. (b) For fixed 8-byte values, we adopt a
lightweight two-incarnation toggle mechanism. Each PC en-
try is 49-byte (indicator is 1-byte, every other field is 8-
byte) and cache-line-aligned, and contains two incarnations
of 〈value,version〉 pair.

2) The thread acquires the targeted item’s write lock in the
GV-view, then obtains a new version.

3) The thread persists the version with the new value (i.e.,
〈value, version〉 pair) atomically into the targeted PC entry
in the local NUMA node.

4) The thread updates the volatile value in the GV-view (for
future lookup operations), and finally releases the lock.

Delete operation. A delete operation has the same process as
an insert/update operation, except for the above Step 3): the
access thread sets the deletion marker of the obtained version
and persists it into its local PC-view.

Using the version-based mechanism, we can accurately
identify the latest value for a hot item from multiple PC-views:
the value with maximal version (without deletion marker) is
the latest; if the deletion marker of the maximal version is set,
the corresponding hot item has been deleted. For example, in
Figure 5(c), with the maximal version, “V-b” in the PC view
of node 1 is the latest value of K5.

Now we describe how to guarantee failure atomicity of
update to 〈value,version〉 pair with low overhead. Nap adopts
two different mechanisms to efficiently support variable-
length values and fixed 8-byte values, respectively.

For variable-length values, we leverage copy-on-write
(CoW) to update 〈value,version〉 pair; Figure 6(a) shows the
corresponding PC entry. The access thread firstly allocates
free PM space and copies 〈value,version〉 pair to it; then, the
thread flushes the pair via clflushopt instructions followed
by a sfence (¬); finally, the thread updates 8-byte pointer
atomically to the address of 〈value,version〉 pair, flushes the
pointer via a clwb, and issues sfence to ensure the persis-
tence is completed (). We use clflushopt (which invali-
dates flushed cache lines) rather than clwb (which does not
perform cache invalidation) for 〈value,version〉 pair, so as to
save CPU cache space for other operations; this is because
that values in PC-views are only read during recovery.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 97

Nap designs a two-incarnation toggle mechanism for fixed
8-byte values, which is very common in PM indexes [8] (8-
byte value is usually a pointer indicating the location of real
data). Figure 6(b) shows the structure of the corresponding
PC entry, which is 49-byte and cache-line-aligned. There are
two incarnations of 8-byte values and 8-byte versions, and
an indicator pointing to the valid incarnation. When writing
a new 〈value,version〉 pair, the access thread first copies the
pair into the invalid incarnation (¶), which can be calculated
according to the indicator (e.g., if the indicator points to the
first incarnation, the second one is invalid). Then, the thread
toggles the indicator (·), letting it point to the updated in-
carnation. Finally, the thread issues a clwb to the PC entry
followed by a sfence (¸). Compared to the CoW, the two-
incarnation toggle mechanism saves a flush instruction and
a fence instruction, enabling its efficiency. We do not need
a fence before toggling the indicator, because writes to the
same cache line reach PM in program order under TSO (total
store order) architecture of Intel CPUs [7, 10, 28]. Of note, al-
though each PC entry takes up a 64-byte PM space to enforce
cache line alignment, the PM consumption is limited; this is
because the hot set is small.

4.4 Hot Set Identification

Design goals. In real-world workloads, the hot set keeps
changing over time [21]; thus, Nap requires to identify the hot
set in real time. The design goals of identifying hot set are 1)
minimizing interferences with foreground index operations,
and 2) small memory footprint in the face of infinite streams
of index operations.
Design details. Nap uses a dedicated switch thread for hot
set identification, to detach this process from the critical path
of index operations. Figure 7 shows how the switch thread
interacts with access threads and identifies the hot set.

Each access thread maintains a circular record buffer to
publish its access patterns. To reduce interferences caused by
hot set identification, access threads use sampling and make
writes to record buffers coordination-free. Specifically, ev-
ery several operations (e.g., 32), an access thread writes a
〈timestamp,key〉 pair into the record buffer, where timestamp
is a 64-bit number generated via rdtsc instructions and key is
the key of current index operation. The access thread blindly
appends 〈timestamp,key〉 pairs to the circular buffer, regard-
less of whether the overwritten data has been consumed by the
switch thread (i.e., no coordination with the switch thread).

With the help of a count-min sketch [25] and a min heap,
the switch thread digests record buffers in following repeated
three steps.
1) The switch thread chooses a record buffer in a round-

robin manner, and fetches a batch (e.g., 8) of new
〈timestamp,key〉 pairs from it; this batched fetch reduces
cache line movements. Two types of 〈timestamp,key〉
pairs are considered invalid: i) the timestamp is less than

<timestamp, key>

Key1 1321

Count-Min Sketch Min Heap

sample

Access Threads

Switch Thread

Re
co

rd
 B

uf
fe

r

Key2 29919

sample sample

Figure 7: Hot set identification. Access threads publish their
access patterns into record buffers with sampling. The switch
thread uses a count-min sketch to estimate frequency of keys
and a min heap to maintain the current hot set.

maximal timestamp that has been read from corresponding
record buffer, indicating we approach the tail of the record
buffer; thus, the fetch stops. ii) (current time− timestamp)
is greater than a threshold value (e.g., 100ms), indicat-
ing this pair is too stale; thus, the pair is skipped. Note
that although the timestamps generated via rdstc are not
strictly synchronized between CPU cores [46, 47], it has
not caused any visible impacts for Nap.

2) For each key fetched from record buffers, the switch thread
leverages a count-min sketch to update and estimate its ac-
cess frequency. The count-min sketch is memory efficient,
since it only uses a few small arrays. Sampling used by
access threads filters out most infrequent keys, avoiding
overflow of the sketch [48].

3) The min heap maintains the current hot set in the form of
〈key, f requency〉 pairs that are ordered by the f requency
field. The size of the heap has an upper bound (e.g.,
10,000), which can be configured. For a key fetched from
record buffers (we call it K, and call its estimated frequency
F), if it is already in the heap, the switch thread updates the
corresponding frequency field to F; otherwise, the switch
thread inserts the 〈K, F〉 pair into the heap. If the heap
is full and F is greater than the frequency of heap root,
the thread replaces the pair in the heap root with the 〈K,
F〉. Every time the heap is modified, we need to adjust its
structure to enforce its ordering property.

Periodically (e.g., per 1 second), the switch thread com-
pares the heap with the hot set being used by current NAL. If
there is a big difference between them, i.e., the proportion of
different keys exceeds 25%, the switch thread triggers a NAL
switch (§4.5) with the new hot set (i.e., keys in the heap). All
statistics data, including the count-min sketch and the min
heap, are cleared periodically.

Handling uniform workloads. Nap minimizes overhead
induced by the NAL under uniform workloads. Specifically,
the switch thread detects uniform workloads, under which
it initializes an empty NAL (with 0-sized GV-view). For index

98 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 void Switch_NAL(new_hotset) {
2

3 // Phase 1, initialize the new NAL and install it.
4 NALnew = Lazy_initialize_NAL(new_hotset, cur_NAL);
5 cur_NAL, pre_NAL = NALnew, cur_NAL; // logging
6

7 // Phase 2, flush previous NAL into the PM index
8 Wait_for_grace_period();
9 Flush(pre_NAL);

10

11 // Phase 3, release the space used by previous NAL
12 gc_NAL, pre_NAL = pre_NAL, NULL; // logging
13 Wait_for_grace_period();
14 Collect_garbage(gc_NAL);
15 gc_NAL = NULL; // 8-byte atomic write
16 }

Listing 1: Switching to a new NAL. Global pointers
cur_NAL, pre_NAL and gc_NAL are stored in PM. Line 5
is protected via a global seqlock to ensure access threads can
get a snapshot of 〈cur_NAL, pre_NAL〉.

operations, access threads check the size of GV-view before
searching it, which only incurs less than five CPU cycles.
The switch thread can use two signals to identify uniform
workloads: ¬ items in the heap receive less than 10% of all
accesses; the hottest item in the heap receives comparable
accesses (i.e., within 3×) to the coldest.

4.5 NAL Switch
Design goals. Nap switches to a new NAL for handling dy-
namic workloads. The design goals of the NAL switch lie in
two aspects. First, Nap must minimize the blocking of fore-
ground index operations during NAL switch, to avoid latency
spikes. Second, the data races between the switch thread and
access threads should be addressed carefully, to guarantee the
consistency of the whole system.
Design details. Nap introduces a three-phase switch, which is
fast and does not block most of foreground index operations.
Its key idea is: the switch thread detects the states of access
threads via a grace-period-based method (inspired by epoch-
based reclamation [49]), to ensure its modifications are visible
for all ongoing and future index operations.

Listing 1 shows the procedure of the NAL switch, which
consists of three phases:

1) Initialize a new NAL. The switch thread initializes the
new NAL according to the new hot set (line 4, NALnew; we
term the current NAL as NALold). Specifically, the switch
thread constructs the GV-view and per-node PC-views; the
PC-views are persisted for failure atomicity. For now, the GV-
view of NALnew only records locations of values of hot items
(i.e., in raw PM index or in NALold), rather than the values
themselves, by setting the val_location field in GV entries
(Figure 5(b)). Such a lazy initialization is necessary for cor-
rectness: if we directly copy the latest values to the GV-view
of NALnew, the concurrent insert/update/delete operations to
raw PM indexes or NALold will make the value in NALnew

NALnew AC

NALold B C

cur_NAL = NALold
pre_NAL = NULL

cur_NAL = NALnew
pre_NAL = NALold

snapshot snapshot

Figure 8: Different access threads see different system states.
A, B and C each stand for an exclusive set of items.

stale, violating the correctness of future lookups to NALnew.
Then, the switch thread makes NALnew visible to access

threads, by setting global pointers cur_NAL and pre_NAL to
NALnew and cur_NAL, respectively (line 5). To ensure that
access threads always see the atomic effect of this opera-
tion, the line 5 is protected via a global seqlock [50]. Before
performing an index operation, the access thread saves a snap-
shot of 〈cur_NAL, pre_NAL〉 pair under the protection of the
seqlock, and accesses NAL according to the snapshot. The
seqlock minimizes cache coherence traffic at the reader-side
(i.e., access threads).

At this time, the different ongoing index operations may
have saved different snapshot of 〈cur_NAL, pre_NAL〉 pair,
as shown in Figure 8: type ¶ access threads only see the
NALold and do not realize the concurrent NAL switch; type
· access threads see the both NALnew and NALold. For type
¶ threads, they manipulate NALold and workflow of index
operations is the same as cases of no NAL switch (§4.2 and
§4.3). The index operations becomes a bit complicated for
type · threads:

i) For an insert/update/delete operation, if the targeted item
belongs to NALnew, NALnew absorbs this operation like the
case of no NAL switch (§4.3); besides, the thread copies
the value into the corresponding GV entry, and updates the
val_location field to 0 in order to indicate the value can
be served for future lookups. If the targeted item falls in
NALold (range B in Figure 8), the operation is blocked until
the global pointer pre_NAL becomes NULL (i.e., phase 3 of the
three-phase switch, see below); then, the operation is retried.
Otherwise, the operation is redirected to the raw PM index.

ii) For a lookup operation, the thread checks GV-view of
NALnew, GV-view of NALold, and the raw PM index one by
one. In the case that the targeted item falls in NALnew, the
thread checks the val_location field: if the value can not
be served from the NALnew (i.e., val_location is not 0),
the thread fetches the value from NALold (for range C in
Figure 8) or the raw PM index (for range A) according to the
val_location field. Range query operations experience the
same workflow: access threads search NALnew, NALold and
the raw PM index in order, then merge results.

2) Flush NALold. In this phase, the switch thread first waits
for a grace period to ensure all access threads become type
· (line 8). Our grace period mechanism is simple: each ac-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 99

cess thread publishes its states into a slot in a global array; a
slot consists of two fields: a boolean running and a 64-bit
cnt. The access thread sets its running and increases cnt
when starting an index operation (before saving the snapshot
of 〈cur_NAL, pre_NAL〉 pair), and resets the running when
completing the operation. The switch thread probes the global
array until every access thread is out of index operations
(running is false) or has finished an index operation (cnt is
changed). After this grace period, all the access threads real-
ize the concurrent NAL switch for ongoing and future index
operations, i.e., they are type · threads; hence, the NALold
will never be modified (recall that insert/update/delete oper-
ations to NALold are blocked for type · threads). Now, the
switch can flush the latest values in the GV-view of NALold
to the raw PM index rapidly (via invoking interfaces of the
raw PM index) without considering any data race (line 9).

3) Recycle NALold. Now, the NALnew and the raw PM
index reflect complete and consistent states of the system.
The switch thread needs to recycle the DRAM/PM space
occupied by NALold. It first saves the NALold into a global
pointer gc_NAL and sets the pre_NAL to NULL (line 12). Then,
the switch thread waits for a grace period to ensure no ongoing
and future lookup operations are performed on NALold (line
13). Finally, the DRAM and PM space used by NALold is
released safely (line 14), and gc_NAL is set to NULL (line
15). The access threads that realize the null pre_NAL are
in a normal condition without any blocking; for a lookup
operation to NALnew, if the targeted value is not in the GV-
view due to lazy initialization, the access thread fetches the
value from the raw PM index, saves it to the GV-view, and
updates corresponding val_location field to 0.

In the above three-phase switch, the insert/update/delete
operations to a part of NALold (i.e., range B in Figure 8) are
blocked during the phase 2. Such a blocking has only a small
impact on the system for two reasons. First, since the new
hot set is maintained by NALnew, items in the range B is cold,
receiving a negligible percentage of accesses. Second, since
the hot set is small and flushing items from NALold to the raw
PM index is data-race-free, the phase 2 is fast.

Failure atomicity. The switch thread guarantees failure
atomicity of three global pointers: cur_NAL, pre_NAL, and
gc_NAL. These three pointers are allocated in PM and per-
sisted when modified. The switch thread also maintains a
small PM undo log. For line 5 and line 12 of Listing 1, the
switch thread records undo log entries for atomicity. For line
15, an 8-byte atomic write is enough.

4.6 Recovery

Recovery in Nap is simple. First, we invoke the recovery pro-
cedure of the underlying raw PM index. Second, by scanning
the undo log and global pointers (i.e., cur_NAL, pre_NAL
and gc_NAL), we construct the valid version of these pointers.
Third, we flush the PC-views of NALs pointed by pre_NAL

(if not null) and cur_NAL in order; the latest values in PC-
views of each NAL are identified by versions (§4.3). Finally,
we free the PM space of PC-views in NALs pointed by these
three pointers, avoiding the memory leak.

4.7 Correctness
4.7.1 Definitions

• IL_RAW: isolation level of the underlying raw PM index.
• IL_NAP: isolation level of the Nap-converted index.

4.7.2 Isolation Guarantee

Theorem 1. For range queries, IL_NAP is equal to the lower
level of one between IL_RAW and read committed.
Proof. In Nap, a range query merges committed results from
the NAL and raw PM index without coordination, so it is not
atomic with concurrent updates. Hence, range queries reach
up to read committed.
Theorem 2. For point queries, IL_NAP is equal to IL_RAW.
Proof. For hot items managed by NALs (i.e., NALnew and
NALold), Nap enforces linearizability for point queries to
them. There are four cases for two conflicting operations.
• If two conflicting operations target the same NAL,

readers-writer locks in the NAL serialize them.
• If a thread updates an item in NALold, future lookups 2 to

NALnew can see the value due to the lazy initialization.
• If a thread updates an item in NALnew, it means the

NALnew has been installed. Hence, all future lookups
will see the NALnew and get the correct value.
• If two conflicting operations OP1 and OP2 perform up-

dates on NALold and NALnew, respectively, all future
lookups will see OP2, which means OP1 happens before
OP2 in the linearizable history. This is legal since it is
impossible that OP1 is invoked after OP2’s response.

4.7.3 Failure Atomicity

Theorem 3. Nap-converted indexes do not change failure
atomicity semantic of raw PM indexes.
Proof. Nap ensures that lookups after recovery can find the
latest committed updates to NALs. First, in a single PC-view,
Nap adopts the two-incarnation toggle mechanism and CoW
for atomic persistence. Second, among multiple PC-views in a
NAL, Nap stores values along with increasing versions, which
are used for accurately identifying the latest values upon re-
covery. Third, changes to the global PM pointers cur_NAL
and pre_NAL are protected by undo logging; upon recovery,
we first flush the NAL pointed by cur_NAL and then the one
pointed by pre_NAL, so as to ensure only the latest values
appear in the raw PM index.

2For an operation, its future operations are operations that are invoked
after its response.

100 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Implementation

We have implemented Nap in C++ (∼2000 lines of code).
Nap provides a template class in the form of “template<T>
class Nap”, where T is a wrapper class for a concurrent
PM index with specific index operation interfaces invoked
by Nap. Our programming experience shows that converting
a PM index using Nap needs roughly 30 lines of wrapper
class codes. We use C++ unordered_map to organize the
GV-view by default; if the underlying raw PM index supports
range query, we use C++ map.

We leverage PMDK [41] to manage PM space. Specifi-
cally, for each NUMA node, we initialize a PMDK pool, from
which Nap allocates PM space for PC-views. To reduce expen-
sive PMDK allocation upon CoW (§4.3), we adopt a simple
customized allocator. Each thread requests 1MB chunks from
its local PMDK pool, and allocates PM for CoW using clas-
sic slab mechanism. The addresses of chunks are recorded
in the PM, and the allocator metadata is maintained in the
DRAM. Upon recovery, after flushing the PC-views into the
underlying raw PM index, Nap frees these used chunks.

6 Evaluation

In this section, we use a number of microbenchmarks and
applications to evaluate Nap, seeking to answer the following
questions:
• How does Nap-converted PM indexes compare with origi-

nal PM indexes? (§6.2)
• How does Nap perform when value size is variable? (§6.3)
• How does Nap react to dynamic workloads? (§6.4)
• How do the characteristics of workloads and NUMA con-

figurations affect the performance of Nap? (§6.5)
• How does Nap compare with Node Replication? (§6.6)
• What are the overheads incurred when using Nap? (§6.7)
• What is the benefit of Nap to real applications? (§6.8)

6.1 Experimental Setup
The experiments are conducted on a 4-socket (NUMA node)
machine. Each NUMA node is populated with an 18-core
Intel Xeon Gold 6240M CPUs, three 128GB Optane DIMMs
and three 32GB DDR4 DIMMs, resulting in a machine with
72 CPU cores, 1.5TB PM and 384GB DRAM. Our machine
runs Ubuntu 18.04 with Linux kernel version 5.4.0.

Unless otherwise stated, for Nap, the size of the hot set is
configured to 100K, and the switch thread tries to perform the
NAL switch per 0.2 seconds. Each per-core record buffer is
300KB. The count-min sketch contains 3 counter arrays, each
with 32-bit 850,000 counters. The sampling interval is 32.

Workloads. We leverage a YCSB-like benchmark to eval-
uate the performance of PM indexes. The benchmark contains
five types of workloads: 1) write-intensive: 50% lookup and
50% update/insert, 2) read-intensive: 95% lookup and 5%

update/insert, 3) write-only: 100% update/insert, 4) read-only:
100% lookup, and 5) scan-intensive: 95% range query and
5% update/insert. By default, the key space (i.e., the range
of keys) is 200 million and the key popularity follows a Zip-
fian distribution with parameter 0.99 (the default setting in
YCSB [44]). For each experiment, we first load 16 million
items then perform the workloads, which contains 64 million
index operations. The ratio of insert operations to update op-
erations is about 1:3. We use 15-byte keys and 8-byte values.

6.2 Real Indexes

Using Nap, we convert five state-of-the-art PM indexes:
• CCEH [9]. An extendible hashtable that is structured as

a set of segments pointed by a global directory. It uses
readers-writer locks for concurrency control.

• Clevel [11]. A lock-free version of level hashing [12],
which is organized as two bucket arrays.
• P-CLHT [8]. PM version of CLHT [51], which is a linked-

list-based hashtable. It supports lock-free lookups and uses
bucket-grained locks for other operations.

• P-Masstree [8]. PM version of Masstree [52], a trie-like
concatenation of B+ tree nodes. It adopts lock-free lookups
and lock-based writes.

• FAST_FAIR [7]. A PM B+ tree with lock-free lookups and
lock-based writes.
For CCEH, Clevel, and P-CLHT, we use the source code

from [40], which relies on PMDK for PM allocation and sup-
ports variable-length keys. We modify the code to make each
thread allocate PM from its local PMDK pool. For CCEH,
we replace the global directory lock with an in-DRAM dis-
tributed readers-writer lock [53], avoiding its scalability is-
sues. For P-Masstree and FAST_FAIR, we use the source code
from [54] and modify the code for allocation with PMDK;
besides, we improve range query implementations by making
them return both keys and values. Of note, we do not use our
customized allocator (§5) for these indexes; this is because the
customized allocator cannot provide failure atomicity for each
(de)allocation operation due to its DRAM-resident metadata.
Throughput under write/read-intensive workloads. Figure 9
shows the throughput of these PM indexes under write-
intensive and read-intensive workloads, and we make the
following observations:

First, compared with the original indexes, Nap-converted in-
dexes yield much better scalability under both write-intensive
and read-intensive workloads. Specifically, in four-node en-
vironment (i.e., 72 threads), Nap improves the throughput
by 1.26× (FAST_FAIR) to 2.3× (CCEH) for write-intensive
workloads and 1.18× (P-Masstree) to 1.56× (P-CLHT) for
read-intensive workloads. This is because the NAL of Nap
absorbs 45∼54% operations, where the per-node PC-views
eliminate the remote PM writes and the GV-view eliminates
the remote PM reads. Note that the global GV-view induces
remote DRAM accesses; yet, remote DRAM accesses ex-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 101

0

10

20
(a) CCEH WI (b) CCEH RI

w/o Nap Nap

0

5

10

0

10

20
(c) Clevel WI (d) Clevel RI

0

2

4

6

0

20

40(e) P-CLHT WI (f) P-CLHT RI

0

10

20

0

20

40
(g) P-Masstree WI (h) P-Masstree RI

0

10

20

0

5

10(i) FAST_FAIR WI (j) FAST_FAIR RI

0
2
4
6
8

0 18 36 54 72 0 18 36 54 72
of Threads # of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

Figure 9: Throughput under write/read-intensive workloads.
WI: write-intensive workloads; RI: read-intensive workloads.
Vertical lines show the boundaries between NUMA nodes.

hibit much higher performance than remote PM accesses:
5.7× higher throughput for writes (20GB/s : 3.5GB/s) and 2×
lower latency for reads (200ns : 400ns).

Second, even within a single NUMA node, Nap-converted
indexes outperform the original ones (except P-CLHT in read-
intensive workloads). This is mainly because 1) For lookup
operations, the GV-view avoids the latency of PM reads. 2)
For insert/update operations, the two-incarnation toggle mech-
anism of PC-views minimizes the overhead of PM writes.
For P-CLHT, a highly optimized hashtable for cache local-
ity, most of lookup operations are met in CPU caches under
read-intensive workloads within a NUMA node, enabling its
high performance. Hence, it outperforms the Nap-converted
version slightly, which induces overheads of searching the
GV-view for every lookup operations.

Third, compared with tree-based PM indexes, hashtable-
based PM indexes are more vulnerable to NUMA architec-

Th
ro

ug
hp

ut
 (M

op
s/

s)

w/o Nap Nap
(a) write-only

(b) read-only

0
20
40
60

0
5

10

CCEH Clevel P-CLHT
P-Masstree

FAST_FAIR

Figure 10: Throughput under write/read-only workloads. We
run 72 threads spanning 4 NUMA nodes.

of Threads # of Threads
Th

ro
ug

hp
ut

 (M
op

s/
s)

w/o Nap Nap

2

4

6(a) P-Masstree (b) FAST_FAIR

0

5

10

15

18 36 54 72 18 36 54 72

Figure 11: Throughput under scan-intensive workloads.

tures (particularly for Clevel, Figure 9(c) and (d)). These
hashtables always use several continuous and large arrays
for fast indexing (e.g., the global directory of CCEH, bucket
arrays of Clevel and P-CLHT). For threads that do not reside
on the same NUMA nodes with these arrays, almost all PM
accesses to these arrays are remote, limiting the available PM
bandwidth and further deteriorating the performance. The
worst one is Clevel, because it only uses two bucket arrays
for indexing; by contrast, in addition to global arrays, CCEH
uses segments and P-CLHT uses linked list, which can be
allocated on different NUMA nodes, increasing the available
PM bandwidth of PM indexes.
Throughput under write/read-only workloads. Figure 10
shows the throughput under write-only and read-only work-
loads. Due to space limitations, we only reports results of 72
threads. Nap boosts the throughput by 1.32× (FAST_FAIR)
to 6.15× (CCEH) for write-only workloads and 1.15× (P-
Masstree) to 1.55× (FAST_FAIR) for read-only workloads.
Such improvement results from the NAL, which handles hot
items in an efficient and NUMA-aware manner.
Throughput under scan-intensive workloads. Figure 11
shows the range query performance of P-Masstree and
FAST_FAIR. We set the query range to 10. With 72 threads
spanning 4 NUMA nodes, Nap reduces the throughput of P-
Masstree and FAST_FAIR by 3% and 14%, respectively. This
is because Nap needs to search both the GV-view and the raw
PM index; yet, with the good locality of the GV-view and low
latency of DRAM, the extra overhead is bounded.
Latency. Figure 12 depicts the latency distribution of P-

102 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Latency (us)

C
D

F

w/o Nap
Nap

0

0.5

1.0

0 5 10 15 20 25 30

Figure 12: Latency distribution (P-CLHT, 72 threads, write-
intensive workloads). The 50th and 99th latencies of the orig-
inal index are 3.77µs and 49.95µs (not shown in the figure),
respectively. The 50th and 99th latencies of Nap-converted
index are 2.04µs and 27.64µs, respectively.

of NUMA NodesR
em

ot
e

PM
 A

cc
es

s
(G

B)

w/o Nap
Nap

49%

51%
45%

0

5

10

1 2 3 4

Figure 13: The amount of data via remote PM accesses (P-
CLHT, write-intensive workloads). We run 18, 36, 54, and 72
threads to measure results under different NUMA nodes.

CLHT under write-intensive workloads. The number of access
threads is 72. Due to space limitations, we omit other PM
indexes that have similar results. Nap decreases the median la-
tency by 46% (from 3.77µs to 2.04µs) and the 99th percentile
latency by 45% (from 49.85µs to 27.64µs). The improve-
ment is mainly from the per-node PC-views, which eliminate
remote PM writes for hot items, reducing the possibility of
multiple threads within a node access remote PM simultane-
ously (recall that when multiple threads write remote PM, the
bandwidth collapses, affecting the access latency, Figure 1).
Quantitative measurement of remote PM accesses. We use
Intel’s PCM tools [55] to measure the remote PM accesses.
The pcm.x sub-tool provides the amount of data through
UPI links and the pcm-numa.x sub-tool monitors remote
DRAM accesses. Leveraging the two sub-tools, we calculate
the remote PM accesses of P-CLHT under write-intensive
workloads. Figure 13 reports the result. Nap reduces remote
PM accesses by 45% to 51%, enabling its high performance.

6.3 Variable-length Values

This experiment tests variable-length values, which trigger
CoW in Nap. We run P-CLHT and randomly select the value
size from 8 bytes to 256 bytes. Figure 14 presents the re-
sult, from which we make two observations. First, due to
more flush and fence instructions in CoW, Nap’s throughput

0

10

20

30

40
w/o Nap Nap

(a) write-intensive (b) read-intensive

Th
ro

ug
hp

ut
 (M

op
s/

s)

of Threads # of Threads

0

5

10

15

0 18 36 54 72 0 18 36 54 72

Figure 14: Throughput of P-CLHT. The value size is ran-
domly selected from 8 bytes to 256 bytes .

workload changes

switch begins

switch ends

(a) 3-phase switch

(b) global lock

workload changes

switch begins
switch endsTh

ro
ug

hp
ut

 (o
ps

/m
s)

Time (ms)

0

10k

20k

10k

20k

3000 4000 5000 6000

Figure 15: Throughput over time with workloads change
(P-Masstree, 71 threads, write-intensive workloads).

degrades (compared with Figure 9(e) and (f)). Second, Nap-
converted P-CLHT still outperforms P-CLHT by 1.36× and
1.39× under write-intensive and read-intensive workloads, re-
spectively. This is because Nap mitigates remote PM accesses
and adopts low-overhead customized allocator for CoW.

6.4 Dynamic Workloads
In this experiment, we evaluate Nap’s ability to react to dy-
namic workloads by changing the popularity of keys. We
compare our three-phase switch mechanism with a conser-
vative mechanism that uses a global readers-writer lock: the
switch is protected by the write lock, and every index opera-
tion is protected by the read lock. To avoid the cache thrash-
ing among access threads caused by the centralized global
lock, we apply per-core reader indicator [53]. We run Nap-
converted P-Masstree under write-intensive workloads with
71 threads (one core is reserved to record total throughput
per 5ms). Figure 15 shows the throughput over time. The
workload changes at time 4s. Since the NAL can not absorb
the accesses to current hot set, the throughput drops. After
about 200∼300ms, Nap identifies the new hot set (recall that
the switch period is 0.2s, §6.1), and triggers the NAL switch.
In our three-phase switch, the throughput can be maintained
more than 10K ops/ms for about 130ms, then drops to 4K∼8K
ops/ms for about 35ms. This is because the three-phase switch
only blocks some insert/update operations to a part of old NAL

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 103

Size of Hot Set

Th
ro

ug
hp

ut
 (M

op
s/

s) (a)

0

10

20

10K
50K
100K
500K
1000K

Size of Key Space

Th
ro

ug
hp

ut
 (M

op
s/

s) w/o Nap Nap(b)

0

10

20

10M
50M
100M
500M
1000M

Zipfian Parameter

Th
ro

ug
hp

ut
 (M

op
s/

s) w/o Nap Nap(c)

0

10

20

0 0.9
0.94
0.96
0.98
0.99

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

w/o Nap
Nap

(e)

0

5

10

15

18 36 54
of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

w/o Nap
Nap

(d)

0

5

10

18 36 54 72

Figure 16: Sensitivity Analysis (P-CLTH, write-intensive). (a) Varying the size of hot set (72 threads). (b) Varying the size of key
space (72 threads). (c) Varying the Zipfian parameter (72 threads). (d) two Optane DIMMs per NUMA node. (e) four Optane
DIMMs per NUMA node.

during phase 2. However, when using the global lock, the sys-
tem is unavailable (i.e., throughput is 0) for about 195ms. To
sum up, Nap is robust enough to react to dynamic workloads
quickly without sacrificing availability.

6.5 Sensitivity Analysis

Size of hot set. Figure 16(a) shows how the configured hot set
size affects the Nap’s performance. As the size of hot set in-
creases from 10K to 1M, the throughput grows by 1.33×, and
the percentage of operations absorbed by the NAL increases
from 43% to 63%. Yet, using a large hot set consumes more
PM/DRAM space and prolongs the time of NAL switch and
system recovery.
Size of key space. Figure 16(b) presents the throughput of P-
CLHT and its Nap-converted version with varying key space.
As the key space increases, the number of hot items increases,
degrading the throughput of Nap which maintains a fixed-size
hot set. Even for a very large key space, i.e., 1000 million,
Nap can boost the throughput by 1.55×, which demonstrates
that Nap can handle large-scale workloads.
Skewness of workloads. Figure 16(c) shows how the skew-
ness of workloads affects Nap’s performance. We make three
observations. First, with increasing skewness, Nap’s improve-
ment over original indexes grows. This is because the NAL
can absorb more index operations. For the medium skewness
case (i.e., 0.9 Zipfian parameter), Nap boosts the throughput
by 1.27×. Second, under uniform workloads (i.e., 0 Zipfian
parameter), throughput of both indexes drops, since there are
more insert operations in uniform workloads, leading the P-
CLHT to resize frequently. Third, the throughput of both
indexes is almost the same under uniform workloads. This
is because Nap handles uniform workloads by initializing an
empty NAL, which induces negligible overhead.
Different NUMA configurations. Here, we change NUMA
configurations by adding/removing Optane DIMMs, and show
how the available PM bandwidth affects Nap. We get two new
NUMA configurations: i) 2 Optane DIMMs per node; ii) 4
Optane DIMMs per node (only 3 nodes due to the total of 12

0
10
20
30
40

Nap NR
(a) write-intensive (b) read-intensive

Th
ro

ug
hp

ut
 (M

op
s/

s)

of Threads # of Threads

0

5

10

15

20

0 18 36 54 72 0 18 36 54 72

Figure 17: Performance of Nap and NR (P-CLHT).

DIMMs). Figure 16(d) and (e) show the results of i) and ii),
respectively. With 2 Optane DIMMs per node, the available
PM bandwidth drops and remote PM access suffers lower
write bandwidth, degrading the throughput of PM indexes; yet,
under this configuration, by mitigating remote PM accesses,
Nap boosts the throughput of the original index by 1.76×,
which is higher than improvement under default 3-DIMMs-
per-node configuration (1.66×, Figure 9(e)). Under 4-DIMMs-
per-node configuration, Nap outperforms the original index
by 1.62×. Overall, Nap is efficient under different NUMA
configurations.

6.6 Comparison with NR

We compare Nap with Node Replication (NR) [18], to present
some key insights of designing NUMA-aware PM indexes.
We put the shared log of NR in the DRAM and disable log
recycle. Figure 17 shows the throughput of NUMA-aware
P-CLHT converted by Nap and NR. Note that NR-converted
P-CLHT is not crash-consistent: upon crash, the shared log is
lost and P-CLHT on different NUMA nodes may be inconsis-
tent. In case of 72 threads, Nap outperforms NR by 2.34× and
1.69× under write-intensive and read-intensive workloads,
respectively. The inefficiency of NR on PM indexes stems
from two reasons. First, by maintaining consistent replicas be-
tween NUMA nodes, each insert/update operation consumes n
times more PM bandwidth (n is the number of NUMA nodes),
limiting the throughput. Second, NR leverages flat combin-

104 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DRAM PM
record
buffers

count-min
sketch min heap GV-view PC-views

21.1MB 9.7MB 4.2MB 3.6MB 30.1MB
Altogether, 38.6MB DRAM and 30.1MB PM

Table 1: Consumption of DRAM and PM in Nap. We ignore
some very small usage, such as the 64-byte persistent undo
log used by the switch thread.

Index Type CCEH Clevel P-CLHT P-Masstree FAST_FAIR
Time (ms) 477 522 432 306 963

Table 2: Recovery time.

ing [43] (a technique that uses a combiner to execute a batch
of collected updates) to handle updates within a node. Flat
combining can mitigate cache thrashing but restrict concur-
rency to a single thread; yet, the single-thread performance of
PM indexes is much lower than that of DRAM indexes, due to
expensive flush/fence instructions and high PM read latency.
Combining previous experimental results (§6.2), we can con-
clude that the most important performance determinant of
NUMA-aware PM indexes is precious PM bandwidth of both
local and remote accesses (rather than cache thrashing); thus,
like Nap, a NUMA-aware PM index should reduce remote
PM accesses without consuming extra local PM bandwidth.

6.7 Overheads of Nap
The overheads of Nap lie in two aspects: memory consump-
tion and recovery time.
Memory consumption. Table 1 shows the memory consump-
tion by Nap in our evaluation (4 NUMA nodes and 72 threads),
and the total memory consumption is less than 70MB. Specifi-
cally, since our NAL only maintains the hot set, the size of the
min heap, GV-view and PC-views are limited. Besides, by us-
ing sampling, the small-sized count-min sketch and per-core
record buffers are enough.
Recovery time. Table 2 reports the recovery time of Nap-
converted PM indexes. Due to the limited size of NAL, the
recovery time is bounded, which is less than one second.

6.8 Real Application
To show the benefits that a Nap-converted PM index can bring
to real applications, we build a networked PM-based key-
value store. The key-value store uses eRPC [56] for network
communication, P-CLHT for indexing and PMDK for allo-
cation of key-value pairs. Such a key-value store can be used
for in-memory caching to reduce the total cost of ownership
(comparing with DRAM-based memcached) and alleviate the
impact of failures [28].

In this experiment, we use our four-node machine as the

of Client Threads

Th
ro

ug
hp

ut
 (M

op
s/

s) w/o Nap
Nap

0

5

10

30 60 90 120 150 180

Figure 18: Throughput of a networked PM-based key-value
store (write-intensive, Zipfian 0.99, 72 threads on the server).
Key-value size follows Facebook ETC workloads.

server and the other 5 machines as clients. Each machine
is equipped with a Mellanox ConnectX-6 NIC (200Gbps);
due to the limited bandwidth of PCIe 3.0×16, the available
bandwidth of the NIC is about 13GB/s. The key-value size
follows the Facebook ETC pool [23, 57]. The key popularity
follows a Zipfian distribution with parameter 0.99. We con-
sider a write-intensive workload (50% PUT). Figure 18 shows
the throughput with varying clients threads. By using Nap,
the throughput is improved by 1.1× under low loads (i.e., 30
client threads) and 1.49× under high loads (i.e., 180 client
threads), demonstrating practical benefits of Nap.

7 Discussion

Generality of the Nap approach. Even if microarchitectures
of hardware (e.g., CPU) evolve and remote PM write can
deliver high bandwidth, Nap is still capable of boosting PM
indexes under multi-node servers for two reasons. First, since
Nap reduces remote accesses significantly, highly concurrent
accesses to the same NUMA nodes can be avoided, mitigat-
ing contention in the same memory controllers and Optane
DIMM XPBuffers; it is well known that such contention de-
grades the PM performance severely [17, 39]. Second, Nap
lowers latency of index operations: for lookup operations, the
GV-view eliminates remote PM reads (400ns) by using less
expensive remote DRAM reads (200ns); for other operations,
per-node PC-views replace remote PM writes with local ones.
Alternative designs. We discuss alternative designs to
NUMA-aware PM indexes, and why we do not adopt them.
1) Use per-core logs. In this solution, each thread logs its
updates into its local PM node and builds a global DRAM-
resident index for lookups. This solution has three issues.
First, considering the high bandwidth of PM, using a dedicated
core for log recycle is insufficient to digest fast-growing logs;
thus, we must use foreground threads or multiple dedicated
cores to do this task, which has negative impact on CPU
usages and performance. Second, to recycle logs, we must
flush items (include hot items) into the underlying PM index,
inducing remote accesses. Third, the global DRAM-resident
index consumes large DRAM space.
2) Abandon NAL switch and maintain per-node PM caches

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 105

as PC-views. This solution adopts the architecture of Nap
but abandons NAL switch. Instead, it keeps the hot set in
per-node PM caches and evicts cold items at the runtime.
This solution comes with three drawbacks. First, designing
an ideal replacement method is difficult: if we maintain a
global hotness-list for cache replacement, the multicore scal-
ability issue happens; if we maintain a hotness-list for each
set (set-associative cache), a hot item may be evicted, induc-
ing unnecessary remote accesses. Second, when evicting a
cold item from a PM cache (very common events), we must
enforce failure atomicity of the cache, yielding extra perfor-
mance overhead. Third, to guarantee correct lookups and
recovery, all items in every PM cache should be presented
in the GV-view, which complicates the execution logic. For
example, when removing an item from the GV-view, we need
to clear corresponding items in all PM caches.
Takeaways. We present our main takeaways from this work.
1) A fast NUMA-aware PM index must reduce remote PM
accesses without consuming extra local PM bandwidth. The
limited PM bandwidth adds a new dimension to the NUMA
problem, which frustrates traditional replication-based ap-
proaches designed for DRAM indexes.
2) We conjecture that we cannot design a NUMA-aware PM
index that is optimal in ¶ minimizing remote PM accesses,
· not inducing extra local PM accesses and ¸ constant
DRAM/PM consumption. Nap achieves a sweet spot by lever-
aging the characteristics of common skewed workloads: it
meets · and ¸, and partially meets ¶ (the remote PM ac-
cesses to cold items cannot be reduced).

8 Related Work

PM indexes. A large body of work exists for PM indexes
with the ultimate goal of minimizing overheads of failure
atomicity and improving concurrency [1–16, 29, 58]. Among
them, RECIPE [8], Pronto [29] and TIPS [58] propose gen-
eral conversion methods. Specifically, RECIPE can convert
concurrent DRAM indexes that meet a set of conditions into
PM indexes; Pronto persists DRAM data structures via asyn-
chronous semantic logging; TIPS can convert any concurrent
DRAM index into PM index with durable linearizability guar-
antee. To the best of our knowledge, Nap is the first work that
addresses NUMA problems of PM indexes.
NUMA problems on PM. Several recent studies observe
pronounced NUMA impacts on Optane DIMMs [17, 37, 38].
Xu et al. [59] provide NUMA-aware interfaces to NOVA file
system [60], which can set the preferred NUMA node for a
file. Wang et al. [61] alleviate the NUMA issues of PM file
systems by thread migration. Assise [27], a distributed PM
file system, uses on-die DMA engines for remote PM writes,
to bypass hardware cache coherence. These approaches for
file systems cannot be easily applied to PM indexes, because
PM indexes 1) use a set of fixed interfaces, 2) are shared by
numerous threads, and 3) generate lots of small-sized writes.

NUMA-aware systems. There has been also work migrating
NUMA impacts for DRAM indexes, locks, operating systems,
and IO devices. NR [18] replicates data structures and syn-
chronizes replicas between NUMA nodes by a shared log.
NrOS [62] improves NR’s scalability by allowing multiple
shared logs and multiple per-node combiners. HydraList [19]
and NUMASK [63] are crafted DRAM indexes that replicate
index search layer (exclude index data) across NUMA nodes;
compared with NR, these two indexes reduce memory con-
sumption, but increase remote memory accesses due to shared
index data. Lots of NUMA-aware locks are proposed [64–68],
and most of them feature a hierarchical structure and try to
keep the lock ownership within the same node. Linux automat-
ically migrates data pages across NUMA nodes to reduce re-
mote data access [69]. Besides, Carrefour [70] supports page
replication, which can alleviate traffic hotspots and eliminate
remote accesses. Further, Mitosis [71] transparently replicates
and migrates page-tables across NUMA nodes to accelerate
page-table walks. IOctopus [72] addresses the NUMA effects
on IO devices by unifying PCIe functions to a logic one. Dif-
ferent from the above systems, the NUMA-aware PM indexes
are unique for the limited PM bandwidth and requirements of
failure atomicity.
Hotness-aware systems. Hotspots can be seen everywhere in
the real world. There are two lines of work: 1) mitigating the
effects of hotspots, and 2) leveraging hotspots to boost system
performance. In the aspect of the former, lots of systems
mitigate the load imbalance across back-end servers by using
high-performance caches to handle lookup operations to hot
items [48, 73–75]. In the aspect of the latter, HotRing [21]
designs an in-memory hashtable that can move pointers to
make hot items be served with fewer memory accesses. Like
HotRing, Nap regards hotspots as an opportunity to boost
system performance, but targets NUMA-aware PM indexes.

9 Conclusion

In this work, we have designed, implemented, and evaluated
Nap, a black-box approach that converts concurrent PM in-
dexes into NUMA-aware counterparts. Nap uses a NUMA-
aware layer to absorb accesses to hot items, which eliminates
remote PM accesses without inducing extra local PM accesses.
Nap significantly boosts the performance of PM indexes on
multi-node machines.

Acknowledgements

We sincerely thank our shepherd Changwoo Min for helping
us improve the paper. We also thank the anonymous reviewers
for their feedback. This work is supported by the National
Key Research & Development Program of China (Grant No.
2018YFB1003301), the National Natural Science Foundation
of China (Grant No. 62022051, 61832011, 61772300), and
Huawei (Grant No. YBN2019125112).

106 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and Durable
Data Structures for Non-Volatile Byte-Addressable
Memory. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies, FAST’11, page 5,
USA, 2011. USENIX Association.

[2] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD
’16, page 371–386, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[3] Shimin Chen and Qin Jin. Persistent B+-Trees in
Non-Volatile Main Memory. Proc. VLDB Endow.,
8(7):786–797, February 2015.

[4] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. NV-Tree: Re-
ducing Consistency Cost for NVM-Based Single Level
Systems. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies, FAST’15, page
167–181, USA, 2015. USENIX Association.

[5] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok
Nam, and Sam H. Noh. WORT: Write Optimal Radix
Tree for Persistent Memory Storage Systems. In Pro-
ceedings of the 15th Usenix Conference on File and
Storage Technologies, FAST’17, page 257–270, USA,
2017. USENIX Association.

[6] Faisal Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey,
Dhruva R. Chakrabarti, and M. Scott. Dalí: A Peri-
odically Persistent Hash Map. In DISC, 2017.

[7] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, Oakland, CA, February 2018. USENIX
Association.

[8] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,
Taesoo Kim, and Vijay Chidambaram. Recipe: Convert-
ing Concurrent DRAM Indexes to Persistent-Memory
Indexes. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 462–477,
New York, NY, USA, 2019. Association for Computing
Machinery.

[9] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic

Hashing for Persistent Memory. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
pages 31–44, Boston, MA, February 2019. USENIX
Association.

[10] Nachshon Cohen, David T. Aksun, Hillel Avni, and
James R. Larus. Fine-Grain Checkpointing with In-
Cache-Line Logging. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’19, page 441–454, New York, NY, USA,
2019. Association for Computing Machinery.

[11] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo.
Lock-free Concurrent Level Hashing for Persistent
Memory. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20), pages 799–812. USENIX As-
sociation, July 2020.

[12] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[13] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang
Chen. DPTree: Differential Indexing for Persistent Mem-
ory. Proc. VLDB Endow., 13(4):421–434, December
2019.

[14] Jihang Liu, Shimin Chen, and Lujun Wang. LB+Trees:
Optimizing Persistent Index Performance on 3DXPoint
Memory. Proc. VLDB Endow., 13(7):1078–1090, March
2020.

[15] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang,
and Jiwu Shu. uTree: A Persistent B+-Tree with Low
Tail Latency. Proc. VLDB Endow., 13(12):2634–2648,
July 2020.

[16] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing
Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu.
ROART: Range-query Optimized Persistent ART. In
19th USENIX Conference on File and Storage Tech-
nologies (FAST 21), pages 1–16. USENIX Association,
February 2021.

[17] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020. USENIX Association.

[18] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and
Marcos K. Aguilera. Black-Box Concurrent Data Struc-
tures for NUMA Architectures. In Proceedings of the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 107

Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, page 207–221, New York,
NY, USA, 2017. Association for Computing Machinery.

[19] Ajit Mathew and Changwoo Min. HydraList: A Scalable
in-Memory Index Using Asynchronous Updates and Par-
tial Replication. Proc. VLDB Endow., 13(9):1332–1345,
May 2020.

[20] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
191–208. USENIX Association, November 2020.

[21] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu,
Yuanyuan Sun, Huan Liu, and Feifei Li. HotRing: A
Hotspot-Aware In-Memory Key-Value Store. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 239–252, Santa Clara, CA, February
2020. USENIX Association.

[22] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at
Facebook. In 18th USENIX Conference on File and
Storage Technologies (FAST 20), pages 209–223, Santa
Clara, CA, February 2020. USENIX Association.

[23] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[24] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A. Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing Load Imbalance in Real-World
Networked Caches. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, HotNets-XIII,
page 1–7, New York, NY, USA, 2014. Association for
Computing Machinery.

[25] Graham Cormode and S. Muthukrishnan. An Improved
Data Stream Summary: The Count-Min Sketch and Its
Applications. J. Algorithms, 55(1):58–75, April 2005.

[26] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang,
Binyu Zang, Haibing Guan, and Haibo Chen. Pisces: A
scalable and efficient persistent transactional memory. In
Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, page
913–928, USA, 2019. USENIX Association.

[27] Thomas E. Anderson, Marco Canini, Jongyul Kim, De-
jan Kostić, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N. Schuh, and Emmett Witchel. Assise: Per-
formance and Availability via Client-local NVM in a
Distributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1011–1027. USENIX Association, November
2020.

[28] Wen Zhang, Scott Shenker, and Irene Zhang. Persis-
tent State Machines for Recoverable In-memory Storage
Systems with NVRam. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1029–1046. USENIX Association, November
2020.

[29] Amirsaman Memaripour, Joseph Izraelevitz, and Steven
Swanson. Pronto: Easy and Fast Persistence for Volatile
Data Structures. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 789–806, New York, NY, USA, 2020.
Association for Computing Machinery.

[30] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20,
page 1077–1091, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[31] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the
27th ACM Symposium on Operating Systems Princi-
ples, SOSP ’19, page 478–493, New York, NY, USA,
2019. Association for Computing Machinery.

[32] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 494–508, New York, NY, USA, 2019. Association
for Computing Machinery.

[33] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,
Junru Li, and Youyou Lu. Th-dpms: Design and im-
plementation of an rdma-enabled distributed persistent
memory storage system. ACM Trans. Storage, 16(4),
October 2020.

[34] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xin-
wei Fu, Anthony Demeri, Changwoo Min, and Sudarsun
Kannan. Durable transactional memory can scale with

108 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

timestone. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20,
page 335–349, New York, NY, USA, 2020. Association
for Computing Machinery.

[35] Swapnil Haria, Mark D. Hill, and Michael M. Swift.
MOD: Minimally Ordered Durable Datastructures for
Persistent Memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 775–788, New York, NY, USA, 2020.
Association for Computing Machinery.

[36] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu
Shu. Scalable Persistent Memory File System with
Kernel-Userspace Collaboration. In 19th USENIX Con-
ference on File and Storage Technologies (FAST 21),
pages 81–95. USENIX Association, February 2021.

[37] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. Sys-
tem Evaluation of the Intel Optane Byte-Addressable
NVM. In Proceedings of the International Symposium
on Memory Systems, MEMSYS ’19, page 304–315, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[38] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson,
and Tilmann Rabl. Maximizing persistent memory band-
width utilization for olap workloads. In Proceedings of
the 2021 International Conference on Management of
Data (SIGMOD ’21), June 20–25, 2021, Virtual Event,
China, SIGMOD ’21. ACM, 2021.

[39] Intel 64 and IA-32 Architectures Optimization
Reference Manual. https://software.intel.
com/sites/default/files/managed/9e/bc/
64-ia-32-architectures-optimization-manual.
pdf, 2021.

[40] PMDK Implementation of Clevel, CCEH and P-
CLHT. https://github.com/chenzhangyu/
Clevel-Hashing/, 2020.

[41] Persistent Memory Development Kit. https://pmem.
io/pmdk/, 2020.

[42] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory.
Proc. VLDB Endow., 13(10):1147–1161, April 2020.

[43] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.
Flat Combining and the Synchronization-Parallelism
Tradeoff. In Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA ’10, page 355–364, New York, NY,
USA, 2010. Association for Computing Machinery.

[44] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[45] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-Memory Databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 18–32, New York, NY, USA,
2013. Association for Computing Machinery.

[46] Hyeontaek Lim, Michael Kaminsky, and David G. An-
dersen. Cicada: Dependably Fast Multi-Core In-
Memory Transactions. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIG-
MOD ’17, page 21–35, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[47] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim,
and Taesoo Kim. A Scalable Ordering Primitive for
Multicore Machines. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[48] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 121–136, New York, NY, USA, 2017. Association
for Computing Machinery.

[49] Keir Fraser. Practical Lock-Freedom. PhD thesis, Uni-
versity of Cambridge, UK, 2004.

[50] Sequential Locks. https://www.kernel.org/doc/
html/latest/locking/seqlock.html, 2020.

[51] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Asynchronized Concurrency: The Secret to Scal-
ing Concurrent Search Data Structures. In Proceedings
of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’15, page 631–644, New York,
NY, USA, 2015. Association for Computing Machinery.

[52] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache Craftiness for Fast Multicore Key-Value Storage.
In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys ’12, page 183–196, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 109

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://github.com/chenzhangyu/Clevel-Hashing/
https://github.com/chenzhangyu/Clevel-Hashing/
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://www.kernel.org/doc/html/latest/locking/seqlock.html
https://www.kernel.org/doc/html/latest/locking/seqlock.html

[53] Distributed Reader-Writer Mutex. http://www.
1024cores.net/home/lock-free-algorithms/
reader-writer-problem/
distributed-reader-writer-mutex, 2020.

[54] Implementation of P-Masstree and FAST_FAIR.
https://github.com/utsaslab/RECIPE/, 2020.

[55] Processor Counter Monitor (PCM). https://github.
com/opcm/pcm, 2020.

[56] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Datacenter RPCs Can Be General and Fast. In
Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’19,
page 1–16, USA, 2019. USENIX Association.

[57] Diego Didona and Willy Zwaenepoel. Size-Aware
Sharding for Improving Tail Latencies in in-Memory
Key-Value Stores. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI’19, page 79–93, USA, 2019. USENIX
Association.

[58] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu,
Sumit Kumar Monga, Hee Won Lee, Minsung Jang, Ajit
Mathew, and Changwoo Min. TIPS: Making Volatile
Index Structures Persistent with DRAM-NVMM Tier-
ing. In Proceedings of the 2021 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC
’21, USA, 2021. USENIX Association.

[59] Jian Xu, Juno Kim, Amirsaman Memaripour, and Steven
Swanson. Finding and Fixing Performance Pathologies
in Persistent Memory Software Stacks. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 427–439, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[60] Jian Xu and Steven Swanson. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main
Memories. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 323–338, Santa
Clara, CA, February 2016. USENIX Association.

[61] Ying Wang, Dejun Jiang, and Jin Xiong. NUMA-Aware
Thread Migration for High Performance NVMM File
Systems. In 36th International Conference on Massive
Storage Systems and Technology, MSST ’20, 2020.

[62] Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann,
Irina Calciu, Sanidhya Kashyap, Ryan Stutsman, Amy
Tai, and Gerd Zellweger. NrOS: Effective Replication
and Sharing in an Operating System. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21). USENIX Association, 2021.

[63] Henry Daly, A. Hassan, M. Spear, and R. Palmieri.
NUMASK: High Performance Scalable Skip List for
NUMA. In DISC, 2018.

[64] Z. Radovic and E. Hagersten. Hierarchical backoff locks
for nonuniform communication architectures. In The
Ninth International Symposium on High-Performance
Computer Architecture, 2003. HPCA-9 2003. Proceed-
ings., pages 241–252, 2003.

[65] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-
Combining NUMA Locks. In Proceedings of the
Twenty-Third Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’11, page 65–74,
New York, NY, USA, 2011. Association for Computing
Machinery.

[66] Milind Chabbi, Michael Fagan, and John Mellor-
Crummey. High Performance Locks for Multi-Level
NUMA Systems. In Proceedings of the 20th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2015, page 215–226, New York,
NY, USA, 2015. Association for Computing Machinery.

[67] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
Scalable NUMA-Aware Blocking Synchronization
Primitives. In Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’17, page 603–615, USA, 2017. USENIX Associa-
tion.

[68] David Dice, Virendra J. Marathe, and Nir Shavit. Lock
Cohorting: A General Technique for Designing NUMA
Locks. ACM Trans. Parallel Comput., 1(2), February
2015.

[69] AutoNUMA: the other approach to NUMA scheduling.
https://lwn.net/Articles/488709/, 2020.

[70] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic Management:
A Holistic Approach to Memory Placement on NUMA
Systems. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, page
381–394, New York, NY, USA, 2013. Association for
Computing Machinery.

[71] Reto Achermann, Ashish Panwar, Abhishek Bhattachar-
jee, Timothy Roscoe, and Jayneel Gandhi. Mitosis:
Transparently Self-Replicating Page-Tables for Large-
Memory Machines. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 283–300, New York, NY, USA, 2020.
Association for Computing Machinery.

110 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
https://github.com/utsaslab/RECIPE/
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://lwn.net/Articles/488709/

[72] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai
Eran, Gerd Zellweger, Austin Bolen, Liran Liss, Adam
Morrison, and Dan Tsafrir. IOctopus: Outsmarting
Nonuniform DMA. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 101–115, New York, NY, USA, 2020.
Association for Computing Machinery.

[73] Bin Fan, Hyeontaek Lim, David G. Andersen, and
Michael Kaminsky. Small Cache, Big Effect: Prov-
able Load Balancing for Randomly Partitioned Cluster
Services. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC ’11, New York, NY, USA,
2011. Association for Computing Machinery.

[74] Xiaozhou Li, Raghav Sethi, Michael Kaminsky,
David G. Andersen, and Michael J. Freedman. Be Fast,
Cheap and in Control with SwitchKV. In Proceedings
of the 13th Usenix Conference on Networked Systems
Design and Implementation, NSDI’16, page 31–44,
USA, 2016. USENIX Association.

[75] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,
Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion
Stoica. DistCache: Provable Load Balancing for Large-
Scale Storage Systems with Distributed Caching. In
Proceedings of the 17th USENIX Conference on File and
Storage Technologies, FAST’19, page 143–157, USA,
2019. USENIX Association.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 111

Rearchitecting Linux Storage Stack for µs Latency and High Throughput

Jaehyun Hwang

Cornell University

Midhul Vuppalapati

Cornell University

Simon Peter

UT Austin

Rachit Agarwal

Cornell University

Abstract

This paper demonstrates that it is possible to achieve µs-scale

latency using Linux kernel storage stack, even when tens of

latency-sensitive applications compete for host resources with

throughput-bound applications that perform read/write opera-

tions at throughput close to hardware capacity. Furthermore,

such performance can be achieved without any modification

in applications, network hardware, kernel CPU schedulers

and/or kernel network stack.

We demonstrate the above using design, implementation

and evaluation of blk-switch, a new Linux kernel storage

stack architecture. The key insight in blk-switch is that

Linux’s multi-queue storage design, along with multi-queue

network and storage hardware, makes the storage stack con-

ceptually similar to a network switch. blk-switch uses this

insight to adapt techniques from the computer networking

literature (e.g., multiple egress queues, prioritized processing

of individual requests, load balancing, and switch scheduling)

to the Linux kernel storage stack.

blk-switch evaluation over a variety of scenarios shows

that it consistently achieves µs-scale average and tail latency

(at both 99th and 99.9th percentiles), while allowing applica-

tions to near-perfectly utilize the hardware capacity.

1 Introduction

There is a widespread belief in the community that it is not

possible to achieve µs-scale tail latency when using the Linux

kernel stack. A frequently cited argument is that, due to its

high CPU overheads, Linux is struggling to keep up with

recent 10−100× performance improvements in storage and

network hardware [17, 38]; the largely stagnant server CPU

capacity further adds to this argument. In addition, many in

the community argue that the resource multiplexing principle

is so firmly entrenched in Linux that its performance stumbles

in the common case of multi-tenant deployments [22,38,42]—

when latency-sensitive L-apps compete for host compute and

network resources with throughput-bound T-apps, Linux fails

to provide µs-scale tail latencies. These arguments reflect a

SSD

L-app T-app

NIC

I/O syscalls

L-app T-app

blk-mq

Driver I/O queues

User space

Kernel space

H/W

blk-switch

Figure 1: The key insight in blk-switch design: Linux’s per-

core block layer design, along with modern multi-queue storage

and network hardware, makes the storage stack conceptually

similar to a network switch.

broad belief that, despite Linux’s great success, it has emerged

as the core bottleneck for modern applications and hardware.

This paper focuses on storage stacks used by applications

to access data on local and/or remote servers. We show that it

is possible to achieve µs-scale tail latency using Linux, even

when applications perform read/write operations at through-

put close to hardware capacity. Furthermore, low latency and

high throughput can be simultaneously maintained even when

tens of L-apps and T-apps compete for host resources at each

of the compute, storage and network layers of the kernel stack.

Finally, such performance can be achieved without any modifi-

cations in applications, network and storage hardware, kernel

CPU schedulers and/or kernel network stack; all that is needed

is to rearchitect the Linux storage stack.

blk-switch is a new Linux storage stack architecture for

µs-scale applications. The key insight in blk-switch is that

Linux’s per-core block layer queues [19, 27], combined with

modern multi-queue storage and network hardware [8], makes

the storage stack conceptually similar to network switches

(Figure 1). Building upon this insight, blk-switch adapts

classical techniques from the computer networking literature

(e.g., multiple egress queues, prioritized processing of indi-

vidual requests, load balancing along multiple network con-

nections, and switch scheduling) to the Linux storage stack.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 113

To realize the above insight, blk-switch introduces a

per-core, multi-egress queue block layer architecture for the

Linux storage stack (Figure 1). Applications use standard

Linux APIs to specify their performance goals, and to submit

read/write requests (§3). Underneath, for each application

class, blk-switch creates an “egress” queue on a per-core

basis that is mapped to a unique queue of the underlying

device driver (that is, storage driver for local storage access, or

remote storage driver for remote storage access). Such a multi-

egress queue design allows blk-switch to decouple ingress

(application-side block layer) queues from egress (device-side

driver) queues since requests submitted at an ingress queue

on a core can now be processed at an egress queue at any of

the cores. blk-switch merely acts like a “switch”—at each

individual core, blk-switch steers requests submitted at the

ingress queue of that core to one of the egress queues, based

on application performance goals and load across cores.

blk-switch integrates three ideas within such a switched

architecture to simultaneously enable µs-scale tail latency for

L-apps and high throughput for T-apps. First, blk-switch

maps requests from L-apps to the egress queue on that core,

and processes the outstanding requests in a prioritized order;

that is, at each individual core, requests in L-app egress queues

are processed before requests in T-app egress queues. This

ensures that L-apps observe minimal latency inflation due to

head-of-line blocking from T-app requests. However, strict

prioritization at each core can lead to starvation of T-apps

due to transient load (bursts of requests from an L-app on

the same core) or due to persistent load (multiple contending

L-apps on the same core). To avoid starvation during transient

loads, blk-switch exploits the insight that decoupling the

application-side queues from device-side queues, and inter-

connecting them via a switched architecture enables efficient

realization of different load balancing strategies, even at the

granularity on individual application requests. blk-switch

thus uses request steering to load balance requests from T-

apps across corresponding egress queues at all available cores.

To avoid starvation due to persistent loads, blk-switch uses

application steering, that steers application threads across

available core at coarse-grained timescales with the goal of

minimizing persistent contention between L-apps and T-apps.

At its very core, the two steering mechanisms in blk-switch

highlight the conceptual idea that load balancing within the

Linux storage stack can be applied at two levels of abstraction:

individual requests and individual threads; and, both of these

are necessary to simultaneously achieve µs-scale latency for

L-apps and high throughput for T-apps—the former enables

efficient handling of transient loads, and the latter enables

efficient handling of persistent loads on individual cores.

We have implemented blk-switch within the Linux

storage stack. Our implementation is available at: https:

//github.com/resource-disaggregation/blk-switch. We

evaluate blk-switch over a wide variety of settings and

workloads, including in-memory and on-disk storage, single-

threaded and multi-threaded applications, varying load in-

duced by L-apps and T-apps, varying read/write ratios, varying

number of cores, and with RocksDB [9], a widely-deployed

storage system. Across all evaluated scenarios (except for

sensitivity analysis against number of cores and T-app load),

we find that blk-switch achieves µs-scale average and tail

latency (at both 99th and 99.9th percentiles, or P99 and P99.9,

respectively), while allowing applications to nearly saturate

the 100Gbps link capacity, even when tens of applications con-

tend for host resources. In comparison to Linux, blk-switch

improves the average and the P99 latency by as much as

130× and 24×, respectively, while maintaining 84− 100%

of Linux’s throughput. We also compare blk-switch to

SPDK, a widely-deployed state-of-the-art userspace storage

stack. We find that SPDK achieves good tail latency and high

throughput when each application runs on a dedicated core;

in the more realistic scenario of applications sharing server

cores, in comparison to SPDK, blk-switch improves the

average and P99 tail latency by as much as 12× and 18×, re-

spectively, while achieving comparable or higher throughput;

as we will discuss, this is because polling-based userspace

stacks like SPDK do not interpolate very well with Linux

kernel CPU schedulers. When compared to both Linux and

SPDK, blk-switch achieves similar or higher improvements

for P99.9 tail latency. All these benefits of blk-switch can

be achieved without any modifications in the applications,

Linux CPU scheduler (blk-switch uses the default CFS

scheduler), Linux network stack (blk-switch uses Linux

kernel TCP/IP stack), and/or network hardware.

2 Understanding Existing Storage Stacks

This section presents a deep dive into the performance of

two state-of-the-art storage stacks—Linux (including remote

storage stack [29]) and SPDK (a widely-deployed userspace

stack). We first describe our setup (§2.1), and then discuss

several results and insights (§2.2). Our key findings are:

• Despite significant efforts in improvement of Linux storage

stack performance (per-core queues [19], per-core storage

and network processing [29], etc.), existing Linux-based

solutions suffer from high tail latencies due to head-of-line

blocking, especially in increasingly common multi-tenant

deployments [31, 52], that is, when L-apps compete for

host resources with T-apps that perform high-throughput

reads/writes to remote storage servers. Intuitively, such

scenarios result in a complex interference at three layers

of the stack—compute, storage, and network—requiring

careful orchestration of host resources to achieve µs-scale

tail latency, while sustaining throughput close to hardware

capacity. Existing Linux-based solutions fail to efficiently

achieve such orchestration. For instance, even with one

L-app competing with one T-app, we observe tail latency

inflation of as much as 7× (when compared to isolated

case, where the L-app runs on a dedicated server).

114 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/resource-disaggregation/blk-switch
https://github.com/resource-disaggregation/blk-switch

Table 1: The storage stack, network stack and CPU scheduler

used in the evaluated systems.

System Storage stack Network stack CPU scheduler

Linux kernel, i10 [29] kernel TCP kernel CFS

SPDK userspace kernel TCP kernel CFS

• Polling-based storage stacks (e.g., SPDK) can achieve low

latency and high throughput when each application is given

a dedicated core. However, when multiple applications

share a core, polling-based stacks that use kernel CPU

schedulers suffer from undesirable interactions between

the storage stack and the kernel CPU scheduler. Even when

one L-app shares a core with one T-app, we observe 5× tail

latency inflation and 2.4× throughput degradation, when

compared to the respective isolated cases; both of these

get worse with increasing number of applications sharing

a core (108× tail latency inflation and 6.2× throughput

degradation for the case of four L-apps sharing a core with

one T-app). Prioritizing L-apps does not help—while tail

latency inflation can be avoided, throughput for T-apps

drops to near-zero with just one L-app.

2.1 Measurement Setup

The storage stack, the network stack and the CPU schedulers

used in evaluated systems are summarized in Table 1. Linux

uses block multi-queue design with per-core software queues

mapped to underlying device driver queues (NVMe driver for

local storage access, and i10 [29] queues for remote storage

access). SPDK is a polling-based system, where applications

poll on their I/O queues (for local storage access) and/or

on their respective TCP sockets (for remote storage access);

underneath, SPDK uses its own driver for accessing remote

storage devices over TCP.

In §5, we evaluate these systems over different storage

devices, workloads, and experimental setups. This section

focuses on a specific setting: a single-core setup where one T-

app contends with an increasing number of L-apps to execute

read requests on remote in-memory storage connected via a

100Gbps link. This setting allows us to both hide high NVMe

SSD access latencies, and dive deeper into factors contributing

to individual system performance. Latency-sensitive L-apps

generate 4KB requests and throughput-bound T-apps generate

large requests; to ensure a fair comparison, for each individual

system, we set the “ideal” load and request size for T-apps

using the knee point on the latency-throughput curve for that

system (see discussion in §5.1 for more details, including

information about network and storage hardware).

We measure average and P99 tail latency for L-apps and

throughput-per-core for T-apps for both isolated (where each

application has host resources to itself) and shared scenarios

(where all applications share host resources). An ideal system

would maintain the isolated-latency for L-apps, with minimal

impact on isolated throughput for T-apps.

2.2 Existing Storage Stacks: Low latency or

high throughput, but not both

We start by discussing the isolated performance for each of the

systems (shown in Figure 2 in the leftmost bars). Here, Linux

achieves P99 tail latency of 118µs and throughput-per-core of

26Gbps; when compared to Linux, SPDK achieves 5× lower

latency, and 1.5× higher throughput. While these results are

not surprising in comparison, some interesting numbers stand

out in an absolute sense. In particular, the absolute numbers

for Linux—118µs P99 tail latency (comparable to our NVMe

SSD access latency) and > 25Gbps throughput-per-core—

may be surprising. We attribute these to several relatively

recent optimizations in the Linux storage stack (e.g., blk-

mq [19] and CPU-efficient remote storage stacks [29]).

High tail latencies due to lack of prioritization: head-of-

line (HoL) blocking. In early incarnations of Linux storage

stacks, requests submitted at all cores were processed at a

single queue, resulting in contention across cores as well as

HoL blocking due to requests submitted across cores. To-

day’s Linux alleviates these issues using per-core block layer

queues [19]; however, we find that HoL blocking can still

happen at the block layer queues (rare) or at the device driver

queues (more prominent). This is because the Linux storage

stack [19, 29] uses a single per-core non-preemptive thread to

process all requests submitted on that core. When multiple ap-

plications contend on a core, this results in high tail latencies

for L-apps due to HoL blocking caused by large requests from

T-apps; we observe as much as 7× higher latencies in Fig-

ure 2. Figure 3(a) shows that, as expected, the impact of HoL

blocking increases linearly with the request size of T-apps.

High tail latencies due to lack of prioritization: fair CPU

scheduling. We find that polling-based designs do not inter-

play well with the default kernel CPU scheduler—Completely

Fair Scheduler (CFS)—that allocates CPU resources equally

across applications sharing the core (albeit, at coarse-grained

millisecond timescales, referred to as “timeslices”). Polling

completely utilizes the core; thus, the scheduler deallocates

the core from an application only when the application has

used its share of the core. As a result, requests from L-apps

initiated at the boundary of L-app timeslices are the ones

whose latency is impacted the worst since these would not be

processed until the application’s next timeslice. As a result,

even when one L-app contends with one T-app, SPDK suffers

from 5× inflation in tail latency when compared to the iso-

lated case; the latency inflation increases to 108× and higher

when multiple L-apps share the core with a T-app. Since CPU

is fairly shared across contending applications, such polling-

based systems not only suffer from latency inflation but also

from degraded throughput for T-apps proportional to the num-

ber of applications contending at the core.

The impact on tail latency depends on two factors: (1)

length of individual timeslices; and (2) the time gap between

successive timeslices. The former determines the number of

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 115

Linux SPDK SPDK+priority

 1

 10

 100

 1000

 10000

(isolated) 1 2 4

L
a

te
n

c
y
 (

μ
s
)

Number of L−apps

 0

 10

 20

 30

 40

(isolated) 1 2 4

T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Number of L-apps

Figure 2: When each application runs in isolation (isolated case, with no other applications on the server), existing storage stacks can

achieve low latency and high throughput. However, when multiple applications compete for host resources, performance of existing

storage stacks stumbles—they are either unable to maintail µs-scale latency (Linux and SPDK), or are unable to maintain high throughput

(SPDK+priority). With increasing number of L-apps contending with the T-app, performance degrades further. See §2.2 for discussion.

Run Wait L−app Avg Latency L−app Tail Latency T−app throughput

 0

 400

 800

 1200

 1600

 2000

4 16 32 64 128T
a
il

L
a
te

n
c
y
 (

μ
s
)

I/O size (KB)

 1
 2
 3
 4
 5
 6
 7

1 2 4T
im

e
 p

re
io

d
 (

m
s
)

Number of L−apps

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30
 0

 50

 100

 150

 200

 250

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

L
a

te
n

c
y
 (

μ
s
)

Sleep interval (μs)

 0

 5

 10

 15

 20

 25

−20 −15 −10 −5 0
 0

 50

 100

 150

 200

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

L
a

te
n

c
y
 (

μ
s
)

Niceness Value

Figure 3: Root cause for the trends in Figure 2. (left–right) (a): Linux suffers from high tail latency due to HoL blocking. (b): SPDK

suffers from high tail latency and low throughput since CPU scheduler performs fair scheduling of CPU resources, resulting in increasingly

higher waiting times and increasingly lower runtimes for each application. (c, d): SPDK+priority suffers from complete starvation of T-app;

increasing the sleep interval and/or niceness value of L-apps leads to an increase in T-app throughput, at the cost of increased average and tail

latency for L-apps. Detailed discussion in §2.2.

requests that can be processed within a single timeslice (these

requests will achieve near-optimal latency), and the latter de-

termines the amount of “waiting time” for requests that could

not be processed within the timeslice in which they were sub-

mitted. We measure these two factors in our experiments by

examining CFS scheduler traces. In Figure 3(b), the “Run”

bar shows the average length of the timeslice given to each

L-app, and the “Wait” bar shows the average time gap be-

tween consecutive timeslices of each L-app. We observe that

as the number of L-apps increases, the length of individual

L-app timeslices decreases, and the wait time increases. This

leads to (1) a larger latency impact for requests at the bound-

ary of timeslices, hence inflation in tail latency; and, (2) a

larger fraction of requests being impacted by the gap between

consecutive timeslices, hence inflation in average latency.

Near-zero throughput due to strict prioritization: starva-

tion in polling-based designs. Linux CPU scheduler allows

prioritization of L-apps. Unfortunately, polling-based designs

do not interplay well with prioritization either. We rerun

SPDK results above but with L-apps having higher priority

(niceness value −20) than T-app. The corresponding results,

referred to as “SPDK+priority” in figures, show that such

prioritization results in two undesirable effects: (1) complete

starvation of T-apps—since L-apps have higher priority and

are always active due to their polling-based design, the sched-

uler does not preempt these applications; and (2) if more than

a single L-app contend on a core, CPU resources are shared

fairly across these applications, resulting in increased average

latency. We note that tail latency is not impacted much when

the number of L-apps is increased. This is because, when

given higher priority, L-apps get longer timeslices, and are

able to process more requests in each timeslice, leaving only

a small fraction of requests to be impacted by the gap be-

tween consecutive timeslices. Hence, while the waiting time

between timeslices increases, the effect is not visible at P99

(higher percentiles see significant inflation). This is also the

reason for the case of four L-apps in Fig. 2: the tail latency

is worse than the average (since the latency distribution is

extremely skewed towards higher percentiles).

In Figure 3(c), we re-run the single L-app and T-app case,

this time making the L-app sleep for a certain interval after

submitting requests, and vary this interval. When the L-app

sleeps, it yields, allowing the T-app to get scheduled. As can

be seen, increasing the sleep interval leads to an increase in

T-app throughput. However, it comes at the cost of increasing

tail latency for L-apps. In Figure 3(d), we repeat the single

L-app and single T-app experiment, but with varying the L-

app priority by adapting the niceness value (lower niceness

implies higher priority): T-app’s niceness value is set to 0, and

we vary L-app niceness value from −20 (highest priority) to

0. CFS allocates timeslices to processes based on the niceness

value. Hence, with increasing niceness values, the L-app gets

a smaller share of CPU cycles, leading to an increase in the

T-app’s share. As a result, T-app’s throughput increases but

only at the cost of inflated latency for the L-app.

116 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

3 blk-switch Design

As mentioned earlier, blk-switch builds upon the insight

that Linux’s per-core block layer queues [19, 27], combined

with modern multi-queue storage and network hardware [8],

makes the storage stack conceptually similar to network

switches. To realize the above insight, blk-switch intro-

duces a “switched” architecture for the Linux storage stack

that allows requests submitted by an application to be steered

to and processed at any core in the system. In §3.1, we de-

scribe this switched architecture, and how it enables the key

technique in blk-switch to achieve low latency for L-apps—

prioritized processing of individual requests. In §3.2 and

in §3.3, we describe how decoupling the application-side

queues from device-side queues, and interconnecting them

via blk-switch’s switched architecture enables efficient re-

alization of different load balancing strategies to achieve high

throughput for T-apps.

Before diving deeper into blk-switch design details, we

make two important notes. First, we describe blk-switch de-

sign using a single target device (local and/or remote storage

server) since, similar to Linux, blk-switch treats each tar-

get device completely independently. Second, blk-switch

does not require modifications in applications and/or system

interface—applications submit I/O requests to the kernel via

standard APIs such as io_submit(). Similar to any other sys-

tem that provides differential service, blk-switchmust iden-

tify application goals. Being within the Linux kernel makes

this task easy for blk-switch: it uses the standard Linux

ionice interface [6] that allows setting a “scheduling class”

for individual applications/processes (without any changes

in applications and/or kernel request submission interface).

In the current implementation (§4), blk-switch uses two of

the ionice classes to differentiate L-apps from T-apps. It is

easy to extend blk-switch to support additional application

requirements—for instance, applications that require both low

latency and high throughput can use an additional application

class (using ionice) to specify their performance goal, and

blk-switch can be extended in a manner that each core not

only appropriately prioritizes but also performs load balanc-

ing for requests for such applications. In addition, the ion-

ice interface also allows applications to dynamically change

their class, if performance goals change over time (e.g., from

latency-sensitive to throughput-sensitive requests). Note that

ionice is only for the storage stack interpretation, and is dif-

ferent from CPU scheduling priority classes.

3.1 Block Layer is the New Switch

Linux storage stack architecture, in particular the block layer,

has evolved over time. In early incarnations of Linux storage

stacks, requests submitted at all cores were processed at a

single queue. In today’s Linux, block layer uses a per-core

queue (blk-mq [19]) where requests submitted by all appli-

cations running on that core are processed. We refer to these

per-core block layer queues as ingress queues. Today, these

ingress queues are directly mapped to the driver queues (stor-

age device driver for local storage access, or remote storage

driver [21, 29] for remote storage access)1. Introduction of

per-core ingress queues in Linux storage stack resolved con-

tention across cores; however, since all requests submitted to

an ingress queue are processed at the same core, it can lead

to high tail latency due to head-of-line blocking at the driver

queues when L-apps and T-apps submit requests to the same

ingress queue (Figure 2). blk-switch’s architecture avoids

this using a multi-egress queue design, that we describe next.

Multiple egress queues. blk-switch introduces a per-core,

multi-egress queue block layer architecture for the Linux stor-

age stack. For each class of application running on the server,

blk-switch creates an “egress” queue on a per-core basis.

Each of these egress queues is mapped to a unique queue of

the underlying device driver—storage driver for local stor-

age access, and remote storage driver [29] with a dedicated

network connection for remote storage access. blk-switch

assigns a dedicated kernel thread for processing each individ-

ual egress queue and assigns priorities to these threads based

on application performance goals. For instance, in the case

of L-apps and T-apps, blk-switch assigns highest priority

to the thread processing L-app requests (both in transmit and

receive queues); thus, at each individual core, the kernel CPU

scheduler will prioritize the processing of L-app requests over

T-app requests, immediately preempting the T-app request

processing thread. As a result, the latency inflation observed

by L-app requests over the isolated case is minimal: in addi-

tion to the necessary overhead of a context switch, the only

source of latency is other L-app requests on that core.

Decoupling request processing from application cores.

Existing block layer multi-queue design tightly couples re-

quest processing to the core where the application submits the

request. While efficient when cores are underutilized, such

a design could result in suboptimal core utilization: if a core

C0 is overloaded and another core C1 is underloaded, current

storage stacks do not utilize C1 cycles to process requests

submitted at C0.

blk-switch exploits its multi-egress queue design to en-

able a switched architecture that alleviates this limitation

(Figure 4): it allows requests submitted at a core to be steered

from the ingress queue of that core to any of the other cores’

egress queues (for that application class), be processed on

that core, and responses returned on that core to be rerouted

back to the appropriate application core. Decoupling request

processing from application cores has some overheads (both

in terms of latency and CPU), but allows blk-switch to ef-

1Modern storage devices have multiple hardware queues and correspond-

ing drivers allow creating a large number of queues (e.g., NVMe standard

allows creating as many as 64k queues); in case of multiple hardware de-

vices, each device has its own set of queues. Similarly, modern remote storage

stacks [29] also create one driver queue per-core for each remote server.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 117

I/O syscalls

User space

Kernel space

H/W

L-app T-app

blk-switch

SSD NIC

blk-mq

Driver I/O queue

I/O syscalls

L-app T-app

SSD NIC

I/O syscalls

L-app T-app

SSD NIC

Figure 4: An illustration of blk-switch’s design. (left) multi-egress queue architecture: the first two and the last two queues on each device

are for the left and the right core, respectively (one for each application class); (center) request steering mechanism: upon transient congestion

on left core NIC queue, requests are steered on the queue corresponding to the right core ; (right) application steering mechanism: upon

persistent congestion on the left core NIC queue, T-app is steered to the right core. See §3 for discussion.

ficiently utilize all cores in the system. For instance, in the

case of L-apps and T-apps, blk-switch can steer requests to

and process them at lightly-loaded cores, improving through-

put for T-apps. Moreover, among requests processed on each

core, blk-switch continues to provide isolation: prioritized

processing of requests in L-app egress queues ensures that re-

quests from L-apps are always prioritized over other requests.

We will discuss in §4 how existing block layer infrastruc-

ture (e.g., bio and request data structures) enable efficient

implementation of such a switched architecture with minimal

modifications. The rest of the section describes blk-switch

mechanisms to efficiently exploit this switched architecture

to achieve high throughput for T-apps.

3.2 Request Steering

Decoupling processing of individual requests from applica-

tion cores via blk-switch’s switched architecture enables

efficient realization of different load balancing strategies.

In this subsection, we describe one such strategy used in

blk-switch for efficiently handling transient loads on indi-

vidual cores—request steering.

Transient loads can result in temporarily starving T-app

requests, e.g., when a burst of (high-priority) L-app requests

end up temporarily consuming all CPU cycles on a core, or

when multiple L-apps on a core end up generating requests

at the same time, or when large requests from one T-app

block requests from other T-apps on that core to be processed,

etc. Under such transient loads, blk-switch uses request

steering to load balance the load on the system across the

available cores—it steers T-app requests at ingress queues

of transiently overloaded cores to the corresponding egress

queues on other cores at the granularity of individual T-app

requests. Importantly, blk-switch performs request steer-

ing only for throughput-bound applications. Request steering

incurs some overheads (e.g., latency due to reduced data lo-

cality, and CPU overheads due to request steering processing

and due to contention among cores for accessing the same

egress queue), but it is a good tradeoff to make for T-apps:

during transient loads, blk-switch is able to efficiently uti-

Algorithm 1 : blk-switch request steering framework.

request processing on local core (for destination T):

1: if load on local core < threshold then

2: Move the request to local core’s egress queue

3: else

4: candidates← cores with egress queue to T

5: for each core ∈ candidates do

6: if load on the core > threshold then

7: remove core from candidates

8: Randomly pick two cores in candidates

9: Move the request to the core with smaller load

lize available CPU cycles at other cores to maintain T-app

throughput. Figure 4(center) shows an example.

Making request steering decisions requires an estimate of

instantaneous load on individual cores in the system. For T-

apps where I/O is the main bottleneck, blk-switch’s multi-

egress queue design enables an efficient approach—using the

instantaneous sum of bytes of outstanding requests for the

T-app egress queue to determine instantaneous per-core load

and to steer requests to lightly-loaded cores. For such applica-

tions, instantaneous sum of bytes of outstanding requests is a

good indicator of the presence of congestion in the end-to-end

datapath, as congestion at any point will eventually build up

the amount of bytes of outstanding requests in T-app egress

queues. In our implementation for T-app requests that perform

data access to remote storage servers, we use a default thresh-

old of 16×64KB based on the latency-throughput curve for

T-apps [30]. However, without any additional mechanisms,

such an approach could lead to imperfect request steering

decisions since it does not take into account the many other

important factors (e.g., queueing delay, request type being

read/write, compute-I/O ratios, etc.); there is a large body of

research on estimating load on the cores [15, 22, 46], and any

of these mechanisms can be incorporated within blk-switch

decision making.

Algorithm 1 shows a general framework for blk-switch’s

request steering mechanism. blk-switch performs request

118 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

steering at the granularity of individual requests. Upon a re-

quest submission, blk-switch first checks if the local core is

available: if the load on the local core is less than threshold,

the local core is considered available and the request is en-

queued in its egress queue. This is to ensure that blk-switch

only incurs the overhead of request steering when necessary.

If the local core is overloaded, blk-switch uses a mecha-

nism based on power-of-two choices [41] to select a core to

steer the request to. Among egress queues to the same des-

tination (as described in §3.1), it randomly chooses two of

these cores, and steers the request to the core with the lower

load. The power-of-two choices is efficient as (1) at most

two egress ports need to be examined when the local core is

overloaded; and (2) it reduces contention between cores on

queues since two cores are unlikely to write requests to the

same core at the same time.

We provide details about blk-switch’s request steering

implementation in §4. blk-switch does not implement re-

quest steering at the remote storage server side; if there is

transient congestion at the remote storage server, then corre-

sponding egress queues at the application side will build up.

In that case, our application-side request steering algorithm

will not pick this egress queue, and will forward the requests

to queues at other cores. Thus, application-side request steer-

ing alone is enough to deal with transient congestion at both

the application and the remote storage server.

3.3 Application Steering

The benefits of request steering at a per-request granularity

can be overshadowed if each request submitted at a core has

to be steered to other cores, e.g., due to persistent load on a

core due to multiple contending L-apps submitting requests

at that core. For instance, if L-apps generate requests at low

but consistent loads, frequent context switching between L-

app and T-app request processing threads leads to reduced

throughput. Similarly, if two high-load T-apps are contending

on a core, it is better to move one of them to a less utilized

core, avoiding long-term overheads of request steering.

To handle such persistent loads, blk-switch observes that

load balancing within the Linux storage stack can be done at

two levels of abstraction: individual requests and individual

threads—while the former enables efficient handling of tran-

sient loads, the latter enables efficient handling of persistent

loads. Thus, under such persistent loads, blk-switch per-

forms application steering, that is CPU allocation to individual

application threads by steering threads from persistently over-

loaded cores to one of the underutilized cores. Figure 4 shows

an example. blk-switch performs application steering at

coarse-grained timescales (in our implementation, default is

10 milliseconds) since it is required only for handling persis-

tent loads. Note that application steering is performed at the

granularity of individual application threads. Unlike request

steering, blk-switch implements a version of application

steering at both the application side and at the remote storage

Algorithm 2 : blk-switch application steering framework.

L̂c: weighted average load induced by L-apps at core c.

T̂c: weighted average load induced by T-apps at core c.

L⋆: threshold on weighted average load induced by L-apps

L-apps:

1: candidates← all cores with 0 < L̂c < L⋆

2: c⋆ ← core in candidates with minimum {L̂c + T̂c}
3: Move the application to c⋆

T-apps:

1: candidates← all cores with L̂c less than local core

2: ĉ← core in candidates with minimum T̂c

3: Move the application to ĉ

server; for the latter, it steers threads that perform processing

at blk-switch’s receive-side egress queues.

For application steering, blk-switch uses a frame-

work similar to request steering with minor modifications

(Algorithm 2). Unlike the request steering framework,

blk-switch’s application steering explicitly takes into ac-

count the weighted average load on the core induced by L-

apps. This is due to two reasons. First, application steering

is performed to reduce long-term contention between L-apps

and T-apps; thus, we want T-apps to be steered to the core

with low weighted average load induced by L-apps (with an

additional constraint that the weighted average of T-app load

on the new core is lower than the current core). Together, this

ensures that steering the T-app does not increase the num-

ber of context switches (the new core has lower L-app load),

and also that the new core’s T-app load is lower than that of

the current core, thus minimizing contention among T-apps.

Second, we also want to potentially place multiple L-apps on

the same core in order to further reduce interference between

L-apps and T-apps—colocating L-apps on a core will not neg-

atively impact their performance as long as L-apps generate

low weighted average load on the core. The second modifi-

cation is for the case of applications performing data access

on remote storage servers: we now use a default threshold of

L⋆ = 100KB to ensure that only a small number of L-apps are

aggregated on the same core.

4 blk-switch Implementation Details

We have implemented blk-switch in Linux kernel 5.4.

Throughout the implementation, our focus was to reuse ex-

isting kernel storage stack infrastructure as much as possible.

To that end, our current implementation adds just 928 lines

of code—530 in blk-mq layer, 118 at device driver layer, and

280 for target-specific functions at remote storage layer. In

this section, we summarize the core components of Linux ker-

nel implementation that blk-switch uses, along with some

of the interesting blk-switch implementation details.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 119

hctx
(0,0)

T-app

software ctx (0)

req“hctx(0,1)”
(tag:1)

hctx
(0,1)

High-
prio.

1

2

3

req

tags

1

2

3

blk-mq

Driver

I/O-
queue

Low-
prio.

kioctx

Initialize req.

Tx req.

Rx res. → Find req.

Put into event ring

Notify app. &

Get response event

Tx path

Rx path

kiocbVFS

user

space
core0

response

Figure 5: Request datapath in blk-switch for T-app. A request

from T-app is forwarded to T-app egress queue obtaining a tag from

that I/O queue. Linux maintains several data structures to enable

forwarding back the response to the right application. blk-switch

uses the same infrastructure.

T-app

req

Low-
prio.

core0

ctx
(1)

core1

kioctx

tags

hctx
(0,1)

ctx
(0)

hctx
(1,1)

Low-
prio.

response

(a) Request steering

T-app

req

core0 core1

kioctx

tags

T-app

hctx
(0,1)

ctx
(0)

Low-
prio.

hctx
(1,1)

ctx
(1)

Low-
prio.

response

(b) Application steering

Figure 6: Request datapath in blk-switch. (a) (w/ request steer-

ing): request is steered to the queue on core1 via hctx(1,1) acquiring

a tag from the steered queue. The response comes back to the steered

queue on core1. (b) (w/ application steering): When an applica-

tion is moved from core0 to core1, the in-flight request, sent before

application steering, comes back on core0. blk-switch finds the

corresponding kioctx via the tag and wakes up the application.

Linux block layer overview. We describe how the Linux

storage stack works with the asynchronous I/O interface [4]

(see Figure 5, but ignore prioritization). Before creating I/O

requests, application needs to setup an I/O context using

io_setup(), which creates a kioctx structure at VFS layer.

This kioctx includes (1) a ring buffer where request comple-

tion events are enqueued (so that the application pulls them up

later asynchronously); and, (2) application process informa-

tion to wake up the application whenever a new completion

event is ready. Each kioctx is associated with a context iden-

tifier. When application submits a request with the context

identifier, the VFS layer creates kiocb that represents the I/O

request and finds the corresponding kioctx using the iden-

tifier. kiocb has a pointer for the kioctx. The block layer

creates a bio instance, based on kiocb, and encapsulates it in

a request instance: this includes a hardware context (hctx)

that is associated with one of the device-driver I/O queues.

Before forwarding the request to the device-driver queue,

the block layer needs to get a tag number. tags is an array of

request pointers, and its size is the same as the queue depth of

the driver queue.The block layer maintains a bitmap to keep

track of the occupancy of the tags. When all tags are occupied

(i.e., the driver queue is full), then the block layer needs to

wait for a tag to be available. After getting the tag, the request

is sent to the driver queue associated with hctx.

After I/O processing at the device, the response is returned

to the kernel with the same tag number. The kernel finds the

corresponding request instance from the tags array using

the tag number. The tag number is released, and kiocb from

the bio instance is extracted to find the kioctx. Finally, the

completion event is enqueued into the ring buffer of kioctx

and a notification is sent to the application.

blk-switch request steering implementation. Since each

hctx is regarded as an egress queue, the main goal of the

request steering algorithm is to select a non-congested hctx

across cores if the local one is congested. blk-switch main-

tains the per-core load required for request steering (updating

on a per-request basis). After that, the request will obtain

a tag from the steered hctx. Once the request is enqueued

into the corresponding driver queue, the following driver-level

and block-layer receive processing will be done on the core

that is associated with the steered hctx. When the response

comes back to the kernel from the device, we are able to find

the steered request instance from the tags; thus, going back

to the original kioctx is straightforward as the kioctx can

be extracted from the request instance (Figure 6(a)). The

kernel sends a wake-up signal to the application running on

the core associated with the ingress port via the kioctx.

blk-switch application steering implementation. Upon

application steering deciding to move the application to a new

core, blk-switch invokes the sched_setaffinity kernel

function to execute the move. Once this is done, requests

generated by the steered application will be submitted to

the ingress queue on the new core. blk-switch maintains

the weighted average per-core load required for application

steering (updating on a per-request basis). It is easy to main-

tain application semantics even when there are “in-flight”

requests during application moving from one core to another.

blk-switch forwards the “in-flight” requests to the right

application by exploiting the tags (Figure 6(b)); similar to

the request steering, blk-switch is able to find the origi-

nal kioctx that keeps track of the application’s location and

thus can wake up the associated application. Therefore, the

responses can be delivered to the right application.

5 Evaluation

We now evaluate blk-switch performance, with the goal of

understanding the envelope of workloads where blk-switch

is able to provide µs-scale average and tail latency, while

maintaining high throughput for T-apps. To do so, we evaluate

120 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

blk-switch across a variety of scenarios and workloads with

varying amount of load induced by L-apps and T-apps, number

of cores, read/write sizes, read/write ratios and storage settings

(in-memory and SSD). In each evaluated scenario, a number

of latency-sensitive applications (#L-apps) compete for host

resources with a number of throughput-bound applications

(#T-apps) that perform large read/write requests on remote

storage servers. We describe the individual settings inline.

We describe our evaluation setup in §5.1, followed by a

detailed discussion of our results in §5.2 and §5.3. Finally, in

§5.4, we provide a detailed breakdown of how each design

aspect of blk-switch contributes to its overall performance.

5.1 Evaluation Setup

blk-switch focuses on rearchitecting the storage stack for

µs-scale latency and high throughput. Thus, our evaluation

setup focuses on scenarios where performance bottlenecks

are pushed to the storage stack—that is, where systems are

bottlenecked by processing of storage requests, and not by

network bandwidth.

Evaluated Systems. We compare blk-switch performance

with Linux and widely-deployed userspace storage stack

(SPDK) [51] (the CPU scheduler, storage stack and TCP/IP

stack used for Linux and SPDK are shown in Table 1). For

accessing data in remote servers, we make one modification

in Linux: rather than using its native NVMe-over-TCP driver,

we use i10 [29], a state-of-the-art Linux-based remote stor-

age stack since it provides much higher throughput (using its

default parameters, at the cost of introducing ∼50−100µs la-

tency at low loads); for accessing data on remote servers with

SPDK, we use its native support for NVMe-over-TCP [13].

We apply core affinity to applications in Linux since that

provides best performance. SPDK pins threads to cores by

default since it makes use of DPDK’s Environment Abstrac-

tion Layer (EAL). For both Linux and SPDK, we evenly

distribute the applications across cores to the extent possible.

For blk-switch, we use its default parameters (§3).

Hardware setup. All our experiments are run on a testbed

with two servers directly connected via a 100Gbps link. The

servers have a 4-socket NUMA-enabled Intel Xeon Gold

6234 3.3GHz CPU with 8 cores per socket, 384GB RAM and

a 1.6TB Samsung PM1735 NVMe SSD. Both servers run

Ubuntu 20.04 (kernel 5.4.43). To achieve CPU-efficient net-

work processing for all evaluated systems (since all of them

use Linux kernel network stack), we enable TCP Segmenta-

tion Offload (TSO), Generic Receive Offload (GRO), packet

coalescing using Jumbo frames (9000B), and accelerated Re-

ceive Flow Steering (aRFS). To minimize experimental noise,

we disable irqbalance and dynamic interrupt moderation

(DIM) [10]. Finally, we disable hyper-threading since doing

so maximizes performance for all evaluated systems.

We present results for both in-memory storage (RAM block

device) and on-disk storage (NVMe SSD). Except for SSD

and RocksDB experiments, we use the former due to three rea-

sons. First, unlike on-disk storage, in-memory storage allows

us to evaluate scenarios where T-apps generate load close to

our network hardware capacity (100Gbps). Second, a single

NVMe SSD can be saturated using two cores [29]; in-memory

storage, on the other hand, allows us to evaluate scalability of

blk-switch (and other systems) with larger number of cores.

Finally, our NVMe SSDs have an access latency of ∼80µs,

which hides a lot of latency benefits of userspace stacks; we

find it a fairer comparison to use in-memory storage to hide

such high latencies.

Performance metrics. We evaluate system performance in

terms of average and tail latency for L-apps, total throughput

of all applications, and throughput-per-core calculated as “to-

tal throughput / core utilization” (we take the maximum of the

application-side and the storage server-side core utilization

when computing core utilization). Unless mentioned other-

wise, we present results for average latency (shown by bars)

and P99 tail latency (shown by top whiskers) since, as we will

show, SPDK has significantly worse P99.9 tail latency.

Default workload. To generate loads for L-apps and T-apps,

we use the standard methodology, where applications submit

storage requests to the underlying system in a closed-loop

(that is, the I/O depth of the application specifies a maximum

number of outstanding requests). For Linux, we use FIO [16]

that uses the lightweight libaio interface. For SPDK, we

use its default benchmark application, perf (while FIO has

been ported to SPDK, it has higher overheads compared to the

lightweight perf application). These benchmarking applica-

tions are used to evaluate system performance to again push

the bottlenecks to the underlying system (since real-world

storage-based applications can have high overheads); never-

theless, we also evaluate blk-switch with RocksDB [9], a

prominently used storage system.

L-apps generate 4KB read/write requests with an I/O depth

of 1. To ensure that each system is running at its “knee-point”

in its latency-throughput curve, we use the optimal T-app op-

erating point for each system—for RAM block device, the op-

timal (request size, I/O depth) for T-apps is as follows: Linux

(64KB, 32), SPDK (128KB, 8), and blk-switch (64KB, 16).

While our default setup uses the above request sizes and I/O

depths, we also present sensitivity analysis against varying

I/O depths and request sizes. Finally, we use the random read

workload in our default setup, and also present results for

varying read/write ratios.

Unless stated otherwise, we give each system 6 cores on

a single NUMA node. We use six cores for each system

because we observed that, when given more than 6 cores,

Linux ends up being bottlenecked by network bandwidth

(that is, it can saturate the 100Gbps link in our testbed) in

several of our experimental scenarios. Nevertheless, we also

show performance with varying number of cores.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 121

 1

 10

 100

 1000

 10000

1 3 6 9 12

L
a

te
n

c
y
 (

μ
s
)

Number of L−apps

Linux SPDK blk−switch

 0

 20

 40

 60

 80

 100

1 3 6 9 12

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Number of L-apps

Linux SPDK blk-switch

 0

 5

 10

 15

 20

1 3 6 9 12T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Number of L-apps

Linux SPDK blk-switch

Figure 7: blk-switch achieves µs-scale average and tail latency for L-apps and high throughput for T-apps even with tens of L-apps

competing for host compute and network resources with T-apps. As we increase the number of L-apps, both Linux and SPDK fail to

simultaneously achieve low latency and high throughput for reasons discussed in §2. Linux achieves high throughput, but at the cost of high

average and tail latencies; SPDK, on the other hand, suffers from both high tail latency and low throughput. Detailed discussion in §5.2.

5.2 Goal: Low-Latency and High-Throughput

Recall that an ideal system would ensure that both L-apps and

T-apps observe performance close to the respective isolated

performance (that is, when the application has all the host and

storage server resources to itself).

Impact of increasing number of L-apps competing for

host resources with T-apps (Figure 7 and Figure 8). For

this experiment, each system is given six cores, and executes

requests from six T-apps and varying number of L-apps.

Linux and SPDK performance trends are similar to Fig-

ure 2 in §2. Linux suffers from high average and tail latencies,

but maintains high throughput even with increasing number

of L-apps. SPDK achieves high throughput when number of

L-apps is less than the number of cores; however, it suffers

from inflated latency and degraded throughput with increasing

number of L-apps (significantly degraded performance with

just six L-apps). We already discussed the root cause for this

behavior for each system in §2; however, for both Linux and

SPDK, we observe slightly worse latency and throughput-per-

core relative to that observed in Figure 2. Digging deeper, we

found that both of these are due to increased L3 cache miss

rates. Specifically, since the cores used by the systems are on

the same NUMA node, they share a common L3 cache; the

resulting increased contention for L3 cache leads to higher

cache miss rate—for x = 1 in Figure 2, cache miss rates for

Linux and SPDK are 1.12% and 3.68%, respectively, but for

x = 6 in Figure 7, cache miss rates increase to 34% and 63%.

Higher cache miss rates lead to an increase in the per-byte

CPU overhead for kernel TCP processing (mainly due to data

copy), resulting in lower throughput-per-core. Interestingly,

for Linux, this also leads to higher latency inflation for L-apps

(when comparing x = 6 in Figure 7 to x = 1 in Figure 2), as

each T-app request takes a larger number of CPU cycles to

process, hence exacerbating the effect of HoL blocking. Fig-

ure 8 single-threaded case shows the P99.9 tail latency for all

systems for the x = 6 data point in Figure 7. Both Linux and

SPDK exhibit high P99.9 tail latency, but SPDK in particular

observes significantly worse P99.9 tail latency (33× higher

than the P99). As discussed in §2, this is because L-app re-

quests processed at the boundary of time slices are impacted,

and this effect is prominently visible in higher percentiles.

 1

 10

 100

 1000

 10000

Single−threaded Multi−threaded

P
9
9
.9

 L
a
te

n
c
y
 (

μ
s
)

Linux SPDK blk−switch

Figure 8: The P99.9 tail latency corresponding to x = 6 in Fig-

ure 7 and Figure 9.

blk-switch consistently achieves µs-scale latency for L-

apps, even with 12 L-apps competing for host resources with

6 T-apps. In comparison to Linux, blk-switch achieves

28− 110× better average latency, 10− 25× better P99 tail

latency and 6− 15× better P99.9 tail latency; in compar-

ison to SPDK, blk-switch achieves 2− 12× better aver-

age latency, 2− 15× better P99 tail latency and 33− 101×
better P99.9 tail latency. blk-switch achieves all these la-

tency benefits while sacrificing 5−10% throughput relative

to Linux. blk-switch achieves such performance benefits

using a combination of its techniques: it first performs ap-

plication steering to isolate L-apps to a subset of cores, and

to distribute T-apps over the remaining cores. This results

in slightly increased tail latency for L-apps compared to a

single L-app case, but significantly reduces context switch-

ing overheads when compared to L-apps and T-apps shar-

ing individual cores. Further, blk-switch performs request

steering to utilize unused L-app cores for processing T-app

requests opportunistically. Finally, separation of I/O queues

along with prioritization enables maintaining low latency for

L-apps even when T-app requests are steered to the L-app

cores. Note that prioritization of I/O queue processing also

leads to blk-switch having slightly better average and tail

latencies when compared to the isolated Linux latency in

Figure 2; however, this is not fundamental.

We observe a somewhat surprising and counter-intuitive

benefit of blk-switch’s application steering mechanism that

steers L-apps onto a small number of cores—for example, in

Figure 7, blk-switch’s average latency reduces with increas-

ing number of L-apps. This is because of better packet aggre-

gation opportunities through TSO/GRO and Jumbo frames:

as more L-apps are steered on the same core, they begin to

122 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 1

 10

 100

 1000

 10000

1 3 6 9 12

L
a

te
n

c
y
 (

μ
s
)

Number of L−threads

Linux SPDK blk−switch

X X

 0

 20

 40

 60

 80

 100

1 3 6 9 12

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Number of L-threads

Linux SPDK blk-switch

X X
 0

 5

 10

 15

 20

1 3 6 9 12T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Number of L-threads

Linux SPDK blk-switch

X X

Figure 9: blk-switch achieves µs-scale average and tail latency for L-apps and high throughput for T-apps even when tens of L-app

threads compete for host compute and network resources with T-apps. We observe the same trend as in Figure 7 for each system; the only

difference is that SPDK does not support more application threads than the number of cores.

 1

 10

 100

 1000

 10000

1 2 4 8 16

L
a

te
n

c
y
 (

μ
s
)

I/O depth of T−apps

Linux SPDK blk−switch

 0

 20

 40

 60

 80

 100

1 2 4 8 16

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

I/O depth of T-apps

Linux SPDK blk-switch

 0

 5

 10

 15

 20

1 2 4 8 16T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

I/O depth of T-apps

Linux SPDK blk-switch

Figure 10: As the load induced by T-apps increases, blk-switch continues to achieve low latency and high throughput. For reasons

discussed in §2, Linux and SPDK fail to simultaneously achieve low latency and high throughput: Linux suffers from high latency due to HoL

blocking; SPDK experiences increasingly higher latency and lower throughput as the load induced by T-apps increase.

share the same egress queue and hence the same underlying

TCP connection (recall that blk-switch maintains a single

per-core egress queue for each application class); as a result,

more L-app requests can be aggregated, resulting in lower per-

request processing overheads, and improved average latency.

Impact of increasing number of L-app threads competing

for host resources with T-app threads (Figure 9 and Fig-

ure 8). We now evaluate the performance of existing storage

stacks for multi-threaded applications. To do this, we slightly

modify the evaluation setup from Figure 7 experiment: we

now use one T-app with six T-threads and one L-app with

varying number of L-threads (varying from 1 to 12). Note

that, while the recent SPDK NVMe-oF target implementation

supports user-level threads [13], SPDK’s perf benchmark ap-

plication running on the host-side does not support user-level

threads; as a result, it does not support creating more threads

than the number of cores in the system (for each individual ap-

plication). As one would expect, Figure 9 and Figure 8 results

show exactly the same trend as single-threaded applications.

Impact of increasing the load induced by T-apps (Fig-

ure 10). We now evaluate the performance of each system

with varying load induced by T-apps. There are two ways

to vary the load induced by T-apps—by varying I/O depth,

and by varying request sizes. Since our setup uses TSO/GRO,

these two mechanisms to vary the load induced by T-apps

lead to essentially the same set of results. We present and

discuss results for the former here; the latter can be found

in [30]. For this experiment, we fix the number of L-apps and

T-apps to 6 each, and increase the I/O depth for T-apps. The

request size for T-apps is now fixed to 64KB for all systems.

Linux and SPDK show trends similar to previous results.

Average and tail latencies for L-apps increase with increased

contention for host resources (in these results, increased con-

tention is due to higher load induced by T-apps). As one

would expect, for both of these systems, total throughput and

throughput-per-core for T-apps increases with an increase

in load induced by T-apps. blk-switch handles contention

differently from both of these systems: by prioritizing L-app

requests, and using request and application steering to effi-

ciently load balance T-app requests across unused cores. Thus,

blk-switch continues to maintain µs-scale latency with in-

crease in T-app load—in comparison to Linux, blk-switch

achieves 5−33× lower average and 2−8× lower tail latency;

in comparison to SPDK, blk-switch achieves 2−7× lower

average and 1.3−6× lower tail latency. blk-switch’s mech-

anisms for handling contention results in a slightly different

tradeoff in terms of T-app performance. When the load in-

duced by T-apps is small, blk-switch reduces Linux latency

without any degradation in throughput (since it does not pay

the overheads of request steering at low loads); at higher loads,

blk-switch continues to achieve low latency, but observes

10% lower throughput than Linux due to the overheads of

request steering.

We note that blk-switch average latency improves with

load induced by T-apps. For smaller loads, blk-switch’s

application steering does not steer L-apps on to a subset of

cores (as in previous experiments), leaving L-apps evenly

distributed across available cores. As a result, blk-switch

does not get to exploit the benefits of reduced per-request

processing overheads (due to TSO/GRO and jumbo frames)

associated with aggregating multiple L-apps on the same core.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 123

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

L
a

te
n

c
y
 (

μ
s
)

Number of cores

Linux SPDK blk−switch

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Number of cores

Linux SPDK blk-switch

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Number of cores

Linux SPDK blk-switch

Figure 11: blk-switchmaintains its µs-scale average and tail latency for L-apps with varying number of cores, even when scheduling

across NUMA nodes. For small number of cores, compared to Linux, blk-switch trades off improvements in latency with slightly reduced

throughput (due to request prioritization, and fewer opportunities for application and request steering). For smaller number of cores, SPDK

achieves low latency; as the number of cores are increased, SPDK starts suffering from inflated tail latency and degraded throughput.

Impact of number of cores (Figure 11). We now evaluate

the performance of all systems with varying number of cores,

including the case when the cores belong to different NUMA

nodes. The challenge with doing this evaluation is that, if

T-apps were to not interfere with L-apps, ∼4 cores would be

sufficient to saturate the network bandwidth (as can be in-

ferred from the isolated case in Figure 2); thus, to understand

the performance with increasing number of cores, we have to

ensure that L-apps and T-apps continue to contend at host stor-

age and network processing resources rather than competing

for network bandwidth. Thus, we use the following evaluation

strategy. Our servers have eight cores on each NUMA node;

for each data point up to x = 8 on the x-axis (x = number

of cores used for that data point), we use the cores on the

same NUMA node and for the last two data points, we use

two additional cores from one of the other NUMA nodes. For

each data point, we run a total of x L-apps and x T-apps to en-

sure that the system is neither lightly-loaded nor overloaded.

With this setup, we are able to evaluate for larger number of

cores—Linux, blk-switch and SPDK now become network

bandwidth bottlenecked at 7,8 and 10 cores, respectively.

Linux and SPDK performance can be explained using our

prior insights. As the number of cores increase, Linux experi-

ences increasingly higher latency but is able to achieve high

throughput; SPDK, on the other hand, suffers from increas-

ingly higher latency, and relatively lower throughput.

For the single core case, blk-switch improves Linux’s

latency, but at the cost of 40% lower throughput (similar to

SPDK); this is due to lack of request steering and applica-

tion steering opportunities, and due to prioritization being

the dominant mechanism for isolation. As the number of

cores increase, blk-switch starts exploiting the benefits of

request and application steering—it achieves µs-scale latency

as in earlier experiments, while getting throughput increas-

ingly closer to Linux (with 7 cores, it is only 4.2% worse

than Linux; for 8 or more cores, blk-switch’s throughput

matches Linux as the network link is saturated). For number of

cores between 3 and 8, we see a reduction in blk-switch’s

average latency due to higher opportunities to exploit the

benefits of TSO, GRO and jumbo frames (due to application

steering aggregating increasingly more L-apps on same subset

 1

 10

 100

 1000

 10000

Latency

L
a

te
n

c
y
 (

μ
s
)

Linux
SPDK

blk−switch

 0

 40

 80

 120

 160

 200

Total throughputT
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Linux
SPDK

blk-switch

 0

 5

 10

 15

 20

Throughput-per-core

T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Linux
SPDK

blk-switch

Figure 12: blk-switch is able to maintain low average and tail

latencies even when applications operate at throughput close to

200Gbps. The experiment uses 16 L-apps and 16 T-apps running

across 16 cores from two NUMA nodes.

of cores). Beyond 8 cores, we see slight increase in average

and tail latency for blk-switch because of NUMA effects.

Besides latency results, there are several other interest-

ing observations to be made in Figure 11(center). First,

blk-switch is able to completely saturate a 100Gbps link

using 8 cores, at which point it is bottlenecked by network

bandwidth. Since the server has many more cores, we expect

that these cores will allow blk-switch to maintain its perfor-

mance with future NICs that have larger bandwidths (we show

this for 200Gbps network bandwidth setup below). Second,

while the total throughput of blk-switch scales well with

the number of cores, it has slightly lower total throughput

compared to Linux for smaller number of cores. This is due

to application steering resulting in T-apps being steered away

from L-apps, and the L-apps cores observing transient un-

derutilization when request steering decisions are imperfect.

Under such imperfect decisions, fewer number of cores are

available for T-app request processing. However, as the num-

ber of cores increase, the benefits of reduced context switching

(due to lower contention between L-app and T-app requests

after application steering) start to offset core underutilization

resulting in similar or even higher throughput when compared

to other systems. Finally, Figure 11(right) demonstrates that

all systems experience reduced throughput-per-core with in-

creasing number of cores. We found that this is due to an

increased number of L3 cache misses with increase in total

throughput as the number of cores is increased.

Performance beyond 100Gbps (Figure 12). We now eval-

uate the performance of all systems in the Terabit Ethernet

124 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 1

 10

 100

 1000

 10000

1 3 6 9 12

L
a

te
n

c
y
 (

μ
s
)

Number of L−apps

Linux SPDK blk−switch

 0

 20

 40

 60

 80

 100

1 3 6 9 12

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Number of L-apps

Linux SPDK blk-switch

 0

 5

 10

 15

 20

1 3 6 9 12T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Number of L-apps

Linux SPDK blk-switch

Figure 13: For experiments with SSDs (corresponding to Figure 7), blk-switch latency is largely overshadowed by SSD access latency.

Rest of the trends are similar to those in Figure 7.

 1

 10

 100

 1000

 10000

1 3 6

L
a

te
n

c
y
 (

μ
s
)

Number of L−threads

Linux blk−switch

 0

 20

 40

 60

 80

 100

1 3 6

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Number of L-threads

Linux blk-switch

 0

 5

 10

 15

 20

1 3 6T
h

ro
u

g
h

p
u

t-
p

e
r-

c
o

re

(G
b

p
s
)

Number of L-threads

Linux blk-switch

Figure 14: Evaluation results with RocksDB: blk-switch performance benefits over Linux are similar to previous results.

regime (above 100Gbps). For this we installed an additional

NIC on each of the two servers in our setup, and connected

these NICs with an additional 100Gbps link, enabling a total

of 200Gbps network bandwidth between the servers. The two

NICs on each server are attached to separate NUMA nodes.

We use all of the cores on both of these NUMA nodes (total of

16), while running 16 L-apps and 16 T-apps. The performance

trends remain identical to previous results — blk-switch is

able to maintain µs-scale average and tail latency (10µs av-

erage, 143µs P99 , and 296µs P99.9), while nearly saturating

the 200Gbps network bandwidth (within 1% of Linux).

Performance with different storage access latency. We re-

peat the experiment shown in Figure 7, but with L-app requests

being executed on an NVMe SSD (T-app requests are still

executed in-memory). The access latency of our SSD (∼80µs)

causes increase in average latencies for all systems, but the

performance trends among the evaluated systems remain iden-

tical to earlier results. Importantly, blk-switch’s latency is

largely overshadowed by SSD access latency.

Additional results. We present several additional results

in [30], including performance with varying request sizes

for T-apps, varying read/write ratios, applications that access

data distributed between local and remote storage servers, and

bursty application workloads.

5.3 RocksDB with blk-switch

We now evaluate blk-switch with RocksDB [9], a widely-

deployed storage system, as the L-app. We mount a remote

SSD block device at the host-side with XFS file system (only

Linux and blk-switch support mounting a file system). We

setup RocksDB to use the mounted XFS file system backed

by remote SSD device and enable direct I/O. To generate

workload for RocksDB, we use the db_bench benchmarking

tool with ReadRandom workload and 4KB request sizes, with

an I/O depth of 1 for each thread. We colocate a T-app that

accesses remote RAM block device using FIO [16], as before.

We run this benchmark on 6 cores, with 6 T-app threads and

varying number of L-app threads.

Figure 14 shows that both Linux and blk-switch achieve

slightly higher latency compared to previous results due to

RocksDB’s higher application-layer overheads. However, in

comparison, blk-switch achieves over an order of magni-

tude latency reduction when compared to Linux, while sacri-

ficing throughput by at most 10%. Furthermore, blk-switch

maintains these benefits even with increasing number of L-app

threads competing for host resources with T-app threads.

5.4 Understanding blk-switch Performance

We now quantify the contribution of each of blk-switch’s

mechanisms to its overall performance. To do so, we run a

simple microbenchmark: we start the experiment with one L-

app and one T-app on core0, and set the I/O depth of T-app to

be 32. We then add blk-switch mechanisms (prioritization,

request steering and application steering) incrementally.

Figure 15 shows that each of blk-switch’s mechanism

contributes to its overall performance. Enabling prioritiza-

tion only reduces tail latency by an order of magnitude (Fig-

ure 15(a)), but at the cost of lower T-app throughput on core0

(Figure 15(b)); since request and application steering are dis-

abled, strictly prioritizing processing of L-app requests re-

sults in reduced throughput due to larger number of context

switches. As shown in Figure 15(c) and Figure 15(d), en-

abling request steering with prioritization allows the T-app

to achieve high T-app throughput by utilizing spare capacity

on less loaded cores (by steering T-app requests from heavily

loaded core0 and processing these requests at core1); how-

ever, this comes at the cost of slight increase in latency for

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 125

blk−switch − P − RS − AS

blk−switch − RS − AS

blk−switch − AS

blk−switch

 1

 10

 100

 1000

 10000

Latency

L
a

te
n

c
y
 (

μ
s
)

(a) Latency

 0

 10

 20

 30

 40

T−app throughput
T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

(b) T-app throughput

 0

 20

 40

 60

 80

 100

core0 core1

U
ti
liz

a
ti
o

n
 (

%
)

(c) Core utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

core0 core1F
ra

c
ti
o
n
 o

f
re

q
u
e
s
ts

Generated Processed

(d) Fraction of requests generated

and processed at each core, before

application steering.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

core0 core1F
ra

c
ti
o
n
 o

f
re

q
u
e
s
ts

Generated Processed

(e) Fraction of requests generated

and processed at each core, after

application steering.

Figure 15: Contribution of different techniques in blk-switch

to its overall performance. (blk-switch-P-RS-AS) is

blk-switch with all mechanisms disabled; we then cumu-

latively enable prioritization (blk-switch-RS-AS), request

steering (blk-switch-AS), and application steering (blk-switch).

See discussion in §5.4.

L-apps (albeit, still µs-scale)—due to non-trivial CPU over-

heads of request steering and non-real-time prioritization in

Linux kernel CPU schedulers, some of the L-app requests get

blocked by the thread doing request steering. This problem

is alleviated by blk-switch’s application steering algorithm

(Figure 15(e))—it steers the T-app away from the L-app, al-

lowing blk-switch to simultaneously achieve low latency

and high throughput.

6 Related Work

We have already compared blk-switch with state-of-the-art

Linux-based and widely-deployed userspace storage stacks.

We now compare and contrast blk-switch with other

closely-related systems.

Existing storage stacks. There is a large and active body

of research on designing storage stacks that target various

goals, including fairness [1, 2, 7, 26], deadlines [5, 7], priori-

tization [3], and even policy-based storage provisioning and

management [24, 39, 47, 49]. However, none of these stacks

target µs-scale latency. Furthermore, many of them can have

high CPU overheads (for high-performance storage devices,

the standard recommendation in Linux is to use no sched-

uler [26]), especially for applications that perform operations

on remote storage servers [14,23,25,50]. Recent work on stor-

age stacks for remote data access [12, 29] achieves high CPU

efficiency and throughput; however, as we have shown in our

evaluation, they fail to achieve low latency in multi-tenant

deployments when latency-sensitive and throughput-bound

applications compete for host resources.

User-space stacks. We have already performed evaluation

against SPDK, a widely-deployed state-of-the-art user-space

storage stack. Our evaluation focuses on using SPDK with

Linux kernel CPU scheduler and network stack, and highlights

the poor interplay with SPDK’s polling-based architecture and

Linux CPU scheduler. It is possible to overcome some of these

limitations by integrating SPDK with high-performance user-

space or RDMA-based network stacks [13, 18, 32, 35–37, 40],

user-space CPU schedulers [34], or both [22, 42–45]. How-

ever, with the exception of [22, 42], these user-space network

stacks and CPU schedulers either do not provide µs-scale iso-

lation in multi-tenant deployments, or require dedicated cores

for each individual L-app resulting in potentially high core

underutilization. The state-of-the-art among these user-space

stacks [22, 42] demonstrate that by carefully orchestrating

compute resources across L-apps and T-apps, it is possible to

simultaneously achieve µs-scale latency and high throughput.

However, they currently provide fewer features than Linux

and require modifications in applications. blk-switch shows

that it is possible to simultaneously achieve µs-scale latency

and high throughput without any modifications in applica-

tions, Linux kernel CPU scheduler and/or network stack.

Hardware-level isolation. There has also been work on

achieving performance isolation by exploiting hardware-level

mechanisms in NVMe SSDs [20, 28, 48], including mech-

anism specification in the NVMe standard [11, 33]. These

are complementary to blk-switch’s goals that focuses on

software bottlenecks.

7 Conclusion

Using design, implementation and evaluation of blk-switch,

this paper demonstrates that it is possible to achieve µs-scale

tail latency using Linux, even when tens of latency-sensitive

applications compete for host resources with throughput-

bound applications that access data at throughput close to

hardware capacity. The key insight in blk-switch is that

Linux’s multi-queue storage design, along with multi-queue

network and storage hardware, makes the storage stack con-

ceptually similar to a network switch. blk-switch uses this

connection to adapt techniques from the computer networking

literature (e.g., prioritized processing of individual requests,

load balancing, and switch scheduling) to the Linux kernel

storage stack. blk-switch is implemented entirely within

the Linux kernel storage stack, and requires no modification

in applications, network and storage hardware, kernel CPU

schedulers and/or kernel network stack.

Acknowledgments

We would like to thank our shepherd, Adam Belay, and the

OSDI reviewers for their insightful feedback. This work was

supported in part by NSF 1704742, NSF 1900457, a Google

faculty research scholar award, a Sloan fellowship, the Texas

Systems Research Consortium, and a grant from Samsung.

126 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] BFQ (Budget Fair Queueing) — The Linux Kernel

documentation. https://www.kernel.org/doc/html/

latest/block/bfq-iosched.html.

[2] CFQ (Complete Fairness Queueing). https://www.

kernel.org/doc/Documentation/block/cfq-iosched.

txt.

[3] Kyber multiqueue I/O scheduler. https://lwn.net/

Articles/720071/.

[4] Linux Asynchronous I/O. https://oxnz.github.io/

2016/10/13/linux-aio/.

[5] Linux blk-mq scheduling framework. https://lwn.

net/Articles/708465/.

[6] Linux ionice. https://linux.die.net/man/1/ionice.

[7] Linux Kernel/Reference/IOSchedulers - Ubuntu Wiki.

https : / / wiki . ubuntu . com / Kernel / Reference /

IOSchedulers.

[8] David S. Miller, Linux Multiqueue Networking. http:

//vger.kernel.org/~davem/davem_nyc09.pdf, 2009.

[9] Facebook Inc., RocksDB: A persistent key-value store

for fast storage environments. https://rocksdb.org/,

2015.

[10] Mellanox Technologies: Dynamically-Tuned

Interrupt Moderation (DIM). https :

/ / community . mellanox . com / s / article /

dynamically-tuned-interrupt-moderation--dim-x,

2019.

[11] NVM Express 1.4. https://nvmexpress.org/

wp-content / uploads / NVM-Express-1 _ 4-2019 . 06 .

10-Ratified.pdf, 2019.

[12] NVM Express over Fabrics 1.1. https :

/ / nvmexpress . org / wp-content / uploads /

NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf,

2019.

[13] SPDK User Guides for NVMe over Fabrics. https:

//spdk.io/doc/nvmf.html, 2020.

[14] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,

J. Gandhi, S. Novaković, A. Ramanathan, P. Subrah-

manyam, L. Suresh, K. Tati, R. Venkatasubramanian,

and M. Wei. Remote regions: a simple abstraction for

remote memory. In USENIX ATC, 2018.

[15] R. Apte, L. Hu, K. Schwan, and A. Ghosh. Look Who’s

Talking: Discovering Dependencies between Virtual Ma-

chines Using CPU Utilization. In USENIX HotCloud,

2010.

[16] J. Axboe. Flexible IO Tester (FIO) ver 3.13. https:

//github.com/axboe/fio, 2019.

[17] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.

Attack of the killer microseconds. Communications of

the ACM, 60(4):48–54, 2017.

[18] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. IX: A Protected Dat-

aplane Operating System for High Throughput and Low

Latency. In USENIX OSDI, 2014.

[19] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. Linux

Block IO: Introducing Multi-queue SSD Access on

Multi-core Systems. In ACM SYSTOR, 2013.

[20] M. Bjørling, J. Gonzalez, and P. Bonnet. LightNVM:

The Linux Open-Channel SSD Subsystem. In USENIX

FAST, 2017.

[21] N. Express. NVM Express over Fabrics 1.0 Ratified

TPs. https://nvmexpress.org/, 2018.

[22] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan:

Mitigating Interference at Microsecond Timescales. In

USENIX OSDI, 2020.

[23] P. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,

R. Agarwal, S. Ratnasamy, and S. Shenker. Network

Requirements for Resource Disaggregation. In USENIX

OSDI, 2016.

[24] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-

Artigas, P. García-López, Y. Moatti, and E. Rom. Crys-

tal: Software-Defined Storage for Multi-tenant Object

Stores. In USENIX FAST, 2017.

[25] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.

Efficient Memory Disaggregation with Infiniswap. In

USENIX NSDI, 2017.

[26] M. Hedayati, K. Shen, M. L. Scott, and M. Marty. Multi-

Queue Fair Queuing. In USENIX ATC, 2019.

[27] C. Hellwig. High Performance Storage with blk-mq and

scsi-mq. https://events.static.linuxfound.org/

sites/events/files/slides/scsi.pdf.

[28] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta,

B. Sharma, and M. K. Qureshi. FlashBlox: Achieving

Both Performance Isolation and Uniform Lifetime for

Virtualized SSDs. In USENIX FAST, 2017.

[29] J. Hwang, Q. Cai, A. Tang, and R. Agarwal. TCP ≈
RDMA: CPU-efficient Remote Storage Access with i10.

In USENIX NSDI, 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 127

https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://lwn.net/Articles/720071/
https://lwn.net/Articles/720071/
https://oxnz.github.io/2016/10/13/linux-aio/
https://oxnz.github.io/2016/10/13/linux-aio/
https://lwn.net/Articles/708465/
https://lwn.net/Articles/708465/
https://linux.die.net/man/1/ionice
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
http://vger.kernel.org/~davem/davem_nyc09.pdf
http://vger.kernel.org/~davem/davem_nyc09.pdf
https://rocksdb.org/
https://community.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://community.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://community.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://spdk.io/doc/nvmf.html
https://spdk.io/doc/nvmf.html
https://github.com/axboe/fio
https://github.com/axboe/fio
https://nvmexpress.org/
https://events.static.linuxfound.org/sites/events/files/slides/scsi.pdf
https://events.static.linuxfound.org/sites/events/files/slides/scsi.pdf

[30] J. Hwang, M. Vuppalapati, S. Peter, and R. Agar-

wal. Rearchitecting Linux Storage Stack for µs La-

tency and High Throughput. https://github.com/

resource-disaggregation/blk-switch/techreport,

2021.

[31] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-

mala, V. N. H. Herodotou, P. Tomita, A. Chen, J. Zhang,

and J. Wang. PerfIso: Performance Isolation for Com-

mercial Latency-Sensitive Services. In USENIX ATC,

2018.

[32] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,

and K. Park. mTCP: a Highly Scalable User-level TCP

Stack for Multicore Systems. In USENIX NSDI, 2014.

[33] K. Joshi, K. Yadav, and P. Choudhary. Enabling NVMe

WRR support in Linux Block Layer. In USENIX Hot-

Storage, 2017.

[34] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Maz-

ières, and C. Kozyrakis. Shinjuku: Preemptive schedul-

ing for µsecond-scale tail latency. In USENIX NSDI,

2019.

[35] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter

RPCs can be general and fast. In USENIX NSDI, 2019.

[36] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-

ishnamurthy, and T. Anderson. TAS: TCP Acceleration

as an OS Service. In ACM Eurosys, 2019.

[37] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Remote

Flash ≈ Local Flash. In ACM ASPLOS, 2017.

[38] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble.

Tales of the Tail: Hardware, OS, and Application-level

Sources of Tail Latency. In ACM SoCC, 2014.

[39] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro:

Targeted Resource Management in Multi-tenant Dis-

tributed Systems. In USENIX NSDI, 2015.

[40] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,

C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,

S. Gribble, N. Kidd, R. Kokonov, G. Kumar, C. Mauer,

E. Musick, L. Olson, E. Rubow, M. Ryan, K. Springborn,

P. Turner, V. Valancius, X. Wang, and A. Vahdat. Snap:

a Microkernel Approach to Host Networking. In ACM

SOSP, 2019.

[41] M. Mitzenmacher. The power of two choices in random-

ized load balancing. IEEE Trans. Parallel Distrib. Syst.,

12(10):1094–1104, Oct. 2001.

[42] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-

akrishnan. Shenango: Achieving High CPU Efficiency

for Latency-sensitive Datacenter Workloads. In USENIX

NSDI, 2019.

[43] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-

ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The

operating system is the control plane. ACM Trans. Com-

put. Syst., 33(4), Nov. 2015.

[44] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achiev-

ing Low Tail Latency for Microsecond-scale Networked

Tasks. In ACM SOSP, 2017.

[45] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.

Arachne: Core-Aware Thread Management. In USENIX

OSDI, 2018.

[46] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale:

Elastic Resource Scaling for Multi-Tenant Cloud Sys-

tems. In ACM SoCC, 2011.

[47] I. Stefanovici, B. Schroeder, G. O’Shea, and E. Thereska.

sRoute: Treating the Storage Stack Like a Network. In

USENIX FAST, 2016.

[48] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo,

Y. Wang, N. Mansouri Ghiasi, L. Orosa, J. Gómez-Luna,

and O. Mutlu. Flin: Enabling fairness and enhancing

performance in modern nvme solid state drives. In ACM

ISCA, 2018.

[49] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis,

A. Rowstron, T. Talpey, R. Black, and T. Zhu. IOFlow: A

Software-Defined Storage Architecture. In ACM SOSP,

2013.

[50] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,

A. Motivala, and T. Cruanes. Building An Elastic Query

Engine on Disaggregated Storage. In USENIX NSDI,

2020.

[51] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu,

C. Chang, G. Cao, J. Stern, V. Verma, and L. E. Paul.

SPDK: A development kit to build high performance

storage applications. In IEEE CloudCom, 2017.

[52] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,

and J. Wilkes. CPI2: CPU performance isolation for

shared compute clusters. In ACM Eurosys, 2013.

128 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/resource-disaggregation/blk-switch/techreport
https://github.com/resource-disaggregation/blk-switch/techreport

Optimizing Storage Performance with Calibrated Interrupts

Amy Tai‡∗ Igor Smolyar†∗ Michael Wei‡ Dan Tsafrir†‡

†Technion – Israel Institute of Technology ‡VMware Research

Abstract
After request completion, an I/O device must decide either

to minimize latency by immediately firing an interrupt or to
optimize for throughput by delaying the interrupt, anticipating
that more requests will complete soon and help amortize the
interrupt cost. Devices employ adaptive interrupt coalescing
heuristics that try to balance between these opposing goals.
Unfortunately, because devices lack the semantic information
about which I/O requests are latency-sensitive, these heuris-
tics can sometimes lead to disastrous results.

Instead, we propose addressing the root cause of the heuris-
tics problem by allowing software to explicitly specify to the
device if submitted requests are latency-sensitive. The de-
vice then “calibrates” its interrupts to completions of latency-
sensitive requests. We focus on NVMe storage devices and
show that it is natural to express these semantics in the kernel
and the application and only requires a modest two-bit change
to the device interface. Calibrated interrupts increase through-
put by up to 35%, reduce CPU consumption by as much as
30%, and achieve up to 37% lower latency when interrupts
are coalesced.

1 Introduction
Interrupts are a basic communication pattern between the
operating system and devices. While interrupts enable con-
currency and efficient completion delivery, the costs of inter-
rupts and the context switches they produce are well docu-
mented in the literature [7, 30, 66, 73]. In storage, these costs
have gained attention as new interconnects such as NVM
ExpressTM (NVMe) enable applications to not only submit
millions of requests per second, but up to 65,535 concurrent
requests [18, 21, 22, 25, 75]. With so many concurrent re-
quests, sending interrupts for every completion could result
in an interrupt storm, grinding the system to a halt [40, 55].
Since CPU is already the bottleneck to driving high IOPS
[37, 38, 41, 42, 43, 46, 69, 76, 81, 82], excessive interrupts
can be fatal to the ability of software to fully utilize existing
and future storage devices.

Typically, interrupt coalescing addresses interrupt storms
by batching requests into a single interrupt. Batching, how-

∗Denotes co-first authors with equal contribution.

ever, creates a trade-off between request latency and the inter-
rupt rate. For the workloads we inspected, CPU utilization in-
creases by as much as 55% without coalescing (Figure 12(d)),
while under even the minimum amount of coalescing, request
latency increases by as much as 10× for small requests, due
to large timeouts. Interrupt coalescing is disabled by default
in Linux, and real deployments use alternatives (§2).

This paper addresses the challenge of dealing with expo-
nentially increasing interrupt rates without sacrificing latency.
We initially implemented adaptive coalescing for NVMe, a dy-
namic, device-side-only approach that tries to adjust batching
based on the workload, but find that it still adds unneces-
sary latency to requests (§3.2). This led to our core insight
that device-side heuristics, such as our adaptive coalescing
scheme, cannot achieve optimal latency because the device
lacks the semantic context to infer the requester’s intent: is the
request latency-sensitive or part of a series of asynchronous
requests that the requester completes in parallel? Sending this
vital information to the device bridges the semantic gap and
enables the device to interrupt the requester when appropriate.

We call this technique calibrating1interrupts (or simply,
cinterrupts), achieved by adding two bits to requests sent to
the device. With calibrated interrupts, hardware and software
collaborate on interrupt generation and avoid interrupt storms
while still delivering completions in a timely manner (§3).

Because cinterrupts modifies how storage devices generate
interrupts, supporting it requires modifications to the device.
However, these are minimal changes that would only require
a firmware change in most devices. We build an emulator
for cinterrupts in Linux 5.0.8, where requests run on real
NVMe hardware, but hardware interrupts are emulated by
interprocessor interrupts (§4).

Cinterrupts is only as good as the semantics that are sent
to the device. We show that the Linux kernel can naturally
annotate all I/O requests with default calibrations, simply
by inspecting the system call that originated the I/O request
(§4.1). We also modify the kernel to expose a system call
interface that allows applications to override these defaults.

In microbenchmarks, cinterrupts matches the latency of
state-of-the-art interrupt-driven approaches while spending

1To calibrate: to adjust precisely for a particular function [53].

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 129

kernel

device
SQ CQ

blk req

application

SQ CQ. . .

IRQ blk req poll

Figure 1: NVMe requests are submitted through submission queues
(SQ) and placed in completion queues (CQ) when done. Applications
are notified of completions via either interrupts or polling.

30% fewer cycles per request and improves throughput by
as much as 35%. Without application-level modifications,
cinterrupts uses default kernel calibrations to improve the
throughput of RocksDB and KVell [48] on YCSB bench-
marks by as much as 14% over the state-of-the-art and to
reduce latency by up to 28% over our adaptive approach. A
mere 42-line patch to use the modified syscall interface im-
proves the throughput of RocksDB by up to 37% and reduces
tail latency by up to 86% over traditional interrupts (§5.5.1),
showing how application-level semantics can unlock even
greater performance benefits. Alternative techniques favor
specific workloads at the expense of others (§5).

Cinterrupts can, in principle, also be applied to network
controllers (NICs), provided the underlying network protocol
is modified to indicate which packets are latency sensitive.
We demonstrate that despite being more mature than NVMe
drives, NICs suffer from similar problems with respect to
interrupts (§2). We then explain in detail why it is more chal-
lenging to deploy cinterrupts for NICs (§6).

2 Background and Related Work
Disks historically had seek times in the milliseconds and pro-
duced at most hundreds of interrupts per second, which meant
interrupts worked well to enable software-level concurrency
while avoiding costly overheads. However, new storage de-
vices are built with solid state memory which can sustain not
only millions of requests per second [25, 75], but also multiple
concurrent requests. The NVMe specification [57] exposes
this parallelism to software by providing multiple queues, up
to 64K per device, where requests, up to 64K per queue, can be
submitted and completed; Linux developers rewrote its block
subsystem to match this multi-queue paradigm [9]. Figure 1
shows a high-level overview of NVMe request submission
and completion.

Numerous kernel, application, and firmware-level improve-
ments have been proposed in the literature to unlock the higher
request rate of these devices [13, 39, 46, 48, 60, 65, 82, 83],
but they focus on increasing I/O submit rate without directly
addressing the problem of higher completion rate.

Lessons from Networking. Networking devices have had
much higher completion rates for a long time. For example,
100Gbps networking cards can process over 100 million pack-

ets per second in each direction, over 200× that of a typical
NVMe device. The networking community has devised two
main strategies to deal with these completion rates: interrupt
coalescing and polling.

To avoid bombarding the processor with interrupts, network
devices apply interrupt coalescing [74], which waits until a
threshold of packets is available or a timeout is triggered. Net-
work stacks may also employ polling [16], where software
queries for packets to process rather than being notified. IX [7]
and DPDK [33] (as well as SPDK [67]) expose the device di-
rectly to the application, bypassing the kernel and the need for
interrupts by implementing polling in userspace. Technolo-
gies such as Intel’s DDIO [19] or ARM’s ACP [56] enable net-
working devices to write incoming data directly into processor
caches, making polling even faster by turning MMIO queries
into cache hits. The networking community has also proposed
various in-network switching and scheduling techniques to
balance low-latency and high-throughput [3, 7, 35, 49].

Storage is adopting networking techniques. The NVMe
specification standardizes the idea of interrupt coalescing
for storage devices [57], where an interrupt will fire only
if there is a sufficient threshold of items in the completion
queue or after a timeout. There are two key problems with
NVMe interrupt coalescing. First, NVMe only allows the
aggregation time to be set in 100µs increments [57], while
devices are approaching sub 10µs latencies. For example, in
our setup, small requests that normally take 10µs are delayed
by 100µs, resulting in a 10× latency increase. Intel Optane
Gen 2 devices have latencies around 5µs [24], which would
result in a 20× latency increase. The risk of such high latency
amplification renders the timeout unusable in general-purpose
deployments where the workload is unknown.

Second, even if the NVMe aggregation granularity were
more reasonable, both the threshold and timeout are statically
configured (the current NVMe standard and its implemen-
tations have no adaptive coalescing). This means interrupt
coalescing easily breaks after small changes in workload—for
example, if the workload temporarily cannot meet the thresh-
old value. The NVMe standard even specifies that interrupt
coalescing be turned off by default [58], and off-the-shelf
NVMe devices ship with coalescing disabled.

Indeed, despite the existence of hardware-level coalesc-
ing, there are still continuous software and driver patches to
deal with interrupt storms through mechanisms such as fine-
tuning of threaded interrupt completions and polling com-
pletions [11, 47, 50]. Mailing list requests and product docu-
mentation show that Azure observes large latency increases
when using aggressive interrupt coalescing to deal with in-
terrupt storms, which they try to address with driver mitiga-
tions [26, 47]. Because of the proprietary nature of Azure’s
solution, it is unclear whether their interrupt coalescing is
standard NVMe coalescing or some custom coalescing that
they develop with hardware vendors.

Polling is expensive. µdepot [43] and Arrakis [61] deal

130 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

KIOPS

1
.1

7

1
.1

3

 0

 4

 8

 12

(a) 1 proc:4K random reads

latency [µsec]

0
.8

4

0
.8

6

 0
 25
 50
 75

 100

% cpu util

3
.2

1

2
.1

0

 0
 50

 100
 150
 200

KIOPS

1
.0

4

1
.0

6

 0

 5

 10

 15

(b) 2 proc:4K random reads

latency [µsec]

0
.9

6

0
.9

5

 0
 25
 50
 75

 100

% cpu util

1
.4

7

1
.4

7

 0

 25

 50

 75

KIOPS

 0
 20
 40
 60
 80

(c) 1 proc:4K, 1 proc:64K random reads

latency [µsec]

 0
 25
 50
 75

 100

% cpu util

IRQ polling hybrid-polling 4K proc 64K proc

Figure 2: Hybrid polling is not enough to mitigate polling overheads. All experiments run on a single core. (a) With a single thread of same-sized
requests, hybrid polling effectively reduces the CPU utilization of polling while matching the performance of polling. (b) With more threads,
hybrid polling reduces to polling in terms of CPU utilization without providing significant performance improvement over interrupts. (c) With
variable I/O sizes, hybrid polling has the same throughput and latency as interrupts for both I/O sizes while using 2.7x more CPU. Labels show
performance relative to IRQ.

with higher completion rates by resorting to polling. Di-
rectly polling from userspace via SPDK requires considerable
changes to the application, and polling from either kernel-
space or userspace is known to waste CPU cycles [42, 77, 82].
FlashShare only polls for what it categorizes as low-latency
applications [82], but acknowledges that this is still expen-
sive. Cinterrupts exposes application semantics for interrupt
generation so that systems do not have to resort to polling.

Even hybrid polling [79], which is a heuristic-based tech-
nique for reducing the CPU overhead of polling by sleeping
for a period of time before starting to poll, is insufficient,
breaking down when requests having varying size [5, 41, 45].

Figure 2 compares the performance and CPU utilization of
hybrid polling, polling, and interrupts for three benchmarks
on an Intel Optane DC P4800X [23].2 We note that in all
cases, polling provides the lowest latency because the polling
thread discovers completions immediately, at the expense of
100% CPU utilization. When there is a single thread submit-
ting requests through the read syscall (Figure 2(a)), hybrid
polling does well because request completions are uniform.
However, when more threads or I/O sizes are added, as in Fig-
ures 2(b)-(c), hybrid polling still has 1.5x-2.7x higher CPU
utilization than interrupts without providing noticeable per-
formance improvement. These results match other findings in
the literature [5, 6, 41, 45].

Even though polling wastes cycles, it can provide lower
latency than interrupts, which is desirable in some cases. As
such, cinterrupts coexists with kernel-side polling, such as in
Linux NAPI for networking [15, 16], which switches between
polling and interrupts based on demand.

Heuristics-based Completion. vIC [2] tries to moderate
virtual interrupts by estimating I/O completion time with
heuristics. It primarily relies on inspecting the number of
“commands-in-flight” to determine whether to coalesce in-
terrupts, also employing smoothing mechanisms to ensure
that the coalescing rate does not change too dramatically. To
prevent latency increase in low-loaded scenarios, vIC also
eliminates interrupt coalescing when the submission rate is
below a certain threshold. vIC is a heuristic-based coalesc-

2See Section 5.1 for a detailed description of our experimental setup.

 0

 50

 100

 150

 200

 250

64B
256B

1KB
4KB

16KB
64KB

 0

 20

 40

 60

 80

la
te

n
c
y
 [

µ
s
e

c
]

Intel XL710

diff

2
3

2
3

2
3 2

9 3
0

2
4

2
2

1
8

2
8

6
6 7
0

default
no coalesc

 0
 20
 40
 60
 80

 100
 120

64B
256B

1KB
4KB

16KB
64KB

 0

 5

 10

 15

 20

d
if
f

[µ
s
e

c
]

Mellanox ConnectX-5

0

.6

1
.5

0

.2

1
.3

1

.5

9
.8 1
1

8

.7
1

5
1

4
1

8

Figure 3: NICs employ adaptive heuristics that try to minimize inter-
rupt overheads without unnecessarily hurting latency. The inherent
imperfection of these heuristics is demonstrated using Intel and Mel-
lanox NICs servicing the netperf request-response benchmark, which
ping-pongs a message of a specified size. The labels show the latency
difference between the default NIC scheme and a no-coalescing pol-
icy, which minimizes latency for this particular workload, but which
harms performance for more throughput-oriented workloads.

ing algorithm, similar to our adaptive algorithm (Section 3.2).
Consequently, vIC also lacks semantic information necessary
to align interrupt delivery.

NICs and their software stack are higher-performing and
more mature than NVMe drives and their corresponding stack.
As with NVMe devices, NICs must balance two contradic-
tory goals: (1) reducing interrupt overhead via coalescing to
help throughput-oriented workloads, while (2) providing low
latency for latency-sensitive workloads by triggering inter-
rupts upon incoming packets as soon as possible. Notably,
NICs employ more sophisticated, adaptive interrupt coalesc-
ing schemes (implemented inside the device and helped by its
driver). Yet, in general-purpose settings that must accommo-
date arbitrary workloads, NICs are unable to optimally fire
and coalesce interrupts, despite their maturity.

Figure 3 demonstrates that heuristics in even mature de-
vices cannot optimally resolve the interrupt delivery problem
for all workloads. Two NICs, Intel XL710 40 GbE [20] and
Mellanox ConnectX-5 100 GbE [71], run the standard latency-
sensitive netperf TCP request-response (RR) benchmark [34],
which repeatedly sends a message of a specified size to its
peer and waits for an identical response. In this workload,
the challenge for the NIC is identifying the end of the in-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 131

s1 s2 s3

s1 s2 s3

s1 s2 s3

CPU time to
submit request k

sk

CPU time to
complete request k

ck

CPU time to
process interrupti

device completed s1
time

NVMe coalescing
thr=8, timeout=100us

NVMe coalescing
thr=8, timeout=20us

Adaptive coalescing

s4 s5 s6 s7 s8 idle i c1 c2 c3 c4 s9 idle

s4 s5 s6 s7 s8 i c1 c2 c3 i c4 c5 c6 i c7 c8 s9 idle

s4 s5 s6 s7 s8 i c1 c2 c3 c4 c5 c6 c7 c8 s9 idleidle i

i

i

threshold met timeout

timeout

c5 c6 c7 c8

c9

c9

c9

device completed s9

timeout timeout timeout

Figure 4: NVMe coalescing with its current 100µs granularity (top row) causes unusable timeouts when the threshold is not met (c9). Even if
the timeout granularity were smaller (middle row), NVMe coalescing cannot adapt to the workload. For bursts of requests, the smaller timeout
will limit the throughput with interrupts (c1− c8), while bursts that do not meet the threshold must still wait for the timeout (c9). Note that idle
periods occur when the CPU is done submitting requests, but is waiting for the device to complete I/O.

coming message and issuing the corresponding interrupt. The
Intel NIC heuristic results in increased latency regardless of
message size, and the Mellanox NIC heuristic adds latency
if the message size is greater than 1500 bytes, the maximum
transmission unit (MTU) for Ethernet, because the message
becomes split across multiple packets.

Knowledgeable users with admin privileges may manu-
ally configure the NIC to avoid coalescing, which helps iden-
tify message boundaries and thus yields better results for
this specific workload. But such a configuration is ill-suited
for general-purpose setups that must reasonably support co-
located throughput-oriented workloads as well.

Exposing Application-Level Semantics. Similar to [39,
78, 82], cinterrupts augments the syscall interface with a few
bits so applications can transmit information to the kernel.
Cinterrupts further shares this information with the device,
which is only also done in [82], which shares with the device
SLO information used to improve internal device caching.

3 Cinterrupts
3.1 Design Overview
The initial design of cinterrupts focused on making NVMe
coalescing adapt to workload changes. Our first contribution
captures this intuition with an adaptive coalescing strategy to
replace the static NVMe algorithm (§3.2).

While our adaptive coalescing strategy improves over static
coalescing, there are still cases that an adaptive strategy can-
not handle, such as workloads with a mix of latency-sensitive
and throughput-sensitive requests. The adaptive strategy also
imposes an inevitable overhead from detecting when a work-
load has changed.

This observation led to the core insight of cinterrupts:
device-level heuristics for coalescing will always fall short
due to a semantic gap between the requester and the device,
which sees a stream of requests and cannot determine which
requests require interrupts in order to unblock the application.
To bridge the semantic gap, the application issuing the I/O
request should always inform the device when it wishes to be
interrupted. Cinterrupts takes advantage of the fact that this
semantic information is easily accessible in the storage stack

and available at submission time.
Note on Methodology. The results throughout this section

are obtained on a setup fully described in Section 5.1. We use
an Intel Optane DC P4800X, 375 GB [23], installed in a Dell
PowerEdge R730 machine equipped with two 14-core 2.0
GHz Intel Xeon E5-2660 v4 CPUs and 128 GB of memory
running Ubuntu 16.04. The server runs cinterrupts’ modified
version of Linux 5.0.8 and has C-states, Turbo Boost (dynamic
clock rate control), and SMT disabled. We use the maximum
performance governor.

All results are obtained with our cinterrupts emulation, as
described in Section 4.2.1. Our emulation pairs one dedicated
core to one target core. Each target core is assigned its own
NVMe submission and completion queue. All results in this
section are run on a single target core.

3.2 Adaptive Coalescing
Ideally, an interrupt coalescing scheme adapts dynamically to
the workload. Figure 4 shows that even if the timeout granu-
larity in the NVMe specification were smaller, it is still fixed,
which means that interrupts will be generated when the work-
load does not need interrupts (c1− c8), while completions
must wait for the timeout to expire (c9) when the workload
does need interrupts.

Instead, as shown in the bottom row of Figure 4, the adap-
tive coalescing strategy in cinterrupts observes that a device
should generate a single interrupt for a burst, or a sequence
of requests whose interarrival time is within some bound.

Algorithm 1 shows the adaptive strategy. The burst detec-
tion happens on Line 6, where the timeout is pushed out by ∆

every time a new completion arrives. In contrast, NVMe coa-
lescing cannot detect bursts because it does not dynamically
update the timeout, which means it can only detect bursts of
a fixed size. To bound request latency, the adaptive strategy
uses a thr that is the maximum number of requests it will
coalesce into a single interrupt (Lines 14-15). This is neces-
sary for long-lived bursts to prevent infinite delay of request
completion. With Algorithm 1, a device will emit interrupts
when either it has observed a completion quiescent interval of
∆ or thr requests have completed. In §5, we explain how de-
vice manufacturers and system administrators can determine

132 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Adaptive coalescing strategy in cinterrupts
1 Parameters: ∆, thr
2 coalesced = 0, timeout = now + ∆;
3 while true do
4 while now < timeout do
5 while new completion arrival do

/* burst detection,update timeout */
6 timeout = now + ∆;
7 if ++coalesced ≥ thr then
8 fire IRQ and reset;

/* end of quiescent period */
9 if coalesced > 0 then

10 fire IRQ and reset;

11 timeout = now + ∆;

 0

 50

 100

 150

(a)

sync latency
[µsec]

1
.6

0

1
0
.6

6

3
.1

0

1
.6

0

 0

 150

 300

 450

(b)

async IOPS
[1000s]

1
.3

5

1
.3

4

1
.3

2

1
.2

4

 0

 100

 200

 300

(c)

async inter.
[1000s/sec]

0
.0

8

0
.0

4

0
.1

3

0
.3

1

default adaptive nvme100 nvme20 nvme6

Figure 5: Adaptive strategy has better performance for both types
of workloads regardless of how NVMe coalescing is configured.
(a) latency of a synchronous read request. (b) throughput of an
asynchronous read workload with high iodepth. (c) interrupt rate for
async workload. Labels show performance relative to default.

reasonable ∆ and thr configurations.
Comparison to NVMe Coalescing. The adaptive strat-

egy outperforms various NVMe coalescing configurations,
even those with smaller timeouts, across different workloads.
We compare the adaptive strategy, configured with thr = 32,
∆ = 6, to no coalescing (default), nvme100, which uses a
timeout of 100µs, the smallest possible in standard NVMe,
nvme20, which uses a theoretical timeout of 20µs, and nvme6,
which uses a theoretical timeout of 6µs. All NVMe coalescing
configurations have threshold set to 32.

We run two single-threaded synthetic workloads with
fio [4]. In the first workload, the thread submits 4 KB read re-
quests via read, which blocks until the system call is done. In
the second workload, the thread submits 4 KB read requests
via libaio in batches of 16, with iodepth=512.3

Figure 5(a) reports the latency of the read requests for the
synchronous workload. As expected, the default strategy has
the lowest latency of 10µs, because it generates an interrupt
for every request. All coalescing strategies add exactly their
timeout to the latency of each read request (c9 in Figure 4).
Because they have the same timeout, nvme6 and adaptive
have the same latency, but nvme6 pays the price for this low

3iodepth represents the number of in-flight requests.

interrupt calibrated
to the time when
the last request
(k=4) finishess1 s2 s3 s4 idle i c1 c2 c3 c4

s1 s2 s3 s4 idle i c1 c2 c3 c4

cint

adaptive
1) device processed s1

CPU time to
submit request ksk

kernel CPU time to
complete request kck

CPU time to
process interrupti

2) device processed s4

latency

b

delay

Figure 6: Completion timeline for multiple submissions. The adap-
tive strategy can detect them as part of a burst, but only after the
delay expires. Cinterrupts explicitly marks the last request in the
batch. Idle periods occur when the CPU waits for I/O to complete.

timeout in the next workload.
Figure 5(b) reports the read IOPS for the second work-

load and shows that if there are enough requests to hit the
threshold, the timeout adds unnecessary interrupts (c1− c8 in
Figure 4). The default strategy’s throughput is limited because
it generates too many interrupts, as shown in Figure 5(c).

The workload has enough requests in flight that waiting for
the threshold of 32 completions does not harm throughput.
However, nvme20 and nvme6 must fire an interrupt every
20µs or 6µs, respectively: Figure 5(c) shows that nvme20
generates 1.7x more interrupts than adaptive, and nvme6 gen-
erates 4.2x more interrupts than adaptive, explaining their
lower throughput.

The adaptive strategy can accurately detect bursts, although
it adds ∆ delay to confirm the end of a burst; without addi-
tional information, this delay is unavoidable. Figure 6 shows
how cinterrupts addresses this problem by enhancing adap-
tive with two annotations, Urgent and Barrier, which software
passes to the device. We now describe both annotations.

3.3 Urgent
Urgent is used to request an interrupt for a single request: the
device will generate an immediate interrupt for any request
annotated with Urgent. The primary use for Urgent is to en-
able the device to calibrate interrupts for latency-sensitive
requests. Urgent eliminates the delay in the adaptive strategy.

To demonstrate the effectiveness of Urgent, we run a syn-
thetic mixed workload with fio with two threads: one submit-
ting 4 KB read requests via libaio with iodepth=16 and one
submitting 4 KB read requests via read, which blocks until
the system call is done. In cinterrupts, the latency-sensitive
read requests are annotated with Urgent, which is embedded
in the NVMe request that is sent to the device (see §4.1.1).
Results are shown in Figure 7.

Without cinterrupts, the requests from either thread are
indistinguishable to the device. The default (no coalescing)
strategy addresses this problem by generating an interrupt for
every request, resulting in 2.7x more interrupts than cinter-
rupts (Figure 7(d)).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 133

 0

 150

 300

 450

(a)

total IOPS
[1000s]

0
.8

3

1
.1

5

 0

 150

 300

 450

(b)

sync IOPS
[1000s]

0
.9

3

0
.2

4

 0

 25

 50

 75

(c)

sync latency
[µsec]

1
.0

6

4
.3

9

 0

 150

 300

 450

(d)

interrupts
[1000s]

2
.7

4

0
.2

5

cint default adaptive

Figure 7: Effect of Urgent. Synthetic workload with two threads
running a mixed workload: one thread submitting synchronous re-
quests via read, one thread submitting asynchronous requests via
libaio. Cinterrupts achieves optimal synchronous latency and better
throughput over the default (no coalescing). The adaptive strategy
achieves better overall throughput, at the expense of synchronous
latency. Labels show performance relative to cinterrupts.

 300

 350

 400

 450

 4 8
 1

6
 3

2
 6

4

adaptive coalescing threshold

(a)

total IOPS
[1000s]

cint adaptive

1
.0

4
1

.1
1

1
.1

6
1

.1
9

1
.2

0

 0

 15

 30

 45

 4 8
 1

6
 3

2
 6

4

(b)

sync IOPS
[1000s]

0
.5

9
0

.4
4

0
.3

2
0

.2
5

0
.1

5

 0

 60

 120

 180

 4 8
 1

6
 3

2
 6

4

(c)

sync latency
[µsec]

1
.7 2
.3 3

.2 4
.0

6
.8

 0

 30

 60

 90

 4 8
 1

6
 3

2
 6

4

(d)

interrupts
[1000s]

2
.1

1
.1

2
0

.5
9

0
.3

0
0

.1
5

Figure 8: In a mixed workload, increasing the coalescing threshold
increases the latency of synchronous requests proportionally to the
coalescing rate. Labels show performance relative to cinterrupts.

On the other hand, with Urgent, cinterrupts calibrates in-
terrupts to the latency-sensitive read requests, enabling low-
latency without generating needless interrupts that hamper
the throughput of the asynchronous thread. This results in
both higher asynchronous throughput and lower latency for
the synchronous requests. The adaptive strategy is unable
to identify the latency-sensitive requests and in fact tries to
minimize interrupts for all requests, resulting in higher asyn-
chronous throughput but a corresponding increase in read
request latency (Figure 7(c)).

In fact, the more aggressive the coalescing, the more un-
usable synchronous latencies become. Figure 8 shows the
same experiment with higher iodepth. As the target coalesc-
ing rate increases, there is a corresponding linear increase
in the synchronous latency. On the other hand, the purple
line in Figure 8(c) shows that Urgent in cinterrupts makes
synchronous latency acceptable. This latency comes at the
expense of less asynchronous throughput, as shown in Fig-
ure 8(a), but we believe this is an acceptable trade-off.

3.4 Barrier
To calibrate interrupts for batches of requests, cinterrupts uses
Barrier, which marks the end of a batch and instructs the de-

 0

 100

 200

 300

1
 p

ro
c

IOPS
[1000s]

1
.1

0

0
.8

0

 0

 15

 30

 45

latency
[µsec]

0
.9

0 1
.3

1

 0
 25
 50
 75

 100

CPU util
[%]

1
.3

2

0
.8

1

 0

 100

 200

 300

interrupts
[1000s]

4
.4

0

0
.8

0

 0

 100

 200

 300

2
 p

ro
c
s 0

.8
5

0
.7

1

 0

 15

 30

 45

1
.1

8

1
.4

5

 0
 25
 50
 75

 100

1
.0

1

0
.6

5

 0

 100

 200

 300 3
.4

2

0
.4

4

 0

 100

 200

 300

4
 p

ro
c
s

(a)

0
.8

8

1
.0

1

 0

 30

 60

 90

(b)

1
.1

4

0
.9

9

 0
 25
 50
 75

 100

(c)

1
.0

1

1
.0

0

 0

 100

 200

 300

(d)

3
.5

1

0
.9

9

cint default adaptive

Figure 9: Effect of Barrier. Each process submits a batch of 4 re-
quests at a time, submitting a new batch after the previous batch has
finished. Cinterrupts always detects the end of a batch with Barrier.
Note that when there is CPU idleness, adaptive always adds ∆ delay
to the latency. Labels show performance relative to cinterrupts.

vice to generate an interrupt as soon as all preceding requests
have finished. The semantic difference between Urgent and
Barrier is that an Urgent interrupt is generated as soon as the
Urgent request finishes, whereas the Barrier interrupt may
have to wait if requests are completed out of order.

Barrier minimizes the interrupt rate, which is always benefi-
cial for CPU utilization, while enabling the device to generate
enough interrupts so that the application is not blocked. For
example, in the submission stream s1− s4 in Figure 6, the last
request in the batch, s4, is marked with Barrier.

To demonstrate the effectiveness of Barrier, we run an ex-
periment with a variable number of threads on the same core,
where each thread is doing 4 KB random reads through libaio,
submitting in fixed batch sizes of 4. The trick is determin-
ing the end of the batch without additional overhead, which
is only possible in cinterrupts: we modify fio to mark the
last request in each batch with a Barrier. Figure 9 shows the
throughput, latency, CPU utilization, and interrupt rate.

Single Thread. When there is a single thread, the default
(no coalescing) strategy can deliver lower latency than cin-
terrupts. This is because there is CPU idleness and no other
thread running. However, the default strategy generates 4.4x
the number of interrupts as cinterrupts, which results in 1.32x
CPU utilization. The default strategy can also process some
completions in parallel with device processing, whereas cin-
terrupts waits for all completions in the batch to arrive before
processing. On the other hand, the ∆ delay in the adaptive
algorithm is clear: the latency of requests is 29 µs, compared
to 22 µs with cinterrupts.

Two Threads. When there are two threads in the experi-
ment, the advantage of the default strategy goes away: the 3.4x

134 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

s1 s2 s3 s4 i c1 i c2 i c3 i c4

default (no coalescing)

cint

adaptive

s1 s2 s3 s4 i c1 i c2 i c3 i c4

p1

…

idle till last
is processed

p2 p1 p2

s1 s2 s3 s4 i c1 c2 c3 c4s1 s2 s3 s4 i c1 c2 c3 c4

p1

…

p2 p1 p2

s1 s2 s3 s4 i c1 c2 c3 c4s1 s2 s3 s4 c1 c2 c3 c4

p1

…

p2 p1 p2

delay

bb

associated with
process #1 (=p1)

associated with
process #2 (=p2)

Figure 10: Completion timeline for two threads submitting request
batches. The adaptive strategy experiences CPU idleness both be-
cause of the delay and because it waits to process any completions
until they all arrive. On the other hand, due to Barrier, cinterrupts
can process each batch as soon as it completes.

interrupts taxes a saturated CPU. On the other hand, cinter-
rupts has the best throughput and latency because calibrating
interrupts enable better CPU usage.

Figure 10 shows that the adaptive strategy exhibits highest
synchronous latency due to CPU idleness, which comes from
waiting for completions and the delay used to detect the end of
the batch. This idleness is eliminated in the next experiment,
where there are enough threads keep the CPU busy.

Four Threads. With four threads, the comparison between
cinterrupts and the default NVMe strategy remains the same.
However, at four threads, the adaptive strategy matches the
performance of cinterrupts because without CPU idleness, the
delay is less of a factor. Although the adaptive strategy does
well in this last case, we showed in §3.3 that this aggregation
comes at the expense of synchronous requests.

Note that Figure 10 is a simplification of a real execution,
because it conflates time spent in userspace and the kernel,
and does not show completion reordering. The full cinterrupts
algorithm addresses reordering by employing the adaptive
strategy to ensure no requests get stuck.

3.5 Out-of-Order Urgent
The full cinterrupts interrupt generation strategy is shown
in Algorithm 2. Requests are either unmarked or marked by
Urgent or Barrier. Unmarked requests are handled by the
underlying adaptive algorithm and can of course piggyback
on interrupts generated by Urgent or Barrier.

We noticed that Urgent requests sometimes get completed
with other requests, which increases their latency because the
interrupt handler does not return until it reaps all requests in
the interrupt context. To address this, cinterrupts implements
out-of-order (OOO) processing, a driver-level optimization
for Urgent requests. With OOO processing, the IRQ handler
will only reap Urgent requests in the interrupt context, which
enables faster return-to-userspace of the Urgent requests.

Unmarked requests will not be reaped until a completion
batch consists only of those requests, as shown in Figure 11.

Algorithm 2: cinterrupts coalescing strategy
1 Parameters: ∆, thr
2 coalesced = 0, timeout = now + ∆;
3 while true do
4 while now < timeout do
5 while new completion arrival do
6 timeout = now + ∆;
7 if completion type == Urgent then
8 if ooo processing is enabled then

/* only urgent requests */
9 fire urgent IRQ;

10 else
/* process all requests */

11 fire IRQ and reset coalesced;

12 if completion type == Barrier then
13 fire IRQ and reset coalesced;
14 else
15 if ++coalesced ≥ thr then
16 fire IRQ and reset coalesced;

/* end of quiescent period */
17 if coalesced > 0 then
18 fire IRQ and reset coalesced;

19 timeout = now + ∆;

CQ

end

CQ

start
end

time

CQ

start end

CQ

start end start

Figure 11: OOO Urgent processing. Grayed entries are reaped entries.
Urgent requests in an interrupt context (first interrupt) are processed
immediately, and the interrupt handler returns. The other requests are
not reaped until the next interrupt, which consists only of non-Urgent
requests. After the second IRQ, the driver rings the completion queue
doorbell to signal that the device can reclaim the contiguous range.

The driver also does not ring the CQ doorbell until it com-
pletes a contiguous range of entries. thr ensures non-Urgent
requests are eventually reaped. For example, suppose in Fig-
ure 11 that thr = 9. Then an interrupt will fire as soon as
9 entries (already reaped or otherwise) accumulate in the
completion queue.

The trade-off with OOO processing is an increase in the
number of interrupts generated. Figure 12 reports perfor-
mance metrics from running the same mixed workload as
in Figure 8. OOO processing generates 2.4x the number of
interrupts in order to reduce the latency of synchronous re-
quests by almost half. The impact of the additional interrupts
is noticeable in the reduced number of asynchronous IOPS.

Incidentally, these additional interrupts, as well as the in-
terrupts in the default strategy, act as an inadvertent tax on
the asynchronous thread. If we instead limit the number of
asynchronous requests, the need for these additional inter-
rupts goes away. In the second row of Figure 12, we throttle
the asynchronous thread with the blkio cgroup [10] to its

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 135

 0

 150

 300

 450

u
n

lim
it
e

d

async IOPS
[1000s]

0
.4

7 0
.9

6
0
.8

4

 0

 20

 40

 60

sync latency
[µsec]

0
.3

7 0
.8

8
0
.5

9

 0

 150

 300

 450

interrupts
[1000s]

8
.9

7
1
.1

5
2
.3

6

 0

 40

 80

 120

CPU util
[%]

1
.0

0
1
.0

0
1
.0

0

 0

 100

 200

 300

ra
te

 l
im

it
e

d

(a)

1
.0

0
1
.0

0
1
.0

0

 0

 20

 40

 60

(b)

0
.8

7
1
.3

1
0
.8

7

 0

 100

 200

 300

(c)

3
.7

0
0
.7

4
1
.2

3

 0

 40

 80

 120

(d)

1
.5

5
0
.9

3
1
.0

8

cint default adaptive ooocint

Figure 12: Mixed workload. Out-of-order (OOO) driver processing
of Urgent requests enables lower latency at the expense of more
interrupts. Limiting the number of async requests (bottom row)
reduces this overhead. Labels above bars indicate performance ratio
compared to cinterrupts.

throughput in the default scenario (green bar in the first row).
In this case, OOO cinterrupts only generates 23% more inter-
rupts, and its synchronous latency matches that of the default
strategy while using 30% less CPU.

OOO processing is turned on by default in the cinterrupts
NVMe driver but can be disabled with a module parameter.

4 Implementation
4.1 Software Modifications
4.1.1 Kernel Modifications

It is software’s responsibility to pass request annotations to
the device. To minimize programmer burden, our implemen-
tation includes a modified kernel that sets default annotations.
Table 1 summarizes how the kernel sets these defaults, which
naturally derive from the programming paradigm of each sys-
tem call: any system call that blocks the application, such as
read and write, is marked Urgent, and any system call that sup-
ports asynchronous submission, such as io_submit, is marked
Barrier. System calls in the sync family are blocking, so they
are marked Urgent. By following the programming paradigm
of each system call, cinterrupts can be supported in the kernel
with limited intrusion; the changes to the Linux software stack
described in this section total around 100 LOC.

The cinterrupts kernel propagates annotations from the
system call layer through the filesystem and block layers to the
device. In the system call handling layer, cinterrupts embeds
any bits in the iocb struct. The block layer can split or merge
requests. In the case of request split – for example, a 1M write
will get split into several smaller write blocks – each child
request will retain the bit of the parent. In the case of merged
requests, the merged request will retain a superset of the bits in
its children. If this superset contains both Urgent and Barrier,
we mark the merged request as Urgent for simplicity. This
is not a correctness issue because the underlying adaptive

System call Kernel default annotations
(p)read(v), (p)write(v) Urgent if fd is blocking or if write is O_DIRECT
preadv2, pwritev2 If RWF_NOWAIT is not set, use Urgent
io_submit Barrier on the last request
(f)(data)sync, syncfs Urgent
msync With MS_SYNC, Barrier on the last request

Table 1: Summary of storage I/O system calls and the corresponding
default bits used by the kernel.

algorithm will ensure that no request gets stuck.
For cases in which these defaults do not match application-

level semantics, we expose a system call interface for
applications to override these defaults. We leverage the
preadv2/pwritev2 system call interface [63], which already
exposes a parameter that accepts flags:

ssize_t preadv2(int fd, const struct iovec *iov,
int iovcnt, off_t offset, int flags)

We create two new flag types, RWF_URGENT and
RWF_BARRIER, which the application can use to pass bits as
it sees fit. The application can explicitly ask for a request to be
unmarked by passing both flags. We explain how applications
can use this interface in the next section.

4.1.2 Application Case Studies

Ultimately the application has the best knowledge of when it
requires interrupts, so cinterrupts enables the application to
override kernel defaults for even better performance, using the
syscall interface described previously. We modified RocksDB
to use these flags.

RocksDB Background Tasks. Flushing and compaction
are the two main sources of background I/O in RocksDB. We
modify RocksDB to explicitly mark these I/O requests as non-
Urgent. Since RocksDB already isolates the environment for
interacting with files, our changes were minimal and involved
replacing the calls to pread/pwrite with preadv2/pwritev2, cre-
ating a new file option to express urgency of I/O for that file,
and modifying the Flush and Compaction jobs to explicitly
mark I/O as non-Urgent, which totaled around 40 lines of
code. We show in Section 5.4.1 that these manual annotations
especially help RocksDB during write-intensive workloads.

RocksDB Dump. RocksDB includes a dump tool that
dumps all the keys in a RocksDB instance to a file [1]. Typi-
cally this tool is used to debug or migrate a RocksDB instance.
As it is a maintenance-level tool, dump requests do not need
to be Urgent, so we manually modify the dump code to mark
dump read and write I/O as non-Urgent. In this way, dump
I/O requests are completed when interrupts are generated by
the underlying adaptive coalescing strategy. On top of the
RocksDB changes described in the previous section, marking
dump requests as non-Urgent only required two lines of code.
We show in Section 5.5.1 that modifying the dump tool can
increase the throughput of foreground requests by 37%.

136 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

target core dedicated core

Polling

IPInvme_irq()

CQ
…

SQ

cinterrupts
algorithm

NVMe controller + device

Figure 13: Cinterrupts emulation: the dedicated core polls on the
NVMe completion queue of the target core and sends IPIs for any
completion. IPIs emulate hardware interrupts of a real device that
supports cinterrupts. The target core submits requests normally to
hardware by writing to the NVMe submission queue.

4.2 Hardware Modifications
Cinterrupts modifies the hardware-software boundary to sup-
port Urgent and Barrier. The key hardware component in
cinterrupts is an NVMe device that recognizes these bits and
implements Algorithm 2 as its interrupt generation strategy.
Device firmware, which is responsible for interrupt genera-
tion, is the only device component that must be modified in
order to support cinterrupts. Device firmware is typically a
blackbox, so we chose to emulate the interrupt generation
portion of cinterrupts while leveraging real NVMe hardware
for I/O execution.

4.2.1 Firmware Emulation

To emulate interrupt generation in cinterrupts, we explored
using several existing aspects of the NVMe specification, all
of which were insufficient. We considered using the urgent
priority queues to implement Urgent. While this would have
worked for Urgent, there is still no way to implement Bar-
rier or Algorithm 2. Furthermore, in NVMe devices, while
it is possible to have a dedicated urgent priority queue, hard-
ware queues are still limited in NVMe devices; Azure NVMe
devices have 8 queues that must be shared across many
cores [26], while Intel devices have 32-128 queues [17, 70].
By labelling individual requests, cinterrupts is explicitly de-
signed to work in a general context where queues cannot be
differentiated due to resource limitations.

We also considered using special bogus commands to force
the NVMe device to generate an interrupt. The specifica-
tion recommends that “commands that complete in error
are not coalesced” [57]. Unfortunately, neither device we
inspected [22, 75] respected this aspect of the specification.

Instead, we prototype cinterrupts by emulating interrupt
generation with a dedicated sidecore that uses interprocessor
interrupts (IPIs) to emulate hardware interrupts. We imple-
ment this emulation on Linux 5.0.8.

Dedicated Core. Our emulation assigns a dedicated core
to a target core. The target core functions normally by running

applications that submit requests to the core’s NVMe submis-
sion queue, which are passed normally to the NVMe device.
The dedicated core runs a pinned kernel thread, created in
the NVMe device driver, that polls the completion queue of
the target core and generates IPIs based on Algorithm 2. Cin-
terrupts annotations are embedded in a request’s command
ID, which the polling dedicated core inspects to determine
which bits are set. In a hardware-level implementation of cin-
terrupts, Urgent and Barrier can be communicated in any of
the reserved bits in the submission queue entry of the NVMe
specification [57].

To faithfully emulate the proposed hardware, we disable
hardware interrupts for the NVMe queue assigned to that core;
in this way, the target core only receives interrupts iff ideal
cinterrupts hardware would fire an interrupt. Figure 13 shows
how our dedicated core emulates the proposed interrupt gen-
eration scheme. Importantly, we still leverage real hardware
to execute the I/O requests, and the driver still communicates
with the NVMe device through the normal SQ/CQ pairs, but
we replace the device’s native interrupt generation mechanism
with the dedicated core. Section 5.1 shows that this emulation
has a modest 3-6% overhead.

4.3 Discussion
Other I/O Requests. We initially did not annotate requests
generated by the kernel itself, for example from page cache
writeback and filesystem journalling. But because filesystem
journalling is on the critical path of write requests, non-Urgent
journal transactions caused a slight increase in latency of
application-level requests. Hence by default we mark journal
commits as Urgent. Because journalling does not generate
a large interrupt rate for our applications, marking these re-
quests tightened application latency without adding overhead.

On the other hand, our applications did not see significant
benefit in marking writeback requests. As such, we rely on
the application to inform us when these requests are latency-
sensitive, for example page cache flushes will be Urgent when
they are explicitly requested through fsync.

Other Implementations. The Barrier implementation can
be strict or relaxed, where a strict version only releases the
interrupt if all requests in front of it in the submission queue
have been completed. A relaxed Barrier is equivalent to Ur-
gent and works well assuming that requests do not complete
too far out of order; it does not require the interrupt genera-
tion algorithm to record any additional state. The cinterrupts
prototype evaluated in this paper uses a relaxed Barrier, which
already enjoys significant performance benefits. We have re-
tained a separate flag because Barrier is semantically different
to the application and to enable future implementations to
choose to implement strict Barrier.

The strict Barrier requires more accounting overhead to
keep track of which requests have completed: we explored a
preliminary implementation of the strict Barrier in our emula-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 137

tor but its overheads were larger than its benefit. We sus-
pect firmware implementations of a strict Barrier will be
more efficient. Alternatively, this strict ordering could be en-
forced in the kernel: the driver can withhold completions from
userspace until all other requests have completed. Such an
implementation might be efficient by piggybacking on the
accounting mechanisms in the block layer of the Linux kernel.

Urgent Storm. If all requests in the system are marked as
Urgent, this can inadvertently cause an interrupt storm. To
address this, cinterrupts has a module parameter that can be
configured to target a fixed interrupt rate, similar to NICs,
enforced with a lightweight heuristic based on Exponential
Weighted Moving Average (EWMA) of the interrupt rate.

Lines of Code. Linux modifications to support cinterrupts
total around 100 LOC. The cinterrupts emulator in the NVMe
driver is around 500 LOC, with an additional 200 LOC for
implementations of strict Barrier and Urgent storm.

5 Evaluation
These questions drive our evaluation: What is the overhead of
our cinterrupts emulation (§5.1)? How do device vendors and
admins select ∆ and thr (§5.2)? How does cinterrupts compare
to the default and the adaptive strategies in terms of latency
and throughput (§5.3)? How much does cinterrupts improve
latency and throughput in a variety of applications (§5.4)?

5.1 Methodology
Experimental Setup. We use two NVMe SSD devices: Intel
DC P3700, 400 GB [21] and Intel Optane DC P4800X, 375
GB [23]. We refer to them as P3700 and Optane.

Both SSDs are installed in a Dell PowerEdge R730 machine
equipped with two 14-core 2.0 GHz Intel Xeon E5-2660 v4
CPUs and 128 GB of memory running Ubuntu 16.04. The
server runs cinterrupts’ modified version of Linux 5.0.8 and
has C-states, Turbo Boost (dynamic clock rate control), and
SMT disabled. We use the maximum performance governor.

Our emulation pairs one dedicated core to one target core.
Each core is assigned its own NVMe submission and com-
pletion queue. The microbenchmarks are run on a single
core, but we run macrobenchmarks on multiple cores. For
our microbenchmarks, we use fio [4] version 3.12 to generate
workloads. All of our workloads are non-buffered random
access. We run the benchmarks for 60 seconds and report
averages of 10 runs.

For a consistent evaluation of cinterrupts, we implemented
an emulated version of the default strategy. Similar to the em-
ulation of cinterrupts we described in §4.2.1, device interrupts
are also emulated with IPIs.

Emulation Overhead. The cinterrupts emulation is
lightweight and its overheads come from sending the IPI
and cache contention from the dedicated core continuously
polling on the CQ memory of the target core. Table 2 summa-
rizes the overhead of emulation. We also show the overhead

Sync latency of 4 KB, µs
mitigations off default off off

baremetal baremetal emulation baremetal
system interrupts interrupts interrupts polling
P3700 80±29.0 81±29.1 82±28.2 78±28.1
Optane 10±1.3 11±1.3 10±1.2 8±1.2

Table 2: Emulation overhead is comparable with overhead of miti-
gations. Cinterrupts runs with mitigations disabled to compensate
for the emulation overhead.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 4 8 12 16 20

interarrival time [usec]

CDF of P3700

libaio
libaio batch

 0 4 8 12 16 20

CDF of Optane

libaio
libaio batch

Figure 14: Using interarrival CDF to determine ∆.

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

threshold [thr]

Optane throughput [KIOPS]

libaio
libaio batch

 0
 100
 200
 300
 400

 0 5 10 15 20 25 30 35

threshold [thr]

Optane interrupts [K/s]

libaio
libaio batch

Figure 15: Determining thr under a fixed ∆ (∆=6 µs for Optane and
∆ = 15 µs for P3700). thr is the smallest value where throughput
plateaus, which is between 16-32, so we set thr= 32 for both devices.
We omitted P3700 thr results as it shows virtually the same behavior.

of mitigations for CPU vulnerabilities [31] to show that the
overhead of our emulation is comparable to the overhead of
the default mitigations for CPU. Therefore, our performance
numbers with mitigations disabled and emulation on mirrors
results from a server with mitigations enabled and emulation
off (cinterrupts implemented in real hardware).

Emulation imposes a modest 3-6% latency overhead for
both devices. There is a difference in emulation overhead
between the devices, which we suspect is due to each device’s
time lag between updating the CQ and actually sending an
interrupt. As the difference between the last column and the
first column shows, this lag varies between devices, and the
longer the lag, the smaller the overhead of emulation.

Baselines. We compare cinterrupts to our adaptive strategy
and to the default interrupt strategy, which does not coalesce.
The adaptive strategy is a proxy for comparison to NVMe
coalescing, which it outperforms (Section 3.2).

5.2 Selection of ∆ and thr
∆ should approximate the interarrival time of requests, which
depends on workload. Figure 14 shows the interarrival time
for two types of workloads. The first workload is a single-
threaded workload that submits read requests of size 4 KB

138 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 50

 100

 150

P
3

7
0

0

sync latency
[µsec]

1
.0

0
1
.1

9
1
.0

0

 0

 200

 400

 600

async IOPS
[1000s]

0
.7

6
1
.0

0
1
.0

0

 0

 200

 400

 600

async inter.
[1000s/sec]

1
5
.3

9
1
.0

0
1
.0

0

 0

 3

 6

 9

async cycles
[1000s/IO]

1
.3

2
1
.0

0
1
.0

0

 0

 20

 40

 60

O
p

ta
n

e

(a)

1
.0

0
1
.5

9
1
.0

0

 0

 200

 400

 600

(b)

0
.7

4
1
.0

0
1
.0

0

 0

 200

 400

 600

(c)

1
2
.3

9
0
.9

9
0
.9

9

 0

 3

 6

 9

(d)

1
.3

5
1
.0

0
1
.0

0

cint default adaptive ooocint

Figure 16: Workloads with only one type of request. Column (a)
shows latency of synchronous requests (lower is better); (b), (c) and
(d) show metrics for the asynchronous workload.

with libaio and iodepth=256. The second workload is the
same workload, except with batched requests. We run the
same workloads on P3700 and Optane, to show that vendors
or sysadmin will pick different ∆ for different devices.

When libaio submits batches, the CPU can send many more
requests to the device, resulting in lower interarrival times –
a 90th percentile of 1 µs in the batched case versus 6 µs in
the non-batched case for Optane. For P3700, both workloads
have a 99th percentile of 15 µs. We pick ∆ to minimize the
interrupt rate without adding unnecessary delay, so for P3700
we set ∆=15 µs and for Optane we set ∆=6 µs.

After fixing ∆, we sweep thr in the [0,256) range and select
the lowest thr after which throughput plateaus; the results are
shown in Figure 15. thr= 32 achieves high throughput and
low interrupt rate for both devices.

In practice, hardware vendors should use this methodology
to set default values to ∆ and thr for their devices, and system
administrators could tune these values for their workloads.

5.3 Microbenchmarks
We use fio to generate two workloads to show how cinterrupts
behaves at the extremes. The synchronous-only workload
submits blocking 4 KB reads via read. The asynchronous-
only workload submits 4 KB reads via libaio with iodepth
256 and batches of size 16. For each device, cinterrupts and
the adaptive strategy are configured with the same ∆ and thr.
The results are shown in Figure 16.

As in §3.3, the synchronous workload shows the draw-
back of the adaptive strategy, which adds exactly ∆=15 µs
to request latency for P3700 and ∆=6 µs for Optane (first
column of Figure 16). Cinterrupts remedies this with Urgent.
The default strategy performs as well as cinterrupts in the
synchronous workload, because it generates an interrupt for
every request. This strategy is penalized in the asynchronous
workload, where the default strategy generates 12-15x the
number of interrupts as cinterrupts.

interrupt thruput norm avg lat norm p99 lat norm
scheme [KIOPS] [ms] [ms]
cint 388±5.6 1.00 1.3±0.3 1.00 15.0±0.8 1.00
default 391±1.8 1.01 1.3±0.1 1.00 14.4±0.4 0.96
adaptive 391±4.6 1.01 1.3±0.4 1.00 14.2±0.9 0.95
app-cint 405±5.6 1.04 1.3±0.1 1.00 12.7±0.3 0.85

Table 3: Modifying RocksDB with annotations that make the flush
non-urgent (app-cint). Results are for database load (fillbatch ex-
periment in db_bench). Note that cint and default have the same
performance, within error bounds, which is expected for RocksDB.

Cinterrupts matches the synchronous latency of default,
while achieving up to 35% more asynchronous throughput,
and matches the asynchronous throughput of adaptive while
achieving up to 37% lower latency. Finally, OOO does not add
overhead to cinterrupts performance when it is not triggered.

5.4 Macrobenchmarks
To evaluate the effect of cinterrupts on real applications,
we run three application setups on Optane: RocksDB [64],
KVell [48], and RocksDB and KVell colocated on the same
cores. RocksDB is a widely used key-value store that uses
pread/pwrite system calls in its storage engine, and KVell is a
new key-value store employing Linux AIO in its storage en-
gine. Both applications use direct I/O. KVell uses default ker-
nel annotations (Barrier) while we will note when RocksDB
uses default annotations or the modified annotations described
in Section 4.1.2.

We run each application on two cores. In KVell, an addi-
tional four cores are allocated for clients. Cinterrupts is the
only strategy that performs the best across all three setups.

5.4.1 RocksDB

Load. Using db_bench [8], we load a database with 10 M
key-value pairs, with 16 byte keys and 1 KiB values. Dur-
ing the load phase, we compare the results under cinterrupts
where RocksDB is unmodified and modified. In unmodified
RocksDB, every I/O is labelled Urgent by default. In modified
RocksDB, background activity is non-Urgent as described in
Section 4.1.2. Table 3 shows the performance results.

We see that marking background activity as non-Urgent has
a modest but significant 4% increase in throughput without
affecting latency (app-cint vs cint). This is because delaying
the interrupts of background I/O does not affect foreground
latency. In fact, doing so actually decreases the tail latency of
foreground writes by 15%. Hence reducing the CPU pressure
caused by interrupts enables better p99 latency.

Steady State. After loading the database to 20GB, we run
two experiments from db_bench: readrandom, where each
thread reads randomly from the key space, and readwhilewrit-
ing, where one thread inserts keys and the rest of the threads
read randomly. The readwhilewriting experiment runs for 30
seconds. For each experiment, we also vary the number of

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 139

 0
 10
 20
 30
 40
 50

la
te

n
c
y

 d
e

g
ra

d
a

ti
o

n
 [

%
]

4 threads

35 33
39

8 threads

64 64

72

4 threads

158
178

230

8 threads

124128

149

readrandom readwhilewriting

-20
-10

 0
 10
 20
 30

th
ro

u
g

h
p

u
t

 d
e

g
ra

d
a

ti
o

n
 [

%
]

4 threads

 94100
 85

8 threads

112119
109

4 threads

 9
 8

 6 8 threads

 19
 20 20

cint default adaptive

Figure 17: Latency of get operation and throughput in RocksDB
for varying workloads. We show performance degradation with
respect to cinterrupts. Labels show absolute values in µs and KIOPS,
respectively. As expected, cinterrupts and the default strategy have
nearly the same performance within error bounds, but the adaptive
strategy has up to 45% worse latency and 5-32% worse throughput
due to the ∆ delay.

Workload Description
A update heavy: 50% reads, 50% writes
B read mostly: 95% reads, 5% writes
C read only: 100% reads
F read latest: 95% reads, 5% updates
D read-modify-write: 50% reads, 50% r-m-w
E scan mostly: 95% scans, 5% updates

Table 4: Summary of YCSB workloads.

threads. The latency of the get operation and throughput for
both experiments is shown in Figure 17.

As expected, for both metrics, cinterrupts and the default
strategy perform nearly the same because both generate in-
terrupts for every request; in the next two applications, the
default strategy will suffer due to this behavior. On the other
hand, adaptive does consistently worse because of its ∆ delay;
this is particularly noticeable in the latency measurements.
With 8 threads, this delay penalty is amortized across more
threads, which reduces the performance degradation.

Interestingly, modified RocksDB had similar performance
to unmodified RocksDB during these benchmarks. This is
because there is very little if any background I/O in the read-
random benchmark, and the write rate is not high enough
for the background I/O interrupts to affect foreground perfor-
mance in the readwhilewriting benchmark.

5.4.2 KVell

We use workloads derived from the YCSB benchmark [14],
summarized in Table 4. We load 80 M key-value pairs, with
24 byte keys and 1 KB item sizes for a dataset of size 80 GB.
Each workload does 20M operations. Figure 18 shows KVell
throughput, average latency, and 99th percentile latency for
each YCSB workload.

0.85

0.90

0.95

1.00

A B C F D

YCSB workload

n
o

rm
a

liz
e

d
 I

O
P

S

default
236

305
325

304

231

cint

251 311 339 308 247

a. cint vs. default

A B C F D

adaptive

250 308 334
309

244

cint

251 311 339 308 247

b. cint vs. adaptive

0.96
0.98
1.00
1.02
1.04
1.06
1.08

A B C F D

n
o

rm
a

liz
e

d
 a

v
g

 l
a

te
n

c
y 2.35

1.90

1.84

1.92

2.42

2.26 1.98 1.82 1.99 2.32

A B C F D

2.27 1.98
1.85

1.98
2.35

2.26 1.98 1.82 1.99 2.32

1.00

1.03

1.06

1.09

1.12

A B C F D

n
o

rm
a

liz
e

d
 p

9
9

 l
a

te
n

c
y

3.34

2.57
2.49

2.61

3.47

3.13 2.52 2.42 2.57 3.26

A B C F D

3.11
2.56 2.46

2.53

3.31

3.13 2.52 2.42 2.57 3.26

Figure 18: Throughput and latency results for YCSB on KVell. La-
bels show absolute throughput in KIOPS and latency in ms.

Throughput. Cinterrupts does better than default for
throughput, because default generates an interrupt for ev-
ery request. In contrast, cinterrupts uses Barrier to generate
an interrupt for a single batch, which consists of 10s of re-
quests. The difference between cinterrupts and default is more
pronounced for write-heavy workloads (A, D), but less pro-
nounced for read-heavy workloads (B, C, F) . This is because
reads are efficient in KVell, so there is some CPU idleness in
these workloads (3% idleness under default and 14% idleness
under cinterrupts).

The adaptive strategy performs similarly to cinterrupts be-
cause it is designed to detect bursts. Its delay is more pro-
nounced in latency measurements.

Latency. The adaptive strategy has 5-8% higher average
and 99th percentile latency than cinterrupts in all workloads.
Again, this is the effect of the ∆ delay, which cinterrupts reme-
dies with Barrier. Cinterrupts latency also does better than
the default, where interrupt handling and context switching
both add to the latency of requests and slow down the request
submission rate. The high number of interrupts in the default
strategy also adds to latency variability, which is noticeable
in the larger 99th percentile latencies.

YCSB-E. Scans are interesting because their latency is de-
termined by the completion of requests that can span multiple
submission boundaries. Table 5 shows throughput results for
YCSB-E with different scan lengths, and Figure 19 shows
latency CDFs for scans of length 16 and 256.

Similar to the other YCSB workloads, the adaptive strategy
again can almost match the throughput of cinterrupts, because
it is designed for batching. At higher scan lengths, factors such
as application-level queueing begin affecting scan throughput,
reducing the benefit of cinterrupts.

140 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

length=16 length=256
interrupt scans normalized scans normalized
scheme [KIOPS] [KIOPS]
cint 26.2±0.5 1.00 1.6±0.04 1.00
default 23.1±0.3 0.88 1.5±0.06 0.95
adaptive 24.9±0.6 0.95 1.6±0.02 0.97

Table 5: YCSB-E throughput results for KVell. Excessive interrupt
generation limits default throughput to 86%-89% of cinterrupts’.

0.0
0.2
0.4
0.6
0.8
1.0

 0.1 0.2 0.3 0.4 0.5
latency [ms]

C
D

F

YCSB-E, scan length=16

cint
default

adaptive

 2 2.5 3 3.5 4 4.5 5 5.5

YCSB-E, scan length=256

Figure 19: Latency CDF of scans of length 16 and 256 in KVell.

Figure 19 shows that there is a notable difference in scan
latency between cinterrupts and the default for both scan
lengths; the difference in 50th percentile latencies between
default and cinterrupts is around 600 µs for both scan lengths.
This difference is maintained at the 99th percentile latencies.

Notably, there is a 400µs difference between cinterrupts and
adaptive 50th percentile latencies when the scan length is 16,
which goes away when the scan length is 256. The adaptive
strategy does well in KVell’s asynchronous programming
model and longer scans are able to amortize the additional
delay over many requests.

5.5 Colocated Applications
We run two types of colocated applications to see the effects
of cinterrupts in consolidated datacenter environments.

5.5.1 RocksDB + Dump Tool

First we run two colocated instances that both use pread/p-
write, which means by default the kernel marks all I/O as
Urgent. The first is a regular RocksDB instance, and the sec-
ond is a RocksDB instance running the RocksDB dump tool.
As described in Section 4.1.2, we modify the RocksDB dump
tool to explicitly disable the Urgent bit on its I/O requests.

We load two databases with 10 M key-value pairs, as in
the previous section. Then, one database runs readrandom, as
in the previous section, while we run the dump tool on the
second database. We compare the performance of get requests
under modified and unmodified RocksDB in Table 6. app-cint
shows the results when the dump tool is modified.

By disabling Urgent in the dump tool, we increase the
throughput of get requests by 37%, decrease the average la-
tency by 32%, and decrease the 99th percentile latency by
86% compared to the kernel annotations cinterrupts. This
is not only from the reduced interrupt rate generated by the
dump tool, but also from the reduced I/O bandwidth generated

interrupt thruput norm get lat norm p99 lat norm
scheme [KIOPS] [ms] [ms]
cint 24.8±3.9 1.00 30.4±0.4 1.00 421±41 1.00
default 24.9±1.6 1.00 30.9±0.3 1.02 420±25 1.00
adaptive 20.2±0.7 1.02 43.9±0.5 1.44 85.1±7.0 0.15
app-cint 33.1±1.2 1.37 20.7±0.4 0.68 75.7±0.1 0.14

Table 6: Performance of RocksDB readrandom while the RocksDB
dump tool is running in the background. app-cint modifies the dump
tool to mark its I/O requests as non-urgent, boosting throughput and
latency of the foreground get operations. Interestingly, the adaptive
strategy can tame the tail latency (p99 lat) of get requests, but does
so at the expense of limited IOPS.

by the dump tool. On the other hand, the throughput of the
dump tool decreases by 11% under app-cint, but this is an
acceptable trade-off for the foreground improvements.

5.5.2 RocksDB + KVell

Finally, we run RocksDB and KVell on the same cores.
RocksDB runs the readrandom benchmark from before, and
KVell runs YCSB-C. We run two experiments, varying the
number of threads of the RocksDB instance. The latency of
RocksDB requests and the throughput of KVell is shown in
Tables 7 and 8.

When there are four RocksDB threads, the default strategy
matches the RocksDB latency of cinterrupts, but has 12% less
KVell throughput due to the excessive interrupt rate. Con-
versely, the adaptive strategy can match the KVell throughput
of cinterrupts, but has 11% worse RocksDB latency.

As before, when there are more RocksDB threads, the effect
of cinterrupts is less pronounced, because the CPU spends less
of its time handling interrupts and more of its time context-
switching and in userspace. Even so, cinterrupts still achieves
a modest 5-6% higher throughput and up to 6% better latency
than the other two strategies.

6 Cinterrupts for Networking
Figure 3 (in §2) shows that NICs suffer from similar prob-
lems as NVMe drives with respect to interrupts. A natural
future direction is applying cinterrupts to the networking
stack. Accomplishing this goal, however, is more challenging,
as explained next in the context of Ethernet.

Cooperation. For network cinterrupts to work, modifying
a single host (as in storage) is insufficient. Multiple commu-
nicating parties should be changed to agree on how cinter-
rupts semantics are communicated. In particular, transmitters
should be modified to send network packets that indicate
whether to fire an interrupt immediately upon reaching their
destination, and receivers should be modified to react accord-
ingly. Any interrupt-driven software routers along the way
should also preferably support cinterrupts.

Propagation. NVMe controllers deal with plaintext read
or write requests associated with pointers to buffers; the con-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 141

interrupt RocksDB normalized KVell normalized
scheme get lat [µs] [KIOPS]
cint 116±0.8 1.00 171±2.8 1.00
default 115±0.8 0.99 153±2.0 0.89
adaptive 129±0.0 1.11 171±2.0 1.00

Table 7: Results from colocated experiment: 4 RocksDB threads
and KVell. As expected, cinterrupts both has lower latency than the
adaptive strategy and higher throughput than the baseline.

interrupt RocksDB normalized KVell normalized
scheme get lat [µs] [KIOPS]
cint 164±0 1.00 131±1 1.00
default 163±0 0.99 123±0 0.94
adaptive 174±1 1.06 124±0 0.95

Table 8: Results from colocated experiment: 8 RocksDB threads and
KVell. The performance gains of cinterrupts is reduced with respect
to Table 7, because the CPU is both context-switching more and
spending more time in userspace.

troller either copies bytes from the buffers to the drive or vice
versa. This is true even when NVMe is encapsulated in other,
higher-level protocols, as is the case with, e.g., NVMe over
TCP over TLS encryption (denoted NVMeTLS [62]).

In contrast, network stacks are layered. NICs may oper-
ate at the Ethernet level, but the content of Ethernet frames
frequently encapsulates higher-level protocols, like IP, TCP,
UDP, and VXLAN. Crucially, the transmitted payload, which
includes headers of higher-level protocols, is oftentimes en-
crypted. For example, the payload in tunnel-mode IPsec pack-
ets [36] encapsulates encrypted IP and TCP headers. Bits in
these headers are thus unsuitable for communicating cinter-
rupts information, as the receiving NIC might not be able
to observe them. Consequently, to support cinterrupts, each
layer at the sender should be modified to explicitly propa-
gate cinterrupts information to its encapsulating layer, until a
low-enough protocol level is reached.

Within a data center, it seems reasonable to choose Ethernet
as the aforementioned low-enough protocol. In practice, how-
ever, there are no free Ethernet reserved bits or flags that can
be used for this purpose [68]. Cinterrupts bits can instead re-
side one level higher, at the least-encapsulated IP layer, as its
headers are not encrypted, and its “options” field [44] can be
used to add the extra bits. The downside is that other, non-IP
networks—such as RDMA over Converged Ethernet (RoCE)
[72] and Fiber Channel over Ethernet (FCoE) [32]—should
be handled separately, in some other way.

Segmentation. TCP performance is accelerated by NIC
offloading functionality, which significantly reduces CPU pro-
cessing overhead. Notably, upon transmit, software may use
TSO (TCP segmentation offload) to hand a sizable (≤64KB)
TCP segment to the NIC, relying on the NIC to split the outgo-
ing segment into a sequence of (≤MTU) Ethernet frames [51].
Likewise, with LRO (large receive offload), the NIC may

reassemble multiple incoming frames into a single sizable
segment before handing it to software [51, 52].

Storage cinterrupts affect only the timing and number of
device interrupts. Network cinterrupts can also increase the
number of I/O requests and thus the CPU usage, assuming
TSO and LRO are not applied beyond cinterrupts. To illustrate,
assume {Mi}15

i=0 is a consecutive series of 1KB messages,
each individually associated with a cinterrupt. To optimize
latency, differently than what frequently happens on existing
systems, {Mi}15

i=0 should seemingly not be aggregated into a
single 16KB TCP segment at the sender before it is handed
to the NIC (leveraging TSO), nor should it be aggregated to a
single segment by the receiver NIC (leveraging LRO); other-
wise only the cinterrupt of M15 will survive. But such a policy
might inadvertently degrade both latency and throughput if
the CPUs of the sender or receiver are saturated, necessitating
a more sophisticated policy that considers CPU usage.

URG and PSH. The TCP flags URG and PSH seem re-
lated to cinterrupts. But even if ignoring the aforementioned
propagation problem, in practice, the semantics of these flags
are sufficiently different that they cannot be repurposed for
cinterrupts. Specifically, URG is used to implement socket
out-of-band communication [27, 29, 54], and its usage model
involves the POSIX SIGURG signal. (URG also has security
implications [28, 29, 80], and middleboxes and firewalls tend
to clear it by default [12, 59].) When examining how PSH is
used in the Linux network stack (see calls to the tcp_push and
tcp_mark_push functions in the source code), we find that it
is used in many more circumstances than is appropriate for
cinterrupts. For example, sending a 16KB message using a
single write system call frequently results in four Ethernet
frames encapsulating PSH segments, instead of one.

7 Conclusion
In this paper we show that the existing NVMe interrupt co-
alescing API poses a serious limitation on practical coalesc-
ing. In addition to devising an adaptive coalescing strategy
for NVMe, our main insight is that software directives are
the best way for a device to generate interrupts. Cinterrupts,
with a combination of Urgent, Barrier, and the adaptive burst-
detection strategy, generates interrupts exactly when a work-
load needs them, enabling workloads to experience better
performance even in a dynamic environment. In doing so,
cinterrupts enables the software stack to take full advantage
of existing and future low-latency storage devices.

8 Acknowledgements
We are deeply indebted to our shepherd, Orran Krieger, for
helping shape the final version of this paper. We are also grate-
ful to the anonymous reviewers for their comments that have
greatly improved this paper. We also thank Marcos Aguilera,
Nadav Amit, and Jon Howell for discussions and comments
on earlier iterations of this work.

142 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Administration and data access tool. https://github.com/face

book/rocksdb/wiki/Administration-and-Data-Access-Tool.
Accessed: May, 2021.

[2] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. vIC: Interrupt co-
alescing for virtual machine storage device IO. In USENIX Annual
Technical Conference (USENIX ATC), 2011.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Less is more: trading a little band-
width for ultra-low latency in the data center. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2012.

[4] Jens Axboe. Flexible I/O tester. https://github.com/axboe/fio.
Accessed: May, 2021.

[5] Jens Axboe. Linux kernel mailing list, blk-mq: make the polling
code adaptive. https://lkml.org/lkml/2016/11/3/548, 2016. Ac-
cessed: May, 2021.

[6] Pavel Begunkov. Linux kernel mailing list, blk-mq: Adjust hybrid
poll sleep time. https://lkml.org/lkml/2019/4/30/120, 2019.
Accessed: May, 2021.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operat-
ing system for high throughput and low latency. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[8] Benchmarking tools. https://github.com/facebook/rocksdb/wi
ki/Benchmarking-tools. Accessed: May, 2021.

[9] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet.
Linux block IO: introducing multi-queue ssd access on multi-core
systems. In International Systems and Storage Conference (SYSTOR),
2013.

[10] Block IO controller. https://www.kernel.org/doc/Documentat
ion/cgroup-v1/blkio-controller.txt. Accessed: May, 2021.

[11] Keith Bush. Linux nvme mailing list: nvme pci interrupt han-
dling improvements. https://lore.kernel.org/linux-nvme/
20191209175622.1964-1-kbusch@kernel.org/, 2019. Accessed:
May, 2021.

[12] Cisco Systems, Inc. Cisco ASA series command reference:
urgent-flag. https://www.cisco.com/c/en/us/td/docs/
security/asa/asa-cli-reference/T-Z/asa-command-ref-T-
Z/u-commands.html#wp2606000884, 2021. Accessed: May, 2021.

[13] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin
Farach-Colton, Richard Spillane, Amy Tai, and Rob Johnson. Splin-
terDB: Closing the bandwidth gap for NVMe key-value stores. In
USENIX Annual Technical Conference (USENIX ATC), 2020.

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB.
In 1st ACM symposium on Cloud computing (SoCC), 2010.

[15] Jonathan Corbet. Batch processing of network packets. https://
lwn.net/Articles/763056/. Accessed: May, 2021.

[16] Jonathan Corbet. Driver porting: Network drivers. https://lwn.net/
Articles/30107/. Accessed: May, 2021.

[17] Intel Corporation. Intel Optane SSD DC D4800X Product Brief.
https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-ssd-dc-d4800x-product-
brief.pdf. Accessed: May, 2021.

[18] Intel Corporation. Intel Optane technology for data centers.
https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-technology/optane-for-data-
centers.html. Accessed: May, 2021.

[19] Intel Corporation. Intel data direct I/O technology (Intel DDIO):
A primer. https://www.intel.com/content/dam/www/public/
us/en/documents/technology-briefs/data-direct-i-o-
technology-brief.pdf, 2012. Accessed: May, 2021.

[20] Intel Corporation. Intel Ethernet Converged Network Adapter XL710.
https://ark.intel.com/content/www/us/en/ark/products/
83967/intel-ethernet-converged-network-adapter-xl710-
qda2.html, 2014. Accessed: May, 2021.

[21] Intel Corporation. Intel SSD DC P3700 Series. https://ark.intel.
com/content/www/us/en/ark/products/79624/intel-ssd-dc-
p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html,
2014. Accessed: May, 2021.

[22] Intel Corporation. Intel Optane SSD 900P Series. https://
ark.intel.com/content/www/us/en/ark/products/123623/
intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-
20nm-3d-xpoint.html, 2017. Accessed: May, 2021.

[23] Intel Corporation. Intel Optane SSD DC P4800X Series.
https://ark.intel.com/content/www/us/en/ark/products/
97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-
pcie-x4-3d-xpoint.html, 2017. Accessed: May, 2021.

[24] Intel Corporation. Intel Optane SSD DC P5800X Series.
https://ark.intel.com/content/www/us/en/ark/products/
201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-
pcie-x4-3d-xpoint.html, 2018. Accessed: May, 2021.

[25] Intel Corporation. Intel SSD DC P4618 Series. https://
ark.intel.com/content/www/us/en/ark/products/192574/
intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-
x8-3d2-tlc.html, 2019. Accessed: May, 2021.

[26] Microsoft Corporation. Microsoft Documentation: Op-
timize performance on the Lsv2-series virtual machines.
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/storage-performance, 2019. Accessed:
May, 2021.

[27] Kevin R. Fall and W. Richard Stevens. TCP/IP Illustrated, Volume 1:
The Protocols. Addison-Wesley, 2011.

[28] Fernando Gont. Survey of Security Hardening Methods for Trans-
mission Control Protocol (TCP) Implementations. Technical report,
Internet Engineering Task Force, March 2012. Work in Progress.

[29] Fernando Gont and Andrew Yourtchenko. On the Implementation
of the TCP Urgent Mechanism. RFC 768, Internet Engineering Task
Force, 2011.

[30] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. KASLR is dead: Long live
KASLR. In International Symposium on Engineering Secure Software
and Systems (ESSoS), 2017.

[31] Hardware vulnerabilities, The Linux kernel user’s and administrator’s
guide. https://www.kernel.org/doc/html/latest/admin-guid
e/hw-vuln/index.html. Accessed: May, 2021.

[32] John Hufferd. Fibre Channel over Ethernet (FCoE). https://
www.snia.org/educational-library/fibre-channel-over-
ethernet-fcoe-2013-2013, 2013. Accessed: May, 2021.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 143

https://github.com/facebook/rocksdb/wiki/Administration-and-Data-Access-Tool
https://github.com/facebook/rocksdb/wiki/Administration-and-Data-Access-Tool
https://github.com/axboe/fio
https://lkml.org/lkml/2016/11/3/548
https://lkml.org/lkml/2019/4/30/120
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-controller.txt
https://lore.kernel.org/linux-nvme/20191209175622.1964-1-kbusch@kernel.org/
https://lore.kernel.org/linux-nvme/20191209175622.1964-1-kbusch@kernel.org/
https://www.cisco.com/c/en/us/td/docs/security/asa/asa-cli-reference/T-Z/asa-command-ref-T-Z/u-commands.html#wp2606000884
https://www.cisco.com/c/en/us/td/docs/security/asa/asa-cli-reference/T-Z/asa-command-ref-T-Z/u-commands.html#wp2606000884
https://www.cisco.com/c/en/us/td/docs/security/asa/asa-cli-reference/T-Z/asa-command-ref-T-Z/u-commands.html#wp2606000884
https://lwn.net/Articles/763056/
https://lwn.net/Articles/763056/
https://lwn.net/Articles/30107/
https://lwn.net/Articles/30107/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-d4800x-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-d4800x-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-d4800x-product-brief.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/83967/intel-ethernet-converged-network-adapter-xl710-qda2.html
https://ark.intel.com/content/www/us/en/ark/products/79624/intel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79624/intel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/79624/intel-ssd-dc-p3700-series-400gb-1-2-height-pcie-3-0-20nm-mlc.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/97161/intel-optane-ssd-dc-p4800x-series-375gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201861/intel-optane-ssd-dc-p5800x-series-400gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192574/intel-ssd-dc-p4618-series-6-4tb-1-2-height-pcie-3-1-x8-3d2-tlc.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/storage-performance
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/index.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/index.html
https://www.snia.org/educational-library/fibre-channel-over-ethernet-fcoe-2013-2013
https://www.snia.org/educational-library/fibre-channel-over-ethernet-fcoe-2013-2013
https://www.snia.org/educational-library/fibre-channel-over-ethernet-fcoe-2013-2013

[33] Intel. DPDK: Data plane development kit. https://www.dpdk.org,
2014. Accessed: May, 2021.

[34] Rick A. Jones. Netperf: A network performance benchmark. http
s://github.com/HewlettPackard/netperf, 1995. Accessed: May,
2021.

[35] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker,
and Amin Vahdat. Chronos: Predictable low latency for data center
applications. In Third ACM Symposium on Cloud Computing (SoCC),
2012.

[36] S. A. Kent and R. Atkinson. Security architecture for the internet
protocol. RFC 2401, Internet Engineering Task Force, November 1998.

[37] Byungseok Kim, Jaeho Kim, and Sam H. Noh. Managing array of
SSDs when the storage device is no longer the performance bottle-
neck. In USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2017.

[38] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDirect:
A user-space I/O framework for application-specific optimization on
NVMe SSDs. In USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2016.

[39] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu Jeong. En-
lightening the I/O path: a holistic approach for application performance.
In USENIX Conference on File and Storage Technologies (FAST), 2017.

[40] Avi Kivity. Wasted processing time due to nvme interrupts. ht
tps://github.com/scylladb/seastar/issues/507, 2018. Ac-
cessed: May, 2021.

[41] Sungjoon Koh, Junhyeok Jang, Changrim Lee, Miryeong Kwon, Jie
Zhang, and Myoungsoo Jung. Faster than flash: An in-depth study of
system challenges for emerging ultra-low latency SSDs. In IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2019.

[42] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and Myoungsoo Jung.
Exploring system challenges of ultra-low latency solid state drives. In
USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage), 2018.

[43] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping the
performance of fast NVM storage with uDepot. In USENIX Conference
on File and Storage Technologies (FAST), 2019.

[44] Charles M. Kozierok. The TCP/IP guide. http://www.tcpipgui
de.com/free/t_IPDatagramOptionsandOptionFormat.htm. Ac-
cessed: May, 2021.

[45] Damien Le Moal. I/O latency optimization with polling. Linux Storage
and Filesystems Conference (VAULT), 2017.

[46] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee, and
Jinkyu Jeong. Asynchronous I/O stack: a low-latency kernel I/O stack
for ultra-low latency SSDs. In USENIX Annual Technical Conference
(USENIX ATC), 2019.

[47] Ming Lei. Linux-nvme mailing list: nvme-pci: check CQ after batch
submission for Microsoft device. https://lore.kernel.org/li
nux-nvme/20191114025917.24634-3-ming.lei@redhat.com/,
2019. Accessed: May, 2021.

[48] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
KVell: the design and implementation of a fast persistent key-value
store. In ACM Symposium on Operating Systems Principles (SOSP),
2019.

[49] Jacob Leverich and Christos Kozyrakis. Reconciling high server utiliza-
tion and sub-millisecond quality-of-service. In European Conference
on Computer Systems (EuroSys), 2014.

[50] Long Li. Linux kernel mailing list: fix interrupt swamp in NVMe. ht
tps://lkml.org/lkml/2019/8/20/45, 2019. Accessed: May, 2021.

[51] Linux kernel documentation. Segmentation offloads.
https://www.kernel.org/doc/html/latest/networking/
segmentation-offloads.html, 2021. Accessed: May, 2021.

[52] Mellanox Technologies. How to enable large receive offload
(LRO). https://community.mellanox.com/s/article/how-to-
enable-large-receive-offload--lro-x, 2020. Accessed: May,
2021.

[53] Merriam-Webster. "Calibrate". https://www.merriam-webster.co
m/dictionary/calibrate, 2020. Accessed: May, 2021.

[54] Microsoft Corporation. OOB Data in TCP. https://docs
.microsoft.com/en-us/windows/win32/winsock/protocol-
independent-out-of-band-data-2#oob-data-in-tcp, 2018.
Accessed: May, 2021.

[55] Jeffrey C. Mogul and Kadangode K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. In USENIX Annual Techni-
cal Conference (ATEC), 1996.

[56] Rikin J. Nayak and Jaiminkumar B. Chavda. Comparison of accelerator
coherency port (ACP) and high performance port (HP) for data transfer
in DDR memory using Xilinx ZYNQ SoC. In International Conference
on Information and Communication Technology for Intelligent Systems
(ICTIS), 2017.

[57] NVM Express, Revision 1.3. https://nvmexpress.org/wp-cont
ent/uploads/NVM_Express_Revision_1.3.pdf. Accessed: May,
2021.

[58] NVM Express, Revision 1.4, Figure 284. https://nvmexpress.org/
wp-content/uploads/NVM-Express-1_4-2019.06.10-
Ratified.pdf. Accessed: May, 2021.

[59] Palo Alto Networks. How to preserve the TCP URG flag and
pointer. https://knowledgebase.paloaltonetworks.com/KCSA
rticleDetail?id=kA10g000000ClWACA0, 2018. Accessed: May,
2021.

[60] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and
Angelos Bilas. Tucana: Design and implementation of a fast and
efficient scale-up key-value store. In USENIX Annual Technical Con-
ference (USENIX ATC), 2016.

[61] Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Ar-
rakis: The operating system is the control plane. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[62] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran Liss, Adam Morri-
son, and Dan Tsafrir. Autonomous NIC offloads. In ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[63] preadv2(2) — Linux manual page. https://man7.org/linux/man-
pages/man2/preadv2.2.html. Accessed: May, 2021.

[64] RocksDB. https://github.com/facebook/rocksdb. Accessed:
May, 2021.

[65] Woong Shin, Qichen Chen, Myoungwon Oh, Hyeonsang Eom, and
Heon Y. Yeom. OS I/O path optimizations for flash solid-state drives.
In USENIX Annual Technical Conference (USENIX ATC), 2014.

[66] Livio Soares and Michael Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2010.

144 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.dpdk.org
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/scylladb/seastar/issues/507
https://github.com/scylladb/seastar/issues/507
http://www.tcpipguide.com/free/t_IPDatagramOptionsandOptionFormat.htm
http://www.tcpipguide.com/free/t_IPDatagramOptionsandOptionFormat.htm
https://lore.kernel.org/linux-nvme/20191114025917.24634-3-ming.lei@redhat.com/
https://lore.kernel.org/linux-nvme/20191114025917.24634-3-ming.lei@redhat.com/
https://lkml.org/lkml/2019/8/20/45
https://lkml.org/lkml/2019/8/20/45
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://community.mellanox.com/s/article/how-to-enable-large-receive-offload--lro-x
https://community.mellanox.com/s/article/how-to-enable-large-receive-offload--lro-x
https://www.merriam-webster.com/dictionary/calibrate
https://www.merriam-webster.com/dictionary/calibrate
https://docs.microsoft.com/en-us/windows/win32/winsock/protocol-independent-out-of-band-data-2#oob-data-in-tcp
https://docs.microsoft.com/en-us/windows/win32/winsock/protocol-independent-out-of-band-data-2#oob-data-in-tcp
https://docs.microsoft.com/en-us/windows/win32/winsock/protocol-independent-out-of-band-data-2#oob-data-in-tcp
https://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.3.pdf
https://nvmexpress.org/wp-content/uploads/NVM_Express_Revision_1.3.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClWACA0
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClWACA0
https://man7.org/linux/man-pages/man2/preadv2.2.html
https://man7.org/linux/man-pages/man2/preadv2.2.html
https://github.com/facebook/rocksdb

[67] SPDK: Storage performance development kit. https://spdk.io/.
Accessed: May, 2021.

[68] Charles E. Spurgeon and Joann Zimmerman. Ethernet: The definitive
guide, 2nd edition. https://www.oreilly.com/library/view/et
hernet-the-definitive/9781449362980/ch04.html. Accessed:
May, 2021.

[69] Steven Swanson and Adrian M. Caulfield. Refactor, reduce, recycle:
Restructuring the IO stack for the future of storage. Computer, 2013.

[70] Billy Tallis. Intel Optane SSD DC P4800X 750GB hands-on re-
view. https://www.anandtech.com/show/11930/intel-optane-
ssd-dc-p4800x-750gb-handson-review/3, 2017. Accessed: May,
2021.

[71] Mellanox Technologies. Mellanox ConnectX-5 VPI Adapter.
https://www.mellanox.com/files/doc-2020/pb-connectx-5-
vpi-card.pdf, 2018. Accessed: May, 2021.

[72] The RoCE Initiative. RoCE is RDMA over Converged Ethernet. http
s://www.roceinitiative.org. Accessed: May, 2021.

[73] Dan Tsafrir. The context-switch overhead inflicted by hardware in-
terrupts (and the enigma of do-nothing loops). In ACM Workshop on
Experimental Computer Science (ExpCS), 2007.

[74] John E. Uffenbeck. The 80x86 family: design, programming, and
interfacing. Prentice Hall PTR, 1997.

[75] Western Digital Corporation. Ultrastar DC SN200. https://
documents.westerndigital.com/content/dam/doc-library/
en_us/assets/public/western-digital/product/data-
center-drives/ultrastar-nvme-series/data-sheet-
ultrastar-dc-sn200.pdf. Accessed: May, 2021.

[76] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu
Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. Per-
formance analysis of NVMe SSDs and their implication on real world

dtabases. In ACM International Systems and Storage Conference (SYS-
TOR), 2015.

[77] Jisoo Yang, Dave B. Minturn, and Frank Hady. When poll is better than
interrupt. In USENIX Conference on File and Storage Technologies
(FAST), 2012.

[78] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. Redline: First class support for interactivity in
commodity operating systems. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2008.

[79] Tom Yates. Improvements to the block layer. https://lwn.net/
Articles/735275/. Accessed: May, 2021.

[80] Young Yoon, Jae Yong Oh, and Young Min Yoon. NIDS evasion
method named "SeolMa". Phrack Magazine, Volume 0x0b, Issue 0x39,
2001.

[81] Young Jin Yu, Dong In Shin, Woong Shin, Nae Young Song, Jae Woo
Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom.
Optimizing the block I/O subsystem for fast storage devices. ACM
Transactions on Computer Systems (TOCS), 2014.

[82] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh, Changlim
Lee, Mohammad Alian, Myoungjun Chun, Mahmut Taylan Kandemir,
Nam Sung Kim, Jihong Kim, and Myoungsoo Jung. FlashShare: Punch-
ing through server storage stack from kernel to firmware for ultra-low
latency SSDs. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[83] Jie Zhang, Miryeong Kwon, Michael Swift, and Myoungsoo Jung. Scal-
able parallel flash firmware for many-core architectures. In USENIX
Conference on File and Storage Technologies (FAST), 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 145

https://spdk.io/
https://www.oreilly.com/library/view/ethernet-the-definitive/9781449362980/ch04.html
https://www.oreilly.com/library/view/ethernet-the-definitive/9781449362980/ch04.html
https://www.anandtech.com/show/11930/intel-optane-ssd-dc-p4800x-750gb-handson-review/3
https://www.anandtech.com/show/11930/intel-optane-ssd-dc-p4800x-750gb-handson-review/3
https://www.mellanox.com/files/doc-2020/pb-connectx-5-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-5-vpi-card.pdf
https://www.roceinitiative.org
https://www.roceinitiative.org
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-nvme-series/data-sheet-ultrastar-dc-sn200.pdf
https://lwn.net/Articles/735275/
https://lwn.net/Articles/735275/

ZNS+: Advanced Zoned Namespace Interface for Supporting In-Storage Zone
Compaction

Kyuhwa Han1,2, Hyunho Gwak1, Dongkun Shin1∗, and Joo-Young Hwang2

1Sungkyunkwan University, 2Samsung Electronics

Abstract
The NVMe zoned namespace (ZNS) is emerging as a new stor-
age interface, where the logical address space is divided into
fixed-sized zones, and each zone must be written sequentially
for flash-memory-friendly access. Owing to the sequential
write-only zone scheme of the ZNS, the log-structured file sys-
tem (LFS) is required to access ZNS solid-state drives (SSDs).
Although SSDs can be simplified under the current ZNS in-
terface, its counterpart LFS must bear segment compaction
overhead. To resolve the problem, we propose a new LFS-
aware ZNS interface, called ZNS+, and its implementation,
where the host can offload data copy operations to the SSD to
accelerate segment compaction. The ZNS+ also allows each
zone to be overwritten with sparse sequential write requests,
which enables the LFS to use threaded logging-based block
reclamation instead of segment compaction. We also pro-
pose two file system techniques for ZNS+-aware LFS. The
copyback-aware block allocation considers different copy
costs at different copy paths within the SSD. The hybrid
segment recycling chooses a proper block reclaiming policy
between segment compaction and threaded logging based on
their costs. We implemented the ZNS+ SSD at an SSD em-
ulator and a real SSD. The file system performance of the
proposed ZNS+ storage system was 1.33–2.91 times better
than that of the normal ZNS-based storage system.

1 Introduction
In the NVMe zoned namespace (ZNS) [9] interface, the logi-
cal address space is divided into fixed-sized zones. Each zone
must be written sequentially and reset explicitly for reuse. The
ZNS SSD has several benefits over legacy SSDs. First, perfor-
mance isolation between different IO streams can be provided
by allocating separate zones to each IO stream, which is use-
ful for multi-tenant systems. Second, if the zone size becomes
a multiple of the flash erase block size (64–1,024 KB), the
ZNS SSD can maintain a zone-level logical-to-physical ad-
dress mapping (i.e., mapping between zone and flash blocks)

∗Corresponding author

because each zone is sequentially written. The coarse-grained
mapping requires a small internal DRAM of SSD. Compared
with legacy SSDs, which require a large DRAM equivalent to
0.1% of storage capacity (e.g., 1 GB DRAM for 1 TB SSD)
for a fine-grained mapping, the DRAM usage of the ZNS SSD
is significantly reduced. In particular, because the mapped
flash blocks of a zone will be fully invalidated at zone reset,
the SSD-internal garbage collection (GC) is not required, and
thus, the log-on-log [34] problem can be solved by the GC-
less SSD. The over-provisioned space for GC is not necessary
anymore, and the unpredictable long delays by GC can be
avoided. The write amplification by GC can also be elimi-
nated, which will allow triple-level cell (TLC) or quad-level
cell (QLC) SSDs with low endurance to proliferate.

IO Stack for ZNS. Generally, new storage interfaces re-
quire revamping the software stack. For the ZNS, we need
to revise two major IO stack components, file system and IO
scheduler. First, the in-place updating file systems such as
EXT4 must be replaced with append logging file systems such
as the log-structured file system (LFS) to eliminate random
updates. Because a segment of LFS is written sequentially by
append logging, each segment can be mapped to one or more
zones. Second, the IO scheduler must guarantee the in-order
write request delivery for a zone. For example, an in-order
queue for each zone can be used, and the scheduler only needs
to determine the order of services between different zones.

Increased Host Overhead. Under the append logging
scheme of LFS, the obsolete blocks of a dirty segment must
be reclaimed by segment compaction (also called segment
cleaning or garbage collection), which moves all valid data
in the segment to other segments to make the segment clean.
The compaction invokes a large number of copy operations,
especially when the file system utilization is high. The host-
side GC must be performed in exchange for using GC-less
ZNS SSD, although the duplicate GCs by the log-on-log situ-
ation can be avoided. The overhead of host-side GC is higher
than that of device-side GC because the host-level block copy
requires IO request handling, host-to-device data transfer, and
page allocation for read data [20]. In addition, segment com-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 147

paction needs to modify file system metadata to reflect data
relocation. Moreover, the data copy operations for a segment
compaction are performed in a batch, and thus, the average
waiting time of many pending write requests is significant.
According to the experiments of F2FS [19] — one of the
widely used log-structured file systems, the performance loss
by segment compaction is about 20% when the file system
utilization is 90%. Therefore, it can be said that the current
ZNS focuses on the SSD-side benefit without considering
the increased complexity of the host. To simplify the design
of SSD, all the complicated things are passed to the host.
(Nevertheless, the host can benefit from the ZNS, in terms of
performance isolation and predictability.)

In addition, ZNS storage systems will involve diminishing
returns as we increase the bandwidth of SSD by embedding
more flash chips. The zone size of a ZNS device will be deter-
mined to be large enough to utilize the SSD-internal flash chip
parallelism. Therefore, a higher bandwidth of ZNS SSD will
provide a larger zone size, and the file system must use a larger
segment size accordingly. Then, the host suffers from segment
compaction overhead more seriously because the overhead
generally increases in proportion to the segment size [25]. To
improve IO performance and overcome diminishing returns,
a host-device co-design is required, which places each sub-
task of segment compaction in the most appropriate location
without harming the benefit of the original ZNS, instead of
simply moving the GC overhead from the SSD to the host.

LFS-aware ZNS. We need some device-level support to
alleviate the segment compaction overhead of LFS. Two ap-
proaches can be considered: compaction acceleration and
compaction avoidance. We propose a new LFS-aware ZNS
interface, called ZNS+, and its implementation, which sup-
ports internal zone compaction (IZC) and sparse sequen-
tial overwrite via two new commands of zone_compaction
and TL_open. A segment compaction requires four sub-tasks:
victim segment selection, destination block allocation, valid
data copy, and metadata update. Whereas all others must be
performed by the host file system, it is better to offload the
data copy task to the SSD, because the device-side data copy
is faster than the host-side copy. For compaction acceleration,
ZNS+ enables the host to offload the data copy task to the
SSD via zone_compaction.

To avoid segment compaction, LFS can utilize an alterna-
tive reclaiming scheme, called threaded logging [19, 26, 28],
which reclaims invalidated space in existing dirty segments
by overwriting new data. It requires no cleaning operations,
but generates random overwrites to segments. In the F2FS ex-
periments using a normal SSD [19], threaded logging showed
smaller write traffic and higher performance than segment
compaction. However, threaded logging is incompatible with
the sequential write-only ZNS interface owing to its random
writes. Therefore, the current F2FS patch for the ZNS is dis-
abling threaded logging [3]. In this paper, we will use the
term segment recycling to cover both segment compaction

and threaded logging.
The sparse sequential overwrite interface of ZNS+ is a re-

laxed version of the dense sequential append write constraint
in ZNS. For a zone opened via TL_open, the sparse sequential
overwrite is permitted for threaded logging. The ZNS+ SSD
transforms sparse sequential write requests to dense sequen-
tial requests by plugging the holes between requests with un-
touched valid blocks in the same segment (internal plugging)
and redirects the merged requests to a newly allocated flash
blocks. Similar to IZC, internal plugging internally copies the
valid data of a segment without involving any host-side oper-
ations. The only requirement of the write pattern for internal
plugging is that the block addresses of the consecutive writes
must be in the increasing order. Because the internal plugging
is handled between write requests, it improves the average
response time of write requests compared with the batch-style
segment compaction. Although there are significant exten-
sions in ZNS+ compared to the original ZNS, ZNS+ SSD
can provide the same merits of the original ZNS SSD such as
small mapping table, no duplicate GC, no over-provisioned
space, and performance isolation/predictability.

ZNS+-aware File System. The file system also needs to
be adapted to utilize the new features of ZNS+. First, an SSD-
internal data copy operation will use different copy paths de-
pending on the source and destination logical block addresses
(LBAs). For example, when the two LBAs are mapped to the
same flash chip, the copyback operation of flash memory can
be utilized, which moves data within a flash chip without off-
chip data transfers, thus reducing the data migration latency.
The copyback operation is currently in the standard NAND
interface [6], and its usefulness at SSD-internal garbage col-
lection has been demonstrated by many studies [15, 30, 33].
To fully utilize the copyback operations, we propose the
copyback-aware block allocation for segment compaction,
which attempts to allocate the destination LBA of a data copy
such that both the source LBA and destination LBA of the
target data are mapped to the same flash chip. The technique
can be extended to target other fast copy paths of SSDs.

Second, because ZNS+ supports both segment compaction
acceleration and threaded logging, the host file system needs
to choose one of those segment recycling policies. Although
threaded logging can avoid the segment compaction overhead,
it has several drawbacks, as will be explained at §3.3.2. Con-
sidering both the merits and demerits of threaded logging, we
propose the hybrid segment recycling technique for ZNS+,
which selects either threaded logging or segment compaction
based on their reclaiming costs and benefits.

We implemented the ZNS+ SSD at the SSD emulator of
FEMU [22] and an OpenSSD device [29]. In the experiments,
the file system performance of the storage system composed
of our modified F2FS and ZNS+ SSD was 1.33–2.91 times
better than that of the storage system based on the original
F2FS and ZNS SSD. The source code of ZNS+ is publicly
available at https://github.com/eslab-skku/ZNSplus.

148 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Background
2.1 SSD Architecture
Modern SSDs consist of multiple flash chips and adopt a
multi-channel and multi-way architecture for parallelism.
There are multiple parallel flash controllers (channels), and
each controller can access multiple flash chips (ways) in an
interleaved manner. Each flash chip has multiple flash erase
blocks, and each block is composed of multiple flash pages.
Flash pages cannot be overwritten until the corresponding
flash block is erased. Therefore, SSDs adopt an out-of-place
update scheme and use a special firmware, called the flash
translation layer (FTL), to manage the logical-to-physical
mappings that translate logical addresses used by the host
into physical addresses indicating the location within flash
memory chips. Typically, flash memory manufacturers rec-
ommend that the pages inside a flash block be programmed
sequentially in the page number order owing to inter-cell in-
terference. Because the flash page size in recent flash products
is usually larger than the logical block size (i.e., 4 KB), multi-
ple logically consecutive blocks will be written at a physical
flash page in a cluster. In this study, we refer to the logical
consecutive blocks mapped to a flash page as a chunk.

Flash memory chip generally supports read, program, erase,
and copyback commands. The copyback command is used
to copy data between flash pages within a flash chip without
off-chip data transfer1. The chunk is the basic unit of the copy-
back operation. Because the chip-internal data transfer cannot
check the error correction code (ECC) of the target page, the
bit error propagation problem exists. To cope with the issue,
the error checking can be performed by the flash controller at
the same time while doing the copyback operation. If an error
is detected, the copied page is invalidated and the corrected
data is programmed by the flash controller. Another solution
is to allow only a limited number of consecutive copybacks
using a threshold copyback counts, which is determined based
on copyback error characteristics of flash chip [15, 33].

2.2 Zone Mapping in ZNS SSD
The current NVMe standard interface defines ZNS commands
and zone types [5]. There are several zone management com-
mands, such as open, close, finish, and reset for a zone, as
well as read and write commands. A notable command under
discussion is simple copy, through which the host can order
the SSD to copy data internally from one or more source
logical block ranges to a single consecutive destination log-
ical block range. Although it is apparently similar to our
zone_compaction command, no studies regarding the issues
of the copy command are currently available, and simple
copy does not fit for our ZNS+, as will be explained at §3.

1A flash chip consists of multiple flash dies, each of which has multiple
flash planes. Specifically, the copyback can be used for a data copy within
a flash plane. In this study, we assume that a flash chip has one die and one
plane structure for simplicity. Therefore, we use the term "flash chip" instead
of "flash plane" to denote the target device for the copyback command.

Zone ID
Block

Offset

Zone Address

Stripe ID
Chip

ID

LCA (Logical Chunk Address)

Chunk Offset

LBA (Logical Block Address)

Zone-to-FBG

mapping

page page

chunk0

chunk12 chunk13 chunk14

Flash Chip Group 1

chip 0 chip 1 chip 2 chip 3 chip 0 chip 1 chip 2 chip 3

.

.

.

B
lo

c
k
 0

B
lo

c
k
 1

B
lo

c
k
 N

B
lo

c
k
 0

B
lo

c
k
 1

B
lo

c
k
 N

copyback

FBG

offset

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Flash Chip Group 0

stripe

FCG

ID

copy via

read&write

copy via

read&write

copyback

FBG

chunk1 chunk2 chunk3

chunk4 chunk5 chunk6 chunk7

chunk8 chunk9 chunk11

chunk15

target

Figure 1: An example of zone and chunk mapping. With the
zone address, the second FBG in the FCG 1 is selected. With
the chunk offset, the third stripe in the selected FBG and the
third flash page (chip 2) in the stripe are targeted.

There are no zone mapping constraints in the ZNS speci-
fication. The physical locations of a zone and the chunks in
the zone within the storage device are transparent to the host.
Device vendors can choose different mapping policies that
consider internal design issues. We introduce a general and
efficient SSD-internal zone mapping policy, which can mini-
mize the size of required mapping information and maximize
the flash chip-level parallelism. Depending on the zone size,
one zone can be mapped to one or more physical flash blocks,
which are called the flash block group (FBG) mapped to the
zone. The zone size needs to be aligned to the size of the flash
block to prevent the creation of partially valid flash blocks.
To maximize the flash operation parallelism, the flash blocks
from a set of flash chips accessible in parallel will compose
the FBG of a zone, and the chunks of a zone need to be inter-
leavingly placed on the parallel flash chips. The number of
parallel flash chips for the chunk interleaving is referred to
as the zone interleaving degree Dzone, and the set of logically
consecutive chunks across the parallel flash chips is referred
to as a stripe. For a coarse-grained zone-to-FBG mapping, an
FBG has flash blocks at the same block offset in the parallel
flash chips, and the chunks of a stripe are located at the same
page offset in different flash blocks.

Dzone can be smaller than the maximum number of parallel
flash chips, Dmax. Then, Dzone needs to be a divisor of Dmax
to partition all the parallel flash chips of an SSD into the same
size of flash chip groups (FCGs). When NFCG denotes the
number of FCGs, NFCG = Dmax/Dzone. For a given logical
chunk address, SSD must determine the mapped flash page
of the chunk. Figure 1 presents an example of the zone and
chunk mapping, where Dzone is 4, and Dmax is 8. A logical
chunk address is divided into the zone address and chunk
offset. First, the mapped FBG of the target zone is determined

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 149

with its zone address. We assume that the FCG of a zone is
statically determined by the least significant log2 NFCG bits
of the zone address (i.e., FCG ID in Figure 1). Therefore, the
i-th zone is mapped to the (i mod NFCG)-th FCG. Such a static
FCG mapping can reduce the size of zone mapping entry and
support our copyback-aware block allocation. The remaining
bits of zone address (i.e., zone ID) is used to determine the
FBG within the selected FCG. Because the FBG of a zone
is dynamically allocated whenever the zone is opened, SSD
must maintain the zone-to-FBG mapping table.

The chunk offset is composed of a stripe ID and a chip
ID. The former locates a stripe within the target FBG, and
the latter determines the target chip index within the target
FCG. The bit size of chip ID field is same to log2 Dzone, and
the j-th logical chunk of a zone is mapped to the (j mod
Dzone)-th flash chip of the FCG allocated to the zone. Such a
direct mapping from chunk offset value can avoid chunk-level
fine-grained address mapping. The ZNS SSD only needs
to manage the zone-to-FBG mapping. The host can easily
calculate the mapped flash chip of a logical chunk by using
the FCG ID and chip ID in the logical chunk address without
knowing the SSD-internal zone-to-FBG mapping. When a
logical chunk needs to be copied to other logical address, the
corresponding flash page can be copied within ZNS+ SSD. If
the destination logical address is mapped to the same flash
chip, the copyback operation can be utilized. Otherwise, a
normal copy operation via read and write commands is used.

A zone can be reset via a reset command, which changes the
write pointer (WP) of the zone to the first block location to
overwrite the zone. The WP locates the block address where
new data can be written. Owing to the sequential write-only
scheme of the ZNS, the WP of a zone is always incremented
while the zone space is consumed. Because flash blocks can-
not be overwritten, a new FBG is allocated to the zone to be
reset, and the zone-to-FBG mapping is modified accordingly.
The old FBG can be reused for other zones after it is erased.

2.3 F2FS Segment Management
In this study, we target F2FS [19] as a ZNS-aware file system,
which is an actively maintained LFS. As shown in Figure 2,
F2FS maintains six types of segments (i.e., hot, warm, and
cold segments for each node and data) and uses the multi-
head logging policy. Only one segment can be open for each
type at a time. Separating hot and cold data into different
segments can reduce segment compaction cost. A node block
contains an inode or indices of data blocks, whereas a data
block contains either directory or user file data. Cold blocks in
the hot and warm segments are moved into the cold segments
during segment compaction. F2FS supports both append log-
ging and threaded logging. In the append logging, blocks are
written to clean segments, yielding strictly sequential writes.
On the other hand, threaded logging writes blocks to obsolete
space in existing dirty segments without cleaning operations.
F2FS uses an adaptive logging policy. When the number of

Check

point
Metadata

Node

(hot)

Node

(warm)

Node

(cold)

Data

(hot)

Data

(warm)

Data

(cold)
. . .

Segments

Threaded Logging

overwrite
new data new writeclean

block

valid

block

obsolete

block
Segment Compaction and Append Logging

copy

Figure 2: F2FS disk layout and logging schemes.

free segments is sufficient, append logging is used first. How-
ever, if free segments become insufficient, threaded logging
is enabled not to consume further free segments, instead of
invoking segment compaction. However, threaded logging is
disabled in the current F2FS patch for ZNS, and thus segment
compactions will be frequently triggered at the F2FS for ZNS.

Regarding to segment compaction, F2FS supports both
foreground and background operations. The foreground com-
paction is invoked when there are no sufficient free segments
to process incoming write requests. Thus, write requests are
delayed during the compaction. The background compaction
is triggered only when the file system is idle and the number
of free segments is below a threshold. Therefore, the IO delay
due to the background compaction is insignificant. Because
the threshold is configured small enough so that the com-
paction does not occur frequently and thus does not harm the
lifespan of SSD, the invalidated space cannot be reclaimed in
time with only the background compaction, especially when
the file system utilization is high and there are a burst of write
requests. Therefore, it is important to optimize foreground
compaction to improve the overall IO performance. In this
paper, we focus on the foreground compaction performance.

3 ZNS+ Interface and File System Support

3.1 Motivation
Normal Segment Compaction. The overall process of nor-
mal LFS segment compaction consists of four tasks: victim
segment selection, destination block allocation, valid data
copy, and metadata update, as shown in Figure 3(a). The vic-
tim selection finds a segment with the lowest compaction
cost (¬). The block allocation allocates contiguous free space
from destination segments (). The data copy task moves all
valid data in the victim segment to the destination segments
via host-initiated read and write requests, which generate sig-
nificant data transfer traffic between the host and the storage
(®). The data copy task has read and write phases.

Read Phase. The host sends read requests for the valid
blocks of the victim segment to the SSD if they are not cached
at the page cache. Prior to sending the read requests, the corre-
sponding memory pages must be allocated in the page cache,
which may invoke write requests to the storage for page frame
reclamation. Because the target blocks to be copied are gen-
erally scattered at the logical address space, multiple read
requests are sent one by one. The SSD reads the target data
for a read request with several flash read operations, whose

150 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

read

request handling

write

W

W

W

W

req

DMA

File System

Block Layer

 Host Bus

Flash Chip 0
idle

Flash Controller Read Write write

multiple
reads

① victim

selection
② destination block allocation

page allocation

④ metadata update

Flash Chip 1

Flash Chip 2

Flash Chip 3

③ data copy

DMA

R

R

R

R R

R

R

R

W

W

W

W

W

int

idle

(a) Normal segment compaction via host-level copy

req

copyback

File System

Block Layer

 Host Bus

Flash Chip 0

Flash Chip 1

Flash Chip 2

Flash Chip 3

Flash Controller

copyback

zone_compaction

① victim

selection
② destination block allocation

write

④ metadata update

int

❸ copy offloading

R

R

R

R

W W

W W

W

(b) In-storage zone compaction

Figure 3: Segmentation compaction on (a) ZNS vs. (b) ZNS+
interface (Time goes to the right.)

process can be overlapped at different flash chips. If the size of
read requests is small compared to the flash chip parallelism,
there will be many idle intervals of flash chips. The data read
from the flash chips are transferred to the host via a storage
interface such as NVMe. At the experiments using an SSD
emulator, we observed that the request submission/completion
handling and the device-to-host data transfer accounted for
about 7% and 44% of the total read latency, respectively. (De-
tailed experimental environments are presented in §4.)

Write Phase. This phase can start after all the read requests
issued at the read phase are completed. Because the LFS
sequentially allocates new blocks for write operations at the
destination segment in the append logging scheme, the file
system will make one large write request to reduce the request
handling overhead. Therefore, the file system waits until all
the target blocks are transferred to the page cache, instead of
immediately issuing a write request for each block when its
read operation is completed. As a result, there is a large idle
interval of the SSD, as shown in Figure 3(a).

Metadata Update. F2FS can maintain the consistency of
the file system by rolling data back to the most recent check-
point state when a sudden crash occurs. The file system writes
several modified metadata blocks and node blocks to the stor-
age to reflect the change in the data locations and then writes
a checkpoint block (¯). The metadata must be modified per-
sistently to reclaim the storage space that was occupied by
the valid blocks of the victim segment prior to segment com-
paction. Otherwise, data loss can occur when new data are
overwritten in the reclaimed space.

IZC-based Segment Compaction. Figure 3(b) presents
the compaction process under our IZC scheme. The data copy
task of the normal segment compaction is replaced by the copy

Table 1: Comparison between ZNS and ZNS+
ZNS ZNS+

Copy consecutive dest. range dest. LBAs
Command (simple copy) (zone_compaction)

Write dense seq. write spare seq. overwrite
Constraint can reuse only after reset (TL_open)
Mapping invisible visible chunk mapping

Transparency (identify_mapping)

offloading (¸), which sends zone_compaction commands
to transfer the block copy information (i.e., the source and
destination LBAs). Because the target data are not loaded into
the host page cache, the corresponding page cache allocation
is not required. The SSD-internal controller can schedule sev-
eral read and write operations efficiently while maximizing
flash chip utilization. Therefore, the segment compaction la-
tency can be significantly reduced. In addition, the in-storage
block copy can utilize copyback operations.

3.2 LFS-aware ZNS+ Interface
Table 1 compares the original ZNS and the proposed
ZNS+ interface. The ZNS+ supports three new commands,
zone_compaction, TL_open, and identify_mapping.
zone_compaction is used to request an IZC operation.
For comparison, the simple copy command of the current
ZNS standard delivers a single consecutive destination
LBA range. Under our ZNS+ interface, the destination
range can be non-contiguous; thus, our zone_compaction
command is designed to specify the destination LBAs rather
than a consecutive block range. TL_open is used to open
zones for threaded logging. The TL_opened zones can be
overwritten without reset, and the overwrite requests can be
sparse sequential. The host can use the identify_mapping
command to know the address bit fields which determine the
mapped flash chip of each chunk.

3.2.1 Internal Zone Compaction
The process of segment compaction in the ZNS+ storage
system is as follows.

(1) Cached Page Handling. The first step is to check
whether the corresponding page is being cached on the host
DRAM for each valid block in the victim segment. If the
cached page is dirty, it must be written to the destination seg-
ment and must be excluded from IZC operations. If the cached
page is clean, it can either be written via a write request or
internally copied via zone_compaction. If it is transferred
from the host via a write request, the corresponding flash read
operation can be skipped. Because it is already cached, page
allocation is also not needed. Instead, data transfer and write
request handling overheads are involved. By comparing the
flash read cost and data transfer cost, we can choose a proper
scheme to relocate the cached block. In general, high-density
flash memories based on TLC or QLC technologies have a
relatively higher access latency than the host-to-storage data

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 151

transfer cost. However, the recent ZNAND [11] has an ex-
tremely short read latency; thus, it may be better to use the
in-storage copy for the cached blocks in the ZNAND SSD.

(2) Copy Offloading. Second, to offload the data copy
operations to the ZNS+ SSD, zone_compaction(source
LBAs, destination LBAs) commands are generated. The
data in the i-th source LBA is copied into the i-th destination
LBA by the ZNS+ SSD. When threaded logging is enabled
at F2FS, the segment compaction can select a TL_opened
segment as destination, similarly to the hole-plugging [25,31].
Then, the destination LBAs can be non-contiguous.

(3) Processing IZC. Finally, ZNS+ SSD processes
zone_compaction commands. It identifies copybackable
chunks that can be copied with copyback operations by check-
ing the mapped flash chips of their source and destination
LBAs. A chunk is copybackable only when all the blocks in
it must be copied. The SSD firmware issues flash read and
write operations for non-copybackable chunks.

Async Interface and Request Scheduling. The handling
of zone_compaction command is asynchronous. The com-
paction command issued by the host will be enqueued into the
command queue, and the host will not wait for the completion
of the command. Therefore, the following IO requests can be
immediately issued by the host before the completion of the
pre-issued zone compaction. The asynchronous handling can
improve the performance by eliminating the waiting time of
the following requests. Owing to the checkpoint scheme of
LFS, the asynchronous command handling does not harm the
file system consistency.

Under the asynchronous interface, there will be multiple
pending normal requests while handling zone compaction.
ZNS+ SSD can reorder normal requests to avoid the convoy
effect by the long latency of zone compaction. If the target
zone of a normal request is irrelevant to the zone compaction
request arrived in advance, it can be processed before the
completion of zone compaction. Even for a read request to
the destination zone of an on-going zone compaction, the
read request can be handled if the WP of the zone has passed
through the target block address of the read request.

3.2.2 Sparse Sequential Overwrite
Internal Plugging. To support threaded logging, ZNS+ sup-
ports sparse sequential overwrite. Although the write pattern
of threaded logging is incompatible with ZNS, there is one
consolation; threaded logging accesses the free space of a
dirty segment in an increasing order of block address because
it consumes the lower address of blocks first. Therefore, its
access pattern is sparse sequential (i.e., the WP of a zone will
not be decremented). While threaded logging overwrites a
segment, if the SSD firmware reads the skipped blocks be-
tween requests and merges them to the host-sent data blocks,
it can make dense sequential write requests to the target zone;
this technique is referred to as internal plugging. Because the
plugging operation is SSD-internal, the latency is shorter than

Segment 1

Chip 0

File System

SSD Chip 1 Chip 2 Chip 3

Zone-to-FBG
mapping

FBG 6

Zone FBG

FBG 15

Zone 1
① TL_open(Zone 1, bitmap=[1010,1111,0000,1111,0100,1111,…]);

 ② write(P); write(Q); ③ write(RSTU); ④ write(V); write(WX);

flash page

flash block

merge
©

1 6

2 7

0 5

LogFBG

15

-

-

...

...

...

WP

6

124

32

...

A B

K

C D E F

L M N O

G H I J

A P B Q

V KW X

C D E F

L M N O

R S T U G H I J

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.❹-P copyback

❷-P copyback

L M N OA B C D E F G H I J

chunk 0 chunk 1 chunk 2 chunk 3

P Q SR T U

...K

V W X

chunk 4 chunk 5

WP

❸-P copyback

❶ LogFBG

allocation

❷

❹

❸

Figure 4: Skipped block plugging for threaded logging

the host-level copy latency. In addition, the SSD can schedule
plugging operations efficiently across parallel flash chips to
hide their latency.

Figure 4 illustrates an example of internal plugging. Seg-
ment 1 is now mapped to Zone 1 in the file system, and FBG 6
is allocated to Zone 1, as shown in the zone-to-FBG mapping.
An FBG is composed of four flash blocks, each of which is in
different flash chips. The host file system allocates Segment
1 for threaded logging, and sends write requests to invalid
blocks to reclaim them while skipping valid blocks. For ex-
ample, the blocks of A and B in chunk 0 are skipped blocks.

Opening Zone for Threaded Logging. For internal plug-
ging, the SSD must perceive the skipped blocks in the target
segment of threaded logging. Owing to the in-order request
delivery of ZNS IO stack, the SSD can identify the skipped
blocks by comparing the start LBA of an incoming write
request with the current WP of the corresponding zone. How-
ever, only after a write request arrives, the preceding skipped
blocks can be recognized. Therefore, the plugging operation
will delay the handling of the write request. To solve this
problem, we added a special command, called TL_open(open
zones, valid bitmap), that delivers the valid bitmap of
the target zones selected for threaded logging (¬). Once an
allocated segment is informed via TL_open, the threaded log-
ging reclaims only the invalid blocks marked at the trans-
ferred bitmap. Therefore, the SSD can identify the blocks to
be skipped by threaded logging in advance and perform the
plugging before the following write request arrives.

LogFBG Allocation. Because a TL_opened zone will be
overwritten, the ZNS+ SSD resets the WP of the zone and
allocates a new FBG, called LogFBG, where new data to the
zone are written. For example, in Figure 4, the SSD allocates
a LogFBG, FBG 15, for Zone 1 (¶). For the TL_opened zone,
the data blocks of the zone are distributed into two FBGs,
i.e., the original FBG (FBG 6) and the LogFBG (FBG 15).
Therefore, both of them must be maintained as mapped FBGs
for the zone. To handle a read request, the SSD identifies
the block location of up-to-date data by comparing the target
LBA with the WP. If the target LBA is behind the WP (target
LBA < WP), the LogFBG is accessed. Otherwise, the original

152 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FBG is accessed for the read request. While the invalid blocks
of a TL_opened zone are overwritten by threaded logging,
all the valid blocks are copied into the LogFBG. Under a
static zone mapping policy, each logical chunk of a zone is
always mapped to the same flash chip whenever a new FBG
is allocated to the zone. Therefore, fully valid chunks can be
copied from the original FBG to the LogFBG via copyback
during internal plugging. The number of allocated LogFBGs
is determined by the number of TL_opened segments, which
is six at maximum in F2FS. Therefore, the space overhead
due to LogFBGs is negligible. When the TL_opened zone is
finally closed, the LogFBG replaces the original FBG, which
is deallocated for future reuse.

LBA-ordered Plugging. When the SSD receives two write
requests to chunk 0 in Figure 4 (), it reads the skipped blocks
of A and B from FBG 6, merges them with the host-sent
blocks of P and Q, and writes a full chunk at the LogFBG (·).
After handling the write requests to chunk 0, the SSD can
perceive that chunk 1 will be skipped by checking the valid
bitmap of the zone. To prepare the WP in advance for the
write request to chunk 2, the skipped chunk must be copied
to the LogFBG. Therefore, after processing a write request,
if the following logical chunks are marked as valid in the
valid bitmap, the ZNS+ SSD copies them to the LogFBG
while adjusting the WP (·-P, ¸-P, and ¹-P). This type of
plugging is called LBA-ordered plugging (LP), where each
plugging is performed at the current WP of the zone to follow
the LBA-ordered write constraint.

PPA-ordered Plugging. Although incoming data must be
written at the WP of zone, there is no need to perform the
internal plugging operation only at the WP. The internal plug-
ging can be done in advance at the block addresses in ahead
of the WP. We only need to consider that the flash pages in a
flash block must be programmed sequentially. Therefore, the
plugging operation of a fully valid chunk can be scheduled
in advance even when the current WP is behind the location
where the chunk must be copied to. A fully valid chunk can
be copied to a physical page address (PPA) if all the flash
pages at lower PPAs within the target flash block have been
programmed. For the example in Figure 4, chunk 3 can be
copied before the write requests to chunk 0 and chunk 2 arrive
because they use different flash chips. If chunk 1 has been
copied, chunk 5 can be copied even when the write requests
to chunk 2 and chunk 4 have not yet arrived. We call this
technique PPA-ordered plugging (PP), which considers only
the PPA-ordered write constraint. Whenever a flash page is
programmed at a LogFBG, the PPA-ordered plugging checks
the validity of the chunks mapped to the following flash pages
in the corresponding flash block and issues all possible plug-
ging operations for the flash block in advance. However, if
excessive plugging operations are issued, they may interfere
with the user IO request handling. To resolve this problem, the
plugging operations are processed in the background when
the target flash chip is idle. If there is no sufficient idle time,

A B C D E F GH I J K L

A B C D E F GH I J K

source segment (Zone 1)

destination segment (Zone 5)

F
il

e
 S

y
s
te

m chunk 0 chunk 1 chunk 2 chunk 3

L

A B C D
I J K L

E F G H

A B
G H I J

C D E F
K L

Zone 1

chip 0 chip 1SSD

Zone 5

b
lo

c
k

1
b
lo

c
k

5

b
lo

c
k

1
b
lo

c
k

5

A B C D E F GH I J K L

GH I J C D E F A B K

G H I J
A B K L

C D E F

source segment (Zone 1)

destination segment (Zone 5)

A B
G H I J

C D E F
K L

chip 0 chip 1

chunk 0 chunk 1 chunk 2 chunk 3

L

c
p
b
k

c
p
b
k

cpbk

b
lo

c
k

1
b
lo

c
k

5

b
lo

c
k

1
b
lo

c
k

5

(a) normal block allocation (b) copyback-aware allocation

Figure 5: Copyback-aware block allocation

they are handled when the WP of the zone must pass the
skipped block locations.

Why Threaded Logging Improves Performance. We
can consider that the segment compaction cost restrained
by threaded logging is revived in the form of internal plug-
ging in the SSD. This is because the number of blocks to be
copied by internal plugging at threaded logging is equal to
the number of blocks to be copied at segment compaction for
the same segment. However, the metadata modifications to
reflect data relocation can be avoided by threaded logging. In
addition, the internal plugging cost can be hidden by utilizing
idle flash chips. Moreover, the plugging operations are dis-
tributed between normal write requests while minimizing the
average delay of write requests. On the contrary, the segment
compaction is a batch operation. No write requests can be
processed until the segment compaction is completely fin-
ished. Thus, ZNS+ system can show a better performance
when threaded logging is enabled. Because the host knows
the amount of skipped blocks within a segment, the internal
plugging does not harm the predictability of ZNS. Although
the internal plugging amplifies flash write operations, there
is no additional endurance degradation compared to segment
compaction, which also generates the same amount of flash
write operations to reclaim invalidated space.

3.3 ZNS+-aware LFS Optimization
3.3.1 Copyback-aware Block Allocation
Low Utilization of Copyback at LFS. For the valid blocks
to be relocated at segment compaction, new block locations
are sequentially allocated from a destination segment in the
order of their source LBAs in the original LFS. Therefore,
the scattered valid blocks in the victim segment are simply
compacted without holes between them at the destination
segment; in this type of scheme, most of the chunks will
not be copybacked. Figure 5(a) illustrates an example of
segment compaction under normal block allocation, in which
two logically consecutive chunks comprise a stripe over two
flash chips. Under normal block allocation, no chunks can be
copybacked in this example.

Chunk Mapping Identification. To maximize the usage
of copyback, we propose the copyback-aware block allocation.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 153

Figure 5(b) illustrates an example of segment compaction
under the copyback-aware block allocation. First, the file
system reserves contiguous free blocks at the destination seg-
ment as the number of valid blocks to be copied by segment
compaction. Second, the file system allocates the destination
chunk location from the reserved region for each fully valid
chunk in the source segment (e.g., chunk 1 and chunk 2 in the
example) such that both the source and destination chunks
are mapped to the same flash chip. Under a static chunk
mapping scheme, the host can easily calculate the mapped
flash chip number of a chunk if it knows which bit ranges
of logical chunk address determine the chip offset. For the
identify_mapping command, the ZNS+ SSD returns the
bit ranges of FCG ID and chip ID, shown in Figure 1. If two
chunk addresses have the same values of FCG ID and chip
ID, they are mapped to the same flash chip. The host queries
the chunk mapping information only while booting, and no
additional inquiry is required at run time. After handling all
the fully valid chunks, the destination block locations of the
remaining valid blocks are determined to fill all the free space
of the reserved region. For example, the new block locations
of A, B, K, and L in Figure 5(b) are allocated to the remaining
space and can be copied via flash read and write operations.

Maximizing Copyback Usage. If the fully valid chunks
in the source segment are not evenly distributed among mul-
tiple flash chips, some chunks cannot find the copyback-
able chunk locations from the reserved region and must be
copied to non-copybackable chunks. One solution is to al-
locate additional chunks in the destination segment to max-
imize the usage of copyback, while leaving some unused
blocks in the destination segment, which is possible because
the zone_compaction command can specify non-contiguous
destination ranges. Another issue is to use copyback for par-
tially invalid chunks (e.g., chunk 0 and chunk 3 in Figure 5).
By copying an entire chunk including invalid blocks via copy-
back, we can reduce the segment compaction time. Although
allocating more space in the destination segment can maxi-
mize the usage of copyback, the segment reclaiming efficiency
can be degraded. Considering this trade-off, a threshold for
the allowed additional space needs to be determined. A more
detailed consideration is beyond the scope of this study.

Extensions. The proposed copyback-aware block alloca-
tion can be extended for recent multi-core SSDs, where mul-
tiple embedded processors exist with each processor run-
ning an FTL instance to manage its own partitioned address
space and flash chips while utilizing the processor-level paral-
lelism [18, 35]. In the multi-core SSD, a zone can be mapped
across multiple partitions, and the inter-partition copy latency
will be longer than that of intra-partition copy because com-
munication overhead will be imposed for the inter-partition
operation. Therefore, a partition-aware block allocation will
be beneficial for the multi-partitioned ZNS+ SSDs.

Instead of the file system-level copyback-aware block al-
location, we can consider a device-level approach, where the

target block location is not specified by the host, and the SSD
determines the logical block locations to maximize the usage
of copyback and informs the file system of the allocated block
locations, similarly to the ideas of the nameless write [36]
and the zone append command defined in the standard ZNS
interface. This approach will enable copyback-aware block
allocation even when the host has no knowledge of the SSD-
internal chunk mapping.

3.3.2 Hybrid Segment Recycling
Although threaded logging can reduce the block reclamation
overhead, its reclaiming efficiency can be lower than that of
segment compaction in the ZNS+ owing to two reasons.

Reclaiming Cost Imbalance. First, threaded logging may
suffer from unbalanced reclaiming costs among different
types of segments. Whereas segment compaction selects a vic-
tim segment with the lowest compaction cost (i.e., the smallest
number of valid blocks) among all dirty segments, threaded
logging can select the target segment for a type of write re-
quest only from the same type of dirty segments to prevent
different types of data from being mixed in a segment. Even
when there are multiple segments whose blocks are mostly
invalidated, threaded logging cannot utilize them for a write
request if the types of those segments are different from the
data type of the write request. Instead, the same type of dirty
segment must be selected despite a high internal plugging
cost. In addition, unlike segment compaction, threaded log-
ging cannot move cold data into cold segments. The cold data
trapped in a segment must be copied by the internal plugging
each time the segment is opened for threaded logging.

Pre-Invalid Block Problem. Second, the reclaiming effi-
ciency of threaded logging will be further degraded if threaded
logging is used for a long period without checkpointing, which
is not mandatory for threaded logging. This is due to pre-
invalid blocks that are invalid but still referenced by in-storage
metadata and thus non-reclaimable. When a logical block is
invalidated by a file system operation but a new checkpoint is
still not recorded, the logical block becomes pre-invalid and
must not be overwritten because a crash recovery will need
to restore it. They must be copied by the internal plugging.
The pre-invalid blocks accumulate as threaded logging con-
tinues without checkpointing, whereas they can be reclaimed
by segment compaction because segment compaction accom-
panies checkpointing. The original F2FS prefers threaded
logging because the performance gain by avoiding segment
compaction is more significant than the drawback of reclaim-
ing inefficiency in threaded logging, which may be true in
legacy SSDs. However, the reclaiming inefficiency results in
a high internal plugging cost at the ZNS+ SSD.

Periodic Checkpointing. To solve the pre-invalid block
problem, we use the periodic checkpointing, which triggers
checkpointing whenever the number of accumulated pre-
invalid blocks exceeds θPI . For periodic checkpointing, the
file system must monitor the number of pre-invalid blocks. If

154 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

checkpointing is invoked too frequently, the write traffic on
metadata blocks increases, and the flash endurance of SSD
will be harmed. Therefore, an appropriate value of θPI needs
to be determined considering the trade-off. From experiments
using several benchmarks, we identified that the overall perfor-
mance was maximized when θPI was around 128 MB. Thus,
θPI was configured to the value in the experiments in §4.

Reclaiming Cost Modeling. We propose the hybrid seg-
ment recycling (HSR) technique, which chooses a reclaiming
policy by comparing the reclaiming costs of threaded logging
and segment compaction. The reclaiming cost of a segment
under threaded logging, CT L, can be formulated as follows:

CT L = fplugging(Npre-inv +Nvalid) (1)

Npre-inv and Nvalid indicate the number of pre-invalid blocks
and the number of valid blocks, respectively. fplugging(N)
is the in-storage plugging cost for N blocks. Because the
plugging operation can be performed in the background,
fplugging(N) is less than on-demand internal copy cost. We set
fplugging(N) to be 90% of the on-demand copy cost based on
the experimental results on performance improvement by the
internal plugging.

Segment compaction only moves the valid blocks of the vic-
tim segment to the free segment. During segment compaction,
cold blocks are moved to cold segments, which will decrease
the future reclaiming cost of the target segment. However, it
must modify node blocks and metadata blocks to reflect the
change in block locations at the checkpointing. Therefore, the
reclaiming cost of segment compaction, CSC, can be expressed
as follows:

CSC = fcopy(Nvalid)+ fwrite(Nnode +Nmeta)−Bcold (2)

Nnode and Nmeta denote the numbers of the modified
node blocks and metadata blocks, respectively. fcopy(N) and
fwrite(N) are the copy cost and the write cost of N blocks, re-
spectively. Bcold represents the predicted future benefit from
cold block migration. When the victim segment of segment
compaction is a node segment, no additional node update
occurs; thus, Nnode is 0. To estimate fcopy(Nvalid), we can
assume that all the chunks are copied via in-storage copy
operations, and some portion of the copy operations can be
handled by copyback commands.

Using Approximate Cost. Whereas Npre-inv and Nvalid can
be easily calculated by examining the valid bitmap of each
segment, the calculations of Nnode and Nmeta are not simple.
They are determined by the number of node blocks associated
with the data blocks that are relocated at segment compaction.
It is highly expensive to precisely calculate each number dur-
ing the selection process of the reclaiming policy. Therefore,
we use approximate values for Nnode and Nmeta. Assuming
that they become larger in proportion to Nvalid , α×Nvalid can
be used instead of the real value of (Nnode +Nmeta). The value
of α depends on workloads, and thus, its average value can be
profiled at run time. For our target benchmarks, we observed
that α has an average value of 20%.

It is also difficult to predict the exact value of Bcold , and
thus, it is approximated to fplugging(β×Ncold), where Ncold is
the number of blocks unchanged across two consecutive TL-
based segment recyclings of the target segment, assuming that
β% of Ncold in the segment will be still valid when the segment
is TL_opened again next time. Therefore, fplugging(β×Ncold)
amount of internal plugging cost at the future threaded logging
can be avoided by moving the cold blocks at the current
segment recycling. The value of β also depends on workloads,
and its appropriate value can be profiled at run time.

By comparing CT L of the threaded logging and CSC of the
segment compaction, the HSR chooses one of the recycling
policies. Note that threaded logging and segment compaction
will select different victims because they examine different
candidates. When the reclaiming cost imbalance among dif-
ferent segment types is serious, segment compaction will be
chosen because it can find better victim segments.

4 Experiments
We evaluated the performance of ZNS+ SSD using an SSD
emulator, which was implemented based on FEMU [22]. In
the emulation environment, the host computer system used
the Linux 4.10 kernel and was equipped with an Intel Xeon
E5-2630 2.4 GHz CPU and 64 GB of DRAM. We allocated
four CPU cores, 2 GB of DRAM, 16 GB of NVMe SSD for
user workloads, and a 128 GB disk for the OS image to the
guest virtual machine. The emulated NVMe SSD consists of
16 parallel flash chips by default, which can be accessed in
parallel via eight channels and two ways per channel. The
type of flash chip was configured to either TLC, multi-level
cell (MLC), or ZNAND, as shown in Table 2. The default flash
medium was the MLC in our experiments. The data transmis-
sion link between the host and the SSD was configured to a
two-lane PCIe Gen2 with the maximum bandwidth of 600
MB/s per lane. The zone interleaving degree, Dzone, was set
to be the same as the maximum number of parallel flash chips
(i.e., Dzone = 16). Therefore, the default zone size of ZNS+
SSD is 32 MB, which is the total size of 16 flash blocks
distributed in 16 flash chips. When the number of parallel
flash chips was configured to a different value, the zone size
was also changed according to the size of the parallel FBG.
To determine the effect of copyback, we modified FEMU to
support the copyback operation. Table 2 shows the copyback
latency normalized by the latency of the copy operation using
the read-and-program commands. The copyback operation is
approximately 6–10% faster than the normal copy operation.

We modified F2FS version 4.10 to exploit the ZNS+ inter-
face. The complexity of F2FS was increased by 5.4% to imple-
ment ZNS+-aware F2FS (from 20,160 LoC to 21,239 LoC).
The F2FS segment size was configured to be equal to the zone
size; therefore, its default size is 32 MB. The copyback-aware
block allocation was applied, which was enabled by default
in the experiments. The filebench [4] (fileserver and varmail)

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 155

Table 2: Flash memory configurations
TLC [24] MLC [23] ZNAND [11]

Flash page read latency 60 µs 35 µs 3 µs
Flash page program latency 700 µs 390 µs 100 µs

DMA from/to flash controller 24 µs 24 µs 3.4 µs
Normalized copyback latency 0.94 0.90 0.94
Flash page: 16 KB, Pages per flash block: 128, 16 flash chips (default)
Host interface: PCIe Gen2 2x lanes (max B/W: 1.2 GB/s)

Table 3: Benchmark configurations
fileserver 112,500 files, file size: 128KB, 14GB fileset, 50 threads
varmail 475,000 files, file size: 28KB, 12.7GB fileset, 16 threads

tpcc DB size: 12GB, 1GB buffer pool, 16 connections
YCSB DB size: 12GB, 1GB buffer pool, 32 connections

and OLTP benchmarks (tpcc [8] and YCSB [12] on MySQL)
were used for the evaluation. We set the file system size to
16 GB and determined the dataset size of each benchmark
such that the file system utilization was 90% by default. The
configuration of each benchmark is detailed in Table 3.

In the experiments, the following two different versions of
ZNS+ were used: IZC and ZNS+. While threaded logging is
disabled in IZC, it is enabled and the hybrid segment recy-
cling is used in ZNS+. The PPA-ordered plugging was used
by default in the experiments. The ZNS+ schemes were com-
pared with ZNS, which uses the original F2FS (ZNS patch ver-
sion) and ZNS SSD. ZNS uses the host-level copy to perform
segment compaction and does not utilize threaded logging.
Because each workload generates write requests without idle
intervals, no background compactions were invoked by F2FS.

4.1 Segment Compaction Performance
Figure 6 presents the average segment compaction latencies
of ZNS and IZC at various benchmarks. The SSD emulator was
used for the experiments. The compaction time is divided into
four phases (init, read, write, and checkpoint) and three phases
(init, IZC, and checkpoint) for ZNS and IZC, respectively. The
init phase reads several metadata blocks of all the files related
to the victim segment. Because these metadata are generally
being cached in the page cache, the init phase is short.
IZC reduced the zone compaction time by about 28.2–

51.7%, compared to ZNS, by removing the host-level copy
overhead and utilizing copyback operations. The ratios of the
copyback operations among all the in-storage copy operations
were 87%, 74%, 81%, 83%, and 83% during the workloads
of the fileserver, varmail, tpcc, YCSB-a, and YCSB-f, respec-
tively. Because the checkpoint phase must wait for the persis-
tent completion of the previous phases, the checkpoint latency
includes the waiting time for the completion of the write op-
erations or the IZC operations. Therefore, the checkpoint
latency was increased during the OLTP workloads by the IZC
technique. The segment compaction by host-level copy op-
erations can be disturbed by user IO requests. Whereas the
IO traffic of the filebench workloads is intensive, those of
the OLTP workloads are small. Therefore, the performance

0

5

10

15

20

ZNS IZC ZNS IZC ZNS IZC ZNS IZC ZNS IZC

F V T Y-a Y-f

L
at

en
cy

 (
m

s)

init phase read phase

write phase IZC phase

checkpoint51.7%

44.8%

39.6%
30.6% 28.2%

Figure 6: Average compaction time (F: fileserver, V: varmail,
T: tpcc, Y-a: YCSB workloada, and Y-f: YCSB workloadf)

Table 4: The bandwidth (MB/s) at fileserver workload in dif-
ferent NAND flash media

TLC MLC ZNAND
ZNS 79.5 (1.00x) 84.5 (1.00x) 104.0 (1.00x)

IZC-H 113.4 (1.43x) 154.6 (1.83x) 218.9 (2.10x)
IZC-D 96.5 (1.12x) 148.0 (1.75x) 242.4 (2.33x)

improvement by IZC is more significant during filebench
workloads because the in-storage copy operations mitigate
the interference with user IO requests for using the host re-
source and the host-to-device DMA bus.

We also compared two different policies on fully cached
logical chunks, presented in §3.2.1, using different types of
NAND media in Table 2. Whereas the fully cached chunks
are directly written by the host in IZC-H, all the chunks are
copied by device in IZC-D. Exceptionally, if the latest version
of a block only exists in the host DRAM with a dirty flag, the
host directly writes the block to the storage.

Table 4 compares the bandwidths of different copy schemes
in different flash media. The performance gain by IZC is more
significant for a faster flash media because the host IO stack
contributes a larger portion of the IO latency for faster flash
media. IZC-H and IZC-D offloaded 89.6% and 99.4% of block
copy operations to the ZNS+ SSD, respectively. This indi-
cates that about 10.4% of the total chunks to be copied were
cached in the host DRAM (clean: 9.8%, dirty: 0.6%). When
the TLC flash memory was used, IZC-H outperformed IZC-D
because the TLC flash read latency is longer than the host-
level write request handling overhead. However, the perfor-
mance difference between IZC-H and IZC-D is reduced when
the MLC flash is used. If the flash access time is further re-
duced by using ZNAND, IZC-D delivers a better performance
(i.e., offloading all copy requests to the storage, regardless of
whether the target blocks have been cached, achieves better
performance). In the following experiments using MLC flash
memory, we used IZC-H by default.

4.2 Threaded Logging Performance
We compared the overall performances of the benchmarks
under ZNS, IZC, and ZNS+ to evaluate the effects of in-storage
zone compaction and threaded logging support, as shown in

156 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

3

6

9

12

F V T Y-a Y-f

T
h

ro
u

g
h

p
u
t

(K
o

p
s/

s)
ZNS IZC(w/o cpbk) IZC ZNS+(w/o cpbk) ZNS+

2.91x

1.89x 1.58x 1.28x

1.33x 1.34x

2.46x

1.33x

1.49x 1.6x

(a) Performance

0%

20%

40%

60%

80%

Z
N

S

IZ
C

Z
N

S
+

Z
N

S

IZ
C

Z
N

S
+

Z
N

S

IZ
C

Z
N

S
+

Z
N

S

IZ
C

Z
N

S
+

Z
N

S

IZ
C

Z
N

S
+

F V T Y-a Y-f

M
et

ad
at

a
O

v
er

h
ea

d

Node Meta

(b) Node and metadata overhead

Figure 7: Effect of the threaded logging support

Table 5: Ratios of threaded logging (TL) and background
plugging (BP) at ZNS+ (%)

Fileserver Varmail TPCC YCSB-a YCSB-f
TL 94.8 92.1 85.8 89.8 89.7
BP 11.3 31.7 24.7 34.1 35.1

Figure 7(a). The copyback-disabled versions of IZC and ZNS+,
IZC(w/o cpbk) and ZNS+(w/o cpbk), were also examined.
Figure 7(b) presents the file system metadata overhead, which
indicates the write traffic on the node blocks and the file
system metadata blocks. The overhead values are normal-
ized to the user data traffic. IZC presents about 1.21–1.77
times higher throughputs than that of ZNS because IZC can
significantly reduce segment compaction time. ZNS and IZC
present similar metadata overheads because they only use
segment compaction for invalidated space reclamation. In the
OLTP workloads, the segment compaction cost occupies a
smaller portion of the total IO latency compared to filebench
workloads. Therefore, the overall performance improvements
at the OLTP workloads are less than those of the filebench
workloads.

ZNS+ outperforms both ZNS and IZC for all benchmarks.
ZNS+ presents approximately 1.33–2.91 times higher through-
puts than that of ZNS. As shown in Figure 7(b), ZNS+ modifies
fewer node blocks and metadata blocks because threaded
logging does not invoke checkpointing. ZNS+ reduced the
node and metadata write traffic by about 48%, compared to
IZC, for the varmail workload. Table 5 presents the ratio of
the segments reclaimed by threaded logging in ZNS+. In all
the workloads, more than 85.8% of the reclaimed segments
are handled by threaded logging in ZNS+, because our pe-
riodic checkpoint scheme limits the number of pre-invalid
blocks. For the fileserver and varmail workloads, which up-
date file system metadata frequently, ZNS+ presents significant

1

2

3

4

5

6

0

3

6

9

12

15

80 85 90 95

W
A

F

P
er

fo
rm

an
ce

 (
K

o
p

s/
s)

file system utilization (%)

ZNS (perf) IZC (perf) ZNS+ (perf)

ZNS (WAF) IZC (WAF) ZNS+ (WAF)

1.87x 2.33x
2.91x

3.93x
1.47x

1.73x
1.89x 2.65x

Figure 8: Performance at various file system utilizations (file-
server workload)

improvements over IZC because threaded logging achieved a
high reclaiming efficiency during node segment reclaiming.
Table 5 also shows the ratio of the blocks copied in the back-
ground by the PPA-ordered plugging among all the copied
blocks. The ratio of background plugging is high at the fsync-
intensive workloads (varmail, tpcc, and YCSB) because the
small-sized fsync requests cause frequent idle intervals of the
flash chips. Since the average background plugging ratio is
about 27%, a significant portion of internal plugging overhead
was hidden in the ZNS+ SSD.

We also compared the performances of ZNS schemes while
varying the file system utilization. By changing the file-set
size of the target workload, we controlled the file system uti-
lization. Figure 8 presents the workload throughput and the
write amplification factor (WAF) for each technique for the
fileserver workload. The WAF is the total write traffic invoked
by the file system (including data block writes, node block
writes, metadata updates, segment compaction, and internal
plugging) divided by the write traffic generated by the user
workload. The WAF values of IZC and ZNS are similar. As
the file system utilization increases, the WAF increases be-
cause segment compaction must copy a larger number of valid
blocks, and segment compaction is invoked more frequently.
Because threaded logging reduces the number of node and
metadata updates, ZNS+ shows lower WAF values than those
of IZC. The performance gain by IZC or ZNS+ over ZNS in-
creases as the file system utilization increases because the
segment recycling cost is more significant at a higher file
system utilization.

4.3 SSD-internal Chip Utilization
We measured the effects of the proposed techniques on flash
chip utilization, as shown in Figure 9. The IZC technique
can increase the chip utilization by reducing the idle intervals
invoked during the host-level copy operations, as shown in
Figure 3. A higher flash chip utilization generally results in
a higher IO performance. To measure the effect of the PPA-
ordered plugging technique, which utilizes idle flash chips,
we observed chip utilization for the following two different
plugging schemes of ZNS+: LBA-ordered plugging (LP) and
PPA-ordered plugging (PP). Whereas LP copies the following

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 157

0

20

40

60

80

F V T Y-a Y-f

C
h

ip
 u

ti
li

za
ti

o
n
 (

%
)

ZNS IZC ZNS+(LP) ZNS+(PP)

Figure 9: Flash chip utilization in different ZNS schemes

skipped blocks just after handling a write request, PP pro-
cesses all the possible plugging operations whenever each
flash chip is idle.

In Figure 9, IZC and ZNS+ present higher chip utilizations
than that of ZNS for all workloads. Whereas ZNS+(LP) can
utilize the idle interval between two consecutive write re-
quests, ZNS+(PP) can overlap the plugging operations with
normal write request handling by utilizing idle flash chips.
Therefore, ZNS+(PP) showed higher chip utilizations com-
pared to ZNS+(LP). The performance improvements achieved
by the different plugging techniques were similar to the chip
utilization improvements by them.

Figure 10 presents the change in chip utilization for the
fileserver workload. We started to measure the utilization
after the file system enters a steady state, where segment re-
claiming occurs consistently. While a black dot represents the
average utilization of a 100-ms interval, the red line indicates
the change in the average utilization of a 5-s moving interval.
Under the ZNS technique, many low utilization intervals were
observed at less than 20% owing to host-level copy operations
during segment compaction. IZC eliminated most of the low
utilization intervals via in-storage copy operations. ZNS+ in-
creased chip utilization significantly owing to the background
plugging operation. A few low utilization intervals at ZNS+
were generated when segment compaction was chosen by the
hybrid segment recycling, or the checkpoint was recorded by
the periodic checkpointing. However, the periodic checkpoint-
ing is indispensable for improving reclaiming efficiency by
controlling the maximum number of pre-invalid blocks.

4.4 Copyback-aware Block Allocation
Figure 11 compares the performances under the copyback-
aware block allocation (CAB) and the copyback-unaware
block allocation (CUB) for the fileserver workload while vary-
ing the number of parallel flash chips in the SSD. Generally,
the IO performance is improved as the number of flash chips
increases because of the increased IO parallelism. In our ex-
periments, the number of flash chips determined the zone
size, and the file system segment size was configured to be
equal to the zone size. Therefore, as the number of flash chips
increased, the segment size also increased.

Figure 11(a) presents the bandwidth of each technique.
When there are only a few parallel flash chips, the perfor-
mance difference between ZNS and our techniques is insignif-

icant because the maximum internal bandwidth of SSD is
extremely low, causing ZNS to fully utilize the parallel flash
chips using the host-level copy. In contrast, as the number of
flash chips increases, the proposed ZNS+ techniques signifi-
cantly outperform ZNS.

As a larger segment is used, it takes a longer time to reclaim
a segment because it will have more valid blocks. The cost of
checkpoint operations also increases with a large segment con-
figuration. Therefore, ZNS and IZC present slow increase rates
in bandwidth as the chip-level parallelism increases; in con-
trast, ZNS+ shows a faster increase rate in bandwidth because
the increased block copy operations for large segments can be
performed in the background by the PPA-ordered plugging.
In addition, because threaded logging invokes fewer metadata
updates compared to segment compaction, the checkpoint
overhead does not increase significantly when the segment
size is large. Consequently, the performance gap between IZC
and ZNS+ increases as the number of flash chips increases.

Figure 11(b) presents the distribution of two different SSD-
internal copy operations — copyback (cpbk) and read-and-
program (R/P) — used to copy valid blocks during segment
recycling. As the number of flash chips increases, the ratio of
cpbk decreases linearly under CUB, because chunks are dis-
tributed into a larger number of chips. However, CAB causes
more than 80% of the copy requests to be processed by copy-
back operations. Therefore, the performance of IZC-CAB is
about 1.13 times better than that of IZC-CUB when the number
of flash chips is 32. In the experiments, the copyback opera-
tion was configured to reduce the latency of copy operation
by about 10% compared to the read-and-program operation,
as shown in Table 2. Thus, a 13% performance improvement
by CAB is reasonable.

As shown in Figure 11(b), the copyback ratio of ZNS+ is
high despite CAB being disabled, and the number of flash
chips is significant. This is because ZNS+ processes approxi-
mately 95% of the reclaimed segments with threaded logging.
The fully valid chunks to be copied in the internal plugging
can be copied using flash copyback operations, as shown
in Figure 4. Therefore, the performance difference between
ZNS+-CUB and ZNS+-CAB is insignificant.

4.5 Performance at High H/W Parallelism
Figure 12(a) shows the performance change while varying the
parallelism of host-to-device PCIe communication and flash
chips. The PCIe communication parallelism was adjusted by
changing the number of lanes, each of which was assumed
to provide 600 MB/s of bandwidth. As the IO bandwidth
increased, the number of flash chips was also configured to a
larger value, because the total flash chip bandwidth must be
high enough to utilize the increased IO bandwidth. The zone
interleaving degree was configured to the total number of flash
chips. Therefore, the zone size and the segment size increased
as the number of flash chips increased. Although the data

158 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

20

40

60

80

100

0 20 40 60 80 100

F
la

sh
 c

h
ip

 u
ti

li
za

ti
o

n
 (

%
)

Time (s)

interval average moving average

0

20

40

60

80

100

0 20 40 60 80 100

F
la

sh
 c

h
ip

 u
ti

li
za

ti
o

n
 (

%
)

Time (s)

interval average moving average

0

20

40

60

80

100

0 20 40 60 80 100

F
la

sh
 c

h
ip

 u
ti

li
za

ti
o

n
 (

%
)

Time (s)

interval average moving average

(a) ZNS (b) IZC (c) ZNS+

Figure 10: Flash chip utilization for fileserver workload

0
3
6
9

12
15
18

2 4 8 16 32

P
er

fo
rm

an
ce

(K
o

p
s/

s)

of flash chips

ZNS IZC-CUB

IZC-CAB ZNS+-CUB

ZNS+-CAB

(a) Performance

0%
20%
40%
60%
80%
100%

2 4 8 1632 2 4 8 1632

CUB CAB
IZC

2 4 8 1632 2 4 8 1632

CUB CAB
ZNS+

cpbk R/P

(b) Internal copy operation breakdown

Figure 11: Performance comparison for varying chip-level
parallelisms (fileserver workload)

transfer time between the host and the SSD can be reduced at
a higher PCIe bandwidth, the performance of ZNS shows little
improvements by the increased parallelism. This is due to the
low chip utilization at a high chip parallelism, as shown in
Figure 12(b), which is caused by idle intervals in SSD during
segment compaction. Consequently, the performance gain by
IZC or ZNS+ increases as the H/W parallelism increases.

4.6 Real SSD Performance
We also implemented a prototype of the ZNS+ SSD by modi-
fying the firmware of the OpenSSD Cosmos+ platform [29]
to evaluate the effects of the proposed techniques on a real
system. The prototype ZNS+ SSD has two limitations com-
pared to the SSD implemented in the FEMU emulator. First,
the flash memory controller on Cosmos+ OpenSSD does not
support the flash memory copyback operation; therefore, the
ZNS+ SSD firmware cannot utilize it. Second, the flash mem-
ory controller does not support the partial page read operation;
the entire 16 KB of the flash page must be read. Thus, SSD
must use several memcopy operations to copy partially valid
logical chunks, causing significant performance degradation,

(a) Performance (b) Chip Utilization

0

20

40

60

80

100

1/8 2/16 3/24 4/32 5/40

C
h

ip
 u

ti
li

za
ti

o
n
 (

%
)

of PCIe lanes / # of flashchips

ZNS IZC ZNS+

0

5

10

15

20

1/8 2/16 3/24 4/32 5/40

P
er

fo
rm

an
ce

 (
K

o
p

s/
s)

of PCIe lanes / # of flashchips

ZNS IZC ZNS+

Figure 12: Performance at different communication and flash
chip parallelisms (fileserver workload)

0

2

4

6

8

10

F V T Y-a Y-f

P
er

fo
rm

an
ce

 (
K

o
p

s/
s) ZNS IZC ZNS+

1.55x

1.20x

1.87x

1.06x
1.20x

1.03x

1.25x
1.23x

1.13x
1.10x

Figure 13: Performance result at a real SSD device.

which can be easily fixed if a new flash controller is designed
to support the internal copy. However, because we cannot
modify the flash controller of the Cosmos+ platform, the copy
requests of only fully valid logical chunks were offloaded
to the SSD, and the copyback operations were replaced by
the read-and-program operations in the experiments. To im-
plement ZNS+ SSD, the number of firmware code lines was
increased only by 6.3% (from 17,242 LoC to 18,334 LoC)
compared to the ZNS implementation.

Figure 13 shows the performance improvement achieved
by ZNS+ over ZNS for our prototype ZNS+ SSD. Owing to
the limitations of Cosmos+ OpenSSD, the performance im-
provement in the real SSD is less significant compared to the
emulation-based experiments. Nevertheless, ZNS+ improves
the performance by about 13–87% compared to ZNS by mini-
mizing IO request handling overhead and increasing flash chip
utilization. The performance improvements by IZC are about
3–23%. If the flash controller is upgraded considering the
internal copy operation, we will achieve higher performance
improvements.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 159

5 Related Work

Currently, SSD-based storage systems use a black-box model,
where the host has no knowledge of the internal structure
and management of the SSD. Such a black box model can
decouple the host system and the SSD device while enabling
them to communicate with each other via a simple IO inter-
face; however, such a design causes several problems. First,
duplicate logging operations and GCs can be performed in
both the host and the SSD; this is called the log-on-log [34]
problem. Second, it is difficult for the host to predict the IO
latency owing to the complex internal operations of SSDs.

To overcome the limitations of the black box model, sev-
eral studies proposed white- or grey-box models for the
SSD, which expose essential knobs to control data place-
ment, IO predictability, and IO isolation. AMF [21] pro-
posed a new block interface that supports append-only IO
via read/write/trim commands and an LFS for the interface. It
solved the log-on-log problem by a direct mapping between
the file system’s segment and SSD’s parallel flash erase blocks.
Then, the SSD-internal GC becomes unnecessary because the
segment is written only via the append-only scheme. It can
also reduce the SSD-internal resource by using coarse-grained
mapping instead of 4KB-level fine-grained mapping.

The open-channel SSD (OC-SSD) [10] exposes its hard-
ware geometry to the host. Therefore, the host can manage
flash page allocation and logical-to-physical mapping. Be-
cause the host initiates GC to reclaim invalid flash pages, the
IO latency can be controlled by the host. Recently, the OC-
SSD 2.0 specification [7] defined the vector chunk copy
command, which is an interface for copying data inside the
SSD. Our zone_compaction command is similar to the vec-
tor chunk copy command of OC-SSD. However, we are tar-
geting the ZNS SSD, which maintains a zone-level address
mapping in the device, and we propose a new block allocation
technique to utilize the copyback operation of flash memory.

Multi-streamed SSDs (MS-SSDs) [17] can be considered
to use a grey-box model. The host can specify the stream
ID of each write request, and the MS-SSD guarantees that
different streams of data are written into different flash erase
blocks. If the stream ID of each write request is assigned
based on the lifetime of its data, each flash erase block will
have data with similar lifetimes, and thus, the GC cost can be
reduced. Whereas the MS-SSD is based on the legacy SSD
managed by a fine-grained address mapping, our ZNS+ SSD
uses a coarse-grained mapping, and it is GC-less owing to
the sequential write-only constraint of the ZNS. Instead, our
ZNS+-aware LFS writes different lifetimes of data at different
segments to reduce the host-level segment compaction cost.

The ZNS is an industry standardization for the open-
channel interface. The ZNS interface is beneficial for
flash memory-based SSDs or shingled magnetic recording
drives [14, 32] owing to the sequential write-only constraint
of the storage media. Compared to the open-channel interface,

the ZNS provides a higher level of abstraction. Instead of
directly managing the physical flash chips of an SSD, the host
accesses the sequential writable zones and uses special com-
mands to change the write pointer and the state of each zone.
F2FS [19] and btrfs [27] have been patched to support zoned
block devices in Linux kernel 4.10 and 4.14, respectively. In
the patched F2FS [3], the file system’s segment size is set to
be equal to the zone size. It also disables the in-place-update
and threaded logging features that can cause non-sequential
writes. The patched btrfs [2] modifies the block allocation
algorithm and creates a new IO path to ensure sequential ac-
cess within the zone. In ZoneFS [1], each zone is shown as
an append-only file. Thus, user applications can access the
zoned block device via a file interface. These ZNS-aware file
systems will require zone compaction operations in any form.
However, they do not have any optimization techniques to
reduce the host-level zone compaction overhead.

One of the recent popular research issues is in-storage com-
puting. By offloading the host-side operations to the SSD, we
can reduce the computing load of the host system. When a re-
duce operation, such as filtering and counting, is offloaded, the
data traffic between the host and the storage can be reduced
significantly [13, 16]. Recently, the SSD-internal bandwidth
has exceeded the host IO interface bandwidth as more flash
chips are embedded for a large SSD capacity. Therefore, data
traffic reduction by in-storage computing is highly beneficial
for recent SSDs. Our ZNS+ is also a solution that can reduce
data traffic of large-capacity SSDs.

6 Conclusion and Future Work
The current ZNS interface imposes a high storage reclaiming
overhead on the host to simplify SSDs. To optimize the overall
IO performance, it is important to place each storage man-
agement task in the most appropriate location and make the
host and the SSD cooperate. To offload block copy operations
to the SSD, we designed ZNS+, which supports in-storage
zone compaction and sparse sequential overwrite. To utilize
the new features of ZNS+, we also proposed ZNS+-aware file
system techniques, i.e., the copyback-aware block allocation
and the hybrid segment recycling. In future work, we plan to
optimize various ZNS-aware file systems and applications to
utilize the ZNS+. We will also study the in-storage copyback-
aware block allocation and the partition-aware block alloca-
tion for multi-core SSDs to minimize the number of block
copy operations between different partitions.

Acknowledgements
We thank our shepherd Haryadi S. Gunawi and the anony-
mous reviewers for their valuable feedback. This work was
partly supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. IITP-2017-0-00914,
Software Star Lab) and Samsung Electronics.

160 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Accessing zoned block devices with ZoneFS. https:
//lwn.net/Articles/794364/.

[2] Btrfs zoned block device support. https:
//lwn.net/ml/linux-btrfs/20180809180450.
5091-1-naota@elisp.net/.

[3] F2FS-tools: zoned block device support.
https://sourceforge.net/p/linux-f2fs/
mailman/message/35456357/.

[4] Filebench. https://github.com/filebench/
filebench/wiki.

[5] NVMe 1.4a - TP 4053 zoned namespaces.
https://nvmexpress.org/wp-content/uploads/
NVM-Express-1.4-Ratified-TPs-1.zip.

[6] ONFi: Open NAND Flash Interface. http://www.
onfi.org/specifications.

[7] Open-Channel Solid State Drives Specification Re-
vision 2.0. http://lightnvm.io/docs/OCSSD-2_
0-20180129.pdf.

[8] Percona-Lab/tpcc-mysql. https://github.com/
Percona-Lab/tpcc-mysql.

[9] Zoned Namespaces (ZNS) SSDs. https://
zonedstorage.io/introduction/zns/.

[10] Matias Bjørling, Javier González, and Philippe Bonnet.
Lightnvm: The linux open-channel SSD subsystem. In
15th USENIX Conference on File and Storage Tech-
nologies (FAST ’17), pages 359–374, 2017.

[11] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, et al.
A flash memory controller for 15µs ultra-low-latency
SSD using high-speed 3D NAND flash with 3µs read
time. In 2018 IEEE International Solid-State Circuits
Conference (ISSCC’18), pages 338–340, 2018.

[12] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In 1st ACM Symp. Cloud
Computing, pages 143–154, 2010.

[13] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A Framework
for Near-Data Processing of Big Data Workloads. In
43rd International Symposium on Computer Architec-
ture (ISCA’16), page 153–165, 2016.

[14] Weiping He and David H. C. Du. SMaRT: An Approach
to Shingled Magnetic Recording Translation. In 15th
USENIX Conference on File and Storage Technologies
(FAST ’17), page 121–133, 2017.

[15] Duwon Hong, Myungsuk Kim, Jisung Park, Myoungsoo
Jung, and Jihong Kim. Improving SSD Performance
Using Adaptive Restricted-Copyback Operations. In
IEEE Non-Volatile Memory Systems and Applications
Symposium (NVMSA ’19), 2019.

[16] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk
Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon
Jeong. YourSQL: A High-Performance Database Sys-
tem Leveraging In-Storage Computing. Proceedings of
the VLDB Endowment, 9(12):924–935, August 2016.

[17] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The multi-streamed solid-state drive. In
6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage’14), 2014.

[18] Miryeong Kwon, Donghyun Gouk, Changrim Lee, By-
ounggeun Kim, Jooyoung Hwang, and Myoungsoo Jung.
DC-Store: Eliminating noisy neighbor containers using
deterministic I/O performance and resource isolation.
In 18th USENIX Conference on File and Storage Tech-
nology (FAST ’20), page 183–191, 2020.

[19] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In 13th USENIX Conference on File and Storage
Technologies (FAST’15), pages 273–286, 2015.

[20] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous I/O stack:
a low-latency kernel I/O stack for ultra-low latency
SSDs. In 2019 USENIX Annual Technical Conference
(USENIX ATC’19), pages 603–616, 2019.

[21] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-managed flash. In
14th USENIX Conference on File and Storage Tech-
nologies (FAST ’16), pages 339–353, 2016.

[22] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
nathan Sundararaman, Matias Bjørling, and Haryadi S
Gunawi. The CASE of FEMU: Cheap, Accurate,
Scalable and Extensible Flash Emulator. In 16th
USENIX Conference on File and Storage Technologies
(FAST ’18), pages 83–90, 2018.

[23] Yoohyuk Lim, Jaemin Lee, Cassiano Campes, and
Euiseong Seo. Parity-stream separation and SLC/MLC
convertible programming for life span and performance
improvement of SSD RAIDs. In 9th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStor-
age’17), 2017.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 161

https://lwn.net/Articles/794364/
https://lwn.net/Articles/794364/
https://lwn.net/ml/linux-btrfs/20180809180450.5091-1-naota@elisp.net/
https://lwn.net/ml/linux-btrfs/20180809180450.5091-1-naota@elisp.net/
https://lwn.net/ml/linux-btrfs/20180809180450.5091-1-naota@elisp.net/
https://sourceforge.net/p/linux-f2fs/mailman/message/35456357/
https://sourceforge.net/p/linux-f2fs/mailman/message/35456357/
https://github.com/filebench/filebench/wiki
https://github.com/filebench/filebench/wiki
https://nvmexpress.org/wp-content/uploads/NVM-Express-1.4-Ratified-TPs-1.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-1.4-Ratified-TPs-1.zip
http://www.onfi.org/specifications
http://www.onfi.org/specifications
http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf
http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf
https://github.com/Percona-Lab/tpcc-mysql
https://github.com/Percona-Lab/tpcc-mysql
https://zonedstorage.io/introduction/zns/
https://zonedstorage.io/introduction/zns/

[24] Hiroshi Maejima, Kazushige Kanda, Susumu Fujimura,
Teruo Takagiwa, Susumu Ozawa, Jumpei Sato, Yoshi-
hiko Shindo, Manabu Sato, Naoaki Kanagawa, Junji
Musha, et al. A 512GB 3b/cell 3D flash memory on
a 96-word-line-layer technology. In 2018 IEEE Inter-
national Solid-State Circuits Conference (ISSCC’18),
pages 336–338, 2018.

[25] Jeanna Neefe Matthews, Drew Roselli, Adam M.
Costello, Randolph Y. Wang, and Thomas E. Anderson.
Improving the performance of log-structured file sys-
tems with adaptive methods. ACM SIGOPS Operating
Systems Review, 31(5):238–251, 1997.

[26] Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee
Lee, and Sam H. Noh. Optimizations of LFS with Slack
Space Recycling and Lazy Indirect Block Update. In 3rd
Annual Haifa Experimental Systems Conference (SYS-
TOR’10), 2010.

[27] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The linux B-tree filesystem. ACM Transactions on Stor-
age, 9(3):1–32, 2013.

[28] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems, 10(1):26–52, 1992.

[29] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-
Soo Kim. Cosmos openSSD: A PCIe-based open source
SSD platform. Proc. Flash Memory Summit, 2014.

[30] Wei Wang and Tao Xie. PCFTL: A Plane-Centric
Flash Translation Layer Utilizing Copy-Back Opera-
tions. IEEE Transactions on Parallel and Distributed
Systems, 26(12):3420–3432, 2015.

[31] John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The HP AutoRAID Hierarchical Storage
System. ACM Transactions on Computer Systems,
14(1):108–136, 1996.

[32] F. Wu, Z. Fan, M. Yang, B. Zhang, X. Ge, and D. H. C.
Du. Performance Evaluation of Host Aware Shingled
Magnetic Recording (HA-SMR) Drives. IEEE Transac-
tions on Computers, 66(11):1932–1945, 2017.

[33] Fei Wu, Jiaona Zhou, Shunzhuo Wang, Yajuan Du,
Chengmo Yang, and Changsheng Xie. FastGC: Accel-
erate garbage collection via an efficient copyback-based
data migration in SSDs. In 55th Annual Design Automa-
tion Conference (DAC’18), 2018.

[34] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Tala-
gala, and Swaminathan Sundararaman. Don’t stack
your log on my log. In 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads
(INFLOW’14), 2014.

[35] Jie Zhang, Miryeong Kwon, Michael Swift, and My-
oungsoo Jung. Scalable parallel flash firmware for many-
core architectures. In 18th USENIX Conference on
File and Storage Technology (FAST ’20), page 121–136,
2020.

[36] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. De-Indirection
for Flash-Based SSDs with Nameless Writes. In 10th
USENIX Conference on File and Storage Technologies
(FAST’12), 2012.

162 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DMon: Efficient Detection and Correction of Data Locality Problems Using

Selective Profiling

Tanvir Ahmed Khan

University of Michigan

Ian Neal

University of Michigan

Gilles Pokam

Intel Corporation

Barzan Mozafari

University of Michigan

Baris Kasikci

University of Michigan

Abstract

Poor data locality hurts an application’s performance. While

compiler-based techniques have been proposed to improve

data locality, they depend on heuristics, which can sometimes

hurt performance. Therefore, developers typically find data

locality issues via dynamic profiling and repair them manually.

Alas, existing profiling techniques incur high overhead when

used to identify data locality problems and cannot be deployed

in production, where programs may exhibit previously-unseen

performance problems.

We present selective profiling, a technique that locates data

locality problems with low-enough overhead that is suitable

for production use. To achieve low overhead, selective pro-

filing gathers runtime execution information selectively and

incrementally. Using selective profiling, we build DMon, a

system that can automatically locate data locality problems

in production, identify access patterns that hurt locality, and

repair such patterns using targeted optimizations.

Thanks to selective profiling, DMon’s profiling overhead

is 1.36% on average, making it feasible for production use.

DMon’s targeted optimizations provide 16.83% speedup on

average (up to 53.14%), compared to a baseline that uses

the highest level of compiler optimization. DMon speeds up

PostgreSQL, one of the most popular database systems, by

6.64% on average (up to 17.48%).

1 Introduction

Poor data locality is the root cause of many performance

problems [6, 34, 48]. Rapidly increasing data footprints of

modern applications due to heavily data-driven use cases

(e.g., analytics [109], machine learning [1], etc.) make mat-

ters worse, precipitating data locality problems further [6].

Recent work shows that up to 64% of all CPU cycles are lost

due to poor data locality for widely used data center applica-

tions [90].

Although many compiler optimizations aim to eliminate

data locality problems statically [3, 22, 23, 70, 71], such op-

timizations rely on compile-time heuristics, which may not

accurately identify and repair problems that manifest dynami-

cally at run time. In fact, as we (§6.2) and others [2,15,20,27]

demonstrate, compiler-based techniques can sometimes even

hurt performance when the assumptions made by those heuris-

tics do not hold in practice.

To overcome the limitations of static optimizations, the

systems community has invested substantial effort in devel-

oping dynamic profiling tools [28, 38, 57, 97, 102]. Dynamic

profilers are capable of gathering detailed and more accurate

execution information, which a developer can use to identify

and resolve data locality problems.

Traditionally, existing dynamic profiling tools have been

used offline, namely during testing and development, where

test cases are designed to adequately represent real-world

program behavior. However, due to the proliferation of cloud

computing and mobile devices, programs exhibit vast vari-

ations in terms of how they execute and consume data in

production [48,84]. Consequently, it has become increasingly

difficult for offline profiling to be representative of how pro-

grams behave in production settings.

Unfortunately, existing dynamic profilers incur consid-

erable overheads when used to detect data locality issues,

and therefore they are not suitable for production environ-

ments [13, 57, 60–62, 77, 78].

In this paper, we present selective profiling, a data local-

ity profiling technique that not only accurately detects data

locality problems, but also incurs low overhead, making it

suitable for production deployment. Using selective profiling,

we design DMon, a system that can automatically detect and

eliminate data locality problems in production systems.

Selective profiling is a lightweight technique to continu-

ously monitor production executions for symptoms of poor

data locality (e.g., frequent memory stalls, increased cache

misses, etc.). As these high-level indicators of data locality

problems are identified, selective profiling automatically tran-

sitions to incrementally monitoring more precise information

about the source location and exact cause of the data locality

problem—this is done by traversing a hierarchical abstraction

we introduce, called the data locality tree (§3), which allows

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 163

DMon to monitor hardware events in a selective way to create

an accurate profile at low run-time overhead.

After gathering the profile, DMon performs an offline anal-

ysis to identify common patterns of memory accesses. DMon

then matches these patterns to a set of existing data locality op-

timizations (§4.1), which it primarily applies automatically, in

a targeted manner (unlike static techniques). For cases where

DMon cannot automatically apply an optimization, it provides

detailed information about the locality problem to the devel-

oper, who can fix the problem manually; in our evaluation,

this case occurs only once and the developer can apply DMon-

suggested optimization with minimal effort (<10 LOC). We

provide four optimization passes (§4.2) which DMon can use

to automatically fix data locality problems and are sufficient

for DMon to fix major data locality problems we identify

across the systems we test in our evaluation (§6).

Selective profiling incurs 1.36% monitoring overhead on

average, making it an ideal profiling technique for detecting

data locality issues in production. The run-time overhead of

selective profiling is significantly (i.e., 9×) lower than that of

the state-of-the-art data locality profiler [17, 68]. Overall, tar-

geted optimizations performed by DMon for 13 applications

deliver on average 16.83% (up to 53.14%) speedup. To show

the effectiveness of DMon for large real-world systems, we

applied DMon to PostgreSQL [92], a popular open-source

database system, where DMon-guided optimizations provided

on average 6.64% and up to 17.48% speedup across all 22

TPC-H [26] queries. Furthermore, the optimizations enabled

by DMon provides 20% more speedup, on average, than opti-

mizations provided by the same state-of-the-art profiler.

Overall, we make the following contributions:

• Selective profiling, a data locality profiling technique that

automatically and incrementally monitors fine-grained exe-

cution information to accurately detect data locality prob-

lems with low overhead.

• DMon, a system that implements selective profiling to de-

tect data locality problems in production systems. DMon

automatically selects specific optimizations based on mem-

ory access patterns, and applies these well-known optimiza-

tion techniques automatically in most cases.

• By evaluating DMon in the context of widely-used appli-

cations, we show that selective profiling can detect data

locality issues in production with low overhead (1.36% on

average). Moreover, we show that selective profile-guided

targeted data locality optimizations provide significant per-

formance speedup (16.83% on average, up to 53.14%).

We explain the key design challenge for accurately and

efficiently detecting data locality problems in §2. We describe

selective profiling in §3, DMon’s design in §4, and DMon’s

implementation in §5. We evaluate DMon in §6, compare

DMon to related work in §7, and conclude in §8.

2 Challenges

It is challenging to accurately pinpoint data locality prob-

lems, while incurring low run-time performance overhead.

Compiler-based static data locality optimizations [14, 70,

71, 82, 91] are appealing because they incur no run-time over-

head. However, static techniques apply optimizations based

on compile-time heuristics, which may not accurately identify

program locations that suffer from poor locality at run time.

In fact, compiler-based techniques can sometimes even hurt

performance when the assumptions made by those heuristics

do not hold in practice [2, 15, 20, 27].

To demonstrate how compile-time heuristics can hurt per-

formance, we use a compiler-based data prefetching tech-

nique [71] to improve data locality in two matrix decomposi-

tion benchmarks [104], lu_cb and lu_ncb from the PARSEC

suite [12]. This optimization combines loop splitting and ex-

plicit data prefetching to increase data locality. Using the

benchmarks’ standard inputs, we determine that 50% of all

the cache misses in lu_cb and lu_ncb stem from a single

function, which we optimized using compiler-guided data

prefetching [71]. The optimization provides a 19.4% speedup

for lu_ncb, but yields a 19.85% slowdown for lu_cb. This oc-

curs because, for lu_ncb, prefetching reduces all cache misses;

however, for lu_cb, there was a dramatic increase in L2 cache

misses despite a reduction in L1 and L3 cache misses.

Dynamic profilers can accurately pinpoint data locality

problems [13, 57, 60–62, 77, 78], however, they impose con-

siderable overhead (i.e., >10% on average), as they track

too much information: memory accesses, timestamps, cache

events, etc. Consequently, existing data locality profilers are

not deployed in production.

A potential remedy to the high overhead of existing pro-

filers is statistical sampling, which can collect information

with reasonable overhead [9]. For instance, the state-of-the-

art Intel VTune profiler [85] samples information such as

hardware and software performance counters, timestamps,

program locations, and accessed memory addresses to gather

the necessary information for detecting data locality issues.

Alas, even sampling is not enough to reduce the overhead

incurred by popularly available profilers (e.g., Intel VTune)

to detect data locality problems to levels acceptable for pro-

duction use. To assess the impact of sampling, we use the

state-of-the-art profiler VTune to detect the data locality is-

sues in our evaluation targets. Despite sampling-based data

collection, VTune still incurs 26% overhead on average (and

up to 60%), which is unacceptable for production settings.

We argue that not only the monitored execution informa-

tion must be deliberately chosen to only pertain to data local-

ity problems, but monitoring must occur incrementally, only

when there are increasingly clear signs of poor data locality.

Next, we explain how selective profiling achieves this.

164 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Front-end
Bound

Back-end
Bound

Bad
Speculation

Retiring

Core
Bound

Memory
Bound

L1 Bound L3 BoundL2 Bound
DRAM
Bound

L1 cache
misses

L2 cache
misses

L3 cache
misses

L
ay

er
 1

L
ay

er
 2

L
ay

er
 3

Data
Locality

TreeL
ay

er
 4

Fetch Bubbles Recovery Bubbles Retired Slots

Execution Stalls
Memory Stalls Load
Memory Stalls Store

…

Memory Stalls L1 miss
Memory Stalls L2 miss
Memory Stalls L3 miss

…

Figure 1: The locality tree abstraction. Performance events

that pertain to each tree node are in italic. There are no ded-

icated events to determine if a program is back-end bound.

Instead, selective profiling subtracts from total stalls the sum

of the stalls that cause other bottlenecks at layer 1 to determine

if an execution is back-end bound.

3 Selective Profiling

Selective profiling is a monitoring technique that incremen-

tally monitors more detailed, yet more targeted, run-time in-

formation to identify data locality problems. Next, we discuss

the three key components of selective profiling: (1) Targeted

Monitoring, (2) Incremental Monitoring, and (3) Sampling.

3.1 Targeted Monitoring

Unlike existing offline profilers [57, 97, 98, 102, 106] that

monitor many hardware events and information such as pro-

gram locations, selective profiling needs to carefully choose

which information to monitor in order to accurately and effi-

ciently detect data locality problems. A straw-man approach

is to only monitor events such as data cache misses, which are

directly related to data locality problems. However, simply

monitoring data cache misses in isolation can be misleading.

For instance, a seemingly large number of data cache misses

may have no impact on the performance of an application

that spends a lot of time fetching instructions to execute (a

common theme in modern Web services [8, 48]).

Selective profiling monitors a select group of hardware

events that allow it to determine if the execution of a program

is bounded by a subset of those events that we call the data

locality tree. As shown in Fig. 1, the data locality tree is a

hierarchical abstraction of data locality-related performance

events from Intel’s Top-Down methodology [106]. The Top-

Down methodology provides a breakdown of performance

events in Intel CPUs, which a developer can use as a guideline

to navigate their manual profiling efforts. However, unlike

Top-Down, selective profiling automatically transitions from

one layer to another, incrementally monitoring more events at

each layer of the tree, as increasing evidence of data locality

issues is observed at run time.

At layer 1, selective profiling determines whether the ex-

ecution is back-end bound—i.e., spends a large portion of

Time
0 p (100 ms) 2p 3p

Layer 1

Back-end
Bound
>10%

Memory
Bound
>10%

L2 or L3 or
DRAM
Bound
>10%

runs till
execution

ends

Layer 2

Layer 3

Layer 4

Figure 2: Incremental monitoring

the time either in CPU execution (CPU bound) or accessing

memory (memory bound). At layer 1, a program can also be

front-end bound (i.e., fetching instructions), incurring mis-

speculations, or retiring instructions. For executions that are

back-end bound, selective profiling determines whether they

are processor-core bound or memory bound in layer 2.

If an execution is memory bound in layer 2, selective profil-

ing monitors events that provide a breakdown of the execution

into 4 categories in layer 3. Of those 4 categories, only 3 are

related to data locality problems: L2 bound and L3 bound

represent the time spent accessing the L2 and the L3 cache,

respectively; “DRAM bound” represents the time spent ac-

cessing the DRAM. If a program is L1 bound, the data or

instructions that the program uses are already as close to the

processor as possible and it is hard to improve data locality fur-

ther. In such cases, the program may have other performance

problems, such as false sharing [93] or lock contention [87].

Selective profiling also tracks information to map perfor-

mance problems back to code. In layer 4, selective profiling

records program location information along with hardware

events. For example, if a program is L2 bound, selective profil-

ing records L1 cache misses and the location of the instruction

causing the miss. By locating and reducing L1 cache misses,

the execution time will potentially not be L2 bound, and the

locality problem will likely be fixed. Similarly, if a program

is L3 or DRAM bound, selective profiling records L2 and L3

cache misses and associated program locations, respectively.

3.2 Incremental Monitoring

Unfortunately, merely restricting the scope of monitored

performance events to the data locality tree is not sufficient

for low overhead monitoring of data locality issues. Thus,

selective profiling instead adopts an incremental monitoring

approach. This approach increases the amount of information

gathered at run time to efficiently identify program locations

that may have a locality problem.

Fig. 2 shows the details of incremental monitoring. By de-

fault, selective profiling monitors the hardware events that

provide the layer 1 breakdown. Selective profiling only transi-

tions to monitoring layer 2 events if the execution is back-end

bound for at least 10% of a time-slice p (100ms by default).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 165

We use 10% as the default threshold, which we empirically

determine to be a reasonable threshold (§6.4). We also choose

100ms as a reasonable time-slice for our programs, since the

shortest execution across our benchmarks was 1 second and

the longest was 2867 seconds. Nonetheless, the percentage

and monitoring periods are both configurable. We explore the

sensitivity of our results to all these parameters in §6.4.

If selective profiling determines that the execution is also

memory bound for at least 10% of the same interval p, it starts

monitoring layer 3 events. If selective profiling determines

that the execution is L2, L3, or DRAM bound for at least

10% of the same interval p, it transitions to layer 4. Selective

profiling then gathers L1, L2, and L3 cache miss events and

program locations where the misses occur.

Incremental monitoring is key to ensuring selective profil-

ing’s low performance overhead. Successive layers are more

costly to monitor as they must count more events—for exam-

ple, layer 2 requires counting 3× more hardware performance

events than layer 1. However, unless selective profiling deter-

mines that an execution is back-end bound, it only needs to

monitor events at layer 1. As shown in §6.1, only monitoring

layer 1 events incurs a negligible overhead (0.7% on average).

Programs can go through phases of different locality issues

(e.g., L2 cache misses in one phase and L3 cache misses in

another phase). Selective profiling can pinpoint the root cause

of the locality problem for each phase, provided the duration

of a given phase is at least 4p (where p is the duration of selec-

tive profiling’s time-slice, per layer). If this time-slice is too

long, selective profiling may miss some short-running phases.

The time slice is configurable. We empirically determine that

a time slice of 100ms is effective in practice (§6.4).

3.3 Sampling

In addition to targeted and incremental monitoring, selec-

tive profiling also employs sampling at layer 4 for recording

L1, L2, and L3 cache misses to further reduce the overhead.

Although sampling can reduce run-time overhead, it can also

reduce the coverage of data locality issues that selective pro-

filing detects if the sampling period is too high. We define

coverage as the ratio of the number of locality issues detected

with a given sampling rate to the number of locality issues

detected with the highest possible sampling rate.

By default, selective profiling uses a conservative sampling

period of 1000 (1 sample per 1000 events), which we have

empirically found to yield high coverage (97%, discussed

in §6.4) in detecting locality problems across the 13 bench-

marks we evaluated. The developer, however, can use a lower

sampling period (up to 1 sample per 100 events, as allowed

per Linux’s perf interface). We analyze the coverage versus

overhead trade-off of different sampling periods in §6.4.

Selective profiling does not apply sampling in layers 1–

3 since sampling reduces coverage. Moreover, in layers 1–

3, selective profiling’s incremental monitoring reduces the

overhead to a negligible amount in all tested applications (on

Source
Code

Selective Profiling

101100

010110

100101

Static Memory
Access Pattern

Analysis

Automated/Manual
Locality

Optimizations
3

In Production

Offline

1

2

101011

010110

010101

Targeted
Monitoring

Incremental
Monitoring

Sampling

Figure 3: How DMon leverages selective profiling to detect

and repair data locality problems.

average 1.36%). Therefore, selective profiling does not need

to apply sampling at those layers. However, if the overhead of

the first three layers is high, selective profiling can optionally

enable sampling at those layers as well.

Now, we describe how data locality information collected

via selective profiling can be used to guide automated and

manual profile-guided optimizations using DMon.

4 DMon

Selective profiling detects program locations with poor data

locality in production. DMon analyzes these locations offline

to identify the data access patterns causing data locality issues.

Based on the recognized access patterns, DMon applies exist-

ing compiler optimizations only to these program locations in

a targeted manner to improve data locality. We offer four such

optimizations which we describe in §4.2. These optimiza-

tions can be automatically applied in most cases for C/C++

applications; for applications written in other programming

languages, selective profiling results can still enable manual

optimizations (§6.3).

Fig. 3 shows how DMon employs selective profiling to

identify and eliminate data locality issues. In step 1 , DMon

monitors programs in production to determine whether they

suffer from poor locality using selective profiling.

Steps 2 – 3 happen offline, during recompilation. In step

2 , DMon determines the memory access patterns that are

causing poor data locality (§4.1). In step 3 , based on the

identified access patterns, either profile-guided automatic op-

timizations or manual optimizations can be performed to im-

prove data locality (§4.2). The optimized program is then

rebuilt and redeployed in production.

4.1 Static Memory Access Pattern Analysis

Once selective profiling identifies memory access instruc-

tions that suffer from poor locality in production, DMon an-

alyzes the corresponding program locations offline to deter-

mine the cause of the problems. DMon only analyzes memory

access instructions that incur more than 10% of the total cache

miss events sampled in layer 4 of selective profiling.

166 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Four common memory access patterns that cause

data locality problems in many applications. Here, we show

their examples from the PARSEC [12] benchmark suite.

Benchmark Code snippet Access pattern

lu_ncb a[i] += alpha*b[i];
Direct

Addressing

radix
this_key = key_from[i] & bb;

this_key = this_key >> shiftnum;

tmp = rank_ff_mynum[this_key];

Indirect
Addressing

radiosity

while(int_list)

{

if(int_list->dst==inter->dst)return(1);

int_list = int_list->next ;

}

Unbalanced
Access

dedup if(LstElmnt->seq.l2num > H->Elmnts[Child]-

>seq.l2num){
Pointer Chasing

To determine the patterns of data locality issues, we ini-

tially analyze the results of selective profiling manually for

the benchmarks from the popular PARSEC [12] benchmark

suite. Based on our manual analysis of program statements

causing data locality issues, we identify four key memory

access patterns that can lead to poor data locality. Table 1

shows one example of each of these memory access patterns

that cause poor data locality. Perhaps unsurprisingly, all the

accesses that contribute significantly to poor data locality are

in loops that execute many times and access a relatively large

amount of data compared to other memory access operations

in the application. These four memory access patterns also

cause data locality problems in a diverse set of real-world

applications (as we show in §6.3).

For lu_ncb, most cache misses that hurt program perfor-

mance happen while accessing arrays in a loop. Since the loop

induction variable (i) is directly used to index those arrays,

we call this pattern direct addressing. For radix, the loop in-

duction variable (i) is used to index an auxiliary array to load

an intermediate value (this_key). The loaded intermediate

value is used as index while accessing another array, and the

last access suffers from poor data locality. We categorize this

pattern as indirect addressing.

For radiosity, most cache misses occur in a while loop,

where two member variables (dst and next) of a structure

(int_list) are accessed repeatedly. We determine that this

structure also contains four other member variables not ac-

cessed in this loop. Since only accessing a subset of all mem-

ber variables causes cache misses, we call this access pat-

tern as unbalanced access. Finally, for dedup, locality suf-

fers while accessing a chain of structure pointers (pointers H,

Elmnts[Child], and seq, and finally a member variable l2num)

in a loop. We denote this pattern as pointer chasing.

Based on findings of these manual observations, we de-

sign the static memory access pattern analysis component of

DMon, as shown in Fig. 4. Although DMon’s pattern detec-

tion is inspired by the manual analysis of locality issues in

PARSEC, we show in our evaluation that the patterns DMon

identifies generalize to a broad set of systems (§6.2 and §6.3).

In particular, the four patterns of poor locality constitute the

Determine
Structure Access

Pattern

Indirect
Addressing

Direct
Addressing

Direct
Prefetching

Indirect
Prefetching

Instruction

Structure
Splitting

Determine
Addressing

Mode

Pointer
Chasing

Unbalanced
Access

Structure
Merging

Optimizations

Figure 4: Static memory access pattern analysis in DMon and

their corresponding optimizations. Shaded optimizations are

mutually exclusive.

root causes of all the data locality problems we discover in

nine other benchmarks that we had not studied previously.

As shown in Fig. 4, DMon determines the addressing mode

of the memory instruction (i.e., direct or indirect addressing).

If the access is made to a structure instance, DMon also de-

termines the type of the access (i.e., unbalanced access and

pointer chasing). We discuss each analysis next.

Addressing mode. DMon’s static analysis checks if the in-

struction uses direct or indirect addressing. Here, direct ad-

dressing occurs if the computation of the accessed location

does not involve another memory address (e.g.,for(i=...)

a[i]). Conversely, indirect memory addressing occurs if the

computation of the accessed location involves computing an-

other memory address (e.g.,for(i=...) a[b[i]]).

Structure access pattern. In addition to determining the

addressing mode, DMon’s static analysis checks to see if the

instruction accesses a member of a structure. DMon does

this by mapping the instruction to the compiler intermediate

representation and checking if it accesses a structure field.

DMon searches for two patterns when a structure member is

accessed, namely unbalanced access and pointer chasing.

DMon concludes that there is an unbalanced access pattern,

when accesses to only a subset of member variables incur a

large fraction of cache misses. Pointer chasing occurs when

the accessed memory location belongs to a hierarchy of nested

structures (e.g., A->B->C).

4.2 Optimizations Implemented in DMon

To show the usefulness of selective profiling, we implement

four profile-guided data locality optimization passes using

LLVM [56] for C/C++ programs. Our passes optimize the

four patterns of poor data locality that DMon identifies. For

applications written in other languages, selective profiling

results can be used to apply manual optimizations (§6.3).

As shown in Fig. 4, DMon recommends applying a specific

optimization technique based on the addressing mode and the

structure access patterns of the memory access instruction.

While these optimizations are well-known and usually applied

statically, selective profiling information enables the targeted

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 167

for(i=0;i<128;i++)

ACCESS a[i];

for(i=0;i<16;i+=8)

prefetch(&a[i]);

for(i=0;i<112;i+=8){

prefetch(&a[i+16]);

ACCESS a[i], …, a[i+7];

}

for(i=112;i<128;i++)

ACCESS a[i];

Original Loop Prefetched Loop

Figure 5: Software prefetching for direct memory access,

adapted from [71]. The induction variable is of type int. The

prefetch instruction prefetches one cache line (64 bytes).

application of these optimizations to where they are absolutely

needed in a program. As we show in §6.2, DMon-enabled

targeted profile-guided optimizations outperform purely static

optimizations by 10% on average.

Direct prefetching. The first optimization we implement

uses direct prefetching [71] to fix locality problems that stem

from memory accesses that use direct addressing. Direct

prefetching fetches the cache lines that a program will ac-

cess in the near future into the cache to improve data locality.

At a high level, direct prefetching works by splitting each

loop suffering from poor data locality into three loops, as

shown in Fig. 5. The first loop is responsible for prefetching

the initial cache line that contains the data accessed by the

loop. The second loop starts prefetching the next cache line(s).

It also simultaneously performs the original computation that

was carried out in the original loop, starting with the first

prefetched cache line. The third and last loop completes the

computation using the last prefetched cache line.

Direct prefetching can be applied based on compile-time

heuristics only. However, this can cause significant perfor-

mance degradation [29], as we also show in our evaluation

(§6.2). This happens because these heuristics might (1) bloat

the code footprint by adding unnecessary prefetching instruc-

tions (e.g., for lines that would anyways be prefetched by

the hardware prefetcher), and (2) cause cache pollution by

prefetching data that is not frequently-accessed.

Direct prefetching can also be applied in hardware with

popular hardware prefetchers including next-line and stride

prefetchers that most modern processors supposedly em-

ploy [42, 94]. However, DMon finds that many directly ad-

dressed memory accesses suffer from poor data locality, be-

cause the underlying hardware prefetchers can not prefetch

the cache lines in a timely manner. This is because prefetchers

work in a reactive manner, i.e., it takes several iterations for

the hardware prefetcher to detect the pattern and start prefetch-

ing, but if prefetching is done with explicit instructions, the

performance benefits are immediate.

Instead of applying direct prefetching based on compile-

time heuristics, our pass only applies it to program locations

where DMon identifies that direct addressing access pattern

is causing poor data locality.

for(i=0;i<A_SIZE;i++)

b[a[i]]++;

for(i=0;i<A_SIZE;i++){

prefetch(&a[i+16*2]);

if(i+16<A_SIZE)

prefetch(&b[a[i+16]]);

b[a[i]]++;

}

Original Loop Prefetched Loop

1

2

Figure 6: Software prefetching for indirect memory access,

adapted from [3].

Indirect prefetching. Our second optimization uses indirect

prefetching [3], which is similar to direct prefetching in that

it brings data that will soon be used into the cache. Unlike

direct prefetching, indirect prefetching also has to prefetch

one additional cache line per each level of indirection.

Fig. 6 shows an example of indirect prefetching. Here, the

original loop increments elements in an array, b. However, the

index of the array b is computed using another array, a. The

loop on the right side prefetches the cache line containing the

elements of b that will be accessed in the near future (prefetch

2). Prefetching the elements of b requires accessing the

elements of a. Thus, to prefetch the elements of b, we need to

(1) have an array boundary check, and (2) also prefetch the

cache line containing the elements of a (prefetch 1).

Structure splitting. The third optimization, structure split-

ting, moves infrequently-accessed members of a structure

with a pointer to a new structure that only contains those

members. Structure splitting is beneficial only when the total

size of infrequently-accessed member(s) is larger than the

pointer size. Thus, the size of the original structure is reduced,

fitting into fewer cache lines. During memory access pattern

analysis, if DMon detects that an unbalanced access pattern

(i.e., a subset of structure members are accessed more fre-

quently than others) to members of a structure is causing poor

locality, structure splitting is an appropriate optimization.

Fig. 7 shows an example of structure splitting. Here, before

structure splitting, the structure S has three members (a, b,

c) of types A, B, C, respectively. In the original program, an

instance of S spans two cache lines. Both cache lines need to

be accessed each time the program accesses an instance of S.

For example, if neither of these cache lines is present in the

L1 cache, the program will incur two L1 cache misses.

After structure splitting, the new structure S’ fits in a single

cache line (Cache Line 1) because the infrequently-accessed

member b is moved into a new structure S2, residing in its

own cache line (Cache Line 2). Consequently, when the pro-

gram accesses an instance of S, it will usually only need to

access the cache line (Cache Line 1) containing the frequently-

accessed members (a, c), which would incur a single L1 cache

miss (rather than two).

Structure splitting has been previously explored [22] in

type-safe languages (e.g., Java). However, implementing struc-

ture splitting in a type-unsafe language (we target C/C++) is

more challenging. This is because structure splitting needs to

168 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

struct S{

A a;

B b;

C c;

};

a b

Cache Line 1

Structure
Splitting

Cache Line 1

struct S’{

A a;

C c;

S2* p;

};

Cache Line 2

Frequently-accessed

a c p

Cache Line 2

struct S2 {

B b;

};

Infrequently-accessed

c b

Figure 7: Structure splitting, example adapted from [22].

ensure that the program continues operating correctly when

the layout of the structure is modified. More specifically, all

the instructions that used to refer to the old layout need to be

updated to refer to the new layout.

In our optimization pass, we addresses this challenge using

a complete, interprocedural, inclusion-based pointer analy-

sis [5] that can determine all instructions that could possibly

access the split structures. As shown in §6.2, this optimization

can automatically be applied in all but one of the benchmarks.

Structure merging. The final optimization, structure merg-

ing, is the inverse of structure splitting as it replaces a

frequently-accessed pointer member of a structure with the

data that the pointer references. The key idea is to eliminate

the pointer chasing pattern that DMon identifies by removing

a level of indirection for frequently-accessed elements.

Fig. 8 shows an example of structure merging. Before merg-

ing, the structure S has three members (a, b, p) of types A,

B, S2*, respectively. The instance of S resides in the first

cache line, and the pointer p points to an instance of struc-

ture S2 that resides in the second cache line. The size of a,

b, and c is such that they can all fit in one cache line. If c

is accessed as frequently as a and b, then data locality can

be improved by merging these two structures into one. This

structure merge will also bypass one memory access (S’->C

instead of S->S2->C). Structure merging only combines mem-

ber variables across different structure types and hence does

not perform exhaustive data structure conversions (e.g., trans-

forming a linked list into an array) [22, 23].

DMon employs structure merging conservatively so that it

will only be applied if soundness can be guaranteed. In other

words, DMon applies this optimization only if all updates via

the structure pointer can be safely redirected (e.g., in Fig. 8, all

changes to S->S2->C could be replaced by S’->C). To ensure

this, structure merging also uses the same pointer analysis [5]

that structure splitting uses.

Other optimizations.. DMon can be easily extended to ac-

commodate additional optimizations if needed to fix different

patterns of memory accesses which cause data locality prob-

lems. For example, DMon can work as a framework to apply

optimizations like loop reordering, blocking, tiling, and strip

mining in a profile-guided manner. However, many of these

optimizations require expensive memory access trace collec-

tion which can not be deployed in production due to high

struct S{

A a;

B b;

S2* p;

};

a b p

Cache Line 1

Structure

Merging

Cache Line 1

struct S’{

A a;

B b;

C c;

S2’* p;

};

struct S2{

C c;

D d;

E e;

};

Cache Line 2

Frequently-accessed

a b c pc d e d e

Cache Line 2

struct S2’{

D d;

E e;

};

Infrequently-accessed

Figure 8: Structure merging example.

overheads [64]. In the future, we intend to explore how these

optimizations can be applied based on more efficient profiling.

5 Implementation

DMon’s selective profiling prototype is implemented for

Intel processors. In particular, selective profiling relies on the

Linux perf [97] interface for profiling hardware events in lay-

ers 1–4 (§3). We initially build the benchmarks using debug

information and the highest level of compiler optimization

(-O3), and then use the strip utility [101] to remove the de-

bug information. During in-production monitoring, selective

profiling records the program counter for each sampled cache

miss event in layer 4. To efficiently deal with multi-threaded

applications, selective profiling maintains a per-thread buffer

(2MB per thread) to record the program counters. When the

buffer gets full, the previous samples get overwritten. Offline,

DMon uses the program counter, the stripped debug informa-

tion, and the program binary to find the source code location

where a cache miss occurred in production.

We implement DMon’s optimizations in the LLVM [56]

compiler framework. We use clang [99] to generate the

LLVM intermediate representation (IR) that the optimiza-

tion passes of DMon can operate on. The optimizations rely

on the program’s debug information to map the source code

location to LLVM IR, because a 1-to-1 mapping between

machine code and LLVM IR does not exist.

Similar to other state-of-the-art profile-guided optimization

techniques [17, 68], DMon’s use of debug information for

mapping machine code to LLVM and locating code locations

to optimize can introduce inaccuracies. This happens due

to optimizations such as inlining. Although it is possible to

improve the accuracy of such mapping using more invasive

instrumentation and tracing [7], this would be prohibitively

costly for production usage [48]. In our evaluation (§6), we

show that the accuracy provided by debug information can

lead to substantial speedup.

The optimizations for structure splitting and structure merg-

ing use a whole-program pointer analysis [19].

6 Evaluation

In this section, we first evaluate the efficiency of selec-

tive profiling by measuring its run-time monitoring overhead.

Then, we evaluate the effectiveness of DMon by showing

the extent to which fixing the locality problems detected by

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 169

DMon improves performance of popular benchmarks. Next,

we evaluate selective profiling’s generality by applying it

to widely-used real-world applications. Finally, we perform

sensitivity studies to evaluate how DMon’s overhead and de-

tection results vary in response to changes of the different

system parameters of DMon.

Software. All experiments are conducted in Ubuntu 18.04

(kernel version 4.15.0-46-generic). The static compiler analy-

ses are implemented in LLVM (7.0.0) on bitcode emitted by

clang. Therefore, we use clang 7 as the baseline compiler.

Hardware. We use a 20-core 2.2 GHz Intel Xeon NUMA

(with 2 sockets) machine, with 64 KB of L1-cache (32 KB

instruction and 32 KB data), 1024 KB of L2-cache, 14 MB

of L3-cache (shared across the same NUMA node), and 96

GB of RAM. Like most Intel processors, each core in the

machine uses two hardware prefetchers (next-line and sequen-

tial load history driven prefetchers) in the L1 data cache and

two hardware prefetchers (adjacent cache line and streaming

prefetchers) in the L2 cache [42, 94]. We configure multi-

threaded applications and benchmarks to run with 8 threads.

Benchmarks. We use a combination of benchmarks and

real-world programs that have been widely used in prior

performance profiling and optimization work. In particu-

lar, we use all 12 benchmarks from the PARSEC [12] suite,

all 11 benchmarks from the SPLASH-2X [103] suite, and

all 3 benchmarks written in C from the NPB [10] suite, as

well as HashJoin, RandomAccess, kcstashtest, and DIS, which

are programs with poor data locality from other popular

benchmark suites [11, 24, 63, 73]. We also study one of the

most popular and heavily-optimized open-source databases,

PostgreSQL [81], running the TPC-H analytical workload [26].

Finally, we study real-world applications from the Renais-

sance benchmark suite [83].

Metrics. In all our plots, we report speedup numbers as the

ratio between the execution time of the original application

compiled with the highest level of optimization (-O3) and its

run time after applying DMon-guided optimizations. Negative

speedup denotes slow-down. Similarly, we report selective

profiling overhead as the percentage increase in benchmark

execution time while enabling selective profiling. We report

performance data as the average of 25 runs in all experiments.

6.1 Selective Profiling Efficiency

We evaluate the selective profiling efficiency by studying

the overhead selective profiling incurs during dynamic de-

tection of locality problems. Fig. 9 shows this overhead. We

present results for all the benchmarks we evaluated, including

the ones for which selective profiling did not find locality

optimization opportunities. For each benchmark, we present

the overhead of each layer of monitoring (1–4) that selective

profiling employs. Since, selective profiling monitors only

one layer at a time, the effective overhead for a given program

is less than the maximum overhead across four layers.

Across all layers and benchmarks, selective profiling incurs

up to 4.92% overhead, and on average only 1.36% overhead.

On average, selective profiling incurs an overhead of 0.7% in

layer 1, an overhead of 1.5% in layer 2, an overhead of 2.5% in

layer 3, and an overhead of 2% in layer 4. For benchmarks that

do not have locality problems, layers 2–4 are never triggered.

In only 3 out of all 28 benchmarks, selective profiling incurs

more than 3% overhead: IS (4.6%), kcstashtest (4.2%), and

HashJoin (4.9%). However, as we detail in §6.2, optimizations

suggested by DMon also provide greater speedups for these

benchmarks than for others (IS 30.3%, kcstashtest 32.4%,

and HashJoin 53.1%—compared to 16.83% average speedup

enabled by DMon). These benchmarks suffer the most from

poor locality, and consequently, selective profiling incurs more

overhead to pinpoint the root cause of those problems.

6.2 Effectiveness

We evaluate the effectiveness of DMon by studying (1) data

locality problems detected by DMon, (2) speedups pro-

vided by DMon-guided optimizations, (3) comparison of

the speedups provided by DMon-guided optimizations to

the speedups provided by Google’s AutoFDO [17]—the

state-of-the-art profile-guided locality optimization approach,

(4) whether DMon-guided optimizations generalize across

different program inputs, and (5) the overhead on compilation

times due to DMon-guided optimizations.

Locality issues detected by DMon. Table 2 summarizes the

data locality problems that DMon detects. For brevity, Table 2

omits benchmarks where less than 10% of the execution time

is bounded by locality problems, as these benchmarks could

not benefit from eliminating locality improvements. We also

omit these benchmarks in our average performance numbers.

Additionally, Table 2 shows the most prominent level of the

memory hierarchy for the locality issues detected by selective

profiling. Note that, in many cases, DRAM accesses constitute

the locality bottlenecks. This is expected, since the highest-

latency memory access instructions are served from DRAM.

Finally, Table 2 also reports the program locations (as “file”:

“line number”) that suffer the most from poor locality, along

with the optimizations DMon recommends in each case.

As shown, DMon successfully identifies locality problems

and suggests appropriate optimizations in each case. In all

cases but one (fmm), DMon applies optimizations automati-

cally. For fmm, while the direct prefetching is applied automati-

cally, structure splitting cannot be applied automatically. This

is because, due to excessive type casts, the compile-time opti-

mization cannot exactly determine which program statements

may access the modified structure, and therefore cannot auto-

matically update such statements. Nonetheless, since DMon

points the developer to the exact source of the locality issue in

fmm, the fix can easily be applied manually with an 8 LOC up-

date. Moreover, structure splitting and merging can be applied

automatically for other applications (dedup and radiosity)

170 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	0

	1

	2

	3

	4

	5

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

fa
ce
sim

fe
rr
et

flu
id
an
im
at
e

fr
eq
m
in
e

sw
ap
tio
ns

vi
ps

ca
nn
ea
l

de
du
p

st
re
am
cl
us
te
r

ba
rn
es
fm
m

oc
ea
n_
cp

ra
di
os
ity

w
at
er
_n
sq
ua
re
d

w
at
er
_s
pa
tia
l fft

lu
_c
b

lu
_n
cb

ra
di
x
CG D

C IS

Ra
nd
om
A
cc
es
s

H
as
hJ
oi
n

kc
st
as
ht
es
t
D
IS

O
v
er
h
ea
d
	(
%
)

Layer	1 Layer	2 Layer	3 Layer	4

Figure 9: Monitoring overhead of selective profiling (All σ < 0.02µ).

Table 2: DMon’s detection results of locality problems.

Benchmark
Execution

time
(seconds)

Memory
hierarchy
bottleneck

Program location Optimization Automated
fix?

canneal 71.8 L3, DRAM netlist_elem.cpp: 80 Direct Prefetching Yes
dedup 5.1 DRAM binheap.c: 93 Structure Merging Yes

fmm 18.8 DRAM interactions.C: 169
Structure Splitting No
Direct Prefetching Yes

ocean_cp 36.2 L2, L3, DRAM multi.C: 273 Direct Prefetching Yes
radiosity 95.8 L2, L3 rad_tools.C: 399 Structure Splitting Yes
fft 1.2 DRAM fft.C: 765 Direct Prefetching Yes
lu_ncb 47.8 L3, DRAM lu.C: 466 Direct Prefetching Yes
radix 6.1 L2, L3, DRAM radix.C: 624 Indirect Prefetching Yes
IS 1 L3, DRAM is.c: 392 Indirect Prefetching Yes
RandomAccess 607.1 DRAM randacc.c: 125 Indirect Prefetching Yes
HashJoin 2867.3 L3, DRAM npj2epb.c: 300 Indirect Prefetching Yes
kcstashtest 3.20 L2, L3, DRAM kcstashdb.h: 146 Direct Prefetching Yes
DIS 165.3 L2, L3, DRAM transitive.c: 107 Direct Prefetching Yes

Table 3: Speedup comparison between

DMon and compile-time optimizations.

Benchmark
Speedup provided

by compile-time
optimizations (%)

Speedup
provided by

DMon (%)

canneal -7.90 1.07

dedup -18.90 3.65

fmm 2.83 2.68

ocean_cp -1.06 2.90

radiosity -7.14 11.21

fft 1.11 4.57

lu_ncb 3.49 19.40

radix 0.96 1.85

IS 30.52 30.29

RandomAccess 38.83 47.67

HashJoin 9.74 53.14

kcstashtest 37.41 32.39

DIS -0.28 7.93

where the automatic transformation can identify and update

all statements pointing to the split and merged structures.

Speedup. Table 3 compares the speedup provided by the

DMon-guided optimizations. Optimizations guided by DMon

provide up to 53.14% and on average 16.83% (8% me-

dian) speedup. To study the impact of the targeted optimiza-

tions guided by selective profiling results, we also report the

speedup achieved by the same optimizations if they are ap-

plied indiscriminately (i.e., in a non-targeted way), through

purely-static compiler passes [3, 71].

As shown in Table 3, DMon-guided optimizations outper-

form compile-time optimizations in 10/13 benchmarks. Cru-

cially, static optimizations hurt performance in 5/13 cases due

to being applied too broadly (with no runtime information),

and therefore causing outcomes such as cache pollution and

code bloat. DMon-guided optimizations always improve the

performance. In 3/13 benchmarks where static optimizations

outperform DMon-guided optimizations, the margin is ≤ 5%

which can be reduced by reducing the incremental monitoring

threshold (default, 10%) of selective profiling.

Comparison against Google AutoFDO. We compare the

speedup provided by DMon-guided optimizations to that of

Google’s AutoFDO [17], the state-of-the-art profile guided

ocean cp radiosity fft IS HashJoin

0

20

40

S
p

ee
d

u
p

(%
)

AutoFDO

DMon

Figure 10: Speedup comparison to AutoFDO (All σ < 0.09µ)

optimization technique. AutoFDO has limited data locality

optimization capabilities [68]; our comparison is thus limited

to five benchmarks for which AutoFDO can optimize locality.

We compare the speedup provided by DMon-guided opti-

mizations to the speedup provided by AutoFDO in Fig. 10. As

shown, DMon-guided optimizations provide better speedup

than AutoFDO for all five benchmarks. This is because Aut-

oFDO could only identify data locality problems that can be

solved by performing direct prefetching optimizations. By

contrast, DMon can identify other data locality issues that can

be addressed by additional locality optimizations (i.e., indirect

prefetching, structure splitting, and structure merging).

For example, AutoFDO’s direct prefetching slows down the

execution of IS by 15%, while DMon-guided indirect prefetch-

ing provides a 30% speedup. Even for cases where both DMon

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 171

ocean cp radiosity fft IS HashJoin
1

10

100

1000

O
v

er
h

ea
d

(%
)

AutoFDO

DMon

Figure 11: Overhead comparison to AutoFDO (All σ< 0.07µ)

	0

	4

	8

	12

	16

	20

#1 #2 #3 #4 #5 #6
	0

	30

	60

	90

	120

	150

S
p
ee
d
u
p
	(
%
)

B
as
el
in
e	
E
xe
cu
ti
o
n

T
im
e	
(s
ec
o
n
d
s)

Different	Inputs

6.31
7.59

8.89

11.68
13.37 14.12

Figure 12: DMon-generated optimization after observing in-

put #4 generalizes to unseen inputs (All σ < 0.01µ).

and AutoFDO suggest direct prefetching (e.g., ocean_cp),

DMon-guided optimizations outperform AutoFDO, because,

unlike AutoFDO, DMon provides hints as to where (e.g., L1,

L2, or L3) the cache line should be prefetched.

We compare selective profiling overhead against Auto-

FDO’s profiling overheads in Fig. 11. For the 5 benchmarks

in this study, selective profiling incurs 3.3% mean overhead,

whereas AutoFDO incurs 978% mean overhead, making the

latter unsuitable for production use.

Generalization across program inputs. Profile-guided op-

timizations perform best when the application is optimized

with a profile that is representative of the application’s com-

mon behavior [17,79,95]. DMon-guided fixes also generalize

if the program shows similar data locality behavior across

different inputs. Therefore, we evaluate DMon’s generality

across different program inputs for 9 benchmarks. These pro-

gram inputs vary widely both in terms of input size (from

megabytes to gigabytes) as well as execution times needed to

process the input (from seconds to minutes).

We report a detailed case study using the radiosity bench-

mark to determine how well the locality optimizations sug-

gested by DMon generalize to different inputs. We choose this

benchmark because the fix suggested by DMon is structure

splitting—an optimization that modifies the data layout, and

hence has the potential to be affected by changing program

inputs. Fig. 12 shows the speedup provided by DMon-guided

optimizations for radiosity for various input sizes.

Here, for brevity, we refer to different input sizes using

“#1” through “#6”. DMon only observes the execution for the

randomly selected input #4. After observing input #4, DMon-

guided optimizations are applied. Then, all inputs are rerun

with the newly-optimized program, with the results of this run

reported in Fig. 12. As shown, the optimization suggested by

DMon generalizes well to other inputs, providing considerable

dedup
canneal fmm

ocean cp fft lu ncb radix

RandomAccess
0

20

40

S
p

ee
d

u
p

(%
)

Input

#1

#2

#3

Figure 13: Input generalization (All σ < 0.04µ)

ca
nnea

l

ded
up

fm
m

oce
an

cp

ra
dio

sit
y

kcs
ts

hts
t fft

lu
ncb

ra
dix IS

RndA
cc

H
as

hJo
in

D
IS

10−1

100

101

T
im

e
(s

ec
o

n
d

s)

Original-compilation

DMon-optimization

Figure 14: Overhead of DMon-guided optimizations com-

pared to baseline compilation time (σ < 0.1µ, log-scaled y).

speedups in each case. Longer executions that use larger

inputs benefit more from optimizations.

Fig. 13 shows how DMon-guided optimizations improve

data locality for unobserved inputs of several other bench-

marks. Here, we include all benchmarks with at least 3 inputs.

Across all evaluation targets, we find that data locality behav-

ior follows a similar trend for different inputs. Hence, DMon’s

fixes generalize to different inputs for these benchmarks.

Recompilation overhead. We evaluate the offline recompi-

lation overhead while applying DMon-guided optimizations,

though this does not impact the production overhead. We

perform this experiment, because automated structure split-

ting and merging require pointer analysis, which is known to

be expensive [55]. However, the specific pointer analysis we

employ is flow- and context- insensitive and scales well [40].

Fig. 14 shows the offline compilation overhead incurred by

our DMon-guided optimizations on top of the baseline compi-

lation overhead (clang). On average, DMon-guided optimiza-

tions incur 72% more overhead. However, the optimization

takes on average less than 7 seconds and is no longer than 26

seconds. Even for large applications (e.g., PostgreSQL [92]

code base has over 1M LOC), the analysis takes 307 sec-

onds. For an offline process, we believe these durations are

reasonable and on par with standard compiler transforma-

tions that use whole-program pointer analysis. Moreover, this

is a one-time compile-time overhead and will be amortized

for long-running applications (e.g., data-center applications

that are compiled once but run on thousands of servers for

days). Finally, structure splitting and merging can be applied

manually if the cost of pointer analysis is deemed prohibitive.

172 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	0

	5

	10

	15

	20

	25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

S
p

ee
d

u
p

	(
%

)

Query	#

Figure 15: Speedup due to DMon-guided optimizations for

22 TPC-Hqueries on PostgreSQL (All σ < 4.53% of µ).

6.3 Real-World Case Studies

We evaluate the applicability of selective profiling and

DMon to large systems by studying (1) speedups provided by

DMon-guided optimizations on PostgreSQL [81]—one of the

most popular database systems, and (2) speedups achieved

after manual repair of data locality problems detected by se-

lective profiling for just-in-time (JIT) compiled real-world

applications from the Renaissance benchmark suite [83].

PostgreSQL case study. We evaluate DMon’s ability to im-

prove the locality (and thereby performance) of PostgreSQL

v11.2 [81], one of the most popular open-source database

management systems. For this study, we run the popular TPC-

H [26] queries on a 1GB database stored in PostgreSQL. We

intentionally select the database size to fit in memory to ensure

a memory-bound workload (instead of disk-bound one), as the

vast majority of real-world databases fit in memory [67, 80].

To evaluate DMon, we profile PostgreSQL with DMon

while serving all 22 TPC-H queries. For these queries, se-

lective profiling incurs 1.2% average and 2.7% maximum

overhead. For PostgreSQL, DMon identifies a locality prob-

lem in a function (ExecParallelHashNextTuple) that ac-

cesses the members area and parallel_state of structure

hashtable [39]. DMon identifies that this memory access

is the primary reason for poor data locality in 6 out of 22

TPC-H queries. Moreover, this memory access causes L2

and L3 cache misses for all 22 TPC-H queries. The cause of

the locality problem in this case is pointer chasing. Structure

merging automatically repairs this problem and speeds up all

22 TPC-H queries, as shown in Fig. 15. The L3 cache misses

in PostgreSQL are reduced by up to 22.11% (3.05% on aver-

age) and the latency of the 22 TPC-H queries are improved

by up to 17.48% (6.64% on average). We also test optimized

PostgreSQL based on DMon-profile on larger databases (10

and 100GB), where DMon improves the latency of the 22

TPC-H queries by 4.68% on average. For larger databases (10

and 100GB), the overall performance gain due to DMon’s op-

timizations are comparatively less than (2% on average) that

of smaller databases (1GB). That is because the performance

of PostgreSQL for larger databases are primarily bottlenecked

by storage I/O costs.

These results are particularly encouraging, considering that

PostgreSQL is one of the most heavily-optimized codebases,

having been improved by developers over the past 20 years.

fj-kmeans page-rank stm-bench7

0

20

40

S
p

ee
d

u
p

(%
)

Tiered-compilation

DMon

Figure 16: Speedup provided by selective profile-guided opti-

mizations for just-in-time (JIT) compiled applications against

tiered compilation (All σ < 7.68% of µ).

Most database developers hand-tune their code using the TPC

benchmarks as regression tests (i.e., their performance is best

on TPC). This fact makes it even more promising that DMon-

guided optimizations are able to improve the performance of

these benchmark queries on a mature database system. We re-

ported this data locality issue to the developers of PostgreSQL

(for the version 11.2), which they have fixed since then.

Renaissance case study. A key advantage of just-in-time

(JIT) compilation over ahead-of-time compilation (e.g., Java

vs. C++) is that JIT can apply dynamic optimizations—

including limited data locality optimizations—using tiered

compilation [65]. We compare selective profile-guided data

locality optimizations to tiered compilation from Open-

JDK [100] on real-world applications from the Renaissance

suite [83]. For these applications, selective profiling incurs

2.2% average and 2.6% maximum overhead.

We use selective profiling to detect data locality issues

in three Renaissance applications (jdk-concurrent fj-kmeans,

apache-spark page-rank, and Scala stm-bench7). We omit

other Renaissance benchmarks for which selective profiling

does not find any data locality problems. Most of the data

locality issues found here corresponds to Java/Scala source

code (we map binary instruction information back to Java

code using perf-map-agent [45]) of Renaissance applications.

Since currently DMon’s optimizations only support C/C++

applications, we manually apply data locality optimizations

to these applications. In all cases, we modify <10 LOC.

As shown in Fig. 16, selective profile-guided optimizations

provide on average 26% and up to 47% more speedup than

tiered compilation. This demonstrates that selective profiling

is effective even for JIT-compiled applications.

Apart from these real-world case studies, we have also

tested DMon on Memcached [35] and RocksDB [33] with YCSB

benchmarks [25]. For these two applications, the individual

pieces that make up the locality issues are relatively minor.

Compiler-based data locality optimizations typically add ex-

tra instructions and logic in the code, which only helps when

there are many cache misses causing slowdowns. For pro-

gram statements responsible for a relatively small percentage

of all cache misses (less than 5%), applying these optimiza-

tions do not provide any speedup, as the extra code and logic

outweighs the benefits.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 173

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

 0

 2

 4

 6

 8

 10

C
o
v
e
ra

g
e
 (

%
)

O
v
e
rh

e
a
d
 (

%
)

Time-slice (ms)

Coverage
Overhead

Figure 17: Effect of granularity of in-production time-slice

on detection coverage and overhead (All σ < 3.03% of µ).

6.4 Sensitivity Analysis

We evaluate the impact of selective profiling’s different

parameters on effectiveness (coverage) and efficiency.

In-Production Monitoring Time-Slice. The granularity of

the monitoring time-slice is a key design decision for selective

profiling’s incremental monitoring scheme (§3). Small time-

slices allow selective profiling to identify locality problems

for shorter-running applications, but also trigger frequent tran-

sitions during incremental monitoring and result in higher

monitoring overhead. On the other hand, larger time-slices

lower overhead but may fail to detect locality problems for

shorter-running programs.

Fig. 17 shows the impact of the time-slice granularity on

selective profiling’s detection coverage (left y-axis) and over-

head (right y-axis) for the benchmark, (lu_ncb). We vary the

time-slice granularity from 10ms to 500ms (with 10ms incre-

ments) and measure selective profiling’s coverage in detecting

data locality issues and the associated performance overhead.

As shown in Fig. 17, selective profiling has lower coverage

and higher overhead for smaller time-slices. As the time-slice

granularity increases, selective profiling achieves greater cov-

erage with lower overhead. Selective profiling’s coverage is

lower for smaller time-slices because selective profiling can-

not monitor sufficient performance events in a small time

slice. Beyond 100ms, both the coverage (99.07% on average

with standard deviation of 3%) and the overhead (2.04% on

average with standard deviation of 0.6%) lines flatten. Ergo,

we set selective profiling’s default time-slice as 100ms.

Incremental Monitoring Threshold. We vary the threshold

of incremental monitoring (§3) from 1% to 50% and measure

the coverage of data locality issues selective profiling detects

for all 13 benchmarks in Table 2. 100% coverage is achieved

when there is no incremental monitoring (i.e., DMon contin-

uously monitors events at the all levels of the locality tree).

As shown in Fig. 18, selective profiling achieves greater than

80% coverage if the incremental monitoring scheme uses a

threshold of <29%. Nevertheless, we set the default-threshold

as 10%, as this threshold achieves 100% coverage.

In-Production Sampling Period. As described in §3, sam-

pling period is a key design decision for selective profiling.

Fig. 19 shows the impact of the sampling period on the cover-

age of locality issues selective profiling detects and its runtime

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

C
o
v
e
ra

g
e
 (

%
)

Threshold (%)

Figure 18: Effect of incremental monitoring threshold on

the coverage of locality problems selective profiling detects

across all benchmarks.

 0

 2

 4

 6

 8

 10

 12

107 106 105 104 769 142 131
 94

 95

 96

 97

 98

 99

 100

A
v

er
ag

e
O

v
er

h
ea

d
 (

%
)

A
v

er
ag

e
C

o
v

er
ag

e
(%

)

Sampling Period

Average Overhead

2.
1 2.

9

1.
6 2.

2 2.
6

5.
7

7.
4Average Coverage

95
.4

96
.6 96

.9

96
.8 97

.5 97
.9

98
.9

Figure 19: Effect of sampling period on the coverage of lo-

cality problems selective profiling detects and the average

overhead across all benchmarks (σ < 0.01µ).

overhead. We compute coverage with respect to the baseline

coverage of 100%, achievable via the lowest possible sam-

pling period offered by Linux perf (sampling every 100th

event). A sampling period k on the x-axis means selective

profiling will record one out of each k events. The left y-axis

represents the runtime overhead and the right y-axis repre-

sents the coverage of locality issues selective profiling detects.

The overhead and coverage reported in Fig. 19 are arith-

metic averages over all benchmarks. A smaller sampling pe-

riod increases the overhead of selective profiling, but also

increases coverage. In our experiments, we chose a sampling

period of 1000, which yields a high coverage of 97% with

2.6% overhead on average in layer 4 of selective profiling.

7 Related Work

DMon finds data locality problems with low overhead us-

ing selective profiling, identifies the root cause behind the

problem, and guides optimizations to eliminate the problem.

Existing profilers are not able to determine the root causes of

data locality problems without incurring a high overhead.

Profilers. General-purpose profilers [57, 97, 102] report pro-

gram hotspots without identifying the root cause behind per-

formance problem. Consequently, recent studies propose spe-

cialized profilers to locate root cause for specific performance

issues. Parallel profilers [36, 41, 44, 46] focus on critical path

profiling to estimate potential performance gain [28, 107].

Synchronization profilers [4, 30, 108, 110] identify lock con-

tention. Similarly, we design selective profiling as a special-

174 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ized profiling technique for data locality. Selective profil-

ing uses the APIs of a state-of-the-art profiler, Linux perf,

and targets a subset of the events explored as part of the

Top-Down [106]. Our main contributions over perf and Top-

Down are: (1) full automation in profiling, (2) low-enough

overhead for production deployment, (3) ability to automati-

cally identify targeted optimizations based on the underlying

performance problem.

Profile-guided data locality optimizations. Profile-guided

approaches collect execution traces to identify where opti-

mizations can be applied [21, 49, 51, 52, 59, 60, 69, 78]. State-

of-the-art techniques [17,37,74–76] primarily address instruc-

tion locality. While prior work [50,53,86] also optimizes data

locality, these solutions incur >10% profiling overhead. Se-

lective profiling, however, incurs only 1.36% overhead on

average (§6.1).

Static locality optimizations. Static approaches use complex

analysis techniques to find opportunities to apply locality-

improving transformations [14, 16, 18, 31, 47, 58, 66, 88, 105].

Alas, these techniques use compile-time heuristics to apply

transformations, which can lead to sub-optimal speedups or

even reductions in performance. To avoid these issues, we use

application profiles collected by selective profiling to apply

optimizations in a targeted manner, leading to better speedups

and avoiding transformations which hurt performance.

Dynamic locality optimizations. There are several propos-

als for monitoring program execution and modifying program

binaries to improve locality on the fly [32, 72, 89, 96]. These

techniques require non-existent hardware support and incur

high overhead (up to 6× [96]). Just-in-time (JIT) compilation

techniques [21, 43] provide limited data locality optimiza-

tions. On the other hand, DMon works with existing hard-

ware, incurs negligible overhead, and guides optimizations

that provide better speedup (16.83% on average).

8 Conclusion

Poor data locality is a major performance problem that

hurt applications in production. Unfortunately, existing data

locality profilers are not efficient enough to be deployed in

production. This is limiting, since production profiles are diffi-

cult to replicate offline. We address this problem by selective

profiling, a technique capable of discovering data locality

problems with negligible overhead (on average 1.36%) in pro-

duction. We also design DMon, which guides automatic and

manual data locality optimizations based on profiles generated

using selective profiling. For an extensive set of real-world

applications and widely-used benchmarks, DMon provides

up to 53.14% and on average 16.83% speedup for the cases

where DMon applies targeted optimizations after detecting

significant data locality problems.

Acknowledgments

We thank the anonymous reviewers and our shepherd,

Michael Stumm, for their insightful feedback and suggestions.

This work was supported by the Intel Corporation, the NSF

grants #1553169, #1629397, #2010810, and the Applications

Driving Architectures (ADA) Research Center, a JUMP Cen-

ter co-sponsored by SRC and DARPA. Any opinions, findings,

conclusions, or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of the funding agencies. We thank Yifan Zhao for run-

ning several PostgreSQL experiments. We also thank Xiaohe

Cheng, Zhiqi Chen, and Shariq Hafeez for testing DMon on

various applications. Finally, we thank Kevin Loughlin for

his feedback on this paper’s earlier versions.

A Artifact Appendix

Abstract

We provide the open-source public repository as an artifact

for DMon.

Scope

This artifact allows to validate the effectiveness and effi-

ciency of the selective profiling technique.

Contents

This artifact includes one end-to-end example of how to

apply selective profiling to monitor in-production data locality

issues and one example of data locality optimization applied

in a targeted manner based on the output of selective profiling.

Hosting

We host the artifact on Github. Our open-source arti-

fact repository can be obtained from https://github.com/

efeslab/DMon-AE. The branch name for the artifact is main.

The commit hash for the artifact is d9a0f31.

Requirements

Intel processor, Linux perf, pmu-tools [54] that implement

the Top-Down methodology [106], and LLVM [56].

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. Tensorflow: A system

for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pages 265–283, Savannah, GA,

November 2016. USENIX Association.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-

frey D. Ullman. Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2006.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 175

[3] Sam Ainsworth and Timothy M. Jones. Software

prefetching for indirect memory accesses. In Proceed-

ings of the 2017 International Symposium on Code

Generation and Optimization, CGO ’17, pages 305–

317, Piscataway, NJ, USA, 2017. IEEE Press.

[4] Mohammad Mejbah Ul Alam, Tongping Liu, Guang-

ming Zeng, and Abdullah Muzahid. Syncperf: Cat-

egorizing, detecting, and diagnosing synchronization

performance bugs. In Proceedings of the Twelfth Eu-

ropean Conference on Computer Systems, pages 298–

313, 2017.

[5] Lars Ole Andersen. Program analysis and special-

ization for the C programming language. PhD thesis,

University of Cophenhagen, 1994.

[6] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and

Parthasarathy Ranganathan. Memory hierarchy for

web search. In 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA),

pages 643–656. IEEE, 2018.

[7] Grant Ayers, Heiner Litz, Christos Kozyrakis, and

Parthasarathy Ranganathan. Classifying memory ac-

cess patterns for prefetching. In Proceedings of the

Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating

Systems, pages 513–526, 2020.

[8] Grant Ayers, Nayana Prasad Nagendra, David I August,

Hyoun Kyu Cho, Svilen Kanev, Christos Kozyrakis,

Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,

and Parthasarathy Ranganathan. Asmdb: understand-

ing and mitigating front-end stalls in warehouse-scale

computers. In Proceedings of the 46th International

Symposium on Computer Architecture, pages 462–473.

ACM, 2019.

[9] Reza Azimi, Michael Stumm, and Robert W Wis-

niewski. Online performance analysis by statistical

sampling of microprocessor performance counters. In

Proceedings of the 19th annual international confer-

ence on Supercomputing, pages 101–110, 2005.

[10] David Bailey, Tim Harris, William Saphir, Rob Van

Der Wijngaart, Alex Woo, and Maurice Yarrow. The

nas parallel benchmarks 2.0. Technical report, Techni-

cal Report NAS-95-020, NASA Ames Research Center,

1995.

[11] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and

M Tamer Özsu. Main-memory hash joins on multi-

core cpus: Tuning to the underlying hardware. In

2013 IEEE 29th International Conference on Data

Engineering (ICDE), pages 362–373. IEEE, 2013.

[12] Christian Bienia, Sanjeev Kumar, and Kai Li. Parsec

vs. splash-2: A quantitative comparison of two multi-

threaded benchmark suites on chip-multiprocessors. In

Workload Characterization, 2008. IISWC 2008. IEEE

International Symposium on, pages 47–56. IEEE, 2008.

[13] Michael D Bond and Kathryn S McKinley. Contin-

uous path and edge profiling. In Proceedings of the

38th annual IEEE/ACM International Symposium on

Microarchitecture, pages 130–140. IEEE Computer

Society, 2005.

[14] Uday Bondhugula, Albert Hartono, Jagannathan Ra-

manujam, and Ponnuswamy Sadayappan. A practi-

cal automatic polyhedral parallelizer and locality op-

timizer. In Acm Sigplan Notices, volume 43, pages

101–113. ACM, 2008.

[15] Derek Bruening, Timothy Garnett, and Saman Ama-

rasinghe. An infrastructure for adaptive dynamic opti-

mization. In International Symposium on Code Gen-

eration and Optimization, 2003. CGO 2003., pages

265–275. IEEE, 2003.

[16] Steve Carr, Kathryn S. McKinley, and Chau-Wen

Tseng. Compiler optimizations for improving data

locality. In Proceedings of the Sixth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS VI, pages

252–262, New York, NY, USA, 1994. ACM.

[17] Dehao Chen, David Xinliang Li, and Tipp Moseley.

Autofdo: Automatic feedback-directed optimization

for warehouse-scale applications. In Proceedings of

the 2016 International Symposium on Code Generation

and Optimization, pages 12–23. ACM, 2016.

[18] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi

Pai. Locality analysis through static parallel sampling.

In Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion, PLDI 2018, Philadelphia, PA, USA, June 18-22,

2018, pages 557–570, 2018.

[19] Jia Chen. Andersen’s inclusion-based pointer analysis

re-implementation in LLVM. https://github.com/

grievejia/andersen, 2018. [Online; accessed 16-

Nov-2018].

[20] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu.

The effect of code expanding optimizations on instruc-

tion cache design. IEEE Trans. Comput., 42(9):1045–

1057, September 1993.

[21] Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xi-

aofeng Gao, and Weihaw Chuang. Profile-guided

proactive garbage collection for locality optimization.

176 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

In Proceedings of the 27th ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion, PLDI ’06, pages 332–340, New York, NY, USA,

2006. ACM.

[22] Trishul M Chilimbi, Bob Davidson, and James R Larus.

Cache-conscious structure definition. In ACM SIG-

PLAN Notices, volume 34, pages 13–24. ACM, 1999.

[23] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus.

Cache-conscious structure layout. In Proceedings of

the ACM SIGPLAN 1999 Conference on Program-

ming Language Design and Implementation, PLDI ’99,

pages 1–12, New York, NY, USA, 1999. ACM.

[24] cloudfare. kyotocabinet/kcstashtest.cc at

master - cloudflare/kyotocabinet. https:

//github.com/cloudflare/kyotocabinet/

blob/master/kcstashtest.cc, 2013. [Online;

accessed 4-April-2019].

[25] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking

cloud serving systems with ycsb. In Proceedings of

the 1st ACM symposium on Cloud computing, pages

143–154, 2010.

[26] Transaction Processing Performance Council. Tpc-h.

[Online; accessed 23-April-2019].

[27] Charlie Curtsinger and Emery D. Berger. Stabilizer:

Statistically sound performance evaluation. In Pro-

ceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’13, page 219–228,

New York, NY, USA, 2013. Association for Computing

Machinery.

[28] Charlie Curtsinger and Emery D Berger. Coz: Finding

code that counts with causal profiling. In Proceedings

of the 25th Symposium on Operating Systems Princi-

ples, pages 184–197, 2015.

[29] Daniel Lemire. Is software prefetching

(__builtin_prefetch) useful for performance?,

2018. [Online; accessed 24-April-2019].

[30] Florian David, Gael Thomas, Julia Lawall, and Gilles

Muller. Continuously measuring critical section pres-

sure with the free-lunch profiler. ACM SIGPLAN No-

tices, 49(10):291–307, 2014.

[31] Chen Ding and Yutao Zhong. Predicting whole-

program locality through reuse distance analysis. In

Acm Sigplan Notices, volume 38, pages 245–257.

ACM, 2003.

[32] Tyler Dwyer and Alexandra Fedorova. On instruc-

tion organization. In 15th Workshop on Hot Topics in

Operating Systems (HotOS {XV}), 2015.

[33] Facebook. Rocksdb: A persistent key-value store

for flash and ram storage. https://github.com/

facebook/rocksdb/, 2021.

[34] Michael Ferdman, Almutaz Adileh, Onur Kocberber,

Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,

Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ail-

amaki, and Babak Falsafi. Clearing the clouds: a study

of emerging scale-out workloads on modern hardware.

In ACM SIGPLAN Notices, volume 47, pages 37–48.

ACM, 2012.

[35] Brad Fitzpatrick. Distributed caching with memcached.

Linux journal, 124, 2004.

[36] Saturnino Garcia, Donghwan Jeon, Christopher M

Louie, and Michael Bedford Taylor. Kremlin: rethink-

ing and rebooting gprof for the multicore age. ACM

SIGPLAN Notices, 46(6):458–469, 2011.

[37] Google. Propeller: Profile guided optimizing large

scale llvm-based relinker. https://github.com/

google/llvm-propeller, 2020.

[38] Susan L Graham, Peter B Kessler, and Marshall K

Mckusick. Gprof: A call graph execution profiler. ACM

Sigplan Notices, 17(6):120–126, 1982.

[39] The PostgreSQL Global Development Group. Line

number 3225. https://github.com/postgres/

postgres/blob/master/src/backend/executor/

nodeHash.c.

[40] Ben Hardekopf and Calvin Lin. The ant and the

grasshopper: fast and accurate pointer analysis for mil-

lions of lines of code. In Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language De-

sign and Implementation, pages 290–299, 2007.

[41] Yuxiong He, Charles E Leiserson, and William M Leis-

erson. The cilkview scalability analyzer. In Proceed-

ings of the twenty-second annual ACM symposium on

Parallelism in algorithms and architectures, pages 145–

156, 2010.

[42] Ravi Hegde. Optimizing application performance

on intel core microarchitecture using hardware-

implemented prefetchers. Intel Software Network,

2008. [Online; accessed 5-December-2020].

[43] Xianglong Huang, Stephen M. Blackburn, Kathryn S.

McKinley, J Eliot B. Moss, Zhenlin Wang, and Perry

Cheng. The garbage collection advantage: Improv-

ing program locality. In Proceedings of the 19th An-

nual ACM SIGPLAN Conference on Object-oriented

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 177

Programming, Systems, Languages, and Applications,

OOPSLA ’04, pages 69–80, New York, NY, USA, 2004.

ACM.

[44] José A Joao, M Aater Suleman, Onur Mutlu, and

Yale N Patt. Bottleneck identification and schedul-

ing in multithreaded applications. ACM SIGARCH

Computer Architecture News, 40(1):223–234, 2012.

[45] jvm-profiling-tools. perf-map-agent, 2018. [Online;

accessed 6-December-2020].

[46] Melanie Kambadur, Kui Tang, and Martha A Kim. Har-

mony: Collection and analysis of parallel block vec-

tors. In 2012 39th Annual International Symposium on

Computer Architecture (ISCA), pages 452–463. IEEE,

2012.

[47] Mahmut Taylan Kandemir. A compiler technique for

improving whole-program locality. In ACM SIGPLAN

Notices, volume 36, pages 179–192. ACM, 2001.

[48] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,

Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon

Wei, and David Brooks. Profiling a warehouse-scale

computer. In Proceedings of the 42Nd Annual Inter-

national Symposium on Computer Architecture, ISCA

’15, pages 158–169, New York, NY, USA, 2015. ACM.

[49] Baris Kasikci, Thomas Ball, George Candea, John Er-

ickson, and Madanlal Musuvathi. Efficient tracing of

cold code via bias-free sampling. In 2014 USENIX An-

nual Technical Conference (USENIX ATC 14), pages

243–254, 2014.

[50] Muneeb Khan, Andreas Sandberg, and Erik Hagersten.

A case for resource efficient prefetching in multicores.

In 2014 43rd International Conference on Parallel

Processing, pages 101–110. IEEE, 2014.

[51] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph De-

vietti, Gilles Pokam, Heiner Litz, and Baris Kasikci.

I-spy: Context-driven conditional instruction prefetch-

ing with coalescing. In 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MI-

CRO), pages 146–159. IEEE, 2020.

[52] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman,

Joseph Devietti, Gilles Pokam, Heiner Litz, and Baris

Kasikci. Ripple: Profile-guided instruction cache re-

placement for data center applications. In Proceedings

of the 48th International Symposium on Computer Ar-

chitecture (ISCA), ISCA 2021, June 2021.

[53] Tanvir Ahmed Khan, Yifan Zhao, Gilles Pokam,

Barzan Mozafari, and Baris Kasikci. Huron: hybrid

false sharing detection and repair. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 453–468,

2019.

[54] Andi Kleen. Github - andikleen/pmu-tools: Intel pmu

profiling tools. https://github.com/andikleen/

pmu-tools.

[55] William Landi and Barbara G Ryder. Pointer-induced

aliasing: A problem classification. In Proceedings

of the 18th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 93–103,

1991.

[56] Chris Lattner. Llvm and clang: Next generation com-

piler technology. In The BSD conference, pages 1–2,

2008.

[57] John Levon and Philippe Elie. Oprofile: A system

profiler for linux, 2004.

[58] Jonathan Lifflander and Sriram Krishnamoorthy.

Cache locality optimization for recursive programs.

In ACM SIGPLAN Notices, volume 52, pages 1–16.

ACM, 2017.

[59] Xu Liu and John Mellor-Crummey. Pinpointing data

locality problems using data-centric analysis. In Pro-

ceedings of the 9th Annual IEEE/ACM International

Symposium on Code Generation and Optimization,

pages 171–180. IEEE Computer Society, 2011.

[60] Xu Liu and John Mellor-Crummey. A data-centric

profiler for parallel programs. In SC’13: Proceedings

of the International Conference on High Performance

Computing, Networking, Storage and Analysis, pages

1–12. IEEE, 2013.

[61] Xu Liu, Kamal Sharma, and John Mellor-Crummey.

Arraytool: a lightweight profiler to guide array regroup-

ing. In 2014 23rd International Conference on Paral-

lel Architecture and Compilation Techniques (PACT),

pages 405–415. IEEE, 2014.

[62] Xu Liu and Bo Wu. Scaanalyzer: A tool to identify

memory scalability bottlenecks in parallel programs.

In Proceedings of the International Conference for

High Performance Computing, Networking, Storage

and Analysis, SC ’15, pages 47:1–47:12, New York,

NY, USA, 2015. ACM.

[63] Piotr R Luszczek, David H Bailey, Jack J Dongarra,

Jeremy Kepner, Robert F Lucas, Rolf Rabenseifner, and

Daisuke Takahashi. The hpc challenge (hpcc) bench-

mark suite. In Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, volume 213. Citeseer,

2006.

178 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[64] Stanislav Manilov, Christos Vasiladiotis, and Björn

Franke. Generalized profile-guided iterator recognition.

In Proceedings of the 27th International Conference

on Compiler Construction, pages 185–195, 2018.

[65] Markus Weninger. What exactly does -xx:-

tieredcompilation do?, 2016. [Online; accessed 11-

November-2019].

[66] Kathryn S. McKinley and Olivier Temam. A quanti-

tative analysis of loop nest locality. In ASPLOS-VII

Proceedings - Seventh International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems, Cambridge, Massachusetts, USA,

October 1-5, 1996., pages 94–104, 1996.

[67] Prashanth Menon, Todd C Mowry, and Andrew Pavlo.

Relaxed operator fusion for in-memory databases:

Making compilation, vectorization, and prefetching

work together at last. Proceedings of the VLDB En-

dowment, 11(1):1–13, 2017.

[68] Mircea Trofin. Support for cache prefetching profiles.

by mtrofin · pull request #75 · google/autofdo, 2018.

[Online; accessed 17-November-2019].

[69] Svetozar Miucin and Alexandra Fedorova. Data-driven

spatial locality. In Proceedings of the International

Symposium on Memory Systems, pages 243–253. ACM,

2018.

[70] Todd C Mowry. Tolerating latency through software-

controlled data prefetching. PhD thesis, to the De-

partment of Electrical Engineering.Stanford University,

1994.

[71] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.

Design and evaluation of a compiler algorithm for

prefetching. In Proceedings of the Fifth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS V, pages

62–73, New York, NY, USA, 1992. ACM.

[72] Anurag Mukkara, Nathan Beckmann, Maleen Abey-

deera, Xiaosong Ma, and Daniel Sanchez. Exploit-

ing locality in graph analytics through hardware-

accelerated traversal scheduling. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pages 1–14. IEEE, 2018.

[73] Joseph Musmanno. Data intensive systems (dis) bench-

mark performance summary. Technical report, TITAN

SYSTEMS CORP WALTHAM MA, 2003.

[74] Guilherme Ottoni. Hhvm jit: A profile-guided, region-

based compiler for php and hack. In Proceedings of

the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 151–165.

ACM, 2018.

[75] Maksim Panchenko, Rafael Auler, Bill Nell, and Guil-

herme Ottoni. Bolt: a practical binary optimizer for

data centers and beyond. In Proceedings of the 2019

IEEE/ACM International Symposium on Code Genera-

tion and Optimization, pages 2–14. IEEE Press, 2019.

[76] Maksim Panchenko, Rafael Auler, Laith Sakka, and

Guilherme Ottoni. Lightning bolt: powerful, fast, and

scalable binary optimization. In Proceedings of the

30th ACM SIGPLAN International Conference on Com-

piler Construction, pages 119–130, 2021.

[77] Paratools. Threadspotter. http://threadspotter.

paratools.com/, 2019. [Online; accessed 22-Oct-

2019].

[78] Aleksey Pesterev, Nickolai Zeldovich, and Robert T

Morris. Locating cache performance bottlenecks using

data profiling. In Proceedings of the 5th European con-

ference on Computer systems, pages 335–348. ACM,

2010.

[79] Karl Pettis and Robert C. Hansen. Profile guided

code positioning. In Proceedings of the ACM SIG-

PLAN 1990 Conference on Programming Language

Design and Implementation, PLDI ’90, pages 16–27,

New York, NY, USA, 1990. ACM.

[80] Orestis Polychroniou, Arun Raghavan, and Kenneth A

Ross. Rethinking simd vectorization for in-memory

databases. In Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of

Data, pages 1493–1508. ACM, 2015.

[81] PostgreSQL. Postgresql: The world’s most advanced

open source relational database. [Online; accessed

23-April-2019].

[82] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen,

and John Cavazos. Iterative optimization in the poly-

hedral model: Part II, multidimensional time. In ACM

SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI’08), pages 90–100,

Tucson, Arizona, June 2008. ACM Press.

[83] Aleksandar Prokopec, Andrea Rosa, David

Leopoldseder, Gilles Duboscq, Petr Tuma, Mar-

tin Studener, Lubomir Bulej, Yudi Zheng, Alex

Villazon, Doug Simon, et al. Renaissance: bench-

marking suite for parallel applications on the jvm. In

Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

pages 31–47. ACM, 2019.

[84] Manman Ren and Shane Nay. Improving iOS Startup

Performance with Binary Layout Optimizations, 2019.

[Online; accessed 25-Oct-2019].

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 179

[85] Roman Oderov. Sampling and vtune’s disadvantages,

2012. [Online; accessed 23-April-2019].

[86] Andreas Sandberg, David Eklöv, and Erik Hagersten.

Reducing cache pollution through detection and elimi-

nation of non-temporal memory accesses. In Proceed-

ings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Stor-

age and Analysis, SC ’10, pages 1–11, Washington,

DC, USA, 2010. IEEE Computer Society.

[87] J Sedlacek and H Thomas. Visualvm all-in-one java

troubleshooting tool, 2018.

[88] Yonghong Song and Zhiyuan Li. New tiling techniques

to improve cache temporal locality. ACM SIGPLAN

Notices, 34(5):215–228, 1999.

[89] Jithendra Srinivas, Wei Ding, and Mahmut Kandemir.

Reactive tiling. In 2015 IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO),

pages 91–102. IEEE, 2015.

[90] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F

Wenisch. Softsku: Optimizing server architectures for

microservice diversity@ scale. In Proceedings of the

46th International Symposium on Computer Architec-

ture, pages 513–526, 2019.

[91] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël

Pouchet, Fabrice Rastello, J. Ramanujam, and P. Sa-

dayappan. A framework for enhancing data reuse via

associative reordering. In Conference on Programming

Language Design and Implementation (PLDI), 2014.

[92] Michael Stonebraker and Lawrence A. Rowe. The

design of postgres. In Proceedings of the 1986 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’86, pages 340–355, New York, NY,

USA, 1986. ACM.

[93] Josep Torrellas, HS Lam, and John L. Hennessy. False

sharing and spatial locality in multiprocessor caches.

IEEE Transactions on Computers, 43(6):651–663,

1994.

[94] Vish Viswanathan. Disclosure of hardware prefetcher

control on some intel processors. Intel SW Developer

Zone, 2014.

[95] David W Wall. Predicting program behavior using

real or estimated profiles. ACM SIGPLAN Notices,

26(6):59–70, 1991.

[96] Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew,

Jianjun Li, and Di Xu. On-the-fly structure splitting

for heap objects. ACM Transactions on Architecture

and Code Optimization (TACO), 8(4), 2012.

[97] Wikipedia contributors. Perf (linux) — Wikipedia, the

free encyclopedia, 2018. [Online; accessed 24-April-

2019].

[98] Wikipedia contributors. Vtune — Wikipedia, the free

encyclopedia, 2018. [Online; accessed 23-April-2019].

[99] Wikipedia contributors. Clang — Wikipedia, the free

encyclopedia, 2019. [Online; accessed 24-April-2019].

[100] Wikipedia contributors. Openjdk — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/

w/index.php?title=OpenJDK&oldid=927329117,

2019. [Online; accessed 23-November-2019].

[101] Wikipedia contributors. Strip (unix) — Wikipedia, the

free encyclopedia, 2019. [Online; accessed 24-April-

2019].

[102] Wikipedia contributors. Dtrace — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/

w/index.php?title=DTrace&oldid=950798652,

2020. [Online; accessed 25-April-2020].

[103] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,

Jaswinder Pal Singh, and Anoop Gupta. The splash-2

programs: Characterization and methodological con-

siderations. ACM SIGARCH computer architecture

news, 23(2):24–36, 1995.

[104] Steven Cameron Woo, Jaswinder Pal Singh, and John L.

Hennessy. The performance advantages of integrating

block data transfer in cache-coherent multiprocessors.

In Proceedings of the Sixth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS VI, pages 219–229,

New York, NY, USA, 1994. ACM.

[105] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao.

HOTL: a higher order theory of locality. In Architec-

tural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’13, Houston, TX, USA - March

16 - 20, 2013, pages 343–356, 2013.

[106] Ahmad Yasin. A top-down method for performance

analysis and counters architecture. In 2014 IEEE In-

ternational Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 35–44. IEEE,

2014.

[107] Adarsh Yoga and Santosh Nagarakatte. Parallelism-

centric what-if and differential analyses. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

pages 485–501. ACM, 2019.

[108] Tingting Yu and Michael Pradel. Syncprof: Detecting,

localizing, and optimizing synchronization bottlenecks.

180 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

In Proceedings of the 25th International Symposium on

Software Testing and Analysis, pages 389–400, 2016.

[109] Matei Zaharia, Mosharaf Chowdhury, Michael J

Franklin, Scott Shenker, Ion Stoica, et al. Spark: Clus-

ter computing with working sets. HotCloud, 2010.

[110] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang.

wperf: generic off-cpu analysis to identify bottleneck

waiting events. In 13th {USENIX} Symposium on Op-

erating Systems Design and Implementation ({OSDI}
18), pages 527–543, 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 181

CLP: Efficient and Scalable Search on Compressed Text Logs

Kirk Rodrigues, Yu Luo, Ding Yuan
University of Toronto & YScope Inc.

Abstract
This paper presents the design and implementation of CLP, a
tool capable of losslessly compressing unstructured text logs
while enabling fast searches directly on the compressed data.
Log search and log archiving, despite being critical problems,
are mutually exclusive. Widely used log-search tools like
Elasticsearch and Splunk Enterprise index the logs to provide
fast search performance, yet the size of the index is within the
same order of magnitude as the raw log size. Commonly used
log archival and compression tools like Gzip provide high
compression ratio, yet searching archived logs is a slow and
painful process as it first requires decompressing the logs. In
contrast, CLP achieves significantly higher compression ratio
than all commonly used compressors, yet delivers fast search
performance that is comparable or even better than Elastic-
search and Splunk Enterprise. In addition, CLP outperforms
Elasticsearch and Splunk Enterprise’s log ingestion perfor-
mance by over 13x, and we show CLP scales to petabytes of
logs. CLP’s gains come from using a tuned, domain-specific
compression and search algorithm that exploits the significant
amount of repetition in text logs. Hence, CLP enables effi-
cient search and analytics on archived logs, something that
was impossible without it.

1 Introduction

Today, technology companies easily generate petabytes of log
data per day. For example, eBay reported generating 1.2 PB
of logs per day in 2018 [46]. This data can be used for a
variety of important use cases including security forensics,
business insights, trend analysis, resource optimization, and
so on. Since many of these cases benefit from large amounts
of data, companies strive to retain their logs for as long as
possible. Moreover, some industries (e.g., health services) are
required by law to store their logs for up to six years [5].

However, storing and analyzing a large amount of log data
impose significant costs. Although it is difficult to obtain
transparent, publicly available information about companies’
storage costs, studies have estimated that a lower bound for
capital depreciation and operational costs could be on the
order of two cents per gigabyte, per month [7]. For a company
like eBay, this translates to over $50 million to store the logs
generated in a year, and nearly $500 million to store the logs

generated over three years. As a result, the log management
industry has grown incredibly large.

Currently, Elastic [2] and Splunk [4] are two of the largest
companies in the industry. In just their last fiscal year, Elastic
reported revenue of $428 million with a total of 11,300 cus-
tomers [14] while Splunk reported revenue of $2.359 billion
with 19,400 customers [36]. Moreover, their offerings, Elas-
ticsearch [15] and Splunk Enterprise [37], are used by several
large companies like eBay, Verizon, and Netflix.

Tools like Splunk Enterprise and Elasticsearch operate by
generating external indexes on the log messages during in-
gestion. Then in response to a query, these tools can quickly
search the indexes corresponding to the logs, decompressing
only the chunks of data that may contain logs matching the
search phrase. Elasticsearch, for example, is built around a
general-purpose search engine Lucene [42]. However, this
approach comes at the cost of a large amount of storage space
and memory usage. Although these tools apply light com-
pression to the logs, the indexes often consume an amount of
space that is the same order of magnitude as the raw logs’ size;
furthermore, these indexes must be kept mostly in memory or
on fast random access storage in order to be fully effective.
Thus, Splunk Enterprise and Elasticsearch users with large
amounts of data can only afford to retain their indexed logs
for a short period, typically a few weeks [8].

To avoid discarding logs at the end of their retention pe-
riod, companies can use industry-standard compression tools
like Gzip [21] to archive them, potentially gaining a 95%
reduction in storage costs. In addition, recent advancements
in compression algorithms like Zstandard [16] bring signif-
icantly improved compression and decompression speeds.
However, these general-purpose compressors are not designed
with search (on compressed data) in mind. They typically en-
code duplicates in length-distance pairs [40, 49], i.e., starting
from the current position, if the next L (length) characters
are the same as the ones starting at D (distance) behind, we
can encode the next L characters with (D,L), and directly
embed this pair at the current position, an approach known as
an internal macro scheme [40]. Performing searches on this
archived data, however, is painful and slow—the tool needs
to sequentially scan the entire data set, essentially decom-
pressing the data. This leads to the unfortunate reality that log
analysis and log archiving are generally mutually exclusive.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 183

To bridge this gap, we have created a method for lossless
log compression that still allows efficient searches on the
compressed data, without the need to decompress every log
message. It works by combining a domain-specific compres-
sion and search algorithm with a lightweight general-purpose
compression algorithm. The former allows us to achieve a
modest amount of compression without sacrificing search
performance. The latter increases the overall compression
ratio significantly with a minor impact on compression and
decompression performance.

The domain-specific compression algorithm uses an ex-
ternal macro scheme, i.e., it extracts the duplicated patterns
into a dictionary that is stored separately from the encoded
log messages [40]. A search query will be processed by first
searching in the dictionary, and then searching those encoded
messages for which the dictionary search suggests possible
matches. This method relies on the simple observation that to-
day’s software logs contain a large amount of repetitive static
text. By systematically separating the static text from the vari-
able values, the algorithm can deduplicate the static text into
a dictionary. Applying a similar process to the variable values,
the algorithm converts an entire log message into a series of
integers and dictionary entries that are easily compressible
using a general-purpose compressor.

The search process similarly encodes the query string as a
compressed message and searches for a match; but supporting
queries with wildcards makes this process significantly more
involved. For example, a wildcard can make it ambiguous
whether a token is part of the message’s static text or whether
it is part of a variable. As a result, the algorithm must consider
the effect of wildcards at every stage of the encoding and
search process.

Using this method of compression and search, we have built
an end-to-end log management tool, CLP1, that enables real-
time data ingestion, search, analytics, and alerting on top of an
entire history of logs. CLP is agnostic to the format of logs and
can ingest heterogeneous and unstructured logs. As a result,
CLP is capable of reducing the size of currently archived logs
while simultaneously enabling search and analytics on the
compressed data.

Our evaluation shows that CLP’s compression ratio is sig-
nificantly higher compared to all tested compressors (e.g., 2x
of Gzip), while enabling efficient search on compressed data.
This comparison even includes industry-standard tools like Zs-
tandard at their highest (and slowest) compression level. Fur-
thermore, CLP’s search speed outperforms commonly used
sequential search tools on compressed data by 8x in a wide
range of queries. Even compared with index-based log-search
tools Splunk Enterprise and Elasticsearch, CLP outperforms
them by 4.2x and 1.3x respectively. CLP’s distributed archi-
tecture further allows it to scale to petabytes of logs. CLP is
open-sourced and can be found at https://yscope.com. It

1CLP stands for Compressed Log Processor

is also hosted in the cloud so users can use it as a service.
CLP’s main limitation is that its algorithm is designed pri-

marily for text logs. This is not a problem in the vast majority
of software logs that we have seen, but we acknowledge that
there are projects that log primarily binary or structured data.
However, if converted to text with a verbose schema, these
logs can be compressed and searched using CLP without
additional overhead.

The rest of this paper is organized as follows. §2 describes
the core elements of CLP’s design for compression and search.
§3 details how CLP handles the various intricacies of han-
dling wildcards and patterns of variables. §4 describes our
syntax for variable patterns. §5 explains how CLP can cache
queries in reusable manner for performance. §6 describes a
characteristic of CLP’s compression format that can be used
for privacy control. §7 discusses the evaluation results of CLP
compared with other tools. Finally, §8 discusses related work,
before we conclude in §9.

2 Design Overview

CLP is a complete end-to-end system for ingesting, archiv-
ing, searching, and analyzing log messages. Figure 1 shows
an overview of CLP’s compression and search architecture.
Within the compression architecture, logs can be ingested ei-
ther through CLP’s real-time ingestion engine (e.g., from rsys-
log, Fluentd, Logstash, etc.) or by reading them directly from
local or cloud storage (e.g., Amazon S3 [29]). The compres-
sion nodes compress the ingested logs into a set of archives.
Users can access the compressed logs transparently using a
Unix terminal through the Filesystem in Userspace (FUSE)
layer or by querying them through CLP’s search interface.

CLP allows users to query their logs using a wildcard
search followed by a series of operators. An example query is
shown in Figure 2, containing four commands pipelined with
a Unix-style pipe (‘|’). The first command returns all log mes-
sages matching the search phrase (‘*’ is a wildcard character
that matches zero or more characters). Results are piped to the
regex operator which uses a regular expression to extract the
container ID and operation runtime, storing them in user de-
fined variables. Next, the filter operator filters for runtimes
that are above “0.1”. Finally, the unique operator generates
a list of unique container IDs that satisfy the filter. Overall,
this query returns the unique containers where the assignment
operation took over 0.1 seconds in the 172.128.*.* subnet.
We refer to this type of query as a pipelined query.

CLP’s search architecture supports pipelined queries by
combining search nodes with a MapReduce-style [11] frame-
work. CLP receives queries through its web UI or Python
APIs. Queries are first serviced by the search nodes which
perform a wildcard search on the archives. Results are then
forwarded to the operator nodes, after which the final results
are sent back to the user. Users can also create alerts that
trigger when newly added log messages satisfy a saved query.

184 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://yscope.com

Timestamp

Timestamp

Timestamp

Logtype ID

Logtype ID

Logtype ID

Variable IDs & values

Variable IDs & values

Variable IDs & values

Segment

Logtype

table

Variable

table

Archive

Deduplicate & Encode

Lightweight Compress

(Zstandard)

Compress Compressed Data Format

Text logs

Search

Command Line

Figure 1: Overall architecture of CLP.

"Task * assigned to container*:172.128" |
regex "(?<container>container_\d+).* took (?<runtime>\d+)"
| filter float(runtime) > 0.1 | unique container

Figure 2: A query example. CLP operator and keywords are in blue,
and user-defined variables are in red.

Note that because search is the first stage of every query, it is
also the most important for performance since it operates on
compressed data and all other stages operate on the decom-
pressed data it outputs.

We aim to satisfy three objectives with this design: First,
logs should be compressed losslessly so that users can delete
their original logs without worrying that CLP would destruc-
tively transform them (e.g., by changing the precision of
floating-point values). Second, users should be able to search
their logs for any value, in contrast to index-based search tools
which typically only allow searches for indexed values. For
example, unlike grep-like tools that respect all characters in
a search phrase, indexed-based search tools typically ignore
punctuation and stop words (e.g., “and”). Finally, CLP should
be performant and scalable so that users can use it to ingest
and search a large amount of log data while saving on storage
costs. By satisfying these objectives, we aim to bridge the
gap between conventional log archival and search, e.g., using
gzip and grep, and large-scale log analysis, e.g., using Splunk
Enterprise or Elasticsearch.

The core of CLP is implemented in C++ for performance
while higher-level functionality is built in a variety of lan-
guages from Java to JavaScript.

2.1 Compression

CLP’s compression consists of two steps: first it deduplicates
highly repetitive parts of each log message and encodes them
in a special format, then it applies a lightweight compressor
to the encoded data, further reducing its size. This section
focuses on explaining the first step.

CLP splits each message into three pieces: 1) the log type,
which is typically the static text that is highly repetitive, 2)
variable values, and 3) the timestamp (if the message con-
tains one). CLP further separates variable values into two

categories: those that are repetitive, such as various identifiers
(e.g., a username), and those that are not (e.g., a job’s com-
pletion time). We refer to the former as dictionary variables
since CLP extracts and stores them in a dictionary; the lat-
ter are called non-dictionary variables. Figure 3 shows a log
message and how CLP converts it into a compressed form.
Overall, this requires parsing the message to extract the afore-
mentioned components and then compressing it using CLP’s
domain-specific compression algorithm.

2.1.1 Parsing Messages

CLP parses logs using a set of user-specified rules for match-
ing variables. For example, Figure 4 lists a set of rules that
can be used to parse the example log message. Lines 3–5
contain three dictionary variable schemas and line 8 contains
a non-dictionary variable schema. This is similar to tools
like Elasticsearch and Splunk Enterprise that either provide
application-specific parsing rules or ask users to write their
own. CLP provides a default set of schemas that can be ap-
plied universally to all log formats, or users can optimize
them to achieve better compression and faster searches on
their workloads.

One challenge with using variable schemas is that they can
match pieces of a log message in multiple ways. For instance,
“172.128.0.41” could match the schema for an IP address or
it could match two instances of the floating point number
schema, joined by a period. However, we have observed that
developers typically separate different variable values with
one or more delimiter characters. Furthermore, they also use
delimiters to separate variable values from static tokens in the
log type. We call this the tokenization rule, which states that
a token is inseparable. That is, an entire token is either a vari-
able value or part of the log type. In this case, “172.128.0.41”
will be treated as a single token, so it can only match an IP ad-
dress instead of two floating point numbers joined by a period.
Accordingly, CLP allows users to specify a set of delimiters
that ensures their schemas only match variables in a way that
respects the tokenization rule.

To parse a log message, CLP first parses and encodes the
message’s timestamp as milliseconds from the Unix epoch.
CLP then tokenizes the log message using the user-specified

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 185

ID Schema Ptr

0 task_\d+

1 \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}

2 container_\d+

ID Log type Segments

4 INFO Task \x11\x00 assigned to container: [NodeAddress:\x11\x01, ...

 ContainerID:\x11\x02], operation took \x12\x13 seconds

ID Variable value Segments

8 task_12 ...

Timestamp Log type ID Variable values

1577934245006 4 8 9 9 0x3FD570A3D70A3D71

ID Variable value Segments

9 172.128.0.41 ...

ID Variable value Segments

9 container_15 ...

Log type

dictionary

Variable

dictionary

Encoded

messages

2020-01-02T03:04:05.006 INFO Task task_12 assigned to container: [NodeAddr

ess:172.128.0.41, ContainerID:container_15], operation took 0.335 seconds
Log message

Figure 3: A log message and its encoding. Dictionary variables are in blue; Non-dictionary variables are in orange.

1 delimiters: "[],: "
2 dictionary_variables:
3 "task_\d+" # Task ID
4 "\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3}\.\d{1,3}" # IP
5 "container_\d+" # Container ID
6

7 non_dictionary_variables:
8 "\d+\.\d+" as floating_point_number

Figure 4: Schemas used to parse the example in Figure 3.

delimiters. For each token, CLP compares it with each vari-
able schema to determine whether it is a variable value. In
Figure 3, CLP identifies three dictionary variables in the log
message—“task_12”, “172.128.0.41”, and “container_15”—
and a non-dictionary variable value, “0.335”.

2.1.2 Compressing Messages

Once parsed, the dictionary variables are stored in a two-
level variable dictionary, referred to as a vDict. The first level
maps each dictionary variable schema to a unique ID. Each
schema is also mapped to a pointer that points to the second
level of the vDict, where the actual variable value is stored.
In Figure 3, the schemas for the task ID, IP address, and
container ID are mapped to IDs 0, 1, and 2 in the first level,
and the actual variable values are stored in the second level.

Non-dictionary variable values are stored directly in the
encoded log message if possible. For example, “0.335” is en-
coded using the IEEE-754 standard [1] and stored as a 64-bit
value in the encoded message. CLP currently supports en-
coding floating point numbers and integers as non-dictionary
variables. If a non-dictionary variable cannot be encoded pre-
cisely within 64-bits (e.g., its value overflows), it is stored as
a dictionary variable instead. Non-dictionary variables tend

to be unique values like counters, so they do not benefit from
being stored in a dictionary. We use a fixed-width 64-bit
encoding instead of a variable-width encoding because it is
simple to implement, and the space inefficiency is diminished
by the lightweight compressor applied to the encoded data.

The remaining portion of the log message is treated as
being part of the log type, where variable values are replaced
with special placeholder characters. Each unique log type is
stored in the log type dictionary, or ltDict, and is indexed by
an ID. CLP uses byte ‘\x11’ to represent a dictionary variable
value. The next one or more bytes after ‘\x11’ are an index into
the vDict’s first level, i.e., an index to the variable schema. In
Figure 3, ‘\x00’, ‘\x01’, and ‘\x02’ in the log type are indices
to the three schemas for the task ID, IP address, and container
ID in the vDict. CLP uses ‘\x12’ as the placeholder for a
floating point non-dictionary value. The next byte, ‘\x13’, in
the log type indicates that there is one digit before and three
digits after the ‘.’ character in the raw log message, ensuring
the floating point value can be losslessly decompressed.

Note that we could choose any bytes for the placeholder
characters, but since ‘\x11’ and ‘\x12’ are not printable ASCII
characters, they are unlikely to appear in text logs. If they do,
CLP will escape them before insertion into the log type.

CLP outputs the encoded message as a tuple with three
elements as shown in Figure 3: a 64-bit timestamp, a 32-
bit log type ID, and a sequence of 64-bit variable IDs and
encoded variable values.

We have experimented with additional encoding schemes
that can further reduce the size of the encoded data, but de-
cided not to adopt them due to their undesirable trade-off.
For example, we could store variable IDs and non-dictionary
variable values using a variable-length encoding, instead of a
fixed-length 64-bit encoding. We have also experimented with
delta encodings, run-length encodings, and so on. However,
these would come at the cost of search performance since

186 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Timestamps Log types Variables

Log file 1 Log file 2 Log file 3

Figure 5: Storing encoded messages in column-oriented manner. It
shows a segment that contains three encoded log files.

it is faster to scan fixed-length values than variable-length
values. Moreover, the space savings are negligible after the
lightweight compressor is applied on the encoded data.

2.1.3 Decompressing Messages

CLP’s decompression process is generally a reversal of the
compression process. Given an encoded message, CLP uses
the message’s log type ID to find the corresponding log type
in the ltDict. CLP then reconstructs the variable values and
replaces the placeholders in the log type. For example, CLP re-
constructs the variable value “task_12” in Figure 3 as follows:
the first ‘\x11’ in the log type indicates that it is a dictionary
variable, so CLP uses the next byte, ‘\x00’ as an index into the
first level of the vDict. CLP then uses the variable ID stored
in the encoded message (8 in this case) to index the corre-
sponding second level of the vDict, and restores the variable
value “task_12”. Finally, CLP converts the timestamp back to
text and inserts it into the message.

2.1.4 On-disk Format

Figure 1 also shows the on-disk format of CLP’s compressed
logs. CLP encodes each message and stores them in the same
temporal order as in the original log file. This ensures the
file can be losslessly decompressed. The encoded messages
are initially buffered in memory, and once the buffer reaches
a certain size, they are compressed using Zstandard before
being written to disk, creating what we call a segment.

Encoded messages are stored in a column-oriented man-
ner [39], as shown in Figure 5—CLP stores the timestamp
column of the messages from log file 1, then its log type IDs,
and finally the variable IDs and values column, before storing
the three columns of the next log file. Storing columnar data-
series reduces data entropy within Zstandard’s compression
window, significantly improving compression ratio. In addi-
tion, columnar data-series can improve search performance:
for instance, if users search for a message in a specific time
range, CLP can skip messages outside that time range by only
scanning the timestamp column rather than all columns.

Multiple segments further belong to an archive, where all
segments in an archive use the same log type and variable
dictionaries. CLP automatically closes and creates a new
archive when the dictionaries reach a size threshold. This
ensures that the dictionaries do not grow too large such that
they have non-negligible loading times for decompression

and search. CLP also compresses the dictionaries using the
same lightweight compressor applied to the segments.

Each entry in the ltDict and the vDict’s second level also
has a list of pointers to segments that contain the particular log
type or variable value. CLP is I/O bound reading segments, so
this serves the purpose of a coarse-grained search index. We
index at the granularity of segments since any query that has
a hit in a segment requires the segment to be decompressed
from its beginning to the matched message. Without the index,
any search that matched a dictionary entry required searching
all segments in the archive.

For each archive, CLP also stores metadata about the log
files and directories that were compressed. For each file, the
metadata contains the original filesystem path of the file, the
number of log messages it contains, the starting and ending
timestamp of the messages in the file, the format of its times-
tamp (used to reconstruct the timestamp during decompres-
sion), and the segment that contains the compressed messages
from the log file. In addition, the metadata contains the three
offsets in the segment corresponding to the starting locations
of the messages in this log file: one for each of the timestamp
column, log type column, and variable column. These offsets
are used to speedup the search when users use search filters.
For example, a user could search for filenames that match
a specific pattern, such as yarn.log (the log produced by
YARN in a Hadoop cluster). Users can also specify the time
range of the search, so CLP will first filter log files based on
the starting and ending timestamps. In such cases, the meta-
data as well as the content in the data columns themselves
allow CLP to skip scanning parts of data columns or files.

For directories, the metadata in the archive stores the paths
of any empty directory that was compressed. An empty direc-
tory may be indicative of missing logs or it may be named
after an identifier that the user wishes to keep. Thus, to ensure
lossless decompression, these paths must be stored.

CLP also supports different compression modes that can
offer improved compression at the cost of a minor reduction
in performance. This is achieved by changing the lightweight
compressor’s settings. CLP currently ships with three modes:
“Default” that uses Zstandard at level 3 and is concurrently
optimized for compression speed and search performance;
“Archive” that uses 7z-lzma at level 1 and offers higher com-
pression with slightly reduced search performance; and finally,
“Ultra” that uses 7z-lzma at level 9 and offers even higher com-
pression with further reduced search performance. CLP can
migrate between these modes by simply decompressing and
recompressing the segment.

2.2 Search

Given a search phrase, CLP processes it in the same way
that it compresses a log string: CLP tokenizes the phrase,
extracts variable values, and constructs the log type. Next,
CLP searches the archive’s dictionaries for the log type and

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 187

Log type Variables CLP’s processing
1 "Task * assigned to container*:\x11\x01" "172.128*" (IP address) Log type, var. search, scan segments
2 "Task * assigned to container*:\x12?" "172.128*" (float num.) Log type search (no match)
3 "Task * assigned to container*:178.128*" - Log type search (no match)
4 "Task * assigned to \x11\x02*:\x11\x01" "container*" (container ID) Log type search (no match)

"172.128*" (IP address)
5 "Task * assigned to \x11\x02*:\x12?" "container*" (container ID) Log type search (no match)

"172.128*" (floating point num.)
6 "Task * assigned to \x11\x02*:178.128*" "container*" (container ID) Log type search (no match)

Table 1: Processing of the search example in Figure 2. Each row is a sub-query generated by CLP.

dictionary variables. If matches are found for the log type and
all dictionary variables, CLP proceeds to search the segments
for encoded messages that contain the matching log type ID,
dictionary variable IDs, and encoded non-dictionary variables.

However, wildcards in the search phrase complicate this
process. CLP supports search phrases that can contain two
types of wildcard characters: ‘*’ (henceforth referred to as a
*-card) that can match zero or more characters and ‘?’ (hence-
forth referred to as as a ?-card) that matches any single char-
acter. First, it is nontrivial to tokenize a string with wildcards.
For example, the string “Task*assigned” could be a single to-
ken or two tokens (“Task*” and “*assigned”) since a *-card

can match both non-delimiter and delimiter characters. Fur-
thermore, it is nontrivial to determine if a token with a wild-
card matches a variable schema. Finally, without wildcards,
a token will be unambiguously categorized as either a log
type, a dictionary variable, or a non-dictionary variable; but
with wildcards, a token could belong to multiple categories.
We address the first two issues in Section 3 and continue a
discussion of the third challenge below.

2.2.1 Handling Ambiguous Tokens

Consider the search command in Figure 2. CLP first inserts a
*-card at the beginning and end of the search string, turning it
into a substring search to match user-expectations. Then after
tokenization, CLP recognizes the following tokens: “*Task”,
“assigned”, “to”, “container*”, “172.128*”. Note that CLP
does not consider a lone *-card as a token. For example, the
*-card after “Task” is not treated as a token.

Each token is then compared against all of the variable
schemas. CLP determines that “*Task”, “assigned”, and “to”
do not match any schemas, hence they are part of the log
type. Ambiguity exists for the other two tokens: “172.128*”
could match an IP address schema or a floating point number,
“container*” could match a container ID, and both could also
be part of the log type. This creates a total of six combinations,
and CLP generates a sub-query for each possibility.

Table 1 lists the six generated sub-queries. The first three
treat “container*” as part of the log type, and “172.128*” is
treated as part of an IP address, a floating point number, and
the log type in sub-query 1, 2, and 3 respectively. When treat-

ing “172.128*” as a floating point number, CLP does not know
the value’s exact precision, so it inserts a ?-card to match all
possibilities. Sub-query 4–6 in Table 1 consider the cases that
“container*” is treated as a dictionary variable container ID.

Each sub-query will be processed in three steps. First, CLP
searches the ltDict for matching log type. Only when there is
a matching log type, it proceeds to the next step of searching
the vDict for the dictionary variables. And only when there
is at least one matching result for every dictionary variable,
CLP proceeds to the third step. It takes the intersection of
the segment indexes of the matching log type and dictionary
variables, and for each of these segments, CLP decompresses
the segment and searches for encoded messages matching the
encoded query. If any of the first two steps return no matching
result, or the intersection of the segment indexes is empty,
the sub-query processing returns with no match. Different
sub-queries will be processed in parallel.

For the six sub-queries shown in Table 1, only the first sub-
query will exercise all three steps and return the matching log
message shown in Figure 3. The processing of the other five
sub-queries will return after step one, because the generated
log type does not match any log types in the ltDict (these log
types are impossible).

2.2.2 Optimizing CLP Queries

The way users write their search phrase can significantly affect
the speed of the search. In our evaluation, dictionary search
time is negligible compared to a segment scan; furthermore,
log type dictionary search time is negligible compared with
variable dictionary search. Therefore the best practice is to
provide enough information in the search phrase to help CLP
narrow down the log type or the dictionary variable values
or both. The user can also speedup the search by filtering for
a specific time range or log file path, dramatically shrinking
the search scope. For example, the user could use a search
phrase “172.128” to perform the previous query, but the search
performance may be much worse. CLP will determine that
“172.128” could be part of an IP address, floating point number,
or the log type, and generate three sub-queries with log types
being “\x11\x01”, “\x12?”, and “172.128”. However, the first
two sub-queries will likely result in numerous matching log

188 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

types in practice, i.e., any log type that contains an IP address
or a floating point number, so CLP will end-up scanning a
large number of segments.

Currently CLP does not use any additional index on its
dictionary entries. A search on the ltDict, for example, will
sequentially scan each entry. This is not a problem for now as
the bottleneck in search is in scanning the segments, because
the dictionaries are small. CLP also does not have any index
on non-dictionary variables. We plan to add index (e.g., B-
trees) to non-dictionary variables in the near future.

2.3 Handling Special Cases
Users have two options for changing variable schemas after
log data has already been compressed. The new schema can
be applied only to newly compressed data, in which case each
archive will also need to retain the schemas that were used
to compress the data. Alternatively, the users can ask CLP to
update existing archives to use the new schema, and CLP will
have to decompress and recompress the data.

CLP can also warn the user if the schemas they provided
are not optimal. For example, if the user forgot to specify the
schema of a variable, that variable would be encoded as part
of the log type, and could “pollute” the log type dictionary
where a large number of similar log types are created, with
the only difference being that variable value. CLP can detect
this case by comparing the edit distance between log types
and issue a warning.

Although rarely used, CLP also supports the deletion of
log messages. The encoded messages will be deleted from the
affected segments, which involves recompressing the segment
data using the general-purpose compressor and writing it to
disk. The segment index in the dictionaries will also need to
be updated.

Currently CLP does not support SQL-style join operations
in a single query. However, users can perform joins in their
client program using CLP’s APIs.

2.4 Distributed Architecture
CLP adopts a simple controller and data node design that
enables high scalability, similar to other widely used big data
systems [9,11,22,41]. The central controller simply manages
metadata and node failures, while the data intensive com-
putation of compression and search as described above are
performed by each data node independently. Compressed data
is stored on a distributed filesystem to ensure reliability.

The controller maintains three metadata tables: 1) log files,
2) archives, and 3) empty directories. The log files table stores
the metadata of each raw log file (its file system path, the
number of log messages, etc.) as well as the archive that
contains this log file. Note that if the log messages are directly
streamed to CLP using a log aggregation tool (e.g., rsyslog,
Fluentd, Logstash, etc.), CLP still splits them into logical

files once the buffered log messages reach a certain size or
time frame. The archives table stores the metadata of each
archive including which data node stores this archive. The
empty directories table stores the paths of empty directories
compressed in each archive.

The purpose of these metadata tables is only to speedup
the search. For example, a user can specify a filter to only
search log files whose file names match a certain pattern.
The information stored in these tables is also stored in the
archives, so even if the tables are lost, there is no risk of
data loss. Nevertheless, we replicate the metadata tables three
times with failover handling.

In order for CLP’s compression and search to scale in a dis-
tributed system, each archive is independent of other archives
and immutable once written. This independence makes com-
pression easily parallelizable without any synchronization
between threads writing different archives. The immutability
ensures that a search thread can query an archive without syn-
chronizing with a compression thread. To avoid coordination
between search threads, each archive is only queried by a
single thread for a given query. Thus, CLP parallelizes com-
pression and search at the granularity of individual archives.

File System Integration Using FUSE. CLP has the ability
to transparently integrate with a user’s existing environment.
For example, a user can use GNU find to search for files, and
use VIM to open a compressed log file. We implement this by
intercepting the file system operations using FUSE (Filesys-
tem in Userspace) [44]. It walks the directory hierarchy stored
in the log files table and decompresses the required data on
demand to satisfy I/O requests. Common I/O optimizations
such as caching, I/O request re-ordering and batching are per-
formed to further increase CLP’s efficiency and performance.

3 Wildcards and Schemas

We face two fundamental challenges in handling wildcards.
Recall that CLP’s encoding process requires tokenizing the
input, extracting each token that matches a variable schema,
and finally composing the log type. The first challenge in
handling wildcards is determining how to tokenize a string
containing wildcards, given that a wildcard could either match
a delimiter or non-delimiter character. The second is determin-
ing if a token containing wildcards (a wildcard token) could
match a given variable schema. Both of these challenges oc-
cur because a wildcard string has a range of possible inputs
that it could match, and CLP’s task is to encode all possible
inputs so that they can be used for search.

3.1 Wildcard String Tokenization

To tokenize a wildcard search string, we need to consider
each possible interpretation of every wildcard in the string.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 189

*-card interpretation Spans
1 Delimiters only “*to”, “*”, “container*”
2 Non-delimiters only “*to*container*”
3 Both “*to*”, “*”, “*container*”

Table 2: The spans generated by tokenizing “*to*container*”
depending on the interpretation of the central *-card.

For example, consider the search string “*to?container*”. If
the ?-card is interpreted as a delimiter, the string will gen-
erate three spans: “*to”, “?”, and “container*”. We use the
term span to refer to either a contiguous set of non-delimiter
characters, or a contiguous set of delimiter characters. Using
the schemas in Figure 4 on these spans, CLP will find that
the last span matches a variable schema and the rest match
the log type in Figure 3. However, if the ?-card is interpreted
as a non-delimiter, then the entire string will be treated as a
single token and CLP will find neither a matching schema nor
log type. Accordingly, CLP must generate sub-queries from
each unique tokenization of the search string.

To handle *-cards, CLP technically needs to consider
that a *-card can be interpreted as either 1) matching non-
delimiters only, 2) matching delimiters only, or 3) matching
non-delimiters and delimiters. However, because a *-card

matches zero or more characters, we can skip a case.
Consider the search string “*to*container*”. To simplify

the discussion, we only consider the interpretation of the
central *-card and assume the others are interpreted as non-
delimiters only. Table 2 lists the spans generated for each
case. Note that the third tokenization is from interpreting the
*-card as zero or more non-delimiters, followed by zero or
more non-delimiters and delimiters, followed by zero or more
non-delimiters. Comparing the first and third tokenization, we
can see that the third is a more general version of the first. As
a result, CLP does not need to consider the first tokenization.
We can generalize this as follows: If a *-card is interpreted to
have a different type than either of the characters surrounding
it, the tokenization should split the string at the *-card while
leaving *-cards attached to the surrounding character.

3.2 Comparing Expressions
To compare a wildcard token to a variable schema, CLP needs
to determine if they overlap in the words that they could
match. More formally, let U represent the words matched
by the wildcard-containing token, and V represent the words
matched by the variable schema. CLP needs to determine if
U

⋂
V 6= /0. For example, the wildcard token, “task_?”, and

the variable schema, “task_\d+” both match task IDs with one
digit. Therefore, CLP can consider that this token matches
the schema. However, this intersection does not imply that
U =V , so CLP must still consider that “task_?” may be part
of the log type (e.g., if the ?-card matches an alphabet). To
determine if U =V , CLP could verify that U

⋂
V c = /0, where

V c is the set complement of V , but we find that this is rarely
true in practice.

This is a standard problem of comparing the accepted in-
put sets of two regular expressions. However, modern regular
expression engines support irregular expressions (e.g., back-
references) that prevent them from supporting this standard
operation. Furthermore, we could not find a widely-used en-
gine that supported strictly regular languages. So we built our
own engine and use it to compute this intersection as well as
enforce rules on the supported variable schemas.

4 Schema Design

Up until this point, we have only discussed schemas that
match a single token. However, there are several variable
values that fall outside this definition. For example, using the
delimiters in Figure 4, the variable value “0.0.0.0:80” is a set
of two tokens (“0.0.0.0” and “80”) joined by a delimiter (‘:’).
Similarly, “ block id : 1073741827 ” is a variable value that
can only be categorized as a block ID if the schema takes into
account the tokens before the actual variable value. To handle
these cases, we extend our definition of a schema to include
multiple regular expressions.

A schema in CLP is a sequence of regular expressions,
where each expression exclusively contains non-delimiters or
delimiters; we refer to the former as a token expression and
the latter as a delimiter expression. In addition, the sequence
must alternate between token and delimiter expressions, or
else the tokenization rule could be violated. Finally, a schema
may include non-capturing prefix and suffix expressions that
are used to contextualize the schema.

CLP ships with a few default schemas that we have found
are effective in capturing most variables. Specifically, we have
a schema each for non-dictionary integer and floating point
values. In addition, we have a schemas that match any token
with a digit or any token preceded by an equals sign. Finally,
we treat most non-alphanumeric characters as delimiters ex-
cept for a few like underscores and periods.

5 Compressed Persistent Caching

Our experience with CLP shows that it is typically bottle-
necked by I/O. Although, the dictionaries and segment index
help to avoid much of this I/O, queries that match rare log
types can still end up reading an entire segment. Thus, we
designed a caching mechanism to improve the performance
of these queries.

Consider a segment with two log types: ltA comprising
90% of messages in the segment and ltB comprising 10%
of messages. A query for either log type without applying
any filtering requires reading the entire segment since ltA and
ltB’s messages are interspersed. A query for ltB would read

190 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

90% more data (i.e., those belonging to ltA) than necessary,
and a query for ltA would read 10% unnecessary data.

One possible solution is to sort the log types in each seg-
ment, but this introduces two problems. First, since the seg-
ment is compressed as a single stream, if a log type’s messages
start in the middle of the segment, queries for that log type will
require decompressing all messages before it. Second, since
messages are no longer ordered as in the raw log file, each
message would also need to store its position in the original
log file so that we could maintain lossless decompression.

Another solution is to store each log type in its own seg-
ment, but this too introduces complications: For example,
compression performance will be decreased since CLP will
have to repeatedly open and close several segments, one for
each log type in a file (in reality, the number of such single-
log-type segments may exceed the number of open files per
process that the OS allows, preventing CLP from keeping the
files open at the same time). As a result, we do not use this
strategy as our primary storage method but rather as a cache.

CLP’s policy is to cache recently read, infrequent log types
by storing each log type in its own segment. These segments
are created in addition to the existing segments compressed by
CLP, instead of replacing them. Specifically, when a user runs
a query containing one or more log types, CLP will attempt
to cache messages with those log types (henceforth referred
to as caching log types) if the query does not return too many
messages. The specific number of messages is configurable
and will depend on the user’s performance requirements and
system resources. Only infrequent log types are cached be-
cause they offer both the best speedup and least additional
storage cost.

When CLP tries to cache a new log type and the cache is
full, it will need to decide whether to evict an existing log type
or discard the new log type. Its policy is to evict log types
that 1) have not been recently queried, and 2) that contain
more messages than the new log type to be cached. The
first condition is necessary to ensure that the cache does not
eventually become filled with the most infrequent log types
due to the second condition. The duration that is considered
recent can also be configured by the user and again depends
on their deployment. Note that in practice, a user’s query
may match multiple log types, in which case, CLP creates a
persistent cache file for each log type independently.

The format of each log type segment in the cache is similar
to the regular segments, but with a few key differences. First,
there is no log type column since the entire file has the same
log type. Second, each message additionally includes a log
file path identifier, a timestamp format identifier and an op-
tional message number. These identifiers are necessary since
messages in this file may come from many different log files.
Finally, the log type segment is named in a way that it can be
easily referenced using the corresponding log type ID.

With the cache enabled, CLP processes a query in two
parts: one for the log type cache and one for the non-cache

Name Files Log Messages Size (GB)
/var/log/*-7GB 9,335 63,197,765 7
OpenStack-33GB 810 74,188,154 33
Apache-6TB 5,293 26,135,489,184 6,304
Hadoop-14TB 18,170 57,323,941,112 14,510

Table 3: The log datasets used to evaluate CLP.

segments. To determine which log types are in the cache, CLP
simply uses each log type’s ID to locate its corresponding
segment. If one exists, it is searched like any other segment
and the log type is removed from the query. Then, any re-
maining uncached log types are searched for in the non-cache
segments, completing the query.

6 Data Scrubbing and Obfuscation

A useful feature of CLP’s design is the ability to quickly ob-
fuscate data (e.g., to comply with data privacy laws) using
the compression dictionaries. Consider a case where a user
wants to obfuscate a username, “johnsmart9”, from all log
messages. Since this username will be stored in the variable
dictionary, it can be easily replaced with an obfuscated string
like “x93n4f9”. Similarly, if a user wanted to hide all user-
names from a certain log type, they could simply modify the
log type in the dictionary to contain a generic username in
place of the actual username. Moreover, since the dictionaries
are typically much smaller than the segments or the raw data,
these replacement operations will be much faster than they
would be if the logs were not compressed.

7 Evaluation

CLP has been used to compress petabytes of logs from hun-
dreds of different applications, and we have verified that its
compression is lossless in all cases. Our evaluation focuses
on CLP’s performance. Specifically, we explore: 1) CLP’s
compression ratio and speed; 2) CLP’s search performance;
and 3) CLP’s scalability and resource efficiency.

7.1 Experiment Setup
Table 3 shows the log corpuses used in our evaluation. The
/var/log/* corpus contains all of the logs in the /var/log/

directory generated by a cluster of more than 30 Linux
servers over the past six years. The OpenStack-33GB log
set was gathered by running the cloud scalability benchmark
tool, Rally [45], on top of OpenStack. Apache-6TB contains
Apache httpd access logs collected over a 15-year period by
the U.S. Securities and Exchange Commission’s EDGAR
system [43]. The Hadoop-14TB logs were generated by three
Hadoop clusters, each containing 48 data nodes, running work-
loads from the HiBench Benchmark Suite [25] for a month.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 191

Note that the datasets generated by benchmarking tools may
be artificially uniform, as benchmarks do not always capture
the randomness of real-world deployments. However, this
should not affect our claims since we compare CLP relative
to other tools on the same datasets.

Experiments were performed on a cluster of 16 Linux
servers connected over a 10GbE network, each with an eight-
core Intel Xeon E5-2630v3 processor and 128GB of DDR4
memory. Unless otherwise specified, all data is stored on a
3TB (labelled 3TB, real-size 2.73TB) 7200RPM SATA HDD
connected to each machine.

We compare CLP with Gzip 1.6, Zstandard 1.3.3, and
7z 16.02 for compression, in addition to ripgrep 12.1.0, Elas-
ticsearch 7.8.0 and Splunk Enterprise 8.0.3 for search. All
versions were the latest releases from Ubuntu 18.04’s package
manager, Elastic, and Splunk at the time of the experiments.

We use ripgrep to search the archives produced by general-
purpose compressors. ripgrep is a grep-derivative designed
with aggressive system and algorithmic optimizations that
allow it to outperform grep significantly. Moreover, ripgrep
offers advanced parallelization and can directly search the
contents of Gzip, Zstandard, and 7z-lzma archives.

We modified Elasticsearch and Splunk Enterprise’s default
configuration only enough to ensure they matched CLP’s
search capabilities without storing more data. In practice, we
expect a user in need of CLP’s capabilities would do the same.
Recall CLP can perform wildcard searches on log messages as
well as filtering based on file paths and time ranges. We do not
explicitly evaluate the filtering features but supporting them
increases the amount of data that Elasticsearch and Splunk
Enterprise store in their indexes.

Splunk Enterprise’s default configuration matches almost
all of CLP’s capabilities with the exception of wildcard
searches. Due to the way Splunk Enterprise indexes tokens
with punctuation like “AA-BB-123”, it cannot perform queries
with wildcards in the middle of the token like “AA*23” [38].

For Elasticsearch, we first had to configure an index before
logs could be ingested. Typically, Elasticsearch’s ingestion
tool, Filebeat, configures a default index; but because Filebeat
was not fast enough for our use, we ingested logs using our
own parser. Elasticsearch indexes are configured with a set
of fields, each of which has a type indicating how it should
be indexed. Elasticsearch only supports wildcard searches on
fields with type “keyword”. Alternatively, Elasticsearch can
perform full text searches on “text” type fields, but this does
not match CLP’s capabilities. For example, Elasticsearch’s de-
fault tokenizer ignores stop words like “and”, whereas CLP’s
wildcard search does not. We initially tested indexing the con-
tent of each log message as a keyword-field but found that
this required 58% more storage, took 7% longer to ingest,
and was 4750% slower to search compared to indexing the
content as a text-field. Elastic also recommends indexing un-
structured content as a text-field [13]. Thus, we configured
Elasticsearch’s index with three fields: message_content with

type “text,” timestamp with type “date,” and file_path with
type “keyword.” Following Elasticsearch’s best practices [12],
we set the max heap size to 30GB for its Java Virtual Machine.

For CLP, we configured the persistent cache to store less
than 0.01% of all compressed messages and used the general-
purpose default schemas to parse the logs in all experiments.

7.2 Compression Speed and Ratio

512 256 128 64 32 16 8 4 2

compression speed (MB/s)

0

10

20

30

40

50

60

70

80

c
o
m

p
re

s
s
io

n
 r

a
ti

o

CLP
(Default)

CLP
(Archive) CLP

(Ultra)

Zstandard
(Default)

Gzip
(Default)

7z-lzma
(Default)

7z-PPMd
(Default)

CLP

Gzip

Zstandard

7z-PPMd

7z-lzma

Figure 6: Compression ratio and speed trade-off for CLP and
general-purpose compressors. CLP’s compression generally exceeds
all other compressors and its current speed is competitive.

We first examine CLP’s tradeoff between compression ratio
and speed compared to general-purpose compressors. Each
tool was used to compress a 30GB subset of the Hadoop
corpus. In addition, all data was read from and written to a
tempfs RAM disk in order to minimize I/O overhead and fully
expose the tools’ algorithmic performance. For each tool,
we measured its single-threaded compression speed since
not all tools support multiple threads; for those that do, we
observed a minor decrease in per-core performance when
running them with multiple threads rather than independent
processes. Finally, we vary each tool’s compression level from
low to high.

Figure 6 shows the compression ratio and speed for the eval-
uated tools. Overall, CLP achieves higher compression than
Gzip or Zstandard. Compared to PPMd, a natural-language
optimized compressor, CLP slightly exceeds its compression
at their default levels and significantly exceeds it at higher
compression levels. In addition, CLP’s default level offers
performance competitive with Gzip’s default level but with
double the compression. We use CLP’s default mode for all
remaining experiments.

To compare CLP’s compression speed with Elasticsearch
and Splunk Enterprise’s ingestion speed, we reuse the previ-
ous experiment except each tool is configured to use the num-
ber of threads that provides the highest possible throughput.
In contrast with general-purpose compressors, Elasticsearch
and Splunk Enterprise are designed as multithreaded tools,
so their performance generally suffers when they are forced
to use a single thread. Figure 7 shows the results: Overall,

192 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Query # results # log types # dict. vars.
Log type queries contain no variables, so CLP only searches the log type dictionary and log type columns.
Q1 “ org.apache.hadoop.hdfs.server.common.Storage:←↩

Analyzing storage directories for bpid ”
12 1 0

Q2 “ org.apache.hadoop.hdfs.server.datanode.DataNode:←↩
DataTransfer, at ”

2,026 1 0

Q3 “ INFO org.apache.hadoop.yarn.server.nodemanager.←↩
containermanager.container.ContainerImpl: Container ”

513,893 12 0

Q4 “ DEBUG org.apache.hadoop.mapred.ShuffleHandler:←↩
verifying request. enc_str=”

810,033 84,922 0

Non-dictionary integer queries contain an integer non-dictionary variable, so the variable column is searched in addition to
the log type search.
Q5 “ to pid 21177 as user ” 12 3 0
Q6 “ 10000 reply: ” 13,064 24 0
Q7 “ 10 reply: ” 279,284 24 0

Non-dictionary float queries: contain a float non-dictionary variable.
Q8 “ 178.2 MB ” 2,800 3 0
Q9 “ 1.9 GB ” 1,623,002 5 0

Dictionary variable queries contain dictionary variable, so log type dict., variable dict., and variable columns are searched.
Q10 “job_1528179349176_24837” 51 89,258 3
Q11 “blk_1075089282_1348458” 4,261 89,258 3
Q12 “hdfs://master:8200/HiBench/Bayes/temp/worddict” 178,076 9 1
Non-matching query: contains a potential log type but does not match any log type.
Q13 “ abcde ” 0 0 0

Table 4: The queries used in our search-performance evaluation, grouped based on how CLP processes them. The quotation marks in each
query are used to highlight any leading or trailing spaces and are not part of the query. Similarly, the←↩ symbol indicates a newline that is not
part of the query but was inserted for typesetting.

0 100 200 300 400 500 600

Splunk

Elasticsearch

CLP

35 MB/s

38 MB/s

503 MB/s

Figure 7: Single-node ingestion speed of 30GB of Hadoop logs for
CLP, Elasticsearch, and Splunk Enterprise. CLP far exceeds their
ingestion speed.

CLP is able to ingest the corpus at least an order of magnitude
faster than both Elasticsearch and Splunk Enterprise.2

We also compare the tools’ compression on larger datasets.
To measure Elasticsearch and Splunk Enterprise’s compres-
sion ratio, we shutdown the tools to ensure any in-memory
data was persisted and then measured the size of their data
directory on disk. For Splunk Enterprise, we used a subset of
the terabyte-scale datasets since our evaluation license limited
the amount of data we could ingest per day. Figure 8 shows
the results for Gzip, Zstandard, and 7z-lzma using their de-
fault settings in addition to Elasticsearch, Splunk Enterprise,
and CLP. For all corpuses, CLP significantly outperformed all
of the evaluated tools. On average, using the default compres-

2Elasticsearch’s 38 MB/s ingestion speed can only be achieved when we
replaced its own log parsers (Logstash and Filebeat) with CLP’s, as they were
unable to ingest faster than 1 MB/s. We ported CLP’s log parser to connect
to Elasticsearch’s REST API endpoint.

0 5 10 15 20 25 30 35 40 45

compression ratio

OpenStack-33GB

Hadoop-14TB

var/log/*-7GB

Apache-6TB

CLP-default

7z-lzma-default

Zstd-default

Gzip-default

Splunk Enterprise

Elasticsearch

Figure 8: Compression ratio of tools on different corpuses. CLP
exceeds the ratio of the others.

sion mode without customized parsing rules, CLP’s average
compression ratio is 32. CLP’s advantage is evident on the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 193

OpenStack and Hadoop datasets where the log formats con-
tain a large amount of unstructured natural language. The
Apache-6TB corpus has the worst compression ratio since the
messages largely contain variable values.

In contrast, log indexing tools Elasticsearch and Splunk
Enterprise have significantly lower compression ratios at 1.75
and 2.86 respectively. This means that their on-disk data struc-
tures, including both the index and the compressed logs, are
on the same order of magnitude as the uncompressed log (57%
and 35% respectively). (Both tools recommend users keep
searchable data structures on fast storage such as an SSD.)

On average, across all experiments, CLP’s log type dictio-
nary accounted for 0.03% of the total compressed size and
the variable dictionary accounted for 1.07%. All other CLP
metadata files were negligible in size.

7.3 Search Performance

Commonly used log search tools fall into two categories:
index-based search (e.g., Splunk Enterprise and Elasticsearch)
and sequential search (i.e., variations of the grep tool). In com-
parison, CLP is a mixture. Its dictionaries serve the purpose
of lightweight indexing (with the key difference being that
CLP’s dictionaries deduplicate repetitive data instead of du-
plicating data into a separate index), and when combined with
the segment index as well as each file’s metadata, CLP can
skip files or jump to a specific file in a specific segment. On
the other hand, CLP still searches columns sequentially. Thus,
we compare CLP with tools from both categories.

We benchmark each tool using the set of queries in Table 4,
specific to a 258GB subset of the Hadoop-14TB corpus. In de-
signing the set of queries, we initially tried to make them repre-
sentative, but faced two challenges. First, real-world datasets
and workloads are diverse, meaning we would need a large
number of queries to sufficiently represent most use cases.
Second, any query set will likely be biased towards or against
a tool, and so the benchmark would neglect the strengths and
weaknesses of some tools over others. Instead, we designed
the queries simply to test CLP by exercising its different exe-
cution paths, highlighting its strengths and weaknesses. For
each query type, we used multiple queries that differ in the
number of results they return from a few to many.

We used a 258GB subset of the Hadoop-14TB corpus since
we were limited to one node for several of the evaluated tools.
Specifically, our Splunk Enterprise evaluation license does
not support distributed searches and ripgrep is a single-node
tool. Conversely, we could not evaluate the full corpus on
one node for Elasticsearch and Splunk Enterprise since they
require more storage than the size of the hard drive attached
to each machine.

In designing each query, we also had to ensure that all
tools would return the same result set for each query. As
explained in §7.1, Elasticsearch does not support precise sub-
string searches on text-fields because it indexes a message by

ignoring elements like punctuation. So an Elasticsearch query
that includes punctuation may return results which both in-
clude and do not include the punctuation. As a result, we only
chose queries where differences in interpretation did not af-
fect the results returned. Similarly, because Splunk Enterprise
and Elasticsearch cannot accurately support wildcard searches
(§7.1), the queries do not explicitly contain wildcards. (CLP’s
wildcard handling is still exercised as it implicitly adds wild-
cards to the beginning and the end of each query.)

We ran each query 10 times and report the average of all
runs. To emulate searching cold data stored on low-cost stor-
age (hard drives or network storage), the file system page
cache is cleared and the tools are restarted (to ensure in-
memory caches are cleared) before each run. We also ran
each tool with a varying number of threads, and report the
configuration that yielded the fastest completion time.

Figure 9 shows the search performance of CLP and the
other tools. The averaged normalized completion times of
CLP, Elasticsearch, and Splunk Enterprise, are 1x, 1.3x, 4.2x
respectively, hence CLP outperforms both. In addition, CLP
is faster for queries that return a lot of results (i.e., Q3, Q4,
Q7, Q9, and Q12), and competitive for queries that return
few results. In queries where CLP is slower, Elasticsearch
performed 6–22x less I/O, suggesting its gains are as a result
of using search indexes.

Figure 9 also shows CLP’s performance when a search
is served from its persistent cache. To evaluate CLP’s per-
sistent caching, we ran each query twice—once to build the
cache, and again to evaluate its performance with the cache.
The cache was purged between queries to ensure the next
query was not affected by prior caching. The six queries
which were persistently cached (Q1–Q5 and Q12) received
an average speedup of 43x and a median speedup of 8.64x.
Two of those six queries which were previously 4x slower
than Elasticsearch are now 5x and 51x faster than Elastic-
search, respectively. Under this configuration, CLP is faster
than both Splunk Enterprise and Elasticsearch in every persis-
tently cached query. This shows that the persistent cache can
make CLP even more competitive with a negligible effect on
compression ratio.

Splunk Enterprise and Elasticsearch also have caching
mechanisms but they provide different functionality than CLP.
In particular, Elasticsearch and Splunk Enterprise use the en-
tire query (query phrase, timestamp filter, and so on) as the
cache key, so only an identically repeated query benefits from
the cache. In contrast, CLP’s cache key is a log type, so new
queries can benefit from the cache if they encompass a cached
log type. Also, Elasticsearch and Splunk Enterprise’s caches
are not persistent.

Finally, Figure 9 shows that CLP is able to exceed the per-
formance of every ripgrep-compressor combination for every
query. Analyzing the machine’s usage shows that Zstandard is
being bottlenecked by disk I/O while both 7z-lzma and Gzip
are bottlenecked by the CPU.

194 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

100

101

102

103

c
o
m

p
le

ti
o
n

 t
im

e
 (

s
)

CLP + Persistent-Cache

CLP

Elasticsearch

Splunk Enterprise

7z-lzma + ripgrep

Gzip + ripgrep

Zstd + ripgrep

Figure 9: Search performance of CLP, Elasticsearch, Splunk Enterprise, and popular compressed sequential search combinations. CLP is
faster for longer queries and competitive for shorter queries. CLP’s cache greatly improves its competitiveness.

1 node
258GB

2 nodes
516GB

4 nodes
1TB

8 nodes
2TB

16 nodes
4TB

0

2

4

6

8

10

12

re
s
p

o
n

s
e
 t

im
e
 (

s
)

Q7
Q2
Q6
Q1
Q13
Q5
Q11
Q12
Q10
Q9
Q3
Q8
Q4

Figure 10: Response time of queries for CLP when both data and
resources were horizontally scaled from 1 to 16 nodes.

Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1
0

1

2

3

re
s
p

o
n

s
e
 t

im
e
 (

s
)

Figure 11: CLP’s query response time on a petabyte log corpus.
The response time continues to exhibit the pattern observed in the
horizontal scalability experiment.

7.4 Horizontal, Vertical, and Capacity Scaling

Since CLP’s archives are designed to be independent (§2.4),
compression and search are embarrassingly parallelizable
tasks. Figure 10 shows that as we scale horizontally, adding
more nodes that contain an equal amount of data, CLP’s
search response time stays nearly constant. Response time
is measured from when a query is entered to when the first
matching result is returned (in the case of no matching re-
sult, it is the query completion time). We show response time
instead of completion time because 1) when the output is
large, the completion time will be bottlenecked by how fast

the user’s client can receive results, and 2) in those scenarios,
users typically search and refine their queries before arriving
at a small amount of output. Nevertheless, completion times
also stay nearly constant except for Q3, Q4, Q9, and Q12,
whose completion time grows linearly with the output size.

We also repeated the previous experiment with a petabyte
of data to evaluate CLP at the scale of logs produced by large
internet companies. Since the 3TB hard drives attached to
each machine did not have enough free space to store the
data, the archives were instead stored on a distributed file sys-
tem (MooseFS [10]) running on commodity hard drives. The
results in Figure 11 show CLP still maintains low response
time, but the ordering (by response time) of queries differs
from the the previous experiment. This is because CLP was
I/O-bound in the previous experiment whereas in the current
experiment, MooseFS parallelizes I/O requests across multi-
ple drives, so CLP becomes more CPU-bound. We omitted
Q13 from the figure; its response time is 140 seconds. Q13
represents a worst case for CLP as its response time is the
same as the completion time, because the search returns “no
result.” It took 140s to search all log type dictionaries of over
61,000 archives with only 256 threads. In contrast, the pre-
vious experiment had one search thread per archive. Overall,
the results show that CLP can indeed scale in large Internet
companies, while reducing storage costs.

Using MooseFS, we also measured CLP’s ingestion speed
at the petabyte scale. By adding eight additional nodes to the
existing 16-node cluster, CLP was able to reach an ingestion
speed of about one petabyte of raw logs per day, exhausting
each hard drive’s bandwidth.

To evaluate vertical scalability, we tested CLP’s search
performance on the Hadoop-14TB corpus with a single thread
on a single data-node. The fastest completion time was for a
non-existing result query which took just under a minute, and
most queries started emitting results within 10 seconds.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 195

8 Related Work

We discuss three categories of related work: (1) log compres-
sion, (2) searching the compressed form of general-purpose
indexes for textual data, and (3) log search. Existing log com-
pression tools do not enable search (on compressed data).
Singh and Shivanna’s [35] method of log compression also
aims to deduplicate static text from variable values. They rely
on the applications’ source code to generate patterns, akin to
our concept of a log type. Variables are annotated with the
variable’s primitive type such as integer or long so they can be
encoded into binary bits stored separately. However, they do
not propose any search algorithms on the compressed data. In
addition, the compression in their work is not entirely lossless
in the sense that a number’s precision is not encoded. For
example, the value “1.000” can only be stored as an equiv-
alent floating point number, failing to take into account the
number’s zero padding.

Separating highly redundant static text from variable val-
ues has also been used to design highly efficient log printing
libraries. For example, both NanoLog [47] and Log20 [48]
only log an ID for each log type at runtime, and reconstruct
the textual log message in post-execution phases. Further-
more, some logging systems [34] directly output binary log
messages, representing each log type with an ID. While CLP
is designed to compress text logs, its search algorithms can
be used to search binary logs by associating human-readable
static text with each log ID. Hence, users can use CLP’s in-
tuitive text search interface to analyze binary logs, as if they
are text logs, with minimal storage overhead.

General-purpose text search typically uses indexes such
as suffix trees or tries, which will add 10-20x the size to the
original text data [6, 27]. Compressed forms of these indexes,
typically via smart encoding, have been proposed [17–20, 24,
30–33] such that they can be searched without decompression.
Succinct [6] further proposed an entropy-based representa-
tion of these compressed indexes to further reduce the size
of compressed index. However, regardless of how small the
index is, it still increases storage space instead of reducing it,
and search can only be performed on data that is indexed. In
comparison, CLP does not add any additional index; it simply
deduplicates the static text and dictionary variables, whereas
these works are used to compress indexes.

Several pattern matching algorithms exist for searching
data compressed with general-purpose compressors, but none
operates on data compressed using an algorithm that prac-
tically achieves our compression speed and ratio. Kida et
al. [26] implemented an algorithm for pattern matching in
LZW compressed data, achieving better performance than
decompression followed by a search. Similarly, Navarro and
Raffinot did the same for LZ78 [49] compressed data. How-
ever, LZW has worse compression than CLP while LZ78 uses
a prohibitive amount of memory for large data sizes and is
more likely to experience dictionary explosion.

Tools like Splunk Enterprise [4] and Elasticsearch [15]
allow users to search and analyze logs. They work by treating
logs as normal text files and apply standard indexing and
search techniques to achieve responsive searches. In contrast,
CLP does not need to spend expensive resources to create and
maintain additional indexes.

Conversely, Scalyr [3] is a log search tool that uses a “brute-
force” approach, instead of using any index. It uses a number
of low-level optimizations to achieve a log search speed of up
to 1.25 GB/second per core without using any index [28]. It
also directly works on raw logs. In comparison, by working
directly atop compressed log data, CLP is able to achieve
much higher search performance when translated to the raw
log size, even when the data is uncached and stored on low-
cost HDDs. Through our scalability experiments, we observed
that our fastest queries, which return no results purely by
scanning through the log type dictionaries, can effectively
search through the equivalent of hundreds of gigabytes per
second per core from a single HDD.

Grafana Loki [23] makes a trade-off that lies between index-
based search tools and Scalyr: it only indexes the labels, i.e.,
selected fields of the log. Hence the index size is significantly
reduced, yet users can only search the labels. Moreover, the
index again adds to the storage space.

9 Conclusion

This paper presented the mutually exclusive problem of log
archiving and log analytics. We present an end-to-end solu-
tion, CLP, that allows users to perform “archivalytics” across
their entire history of compressed log messages without the
need for decompression. Using an algorithm customized to
text logs, CLP is able to achieve higher compression ratio than
other compressors while enabling faster search performance
than index-based search tools.

Acknowledgements

We thank our shepherd Lalith Suresh and the anonymous
reviewers for their insightful comments. Michael Stumm pro-
vided invaluable suggestions throughout the project. This
research was supported by the Canada Research Chair fund,
a Connaught Innovation Award, a Huawei grant, the McCha-
rles fellowship, a Mitacs grant, NetApp fellowships, NSERC
discovery grants, and a VMware gift.

References

[1] IEEE Standard for Floating-Point Arithmetic. IEEE
Std 754-2019 (Revision of IEEE 754-2008), pages 1–84,
July 2019.

[2] Elastic. https://www.elastic.co/, 2021.

196 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.elastic.co/

[3] Scalyr. https://www.scalyr.com/, 2021.

[4] Splunk. https://www.splunk.com/, 2021.

[5] 104th United States Congress. Title 45 CFR 164.316.
In United States Code of Federal Regulations. 2003.

[6] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica.
Succinct: Enabling Queries on Compressed Data. In
Proceedings of the 12th Symposium on Networked Sys-
tems Design and Implementation, NSDI ’15, pages 337–
350. USENIX Association, May 2015.

[7] Muthukaruppan Annamalai, Kaushik Ravichandran,
Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Sa-
vor, David Nagle, and Michael Stumm. Sharding the
Shards: Managing Datastore Locality at Scale with
Akkio. In Proceedings of the 13th Symposium on Op-
erating Systems Design and Implementation, OSDI ’18,
pages 445–460. USENIX Association, October 2018.

[8] Brian Knox. Diving in The Deep End: Logging and Met-
rics at DigitalOcean. Video, November 2013. https:
//www.elastic.co/elasticon/tour/2015/new-
york/logging-and-metrics-at-digital-ocean.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
a Distributed Storage System for Structured Data. In
Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 205–218.
USENIX Association, November 2006.

[10] Core Technology Sp. z o.o. MooseFS, 2021. https:
//moosefs.com/products/#moosefs.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In Proceed-
ings of the 6th Symposium on Operating Systems Design
and Implementation, OSDI ’04. USENIX Association,
December 2004.

[12] Elastic B.V. Setting the Heap Size, May
2021. https://www.elastic.co/guide/en/
elasticsearch/reference/7.8/text.html.

[13] Elastic B.V. Text Data Type, May 2021. https:
//www.elastic.co/guide/en/elasticsearch/
reference/7.8/text.html.

[14] Elastic N.V. Annual Report. https://www.sec.
gov/ix?doc=/Archives/edgar/data/0001707753/
000162828020009982/estc-20200430.htm, June
2020.

[15] Elasticsearch B.V. Elasticsearch 7.8.0, June 2020.
https://www.elastic.co/downloads/past-
releases/elasticsearch-7-8-0.

[16] Facebook, Inc. Zstandard. https://facebook.
github.io/zstd/.

[17] Paolo Ferragina and Giovanni Manzini. Opportunistic
Data Structures with Applications. In Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, FOCS 2000, pages 390–398. IEEE, November
2000.

[18] Paolo Ferragina and Giovanni Manzini. An Experimen-
tal Study of a Compressed Index. Information Sciences,
135(1-2):13–28, June 2001.

[19] Paolo Ferragina and Giovanni Manzini. An Experimen-
tal Study of an Opportunistic Index. In Proceedings
of the 12th Annual SIAM Symposium on Discrete Al-
gorithms, SODA ’01, pages 269–278. ACM, January
2001.

[20] Paolo Ferragina and Giovanni Manzini. Indexing Com-
pressed Text. Journal of the ACM (JACM), 52(4):552–
581, July 2005.

[21] Free Software Foundation, Inc. GNU Gzip, August
2020. https://www.gnu.org/software/gzip/.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proceedings of
the 19th Symposium on Operating Systems Principles,
SOSP ’03, pages 29–43. ACM, October 2003.

[23] Grafana Labs. Loki Documentation, May 2021. https:
//grafana.com/docs/loki/latest/.

[24] Roberto Grossi and Jeffrey Scott Vitter. Compressed
Suffix Arrays and Suffix Trees with Applications to
Text Indexing and String Matching. SIAM Journal on
Computing, 35(2):378–407, 2005.

[25] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie,
and Bo Huang. The HiBench Benchmark Suite: Char-
acterization of the MapReduce-based Data Analysis. In
Proceedings of the 26th International Conference on
Data Engineering Workshops, ICDEW 2010, pages 41–
51. IEEE, March 2010.

[26] Takuya Kida, Masayuki Takeda, Ayumi Shinohara,
Masamichi Miyazaki, and Setsuo Arikawa. Multiple
Pattern Matching in LZW Compressed Text. In Proceed-
ings of the Data Compression Conference, DCC ’98,
pages 103–112. IEEE, March 1998.

[27] Stefan Kurtz. Reducing the Space Requirement of
Suffix Trees. Software: Practice and Experience,
29(13):1149–1171, November 1999.

[28] Steve Newman. Searching 1.5TB/Sec: Sys-
tems Engineering Before Algorithms, May 2014.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 197

https://www.scalyr.com/
https://www.splunk.com/
https://www.elastic.co/elasticon/tour/2015/new-york/logging-and-metrics-at-digital-ocean
https://www.elastic.co/elasticon/tour/2015/new-york/logging-and-metrics-at-digital-ocean
https://www.elastic.co/elasticon/tour/2015/new-york/logging-and-metrics-at-digital-ocean
https://moosefs.com/products/#moosefs
https://moosefs.com/products/#moosefs
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.8/text.html
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001707753/000162828020009982/estc-20200430.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001707753/000162828020009982/estc-20200430.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001707753/000162828020009982/estc-20200430.htm
https://www.elastic.co/downloads/past-releases/elasticsearch-7-8-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-8-0
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://www.gnu.org/software/gzip/
https://grafana.com/docs/loki/latest/
https://grafana.com/docs/loki/latest/

https://www.scalyr.com/blog/searching-1tb-
sec-systems-engineering-before-algorithms/.

[29] Cloud Object Storage | Amazon Simple Storage Service
(S3). https://aws.amazon.com/s3/.

[30] Kunihiko Sadakane. Compressed Text Databases with
Efficient Query Algorithms Based on the Compressed
Suffix Array. In Proceedings of the 11th Interna-
tional Conference on Algorithms and Computation,
ISAAC ’00, pages 410–421. Springer, December 2000.

[31] Kunihiko Sadakane. Succinct Representations of LCP
Information and Improvements in the Compressed Suf-
fix Arrays. In Proceedings of the 13th Annual SIAM
Symposium on Discrete Algorithms, SODA ’02, pages
225–232. ACM, January 2002.

[32] Kunihiko Sadakane. New Text Indexing Functionalities
of the Compressed Suffix Arrays. Journal of Algorithms,
48(2):294–313, September 2003.

[33] Kunihiko Sadakane. Compressed Suffix Trees with
Full Functionality. Theory of Computing Systems,
41(4):589—-607, December 2007.

[34] Kedar Sadekar. Scalable Logging and Tracking, June
2012. https://netflixtechblog.com/scalable-
logging-and-tracking-882bde0ddca2.

[35] Pranay Singh and Srikanta Shivanna. Method and Sys-
tem for Compressing Logs. US Patent 9,619,478, April
2017.

[36] Splunk Inc. Annual Report. https://www.sec.
gov/ix?doc=/Archives/edgar/data/0001353283/
000135328320000008/a01312010k.htm, March 2020.

[37] Splunk Inc. Splunk® Enterprise 8.0.3, April
2020. https://www.splunk.com/en_us/download/
previous-releases.html.

[38] Splunk Inc. Wildcards, February 2021.
https://docs.splunk.com/Documentation/
Splunk/8.0.3/Search/Wildcards.

[39] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xue-
dong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store:
A Column-Oriented DBMS. In Proceedings of the 31st
International Conference on Very Large Data Bases,
VLDB ’05, pages 553––564. ACM, August 2005.

[40] James A. Storer and Thomas G. Szymanski. Data Com-
pression via Textual Substitution. Journal of the ACM,
29(4):928–951, October 1982.

[41] The Apache Software Foundation. HDFS Archi-
tecture, July 2020. https://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html.

[42] The Apache Software Foundation. Apache Lucene,
2021. https://lucene.apache.org/.

[43] The Division of Economic and Risk Analysis. EDGAR
Log File Data Set, June 2017. https://www.sec.gov/
dera/data/edgar-log-file-data-set.html.

[44] The Kernel Development Community. FUSE, May
2021. https://www.kernel.org/doc/html/latest/
filesystems/fuse.html.

[45] The OpenStack Foundation. Rally, 2021. https://
opendev.org/openstack/rally.

[46] Vijay Samuel. Monitoring Anything and Every-
thing with Beats at eBay. Video, February 2018.
https://www.elastic.co/elasticon/conf/2018/
sf/monitoring-anything-and-everything-with-
beats-at-ebay.

[47] Stephen Yang, Seo Jin Park, and John Ousterhout.
NanoLog: A Nanosecond Scale Logging System. In
Proceedings of the 2018 USENIX Annual Technical Con-
ference, USENIX ATC ’18, pages 335–350. USENIX
Association, July 2018.

[48] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm,
Ding Yuan, and Yuanyuan Zhou. Log20: Fully Au-
tomated Optimal Placement of Log Printing Statements
under Specified Overhead Threshold. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 565–581. ACM, October 2017.

[49] Jacob Ziv and Abraham Lempel. A Universal Algorithm
for Sequential Data Compression. IEEE Transactions
on Information Theory, 23(3):337–343, May 1977.

198 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.scalyr.com/blog/searching-1tb-sec-systems-engineering-before-algorithms/
https://www.scalyr.com/blog/searching-1tb-sec-systems-engineering-before-algorithms/
https://aws.amazon.com/s3/
https://netflixtechblog.com/scalable-logging-and-tracking-882bde0ddca2
https://netflixtechblog.com/scalable-logging-and-tracking-882bde0ddca2
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001353283/000135328320000008/a01312010k.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001353283/000135328320000008/a01312010k.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/0001353283/000135328320000008/a01312010k.htm
https://www.splunk.com/en_us/download/previous-releases.html
https://www.splunk.com/en_us/download/previous-releases.html
https://docs.splunk.com/Documentation/Splunk/8.0.3/Search/Wildcards
https://docs.splunk.com/Documentation/Splunk/8.0.3/Search/Wildcards
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://lucene.apache.org/
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://opendev.org/openstack/rally
https://opendev.org/openstack/rally
https://www.elastic.co/elasticon/conf/2018/sf/monitoring-anything-and-everything-with-beats-at-ebay
https://www.elastic.co/elasticon/conf/2018/sf/monitoring-anything-and-everything-with-beats-at-ebay
https://www.elastic.co/elasticon/conf/2018/sf/monitoring-anything-and-everything-with-beats-at-ebay

Polyjuice: High-Performance Transactions via Learned Concurrency Control

Jiachen Wang
†∗

, Ding Ding‡∗, Huan Wang
†
, Conrad Christensen‡, Zhaoguo Wang

†
, Haibo Chen

†
, and

Jinyang Li‡

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
†Shanghai AI Laboratory

†Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
‡Department of Computer Science, New York University

Abstract
Concurrency control algorithms are key determinants of the
performance of in-memory databases. Existing algorithms are
designed to work well for certain workloads. For example, op-
timistic concurrency control (OCC) is better than two-phase-
locking (2PL) under low contention, while the converse is
true under high contention.

To adapt to different workloads, prior works mix or switch
between a few known algorithms using manual insights or
simple heuristics. We propose a learning-based framework
that instead explicitly optimizes concurrency control via of-
fline training to maximize performance. Instead of choosing
among a small number of known algorithms, our approach
searches in a “policy space” of fine-grained actions, resulting
in novel algorithms that can outperform existing algorithms
by specializing to a given workload.

We build Polyjuice based on our learning framework and
evaluate it against several existing algorithms. Under different
configurations of TPC-C and TPC-E, Polyjuice can achieve
throughput numbers higher than the best of existing algo-
rithms by 15% to 56%.

1 Introduction

Concurrency control (CC) algorithms lie at the foundation of
modern database systems [18]. A CC algorithm synchronizes
a transaction’s access to storage objects to maximize con-
current execution while guaranteeing correctness. As today’s
database systems are no longer disk-bound, the CC algorithm
in use becomes crucial to a database’s performance.

Traditional CC algorithms, such as two-phase-locking
(2PL) [17] and optimistic concurrency control (OCC) [28],
take fixed algorithmic steps regardless of the workload. Thus,
it comes as no surprise that the relative performance of differ-
ent algorithms varies depending on the transaction workload.
Figure 1 shows the throughput of 2PL, OCC and IC3 [61] on

∗ Jiachen Wang and Ding Ding contributed equally to this paper.

400

800

1200

1600

2000

2400

 1 2 4 8 12 16 24 48

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

/s
e

c
)

Number of Warehouses

IC3
OCC
2PL

Figure 1: IC3, OCC, 2PL performance on TPC-C, 48 threads.

a multi-core database under the TPC-C workload with a vary-
ing number of warehouses. OCC has the highest throughput
under low contention (more warehouses) while the other two
outperform OCC under high contention (fewer warehouses).
Similar results have also been reported by others [68].

To adapt to different workloads, prior works propose a fed-
erated approach by simultaneously supporting a small number
of existing CC algorithms, including 2PL and OCC. These sys-
tems require users to partition the workload either by data [55]
or by transaction type [49, 53, 66]. The decision of which al-
gorithm to use for each partition is either based on manual
insights [49, 53, 66] or simple runtime metrics [55]. While
this federated approach can improve performance, it has lim-
itations. First, by limiting itself to using a small number of
known algorithms, it lacks the flexibility to customize concur-
rency control to fully exploit the workload. Second, by relying
on manual insights or simple heuristics, it lacks a systematic
solution to optimize concurrency control for performance.

This paper presents a learning-based framework to optimize
concurrency control for a given workload. We assume that
the workload is known a priori such as past workloads, e.g. in
the form of stored procedures. To enable learning, we design
a “policy space” of fine-grained actions (a.k.a. algorithmic
steps): each policy can be viewed as a CC algorithm that uses
specific actions to synchronize different data accesses made
by different transactions. All policies perform an explicit
validation before transactions commit to ensure serializability.
We use offline training to learn the highest performing policy

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 199

for a given workload. This framework is expressive: it can
learn new CC algorithms as well as existing ones. It also
allows explicit optimization for performance via systematic
searches of the policy space.

We have realized the design for learned concurrency con-
trol in a system called Polyjuice for multi-core in-memory
databases. The core technical challenge of Polyjuice is to
design the policy space. Inspired by reinforcement learning,
we view each policy as a function that maps each state (i.e.,
the execution context of a data access) to actions that control
the interleavings of accesses made by concurrent transactions.
In Polyjuice, the state specifies what type of transaction is
being used and which of its accesses are under execution. The
actions support multiple ways of interleaving control, includ-
ing deciding which data version to read, whether to expose
an uncommitted write, how long to wait before access, and
whether to perform early validation before commit.

Polyjuice represents each policy using a table: the rows
correspond to different states and the columns correspond to
different kinds of actions. Polyjuice uses evolutionary algo-
rithm based training to search the policy space for the policy
that has the highest commit throughput for a given workload.

We train and evaluate Polyjuice’s performance on micro-
benchmarks, TPC-C and TPC-E, and compare with exist-
ing algorithms, including Silo [57](OCC), 2PL, Tebaldi [53],
CormCC [55] and IC3 [61]. Our experiments show that,
for TPC-C and TPC-E with moderate to high contention,
Polyjuice can find a CC policy whose throughput is better
than the best of existing algorithms by 15% to 56%. Detailed
analysis shows that Polyjuice can learn an interesting policy
that is different than any of the existing algorithms to exploit
the workload in subtle ways(§7.3). For workloads with almost
no contention, Polyjuice learns the same policy as OCC and
incurs 8% slowdown due to its implementation overhead.

As Polyjuice requires offline training, it is not suitable for
dynamic workloads that can change rapidly and unpredictably.
However, our analysis of an e-commerce website trace shows
that real-world workloads are fairly predictable in terms of its
peak hour workload characteristics including the likelihood
of conflict. This suggests that it is practical to use Polyjuice to
optimize a database’s peak performance by training on traces
of recently observed peak workloads.

In summary, our paper makes the follow contributions:
• We present the first framework to learn concurrency control

using a policy space of fine-grained actions.
• We design Polyjuice’s policy space according to the frame-

work so that it can encode a variety of existing CC algo-
rithms while allowing the exploration of new ones.

• We show that Polyjuice’s policy, represented as a table, can
be optimized simply using an evolutionary algorithm.

• Even for the heavily-studied TPC-C benchmarks, Polyjuice
can find interesting and novel policies not seen in existing
algorithms to improve transaction throughput under mod-
erate to high contention.

2 Background and Motivation

Existing works have realized the inadequacy of using one
fixed concurrency control algorithm for different workloads.
For the solution, they propose a federated approach of mixing
a few (typically 2 or 3) known CC algorithms [53, 55, 60, 66].
In this section, we discuss the limitations of this federated ap-
proach and motivate the need for a more expressive learning-
based approach.

The federated approach of adapting CC to a workload is
characterized by its coarse-grained way of mixing different
algorithms. Specifically, this approach coarsely partitions the
workload. The same CC algorithm is used within a workload
partition, while a different algorithm may be used for a dif-
ferent partition. Two ways of partitioning can be found in
existing work. CormCC [55] partitions by data: all accesses
to data in the same partition use the same CC algorithm.
Tebaldi [53] and Callas [66] group (a.k.a. partition) transac-
tions by types: all transactions belonging to the same group
(a.k.a. partition) use the same CC for all their data accesses.

The coarse-grained way of mixing CC algorithms is lim-
ited in its ability to fully exploit workload characteristics for
performance. For example, with CormCC, if transactions T
and T ′ both only access data within the same partition, they
would synchronize all of their accesses using the same CC
algorithm. Similarly for Tebaldi and Callas, if transactions
T and T ′ are of the same type, they would always use the
same CC algorithm. This is not optimal: if different data ac-
cesses of T and T ′ have different contention characteristics,
they may be better served by different methods for controlling
concurrency.

A second limitation of existing federated CC work is their
reliance on manual insights to partition the workload or
to determine which CC algorithm to use for each partition.
Callas and Tebaldi manually assign transactions to groups
and choose a specific CC algorithm for each group. CormCC
partitions the TPC-C workload by warehouse based on man-
ual insights and uses simple runtime statistics (e.g. read/write
ratio) to decide which CC algorithm to use for each partition.

Our approach. We aim to optimize CC for a given workload
in a fine-grained way using a learning-based approach. Instead
of partitioning the workload and using a single CC algorithm
for all data accesses within the partition, we propose to allow
each data access to use one of many different fine-grained
“actions” to mediate potentially conflicting accesses. When
deciding what action(s) to take to maximize performance,
we are not concerned with correctness; instead, we rely on
a separate validation mechanism to abort non-serializable
transactions. As fine-grained actions lead to exponentially
many choices for a given workload, it is impossible to rely on
manual insights to choose the best action(s). A more practi-
cal solution is to use a learning-based approach to explicitly
optimize the choice of actions for the given workload.

200 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The main challenge of our approach is to design the learn-
ing framework with fine-grained actions for concurrency con-
trol. Ideally, the framework should be expressive enough to
encode most existing CC algorithms and to allow the synthe-
sis of new ones. In the next section, we discuss how to design
such a learning framework.

3 Learning Concurrency Control

In this section, we examine how to frame concurrency control
as a fine-grained learning task.

System settings. Our target setting is an in-memory database
running on a single multi-core machine. We assume the kinds
of transaction to be run on the database are known a priori,
e.g. in the form of stored procedures. A number of exist-
ing work also exploit a known-workload in designing CC
algorithms [41, 61, 66]. Our work focuses on learning concur-
rency control for read-write transactions, and reuses existing
mechanisms to support logging and snapshot-based read-only
transactions [57]. Although our learning framework is gen-
eral enough to represent multi-version concurrency control
(MVCC), our later system design does not support it because
existing snapshot-based read-only transactions can already
capture much of MVCC’s performance benefits.

3.1 The learning framework
Our framework for learning concurrency control is inspired
by reinforcement learning (RL). As one of the major branches
of machine learning, RL involves learning how to interact
with an environment to maximize a numerical reward. The
key ingredients in RL are: a policy that maps perceived states
of the environment to actions to be taken when those states
are reached, a reward signal that defines the optimization
goal, and the environment under which the learning system
operates. In our context, the policy corresponds to the CC al-
gorithm; the reward corresponds to some performance metric
to be maximized; the environment captures the transaction
workload and system setup under which the CC operates.

It is straightforward to decide on the optimization objective
(a.k.a. reward). In this work, we use transaction throughput.
Compared to latency or abort rate, transaction throughput is
widely used as the key end-to-end performance metric for
in-memory databases.

It is non-trivial to design a “policy space” to represent var-
ious CC algorithms. At a high level, a CC algorithm executes
a transaction by controlling how its data access can interleave
with potentially conflicting accesses from other concurrent
transactions. As mentioned previously, we do not attempt to
learn how to guarantee correctness. Instead, a learned CC
algorithm always invokes a manually-designed validation pro-
cedure as part of transaction commit to ensure serializability.
What we do learn is a policy that determines what actions to

take in order to maximize performance for a given workload.
A good CC policy balances how long transactions execute
vs. how likely transactions are aborted, resulting in a high
reward, as measured by how many transactions successfully
commit per second. Aside from the CC policy, how long a
database backs off before retrying an aborted transaction can
also affect the performance. We separate the backoff policy
from the CC policy, and this section focuses on the latter.

The policy space of concurrency control. Taking a page
from reinforcement learning, we represent the policy as a
mapping from some state of execution to a specific action to
take upon encountering that state. Taking different actions
in different states allows us to specialize a CC algorithm to
optimize for a given workload. Thus, the state space should
include information that is necessary to distinguish circum-
stances that require different actions, e.g. the type of trans-
action that is making the access, the type of access etc. In a
later section (§4.2), we provide a concrete design of the state
space. In the rest of this section, we focus on designing the
action space.

Ideally, the action space should encompass a set of fine-
grained actions that can be mixed and matched to represent
many different CC algorithms. These actions can be clas-
sified into two categories: 1) actions that control how the
data access of concurrent transactions can interleave during
transaction execution, and 2) actions that control when and
how to perform validation in order to detect whether an exe-
cuted transaction has violated serializability. Next, we discuss
the spectrum of actions available to use in each of the two
categories.

Available actions for interleaving control. These actions
mediate potentially conflicting data accesses, thereby affect-
ing the set of dependencies that arise among concurrent trans-
actions. There are 3 types of dependencies: write-write ww−−→
(a.k.a. write dependency), write-read wr−→ (a.k.a. read depen-
dency), or read-write rw−→ (a.k.a. anti-dependency) [1]. What
are the knobs of control that can affect these dependencies?

To discover these knobs in their full generality, let us as-
sume a hypothetical yet still practical database design that
keeps track of each read and write access of transactions in a
per-object access list, similar to the approach taken in [42,61].
As a transaction T performs data accesses, it may insert its
reads/writes to the corresponding per-object access lists while
also updating Tdep, the set of transactions that T becomes
dependent on. Using this flexible way of tracking dependen-
cies enables a wide range of design choices for interleaving
control, as we will see next.

When executing transaction T , a CC algorithm has the
following action choices:
• Read control. There are two dimensions to these actions:

1. Wait. This can let some dependent transaction T ′ ∈
Tdep perform its conflicting write earlier than T ’s read,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 201

Interleaving control Validation
Read Read Write Write Early Validation
wait version wait visibility validation method

2PL∗
Until Tdep latest Until Tdep Yes Yes n/a
commits committed commits

OCC [28]
No

latest
No No

No physical cts
TicToc [69] committed No logical cts

Sundial [70] No
latest Until Twdep No No logical cts

committed commits
Callas RP [66] Until Tdep finish latest Until Tdep finish

piece-end piece-end
n/a or

IC3 [61], DRP [41] certain access un-committed certain access physical cts
MVTSO [2] Until T ′ ∈ Twdep commits largest committed

No Yes Yes physical ts
(MVCC) if ts(T ′)< ts(T) < ts(T)

Table 1: The choices made in existing CC algorithms according to the action space described in §3. T refers to the current
transaction. Tdep refers to the set of transactions that T is dependent on (due to its conflicting access so far). Twdep is the subset of
Tdep whose writes have conflicted with T . ts(T) refers to the timestamp assigned to T by MVTSO [2].

resulting in T ′ wr−→ T . Otherwise, a dependency cycle
may arise with T rw−→ T ′, resulting in aborts.

2. Which version of data to read, including either com-
mitted or uncommitted version. This amounts to
choosing which location in the access list to insert
the read, thereby affecting dependencies. Specifically,
since a read returns the latest write w before itself
in the access list, there is a write-read dependency,
T ′ wr−→ T , for every T ′ whose write appears before this
read in the list. Additionally, a read also results in a
set of read-write dependencies T rw−→ T ′, for every T ′

whose write appears after this read in the list.

• Write control. There are two dimensions to these actions:

1. Wait. The rationale for this action is similar to that
for reads.

2. Whether or not to make this write visible to the future
reads of other transactions. The write is buffered if
it is not exposed. Otherwise, this write as well as all
of T ’s previously buffered writes are made visible
by appending them to the corresponding per-object
access lists. The cumulative way of exposing writes
makes sense because otherwise, any transaction that
has read this but not a previous write of T would
violate serializability and get aborted. Unlike a read,
there’s no flexibility to insert a write in any location
but the end of the list; this is because we cannot allow
a write to affect past reads. Exposing a write does
not imply that uncommitted data will be read because
transactions can choose to read committed versions
only. In terms of the resulting dependencies, exposing
a write causes T ′ ww−−→ T or T ′ rw−→ T for any T ′ whose
write or read appears before this write in the list.

Available actions for validation. Actions in this category
can control two aspects of validation:

• When to validate. A transaction may validate its accesses at
any time during execution, instead of only at commit time.
Early validation can abort a transaction quicker to reduce
wasted work.
• How to validate. The most precise form of validation is to

explicitly check whether committing transaction T would
form dependency cycles with other committed transac-
tions [42]. However, such graph-based validation is ex-
pensive to implement for in-memory databases. A practical
alternative is OCC-style validation [28,57] which uses each
transaction’s physical commit-timestamp (cts) as its seri-
alization order. Although such validation is conservative
and has false aborts, it is fast. Prior work has also proposed
validation based on logical commit-timestamps [69].

3.2 Decomposing existing CC algorithms

We take a deep dive to study existing algorithms through the
the lens of our framework. At a high level, existing algorithms
differ from each other by the distinct combinations of action
choices they have, even though their choices remain the same
regardless of state.

As summarized in Table 1, traditional 2PL [17] and
OCC [28] algorithms both read the latest committed data.
OCC does not wait to perform any accesses nor does it ex-
pose the writes. By contrast, 2PL exposes writes in order to
block future conflicting accesses. We can approximate 2PL’s
blocking behavior by the action choice that makes transaction
T wait for all its dependent transactions Tdep to commit before
its data access. This approximation is slightly less aggressive
than that of 2PL, which makes T wait for T ′ to commit if
the current access will make T dependent on T ′. We use the
term 2PL∗ to refer to 2PL with this approximated blocking.
Sundial [70] handles write-write conflicts with 2PL and read-
write conflicts with OCC; thus, it blocks write access until
all its write dependencies Twdep commit and has no blocking

202 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

for reads. As for validation, traditional algorithms do it only
at commit time, except for 2PL whose deadlock detection
or prevention mechanism can be viewed as a form of early
validation done at every access.

Apart from traditional CC, our framework also applies
to a class of recently proposed algorithms including Callas
RP [66], IC3 [61] and DRP [41]. These algorithms structure
each transaction as a series of pieces [50], and try to pipeline
the execution of these pieces to enhance performance under
contention. As shown in Table 1, unlike traditional CC, they
make a transaction’s writes visible and allow reads of uncom-
mitted data. Furthermore, they make transaction T wait before
an access until T ’s dependent transactions finish execution up
to a certain point, determined by applying a static analysis of
the transaction workload.

Although our design for learnable CC (§4) does not sup-
port MVCC, we can nevertheless examine MVCC algorithms
using our framework. Table 1 shows the actions made by
MVTSO [2]. Other MVCC algorithms [30, 46, 67] have
similar actions but use different validation methods. Under
MVTSO, a transaction reads the largest committed version
smaller than its timestamp. Writes are exposed so that future
reads by transactions with larger timestamps will wait for
this transaction to commit. MVTSO also performs a form of
early-validation and aborts T if there exists T ′ ∈ Tdep such
that T ′ rw−→ T and T ′ has been assigned a larger timestamp.

Not all CC algorithms can be expressed by our framework.
In particular, our framework tracks dependencies and controls
the interleaving of data access at runtime, and therefore cannot
encode those CC algorithms that pre-define dependencies
according to some globally-agreed ordering prior to execution,
e.g. Calvin [56], Granola [7], Eris [31] and RoCoCo [42].
Moreover, our framework assumes that each access of the
transaction is executed one after another by a single thread,
and hence cannot encode algorithms like Bohm [13] that uses
multiple threads to execute a single transaction.

4 Polyjuice Design

We design Polyjuice according to the framework of §3. The
design consists of two parts: 1) a suitable policy space. 2) a
training procedure to optimize the policy for a given workload.
This section describes the policy space. The next section (§5)
discusses training.

4.1 Overview
System architecture. Polyjuice is a multi-core in-memory
database. There is no multi-version support. For each data
object, Polyjuice stores the latest committed data as well as a
per-object access list. The access list contains all uncommitted
writes that have been made visible, as well as read accesses.
A transaction uses the access list to track the dependencies
for each data access. Polyjuice uses a pool of workers that run

Architecture of Polyjuice

Learned Policy
TableTransaction Logic:

 v1=Get(key1);
 v1++;
 Put(key1,v1);

Offline-learning

Transaction
Engine

Storage Layer

1.State

2.Action

3.Access

4.Result

Client

Issue

Figure 2: System architecture. Before executing a specific
data access in the transaction, Polyjuice consults the learned
actions in the policy table (step 1, 2). Then, Polyjuice per-
forms the access in the storage layer according to the actions.

concurrently: each worker executes a transaction and commits
it according to the learned CC policy, which has been trained
offline. Fig. 2 shows Polyjuice’s system architecture.

Policy Representation. As discussed in § 3, we consider each
learnable CC algorithm as a policy function p that maps from
the state space (S) to the action space (A), p : S→ A. Both the
state and action space consists of a number of dimensions; the
size of the state/action space is exponential w.r.t. the number
of dimensions.

We represent each policy function as a table: there are as
many rows in the policy table as there are different states;
there are as many columns as there are action dimensions.
Such tabular representation is practical only if the state space
is not too huge, which is the case in the workloads that we
have studied. § 9 discusses the limitation of large state space
and potential solutions.

For a given CC policy table, a cell ci, j at row i and column
j indicates that for the access with execution context (state) i,
the system should take the action given by cell ci, j for action
type (a.k.a. dimension) j. In Polyjuice, each cell contains
either a binary number for a binary action (e.g. whether to
make writes visible or not), or an integer for a multi-valued
action (e.g. how to wait for dependent transactions). Fig. 3
shows the CC policy table; details on its rows and columns
are explained in §4.2 and 4.3. Polyjuice learns the backoff
time for retrying aborted transactions separately (§4.5).

Policy-based Execution. In Polyjuice, the database is given
the learned policy table with which to perform concurrency
control. To execute a transaction according to the policy,
Polyjuice looks up in the policy table at each data access to
determine the corresponding set of actions. Some of these ac-
tions are to be performed prior to the data access, e.g. whether
and how long to wait, while others are to be done after the ac-
cess, e.g. making a write potentially visible by appending it to
the access list. After finishing execution, Polyjuice commits
a transaction after performing the final validation to ensure
serializability (§ 4.4).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 203

Figure 3: Policy table (* indicates a binary field).

4.2 CC policy: state space

The term state is from the RL literature. In our case, state can
be viewed as the execution context of the current data access.
Ideally, the state space should be able to distinguish execution
contexts that are best served by different actions. It should
also be limited in size so that the resulting policy table is not
too huge and can be searched efficiently during training.

Polyjuice’s state space contains the following information:

1. The type of the transaction being executed. For a given
workload whose transactions are specified in stored proce-
dures, the type can be identified by the stored procedure
name.

2. Which access of the transaction is being executed. We use
an integer access-id to identify each access. Access-id is
determined by the static code location that invokes the
access. Using static information for access-id provides a
good trade-off: it can discriminate most accesses while
avoiding blowing up the state space.

It is tempting to include other useful information, such as
which type of access (read/write/commit) and which data table
is being executed. Interestingly, for most workloads, both of
these can be uniquely determined by the access-id and thus
we omit them from the state space. We have also experimented
with adding the contention level of the accessed data to the
state space. However, we found that doing so only benefited
a few contrived micro-benchmarks. In practical workloads
including TPC-C and TPC-E, distinguishing transaction type
and access-id is sufficient to capture the main contention
characteristics. Even for artificial workloads, it is difficult to
find a scenario where including contention level results in
noticeable performance improvements. Including contention
level makes it possible to differentiate accesses with the same
access id. However, Polyjuice’s wait action (§ 4.3) cannot
take advantage of such differentiation.

Size of state space (a.k.a. number of different states). The
state space size determines the number of rows in the CC
policy table. Let n be the number of different transaction
types in a workload, and d1, d2, ..., dn be the number of static
data accesses for transaction of type 1,2, ...,n. Then the state
space size (i.e. number of different states) is: d1+d2+ ...+dn.

4.3 CC policy: action space

Polyjuice’s action space contains knobs in two categories:
interleaving control and validation.

Supported actions for interleaving control. There are three
classes:
• Wait. This action is invoked before a read or write. How to

specify how long the wait should be? A naive design is to
use absolute time intervals, but this makes the wait action
sensitive to execution time variations, resulting in fragile
policies.
Since the goal of waiting is to let another potentially con-
flicting transaction to go ahead with its data access, we
quantify how long transaction T should wait by how much
progress the transactions that T depends on have made
so far. This design is inspired by existing protocols like
Callas RP [66] and others [41, 61]. More concretely, we
group transactions by type, and measure the execution
progress of a transaction type by access-id. The special
value NO_WAIT indicates no waiting. Suppose the wait ac-
tion for transaction type X has access-id a, then transaction
T must wait for all T ’s dependent transactions of type X to
finish execution up to and including a. For a workload with
n different types of transactions, the wait action consists of
n access-ids, one for each transaction type.

• Read-version. This action has a binary choice:
CLEAN_READ for reading the latest committed
version, DIRTY_READ for reading the latest uncommitted
(but visible) version. Although there may be more than
one uncommitted copy of data, there is no point in reading
an earlier version because doing so would result in more
dependencies and higher abort likelihood.

• Write-visibility. This action is invoked after a write access
and is also binary: PRIVATE keeps the write in the private
buffer, PUBLIC makes all private writes buffered so far
visible by appending them to the access list.

Supported actions for validation. Validation always hap-
pens before commit (§ 4.4). Polyjuice also supports the action
of early-validation, which can occur after any read/write. If
it’s set, this binary-valued action checks if the reads and writes
done since the last validation have violated serializability. Ear-
lier accesses, which have passed previous early-validation, are
likely to have already been serialized and thus not checked.
Early-validation does not guarantee correctness but avoids
wasting work by detecting non-serializable access early.

Polyjuice supports the wait action before early-validation.
The encoding of the wait action is the same as that for
reads/writes. To reduce the action space, we consolidate the
two kinds of wait actions into one. In particular, Polyjuice
uses the wait action corresponding to the next access-id if
early-validation is enabled for the current access-id.

Upon failing early-validation, Polyjuice retries the transac-
tion from the point of its last successful validation. In order

204 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to reduce the cost of the failed validation, we defer append-
ing reads and visible-writes to their corresponding access
lists until a successful early-validation. Otherwise, failing
early-validation means having to remove previously appended
reads/writes from access lists, and to abort transactions that
have read those discarded writes. Conceptually, we can sepa-
rate the decision of early validation from that of appending
reads/writes to access lists. However, in our experience, doing
so complicates the implementation without improving the
final learned CC performance.

Size of action space (a.k.a. number of different action
choice combinations per state). Let n be the number of dif-
ferent transaction types in a workload, and d1, d2, ..., dn be the
number of static data accesses for transaction of type 1,2, ...,n.
Then the number of different action choice combinations
can be calculated as: d1 ∗d2 ∗ ...∗dn(wait choices)∗2(read-
version)∗2(write-visibility)∗2(early-validation).

4.4 Validation for correctness

Polyjuice uses an OCC-style physical timestamp-based val-
idation in the final commit phase to ensure correctness. To
commit a transaction T with validation, a worker takes 4
steps: 1) it waits for all T ’s dependent transactions to commit
(or abort). 2) it locks each record in T ’s writeset 3) it vali-
dates each record in the readset by checking two conditions;
whether the version-id of the current committed version in the
database is different from that kept in the readset, and whether
the record is being locked by another transaction. If either
condition is true, T is aborted. 4) if validation succeeds, it
applies T ’s writes to the database along with their version-ids,
and releases the locks.

Our validation algorithm is identical to that of Silo [57]
except for two additional mechanisms which are crucial for
correctness. First, we use a unique version-id for committed as
well as uncommitted versions, because the latter may be read
from the access list. Second, we add the additional first step of
waiting for T ’s dependent transactions to finish committing.

We provide a brief correctness argument here. A more de-
tailed proof is in the Appendix of the extended version [59].
We argue the correctness of Polyjuice by reduction to Silo: if
Polyjuice commits a transaction, then Silo would also commit
it. According to step-1, Polyjuice ensures that if a transac-
tion T is committed successfully, then before T starts the
validation, all of its dependent transactions (e.g. Tdep) have
been committed. This allows us to prove that executing T is
equivalent to executing another hypothetical transaction T ′

which starts execution after all transactions in Tdep commit,
reads/writes the same data as T , and starts validation at the
same time as when T starts its validation. Therefore, if T
passes the validation in Polyjuice, T ′ can pass the validation
of Silo and successfully commit itself.

4.5 Learning backoff time

Separate from the CC algorithm, it is also important for per-
formance to use an appropriate backoff time for retrying an
aborted transaction. Existing systems, e.g. Silo, use simple
binary exponential backoff which doubles the backoff time
with each failed attempt. This simple strategy is inadequate
as it often results in backoff times that are too short in the first
couple of retries but too large after several successive retries.
Furthermore, this strategy does not distinguish between dif-
ferent transaction types when adjusting backoff times. This
is suboptimal: intuitively, one can increase the backoff time
more aggressively for a transaction type more prone to con-
tention.

For learning the backoff time, Polyjuice uses a separate
backoff policy table. The rows (a.k.a. state space) of this table
enumerate 3 dimensions: 1) the transaction type 2) the status
of the current execution (commit or abort). 3) the number of
aborted attempts prior to the current execution with a fixed
cutoff: our current implementation uses 0, 1 or 2 to indicate
whether there has been 0, 1 or 2+ aborts so far. The action
space of the backoff policy table is inspired by recent work on
learnable congestion control in networking [22]. Specifically,
a worker adjusts the backoff time for each transaction type
multiplicatively whenever it commits/aborts a transaction:

backoff =

{
backoff × (1+αt,i,aborted), abort
backoff/(1+αt,i,committed), commit

In the above equations, αt,i,committed or αt,i,aborted is the
learned parameter (a.k.a. action) in the policy table for trans-
action type t, number of prior aborted attempts i and execution
status committed or aborted. To enable easier training, we
use bounded discrete values for α. In particular, α can be zero,
resulting in unchanged backoff time.

5 Training Policies

Overview The policy space discussed in §4 is exponentially
large: there are as different policies, where s is the number of
different states and a is the number of different actions per
state. The goal of training is to efficiently search for a good
policy for a given workload.

Polyjuice performs training offline. During regular execu-
tion, Polyjuice logs executed transactions together with their
inputs. Using a separate training machine, Polyjuice emulates
the target workload by reissuing transactions with their logged
inputs. We measure a policy’s commit throughput under the
emulated workload.

Polyjuice uses Evolutionary Algorithm (EA) for training.
We have also explored the policy-gradient method from the
RL literature (§5.2). Despite EA’s simplicity, we have found
it to be more efficient than the alternative (§7.5).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 205

5.1 Training using Evolutionary Algorithm

EA is an optimization approach to search for a solution with
good fitness by evolving a population of individuals via nature-
inspired mechanisms such as crossover, mutation, and selec-
tion [10, 16, 20]. In Polyjuice, the fitness of an individual
(aka a candidate policy) corresponds to the policy’s commit
throughput under the given workload.

EA starts by initializing the first generation of the popula-
tion. The size of the population for each iteration is a config-
urable hyperparameter. To create a new children generation,
EA performs mutation on the policies (including CC and
backoff policies) of the current generation (parents). It then
evaluates the “fitness” of each mutated child by measuring
its throughput. Finally, EA selects N individuals according to
their fitness to survive to the next generation.

Mutation. EA mutates each cell of a parent’s CC and back-
off policy table independently with probability p. If the cell
corresponds to a binary choice such as read-version or write-
visibility, the mutation flips the choice. If the cell corresponds
to an integer choice (e.g. any of the wait actions), the mutation
varies the integer value by some distance uniformly sampled
from the interval [−λ,λ]. The mutated integer is clipped to
always lie within the valid range. The initial values of muta-
tion probability (p) and mutation interval (λ) are configurable
hyperparameters. We decrease p and λ gradually as the train-
ing progresses to facilitate convergence. This is akin to the
decrease in learning rate in gradient descent methods or the
gradual reduction of temperature in simulated annealing.

Crossover, another popular EA mechanism, is not effective
in our context. Crossover endows a child’s policy with some
rows from one parent and some rows from the other parent.
Unfortunately, such a child is likely to perform worse than
either of its parents. This is because, in most good policies,
the wait actions of different rows are not independent but
highly correlated. Thus, mixing the rows of different policies
often results in worse performance.

At the end of each iteration, EA chooses N individuals with
the best performance from the current population to survive
to the next iteration. In our experiments, this simple selection
mechanism trains faster than tournament selection [10,16,20].

Warm start. Instead of using all random policies, we seed the
initial population with several known good policies, including
OCC, 2PL∗, and Callas RP/IC3. These policies are likely not
optimal for the given workload, but they provide some good
initial policies to give EA a “warm start” in training.

5.2 Alternative training method

Some recent works have used RL training methods to solve
systems problems such as task scheduling [36], adaptive video
streaming [35], multi-GPU dataflow systems [39, 40], con-
gestion control [22], etc. We have experimented with the

policy-gradient method for training a parameterized stochas-
tic policy [62]. More concretely, we parameterize the policy
table by representing each table cell using one or a set of
parameters to denote the probability distribution of the ac-
tion values. Suppose the cell at coordinate i, j corresponds to
some action with M possible choices, we use M parameters,
p0

i, j, p1
i, j, ...p

M−1
i, j , which are fed into a softmax function to

denote the probability distribution of M choices.
For training, each iteration samples a batch of policies ac-

cording to the probability distribution specified by the current
table parameters. We measure the throughput of each sam-
pled policy and use it as the “reward” in RL. Policy gradient
maximizes the expected reward by performing gradient de-
scent [62]. Our way of applying policy gradient is inspired
by [3]. We compare RL- and EA-based training in §7.5.

5.3 Training for real-world deployments

Since Polyjuice relies on offline training to optimize its pol-
icy for a specific workload, this raises the question of how
to use it in the real-world with changing workloads. We ac-
knowledge that Polyjuice is not suitable for very dynamic
and unpredictable workloads. However, we observe that many
real-world workloads are fairly predictable on a day-to-day
basis after analyzing the trace of an e-commerce website. This
has motivated us to suggest the following deployment strategy
for Polyjuice.

Optimize for the peak workload. Real-world systems are
provisioned for the anticipated peak workload. Hence, our
goal is to use Polyjuice to improve commit throughput during
the peak time, in which the server receives the most requests
in a day. There is no need to optimize for non-peak workloads
because an under-utilized database is not a bottleneck for
application performance. Therefore, we only need to train the
policy tailored to the peak workload, and run the same policy
during non-peak times as well.

Predict and retrain. Our analysis of the real-world trace
shows that one can predict tomorrow’s peak workload char-
acteristics using the statistics gathered from today’s peak
workload (§7.6). Given this observation, one can collect the
trace of the peak hour today, retrain the policy based on the
trace, and run this policy for tomorrow. Doing so naively re-
quires Polyjuice to retrain the policy every day. We can defer
retraining if the predicted peak workload does not differ sig-
nificantly from the one targeted by the current policy. Our
analysis of the real-world trace shows that the peak workload
can remain stable for many days after a significant change.
Hence, deferral can greatly decrease the number of retraining
times. One is right to be concerned that deferred training and
prediction errors can result in running a policy optimized for
a different workload than the actual one happening. We also
evaluate the effect of this discrepancy in §7.6.

206 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6 Implementation

We implemented Polyjuice in C++ using the codebase of
Silo [57] by replacing Silo’s concurrency control mechanism
with Polyjuice’s policy-based algorithm. We implemented
Polyjuice’s offline training separately in Python (and RL-
based training in TensorFlow). The result of training is the
policy table, which is written to disk as a file and later loaded
into memory by the C++ database. Each worker thread in
the C++ database maintains a pointer to the in-memory pol-
icy table. When switching the policy, we reset the policy
pointer in each worker thread. Polyjuice doesn’t need to atom-
ically switch the policy pointers of all threads. This is because
Polyjuice’s validation procedure can ensure correctness re-
gardless of the policies used during execution.

Like Silo, transaction logic is written in C++ using a few
API calls (e.g. Get/Put/CommitTx). Each Get/Put/CommitTx
API call’s access-id is its corresponding sort order based on
the API invocation’s line number. For range queries, our cur-
rent prototype reuses Silo’s existing mechanism which always
reads the committed value.

The pseudocode of how Polyjuice executes a transaction
according to the policy is included in the Appendix of the
extended version [59].

7 Evaluation

7.1 Experimental setup
Hardware. Our experiments are conducted on a 56-core Intel
machine with 2 NUMA nodes. Each NUMA node has 28
cores (Xeon Gold 6238R 2.20GHz) and 188GB memory.
Workloads. We use three benchmarks, TPC-C [5], TPC-E [6],
and a micro-benchmark with ten types of transactions. In our
experiments, each worker retries an aborted transaction indef-
initely until success, to ensure that committed transactions
adhere to the workload’s specified mix ratio of different trans-
action types. If we had not done this and let a worker give
up an aborted transaction and start a new one with a different
type, we would incorrectly learn a policy that intentionally
aborts some transaction types to maximize aggregate through-
put.
Baselines for comparison . We compare Polyjuice with five
existing algorithms: OCC (Silo) [57], 2PL [17], IC3 [61],
Tebaldi [53] and CormCC [55]. For Silo and IC3, we use the
authors’ source code. For Tebaldi and CormCC, we simulate
them in our codebase to provide an apples to apples compar-
ison. For 2PL, we implement it in Silo’s codebase with an
optimized WAIT-DIE mechanism. The optimization avoids
aborts if locks are acquired following a global order, as is the
case with our TPC-C and microbenchmark.
Methodology. For the training, we use 300 iterations by de-
fault. After each iteration, we pick 8 policies from the current
population. For each of them, we generate another 4 children

policies and add them to the selection pool. Therefore, there
are a total of 8∗5 = 40 policies at each iteration. To evaluate
the performance of the learned policy as well as other base-
line algorithms, we run the workload five times, with each run
taking 30 seconds. By default, the graphs show the median.

7.2 TPC-C

For the TPC-C benchmark, we evaluate the three read-write
transactions only, as the remaining two read-only transactions
can be processed with the snapshot mechanism derived from
Silo. We vary the number of warehouses in the benchmark to
change the level of contention.

By default, we use the 3-layer configuration for Tebaldi,
which divides the read-write transactions into two groups
(NewOrder, Payment vs. Delivery) isolated by 2PL [53].
Tebaldi’s 2-layer configuration puts all read-write transac-
tions into the same group, which is the same as IC3. We
simulate CormCC according to its paper [55]. In particular,
we partition the workload by warehouse so that all accesses to
the same warehouse are protected by the same CC. Moreover,
as all warehouses are inter-changeable in our benchmark, all
partitions should also use the same CC protocol. Based on
this observation, we measure the performance of 2PL and
OCC, and pick the one with the better performance as the CC
protocol for each partition.
Throughput. Fig. 4a and 4b show the throughput of vari-
ous algorithms with 48 threads under different contention
levels. Fig. 4a gives the throughput under high contention.
Polyjuice achieves significant performance improvements.
Specifically, with two warehouses, its throughput reaches
907K TPS, which is more than 1.5× of other algorithms.
IC3 and Tebaldi have higher throughput than other existing
algorithms because they can exploit a form of “pipelined” ex-
ecution. Both have the same throughput, which differs from
the original paper, as we disable their manual optimization
for commutativity and uniqueness. Compared with IC3 and
Tebaldi, Polyjuice achieves 56% improvement because of two
factors: First, it can avoid unnecessary waiting because it uses
the runtime information to infer the CC action, while IC3 only
leverages the static information. Second, Polyjuice can either
read dirty or clean versions of data. This flexibility enables it
to achieve more efficient interleavings. We provide a detailed
analysis with an example in § 7.3.

Fig. 4b shows the throughput under moderate and low con-
tention. Polyjuice outperforms the others for 8 and 16 ware-
houses. For 48 warehouses, in which each worker corresponds
to its local warehouse, Polyjuice is slightly slower (8%) than
Silo, even though Polyjuice learns the same policy as Silo.
This is because Polyjuice needs to maintain additional meta-
data in each tuple, which affects the cache locality.
Scalability. Fig. 4c shows the scalability of Polyjuice under
high contention (1 warehouse). Polyjuice has the same scal-
ability as IC3 and Tebaldi, which can scale to 16 threads.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 207

200

400

600

800

1000

1200

1400

1 2 4

T
h
ro

u
g
h
p

u
t
(K

 t
x
n
/s

e
c
)

Number of Warehouses

Polyjuice
IC3
Silo

2PL
Tebaldi
CormCC

(a) High Contention

500

1000

1500

2000

2500

8 16 48

T
h
ro

u
g
h
p

u
t
(K

 t
x
n
/s

e
c
)

Number of Warehouses

Polyjuice
IC3
Silo

2PL
Tebaldi
CormCC

(b) Moderate to Low Contention

50

100

150

200

250

300

350

 1 2 4 8 12 16 32 48

T
h
ro

u
g
h
p

u
t
(K

 t
x
n
/s

e
c
)

Number of Threads

Polyjuice
IC3
Silo

2PL
Tebaldi
CormCC

(c) Scalability (1 WH)

Figure 4: TPC-C Performance and Scalability

50

100

150

200

250

300

350

400

 0 50 100 150 200 250

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

/s
e

c
)

Steps

Polyjuice
RL

Figure 5: EA v.s. RL

Polyjuice IC3 Tebaldi Silo 2PL CormCC

Latency(µs)
Neworder 163/151/179/245 251/246/296/345 246/240/291/354 1084/20/62/263 450/31/49/178 450/31/49/178
Payment 163/151/181/252 247/242/291/340 242/236/285/348 6/4/9/24 658/19/97/1554 658/19/97/1554

AVG / P50 / P90 / P99 Delivery 172/167/194/269 156/152/177/223 155/151/175/208 108/101/120/248 183/145/279/621 183/145/279/621

Table 2: Latency for each transaction type in TPC-C with 1 warehouse and 48 threads

Compared with them, Silo and 2PL do not scale beyond four
threads because they cannot exploit parallelism under high
contention. CormCC also has the scalability issue because it
is limited by the protocols (2PL and OCC) it uses.
Performance of each transaction type. We also study the
throughput and latency for each type of read-write transaction
with 1-warehouse and 48 threads (Table 2). For Polyjuice, the
throughput of each type is 132K (NewOrder), 126K (Payment)
and 11K (Delivery) TPS, which follows TPC-C specified ratio
(45:43:4) very closely. This is because each worker retries an
aborted transaction infinitely until it succeeds before starting
a new transaction. Therefore, the ratio of the per-type commit
throughput is exactly the same as how each worker generates
these types. For the latency of NewOrder, Polyjuice has higher
P99 latency than 2PL, but lower latency than Silo, IC3 and
Tebaldi. For Delivery, the outcome is flipped: Polyjuice has
lower P99 latency than 2PL, but higher latency than Silo, IC3
and Tebaldi. For Payment, Polyjuice has lower P99 latency
than IC3, Tebaldi and 2PL.
Factor analysis. To better understand the advantages of
Polyjuice, we perform a factor analysis to examine the bene-
fits of different actions. We start with a policy including only
the actions of OCC (Table 1). Then, we gradually add other
actions into the action space and measure the performance
improvements. We classify the waiting actions into coarse-
grained waiting and fine-grained waiting. The former means
the actions of waiting for the dependent transaction to com-
mit and learning the backoff. The latter refers to waiting for a
certain access of the dependent transaction to finish.

Fig. 6a and 6b show the factor analysis result with 1 and 8
warehouses. For the 1-warehouse workload, adding “early val-
idation” into the action space can improve the performance by
70%, because it can detect the conflicts earlier and reduce the
retry cost. Polyjuice gets a performance boost after applying
fine-grained waiting actions (116K to 309K TPS) due to full

50

100

150

200

250

300

350

1 warehouse and 48 threads

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

occ policy

+early validation

+dirty read
&public write

+coarse-grained
waiting

+fine-grained
waiting

(a) High Contention

200

400

600

800

1000

1200

1400

1600

1800

8 warehouse and 48 threads

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

(b) Moderate Contention

Figure 6: Factor Analysis On TPC-C Benchmark

exploitation of the potential parallelism. However, each action
has a different effect factor with different workloads. For the
8-warehouse workload, adding “early validation” achieves
larger improvement (467K to 1177K TPS) than others.

7.3 A case study of learned policy
We analyze an example learned policy to understand how it
outperforms existing CC algorithms.

Fig. 7 shows an example of how IC3 and our learned policy
mediate the data access of 3 concurrently executing transac-
tions: Tno (NewOrder), Tpay (Payment) and T ′no (NewOrder).
All three access the same warehouse. Fig. 7 shows a few
crucial data accesses for each transaction: For NewOrder
transactions (Tno, T ′no), these accesses are: read from WARE-
HOUSE table (r(WARE)), followed by an update to STOCK
table (rw(STOCK)), and finally read from CUSTOMER table
(r(CUST)). The crucial accesses of Payment (Tpay) are: update
to WAREHOUSE (rw(WARE)) and update to CUSTOMER
(rw(CUST)).

The three transactions conflict because they access the
same record in WAREHOUSE. Fig. 7 shows a specific de-
pendency pattern that can arise from their WAREHOUSE ac-

208 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) IC3 interleaving. (b) Polyjuice interleaving.

Figure 7: Polyjuice’s learned policy results in a more efficient
interleaving for TPC-C than IC3.

200

400

600

800

1000

1200

0.0 1.0 2.0 3.0 4.0

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

Theta of Zipf

Polyjuice
IC3

Silo
2PL

(a) Throughput

100

200

300

400

500

600

 1 2 4 8 12 16 32 48

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

Number of Threads

Polyjuice
IC3

Silo
2PL

(b) Scalability (θ is 3.0)

Figure 8: TPC-E Performance and Scalability

cess, Tno,r(WARE)→ Tpay,rw(WARE)→ T ′no,r(WARE) as all WARE-
HOUSE accesses use dirty reads. As shown in Fig. 7a, to
avoid the dependency cycle, IC3 makes Tpay’s read of CUS-
TOMER wait for Tno’s CUSTOMER update to finish. This
is because IC3 always uses dirty reads, so Tpay,rw(CUST) must
be ordered after Tno,r(CUST) in accordance with their WARE-
HOUSE access’ ordering. IC3 also makes T ′no STOCK update
wait for Tpay’s CUSTOMER update, even though these two
access different tables. This is because IC3 only tracks the
immediate dependency: by waiting for Tpay’s CUSTOMER
update, it ensures that Tno and T ′no will not form a dependency
cycle even though T ′no is not aware of the transitively depen-
dent Tno.

Fig. 7b shows the interleaving obtained by Polyjuice, which
is more efficient. Unlike IC3, the learned policy makes Tpay’s
CUSTOMER update wait for Tno’s STOCK access which
is earlier than Tno,r(CUST). This shorter wait works because
the learned policy also makes Tno’s CUSTOMER read a
committed version, which helps avoid the conflict between
Tno,r(CUST) and Tpay,rw(CUST). This is in contrast to IC3, which
makes Tno,r(CUST) perform a dirty read. The learned policy
still makes Tno’s STOCK update wait for Tpay’s CUSTOMER
update like IC3 does, but the overall interleaving is more
efficient.

Apart from IC3, neither CormCC nor Tebaldi can exploit
this interleaving. CormCC does not allow dirty reads. Tebaldi
uses the same action (either dirty or clean read) for all accesses

100

200

300

400

500

600

700

800

900

0.2 0.4 0.6 0.8 1.0

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

/s
e

c
)

Theta of Zipf

Polyjuice
IC3

Silo
2PL

Figure 9: Micro-benchmark
with 10 tx types.

50

100

150

200

250

300

350

 0 5 10 15 20 25

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

Time (second)

Figure 10: Throughput dur-
ing policy switch.

within a transaction. Fig. 7b’s interleaving requires using dirty
reads for NewOrder’s WAREHOUSE access and clean reads
for CUSTOMER access.

7.4 Bigger benchmarks

We use two bigger benchmarks to check if Polyjuice can learn
a CC policy in a much larger search space. The first bench-
mark includes three read-write transactions from TPC-E,
TRADE_ORDER, TRADE_UPDATE and MARKET_FEED.
Compared with the state space of TPC-C (total 26 states),
this benchmark is much more complex (total 65 states). The
second benchmark is a micro-benchmark with ten types of
transactions each with 8 accesses performing random updates
(total 80 states). For each type of transaction, the last opera-
tion updates records in a unique table to distinguish it from
other types. We build this benchmark because the action space
grows exponentially with increasing transaction types.
TPC-E. We vary the contention in TPC-E by controlling the
updates on SECURITY table. Specifically, all updates follow
the Zipf distribution and we vary the θ of Zipf from 0.0 to
4.0 to increase the contention. We didn’t evaluate Tebaldi
as it doesn’t provide a manual grouping strategy for TPC-E.
Similarly, we didn’t evaluate CormCC as it is unclear how to
partition the data for TPC-E.

As shown in Fig. 8a, the throughput of Polyjuice is 42%,
49% and 55% higher than other algorithms when contention
is high (θ = 2,3,4). Unlike TPC-C, in this experiment, the im-
provement of Polyjuice is mainly attributed to the learned
backoff. Specifically, Polyjuice learns a different backoff
mechanism from Silo’s design. We find out that in Silo, the
frequent aborts of TRADE_ORDER result in a large back-
off under high contention and the system spends a lot of
time waiting before retry. In Polyjuice, for TRADE_ORDER
transaction, it wouldn’t increase the backoff even though
the transaction is aborted. Although the abort rate remains
high compared with Silo, the overall throughput is higher.
Fig. 8b shows the scalability of Polyjuice under TPC-E with
θ = 3. Polyjuice’s performance can scale to 18.5× with 48
threads over that with a single thread, which is higher than
IC3 (12.3×) and 2PL (16.6×). Silo (9.4×) does not scale due
to the frequent transaction aborts.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 209

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0.58

E
rr

o
r

R
a

te

Week

Mon Tue Wed Thu Fri Sat Sun

(a) Error rates for each day

0.2

0.4

0.6

0.8

1.0

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Conflict rate error rate

(b) CDF of error rates

Figure 11: Error rates of conflict rate

Microbenchmark with 10 Types of Transactions. For this
benchmark, we change the access distribution of the first op-
eration to vary the contention level. Specifically, we change
the θ of Zipf from 0.2 to 1.0 in the range of 4K. Other opera-
tions randomly update the records in the range of 10M, which
results in little contention. Fig. 9 shows the result, Polyjuice’s
throughput is at least 66% higher than other concurrency con-
trol mechanisms under high contention scenarios. This is
because the learned policy pipelines the operations on some
of the high-contention records while optimizing the waits for
low-contention records.

7.5 Training
We have also implemented policy-gradient based RL training
for the same workload. We initialize RL with an IC3-like
policy to improve its training under this high contention work-
load. The initialization sets the parameters corresponding to
IC3 actions with a high probability (in our case, 80%). The
comparison result is shown in Fig. 5 for TPC-C with 1 ware-
house and 48 threads. The RL agent converges after around
100 iterations, but the throughput of the learned policy is only
178K TPS. In contrast, Polyjuice can learn a 309K TPS policy
in 100 iterations. Our training runs on a single machine for
now; each iteration takes 80 seconds, most of which are spent
on evaluating policy performance.

7.6 Coping with real-world workloads
7.6.1 Trace analysis

The trace. Our analysis is based on the trace of a real-world e-
commerce website, downloaded from Kaggle [24]. The trace
includes a log of requests sent to the web server, including
the request time and several parameters. There are three types
of requests: VIEW, for when a user views a product; CART,
for when a user adds a product to the shopping cart; and
PURCHASE, for when a user purchases a product. As VIEW cor-
responds to a read-only request, we only include the two types
of read-write requests CART and PURCHASE in our analysis.

Workload predictability. For this analysis, we extract all the

logged requests from Oct. 7th 2019 to Apr. 26th 2020 (29
weeks). After removing 6 invalid days, there are 197 days in
total. We only consider the peak-hour workload for each day,
since there is no need to optimize settings when the database
is under-utilized and its commit throughput is limited by the
incoming request rate instead of the CC performance.

As proposed in § 5.3, we predict tomorrow’s peak workload
characteristic to be the same as today’s peak. How accurate is
such a prediction? For our analysis, we characterize a work-
load by its contention level, which has the most effect on the
learned policy. However, since the trace does not contain in-
formation on how long each request executes, we approximate
the likelihood of contention by considering two requests to be
in conflict with each other if they are sent by different users
but operate on the same product id during some time window.
We define conflict_rate = conflict_requests/total_requests
within n minutes. In our analysis, we set n = 5 and split an
hour into 12 intervals. We use the mean of the 12 conflict
rates to represent the contention in this hour and pick the hour
with the most requests as the peak workload in a day. We note
that conflict_rate is heavily influenced by the request rate; the
bigger the request rate, the higher the measured conflict rate.

Fig. 11 shows the error when predicting tomorrow’s peak
hour contention level using today’s peak hour statistics. The
error rate is calculated as error_rate = abs((tomorrow−
today)/today). The smaller the error_rate is, the closer the
next day’s peak workload contention matches that of today.
Fig. 11a shows the error rate of the conflict rates for all 196
days (except for the first day), and Fig. 11b shows the CDF
of the error rates distribution. We can see that, there are only
3 days when the error rate of prediction is larger than 20%.
After manually checking these 3 days, we find out that they
are due to a significantly higher or lower request rate, which
affects the conflict rate.

We also analyze how frequently one needs to retrain. As
suggested in § 5.3, we assume retraining is deferred until the
predicted conflict rate differs from the one used for training
the current policy by 15%. For the trace analyzed, we only
need to retrain 15 times to cover a period of 196 days.

210 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

1 2 4 8 12 16 48

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

Number of Warehouses

Polyjuice
Polyjuice - 1 warehouse policy
Polyjuice - 4 warehouses policy
IC3
Silo
2PL
Tebaldi
CormCC

(a) TPC-C, 48 threads.

50

100

150

200

250

300

350

1 2 4 8 12 16 32 48

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
/s

e
c
)

Number of Threads

Polyjuice
Polyjuice - 48 threads policy
Polyjuice - 16 threads policy
IC3
Silo
2PL
Tebaldi
Cormcc

(b) TPC-C, 1 warehouse.

Figure 12: Throughput under different workloads

7.6.2 Cost of policy switching

We evaluate the cost of switching the policy in terms of: 1)
how long it takes to fully switch the policy 2) whether com-
mit throughput is affected by policy switching. The result is
shown in Fig. 10. We run the TPC-C 1 warehouse workload
with 48 threads, and plot the throughput for each second. At
the beginning, we run the workload with the OCC policy.
Starting in the 15th second, we switch the policy to the one
optimized for 1 warehouse. The result shows that it takes
about 3 seconds to fully switch to a new policy, and switch-
ing does not negatively impact performance. In fact, because
we are switching to a better policy, the performance quickly
improves during switching.

7.6.3 Running a policy trained on a different workload

We also study what happens if the workload optimized by
the policy differs from the one actually being executed. For
these TPC-C experiments, we use fixed learned policies and
measure their performance under various workloads that are
different from those used in training.

In the first set of experiments, we use two fixed policies,
which are trained using 48 threads on 1 warehouse or 4 ware-
houses. Fig. 12a shows the performance of fixed policies
as we vary the number of warehouses, compared to exist-
ing algorithms and Polyjuice when it is always trained on
the correct workload. If the evaluation workload is different
from the workload used for training, the fixed policies can

be sub-optimal. For example, the performance of Polyjuice
(1-warehouse) is 71% of Silo under 48 warehouses. However,
the performance differences between fixed and optimal poli-
cies are small when the evaluation workload is not too far off
from the training workload.

In the second set of experiments, we use fixed policies
trained on 1 warehouse using 48 or 16 threads. Fig. 12b shows
the performance of fixed policies as we vary the number of
threads. The results are similar, in that a trained policy is fairly
robust to training and evaluation workload mismatch.

8 Related Work

Concurrency control. We can categorize recent CC works
according to their design choices. 1) Scheduling based CC:
IC3 [61], Callas [66], DPR [41] and RoCoCo [42] allow ongo-
ing transactions to expose their writes and track dependencies
at runtime, then schedule the read/write operations according
to the tracked dependencies. Ding et al. [11] schedules read
operation after conflicting transaction’s commits to avoid
aborts for OCC protocol. 2) Deterministic databases: Gra-
nola [7], Deterministic CC [15,47,48,56] and Eris [32] sched-
ule a transaction’s execution according to a predetermined
order. PWV [14] adds early write visibility to the determinis-
tic CC to further improve the performance. 3) Changing the
validation algorithm to avoid unnecessary aborts: TicToc [69]
avoids unnecessary aborts by using logical timestamps for
validation. BCC [71] changes the validation phase by detect-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 211

ing a special pattern. 4) Partially rolling back to reduce the
abort cost [64].

In addition, there are a number of works applying MVCC
into their systems. Bohm [13] combines the MVCC with deter-
ministic CC to achieve non-blocking operations. Cicada [33]
uses logical timestamps with MVCC to increase the possibil-
ity of constructing safe interleavings. Obladi [8] integrates
MVCC on top of ORAM to provide security along with high
performance.

All above CC protocols leverage a fixed set of design
choices. Compared to them, Polyjuice is able to adapt the de-
sign choices according to the characteristics of a given work-
load. Some work [43, 54, 73] focus on distributed databases,
which must do replication in addition to concurrency control.
They propose new algorithms to handle inconsistent orderings
in both concurrency control and replication.
Hybrid concurrency control. There are existing works that
combine multiple concurrency control mechanisms for better
performance. MOCC [60] develops a specific algorithm to
combine OCC and 2PL for high-contention workloads. Sun-
dial [70] proposes a new hybrid CC algorithm based on 2PL
and OCC with logical timestamps. CormCC [55] proposes
a more general hybrid method by formalizing all CC into
four phases. Each operation can use any CC’s policy as long
as all CCs perform each phase according to the same order.
Tebaldi [53] groups transactions and assigns different CC pro-
tocols to each group. However, existing algorithms are either
specific for combining OCC or 2PL, or need programmers to
provide heuristics to choose the execution policy for each op-
eration. Compared to them, Polyjuice is able to automatically
adapt the policy for each operation according to the workload.
Learned systems. Many system optimizations can be done
by machine learning models trained from historical data. In
the area of databases, examples include cardinality estima-
tion [25, 29, 45, 63], join order planning [27, 37, 44] and con-
figuration tuning [58]. Besides databases, works have been
done to improve buffer management systems [4], sorting al-
gorithms [74], memory page prefetching [19,72] and memory
control [21], task scheduling [26], CPU scheduling [51], lock-
ing priority [12] and cache replacement [52]. Although these
works try to leverage machine learning to make systems self-
aware, but none of them targets on the concurrency control.
Thus, they have different model design from Polyjuice.

9 Discussion

As a first attempt on learnable CC, Polyjuice has limitations,
some of which we hope to address in the future.
Not suitable for rapidly changing workloads. In our expe-
rience, training takes on the order of several hundred seconds.
Thus, Polyjuice is not suitable for scenarios in which work-
load changes quicker than every few minutes.
Inaccurate workload emulation. Training reissues executed
transactions with their logged inputs. However, since transac-

tion interleavings during training differ from that of the orig-
inal execution, a transaction’s outputs also differ. Polyjuice
works only if such emulation inaccuracies do not significantly
affect the workload access pattern.
Large state space. Polyjuice represents as potential policies
in a table format, where s is the number of different states and
a is the number of different actions per state. As the number
of transactions and the number of accesses in each transaction
increase in the workload, both s and a increase. The resulting
much enlarged search space will make training via EA less
effective. One potential solution is to follow the breakthrough
of deep reinforcement learning, and use a function approxima-
tor like a deep neural network to approximate the policy table
with parameters far fewer than the number of table cells. It is
a well-known challenge to make deep RL work effectively.
More expressive policy space. There are several interesting
directions to expand the policy space, such as supporting
multi-version databases, explicit CPU scheduling of execu-
tion, fine-grained instead of binary contention levels.
Weaker and mixed isolation levels. Polyjuice currently only
guarantees serializability. Some applications can work with
weaker or mixed isolation levels [9, 23, 34, 38, 65]. It is an
interesting extension to generalize to these scenarios.

Acknowledgements

Chien-chin Huang and Minjie Wang contributed valuable
ideas in the early stage of this project. We thank the anony-
mous reviewers for the valuable comments. We are es-
pecially grateful to our shepherd, Deniz Altınbüken, for
helping improve the paper’s presentation. Jiachen Wang,
Huan Wang, Zhaoguo Wang and Haibo Chen were sup-
ported by National Key Research and Development Pro-
gram of China (No. 2020AAA0108500), National Natu-
ral Science Foundation of China (No. 61902242), and the
HighTech Support Program from Shanghai Committee of
Science and Technology (No. 20ZR1428100). Ding Ding,
Conrad Christensen, and Jinyang Li were supported by
NSF grant 1816717, and a gift from NVIDIA and AMD.
Zhaoguo Wang (zhaoguowang@sjtu.edu.cn) and Jinyang Li
(jinyang@cs.nyu.edu) are the corresponding authors.

References

[1] Atul Adya. Weak consistency: A generalized theory and
optimistic implementations for distributed transactions.
Ph.D. Thesis, 1999.

[2] P. A. Bernstein and N. Goodman. Concurrency control
in distributed database systems. Computing Surveys,
13(2), 1981.

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas:
Direct neural architecture search on target task and hard-

212 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ware. In International Conference on Learning Repre-
sentations (ICLR), 2019.

[4] Xinyun Chen. Deepbm: A deep learning-based dynamic
page replacement policy.

[5] The Transaction Processing Council. TPC-C Bench-
mark. http://www.tpc.org/tpcc/.

[6] The Transaction Processing Council. TPC-E Bench-
mark. http://www.tpc.org/tpce/.

[7] James Cowling and Barbara Liskov. Granola: low-
overhead distributed transaction coordination. In Pre-
sented as part of the 2012 {USENIX} Annual Techni-
cal Conference ({USENIX}{ATC} 12), pages 223–235,
2012.

[8] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In 13th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 727–743, 2018.

[9] Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh
Gupta, Lorenzo Alvisi, and Allen Clement. Tardis: A
branch-and-merge approach to weak consistency. In
Proceedings of the 2016 International Conference on
Management of Data, pages 1615–1628, 2016.

[10] Lawrence Davis. Handbook of genetic algorithms.
1991.

[11] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improv-
ing optimistic concurrency control through transaction
batching and operation reordering. Proceedings of the
VLDB Endowment, 12(2):169–182, 2018.

[12] Jonathan Eastep, David Wingate, Marco D Santambro-
gio, and Anant Agarwal. Smartlocks: lock acquisition
scheduling for self-aware synchronization. In Proceed-
ings of the 7th international conference on Autonomic
computing, pages 215–224, 2010.

[13] Jose M Faleiro and Daniel J Abadi. Rethinking seri-
alizable multiversion concurrency control. In VLDB,
2014.

[14] Jose M Faleiro, Daniel J Abadi, and Joseph M Heller-
stein. High performance transactions via early write visi-
bility. Proceedings of the VLDB Endowment, 10(5):613–
624, 2017.

[15] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi.
Lazy evaluation of transactions in database systems. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 15–26, 2014.

[16] David E Goldberg and John H Holland. Genetic algo-
rithms and machine learning. Machine learning, 3(2),
1988.

[17] J. N. Gray, R. A Lorie, and G. R. Putzolu. Granularity
of locks in a shared data base. In VLDB, 1975.

[18] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1992.

[19] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant
Ayers, Heiner Litz, Jichuan Chang, Christos Kozyrakis,
and Parthasarathy Ranganathan. Learning memory ac-
cess patterns. arXiv preprint arXiv:1803.02329, 2018.

[20] John Henry Holland et al. Adaptation in natural and
artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. MIT
press, 1992.

[21] Engin Ipek, Onur Mutlu, José F Martínez, and Rich Caru-
ana. Self-optimizing memory controllers: A reinforce-
ment learning approach. In ACM SIGARCH Computer
Architecture News, volume 36, pages 39–50. IEEE Com-
puter Society, 2008.

[22] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. A deep reinforcement learn-
ing perspective on internet congestion control. In In-
ternational Conference on Machine Learning, pages
3050–3059, 2019.

[23] Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and
Suresh Jagannathan. Alone together: Compositional
reasoning and inference for weak isolation. In 45th
Symposium on Principles of Programming Languages
(POPL), 2018.

[24] Michael Kechinov. ecommerce be-
havior data from multi category store.
https://www.kaggle.com/mkechinov/
ecommerce-behavior-data-from-multi-category-store.

[25] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor
Leis, Peter Boncz, and Alfons Kemper. Learned cardi-
nalities: Estimating correlated joins with deep learning.
arXiv preprint arXiv:1809.00677, 2018.

[26] Tim Kraska, Mohammad Alizadeh, Alex Beutel, E Chi,
Jialin Ding, Ani Kristo, Guillaume Leclerc, Samuel Mad-
den, Hongzi Mao, and Vikram Nathan. Sagedb: A
learned database system. CIDR, 2019.

[27] Sanjay Krishnan, Zongheng Yang, Ken Goldberg,
Joseph Hellerstein, and Ion Stoica. Learning to optimize
join queries with deep reinforcement learning. arXiv
preprint arXiv:1808.03196, 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 213

http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store
https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store

[28] H. T. Kung and John Robinson. On optimistic meth-
ods for concurrency control. In ACM Transactions on
Database Systems (TODS), 1981.

[29] M Seetha Lakshmi and Shaoyu Zhou. Selectivity estima-
tion in extensible databases-a neural network approach.
In Proceedings of the 24rd International Conference on
Very Large Data Bases, pages 623–627. Morgan Kauf-
mann Publishers Inc., 1998.

[30] Justin Levandoski, David Lomet, Sudipta Sengupta,
Ryan Stutsman, and Rui Wang. High performance trans-
actions in deuteronomy. In Conference on Innovative
Data Systems Research (CIDR), 2015.

[31] Jialin Li, Ellis Michael, and Dan Ports. Eris:
Coordination-free consistent transactions using network
multi-sequencing. In SOSP, 2017.

[32] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of the
26th Symposium on Operating Systems Principles, pages
104–120, 2017.

[33] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multi-core in-memory
transactions. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
21–35, 2017.

[34] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky,
and David G Andersen. Don’t settle for eventual: scal-
able causal consistency for wide-area storage with cops.
In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 401–416, 2011.

[35] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive
video streaming with pensieve. In SIGCOMM, 2017.

[36] H. Mao, M. Schwarzkopf, S. Venkatakrishnan, Z. Meng,
and M. Alizadeh. Learning scheduling algorithms for
data processing clusters. In SIGCOMM, 2019.

[37] Ryan Marcus and Olga Papaemmanouil. Deep reinforce-
ment learning for join order enumeration. In Proceed-
ings of the First International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management,
page 3. ACM, 2018.

[38] Syed Akbar Mehdi, Cody Littley, Natacha Crooks,
Lorenzo Alvisi, Nathan Bronson, and Wyatt Lloyd. I
can’t believe it’s not causal! scalable causal consistency
with no slowdown cascades. In 14th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 17), pages 453–468, 2017.

[39] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit
Steiner, Quoc V Le, and Jeff Dean. A hierarchical model
for device placement. 2018.

[40] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. De-
vice placement optimization with reinforcement learn-
ing. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, pages
2430–2439. JMLR.org, 2017.

[41] Shuai Mu, Sebastian Angel, and Dennis Shasha. De-
ferred runtime pipelining for contentious multicore soft-
ware transactions. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–16, 2019.

[42] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 14), pages 479–494, 2014.

[43] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang
Li. Consolidating concurrency control and consensus
for commits under conflicts. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 16), pages 517–532, 2016.

[44] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke,
and S Sathiya Keerthi. Learning state representations
for query optimization with deep reinforcement learn-
ing. In Proceedings of the Second Workshop on Data
Management for End-To-End Machine Learning, page 4.
ACM, 2018.

[45] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari.
Quicksel: Quick selectivity learning with mixture mod-
els. arXiv preprint arXiv:1812.10568, 2018.

[46] Dan Ports and Kevin Grittner. Serializable snapshot
isolation in postgresql. In VLDB, 2012.

[47] Kun Ren, Jose M Faleiro, and Daniel J Abadi. De-
sign principles for scaling multi-core oltp under high
contention. In Proceedings of the 2016 International
Conference on Management of Data, pages 1583–1598,
2016.

[48] Kun Ren, Dennis Li, and Daniel J Abadi. Slog: seri-
alizable, low-latency, geo-replicated transactions. Pro-
ceedings of the VLDB Endowment, 12(11):1747–1761,
2019.

[49] L. Sha, J.P. Lehoczky, and E.D. Jensen. Modular concur-
rency control and failure recovery. IEEE transactions
on Computers, 37(2), 1988.

214 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[50] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick
Valduriez. Transaction chopping: Algorithms and perfor-
mance studies. ACM Transactions on Database Systems
(TODS), 20(3), 1995.

[51] Yangjun Sheng, Anthony Tomasic, Tieying Sheng, and
Andrew Pavlo. Scheduling oltp transactions via machine
learning. arXiv preprint arXiv:1903.02990, 2019.

[52] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20), pages
529–544, 2020.

[53] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo
Alvisi, and Chao Xie. Bringing modular concurrency
control to the next level. In Proceedings of the 2017
ACM International Conference on Management of Data,
pages 283–297, 2017.

[54] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr Sharma, Arvind Krishnamurthy, Dan RK
Ports, and Irene Zhang. Meerkat: multicore-scalable
replicated transactions following the zero-coordination
principle. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–14, 2020.

[55] Dixin Tang and Aaron J Elmore. Toward coordination-
free and reconfigurable mixed concurrency control.
In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 809–822, 2018.

[56] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 1–12, 2012.

[57] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In SOSP, 2013.

[58] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and
Bohan Zhang. Automatic database management system
tuning through large-scale machine learning. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 1009–1024. ACM, 2017.

[59] Jiachen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: High-performance transactions via learned
concurrency control, 2021.

[60] Tianzheng Wang and Hideaki Kimura. Mostly-
optimistic concurrency control for highly contended dy-
namic workloads on a thousand cores (extended version).

Hewlett Packard Labs Technical Report HPE-2016, 58,
2016.

[61] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo
Chen, and Jinyang Li. Scaling multicore databases via
constrained parallel execution. In Proceedings of the
2016 International Conference on Management of Data,
pages 1643–1658, 2016.

[62] Ronald Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning, 8, 1992.

[63] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren
Patel, Wangchao Le, Shi Qiao, and Sriram Rao. Towards
a learning optimizer for shared clouds. In Proceedings
of the 45th International Conference on Very Large Data
Bases (VLDB), page to appear, 2019.

[64] Yingjun Wu, Chee-Yong Chan, and Kian-Lee Tan.
Transaction healing: Scaling optimistic concurrency
control on multicores. In Proceedings of the 2016 In-
ternational Conference on Management of Data, pages
1689–1704, 2016.

[65] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang,
Navid Yaghmazadeh, Lorenzo Alvisi, and Prince Ma-
hajan. Salt: Combining {ACID} and {BASE} in a dis-
tributed database. In 11th {USENIX} Symposium on Op-
erating Systems Design and Implementation ({OSDI}
14), pages 495–509, 2014.

[66] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi,
Manos Kapritsos, and Yang Wang. High-performance
acid via modular concurrency control. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 279–294, 2015.

[67] Maysam Yabandeh and Daniel Gómez Ferro. A critique
of snapshot isolation. 2012.

[68] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one
thousand cores. In PVLDB, 2014.

[69] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of the 2016 International
Conference on Management of Data, pages 1629–1642,
2016.

[70] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez,
Larry Rudolph, and Srinivas Devadas. Sundial: Harmo-
nizing concurrency control and caching in a distributed
oltp database management system. In PVLDB, 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 215

[71] Yuan Yuan, Kaibo Wang, Rubao Lee, Xiaoning Ding,
Jing Xing, Spyros Blanas, and Xiaodong Zhang. Bcc:
reducing false aborts in optimistic concurrency control
with low cost for in-memory databases. Proceedings of
the VLDB Endowment, 9(6):504–515, 2016.

[72] Yuan Zeng and Xiaochen Guo. Long short term memory
based hardware prefetcher: a case study. In Proceedings
of the International Symposium on Memory Systems,
pages 305–311. ACM, 2017.

[73] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Building con-
sistent transactions with inconsistent replication. ACM
Transactions on Computer Systems (TOCS), 35(4):1–37,
2018.

[74] Hanqing Zhao and Yuehan Luo. An o(n) sorting al-
gorithm: Machine learning sorting. arXiv preprint
arXiv:1805.04272, 2018.

216 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
This artifact provides the source code of Polyjuice and scripts
to run the main experiments in this paper. Polyjuice is a fast
in-memory database, which is based on a new concurrency
control framework and uses the evolutionary algorithm to
search for the optimal concurrency control policy under a
specific workload.

Scope
This artifact (including the document, source code, and the
scripts) is used to run the main experiments in Polyjuice. We
note that the reported performance is based on the policies
learned on dedicated machines. Therefore, if you run on
different hardware, the performance numbers might be
different from those in the paper. The artifact aims to verify
the following claims:

TPC-C/TPC-E/Microbenchmark performance. The
results should show that Polyjuice outperforms other
baselines under high/moderate contention. Polyjuice’s
performance is slightly lower than Silo under low-contention
workloads (e.g. TPC-C 48 threads - 48 warehouse, TPC-E
zipf 0.0 and 1.0, Microbenchmark zipf 0.2).

TPC-C/TPC-E scalability. The results should show
that Polyjuice scales better than Silo and 2PL.

TPC-C factor analysis. The results should show that
for the 1-warehouse workload, there is a performance
boost after adding fine-grained waiting actions. For the
8-warehouse workload, adding early validation achieves large
improvement.

Training. The results should show that the training
using EA has better performance than RL.

Switching policy. The results should show that it takes
several seconds to fully switch to a new policy, and the pro-
cess of switching does not negatively impact the database’s
performance.

Contents
• README: A detailed document showing how to down-

load, compile and run the source code of Polyjuice.

• Source code: We provide the source code of Polyjuice, as
well as TPC-C, TPC-E and microbenchmark.
• Scripts: We provide the scripts to run all the main experi-

ments in our paper.

Hosting

An open-source version of Polyjuice is available at
https://github.com/derFischer/Polyjuice. We recommend us-
ing the latest commit on the master branch of the repository,
which would be maintained by the authors.

Code license: Apache License 2.0.

Requirements

Hardware Dependencies. Most of our experiments will use
48 physical cores. Using fewer cores or hyper-threads might
produce different performance results.

Software Dependencies. Our project depends on li-
braries as listed and we give their installation commands on
Ubuntu 18.04 with apt-get. On our machine, GCC 7.5.0/8.3.0.
We recommend using the same version of Python and GCC
as ours because otherwise it may fail to compile.

Library Install Command
libnuma apt-get install libnuma-dev

libdb apt-get install libdb-dev libdb++-dev
libaio apt-get install libaio-dev
libz apt-get install libz-dev

libssl apt-get install libssl-dev
autoconf apt-get install autoconf

libjemalloc apt-get install libjemalloc-dev

Training Dependencies. Our training code is based on Ten-
sorFlow 1.14.0 and we use Python 3.6.9 on our machine.
Using TensorFlow 2.0 may fail to run the training code since
some APIs in version 2.0 are different from those in 1.0.

AE Methodology

Sumission, review and badging methodology:
https://www.usenix.org/conference/osdi21/call-for-artifacts.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 217

https://github.com/derFischer/Polyjuice
https://www.usenix.org/conference/osdi21/call-for-artifacts

Retrofitting High Availability Mechanism to Tame Hybrid Transaction/Analytical Processing

Sijie Shen, Rong Chen, Haibo Chen, Binyu Zang

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Shanghai Artificial Intelligence Laboratory

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

ABSTRACT

Many application domains can benefit from hybrid transac-

tion/analytical processing (HTAP) by executing queries on

real-time datasets produced by concurrent transactions. How-

ever, with the increasingly speedy transactions and queries

thanks to large memory and fast interconnect, commodity

HTAP systems have to make a tradeoff between data fresh-

ness and performance degradation. Fortunately, we observe

that the backups for high availability in modern distributed

OLTP systems can be retrofitted to bridge the analytical

queries and transactions in HTAP workloads. In this paper,

we present VEGITO, a distributed in-memory HTAP system

that embraces freshness and performance with the follow-

ing three techniques: (1) a lightweight gossip-style scheme

to apply logs on backups consistently; (2) a block-based de-

sign for multi-version columnar backups; (3) a two-phase

concurrent updating mechanism for the tree-based index of

backups. They collectively make the backup fresh, columnar,

and fault-tolerant, even facing millions of concurrent transac-

tions per second. Evaluations show that VEGITO can perform

1.9 million TPC-C NEWORDER transactions and 24 TPC-H-

equivalent queries per second simultaneously, which retain

the excellent performance of specialized OLTP and OLAP

counterparts (e.g., DrTM+H and MonetDB). These results

outperform state-of-the-art HTAP systems by several orders

of magnitude on transactional performance, while just incur-

ring little performance slowdown (5% over pure OLTP work-

loads) and still enjoying data freshness for analytical queries

(less than 20 ms of maximum delay) in the failure-free case.

Further, VEGITO can recover from cascading machine fail-

ures by using the columnar backup in less than 60 ms.

1 INTRODUCTION

For more than four decades, online transaction processing

(OLTP) and online analytical processing (OLAP) are two

separate pillars in the database community, with their own

design targets and specific fields. Nowadays, many appli-

cation domains are highly demanding the combination of

OLTP and OLAP, such as fraud detection [24, 77, 78], busi-

ness intelligence [54, 80, 85], healthcare [27, 93], personal-

ized recommendation [117], and IoT [16]. The fundamental

reason behind this trend is that much information is most

valuable when it first appears, but the value diminishes over

time [10, 115]. For example, on 2018 Alibaba’s Double 11

Online Shopping Festival (similar to Black Friday Day in the

Freshness

1 110010 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

100ms s

Human Reaction Time (100-250ms)

HyPer

VEGITO

BatchDB

MemSQL

IDAA

F1 Lightning

43

Hekaton

P
e
r
f
.

D
e
g
r
a
d
a
t
i
o
n

Fraud Detection
(~20ms)

Online Gaming
(50-100ms)

Stock Price Monitor
(~200ms)

1

3

5

4 Personalized Ad
(~100ms)

5

2

3

1

10M

1M

100K

10K IDAA

SyPer

MemSQL

BatchDB

HyPer

VEGITO
DrTM+H

Hekaton

SyPer

(SQLServer)

System Monitoring
(~20ms)

2

2
1

TiDB

TiDB

(community)

TPC-H

1K

FaRMv2

TPC-C
(NewOrder txns/s)

Fig. 1. The performance-freshness tradeoff for existing HTAP sys-

tems with three different architectures and the OLTP performance

of existing HTAP systems for TPC-C [95] or CH-benCHmark [29].

VEGITO is located in the desired area of HTAP systems and can

offer comparable performance with modern distributed in-memory

OLTP systems [46, 87, 107]. Sources: published results of HTAP

systems [33, 34, 43, 54, 60, 62, 65, 72, 112] and real-time require-

ments of various application domains [12, 45, 63, 76, 77].

US), the peak throughput reaches 6,000,000 transactions per

second, and Alibaba’s real-time monitoring system behind it

expects to provide a time delay of 20 ms [12]. Meanwhile,

users may search for the hottest items and receive personal-

ized advertisements [117]. Vendors also need to detect and

prevent online transaction fraud [24] and rely on immediate

information to adjust price and stock timely [63].

In response, many recent academic and industrial efforts

have been devoted to developing hybrid transaction/analyti-

cal processing (HTAP) systems [4, 14, 31, 43, 48, 54, 55, 60,

62, 80, 84, 88, 112], which are expected to support real-time

operational analytics by breaking the walls between OLTP

and OLAP systems. More specifically, analytical queries

should be executed on real-time datasets quickly updated

by transactions simultaneously. This implies two overarch-

ing goals for HTAP systems [43, 60, 101, 112]. Freshness:

the maximum time delay between the tuple’s value written

by transactions and read by analytical queries should be near

real-time (e.g., tens of milliseconds) in the failure-free case.

Performance: the transactions and analytical queries should

be executed concurrently with little performance degradation

(e.g., less than 10%), compared to specialized systems.

Several architectures were proposed (see Fig. 2) but can

hardly satisfy both goals of HTAP systems simultaneously,

as depicted in Fig. 1. Alternative 1 (DUAL-SYSTEM) con-

nects two OLTP and OLAP-specific systems and performs

both workloads at (almost) full speed. However, the cross-

system data transfer will cause a large delay (seconds to

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 219

OLAP

OLTP

Q

TX

OLTP

TX

OLAP

Q

OLTP

TX

OLAP

Q

DUAL-SYSTEM SINGLE-LAYOUT DUAL-LAYOUT2 31

machine row-store col-store worker async op

Fig. 2. A comparison of three existing HTAP architectures.

minutes) [72, 112].1 It also doubles the memory cost and

incurs additional CPU and network overhead. Alternative 2

(SINGLE-LAYOUT) directly builds an HTAP system derived

from one specialized system (e.g., OLTP), which uses a sin-

gle layout (e.g., row store) for both transactions and analyti-

cal queries to ensure data freshness. Thus, it will certainly

prefer one type of workload while sacrificing the perfor-

mance significantly in another (e.g., more than 50% perfor-

mance degradation [43, 60]). Alternative 3 (DUAL-LAYOUT)

carefully combines two different modules into a single sys-

tem with intra-system data transfer, which ameliorates this

problem with a performance-freshness tradeoff. However,

the fundamental issues remain (i.e., noticeable performance

degradation and time delay).

This paper presents VEGITO, as highlighted in Fig. 1, a

distributed hybrid transaction/analytical processing system

that retrofits the high availability mechanism (e.g., primary-

backup replication) to support HTAP workloads. Specifi-

cally, VEGITO executes transactions and analytical queries

on primary and backup replicas separately; the transaction

updates are always replicated synchronously to multi-version

columnar backups and tree-based indexes. Unlike many

prior HTAP systems [43, 54, 101], VEGITO keeps both pri-

mary and backup replicas in main memory and adopts a sym-

metric model—each machine both runs HTAP workloads

and stores data. However, modern distributed in-memory

OLTP systems [34, 74, 83, 89, 107, 113] can provide ex-

tremely high throughput (millions of transactions per sec-

ond) never encountered and targeted by existing HTAP sys-

tems (see Fig. 1); it poses new challenges to key components

in VEGITO, causing severe performance degradation of both

OLTP and OLAP workloads (see §3.2).

To remedy this, we first introduce a classic concept

(epoch) into a new context (HTAP) and further propose three

new techniques. First, VEGITO introduces a lightweight

gossip-style scheme to allocate consistent epoch numbers

for dependent (distributed) transactions. It allows all logs

on a single backup from different transactions to be drained

in parallel. Meanwhile, to refrain from strict synchroniza-

tion among different backups, VEGITO demands the analyt-

ical query to use the latest stable epoch for reading multi-

ple backups consistently. Second, VEGITO chooses a block-

1The data transfer relies on general ETL (Extract, Transform, and Load)

tools [2] or specialized techniques (e.g., log shipping [65, 103]).

based design to build multi-version columnar backups for

analytical queries, instead of conventional wisdom (chain-

based design). Since the transaction updates are applied in

rows while the tuples are stored in columns, VEGITO further

proposes two optimizations—row-split and column-merge—

to exploit both spatial and temporal locality for writing a

columnar backup in rows. Third, VEGITO introduces a two-

phase concurrent updating mechanism for the tree-based in-

dex (e.g., B+-tree) of backups, which is essential to achieve

high performance for analytical queries. VEGITO splits the

insert operations within an epoch into two phases (i.e., loca-

tion and update) and parallelizes two phases with two differ-

ent approaches (i.e., task and data parallelism), respectively.

In addition, while VEGITO uses columnar backups to sup-

port OLAP workloads, it still preserves the same availability

guarantees for free; namely, the backup is still fault-tolerant.

VEGITO retrofits the replication protocol carefully and re-

stricts changes to the data layout of the backup. Thus, it re-

tains the capability of failure recovery. Besides, the original

recovery protocol could be used as usual in most cases.

We implemented VEGITO by extending DrTM+H [107],

a state-of-the-art distributed in-memory OLTP system. The

extensions include retrofitting fault-tolerant backups to run

analytical queries and integrating an efficient distributed in-

memory OLAP engine, similar to MonetDB [6]. To demon-

strate the efficacy of VEGITO, we have conducted a set of

evaluations using several micro-benchmarks and a typical

HTAP benchmark, CH-benCHmark [29], which combines

TPC-C [95] and TPC-H [96] to form a complex mixed work-

load. For OLTP-only workloads, VEGITO (with 3-way repli-

cation) can commit 3.7 million NEWORDER transactions

per second when running the TPC-C transaction mix on

16 machines. For OLAP-only workloads, VEGITO can run

TPC-H-equivalent queries in 216 ms on average (geomet-

ric mean) using a single thread. These results are compara-

ble to the excellent performance of specialized counterparts

(e.g., DrTM+H [107] and MonetDB [6]). For HTAP work-

loads (i.e., CH-benCHmark), VEGITO can achieve a peak

throughput of 1.9 million NEWORDER transactions per sec-

ond and 24 TPC-H-equivalent queries per second simultane-

ously on a cluster of 16 machines with up to a 1.2 TB dataset.

It outperforms state-of-the-art HTAP systems with three

different architectures (i.e., MemSQL [4], TiDB [8], and

SQL Server [54]) by several orders of magnitude on transac-

tional performance (from 2,911X to 53,138X).2 Meanwhile,

different from prior systems, which have severe performance

degradation and poor data freshness (e.g., more than 70%

OLTP performance degradation in MemSQL and an 1,500-

millisecond delay in TiDB), VEGITO limits the adverse ef-

fects to less than 5% and 20 ms simultaneously in the failure-

free case. Further, VEGITO can recover from cascading ma-

chine failures by using the columnar backup in less than

2Note that MemSQL is an in-memory HTAP system, while TiDB and

SQL Server are on-disk HTAP systems.

220 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NEWORDER(o_id, i_id, qty)
amount = ITEM[i_id].PRICE * qty

ITEM[i_id].QTY -= qty

ITEM[i_id].CNT++

ITEM.update(i_id)

ORDER.insert(o_id, i_id, qty, amount, UNPAID)

10001

10002

O_ID I_ID AMOUNT STATUS

ORDER

17 30.0

QTY

3 UNPAID

16 200.01 SHIPPED

10003 17 100.010 PAID

10004 17 70.07 ABORTED

I_ID PRICE

ITEM

16 200.0

QTY

99

17 10.080

18 5.0100

19 70.0100

91

92

RowID

93

94

.

16

17

18

19

..

row

Row Store

TXNO:

tuple

CNT

1

3

0

0

. .

Fig. 3. A simplified dataset on a row store and a sample transaction

(TXno) in TPC-C.

60 ms. On the other hand, VEGITO can provide compara-

ble failure-free freshness with Amazon Aurora [101].3 Yet, it

also supports fault tolerance and a much higher rate of trans-

actions (e.g., 1.9 million vs. 1,232 NEWORDER transactions

per second) by scaling out and processing transactions in the

main memory.

In summary, the contributions of this paper are:

• A new distributed in-memory HTAP architecture that

retrofits fault-tolerant backups to support hybrid trans-

action/analytical processing (§3) without compromising

high availability (§5).

• Three key techniques with epoch scheme to collectively

make a fresh, multi-version columnar backup with tree-

based indexes for analytical queries (§4).

• A set of evaluations that confirm the efficacy of VEGITO

for HTAP workloads even facing millions of transactions

per second (§6).

2 BACKGROUND

Online Transaction Processing (OLTP). The workloads

for OLTP systems (e.g., database) usually contain repetitive,

short-lived transactions to retrieve and modify tuples (e.g.,

create/read/update/delete) with ACID guarantees, which are

the basis of many applications such as stock exchange, e-

commerce, and online order processing. Fig. 3 illustrates

a simplified dataset and NEWORDER transaction in TPC-

C [95], a popular OLTP benchmark. The sample transaction

(TXno) adds a new order (o_id) for selling qty items (i_id),

which will append a tuple to ORDER table and update ITEM

table. OLTP systems use the row store to exploit data locality

and access patterns in transactions, where all attributes of a

single tuple are stored continuously.

Moreover, modern in-memory OLTP systems [26, 30, 34,

46, 57, 113] are becoming mainstream, which scale out

by sharding a large volume of data across multiple shared-

nothing machines and supporting distributed in-memory

3Amazon Aurora [101] reports that each read replica typically lags behind

the writer by a short interval (20 ms or less). We interprete it as the failure-

free freshness. For freshness with failures, we have neither the number for

Aurora nor for VEGITO.

count ORDER by AMOUNT

SELECT count(*)

FROM ORDER

WHERE AMOUNT in (50.0, 150.0)

10001
10002

O_ID I_ID AMOUNT STATUS

ORDER

17 30.0

QTY

3 UNPAID
16 200.01 SHIPPED

10003 17 100.010 PAID
10004 17 70.07 ABORTED

91
92

RowID

93
94

.

column
AMOUNT

Tree-based
Index

30.0 70.0 100.0 200.0
91 94 93 92

QCNT:

Column Store

attribute

Fig. 4. A simplified dataset on a column store with a tree-based

index and a sample analytical query (Qcnt) in TPC-H.

transaction processing with high throughput and low latency.

They usually rely on replication schemes (e.g., primary-

backup replication [52] or Paxos state machine replica-

tion [30]) to provide high availability even with failures.

Online Analytical Processing (OLAP). By contrast, the

workloads for OLAP systems (e.g., data warehouse [32, 40])

usually contain analytical queries to consistently read several

attributes of massive tuples (e.g., select/join/filter/aggregate),

which also are the basis of many other applications such as

business intelligence, financial reporting, and data mining.

Fig. 4 illustrates a simplified dataset with a tree-based in-

dex, and a sample analytical query in TPC-H [96], a popu-

lar OLAP benchmark. The sample query (Qcnt) counts the

number of orders (count(*)) with a given range of amounts

(from 50.0 to 150.0), which needs to scan ORDER table and

the index for AMOUNT attribute. Thus, the column store (aka

columnar store) with tree-based indexes is widely used to ex-

ploit data locality and access patterns in analytical queries.

Hybrid Transaction/Analytical Processing (HTAP).

OLTP and OLAP systems have their own design targets

and specific fields, yet many application domains are

highly demanding the combination of them; analytical

queries should be executed on real-time datasets quickly

updated by transactions simultaneously. For example,

massive new orders are submitted by users (TXno in Fig. 3).

Meanwhile, the seller may want to see the number of

orders with a given range of amounts in real-time (Qcnt

in Fig. 4). The HTAP system should meet the following

two goals—freshness and performance—also appearing in

recent literature [49, 60, 70, 75, 82, 100, 103].

Freshness. The maximum time delay between the tuple’s

value written by transactions and read by analytical queries

should be near real-time (e.g., tens of milliseconds).

Performance. The transaction and analytical workloads

should be executed concurrently with little performance

degradation (e.g., <10%) compared to specialized systems.

Nowadays, several HTAP architectures are proposed but

could hardly meet two goals simultaneously in the failure-

free case—for example, a maximum delay of 20 ms and 10%

performance degradation, as depicted in Fig. 1.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 221

3 APPROACH AND CHALLENGES

Opportunity: fault-tolerant backup. It is important and

imperative for distributed transaction processing (OLTP) sys-

tems to provide high availability (HA), which is guaranteed

by replicating tuples on remote machines before commit-

ting a transaction. A common approach is to use vertical

Paxos [52] with primary-backup replication [4, 7, 26, 34, 46,

59, 69, 97, 108]4, where each shard is commonly configured

to use 3-way replication (one primary and two backups). The

transaction will synchronously ship updates (i.e., logs) to all

backups before committing on the primary.

We observe that the consistent and fresh backup in high

availability (HA) provides the foundation for hybrid trans-

action/analytical processing (HTAP)—running OLTP and

OLAP workloads on primary and backup replicas sepa-

rately. Specifically, for freshness, high availability guaran-

tees strong consistency between primary and backups by us-

ing synchronous log shipping. Thus, analytical queries can

always see the latest updates of transactions. For perfor-

mance, running different workloads on different replicas

can avoid interference naturally and deploy optimizations

individually (e.g., row store and column store). Moreover,

reusing fault-tolerant backups and synchronous log shipping

for free—there is no compromise on availability (§5)—can

avoid extra memory for read replicas and CPU for data syn-

chronization to support real-time OLAP.

3.1 Our approach

VEGITO is a distributed in-memory hybrid transaction/ana-

lytical processing system, which targets concurrent OLTP

and OLAP workloads over one large volume of data. It scales

out by partitioning data into many shards spreading across

multiple shared-nothing machines while allowing both trans-

actions and analytical queries to span any number of ma-

chines. VEGITO can provide serializability for both transac-

tions and analytical queries. We build VEGITO out of two

independent components: execution layer and memory store.

An overview of VEGITO’s architecture is shown in Fig. 5,

which also illustrates the execution of transaction and analyt-

ical workloads.

The execution layer employs a worker-thread model by

running n worker threads atop n cores playing different

roles; each worker thread executes a transaction (e.g., TXno)

or a query (e.g., Qcnt) at a time, according to its role (TP or

AP worker thread). Following prior modern transaction pro-

cessing systems [26, 34, 46], VEGITO also leverages 3-way

primary-backup replication for high availability. To reduce

the overhead of replication, a non-volatile write-ahead log

(WAL) is used to buffer the updates (logs) for each backup.

Transactions (synchronously) append updates to the WAL

of backups involved before committing on the primary, and

4Our work is also applicable to other replication-based HA mechanisms,

like chain replication [99] and state machine replication [30, 43].

1

3

21

2

3

TP threads AP threads

M1:

M2:

M3:

shard
Qcleaners

sync ops async ops

primary backup/TP

WAL

backup/AP

TX

drain

1

3

2

index

multi-
version

logs

3

1

2

M1 M2 M3

Network

logs

Fig. 5. An overview of VEGITO with three machines and three

shards. The transaction (TX) updates an attribute of a tuple in the

2nd shard (M2), and the query (Q) scans the attributes of all tuples.

then auxiliary (cleaner) threads drain the logs in a lazy and

batched manner (asynchronously). VEGITO runs TP and AP

worker threads over the primary and one of the backup repli-

cas (aka backup/AP), respectively.5

The memory store adopts a general key/value store over a

distributed hash table to support a partitioned global address

space. Each machine (e.g., M1) stores several primary and

backup replicas of different shards. The primary and back-

up/TP use row stores, while the backup/AP uses a multi-

version column store. Specifically, each key-value pair stores

an attribute of a tuple. All of the attributes of a single tu-

ple are stored continuously in row stores, while the same at-

tributes of all tuples are stored continuously in column stores.

The memory store provides a general key-value store inter-

face (e.g., get and put) and a specific row/column store inter-

face (e.g., row and column) to the above execution layer. Fur-

ther, tree-based indexes are also maintained with backup/AP

for range scans in analytical queries.

Each client contains a client library that parses and ships

transactions (TX) and analytical queries (Q) to TP and AP

worker threads, respectively. As shown in Fig. 5, the transac-

tion will be executed on the primary using a concurrency con-

trol protocol (e.g., two-phase locking [18] or optimistic con-

currency control [51]). Before committing the transaction on

the primary, all updates are first appended to the write-ahead

log (WAL) queue at each machine with a backup. The logs

will be applied to backup replicas asynchronously by cleaner

threads. On the other hand, the analytical query will be exe-

cuted on the columnar backup replicas (backup/AP).

Further, the architecture of VEGITO can integrate exist-

ing OLTP and OLAP systems instead of writing code from

scratch, including transaction/analytical engine, key-value

store, data replication and recovery support [26].

5This paper uses backup/TP to denote the vanilla backup that provides high

availability of transaction processing, and uses backup/AP to denote the

columnar backup that also supports analytical processing.

222 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

TP threads

AP threads

cleaners

append

write

drain

read

read

write

§4.3

§4.1

§4.2

C#3

C#2
C#1

 0

 3

 6

 9

 12

 15

 0 1 2 3 4 5

C
le

a
n
 t
h
p
t
(M

 l
o
g
s
/s

)

OLTP thpt (M txns/s)

FTBackup

GTS+SEQ

Unlimited

 0

 6

 12

 18

 24

 30

 0 3 6 9 12 15
 0

 2

 4

 6

 8

 10

R
e
a
d
 t
h
p
t
(G

 o
p
s
/s

)

#
v
e
rs

io
n
s
 p

e
r

re
a
d

Write thpt (M ops/s)

Read throughput

#versions / read

THPT Limit (single-version)

 0

 150

 300

 450

 600

 750

 0 3 6 9 12 15

R
e
a
d
 t
h
p
t
(M

 o
p
s
/s

)

Write thpt (M ops/s)

STX (read-optimized)

Masstree (write-optimized)

Fig. 6. (a) A diagram of challenges in VEGITO. A performance analysis of three key components in our HTAP architecture, including (b)

WAL queue, (c) multi-version column store, and (d) tree-based index. The open-loop clients will send as many transactions and analytical

queries as possible until the throughput of some component saturated. Note that each transaction will produce two logs per shard (3-way

replication). Workload: all transactions in TPC-C [95] as OLTP workloads and two simplified analytical queries (similar to Q02 and Q01

in TPC-H [96]) as OLAP workloads for (c) and (d) respectively. Testbed: A cluster of 16 machines; each machine hosts 8 TP, 10 AP, 4

log-cleaner, and 2 client threads (see §6.1).

3.2 Challenges

We note that recent HTAP systems also propose to run an-

alytical queries on a separate, read-optimized snapshot of

transactional data [43, 60, 92, 112]. However, none of them

could meet two goals simultaneously—freshness (a maxi-

mum delay of 20 ms) and performance (10% performance

degradation)—even under much lower OLTP throughput

(e.g., several thousand transactions per second [30, 43, 101]).

Differently, our approach reuses synchronous log shipping to

keep backups consistent and fresh; however, it indeed raises

new challenges for minimizing performance degradation on

transaction and analytical processing, especially when facing

millions of transactions per second.

C#1: consistent and parallel log cleaning. To avoid block-

ing transaction committing, the updates are appended to

WAL queues synchronously and then applied to the backup

asynchronously by cleaner threads in parallel (see the left

part of Fig. 6(a)). This design is enough and efficient to

maintain a fault-tolerate backup [26, 34, 46]. In Fig. 6(b),

OLTP throughput (FTBackup) can reach about 4.7 million

transactions per second, and WAL queues are never full.

However, OLAP workloads demand consistent backups. It

means that the cleaner threads should drain logs following

the dependency in transactions. A common solution is to

record a global timestamp in each log and drain logs in se-

quence [55, 65, 103, 112]. This causes a significant loss

(70%) in throughput (GTS+SEQ), dropping to 1.4 M txns/s of

OLTP throughput. Given WAL queues with unlimited mem-

ory (Unlimited), we further decouple the performance bot-

tlenecks of transaction processing and log cleaning. Perfor-

mance degradation can happen for two reasons. First, the

OLTP throughput is limited to 2.5 M txns/s due to assign-

ing global timestamps for every transaction in a cluster of 16

machines, causing high contention [106]. Second, draining

logs sequentially limits the clean throughput to 3.0 M logs/s

and further limits the OLTP throughput to 1.4 M txns/s, since

all transactions would be blocked when WAL queues are full.

Therefore, VEGITO needs a new approach to draining logs at

each machine in a consistent and parallel way.

C#2: multi-version column store building. The backup for

analytical processing (backup/AP) should store tuples in a

columnar format to achieve high performance. Meanwhile,

cleaner threads and AP threads will write and read the same

backup simultaneously, especially with different flavors of

locality (row-wise writes vs. column-wise reads). Multi-

version concurrency control (MVCC) [19, 110] is commonly

used to resolve conflicts between read and write operations

by maintaining multiple snapshots. The chain-based design

(see the top right corner of Fig. 6(a)) is widely used by

multi-version (row) stores [33, 39, 50, 58, 60, 110], and prior

HTAP systems [20, 68, 84] also follow this design. However,

column-wise reads with a given version (snapshot) have to

access pointer-linked tuples (chains) and frequently check

their versions, causing massive cache misses and severe per-

formance degradation for analytical queries [58]. As shown

in Fig. 6(c), the read throughput drops more than 90% (from

21.2G to 1.8G ops/s) with growing write throughput (10M

ops/s), even just accessing 0.5 more versions per read on av-

erage. Note that the query (similar to Q02 in TPC-H [96])

simply reads one column updated by TPC-C transactions

(like QTY attribute of ITEM table in Fig. 4), and the median

latency is about 180 ms over a single-version store, close

to the average latency of queries in CH-benCHmark [29].

Therefore, VEGITO demands a new approach to building a

multi-version column store that can preserve the locality of

both row-wise writes (log cleaners) and column-wise reads

(analytical queries).

C#3: concurrent tree-based index updating. The tree-

based index (e.g., B+-tree) is imperative to support range

scans for analytical queries. In HTAP systems, the index

has to serve both writes (cleaner threads) and reads (AP

threads) simultaneously (see the bottom right corner of

Fig. 6(a)). Although several research efforts have been de-

voted to building concurrent tree-based data structures [17,

61, 86, 94, 102, 104, 114], to our knowledge, none of them

satisfies our requirements and exploits HTAP workload char-

acteristics. Fig. 6(d) shows the throughput of range scans

with growing write throughput for read-optimized and write-

optimized tree-based index structures (i.e., STX [21] and

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 223

2

1

1

2

TP threads

AP threads

M1

M2

ack

Q

sync ops async opsprimary logbackup/AP

TX1

4

oracle

5

5

5

TX2

5 write

read

4 4

5

5

5 55

cleaner

4

3

3

Epoch/C

Epoch/Q

Epoch/TX

Epoch/TX

Epoch/Cgossip

C

epoch

Fig. 7. An example of lightweight epoch assignment and parallel

log cleaning for two machines and two shards.

Masstree [61]). STX can outperform Masstree by 1.8× for

read-only workloads (564 M vs. 319 M ops/s). However, its

write throughput is limited to 7.9 M ops/s due to high con-

tention on concurrent writes and collapses when the clients

send more write requests. In addition, the read throughput

drops up to 34% because of the interference from heavy up-

dates. On the contrary, Masstree is highly optimized to han-

dle fast concurrent writes at the expense of read performance

(e.g., unordered keys in leaf nodes). Thus, VEGITO should

optimize tree-based index for concurrent writes and reads.

4 DESIGN AND IMPLEMENTATION

To overcome the challenges, we introduce a classic concept

(epoch) into a new context (HTAP). A centralized (epoch) or-

acle partitions time into non-overlapping epochs.6 Epoch is

the granularity at which VEGITO guarantees the consistency

and visibility of backup/AP replicas to analytical queries. It

opens opportunities to exploit parallelism and preserve local-

ity for providing consistent, fresh, and columnar backups. In

this section, we detail main techniques in our epoch-based

solution employed by VEGITO.

4.1 Consistent and Parallel Log Cleaning

To provide consistent backups for OLAP workloads, log

cleaner threads on multiple machines should apply logs fol-

lowing the dependency in transactions; all logs of one trans-

action should be applied atomically, and all logs from differ-

ent transactions should be applied in order.

A traditional approach is to assign global or vectorized

timestamps to logs of transactions and then apply logs se-

quentially at both machine and thread levels according to

their timestamps [55, 65, 101]. When facing millions of

transactions per second, this approach would incur excessive

cost to transaction processing, and sequential log cleaning

would be extremely slow (see GTS+SEQ in Fig. 6b).

The epoch-based approach simplifies the assignment and

6Note that the oracle only needs to periodically broadcast a new epoch to all

machines in the cluster, instead of transactions or queries involved. Hence,

it will definitely not be the bottleneck in the cluster with thousands of ma-

chines even using very small epochs (e.g., a few milliseconds) [15, 30].

comparison of timestamps with a local scalar value (epoch

number), and also allows logs within an epoch (assigned the

same epoch number) to be drained in parallel. However, de-

pendent transactions at the epoch boundary must be assigned

epochs matching the serial order; namely, committed transac-

tions in earlier epochs never transitively depend on transac-

tions in later epochs. Further, logs in different epochs should

still be drained in order.

Consistent epoch assigning. VEGITO introduces a light-

weight gossip-style scheme to assign consistent epoch num-

bers for dependent transactions. An epoch oracle will period-

ically broadcast a new epoch to update the transaction epoch

number (Epoch/TX) on each machine atomically; it always

waits for ACKs from all machines such that the epoch gap

among machines must not be bigger than 1. Each transac-

tion will assign Epoch/TX on machines involved to its logs

during committing (see Fig. 8). For stand-alone dependent

transactions on the same machine, the order of epoch num-

bers can always agree with the serial order due to using the

concurrency control scheme (e.g., 2PL or OCC), similar to

Silo [98]. For distributed transactions, the epochs from dif-

ferent machines are likely the same, which means all transac-

tions on these machines are in the same epoch. In rare cases,

the distributed transaction involves machines within differ-

ent epochs, as shown in Fig. 7. The distributed transaction

TX1 executes on two machines and observes the epoch on

one machine (M1) is behind the other (M2). Suppose a local

transaction TX2 on M1 depends on TX1, assigning a smaller

epoch number (Epoch/TX=4) to TX2’s log would violate the

serial order. To avoid this, TX1 is responsible for synchro-

nizing the epoch (Epoch/TX=5) on machines involved using

point-to-point messaging (gossip), so that TX2 will commit

its log with the correct epoch number (5).

Fig. 8 shows the commit protocol [34, 107] with a new

distributed epoch synchronization step.7 It first gains the lat-

est epoch number (Line 1-3) from machines involved (mset),

and then updates the epoch if needed (Line 4-6). Specifically,

we can blindly overwrite the epoch instead of using atomic

operations as there are at most two epoch numbers across the

cluster. Finally, it will send logs to backups with the consis-

tent epoch number (Line 8). Note that epochs are synchro-

nized after write locking and before read validation. Placing

it after write locking ensures that all transactions in the later

epochs would see at least the conflict tuple locked; placing it

before read validation ensures that committed transaction in

earlier epoch never reads the tuple updated by transactions in

later epoch. Thus, assigning epochs obeys both dependencies

and anti-dependencies.

Parallel log cleaning. Logs from different machines (and

threads) are buffered in different queues [26, 34], and mul-

7The single-machine epoch scheme usually replies on total-store-order

(TSO) architectures (like x86-64) to synchronize the epoch among worker

threads, like Silo(R) [98, 116].

224 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

COMMIT

▸ 1. LOCK tuples in write set

...

▸ 2. VALIDATE tuples in read set

...

▸ 3. send LOGs to backups

7 foreach b in backups

8 send_log(b, updates, epochTX)

▸ 4. COMMIT updates to primary

...

▸ SYNC epoch/TX

1 foreach m in mset

2 m.epoch = get_epoch(m)

3 epochTX = max(epochTX, m.epoch)

4 foreach m in mset

5 if epochTX != m.epoch then

6 sync_epoch(m, epochTX)

Fig. 8. Commit protocol with a lightweight epoch scheme run at

the end of every transaction.

tiple cleaner threads can drain logs of the same epoch in

parallel. VEGITO uses a hybrid design to exploit both intra-

machine and inter-machine parallelism. First, each machine

maintains a cleaner epoch number (Epoch/C), meaning that

logs at this epoch have been drained. As shown in Fig. 7, af-

ter the cleaner thread on M2 applies the last two logs at epoch

4 from M1, the cleaner epoch will increase to Epoch/C=4, and

then two cleaner threads could start to drain logs at epoch 5

on M2 in parallel. The runtime schedules queues dynamically

across available cleaner threads to achieve load balance [81].

Second, to reduce waiting time among cleaner threads,

VEGITO refrains from the synchronization among the

cleaner threads on different machines, so that the backup

replicas on different machines may not keep up the pace of

change. For example, in Fig. 7, the cleaner threads on M1

and M2 are draining logs in different epochs (5 and 4 re-

spectively). To remedy this, VEGITO supports multi-version

backup replicas (see §4.2) and makes analytical queries

read consistent backups at a (stable) query epoch (Epoch/Q),

which is the minimum value of cleaner epochs on machines

involved, like Epoch/Q=3 in Fig. 7.

4.2 Locality-preserving Multi-version Column Store

To avoid contention between cleaner threads (write) and AP

threads (read), backup/AP replicas require to adopt a multi-

version column store (MVCS) at the epoch level. Specifically,

the cleaner threads will generate a new version of column

store for each epoch by applying logs in parallel. Meanwhile,

AP threads will run analytical queries over the latest stable

version of the column store to retrieve fresh results.

The chain-based design is widely used by multi-version

(row) stores [33, 39, 50, 58, 60, 110]. Prior HTAP sys-

tems [20, 68, 84] also follow this design. As shown in

Fig. 9(a), the column store maintains an array for each at-

tribute to store the latest value of tuples with its version

(e.g., epoch). Each entry also maintains a backward chain

for values in the earlier versions, which is designed to sup-

port atomic updates efficiently. Before updating new value

in-place, the cleaner thread will copy the original entry and

update the chain atomically. Although this design preserves

the locality for recent values, analytical queries commonly

access the latest consistent data. For example, in Fig. 9(a),

QTY

40
0

100
100

. .

99
80

100
100

..

100

100
97 100 E=2

100 40
0

100
100
99
80

100
100

40
0

100
100
100
97

100
100

40
0

100
100
100
100
100
100

100
100
100
100

. . . .
E=3E=4

. . . .
E=1E=2

(a) Chain-based (b) Block-based

E=2
E=2
E=1
E=1
E=4
E=4
E=2
E=2

E=1

E=2
E=3

E=1

QTY

epoch

Q

3 Epoch/Q

Access
Pattern

Q

3

Access
Patternwaste

16

17

RowID

18
19

12

13
14
15

Fig. 9. Different designs of a multi-version column store for QTY

attribute in ITEM table. The grey box indicates that the entry is

wasted since the tuple is not changed in this epoch.

the cleaner threads are currently draining logs at epoch 4, and

the queries can only access the values up to epoch 3. Conse-

quently, the AP thread has to traverse the chains of updated

entries and frequently check the versions (see the access pat-

tern in Fig. 9(a)). Besides, the garbage collection for chains

would also be complicated and time-consuming.

VEGITO proposes a block-based design to exploit optimal

performance for analytical queries. As shown in Fig. 9(b),

the design is straightforward, which maintains an array for

each epoch. When starting a new epoch, the cleaner thread

copies the array of last epoch and applies logs to it. This cre-

ates a complete snapshot on demand in each epoch. Given an

epoch, the AP thread can scan the array with perfect locality

but without interference from the cleaner threads. Moreover,

the cleaner thread can also garbage collect expired arrays ef-

ficiently and reuse the memory easily. However, this design

has an apparent and critical drawback (see Fig. 20 in §6.7):

data copying may waste lots of CPU and memory resources,

especially for append-only attributes (e.g., the attributes in

ORDER table). In Fig. 9(b), most of the entries are wasted

(grey box) to repeatedly store tuples, which are not changed

in the current epoch.

To remedy this, we optimize the naive block-based design

by exploiting both spatial and temporal locality observed in

transaction workloads, the data source of MVCS.

Row-split. We observe that the transactions may focus on

updating tuples in a small scope for a while, like discounted

products, batch orders, and social events. Thus, VEGITO first

splits values into multiple pages, and each page enables a

copy-on-write mechanism independently to implement fine-

grained on-demand data copying. There are no new copies

for pages without updates at the current epoch. As shown

in Fig. 10(a), values of attribute QTY are grouped into two

pages. The first page has only two copies for epoch 1 and

epoch 2 (i.e., E=1 and E=2), since there is no update in later

epochs. To balance the read (AP threads) and write (cleaner

threads) performance of the multi-version column store, VE-

GITO uses 4KB page size, which is enough to exploit the

cache locality [44, 91]. Although an insert can be treated as

a normal update and triggers the copy-on-write mechanism

for a new epoch as well, it is costly for insert-mostly tables

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 225

QTY

99
80

100
100

100
97
100
100

40
0

100
100

100
100
100
100

100
100
100
100

E=1E=2

E=3E=4 E=2

CNT

1
3
0
0

0
1
0
0

2
5
0
0

0
0
0
0

0
0
0
0

E=1E=2

E=3E=4 E=2

40
0

2
5

E=2
100
100

0
0

E=1

100
100

0
0

E=1

100
97

0
1

E=3
100
100

0
0

E=2

100
100

0
0

E=2

QTY

99
80

1
3

E=4

CNT

(a) Row-Split (b) Column-Merge

+

page

16
17

RowID

18
19

12

13
14
15

12

13

14
15

16

17

18
19

16
17
18
19

12

13
14
15

page

Fig. 10. Optimizations for block-based multi-version column store

with (a) row-split and (b) column-merge for QTY and CNT attribute

in ITEM table.

(e.g., ORDER). VEGITO avoids page copying from inserts

by appending new values and maintaining offsets for each

epoch.

Column-merge. We further observe that a certain type of

transactions usually updates a fixed set of attributes at a

time. For example, NEWORDER transaction in Fig. 3 always

updates two attributes (QTY and CNT) of ITEM table to-

gether. Thus, VEGITO will merge related attributes for the

same tuple into a single page. As shown in 10(b), QTY and

CNT attributes of ITEM table are merged. Using column-

merge improves the performance of draining logs for cleaner

threads and also reduces data copying operations with the

same page size, due to finer-grained partitioning for each at-

tribute. VEGITO can automatically discover correlations be-

tween attributes from transaction logs and reorganize them

into a single page at the start of next epoch.8 The epoch-

based reorganization will not interfere with running queries

at all since new pages will not be read by current analytical

queries. Further, analytical queries could benefit from the op-

timization two epochs later.

Finally, after enabling the two optimizations, only 2%

of updates incur page copying when using 4KB page size

and 15ms epoch interval in a typical HTAP workload (i.e.,

CH-benCHmark [29]). The median latency to copy a 4KB

page is about 6 microseconds. Moreover, our two optimiza-

tions are orthogonal to the preceding techniques for the col-

umn store [32, 40], such as compression and range filter, so

both are applicable in a complementary manner. We leave it

to future work.

4.3 Two-phase Concurrent Index Updating

The order-preserving indexes commonly use tree-based data

structures to support range scan operations. The update op-

eration may involve more complicated steps (e.g., traversal

and split), which will cause new challenges to support fast

concurrent updates (by cleaner threads) and lookups (by AP

threads). Without loss of generality, the rest of this paper

8We collect the statistics on the column family to decide how to merge

columns with conflicting requirements.

94 93
92 4

4

RowID

5
0

5
5

6
0

6
5

8
0 9
0

9
5

1
2
0

1
2
5

1
4
0

40 80 140 220

1
5
0

2
0
0

2
2
0

288 325 388

250 420 500

...

..
.. ..

..
..

..

start-epoch

end-epoch

5
8

4

1
0
0

7
0

...

leaf
node

inner
node

insert1
6
0

1
7
0

..

insert
insert

LOCK

LOCK

LOCK

LOCK

root

cleaner

threads

L0

L1

L2

Index

Fig. 11. An example of traditional concurrent index updating.

will use B+-tree to explain the issues and introduce our de-

sign, since it is widely adopted by OLTP and OLAP sys-

tems [37, 43, 47, 101, 105, 109].

As shown in Fig. 11, B+-tree contains two types of nodes:

inner nodes and leaf nodes. The inner node stores the val-

ues and links to the next level. The last level (L2) contains

(sorted) leaf nodes, which are used to store the sorted value

of the indexed attribute (AMOUNT) with a link to the row ID

and its start/end epochs. The end epoch is used to delete a

value, which will simply write an end epoch. The cleaner

thread will garbage collect expired values in a lazy and

batched manner. The update operation is treated as a delete

operation for the original value and an insert operation for

the new value. So that we mainly consider the insert oper-

ations by cleaner threads and the lookup operations by AP

threads.

The INSERT operation consists of three steps.

• Locate leaf node. Search a leaf node to store the value by

traversing from the root

• Split/Insert leaf node. Split the leaf node if it is full, and

then insert the value into the sorted leaf node.

• Split/Insert inner node. (Recursively) Split the upper-

level inner node if it is full, and then insert a value and a

link into the sorted inner node.

We observe that the throughput of insert operations drops

with the increase of threads, even using an optimized B+-

tree [104] (see Fig. 21(a) in §6.8). The main reason is that

the second step of the insert operation may block other con-

current insert operations. As shown in Fig. 11, for inserting

the value 70, the cleaner thread has to recursively lock the

leaf node and the upper-level inner nodes due to node split.

It will block the concurrent insert operations on the whole

subtree (e.g., 58 and 100). Even worse, the node split may

cause some blocked operations to lock or rollback the first

step since the leaf node has changed (e.g., 58 and 70). Even

no split, the second step may still hold the lock of the leaf

node for a long time, since it has to move values for keeping

226 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

94 93
92 4

4

RowID

5
0

5
5

6
0

6
5

8
0 9
0

9
5

1
2
0

1
2
5

1
4
0

40 80 140 220

1
5
0

2
0
0

2
2
0

288 325 388

250 420 500

...

..
.. ..

..
..

..

start-epoch

end-epoch

7
0

root

4

1
0
0

...

leaf
node

inner
node

insert1
6
0

1
7
0 ...

2 1
0

3

2

8

5

counter

6
..

4

interim
buffer

3 1 0 1

L0

L1

L2

cleaner

threads
23

Index

subtree

5
8

Fig. 12. An example of two-phase concurrent index updating.

them in order. However, these efforts may be in vain, as the

later insert may move these values again (e.g., 160 and 170).

On the other hand, the existence of insert operations will also

significantly impact the performance of lookup operations by

AP threads (see Fig. 21(b) in §6.8). The lookup operation has

to protect access to the inner/leaf node and the value, since

the insert operations may change them concurrently.

Fortunately, the epoch-based design provides an opportu-

nity to fully parallelize the index updating. More specifically,

the insert operations in the current epoch only need to be-

come visible by the lookup operations until the next epoch.

VEGITO introduces a two-phase index updating mechanism

that splits the insert operations within an epoch into two

phases (i.e., location and update) and parallelizes them us-

ing two different approaches (task parallelism and data par-

allelism), as shown in Fig. 12.

In the location phase, each thread searches a leaf node

to append the value into its interim buffer, and recursively

updates the counter at each level. The interim buffer is un-

ordered, and atomic instructions (e.g., CAS) are used to ap-

pend the value and increase the counter. VEGITO simply uses

a vector to implement the interim buffer and resize it accord-

ing to workloads. Note that the interim buffer is absolutely

transparent to lookup operations; thus there is no read/write

conflict.

In the update phase, we first use a top-down greedy strat-

egy to partition the tree into non-overlapping subtrees accord-

ing to the counters at each level, so that each subtree has

a similar amount of tasks. Then each thread will insert the

values within a subtree in a batch, which also avoids redun-

dant node splits and data movements. Finally, we use a sin-

gle thread to split the top-level (L0) node if necessary. Con-

sequently, there are no conflicts between cleaner threads in

both location and update phases. However, the lookup opera-

tions (by AP threads) still may conflict with the update phase

of the insert operations. To minimize the impact on lookup

operations, cleaner threads can leverage RCU [64] mecha-

nism or HTM [41] to implement the update phase.

5 NO COMPROMISE: AVAILABILITY

VEGITO assumes that the OLTP system has already pro-

vided high availability using replication (e.g., 3-way primary-

backup replication [26, 34, 46]) and other fault-tolerant tech-

niques (e.g., failure detection and non-volatile WAL). VE-

GITO reuses this mechanism to support HTAP workloads

and still preserves the same availability guarantees for free—

namely, there is no need for extra replicas. Because VEG-

ITO just reorganizes the data layout of one backup replica

(backup/AP), from row-wise store to column-wise store; the

backup/AP can still provide the capability of failure recov-

ery. Besides, the original recovery protocol [26, 34] is used

as usual in most common cases.

Backup failure. When the backup/TP fails, VEGITO will re-

build a row-wise backup from the primary by following the

original protocol. When the backup/AP fails, VEGITO will

rebuild a column-wise backup to the next epoch, because

both the primary and the backup/TP do not store epochs as-

sociated with tuples for memory savings and good locality.

Meanwhile, VEGITO needs to re-execute analytical queries

involved with the new epoch.

Primary failure. When the primary fails, VEGITO always

prefers to promote a surviving backup/TP to be the new pri-

mary and rebuild a new backup/TP on another machine later

in the background, which still follows the original protocol.

When both the primary and the backup/TP fail (a rare case),

VEGITO rebuilds a new primary based on the surviving back-

up/AP on the same machine (∼42 ms for 12 warehouses of

TPC-C, see §6.5), instead of promoting it, and then migrates

the backup/AP to another machine later in the background.

This rebuild-and-migrate design avoids lengthy data reorga-

nization between row store and column store, compared to

the conventional promote-and-rebuild approach. Note that

our block-based design also simplifies and accelerates this

procedure. Therefore, VEGITO can still offer comparable per-

formance against promoting a backup/TP (∼7% overhead).

In addition, it also avoids interrupting analytical queries.

It should be noted that the recovery scheme prefers OLTP

performance. VEGITO chooses to abort the analytical query

that accesses failed machines and retry it after recovery,

since the long-running analytical query is unusual in HTAP

workloads [29] (e.g., real-time analytics), especially for in-

memory systems. If the long-running analytical query is a

serious problem, for example the query latency exceeds the

mean time to failure (MTTF) of HTAP systems, both the pri-

mary and the backup/TP should store epochs associated with

tuples. VEGITO thus could suspend and resume the analyti-

cal query after recovery.

6 EVALUATION

We implemented VEGITO by extending DrTM+H [107], a

state-of-the-art distributed in-memory OLTP system. The

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 227

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5O
L

T
P

 l
a

te
n

c
y
 (

µ
s
)

OLTP thpt (M txns/s)

DrTM+H

VEGITO

 0

 1

 2

 3

 4

 5

 4 6 8 10 12 14 16O
L

T
P

 t
h

p
t

(M
 t

x
n

s
/s

)

Number of machines

DrTM+H

VEGITO

Fig. 13. Comparison of (a) performance and (b) scalability be-

tween VEGITO and DrTM+H using CH-benCHmark with OLTP-

only workloads.

extensions include retrofitting the high availability mecha-

nism (3-way primary-backup replication) for hybrid trans-

action/analytical processing and integrating a distributed

in-memory OLAP engine, similar to MonetDB [6, 44], a

column-store database that maps analytical queries into a se-

ries of array operations [23].

6.1 Experimental Setup

Hardware configuration. All experiments were conducted

on a rack-scale cluster of 16 machines. Each machine has

two 12-core Intel Xeon processors, 128GB of RAM, two

ConnectX-4 100Gbps IB NICs and an Intel 10GbE NIC.

Unless otherwise noted, we reserve 4 cores for log cleaner

threads and 2 cores to generate transactions and analytical

queries in parallel for local worker threads, which avoid the

impact of networking between clients and servers, as done in

prior work [26, 97, 98, 105, 111]. For HTAP workloads, we

pin 8 TP threads and 10 AP threads on the remaining cores.

Benchmarks. We use CH-benCHmark [29], a typical HTAP

benchmark derived from unmodified TPC-C [95] (OLTP

benchmark) with some necessary tables to fulfill equiva-

lent queries from TPC-H [96] (OLAP benchmark). It con-

tains 5 types of transactions and 22 analytical queries. We

run the full mix and report OLTP throughput as the num-

ber of NEWORDER transactions committed per second and

OLAP throughput as the number of analytical queries exe-

cuted per second. CH-benCHmark scales by partitioning a

database into multiple warehouses spreading across multiple

machines. We deploy 12 warehouses on each machine with

3-way replication, namely 12 primary, 12 backup/TP and 12

backup/AP replicas. Each machine hosts about 6GB initial

data, which rapidly grows up to 75GB (a total of 1.2TB)

through continually running transactions (e.g., NEWORDER)

for about 40 seconds. To eliminate the effect of growing data,

the analytical query will access a fixed size of latest data by

using LIMIT statement.

Comparing targets. We choose DrTM+H [107] and

MonetDB [6] (v11.33.3) as the representative in-memory

OLTP and OLAP systems, respectively, to show that both

OLTP and OLAP performance of VEGITO are comparable

to specialized counterparts. VEGITO follows 3-way replica-

tions of DrTM+H except for replacing one of backup/TP

replicas with one backup/AP replica. To eliminate the perfor-

Q01

Q02

Q03

Q04

Q05

Q06

Q07

Q08
 0 400 800 1200

5,623 ms

3,748 ms

Q09

Q10

Q11

Q12

Q13

Q14

Q15

Q16
 0 1000 2000 3000

MonetDB

VEGITO
12 ms

6,331 ms

4,147 ms

OLAP latency (ms)

Q17

Q18

Q19

Q20

Q21

Q22

 GM
 0 1000 2000 3000

610 ms vs. 216 ms

Fig. 14. Comparison of single-threaded latency (ms) between VE-

GITO and MonetDB using CH-benCHmark with OLAP-only work-

loads, equivalent to TPC-H with SF=10.

mance discrepancy, VEGITO also uses the query plans gener-

ated by MonetDB for all of the analytical queries. VEGITO

optimizes distributed joins as MemSQL by adding reference

tables (copies) on each machine and aggregating intermedi-

ate results to avoid the whole table transferring [4]. In ad-

dition, the default intervals of epoch and garbage collection

(GC) are set as 15 ms and 1 second, respectively.

For HTAP workloads, we mainly focus on the perfor-

mance degradation and the freshness in VEGITO against

three state-of-the-art HTAP systems with three different

architectures—namely TiDB v4.0 [8] with TiFlash [9]

(DUAL-SYSTEM), the community edition of MemSQL

v7.0 [4] (SINGLE-LAYOUT), and SQL Server 2019 [7]

(DUAL-LAYOUT). Note that MemSQL is an in-memory sys-

tem, while TiDB and SQL Server are on-disk systems. For

SQL Server, we host all data in main memory by using tmpfs,

an in-memory file system. TiDB demands all data on the disk

with the ext4 file system. In addition, we deploy TiDB on

the cluster with different settings9 and always report the best

results of them. Differently, MemSQL and SQL Server can

only run on a single machine, and we deploy them on one of

our testbed machine without replication (just 12 warehouses).

Finally, to avoid the impact of compiling and interpreting an-

alytical queries, we directly evaluate the performance of exe-

cuting analytical queries on servers.10

6.2 Overall Performance

OLTP-only workloads. We first compare OLTP perfor-

mance of VEGITO and DrTM+H using CH-benCHmark

with OLTP-only workloads, like TPC-C [95]. As shown in

Fig. 13, the peak throughput of VEGITO reaches 3.7 million

NEWORDER transactions per second when running the full

mix on 16 machines (each has 14 TP threads), just 1% lower

than DrTM+H. This is thanks to our epoch-based scheme

and gossip-style parallel log cleaning, which avoid block-

ing transactions. The best published TPC-C performance we

know of is from FaRMv2 [87], which can commit 5.4 mil-

lion NEWORDER transactions per second on 90 machines. In

9As recommended in TiDB’s official website [9], we deployed TiKV and

TiFlash in both the same and different nodes.
10The systems evaluated in our paper use different approaches to run an-

alytical queries—namely VEGITO (hand-written C++), MonetDB (inter-

preted SQL), MemSQL (compiled SQL), TiDB (complied SQL), and

SQL Server (compiled SQL).

228 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10
1

10
3

10
5

10
7

10
9

VEGITO VEGITO
[single]

TiDB MemSQL SQLServer
 0

 10

 20

 30

 40

O
L

T
P

 t
h

p
t

(t
x
n

s
/s

)

O
L

A
P

 t
h

p
t

(q
ry

s
/s

)

OLTP

OLAP-5
%

-1
%

-3
% -4

%

-7
4

%

-3
7

%

-1
8

%

-1
%

-2
4

%

-3
7

%

Fig. 15. Comparison of OLTP and OLAP performance of different

HTAP systems using CH-benCHmark with hybrid workloads. The

labels upon histogram are performance degradation. Note that the

left y-axis (OLTP throughput) is in log scale.

general, VEGITO can offer OLTP performance comparable

to state-of-the-art specialized systems (e.g., DrTM+H and

FaRMv2) and scales well on a cluster with tens of machines.

OLAP-only workloads. We further compare OLAP per-

formance of VEGITO and MonetDB using CH-benCHmark

with OLAP-only workloads, like TPC-H [96]. Fig. 14 com-

pares the single-threaded latency of analytical queries on

VEGITO and MonetDB; both of them use the same query

plans generated by MonetDB. To compare with the pub-

lished TPC-H results [35, 38, 67], we scale the database in

CH-benCHmark following a similar approach in TPC-H by

a scale factor of 10 (SF=10). As shown in Fig. 14, the aver-

age (geometric mean) latency of VEGITO (GM) outperforms

MonetDB by 2.8× (216 ms vs. 610 ms). The main perfor-

mance improvement in VEGITO is due to combining some

operators manually and using efficient string operations by

hand-written C++. VEGITO also outperforms published TPC-

H results for various query processing engines [35, 38].

Specifically, the average (geometric mean) latency of all

TPC-H queries (SF=10) using a single thread is 568 ms for

HyPer [68], 541 ms for Umbra [67], 1,125 ms for Hyrise [36]

and 619 ms for MonetDB [6].11 Overall, VEGITO’s OLAP

performance matches state-of-the-art specialized systems.

HTAP workloads. Fig. 15 shows both OLTP and OLAP

throughput of VEGITO and other available HTAP systems

using CH-benCHmark with hybrid workloads. To study per-

formance degradation, we evaluate each system twice. We

first run OLTP and OLAP workloads separately and tune the

number of clients to use half of CPU resources. Then, we run

HTAP workloads with the same number of clients to saturate

CPU resources with a balance between OLTP and OLAP en-

gines. The results of performance degradation in Fig. 15 (la-

bels) are the difference between the two runs.

VEGITO can perform 1.9 million TPC-C NEWORDER

transactions and 24 TPC-H-equivalent queries per second

simultaneously. The OLTP throughput of VEGITO is sev-

eral orders of magnitude higher than that of its competitors

(11,808× for TiDB, 2,911× for MemSQL, and 53,138× for

SQL Server). This means that the bridge between two ends

of the world in VEGITO—parallel log cleaning, column store

11Note that we calculate the geometric mean of the query times based on

the reported results of every query [35, 38].

0.0

1.0

2.0

3.0

 0 5 10 15 20
 0

 10

 20

 30

O
L

T
P

 t
h

p
t

(M
 t

x
n

s
/s

)

Number of OLAP clients

VEGITO / OLTP

VEGITO / OLAP

0.0

1.0

2.0

3.0

 0 5 10 15 20
 0

 10

 20

 30

O
L

A
P

 t
h

p
t

(q
ry

s
/s

)

Number of OLTP clients

VEGITO / OLTP

VEGITO / OLAP

0.0

0.5

1.0

1.5

 0 5 10 15 20
 0

 4

 8

 12

O
L

T
P

 t
h

p
t

(K
 t

x
n

s
/s

)

Number of OLAP clients

MemSQL / OLTP

MemSQL / OLAP

0.0

0.5

1.0

1.5

 0 5 10 15 20
 0

 4

 8

 12

O
L

A
P

 t
h

p
t

(q
ry

s
/s

)

Number of OLTP clients

MemSQL / OLTP

MemSQL / OLAP

Fig. 16. Performance degradation on VEGITO and MemSQL with

the increase of OLAP and OLTP workloads, respectively.

building, and tree-based index updating—is strong enough

to face the challenge of extremely high throughput, which is

never appeared in prior published results of HTAP systems,

to the best of our knowledge. Compared to single-machine

HTAP systems, like MemSQL and SQL Server, VEGITO still

has orders of magnitude higher OLTP throughput per ma-

chine (120 K txns/s) with support for scaling out and fault

tolerance.

Moreover, VEGITO also provides little throughput degra-

dation when running hybrid workloads, just 5% for OLTP

and 1% for OLAP respectively. In contrast, existing HTAP

systems, TiDB, MemSQL, and SQL Server, suffer from sig-

nificant performance degradation, reaching 18%, 74%, 24%

for OLTP and 1%, 37%, 37% for OLAP respectively. It

matches well with the characteristics of different HTAP ar-

chitectures (see Fig. 1).

We further deploy and evaluate VEGITO on a single ma-

chine by hosting all three replicas of each shard (one primary

and two backups) on the same machine. VEGITO still syn-

chronously send transaction logs between primary and back-

ups by the NIC. As shown in Fig. 15, on a single machine,

VEGITO can perform 132 thousand TPC-C NEWORDER

transactions and 26.5 TPC-H-equivalent queries per second

simultaneously. Note that running analytical query on a sin-

gle machine is more efficient due to eliminating network

overhead.

6.3 Performance Degradation

To study the impact of performing hybrid workloads simulta-

neously, we follow Gartner’s recommendation to instruct one

kind of clients (e.g., OLTP) to sustain a configured through-

put (i.e., about half of peak throughput) and allowing another

kind of clients (e.g., OLAP) to saturate the throughput [28].

VEGITO can provide strong performance isolation by dedi-

cating a fixed number of worker threads for OLTP and OLAP

workloads. We carefully put the memory of two classes of

threads into different cache lines (e.g., write epoch and read

epoch, write offset and read offset) to mitigate the impact

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 229

 0

 10

 20

 30

 40

 50

 60

5 10 15 20 25 30 35 40 45 50

T
im

e
 d

e
la

y
 (

m
s
)

Epoch intervals (ms)

0.0

0.5

1.0

1.5

2.0

2.5

5 10 20 30 40 50

O
L
T

P
 t
h
p
t
(M

 t
x
n
s
/s

)

Epoch interval (ms)

VEGITO

Fig. 17. (a) The time delay and (b) OLTP throughput of VEGITO

with the increase of epoch intervals in the failure-free case.

on the cache. As shown in Fig. 16, with the increase of AP

clients, OLTP performance degradation of VEGITO is less

than 5%. After OLAP performance is saturated, OLTP per-

formance also remains stable. When the roles are reversed,

OLAP performance degradation becomes trivial (1%) since

OLAP worker threads always use a stable epoch to perform

analytical queries on a specified column store and index. In

contrast, MemSQL suffers from severe performance degra-

dation of both OLTP and OLAP workloads, even if there are

adequate resources. In Fig. 16, the performance degradation

of MemSQL reaches 74% and 37% for OLTP and OLAP re-

spectively, with the increase of another type of workloads.

This is largely due to the high contention between OLTP and

OLAP engines over shared data.

6.4 Freshness

The freshness is defined as the maximum time delay between

an update was committed by the transaction (OLTP work-

load) and this update can be read by the analytical query

(OLAP workload). Fig. 17(a) shows the freshness of VEG-

ITO with the increase of epoch intervals in the failure-free

case. The median time delay is about 70% of the epoch inter-

val, and the maximum delay is up to 1.3× of epoch interval.

It implies that we could roughly limit the freshness in VEG-

ITO by setting an appropriate epoch interval.

Moreover, by setting the epoch interval, there would be a

tradeoff between the freshness (OLAP) and the performance

degradation (OLTP) in VEGITO. In Fig. 17(b), when using a

relative short epoch interval (less than 10 ms), performance

degradation would become non-trivial (10%) since epoch-

based design limits the parallel log cleaning within an epoch,

and the cost to build a column store for each epoch is hard to

be amortized. Considering the latency of analytical queries

(see Fig. 14), the epoch interval with tens of milliseconds

would be moderate and reasonable. The default epoch inter-

val is set as 15 ms, providing a freshness less than 17.4 ms.

As a reference, on our testbed, the maximum delay in

TiDB, MemSQL, and SQL Server are about 1,534 ms, 1.2

ms, and 46 ms, respectively. The results are compatible

with the characteristics of different HTAP architectures (see

Fig. 1). Further, VEGITO can provide a comparable failure-

free freshness with Amazon Aurora [101], which reports the

read replica typically lags behind the writer by 20 ms or less.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-20 0 20 0 20 40 60O
L

T
P

 t
h

p
t

(M
 t

x
n

s
/s

)

Time (ms)

VEGITO

suspect

config-commit

recovery-done

suspect

config-commit

rebuild-start

recovery-done

Fig. 18. The timeline of failure recovery. suspect: the failed ma-

chine is detected; config-commit: new configuration is committed

at all surviving machines; recovery-done: the recovery of primary

is done; rebuild-start: backup/AP starts to rebuild primary.

6.5 Recovery

VEGITO follows a 3-way primary-backup replication of

DrTM+H except for replacing one of backup/TP replicas

with one backup/AP replica. During the evaluation, we kill

one machine by turning off its networking, and the primary

on the failed machine will be recovered by promoting its

backup/TP on one of the surviving machines. We disable

the primary to re-replicate a new backup/TP for emulating

a rare case. Then, we kill the recovered primary again, and

its backup/AP will be used to rebuild a new primary locally

and migrate itself to another machine in the background.

Fig. 18 shows the timeline with OLTP throughput aggre-

gated at 2 ms intervals, which is a zoomed-in view around the

failure. VEGITO uses about 10 ms for failure detection and re-

configuration. Promoting backup/TP to primary takes about

8 ms, and rebuilding primary based on backup/AP takes 42

ms for 12 warehouses with the initial size (about 2GB). Note

that the recovery load is handled by a single machine (lim-

ited by DrTM+H), causing a relatively long rebuilding time

that mainly depends on the data size. Thus, it could be easily

balanced across the cluster by fine-grained sharding [34, 69].

The throughput is not fully recovered since the failed ma-

chines are not back. Besides, rebuilding primary will slightly

impact on throughput (10%) due to sharing CPU cores.

6.6 Parallel Log Cleaning

To study the performance impact of different log cleaning

approaches, we implement three approaches on VEGITO.

• Parallel/Inconsistent: a fully parallel scheme used by

OLTP-specific systems [26, 34], which can provide high

availability but not ensuring the consistency of backups.

• GTS+SEQ: a global timestamp-based scheme used by

prior HTAP systems [55, 65, 103, 112], which provides

consistent backups by draining logs in a sequential way.

• Parallel/Consistent: a lightweight gossip-style scheme

used by VEGITO, which also ensures the consistency of

backups but drains logs in parallel.

Fig. 19 shows the throughput of OLTP and log cleaning

with the increase of machines. Parallel/Inconsistent is used

by OLTP-specific system to build fault-tolerant backups (see

230 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 6 8 10 12 14 16

O
L
T

P
 t
h
p
t
(M

 t
x
n
s
/s

)

Number of machines

Parallel / Inconsistent

GTS+SEQ

Parallel / Consistent

 0

 2

 4

 6

 8

 10

 12

4 6 8 10 12 14 16

C
le

a
n
 t
h
p
t
(M

 l
o
g
s
/s

)

Number of machines

Parallel / Inconsistent

GTS+SEQ

Parallel / Consistent

Fig. 19. The comparison of (a) OLTP and (b) clean throughput for

different log cleaning approaches using CH-benCHmark.

FTbackup in Fig. 6(b)), which are not consistent for analyti-

cal queries. GTS+SEQ just achieves up to 31.5% and 30.9%

throughput for OLTP and log cleaning, respectively. There

are two main reasons. First, assigning a global timestamp

for each transaction will increase the execution time. Sec-

ond, draining logs in a sequential way limits the through-

put of cleaner threads and further blocks the execution of

transactions. By contrast, for OLTP and log cleaning, our ap-

proach in VEGITO (Parallel/Consistent) only incurs about

4.5% and 4.7% slowdown compared to Parallel/Inconsistent

and outperforms GTS+SEQ by up to 3.0× and 3.1×. It can

drain about 9.3 million 1 KB logs per second in parallel. Ac-

cording to the TPC-C specification, there are 1% of accesses

to a remote warehouse in NEWORDER transactions by de-

fault [95], resulting in about 9% of distributed transactions.

Consequently, our gossip-style scheme only increases 7% of

remote accesses due to the epoch synchronization step in the

commit protocol (see Fig. 8). In the worst case, namely 100%

of distributed NEWORDER transactions, our approach can

still limit the performance degradation of OLTP throughput

to 15% or less. The overhead of additional remote accesses

increases to 21%.

6.7 Multi-version Column Store

For multi-version column store (MVCS) in VEGITO, the con-

ventional (chain-based) approach could achieve the best per-

formance to build the store (by cleaner threads) but the worst

performance to scan the store (by AP threads). To study the

effect of our locality-preserving design and optimizations,

we implement four types of MVCS on VEGITO and report

the steady-state throughput for them.

• Chain: a chain-based design [20, 68, 84].

• Block: a block-based design without optimizations.

• +RS: a block-based design with row-split optimization.

• +CM: a block-based design with row-split and column-

merge optimizations.

As shown in Fig. 20, as expected, Chain can achieve the

best write throughput (9.4 M ops/s), which outperforms the

naive block-based design (Block) by 157× due to fewer

memory copy operations. On the contrary, Block can pro-

vide about 95% of read throughput over a single-version

 0

 3

 6

 9

 12

 15

Chain Block +RS +CM
 0

 8

 16

 24

 32

 40

W
ri
te

 t
h
p
t
(M

 o
p
s
/s

)

M
e
m

c
p
y
 s

iz
e
 (

G
B

/s
)Write throughput

Memcpy size

 0

 10

 20

 30

 40

Chain Block +RS +CM

R
e
a
d
 t
h
p
t
(G

 o
p
s
/s

) Multi-version column store

Single-version column store

Fig. 20. The comparison of (a) clean throughput, memory copy

size, and (b) read throughput for different types of multi-version

column stores.

column store, which outperforms Chain by about 12.4×.

However, both write and read throughputs are important

for HTAP systems. The row-split optimization (+RS) can

achieve about 87.3% of write throughput of Chain and 95.4%

of read throughput of Block. The column-merge optimization

(+CM) further provides a tradeoff between two operations. It

improves write throughput by 13% due to exploiting the lo-

cality of attributes updated by transactions, while reduces 2%

of read throughput since one column of tuples will spread

more pages.

Further, GC for the block-based design is very efficient

and incurs a negligible impact on OLAP performance. It only

uses one core with less than 10% of CPU utilization lasting

about 70 ms (retrieve about 4.8GB), compared to 35% and

350 ms used by GC for the chain-based design.

6.8 Concurrent Index Updating

To study the performance of different tree-based indexes

with concurrent read and write operations, we compare three

typical data structures.

• STX+HTM: a generally-used C++ B+-tree library [21],

using hardware transactional memory (HTM) to support

multiple writers and readers, as done in DBX [105].

• Masstree [61]: a trie-like concatenation of B+-trees with

cache-friendly design, using a combination of fine-grained

lock and version.

• B+-tree w/ 2PU: a standard B+-tree with two-phase con-

current index updating, which is adopted by VEGITO.

We first evaluate the performance of insert operations

(write-only) with the increase of worker threads using write-

intensive transactions (NEWORDER) in CH-benCHmark. As

shown in Fig. 21(a), STX+HTM does not scale with the in-

crease of writers due to heavy contentions on node splits.

Masstree is heavily optimized for concurrent operations by

using fine-grained locks and optimistic mechanism, but it

still cannot avoid contention thoroughly. For B+-tree w/ 2PU,

the insert operation is very efficient (single writer) due to us-

ing a lazy and batched manner to avoid redundant operations

(node splits and data movement). Moreover, B+-tree w/ 2PU

also scales well with concurrent writers, thanks to avoiding

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 231

 0

 10

 20

 30

 40

 4 8 12 16 20 24

In
s
e
rt

 t
h
p
t
(M

 o
p
s
/s

)

Number of threads

B
+
-tree w/ 2PU

Masstree

STX+HTM

 0

 200

 400

 600

 800

STX+HTM Masstree B
+
-tree

w/ 2PU

R
e
a
d
 t
h
p
t
(M

 o
p
s
/s

) Q1 (Read-only)

Q1 w/ NO (Read-write)

Fig. 21. The comparison of (a) insert and (b) read throughput for

different tree-based indexes.

redundant node splits and data movements. Therefore, B+-

tree w/ 2PU outperforms STX+HTM and Masstree by up to

8.7× and 1.4×, respectively.

We further evaluate read performance for different in-

dexes using Q01 from CH-benCHmark with and without

NEWORDER transactions (NO), as shown in Fig. 21(b). For

the read-only workload, STX+HTM achieves the best perfor-

mance (564 M ops/s) by using more balanced tree, while

Masstree just provides 56.6% of throughput (319 M ops/s)

due to out-of-order keys in leaf nodes. For the read-write

workload, the read performance in STX+HTM significantly

decreases by 31% due to massive read-write contentions, and

Masstree can still achieve 290 M ops/s. The read through-

put of B+-tree w/ 2PU achieves 563 M and 515 M ops/s for

read-only and read-write workloads, respectively, which is

competent for HTAP workloads.

7 RELATED WORK

HTAP systems. The increasing importance of real-time oper-

ational analytics has stimulated considerable interest in both

academia and industry. There are three classes of systems.

DUAL-SYSTEM. Connecting two specialized systems is a

common design alternative [56, 62, 71, 80, 82, 112]. Re-

cently, several systems [42, 55, 65, 103] also propose to

use a single node (primary) for OLTP workloads and mul-

tiple nodes (backups) for OLAP workloads, where transac-

tion logs are shipped to backups asynchronously. Google F1

Lightning [112] is a loosely coupled HTAP solution (HTAP-

as-a-service) that aims at providing a transparent experience

to OLTP systems. TiDB [43] is a Raft-based HTAP database

that asynchronously replicates logs from a row store (TiKV)

to a column store (TiFlash). MySQL allows running ana-

lytical queries on (row-based) backups and provides semi-

synchronous replication [66]. Further, many cloud databases

also allow OLTP and OLAP workloads to run on different

instances, which are also replicated by log shipping in the

background, like Amazon Aurora [1] and MS Azure [5]. Dif-

ferently, VEGITO runs analytical queries over multi-version

columnar backups for efficiency and ships transaction up-

dates before committing on the primary for freshness.

SINGLE-LAYOUT. There are several efforts aiming at build-

ing HTAP systems from one specialized system (i.e., OLTP

or OLAP) [3, 13, 48, 84, 88]. HyPer [48] is an in-memory

HTAP system, which leverages hardware-assisted virtual

memory snapshots, session-based OLAP, and hot/cold page

management [49] to maintain consistent snapshots for OLAP.

AnKer [88] leverages virtual memory snapshots and adds

new system calls to accelerate page copying. L-Store [84]

introduces an update-friendly lineage-based data store to

support both OLTP and OLAP workloads. Many SQL-on-

Hadoop systems [3, 25, 31] have extended existing OLAP

engines with transactional support. Using a single layout

may prohibit certain optimizations (e.g., frequency com-

pression [79]) and cause poor performance for part of

workloads [14]. To avoid data contention between transac-

tions (read-write) and analytical queries (read-only), MVCC

scheme becomes essential. Prior work [53, 68] has also re-

ported 20–45% throughput degradation due to using MVCC

schemes even under low contention.

DUAL-LAYOUT. Recent systems support HTAP workloads

by combining two different data layouts in a single sys-

tem [4, 11, 14, 22, 54, 60, 90]. MemSQL [4] adopts an in-

memory row store for OLTP workloads at scale and an on-

disk column store for OLAP workloads. SAP HANA [90]

stores records in either row or column format for both trans-

actional and analytical workloads. It further uses life cycle

management to ship and merge records asynchronously. SQL

Server [37, 54] has added updatable columnstore indexes and

batch mode processing to speed up analytical queries. Pelo-

ton [73] proposes a hybrid data layout (i.e., FSM [14]) for

HTAP workloads, which stores tuples with different formats

and supports online reorganization. BatchDB [60] alternates

between the execution of transactions and a batch of queries

(e.g., 200 ms). OLTP updates are first queued and then prop-

agated to OLAP replicas in-between two batches of queries.

8 CONCLUSION

This paper presents VEGITO, a distributed in-memory HTAP

system that retrofits high availability mechanism to meet two

overarching goals simultaneously—performance (e.g., 10%

performance degradation) and freshness (e.g., a maximum

delay of 20 ms). Evaluations using CH-benCHmark show

the efficacy of VEGITO for HTAP workloads even facing mil-

lions of concurrent transactions per second.

9 ACKNOWLEDGMENT

We sincerely thank our shepherd Dushyanth Narayanan and

the anonymous reviewers for their insightful comments and

feedback. This work was supported in part by the Na-

tional Key Research & Development Program of China (No.

2020YFB2104100), the National Natural Science Founda-

tion of China (No. 61772335, 61925206), and the High-

Tech Support Program from Shanghai Committee of Science

and Technology (No. 19511121100). Corresponding author:

Rong Chen (rongchen@sjtu.edu.cn).

232 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

rongchen@sjtu.edu.cn

REFERENCES

[1] Amazon Aurora FAQs: High Availability and Replication.

https://aws.amazon.com/rds/aurora/faqs/.

[2] AWS Glue. https://aws.amazon.com/glue/.

[3] Hive Transactions. https://docs.cloudera.

com/HDPDocuments/HDP2/HDP-2.3.0/bk_

dataintegration/content/hive-013-

feature-transactions.html.

[4] MemSQL. http://memsql.com/.

[5] Microsoft Azure. https://docs.microsoft.com/

en-us/azure/.

[6] MonetDB. http://www.monetdb.org/.

[7] SQL Server 2019. https://www.microsoft.com/

en-us/sql-server/sql-server-2019.

[8] TiDB. https://pingcap.com/.

[9] TiFlash Overview. https://pingcap.com/docs/

stable/reference/tiflash/overview/.

[10] AGRAWAL, N., AND VULIMIRI, A. Low-Latency Analytics

on Colossal Data Streams with SummaryStore. In Proceed-

ings of the 26th Symposium on Operating Systems Principles

(2017), SOSP ’17, p. 647–664.

[11] ALAGIANNIS, I., IDREOS, S., AND AILAMAKI, A. H2o: A

hands-free adaptive store. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data

(2014), SIGMOD ’14, p. 1103–1114.

[12] ALIBABA CLOUD. Double 11 Real-Time Monitoring

System with Time Series Database. https://www.

alibabacloud.com/blog/594855, 2019.

[13] APPUSWAMY, R., KARPATHIOTAKIS, M., POROBIC, D.,

AND AILAMAKI, A. The case for heterogeneous HTAP.

In 8th Biennial Conference on Innovative Data Systems Re-

search (2017), CIDR ’17.

[14] ARULRAJ, J., PAVLO, A., AND MENON, P. Bridging the

archipelago between row-stores and column-stores for hy-

brid workloads. In Proceedings of the 2016 International

Conference on Management of Data (2016), pp. 583–598.

[15] BALAKRISHNAN, M., MALKHI, D., WOBBER, T., WU,

M., PRABHAKARAN, V., WEI, M., DAVIS, J. D., RAO, S.,

ZOU, T., AND ZUCK, A. Tango: Distributed Data Structures

over A Shared Log. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles (2013),

pp. 325–340.

[16] BARBER, R., GARCIA-ARELLANO, C., GROSMAN, R.,

LOHMAN, G., MOHAN, C., MULLER, R., PIRAHESH, H.,

RAMAN, V., SIDLE, R., STORM, A., ET AL. WiSer: A

Highly Available HTAP DBMS for IoT Applications. In

2019 IEEE International Conference on Big Data (Big Data)

(2019).

[17] BENDER, M. A., FARACH-COLTON, M., JANNEN, W.,

JOHNSON, R., KUSZMAUL, B. C., PORTER, D. E., YUAN,

J., AND ZHAN, Y. An Introduction to Bε-trees and Write-

Optimization. login; magazine 40, 5 (2015), 22–28.

[18] BERNSTEIN, P. A., AND GOODMAN, N. Concurrency Con-

trol in Distributed Database Systems. ACM Comput. Surv.

13, 2 (June 1981), 185–221.

[19] BERNSTEIN, P. A., AND GOODMAN, N. Multiversion

Concurrency Control Theory and Algorithms. ACM Trans.

Database Syst. 8, 4 (Dec. 1983), 465–483.

[20] BESTA, M., AND HOEFLER, T. Accelerating Irregular Com-

putations with Hardware Transactional Memory and Active

Messages. In Proceedings of the 24th International Sympo-

sium on High-Performance Parallel and Distributed Comput-

ing (2015), HPDC’15, pp. 161–172.

[21] BINGMANN, T. STX B+ Tree C++ Template Classes.

https://panthema.net/2007/stx-btree/,

2013.

[22] BOISSIER, M. Reducing the Footprint of Main Memory

HTAP Systems: Removing, Compressing, Tiering, and Ig-

noring Data. In Proceedings of the VLDB 2018 PhD Work-

shop (2018).

[23] BONCZ, P. A., ZUKOWSKI, M., AND NES, N. MonetD-

B/X100: Hyper-Pipelining Query Execution. In Proceedings

of the 2nd Conference on Innovative Data Systems Research

(2005), vol. 5 of CIDR ’05, pp. 225–237.

[24] CAO, S., YANG, X., CHEN, C., ZHOU, J., LI, X., AND QI,

Y. TitAnt: Online Real-Time Transaction Fraud Detection in

Ant Financial. Proceedings of the VLDB Endowment 12, 12

(Aug. 2019), 2082—-2093.

[25] CAO, Y., CHEN, C., GUO, F., JIANG, D., LIN, Y., OOI, B.,

VO, H., WU, S., AND XU, Q. ES2: A cloud data storage

system for supporting both OLTP and OLAP. pp. 291–302.

[26] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H.

Fast and General Distributed Transactions using RDMA and

HTM. In Proceedings of the European Conference on Com-

puter Systems (2016), EuroSys’16, p. 26.

[27] CHISHOLM, S. Adopting medical technologies and diagnos-

tics recommended by NICE: The Health Technologies Adop-

tion Programme, 2014.

[28] COELHO, F., PAULO, J. A., VILAÇA, R., PEREIRA, J., AND

OLIVEIRA, R. HTAPBench: Hybrid Transactional and An-

alytical Processing Benchmark. In Proceedings of the 8th

ACM/SPEC on International Conference on Performance

Engineering (2017), ICPE ’17, pp. 293—-304.

[29] COLE, R., FUNKE, F., GIAKOUMAKIS, L., GUY, W., KEM-

PER, A., KROMPASS, S., KUNO, H., NAMBIAR, R., NEU-

MANN, T., POESS, M., ET AL. The mixed workload CH-

benCHmark. In Proceedings of the Fourth International

Workshop on Testing Database Systems (2011), p. 8.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 233

https://aws.amazon.com/rds/aurora/faqs/
https://aws.amazon.com/glue/
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.3.0/bk_dataintegration/content/hive-013-feature-transactions.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.3.0/bk_dataintegration/content/hive-013-feature-transactions.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.3.0/bk_dataintegration/content/hive-013-feature-transactions.html
https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.3.0/bk_dataintegration/content/hive-013-feature-transactions.html
http://memsql.com/
https://docs.microsoft.com/en-us/azure/
https://docs.microsoft.com/en-us/azure/
http://www.monetdb.org/
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://pingcap.com/
https://pingcap.com/docs/stable/reference/tiflash/overview/
https://pingcap.com/docs/stable/reference/tiflash/overview/
https://www.alibabacloud.com/blog/594855
https://www.alibabacloud.com/blog/594855
https://panthema.net/2007/stx-btree/

[30] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A.,

FROST, C., FURMAN, J. J., GHEMAWAT, S., GUBAREV,

A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KAN-

THAK, S., KOGAN, E., LI, H., LLOYD, A., MELNIK,

S., MWAURA, D., NAGLE, D., QUINLAN, S., RAO, R.,

ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C.,

WANG, R., AND WOODFORD, D. Spanner: Google’s glob-

ally distributed database. ACM Trans. Comput. Syst. 31, 3

(Aug. 2013).

[31] COSTEA, A., IONESCU, A., RĂDUCANU, B.,

SWITAKOWSKI, M., BÂRCA, C., SOMPOLSKI, J.,

UNDEFINEDUSZCZAK, A., SZAFRAUNDEFINEDSKI, M.,

DE NIJS, G., AND BONCZ, P. VectorH: Taking SQL-on-

Hadoop to the Next Level. In Proceedings of the 2016

International Conference on Management of Data (2016),

SIGMOD ’16, pp. 1105—-1117.

[32] DAGEVILLE, B., CRUANES, T., ZUKOWSKI, M.,

ANTONOV, V., AVANES, A., BOCK, J., CLAYBAUGH,

J., ENGOVATOV, D., HENTSCHEL, M., HUANG, J., LEE,

A. W., MOTIVALA, A., MUNIR, A. Q., PELLEY, S.,

POVINEC, P., RAHN, G., TRIANTAFYLLIS, S., AND UN-

TERBRUNNER, P. The Snowflake Elastic Data Warehouse.

In Proceedings of the 2016 International Conference on

Management of Data (2016), SIGMOD ’16, p. 215–226.

[33] DIACONU, C., FREEDMAN, C., ISMERT, E., LARSON, P.-

A., MITTAL, P., STONECIPHER, R., VERMA, N., AND

ZWILLING, M. Hekaton: SQL Server’s Memory-optimized

OLTP Engine. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data (2013),

SIGMOD’13, pp. 1243–1254.

[34] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE,

E. B., RENZELMANN, M., SHAMIS, A., BADAM, A., AND

CASTRO, M. No Compromises: Distributed Transactions

with Consistency, Availability, and Performance. In Proceed-

ings of the 25th Symposium on Operating Systems Principles

(2015), SOSP’15, pp. 54–70.

[35] DRESELER, M., BOISSIER, M., RABL, T., AND

UFLACKER, M. Quantifying TPC-H choke points and

their optimizations. Proceedings of the VLDB Endowment

13, 10 (2020), 1206–1220.

[36] DRESELER, M., KOSSMANN, J., BOISSIER, M., KLAUCK,

S., UFLACKER, M., AND PLATTNER, H. Hyrise Re-

engineered: An Extensible Database System for Research in

Relational In-Memory Data Management. In Proceedings of

the 22nd International Conference on Extending Database

Technology (2019), pp. 313–324.

[37] DZIEDZIC, A., WANG, J., DAS, S., DING, B.,

NARASAYYA, V. R., AND SYAMALA, M. Column-

store and B+ tree - Are Hybrid Physical Designs Important?

In Proceedings of the 2018 International Conference on

Management of Data (2018), pp. 177–190.

[38] ESSERTEL, G., TAHBOUB, R., DECKER, J., BROWN, K.,

OLUKOTUN, K., AND ROMPF, T. Flare: Optimizing Apache

Spark with Native Compilation for Scale-up Architectures
and Medium-Size Data. In Proceedings of the 13th USENIX

Conference on Operating Systems Design and Implementa-

tion (2018), pp. 799–815.

[39] GU, J., YU, Q., WANG, X., WANG, Z., ZANG, B., GUAN,

H., AND CHEN, H. Pisces: A Scalable and Efficient Persis-

tent Transactional Memory. In Proceedings of 2019 USENIX

Annual Technical Conference (2019), pp. 913–928.

[40] GUPTA, A., AGARWAL, D., TAN, D., KULESZA, J.,

PATHAK, R., STEFANI, S., AND SRINIVASAN, V. Ama-

zon redshift and the case for simpler data warehouses. In

Proceedings of the 2015 ACM SIGMOD international con-

ference on management of data (2015), pp. 1917–1923.

[41] HERLIHY, M., AND MOSS, J. E. B. Transactional Mem-

ory: Architectural Support for Lock-free Data Structures. In

Proceedings of the 20th Annual International Symposium on

Computer Architecture (1993), ISCA’93, pp. 289–300.

[42] HONG, C., ZHOU, D., YANG, M., KUO, C., ZHANG,

L., AND ZHOU, L. KuaFu: Closing the parallelism gap

in database replication. In Proceedings of 2013 IEEE

29th International Conference on Data Engineering (2013),

pp. 1186–1195.

[43] HUANG, D., LIU, Q., CUI, Q., FANG, Z., MA, X., XU,

F., SHEN, L., TANG, L., ZHOU, Y., HUANG, M., WEI, W.,

LIU, C., ZHANG, J., LI, J., WU, X., SONG, L., SUN, R.,

YU, S., ZHAO, L., CAMERON, N., PEI, L., AND TANG, X.

TiDB: A Raft-Based HTAP Database. Proc. VLDB Endow.

13, 12 (Aug. 2020), 3072–3084.

[44] IDREOS, S., GROFFEN, F., NES, N., MANEGOLD, S.,

MULLENDER, K. S., AND KERSTEN, M. MonetDB: Two

Decades of Research in Column-oriented Database Architec-

tures. IEEE Data Eng. Bull. 35 (2012), 40–45.

[45] JOHN PIEKOS. Measuring real-time. https://www.

infoworld.com/article/3220430/measuring-

real-time.html, 2017.

[46] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G.

FaSST: Fast, Scalable and Simple Distributed Transactions

with Two-Sided (RDMA) Datagram RPCs. In Proceedings

of the 12th USENIX Conference on Operating Systems De-

sign and Implementation (2016), OSDI’16, pp. 185–201.

[47] KAUFMANN, M., MANJILI, A. A., VAGENAS, P., FIS-

CHER, P. M., KOSSMANN, D., FÄRBER, F., AND MAY,

N. Timeline Index: A Unified Data Structure for Processing

Queries on Temporal Data in SAP HANA. In Proceedings of

the 2013 ACM SIGMOD International Conference on Man-

agement of Data (2013), pp. 1173–1184.

[48] KEMPER, A., AND NEUMANN, T. HyPer: A Hybrid

OLTP&OLAP Main Memory Database System Based on

Virtual Memory Snapshots. In Proceedings of 2011 IEEE

27th International Conference on Data Engineering (2011),

pp. 195–206.

234 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.infoworld.com/article/3220430/measuring-real-time.html
https://www.infoworld.com/article/3220430/measuring-real-time.html
https://www.infoworld.com/article/3220430/measuring-real-time.html

[49] KEMPER, A., NEUMANN, T., FUNKE, F., LEIS, V., AND

MÜHE, H. HyPer: Adapting Columnar Main-Memory

Data Management for Transactional AND Query Processing.

IEEE Data Eng. Bull. 35, 1 (2012), 46–51.

[50] KIM, K., WANG, T., JOHNSON, R., AND PANDIS, I. Er-

mia: Fast Memory-optimized Database System for Heteroge-

neous Workloads. In Proceedings of the 2016 International

Conference on Management of Data (2016), pp. 1675–1687.

[51] KUNG, H. T., AND ROBINSON, J. T. On Optimistic Meth-

ods for Concurrency Control. ACM Trans. Database Syst. 6,

2 (June 1981), 213–226.

[52] LAMPORT, L., MALKHI, D., AND ZHOU, L. Vertical Paxos

and Primary-backup Replication. In Proceedings of the 28th

ACM Symposium on Principles of Distributed Computing

(2009), PODC’09, pp. 312–313.

[53] LARSON, P.-Å., BLANAS, S., DIACONU, C., FREED-

MAN, C., PATEL, J. M., AND ZWILLING, M. High-

Performance Concurrency Control Mechanisms for Main-

Memory Databases. Proc. VLDB Endow. 5, 4 (2011), 298–

309.

[54] LARSON, P.-R., BIRKA, A., HANSON, E. N., HUANG, W.,

NOWAKIEWICZ, M., AND PAPADIMOS, V. Real-Time Ana-

lytical Processing with SQL Server. Proc. VLDB Endow. 8,

12 (Aug. 2015), 1740–1751.

[55] LEE, J., MOON, S., KIM, K. H., KIM, D. H., CHA, S. K.,

AND HAN, W.-S. Parallel Replication Across Formats in

SAP HANA for Scaling out Mixed OLTP/OLAP Workloads.

Proc. VLDB Endow. 10, 12 (Aug. 2017), 1598–1609.

[56] LI, F., ÖZSU, M. T., CHEN, G., AND OOI, B. C. R-store:

A Scalable Distributed System for Supporting Real-time An-

alytics. In Proceedings of the 2014 IEEE 30th International

Conference on Data Engineering (2014), pp. 40–51.

[57] LI, J., MICHAEL, E., AND PORTS, D. R. K. Eris:

Coordination-Free Consistent Transactions Using In-

Network Concurrency Control. In Proceedings of the 26th

Symposium on Operating Systems Principles (2017), SOSP

’17, pp. 104–120.

[58] LIM, H., KAMINSKY, M., AND ANDERSEN, D. G. Ci-

cada: Dependably Fast Multi-core In-memory Transactions.

In Proceedings of the 2017 ACM International Conference

on Management of Data (2017), pp. 21–35.

[59] LOCKERMAN, J., FALEIRO, J. M., KIM, J., SANKARAN,

S., ABADI, D. J., ASPNES, J., SEN, S., AND BALAKRISH-

NAN, M. The FuzzyLog: A Partially Ordered Shared Log.

In Proceedings of the 13th USENIX Conference on Operat-

ing Systems Design and Implementation (2018), OSDI’18,

pp. 357—-372.

[60] MAKRESHANSKI, D., GICEVA, J., BARTHELS, C., AND

ALONSO, G. BatchDB: Efficient Isolated Execution of Hy-

brid OLTP+OLAP Workloads for Interactive Applications.

In Proceedings of the 2017 ACM International Conference

on Management of Data (2017), pp. 37–50.

[61] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache Crafti-

ness for Fast Multicore Key-value Storage. In Proceedings

of the 7th ACM European Conference on Computer Systems

(2012), EuroSys’12, pp. 183–196.

[62] MARTIN, D., KOETH, O., KERN, J., AND IVANOVA, I.

Near Real-Time Analytics with IBM DB2 Analytics Acceler-

ator. In Proceedings of the 16th International Conference on

Extending Database Technology (2013), EDBT ’13, pp. 579–

588.

[63] MARY SHACKLETT. See real-time big data analytics in

milliseconds with IMDG technology. https://www.

techrepublic.com/article/see-real-time-

big-data-analytics-in-milliseconds-with-

imdg-technology/, 2014.

[64] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-Copy Up-

date: Using Execution History to Solve Concurrency Prob-

lems. In Parallel and Distributed Computing and Systems

(1998), pp. 509–518.

[65] MÜHLBAUER, T., RÖDIGER, W., REISER, A., KEMPER,

A., AND NEUMANN, T. ScyPer: Elastic OLAP Through-

put on Transactional Data. In Proceedings of the Second

Workshop on Data Analytics in the Cloud (2013), DanaC ’13,

p. 11–15.

[66] MYSQL. MySQL 8.0 Reference Manual: Chapter 17 Repli-

cation. https://dev.mysql.com/doc/refman/8.

0/en/replication-semisync.html.

[67] NEUMANN, T., AND FREITAG, M. J. Umbra: A Disk-Based

System with In-Memory Performance. In Proceedings of

the 10th Conference on Innovative Data Systems Research

(2020), CIDR ’20.

[68] NEUMANN, T., MÜHLBAUER, T., AND KEMPER, A. Fast

Serializable Multi-Version Concurrency Control for Main-

Memory Database Systems. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of

Data (2015), SIGMOD ’15, pp. 677–689.

[69] ONGARO, D., RUMBLE, S. M., STUTSMAN, R., OUSTER-

HOUT, J., AND ROSENBLUM, M. Fast Crash Recovery in

RAMCloud. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles (2011), pp. 29–41.

[70] ÖZCAN, F., TIAN, Y., AND TÖZÜN, P. Hybrid Transac-

tional/Analytical Processing: A Survey. In Proceedings of

the 2017 ACM International Conference on Management of

Data (2017), pp. 1771–1775.

[71] PAREEK, A., KHALADKAR, B., SEN, R., ONAT, B.,

NADIMPALLI, V., AGARWAL, M., AND KEENE, N. Striim:

A Streaming Analytics Platform for Real-time Business De-

cisions. In Proceedings of the International Workshop

on Real-Time Business Intelligence and Analytics (2017),

BIRTE ’17, pp. 4:1–4:8.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 235

https://www.techrepublic.com/article/see-real-time-big-data-analytics-in-milliseconds-with-imdg-technology/
https://www.techrepublic.com/article/see-real-time-big-data-analytics-in-milliseconds-with-imdg-technology/
https://www.techrepublic.com/article/see-real-time-big-data-analytics-in-milliseconds-with-imdg-technology/
https://www.techrepublic.com/article/see-real-time-big-data-analytics-in-milliseconds-with-imdg-technology/
https://dev.mysql.com/doc/refman/8.0/en/replication-semisync.html
https://dev.mysql.com/doc/refman/8.0/en/replication-semisync.html

[72] PAREEK, A., KHALADKAR, B., SEN, R., ONAT, B.,

NADIMPALLI, V., AND LAKSHMINARAYANAN, M. Real-

time ETL in Striim. In Proceedings of the International

Workshop on Real-Time Business Intelligence and Analytics

(2018), BIRTE ’18, pp. 3:1–3:10.

[73] PAVLO, A., ANGULO, G., ARULRAJ, J., LIN, H., LIN, J.,

MA, L., MENON, P., MOWRY, T. C., PERRON, M., QUAH,

I., ET AL. Self-Driving Database Management Systems. In

Proceedings of the 8th Conference on Innovative Data Sys-

tems Research (2017), CIDR ’17.

[74] PELKONEN, T., FRANKLIN, S., TELLER, J., CAVALLARO,

P., HUANG, Q., MEZA, J., AND VEERARAGHAVAN, K. Go-

rilla: A Fast, Scalable, in-Memory Time Series Database.

Proc. VLDB Endow. 8, 12 (Aug. 2015), 1816–1827.

[75] PEZZINI, M., FEINBERG, D., RAYNER, N., AND EDJLALI,

R. Hybrid Transaction/Analytical Processing Will Foster

Opportunities for Dramatic Business Innovation. Gartner

(2014).

[76] PUBNUB. How Fast is Realtime? Human Perception and

Technology. https://www.pubnub.com/blog/

how-fast-is-realtime-human-perception-

and-technology/, 2015.

[77] QIU, X., CEN, W., QIAN, Z., PENG, Y., ZHANG, Y., LIN,

X., AND ZHOU, J. Real-Time Constrained Cycle Detec-

tion in Large Dynamic Graphs. Proc. VLDB Endow. 11, 12

(2018), 1876–1888.

[78] QUAH, J. T., AND SRIGANESH, M. Real-time Credit Card

Fraud Detection Using Computational Intelligence. Expert

systems with applications 35, 4 (2008), 1721–1732.

[79] RAMAN, V., ATTALURI, G., BARBER, R., CHAINANI,

N., KALMUK, D., KULANDAISAMY, V., LEENSTRA, J.,

LIGHTSTONE, S., LIU, S., LOHMAN, G. M., ET AL. DB2

with BLU Acceleration: So Much More than Just a Column

Store. Proc. VLDB Endow. 6, 11 (2013), 1080–1091.

[80] RAMNARAYAN, J., MOZAFARI, B., WALE, S., MENON, S.,

KUMAR, N., BHANAWAT, H., CHAKRABORTY, S., MAHA-

JAN, Y., MISHRA, R., AND BACHHAV, K. SnappyData: A

Hybrid Transactional Analytical Store Built On Spark. In

Proceedings of the 2016 International Conference on Man-

agement of Data (2016), SIGMOD ’16, pp. 2153—-2156.

[81] RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRAD-

SKI, G., AND KOZYRAKIS, C. Evaluating Mapreduce for

Multi-core and Multiprocessor Systems. In Proceedings of

the 2007 IEEE 13th International Symposium on High Per-

formance Computer Architecture (2007), pp. 13–24.

[82] RAZA, A., CHRYSOGELOS, P., ANADIOTIS, A. C., AND

AILAMAKI, A. Adaptive HTAP through Elastic Resource

Scheduling. In Proceedings of the 2020 ACM SIGMOD In-

ternational Conference on Management of Data (2020), SIG-

MOD ’20, pp. 2043––2054.

[83] RÖDIGER, W., MÜHLBAUER, T., KEMPER, A., AND NEU-

MANN, T. High-speed Query Processing over High-speed

Networks. Proc. VLDB Endow. 9, 4 (2015), 228–239.

[84] SADOGHI, M., BHATTACHERJEE, S., BHATTACHARJEE,

B., AND CANIM, M. L-Store: A Real-time OLTP and OLAP

System. In Proceedings of the 21th International Conference

on Extending Database Technology (2018), EBDT ’18.

[85] SAHAY, B., AND RANJAN, J. Real Time Business Intelli-

gence in Supply Chain Analytics. Information Management

& Computer Security 16, 1 (2008), 28–48.

[86] SEWALL, J., CHHUGANI, J., KIM, C., SATISH, N., AND

DUBEY, P. PALM: Parallel Architecture-friendly Latch-free

Modifications to B+ trees on Many-core Processors. Proc.

VLDB Endowment 4, 11 (2011), 795–806.

[87] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-

ZOPOULOS, G., DRAGOJEVIĆ, A., NARAYANAN, D., AND

CASTRO, M. Fast General Distributed Transactions with

Opacity. In Proceedings of the 2019 International Con-

ference on Management of Data (2019), SIGMOD ’19,

p. 433–448.

[88] SHARMA, A., SCHUHKNECHT, F. M., AND DITTRICH, J.

Accelerating Analytical Processing in MVCC using Fine-

Granular High-Frequency Virtual Snapshotting. In Proceed-

ings of the 2018 International Conference on Management

of Data (2018), pp. 245–258.

[89] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast

and Concurrent RDF Queries with RDMA-based Distributed

Graph Exploration. In Proceedings of the 12th USENIX Con-

ference on Operating Systems Design and Implementation

(2016), OSDI ’16, pp. 317–332.

[90] SIKKA, V., FÄRBER, F., LEHNER, W., CHA, S. K., PEH,

T., AND BORNHÖVD, C. Efficient Transaction Processing

in SAP HANA Database: The End of a Column Store Myth.

In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data (2012), SIGMOD ’12,

pp. 731–742.

[91] SOMPOLSKI, J., ZUKOWSKI, M., AND BONCZ, P. Vector-

ization vs. Compilation in Query Execution. In Proceedings

of the Seventh International Workshop on Data Management

on New Hardware (2011), pp. 33–40.

[92] STEVE ABRAHAM. Creating a proof of concept using Ama-

zon Aurora. https://aws.amazon.com/blogs/

database/creating-a-proof-of-concept-

using-amazon-aurora/, 2019.

[93] TA, V.-D., LIU, C.-M., AND NKABINDE, G. W. Big Data

Stream Computing in Healthcare Real-time Analytics. In

Proceedings of the 2016 IEEE International Conference on

Cloud Computing and Big Data Analysis (2016), pp. 37–42.

[94] TAI, A., WEI, M., FREEDMAN, M. J., ABRAHAM, I., AND

MALKHI, D. Replex: A Scalable, Highly Available Multi-

index Data Store. In Proceedings of the 2016 USENIX An-

nual Technical Conference (2016), pp. 337–350.

236 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://aws.amazon.com/blogs/database/creating-a-proof-of-concept-using-amazon-aurora/
https://aws.amazon.com/blogs/database/creating-a-proof-of-concept-using-amazon-aurora/
https://aws.amazon.com/blogs/database/creating-a-proof-of-concept-using-amazon-aurora/

[95] THE TRANSACTION PROCESSING COUNCIL. TPC-C

Benchmark V5.11. http://www.tpc.org/tpcc/.

[96] THE TRANSACTION PROCESSING COUNCIL. TPC-H

Benchmark V2.17.3. http://www.tpc.org/tpch/.

[97] THOMSON, A., DIAMOND, T., WENG, S.-C., REN, K.,

SHAO, P., AND ABADI, D. J. Calvin: Fast Distributed Trans-

actions for Partitioned Database Systems. In Proceedings of

the 2012 ACM SIGMOD International Conference on Man-

agement of Data (2012), SIGMOD’12, pp. 1–12.

[98] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MAD-

DEN, S. Speedy Transactions in Multicore In-memory

Databases. In Proceedings of the Twenty-Fourth ACM Sym-

posium on Operating Systems Principles (2013), SOSP’13.

[99] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain Repli-

cation for Supporting High Throughput and Availability. In

Proceedings of the 6th USENIX Conference on Operating

Systems Design and Implementation (2004), vol. 4 of OSDI

’04, pp. 91–104.

[100] VASSILIADIS, P., AND SIMITSIS, A. Near real time ETL. In

New Trends in Data Warehousing and Data Analysis. 2009,

pp. 1–31.

[101] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADESAM,

M., GUPTA, K., MITTAL, R., KRISHNAMURTHY, S., MAU-

RICE, S., KHARATISHVILI, T., AND BAO, X. Amazon

Aurora: Design Considerations for High Throughput Cloud-

Native Relational Databases. In Proceedings of the 2017

ACM International Conference on Management of Data

(2017), SIGMOD ’17, p. 1041–1052.

[102] WAN, Y. S. G. E. B., LIM, S., AND PAVLO, A. On Support-

ing Efficient Snapshot Isolation for Hybrid Workloads with

Multi-Versioned Indexes. Proc. VLDB Endow. 13, 2 (2019).

[103] WANG, T., JOHNSON, R., AND PANDIS, I. Query Fresh:

Log Shipping on Steroids. Proc. VLDB Endow. 11, 4 (2017),

406–419.

[104] WANG, X., ZHANG, W., WANG, Z., WEI, Z., CHEN, H.,

AND ZHAO, W. Eunomia: Scaling Concurrent Search Trees

under Contention Using HTM. In Proceedings of the 22nd

ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (2017), PPoPP ’17, p. 385–399.

[105] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using

Restricted Transactional Memory to Build a Scalable In-

memory Database. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems (2014), EuroSys’14,

pp. 26:1–26:15.

[106] WEI, X., CHEN, R., CHEN, H., WANG, Z., GONG, Z.,

AND ZANG, B. Unifying Timestamp with Transaction Or-

dering for MVCC with Decentralized Scalar Timestamp. In

Proceedings of 18th USENIX Symposium on Networked Sys-

tems Design and Implementation (Apr. 2021).

[107] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Decon-

structing RDMA-enabled Distributed Transactions: Hybrid

is Better! In Proceedings of the 13th USENIX Symposium

on Operating Systems Design and Implementation (2018),

OSDI ’18, pp. 233–251.

[108] WEI, X., SHEN, S., CHEN, R., AND CHEN, H. Replication-

driven Live Reconfiguration for Fast Distributed Transaction

Processing. In Proceedings of the 2017 USENIX Annual

Technical Conference (2017), USENIX ATC ’17, pp. 335–

347.

[109] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H.

Fast In-memory Transaction Processing Using RDMA and

HTM. In Proceedings of the 25th Symposium on Operating

Systems Principles (2015), SOSP’15, pp. 87–104.

[110] WU, Y., ARULRAJ, J., LIN, J., XIAN, R., AND PAVLO, A.

An Empirical Evaluation of In-memory Multi-version Con-

currency Control. Proc. VLDB Endow. 10, 7 (Mar. 2017),

781–792.

[111] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh:

Locality-preserving Graph Traversal with Split Live Migra-

tion. In Proceedings of the 2019 USENIX Annual Technical

Conference (2019), USENIX ATC ’19, pp. 723–738.

[112] YANG, J., RAE, I., XU, J., SHUTE, J., YUAN, Z., LAU, K.,

ZENG, Q., ZHAO, X., MA, J., CHEN, Z., GAO, Y., DONG,

Q., ZHOU, J., WOOD, J., GRAEFE, G., NAUGHTON, J.,

AND CIESLEWICZ, J. F1 Lightning: HTAP as a Service.

Proc. VLDB Endow. 13, 12 (Aug. 2020), 3313–3325.

[113] ZAMANIAN, E., BINNIG, C., HARRIS, T., AND KRASKA,

T. The End of a Myth: Distributed Transactions Can Scale.

Proc. VLDB Endow. 10, 6 (Feb. 2017), 685–696.

[114] ZHANG, H., ANDERSEN, D. G., PAVLO, A., KAMINSKY,

M., MA, L., AND SHEN, R. Reducing the Storage Overhead

of Main-memory OLTP Databases with Hybrid Indexes. In

Proceedings of the 2016 International Conference on Man-

agement of Data (2016), pp. 1567–1581.

[115] ZHANG, Y., CHEN, R., AND CHEN, H. Sub-Millisecond

Stateful Stream Querying over Fast-Evolving Linked Data.

In Proceedings of the 26th Symposium on Operating Systems

Principles (2017), SOSP ’17, p. 614–630.

[116] ZHENG, W., TU, S., KOHLER, E., AND LISKOV, B. Fast

Databases with Fast Durability and Recovery Through Mul-

ticore Parallelism. In Proceedings of the 11th USENIX Con-

ference on Operating Systems Design and Implementation

(2014), OSDI’14, pp. 465–477.

[117] ZHOU, J., LI, X., ZHAO, P., CHEN, C., LI, L., YANG,

X., CUI, Q., YU, J., CHEN, X., DING, Y., AND QI, Y. A.

KunPeng: Parameter Server Based Distributed Learning Sys-

tems and Its Applications in Alibaba and Ant Financial. In

Proceedings of the 23rd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining (2017),

KDD ’17, pp. 1693–1702.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 237

http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

A ARTIFACT APPENDIX

Abstract

This artifact provides the prototype of VEGITO, including

the document, source code and scripts to execute the main

experiments and reproduce the experimental results. VEG-

ITO is a fast distributed in-memory HTAP system, which

retrofits high availability mechanism to tame hybrid trans-

action/analytical processing. An open-source version of VE-

GITO is available at https://github.com/SJTU-IPADS/

vegito.

Scope

This artifact (including the document, source code and

scripts) is used for artifact evaluation, which can reproduce

the main experimental results in VEGITO. To use VEGITO in

your research, we recommend using the master branch of

the public repository, which would be maintained by mem-

bers of the Institute of Parallel and Distributed Systems.

Contents

• README and document: A detailed description of the

artifacts, including the steps of environment building, in-

stallation, usage of scripts and configuration files, and how

to conduct experiments. Please read the README.md at

first.

• Source code: We provide the prototype of VEGITO with

the HTAP benchmark called CH-benCHmark and some

micro-benchmarks.

• Configuration files: We record different configurations in

some XML format files. The detailed format is described

in the README.md.

• Scripts: We run the VEGITO by using the Python scripts

and Shell scripts. These scripts use SSH for cluster deploy-

ment and management.

Hosting

• Program: vegito.

• Compilation: g++ and cmake.

• Hardware: Intel CPU with RTM and Mellanox NIC with

RDMA.

• Execution: Python scripts, Shell scripts, SSH.

• Metrics: Throughput, latency, and time lag (freshness).

• Public link:

https://github.com/SJTU-IPADS/vegito.

• Code licenses: Apache License 2.0.

Requirements

Hardware Dependencies. At least three machines are used

to reproduce the experimental results for distributed configu-

rations. Each machine must have:

• CPU: Intel processors with 2 sockets and Restricted Trans-

actional Memory (RTM) (e.g., Xeon E5-2650 v4).

• NIC: At least one (two is better) Mellanox RDMA net-

work card (e.g., Mellanox ConnectX-4 100Gbps Infini-

Band NIC).

Software Dependencies.

• Operating system: Ubuntu ≥ 16.04.

• Compile toolchain: g++ ≥ 5.4.4 and cmake ≥ 3.5.1.

• Libraries: Mellanox OFED, boost 1.61.0, ssmalloc.

AE Methodology

Submission, reviewing and badging methodology is

specified at https://www.usenix.org/conference/

osdi21/call-for-artifacts.

238 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SJTU-IPADS/vegito
https://github.com/SJTU-IPADS/vegito
https://github.com/SJTU-IPADS/vegito
https://www.usenix.org/conference/osdi21/call-for-artifacts
https://www.usenix.org/conference/osdi21/call-for-artifacts

The nanoPU: A Nanosecond Network Stack for Datacenters
Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen,

Muhammad Shahbaz?, Changhoon Kim, and Nick McKeown
Stanford University ?Purdue University

Abstract
We present the nanoPU, a new NIC-CPU co-design to

accelerate an increasingly pervasive class of datacenter appli-
cations: those that utilize many small Remote Procedure Calls
(RPCs) with very short (µs-scale) processing times. The novel
aspect of the nanoPU is the design of a fast path between the
network and applications—bypassing the cache and memory
hierarchy, and placing arriving messages directly into the CPU
register file. This fast path contains programmable hardware
support for low latency transport and congestion control as
well as hardware support for efficient load balancing of RPCs
to cores. A hardware-accelerated thread scheduler makes sub-
nanosecond decisions, leading to high CPU utilization and
low tail response time for RPCs.

We built an FPGA prototype of the nanoPU fast path by
modifying an open-source RISC-V CPU, and evaluated its per-
formance using cycle-accurate simulations on AWS FPGAs.
The wire-to-wire RPC response time through the nanoPU
is just 69ns, an order of magnitude quicker than the best-of-
breed, low latency, commercial NICs. We demonstrate that
the hardware thread scheduler is able to lower RPC tail re-
sponse time by about 5× while enabling the system to sustain
20% higher load, relative to traditional thread scheduling tech-
niques. We implement and evaluate a suite of applications,
including MICA, Raft and Set Algebra for document retrieval;
and we demonstrate that the nanoPU can be used as a high
performance, programmable alternative for one-sided RDMA
operations.

1 Introduction
Today, large online services are typically deployed as multiple
tiers of software running in data centers. Tiers communicate
with each other using Remote Procedure Calls (RPCs) of
varying size and complexity [7,28,57]. Some RPCs call upon
microservices lasting many milliseconds, while others call
remote (serverless) functions, or retrieve a single piece of
data and last only a few microseconds. These are important
workloads, and so it seems feasible that small messages with
microsecond (and possibly nanosecond) service times will
become more common in future data centers [7, 28]. For
example, it is reported that a large fraction of messages com-
municated in Facebook data centers are for a single key-value
memory reference [4, 7], and a growing number of papers
describe fine-grained (typically cache-resident) computation
based on very small RPCs [22, 23, 28, 57].

Three main metrics are useful when evaluating an RPC sys-
tem’s performance: (1) the median response time (i.e., time

from when a client issues an RPC request until it receives a
response) for applications invoking many sequential RPCs;
(2) the tail response time (i.e., the longest or 99th %ile RPC
response time) for applications with large fanouts (e.g., map-
reduce jobs), because they must wait for all RPCs to complete
before continuing [17]; and (3) the communication overhead
(i.e., the communication-to-computation ratio). When com-
munication overhead is high, it may not be worth farming out
the request to a remote CPU at all [57]. We will sometimes
need more specific metrics for portions of the processing
pipeline, such as the median wire-to-wire latency, the time
from when the first bit of an RPC request arrives at the server
NIC until the last bit of the response departs.

Many authors have proposed exciting ways to accelerate
RPCs by reducing the message processing overhead. These
include specialized networking stacks, both in software (e.g.,
DPDK [18], ZygOS [51], Shinjuku [27], and Shenango [49]),
and hardware (e.g., RSS [43], RDMA [9], Tonic [2], NeB-
uLa [57], and Optimus Prime [50]). Each proposal tackles
one or more components of the RPC stack (i.e., network trans-
port, congestion control, core selection, thread scheduling, and
data marshalling). For example, DPDK removes the memory
copying and network transport overhead of an OS and lets a
developer handle them manually in user space. ZygOS imple-
ments a scheme to efficiently load balance messages across
multiple cores. Shenango efficiently shares CPUs among ser-
vices requiring RPC messages to be processed. eRPC [28]
cleverly combines many software techniques to reduce me-
dian RPC response times by optimizing for the common case
(i.e., small messages with short RPC handlers). These systems
have successfully reduced the message-processing overhead
from 100s of microseconds to 1–2 microseconds.

NeBuLa [57] is a radical hardware design that tries to
further minimize response time by integrating the NIC with
the CPU (bypassing PCIe), and dispatching RPC requests
directly into the L1 cache. The approach effectively reduces
the minimum wire-to-wire response time below 100ns.

Put another way, these results suggest that with the right
hardware and software optimizations, it is practical and useful
to remotely dispatch functions as small as a few microseconds.
The goal of our work is to enable even smaller functions,
with computation lasting less than 1µs, for which we need to
minimize communication overhead. We call these very short
RPCs nanoRequests.

The nanoPU, presented and evaluated here, is a combined
NIC-CPU optimized to process nanoRequests very quickly.
When designing nanoPU, we set out to answer two questions.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 239

d

PISA
Ingress

Egress

E
t
h
e
r
n
e
t

M
A
C

+

S
e
r
i
a
l

I
O

HW Core Sel.

Global RXQs

Programmable NIC

Core 0

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

Reassembly

Message Buffer

HW Transport

Packetization

Message Buffer

Pkts

Msgs

Global TXQs

Core N-1

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

1

L
1
C

L
1
C

M
a
i
n

M
e
m
o
r
y

D

2

3
4

5

6
7

8
9

Ethernet MAC

Sp
li

tt
er

Ar
bi

te
r

De
cr
yp
t

En
cr
yp
t

PISA Pipeline

Tr
an
sp
or
t

Core0

Co
nt
ex
t

Pkt Out

Msg Out

Pkt In

Msg In

Th
re

ad
Sc

he
du

le
r

NI
C

Pa
ck

et
Da

ta
pa

th
NI

C
Me

ss
ag

e
Da

ta
pa

th

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U

Pi
pe

li
ne

Transport

CP
U he
ad

ta
il

Registers

FI
FO

s

Control

Pk
t
Ou
t

Ms
g
Ou
t

Pk
t
In

Ms
g
In

Thread
Scheduler

NIC
Datapath

NIC-Core
Interface

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Core1 Core2

CP
Us

 w
it

h
Na

no
ke

rn
el

 &
Na

no
ta

sk
s

Co
nt
ex
t
FI
FO
s

(a
)

(b
)

(c
)

(d
)

Co
nt
ex
t

CS
Rs

L-
NI

C

CSRs

Ethernet MAC

Sp
li

tt
er

Ar
bi

te
r

De
cr
yp
t

En
cr
yp
t

PISA Pipeline

Tr
an
sp
or
t

Core0

Co
nt
ex
t

Pkt Out

Msg Out

Pkt In

Msg In

Th
re

ad
Sc

he
du

le
r

NI
C

Pa
ck

et
Da

ta
pa

th
NI

C
Me

ss
ag

e
Da

ta
pa

th

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt
Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U

Pi
pe

li
ne

Transport

CP
U he
ad

ta
il

Registers

FI
FO

s

Control

Pk
t
Ou
t

Ms
g
Ou
t

Pk
t
In

Ms
g
In

Thread
Scheduler

NIC
Datapath

NIC-Core
Interface

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt
Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Core1 Core2

CP
Us

 w
it

h
Na

no
ke

rn
el

 &
Na

no
ta

sk
s

Co
nt
ex
t
FI
FO
s

(a
)

(b
)

(c
)

(d
)

Co
nt
ex
t

CS
Rs

L-
NI

C

CSRs

L
L
C

DMA over PCIe

Figure 1: The nanoPU design. The NIC includes ingress and egress PISA pipelines as well as a hardware-terminated
transport and a core selector with global RX queues; each CPU core is augmented with a hardware thread scheduler
and local RX/TX queues connected directly to the register file.

The first is, what is the absolute minimum communication
overhead we can achieve for processing nanoRequests?
NanoRequests are simply very short-lived RPCs marked by
the client and server NICs for special treatment. In nanoPU,
nanoRequests follow a new low-overhead path through the
NIC, bypassing the OS and the memory-cache hierarchy and
arriving directly into running threads’ registers. All message
reassembly functions, transport and congestion control logic
are moved to hardware, as are thread scheduling and core
selection decisions. Incoming nanoRequests pass through
only hardware before reaching application code. Our nanoPU
prototype can deliver an arriving nanoRequest into a running
application thread in less than 40ns (less than 15ns if we
bypass the Ethernet MAC)—an order of magnitude faster
than the fastest commercial NICs [20] and faster than the
quickest reported research prototype [57]. For compatibility
with existing applications, nanoPU allows all other network
traffic (e.g., larger RPCs) to traverse a regular path through a
DMA NIC, OS, and memory hierarchy.

Our second question is, can we minimize tail response
time by processing nanoRequests in a deterministic
amount of time? The answer is a qualified yes. Because
nanoRequests are processed by a fixed-latency hardware
pipeline, if a single-packet request arrives at a waiting core,
its thread will always start processing the message in less
than 40ns. On the other hand, if the core is busy, or another
request is queued ahead, then processing can be delayed. In
Section 2.2, we show how our novel hardware thread sched-
uler can bound the tail response time in this case too, under
specific assumptions (e.g., that a nanoRequest can bound its
CPU processing time, else its priority is downgraded). We
believe nanoPU is the first system to bound the response time
of short-lived requests.

In summary, the main contributions of the nanoPU are:

1. The nanoPU’s median wire-to-wire response time
for nanoRequests, from the wire through the header-
processing pipeline, transport layer, core selection, and
thread scheduling, plus a simple loopback application and
back to the wire is just 69ns, an order of magnitude lower
latency than the best commercial NICs [20]. Without the
MAC and serial I/O, loopback latency is only 17ns.

2. Our prototype’s hardware thread scheduler continuously
monitors processing status for nanoRequests and makes de-
cisions in less than 1ns. The nanoPU sustains 20% higher
load than existing approaches, while maintaining close to
1µs 99th %ile tail response times.

3. Our complete RISC-V based prototype is available open-
source,1 and runs on AWS F1 FPGAs using Firesim [31].

4. We evaluate a suite of applications including: the MICA
key-value store [38], Raft consensus [47], set algebra and
high dimensional search inspired from the µ-Suite bench-
mark [56].

5. We demonstrate that the nanoPU can be used to implement
one-sided RDMA operations with lower latency and more
flexibility than state-of-the-art commercial RDMA NICs.

The nanoPU ideas could be deployed in a variety of ways:
by adding the low latency path to a conventional CPU, or
by designing new RPC-optimized CPUs with only the low-
latency path, or by adding the new path to embedded CPUs
on smartNICs.

2 The nanoPU Design
The nanoPU is a new NIC-CPU co-design that adds a new
fast path for nanoRequest messages requiring ultra-low and
predictable network communication latency. Figure 1 depicts

1nanoPU Artifact: https://github.com/l-nic/chipyard/wiki

240 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/l-nic/chipyard/wiki

the key design components. The nanoPU has two independent
network paths: (1) the traditional (unmodified) DMA path
to/from the host’s last-level [16] or L1 cache [57], and (2) an
accelerated fast path for nanoRequests, directly into the CPU
register file.

The traditional path can be any existing path through hard-
ware and software; hence all network applications can run on
the traditional path of the nanoPU unchanged, and perform at
least as well as they do today. The fast path is a nanosecond-
scale network stack optimized for nanoRequests. Applications
should (ideally) be optimized to efficiently process nanoRe-
quest messages directly out of the register file to fully harness
the benefits of the fast path.

Each core has its own hardware thread scheduler (HTS),
two small FIFO memories for network ingress and egress
data, and two reserved general-purpose registers (GPRs): one
as the tail of the egress FIFO for sending nanoRequest data,
and the other as the head of the ingress FIFO for receiving.
CPU cores are statically partitioned into two groups: those
running normal applications and those running nanoRequest
applications. Cores running regular applications use standard
OS software thread scheduling [27, 49, 51]; however, the OS
delegates scheduling of nanoRequest threads to HTS.

To understand the flow of the nanoPU fast path, consider the
numbered steps in Figure 1. In 1 , a packet arrives and enters
the P4-programmable PISA pipeline. In addition to standard
header processing (e.g., matching IP addresses, checking ver-
sion and checksum, and removing tunnel encapsulations), the
pipeline examines the destination layer-4 port number in the
transport header using a match-action table2 to decide if the
message should be delivered along the fast path. If so, it pro-
ceeds to 2 , else it follows the usual DMA processing path
D . In 2 , packets are reassembled into messages; a buffer
is allocated for the entire message and packet data is (poten-
tially) re-sequenced into the correct order. In 3 , the transport
protocol ensures reliable message arrival; until all data has ar-
rived, message data and signaling packets are exchanged with
the peer depending on the protocol (e.g., NDP and Homa are
both receiver driven using different grant mechanisms) (Sec-
tion 2.3). When a message has arrived, in 4 it is placed in a
per-application receive queue where it waits to be assigned to
a core by the core-selection logic (Section 2.3). When its turn
comes, in 5 , the message is sent to the appropriate per-thread
ingress FIFO on the assigned core, where it waits for HTS
(Section 2.2) to alert the core to run the message’s thread and
place the first word in the netRX register (Section 2.1). In 6 ,
the core processes the data and, if running a server application,
will typically generate a response message for the client. The
application transmits a message by issuing instructions that
write one “word” at a time to the netTX register in 7 , where
the word size is defined by the size of a CPU register, typically
64-bits (8B). These message words then flow into the global

2It is the responsibility of the the host software to configure this table
with entries for all nanoRequest processing applications.

transmit queues in 8 . Messages are split into packets in 9 ,
before departing through the egress PISA pipeline.

Next, we detail the design of the main, novel components
of the fast path: the thread-safe register file network interface,
the hardware thread scheduler (HTS), and the programmable
NIC pipeline, including transport and core selection.

2.1 Thread-Safe Register File Interface
Recent work [45] showed that PCIe latency contributes about
90% of the median wire-to-wire response time for small pack-
ets (800–900ns). Several authors have proposed integrating
the NIC with the CPU, to bring packets directly into the
cache [12, 46, 57].

The nanoPU takes this one step further and connects the
network fast path directly to the CPU core’s register file. The
high-level idea is to allow applications to send and receive
network messages by writing/reading one word (8B) at a time
to/from a pair of dedicated CPU registers.

There are several advantages to bringing packet data di-
rectly into the register file:
Message data bypasses the memory and cache hierarchy,
minimizing the time from when a packet arrives on the wire
until it is available for processing. In Section 5.2.1, we show
that this reduces median wire-to-wire response time to 69ns,
50% lower than the state-of-the-art.
Reduces variability in processing time and therefore min-
imizes tail response time. For example, there is no variable
waiting time to cross PCIe, no cache misses for message data
(messages do not enter or leave through memory) and no
IO-TLB misses (which lead to an expensive 300ns access to
the page table [45]). And because nanoRequests are buffered
in dedicated FIFOs, separate from the cache, nanoRequest
data does not compete for cache space with other application
data, further reducing cache misses for applications. Cache
misses can be expensive: A LLC miss takes about 50-100ns
to resolve and creates extra traffic on the (shared) DRAM
memory bus. DRAM access can be a bottleneck for a mul-
ticore CPU, and when congested, memory access times can
increase by more than 200% [60]. Furthermore, contention
for cache space and DRAM bandwidth is worse at network
speeds above 100Gb/s [21].
Less software overhead per message because software does
not need to manage DMA buffers or perform memory-mapped
IO (MMIO) handshakes with the NIC. In a conventional NIC,
when an application sends a message, the OS first places the
message into a DMA buffer and passes a message descriptor
to the NIC. The NIC interrupts or otherwise notifies software
when transmission completes, and software must step in again
to reclaim the DMA buffer. The register file message interface
has much lower overhead: When an application thread sends a
message it simply writes the message directly into the netTX
register, with no additional work. Section 5.2.1 shows how
this leads to a much higher throughput interface.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 241

2.1.1 How an application uses the interface

The J-Machine [13] first used the register file in 1989 for very
low latency inter-core communication, followed by the Cray
T3D [33]. The approach was abandoned because it proved
difficult to protect messages from being read/written by other
threads sharing the same core; both machines required atomic
message reads and writes [14]. As we show below, our design
solves this problem. We believe ours is the first design to
add a register file interface to a regular CPU for use in data
centers.

The nanoPU reserves two general-purpose registers (GPRs)
in the register file for network IO, which we call netRX and
netTX. When an application issues an instruction that reads
from netRX, it actually reads a message word from the head
of the network receive queue. Similarly, when an application
issues an instruction that writes to netTX, it actually writes a
message word to the tail of the network transmit queue. The
network receive and transmit queues are stored in small FIFO
memories that are connected directly to the register file.3 In
addition to the reserved GPRs, a small set of control & status
registers (CSRs, described in Section 3.4) are used for the
core and NIC hardware to coordinate with each other.

Delimiting messages. Each message that is transmitted and
received by an application begins with a fixed 8B “application
header”. On arriving messages, this header indicates the mes-
sage length (as well as the source IP address and layer-4 port
number), which allows software to identify the end of the mes-
sage. Similarly, the application header on departing messages
contains the message length (along with the destination IP
address and layer-4 port number) so that the NIC can detect
the end of the outgoing message. The programmable NIC
pipeline replaces the application header with the appropriate
Ethernet, IP, and transport headers on all transmitted packets.

Inherent thread safety. We need to prevent an errant thread
from reading or writing another thread’s messages. The
nanoPU prevents this using a novel hardware interlock. It
maintains a separate ingress and egress FIFO for each thread,
and controls access to the FIFOs so that netRX and netTX are
always mapped to the head and tail, respectively, of the FI-
FOs for the currently running thread only. Note our hardware
design ensures this property even when a previous thread
does not consume or finish writing a complete message.4 This
turned out to be a key design choice, simplifying application
development on the nanoPU; nanoRequest threads no longer
need to read and write messages atomically.

Software changes. The register file can be accessed in one
CPU cycle, while the L1 cache typically takes three cycles.

3We think of these FIFO memories as equivalent to an L1 cache, but for
network messages; both are built into the CPU pipeline and sit right next to
the register file.

4Our interlock logic would have been prohibitively expensive in the early
days; but since 1989, Moore’s Law lets us put four orders of magnitude more
gates on a chip, making the logic quite manageable (Section 5).

Application Description Response Time
p50 / p99 (µs)

MICA Implements a fast 0.40 / 0.50in-memory key-value store

Raft Runs leader-based state 3.08 / 3.26 *machine replication

Chain Repl. Runs a vertical Paxos 1.10 / 1.40 *consensus algorithm

Set Algebra Processes data-mining and 0.60 / 1.50text-analytics workloads

HD Search Analyzes and processes image, 0.80 / 1.20video, and speech data

N-Body Sim. Computes gravitational force 0.35 / N/Afor simulated bodies

INT Processing Processes network telemetry 0.13 / N/Adata (e.g., path latency)

Packet Classifier Classifies packets for intrusion 0.90 / 2.20detection (100K rules)

Othello Player Searches the Othello 0.90 / 1.70 [26]state space

One-sided RDMA Performs one-sided RDMA 0.68 / N/A *operations in software

Table 1: Example applications that have been imple-
mented on the nanoPU. These applications use small
network messages, few memory references, and cache-
resident function stack and variables (in the common
case), and are designed to efficiently process messages
out of the register file. Table indicates median and 99th
%ile wire-to-wire response time at low load. *Measured
at client.

Therefore, an application thread will run faster if it can pro-
cess data directly from the ingress FIFO by serially reading
netRX. Ideally, the developer picks a message data structure
with data arranged in the order it will be consumed—we did
this for the message processing components of the applica-
tions evaluated in Section 5.3. If an application needs to copy
long messages entirely into memory so that it can randomly
access each byte many times during processing, then the reg-
ister file interface may not offer much advantage over the
regular DMA path. Our experience so far is that, with a little
practice, it is practical to port latency-sensitive applications to
efficiently use the nanoPU register file interface. Table 1 lists
applications that have been ported to efficiently use this new
network interface and Section 4 further discusses applications
on the nanoPU.

A related issue is how, and at which stage of processing,
to serialize/deserialize (also known as marshall/unmarshall)
message data. In modern RPC applications this processing
is typically implemented in libraries such as Protobuf [52]
or Thrift [59]. Recent work pointed out that on conventional
CPUs, where network data passes through the memory hi-
erarchy, the serialize/deserialize logic is dominated by scat-
ter/gather memory-copy operations and subword-level data
transformation operations, suggesting a separate hardware
accelerator might help [50]. In the nanoPU, the memory copy
overhead involved in serialization and deserialization is little

242 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-multi-core-mica.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/raft/raft_server_riscv/main.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-multi-core-chain-rep.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/set-intersection/lnic-intersect.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/euclidean-dist/lnic-euclidean-dist.cc
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-nbody-node-gpr.c
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-int-path-latency.c
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/software/packet-classification/nuevomatch-cutsplit.cpp
https://github.com/l-nic/chipyard/blob/nanoPU-artifact-v1.0/tests-lnic/lnic-othello-gpr.c
https://github.com/l-nic/chipyard/blob/lnic-dev/tests-lnic/lnic-rdma-ops.c

or none; only a few copies between registers and the L1 cache
may be necessary when a working set is larger than the regis-
ter file. The remaining subword data-transformation tasks can
be done either in the applications (in software) or on the NIC
(in hardware) using a PISA-like pipeline, but still operating
at the message level. We currently take the former approach
for the applications we evaluate in Section 5.3, but intend to
explore the latter approach in future work.

2.2 Thread Scheduling in Hardware
Current best practice for low-latency applications is to either
(1) pin threads to dedicated cores [18, 51], which is very
inefficient when a thread is idle, or (2) devote one core to run
a software thread scheduler for the other cores [27, 49].

The fastest software-based thread schedulers are not fast
enough for nanoRequests. Software schedulers need to run
periodically so as to avoid being overwhelmed by interrupts
and associated overheads, which means deciding how fre-
quently they should run. If it runs too often, resources are
wasted; too infrequently and threads are unnecessarily de-
layed. The fastest state-of-the-art operating systems make
periodic scheduling decisions every 5µs [27, 49], which is
too coarse-grained for nanoRequests requiring only 1µs of
computation.

We therefore moved the nanoRequest thread scheduler to
hardware, which continuously monitors message processing
status as well as the network receive queues and makes sub-
nanoseconds scheduling decisions. Our new hardware thread
scheduler (HTS) is both faster and more efficient; a core never
sits on an idle thread when another thread with a pending
message could run.

2.2.1 How the hardware thread scheduler works

Every core contains its own scheduler hardware. When a new
thread initializes, it must register itself with its core’s HTS
by binding to a layer-4 port number and selecting a strict
priority level (0 is the highest). The layer-4 port number lets
the nanoPU hardware distinguish between threads and ensure
that netRX and netTX are always the head and tail of the
FIFOs for the currently running thread.

HTS tracks the running thread’s priority and its time spent
on the CPU core. When a new message arrives, if its desti-
nation thread’s priority is lower than or equal to the current
thread, the new message is queued. If the incoming message
is for a higher priority thread, the running thread is suspended
and the destination thread is swapped onto the core. Whenever
HTS determines that threads must be swapped, it (1) asserts
a new, NIC-specific interrupt that traps into a small software
interrupt handler (only on the relevant core), and (2) tells the
interrupt handler which thread to switch to by writing the
target’s layer-4 port number to a dedicated CSR. Our current
HTS implementation takes about 50ns to swap a previously
idle thread onto the core, measured from the moment its first
pending message arrives (Section 3.2).

If the thread to switch to belongs to a different process, the
software interrupt handler must perform additional work: no-
tably, it must change privilege modes and swap address spaces.
A typical context switch in Linux takes about 1µs [27], but
most of this time is spent making the scheduling decision [62].
Our HTS design makes this decision entirely in hardware and
the software scheduler simply needs to read a CSR to deter-
mine which thread to swap to.

The scheduling policy. HTS implements a bounded strict
priority scheduling policy to ensure that the highest priority
thread with pending work is running on the core at all times.
Threads are marked active or idle. A thread is marked
active if it is eligible for scheduling, which means it has
been registered (a port number and RX/TX FIFOs have been
allocated) and a message is waiting in the thread’s RX FIFO.
The thread remains active until it explicitly indicates that it
is idle and its RX FIFO is empty. HTS tries to ensure that
the highest priority active thread is always running.

Bounded response time. HTS supports a unique feature to
bound how long one high-priority application can hold up
another. If a priority 0 thread takes longer than t0 to pro-
cess a message, the scheduler will immediately downgrade
its priority from 0 to 1, allowing it to be preempted by a dif-
ferent priority 0 thread with pending messages. (By default,
t0 = 1µs.) We define a well-behaved application as one that
processes all of its messages in less than t0.

As a consequence, HTS guarantees an upper bound on
the response time for well-behaved applications. If a core is
configured to run at most k priority 0 application threads, each
with at most one outstanding message at a time, then the total
message processing time, tp for well-behaved applications
is bounded by: tp ≤ tn + kt0 +(k−1)tc, where tn is the NIC
latency, and tc is the context-switch latency. In practice, this
means an application developer who writes a well-behaved
application can have full confidence that no other applications
will delay it beyond a predetermined bound. If application
writers do not wish to use the time-bounded service, they may
assign all their application threads priority 1.

Writing well-behaved applications, which are able to pro-
cess all messages within a short, bounded amount of time,
is complicated by cache / TLB misses and CPU power man-
agement. Our approach so far has been to empirically verify
that certain applications are well-behaved. However, we be-
lieve that there is substantial opportunity for future research
to determine more systematic ways for developers to write
well-behaved applications. One approach may be to propose
modifications to the memory hierarchy in order to make ac-
cess latency more predictable. Another approach may be to
develop code verification tools to check whether threads meet
execution time bounds. The eBPF [19] compiler, for example,
is able to verify that a packet processing program will com-
plete eventually; we believe a similar approach can be used
to verify completion within a bounded amount of time.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 243

2.3 The nanoPU NIC Pipeline
The NIC portion of the nanoPU fast path consists of two
primary components: the programmable transport layer, and
the core-selection algorithm. We describe each in turn.

Programmable transport layer. The nanoPU provides
nanoRequest threads a reliable one-way message service. To
be fast enough, the transport layer needs to be terminated
in hardware in the NIC. For example, our prototype hard-
ware NDP implementation (Section 3.3) runs in 7ns (fixed)
per packet and at 200Gb/s for minimum size packets (64B).
Such low latency means a tight congestion-control loop be-
tween end-points, and hence more efficient use of the network.
Moreover, moving transport to hardware frees CPU cycles for
application logic [2].

We only have space to give a high level overview of our
programmable transport layer, leaving details to a follow-on
paper. At the heart of our programmable transport layer is an
event-driven, P4-programmable PISA pipeline [10, 25]. The
pipeline can be programmed to do normal header processing,
such as VXLAN, overlay tunnels, and telemetry data [35].
We enhance it for reliable message processing, including con-
gestion control, and have programmed it to implement the
NDP [24] and Homa [42] low-latency message protocols.
Network operators can program custom message protocols
tailored to their specific workloads.

Low-latency, message-oriented transport protocols are well-
suited to hardware, compared to connection-oriented, reliable
byte-stream protocols such as TCP. The NIC only needs to
maintain a small amount of state for partially delivered mes-
sages. For example, our NDP implementation, beyond storing
the actual message, keeps a per-message bitmap of received
packets, and a few bytes for congestion control. This allows
our design to be limited only by the number of outstand-
ing messages, rather than the number of open connections,
allowing large scale, highly-distributed applications across
thousands of servers.

The transport layer (Figure 1) contains buffers to convert
between the unreliable IP datagram domain and the reliable
message domain. Outbound messages pass through a packeti-
zation buffer to split them into datagrams, which may need
to be retransmitted out of order due to drops in the network.
Inbound datagrams are placed into a reassembly buffer, re-
ordering them as needed to prepare them for delivery to a
CPU core.
Selecting a CPU core. If the NIC randomly sends messages
to cores, some messages will inevitably sit in a queue waiting
for a busy core while another core sits idle. Our NIC therefore
implements a core-selection algorithm in hardware. Inspired
by NeBuLa [57], our NIC load balances nanoRequest mes-
sages across cores using the Join-Bounded-Shortest-Queue
or JBSQ(n) algorithm [36].

JBSQ(n) approximates an ideal, work-conserving single
queue policy using a combination of a single central queue,

and short bounded queues at each core, with a maximum
depth of n messages. The centralized queue replenishes the
shortest per-core queues first. JBSQ(1) is equivalent to the
theoretically ideal single-queue model, but is impractical to
implement efficiently at these speeds.

Our nanoPU prototype implements a JBSQ(2) load bal-
ancer in hardware per application. The NIC is connected to
each core using dedicated wires, and the RX FIFOs on each
core have space for at least two messages per thread running
on the core. We chose JBSQ(2) based on the communication
latency between the NIC and the cores as well as the available
memory bandwidth for the centralized queues. We evaluate
its performance in Section 5.2.3.

3 Our nanoPU Implementation
We designed a prototype quad-core nanoPU based on the
open-source RISC-V Rocket core [54]. A block diagram of
our prototype is shown in Figure 2.

Our prototype extends the open-source RISC-V Rocket-
Chip SoC generator [3], adding 4,300 lines of Chisel [6]
to the code base. The Rocket core is a simple five-stage,
in-order, single-issue processor. We use the default Rocket
core configuration: 16KB L1 instruction and data caches,
a 512KB shared L2 cache, and 16GB of external DRAM
memory. Everything shown in Figure 2, except the MAC and
Serial IO, is included in our prototype and is available as
an open-source, reproducible artifact.5 Our prototype does
not include the traditional DMA path between the NIC and
memory hierarchy. Instead, we focus our efforts on building
the nanoPU fast path for nanoRequests.

To improve simulation speed, we do not run a full operat-
ing system on our prototype, but rather just enough to boot
the system, initialize one or more threads on the cores, and
perform context switches between threads when instructed to
do so by the hardware thread scheduler (HTS). In total, this
consists of about 1,200 lines of C code and RISC-V assembly
instructions. All applications run as bare-metal applications
linked with the C standard library.

The nanoPU design is intended to be fabricated as an ASIC,
but we use an FPGA to build the initial prototype. As we
will discuss further in Section 5, our prototype runs on AWS
F1 FPGA instances, using the Firesim [31] framework. Our
prototype adds about 15% more logic LUTs to an otherwise
unmodified RISC-V Rocket core with a traditional DMA NIC.

3.1 RISC-V Register File Network Interface
The RISC-V Rocket core required surprisingly few changes
to add the nanoPU register file network interface. The main
change, naturally, involves the register file read-write logic.
Each core has 32 GPRs, each 64-bits wide, and we reserve two
for network communication (shared by all threads). Applica-
tions must be compiled to avoid using the reserved GPRs for

5nanoPU Artifact: https://github.com/l-nic/chipyard/wiki

244 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/l-nic/chipyard/wiki

Programmable NIC

Ethernet
MAC +
Serial

IO

Rocket Cores 0 to 3

HW Priority Thread Sched.

netRX
netTX

R
e
g
i
s
t
e
r
s

Local
RX/TXQs L

1
C

M
a
i
n

M
e
m
o
r
y

RISC-V CPU

L
2
C

App reads a message

App writes a message

26ns 5.3ns 2.2ns 3.1ns

0.9ns0.9ns4.6ns26ns

PISA
Pipeline

Packet

Message
Global
RX/TXQs

HW NDP Transport

Loopback Latency = 17ns

Wire-to-Wire Latency = 69ns

HW JBSQ
Core Sel.

Ethernet MAC

Sp
li

tt
er

Ar
bi

te
r

De
cr
yp
t

En
cr
yp
t

PISA Pipeline

Tr
an
sp
or
t

Core0

Co
nt
ex
t

Pkt Out

Msg Out

Pkt In

Msg In

Th
re

ad
Sc

he
du

le
r

NI
C

Pa
ck

et
Da

ta
pa

th
NI

C
Me

ss
ag

e
Da

ta
pa

th

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U

Pi
pe

li
ne

Transport

CP
U he
ad

ta
il

Registers
FI

FO
s

Control

Pk
t
Ou
t

Ms
g
Ou
t

Pk
t
In

Ms
g
In

Thread
Scheduler

NIC
Datapath

NIC-Core
Interface

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Et
he

rn
et

 M
AC

Splitter

Arbiter

Encrypt

Decrypt

MA
U
Pi
pe
li
ne

Transport

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

Ethernet MAC

Sp
li

tt
er

Arbiter

EncryptDe
cr
yp
t

MAU PipelineTr
an
sp
or
t

CPU

head
tail

Re
gi

st
er

s

FIFOs

CP
U0

CP
U1

CP
U2

Core1 Core2

CP
Us

 w
it

h
Na

no
ke

rn
el

 &
Na

no
ta

sk
s

Co
nt
ex
t
FI
FO
s

(a
)

(b
)

(c
)

(d
)

Co
nt
ex
t

CS
Rs

L-
NI

C

CSRs

Figure 2: Our nanoPU prototype latency breakdown. Total wire-to-wire latency for an 8B message (72B packet) is 69ns.

temporary storage. Fortunately, gcc makes it easy to reserve
registers via command-line options [48].

The core also required changes to the control logic that
handles pipeline flushes. A pipeline flush can occur for a
number of reasons (e.g., a branch misprediction). On a tradi-
tional five-stage RISC-V Rocket core, architectural state is
not modified until an instruction reaches the write-back stage
(Rocket Stage 5). However, with the addition of our network
register file interface, reading netRX now causes a state mod-
ification (FIFO read) in the decode stage (Rocket Stage 2).
The destructive read operation must be undone when there is
a pipeline flush. The CPU pipeline depth is an upper bound
on how many read operations need to be undone; in our case,
at most two reads require undoing. It is straightforward to
implement a FIFO queue supporting this operation.

3.2 Bounded Thread Scheduling in Hardware
The nanoPU core implements thread scheduling in hardware,
as described in Section 2.2. The number of threads that can
run on each core is primarily determined by the amount of
buffering available for the local RX/TX queues. In order to
implement the JBSQ(2) core selection policy, as described
in Section 2.3, the local RX queue for each thread must be
able to hold at least two maximum size messages. We use a
maximum message size of 2KB (two packets)6 and allocate
16KB of buffer for the local RX queues. Therefore, the pro-
totype supports up to four threads on each core; each thread
can be configured with a unique priority value. Priority 0 has
a configurable maximum message processing time in order to
implement the bounded priority thread scheduling policy. We
added a new thread-scheduling interrupt to the RISC-V core,
along with an accompanying control & status register (CSR)
set by HTS to tell the interrupt’s trap handler which thread it
should run next. When processing nanoRequests, we disable
all other interrupts to avoid unnecessary interrupt handling

6The maximum message size is a configurable parameter of the architec-
ture and we have experimented with messages as long as 38 packets.

overheads.
We define the context-switch latency to be the time from

when the scheduler fires the interrupt to when the first in-
struction of the target thread is executed. Our prototype has a
measured context-switch latency of 160 cycles, or 50ns on a
3.2GHz CPU. This is much faster than a typical Linux con-
text switch, partly because the thread scheduling decision is
offloaded to hardware, and partly because the core only runs
bare-metal applications in the same address space with the
highest privilege mode. Therefore, nanoPU hardware thread
scheduling in a Linux environment would be less efficient
than our bare-metal prototype.

3.3 Prototype NIC Pipeline
The NIC portion of the nanoPU fast path consists of the pro-
grammable transport module and the core selection module.
Our prototype implements both.
Transport hardware. We configured our programmable
transport module to implement NDP [24] entirely in hardware.
We chose NDP because it has promising low-latency perfor-
mance, and is well-suited to handle small RPC messages (the
class of messages we are most interested in accelerating, i.e.,
nanoRequests). However, the nanoPU does not depend on
NDP. As explained in Section 2.3, our NIC transport layer
is programmable. It has already been shown to support sev-
eral other protocols, including Homa [42]. We evaluate our
hardware NDP implementation in Section 5.2.3.
JBSQ hardware. As explained in Section 2.3, our NIC im-
plements JBSQ(2) [36] to load balance messages across cores
on a per-application basis. JBSQ(2) is implemented using
two tables. The first maps the message’s destination layer-4
port number to a per-core bitmap, indicating whether or not
each core is running a thread bound to the port number. The
second maps the layer-4 port number to a count of how many
messages are outstanding at each core for the given port num-
ber. When a new message arrives, the algorithm checks if
any of the cores that are running an application thread bound

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 245

to the destination port are holding fewer than two of the ap-
plication’s messages. If so, it will immediately forward the
message to the core with the smallest message count. If all
target cores are holding two or more messages for this port
number, the algorithm waits until one of the cores indicates
that it has finished processing a message for the destination
port. It then forwards the next message to that core. We evalu-
ate our JBSQ implementation in Section 5.2.3.

3.4 The nanoPU HW/SW Interface
To illustrate how software on the nanoPU core interacts with
the hardware, Listing 1 shows a simple bare-metal loopback-
with-increment program in RISC-V assembly. The program
continuously reads 16B messages (two 8B integers) from
the network, increments the integers, and sends the messages
back to their sender. The program details are described below.

The entry procedure binds the thread to a layer-4 port
number at the given priority level by first writing a value to
both the lcurport and lcurpriority CSRs, then writing
the value 1 to the lniccmd CSR. The lniccmd CSR is a bit-
vector used by software to send commands to the networking
hardware; in this case, it is used to tell the hardware to allocate
RX/TX queues both in the core and the NIC for port 0 with
priority 0. The lniccmd CSR can also be used to unbind a
port or to update the priority level.

The wait_msg procedure waits for a message to arrive in
the core’s local RX queue by polling the lmsgsrdy CSR until
it is set by the hardware.7 While it is waiting, the application
tells HTS that it is idle by writing to the lidle CSR during the
polling loop. The scheduler uses the idle signal to evict idle
threads in order to schedule a new thread that has messages
waiting to be processed.

The loopback_plus1_16B procedure simply swaps the
source and destination addresses by moving the RX appli-
cation header (the first word of every received message, see
Section 2.1) from the netRX register to the netTX register,
shown on line 19 (Listing 1), and thus the RX application
header becomes the TX application header.8 Upon writing
the TX application header, the hardware ensures that there
is sufficient buffer space for the entire message; otherwise,
it generates an exception which should be handled by the
application accordingly. The procedure then increments ev-
ery integer in the received message and appends them to the
message being transmitted. After the procedure has finished
processing the message, it tells HTS it is done by writing to
the lmsgdone CSR. The scheduler uses this write signal to:
(1) reset the message processing timer for the thread, and (2)
tell the NIC to dispatch the next message for this application

7It is the responsibility of the application to ensure that it does not try to
read netRX when the local RX queue is empty; doing so results in undefined
behavior.

8Note that this instruction also sets the TX message length to be equal to
the RX message length because the message length is included in the TX/RX
application headers.

1 // Simple loopback & increment application
2 entry:
3 // Register port number & priority with NIC
4 csrwi lcurport , 0
5 csrwi lcurpriority , 0
6 csrwi lniccmd , 1
7

8 // Wait for a message to arrive
9 wait_msg:

10 csrr a5, lmsgsrdy
11 bnez a5, loopback_plus1_16B
12 idle:
13 csrwi lidle , 1 // app is idle
14 csrr a5, lmsgsrdy
15 beqz a5, idle
16

17 // Loopback and increment 16B message
18 loopback_plus1_16B:
19 mv netTX , netRX // copy app hdr: rx to tx
20 addi netTX , netRX , 1 // send word one + 1
21 addi netTX , netRX , 1 // send word two + 1
22 csrwi lmsgdone , 1 // msg processing done
23 j wait_msg // wait for the next message

Listing 1: Loopback with increment. A nanoPU
assembly program that waits for a 16B message,
increments each word, and returns it to the sender.

to the core.9 Finally, the procedure waits for the next message
to arrive.

3.5 How It All Fits Together
Next, we walk through a more representative nanoRequest
processing application, written in C, to compute the dot
product of a vector stored in memory and a vector con-
tained in arriving RPC request messages. Listing 2 is the
C code for the routine, based on a small library of C macros
(lnic_*) we wrote to allow applications to interact with the
nanoPU hardware (netRX and netTX GPRs, and the CSRs).
The lnic_wait() macro corresponds to the wait_msg pro-
cedure on lines 9-15 in Listing 1. The lnic_read() and
lnic_write_*() macros generate instructions that either
read from or write to netRX or netTX using either registers,
memory, or an immediate; and the lnic_msg_done() macro
writes to the lmsgdone CSR, corresponding to line 22 of List-
ing 1. Our library also includes other macros as well such as
lnic_branch() which branches control flow based on the
value in netRX.

The dot product C application waits for a message to arrive
then extracts the application header (the first word of every
message), followed by the message type in the second word.
It checks that it is a DATA_TYPE message, and reads the third
word to know how many 8B words the vector contains. The
vector identifies the in-memory weight to use for each word

9A future implementation may also want to use this signal to flush any
unread bytes of the current message from the local RX queue. Doing so
would guarantee that the next read to netRX would yield the application
header of the subsequent message and help prevent application logic from
becoming desynchronized with message boundaries.

246 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 while (1) {
2 // Wait for a msg to arrive
3 lnic_wait();
4 // Extract application header from RX msg

and check msg type
5 app_hdr = lnic_read();
6 if (lnic_read() != DATA_TYPE) {
7 printf("Expected Data msg.\n");
8 return -1;
9 }

10 // Compute the dot product of the msg
vector with in-memory data

11 uint64_t num_words = lnic_read();
12 uint64_t result = 0;
13 for (i = 0; i < num_words; i++) {
14 uint64_t idx = lnic_read();
15 uint64_t word = lnic_read();
16 result += word * weights[idx];
17 }
18 // Send response message
19 lnic_write_r((app_hdr & (IP_MASK |

PORT_MASK)) | RESP_MSG_LEN);
20 lnic_write_i(RESP_TYPE);
21 lnic_write_r(result);
22 lnic_msg_done();
23 }

Listing 2: Example nanoPU application that
computes the dot product between a vector in a
network message and in-memory weights.

when computing the dot product. Note that the application
processes message data directly out of the register file and
message data never needs to be copied into memory, allowing
it to run faster than on a traditional system. Finally, the appli-
cation sends a response message back to the sender containing
the dot product.

4 The nanoPU Applications
Applications that will benefit most from using the nanoPU
fast path exhibit one or both of the following characteristics:
(i) strict tail response time requirements for network mes-
sages; or (ii) short (µs-scale) on-core service times. It should
come as no surprise that applications with strict tail response
time requirements will benefit from using the nanoPU fast
path. Enabling low tail response time was one of our primary
goals that guided many of the design decisions described in
Section 2. For the latter, when an application’s on-core ser-
vice time is short, any CPU cycles spent sending or receiving
network messages become comparatively more expensive.
The nanoPU’s extremely low per-message overheads help to
ensure that these applications are able to dedicate close to
100% of CPU cycles to performing useful processing and thus
achieve their maximum possible message processing through-
put. Furthermore, the nanoPU can also help to reduce on-core
service times by reducing pressure on the cache-hierarchy
and allowing message data to be processed directly out of the
register file. Another consequence of having short on-core
service times is that the end-to-end completion time of each
RPC becomes dominated by communication latency. By mov-

ing the entire network stack into hardware and by using the
register file interface, the nanoPU fast path efficiently reduces
communication latency and, hence, the RPC completion time.
Therefore, the relative benefit provided by the nanoPU will
increase as on-core service time decreases. An application’s
on-core service time does not necessarily need to be sub-1µs
in order to benefit from using the nanoPU. The following
section describes a few specific classes of applications that
we believe are well-suited for the nanoPU.

4.1 Example Application Classes

µs-scale (or ns-scale) Services. An increasing number of
datacenter applications are implemented as a collection of
independent software modules called microservices. It is com-
mon for a single user request to invoke microservices across
thousands of servers. At such large scale, the tail RPC re-
sponse time dominates the end-to-end performance of these
applications [17]. Furthermore, many microservices exhibit
very short on-core service times; a key-value store is one such
example that has sub-1µs service time. Therefore, these ap-
plications exhibit both of the characteristics described in the
previous section and are ideal candidates to accelerate with
the nanoPU.
Programmable One-sided RDMA. Modern NICs support
RDMA for quick read and write access to remote mem-
ory. Some NICs support further “one-sided” operations in
hardware: a single RDMA request leads to very low latency
compare-and-swap, or fetch-and-add. It is natural to consider
extending the set of one-sided operations to further acceler-
ate remote memory operations [40, 55], for example indirect
read (dereferencing a memory pointer in one round-trip time,
rather than two), scan and read (scan a small memory re-
gion to match an argument and fetch data from a pointer
associated with the match), return max, and so on. Changing
fixed-function NIC hardware requires a new hardware design
and fork-lift upgrade, and so, instead, Google Snap [40] im-
plements a suite of custom one-sided operations in software
in the kernel. This idea would run much faster on the nanoPU,
for example as an embedded core on a NIC, and could im-
plement arbitrary one-sided RDMA operations in software
(Section 5.3).
High Performance Computing (HPC) and Flash Bursts.
HPC workloads (e.g., N-body simulations [34]) as well as
flash bursts [37], a new class of data center applications that
utilize hundreds or thousands of machines for a short amount
of time (e.g., one millisecond), are both examples of highly
parallelizable application classes that are partitioned into fine-
grained tasks distributed across many machines. These appli-
cations tend to be very communication intensive and spend
a significant amount of time sending and receiving small
messages [37]. We believe that the nanoPU’s extremely low
per-message overheads and low communication latency can
help to accelerate these applications.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 247

Network Function Virtualization (NFV). NFV is a well-
known class of applications with µs-scale on-core service
times [60, 66]. The nanoPU’s low per-message overhead, reg-
ister file interface, and programmable PISA pipelines allow
it to excel at stream processing network data and thus is an
excellent platform for deploying NFV applications.

5 Evaluation

Our evaluations address the following four questions:
1. How does the performance of the nanoPU register file

interface compare to a traditional DMA-based network
interface (Section 5.2.1)?

2. Is the hardware thread scheduler (HTS) able to provide
low tail latency under high load and bounded tail latency
for well-behaved applications (Section 5.2.2)?

3. How does our prototype NIC pipeline (i.e., transport and
core selection) perform under high incast and service-time
variance (Section 5.2.3)?

4. How do real applications perform using the nanoRequest
fast path (Section 5.3)?

5.1 Methodology

We compare our nanoPU prototype against an unmodified
RISC-V Rocket core with a standard NIC (IceNIC [31]),
which we call a traditional NIC. The traditional NIC is imple-
mented in the same simulation environment as our nanoPU
prototype and performs DMA operations directly with the
last-level (L2) cache. The traditional NIC does not support
hardware-terminated transport or multi-core network applica-
tions, however, an ideal traditional NIC would support both
of these. Therefore, for our evaluations, we do not implement
transport in software for the traditional NIC baseline; we omit
the overhead that would be introduced by this logic.

Our evaluations ignore the overheads of translating ad-
dresses because we run bare-metal applications using phys-
ical addresses. When using virtual memory, the traditional
design would perform worse than reported here, because the
message buffer descriptors would need to be translated result-
ing in additional latency, and more TLB misses. There is no
need to translate addresses when processing nanoRequests
from the register file.

Benchmark tools. We use two different cycle-accurate sim-
ulation tools to perform our evaluations: (1) the Verila-
tor [63] software simulator, and (2) the Firesim [31] FPGA-
accelerated simulator. Firesim enables us to run large-scale,
cycle-accurate simulations with hundreds of nanoPU cores
using FPGAs in AWS F1 [1]. The FPGAs run at 90MHz,
and we simulate a target clock rate of 3.2GHz—all reported
results are in terms of this target clock rate. The simulated
servers are connected by C++ switch models running on the
AWS x86 host CPUs.

5.2 Microbenchmarks
5.2.1 Register file interface

Loopback response time. Figure 2 shows a breakdown of the
latency through each component for a single 8B nanoRequest
message (in a 72B packet) measured from the Ethernet wire
through a simple loopback application in the core, then back to
the wire (first bit in to last bit out).10 As shown, the loopback
response time through the nanoPU fast path is only 17ns, but
in practice we also need an Ethernet MAC and serial I/O,
leading to a wire-to-wire response time of 69ns.

For comparison, Figure 3 shows the median loopback re-
sponse time for both the nanoPU fast path and the traditional
design for different messages sizes. For an 8B nanoRequest,
the traditional design has a 51ns loopback response time, or
about 3× higher than the nanoPU. 12ns (of the 51ns) are
spent performing memcpy’s to swap the Ethernet source and
destination addresses, something that is unnecessary for the
nanoPU, because it is handled by the NIC hardware. The
speedup of the nanoPU fast path decreases as the message
size increases because the response time becomes dominated
by store-and-forward delays and message-serialization time.

If instead the traditional NIC placed arriving messages di-
rectly in the L1 cache, as NeBuLa proposes [57], the loopback
response time would be faster, but the nanoPU fast path would
still have 50% lower response time for small nanoRequests.
Loopback throughput. Figure 4 shows the throughput of
the simple loopback application running on a single core
for both the nanoPU fast path and the traditional NIC. The
traditional NIC processes batches of 30 packets, which fit
comfortably in the LLC. Batching allows the traditional NIC
to overlap computation (e.g., Ethernet address swapping) with
NIC DMA send/receive operations.

Throughput is dominated by the software overhead to pro-
cess each message. For the register file interface, the software
overhead is: read the lmsgsrdy CSR to check if a message
is available for processing, read the message length from
the application header, and write to the lmsgdone CSR after
forwarding the message. For the traditional design, the soft-
ware overhead is: perform MMIO operations to pass RX/TX
descriptors to the NIC and to check for RX/TX DMA com-
pletions, and memcpy’s to swap the Ethernet source and desti-
nation addresses.

Because of lower overheads, the application has 2–7×
higher throughput on the nanoPU than on the traditional NIC.
For small 8B messages (72B packets), the nanoPU loopback
application achieves 68Gb/s, or 118Mrps – 7× higher than the
traditional system. For 1KB messages, the nanoPU achieves
a throughput of 166Gb/s (83% of the line-rate). When we add
the per-packet NDP control packets sent/received by the NIC,
the 200Gb/s link is completely saturated.

10Our prototype does not include MAC & Serial IO, so we add real values
measured on a 100GE switch (with Forward Error Correction disabled).

248 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 3: Loopback median re-
sponse time vs. message length;
nanoPU fast path and traditional.

Figure 4: Loopback throughput vs.
message length; nanoPU fast path
and traditional.

Figure 5: Loopback-with-increment
throughput vs. message length;
nanoPU fast path and traditional.

Figure 6: Dot-product throughput
speedup for various vector sizes;
nanoPU fast path (naive & optimal)
relative to traditional NIC.

Figure 7: 99th %ile response time
vs load; hardware thread sched-
uler (HTS) vs. traditional timer-
interrupt driven scheduler (TIS).

Figure 8: 99th %ile response time
vs load for well-behaved and mis-
behaved threads, with and without
bounded message processing time.

Stateless nanoRequest jobs. The nanoPU is well-suited for
compute-intensive applications that transform the data carried
by self-contained nanoRequests. We use a very simple bench-
mark application that increments each word of the message by
one and forwards the message back into the network; similar
to the program described in Section 3.4.

Figure 5 shows that the nanoPU accelerates the throughput
of this application by up to 10×. NanoRequest data is read
from the register file and passed directly through the ALU;
no memory operations are required at all. On the other hand,
when using the traditional NIC, each word of the message
must be read from the last-level cache (LLC), passed through
the ALU, and the final result is written back to memory. If
instead the traditional NIC loaded words into the L1 cache, as
in [57], we estimate a throughput about 1.3× faster than via
the LLC. This would still be 7.5× slower than the nanoPU fast
path. In Section 5.3, we will compare more realistic bench-
marks for real applications.

Stateful nanoRequest jobs. These are applications that pro-
cess both message data and local memory data. Similar to the
example described in Section 3.5, our simple microbenchmark
computes the dot product of two vectors of 64-bit integers,
one from the arriving message and a weight vector in local
memory. The weight vector is randomly chosen from enough
vectors to fill the L1 cache (16kB).

There are two ways to implement the application on the
nanoPU. The optimal method is to process each message
word directly from the register file, multiplying and accumu-
lating each word with the corresponding weight value from
memory. The naive method copies the entire message from
netRX into memory before computing the dot product with

the weight vector. The traditional design processes messages
in batches of 30, to overlap dot-product computation with
DMA operations.

Figure 6 shows the throughput speedup of the optimal
and naive methods relative to the traditional application, for
different message lengths.

• Small messages: For small messages below 100bytes, the
nanoPU is 4–5× faster because of fewer per-message soft-
ware overheads.

• Large messages: For large vectors throughput is limited by
the longer dot product computation time. The optimal appli-
cation consistently doubles throughput by keeping message
data out of the L1 cache and reducing cache misses. The
naive application is slowed by the extra copy, and about
twice as many L1 data cache misses. The traditional appli-
cation has 10× as many L1 data cache misses as optimal
because message data must be fetched from the LLC, which
pollutes the L1 cache, evicting weight data. If we speed up
the traditional NIC by placing message data directly in the
L1 cache, as NeBuLa proposes [57], we estimate the tra-
ditional design would run 1.5× faster for large messages.
Optimal would still be 30% faster for large messages.

The benefits are clear when an application processes mes-
sage data directly from the netRX register. While this may
seem like a big constraint, we have found that it is gener-
ally feasible and natural to design applications this way. We
demonstrate example applications in Section 5.3.

5.2.2 Hardware thread scheduling

Next, we evaluate how much the hardware thread scheduler
(HTS) can reduce tail response time under high load.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 249

Methodology. We evaluate tail response time under load by
connecting a custom (C++) load generator to our nanoPU
prototype in Firesim [31]. It generates nanoRequests with
Poisson inter-arrival times, and measures the end-to-end re-
sponse time.
Priority thread scheduling. We compare our hardware
thread scheduler (HTS) against a more traditional timer-
interrupt driven scheduler (TIS) interrupted by the kernel
every 5µs to swap in the highest-priority active thread. We
run both schedulers in hardware on our prototype.11 TIS uses
a 5µs timer interrupt to match the granularity of state-of-the-
art low-latency operating systems [27, 49].

We evaluate both schedulers when they are scheduling two
threads: one with priority 0 (high) and one with priority 1
(low). The load generator issues 10K requests for each thread,
randomly interleaved, each with an on-core service time of
500ns (i.e., an ideal system will process 2Mrps).

Figure 7 shows the 99th %ile tail response time vs load for
both thread scheduling policies, with a high and low priority
thread. HTS reduces tail response time by 4× and 6.5× at
high and low load, respectively; and can sustain 96% load.12

Bounded message-processing time. HTS is designed to
bound the tail response time of well-behaved applications,
even when they are sharing a core with misbehaving applica-
tions. To test this, we configure a core to run a well-behaved
thread and a misbehaving thread, both configured to run at
priority 0. All requests have an on-core service time of 500ns,
except when a thread misbehaves (once every 100 requests),
in which case the request processing time increases to 5µs.

Figure 8 shows the 99th %ile tail response time vs load
for both threads with, and without, the bounded message pro-
cessing time feature enabled. When enabled, if a priority 0
thread takes longer than 1µs to process a request, HTS lowers
its priority to 1. When disabled, all requests are processed by
the core in FIFO order.

We expect an application with at most one message at a
time in the RX queue, to have a tail response time bounded by
2 · 43ns+ 17ns+ 2 · 1000ns+ 50ns = 2.15µs. This matches
our experiments: With the feature enabled, the tail response
time of the well-behaved thread never exceeds 2.1µs, until the
offered load on the system exceeds 100% (1.9 Mrps).13 HTS
lowers the priority of the misbehaving application the first
time it takes longer than 1µs to process a request. Hence, the
well-behaved thread quickly becomes strictly higher priority
and its 500ns requests are never trapped behind a long 5µs
one. Note also that by bounding message processing times,
shorter requests are processed first, queues are smaller and

11TIS would run in software in practice, likely on a separate core, and
would therefore be slower than in hardware.

12Our prototype does not currently allocate NIC buffer space per-
application, causing high-priority requests to be dropped when the low-
priority queue is fill. This will be fixed in the next version.

13This is despite our Poisson arrival process occasionally placing more
than one message in the RX queue.

the system can sustain higher load.

5.2.3 Prototype NIC pipeline

Hardware NDP transport. We verify our hardware NDP
implementation by running a large 80-to-1 incast experiment
on Firesim, with 324 cores simulated on 81 AWS F1 FPGAs.
All hosts are connected to one simulated switch; 80 clients
send a single packet message to the same server at the same
time. The switch has insufficient buffer capacity to store all
80 messages and hence some are dropped. When NDP is
disabled, dropped packets are detected by the sender using
a timeout and therefore the maximum latency through the
network is dictated by the timeout interval. When NDP is
enabled, the dropped messages are quickly retransmitted by
NDP’s packet trimming and NACKing mechanisms, lowering
maximum network latency by a factor of three.
Hardware JBSQ core selection. We evaluate our JBSQ im-
plementation using a bimodal service-time distribution: 99.5%
of nanoRequests have a service time of 500ns and 0.5% have
a service time of 5µs. When using a random core assignment
technique, like receive side scaling (RSS), to balance requests
across four cores, short requests occasionally get queued be-
hind long requests, resulting in high tail response time. With
JBSQ enabled, tail response time is reduced 5× at low load,
and can sustain 15% higher load than RSS.

5.3 Application Benchmarks
As shown in Table 1, we implemented and evaluated many
applications on our nanoPU prototype. Below, we present the
evaluation results for a few of these applications.
MICA. We ported the MICA key-value store [38] and com-
pared it running on the nanoPU and traditional NIC designs.
MICA is implemented as a library with an API that allows ap-
plications to GET and SET key-value pairs. Traditionally, this
API uses in-memory buffers to pass key-value pairs between
the MICA library and application code. The naive way to port
MICA to the nanoPU is to copy key-value pairs in network
messages between the register file and in-memory buffers,
using the MICA library without modification. However, we
find it more efficient to modify the MICA library to read and
write the register file directly when performing GET and SET
operations. This avoids unnecessary memcpys in the MICA
library. Optimizing the MICA library to use the register file
only required changes to 36 lines of code.

Our evaluation stores 10k key-value pairs (16B keys and
512B values). The load generator sends a 50/50 mix of read-
/write nanoRequest queries with keys picked uniformly. Fig-
ure 9 compares the 99th %ile tail response time vs load for the
traditional, nanoPU naive, and nanoPU optimized versions
of this application. The naive nanoPU implementation out-
performs the traditional implementation, likely because it is
able to use an L1-cache resident in-memory buffer rather than
an LLC-resident DMA buffer. The optimized nanoPU imple-

250 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: MICA KV store: 99th %ile tail response time
for READ and WRITE requests.

Figure 10: Set intersection: 99th %ile tail response time.

mentation is able to achieve about 30% higher throughput
and lower response times by efficiently using the register file
interface when processing network messages.
Raft. Raft is a widely-used consensus algorithm for dis-
tributed applications [47]. We evaluate a production grade
version of Raft [53] using a 16B-key, 64B-value MICA key-
value store state machine, with three servers and one client
connected to a single switch. The switch has a forwarding
latency of 300ns (typical of modern cut-through commercial
switch ASICs [58]) and all links have a latency of 43ns. Al-
though our Raft cluster correctly implements leader election,
can tolerate server failure, and our client can automatically
identify a new Raft leader, we evaluate our Raft cluster in the
steady-state, failure-free case, with a single leader and three
fully-functioning replicas.

We define the response time to be from when the client
issues a three-way replicated write request to the Raft cluster,
until the client hears back from the cluster leader that the
request has been fully replicated and committed across all
three Raft servers. In 10K trials, the median response time was
3.08µs, with a 3.26µs 99th %ile tail response time. eRPC [28],
a high performance, highly-optimized RPC library reports a
5.5µs median and 6.3µs 99th %ile tail response time — about
a factor of two slower.
Set algebra. In information retrieval systems, set intersec-
tions are commonly performed for data mining, text analytics,
and search. For example, Lucene [8] uses a reverse index
that maps each word to a set of documents that contain the
word. Searches yield a document set for each search word,
then compute the intersection of these sets.

We created a reverse index of 100 Wikipedia [65] articles
with 200 common English words. Our load generator sends
search requests with 1-4 words chosen from a Zipf distribu-
tion based on word frequency. Porting the set intersection

One-sided RDMA Latency (ns)
Median 90th %ile

Read 678 680
Write 679 686

Compare-and-Swap 687 690
Fetch-and-Add 688 692
Indirect Read 691 715

Table 2: Median and 90th %ile latency of one-sided
RDMA operations implemented on the nanoPU. Mea-
surements are made at the client, and the one-way latency
through the switch and links is 300ns.

application to the nanoPU was straight forward. The only
difference between the nanoPU and traditional versions of the
applications is the logic to send and receive network messages
(∼50 LOC). We did not need to make any modifications to
the application logic that computes the intersection between
sets of document IDs.

Figure 10 shows the tail response time for searches. The
traditional design has a low-load tail response time of 1.7µs,
compared to 1.4µs on a single nanoPU core. JBSQ helps to
ensure that long running requests do not get stuck behind
short ones. With JBSQ enabled for four cores, the 99th %ile
tail response time remains low until 7Mrps.
One-sided RDMA operations. As described in Section 4.1,
the nanoPU can implement flexible, low latency one-sided
RDMA operations. As a baseline, the median end-to-end
latency of one-sided operations between two hosts using state-
of-the-art RDMA NICs, connected by a single switch with
a port-to-port latency of 300ns is about 2µs [28]. 14 Table 2
shows the median and 90% tail latency of several one-sided
RDMA operations implemented on the nanoPU, using the
same topology as the baseline. The median latency, measured
by the nanoPU client, is 680-690ns with a 90% tail latency
of approximately 700ns, 65% lower latency than state-of-
the-art RDMA NICs. Most of the latency reduction is from
eliminating the traversal of PCIe on the client and server.

In addition to the standard one-sided RDMA operations
(read, write, compare-and-swap, fetch-and-add) we also im-
plement indirect read, in which the server simply dereferences
a pointer to determine the actual memory address to read. This
operation would require two network round trips on a standard
RDMA NIC; on the nanoPU, it takes only a few nanoseconds
longer than a standard read.

6 Discussion

nanoPU deployment possibilities. We believe there are a
number of ways to deploy nanoPU ideas, in addition to a
modified regular CPU. For example, the nanoPU fast path

14Note that when using an ARM-based smartNIC, such as the Mellanox
BlueField [41], the time to traverse the embedded cores will increase this
end-to-end latency by at least a factor of two [39, 61].

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 251

could be added to embedded CPUs on smartNICs for the
data center [5, 41, 44]. This could be a less invasive way to
introduce nanoPU ideas without needing to modify server
CPUs. A more extreme approach would be to build a nanoPU
domain-specific architecture explicitly for nanoRequests. For
example, it would be practical today to build a single chip
512-core nanoPU, similar to Celerity [15], with one hundred
100GE interfaces, capable of servicing RPCs at up to 10Tb/s.
In-order execution. Our prototype is based on a simple 5-
stage, in-order RISC-V Rocket core and required only minor
modifications to the CPU pipeline. An out-of-order processor
would require bigger changes to ensure that words read from
netRX are delivered to the application in FIFO order.

7 Related Work

Low-latency RPCs (software). Recent work focuses on al-
gorithms to choose a core by approximating a single-queue
system using work-stealing (like ZygOS [51]) or preempting
requests at microsecond timescales (Shinjuku [27]). However,
the overheads associated with inter-core synchronization and
software preemption make these approaches too slow and
coarse-grained for nanoRequests.

eRPC [28] takes the other extreme to the nanoPU and
runs everything in software, and through clever optimizations,
achieves impressively low latency on a commodity server for
the common case. eRPC has good median response times, but
its common-case optimizations sacrifice tail response times,
which often dictate application performance. The nanoPU’s
hardware pipeline makes median and tail RPC response times
almost identical.
Low-latency RPCs (hardware). We are not the first to im-
plement core-selection algorithms in hardware. RPCvalet [12]
and NeBuLa [57] are both built on the Scale-out NUMA ar-
chitecture [46]. RPCvalet implements a single queue system,
which in theory provides optimal performance. However, it
ran into memory bandwidth contention issues, which they
later resolve in NeBuLa. Both NeBuLa and R2P2 [36] imple-
ment the JBSQ load balancing policy; NeBuLa runs JBSQ
on the server whereas R2P2 runs JBSQ in a programmable
switch. Like NeBuLa, the nanoPU also implements JBSQ to
steer requests to cores.

Many NICs support RDMA in hardware. Several systems
(HERD [29], FaSST [30], and DrTM+R [11]) exploit RDMA
to build applications on top. As described in Sections 4.1 and
5.3, the nanoPU can be used to implement programmable
one-sided RDMA operations while providing lower latency
than state-of-the-art commercial NICs.

SmartNICs (NICs with CPUs on them) [5,41,44] are being
deployed to offload infrastructure software from the main
server to CPUs on the NIC. However, these may actually
increase the RPC latency, unless they adopt nanoPU-like de-
signs on the NIC.
Transport protocols in hardware. We are not the first to

implement the transport layer and congestion control in hard-
ware. Modern NICs that support RDMA over Converged
Ethernet (RoCE) implement DCQCN [67] in hardware. In the
academic research community, Tonic [2] proposes a frame-
work for implementing congestion control in hardware. The
nanoPU’s programmable transport layer (and NDP implemen-
tation) draws upon ideas in Tonic.

Register file interface. GPRs were first used by the J-
machine [13] for low-latency inter-core communication on
the same machine, but were abandoned because of the diffi-
culty implementing thread-safety. The idea has reappeared in
several designs, including the RAW processor [64], and the
SNAP processor for low-power sensor networks [32].

8 Conclusion

Today’s CPUs are optimized for load-store operations to and
from memory. Memory data is treated as a first-class citizen.
But modern workloads frequently process huge numbers of
small RPCs. Rather than burden RPC messages with travers-
ing a hierarchy optimized for data sitting in memory, we
propose providing them with a new optimized fast path, in-
serting them directly into the heart of the CPU, bypassing
the unnecessary complications of caches, PCIe and address
translation. Hence, we aim to elevate network data to the same
importance as memory data.

As datacenter applications continue to scale out, with one
request fanning out to generate many more, we must find ways
to minimize not only the communication overhead, but also
the tail response time. Long tail response times are inherently
caused by resource contention (e.g., shared CPU cores, cache
space, and memory and network bandwidths). By moving key
scheduling decisions into hardware (i.e., congestion control,
core selection, and thread scheduling), these resources can
be scheduled extremely efficiently and predictably, leading to
lower tail response times.

If future cloud providers can provide bounded, end-to-end
RPC response times for very small nanoRequests, on shared
servers also carrying regular workloads, we will likely see
much bigger distributed applications based on finer grain
parallelism. Our work helps to address part of the problem:
bounding the RPC response time once the request arrives at
the NIC. If coupled with efforts to bound network latency, it
might complete the end-to-end story. We hope our results will
encourage other researchers to push these ideas further.

Acknowledgements

We would like to thank our shepherd, Yiying Zhang, Amin
Vahdat, John Ousterhout, and Kunle Olukotun for their invalu-
able suggestions throughout the duration of this project. This
work was supported by Xilinx, Google, Stanford Platform
Lab, and DARPA Contract Numbers HR0011-20-C-0107 and
FA8650-18-2-7865.

252 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
This artifact contains the Chisel source code of our nanoPU
prototype as well as the application code and simulation in-
frastructure that is required to reproduce the key results pre-
sented in this paper. Our prototype is evaluated using both Ver-
ilator for cycle-accurate simulations in software, and Firesim
for cycle-accurate simulations on FPGAs in AWS. The artifact
is packaged as an AWS EC2 image with all of the dependen-
cies pre-installed to make it easy for others to use and build
upon our work.

Scope
The artifact can be used to reproduce the key results presented
in the following figures:

• Figure 3 – Loopback latency; nanoPU vs. traditional.

• Figure 4 – Loopback throughput; nanoPU vs. tradi-
tional.

• Figure 5 – Loopback-with-inc. throughput; nanoPU vs.
traditional.

• Figure 6 – Dot-product throughput speedup.

• Figure 7 – Tail response time using priority thread
scheduling.

• Figure 8 – Tail response time using bounded message
processing time.

• Figure 9 – MICA tail response time.

• Figure 10 – Set intersection tail response time.

Additionally, there are a number of ways to use the artifact
to build upon our work. For example, you can write new
applications for the nanoPU and evaluate them at close to
real-time using a custom topology with Firesim. Alternatively,
you can modify the nanoPU architecture and use the provided
simulation infrastructure to easily test your changes.

Contents
The documentation for the nanoPU artifact can be found at:
https://github.com/l-nic/chipyard/wiki. The primary reposito-
ries are briefly described below:

• Chipyard – The main top-level repository which con-
tains the others listed below as git submodules. Contains
application code as well as Verilator simulation infras-
tructure.

• Rocket Chip – Contains the chisel source code for our
modified RISC-V Rocket core (as well as all of the other
components that are needed to create a full SoC).

• L-NIC – Contains the chisel source code for the nanoPU
NIC.

• Firesim – Provides all of the infrastructure that is re-
quired to run FPGA-accelerated, cycle-accurate simula-
tions on AWS.

Hosting
The nanoPU artifact is hosted on GitHub:
https://github.com/l-nic/chipyard/tree/nanoPU-artifact-v1.0

The development branch is called lnic-dev and, at
the time of this writing, the latest release is tagged
nanoPU-artifact-v1.0. In order to make it easy for oth-
ers to reuse and build upon our work, we have developed a
custom Amazon Machine Image (AMI) with the artifact and
all required dependencies pre-installed. See the documenta-
tion for detailed instructions regarding how to access and use
this AMI.

Requirements
In order to use the nanoPU artifact, you will need access to
an AWS account and you will need to subscribe to the AWS
FPGA developer AMI. Additionally, you will need permission
from AWS to launch F1 instances. These requirements are
explained in greater detail in the online documentation.

References
[1] Amazon ec2 f1 instances. https://aws.amazon.com/

ec2/instance-types/f1/. Accessed on 2020-08-10.

[2] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in high-speed nics. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20),
pages 93–109, 2020.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 2016.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-Scale Key-Value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[5] Aws nitro system. https://aws.amazon.com/ec2/
nitro/. Accessed on 2020-12-10.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 253

https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://fires.im/
https://github.com/l-nic/chipyard/wiki
https://github.com/l-nic/chipyard/tree/lnic-dev
https://github.com/l-nic/rocket-chip/tree/lnic-dev
https://github.com/l-nic/lnic
https://github.com/l-nic/firesim/tree/lnic-dev
https://github.com/l-nic/chipyard/tree/nanoPU-artifact-v1.0
https://github.com/l-nic/chipyard/wiki
https://github.com/l-nic/chipyard/wiki
https://github.com/l-nic/chipyard/wiki
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yun-
sup Lee, Andrew Waterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: construct-
ing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221.
IEEE, 2012.

[7] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
2017.

[8] Andrzej Białecki, Robert Muir, Grant Ingersoll, and Lu-
cid Imagination. Apache lucene 4. In SIGIR 2012
workshop on open source information retrieval, page 17,
2012.

[9] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The end of slow net-
works: It’s time for a redesign. Proc. VLDB Endow.,
9(7):528–539, March 2016.

[10] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
sdn. ACM SIGCOMM Computer Communication Re-
view, 43(4):99–110, 2013.

[11] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems, pages 1–
17, 2016.

[12] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of µs-scale
rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 35–48, 2019.

[13] William J Dally, Andrew Chien, Stuart Fiske, Walde-
mar Horwat, and John Keen. The j-machine: A fine
grain concurrent computer. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE MI-
CROSYSTEMS RESEARCH CENTER, 1989.

[14] William James Dally and Brian Patrick Towles. Princi-
ples and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[15] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid
Al-Hawai, Austin Rovinski, Tutu Ajayi, Luis Vega, Chun
Zhao, Ritchie Zhao, Steve Dai, et al. The celerity open-
source 511-core risc-v tiered accelerator fabric: Fast
architectures and design methodologies for fast chips.
IEEE Micro, 38(2):30–41, 2018.

[16] Intel corporation. intel data direct i/o tech-
nology (intel ddio): A primer. https:
//www.intel.com/content/dam/www/public/
us/en/documents/technology-briefs/
data-direct-i-o-technology-brief.pdf. Ac-
cessed on 2020-08-17.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[18] DPDK: Data Plane Development Kit. https://www.
dpdk.org/. Accessed on 2020-12-04.

[19] eBPF – extended Berkeley Packet Filter.
https://prototype-kernel.readthedocs.io/
en/latest/bpf/. Accessed on 2020-12-08.

[20] Cisco Nexus X100 SmartNIC K3P-Q Data
Sheet. https://www.cisco.com/c/en/us/
products/collateral/interfaces-modules/
nexus-smartnic/datasheet-c78-743828.html.
Accessed on 2020-12-01.

[21] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Reexamining direct cache access to
optimize i/o intensive applications for multi-hundred-
gigabit networks. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 673–689, 2020.

[22] Sadjad Fouladi, Dan Iter, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. A thunk
to remember: make-j1000 (and other jobs) on functions-
as-a-service infrastructure, 2017.

[23] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, Fast and Slow: Low-latency
Video Processing Using Thousands of Tiny Threads. In
USENIX NSDI, 2017.

[24] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 29–42, 2017.

[25] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and
Nick McKeown. Event-driven packet processing. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, pages 133–140, 2019.

[26] Stephen Ibanez, Muhammad Shahbaz, and Nick McK-
eown. The case for a network fast path to the cpu. In
Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, pages 52–59, 2019.

254 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.dpdk.org/
https://www.dpdk.org/
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://prototype-kernel.readthedocs.io/en/latest/bpf/
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-smartnic/datasheet-c78-743828.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-smartnic/datasheet-c78-743828.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/nexus-smartnic/datasheet-c78-743828.html

[27] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, 2019.

[28] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 1–16, 2019.

[29] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM conference on SIGCOMM,
pages 295–306, 2014.

[30] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Fasst: Fast, scalable and simple distributed transac-
tions with two-sided (RDMA) datagram rpcs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, 2016.

[31] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton,
Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al.
Firesim: Fpga-accelerated cycle-exact scale-out system
simulation in the public cloud. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 29–42. IEEE, 2018.

[32] Clinton Kelly, Virantha Ekanayake, and Rajit Manohar.
Snap: A sensor-network asynchronous processor. In
Ninth International Symposium on Asynchronous Cir-
cuits and Systems, 2003. Proceedings., pages 24–33.
IEEE, 2003.

[33] Richard E Kessler and James L Schwarzmeier. CRAY
T3D: A New Dimension for Cray Research. In Digest
of Papers. COMPCON Spring, pages 176–182. IEEE,
1993.

[34] Zahra Khatami, Hartmut Kaiser, Patricia Grubel, Adrian
Serio, and J Ramanujam. A massively parallel dis-
tributed n-body application implemented with hpx. In
2016 7th Workshop on Latest Advances in Scalable Al-
gorithms for Large-Scale Systems (ScalA), pages 57–64.
IEEE, 2016.

[35] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[36] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fi-
etz, and Edouard Bugnion. R2p2: Making rpcs first-class
datacenter citizens. In 2019 USENIX Annual Technical
Conference (USENIXATC 19), pages 863–880, 2019.

[37] Yilong Li, Seo Jin Park, and John Ousterhout. Millisort
and milliquery: Large-scale data-intensive computing
in milliseconds. In 18th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
21), 2021.

[38] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[39] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading dis-
tributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data
Communication, pages 318–333. Association for Com-
puting Machinery, 2019.

[40] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: a microkernel approach to host network-
ing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 399–413, 2019.

[41] Mellanox bluefield-2. https://www.mellanox.com/
products/bluefield2-overview. Accessed on
2020-12-10.

[42] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM
18), pages 221–235, 2018.

[43] Microsoft: Introduction to Receive Side
Scaling. https://docs.microsoft.com/
en-us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling. Ac-
cessed on 2020-12-07.

[44] Naples dsc-100 distributed services card.
https://www.pensando.io/assets/documents/
Naples_100_ProductBrief-10-2019.pdf. Ac-
cessed on 2020-12-10.

[45] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding pcie performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, pages 327–341, 2018.

[46] Stanko Novakovic, Alexandros Daglis, Edouard
Bugnion, Babak Falsafi, and Boris Grot. Scale-out
numa. ACM SIGPLAN Notices, 49(4):3–18, 2014.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 255

https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://www.pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://www.pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf

[47] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[48] Options for Code Generation Conventions.
https://gcc.gnu.org/onlinedocs/gcc/
Code-Gen-Options.html#Code-Gen-Options.
Accessed on 2020-11-11.

[49] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, 2019.

[50] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir,
Mark Sutherland, Zilu Tian, Mario Paulo Drumond,
Babak Falsafi, and Christoph Koch. Optimus Prime:
Accelerating Data Transformation in Servers. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 20), 2020.

[51] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP 17), pages 325–
341, 2017.

[52] Google protocol buffers. https://developers.
google.com/protocol-buffers. Accessed on 2020-
12-08.

[53] raft GitHub. https://github.com/willemt/raft.
Accessed on 2020-08-17.

[54] Rocket-chip github. https://github.com/
chipsalliance/rocket-chip. Accessed on
2020-08-17.

[55] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. Strom: smart remote memory.
In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–16, 2020.

[56] Akshitha Sriraman and Thomas F Wenisch. µ suite:
A benchmark suite for microservices. In 2018 IEEE
International Symposium on Workload Characterization
(IISWC), pages 1–12. IEEE, 2018.

[57] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Viren-
dra Marathe, Dionisios Pnevmatikatos, and Alexandros
Daglis. The NEBULA rpc-optimized architecture. Tech-
nical report, 2020.

[58] Sx1036 product brief. https://www.mellanox.com/
related-docs/prod_eth_switches/PB_SX1036.
pdf. Accessed on 2020-09-12.

[59] Apache thrift. https://thrift.apache.org/. Ac-
cessed on 2020-12-08.

[60] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. Resq: Enabling slos in network function vir-
tualization. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
283–297, 2018.

[61] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 {USENIX} Annual Technical Con-
ference ({USENIX} {ATC} 20), pages 33–48, 2020.

[62] User level threads. http://pdxplumbers.osuosl.
org/2013/ocw//system/presentations/1653/
original/LPC%20-%20User%20Threading.pdf.
Accessed on 2020-12-08.

[63] Verilator. https://www.veripool.org/wiki/
verilator. Accessed on 2020-01-29.

[64] Elliot Waingold, Michael Taylor, Devabhaktuni Srikr-
ishna, Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim,
Matthew Frank, Peter Finch, Rajeev Barua, et al. Baring
it all to software: Raw machines. Computer, 30(9):86–
93, 1997.

[65] Wikipedia:database download. https:
//en.wikipedia.org/wiki/Wikipedia:
Database_download. Accessed on 2020-12-08.

[66] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.
Halo: accelerating flow classification for scalable packet
processing in nfv. In 2019 ACM/IEEE 46th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 601–614. IEEE, 2019.

[67] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. ACM SIGCOMM Computer Communication
Review (CCR), 45(4):523–536, 2015.

256 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/willemt/raft
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://thrift.apache.org/
http://pdxplumbers.osuosl.org/2013/ocw//system/presentations/1653/original/LPC%20-%20User%20Threading.pdf
http://pdxplumbers.osuosl.org/2013/ocw//system/presentations/1653/original/LPC%20-%20User%20Threading.pdf
http://pdxplumbers.osuosl.org/2013/ocw//system/presentations/1653/original/LPC%20-%20User%20Threading.pdf
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download

Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator

A.H. Hunter

Jane Street Capital∗
Chris Kennelly

Google

Paul Turner

Google

Darryl Gove

Google

Tipp Moseley

Google

Parthasarathy Ranganathan

Google

Abstract

Memory allocation represents significant compute cost at

the warehouse scale and its optimization can yield consid-

erable cost savings. One classical approach is to increase

the efficiency of an allocator to minimize the cycles spent in

the allocator code. However, memory allocation decisions

also impact overall application performance via data place-

ment, offering opportunities to improve fleetwide productivity

by completing more units of application work using fewer

hardware resources. Here, we focus on hugepage coverage.

We present TEMERAIRE, a hugepage-aware enhancement

of TCMALLOC to reduce CPU overheads in the applica-

tion’s code. We discuss the design and implementation of

TEMERAIRE including strategies for hugepage-aware mem-

ory layouts to maximize hugepage coverage and to minimize

fragmentation overheads. We present application studies for

8 applications, improving requests-per-second (RPS) by 7.7%

and reducing RAM usage 2.4%. We present the results of

a 1% experiment at fleet scale as well as the longitudinal

rollout in Google’s warehouse scale computers. This yielded

6% fewer TLB miss stalls, and 26% reduction in memory

wasted due to fragmentation. We conclude with a discussion

of additional techniques for improving the allocator develop-

ment process and potential optimization strategies for future

memory allocators.

1 Introduction

The datacenter tax [23, 41] within a warehouse-scale com-

puter (WSC) is the cumulative time spent on common service

overheads, such as serialization, RPC communication, com-

pression, copying, and memory allocation. WSC workload

diversity [23] means that we typically cannot optimize sin-

gle application(s) to strongly improve total system efficiency,

as costs are borne across many independent workloads. In

contrast, focusing on the components of datacenter tax can

realize substantial performance and efficiency improvements

∗Work performed while at Google.

in aggregate as the benefits can apply to entire classes of appli-

cation. Over the past several years, our group has focused on

minimizing the cost of memory allocation decisions, to great

effect; realizing whole system gains by dramatically reducing

the time spent in memory allocation. But it is not only the cost

of these components we can optimize. Significant benefit can

also be realized by improving the efficiency of application

code by changing the allocator. In this paper, we consider

how to optimize application performance by improving the

hugepage coverage provided by memory allocators.

Cache and Translation Lookaside Buffer (TLB) misses are

a dominant performance overhead on modern systems. In

WSCs, the memory wall [44] is significant: 50% of cycles are

stalled on memory in one analysis [23]. Our own workload

profiling observed approximately 20% of cycles stalled on

TLB misses.

Hugepages are a processor feature that can significantly

reduce the number, and thereby the cost, of TLB misses [26].

The increased size of a hugepage enables the same number of

TLB entries to map a substantially larger range of memory.

On the systems under study, hugepages also allow the total

stall time for a miss+fill to be reduced as their page-table

representation requires one fewer level to traverse.

While an allocator cannot modify the amount of memory

that user code accesses, or even the pattern of accesses to

objects, it can cooperate with the operating system and con-

trol the placement of new allocations. By optimizing huge-

page coverage, an allocator may reduce TLB misses. Memory

placement decisions in languages such as C and C++ must

also deal with the consequence that their decisions are final:

Objects cannot be moved once allocated [11]. Allocation

placement decisions can only be optimized at the point of

allocation. This approach ran counter to our prior work in

this space, as we can potentially increase the CPU cost of an

allocation, increasing the datacenter tax, but make up for it

by reducing processor stalls elsewhere. This improves appli-

cation metrics1 such as requests-per-second (RPS).

1While reducing stalls can improve IPC, IPC alone is a poor proxy [3] for

how much useful application work we can accomplish with a fixed amount

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 257

Our contributions are as follows:

• The design of TEMERAIRE, a hugepage-aware enhance-

ment of TCMALLOC to reduce CPU overheads in the

rest of the application’s code. We present strategies for

hugepage-aware memory layouts to maximize hugepage

coverage and to minimize fragmentation overheads.

• An evaluation of TEMERAIRE in complex real-world ap-

plications and scale in WSCs. We measured a sample of

8 applications running within our infrastructure observed

requests-per-second (RPS) increased by 7.7% and RAM

usage decreased by 2.4%. Applying these techniques

to all applications within Google’s WSCs yielded 6%

fewer TLB miss stalls, and 26% reduction in memory

wasted due to fragmentation.

• Strategies for optimizing the development process of

memory allocator improvements, using a combination

of tracing, telemetry, and experimentation at warehouse-

scale.

2 The challenges of coordinating Hugepages

Virtual memory requires translating user space addresses to

physical addresses via caches known as Translation Looka-

side Buffers (TLBs) [7]. TLBs have a limited number of

entries, and for many applications, the entire TLB only covers

a small fraction of the total memory footprint using the default

page size. Modern processors increase this coverage by sup-

porting hugepages in their TLBs. An entire aligned hugepage

(2MiB is a typical size on x86) occupies just one TLB entry.

Hugepages reduce stalls by increasing the effective capacity

of the TLB and reducing TLB misses [5, 26].

Traditional allocators manage memory in page-sized

chunks. Transparent Huge Pages (THP) [4] provide an oppor-

tunity for the kernel to opportunistically cover consecutive

pages using hugepages in the page table. A memory allocator,

superficially, need only allocate hugepage-aligned and -sized

memory blocks to take advantage of this support.

A memory allocator that releases memory back to the OS

(necessary at the warehouse scale where we have long running

workloads with dynamic duty cycles) has a much harder chal-

lenge. The return of non-hugepage aligned memory regions

requires that the kernel use smaller pages to represent what re-

mains, defeating the kernel’s ability to provide hugepages and

imposing a performance cost for the remaining used pages.

Alternatively, an allocator may wait for an entire hugepage

to become free before returning it to the OS. This preserves

hugepage coverage, but can contribute significant amplifica-

tion relative to true usage, leaving memory idle. DRAM is a

significant cost the deployment of WSCs [27]. The manage-

ment of external fragmentation, unused space in blocks too

of hardware. A busy-looping spinlock has extremely high IPC, but does little

useful work under contention.

allocate. . .

free some. . .

used used used used

used used

Figure 1: Allocation and deallocation patterns leading to frag-

mentation

small to be used for requested allocations, by the allocator is

important in this process. For example consider the alloca-

tions in Figure 1. After this series of allocations there are 2

units of free space. The choice is to either use small pages,

which result in lower fragmentation but less efficient use of

TLB entries, or hugepages, which are TLB-efficient but have

high fragmentation.

A user-space allocator that is aware of the behavior pro-

duced by these policies can cooperate with their outcomes

by densely aligning the packing of allocations with hugepage

boundaries, favouring the use of allocated hugepages, and

(ideally) returning unused memory at the same alignment2.

A hugepage-aware allocator helps with managing memory

contiguity at the user level. The goal is to maximally pack

allocations onto nearly-full hugepages, and conversely, to min-

imize the space used on empty (or emptier) hugepages, so that

they can be returned to the OS as complete hugepages. This

efficiently uses memory and interacts well with the kernel’s

transparent hugepage support. Additionally, more consistently

allocating and releasing hugepages forms a positive feedback

loop: reducing fragmentation at the kernel level and improv-

ing the likelihood that future allocations will be backed by

hugepages.

3 Overview of TCMALLOC

TCMALLOC is a memory allocator used in large-scale appli-

cations, commonly found in WSC settings. It shows robust

performance [21]. Our design builds directly on the structure

of TCMALLOC.

Figure 2 shows the organization of memory in TCMALLOC.

Objects are segregated by size. First, TCMALLOC partitions

memory into spans, aligned to page size3.

TCMALLOC’s structure is defined by its answer to the

same two questions that drive any memory allocator.

1. How do we pick object sizes and organize metadata to

2This is important as the memory backing a hugepage must be physically

contiguous. By returning complete hugepages we can actually assist the

operating system in managing fragmentation.
3Confusingly, TCMALLOC’s “page size” parameter is not necessarily the

system page size. The default configuration is to use an 8 KiB TCMALLOC

“page”, which is two (small) virtual memory pages on x86.

258 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

requested from OS

2 MiB

200 KiB

25 KiB

Figure 2: Organization of memory in TCMALLOC. System-

mapped memory is broken into (multi-)page spans, which are

sub-divided into objects of an assigned, fixed sizeclass, here

25 KiB.

minimize space overhead and fragmentation?

2. How do we scalably support concurrent allocations?

Sufficiently large allocations are fulfilled with a span con-

taining only the allocated object. Other spans contain multiple

smaller objects of the same size (a sizeclass). The “small” ob-

ject size boundary is 256 KiB. Within this “small” threshold,

allocation requests are rounded up to one of 100 sizeclasses.

TCMALLOC stores objects in a series of caches, illustrated in

OS pageheap

mmap

release

central

8 bytes

central

256KiBsp
an

s spans

central

. . .

transfer transfertransfer

. . .

CPU 0 cache CPU 9 cacheCPU. . .

malloc() free()

(large) malloc()

(large) free()

Figure 3: The organization of caches in TCMALLOC; we see

memory allocated from the OS to the pageheap, distributed

up into spans given to the central caches, to local caches. This

paper focuses on a new implementation for the pageheap.

Figure 3. Spans are allocated from a simple pageheap, which

keeps track of all unused pages and does best-fit allocation.

The pageheap is also responsible for returning no-longer-

needed memory to the OS when possible. Rather than do-

ing this on the free() path, a dedicated release-memory

method is invoked periodically, aiming to maintain a con-

figurable, steady rate of release in MB/s. This is a heuristic.

TCMALLOC wants to simultaneously use the least memory

possible in steady-state, avoiding expensive system alloca-

tions that could be elided by using previously provisioned

memory. We discuss handling this peak-to-trough allocation

pattern in more detail in Section 4.3.

Ideally, TCMALLOC would return all memory that user

code will not need soon. Memory demand varies unpre-

dictably, making it challenging to return memory that will

go unused while simultaneously retaining memory to avoid

syscalls and page faults.. Better decisions about memory re-

turn policies have high value and are discussed in section 7.

TCMALLOC will first attempt to serve allocations from a

“local” cache, like most modern allocators [9,12,20,39]. Orig-

inally these were the eponymous per-Thread Caches, storing

a list of free objects for each sizeclass. To reduce stranded

memory and improve re-use for highly threaded applications,

TCMALLOC now uses a per-hyperthread local cache. When

the local cache has no objects of the appropriate sizeclass to

serve a request (or has too many after an attempt to free()),

requests route to a single central cache for that sizeclass. This

has two components–a small fast, mutex-protected transfer

cache (containing flat arrays of objects from that sizeclass)

and a large, mutex-protected central freelist, containing every

span assigned to that sizeclass; objects can be fetched from,

or returned to these spans. When all objects from a span have

been returned to a span held in the central freelist, that span

is returned to the pageheap.

In our WSC, most allocations are small (50% of allocated

space is objects ≤ 8192 bytes), as depicted in Figure 4. These

are then aggregated into spans. The pageheap primarily al-

locates 1- or 2-page spans, as depicted in Figure 5. 80% of

spans are smaller than a hugepage.

The design of “stacked” caches make the system usefully

modular, and there are several concomitant advantages:

• Clean abstractions are easier to understand and test.

• It’s reasonably direct to replace any one level of the

cache with a totally new implementation.

• When desired, cache implementations can be selected at

runtime, with benefits to operational rollout and experi-

mentation.

TCMALLOC’s pageheap has a simple interface for manag-

ing memory.

• New(N) allocates a span of N pages

• Delete(S) returns a New’d span (S) to the allocator.

• Release(N) gives >= N unused pages cached by the

page heap back to the OS

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 259

102 104 106 108 1010

Allocated Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Figure 4: CDF of allocation sizes from WSC applications,

weighted by bytes.

4 TEMERAIRE’s approach

TEMERAIRE, this paper’s contribution to TCMALLOC, re-

places the pageheap with a design that attempts to maximally

fill (and empty) hugepages. The source code is on Github

(see Section 9). We developed heuristics that pack allocations

densely onto highly-used hugepages and simultaneously form

entirely unused hugepages for return to the OS.

We refer to several definitions. Slack is the gap between an

allocation’s requested size and the next whole hugepage. Vir-

tual address space allocated from the OS is unbacked without

reserving physical memory. On use, it is backed, mapped by

the OS with physical memory. We may release memory to

the OS once again making it unbacked. We primarily pack

within hugepage boundaries, but use regions of hugepages for

packing allocations across hugepage boundaries.

From our telemetry of malloc usage and TCMALLOC

internals, and knowledge of the kernel implementation, we

developed several key principles that motivate TEMERAIRE’s

choices.

1. Total memory demand varies unpredictably with

time, but not every allocation is released. We have

no control over the calling code, and it may rapidly (and

repeatedly) modulate its usage; we must be hardened to

this. But many allocations on the pageheap are immortal

(and it is difficult to predict which they are [30]); any

particular allocation might disappear instantly or live

forever, and we must deal well with both cases.

104 105 106 107 108 109 1010

Span Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
Figure 5: CDF of TCMALLOC span sizes from WSC appli-

cations, weighted by bytes.

2. Completely draining hugepages implies packing

memory at hugepage granularity. Returning huge-

pages that aren’t nearly-empty to the OS is costly (see

section 2). Generating empty/nearly-empty hugepages

implies densely packing the other hugepages in our bi-

nary. Our design must enable densely packing alloca-

tions into as few, saturated, bins as possible.

While we aim to use exclusively hugepage-sized bins,

malloc must support allocation sizes larger than a sin-

gle hugepage. These can be allocated normally, but we

place smaller allocations into the slack of the allocation

to achieve high allocation density. Only when small al-

locations are dominated by slack do we need to place

large allocations end on end in regions.

3. Draining hugepages gives us new release decision

points. When a hugepage becomes completely empty,

we can choose whether to retain it for future memory

allocations or return it to the OS. Retaining it until re-

leased by TCMALLOC’s background thread carries a

higher memory cost. Returning it reduces memory us-

age, but comes at a cost of system calls and page faults

if reused. Adaptively making this decision allows us to

return memory to the OS faster than the background

thread while simultaneously avoiding extra system calls.

4. Mistakes are costly, but work is not. Very few alloca-

tions directly touch the pageheap, but all allocations are

backed via the pageheap. We must only pay the cost of al-

location once; if we make a bad placement and fragment

260 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a hugepage, we pay either that space or the time-cost

of breaking up a hugepage for a long time. It is worth

slowing down the allocator, if doing so lets it make better

decisions.

Our allocator implements its interface by delegating to

several subcomponents, mapped in Figure 6. Each component

is built with the above principles in mind, and each specializes

its approximation for the type of allocation it handles best. As

per principle #4, we emphasize smart placement over speed4.

While the particular implementation of TEMERAIRE is

tied to TCMALLOC internals, most modern allocators share

similar large backing allocations of page (or higher) granu-

larity, like TCMALLOC’s spans: compare jemalloc’s “ex-

tents” [20], Hoard’s “superblocks” [9], and mimalloc’s

“pages” [29]. Hoard’s 8KB superblocks are directly allo-

cated with ‘mmap‘, preventing hugepage contiguity. Those

superblocks could instead be densely packed onto hugepages.

mimalloc places its 64KiB+ “pages” within “segments,” but

these are maintained per-thread which hampers dense pack-

ing across the segments of the process. Eagerly returning

pages to the OS minimizes the RAM cost here, but breaks

up hugepages. These allocators could also benefit from a

TEMERAIRE-like hugepage aware allocator5.

HugeAllocator

HugeCache

unbacked hugepages

HugeFiller

backed hugepages

small requests

(< 1 MiB)

large requests

(≥ 1 GiB)

medium requests

(1 MiB - 1 GiB)

HugeRegion

sometimes

Figure 6: TEMERAIRE’s components. Arrows represent the

flow of requests to interior components.

4.1 The overall algorithm

We will briefly sketch the overall approach and each com-

ponent’s role, then describe each component in detail. Our

goal is to minimize generated slack, and if we do generate

slack, to reuse it for other allocations (as with any page-level

fragmentation.)

4As each operation holds an often-contended mutex, we do maintain

reasonable efficiency: most operations are O(1), with care taken to optimize

constant factors.
5Indeed, jemalloc is doing so, based on TEMERAIRE.

Span New(N) {

// Slack is too small to matter

if (N >= 1 GiB) return HugeCache.New(N);

// Help bin-pack a single hugepage

if (N <= 1 MiB) return HugeFiller.New(N);

if (N < 2 MiB) {

// If we can reuse empty space, do so

Span s = HugeFiller.TryAllocate(N);

if (s != NULL) return s;

}

// If we have a region, use it

Span s = HugeRegion.TryAllocate(N);

if (s != NULL) return s;

// We need a new hugepage.

s = HugeCache.New(N);

HugeFiller.DonateTail(s);

return s;

}

Figure 7: Allocation flow for subcomponents. Hugepage size

is 2 MiB.

Behind all components is the HugeAllocator, which deals

with virtual memory and the OS. It provides other compo-

nents with unbacked memory that they can back and pass on.

We also maintain a cache of backed, fully-empty hugepages,

called the HugeCache.

We keep a list of partially filled single hugepages (the

HugeFiller) that can be densely filled by subsequent small

allocations. Where binpacking the allocations along hugepage

boundaries would be inefficient, we implement a specialized

allocator (the HugeRegion).

TEMERAIRE directs allocation decisions to its subcompo-

nents based on request size with the algorithm in Figure 7.

Each subcomponent is optimized for different allocation sizes.

Allocations for an exact multiple of hugepage size, or those

sufficiently large that slack is immaterial, we forward directly

to the HugeCache.

Intermediate sized allocations (between 1MiB and 1GiB)

are typically also allocated from the HugeCache, with a final

step of donation for slack. For example, a 4.5 MiB allocation

from the HugeCache produces 1.5 MiB of slack, an unaccept-

ably high overhead ratio. TEMERAIRE donates that slack to

the HugeFiller by pretending that the last hugepage of the

request has a single “leading” allocation on it (Figure 8).

When such a large span is deallocated, the allocator also

marks the fictitious leading allocation as free. If the slack is un-

used, it is returned to the tail hugepage along with the rest. Oth-

erwise the tail hugepage is left behind in the HugeFiller and

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 261

allocation slack

"free"

Figure 8: The slack from a large allocation spanning 3 huge-

pages is “donated” to the HugeFiller. The larger allocation’s

tail is treated as a fictitious allocation.

only the first N −1 hugepages are returned to the HugeCache.

For certain allocation patterns, intermediate-size alloca-

tions produce more slack than we can fill with smaller al-

locations in strict 2MiB bins. For example, many 1.1MiB

allocations will produce 0.9MiB of slack per hugepage (see

Figure 12). When we detect this pattern, the HugeRegion

allocator places allocations across hugepage boundaries to

minimize this overhead.

Small requests (<= 1MiB) are always served from the

HugeFiller. For allocations between 1MiB and a hugepage,

we evaluate several options:

1. We try the HugeFiller: if we have available space there

we use it and are happy to fill a mostly-empty page.

2. If the HugeFiller can’t serve these requests, we next

consider HugeRegion; if we have regions allocated

which can serve the request, we do so. If no region exists

(or they’re all too full) we consider allocating one, but

only, as discussed below, if we’ve measured high ratios

of slack to small allocations.

3. Otherwise, we allocate a full hugepage from the

HugeCache. This generates slack, but we anticipate that

it will be filled by future allocations.

We make a design choice in TEMERAIRE to care about

external fragmentation up to the level of a hugepage, but

essentially not at all past it (but see Section 4.5 for an excep-

tion.) For example, a system with a single 1 GiB free range

and one with 512 discontiguous free hugepages is handled

equally well by TEMERAIRE. In either case, the allocator

will (typically) return all of the unused space to the OS; a

fresh allocation of 1 GiB will require faulting in memory in

either case. In the fragmented scenario, we will need to do

so on fresh virtual memory. Waste of virtual address range

unoccupied by live allocations and not consuming physical

memory is not a concern, since with 64-bit address spaces,

virtual memory is practically free.

while (true) {

Delete(New(512KB))

}

Figure 9: Program which repeatedly drains a single hugepage.

4.2 HugeAllocator

HugeAllocator tracks mapped virtual memory. All OS map-

pings are made here. It stores hugepage-aligned unbacked

ranges (i.e. those with no associated physical memory.) Vir-

tual memory is nearly free, so we aim for simplicity and rea-

sonable speed. Our implementation tracks unused ranges with

a treap [40]. We augment subtrees with their largest contained

range, which lets us quickly select an approximate best-fit.

4.3 HugeCache

The HugeCache tracks backed ranges of memory at full huge-

page granularity. A consequence of the HugeFiller filling

and draining whole hugepages is that we need to decide when

to return empty hugepages to the OS. We will regret returning

memory we will need again, and equally regret not returning

memory that will languish in the cache. Returning memory

eagerly means we make syscalls to return the memory and

take page faults to reuse it. Releasing memory only at the rate

requested by TCMALLOC’s periodic release thread means

memory is held unused.

Consider the artificial program in Figure 9 with no addi-

tional heap allocations. On each iteration of the loop, ‘New‘

requires a new hugepage and places it with the HugeFiller.

‘Delete‘ removes the allocation and the hugepage is now com-

pletely free. Returning eagerly would require a syscall every

iteration for this simple, but pathological program.

We track periodicity in the demand over a 2-second slid-

ing window and calculate the minimum and maximum seen

(demandmin,demandmax). Whenever memory is returned to

the HugeCache, we return hugepages to the OS if the cache

would be larger than demandmax −demandmin. We also tried

other algorithms, but this one is simple and suffices to capture

the empirical dynamics we’ve seen. The cache is allowed

to grow as long as our windowed demand has seen a need

for the new size. In oscillating usage, this will (incorrectly)

free memory once, then (correctly) keep it from then on. Fig-

ure 10 shows our cache size for a Tensorflow workload which

rapidly oscillates usage by a large fraction; we track the actu-

ally needed memory tightly.

4.4 HugeFiller

The HugeFiller satisfies smaller allocations that each fit

within a single hugepage. This satisfies the majority of allo-

cations (78% of the pageheap is backed by the HugeFiller

262 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

100

200

300

400

500

demand

total usage

time

m
em

o
ry

(M
iB

)

Figure 10: Tensorflow’s demand on the HugeCache over time,

plotted with the cache limit (+demand). Notice that we tightly

track their saw-toothed demand the first time it drops. After

that, we recognize the pattern and keep the peak demand in

cache.

on average across the fleet) and is the most important–and

most optimized–component of our system. Within a given

hugepage, we use a simple (and fast) best-fit algorithm to

place an allocation; the challenging part is deciding which

hugepage to place an allocation on.

This component solves our binpacking problem: our goal

is to segment hugepages into some that are kept maximally

full, and others that are empty or nearly so. The emptiest

hugepages can be reclaimed (possibly breaking up a huge-

page as needed) while minimizing the impact on hugepage

coverage as the densely-filled pages cover most used memory

with hugepages. But it is challenging to empty out hugepages,

since we cannot rely on any particular allocation disappearing.

A secondary goal is to minimize fragmentation within each

hugepage, to make new requests more likely to be served.

If the system needs a new K-page span and no free ranges

of ≥ K pages are available, we require a hugepage from

the HugeCache. This creates slack of (2MiB−K ∗ pagesize),

wasting space.

These give us two goals to prioritize. Since we want to

maximize the probability of hugepages becoming totally free,

nearly-empty hugepages are precious. Since we need to mini-

mize fragmentation, hugepages with long free ranges are also

precious. Both priorities are satisfied by preserving hugepages

with the longest free range, as longer free ranges must have

fewer in-use blocks. We organize our hugepages into ranked

lists correspondingly, leveraging per-hugepage statistics.

Inside each hugepage, we track a bitmap of used pages;

to fill a request from some hugepage we do a best-fit search

from that bitmap. We also track several statistics:

• the longest free range (L), the number of contiguous

pages not already allocated,

• the total number of allocations (A),

• the total number of used pages (U).

These three statistics determine a priority order of huge-

pages to place allocations. We choose the hugepage with the

lowest sufficient L and the highest A. For an allocation of K

pages, we first consider only hugepages whose longest free

range is sufficient (L ≥ K). This determines whether a huge-

page is a possible allocation target. Among hugepages with

the minimum L ≥ K, we prioritize by fullness. Substantial

experimentation led us to choose A, rather than U .

This choice is motivated by a radioactive decay-type al-

location model [16] where each allocation, of any size, is

equally likely to become free (with some probability p). In

this model a hugepage with 5 allocations has a probability

of becoming free of p5
<< p; so we should very strongly

avoid allocating from hugepages with very few allocations.

In particular, this model predicts A is a much better model of

"emptiness" than U : one allocation of size M is more likely

to be deallocated than M allocations of size 1.

The decay model isn’t perfectly true in real applications, but

it is an effective approximation, and experimentation backs up

its primary claim: prioritizing by A empties substantially more

pages than prioritizing by U . (In practice, using U produces

acceptable results, but meaningfully worse ones.)

In some more detail, A is used to compute a chunk index C,

given by min(0,Cmax − log2(A)). We compute our chunk in-

dex so that our fullest pages have C = 0 and the emptiest have

C =Cmax−1. In practice, we have found that Cmax = 8 chunks

are sufficient to avoid allocation from almost-empty pages.

Distinguishing hugepages with large counts is less important:

For example, we predict a hugepage with 200 allocations and

one with 150 as both very unlikely to completely drain. This

scheme prioritizes distinguishing gradations among pages

that might become empty.

We store hugepages in an array of lists, where each huge-

page is stored on the list at index I = Cmax ∗ L+C. Since

a K-page allocation is satisfiable from any hugepage with

L >= K, the hugepages which can satisfy an allocation are ex-

actly those in lists with I >=Cmax ∗K. We pick an (arbitrary)

hugepage from the least such nonempty list, accelerating that

to constant time with a bitmap of nonempty lists.

Our strategy differs from best fit. Consider a hugepage X

with a 3 page gap and a 10 page gap and another hugepage

Y with a 5 page gap. Best fit would prefer X . Our strategy

prefers Y . This strategy works since we are looking to allocate

on the most fragmented page, since fragmented pages are less

likely to become entirely free. If we need, say, 3 pages, then

pages which contain at most a gap of 3 available pages are

more likely to be fragmented and therefore good candidates

for allocation. Under the radioactive-decay model, allocations

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 263

0

100

200

300

400

500

time

m
em

o
ry

(M
iB

)

Demand

LFR-priority

Best-fit

Fullness-priority

Figure 11: HugeFiller with various bin-packing strate-

gies. Best fit is outperformed by prioritizing either fullness or

longest free range (LFR); LFR dominates fullness.

near large gaps are as likely as any other to become free,

which can cause those gaps to substantially grow; they can

then be used for large allocations. We treat that 10-page gap

as precious and avoid allocating near it unless nothing else

works, which allows it to grow.

Figure 11 demonstrates this in a simple case. We plot the

demand on the HugeFiller from a synthetic trace (see Sec-

tion 6.1). We also show the total used memory from three

approaches: HugeFiller’s actual search, a search that priori-

tizes fullness over fragmentation (A over L), and a global best

fit. Note that the trace includes a substantial one-time drop,

to go with random fluctuations in usage. Our LFR-priority

algorithm beats both other approaches. In particular, we see

that after the usage drop, best-fit barely recovers any total

memory, and finishes with close to 100% overhead, whereas

both other algorithms closely match the actual demand.

Surprisingly, this simple strategy substantially outperforms

a global best fit algorithm–placing a request in the single gap

in any hugepage that is closest to its size. Best-fit would be

prohibitively expensive—we cannot search 10-100K huge-

pages for every request, but it’s quite counter-intuitive that it

also produces higher fragmentation. Best-fit being far from

optimal for general fragmentation problems is not a new re-

sult [36], but it’s interesting to see how poor it can be here.

A last important detail is that donated hugepages are less

desirable allocation targets than any non-donated hugepage.

Consider the pathological program looping:

while (true) {

// Reserve 51 hugepages + donate tail of last

L = New(100 MiB + 1 page);

// Make a small allocation

S = New(1);

// Delete large allocation

Delete(L);

}

Each iteration only allocates 1 (net) page, but if we always

use the slack from L to satisfy S, we will end up placing

each S on its own hugepage. In practice, simply refusing to

use donated pages if others are available prevents this, while

effectively using slack where it’s needed.

4.5 HugeRegion

HugeCache (and HugeAllocator behind it) suffices for large

allocations, where rounding to a full hugepage is a small

cost. HugeFiller works well for small allocations that can

be packed into single hugepages. HugeRegion helps those

between.

Consider a request for 1.1 MiB of memory. We serve it

from the HugeFiller, leaving 0.9 MiB of unused memory

from the 2MiB hugepage: the slack space. The HugeFiller

assumes that slack will be filled by future small (<1MiB)

allocations, and typically it is: our observed byte ratio of fleet-

wide small allocations to slack is 15:1. In the limit we can

imagine a binary that requests literally nothing but 1.1 MiB

spans in Figure 12.

The HugeRegion deals with this problem, which is to

some extent caused by our own choices. We focus heavily

on packing allocations into hugepage-sized bins with the

HugeFiller, and our desire to do that with donated slack

is catastrophic with some allocation patterns. Most normal

binaries are of course fine without it, but a general purpose

memory allocator needs to handle diverse workloads, even

those dominated by slack-heavy allocations. Clearly, we must

be able to allocate these lying across hugepage boundaries.

HugeRegion neatly eliminates this pathological case.

A HugeRegion is a large fixed-size allocation (currently 1

GiB) tracked at small-page granularity with the same kind

of bitmaps used by individual hugepages in the HugeFiller.

As with those single hugepage ranges, we best-fit any request

across all pages in the region. We keep a list of these re-

gions, ordered by longest free range, for the same reason as

HugeFiller. Allocating from these larger bins immediately

allows large savings in wasted space: rather than losing 0.9

MiB/hugepage in our pessimal load, we lose 0.9 MiB per

a s

Figure 12: Slack (“s”) can accumulate when many allocations

(“a”) are placed on single hugepages. No single slack region

is large enough to accommodate a subsequent allocation of

size “a.”

264 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

HugeRegion, only about 0.1%. (This motivates the large size

of each region.)

Most programs don’t need regions at all. We do not allocate

any region until we’ve accumulated large quantities of slack

that are larger than the total of the program’s small allocations.

Fleetwide, only 8.8% of programs trigger usage of regions,

but the feature is still important: 53.2% of allocations in those

binaries are served from regions. One such workload is a

key-value store that loads long-lived data in large chunks

into memory and makes a small number of short-lived small

allocations for serving requests. Without regions, the request-

related allocations are unable to fill the slack generated by the

larger allocations. This technique prevents this slack-heavy

uncommon allocation pattern from bloating memory use.

4.6 Memory Release

As discussed above, Release(N) is invoked periodically by

support threads at a steady trickle.

To implement our interface’s Release(N) methods,

TEMERAIRE typically just frees hugepage ranges from

HugeCache and possibly shrinks its limit as described above.

Releasing more than the hinted N pages is not a problem; the

support threads use the actual released amount as feedback,

and adjust future calls to target the correct overall rate.

If the HugeCache cannot release N pages of memory, the

HugeFiller will subrelease just the free (small) pages on the

emptiest hugepage.

Returning small pages from partially filled hugepages

(“subreleasing” them) is the last resort for reducing memory

footprints as the process is largely irreversible6. By returning

some but not all small pages on a hugepage, we cause the OS

to replace the single page table entry spanning the hugepage

with small entries for the remaining pages. This one-way op-

eration, through increased TLB misses, slows down accesses

to the remaining memory. The Linux kernel will use small

pagetable entries for the still-used pages, even if we re-use

the released address space later. We make these return deci-

sions in the HugeFiller, where we manage partially filled

hugepages.

The HugeFiller treats the subreleased hugepages sepa-

rately: we do not allocate from them unless no other hugepage

is usable. Allocations placed on this memory will not benefit

from hugepages, so this helps performance and allows these

partially released hugepages to become completely empty.

5 Evaluation of TEMERAIRE

We evaluated TEMERAIRE on Google’s WSC workloads.

The evaluation was concerned with several metrics, includ-

6While the THP machinery may reassemble hugepages, it is non-

deterministic and dependent on system utilization. There is a negative feed-

back loop here where high-utilization scenarios actually compete with and

impede THP progress that might benefit them the most.

ing both CPU and memory savings. We present evaluations

of TEMERAIRE on several key services, measuring 10% of

cycles and 15% of RAM usage in our WSC. In section 6.4

we discuss workload diversity; in this evaluation we examine

data across all workloads using our experimental framework

and fleetwide-profiler telemetry. We’ve argued for prioritizing

workload efficiency over the attributable cost of malloc; we

therefore examine IPC metrics (as a proxy for user through-

put) and where possible, we obtained application-level perfor-

mance metrics to gauge workload productivity (e.g., requests-

per-second per core) on our servers. We present longitudinal

data from the rollout of TEMERAIRE to all TCMALLOC users

in our fleet.

Overall, TEMERAIRE proved a significant win for CPU and

memory.

5.1 Application Case Studies

We worked with performance-sensitive applications to enable

TEMERAIRE in their production systems, and measure the

effect. We summarize the results in Table 1. Where possible,

we measured each application’s user-level performance met-

rics (throughput-per-CPU and latency). These applications

use roughly 10% of cycles and 15% of RAM in our WSC.

Four of these applications (search1; search2; search3;

and loadbalancer) had previously turned off the periodic

memory release feature of TCMALLOC. This allowed them

to have good hugepage coverage, even with the legacy page-

heap’s hugepage-oblivious implementation, at the expense of

memory. We did not change that setting with TEMERAIRE.

These applications maintained their high levels of CPU per-

formance while reducing their total memory footprint.

With the exception of Redis, all of these applications are

multithreaded. With the exception of search3, these work-

loads run on a single NUMA domain with local data.

• Tensorflow [1] is a commonly used machine learning ap-

plication. It had previously used a high periodic release

rate to minimize memory pressure, albeit at the expense

of hugepages and page faults.

• search1, search2, ads1, ads2, ads4, ads5 receive

RPCs and make subsequent RPCs of their own other

services.

• search3, ads3, ads6 are leaf RPC servers, performing

read-mostly retrieval tasks.

• Spanner [17] is a node in a distributed database. It also

includes an in-memory cache of data read from disk

which adapts to the memory provisioned for the process

and unused elsewhere by the program.

• loadbalancer receives updates over RPC and periodi-

cally publishes summary statistics.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 265

Application Throughput
Mean

Latency

RSS

(GiB)

RAM

change

IPC dTLB Load Walk (%) malloc (% of cycles) Page Fault (% of cycles)

Before After Before After Before After Before After

Tensorflow [1] +26%

search1 [6, 18]† 8.4 -8.7% 1.33±0.04 1.43±0.02 9.5±0.6 9.0±0.6 5.9±0.09 5.9±0.12 0.005±0.003 0.131±0.071

search2† 3.7 -20% 1.28±0.01 1.29±0.01 10.3±0.2 10.2±0.1 4.37±0.05 4.38±0.02 0.003±0.003 0.032±0.002

search3 † 234 -7% 1.64±0.02 1.67±0.02 8.9±0.1 8.9±0.3 3.2±0.02 3.3±0.04 0.001±0.000 0.005±0.001

ads1 +2.5% -14% 4.8 -6.9% 0.77±0.02 0.84±0.01 38.1±1.3 15.9±0.3 2.3±0.04 2.7±0.05 0.012±0.003 0.011±0.002

ads2 +3.4% -1.7% 5.6 -6.5% 1.12±0.01 1.22±0.01 27.4±0.4 10.3±0.2 2.7±0.03 3.5±0.08 0.022±0.001 0.047±0.001

ads3 +0.5% -0.2% 50.6 -0.8% 1.36±0.01 1.43±0.01 27.1±0.5 11.6±0.2 2.9±0.04 3.2±0.03 0.067±0.002 0.03±0.003

ads4 +6.6% -1.1% 2.5 -1.7% 0.87±0.01 0.93±0.01 28.5±0.9 11.1±0.3 4.2±0.05 4.9±0.04 0.022±0.001 0.008±0.001

ads5 +1.8% -0.7% 10.0 -1.1% 1.16±0.02 1.16±0.02 21.9±1.2 16.7±2.4 3.6±0.08 3.8±0.15 0.018±0.002 0.033±0.007

ads6 +15% -10% 53.5 -2.3% 1.40±0.02 1.59±0.03 33.6±2.4 17.8±0.4 13.5±0.48 9.9±0.07 0.037±0.012 0.048±0.067

Spanner [17] +6.3% 7.0 1.55±0.30 1.70±0.14 31.0±4.3 15.7±1.8 3.1±0.88 3.0±0.24 0.025±0.08 0.024±0.01

loadbalancer† 1.4 -40% 1.38±0.12 1.39±0.28 19.6±1.2 9.5±4.5 11.5±0.60 10.7±0.46 0.094±0.06 0.057±0.062

Average (all WSC apps) +5.2% -7.9% 1.26 1.33 23.3 12.4 5.2 5.0 0.058 0.112

Redis† +0.75%

Redis +0.44%

Table 1: Application experiments from enabling TEMERAIRE. Throughput is normalized for CPU. †: Applications’ periodic

memory release turned off. dTLB load walk (%) is the fraction of cycles spent page walking, not accessing the L2 TLB. malloc

(% of cycles) is the relative amount of time in allocation and deallocation functions. 90%th confidence intervals reported.

• Redis is a popular, open-source key-value store. We

evaluated the performance of Redis 6.0.9 [42] with

TEMERAIRE, using TCMALLOC’s legacy page heap as

a baseline. These experiments were run on servers with

Intel Skylake Xeon processors. Redis and TCMALLOC

were compiled with LLVM built from Git commit

‘cd442157cf‘ using ‘-O3‘. In each configuration, we ran

2000 trials of ‘redis-benchmark‘, with each trial making

1000000 requests to push 5 elements and read those 5

elements.

For the 8 applications with periodic release, we observed a

mean CPU improvement of 7.7% and a mean RAM reduction

of 2.4%. Two of these workloads did not see memory reduc-

tions. TEMERAIRE’s HugeCache design handles Tensorflow’s

allocation pattern well, but cannot affect its bursty demand.

Spanner maximizes its caches up to a certain memory limit,

so reducing TCMALLOC’s overhead meant more application

data could be cached within the same footprint.

5.2 Fleet experiment

We randomly selected 1% of the machines distributed through-

out our WSCs as an experiment group and a separate 1% as

a control group (see section 6.4). We enabled TEMERAIRE

on all applications running on the experiment machines. The

applications running on control machines continued to use

the stock pageheap in TCMALLOC.

Our fleetwide profiler lets us correlate performance metrics

against the groupings above. We collected data on memory

usage, hugepage coverage, overall IPC, and TLB misses. At

the time of the experiment, application-level performance

metrics (throughput-per-CPU, latency) were not collected. In

our analysis, we distinguish between applications that period-

ically release memory to the OS and those that turn off this

feature to preserve hugepages with TCMALLOC’s prior non-

hugepage-aware pageheap. Figure 13 shows that TEMERAIRE

improved hugepage coverage, increasing the percentage of

heap memory backed by hugepages from 11.8% to 23% for

applications periodically releasing memory and from 44.3%

to 67.3% for applications not periodically releasing memory.

periodic release on periodic release off
0

20

40

60

80

11.8

44.3

23

67.3

%
h

u
g

ep
ag

e
co

v
er

ag
e

control TEMERAIRE

Figure 13: Percentage of heap memory backed by hugepages

during fleet experiment and 90%th confidence interval. (Error

bars in "release on" condition are too small to cleanly render.)

We observed a strong improvement even in the case that pe-

riodic release was disabled. Since these binaries do not break

up hugepages in either configuration, the benefit is derived

from increased system-wide availability of hugepages (due

to reduced fragmentation in other applications). TEMERAIRE

improves this situation in two ways: since we aggressively re-

lease empty hugepages (where the traditional pageheap does

not), we consume fewer hugepages that we do not need, allow-

ing other applications to more successfully request them, and

other co-located applications are no longer breaking up huge-

pages at the same rate. Even if we map large aligned regions

of memory and do not interfere with transparent hugepages,

the kernel cannot always back these with hugepages [26, 33].

Fragmentation in physical memory can limit the number of

available hugepages on the system.

We next examine the effect this hugepage coverage had

266 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/llvm/llvm-project/commit/cd442157cf
https://github.com/llvm/llvm-project/commit/cd442157cf

Periodic

Release

Walk Cycles (%) MPKI

Control Exp. Control Exp.

On 12.5 11.9 (-4.5%) 1.20 1.14 (-5.4%)

Off 14.1 13.4 (-5%) 1.36 1.29 (-5.1%)

Table 2: dTLB load miss page walk cycles as percentage of

application usage and dTLB misses per thousand instructions

(MPKI) without TEMERAIRE (Control) TEMERAIRE enabled

(Exp.)

on TLB misses. Again, we break down between apps that

enable and disable periodic memory release. We measure the

percentage of total cycles spent in a dTLB load stall7.

We see reductions of 4.5-5% of page walk miss cycles

(Table 2). We see in the experiment data that apps not re-

leasing memory (which have better hugepage coverage) have

higher dTLB stall costs, which is slightly surprising. Our dis-

cussions with teams managing these applications is that they

turn off memory release because they need to guarantee per-

formance: on average, they have more challenging memory

access patterns and consequently greater concerns about mi-

croarchitectural variance. By disabling this release under the

prior implementation, they observed better application perfor-

mance and fewer TLB stalls. With TEMERAIRE, we see our

improved hugepage coverage leads to materially lower dTLB

costs for both classes of applications.

For our last CPU consideration, we measured the over-

all impact on IPC8. Fleetwide overall IPC in the control

group was 0.796647919± 4e−9; in the experiment group,

0.806301729± 5e−9 instructions-per-cycle. This 1.2% im-

provement is small in relative terms but is a large absolute

savings (especially when considered in the context of the

higher individual application benefits discussed earlier).

For memory usage, we looked at pageheap overhead: the

ratio of backed memory in the pageheap to the total heap

memory in use by the application. The experiment group

decreased this from 15.0% to 11.2%, again, a significant im-

provement. The production experiments comprise thousands

of applications running continuously on many thousands of

machines, conferring high confidence in a fleetwide benefit.

5.3 Full rollout trajectories

With data gained from individual applications and the

1% experiment, we changed the default9 behavior to use

TEMERAIRE. This rolled out to 100% of our workloads grad-

ually [10, 38].

Over this deployment, we observed a reduction in cycles

stalled on TLB misses (L2 TLB and page walks) from 21.6%

7More precisely cycles spent page walking, not accessing the L2 TLB.
8Our source of IPC data is not segmented by periodic background memory

release status.
9This doesn’t imply, quite, that every binary uses it. We allow opt outs

for various operational needs.

-1.3%

10 20 30 40 50 60

5

10

15

20

time (days)

%
ag

e
o

f
T

L
B

m
is

s
cy

cl
es

load (old) store (old)

load (TEMERAIRE) store (TEMERAIRE)

Figure 14: Stacked line graph showing effect of TEMERAIRE

rollout on TLB miss cycles. We see an overall downward

trend from 21.6% to 20.3% as TEMERAIRE became a larger

fraction of observed usage in our WSC.

to 20.3% (6% reduction) and a reduction in pageheap over-

head from 14.3% to 10.6% (26% reduction). Figure 14 shows

the effect on TLB misses over time: at each point we show

the total percentage of cycles attributable to TLB stalls (load

and store), broken down by pageheap implementation. As

TEMERAIRE rolled out fleetwide, it caused a noticeable down-

ward trend.

Figure 15 shows a similar plot of pageheap overhead. We

see another significant improvement. Hugepage optimization

has a natural tradeoff between space and time here; saving the

maximum memory possible requires breaking up hugepages,

which will cost CPU cycles. But TEMERAIRE outperforms

the previous design in both space and time. We highlight

several conclusions from our data:

Application productivity outpaced IPC. As noted above

and by Alameldeen et al. [3], simple hardware metrics don’t

always accurately reflect application-level benefits. By all

indication, TEMERAIRE improved application metrics (RPS,

latencies, etc.) by more than IPC.

Gains were not driven by reduction in the cost of malloc.

Gains came from accelerating user code, which was some-

times drastic–in both directions. One application (ads2) saw

an increase of malloc cycles from 2.7% to 3.5%, an apparent

regression, but they reaped improvements of 3.42% RPS, 1.7%

latency, and 6.5% peak memory usage.

There is still considerable headroom, and small percent-

ages matter. Even though TEMERAIRE has been successful,

hugepage coverage is still only 67% when using TEMERAIRE

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 267

-3.7%

20 40 60 80

5

10

15

time (days)

%
ag

e
m

em
o

ry
o
v
er

h
ea

d

old TEMERAIRE

Figure 15: Stacked line graph showing effect of TEMERAIRE

rollout on pageheap overhead. Total memory overhead goes

from 14.3% to 10.6%, as TEMERAIRE became a larger frac-

tion of observed usage in our WSC by growing from a handful

of applications (section 5.1) to nearly all applications.

without subrelease due to physical memory contiguity limita-

tions. Increasing to 100% would significantly improve appli-

cation performance.

6 Strategies used in building TEMERAIRE

It is difficult to predict the best approach for a complex sys-

tem a priori. Iteratively designing and improving a system

is a commonly used technique. Military pilots coined the

term “OODA (Observe, Orient, Decide, Act) loop” [13] to

measure a particular sense of reaction time: seeing incom-

ing data, analyzing it, making choices, and acting on those

choices (producing new data and continuing the loop). Shorter

OODA loops are a tremendous tactical advantage to pilots

and accelerate our productivity as well. Optimizing our own

OODA loop–how quickly we could develop insight into a

design choice, evaluate its effectiveness, and iterate towards

better choices–was a crucial step in building TEMERAIRE.

While our final evaluation was driven by execution on

our production servers, this was both too disruptive and too

risky to test intermediate ideas; however, malloc microbench-

marks are also not particularly interesting at the page level.

To address these challenges, we generated traces to drive the

development of TCMALLOC in two ways.

6.1 “Empirical” distribution sampling

Our production fleet implements a fleet wide profiler [35].

Among the data collected by this profiler are fleet-wide sam-

ples of malloc tagged with request size and other useful prop-

erties. We collect a sample of currently-live data in our heap

and calls to malloc. From these samples we can infer the

empirical distribution of size both for live objects and mal-

loc calls. Our empirical driver generates calls to malloc and

free as a Poisson process10 that replicates these distributions,

while also targeting an arbitrary (average) heap size. That

target size can be changed over simulated time, reproducing

factors such as diurnal cycles, transient usage, or high startup

costs. We have made this driver and its inputs available on

Github (see Section 9).

Despite the name “empirical driver,” this remains a highly

unrealistic workload: every allocation (of a given size) is

equally likely to be freed at any timestep, and there is no cor-

relation between the sizes of consecutive allocation. Neither

does it reproduce per-thread or per-CPU dynamics. Never-

theless, the empirical driver is a fast, efficient way to place

malloc under an extremely challenging load that successfully

replicates many macro characteristics of real work.

6.2 Heap tracing

Tracing every call to malloc without the instrumentation

overhead perturbing the workload itself is extremely difficult,

even infeasible over long timescales. Typical applications

can make millions of calls to malloc per second. Even if

tracing was accomplished non-disruptively, replaying these

traces back accurately into a memory allocator in real time or

faster is similarly intractable: it’s difficult to force the right

combinations of threads to allocate, access, and free the right

buffers on the right CPU at the right (relative) time.

Fortunately, tracing the pageheap is considerably easier. It

is a single-threaded allocator, only invoked by a small fraction

of requests. Playback is also simple–our abstractions allow

directly instantiating and manipulating our pageheap repre-

sentation, rather than going through malloc() itself. Traces

taken from both real binaries and, surprisingly, the empirical

driver itself, played a major role in developing TEMERAIRE.

TEMERAIRE’s components serve a request for K pages

with memory at address [p, p+K), but never read or write

that memory range. We built this for unit testing–allowing

the test of corner cases such as 64 GiB of allocations without

actually needing 64 GiB of memory–but this is also crucial

to accelerating simulations. What might take hours with the

empirical driver can be played back in minutes.

10Little’s law tells us that the average number of live objects L is equal to

the product of the arrival rate λ and average lifetime W . To replicate a given

distribution of live/allocation object sizes where pa of live objects have size

a, we set Wa =
c·pa

λa
. (c is a scaling parameter that determines the total heap

size.)

268 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

6.3 Telemetry

Beyond producing numbers motivating and evaluating our

work, our fleetwide profiler is itself a powerful tool for de-

signing allocators. It reveals patterns of allocation we can use

to derive heuristics, it allows validation of hypotheses about

typical (or even possible) behavior, it helps identify which pat-

terns we can safely ignore as unimportant and which we must

optimize. Besides being used in obvious ways–such as tuning

cache sizes to fit typical use or determining thresholds for

“small” allocations based on the CDF of allocations–querying

the profiler was our first step whenever we were unsure of

useful facts. We gained confidence that our approach to filling

slack (see section 4.5) worked on diverse workloads by query-

ing the profiler for ratios of page allocation sizes. Providing

large scale telemetry that can be consumed by data analysis

tools makes it easy to test and eliminate hypotheses. Such

"tiny experiments" [8] lead to better designs.

This reflects a cultivated mindset in identifying new teleme-

try. Our first question for any new project is “What metrics

should we add to our fleetwide profiler?” We continually

expose more of the allocator’s internal state and derived statis-

tics, such as cache hit rates. While we can form some hypothe-

ses using traditional loadtests, this technique helps validate

their generality.

6.4 Experiment framework

We have also developed an experiment framework allowing us

to A/B test implementations or tuning choices across our fleet

at scale. We can enable or disable experiment groups across

a small percentage of all our machines, without requiring

product teams running services on those machines to take any

action. A/B testing is not a new approach, but enabling it at

the scale of our WSC is a powerful development tool.

As discussed above, our A/B experiment for TEMERAIRE

demonstrated improved hugepage coverage, even for jobs

that never released memory. This is an example of an effect–

against neighboring, collocated services–that might go unno-

ticed during the test of an individual service.

We’ve observed two noteworthy advantages to A/B experi-

mentation:

• Reduced cost and uncertainty associated with major be-

havioral changes. Small 1% experiments can uncover

latent problems well before we roll new defaults, at far

less cost [10, Appendix B].

• Reduced likelihood of overfitting to easily tested work-

loads. Tuning for production-realistic loadtests, while

great for the applications they represent, can result in

non-ideal results for other workloads. Instead, we can be

confident our optimization is good on average for every-

one, and detect (and fix) applications that see problems.

Experiments allow us to evaluate changes on diverse work-

loads. Kanev, et. al. [24] proposed prefetching the next object

i+1 when malloc is returning object i from its freelists. Ef-

fective prefetches need to be timely [28]. Too early and data

can be evicted from the cache before use. Too late and the pro-

gram waits. In this case, prefetching object i when returning

it, turns out to be too late: User code will write to the object

within a few cycles, far sooner than the prefetch’s access to

main memory can complete. Prefetching object i+ 1 gives

time for the object to be loaded into the cache by the time

the next allocation occurs. Independent of the experiments

to develop TEMERAIRE, we added this next object prefetch

for TCMALLOC usage in our WSC despite the contrarian

evidence that it appears to slowdown microbenchmarks and

increases apparent malloc cost. We were able to still identify

this benefit thanks to the introspective techniques described

here, allowing us to prove that application performance was

improved at scale in our WSC; both unlocking important per-

formance gains and proving the generality of these macro

approaches.

7 Future Work

Peak vs. average. A job quickly oscillating between peak

and trough demand cannot be usefully binpacked against its

average. Even if the allocator could instantaneously return

unused memory, job schedulers could not make use of it be-

fore it was required again. Thus transient overhead is not a

practical opportunity [43]. This guides us to measure how

overhead changes over time, which can motivate slower re-

lease rates [31] or application of compaction techniques (such

as Mesh [34]).

Intermediate caches / exposed free spans. TCMALLOC’s

design of stacked caches makes for direct optimization and is

highly scalable, but hides useful cross-layer information. A

good example comes from Bigtable at Google [14]. Cached

ranges are 8 KiB malloc’d segments (i.e. one TCMALLOC

page) to avoid fragmentation. Meaning, most freed buffers

won’t make it past the local cache or central freelist; only

when a full span’s worth is simultaneously freed (and some-

how pushed out of TCMALLOC’s local cache) do these freed

buffers get returned to the pageheap. If every alloc/free of

these chunks were visible to the pageheap, we’d be able to re-

duce fragmentation–we’d have a much more precise estimate

of available space within each hugepage. Of course, if every

malloc(8192)/free went to the pageheap, we would also

eliminate all scalability! There must be a middle ground. Can

we expose the contents of frontline caches to the pageheap

and reduce fragmentation?

Upfront costs / amortization / prediction. The fact we can-

not anticipate what Delete() calls will come in the future

is the hardest part of building a hugepage-friendly algorithm.

We try to generate empty hugepages through heuristics and

hope: we aim to have mostly-empty things stay that way and

hope that the final allocations will quickly get freed. But some

allocations are likely immortal–common data structures that

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 269

are used throughout the program’s run, or frequently used

pages that will bounce in and out of local caches.

We can improve allocation decisions when we know–

immortal or not–they will be hot and see frequent access.

Ensuring these allocations are placed onto hugepages pro-

vides larger marginal performance benefit. TLB misses occur

on access, so it may be preferable to save memory rather than

improve access latency to colder allocations.

Far memory cooperation “Far memory” [27] allows us to

move data to slower, but less expensive memory, reducing

DRAM costs. Clustering rarely accessed allocations can make

far memory more effective. More overhead can be afforded on

those decisions since they can’t happen very often. Avenues

like machine learning [30] or profile directed optimization [15,

37] show promise for identifying these allocations.

Userspace-Kernel Cooperation TEMERAIRE places mem-

ory in a layout designed to be compatible with kernel huge-

page policy (Section 2), but this is only an implicit cooper-

ation. Kernel APIs which prioritize the allocation of huge-

pages within an address space or across processes would en-

able proactive management of which regions were hugepage-

backed, versus the current best-effort reactive implementation.

In developing TEMERAIRE, we considered but did not de-

ploy an interface to request a memory region be immediately

repopulated with hugepages. TEMERAIRE primarily tries to

avoid breaking up hugepages altogether as the existing THP

machinery is slow to reassemble them (Section 4.6). Being

able to initiate on-demand repopulation would allow an ap-

plication to resume placing allocations in that address space

range without a performance gap.

A common problem today is that the first applications to

execute on a machine are able to claim the majority of huge-

pages, even if higher priority applications are subsequently

assigned. We ultimately imagine that such a management

system might execute as an independent user daemon, coop-

erating with individual applications. Kernel APIs could allow

hugepages to be more intelligently allocated against a more

detailed gradient of priority, benefit, and value.

8 Related work

Some work has optimized malloc for cache efficiency of

user-level applications. To minimize L1 conflicts, Dice [19]

proposed jittering allocation sizes. Similarly, a cache-index-

aware allocator [2] reduces conflict misses by changing rela-

tive placement of objects inside pages. mimalloc [29] tries to

give users objects from the same page, increasing the locality.

Addressing this at the kernel level alone would face the

same fragmentation challenges and be more difficult to handle

because we have less control over application memory usage.

The kernel can back the memory region with a hugepage,

but if the application does not densely allocate from that

hugepage, memory is wasted by fragmentation. Prior work

has examined the kernel side of this problem: Kwon et. al. [26]

proposed managing memory contiguity as a resource at the

kernel level. Panwar et. al. [32] observed memory bloat from

using the Linux’s transparent hugepage implementation, due

to insufficient userspace level packing.

Optimization of TLB usage in general has been discussed

extensively; Basu [7] suggested resurrecting segments to

avoid it entirely, addressing TLB usage at the architectural

level. CoLT [33] proposed variable-size hugepages to mini-

mize the impact of fragmentation. Illuminator [5] improves

page decisions in the kernel to reduce physical memory frag-

mentation. Ingens [26] attempts to fairly distribute a lim-

ited supply of kernel-level hugepages and HawkEye [32]

manages kernel allocation of hugepages to control memory

bloat. Kernel-based solutions can be defeated by hugepage-

oblivious user allocators that return partial hugepages to the

OS and fail to densely pack allocations onto hugepages.

At the malloc level, SuperMalloc [25] considers huge-

pages, but only for very large allocations. MallocPool [22]

uses similar variable-sized TLBs as CoLT [33] but does not

attempt to used fixed-size hugepages. LLAMA [30] studies

a possible solution using lifetime predictions, but solutions

with practical costs remain open problems.

9 Conclusion

In warehouse scale computers, TLB lookup penalties are one

of the most significant compute costs facing large applica-

tions. TEMERAIRE optimizes the whole WSC by changing

the memory allocator to make hugepage-conscious place-

ment decisions while minimizing fragmentation. Application

case studies of key workloads from Google’s WSCs show

RPS/CPU increased by 7.7% and RAM usage decreased by

2.4%. Experiments at fleet scale and longitudinal data during

the rollout at Google showed a 6% reduction in cycles spent

in TLB misses, and 26% reduction in memory wasted due to

fragmentation. Since the memory system is the biggest bot-

tleneck in WSC applications, there are further opportunities

to accelerate application performance by improving how the

allocator organizes memory and interacts with the OS.

Acknowledgments

Our thanks to our shepherd Tom Anderson for his help improv-

ing this paper. We also thank Atul Adya, Sanjay Ghemawat,

Urs Hölzle, Arvind Krishnamurthy, Martin Maas, Petros Ma-

niatis, Phil Miller, Danner Stodolsky, and Titus Winters, as

well as the OSDI reviewers, for their feedback.

Availability

The code repository at https://github.com/google/tcmalloc

includes TEMERAIRE. It also includes the empirical driver

(6.1) and its input parameters (CDF of allocation sizes).

270 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/google/tcmalloc

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-

scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 265–283, 2016.

[2] Yehuda Afek, Dave Dice, and Adam Morrison. Cache

Index-Aware Memory Allocation. SIGPLAN Not.,

46(11):55–64, June 2011.

[3] A. R. Alameldeen and D. A. Wood. IPC Considered

Harmful for Multiprocessor Workloads. IEEE Micro,

26(4):8–17, 2006.

[4] Andrea Arcangeli. Transparent hugepage support. 2010.

[5] Aravinda Prasad Ashish Panwar and K. Gopinath. Mak-

ing Huge Pages Actually Useful. In Proceedings of the

Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS ’18), 2018.

[6] Luiz Andre Barroso, Jeffrey Dean, and Urs Hölzle. Web

search for a planet: The google cluster architecture.

IEEE Micro, 23:22–28, 2003.

[7] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,

Mark D. Hill, and Michael M. Swift. Efficient Virtual

Memory for Big Memory Servers. In Proceedings of

the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, page 237–248, New York, NY,

USA, 2013. Association for Computing Machinery.

[8] Jon Bentley. Tiny Experiments for Algorithms and Life.

In Experimental Algorithms, pages 182–182, Berlin, Hei-

delberg, 2006. Springer Berlin Heidelberg.

[9] Emery D. Berger, Kathryn S. McKinley, Robert D. Blu-

mofe, and Paul R. Wilson. Hoard: A Scalable Memory

Allocator for Multithreaded Applications. SIGPLAN

Not., 35(11):117–128, November 2000.

[10] Jennifer Petoff Betsy Beyer, Chris Jones and

Niall Richard Murphy. Site Reliability Engineering:

How Google Runs Production Systems. O’Reilly Media,

Inc, 2016.

[11] Stephen M. Blackburn, Perry Cheng, and Kathryn S.

McKinley. Myths and Realities: The Performance Im-

pact of Garbage Collection. In Proceedings of the Joint

International Conference on Measurement and Mod-

eling of Computer Systems, SIGMETRICS ’04/Perfor-

mance ’04, page 25–36, New York, NY, USA, 2004.

Association for Computing Machinery.

[12] Jeff Bonwick and Jonathan Adams. Magazines and

Vmem: Extending the Slab Allocator to Many CPUs

and Arbitrary Resources. In Proceedings of the Gen-

eral Track: 2001 USENIX Annual Technical Conference,

page 15–33, USA, 2001. USENIX Association.

[13] John R. Boyd. Patterns of Conflict. 1981.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:

A Distributed Storage System for Structured Data. In

7th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 205–218, 2006.

[15] Dehao Chen, David Xinliang Li, and Tipp Moseley. Aut-

ofdo: Automatic Feedback-Directed Optimization for

Warehouse-Scale Applications. In CGO 2016 Proceed-

ings of the 2016 International Symposium on Code Gen-

eration and Optimization, pages 12–23, New York, NY,

USA, 2016.

[16] William D. Clinger and Lars T. Hansen. Generational

Garbage Collection and the Radioactive Decay Model.

SIGPLAN Not., 32(5):97–108, May 1997.

[17] James C. Corbett, Jeffrey Dean, Michael Epstein,

Andrew Fikes, Christopher Frost, JJ Furman, Sanjay

Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-

ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-

gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-

nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh

Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s Globally-Distributed Database. In

10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 12), Hollywood, CA, 2012.

[18] Jeffrey Dean. Challenges in building large-scale infor-

mation retrieval systems: invited talk. In WSDM ’09:

Proceedings of the Second ACM International Confer-

ence on Web Search and Data Mining, pages 1–1, New

York, NY, USA, 2009.

[19] Dave Dice, Tim Harris, Alex Kogan, and Yossi Lev. The

Influence of Malloc Placement on TSX Hardware Trans-

actional Memory. CoRR, abs/1504.04640, 2015.

[20] Jason Evans. A scalable concurrent malloc (3) imple-

mentation for FreeBSD. In Proceedings of the BSDCan

Conference, 2006.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 271

[21] T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo.

An Experimental Study on Memory Allocators in Mul-

ticore and Multithreaded Applications. In 2011 12th

International Conference on Parallel and Distributed

Computing, Applications and Technologies, pages 92–

98, 2011.

[22] M. Jägemar. Mallocpool: Improving Memory Perfor-

mance Through Contiguously TLB Mapped Memory. In

2018 IEEE 23rd International Conference on Emerging

Technologies and Factory Automation (ETFA), volume 1,

pages 1127–1130, 2018.

[23] Svilen Kanev, Juan Darago, Kim Hazelwood,

Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon

Wei, and David Brooks. Profiling a warehouse-scale

computer. In ISCA ’15 Proceedings of the 42nd Annual

International Symposium on Computer Architecture,

pages 158–169, 2014.

[24] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David

Brooks. Mallacc: Accelerating Memory Allocation.

SIGARCH Comput. Archit. News, 45(1):33–45, April

2017.

[25] Bradley C. Kuszmaul. Supermalloc: A Super Fast Mul-

tithreaded Malloc for 64-Bit Machines. SIGPLAN Not.,

50(11):41–55, June 2015.

[26] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-

pher J. Rossbach, and Emmett Witchel. Coordinated

and Efficient Huge Page Management with Ingens. In

Proceedings of the 12th USENIX Conference on Operat-

ing Systems Design and Implementation, OSDI’16, page

705–721, USA, 2016. USENIX Association.

[27] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,

Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan

Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,

Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and

Parthasarathy Ranganathan. Software-Defined Far Mem-

ory in Warehouse-Scale Computers. In Proceedings of

the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’19, page 317–330, New York,

NY, USA, 2019. Association for Computing Machinery.

[28] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When

Prefetching Works, When It Doesn’t, and Why. ACM

Transactions on Architecture and Code Optimization -

TACO, 9:1–29, 03 2012.

[29] Daan Leijen, Ben Zorn, and Leonardo de Moura. Mi-

malloc: Free List Sharding in Action. Technical Report

MSR-TR-2019-18, Microsoft, June 2019.

[30] Martin Maas, David G. Andersen, Michael Isard, Mo-

hammad Mahdi Javanmard, Kathryn S. McKinley, and

Colin Raffel. Learning-based Memory Allocation for

C++ Server Workloads. In 25th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2020.

[31] Martin Maas, Chris Kennelly, Khanh Nguyen, Darryl

Gove, Kathryn S. McKinley, and Paul Turner. Adaptive

huge-page subrelease for non-moving memory alloca-

tors in warehouse-scale computers. In Proceedings

of the 2021 ACM SIGPLAN International Symposium

on Memory Management, ISMM 2021, New York, NY,

USA, 2021. Association for Computing Machinery.

[32] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawk-

Eye: Efficient Fine-Grained OS Support for Huge Pages.

In Proceedings of the Twenty-Fourth International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’19, page

347–360, New York, NY, USA, 2019. Association for

Computing Machinery.

[33] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel,

and Abhishek Bhattacharjee. CoLT: Coalesced Large-

Reach TLBs. In Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-45, page 258–269, USA, 2012. IEEE

Computer Society.

[34] Bobby Powers, David Tench, Emery D. Berger, and An-

drew McGregor. Mesh: Compacting Memory Manage-

ment for C/C++ Applications. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2019, page

333–346, New York, NY, USA, 2019. Association for

Computing Machinery.

[35] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius

Rus, and Robert Hundt. Google-Wide Profiling: A Con-

tinuous Profiling Infrastructure for Data Centers. IEEE

Micro, pages 65–79, 2010.

[36] John Robson. Worst Case Fragmentation of First Fit

and Best Fit Storage Allocation Strategies. Comput. J.,

20:242–244, 08 1977.

[37] Joe Savage and Timothy M. Jones. HALO: Post-Link

Heap-Layout Optimisation. In Proceedings of the 18th

ACM/IEEE International Symposium on Code Genera-

tion and Optimization, CGO 2020, page 94–106, New

York, NY, USA, 2020. Association for Computing Ma-

chinery.

[38] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck,

and M. Stumm. Continuous Deployment at Facebook

and OANDA. In 2016 IEEE/ACM 38th International

272 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Conference on Software Engineering Companion (ICSE-

C), pages 21–30, 2016.

[39] Scott Schneider, Christos D. Antonopoulos, and Dim-

itrios S. Nikolopoulos. Scalable Locality-Conscious

Multithreaded Memory Allocation. In Proceedings of

the 5th International Symposium on Memory Manage-

ment, ISMM ’06, page 84–94, New York, NY, USA,

2006. Association for Computing Machinery.

[40] Raimund Seidel and Cecilia R Aragon. Randomized

search trees. Algorithmica, 16(4-5):464–497, 1996.

[41] Akshitha Sriraman and Abhishek Dhanotia. Accelerom-

eter: Understanding Acceleration Opportunities for Data

Center Overheads at Hyperscale. In Proceedings of the

Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating

Systems, ASPLOS ’20, page 733–750, New York, NY,

USA, 2020. Association for Computing Machinery.

[42] Redis Team. Redis 6.0.9 and 5.0.10 are out.

[43] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at Google with Borg. In Pro-

ceedings of the European Conference on Computer Sys-

tems (EuroSys), Bordeaux, France, 2015.

[44] Wm. A. Wulf and Sally A. McKee. Hitting the Memory

Wall: Implications of the Obvious. SIGARCH Comput.

Archit. News, 23(1):20–24, March 1995.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 273

Scalable Memory Protection in the PENGLAI Enclave

Erhu Feng1†‡, Xu Lu1†‡, Dong Du†‡, Bicheng Yang†‡, Xueqiang Jiang†‡, Yubin Xia†§‡,
Binyu Zang†§‡, Haibo Chen†§‡

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
§Shanghai AI Laboratory

‡Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
Secure hardware enclaves have been widely used for pro-

tecting security-critical applications in the cloud. However,
existing enclave designs fail to meet the requirements of
scalability demanded by new scenarios like serverless com-
puting, mainly due to the limitations in their secure mem-
ory protection mechanisms, including static allocation, re-
stricted capacity and high-cost initialization. In this paper,
we propose a software-hardware co-design to support dy-
namic, fine-grained, large-scale secure memory as well as
fast-initialization. We first introduce two new hardware prim-
itives: 1) Guarded Page Table (GPT), which protects page
table pages to support page-level secure memory isolation;
2) Mountable Merkle Tree (MMT), which supports scalable
integrity protection for secure memory. Upon these two primi-
tives, our system can scale to thousands of concurrent enclaves
with high resource utilization and eliminate the high-cost ini-
tialization of secure memory using fork-style enclave creation
without weakening the security guarantees.

We have implemented a prototype of our design based on
PENGLAI [24], an open-sourced enclave system for RISC-
V. The experimental results show that PENGLAI can sup-
port 1,000s enclave instances running concurrently and scale
up to 512GB secure memory with both encryption and in-
tegrity protection. The overhead of GPT is 5% for memory-
intensive workloads (e.g., Redis) and negligible for CPU-
intensive workloads (e.g., RV8 and Coremarks). PENGLAI
also reduces the latency of secure memory initialization by
three orders of magnitude and gains 3.6x speedup for real-
world applications (e.g., MapReduce).

1 Introduction
There has been a surge of interest in using enclaves like Intel
SGX [77], AMD SEV [12] and ARM TrustZone [58] to host
security-critical applications in cloud with minimal reliance
on the trust of cloud providers [28,29,37,40,46,59,84,87,96].
Meanwhile, microservice [80] and serverless computing [1,
3–5] have become emerging paradigms of cloud, which use
single-purpose service or function as a basic computation
unit and achieve high scalability. Since the frameworks of

1The two authors contributed equally to this work and should be consid-
ered co-first authors.

both are also managed by the cloud providers, it is natural to
use enclaves to protect serverless-like and microservice-like
applications in the cloud [36, 93].

However, existing enclave systems cannot well fit some
inherent characteristics of these cloud applications, including
resilient memory allocation [86], high resource utilization [43,
76], auto-scaling [43] and ephemeral execution time [34, 56,
64], mainly due to three scalability limitations of their secure
memory protection mechanisms:

Limitation-1. Non-scalable memory partition/isolation:
Most existing enclave systems use static or almost-static parti-
tion for region-based memory isolation, like fixed-sized PRM
(Processor Reserved Memory) in SGX [15], limited secure
world memory regions in ARM TrustZone [2]2, 16 protected
memory regions in Keystone [13, 68], etc. It is hard to dy-
namically adjust the boundaries of partitions and scale to a
large amount of secure memory. Region-based isolation also
violates the scalability requirement of fined-grained memory
management in the cloud.

Limitation-2. Non-scalable memory integrity protection:
Using a traditional Merkle hash tree (or its variants) to protect
memory integrity is hard to scale. For example, Intel SGX
only supports 128/256MB EPC (Enclave Page Cache)3. Al-
though SGX has no restriction on the number of enclaves,
running thousands of enclaves may either cause little available
EPC for each instance or frequent EPC swapping, which fails
to meet the scalability requirement of serverless computing.

Limitation-3. Non-scalable secure memory initialization:
High-cost secure memory initialization causes long startup
latency for enclaves, which significantly affects the perfor-
mance of auto-scaling. For example, SGX needs seconds to
create an enclave [40,69] by adding memory to EPC and mea-
suring the contents (by EADD and EEXTEND instructions)
for every page. On the contrary, serverless functions usually
have a very short life cycle (<1s) [50, 88].

In this paper, we propose scalable secure memory protec-
tion mechanisms for enclaves with three metrics: (1) size and
granularity of secure memory, (2) number of enclaves, (3)

2The number depends on specific implementations, and is typically 8.
3The latest SGX platforms (Ice Lake Server) support larger EPC sizes

(e.g., 1TB) [22], but they do so by giving up on integrity protection.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 275

startup latency of enclaves. We first introduce two new archi-
tectural primitives, Guarded Page Table (GPT) and Mount-
able Merkle Tree (MMT): GPT protects page table pages and
enables memory isolation with page-level granularity, and
MMT is a new abstraction to achieve on-demand and scalable
memory encryption and integrity protection. Leveraging these
two primitives, a lightweight secure monitor running in the
most privileged mode is in charge of enclave management
and maintaining security guarantees. To mitigate the high
overhead of enclave creation due to costly secure memory ini-
tialization, we propose a new type of enclave, called shadow
enclave, to support fork-style fast enclave creation.

We have implemented a prototype of our design based on
PENGLAI [24], an open-source RISC-V enclave system using
a secure monitor to manage all the enclaves. We extend the
secure monitor to support scalable secure memory protection
with two hardware primitives, as well as fast enclave creation.
The evaluation results show that PENGLAI can host 1,000s
of concurrent enclave instances and support secure memory
up to 512GB. PENGLAI incurs negligible overhead for CPU-
intensive benchmarks (e.g., RV8 and Coremarks), and incurs
5% overhead for memory-intensive benchmarks (e.g., Redis).
For startup latency, PENGLAI leverages the shadow enclave
to boost enclave creation by three orders of magnitude (with
16MB enclave memory). We also evaluate PENGLAI with real-
world scalable applications. The results show that PENGLAI
can significantly reduce the execution time of MapReduce
(3.6x speedup with shadow fork) and achieve near-native
performance for a serverless application. We have imple-
mented all the architectural features of PENGLAI on RISC-V
platform, including an FPGA board, QEMU and the Gem5
simulator, and implemented the software monitor with 6,399
LoCs, including enclave/hardware management and encryp-
tion libraries. The hardware costs are also minor, i.e., 0.81%
(without MMT or memory encryption) in LUT and 0.73% in
FF on a Xilinx VC707 FPGA board.

PENGLAI is open-sourced at https://github.com/
Penglai-Enclave.

2 Motivation
This section analyzes the scalability and security of prior
enclave systems through several metrics, as shown in Table 1.

2.1 State-of-the-art Enclaves
Intel SGX [57, 77] can protect both confidentiality and in-
tegrity of enclave memory, but it has a restriction on secure
memory size, i.e., 128/256MB. Also, the secure memory
must reside in a contiguous region (PRM) reserved by the
CPU in advance. Recently, Intel has released a scalable ver-
sion of SGX [22], which extends the secure memory size to
TB level but weakens the memory integrity protection, and
still requires a static reserved secure memory region. AMD
SEV [12, 27, 61] protects virtual machines (VMs) without
memory size restriction. However, the number of secure VMs

is restricted to 16 (509 in EPYC Generation 2 [14]). Intel
TDX [16] is also designed to isolate secure VMs from other
software, including the hypervisor. However, TDX only pro-
vides basic integrity protection and cannot defend against
hardware-based memory replay attacks. The number of secure
VMs is limited by hardware to 64 private keys in MKTME
(Multi-Key Total Memory Encryption). ARM TrustZone-
based enclaves, e.g., Komodo [52] and Sanctuary [35], have
no restriction on enclave number or memory size. However,
the secure memory can only reside in a few fixed memory
regions and has no encryption or integrity guarantees.

Keystone [68] implements enclave memory isolation by
leveraging the PMP (Physical Memory Protection) mecha-
nism of RISC-V [100], which includes a set of paired registers
to indicate physical memory regions as well as their access
permissions. Thus, the number of memory regions in Key-
stone is restricted by the number of PMP registers (up to 16).
In order to defend against physical attacks, Keystone lever-
ages on-chip computing, which is costly due to the restricted
on-chip RAM [68]. CURE [21] adopts enclave ID-based ac-
cess control for customizable enclaves. It utilizes a hardware
arbiter to record contiguous physical memory regions of en-
claves, which can only support 13 enclaves. Similarly, the
enclave number of Sanctum [45] is also restricted by the num-
ber of isolated DRAM regions. TIMBER-V [102] extends
the RISC-V ISA to run unlimited number of enclaves, but it
incurs non-trivial overhead (25.2% on average) and does not
consider memory integrity protection.

2.2 State-of-the-art Fall Short

Fine-grained memory isolation. Prior art [27,91,92] achieves
fine-grained and flexible memory isolation by introducing ad-
ditional metadata like bitmap [27,92] or tags [102] to identify
whether a page belongs to an enclave and check each memory
access. However, due to the capacity restriction of in-SoC
RAM, most of the metadata has to be stored in the main
memory, which requires an extra memory load when meta-
data is out of SoC and incurs a high performance penalty in
TIMBER-V [102].

Large-scale memory integrity protection. Several
schemes [38, 39, 85, 91, 92] have been proposed to
provide integrity protection for more memory. For example,
VAULT [92] extends SGX and optimizes the integrity tree
node structure to increase the node’s fan-out, which can
protect larger memory region given the same tree depth.
However, these schemes need to take up extra memory
space even when no enclaves are running (e.g., 14.1% in
VAULT without MAC optimization), and the size of protected
memory (e.g., 64GB in VAULT) is still insufficient for cloud
applications.

Boosting startup latency. Some researchers add a new soft-
ware layer to manage enclaves, like the secure OS in ARM
TrustZone [26] and the libOS in Occlum [89], which can

276 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/Penglai-Enclave
https://github.com/Penglai-Enclave

Systems Scalability Metrics Security Metrics

Name Arch Enclave
number

Mem
size

Fast
startup

Mem
granu.

No PT
channel

No Cache
channel

Mem
enc.

Mem
inte.

SGX [57, 77] Intel Unrestricted 128/256MB 7 Region 7 7 3 3
Scalable SGX [22] Intel Unrestricted All 7 Region 7 7 3 7
TDX [16] Intel 64 All 7 Page 3 7 3 Partial
SEV [12, 61] AMD 16/509 All 7 Page 7 7 3 7
SEV-ES [61] AMD 16/509 All 7 Page 7 7 3 7
SEV-SNP [27] AMD 16/509 All 7 Page 7 7 3 7
Trustzone [26] ARM Unrestricted All 3 Region 3 7 7 7
Komodo [52] ARM Unrestricted All 3 Region 3 7 7 7
Sanctuary [35] ARM Unrestricted All 7 Region 3 3 7 7
Sanctum [45] RISC-V DRAM regions All 7 Region 3 3 7 7
TIMBER-V [102] RISC-V Unrestricted All 7 Page 3 7 7 7
Keystone [13, 68] RISC-V PMPs All 7 Region 3 3 On-chip On-chip
CURE [21] RISC-V 13 All 7 Region 3 3 7 7
PENGLAI RISC-V Unrestricted All 3 Page 3 3 3 3

Table 1: A comparison on enclave systems. Mem granu. means the granularity of secure and non-secure memory. Region means secure
memory can only reside in a few contiguous memory regions. Mem enc. means memory encryption. Mem inte. means memory integrity
protection. Unrestricted means the number of enclaves is unrestricted, but when secure memory is exhausted, the performance will decline.
Partial means the physical memory replay attack is out of scope. 16/509 means EPYC Generation 2 (Rome) processors [14] can support 509
keys for SEV VM. PENGLAI is the only system that can achieve both high-security and scalability.

create a new enclave with less overhead. However, these sys-
tems do not consider the process of attestation during enclave
creation. Clemmys [93] leverages the dynamic memory man-
agement of SGX2 as well as batching for EPC augmentation
to improve the startup latency of enclaves. However, creating
an enclave still takes hundreds of milliseconds, and it needs
to add redundant pages into EPC when creating the same
enclave multiple times.

3 System Overview
We first present our design goals of memory protection.
• G1: Scalability. The design shall not have restrictions on

(1) the number of concurrent enclave instances, and (2) the
size of secure memory of enclaves. It shall also consider the
characteristics of scalable applications, e.g., fine-grained
memory management and auto-scaling.

• G2: Performance. The design shall not incur high perfor-
mance overhead.

• G3: Security. The design shall achieve the previous two
goals with security guarantees. It should consider privileged
software attacks, off-chip hardware attacks (e.g., hardware-
based memory replay attacks), cache-based side-channel
attacks, etc.

3.1 Architecture
As shown in Figure 1, PENGLAI is a software-hardware co-
design enclave system. We introduce a small software compo-
nent called secure monitor, which runs in the most privileged
mode (e.g., machine mode in RISC-V) and several new hard-
ware extensions to provide the enclave abstractions. Each
enclave runs in the user space and is isolated from an un-
trusted host and other enclaves.

Secure monitor. The secure monitor runs in the most privi-
leged level and separates OS and userspace software into two
worlds: one for the OS and normal applications, the other

Fast Startup
Secure Memory

Management
Inter-enclave

Communication
Enclave

Management

Guarded Page
Table

Mountable
Merkle Tree

Cache-line
Locking

PMP/sPMP Hardware

Most

Privileged

Mode

Enclave
Driver

Enclave SDK

OS

Mode

User

Mode

Secure Monitor

Host OS

Host App
Enclave

AppEnclave SDK

Host App
Enclave

App

Shadow Enclave

Message

Existing components in Penglai New components

Figure 1: Overview of PENGLAI architecture. PENGLAI is com-
posed of the software monitor, driver, SDK and hardware extensions.
The red components are additional to realize the scalable memory
protection.

for enclaves. The secure monitor manages all enclaves and
provides APIs for users to deploy enclaves. To achieve scala-
bilility, we add two components in the secure monitor: one for
fine-grained and large-scale secure memory management, and
the other for enclave fast startup. Furthermore, to minimize
the size of the secure monitor, we separate resource protection
from management [51]: the secure monitor only configures
privileged hardware resources (e.g., GPT and MMT configu-
rations), and the managements of other hardware are done by
the untrusted host OS.

During system boot, the secure monitor is loaded and veri-
fied by the boot ROM (aka. secure boot). It then takes control
of the system and protects itself with hardware-supported
memory isolation (e.g., RISC-V PMP). It also leverages en-
cryption and Mountable Merkle Tree to protect itself from
physical memory attacks (details in 4.2).

Hardware primitives. We propose new hardware primitives
to assist the secure monitor and achieve scalable memory

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 277

protection. We briefly introduce their purposes here. Guarded
Page Table (GPT) is the basis of fine-grained memory isola-
tion (§4.1). Mountable Merkle Tree (MMT) is a new physical
memory protection abstraction to achieve scalable memory
integrity and encryption protection (§4.2). Cache line locking
is a cache partition extension to defend against cache-based
side-channel attacks (§4.4).

3.2 Threat Model
The TCB of our system only contains the CPU and the secure
monitor. Other hardware (e.g., off-chip DRAM and peripher-
als) and software (e.g., the host OS) are untrusted and could
be compromised by an attacker.

We consider three classes of attacks in our threat model:

• Privileged software attacks: An attacker may have full
control of the untrusted OS and applications and launch
adversarial enclaves.

• Physical attacks: An attacker may intercept and tamper
with any messages between CPU and other hardware (e.g.,
DRAM), and issue attacks from any off-chip hardware.

• Side-channel attacks: An attacker may learn information
by observing access patterns during enclaves’ execution.
Our system aims to solve the controlled channel attacks [81]
and cache-based side-channel attacks [74,82,107,109,110].
Other side-channel attacks, like the ones based on TLB or
speculative execution, are out of the scope. The potential
defense mechanisms of these attacks are orthogonal to our
design.

Our system does not consider DoS attacks performed by
untrusted software or hardware.

4 Design
This section focuses on how the secure monitor and the hard-
ware extensions achieve the design goals. We discuss other
security issues in §7.

4.1 Fine-grained Flexible Memory Isolation
For fine-grained and flexible memory isolation, the secure
monitor maintains an ownership bitmap to record the status
of each physical page: secure for monitor and enclaves, non-
secure for untrusted OS and applications, and TreeNode for
SubTrees (details in §4.2). It achieves 4KB page granularity to
isolate memory between enclaves and host. To allocate secure
pages, the secure monitor needs to update the ownership of
them in the bitmap. The ownership bitmap is protected by
hardware (e.g., RISC-V PMP). Any memory access to the
ownership bitmap issued by OS or user-level programs will
trap into the monitor for a security check.

Several similar approaches [27, 91, 92, 102] also use the
ownership bitmap to achieve fine-grained memory isolation.
However, these approaches check the page ownership during
the memory access, which needs double memory access for
a single address. Prior work demonstrates that the double

Host OS

HostApp

D D

D D

D D

D D

D

D

D

D

D

D

…

EnclaveApp

HPT Area

D

D

read-only, write-trap

ro rw rw rw rw ro

M
e

m
o

ry

non-secure

data page

host page

table page

enclave page

table page

secure

data page
D D

Figure 2: The design of Guarded Page Table with Host Page
Table Area (HPT Area). PENGLAI maintains two kinds of page
tables: the host page table is used by untrusted software, and the
enclave page table is used by enclave.

unused VPN[2] VPN[1] VPN[0] Page offset

Host Page Table Area

Page Table

Walker

DRAM

: check if PA of next level page table is within page table region

reg_hptarea_start reg_hptarea_size

ptbr

Figure 3: The MMU extension of Guarded Page Table. Exten-
sions are marked as red. MMU will check the location of each page
table. VPN means virtual page number.

memory access may introduce the 25.2% average runtime
overhead [102].

We propose a new hardware primitive, Guarded Page Ta-
ble, to shift the ownership checking overhead to the mapping
phase, which is based on an observation that mapping opera-
tions are far less frequent than memory accesses.

Guarded Page Table. Guarded Page Table implements and
optimizes ownership checking with bitmap. The design is
based on our insight that if there is no page table of untrusted
software containing any mapping to secure pages, then the
checking during memory access can be avoided. To this end,
we put all host page tables (Figure 2) in a protected memory
region: Host Page Table Area (HPT Area), and trap any mod-
ification in HPT Area to ensure that no secure page will be
mapped by any page tables of untrusted software.

HPT Area is indicated by two new registers, reg_hptarea_-
start (start physical address of HPT Area) and reg_hptarea_-
size (size of HPT Area), as shown in Figure 3. To guarantee all
the host page tables are located in HPT Area, we extend page
table walker (PTW). When a TLB miss occurs, the PTW will
walk into each level of page table page (PT page) according
to the virtual address to get a corresponding physical address.
Our extension to PTW will check whether each PT page is

278 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

located in HPT Area, as shown in Figure 3. If the address of
any PT page is out of HPT Area and the software currently
running is not an enclave, the CPU will raise an exception
to the monitor for further check. Furthermore, a CPU mode
status register, reg_ms, is introduced to indicate whether the
current CPU is running an enclave. Therefore, we can enforce
the untrusted OS to only use pages in HPT Area as Guarded
Page Table.

Protecting Host Page Table Area (HPT Area). Similar to the
ownership bitmap, HPT Area is also protected by the secure
monitor with hardware support. When the OS updates address
mappings, the request will be redirected to the secure monitor,
which ensures the new page table entry does not point to a
secure page. Also, we need to prevent the OS from bypassing
such checking via stale TLB entries or disabling page table.
Firstly, the secure monitor will flush the corresponding TLB
entries during enclave switching and page ownership chang-
ing. Directly writing TLB entries is out of scope as there is
no such instruction in the prevailing ISA (e.g., X86, RISC-
V). Secondly, the hardware will raise an exception if address
translation is disabled while the reg_hptarea_start and reg_-
hptarea_size registers are non-zero (these two registers can
only be modified by monitor). HPT Area is also protected
from hardware attacks such as the PThammer attack [113]
via hardware integrity protection (details in §4.2).

Memory isolation among enclaves. As all enclaves are run-
ning in user mode, PENGLAI utilizes an enclave page table for
memory isolation among enclaves. Enclave page tables are
marked as secure memory and separated from HPT Area. The
secure monitor maintains all the enclave page tables, and each
enclave can map its own secure memory as well as non-secure
memory shared with the OS.

Huge page support. To support huge pages, we further parti-
tion the HPT Area into several sub-areas and assign different
levels of page table entries to the corresponding sub-area,
including one sub-area for PMDs (huge page entry) and one
for PTEs. The extended PTW will check whether each level
of page table entry lies in the corresponding sub-area during
page table walk. In this way, the secure monitor can distin-
guish a huge page table entry via its address and perform
different security checks.

Summary. We summarize the benefits of the ownership-based
design with Guarded Page Table. First, the hardware modi-
fication is minor, and the hardware maintains no in-memory
metadata like SGX EPCM. Second, it achieves fine granular-
ity since any physical memory page can be used as secure or
non-secure. The only contiguous range, Host Page Table Area
region, has little impact on scalability as the page table pages
are much less than data pages. Last, the design introduces no
overhead of checking during memory access. The only costs
come from the page table mapping operations. Compared
with other page table-based isolation, e.g., shadow PT [94],
the mapping overhead is minor.

Root-root

Sub-root Sub-root Sub-root

Memory

SoC

…

mount

…

SubTree

RootTree

(a) Forest structure.

64b 6b 6b… Hash

64b 11b 11b… Hash5b 27b

Leaf Counters;
Level L

Level L-1 and beyond

Arity=64

Hash

Arity=32

Global

Idx Extra

Local

6b

(b) Counter layout.

Figure 4: Mountable merkle tree. (a) The top panel is the mounted
SubTree root and RootTree. The bottom panel is the hash forest
constituted by multi-SubTrees. (b) The arity of SubTree is 32, 32
and 64, while 32, 32, 32 for RootTree. The “Idx” points to a local
counter, which can use the “Extra” to avoid frequently global counter
updating.

4.2 Scalable Memory Integrity Protection
We propose a new physical memory protection abstraction:
Mountable Merkle Tree (MMT). MMT promises a stable tree
depth that will not increase along with total memory size and
minimizes the memory space overheads by storing integrity
metadata (tree nodes) on demand. Furthermore, the secure
monitor can manage MMT to achieve large-scale, fine-grained
memory integrity protection. In our prototype, MMT can
support up to 512GB of secure memory.

Challenge. It is very challenging to achieve scalable integrity
protection, as shown in Figure 5 (a). First, protecting integrity
for large-scale secure memory turns to a deep integrity tree,
which requires additional bandwidth to load tree nodes. Sec-
ond, to boost memory integrity checking, a wise memory
integrity engine may cache topmost tree nodes in the CPU
cache. However, it only increases the amount of secure mem-
ory linearly. Third, the integrity engine needs to pre-allocate
extra memory to store all the tree nodes, even if there is no se-
cure memory being used. Lastly, the state-of-the-art memory
protection schemes can only protect a fixed range of memory,
and software cannot manage secure memory at all. These
coarse-grained and fixed memory protection schemes have
scalability issues which cannot be solved by just adding hard-
ware resources (e.g., enlarging SoC storage).

MMT introduces a mountable SubTree structure for in-
tegrity tree scheme and can reduce both on-die and in-memory
storage overhead. Also, MMT allows the software to take part
in memory protection management and allocate secure mem-
ory with integrity protection on demand.

MMT forest organization. MMT introduces a new concept,
hash forest, which is composed of a set of SubTrees, as shown
in Figure 4 (a). The SubTree is the mountable and manageable
unit in hash forest and can protect a physical memory region
(4MB/3-level in PENGLAI) alone. To save on-die space, MMT
stores all SubTrees in a specific memory region, MMT meta-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 279

4 MB 4 MB 4 MB

in cache & mem

in mem only

… … …

… …

…

… … …

… …

…

Root node Root node

Sub-root nodes

Heavily

used

(a) Static Merkle Tree. (b) Mountable Merkle Tree.

in mem only

(unmounted)

Unused Moderately

used

Rarely

used

Heavily

used

Unused Moderately

used

Rarely

used

4 MB

Hash

nodes

Memory

m
o
u
n
te

d

u
n
a
llo

c
a
te

d

m
o
u
n
te

d

u
n
m

o
u
n
te

d

… … … … … …

always in CPU

Figure 5: Comparison between static Merkle tree and MMT.

zone. MMT utilizes RootTree to protect the integrity of all
SubTree roots. The ancestor of RootTree (Root-root in the
figure) is fixed in SoC to prevent attacks. The Root-root,
RootTree, and SubTrees, together form hash forest.

SubTree Allocation. Besides normal memory allocation, the
software (secure monitor) can also allocate SubTree and se-
cure memory with two new interfaces: ALLOC_SECURE_-
MEM, REVOKE_SECURE_MEM. Each SubTree protects a
range of secure memory. Unlike traditional memory protec-
tion schemes, the CPU can only protect a fixed range of physi-
cal memory, and the whole checking procedure is transparent
for software. MMT allows the privileged software (e.g., the
secure monitor) to allocate secure memory at runtime, and
both secure memory and SubTree can reside in anywhere of
physical memory, not a fixed range.

Mounting. Like TLB accelerating virtual address translation,
MMT accelerates integrity checking by mounting SubTrees
into SoC, which avoids the memory access to retrieve SubTree
root. MMT extends the memory controller to support mount-
ing operations. As shown in Figure 6, the mounted SubTree
root is stored in the Mount table, which records counter and
address. However, the storage space for Mount table in SoC
is restricted, e.g., 32 subtrees simultaneously. When space is
exhausted, MMT unmounts an inactive SubTree root out of
SoC and stores it in the MMT meta-zone, which is isolated
with host memory (e.g., PMP-protected). Meanwhile, MMT
needs to update the value of Root-root if MMT meta-zone is
changed, which ensures the integrity of all inactive SubTree
roots.

Bootstrap. Figure 6 demonstrates the hardware extension
and memory layout of MMT. Besides the non-secure mem-
ory, there are three protected regions, secure memory (en-
claves and monitors), SubTree nodes and MMT meta-zone.
The MMT meta-zone is the only fixed region configured
by bootrom and protected by hardware (e.g., RISC-V PMP).
MMT meta-zone contains the SubTree root entries (address
and counter) and RootTree nodes (Root-root is reserved in
SoC). It incurs minor memory costs — about 2MB, which
can support up to 512GB of integrity-protected memory. The
integrity protection relation of these three regions is shown in
the figure.

DRAM

Non-secure Mem Secure Mem Subtree Node

MMT meta-zone

Reg: Root-root

Tag IDX Subtree Root/Addr

Mount Table

Subtree Root/Addr

Subtree Root/Addr

Tree
Node

Reg: Hole_VA_start

Reg: Hole_VA_size

Reg: Mode status

CPU/Memory Controller

protected

protectedprotected

Figure 6: Hardware extension for MMT. The flow shows the
integrity protection relation: secure memory is protected by SubTree
nodes, while SubTree nodes are protected by MMT meta-zone.

During system boot, the CPU bootrom will configure the
MMT meta-zone range in physical memory, initialize all Sub-
Tree root entries, construct RootTree nodes and allocate the
first subtree to protect the memory of the secure monitor. After
this, the secure monitor takes control of subsequent booting
stages.

Software management. The secure monitor is the only priv-
ileged software that can manage secure memory and record
memory status (secure, normal and SubTree node) in the
bitmap. As the secure monitor cannot directly allocate mem-
ory, the host kernel will allocate free memory (used as secure
memory and SubTree node later) and transfer it to the se-
cure monitor. The secure monitor configures secure memory
and its corresponding SubTree in this memory. After allo-
cation, the corresponding SubTree root is filled in the MMT
meta-zone (i.e., ALLOC_SECURE_MEM). The monitor also
ensures that secure memory is zero-filled and SubTree nodes
are in the initialized state. So the integrity check will not
fail at the first access. If the monitor needs to reclaim secure
memory, it can change the memory status, clear the SubTree
root in the MMT meta-zone (i.e., REVOKE_SECURE_MEM),
and return memory back to the host kernel.

MMT tree structure. MMT extends the counter-based
integrity tree node [55, 85, 92] to hybrid-counter. As
shown in Figure 4 (b), each tree node is composed of
global_counter(64b), extra_idx(5b), extra_counter(27b),
local_counter(32×11b) and hash(64b) (however, leaf node
only contains global, local counters and hash). The hash in the
tree node is calculated with all other metadata (448b) in the
same node and hybrid-counter in its parent node. The extra
counter in a hybrid-counter remains zero unless extra_idx
refers to itself. This design is based on an observation that
there is almost one active counter in a single tree node. In our
implementation, both SubTree and RootTree are 3-level, and
each RootTree leaf node can contain 4 SubTree roots.

Integrity checking. For each secure memory access, MMT
will first check whether the corresponding SubTree root is in
SoC. If it is, MMT checks the integrity with the SubTree. Oth-
erwise, MMT uses mounting mechanism to mount the target
SubTree into SoC. As for the integrity checking procedure,
the MMT engine will compare the hash stored in the tree

280 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

node with the hash it computes level by level, until the hash is
stored in SoC. A write request will increase hybrid-counter in
the tree node, while a read request will not. If a local counter
is exhausted or extra_idx is changed, MMT will re-hash the
relevant tree nodes.

Integrity enabling. PENGLAI will always enable integrity
protection when executing in the monitor. Nevertheless, as an
enclave can access both secure and non-secure memory, we
cannot just impose integrity protection on all its pages.

PENGLAI introduces a pair of hole registers (reg_-
hole_va_start and reg_hole_va_size) to configure the
integrity checking. The effects are shown on the right.
Hardware shall perform integrity checking when reg_-
ms is ENCL_MODE and disable it when reg_ms is
NON_ENCL_MODE. Hole registers indicate a dedicated
memory region (hole region) in the virtual address that
handles exceptional cases in the memory protection strategy,
e.g., integrity checking is enabled for the memory located in
the hole region when reg_ms is NON_ENCL_MODE,
and disable when reg_ms is ENCL_MODE.

MS=ENCL MS=NON_ENCL

Hole mem.

Non-Hole
mem.

Enable

Enable

Disable

Disable

The hole region can
be used for sharing un-
trusted memory between
enclaves and OS. Be-
sides, it cannot be used by host and enclave for other purposes.
To avoid disabling the integrity protection by the malicious
kernel, PENGLAI only permits the secure monitor to configure
the hole registers when switching between enclave and host.

Secure memory granularity. As integrity enabling is con-
trolled by the combination of CPU mode (reg_ms) and virtual
memory address (hole register), the SubTree is not the granu-
larity of secure memory. A SubTree can contain both secure
memory and non-secure memory, and only secure memory
needs integrity and encryption protection. When consider-
ing Guarded Page Table for memory isolation, the combined
granularity of secure memory is still 4KB size.

Security analysis. As shown in Figure 6, the integrity of se-
cure memory is guaranteed by SubTree root. Each SubTree
root has a backup in the MMT meta-zone, which is protected
by Root-root. As Root-root resides in SoC, physical attack-
ers cannot compromise the integrity check. As for software
attackers, only the secure monitor can configure secure mem-
ory, and any other privileged software cannot tamper memory
status and disable integrity protection.

Summary. We summarize the benefits of MMT against prior
art, as shown in Figure 5. (1) Save both on-die and in-memory
storage. Prior art reserves intermediate tree nodes for all se-
cure memory, and the topmost level tree nodes may be stored
in SoC to boost the integrity check [15]. It can only protect
a small region of contiguous memory due to the high stor-
age overhead in memory and SoC. However, MMT merely
reserves the hot set of SubTree roots and Root-root in the
SoC. What’s more, SubTree nodes can be lazily allocated

with corresponding secure memory (zero memory overhead if
there is no secure memory). (2) Improve flexibility in secure
memory management. With the help of allocating and mount-
ing operations for SubTrees, MMT can support fine-grained
secure memory. The software can manage secure memory, dy-
namically change memory status, and allocate secure memory
on-demand. (3) Boost the integrity check. MMT can provide
a fast path (a mounted SubTree) to boost the integrity check
with fixed tree depth and save memory bandwidth.

4.3 Secure Memory initialization with
Shadow Fork

Auto-scaling and fast startup are key features for cloud com-
puting but still missing in the enclave due to high-cost enclave
memory initialization. Prior systems need to create a new en-
clave instance from scratch even with the same codebase,
which consumes more memory with redundant content and
incurs high startup latency. PENGLAI follows the idea of re-
cently proposed init-less startup [50] that leverages fork to
skip the initialization costs, but faces two challenges: 1) mem-
ory sharing is not secure in enclave systems, and 2) attestation
costs still remain even with fork. PENGLAI proposes Shadow
Fork as well as Shadow Enclave to overcome them both.
Fork with the shadow enclave. Shadow Fork is based on
a special kind of enclave (not runnable), shadow enclave,
which is a clean template used to boost startup by forking a
new instance. Shadow enclave is the only entity that can be
forked and only contains code and data segments. During fork,
PENGLAI monitor will share the read-execute code and read-
only segments, copy other writable parts, initialize the stack
of a new instance based on Shadow Enclave. As the major
costs of startup come from enclave memory initialization
(hash measurement), memory copying on writable data is
acceptable. After fork, the created enclave can dynamically
allocate memory from untrusted OS as heap or mmap region.
Lightweight attestation. Mitigating the costs of attestation
during startup is based on an observation: calculating the
measurement of memory takes up the majority of time in at-
testation (e.g., >90%), as shown in Figure 11 (b). To mitigate
this overhead, the monitor will calculate the measurement
for a shadow enclave in advance (creation phase). A user
can leverage enclave_fork with a manifest containing the
sealed enclave measurement and the user’s public key (simi-
lar to SGX [23]). Later, the monitor will unseal the enclave
measurement (using the user’s public key) and check it with
the shadow enclave’s measurement. If the measurement is
matched, the monitor will fork a new instance based on the
shadow enclave. Otherwise, the monitor will deny the request.
Therefore, we can mitigate the attestation costs during the
boot critical path.

4.4 On-demand Cache Line Locking
PENGLAI proposes an on-demand cache line locking mecha-
nism to defend against cache-based side-channel attacks by

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 281

System Bus

L1 / L2

LLC

CACHE_LINE_LOCK / CACHE_LINE_UNLOCK

MC

Mount Table

Root-root

ALLOC_SECURE_MEM /
REVOKE_SECURE_MEM

Flash External storage

MMT
meta-zone

Monitor HPT_Area SubTree
Secure

data
Secure

data
Linux

Non-secure
Mem

New hardware
component

Secure memory
(dynamic)

reg:HPT_Area

reg:hole_register

MMU TLB

PTW

5-stage pipeline:
Core

Controller

Peripheral

Controller Controller

N
S

N
S

N
S

N
S

Non-secure
memory

L1 / L2

reg:HPT_Area

reg:hole_register

MMU TLB

PTW

5-stage pipeline:
Core

Secure memory
(static)

Figure 7: The hardware modification and physical memory lay-
out of PENGLAI.

cache partition. Although cache partition designs are well
explored [9, 73, 99, 112], they usually incur non-trivial perfor-
mance costs [66, 83, 106], and cache partitions also restrict
the number of the enclave [45]. PENGLAI optimizes the per-
formance with a new abstraction, section-based protection,
that can enable on-demand side-channel protection when an
enclave enters a security-sensitive section (e.g., encryption)
and disable the protection when it leaves. As the sections are
short in a program [105, 108], an enclave can run with the
best performance (no cache locking) most time.

Security-sensitive sections are decided by enclaves. When
an enclave needs cache isolation protection, it issues requests
to monitor. Two privileged instructions: CACHE_LINE_-
LOCK and CACHE_LINE_UNLOCK, assist monitor in man-
aging cache line locking status. Specifically, the cache line
locking mechanism specifies the cache lines to each CPU core.
The CPU core can only evict its cache lines during cache miss,
and other cores cannot evict these cache lines anymore.

Scalability discussion. Compared with the Intel’s CAT [9,
73], PLCache [99] or cache coloring [112], on-demand cache
line locking is more scalable. The cache partitions limit the
number of protected enclaves in the prior art. However, as for
on-demand cache line locking, the cache line is not assigned
to an enclave, but a CPU core. In other words, if there are
more cache ways than CPU cores, the cache line locking
mechanism can support unlimited enclaves. Monitor holds the
cache locking status in each enclave’s context. If an enclave is
scheduled out, the monitor will release the cache lines locked
by the current core.

5 Implementation
Figure 7 shows the overall architecture of the PENGLAI. As
for hardware extensions, we modify both in-core (Rocket
Core) and off-core (Memory Controller) hardware resources
to support Guarded Page Table and Mountable Merkle Tree.
As for software extensions, we implement a tiny and secure
monitor, an extended Linux kernel supporting the HPT Area
allocator, an enclave driver and some requisite libraries for
running enclaves.

5.1 Hardware Implementation

In-core extensions. We implement the Guarded Page Table
extension in FPGA, based on the open-sourced RocketChip
RISC-V core [10]. Overall, we add several new registers (e.g.,
reg_ms, reg_hptarea_start[0..3], reg_hptarea_size, reg_hole_-
va_start and reg_hole_va_size, etc.), which are implemented
as CSRs (Control and Status Registers) and can only be ac-
cessed by monitor via csrr (CSR read) and csrw (CSR write)
instructions. Reg_hptarea_start[0...3] and reg_hptarea_size
registers partition the physical memory range of HPT Area
into several sub-areas, and guarantee that any write access
cannot directly modify the content in this area, unless issued
by M mode routines. Reg_ms, reg_hole_va_start and reg_-
hole_va_size registers act as the control switch for memory
integrity and encryption checks. Besides these new CSRs,
we also extend the MMU module to check the validity of
memory access during page table walking. A modified page
table walker can guarantee that any PTE entry must be located
in the HPT Area (precisely, corresponding sub-area), but the
target physical address will not reside in the HPT Area.

We only simulate the cache line locking mechanism on the
L1 cache, as there is no LLC in our FPGA board.

Off-core extension. We extend the memory controller (MC)
to integrate the MMT engine. MMT engine supports three
new commands: ALLOC_SECURE_MEM, REVOKE_SE-
CURE_MEM and INIT_MMT_METAZONE; two extended
components: Mount Table, Root-root, and the logic of mem-
ory encryption and integrity checks. We also extend memory
access with the secure/non-secure flag. If it is the secure
memory access, the MMT engine will perform integrity and
encryption checks. Otherwise, it accesses physical memory
and reads/writes the data directly.

The secure monitor allocates/reclaims secure or SubTree
node memory with new commands. When the MMT engine
receives an ALLOC_SECURE_MEM command, it will parse
the secure memory address and initialize the SubTree root in
the MMT meta-zone. The software must ensure that the mem-
ory must be zero-filled before it changes into the secure or
SubTree node memory. The INIT_MMT_METAZONE com-
mand initializes the MMT meta-zone in the booting phase.

Mount Table and Root-root reside in SoC. The fabric of
Mount Table is similar to cache — several sets with n-way
Mount Table entries. Each Mount Table entry consists of a

282 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tag, index, SubTree root and LRU bit. Mount Table also uses
the LRU strategy (clock-like algorithm) to mount/unmount
the subtree roots. If SubTree root does not exist in the Mount
Table, the MMT engine will choose an inactive SubTree and
unmount it into the MMT meta-zone. Before mounting the
requested SubTree, the MMT engine will first check the in-
tegrity of the SubTree root in the MMT meta-zone, and update
the Root-root if necessary. Root-root cannot be evicted out of
SoC, as it is the root trust for integrity protection.

5.2 Software Implementation
Monitor. We implement the secure monitor on both
OpenSBI [18] and Berkeley Boot Loader (BBL) [17] in the
machine mode in RISC-V. The secure monitor includes en-
clave management, hardware extensions management, mem-
ory checking as well as encryption library, which adds 6,399
LoC. We follow Sanctum [45] to implement the secure boot
using the tamper-proof software approach (bootloader as the
root of trust). As Figure 7 shows, just after the machine is
turning on, the bootloader will first derive the attestation key
and initialize the MMT engine. The MMT meta-zone will
also be initialized in this phase. After all these early configura-
tions, the bootloader will load and calculate the measurement
of the secure monitor. The MMT engine performs integrity
and encryption protection for monitor’s memory as well. Af-
ter this, the secure monitor takes control and loads the Linux
kernel as its payload.

The monitor provides both host-side and enclave-side in-
terfaces for enclave management and runtime supporting. As
for the host-side interfaces, they consist of create_enclave,
run_enclave, attest_enclave, etc. As for enclave-side in-
terfaces, they are mainly used as ocall functions (e.g.,
enclave_mmap, enclave_sys_write) and inter-enclave calls
(e.g., enclave_call, asyn_enclave_call). Besides the enclave
management, the monitor also takes control of configuring
Guarded Page Table and Mountable Merkle Tree (e.g., reg_-
hptarea_start, reg_hptarea_size), setting page status bitmap
and allocating secure memory. Monitor guarantees that all
these secure-sensitive configurations are correct and will not
be compromised by an attacker.
Linux kernel. We extend the Linux kernel (version:
4.4.0/5.10.2) to support PENGLAI. There are two major mod-
ifications: (1) HPT Area allocator, (2) hijacking each PTE
settings. Firstly, after memory management is initialized, the
kernel will allocate a contiguous physical memory as HPT
Area and copy init_pt into it. A dedicated allocator will man-
age all pages in the HPT Area, and is responsible for each
page table allocation. To distinguish huge page entries and
4KB page entries, the HPT Area is divided into three sub-
areas: PGD, PMD and PTE sub-areas (MMU checks each
page table entry’s location according to these sub-areas). HPT
Area allocator must assign the entries of page tables in the
corresponding sub-areas as well. Currently, we have reserved
enough memory as HPT Area, which can map all pages at

MsgHost Enclave

MsgHost Enclave

remap: host → enclave
bitmap: non-secure → secure

MsgEnc-Clnt Enc-Srv

MsgEnc-Clnt Enc-Srv

remap: enc-clnt → enc-srv

IPC IPC

Before

IPC

After

IPC

(a) Host-Enclave IPC (b) Enclave-Enclave IPC

Host
Enc
Clnt

Enc
Srv

Name
Srv

Monitor

Call/Grant capability

(c) Communication Link

2 4

3
1

Figure 8: Ownership transfer-based communication. Figure (a)
and (b) show the message passing in PENGLAI for both host-enclave
communication and enclave-enclave communication. Figure (c)
presents the communication link established in PENGLAI. The num-
ber represents the order of the links.

once. Normally, the reserved memory for HPT Area will not
affect memory utilization, as page table pages are increased
along with used pages. Dynamically adjusting the size of the
HPT Area is in our future work.

Secondly, the kernel will redirect the setting operations of
each page table entry to the secure monitor. Secure monitor
can distinguish 2MB/4KB page entries (according to the sub-
areas) and perform the security check of the target address
(host cannot map any secure memory).

Server enclave. Despite the enclave and shadow enclave,
PENGLAI also implements another type of enclave called
server enclave to achieve enclave chain, which is common in
serverless scenarios. A server enclave does not have running
context (e.g., time slice, ocall handler) but inherits it from
other enclaves. Hence, the server enclave cannot run alone.
When creating a server enclave, it needs to be assigned a
unique name as its identification. Other enclaves can acquire
the handle of this server enclave with its unique server name.
Besides, the server enclave can also perform partial function-
alities of OS. For example, we can run a file system server in
a server enclave to handle all FS-related requests. Separating
the OS functionalities from the untrusted OS to the trusted
enclave server can mitigate the risk of Iago attack [41] issued
by untrusted privilege.

IPC. PENGLAI supports IPC between the enclave and server
enclave (E-E), host and enclave (H-E), which is based on
two mechanisms: shared memory and relay page [49]. Shared
memory is the basic communication method. The secure mon-
itor can map shared memory to both host and enclave, or
enclave and server enclave. Relay page is a novel communica-
tion mechanism, as shown in Figure 8, and the secure monitor
ensures that a page can be mapped for only one owner si-
multaneously. This mechanism can reduce security issues
like TOCTTOU (Time-of-check-to-time-of-use) between E-E
and H-E, and achieve zero-copy communication. PENGLAI
can also support both synchronous and asynchronous IPC
between enclaves. As for synchronous IPC, the caller enclave
will wait for the callee enclave to return. As for asynchronous
IPC, the caller enclave will return immediately, and arguments
will be passed to the callee enclave when it starts to run.

SDK. PENGLAI provides an SDK (i.e., kernel driver, host-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 283

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

512K 1M 2M 4M 8M

L
at

en
cy

 (
m

s)

Mmap file size

Host-Native
Host-with-GPT

(a) Mmap latency.

 0

 100

 200

 300

 400

 500

 600

512K 1M 2M 4M 8M

T
h
ro

u
g
h
p
u
t

(M
B

/S
)

Mmap file size

Host-Native
Host-with-GPT

(b) Mmap bandwidth.

Figure 9: GPT performance on mmap. Test the latency and band-
width of mmap operations, Host-Native represents the native linux
kernel without GPT extension, Host-with-GPT represents the modi-
fied linux kernel with GPT extension.

side library and enclave-side library) to help users manage and
develop enclave applications. The driver enables the untrusted
host kernel (Linux) to interact with the secure monitor, and
manage enclaves via interfaces provided by the monitor. The
host side library abstracts ioctl interfaces from the driver and
provides APIs to manage the enclave (e.g., create, run and
attest enclave). The enclave side library is combined with
modified Musl LibC (turns system calls to ocall or redirects
to server enclaves) and Eapp library (e.g., IPC interfaces).
Hence, PENGLAI can support unmodified POSIX applications.
Besides, PENGLAI also integrates some useful libraries into
enclave SDK, such as wolfssl [20] and PSA storage API,
which are frequently used.

Formal verification. Currently, we are working on formal
verification of PENGLAI. The approach is based on symbolic
execution and bounded model checking via the state-of-the-
art framework, Serval [79]. We have verified the code of the
communication module. Verification on others is in progress.

6 Evaluation
6.1 Methodology
We implement PENGLAI based on the open-sourced RISC-
V [100] implementation: SiFive Freedom U500 [10] on the
Xilinx VC707 FPGA board. We present several microbench-
marks that evaluate the scalability metrics (i.e., startup latency,
GPT overhead and the number of concurrent enclaves). We
select four benchmarks, SPECCPU, Redis, RV8 and Core-
mark, to evaluate the overall performance of PENGLAI. We
also compare PENGLAI with Keystone (as state of the art)
and Linux (as the ideal performance). To evaluate the perfor-
mance of MMT, we implement the MMT on the GEM5 [32]
(RISC-V), and port the state-of-the-art integrity protection
schemes: SGX integrity approach (SIT) and VAULT [92] on
the GEM5. With the same emulation environment, we can
make a fair comparison of these different approaches.

6.2 Microbenchmarks
Guarded Page Table performance. We first evaluate
Guarded Page Table on LMbench [7] to gain the overhead
for memory-related operations. LMbench can calculate the la-
tency and bandwidth of memory mapping and memory access

 0

 500

 1000

 1500

 2000

 2500

 3000

512K 1M 2M 4M 8M

L
at

en
cy

 (
n
s)

Memory access size

Host-Native
Host-with-GPT

(a) Memory latency.

 0

 20

 40

 60

 80

 100

 120

 140

 160

512K 1M 2M 4M 8M

T
h
ro

u
g
h
p
u
t

(M
B

/S
)

Memory access size

Host-Native
Host-with-GPT

(b) Memory bandwidth.

Figure 10: GPT performance on memory access. Test the latency
and bandwidth of memory access operations, Host-Native repre-
sents the native linux kernel without GPT extension, Host-with-GPT
represents the modified linux kernel with GPT extension.

 0

 100

 200

 300

 400

 500

 600

50 100

S
ec

u
re

 m
em

o
ry

 s
iz

e
(M

B
)

Time elapsed

PENGLAI

(a) Scalability of secure memory.

1

4

16

64

256

1K

4K

16K

16K 64K 256K 1M 4M 16M

S
ta

rt
u
p
 l

at
en

cy
(m

il
li

o
n
 i

n
st

ru
ct

io
n
s)

Eapp file size (Byte)

PENGLAI-Create
PENGLAI-ShadowFork

Keystone

(b) Startup latency.

Figure 11: Scalability and startup. Figure (a) shows the variation
of secure memory size when creating 100 enclaves concurrently.
Figure (b) compares the startup latency with different enclave file
sizes.

in the UNIX system. As shown in Figure 9 and Figure 10,
Guarded Page Table will introduce 26%∼46% overhead for
mapping latency, as each page mapping operation needs to be
checked by the secure monitor. However, Guarded Page Table
will not sacrifice the bandwidth of the mapping operations.
As for memory access, Guarded Page Table will not affect
memory access performance (both latency and throughput).
The experimental results demonstrate that Guarded Page Ta-
ble only incurs extra overhead in page mapping (e.g., mmap,
munmap, mprotect), and will not impact the performance of
memory access. As page mapping operations are infrequent,
Guarded Page Table only introduces minor overhead for the
whole system in most cases. Indeed, the monitor only inspects
the page status with its bitmap during page mapping, so the
extra overhead is minor compared with other page table-based
isolation techniques [48, 54] (see §6.3).

Scalability of secure memory. To evaluate the scalability and
flexibility of the PENGLAI enclave, we construct a test case
to randomly create and run enclaves on the FPGA board, and
calculate the total secure memory size in the monitor. As
shown in Figure 11 (a), secure memory size could be very
small when the system does not run any enclaves (2MB and
less) and can scale to 600MB (1GB total memory in FPGA)
when there are lots of concurrently running enclaves. This is
a significant breakthrough over traditional fixed partitioned
secure memory design, which usually needs to make a trade-
off between host memory size and enclave memory size.

Furthermore, with the same configuration, PENGLAI can
achieve up to 1,000 concurrently running enclaves on the

284 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

FPGA board (1GB memory). It is possible to boot more en-
clave instances when the device has more resources. Hence,
Guarded Page Table-based secure memory management can
achieve scalability and flexibility.

Startup latency. We evaluate the startup latency of enclaves in
PENGLAI and Keystone using the different sizes of enclaves.
We compare two approaches of PENGLAI: normal startup
(enclave create) and fast startup (shadow fork). The baseline
is a traditional booting solution that loads an eapp file into the
memory, prepares the resources, and verifies the measurement.
PENGLAI shadow fork leverages shadow enclave to spawn
a new instance, which can boost the procedure. To further
compare with Keystone, we configure Keystone to use the
minimum size of their eyrie runtime. We run both systems on
Qemu and use the number of executed instructions (icount
enabled) to represent the performance. The result is shown
in Figure 11 (b). Compared with the baseline, shadow fork
can achieve 4x–989x speedup (from 16KB to 32MB size).
Keystone is orders of magnitude slower than PENGLAI with
shadow fork, as it needs to calculate enclave measurement
and prepare a new PMP region as well as load runtime in the
supervisor mode.

 0

 2

 4

 6

 8

 10

mcf lbm sjeng gobmk milc GFDTD zeusmp

1.8*10
14

3.8*10
13

3.2*10
13

1.3*10

12

9.8*10
13

2.0*10
13

1.2*10
14

N
o
rm

al
iz

ed
 t

im
e

None SIT Vault MMT.

Figure 12: SPECCPU with different integrity protection
schemes. None represents the ideal performance (w/o integrity and
encryption protection). The memory costs of gobmk and milc are less
than 128MB, so it will not trigger the swap mechanism in SGX and
VAULT. The red numbers are the concrete execution time (cycles)
of the “None”.

Memory integrity and encryption. We evaluate the perfor-
mance of memory integrity and encryption using SPECCPU
benchmark and compare PENGLAI with VAULT and SGX.
We retain the same SoC resource for all implementations (SoC
storage in each integrity scheme can only protect 128MB
memory). We want to demonstrate that with the same hard-
ware resource, MMT can achieve the best performance as well
as minimum memory overhead. The major reason to choose
SPECCPU benchmark is that most of the related work like
BMT [85], SIT [55] and VAULT [92] also use this benchmark
to measure runtime overhead.

We implement all of the four systems on GEM5. As shown
in Figure 12, the performance of PENGLAI is much better
than the two baselines. Take milc as an example. The runtime
overhead reduces from 2.05x (in SGX) and 1.60x (in VAULT)
to 0.40x (PENGLAI’s MMT). This is because 128MB memory
is insufficient in this case. Thus, both SGX and VAULT need
to swap and encrypt pages from secure memory to non-secure

 10

 100

 1000

 10000

None MMT Vault SIT

C
y
cl

es
(1

0
6
)

Memory protection scheme

64M
512M

(a) Random memory access.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

None MMT

C
y
cl

es
 (

1
0

6
)

Memory protection scheme

Mount.
Integ.
Other

(b) MMT performance
breakdown.

Figure 13: Worst case performance for Mountable Merkle Tree.
64MB and 512MB in figure(a) mean the memory size for random
access. Mount. represents the cost of the mount/unmount opera-
tions, Integ. represents the cost of the memory integrity check, Other
represents original runtime cost.

memory, which can bring 10x overhead in some memory-
intensive cases [92]. Instead, MMT can mount corresponding
SubTrees to protect more than 128MB secure memory with
less than 1% extra overhead (mounting only costs about 300
cycles). We also test the performance of MMT when the mem-
ory used is less than 128MB (gobmk, milc). The result shows
that MMT will not bring extra overhead when all SubTrees
can be mounted in SoC.

To further evaluate the worst-case performance of the
MMT, we test the MMT and other memory protection
schemes on a random memory access benchmark, as shown
in Figure 13(a). We choose two different memory access
ranges: 64MB and 512MB. The first one is smaller than the
capacity of SoC-protected memory (128MB), while the sec-
ond is larger. As for 64MB memory size, MMT incurs 67%
overhead and SIT incurs 118% overhead. The performance
improvement mainly comes from the optimized tree structure
compared with MMT and SIT. As for 512MB memory size,
MMT incurs 0.97x overhead and SIT incurs 98x overhead.
Copying and encrypting the pages inside SoC-protected mem-
ory into the normal memory causes an enormous overhead
in SIT (takes up 97% of total runtime cycles). This result is
also validated by SCONE [28] — “random memory access
beyond available EPC may cause an overhead of three orders
of magnitude” and the real SGX-enable machine (Intel Core
i7-7567U @ 3.5GHz, 300x overhead for random access of
512MB memory). MMT significantly reduces the overhead of
page copying and encryption by the SubTree mounting mech-
anism. To further calculate the overhead of mount/unmount
operations, we inventory the performance breakdown of the
MMT. For random memory access, mount/unmount opera-
tions only take up ten percent of the total execution time and
twenty percent of the integrity protection cost. Meanwhile,
each mounting operation costs about 300 cycles on average.
Hence, the mount/unmount overhead is much less than the
prior art, even in the worst-case situation.

Costs of cache line locking. We perform a microbenchmark
to evaluate the performance costs of cache line locking. The
cache configuration of our FPGA implementation is 64 cache

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 285

Table 2: Costs of cache line locking. PENGLAI runs on FPGA.

Latency (Kcycles)

Cache line locking 66.976
Normal 56.888

sets, 4 ways and 64-Byte cache line. The test case will sequen-
tially read and write 16KB contiguous memory. We compare
the end-to-end latency of two systems, PENGLAI enabling
locking (using a single way) and PENGLAI disabling locking.
As shown in Table 2, the locking can cause 17.73% over-
head in the case. Although the costs are non-trivial, PENGLAI
will only enable the locking for a critical section, which can
significantly mitigate the overheads.

 0

 20

 40

 60

 80

 100

 120

PING-INLINE

PING-MBULK

SET
GET

INCR
LPUSH

RPUSH

R
eq

u
es

ts
/S

ec
o
n
d

Host-Native Host-with-GPT

Figure 14: Redis benchmark suite. Evaluate the performance of
GPT on the Redis benchmark. Host-Native means the native linux
kernel. Host-with-GPT means the modified linux kernel with GPT
extension.

6.3 Benchmark Suites

Redis benchmark suite. We use Redis benchmark suite to
evaluate the worst-case performance of Guarded Page Table.
As Redis performs as an in-memory database, it needs to call
map/unmap operations frequently. Prior art also uses Redis
to evaluate the performance degradation due to the mapping
overhead (Shadow Page Table may incur 80% overhead on
Redis [48]). As shown in Figure 14, Guarded Page Table
only introduces 5% overhead in SET requests and 6% over-
head in GET requests, which significantly mitigates overhead
compared with Shadow Page Table. The main optimization
comes from the fact that the monitor only checks page sta-
tus in its bitmap. On the contrary, Shadow Page Table needs
to re-construct the combined page table (traverses the host
page table and extended page table), which is much more
complicated and time-consuming.

RV8 benchmark suite. We use RV8 benchmark suite to an-
swer two questions: 1) whether the isolation will incur per-
formance overheads to enclaves, and 2) whether the Guarded
Page Table hardware extensions will cause performance
degradation on CPU-intensive applications. We port the
benchmarks to PENGLAI, with 85LoC modifications to use
PENGLAI API. In addition, we run the benchmark suite in the
host kernel with two settings. One is that the host OS running
in unmodified hardware without HPT Area extension, and
the other is that the OS running in PENGLAI hardware with
Guarded Page Table extension.

 0

 5

 10

 15

 20

 25

 30

aes norx primes sha512 qsort dhrystoneE
x
ec

u
ti

o
n
 t

im
e

(1
0

9
 c

y
cl

es
)

PENGLAI
Host-with-GPT

Host-Native

Figure 15: RV8 benchmark suite. PENGLAI can achieve almost
the same performance as native Linux. Guarded Page Table only
incurs minor overhead for host applications.

64

256

1K

4K

16K

64K

 32 64 128 256 512 1024 2048

L
at

en
cy

 (
1
0

6
 c

y
cl

es
)

Image size

PENGLAI-1enclave
PENGLAI-4enclave

Linux-4func

(a) Image processing.

 0

 500

 1000

 1500

 2000

1M1R 2M2R 4M4R

2.0x

3.1x 3.6x

L
at

en
cy

 (
1
0

6
 c

y
cl

es
)

Number of workers

PENGLAI-Create
PENGLAI-ShadowFork

(b) MapReduce wordcount.

Figure 16: Evaluation of case studies. Figure (a) evaluates image
processing on PENGLAI and linux. Figure (b) evaluates MapReduce
performance with multiple workers.

As shown in Figure 15, the performance overheads in
PENGLAI are <4.3% in all the cases and 1.7% on average,
and Guarded Page Table will not affect the performance of
CPU-intensive applications (the overhead is negligible com-
pared with the GPT and Native). The overhead in PENGLAI
is mainly caused by memory allocation in enclaves, which is
slower than the host, as the monitor will dynamically allocate
secure memory and perform the security check.

Coremark. We port Coremark with 43LoC modifications to
meet PENGLAI API, and take the native Linux as our baseline
and run Coremark in two systems on our FPGA board. The
result shows that the score for native Linux is 2,018 and the
score for PENGLAI is 2,049, which proves the strong isolation
provided by PENGLAI will not hurt the performance of CPU-
intensive applications.

6.4 Case Study: Serverless Computing
Existing serverless platforms [1, 3–5] use processes, contain-
ers, or VMs to isolate each function. In the case study, we try
to illustrate the possibility of isolating serverless functions us-
ing enclaves (with higher security assurance) and analyze the
performance impacts. We choose a representative serverless
application, image processing [6, 25].

Entry
(fetch image)

Req

ErodeRotate

Untrusted

Enclave

Resize

M

Input

M

M

R

R

Intermediate
results

(a) Serverless image processing. (b) MapReduce.

Untrusted

Enclave

Figure 17: Case studies using PENGLAI.

286 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

As shown in Figure 17 (a), the image processing application
is composed of four functions, and each function is running
inside a different enclave. The application is triggered when
an untrusted user issues a request (with an image file). The
function “Entry” is fired to get the command and fetch the
host’s image file through untrusted shared memory. Then,
the image file will be passed into the subsequent handling
functions, i.e., “Resize”, “Rotate” and “Erode”. Finally, the
resulting image is returned to the untrusted host. Since the
images may contain sensitive information, it is necessary to
protect them in enclaves. The workload is ported from AWS-
examples repository [6] to a C version using Sod library [19].

We evaluate the performance of image processing in
PENGLAI with two settings, “1enclave” (four functions in
one enclave) and the default “4enclave” (four enclaves). We
implement a baseline in native Linux, using four functions
running in four processes. We carefully tune the Linux perfor-
mance to be state-of-the-art, i.e., using a mixed approach of
the socket (for timely notification) and shared memory (for
zero-copy data transfer). The input image size for the eval-
uation is from 32x32 to 2048x2048. The result is shown in
Figure 16 (a). Compared with Linux, PENGLAI can achieve
even better performance (7%–9% improvement when image
size is larger than 128x128), as PENGLAI’s communication
does not include kernel scheduling costs. Moreover, bene-
fiting from efficient communication, using four functions in
PENGLAI incurs minor costs. This can motivate more modular
applications to be deployed in enclaves.

6.5 Case Study: Secure MapReduce
MapReduce [47] is a popular programming model in the
cloud for data processing, and the recent study [67] shows that
even a single machine can be competent with large-scale data
processing. Since the processed data may contain sensitive
information, VC3 [87] and Civet [96] are proposed to enhance
the security with SGX enclaves. However, using SGX to run
MapReduce workloads has some limitations: first, it needs a
long latency to boot a worker enclave (i.e., mapper or reducer);
second, it needs to load redundant enclave code into secure
memory.

PENGLAI overcomes the issues with shadow fork, as shown
in Figure 17 (b). Each mapper or reducer can instantiate it-
self from a pre-prepared shadow enclave, as they all have
the same processing logic. With shadow fork, a MapReduce
scheduler running in the host can instantiate multiple work-
ers into different enclave instances with low startup latency
and significantly save secure memory when running all work-
ers in enclaves. During the processing, the mapper nodes
invoke the map function on the input and produce interme-
diate key-value pairs. All the intermediate results are saved
in memory and distributed to reducer nodes. The reducer
nodes invoke the reduce function to produce the final result
and return it to the host. We have implemented a prototype
of MapReduce in PENGLAI with two settings: PENGLAI-

Create and PENGLAI-ShadowFork. PENGLAI-Create cre-
ates each worker enclave using normal enclave creation,
and PENGLAI-ShadowFork leverages the shadow enclave
to fork a new worker instance. As shown in Figure 16 (b),
PENGLAI-ShadowFork can achieve 2.0x lower latency over
PENGLAI-Create when both systems use one mapper and
one reducer. If we create more workers for the same job,
PENGLAI-ShadowFork can gain 3.6x speedup compared with
the PENGLAI-Create (4 mappers and 4 reduces, on a 4-core
machine). The speedup mainly comes from the fast startup
with shadow fork. As for normal startup, PENGLAI calculates
enclave measurement every time. The tremendous attestation
overhead will significantly affect the performance in the multi-
workers situation. However, as shadow fork can reduce the
overhead of secure memory initialization, enclave measure-
ment is not the bottleneck for the whole job. Hence, PENGLAI-
ShadowFork can gain better performance improvement with
more worker enclaves.

6.6 Hardware Costs
We use Vivado [11] tool to generate the hardware and get the
report of resource utilization in FPGA. The report shows that
the overall hardware costs are small (0.56%–0.81% in LUT
and 0.00% in RAM) over the original resources (the RISC-V
core). It means that the extensions incur small costs, which is
essential to add the extensions into real hardware.

7 Discussion
Architectures assumptions. Although the implementation of
our prototype is based on RISC-V, the design is independent
of specific architectures and can be adopted by other enclave
systems. We highlight two major assumptions. First, the ISA
should have a privileged level higher than the OS and hyper-
visor. This is a reasonable assumption for the prevailing ISA;
cases include RISC-V’s machine mode, ARM’s EL3 mode,
etc. Second, to support fine-grained memory management,
the CPU shall have an MMU module, which is common in
modern high-performance cores.
Security discussion. PENGLAI is designed to provide the
same (or stronger) security guarantees compared with prior
work. Besides the isolation and integrity protection mentioned
above, PENGLAI can also defend against following attacks.

• Controlled-channel attacks. PENGLAI allows enclaves
to validate the presence of some expected mappings, sim-
ilar to Autarky [81]. The monitor will verify all these
mappings when an enclave is invoked for the first time
and check the validity when the OS changes the map-
ping. As the OS cannot directly access the enclave page
tables, it cannot perform controlled-channel attacks by
monitoring the access/dirty bits in page tables.

• Cache-based side-channel attacks. Existing enclaves
still suffer from the cache-based side-channel attacks [74,
82, 107, 109, 110] or incur high overhead to solve it [45,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 287

53, 75]. Our on-demand cache line locking mechanism
(§4.4) defends the attacks with minor costs. A recent
work, CURE [21], adopts a similar approach with on-
demand partition cache. CURE binds the cache ways
with certain enclave ID, while PENGLAI assigns cache
ways to each core with less hardware modification, and
is more suitable for scenarios like shared memory.

• Other attacks. There are some attacks caused by spe-
cific CPU bugs, including Foreshadow, Spectre [65],
Meltdown [72], etc. The defense mechanisms are or-
thogonal to our design. We also believe that PENGLAI’s
monitor-assisted enclave design is more suitable for han-
dling the emerging attacks than HW-based enclave sys-
tems, which are hard to update after release.

8 Related Work

Secure processor assisted enclave architecture. Some prior
work uses a secure processor to support the trusted execu-
tion environment [12, 33, 39, 42, 44, 53, 70, 71, 85, 90, 104].
The Security-enhanced processor integrated with encryption
and integrity engine can support compartments that are im-
mune to both modification and observation. XOM [70, 71],
SecureME [44] and SecureBlue++ [33] allow the trusted user
processes running on the untrusted OS, as OS cannot ob-
tain the plaintext content of the process. SEV and Hyper-
Coffer [104] allow VMs to run on an untrusted hypervisor.
However, such a method using encryption to isolate memory
space brings non-negligible overhead, and the key manage-
ment and traditional integrity scheme may restrict the enclave
size and number.

Memory integrity scheme. Several different schemes have
been proposed for memory integrity protection [38, 78, 85,
91, 92]. BMT [85] introduces the counter-based message au-
thentication algorithm into the integrity protection scheme
and reduces in-memory overhead. Bastion [91] unifies the in-
tegrity of in-memory pages and on-device pages. VAULT [92]
adopts the various arity for different levels of tree nodes. How-
ever, all these prior work do not solve the inherent overhead
in memory and SoC, and are not scalable at all. PENGLAI
proposes the MMT with a mounting mechanism, which can re-
duce both on-die and in-memory overhead to achieve scalable
memory integrity protection.

Virtualization-based isolation. Virtualization-based isola-
tion [42, 60, 62, 91, 104, 111] has been researched in past
decade. They rely on hypervisor to enhance the isolation
among VMs using techniques like shadow page table [94,98],
nested/extended page table [31, 97], or HLAT [8]. These tech-
niques have similarities to our Guarded Page Table—we both
rely on higher privileged software to validate memory map-
pings. However, nested virtualization usually introduces non-
trivial performance costs, e.g., tests show that the shadow
PT can incur 40% overhead in Memcached [54] and 80%

overhead in Redis [48], and Nested page table also causes
20% overhead in Memcached [54]. Shadow paging needs to
re-construct shadow page table costly, and nested/extended
page table incurs extra overhead due to 2-level page table
walker during the TLB miss. However, PENGLAI proposes the
Guarded Page Table and achieves page-grained isolation with-
out introducing high performance overhead (only 5% even
for memory-intensive benchmark: Redis). What’s worse, the
hypervisor and cloud service providers may not be trusted in
cloud scenarios. Recent works utilize TEE techniques to pro-
pose secure VM, e.g., AMD SEV [12,27,61], Intel TDX [16]
and vTZ [58], which can protect the VMs from the untrusted
hypervisor. Nevertheless, the protection has defects, e.g., both
SEV and TDX cannot defend against physical rollback attacks,
and vTZ does not consider physical memory attacks. Also,
the secure VM suffers the same performance degradation as
the traditional VM due to the memory virtualization over-
head. Compared with virtualization-based isolation methods,
PENGLAI achieves better security guarantees, higher perfor-
mance and scalability.

Cross-zone communication. Cross-zone communication or
IPC has been extensively researched for microkernel and
user-level processes [30, 49, 63, 95, 101]. SCONE [28] and
HotCalls [103] optimize the host-enclave communication in
SGX using asynchronous approaches, e.g., polling and shared
untrusted memory. However, they are not suitable for E-E
communication and tend to waste the CPU cycles. XPC [49]
has proposed the ownership transfer based communication
and reduced the remapping overhead. PENGLAI shares the
same idea of XPC, but overcoming new challenges to transfer
pages crossing the boundary between the secure and non-
secure world. It outperforms existing enclave systems with
the zero-copy and secure data transfer mechanism for both
E-E and E-H communication.

9 Conclusion
This paper has presented a hardware-software co-design of
scalable memory protection based on the PENGLAI enclave
system. Our evaluation shows that PENGLAI can significantly
optimize enclave number, secure memory capacity with in-
tegrity protection, enclave startup latency, as well as resource
flexibility for both microbenchmarks and real-world applica-
tions.

10 Acknowledgments
We sincerely thank our shepherd Edouard Bugnion, An-
drew Baumann and anonymous reviewers for their insight-
ful suggestions. This work is supported in part by National
Key Research and Development Program of China (No.
2020AAA0108500), China National Natural Science Founda-
tion (No. 61972244, U19A2060, 61925206), the HighTech
Support Program from Shanghai Committee of Science and
Technology (No. 19511121100). Yubin Xia is the correspond-
ing author.

288 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Apache openwhisk is a serverless, open source cloud

platform. http://openwhisk.apache.org/. Refer-
enced December 2018.

[2] Arm corelink tzc-400 trustzone address
space controller technical reference manual.
https://developer.arm.com/documentation/
ddi0504/c/. Referenced November 2020.

[3] Aws lambda - serverless compute. https://aws.
amazon.com/lambda/. Referenced December 2018.

[4] Azure functions serverless architecture.
https://azure.microsoft.com/en-us/
services/functions/. Referenced December
2018.

[5] Google cloud function. https://cloud.google.
com/functions/. Referenced December 2018.

[6] lambda-refarch-imagerecognition. https:
//github.com/aws-samples/lambda-refarch-
imagerecognition. Referenced December 2019.

[7] Lmbench. http://lmbench.sourceforge.net/,
2005. Referenced Nov 2020.

[8] Hlat. https://software.intel.com/sites/
default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-
reference.pdf, 2018. Referenced May 2018.

[9] Intel 64 and ia-32 architectures software developer
manuals. https://software.intel.com/en-us/
articles/intel-sdm, 2018. Referenced August
2018.

[10] Sifive. https://www.sifive.com/, 2018. Refer-
enced November 2018.

[11] Vivado design suite. https://www.xilinx.com/
products/design-tools/vivado.html, 2018. Ref-
erenced August 2018.

[12] Amd secure encrypted virtualization (sev) - amd.
https://developer.amd.com/sev/, 2019.

[13] Keystone | an open framework for architecting tees.
https://keystone-enclave.org, 2019.

[14] Amd epyc 7002 series processors. https://www.amd.
com/en/processors/epyc-7002-series, 2020.
Referenced Aug. 2020.

[15] The intel sgx memory encryption engine.
https://software.intel.com/content/www/
us/en/develop/blogs/memory-encryption-an-
intel-sgx-underpinning-technology.html,
2020. Referenced May 2020.

[16] Intle tdx. https://software.intel.com/
content/www/us/en/develop/articles/intel-
trust-domain-extensions.html, 2020. Refer-
enced Nov 2020.

[17] RISC-V Proxy Kernel. https://github.com/
riscv/riscv-pk, 2020. Referenced May 2020.

[18] riscv/opensbi: Risc-v open source supervisor binary
interface. https://github.com/riscv/opensbi,
2020.

[19] Sod - an embedded, modern computer vision and
machine learning library. https://sod.pixlab.io,
2020. Referenced May 2020.

[20] wolfssl embedded ssl/tls library. https://www.
wolfssl.com, 2020.

[21] CURE: A security architecture with customizable and
resilient enclaves. In 30th USENIX Security Sympo-
sium (USENIX Security 21), Vancouver, B.C., August
2021. USENIX Association.

[22] Intel scalable software guard extensions.
https://software.intel.com/content/www/
us/en/develop/topics/software-guard-
extensions.html, 2021. Referenced Mar 2021.

[23] Intel software guard extensions. https:
//www.intel.com/content/www/us/en/
architecture-and-technology/software-
guard-extensions/supporting-sgx-on-multi-
socket-platforms.html, 2021. Referenced Mar
2021.

[24] Penglai enclave. https://github.com/Penglai-
Enclave, 2021. Referenced Mar 2021.

[25] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In Proceedings
of the 2018 USENIX Conference on Usenix Annual
Technical Conference, pages 923–935, 2018.

[26] Tiago Alves. Trustzone: Integrated hardware and soft-
ware security. White paper, 2004.

[27] AMD. AMD SEV-SNP: Strengthening VM
Isolation with Integrity Protection and More.
https://www.amd.com/system/files/TechDocs/
SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf, 2020.
Referenced Aug. 2020.

[28] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 289

http://openwhisk.apache.org/
https://developer.arm.com/documentation/ddi0504/c/
https://developer.arm.com/documentation/ddi0504/c/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://github.com/aws-samples/lambda-refarch-imagerecognition
https://github.com/aws-samples/lambda-refarch-imagerecognition
https://github.com/aws-samples/lambda-refarch-imagerecognition
http://lmbench.sourceforge.net/
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.sifive.com/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://developer.amd.com/sev/
https://keystone-enclave.org
https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/en/processors/epyc-7002-series
https://software.intel.com/content/www/us/en/develop/blogs/memory-encryption-an-intel-sgx-underpinning-technology.html
https://software.intel.com/content/www/us/en/develop/blogs/memory-encryption-an-intel-sgx-underpinning-technology.html
https://software.intel.com/content/www/us/en/develop/blogs/memory-encryption-an-intel-sgx-underpinning-technology.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://github.com/riscv/riscv-pk
https://github.com/riscv/riscv-pk
https://github.com/riscv/opensbi
https://sod.pixlab.io
https://www.wolfssl.com
https://www.wolfssl.com
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://github.com/Penglai-Enclave
https://github.com/Penglai-Enclave
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell,
et al. SCONE: Secure linux containers with intel SGX.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 689–703,
2016.

[29] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
haven. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
267–283, Broomfield, CO, October 2014. USENIX
Association.

[30] Brian Bershad, Thomas Anderson, Edward Lazowska,
and Henry Levy. Lightweight remote procedure call.
ACM SIGOPS Operating Systems Review, 23(5):102–
113, 1989.

[31] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini,
and Srilatha Manne. Accelerating two-dimensional
page walks for virtualized systems. In Proceedings
of the 13th international conference on Architectural
support for programming languages and operating sys-
tems, pages 26–35, 2008.

[32] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News,
2011.

[33] Risk Boivie and Perter Williams. Secureblue++: Cpu
support for secure execution. pages 1–9. IBM, IBM
Research Division, 2012.

[34] Sol Boucher, Anuj Kalia, David G Andersen, and
Michael Kaminsky. Putting the" micro" back in mi-
croservice. In 2018 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 18), pages 645–650, 2018.

[35] Ferdinand Brasser, David Gens, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Sanc-
tuary: Arming trustzone with user-space enclaves. In
NDSS, 2019.

[36] Stefan Brenner and Rüdiger Kapitza. Trust more,
serverless. In Proceedings of the 12th ACM Inter-
national Conference on Systems and Storage, pages
33–43, 2019.

[37] Stefan Brenner, Colin Wulf, David Goltzsche, Nico
Weichbrodt, Matthias Lorenz, Christof Fetzer, Peter
Pietzuch, and Rüdiger Kapitza. Securekeeper: confi-
dential zookeeper using intel sgx. In Proceedings of
the 17th International Middleware Conference, pages
1–13, 2016.

[38] David Champagne, Reouven Elbaz, and Ruby B Lee.
The reduced address space (ras) for application mem-
ory authentication. In International Conference on
Information Security, pages 47–63. Springer, 2008.

[39] David Champagne and Ruby B Lee. Scalable ar-
chitectural support for trusted software. In HPCA-
16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture, pages 1–12.
IEEE, 2010.

[40] Chia che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodi-
fied Applications on SGX. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 645–
658, Santa Clara, CA, July 2017. USENIX Association.

[41] Stephen Checkoway and Hovav Shacham. Iago attacks:
why the system call API is a bad untrusted RPC inter-
face. ACM SIGARCH Computer Architecture News,
41(1):253–264, 2013.

[42] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis,
Pratap Subrahmanyam, Carl A Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan RK Ports. Over-
shadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. ACM
SIGOPS Operating Systems Review, 42(2):2–13, 2008.

[43] Yi-Lin Cheng, Ching-Chi Lin, Pangfeng Liu, and Jan-
Jan Wu. High resource utilization auto-scaling al-
gorithms for heterogeneous container configurations.
2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS), pages 143–150,
2017.

[44] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and
Milos Prvulovic. Secureme: a hardware-software ap-
proach to full system security. In Proceedings of the
international conference on Supercomputing, pages
108–119, 2011.

[45] Victor Costan, Ilia A Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. In USENIX Security Symposium, 2016.

[46] Ankur Dave, Chester Leung, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Oblivious coopeti-
tive analytics using hardware enclaves. In Proceedings
of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[47] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

290 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[48] Boris Teabe Djomgwe, Peterson Yuhala, Alain Tchana,
Fabien Hermenier, Daniel Hagimont, and Gilles Muller.
(no) compromis: Paging virtualization is not a fatality.
In VEE 2021-17th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments,
pages 1–12, 2021.

[49] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. XPC: architectural support for secure and
efficient cross process call. In Proceedings of the 46th
International Symposium on Computer Architecture,
pages 671–684. ACM, 2019.

[50] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting. In Proceedings
of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 467–481, 2020.

[51] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-
ernel: An operating system architecture for application-
level resource management. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’95, New York, NY, USA, 1995. ACM.

[52] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 287–305. ACM, 2017.

[53] Christopher W Fletcher, Marten van Dijk, and Srinivas
Devadas. A secure processor architecture for encrypted
computation on untrusted programs. In Proceedings of
the seventh ACM workshop on Scalable trusted com-
puting, pages 3–8, 2012.

[54] Jayneel Gandhi, Mark D Hill, and Michael M Swift.
Agile paging: exceeding the best of nested and shadow
paging. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on.
IEEE, 2016.

[55] Shay Gueron. A memory encryption engine suitable
for general purpose processors. Cryptology ePrint
Archive, Report 2016/204, 2016. https://eprint.
iacr.org/2016/204.

[56] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonza-
lez, Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. Serverless comput-
ing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

[57] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan,
Vinay Phegade, and Juan Del Cuvillo. Using innovative
instructions to create trustworthy software solutions.
HASP@ ISCA, 11, 2013.

[58] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu
Zang, and Haibing Guan. vtz: Virtualizing arm trust-
zone. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, 2017.

[59] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter,
and Emmett Witchel. Ryoan: A distributed sandbox for
untrusted computation on secret data. ACM Transac-
tions on Computer Systems (TOCS), 35(4):1–32, 2018.

[60] Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and
Jaehyuk Huh. Architectural support for secure virtu-
alization under a vulnerable hypervisor. In 2011 44th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 272–283. IEEE, 2011.

[61] David Kaplan. Protecting vm register state with sev-es.
White paper, Feb, 2017.

[62] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B
Lee. Nohype: virtualized cloud infrastructure without
the virtualization. In Proceedings of the 37th annual
international symposium on Computer architecture,
pages 350–361, 2010.

[63] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. sel4: Formal verification of an os kernel.
In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, 2009.

[64] Ana Klimovic, Yawen Wang, Patrick Stuedi, Ani-
mesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis.
Pocket: Elastic ephemeral storage for serverless analyt-
ics. In 13th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 18), pages
427–444, 2018.

[65] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium
on Security and Privacy (S&P’19), 2019.

[66] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and
Huiyang Zhou. Hardware-software integrated ap-
proaches to defend against software cache-based side
channel attacks. In 2009 IEEE 15th International Sym-
posium on High Performance Computer Architecture,
pages 393–404. IEEE, 2009.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 291

https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204

[67] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a PC.
In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 31–46, 2012.

[68] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In Proceedings of the Fifteenth European Conference
on Computer Systems, pages 1–16, 2020.

[69] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential
serverless made efficient with plug-in enclaves. In
Proceedings of the 48th International Symposium on
Computer Architecture, ISCA 2021, Valencia, Spain,
June 14–19, 2021. IEEE, 2021.

[70] David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. Acm Sigplan Notices, 35(11):168–
177, 2000.

[71] David Lie, Chandramohan A Thekkath, and Mark
Horowitz. Implementing an untrusted operating sys-
tem on trusted hardware. In SOSP, 2003.

[72] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[73] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen,
Carlos Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE international symposium
on high performance computer architecture (HPCA),
pages 406–418. IEEE, 2016.

[74] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel attacks
are practical. In 2015 IEEE Symposium on Security
and Privacy, pages 605–622. IEEE, 2015.

[75] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,
Elaine Shi, Krste Asanovic, John Kubiatowicz, and
Dawn Song. Phantom: Practical oblivious computation
in a secure processor. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 311–324, 2013.

[76] Anupama Mampage, S. Karunasekera, and R. Buyya.
Deadline-aware dynamic resource management in
serverless computing environments. 2020.

[77] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. Hasp@ isca,
10(1), 2013.

[78] Ralph C Merkle. A digital signature based on a con-
ventional encryption function. In Conference on the
theory and application of cryptographic techniques,
pages 369–378. Springer, 1987.

[79] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling sym-
bolic evaluation for automated verification of systems
code with serval. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
225–242, 2019.

[80] Sam Newman. Building microservices: designing fine-
grained systems. " O’Reilly Media, Inc.", 2015.

[81] Meni Orenbach, Andrew Baumann, and Mark Silber-
stein. Autarky: closing controlled channels with self-
paging enclaves. In Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, pages 1–16,
2020.

[82] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of AES. In
Cryptographers’ track at the RSA conference, pages
1–20. Springer, 2006.

[83] Daniel Page. Defending against cache-based side-
channel attacks. Information Security Technical Report,
8(1):30–44, 2003.

[84] Christian Priebe, Kapil Vaswani, and Manuel Costa.
Enclavedb: A secure database using SGX. In 2018
IEEE Symposium on Security and Privacy (SP), pages
264–278. IEEE, 2018.

[85] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic,
and Yan Solihin. Using address independent seed en-
cryption and bonsai merkle trees to make secure pro-
cessors os-and performance-friendly. In 40th Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 2007), pages 183–196. IEEE, 2007.

[86] Aakanksha Saha and Sonika Jindal. Emars: Efficient
management and allocation of resources in serverless.
2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pages 827–830, 2018.

[87] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and
Mark Russinovich. Vc3: Trustworthy data analytics
in the cloud using sgx. In 2015 IEEE Symposium on
Security and Privacy, pages 38–54. IEEE, 2015.

292 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[88] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 205–218. USENIX
Association, July 2020.

[89] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan.
Occlum: Secure and Efficient Multitasking Inside a
Single Enclave of Intel SGX. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 955–970, 2020.

[90] G Edward Suh, Dwaine Clarke, Blaise Gassend,
Marten Van Dijk, and Srinivas Devadas. Aegis: ar-
chitecture for tamper-evident and tamper-resistant pro-
cessing. In ACM International Conference on Super-
computing 25th Anniversary Volume, pages 357–368,
2003.

[91] Jakub Szefer and Ruby B Lee. Architectural support
for hypervisor-secure virtualization. ACM SIGPLAN
Notices, 47(4):437–450, 2012.

[92] Meysam Taassori, Ali Shafiee, and Rajeev Balasub-
ramonian. Vault: Reducing paging overheads in sgx
with efficient integrity verification structures. In Pro-
ceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 665–678, 2018.

[93] Bohdan Trach, Oleksii Oleksenko, Franz Gregor,
Pramod Bhatotia, and Christof Fetzer. Clemmys: To-
wards secure remote execution in faas. In Proceedings
of the 12th ACM International Conference on Systems
and Storage, pages 44–54, 2019.

[94] Eric P Traut, Matthew D Hendel, and Rene Antonio
Vega. Enhanced shadow page table algorithms, Novem-
ber 20 2007. US Patent 7,299,337.

[95] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A Practical Library OS for Unmodi-
fied Applications on SGX. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 645–
658, 2017.

[96] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John
McAvey, Raluca Ada Popa, and Donald E Porter. Civet:
An efficient java partitioning framework for hard-
ware enclaves. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[97] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni,
Fernando CM Martins, Andrew V Anderson, Steven M
Bennett, Alain Kagi, Felix H Leung, and Larry Smith.
Intel virtualization technology. Computer, 38(5):48–
56, 2005.

[98] Carl A Waldspurger. Memory resource management in
vmware esx server. ACM SIGOPS Operating Systems
Review, 36(SI):181–194, 2002.

[99] Zhenghong Wang and Ruby B Lee. New cache designs
for thwarting software cache-based side channel at-
tacks. In Proceedings of the 34th annual international
symposium on Computer architecture, pages 494–505,
2007.

[100] Andrew Waterman, Yunsup Lee, David A Patterson,
and Krste Asanovi. The RISC-V Instruction Set Man-
ual. Volume 1: User-Level ISA, Version 2.0. Technical
report, CALIFORNIA UNIV BERKELEY DEPT OF
ELECTRICAL ENGINEERING AND COMPUTER
SCIENCES, 2014.

[101] Robert NM Watson, Robert M Norton, Jonathan
Woodruff, Simon W Moore, Peter G Neumann,
Jonathan Anderson, David Chisnall, Brooks Davis, Ben
Laurie, Michael Roe, et al. Fast protection-domain
crossing in the cheri capability-system architecture.
IEEE Micro, 2016.

[102] Samuel Weiser, Mario Werner, Ferdinand Brasser,
Maja Malenko, Stefan Mangard, and Ahmad-Reza
Sadeghi. Timber-v: Tag-isolated memory bringing
fine-grained enclaves to risc-v. In NDSS, 2019.

[103] Ofir Weisse, Valeria Bertacco, and Todd Austin. Re-
gaining lost cycles with hotcalls: A fast interface for
sgx secure enclaves. ACM SIGARCH Computer Archi-
tecture News, 45(2):81–93, 2017.

[104] Yubin Xia, Yutao Liu, and Haibo Chen. Architecture
support for guest-transparent vm protection from un-
trusted hypervisor and physical attacks. In HPCA,
pages 246–257, 2013.

[105] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian
Zhang. Stacco: Differentially analyzing side-channel
traces for detecting ssl/tls vulnerabilities in secure en-
claves. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 859–874, 2017.

[106] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and
Josep Torrellas. Secure hierarchy-aware cache replace-
ment policy (sharp): Defending against cache-based
side channel attacks. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture
(ISCA), pages 347–360. IEEE, 2017.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 293

[107] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Tor-
rellas. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In Attack Directories,
Not Caches: Side Channel Attacks in a Non-Inclusive
World, page 0. IEEE, 2019.

[108] Yuval Yarom and Naomi Benger. Recovering openssl
ecdsa nonces using the flush+ reload cache side-
channel attack. IACR Cryptol. ePrint Arch., 2014:140,
2014.

[109] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD:
a high resolution, low noise, L3 cache side-channel
attack. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 719–732, 2014.

[110] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
Cachebleed: a timing attack on openssl constant-time
rsa. Journal of Cryptographic Engineering, 7(2):99–
112, 2017.

[111] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu
Zang. Cloudvisor: retrofitting protection of virtual ma-
chines in multi-tenant cloud with nested virtualization.
In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 2011.

[112] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. To-
wards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM Euro-
pean conference on Computer systems, pages 89–102,
2009.

[113] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal,
Zhi Wang, and Yuval Yarom. Pthammer: Cross-user-
kernel-boundary rowhammer through implicit accesses.
In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 28–41.
IEEE, 2020.

294 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NrOS: Effective Replication and Sharing in an Operating System

Ankit Bhardwaj1, Chinmay Kulkarni1, Reto Achermann2, Irina Calciu3,
Sanidhya Kashyap4, Ryan Stutsman1, Amy Tai3, and Gerd Zellweger3

1University of Utah, 2University of British Columbia, 3VMware Research, 4EPFL

Abstract
Writing a correct operating system kernel is notoriously

hard. Kernel code requires manual memory management and
type-unsafe code and must efficiently handle complex, asyn-
chronous events. In addition, increasing CPU core counts
further complicate kernel development. Typically, monolithic
kernels share state across cores and rely on one-off synchro-
nization patterns that are specialized for each kernel structure
or subsystem. Hence, kernel developers are constantly refin-
ing synchronization within OS kernels to improve scalability
at the risk of introducing subtle bugs.

We present NrOS, a new OS kernel with a safer approach
to synchronization that runs many POSIX programs. NrOS
is primarily constructed as a simple, sequential kernel with
no concurrency, making it easier to develop and reason about
its correctness. This kernel is scaled across NUMA nodes
using node replication, a scheme inspired by state machine
replication in distributed systems. NrOS replicates kernel
state on each NUMA node and uses operation logs to maintain
strong consistency between replicas. Cores can safely and
concurrently read from their local kernel replica, eliminating
remote NUMA accesses.

Our evaluation shows that NrOS scales to 96 cores with
performance that nearly always dominates Linux at scale, in
some cases by orders of magnitude, while retaining much of
the simplicity of a sequential kernel.

1 Introduction

Operating system kernels are notoriously hard to build.
Manual memory management, complex synchronization pat-
terns [36], and asynchronous events lead to subtle bugs [2–4],
even when code is written by experts. Increasing CPU core
counts and non-uniform memory access (NUMA) have only
made it harder. Beyond correctness bugs, kernel developers
must continuously chase down performance regressions that
only appear under specific workloads or as core counts scale.
Even so, prevailing wisdom dictates that kernels should use

custom-tailored concurrent data structures with fine-grained
locking or techniques like read-copy-update (RCU) to achieve
good performance. For monolithic kernels, this slows devel-
opment to the extent that even large companies like Google re-
sort to externalizing new subsystems to userspace [57] where
they can contain bugs and draw on a larger pool of developers.

Some have recognized that this complexity isn’t always
warranted. For example, wrapping a single-threaded, sequen-
tial microkernel in a single coarse lock is safe and can provide
good performance when cores share a cache [67]. This ap-
proach does not target NUMA systems, which have many
cores and do not all share a cache. Increased cross-NUMA-
node memory latency slows access to structures in shared
memory including the lock, causing collapse.

Multikernels like Barrelfish [17] take a different approach;
they scale by forgoing shared memory and divide resources
among per-core kernels that communicate via message pass-
ing. This scales well, but explicit message passing adds too
much complexity and overhead for hosts with shared mem-
ory. Within a NUMA node, hardware cache coherence makes
shared memory more efficient than message passing under
low contention.

We overcome this trade-off between scalability and simplic-
ity in NrOS, a new OS that relies primarily on single-threaded,
sequential implementations of its core data structures. NrOS
scales using node replication [28], an approach inspired by
state machine replication in distributed systems, which trans-
forms these structures into linearizable concurrent structures.
Node replication keeps a separate replica of the kernel struc-
tures per NUMA node, so operations that read kernel state can
concurrently access their local replica, avoiding cross-NUMA
memory accesses. When operations mutate kernel state, node
replication collects and batches them from cores within a
NUMA node using flat combining [44], and it appends them
to a shared log; each replica applies the operations serially
from the log to synchronize its state.

The NrOS approach to synchronization simplifies reason-
ing about its correctness, even while scaling to hundreds of
cores and reducing contention in several OS subsystems (§4.2,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 295

monolith kernel
shared state

multikernel
replicated

state

NRkernel
shared
replica

NRkernel
shared
replica

NRkernel
shared
replica

multikernel
replicated

state

multikernel
replicated

state

CPU CPU CPU CPU CPU CPU CPU CPU

cache

NRLog

cache

CPU

cache

DRAM1

CPU

cache

DRAM0
DRAM1DRAM0

message passing
cache cachecache

DRAM0
DRAM1 DRAM2

CPU

Figure 1: Architectural overview of NRkernel vs. multikernel and monoliths.

§4.4). However, node replication is not a panacea: while im-
plementing an in-memory file system, we have encountered
scenarios where frequent state mutations hinder performance.
To address this challenge, we propose concurrent node repli-
cation (§3), which exploits operation commutativity with mul-
tiple logs and concurrent replicas to improve the performance
and scalability of the file system (§4.3).

NrOS is implemented in Rust, which interplays with node
replication. The Rust type system makes mutability explicit,
enabling our node replication library to distinguish effortlessly
between update operations that must use the log and read-only
operations that can proceed concurrently at the local replica.
However, we still had to solve several practical challenges,
such as safely dealing with out-of-band reads by hardware,
efficiently allocating buffers, and garbage collecting the log.
To summarize, we make the following contributions.
1. We designed and implemented NrOS, a kernel that simpli-

fies synchronization via node replication and runs many
POSIX programs; we describe its subsystems, including
processes, scheduling, address spaces, and an in-memory
file system.

2. We implemented node replication in Rust, leveraging the
Rust type system to distinguish mutable and read-only
operations. In addition, we extended the node replication
approach to exploit operation commutativity using multi-
ple logs and concurrent replicas.

3. We evaluated NrOS on hosts with up to 4 NUMA nodes
running bare metal and in virtual machines, and we com-
pared its performance to that of Linux, sv6, and Barrelfish
on file system, address space, and application-level bench-
marks (LevelDB, memcached). NrOS largely outperforms
conventional OSes on read-heavy workloads and on con-
tending workloads thanks to its use of node replication.

NrOS1 and its node replication2 library are open source.

2 Background and Related Work

OS & Software Trends. Linux continues to be the prevalent
data center OS; it uses a monolithic kernel (Figure 1), which
shares all OS state and protects access using locks and other
synchronization primitives. Despite being widely used, this

1https://github.com/vmware-labs/node-replicated-kernel
2https://github.com/vmware/node-replication

model has multiple limitations. As the numbers of cores per
server keeps increasing, the performance and scalability of
the kernel are impacted. Its synchronization primitives, in par-
ticular, do not scale well to large numbers of cores. Moreover,
architectures such as non-uniform memory access (NUMA)
exacerbate scalability problems. With NUMA, each processor
has lower latency and higher bandwidth to its own local mem-
ory. This causes significant performance degradation when
state is shared across all processors [23].

The Linux community has reacted with point solutions
to these problems, optimizing performance through fine-
grained synchronization [31, 32, 36] or better locks/wait-
free data structures [51, 61, 73]. However, these solutions
have amplified the looming problem of complexity with
the monolithic design. Correct concurrency in the kernel
in the presence of fine-grained locking and lock-free data
structures is hard, and it is the source of many hard-to-find
bugs [26, 34, 37–39, 41, 47, 55, 79, 80].

For example, Linux has an entire class of bugs due to lock-
less access to lock-protected shared variables [2–4]. Use-
after-free bugs are also common in Linux due to improper
locking [5,6]. These are some of the many bugs that still exist
because of the heavy use of lockless or improper accesses
in the Linux kernel. Such bugs would be trivially avoided in
NrOS, which absolves the developer from reasoning about
fine-grained locking for concurrent data structures.

The OS research community has proposed new kernel mod-
els to address these limitations [22, 30, 70, 78]. In particular,
the multikernel model replicates kernel state and uses message
passing to communicate between replicas [17], but, a decade
after its introduction, multikernels have not seen widespread
adoption. In part, this is because cache coherence and shared
memory have not gone away (and probably will not in the
foreseeable future). For example, the Barrelfish multikernel
mainly uses point-to-point message passing channels between
the OS nodes, avoiding use of shared memory between cores
within the kernel altogether. Ultimately, this means the system
needs to use n2 messages to communicate between cores, and
each core must monitor n queues; this has little benefit to
offset its cost since many large groups of cores can already
communicate more efficiently via shared memory access to
a shared last-level cache. This also increases the number of
operations that must be coordinated across cores, and some

296 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vmware-labs/node-replicated-kernel
https://github.com/vmware/node-replication

operations require that all kernel nodes reach agreement. For
example, capability operations in Barrelfish require a blocking
two-phase protocol so complex that it is explicitly encoded as
a large state machine, and the full Barrelfish capability system
is about 8,000 lines of code not including the two domain-
specific languages used for RPCs and capability operations.
So, despite their scaling benefits, multikernels fail to exploit
the simplicity and performance of shared memory even when
it is efficient to do so.

Prior work has investigated approaches to combine the
monolithic and the multikernel models [16, 74] or to apply
replication for parts of the kernel [20,25,33,72]. Tornado [42]
and K42 [54] use clustered objects, which optimize shared
state through the use of partitioning and replication. More
recently, Mitosis [10] retrofitted the replication idea to page
table management in the Linux kernel, and showed benefits
for a wide variety of workloads. Implementing Mitosis re-
quired a major engineering effort to retrofit replication into a
conventional kernel design.

Our main observation is that shared memory can be used ju-
diciously with some replication to get the best of both worlds:
a simple, elegant and extensible model like the multikernel
that can run applications designed for a monolithic kernel.
Based on this observation, we propose the NRkernel, a new
multikernel model that replicates the kernel, but allows replica
sharing among cores, balancing performance and simplicity.

The NRkernel is inspired by NR (§2.1), and it has at its
core operation logs that provide linearizability. The logs act as
global broadcast message channels that eliminate the complex
state machine used by Barrelfish for consensus. What remains
are simple, single-threaded implementations of data structures
that apply updates from the shared log. Based on the NRkernel
model, we designed and implemented NrOS, a representative
system to evaluate its characteristics.
Hardware Trends. Two major hardware trends motivate the
NRkernel. First, shared memory is part of every system today,
and current hardware trends indicate that there will be some
form of memory sharing – not necessarily with global coher-
ence – available for many new heterogeneous components
and disaggregated architectures. The industry is working on
multiple specifications that will enable such sharing (e.g.,
CXL [71], CAPI [64], CCIX [1], Gen-Z [7]). While sharing
memory does not scale indefinitely as we add more cores, it
works more efficiently than passing messages among a lim-
ited number of cores [27]. In such a model, a shared log and
replication work well because the log can be accessed by all
independent entities connected over a memory bus.

Second, main memory capacities are growing [40] and are
expected to increase further with new 3D-stacked technolo-
gies [76] and the arrival of tiered memory systems comprising
various types of memory, such as DRAM and SCM. Amazon
already has offerings for servers with up to 24 TiB. Like other
systems [49, 68], the NRkernel leverages the abundance of
memory to improve performance with replication.

2.1 Node Replication (NR)

NR creates a linearizable NUMA-aware concurrent data struc-
ture from a sequential data structure [28]. NR replicates the
sequential data structure on each NUMA node, and it uses an
operation log to maintain consistency between the replicas.
Each replica benefits from read concurrency using a readers-
writer lock and from write concurrency using a technique
called flat combining. Flat combining batches operations from
multiple threads to be executed by a single thread (the com-
biner) per replica. This thread also appends the batched oper-
ations to the log using a single atomic operation for the entire
batch; other replicas read the log and update their local copy
of the structure with the logged operations.

NR relies on three main techniques to scale well:
(1) The operation log uses a circular buffer to represent the
abstract state of the concurrent data structure. Each entry in
the log represents a mutating operation, and the log ensures
a total order among them. The log tail gives the index to the
last operation added to the log. Each replica consumes the
log lazily and maintains a per-replica index into the log that
indicates which operations of the log have been executed on
its copy of the structure. The log is implemented as a circular
buffer of entries that are reused. NR cannot reuse entries that
have not been executed on all replicas. This means at least one
thread on each NUMA node must occasionally make progress
in executing operations on the data structure, otherwise the
log could fill up and block new mutating operations. Section 4
discusses how NrOS addresses this.
(2) Flat combining [44] in NR allows threads running on the
same NUMA node to share a replica, resulting in better cache
locality both from flat combining and from maintaining the
replica local to the node’s last-level cache. The combiner also
benefits from batching by allocating log space for all pending
operations at a replica with a single atomic instruction.
(3) The optimized readers-writer lock in NR is a writer-
preference variant of the distributed readers-writer lock [75]
that ensures correct synchronization between the combiner
and reader threads when accessing the sequential replica. This
lock lets readers access a local replica while the combiner is
adding a batch of operations to the log, increasing parallelism.

NR executes updates and reads differently:
A concurrent mutating operation (update) needs to ac-
quire the combiner lock on the local NUMA node to add
the operation to the log and to execute the operation against
the local replica. If the thread T executing this operation fails
to acquire it, another thread is the combiner for the replica
already, so T spin-waits to receive its operation’s result from
the existing combiner. If T acquires the lock, it becomes the
combiner. The combiner first flat combines all operations
from all threads that are concurrently waiting for their update
operations to be appended to the log with a single compare-
and-swap. Then, the combiner acquires the writer lock on
the local replica’s structure, and it sequentially executes all

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 297

unexecuted update operations in the log on the structure in
order. For each executed operation, the combiner returns its
results to the waiting thread.
A concurrent non-mutating operation (read) can execute
on its thread’s NUMA-node-local replica without creating
a log entry. To ensure that the replica is not stale, it takes
a snapshot of the log tail when the operation begins, and it
waits until a combiner updates the replica past the observed
tail. If there is no combiner for the replica, the reading thread
becomes the combiner to update the replica before executing
its read operation.

NR simplifies concurrent data structure design by hiding
the complexities of synchronization behind the log abstraction.
NR works well on current systems because the operation log
is optimized for NUMA. We adopt NR’s NUMA-optimized
log design, but we use it to replicate kernel state.

Linearizable operation logs are ubiquitous in distributed
systems. For example, many protocols such as Raft [63],
Corfu [35], and Delos [15] use a log to simplify reaching
consensus and fault tolerance, as well as to scale out a single-
node implementation to multiple machines. Recently, the
same abstraction has been used to achieve good scalability
on large machines both in file systems [19] and general data
structures [24, 44, 52, 58, 69]. Concurrent work has developed
NUMA-aware data structures from persistent indexes [77].

2.2 NR Example

Listing 1 shows an example where a Rust standard hashmap is
replicated using NR. NRHashMap wraps an existing sequential
hashmap (line 2-4). Programs specify the read (line 7) and up-
date (line 10) operations for the structure and how each should
be executed at each replica (lines 20-31) by implementing the
Dispatch trait.

Listing 2 shows a program that creates a single NRHashMap
with two NR replicas that use a shared log to synchronize up-
date operations between them. The code creates a log (line 3)
which is used to create two replicas (lines 6-7). Finally, the
threads can register themselves with any replica and issue op-
erations against it (lines 14-15). NR supports any number of
replicas and threads; programs must specify a configuration
that is efficient for their structure and operations. For example,
NrOS allocates one replica per NUMA node, and each core
in a node registers with its NUMA-local replica in order to
benefit from locality.

3 Concurrent Node Replication (CNR)

For some OS subsystems with frequent mutating operations
(e.g., the file system) NR’s log and sequential replicas can
limit scalability. Multiple combiners from different replicas
can make progress in parallel, but write scalability can be
limited by appends to the single shared log and the per-replica

1 // Standard Rust hashmap node replicated to each NUMA node.
2 pub struct NRHashMap {
3 storage: HashMap<usize, usize>,
4 }
5

6 // NRHashMap has a Get(k) op that does not modify state.
7 pub enum HMReadOp { Get(usize) }
8

9 // NRHashMap has a Put(k,v) op that modifies replica state.
10 pub enum HMUpdateOp { Put(usize, usize) }
11

12 // The trait implementation describes how to execute each
13 // operation on the sequential structure at each replica.
14 impl Dispatch for NRHashMap {
15 type ReadOp = HMReadOp;
16 type UpdateOp = HMUpdateOp;
17 type Resp = Option<usize>;
18

19 // Execute non-mutating operations (Get).
20 fn dispatch(&self, op: Self::ReadOp) -> Self::Resp {
21 match op {
22 HMReadOp::Get(k) => self.storage.get(&k).map(|v| *v),
23 }
24 }
25

26 // Execute mutating operations (Put).
27 fn dispatch_mut(&mut self, op: Self::UpdateOp) ->

Self::Resp {
28 match op {
29 HMUpdateOp::Put(k, v) => self.storage.insert(k, v),
30 }
31 }
32 }

Listing 1: Single-threaded hashmap transformed using NR.

1 // Allocate an operation log to synchronize replicas.
2 let logsize = 2 * 1024 * 1024;
3 let log = Log::<<NRHashMap as

Dispatch>::UpdateOp>::new(logsize);
4

5 // Create two replicas of the hashmap (one per NUMA node).
6 let replica1 = Replica::<NRHashMap>::new(log);
7 let replica2 = Replica::<NRHashMap>::new(log);
8

9 // Register threads on one NUMA node with replica1.
10 let tid1 = replica1.register();
11 // Threads on other node register similarly with replica2.
12

13 // Issue Get and Put operations and await results.
14 let r = replica1.execute(HMReadOp::Get(1), tid1);
15 let r = replica1.execute_mut(HMUpdateOp::Put(1, 1), tid1);

Listing 2: Creating replicas and using NR.

readers-writer lock, which only allows one combiner to exe-
cute operations at a time within each replica.

To solve this, we extend NR to exploit operation commuta-
tivity present in many data structures [30,45]. Two operations
are commutative if executing them in either order leaves the
structure in the same abstract state. Otherwise, the opera-
tions are conflicting. Like NR, CNR replicates a data struc-
ture across NUMA nodes and maintains consistency between
replicas. However, CNR scales the single shared NR log to
multiple logs by assigning commutative operations to differ-
ent logs. Conflicting operations are assigned to the same log,

298 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

which ensures they are ordered with respect to each other.
Also, CNR can use concurrent or partitioned data structures
for replicas, which allows multiple concurrent combiners on
each replica – one per shared log. This eliminates the per-
replica readers-writer lock and scales access to the structure.

CNR transforms an already concurrent data structure to
a NUMA-aware concurrent data structure. The original data
structure can be a concurrent (or partitioned) data structure
that works well for a small number of threads (4-8 threads)
within a single NUMA node. This data structure can be lock-
free or lock-based and may exhibit poor performance under
contention. CNR transforms such a concurrent data structure
to one that works well for a large number of threads (e.g., 100s
of threads) across NUMA nodes and is resilient to contention.

Similar to transactional boosting [45], CNR only considers
the abstract data type for establishing commutativity, not the
concrete data structure implementation. For example, con-
sider a concurrent hashmap with an insert(k, v) operation.
One might think that insert(k, v) and insert(k+1, v′) are not
commutative because they may conflict on shared memory
locations. However, the original data structure is concurrent
and already safely orders accesses to shared memory loca-
tions; hence, these operations commute for CNR and can be
safely executed concurrently.

CNR’s interface is nearly identical to NR’s interface, but
it introduces operation classes to express commutativity. Im-
plementers of a structure provide functions that CNR uses
to map each operation to an operation class. These functions
map conflicting operations to the same class, and each class
is mapped to a log. Hence, if two conflicting operations exe-
cute on the same NUMA node they are executed by the same
combiner, which ensures they are executed in order. In con-
trast, commutative operations can be executed by different
combiners and can use different shared logs, allowing them
to be executed concurrently.

Overall, CNR increases parallelism within each NUMA
node by using a concurrent replica with multiple combiners,
and it increases parallelism across NUMA nodes by using
multiple (mostly) independent shared logs. However, ulti-
mately every update operation must be executed at all replicas;
hence, it comes at a cost, and it cannot scale update throughput
beyond that of a single NUMA node. We refer to the general
mechanism of replicating a data structure using operation logs
as NR; when we need to explicitly distinguish cases that rely
on a concurrent data structure with multiple logs (rather than
a sequential one with a single log) we use the term CNR.

3.1 CNR Example

The code to use CNR to scale Put throughput for a repli-
cated hashmap is almost identical to the example given in
Section 2.2; it only changes in two ways. First, the structure
embedded in each replica must be thread-safe, since (commu-
tative) operations are executed on it concurrently, i.e., it must

1 impl LogMapper for HMUpdateOp {
2 fn hash(&self, nlogs: usize, logs: Vec<usize>) {
3 logs.clear();
4 match self {
5 HMUpdateOp::Put(key, _v) => logs.push(*key % nlogs),
6 }
7 }
8 }

Listing 3: LogMapper implementation for update operations.

implement Rust’s Sync trait. This creates a subtle, mostly
inconsequential, distinction in CNR’s Dispatch trait because
a mutable reference is not required to execute an operation
on the structure; hence, Listing 1 line 27 would read &self
rather than &mut self.

Second, CNR uses multiple logs to scale update operations;
programs must indicate which operations commute so CNR
can distribute commuting operations among logs. To do this,
programs implement the LogMapper trait for their update
operations (Listing 3). The program must implement this
trait for read operations as well. Get and Put operations on
a hashmap commute unless they affect the same key, so this
example maps all operations with a common key hash to the
same class and log. CNR also allows passing multiple logs to
the replicas; otherwise, its use is similar to Listing 2. Some
operations may conflict with operations in multiple classes,
which we discuss in the next section, so a LogMapper may
map a single operation to more than one class/log.

3.2 Multi-log Scan Operations

In addition to read and update operation types, CNR adds
a scan operation type, instances of which belong to more
than one operation class. These are operations that conflict
with many other operations. Often these are operations that
involve the shape of the structure or that need a stable view of
many elements of it. Examples include returning the count of
elements in a structure, hashmap bucket array resizing, range
queries, or, in our case, path resolution and directory traversal
for file system open, close, and rename operations. If these
operations were assigned to a single class, all other operations
would need to be in the same class, eliminating any benefit
from commutativity.

Scan operations conflict with multiple operation classes,
so they must execute over a consistent state of the replica
with respect to all of the classes and logs involved in the scan
obtained after its invocation. To obtain this consistent state,
the thread performing the scan creates an atomic snapshot
at the tails of the logs involved in the operation. Then, the
replica used by the scan needs to be updated exactly up to
the snapshot without exceeding it (unlike NR read operations,
which can update past the read thread’s observed log tail).

Hence, there are two challenges that CNR needs to solve
for a correct scan operation: (1) obtaining the atomic snapshot
of the log tails while other threads might be updating the logs;

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 299

and (2) ensuring that the replica is updated exactly up to the
observed atomic snapshot.

The problem of obtaining an atomic snapshot is well-
studied in concurrent computing [11, 14, 56]. Unlike prior
solutions, which are wait-free, we designed a simple, block-
ing solution that works well in practice and addresses both of
the above challenges simultaneously. The scan thread inserts
the operation into all of the logs associated with the scan’s
operation classes. To ensure that two threads concurrently
inserting scan operations do not cause a deadlock by insert-
ing the operations in a different order on different logs, each
thread must acquire and hold a scan-lock while inserting a
scan operation in the logs that participate in the operation’s
atomic snapshot. Update threads can continue to insert their
operations into the logs after the unfinished scan and without
holding the scan-lock. These operations will be correctly lin-
earized after the scan. Update threads from the same replica
as the scan block when they encounter a colocated unfinished
scan. With updates blocked on the replica, the scan thread
can proceed to execute the operation on the replica once the
replica is updated up to the scan’s log entries (either by the
scan thread or by combiners). After the scan has been exe-
cuted at that replica, blocked threads at the replica continue
with their updates.

Similar to NR read and update operations, scan operations
can be of type scan-update (if the scan modifies the data
structure) or scan-read (if it does not). With a scan-read op-
eration, the operation only needs to be performed once at
the replica where it was invoked; the other replicas ignore
log entries for scan-read operations. Like update operations,
scan-update operations must affect all replicas, but they must
also be executed at each replica only when the replica is at a
consistent state for that scan operation. The first combiner that
encounters the scan-update operation on a replica acquires all
necessary combiner locks, updates the replica to the consis-
tent state, and executes the scan, just as is done on the replica
where the scan was initiated.

Scan operations incur higher overhead than other opera-
tions, and their cost depends on how many operation classes
they conflict with. In our experience, scan operations are
rare, so CNR is carefully designed so that scans absorb the
overhead while leaving the code paths for simpler and more
frequent (read and update) operations efficient.

4 NrOS Design

We designed and implemented NrOS, a representative sys-
tem for the NRkernel. The overall NrOS kernel as a whole
is designed around per-NUMA node kernel replicas that en-
capsulate the state of most of its standard kernel subsystems.
Kernel operations access the local replica, and state inside
replicas is modified and synchronized with one another using
NR, so cross-node communication is minimized (Figure 2).
The collective set of kernel replicas act as a multikernel.

fc buffer

NrFS NrSched NrVM

Application BApplication A Application C

U
se

rs
pa

ce

Threads

NUMA
Node 1

NUMA
Node 0

N
rO

S Operation Logs
system call system call

fc buffer fc buffer fc buffer

NrFS NrSched NrVM

fc buffer fc buffer

Threads

Figure 2: NrOS overview. A per-NUMA-node kernel replica ser-
vices syscalls on cores on that node. Operations read local replica
state; state mutating operations are replicated via NR data structures
and are executed at all replicas. Each replica flat combines operations
from all cores within a NUMA node, efficiently appending them
to one (for NR) or multiple (for CNR) logs. Operations block until
completion, ensuring linearizability.

Here, we describe the design of three of NrOS’s major
subsystems; all of them are replicated via NR:
NR-vMem (§4.2): A virtual memory system that replicates
per-process page mapping metadata and hardware page ta-
bles for a given process.

NR-FS (§4.3): An in-memory file system that, by design,
replicates all metadata and file contents.

NR-Scheduler (§4.4): A process manager that loads and
spawns ELF binaries with replicated (read-only) ELF sec-
tions and makes global scheduling decisions.

In userspace, NrOS runs native NrOS programs or POSIX
programs that are linked against NetBSD libOS components
(§5). The libOS uses system calls for memory, process man-
agement, and file system operations. This approach can run
many POSIX applications like memcached (§6.3.3), Redis,
and LevelDB (§6.2.2), though it lacks fork and some other
functionality which it would need for full POSIX support. If a
process wants to write to a file or map a page, it traps into the
kernel and enqueues an operation against its local replica file
system or process structure and blocks until the request com-
pletes before returning from the syscall. Operations that must
modify state acquire a local writer lock (if the data structure
is not using CNR) before applying the operation directly. If
the lock is contended, the operation is enqueued in the local
flat combining buffer, then it waits until the current combiner
within the node applies the operation. The logs make sure
that all modifications to the state of all of the above compo-
nents are replicated to the other kernel replicas through NR.
Operations that only read replica state first ensure the local
replica is up-to-date by applying any new operations from the
NR log (if needed), and then reading from the local replica.

The kernel is also responsible for physical memory man-
agement, interrupt routing and PCI pass-through (network
I/O is done directly by processes). These subsystems are not
replicated using NR. Devices and interrupts are functional,
but their details are outside of the scope of this paper. The
full functionality provided by the kernel can be best com-

300 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

pared with a lightweight hypervisor which runs processes as
containerized/isolated applications using the libOS.
NRkernel Principles. Overall NrOS represents a new point
in the multikernel design space we call the NRkernel model,
which is encapsulated by three key principles.
(1) Combining replicated and shared state. Multikernels
like Barrelfish rely on per-core replicas which are pro-
hibitively expensive; NRkernels strike a balance by maintain-
ing a kernel replica per NUMA node; within a NUMA node
cores share access to their NUMA-local replica. This maxi-
mizes the benefit of shared last-level caches while eliminating
slow cross-NUMA node memory accesses. With per-NUMA-
node replicas, memory consumption grows with the number
of NUMA nodes rather than the number of cores.
(2) Replica consistency via an operation log. Unlike multi-
kernels’ expensive use of message passing between all pairs
of cores, in NRkernels kernel replicas efficiently synchronize
with shared operation logs; logging scales within a NUMA
node using flat combining to batch operations across cores.
The logs encode all state-changing operations for each subsys-
tem, and ensure replica consistency while hiding the details
of architecture-specific performance optimizations.
(3) Compiler-enforced memory and concurrency safety.
Rust’s compile-time memory-safety and thread-safety guar-
antees are easy to extend to a kernel’s NR implementation.
Its segregation of mutating and non-mutating references en-
sures correct, efficient code is generated where each kernel
operation safely accesses the local replica when possible or is
logged to synchronize replicas. Rust’s Send and Sync anno-
tations for types are a helpful mechanism to prevent putting
data structures on the log that have meaning only on a local
core (e.g., a userspace pointer) and prevents them from ever
being accessed by another core due to flat combining.

Encapsulating concurrency concerns in a single library
with compiler-checked guarantees ensures most operations
scale without concerns about subtle concurrency bugs. Having
NR isolated in a single logical library also makes it easier to
reason about concurrency correctness. For instance, in future
work we plan to formally verify the NR mechanism, which
would guarantee correct translation for any data structure that
leverages NR for concurrency. Contrast this with a traditional
kernel such as Linux, where bugs can be introduced not only
in the lock library implementation (such as RCU) but espe-
cially in the way the rest of the kernel uses the library; only in
2019 did kernel developers consolidate the Linux RCU library
to prevent users from mismatching locking calls [8, 59].

In the remainder of this section, we describe NrOS’s sub-
systems, which demonstrate these principles and resolve the
challenges of putting them into practice.

4.1 Physical Memory Management
Physical memory allocation and dynamic memory allocation
for kernel data structures are the two basic subsystems that

do not use NR. Replicated subsystems often require physi-
cal frames, but that allocation operation itself should not be
replicated. For example, when installing a mapping in a page
table, each page table entry should refer to the same physical
page frame on all replicas (though, each replica should have
its own page tables). If allocator state were replicated, each
allocation operation would be repeated on each replica, break-
ing this. As a result, some syscalls in NrOS must be handled
in two steps. For example, when installing a page, the page is
allocated up front, outside of NR, and a pointer to it is passed
as an argument to the NR operation. This also helps with per-
formance; zeroing a page is slow, and it can be done before
the replicated NR operation is enqueued. Operations from a
log are applied serially at each replica, so this optimization
eliminates head-of-line-blocking on zeroing.

At boot time, the affinity for memory regions is identi-
fied, and memory is divided into per-NUMA node caches
(NCache). The NCache statically partitions memory further
into two classes of 4 KiB and 2 MiB frames. Every core has a
local cache TCache of 4 KiB and 2 MiB frames for fast, no-
contention allocation when it contains the requested frame
size. If it is empty, it refills from its local NCache. Similar to
slab allocators [21], NrOS TCache and NCache implement a
cache frontend and backend that controls the flow between
TCaches and NCaches.

Unlike Barrelfish or seL4 [53] where all dynamic memory
management is externalized to userspace, NrOS makes use of
dynamic memory allocation in the kernel. For arbitrary-sized
allocations, NrOS implements a simple, scalable allocator
with per-core, segregated free lists of 2 MiB or 4 KiB frames.
Each frame is divided into smaller, equal-sized objects. A bit
field tracks per-object allocations within a frame.

Since NrOS is implemented in Rust, memory management
is greatly simplified by relying on the compiler to track the
lifetime of allocated objects. This eliminates a large class
of bugs (use-after-free, uninitialized memory, etc.), but the
kernel still has to explicitly handle running out of memory.
NrOS uses fallible allocations to handle out-of-memory errors
gracefully by returning an error to applications.

However, handling out-of-memory errors in presence of
replicated data structures becomes challenging: Allocations
that happen to store replicated state must be deterministic
(e.g., they should either succeed on all replicas or none). Oth-
erwise, the replicas would end up in an inconsistent state if
after executing an operation, some replicas had successful
and some had unsuccessful allocations. Making sure that all
replicas always have equal amounts of memory available is
infeasible because every replica replicates at different times,
and allocations can happen on other cores for outside of NR.
We solve this problem in NrOS by requiring that all memory
allocations for state within node replication or CNR must go
through a deterministic allocator. In the deterministic alloca-
tor, the first replica that reaches an allocation request allocates
memory on behalf of all other replicas too. The deterministic

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 301

allocator remembers the results temporarily, until they are
picked up by the other replicas which are running behind. If
an allocation for any of the replica fails, the leading replica
will enqueue the error for all replicas to ensure that all replicas
always see the same result. Allocators in NrOS are chainable,
and it is sufficient for the deterministic allocator to be any-
where in the chain so it doesn’t necessarily have to be invoked
for every fine-grained allocation request. Our implementation
leverages the custom allocator feature in Rust, which lets us
override the default heap allocator with specialized allocators
for individual data structures.

4.2 Virtual Memory Management

NrOS relies on the MMU for isolation. Like most conven-
tional virtual memory implementations, NrOS uses a per-
process mapping database (as a B-Tree) to store frame map-
pings which is used to construct the process’s hardware page
tables. NrOS currently does not support demand paging. Due
to increased memory capacities, we did not deem demand
paging an important feature for demonstrating our prototype.
Both the B-Tree and the hardware page tables are simple,
sequential data structures that are wrapped behind the node
replication interface for concurrency and replication. There-
fore, the mapping database and page tables are replicated
on every NUMA node, forming the NR-vMem subsystem.
NR-vMem exposes the following mutating operations for
a process to modify its address space: MapFrame (to insert
a mapping); Unmap (to remove mappings); and Adjust (to
change permissions of a mapping). NR-vMem also supports
a non-mutating Resolve operation (that advances the local
replica and queries the address space state).

There are several aspects of NR-vMem’s design that are
influenced by its integration with node replication.

For example, NR-vMem has to consider out-of-band read
accesses by cores’ page table walkers. Normally a read op-
eration would go through the node replication interface, en-
suring replay of all outstanding operations from the log first.
However, a hardware page table walker does not have this
capability. A race arises if a process maps a page on core X
of replica A and core Y of replica B accesses that mapping
in userspace before replica B has applied the update. Luckily,
this can be handled since it generates a page fault. In order to
resolve this race, the page fault handler advances the replica
by issuing a Resolve operation on the address space to find
the corresponding mapping of the virtual address generating
the fault. If a mapping is found, the process can be resumed
since the Resolve operation will apply outstanding opera-
tions. If no mapping is found, the access was an invalid read
or write by the process.
Unmap or Adjust (e.g., removing or modifying page table

entries) requires the OS to flush TLB entries on cores where
the process is active to ensure TLB coherence. This is typi-
cally done in software by the OS (and commonly referred to

as performing a TLB “shootdown”). The initiator core starts
by enqueuing the operation for the local replica. After node
replication returns it knows that the unmap (or adjust) opera-
tion has been performed at least against the local page table
replica and that it is enqueued as a future operation on the
log for other replicas. Next, it sends inter-processor interrupts
(IPIs) to trigger TLB flushes on all cores running the corre-
sponding process. As part of the IPI handler the cores first
acknowledge the IPI to the initiator. Next, they advance their
local replica to execute outstanding log operations (which
forces the unmap/adjust if it was not already applied). Then,
they poll a per-core message queue to get information about
the regions that need to be flushed. Finally, they perform the
TLB invalidation. Meanwhile the initiator invalidates its own
TLB entries, and then it waits for all acknowledgments from
the other cores before it returns to userspace. This shootdown
protocol incorporates some of the optimizations described in
Amit et al. [12]; it uses the cluster mode of the x86 interrupt
controller to broadcast IPIs up to 16 CPUs simultaneously,
and acknowledgments are sent to the initiator as soon as pos-
sible when the IPI is received (this is safe since flushing is
done in a non-interruptible way).

4.3 File System

File systems are essential for serving configuration files and
data to processes. NR-FS adds an in-memory file system
to NrOS that supports some standard POSIX file operations
(open, pread, pwrite, close, etc.). NR-FS tracks files and
directories by mapping each path to an inode number and
then mapping each inode number to an in-memory inode.
Each inode holds either directory or file metadata and a list
of file pages. The entire data structure is wrapped by node
replication for concurrent access and replication.

There are three challenges for implementing a file system
with node replication. First, historically POSIX read opera-
tions mutate kernel state (e.g., file descriptor offsets). State
mutating operations in node replication must be performed at
each replica serially, which would eliminate all concurrency
for file system operations. Fortunately, file descriptor offsets
are implemented in the userspace libOS, and all NrOS file
system calls are implemented with positional reads and writes
(pread/pwrite), which do not update offsets. This lets NR-FS
apply read operations as concurrent, non-mutating operations.

Second, each file system operation can copy large amounts
of data with a single read or write operation. The size of the
log is limited, so we do not copy the contents into it. Instead
we allocate the kernel-side buffers for these operations and
places references to the buffers in the log. These buffers are
deallocated once all replicas have applied the operation.

Third, processes supply the buffer for writes, which can
be problematic for replication. If a process changes a buffer
during the execution of a write operation, it could result in
inconsistencies in file contents since replicas could copy data

302 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

into the file from the buffer at different times. In NR-FS the
write buffer is copied to kernel memory beforehand. This
also solves another problem with flat combining: cores are as-
signed to processes (§4.4) and any core within a replica could
apply an operation, but a particular core may not be in the
process’s address space. Copying the data to kernel memory
before enqueuing the operation ensures that the buffer used
in the operation is not modified during copies and is readable
by all cores without address space changes.

4.3.1 Scaling NR-FS Writes

NR-FS optimizes reads so that many operations avoid the
log, but other operations (write, link, unlink, etc.) must
always be logged. This is efficient when these operations
naturally contend with one another since they must serialize
anyway and can benefit from flat combining. However, some-
times applications work independently and concurrently on
different regions of the file system. For those workloads, node
replication would be a limiting bottleneck as it unnecessarily
serializes those operations.

To solve this, we developed CNR (§3). CNR uses the same
approach to replication as node replication, but it divides com-
mutative mutating operations among multiple logs with a
combiner per log to scale performance. Others have observed
the benefits of exploiting commutativity in syscalls and file
systems [19, 30, 60], and CNR lets NR-FS make similar op-
timizations. CNR naturally scales operations over multiple
combiners per NUMA node under low contention workloads
that mutate state, and it seamlessly transitions to use a single
combiner when operations contend.

Augmenting NR-FS to use CNR mainly requires imple-
menting the LogMapper trait that indicates which log(s) an
operation should serialize in (Listing 3). NR-FS hash parti-
tions files by inode number, so operations associated with
different files are appended to different logs and applied in
parallel.

Some operations like rename may affect inodes in multi-
ple partitions. Our current version of NR-FS handles this by
serializing these operations with operations on all logs as a
scan-update (§3.2). Using scans ensures that if the effect of
any cross-partition operation (like rename) could have been
observed by an application, then all operations that were ap-
pended subsequently to any log linearize after it (external
consistency). We plan to experiment in the future with more
sophisticated approaches that avoid serializing all operations
with every such cross-partition operation.

4.4 Process Management and Scheduling

Process management for userspace programs in NrOS is in-
spired by Barrelfish’s “dispatchers” and the “Hart” core ab-
straction in Lithe [65] with scheduler activations [13] as a
notification mechanism.

In NrOS, the kernel-level scheduler (NR-Scheduler) is a
coarse-grained scheduler that allocates CPUs to processes.
Processes make system calls to request for more cores and to
give them up. The kernel notifies processes of core allocations
and deallocations via upcalls. To run on a core, a process
allocates executor objects (i.e., the equivalent of a “kernel”
thread) that are used to dispatch a given process on a CPU.
An executor mainly consists of two userspace stacks (one
for the upcall handler and one for the initial stack) and a
region to save CPU registers and other metadata. Executors
are allocated lazily but a process keeps a per-NUMA-node
cache to reuse them over time.

In the process, a userspace scheduler reacts to upcalls in-
dicating the addition or removal of a core, and it makes fine-
grained scheduling decisions by dispatching threads accord-
ingly. This design means that the kernel is only responsible
for coarse-grained scheduling decisions, and it implements a
global policy of core allocation to processes.

NR-Scheduler uses a sequential hash table wrapped with
node replication to map each process id to a process structure
and to map process executors to cores. It has operations to cre-
ate or destroy a process, to allocate and deallocate executors
for a process, and to obtain an executor for a given core.

Process creation must create a new address space, parse
the program’s ELF headers, allocate memory for program
sections, and relocate symbols in memory. A naive imple-
mentation might apply those operations on all replicas using
node replication, but this would be incorrect. It is safe to in-
dependently create a separate read-only program section (like
.text) for the process by performing an operation at each
of the replicas. However, this would not work for writable
sections (like .data), since having independent allocations
per replica would break the semantics of shared memory in
the process. Furthermore, we need to agree on a common
virtual address for the start of the ELF binary, so position
independent code is loaded at the same offset in every replica.

As a result of this, process creation happens in two stages,
where operations that cannot be replicated are done in ad-
vance. The ELF program file must be parsed up front to find
the writable sections, to allocate memory for them, and to
relocate entries in them. After that, these pre-loaded physi-
cal frames and their address space offsets are passed to the
replicated NR-Scheduler create-process operation. Within
each replica, the ELF file is parsed again to load and relocate
the read-only program sections and to map the pre-allocated
physical frames for the writable sections.

Removing a process deletes and deallocates the process at
every replica, but it also must halt execution on every core cur-
rently allocated to the process. Similar to TLB shootdowns,
this is done with inter-processor interrupts and per-core mes-
sage queues to notify individual cores belonging to a replica.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 303

4.5 Log Garbage Collection

As described in Section 2.1, operation logs are circular buffers,
which fixes the memory footprint of node replication. How-
ever, entries can only be overwritten once they have been
applied at all replicas; progress in applying entries at a replica
can become slow if operations are rare at that replica (e.g., if
cores at one replica spend all of their time in userspace).

NrOS solves this in two ways. First, if a core at one replica
cannot append new operations because another replica is lag-
ging in applying operations, then it triggers an IPI to a core
associated with the lagging replica. When the core receives
the IPI, it immediately applies pending log operations to its
local replica, unblocking the stalled append operation at the
other replica. On initialization, NrOS provides a callback to
the node replication library that it can use to trigger an IPI;
the library passes in the id of the slow replica and the id of the
log that is low on space. Second, frequent IPIs are expensive,
so NrOS tries to avoid them by proactively replicating when
cores are idle. So long as some core at each replica sometimes
has no scheduled executor, IPIs are mostly avoided.

Finally, some operations hold references to data outside
of the log that may need to be deallocated after an operation
has been applied at all replicas (e.g., buffers that hold data
from file system writes). If deallocation of these resources
is deferred until a log entry is overwritten, then large pools
of allocated buffers can build up, hurting locality and putting
pressure on caches and TLBs. To more eagerly release such
resources, these references embed a reference count initialized
to the number of replicas, which is decremented each time
the operation is applied at a replica; when the count reaches
zero, the resource is released.

5 Implementation

We implemented NrOS from scratch in Rust; it currently
targets the x86-64 platform. It also has basic support for Unix
as a target platform, which allows kernel subsystems to be run
within a Linux process and helps support unit testing. The core
kernel consists of 11k lines of code with 16k additional lines
for kernel libraries (bootloader, drivers, memory management,
and platform specific code factored out from the core kernel
into libraries). In the entire kernel codebase, 3.6% of lines
are within Rust unsafe blocks (special blocks that forego
the compiler’s strong memory- and thread-safety guarantees).
Most of this unsafe code casts and manipulates raw memory
(e.g., in memory allocators or device drivers), a certain amount
of which is unavoidable in kernel code.
Node Replication. We implemented node replication in Rust
as a portable library totaling 3.4k lines of code (5% in unsafe
blocks). We made some notable changes to the state-of-the-
art node replication design [28] and built CNR on top of
it. Specifically, our implementation relies on Rust’s generic
types, making it easy to lift arbitrary, sequentially-safe Rust

Name Memory Nodes/Cores/Threads
2×14 Skylake 192 GiB 2x14x2 Xeon Gold 5120
4×24 Cascade 1470 GiB 4x24x2 Xeon Gold 6252

Table 1: Architectural details of our evaluation platforms.

structures into node-replicated, concurrent structures. This is
done by implementing the Dispatch interface in Listing 1.

Userspace Library. NrOS provides a userspace runtime sup-
port library (vibrio) for applications. It contains wrapper func-
tions for kernel system calls, a dynamic memory manager, and
a cooperative scheduler that supports green threads and stan-
dard synchronization primitives (condition variables, mutexes,
readers-writer locks, semaphores, etc.).

This library also implements hypercall interfaces for link-
ing against rumpkernels (a NetBSD-based library OS) [50].
This allows NrOS to run many POSIX programs. rumpkernel
provides libc and libpthread which, in turn, use vibrio for
scheduling and memory management through the hypercall
interface. The hypercall interface closely matches the refer-
ence implementation of the rumprun-unikernel project [9];
however, some significant changes were necessary to make
the implementation multi-core aware. The multi-core aware
implementation was inspired by LibrettOS [62].

The NrOS kernel itself does not do any I/O, but it abstracts
interrupt management (using I/O APIC, xAPIC and x2APIC
drivers) and offers MMIO PCI hardware passthrough to appli-
cations. Applications can rely on the rump/NetBSD network
or storage stack and its device drivers for networking and
disk access (supporting various NIC models and AHCI based
disks). The I/O architecture is similar to recent proposals for
building high performance userspace I/O stacks [18, 66].

6 Evaluation

This section answers the following questions experimentally:

• How does NrOS’s design compare against monolithic
and multikernel operating systems?
• What is the latency, memory and replication mechanism

trade-off in NrOS’ design compared to others?
• Does NrOS’s design matter for applications?

We perform our experiments on the two machines given
in Table 1. For the Linux results, we used Ubuntu version
19.10 with kernel version 5.3.0. If not otherwise indicated,
we did not observe significantly different results between the
two machines and omit the graphs for space reasons. We
pinned benchmark threads to physical cores and disabled
hyperthreads. Turbo boost was enabled for the experiments.
If not otherwise indicated we show bare-metal results.

304 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0
20.0
40.0
60.0
80.0

Th
ro

ug
hp

ut
 [M

el
em

s/
s]

1

0

Linux Tmpfs NrOS NrFS

0.0
2.0
4.0
6.0
8.0

10

0.0
0.5
1.0
1.5 60

1 12 24 36 48 60 72 84 96
Cores

0.0
0.3
0.6
0.9
1.2

100

0.0
20.0
40.0
60.0

Th
ro

ug
hp

ut
 [M

el
em

s/
s]

24

0

Linux Tmpfs NrOS NrFS

0.0
10.0
20.0
30.0

10

0.0
5.0

10.0
15.0

60

1 12 24 36 48 60 72 84 96
Cores

0.0
4.0
8.0

12.0 100

Figure 3: NR-FS read/write scalability for write ratios 0%, 10%,
60% and 100% with 1 or 24 files on 4×24 Cascade.

6.1 Baseline Node Replication Performance

We have extensively tested our Rust-based NR library in
userspace on Linux using a variety of structures to compare
its performance with the existing state-of-the-art NR imple-
mentation [28] and with other optimized concurrent structures.
We omit these results as they are orthogonal to NrOS’s contri-
butions, but we summarize a few key results when comparing
with RCU which is the most relevant comparison for NrOS.

We tested scaling a hash table on 4×24 Cascade, NR (just
wrapping the unmodified, sequential HashMap from the Rust
standard library as shown in Listing 1) outperforms other
concurrent hash maps written in Rust and the urcu library’s
read-modify-write-based hash table. With 0% updates, urcu
and node replication scale linearly, but urcu lags behind; NR
achieves perfect NUMA locality by replicating the hash table.
The NR hash table also stores elements in-place, whereas
urcu stores a pointer to each element, leading to an additional
de-reference. This is inherent in the urcu design since ele-
ments are deallocated by the last reader. In short, for read-only
workloads, NR performs about twice as well as urcu, which is
the next fastest approach we tested. Even with any fraction of
read operations it performs strictly better at scale. However,
we find that urcu can outperform NR when reads and writes
are split between threads rather than when reads and writes
are mixed on every thread. This is because RCU allows read-
ers to proceed without any synchronization overhead whereas
node replication must acquire the local reader lock.

6.2 NR-FS

We evaluate NR-FS performance by studying the impact of
issuing read and write operations to files using a low-level
microbenchmark and a LevelDB application benchmark.

6.2.1 Microbenchmark: NR-FS vs tmpfs

In this benchmark, we are interested in the file operation
throughput while varying cores, files and the read/write ra-
tio. We pre-allocate files of 256 MiB upfront. Each core then
accesses exactly one file, and each file is shared by an equal
number of cores when the number of cores exceeds the num-
ber of files. The cores either read or write a 1 KiB block in
the file uniformly at random. This general access pattern is
typical for many databases or storage systems [43, 46]. We
compare against the Linux’s (in-memory) tmpfs to minimize
persistence overhead [23].

Figure 3 shows the achieved throughput for write ratios 0%,
10%, 60%, and 100%, while increasing the number of cores
(x-axis). The left graphs measured the throughout if a single
file is read from/written to concurrently. With WR = 0%, NR-
FS achieves∼40× better read performance at max. utilization.
This increase is due to replication of the file system and mak-
ing reads an immutable operation; largely the benefit comes
from higher available memory bandwidth (4×24 Cascade has
88 GiB/s local vs. 16 GiB/s remote read bandwidth). How-
ever, replication increases the memory consumption signifi-
cantly; for 24 files, each 256 MiB, tmpfs uses 6.1 GiB (6 GiB
data and 0.1 GiB metadata) as compared to 24.1 GiB (24 GiB
data and 0.1 GiB metadata) for NR-FS. For higher write ra-
tios, tmpfs starts higher as NR-FS performs an additional
copy from user to kernel memory to ensure replica consis-
tency (Section 4.3) and its write is likely not as optimized as
the Linux codebase. However, the tmpfs throughput drops
sharply at the first NUMA node boundary due to contention
and increased cache coherence traffic. For WR = 100%, NR-
FS performs ∼2× better than tmpfs at max. utilization.

Discussion: With the Intel architectures used in our setting,
single file access generally outperforms Linux as soon as the
file size exceeds the combined L3 size of all NUMA nodes
(128 MiB on 4×24 Cascade). A remote L3 access on the same
board is usually faster than a remote DRAM access; therefore,
replication plays a smaller role in this case. As long as the
file fits in L3 or the combined L3 capacity, NR-FS has on-par
or slightly worse performance than tmpfs. NR-FS gains its
advantage by trading memory for better performance.

The right side of the figure shows the less contended case
where the cores are assigned to 24 files in a round-robin
fashion (at 96 cores, each file is shared by four cores). For
WR = 0%, NR-FS performs around 4× better than tmpfs
due to node local accesses from the local replica. For higher
write ratios (60%, 100%), tmpfs performs better than NR-FS
on the first NUMA node. On top of the additional copy, the
major reason for the overhead here is that intermediate buffers
for writes in NR-FS remain in the log until all replicas have
applied the operation. This results in a larger working set and
cache footprint for writes than tmpfs, which can reuse the
same buffers after every operation. We empirically verified
that this is the case by making the block size smaller; with

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 305

1 4 8 12 16 20 24 28
Cores

0.0

300.0

600.0

900.0

Th
ro

ug
hp

ut
 [K

el
em

s/
s]

Linux Tmpfs NrOS NrFS

Figure 4: LevelDB readrandom throughput on 2×14 Skylake.

this change the performance discrepancy between tmpfs and
NR-FS disappears.

After the first NUMA node, tmpfs throughput degrades
due to contention, and cross-node memory accesses. NR-FS
manages to keep the same performance as a single NUMA
node. At cores = 96 both systems have similar throughput,
but NR-FS actively replicates all writes on all 4 nodes. We
omit the results using 2 to 23 files because the trend is the
same: NR-FS performs much better for read-heavy workloads
and the same or better for write-heavy operations. On 4×24
Cascade with 24 logs and WR = 100%, NR-FS scalability
stops for this benchmark with more than 24 files because of
the additional CPU cycles required for active replication of
all writes, the observed throughput remains constant instead.

Impact of multiple logs: Figure 3 shows the advantages
of using CNR over node replication for less contended, write-
intensive workloads. As discussed in (§2.1), the write perfor-
mance for node replication data structures is often limited by
a single combiner per replica. While it is certainly possible to
build compound structures using multiple node replication in-
stances (e.g., one per file), this is typically too fine-grained, as
often we have much less compute cores than files. We resolve
this issue with our CNR (§3) scheme. A CNR based NR-FS
performs 8× better (for wr = 100) than a node replication
based NR-FS while preserving read performance.

6.2.2 LevelDB Application Benchmark

To evaluate the impact of the NR-FS design on real applica-
tions we use LevelDB, a widely used key-value store. Lev-
elDB relies on the file system to store and retrieve its data,
which makes it an ideal candidate for evaluating NR-FS. We
use a key size of 16 Bytes and a value size of 64 KiB. We
load 50K key-value pairs for a total database size of 3 GiB,
which LevelDB stores in 100 files.

NR-FS outperforms tmpfs when running LevelDB. Fig-
ure 4 shows LevelDB throughput when running its included
readrandom benchmark while varying core count. After
cores = 12, contention on a mutex within LevelDB begins to
affect the scalability of both systems. At cores = 28, LevelDB
on NrOS has 1.33x higher throughput than on Linux.

1 12 24 36 48 60 72 84 96
Cores

0.01

0.10

1.00

10.00

100.00

Th
ro

ug
hp

ut
 [M

op
s/

s]

Barrelfish CNR-vMem Linux VMA NR-vMem sv6

Figure 5: NrOS page insertion throughput on 4×24 Cascade in
comparison with other OSes.

6.3 NR-vMem

We evaluate the performance of NR-vMem with microbench-
marks that stress the address-space data structures under con-
tention, and exercise the respective TLB shootdown protocols
on different operating systems. Finally, we measure the im-
pact of page table replication with memcached.

6.3.1 Map Performance

For this benchmark we compare NrOS against Linux, sv6,
and Barrelfish. We allocate a backing memory object (e.g., a
physical memory region on NrOS, a shared memory object
on Linux, a physical frame referenced by a capability on
Barrelfish, and a memory-backed file on sv6) and repeatedly
map the same memory object into the virtual address space
of the process. The benchmark focuses on synchronization
overheads; it creates the mapping and updates bookkeeping
information without allocating new backing memory.

We evaluate a partitioned scenario where each thread cre-
ates new mappings in its own address space region (the only
comparison supported by all OSes). We ensure that page ta-
bles are created with the mapping request by supplying the
appropriate flags. sv6 does not support MAP_POPULATE, so
we force a page fault to construct the mapping. We show
throughput of the benchmark in Figure 5.

NR-vMem wraps the entire address space behind a single
instance of node replication, therefore it does not scale even
for disjoint regions. As this benchmark consists of 100%
mutating operations, it has constant throughput – similar to the
other benchmarks it remains stable under heavy contention.

Linux is very similar to NR-vMem in its design (apart from
missing replication). It uses a red-black tree to keep track of
mappings globally. For each iteration of the benchmark, a new
mapping has to be inserted into the tree and afterwards the
page fault handler is called by mmap to force the population
of the page table. The entire tree is protected by a global lock
and therefore performance decreases sharply under contention.
The single-threaded performance of Linux VMA is slightly
better than NR-vMem which has still room for improvement:

306 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 8 16 24 28
Cores

0.00

0.01

0.10

La
te

nc
y

[m
s]

Linux NrOS

(a) Map latency for 2×14 Skylake.

1 8 16 24 32 40 48 56 64 72 80 88 96
Cores

0.01

1.00

100.00

La
te

nc
y

[m
s]

Linux NrOS

(b) Map latency for 4×24 Cascade.

1 8 16 24 28
Cores

10

100

1000

La
te

nc
y

[k
Cy

cle
s] Barrelfish Cap Barrelfish Msg Linux NrOS

(c) Unmap latency on 2×14 Skylake.

Figure 6: Virtual memory operation (map and unmap) observed latency distributions.

For example, our current implementation zeroes page tables
while holding the combiner lock.

Barrelfish (git revision 06a9f5) tracks resources with a
distributed, partitioned capability system. Updating a page
table and allocating new memory corresponds to a capability
operation, which may require agreement among the multiker-
nel nodes. The Barrelfish memory management code shares a
capability to the top level page table and statically partitions
the virtual address space of a process (e.g., a core has only
capabilities to its own partition which only it can modify).
So, inserts to private regions do not require any agreement.
Furthermore, this design uses a single page table per process
in the system; therefore, there is no overhead to synchronize
replicated state.

For good scalability, we eliminated the use of O(n) linked-
list operations for the address-space meta-data tracking of the
OS. Once we fixed those issues, Barrelfish throughput scaled
with a sub-linear factor. Concurrent updates to the same par-
tition from multiple cores are not supported. This could be
implemented with delegation, by using the provided messag-
ing infrastructure in the library OS and capability operations.

sv6 (git revision 9271b3f) uses a radix tree data struc-
ture [29] for its mapping database. It is able to apply fine-
grained locking for non-overlapping regions of the address
space by atomically setting bits at each level in the radix tree.
Compared to all evaluated systems, sv6 performs best for
disjoint regions with near-linear scalability. A potential down-
side is the memory overhead, since sv6 replicates page tables
on every core. It mitigates this issue with lazy construction of
page tables and discarding them under memory pressure.

CNR-vMem. While NR-vMem does not scale as well as
sv6 or Barrelfish for mappings in disjoint regions, it keeps
a relatively complex interaction of multiple data structures
as entirely single-threaded code. If better scalability is de-
sired, we can scale NR-vMem updates by using CNR. Similar
to Barrelfish, CNR-vMem partitions the address space into
512 separate regions and maps updates to partitions with
different logs. CNR-vMem matches sv6’ performance on
the first NUMA node. Afterwards, scaling stops because of
per-NUMA replication. Compared to Barrelfish, we find that
CNR-vMem is more flexible: concurrent updates from mul-

tiple cores to the same partition are supported without extra
implementation effort thanks to flat-combining.

Latency. To understand how the batching in node replica-
tion impacts latency, we further instrument Linux and NR-
vMem by measuring the completion time for 100k requests
per core. Figure 6a and 6b show the latency distributions (with
the min representing p1, and max p99) for 4×24 Cascade and
2×14 Skylake. We observe slightly worse median latencies
for NrOS on 4×24 Cascade but overall better tail characteris-
tics and throughput. On the other hand, we find that NrOS has
better latencies than Linux on 2×14 Skylake. Latency is di-
rectly correlated with the number of cores participating in flat
combining (i.e., 2×14 Skylake has only 14 cores per replica
vs. 24 on 4×24 Cascade). Per-NUMA replicas offer a good
compromise for memory consumption vs. throughput, but we
can tune latency further by having more than one replica per
node on NUMA nodes with more cores.

6.3.2 Unmap and TLB Shootdown Performance

We evaluate the scalability of unmapping a 4 KiB page by
measuring the time it takes to execute the unmap system call,
which includes a TLB shootdown on all cores running the
benchmark program.

We compare our design to Linux and Barrelfish. Linux uses
a single page table which is shared among the cores used in
this benchmark. The general shootdown protocol is similar
to the one in NrOS, except that NrOS has to update multiple
page tables in case a process spawns multiple NUMA nodes.
Barrelfish partitions control over its page table per core and
uses the capability system (Barrelfish Cap) or userspace mes-
sage passing (Barrelfish Msg) to ensure consistency among
the replicas and coherency with the TLB. Barrelfish uses
point-to-point message channels instead of IPIs.

Figure 6c shows the latency results. NrOS outperforms all
other systems. Barrelfish Cap has a constant latency when
using a distributed capability operation because all cores
participate in the 2PC protocol to revoke access to the un-
mapped memory regardless of whether this memory was ac-
tually mapped on that core. Moreover, implementing the TLB
shootdown using point-to-point messages (Barrelfish Msg)
has a higher constant overhead compared to using x2APIC

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 307

OS Time Throughput System Mem. PT Mem. PT Walks
NrOS 4-replicas 251 s 63 Mop/s 424 GiB 3.3GiB 1.20 kcyc/op
NrOS 1-replica 276 s 57 Mop/s 421 GiB 840MiB 1.54 kcyc/op
Linux 327 s 48 Mop/s 419 GiB 821MiB 1.63 kcyc/op

Table 2: memcached on NrOS (1 and 4 replicas) and Linux running on 4×24 Cascade, comparing runtime, throughput, total system memory
consumption, process page table memory and cycles spent by the page table walkers.

with broadcasting in NrOS and Linux due to sequential send-
ing and receiving of point-to-point messages. Using more
optimized message topologies could potentially help [48].

Linux should achieve better results than NrOS, especially
when we spawn across NUMA since it only has to update one
page table. However, the proposed changes to Linux from the
literature [12] which inspired our TLB shootdown protocol
have not yet been integrated to upstream Linux. We expect
Linux to be comparable once early acknowledgments and
concurrent shootdown optimizations become available.

6.3.3 Page Table Replication with Memcached

As a final benchmark, we measure the impact of replicated
page tables on memcached. When taking into account the
implicit reads of the MMU, page tables often end up being
read much more than modified. memcached serves as a repre-
sentative application for workloads with generally high TLB
miss ratios (i.e., applications with large, in-memory working
sets and random access patterns).

We measure the throughput of memcached with GET re-
quests (8 byte keys, 128 byte values, 1B elements) on 4×24
Cascade. Our benchmark directly spawns 64 client threads
inside of the application. For this experiment, we run Linux
and NrOS inside KVM because we want to have access to
the performance counters, which is currently not supported
on NrOS. To limit the effects of nested-paging, we configure
KVM to use 2 MiB-pages, and use 4 KiB pages in both the
Linux and NrOS guests.

Table 2 compares memcached running on NrOS in different
configurations and Linux. Overall, the achieved throughput
for NrOS (with per-NUMA replication) is 1.3× higher than
Linux. To quantify the impact of page table replication on the
throughput, we can configure NrOS to use a single replica
for the process (NrOS 1-replica). We find that the page table
replication accounts for a third of the overall improvement
compared to Linux. The systems have different physical mem-
ory allocation policies, locking implementation, scheduling,
and page tables etc., so it is difficult to attribute the other two
thirds to specific causes.

By instrumenting performance counters, we find that re-
mote page table walks – a key bottleneck for this workload –
decreased by 23% with replication. NrOS does use 4× more
memory for the replicated page tables structures. In total, this
still amounts to less than 1% of the total memory.

7 Conclusion and Future work

We designed and implemented NrOS, an OS that uses single-
threaded data structures that are automatically adapted for
concurrency via operation logging, replication, and flat com-
bining. Our results show that the NRkernel model can achieve
performance that is competitive with or better than well-
established OSes in many cases.

NrOS’ unique design makes it an interesting platform to
explore several future directions:
Relaxing consistency. We apply node replication on rela-
tively coarse-grained structures, which makes reasoning about
concurrency easy. CNR improves performance by exploit-
ing commutativity among mutating operations. However, we
could achieve better performance by relaxing strong consis-
tency between replicas for some operations.
Verifying correctness. NrOS might also serve as a useful ba-
sis for a verified multi-core operating system by using verifi-
cation in two steps: verify the node replication transformation
from a sequential data structure to a concurrent one, then ver-
ify the sequential data structures. Verifying node replication
is harder, but it only needs to be done once. Verifying new
sequential data structures is substantially easier.
Extending NrOS for disaggregated compute. NrOS’ log-
based approach with replication is most useful when systems
have high remote access latencies. Thus, NrOS could be ex-
tended to work over interconnects that offer shared memory in
compute clusters via Infiniband or other high-speed networks
by designing a new log optimized for the interconnect.

Acknowledgments

We thank our OSDI 2020 and 2021 reviewers and our shep-
herd Irene Zhang for their thoughtful feedback. Ankit Bhard-
waj and Chinmay Kulkarni contributed to this work as PhD
students at University of Utah and during internships at
VMware Research. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS-1750558. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation. Chinmay Kulkarni is supported
by a Google PhD Fellowship.

308 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] CCIX. https://www.ccixconsortium.com.

[2] Concurrency bugs should fear the big bad data-race de-
tector. https://lwn.net/Articles/816850/.

[3] Fix a data race in ext4_i(inode)->i_disksize. https:
//lore.kernel.org/patchwork/patch/1190562/.

[4] Fix a data race in mempool_free(). https://
lore.kernel.org/patchwork/patch/1192684/.

[5] Fix locking in bdev_del_partition. https:
//patchwork.kernel.org/project/linux-block/
patch/20200901095941.2626957-1-hch@lst.de/.

[6] Fix two RCU related problems. https:
//lore.kernel.org/patchwork/patch/990695/.

[7] Gen-Z Consortium. https://genzconsortium.org/.

[8] The RCU API, 2019 Edition. https://lwn.net/
Articles/777036/.

[9] The Rumprun Unikernel. https://github.com/
rumpkernel/rumprun.

[10] Reto Achermann, Ashish Panwar, Abhishek Bhattachar-
jee, Timothy Roscoe, and Jayneel Gandhi. Mitosis:
Transparently self-replicating page-tables for large-
memory machines. In International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), page 283–300, 2020.

[11] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni,
Michael Merritt, and Nir Shavit. Atomic snapshots of
shared memory. J. ACM, 40(4):873–890, September
1993.

[12] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot
down TLB shootdowns! In European Conference on
Computer Systems (EuroSys), 2020.

[13] Thomas E. Anderson, Brian N. Bershad, Edward D. La-
zowska, and Henry M. Levy. Scheduler activations: Ef-
fective kernel support for the user-level management of
parallelism. In ACM Symposium on Operating Systems
Principles (SOSP), pages 95–109, 1991.

[14] James Aspnes and Maurice Herlihy. Wait-free data
structures in the asynchronous PRAM model. In ACM
Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 340–349, 1990.

[15] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mi-
hir Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh,
Hazem Hassan, Aaryaman Sagar, Rhed Shi, et al. Vir-
tual consensus in Delos. In Symposium on Operating
Systems Design and Implementation (OSDI), pages 617–
632, 2020.

[16] Antonio Barbalace, Binoy Ravindran, and David Katz.
Popcorn: a replicated-kernel OS based on Linux. In
Proceedings of Ottawa Linux Symposium (OLS), 2014.

[17] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The Multikernel: A New OS Architecture for Scalable
Multicore Systems. In ACM Symposium on Operating
Systems Principles (SOSP), pages 29–44, 2009.

[18] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for high
throughput and low latency. In Symposium on Operating
Systems Design and Implementation (OSDI), pages 49–
65, 2014.

[19] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,
M. Frans Kaashoek, and Nickolai Zeldovich. Scal-
ing a file system to many cores using an operation log.
In ACM Symposium on Operating Systems Principles
(SOSP), pages 69–86, 2017.

[20] William J. Bolosky, Robert P. Fitzgerald, and Michael L.
Scott. Simple but effective techniques for NUMA mem-
ory management. In ACM Symposium on Operating
Systems Principles (SOSP), pages 19–31, 1989.

[21] Jeff Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proceedings of the USENIX
Summer 1994 Technical Conference (USTC), page 6,
1994.

[22] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong
Mao, Frans Kaashoek, Robert Morris, Aleksey Pesterev,
Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and
Zheng Zhang. Corey: An Operating System for Many
Cores. In Symposium on Operating Systems Design and
Implementation (OSDI), page 43–57, 2008.

[23] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. An analysis of Linux scal-
ability to many cores. In Symposium on Operating
Systems Design and Implementation (OSDI), page 1–16,
2010.

[24] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich. OpLog: a library for scaling
update-heavy data structures. Technical report, 2014.

[25] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running commodity oper-
ating systems on scalable multiprocessors. ACM Trans-
actions on Computer Systems (TOCS), 15(4):412–447,
November 1997.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 309

https://www.ccixconsortium.com
https://lwn.net/Articles/816850/
https://lore.kernel.org/patchwork/patch/1190562/
https://lore.kernel.org/patchwork/patch/1190562/
https://lore.kernel.org/patchwork/patch/1192684/
https://lore.kernel.org/patchwork/patch/1192684/
https://patchwork.kernel.org/project/linux-block/patch/20200901095941.2626957-1-hch@lst.de/
https://patchwork.kernel.org/project/linux-block/patch/20200901095941.2626957-1-hch@lst.de/
https://patchwork.kernel.org/project/linux-block/patch/20200901095941.2626957-1-hch@lst.de/
https://lore.kernel.org/patchwork/patch/990695/
https://lore.kernel.org/patchwork/patch/990695/
https://lwn.net/Articles/777036/
https://lwn.net/Articles/777036/
https://github.com/rumpkernel/rumprun
https://github.com/rumpkernel/rumprun

[26] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musu-
vathi, and Santosh Nagarakatte. A randomized scheduler
with probabilistic guarantees of finding bugs. In Pro-
ceedings of the 15th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 167–178, 2010.

[27] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy,
Alex Kogan, Virendra Marathe, and Mark Moir. Mes-
sage Passing or Shared Memory: Evaluating the delega-
tion abstraction for multicores. In International Confer-
ence on Principles of Distributed Systems (OPODIS),
pages 83–97, 2013.

[28] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and
Marcos K. Aguilera. Black-box Concurrent Data Struc-
tures for NUMA Architectures. In International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 207–
221, 2017.

[29] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. RadixVM: Scalable address spaces for mul-
tithreaded applications. In European Conference on
Computer Systems (EuroSys), page 211–224, 2013.

[30] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The scal-
able commutativity rule: Designing scalable software
for multicore processors. ACM Transactions on Com-
puter Systems (TOCS), 32(4), January 2015.

[31] Jonathan Corbet. The big kernel lock strikes again, 2008.
https://lwn.net/Articles/281938/.

[32] Jonathan Corbet. Big reader locks, 2010. https://
lwn.net/Articles/378911/.

[33] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management:
A holistic approach to memory placement on NUMA
systems. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 381–394, 2013.

[34] Pantazis Deligiannis, Alastair F. Donaldson, and Zvon-
imir Rakamaric. Fast and precise symbolic analysis of
concurrency bugs in device drivers. In International
Conference on Automated Software Engineering (ASE),
pages 166–177, 2015.

[35] Medhavi Dhawan, Gurprit Johal, Jim Stabile, Vjekoslav
Brajkovic, James Chang, Kapil Goyal, Kevin James, Zee-
shan Lokhandwala, Anny Martinez Manzanilla, Roger
Michoud, Maithem Munshed, Srinivas Neginhal, Kon-
stantin Spirov, Michael Wei, Scott Fritchie, Chris Ross-
bach, Ittai Abraham, and Dahlia Malkhi. Consistent

clustered applications with Corfu. Operating Systems
Review, 51(1):78–82, 2017.

[36] Hugh Dickins. [PATCH] mm lock ordering summary,
2004. http://lkml.iu.edu/hypermail/linux/
kernel/0406.3/0564.html.

[37] Marco Elver. Add Kernel Concurrency Sanitizer (KC-
SAN). https://lwn.net/Articles/802402/, 2019.

[38] Dawson Engler and Ken Ashcraft. RacerX: Effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[39] John Erickson, Madanlal Musuvathi, Sebastian Burck-
hardt, and Kirk Olynyk. Effective data-race detection for
the kernel. In Symposium on Operating Systems Design
and Implementation (OSDI), page 151–162, 2010.

[40] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and
Dejan Milojicic. Beyond processor-centric operating
systems. In Workshop on Hot Topics in Operating Sys-
tems (HotOS), 2015.

[41] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Bran-
denburg. SKI: Exposing Kernel Concurrency Bugs
Through Systematic Schedule Exploration. In Proceed-
ings of the 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2014.

[42] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor operat-
ing system. In Symposium on Operating Systems Design
and Implementation (OSDI), pages 87–100, 1999.

[43] Sanjay Ghemawat and Jeff Dean. LevelDB, 2011.

[44] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.
Flat Combining and the synchronization-parallelism
tradeoff. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 355–364, 2010.

[45] Maurice Herlihy and Eric Koskinen. Transactional
boosting: A methodology for highly-concurrent trans-
actional objects. In ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP), page
207–216, 2008.

[46] Richard D Hipp. SQLite, 2020.

[47] Dae R. Jeong, Kyungtae Kim, Basavesh Ammanaghatta
Shivakumar, Byoungyoung Lee, and Insik Shin. Razzer:
Finding kernel race bugs through fuzzing. In Proceed-
ings of the 40th IEEE Symposium on Security and Pri-
vacy (Oakland), 2019.

310 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lwn.net/Articles/281938/
https://lwn.net/Articles/378911/
https://lwn.net/Articles/378911/
http://lkml.iu.edu/hypermail/linux/kernel/0406.3/0564.html
http://lkml.iu.edu/hypermail/linux/kernel/0406.3/0564.html
https://lwn.net/Articles/802402/

[48] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz
Hoffmann, Sabela Ramos, and Timothy Roscoe.
Machine-aware atomic broadcast trees for multicores.
In Symposium on Operating Systems Design and
Implementation (OSDI), pages 33–48, 2016.

[49] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and
Tim Harris. Shoal: Smart allocation and replication
of memory for parallel programs. In USENIX Annual
Technical Conference (ATC), pages 263–276, 2015.

[50] Antti Kantee. Flexible Operating System Internals: The
Design and Implementation of the Anykernel and Rump
Kernels. PhD thesis, Aalto University, 2012.

[51] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-
woo Min, and Taesoo Kim. Scalable and practical lock-
ing with shuffling. In ACM Symposium on Operating
Systems Principles (SOSP), page 586–599, 2019.

[52] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Mad-
hava Krishnan Ramanathan, and Changwoo Min. MV-
RLU: Scaling Read-Log-Update with multi-versioning.
In International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), page 779–792, 2019.

[53] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
et al. seL4: Formal verification of an OS kernel. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 207–220, 2009.

[54] Orran Krieger, Marc Auslander, Bryan Rosenburg,
Robert W. Wisniewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, and Volkmar Uhlig.
K42: Building a complete operating system. In Euro-
pean Conference on Computer Systems (EuroSys), pages
133–145, 2006.

[55] Alexander Lochmann, Horst Schirmeier, Hendrik
Borghorst, and Olaf Spinczyk. LockDoc: Trace-Based
Analysis of Locking in the Linux Kernel. In Proceed-
ings of the 14th European Conference on Computer
Systems (EuroSys), pages 11:1–11:15, 2019.

[56] Nancy A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1996.

[57] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,

Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-
kernel approach to host networking. In ACM Symposium
on Operating Systems Principles (SOSP), page 399–413,
2019.

[58] Alexander Matveev, Nir Shavit, Pascal Felber, and
Patrick Marlier. Read-Log-Update: A lightweight syn-
chronization mechanism for concurrent programming.
In ACM Symposium on Operating Systems Principles
(SOSP), pages 168–183, 2015.

[59] Paul E McKenney. A critical RCU safety property is...
ease of use! In Proceedings of the 12th ACM Interna-
tional Conference on Systems and Storage, pages 132–
143, 2019.

[60] Changwoo Min, Sanidhya Kashyap, Steffen Maass,
Woonhak Kang, and Taesoo Kim. Understanding many-
core scalability of file systems. In USENIX Annual
Technical Conference (ATC), 2016.

[61] Ingo Molnar and Davidlohr Bueso. Generic Mutex
Subsystem, 2017. https://www.kernel.org/doc/
Documentation/locking/mutex-design.txt.

[62] Ruslan Nikolaev, Mincheol Sung, and Binoy Ravindran.
LibrettOS: A dynamically adaptable multiserver-library
OS. In International Conference on Virtual Execution
Environments (VEE), page 114–128, 2020.

[63] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In USENIX Annual
Technical Conference (ATC), pages 305–320, 2014.

[64] OpenCAPI consortium. http://opencapi.org.

[65] Heidi Pan, Benjamin Hindman, and Krste Asanovic.
Composing parallel software efficiently with Lithe. In
International Conference on Programming Language
Design and Implementation (PLDI), 2010.

[66] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 1–16, 2014.

[67] Sean Peters, Adrian Danis, Kevin Elphinstone, and Ger-
not Heiser. For a Microkernel, a big lock is fine. In
Proceedings of the 6th Asia-Pacific Workshop on Sys-
tems (APSys), 2015.

[68] Iraklis Psaroudakis, Stefan Kaestle, Matthias Grimmer,
Daniel Goodman, Jean-Pierre Lozi, and Tim Harris.
Analytics with smart arrays: Adaptive and efficient
language-independent data. In European Conference on
Computer Systems (EuroSys), 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 311

https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
http://opencapi.org

[69] Ori Shalev and Nir Shavit. Predictive log-
synchronization. In European Conference on Computer
Systems (EuroSys), page 305–315, 2006.

[70] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed os for
hardware resource disaggregation. In Symposium on
Operating Systems Design and Implementation (OSDI),
pages 69–87, 2018.

[71] Navin Shenoy. A Milestone in Moving Data.
https://newsroom.intel.com/editorials/
milestone-moving-data.

[72] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel
Rosenblum. Operating system support for improving
data locality on CC-NUMA compute servers. In In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 279–289, 1996.

[73] Al Viro. parallel lookups, 2016. https://lwn.net/
Articles/684089/.

[74] Michael von Tessin. The Clustered Multikernel: An
approach to formal verification of multiprocessor os
kernels. In Workshop on Systems for Future Multicore
Architectures (SFMA), 2012.

[75] Dmitry Vyukov. Distributed reader-writer mu-
tex. http://www.1024cores.net/home/lock-
free-algorithms/reader-writer-problem/
distributed-reader-writer-mutex, 2011.

[76] Daniel Waddington, Mark Kunitomi, Clem Dickey,
Samyukta Rao, Amir Abboud, and Jantz Tran. Eval-
uation of Intel 3D-Xpoint NVDIMM technology for
memory-intensive genomic workloads. In Proceedings
of the International Symposium on Memory Systems
(MEMSYS), page 277–287, 2019.

[77] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
black-box approach to NUMA-aware persistent memory
indexes. In Symposium on Operating Systems Design
and Implementation (OSDI), 2021.

[78] David Wentzlaff and Anant Agarwal. Factored Oper-
ating Systems (Fos): The case for a scalable operat-
ing system for multicores. Operating Systems Review,
43(2):76–85, April 2009.

[79] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan
Zhou, and Zhiqiang Ma. Ad hoc synchronization consid-
ered harmful. In Symposium on Operating Systems De-
sign and Implementation (OSDI), page 163–176, 2010.

[80] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. Krace: Data race fuzzing for kernel file sys-
tems. In Proceedings of the 41st IEEE Symposium on
Security and Privacy, 2020.

A Artifact Appendix

Abstract

The evaluated artifact is provided as a git repository and con-
tains the source code of NrOS, build instructions and scripts
to run the OS and benchmarks used in this paper.

Scope

The artifact contains code and steps to reproduce results ob-
tained in Figure 3, Figure 4, Figure 5 and Figure 6.

Contents

The artifact consists of NrOS, including libraries, userspace
programs and benchmarks. The documentation to build
and run NrOS, along with the necessary commands
to run the benchmarks are written down in the doc
folder of the repository. The document which lists the
steps to execute the artifact evaluation is located at
doc/src/benchmarking/ArtifactEvaluation.md.

Hosting

The artifact source code for NrOS is published on
Github under https://github.com/vmware-labs/node-
replicated-kernel.
The code used in the artifact evaluation is tagged as
osdi21-ae-v2.

Requirements

Building NrOS requires an x86-64 system set-up with Ubuntu
20.04 LTS.
NrOS itself requires an Intel CPU (Skylake microarchitecture
or later) to run. The following CPUs are known to work: Xeon
Gold 5120, 6252 or 6142. For virtualized execution on these
platforms, a Linux host system with QEMU (version >=
5.0.0) and KVM is required. For bare-metal execution, DELL
PowerEdge R640 and R840 servers systems are known to
work.

312 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://lwn.net/Articles/684089/
https://lwn.net/Articles/684089/
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
https://github.com/vmware-labs/node-replicated-kernel
https://github.com/vmware-labs/node-replicated-kernel

Addra: Metadata-private voice communication over fully untrusted infrastructure
Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta

University of California, Santa Barbara

Abstract
Metadata from voice calls, such as the knowledge of who is
communicating with whom, contains rich information about
people’s lives. Indeed, it is a prime target for powerful ad-
versaries such as nation states. Existing systems that hide
voice call metadata either require trusted intermediaries in the
network or scale to only tens of users. This paper describes
the design, implementation, and evaluation of Addra, the first
system for voice communication that hides metadata over
fully untrusted infrastructure and scales to tens of thousands
of users. At a high level, Addra follows a template in which
callers and callees deposit and retrieve messages from private
mailboxes hosted at an untrusted server. However, Addra im-
proves message latency in this architecture, which is a key
performance metric for voice calls. First, it enables a caller to
push a message to a callee in two hops, using a new way of
assigning mailboxes to users that resembles how a post office
assigns PO boxes to its customers. Second, it innovates on
the underlying cryptographic machinery and constructs a new
private information retrieval scheme, FastPIR, that reduces
the time to process oblivious access requests for mailboxes.
An evaluation of Addra on a cluster of 80 machines on AWS
demonstrates that it can serve 32K users with a 99-th per-
centile message latency of 726 ms—a 7× improvement over
a prior system for text messaging in the same threat model.

1 Introduction
Voice call metadata—the parties involved in the call, the
duration of the call, and the time of the call—can be incredi-
bly revealing. The former General Counsel of NSA, Stewart
Baker, has said, “metadata absolutely tells you everything
about somebody’s life. If you have enough metadata, you
don’t really need content” [21, 22, 66]. Several academic
studies [27, 54, 55] have confirmed the power of metadata.
As an example, Mayer et al. [54] used telephone metadata
to infer that a study participant “received a long phone call
from the cardiology group at a regional medical center, talked
briefly with a medical laboratory, . . . and made brief calls
to a self-reporting hotline for a cardiac arrhythmia monitor-
ing device.” The authors confirmed that the participant had a
cardiac arrhythmia. A study of whistle-blowers also revealed
that metadata can identify a journalist’s sources [39].

Given the information contained in metadata, a signif-
icant question is: how can one make a voice call with-
out revealing to anyone the metadata associated with the
call? Fortunately, several systems have tackled this prob-
lem [13, 34, 49, 51, 70, 72] (§7). Although these systems

hide metadata and keep message latency low, they either
restrict scalability to only tens of users [34, 70], or are vul-
nerable to attacks by requiring trusted intermediaries in the
communication infrastructure [13, 49, 51, 72]. An example of
a trust assumption is that the system guarantees security only
if the adversary can compromise at most a fraction (20%) of
the servers that route user calls [49]. Trusting intermediaries
can be risky as powerful adversaries like nation states are the
ones that try to collect metadata. Such adversaries have been
known to wield their vast political, technical, and financial
power to gain access to metadata [12, 53, 59, 67].

A system that can withstand strong adversaries while serv-
ing more than tens of users is Pung [7, 10]. Pung makes no
assumptions about the communication infrastructure—the
adversary may compromise a part or all of the infrastructure.
However, Pung targets applications such as email and chat
with long-lived messages that are retrieved asynchronously.
Indeed, a Pung client makes dlog2(n + 1)e round trips to a
remote server to obliviously search and retrieve a message (n
is the number of users), thereby incurring several seconds of
message latency (§6.1). In contrast, voice calls have a strict
time budget. If a user sends a packet every few hundred mil-
liseconds, then each hop in the communication infrastructure
must not spend longer than this time period to process and
forward the packet, to avoid an unbounded packet build up.

We present Addra, the first system that provably hides
metadata for voice calls, makes no assumptions about the
underlying infrastructure, and scales to tens of thousands of
users. In terms of privacy guarantees, Addra provides relation-
ship unobservability—an adversary cannot detect whether a
relationship (voice call) exists between any two users of the
system [63] (§2.1). These privacy guarantees are achieved
with practical latency performance of under 750 ms, and for
low-bandwidth voice synthesis at a rate of 1.6 Kbit/s as in the
Mozilla LPCNet voice codec [57, 74, 75].

Addra, like Pung, relies on a set of mailboxes hosted at an
untrusted server. Callers deposit messages and callees retrieve
messages from these mailboxes using a private information
retrieval (PIR) cryptographic protocol [19, 20, 43] (§3.2).
This protocol ensures that the untrusted server does not learn
which mailbox a callee is accessing, thereby unlinking the
callee from the caller. However, Addra must address two
challenges in this architecture to support low-latency voice
calls (§2.3). First, it must reduce the number of round trips
a caller or callee makes to the server to transfer or retrieve a
voice packet. Second, Addra must reduce the time the server
takes to process caller and callee requests, particularly, the
PIR requests.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 313

Addra addresses the first challenge through a new, and
remarkably simple, use of mailboxes (§3). When someone
rents a conventional post office box, or PO box, at a post
office, they get a mailbox with a unique and fixed address into
which the mailman deposits incoming mail. Addra inverts
this architecture. In Addra, a caller (rather than a recipient
or callee) gets a dedicated mailbox with a fixed address or
“phone number”. The caller deposits its outgoing messages
into this mailbox—independent of who the caller is calling.
(Thus, an adversary cannot tell whom the caller is calling.)
Meanwhile, a callee retrieves a message from the mailbox tied
to the caller’s phone number using a PIR protocol. Crucially,
to transmit a message, a caller makes one push request to the
server, and the server makes one push request to the callee—a
hop count of two. In contrast, prior work requires multiple
round trips between the server and the callees.

Addra addresses the second challenge mentioned above, of
reducing server-side processing time for PIR, by two means.
First, it parallelizes PIR processing across multiple server
machines and multiple CPU cores on a machine. The fact
that PIR is parallelizable is known and studied [29, 37]. Sec-
ond, and more saliently, Addra constructs a new PIR scheme,
FastPIR, that fundamentally reduces the server-side PIR pro-
cessing time relative to prior state-of-the-art schemes [4, 7]
(§4). Even though FastPIR was motivated by Addra, it can be
used for other applications of PIR [14, 30, 36, 56].

FastPIR builds on the homomorphic encryption scheme of
Brakerski/Fan-Vercauteren (BFV) [15, 33] (§4.1) and lever-
ages two of its features. First, it uses the single instruc-
tion, multiple data (SIMD) capability of BFV ciphertexts
to compute on compressed PIR requests. Prior state-of-the-
art schemes [4, 7] also exploit SIMD capabilities but not
in a way that keeps PIR requests compressed in memory.
Meanwhile, such compression improves memory utilization,
reduces CPU time, and eliminates the time to uncompress
requests (§4.2). However, working over compressed requests
naively increases PIR response size. So, second, FastPIR uses
homomorphic rotation operations in BFV to pack multiple
pieces of a PIR response, thereby reducing response size. Fur-
ther, FastPIR reduces both the CPU time per rotation and the
number of calls to this operation (§4.3, §4.4).

For completeness, Addra includes a dialing protocol that
allows a callee to detect that a caller is calling and learn the
caller’s phone number (mailbox address). For this purpose,
Addra uses the dialing protocol from Pung (§5).

We have implemented (§5) and evaluated (§6) a prototype
of Addra. Our prototype runs on Amazon EC2 where the
server runs in the US East region, and the clients (callers and
callees) run geographically apart in the US West region. When
the server uses 80 machines, Addra supports 32K clients com-
municating with each other with a 99-th percentile message la-
tency of 726 ms. In contrast, Pung (the only other system that
works at scale over completely untrusted infrastructure) trans-
mits messages for the same number of users with a message

latency of 5.2 seconds. Besides, Addra requires a network
download bandwidth of 1.46 Mbps and an upload bandwidth
of 30 Kbps for every client.

Although Addra achieves low message latency for a few
tens of thousands of users, it does not currently scale to hun-
dreds of thousands or a few million users due to the overhead
of PIR which grows quadratically with the number of users.
Furthermore, although its instantaneous bandwidth require-
ments are modest, the total network transfers are high as a
client must remain online even if it is not participating in
a call to hide call initiation patterns. Thus, Addra assumes
clients with unlimited data plans. Nevertheless, Addra demon-
strates, for the first time, that even over completely untrusted
infrastructure, metadata for voice calls can be hidden at scale
for tens of thousands of users.

2 Goals, threat model, and challenges
Addra’s goal, at a high level, is to enable its users to make peer-
to-peer voice calls while hiding metadata from a powerful
adversary that may compromise the entire communication
infrastructure.

2.1 Goals

Performance and scalability. Voice calls require the com-
munication infrastructure to transmit messages with low la-
tency. Addra targets a sub-second message latency due to the
feasibility of voice calls under such a setting [49]. Thus, if
Alice sends a voice packet to Bob, then Bob should receive
it within one second. Additionally, the infrastructure must
not queue up voice packets indefinitely. For instance, if Alice
generates a voice packet every 500 ms, then every hop in
the infrastructure must spend no more than 500 ms to pro-
cess the packet before sending it forward towards Bob. Addra
must also provide sufficient throughput so that the transmit-
ted voice is understandable. For this purpose, Addra targets
the LPCNet voice codec [74, 75], which specializes in low-
bandwidth voice synthesis at a rate of 1.6 Kbit/s. Finally, we
want Addra to scale to a large number of users (for example,
tens of thousands on a cluster of hundred machines).

Content privacy. Addra must ensure that only the caller and
callee of a voice call can comprehend the content of the voice
packets they send to each other.

Metadata privacy. Addra, similar to Pung [10], targets the
guarantee of relationship unobservability as defined by Pfitz-
mann and Hansen [63]. Relationship unobservability states
that it is undetectable whether a relationship (voice call) exists
between a sender (caller) and a recipient (callee), unless the
sender or the recipient are compromised. If either the caller or
the callee is compromised, then offering privacy guarantees
has little value, as the compromised party can trivially reveal
the existence of communication (or lack thereof).

314 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.2 Threat model and assumptions

As motivated in the introduction (§1), Addra assumes an
adversary who can compromise the entire communication
infrastructure, including routers, switches, and middleboxes.
The adversary can observe network traffic, perform traffic
analysis, and manipulate traffic: reorder, replay, change, and
inject network packets.

Callers and callees trust their own devices. More generally,
the adversary can compromise a subset of end user devices. In
this case, Addra must provide content and metadata privacy
to the users of non-compromised devices.

The adversary may not break standard cryptographic prim-
itives such as public-key and symmetric-key encryption.

The adversary may mount a denial-of-service attack: bring
down the entire communication infrastructure or selectively
drop traffic. In such cases, Addra cannot guarantee voice
communication but must continue to guarantee privacy.

2.3 Challenges

Meeting the performance and privacy goals stated above un-
der the threat model just described is challenging. Indeed,
prior work either relaxes the threat model or does not meet
the performance goals. For instance, Yodel [49] is a metadata-
private voice communication system that scales to several
million users but assumes that a server in the communica-
tion infrastructure is compromised with only a 20% chance.
On the other hand, Pung [7, 10] works in the stronger threat
model. However, it cannot push frequent messages from a
caller to a callee. As mentioned earlier (§2.1), if a caller sam-
ples voice every 500 ms, then each hop of the communication
infrastructure must process a voice packet within 500 ms be-
fore the arrival of the next packet to avoid packet build up.
This time budget entails that a caller or a callee cannot make
multiple round trips to a server in the communication infras-
tructure to send or receive a single packet. But Pung requires
message recipients to make multiple such trips to its server.
Addra addresses these challenges and meets the performance
requirements for tens of thousands of users without making
any trust assumptions, as described next.

3 Architecture and overview of design
3.1 Architecture

Figure 1 shows Addra’s architecture. Addra consists of a
server and user (participant) devices. The server runs over
untrusted infrastructure. It is logically centralized but phys-
ically distributed over multiple machines. The server’s role
is to facilitate communication among the user devices in a
privacy-preserving manner.

The server exposes mailboxes. Specifically, it exposes n
mailboxes, where n is the number of user devices using the
system. Each mailbox can store one message and it has an ID,
which is a number between (and inclusive of) 0 and n − 1.
As we will describe later (§4), it is helpful to view the n

CPIR(Mi)

CPIR(Mj)

server (on AWS)

(owns mailbox Mi)
Put(Mi, msg)

0

1

2

.

.

.

mailboxes

phone book

devices

n-1

(owns mailbox Mj) Put(Mj, msg)

Bob | 9733 | pkBob

a phone book entry

Figure 1—High-level architecture of Addra. The server runs over
untrusted infrastructure and exposes mailboxes that user devices
read from or write into. The mailbox identifiers (integers 0 to n− 1)
play the role of “phone numbers”. A device stores phone numbers
of the device owner’s contacts in a local phone book. CPIR refers to
the private information retrieval cryptographic primitive (§3.2).

mailboxes as a matrix with n rows and m columns, where
each row is an individual mailbox, and the m pieces of a
message are m elements of a matrix row.

The user devices run logic to enable users to initiate, pick
up, and participate in calls. Each device gets assigned a mail-
box ID, which acts as its phone number. Each device also
contains a phone book, which stores information on device
owner’s contacts. Each phone book entry is a tuple of a phone
number of the contact, a cryptographic public key belong-
ing to the contact, and other standard information such as
the contact’s name, work place, and photograph. We assume
that a device owner either knows this information or can ob-
tain it privately through out-of-band means such as in-person
meetings or personal websites.

3.2 Protocol

Addra relies on a cryptographic protocol called private in-
formation retrieval or PIR [19, 43]. We begin with a short
background on PIR; Section 4 describes a new PIR scheme.

A primer on PIR. A PIR protocol [19, 43] runs between
a user device and the server in Addra, where the device is
interested in retrieving the message in the idx-th mailbox at
the server without revealing the value of idx.

A PIR protocol has three procedures: QUERY, ANSWER, and
DECODE. QUERY is run by a device. It takes as input the index
idx between 0 and n − 1 and returns a query, q. Typically,
q is an encryption of a suitable encoding of idx. ANSWER is
run by the server; it takes as input the query q and the set of
n mailboxes, and returns an encoding of the message in the
idx-th mailbox (without learning the value of idx). Finally,
DECODE is run by the device; it takes the output of ANSWER

and returns the idx-th mailbox message.

Addra’s protocol. User devices in Addra participate in a
round-based protocol consisting of a one-time registration
step followed by synchronous rounds, each consisting of a
dialing phase followed by a communication phase consisting

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 315

1: function RECV(key key, resp resp)
2: // resp is the output of ANSWER PIR procedure
3: c← DECODE(resp) // DECODE is a PIR procedure
4: msg← AES.DEC(key, c)
5: play msg to user

6: function SEND(mailbox M, token t, message msg, key key)
7: c← AES.ENC(key, msg)
8: send (M, t, c) to server

9: function MAIN()
10: // Register device and obtain a mailbox ID and unique token
11: (Mself , tkn, n)← REGISTERDEVICE()
12: while True do
13: // Run dialing phase. kenc is for encrypting content
14: (Mpeer, kenc)← DIAL/PICKUP()
15: q← QUERY(Mpeer, n) // QUERY is a PIR procedure
16: send q to server
17: // Asynchronously listen for server responses
18: register callback RECV(kenc, . . .) for server responses
19: // Run communication phase consisting of t subrounds
20: for r = 0 to t − 1 do
21: wait for message generation interval
22: call SEND(Mself , tkn, msgr, kenc)

Figure 2—Pseudocode for a user device in Addra. n is the number of
mailboxes at the server. QUERY, ANSWER, DECODE are procedures
of a PIR scheme (§3.2, §4).

of multiple subrounds of communication. In more detail, ini-
tially a device performs a one-time registration step to register
itself with the server and obtain its phone number (mailbox
ID). This is followed by a sequence of rounds. Each round
starts with a dialing phase, where the device initiates a call to
another device or picks an incoming call. The dialing phase is
followed by the communication phase, consisting of multiple
subrounds, where each device sends exactly one message to
the server and receives one message from the server. Notably,
a device always writes a message to its assigned mailbox,
while it receives a message from its peer’s mailbox.

We now describe Addra’s protocol in more detail. Figure 2
shows the pseudocode for a user device. A device starts exe-
cuting the MAIN function (line 9 in Figure 2).

One-time registration step. When a user device joins Ad-
dra, it registers itself with the server and obtains three pieces
of information: a mailbox ID, a unique authentication token
tkn, and the number n of mailboxes (line 11 in Figure 2). As
mentioned above, the mailbox ID acts as the phone number
assigned to the device. Meanwhile, the authentication token
is a 128-bit uniformly generated string shared between the
server and the device that enables the server to verify that
a device is writing messages to its assigned mailbox (and
not to a mailbox assigned to another device). One may use
digital signatures instead of authentication tokens, but Addra
prefers the symmetric tokens due to their better efficiency. The
number of mailboxes n may increase if new devices join the
system; when this happens, the server broadcasts an updated
value of n.

Addra’s server is untrusted and may assign mailbox IDs or
authentication tokens incorrectly; for instance, it may reas-
sign a previously assigned mailbox ID. Besides, it may dis-
tribute different values of n to different devices. The privacy
guarantees of Addra’s protocol do not depend on the server
assigning correct values for these items. However, a mali-
cious server can deny service to system participants, which is
not prevented by our threat model (§2.2). A service provider
who runs the server will likely be incentivized to provide a
continuous service to keep its customer base.

Dialing phase. Once registered, a user device, who we refer
to using its phone number, Mself , executes the round-based
protocol. At the beginning of each round, Mself initiates a
call or picks up an incoming call (line 14 in Figure 2). If
the device initiates a call, it selects the phone number of the
peer device it is calling, Mpeer, and an encryption key, kenc,
to hide the content of the messages it will send. On the other
hand, if the device picks up an incoming call then it learns
the phone number of the caller and its content encryption
key. For now, we leave out the details of how a device picks
up a call till later (§5). After initiating or picking up a call,
Mself generates a PIR query q ← QUERY(Mpeer, n) for the
peer’s mailbox, and sends q to the server (lines 15 and 16
in Figure 2). The PIR query indicates, without revealing the
value of Mpeer, that Mself is interested in receiving messages
deposited into Mpeer’s mailbox. The device Mself then registers
an asynchronous callback to process PIR responses from the
server (line 18 in Figure 2). Meanwhile, the server stores
the PIR queries from all devices and uses them across all
subrounds of the round’s communication phase.

Communication phase. In each subround of the communi-
cation phase, (1) a device deposits an encrypted message into
its assigned mailbox at the server, (2) the server processes PIR
queries from all devices and pushes the results to devices who
registered these queries, and (3) each device decodes its PIR
response from the server. In more detail, at the beginning of a
subround, a device encrypts the message it wants to send to
its peer with the key kenc to create a ciphertext c. It sends the
tuple (Mself , tkn, c) to the server (line 22 in Figure 2), where
tkn is the device’s assigned authentication token obtained dur-
ing the registration step. The server uses the token to validate
that the messages being written to mailboxes indeed come
from devices that own the mailboxes. After performing these
checks, the server runs the ANSWER PIR procedure for all
PIR queries. That is, for a query q sent by a device during the
dialing phase, the server runs resp← ANSWER(mailboxes, q)
and pushes the PIR response resp to the device. Finally, on re-
ceiving a response, a device invokes the callback it registered
during the dialing phase (line 1 in Figure 2). This callback
decodes the PIR response using the DECODE PIR procedure,
decrypts the underlying message sent by the device’s peer
Mpeer, and delivers the message to the user.

316 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Dummy participation and messages. The protocol de-
scribed so far does not address the case when a device owner
does not participate in a call. During such idle periods, like
prior systems for strong metadata privacy (e.g., [10, 49]), a
device adds cover traffic (also called chaff). In particular, if a
device does not initiate or pick up a call in a round’s dialing
phase, it calls itself: inputs Mself into QUERY (line 15 in Fig-
ure 2). Besides, if a device does not have a message to send
during a subround, it writes an encryption of a random mes-
sage into its mailbox. Sending cover traffic is necessary, as
otherwise an adversary can learn connections between users
by monitoring if they join and leave at similar times.

Security analysis. Addra’s protocol satisfies relationship un-
observability, meaning that an adversary cannot detect the
existence of relationships between system users (§2.1). We
provide a rigorous proof in an extended version of this pa-
per [5]. Briefly, Addra’s protocol meets the property because
the protocol a user device executes is independent of whom
the user is communicating with or the behavior of the (ma-
licious) server. First, a user device encrypts messages using
a content encryption key known only to its peer. Further, it
always writes outgoing messages at fixed intervals to its own
mailbox—independent of whether the device is engaged in a
call, or the identity of its peer, or the behavior of the server
who may or may not deliver incoming messages to the device,
or who may replay messages. Second, the security property
of PIR ensures that an adversary cannot tell the IDs of the
mailboxes from which devices are retrieving messages. Again,
the server may process PIR queries incorrectly, or broadcast
an incorrect value n for the number of mailboxes, but a user
device always registers a PIR query for one of the n mail-
boxes, no matter the value of n. Thus, the adversary cannot
detect whether a user Alice is communicating with Bob or
Charlie or someone else, or even communicating at all (i.e.,
retrieving messages from its own mailbox).

Performance characteristics. Addra’s protocol exhibits
two key characteristics that set it on the path to meeting
its performance goals (§2.1). First, the protocol pushes mes-
sages from senders to recipients in two hops—independent
of the number of users in the system. Specifically, in each
subround, a sender pushes a message to the server, who then
processes the PIR query provided beforehand by the recipient,
and pushes the PIR response to the recipient. This two-hop
communication pattern is crucial for voice calls which re-
quire low latency. Second, the protocol amortizes the cost
of generating and transferring a PIR query across subrounds
of a round (our prototype runs a round every five minutes,
and a subround every 480 ms; §6). Thus, the server does
not have to deal with PIR query management (and certain
preprocessing of query) during the time-sensitive subrounds.
Nevertheless, the server must complete computing ANSWER

for all PIR queries in a time smaller than the voice packet
generation interval (that is, the duration of a subround) to

avoid packet build up. Besides, the network transfers from
the server to the devices are dictated by the size of the output
of ANSWER. Thus, a low cost of the ANSWER PIR procedure
is key for Addra’s performance.

4 FastPIR: A new CPIR scheme
As described above (§3.2), a critical component of Addra’s
protocol is the ANSWER PIR procedure. It not only dictates
Addra’s message latency but also the resource consumption
(both CPU and network) imposed by Addra.

PIR schemes are of two types: computational PIR
(CPIR) [43] and information-theoretic PIR (IT-PIR) [19, 20].
CPIR schemes assume a single (untrusted) server and rely
only on cryptographic assumptions; in contrast, IT-PIR
schemes are more efficient but require two or more non-
colluding servers. In Addra, we use a CPIR scheme as its
trust assumptions are in line with Addra’s goal of not trusting
the communication infrastructure (§2.2).

One can plug in an existing CPIR scheme, either XPIR [4]
or SealPIR [7], which are the state-of-the-art CPIR schemes,
into Addra’s protocol (§3.2). However, these schemes exhibit
a tension between the CPU time to run ANSWER (and thus the
wall-clock time for ANSWER) and the output size of ANSWER

(and thus the network overhead).
Suppose a CPIR client wants to privately retrieve the idx-th

message from a library L of n messages (mailboxes) held at a
server. In prior work, a typical way to construct a CPIR query
is to treat the library as a matrix with n rows and generate a
ciphertext for every row of L.1 The ciphertext for the idx-th
row encrypts the value 1, and the ciphertexts for the other
rows encrypt 0. However, this strategy creates large queries
with a number of ciphertexts that is proportional to the value
of n (e.g., XPIR’s query size is ≈33 MiB for n=215, and
≈1 GiB for n=220; §6.5). When the server processes larger
queries, it consumes more memory and CPU cycles to read
them into CPU caches, which slows down query processing.
(SealPIR compresses the query while transferring it on the
network, but expands it to the larger query at the server).

A popular technique due to Stern [71] to address the query-
size issue is called recursion. This technique is parameterized
by a depth parameter d. A value of d = 2 or higher shrinks
the query—it contains d · d

√
n ciphertexts instead of n—by

rearranging the library as a d-dimensional hypercube. How-
ever, this rearrangement increases the CPIR ANSWER output
size exponentially with d. Thus, if we plug in existing CPIR
schemes (XPIR or SealPIR), then Addra would compromise
on either server CPU time or network bandwidth.

Our CPIR scheme, FastPIR, works without recursion and
thus keeps the smaller CPIR answer size. However, it opti-
mizes the computation time for ANSWER. In fact, FastPIR

1A technique called aggregation [4, 11] further combines multiple rows
(messages) into wider rows, resulting in a matrix with n/a rows, where the
value a depends on the size of each message.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 317

takes less time than both XPIR and SealPIR (with or without
recursion) to run ANSWER, particularly when the number of
messages n in the library is greater than a threshold (≈20K;
§6.5), thereby improving the scalability and message latency
of Addra. FastPIR may be a good fit for other applications
of CPIR where costs are dominated by those of the CPIR
ANSWER procedure.

FastPIR, like SealPIR [7], builds on the lattice-based ho-
momorphic encryption scheme of Brakerski/Fan-Vercauteren
(BFV) [15, 33]. BFV offers superior efficiency than a tra-
ditional number-theoretic homomorphic encryption scheme
such as Paillier [61], resists attacks by quantum comput-
ers, is implemented in mature and actively maintained code-
bases [2, 69], and is in the preliminary stages of being stan-
dardized (e.g., with ISO/IEC) [6]. We start with a necessary
background on BFV (§4.1), and then delve into the details of
FastPIR (§4.2–§4.4).

4.1 Background: The BFV cryptosystem

We focus here on describing the more efficient vectorized
variant of BFV in which a single homomorphic operation
operates over multiple plaintext inputs (single instruction,
multiple data or SIMD; also called batching in the literature).

In this BFV variant, a plaintext is a vector of dimension N,
where the parameter N equals a power of two and is at least
210 for the security of the BFV scheme [6]. Each component
of the plaintext is an integer in Zp = {0, . . . , p−1}, the set of
integers modulo p. Sometimes, we will view a BFV plaintext
as a matrix with two rows and N/2 columns rather than a
vector with dimension N.

A BFV ciphertext is also a vector but of dimension 2 · N.
Each of its component is an element of Zq, where q� p.

The BFV encryption procedure, BFV.ENC, adds noise when
it converts a plaintext vector into a ciphertext vector. This
noise grows as homomorphic operations are performed on
the ciphertext. If the noise grows beyond a threshold, then the
ciphertext decryption procedure BFV.DEC does not produce
the correct plaintext. Hence, q� p for enough noise budget.

The size of the plaintext vector, N, the size of the domain
of each component of the plaintext, p, and the size of the
domain of each component of the ciphertext, q, are all tunable
parameters. Typically, one picks a combination of p, q, N
depending on the application, the required noise budget, and
the desired security level; we discuss concrete values for these
parameters for Addra in §5.

BFV supports the following homomorphic operations that
are used in FastPIR:
• BFV.ADD(c0, c1) takes as input encryptions c0 and c1 of

plaintext vectors v0 and v1, and outputs an encryption of
v0 + v1 (component-wise vector addition).

• BFV.SCMULT(v0, c1) takes as input a plaintext vector v0
and an encryption c1 of a plaintext vector v1, and produces
an encryption of the product v0 � v1, where the operator �
denotes component-wise multiplication.

• BFV.ROWROTATE(c0, i) takes as input an encryption c0
of a plaintext v0 and an integer 0 < i < N/2 − 1, and
produces an encryption of v0 rotated right by i positions
cyclically row-wise. For instance, if plaintext dimension
is N = 8 and v0 is ((a, b, c, d), (e, f , g, h)) in its matrix
representation, then a right rotation by i = 1 produces an
encryption of ((d, a, b, c), (h, e, f , g)).

• BFV.COLROTATE(c0) takes as input an encryption c0 of a
plaintext v0 and returns an encryption of a plaintext pro-
duced by swapping the two rows of v0. For the example
above, the result is an encryption of ((e, f , g, h), (a, b, c, d)).

The BFV homomorphic operations require public keys gen-
erated by a key generation procedure. In particular, the
rotation procedures require a set of rotation keys. While
BFV.COLROTATE requires one key, the size of the set of keys
for BFV.ROWROTATE can vary. On the one extreme, this set
can be configured to contain one key that rotates the plaintext
vector by one position. Thus, to perform a rotation by i > 1
positions, BFV.ROWROTATE calls itself i times, incurring i
times the cost of one BFV.ROWROTATE operation. On the
other extreme, the set can contain N/2− 1 keys for all possi-
ble values of i between 0 and N/2. This extreme reduces CPU
time for BFV.ROWROTATE as it does not call itself recursively,
but this configuration increases the key size. For the BFV pa-
rameters we choose (§5), each rotation key is 128 KiB, and the
set of all possible rotation keys is 256 MiB. Thus, in practice,
one generates log2(N/2) keys for all powers-of-two between
0 and N/2− 1, and each invocation of BFV.ROWROTATE calls
itself recursively up to log2(N/2) times.

4.2 The FastPIR scheme

Recall the CPIR scenario (§4): a server holds a library L of
n messages where each message has m components, while a
client holds an integer 0 ≤ idx ≤ n− 1 and wants to retrieve
the idx-th library message without revealing idx to the server.

To build intuition for FastPIR, suppose that L is an N × 1
matrix consisting of N unit length messages, where N is the
plaintext vector dimension in BFV. Then, the client constructs
the CPIR query q for the idx-th message by encrypting a
BFV plaintext whose idx-th entry is one and the rest are
zeros (this is called one-hot encoding of idx). For instance,
if N = 4 and idx = 1, the client encrypts the BFV plaintext
(0, 1, 0, 0). The server multiplies this encryption q with L by
computing BFV.SCMULT(L, q) to obtain an encryption of the
idx-th entry of L. For the example above, if L is (a0, a1, a2, a3),
BFV.SCMULT produces an encryption of (0, a1, 0, 0) as the
multiplication is component-wise. The client receives the
output and decrypts it to get a1.

The advantage of this strategy is that a query consumes
only a component of a ciphertext for each of the n rows of
L (instead of a ciphertext per row). However, a challenge is
that this strategy generates one output ciphertext for each
of the m columns of L. FastPIR addresses this challenge by
combining ciphertexts for m columns into a single cipher-

318 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1: function QUERY(index idx, n)
2: // Create a one-hot encoding of idx
3: for i = 0 to n− 1 do
4: fi ← (i == idx) ? 1 : 0
5: // Split and encrypt the one-hot vector
6: for i = 0 to (n/N)− 1 do // N is BFV plaintext dimension
7: qi = BFV.ENC(pk, (fi·N , . . . , f(i+1)·N−1))

8: return q = (q0, . . . , q(n/N)−1)

9: function ANSWER(library L, query q = (q0, . . . , q(n/N)−1))
10: // Represent L as a matrix of elements in Zp: L ∈ Zn×m

p

11: // q is an output of QUERY

12: for j = 0 to m− 1 do
13: sumj = BFV.ENC(pk, 0)
14: for i = 0 to (n/N)− 1 do
15: pi,j ← SUBMAT(L, i · N, (i + 1) · N − 1, j, j)
16: ti,j = BFV.SCMULT(pi,j, qi)
17: sumj = BFV.ADD(sumj, ti,j)

18: // Combine outputs from all columns
19: Initialize stop, sbot to encryptions of zero vectors
20: for j = 0 to m− 1 do
21: if j < N/2 then
22: sumj ← BFV.ROWROTATE(sumj, j)
23: stop ← BFV.ADD(stop, sumj)
24: else
25: sumj ← BFV.ROWROTATE(sumj, j− N/2)
26: sbot ← BFV.ADD(sbot, sumj)

27: return BFV.ADD(stop, BFV.COLROTATE(sbot))

28: function DECODE(answer ans, index idx)
29: // ans is an output of ANSWER

30: anspt ← BFV.DEC(sk, ans)
31: if idx mod N > N/2 then
32: anspt ← PTCOLROTATE(anspt)

33: return anspt ← PTROWROT(anspt, N/2− (idx mod N/2))

Figure 3—QUERY, ANSWER, and DECODE procedures for a ba-
sic version of FastPIR. (pk, sk) are a (public, private) key pair for
the BFV scheme (§4.1). SUBMAT extracts a sub-matrix of a ma-
trix. PTROWROT and PTCOLROTATE are like BFV.ROWROTATE

and BFV.COLROTATE, respectively except they operate on BFV
plaintexts rather than BFV ciphertexts.

text using the BFV rotation operations (BFV.ROWROTATE and
BFV.COLROTATE), thereby reducing CPIR answer sizes.

Before describing the details of rotation, we remark that
the use of vectorized operations (SIMD capabilities of BFV)
is common. In fact, both XPIR and SealPIR use vectorized
operations. The difference is that these prior CPIR schemes
apply vectorization across columns of the matrix while Fast-
PIR applies it across rows of the matrix, which is a more
efficient use of vectorization in the PIR context (§6.5).

Details. Figure 3 shows the FastPIR scheme. It assumes that
n is a multiple of N, i.e., n = k ·N for some k ≥ 1, and m ≤ N.
If these constraints do not hold, then the server pads L with
empty rows and splits L into sets of N columns.

The QUERY procedure and the top half of ANSWER (until
line 17) follow the intuition described above. That is, QUERY

creates a one-hot encoding of idx (line 4 in Figure 3), splits
the encoding into multiple BFV plaintexts, and encrypts each
plaintext separately (line 7 in Figure 3). The top half of
ANSWER multiplies the k = n/N plaintext column vectors
of each column of L with the corresponding ciphertexts in the
query (line 16 in Figure 3), and adds the k output ciphertexts
to get one ciphertext per column of L (line 17 in Figure 3).
For instance, if n = 8, N = 4, idx = 1, and a column of
L is (a0, a1, . . . , a7), then ANSWER computes encryptions of
(0, a1, 0, 0) and (0, 0, 0, 0) in line 16 of Figure 3, and adds
them to get an encryption of (0, a1, 0, 0) in line 17 of Figure 3.

The bottom half of ANSWER packs together outputs from
each column into a single ciphertext (lines 19–27 in Fig-
ure 3). Suppose the number of columns is m = 4 and the
outputs corresponding to them are encryptions of (0, a1, 0, 0),
(0, b1, 0, 0), (0, c1, 0, 0), and (0, d1, 0, 0), or equivalently en-
cryptions of ((0, a1), (0, 0)), ((0, b1), (0, 0)), ((0, c1), (0, 0)),
and ((0, d1), (0, 0)), when the underlying plaintexts are
viewed in their matrix form. Then, ANSWER uses the
BFV.ROWROTATE and BFV.ADD operations to produce en-
cryptions of ((b1, a1), (0, 0)) and ((d1, c1), 0, 0)) (lines 20–
26 in Figure 3), before column rotating the second ciphertext,
and adding the result to the first ciphertext to obtain an en-
cryption of ((b1, a1), (d1, c1)) (line 27 in Figure 3). Using
rotations to pack outputs from multiple columns into a single
ciphertext is crucial as otherwise a CPIR answer size can
contain multiple ciphertexts (instead of one).

DECODE is straightforward; it decrypts the output of
ANSWER and then rotates the plaintext depending on the
value of the requested index. For the example above, DECODE

first obtains the plaintext matrix ((b1, a1), (d1, c1)), and then
performs a rotation on this matrix by idx = 1 to obtain
((a1, b1), (c1, d1)).

4.3 Reducing the CPU cost of rotations

Recall that one goal of FastPIR is to optimize the CPU time of
ANSWER procedure (§3.2). A source of inefficiency in what
is described above is the cost of BFV.ROWROTATE (lines 22
and 25 in Figure 3), as the CPU time taken by it depends on the
value of i—the positions by which the underlying plaintext is
rotated. When i is a power of two, then BFV.ROWROTATE is
fast, whereas when i is a not a power of two, BFV.ROWROTATE

calls itself up to log2(i + 1) times (§4.1). For example, a call
to BFV.ROWROTATE with an input i = 7 translates into three
rotations by amounts one, two, and four—powers of two that
add to seven.

FastPIR eliminates the calls to expensive rotations whose
input rotation amount is not a power of two. As intuition,
suppose that the ANSWER procedure (Figure 3) needs to make
two calls to BFV.ROWROTATE—one for rotating a vector by
two positions and the other for rotating a vector for another
matrix column by three positions. Then, the straw man de-
sign presented in the previous subsection treats each rotation
separately. Particularly, it breaks down the rotation by three

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 319

 rot(3)

add

0|0|a|0

rot(1) rot(2) rot(1) rot(1)

rot(2)
Straw man: Optimized

scheme:

0|0|a|0

0|0|b|0 0|0|c|0 0|0|d|0

0|0|0|b c|0|0|0 0|d|0|0

c|d|a|b

0|0|a|0 0|0|b|0 0|0|c|0 0|0|d|0

0|0|a|b 0|0|c|d

c|d|a|b

Figure 4—Illustration of optimized rotations in FastPIR. The straw
man (left) performs a mix of slow rotations (with rotations amounts
that are not powers of two) and fast rotations (with rotation amounts
that are powers of two) to combine multiple vectors. FastPIR’s
optimized scheme combines vectors using fast rotations only.

positions into a rotation by one position followed by a rota-
tion by two positions. Instead, FastPIR first rotates the second
vector by one position and adds the result to the first vector.
Then, it rotates the combined vector once by two positions,
thereby rotating only by powers-of-two amounts.

Figure 4 illustrates the idea for our running example with
m = 4 matrix columns, where the FastPIR processing for each
column produces a ciphertext. FastPIR arranges the vectors
to be combined as leaf nodes of a tree; it then builds up to the
root of the tree. When producing a parent at a given height h
of the tree, FastPIR rotates the right child by 2h−1 positions
and adds the rotated vector to the left child. The effect is that
FastPIR combines m ciphertexts in lines 22 and 25 in Figure 3
using m fast rotations.

4.4 Reducing the number of rotations

This optimization reduces the number of calls to
BFV.ROWROTATE by a factor of two, and eliminates the call
to BFV.COLROTATE, thereby further reducing the CPU cost of
ANSWER. The trade-off is a 2× increase in CPIR query size.

The key idea is to exploit the matrix representation of a
BFV plaintext (§4.1) and retrieve two elements of a matrix
row (instead of one) at a time.

As motivation, suppose that the matrix L is of dimension
N/2× 2, and the client wants the idx-th row. Then, the client
sends an encryption of a vector whose idx-th and idx + N/2-
th entries are one (and the rest are zeros). For instance, if
N = 4 and idx = 1, then the client sends an encryption of
(0, 1, 0, 1), or equivalently, ((0, 1), (0, 1)). The server multi-
plies this query with L to get an encryption of a vector whose
idx-th and idx + N/2-th entries are the desired elements from
the two columns of L. As an example with idx = 1, say L is
((a0, a1), (b0, b1)), then the multiplication operation produces
an encryption of ((0, a1), (0, b1)).

Figure 5 shows the procedures of FastPIR with this opti-
mization. The procedures assume that n is a multiple of N/2,
i.e., n = k · (N/2) for some k ≥ 1, and m is even and≤ N. As
before (§4.2), if these constraints do not hold, then the server
appropriately pads and splits L.

The QUERY procedure encrypts a set of vectors that in total
contain two non-zero entries (line 6 in Figure 5). The ANSWER

procedure multiplies k parts of every pair of columns of L
with the k ciphertexts in the query, and adds the results to

1: function QUERY(index idx, n)
2: for i = 0 to n− 1 do
3: fi ← (i == idx) ? 1 : 0 // one-hot encoding
4: for i = 0 to n/(N/2)− 1 do
5: v← (fi·N/2, . . . , f(i+1)·N/2−1)
6: qi = BFV.ENC(pk, v||v) // || denotes concatenation
7: return q = (q0, . . . , qn/(N/2)−1)

8: function ANSWER(library L, query q = (q0, . . . , qn/(N/2)−1))
9: // Represent L as a matrix of elements in Zp: L ∈ Zn×m

p

10: // q is an output of QUERY

11: for j = 0 to (m/2)− 1 do
12: sumj = BFV.ENC(pk, 0)
13: for i = 0 to n/(N/2)− 1 do
14: pi,j ← SUBMAT(L, i·N/2, (i+1)·N/2−1, 2j, 2j+1)
15: ti,j = BFV.SCMULT(pi,j, qi)
16: sumj = BFV.ADD(sumj, ti,j)

17: // Combine outputs from all pairs of columns
18: return ROTATEANDCOMBINE(sum0, . . . , summ/2−1)

19: function DECODE(answer ans, index idx)
20: // ans is an output of ANSWER

21: anspt ← BFV.DEC(sk, ans)
22: return PTROWROT(anspt, N/2− (idx mod N/2))

Figure 5—QUERY, ANSWER, and DECODE procedures for FastPIR.
(pk, sk) is a (public, private) key pair for the BFV scheme (§4.1).
SUBMAT extracts a sub-matrix of a matrix. ROTATEANDCOMBINE

refers to the optimized procedure to combine ciphertexts (§4.3).
PTROWROT is like BFV.ROWROTATE except that it operates on
BFV plaintexts rather than BFV ciphertexts.

get one ciphertext for every pair of columns. Then, ANSWER

packs these outputs using the optimized scheme to combine
ciphertexts described previously (§4.3). The DECODE proce-
dure decrypts the output of ANSWER and performs a rotation
on the plaintext output.

Security analysis. The security of a CPIR scheme requires
the output of QUERY to not reveal any information about the
requested index [20, 43]. FastPIR meets this property because
its QUERY procedure (i) produces semantically-secure BFV
ciphertexts, and (ii) outputs n/(N/2) ciphertexts independent
of the value of the desired index idx.

5 Implementation details
FastPIR. Our prototype of FastPIR is ≈1000 lines of C++
and is available at https://github.com/ishtiyaque/
FastPIR. We used the Microsoft SEAL library v3.5 [69]
for the underlying cryptographic operations of the BFV
scheme. Recall that FastPIR configures BFV so that it sup-
ports vectorized operations (§4.1). For vectorization, the
plaintext modulus p has to be a prime number congruent
to 1 (mod 2N), where N is the vector dimension of a BFV
plaintext and equals 210 or a higher power of two (§4.1).
Moreover, one needs to choose p � q to ensure correct de-
cryption. For Addra, we choose N = 212, p a 19-bit prime
270337, and q a 109-bit composite that is the product of

320 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ishtiyaque/FastPIR
https://github.com/ishtiyaque/FastPIR

a 54-bit prime (18014398509309953) and a 55-bit prime
(36028797018652673). These parameters provide a 128-bit
security level as guided by the homomorphic encryption stan-
dard [6]. (One may choose different parameters for FastPIR
based on application requirements.)

Master-worker architecture for Addra. We implemented
Addra server using a master-worker architecture with many
worker machines to distribute the PIR workload. Specifically,
during the dialing phase of a round in Addra’s protocol (§3.2),
the master receives CPIR queries from all devices and shards
them across the workers, where a worker gets a subset of the
queries. Then, during the communication phase, the master
initiates each subround at a fixed schedule. During each sub-
round, it waits to receive messages from the clients, compiles
them into a message library, and broadcasts the entire mes-
sage library to the workers. In case a laggard client fails to get
its message to the master during the time period the master
waits for incoming messages, the master buffers the laggard’s
message for the next subround. If more than one message
arrives at the master from a client for the same subround,
the master retains the latest message. Meanwhile, to process
CPIR queries, each worker computes the output of ANSWER

on its assigned subset of the queries and pushes the outputs
to the client devices who registered the queries.

Dialing protocol. Addra uses Pung’s protocol to initiate
calls [11, Chapter 4.5.3] (which in turn is based on Alpen-
horn [50]). Briefly, a caller sends “hello” messages encrypted
with the callee’s public key to the server, who then broad-
casts the set of “hello” messages from all callers to all user
devices. A callee decrypts the ciphertexts using its private key
and learns the content encryption key and the caller’s phone
number (which are inside the hello message). This protocol
is not efficient as the server broadcasts the ciphertexts to the
participants (although the server could use a CDN or mul-
ticast protocols), and a callee decrypts ciphertexts from all
users. Thus, Addra runs this protocol infrequently (every five
minutes; §6.3). A more efficient dialing protocol in Addra’s
threat model is still an open problem.

Options for which call to pick. A device may receive mul-
tiple incoming calls, or may make an outgoing call at the
same time a call comes in. In such scenarios, Addra exposes
all options to the device owner and lets them pick the call
they want to participate in. However, depending on which
option a user chooses, they could leak some information to
the users who are on the other end in the non-chosen options.
For instance, if Alice receives a call from both Bob and Char-
lie, and decides to pick Bob’s call, then Charlie may infer
that Alice is busy. This leakage is not specific to Addra but
applies to any metadata-private system [8, 9]. As efficient so-
lutions to this problem become available, one could enhance
the options-based approach currently implemented in Addra.

Other libraries and lines of code. Our prototype of Addra
(https://github.com/ishtiyaque/Addra) is ≈2,000
lines of C++ on top of existing libraries, including Fast-
PIR. Our implementation of the dialing protocol uses the lib-
scapi [1] library for public-key encryption using the Cramer-
Shoup scheme [26] with a key size of 3072 bits which pro-
vides 128 bits of security. It also uses AES-CBC implementa-
tion from OpenSSL with a 128-bit key for end-to-end content
encryption with 128 bits of security. It implements the mes-
sage library broadcasting mechanism from master to workers
using rpclib [3]. Finally, we use the open source implementa-
tion of LPCNet [57] for speech encoding/decoding.

6 Evaluation
Our evaluation answers the following questions:
1. What is Addra’s message latency, and how does it vary

with the number of users and server machines?
2. How much resource overhead (CPU, network upload and

download) does Addra impose on its server and users?
3. How does Addra compare to Pung [7, 10, 11], which

is the state-of-the-art prior system for metadata-private
communication over completely untrusted infrastructure?

4. How does FastPIR compare to the state-of-the-art CPIR
schemes, XPIR [4] and SealPIR [7]?

A highlight of our evaluation results is as follows:
• Addra’s 99-th percentile message latency is 726 ms for

32,768 users and 80 server machines. For the same config-
uration, Pung’s message latency is 5.2 seconds.

• Addra’s server consumes 22.3 minutes of CPU time for a
subround with 32,768 users, where a subround corresponds
to 480 ms of voice call. Translated to provisioning burden,
each user requires the server to provision 0.085 CPU for its
call. In contrast, Pung consumes 77.1 minutes of CPU time
(3.45× higher) per subround.

• An Addra user downloads and uploads 55.1 and 1.08 MiB
of data for each round when 32,768 users use Addra, where
a round corresponds to five minutes of voice call. Thus,
translated into bandwidth, Addra requires a download and
upload bandwidth of 1.46 Mbps and 30 Kbps, respectively.
In contrast, a Pung client downloads and uploads 250 MiB
(4.6× higher) and 313 MiB (289× higher) for five minutes
of voice call data.

• FastPIR has a smaller server-side CPU time and a smaller
response size relative to XPIR and SealPIR, particularly
when the number of messages in the PIR library is greater
than a threshold (≈ 20K).

Setup and method. We compare Addra to two variants of
Pung: Pung-XPIR (P-XPIR) and Pung-SealPIR (P-SPIR).
The former is the original Pung system from OSDI 2016 [10]
that instantiates CPIR with the XPIR scheme [4]. The second
variant replaces the XPIR scheme with the SealPIR CPIR

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 321

https://github.com/ishtiyaque/Addra

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

2
12

2
13

2
14

2
15

2
16

9
9

-t
h

 p
er

ce
n

ti
le

 m
es

sa
g

e
la

te
n

cy
 (

se
c)

Number of users

Addra
P-XPIR (d=1)
P-XPIR (d=2)
P-SPIR (d=1)
P-SPIR (d=2)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 20 40 60 80 100

9
9

-t
h

 p
er

ce
n

ti
le

 m
es

sa
g

e
la

te
n

cy
 (

se
c)

Number of server machines

Addra
P-XPIR (d=1)
P-XPIR (d=2)

P-SPIR (d=1)
P-SPIR (d=2)

Figure 6—(Left) Message latency with a varying number of users for eighty server worker machines. (Right) Message latency with a varying
number of server worker machines for 32,768 users. Messages are 96 bytes in size. The y-axis is log-scaled. d denotes CPIR recursion depth,
where d = 1 denotes no recursion and d = 2 enables recursion. Addra does not use recursion (§4).

scheme [7]. We include both variants as there is no clear
winner between them across all performance metrics. Further,
we evaluate these variants without (d = 1) and with CPIR
recursion (d = 2). We do not experiment with a recursion
depth d > 2 as the server CPU time and the network transfers
from the server to the clients, which are the two key overhead
metrics, grow significantly with depth greater than two [7].

We configure Addra and Pung to provide a security level
of 128-bits. Also, we configure Pung to use its BST retrieval
scheme in which a message recipient obliviously searches
through a tree while retrieving one message from the Pung
server. This scheme is the most scalable retrieval scheme for
Pung especially as the number of system users increase; we
discuss other retrieval schemes Pung supports in the related
work section (§7). For all of the systems, we deploy the server
on a cluster of machines in AWS EC2 US East region (Ohio).
Addra requires a master machine and a set of worker machines
(§5). For the master, we use a machine of type c5.24xlarge
(96 vCPU, 192 GiB of RAM and 25 Gbps of network band-
width) which provides a high network bandwidth to enable
the master to broadcast the message library (the mailboxes) to
the workers. For the workers, we use the compute-optimized
machines of type c5.12xlarge (48 vCPU, 96 GiB of RAM,
and 12 Gbps of network bandwidth). Pung does not have a
master and therefore we use machines of type c5.12xlarge
as its workers. To compensate for the extra master machine
assigned to Addra (relative to Pung), we assign two additional
worker machines of type c5.12xlarge to Pung.

Addra is required to process queries from all clients in
every subround to meet its security goals. Since we cannot
run tens of thousands of clients in our infrastructure, we em-
ploy a combination of real and simulated clients. We deploy
256 geographically distant real clients in a machine of type
c5.24xlarge in AWS US West (N. California). The mean
network RTT, as measured by Ping, between the server and
these clients is 51 ms. During each round and subround, real
clients send their queries and messages to the server, and
the server inserts the queries and messages of the remaining
simulated clients.

We configure Addra to run a round every five minutes
and a subround every 480 ms. This configuration results in
a fixed message size of 96 bytes at each subround as the
LPCNet voice codec encodes a 40 ms audio frame into 8
bytes (§2.1) [74, 75]. We vary the number of users (from
4,096 to 65,536) and the number of worker machines (from
20 to 100). We repeat experiments for 10 trials. To account
for tail latency, we process the queries from real clients only
after processing the queries from all simulated clients. Then,
we measure the 99-th percentile latency observed by the real
clients over the 10 trials, the CPU time consumed by the
server and the real clients, and the amount of data uploaded
and downloaded by the real clients.

6.1 Message latency

Variation with the number of users. Figure 6 (left) shows
the 99-th percentile message latency with a varying number
of users when the server has 80 worker machines.

Addra’s message latency is 254 ms for 4,096 users and
increases to 1678 ms for 65,536 users. This increase is due
to three reasons. First, as the number of users increases, so
does the number of mailboxes and the time to broadcast their
content from the master to the workers (§5). Second, the
number of CPIR queries the server processes every subround
equals the number of users (§3.2). Third, the time to process a
CPIR query increases with the number of mailboxes, so each
worker takes longer to generate CPIR responses. For 32,768
users, the latency is 726 ms, of which 398 ms is for CPIR
query processing at the workers, 186 ms is for broadcast of
mailbox content from the master to the workers, and the rest
is for network transfers between the client and the server.
However, for 65,536 users, the latency increases to 1,678 ms,
of which 1,186 ms is for CPIR query processing alone. This
processing time is higher than the 480 ms subround time
budget and thus voice packets start queuing up at the server
for these many users.

Addra’s message latency is lower than Pung’s, specifically,
that of Pung-XPIR by a factor of 7.2× for 32,768 users, due
to two reasons. First, a sender in Addra pushes a message
to the server, who performs CPIR processing and pushes the

322 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 200

 400

 600

 800

 1000

2
12

2
13

2
14

2
15

2
16

S
e
rv

e
r

C
P

U
 t

im
e
 (

m
in

)

Number of users

Addra
P-XPIR (d=1)
P-XPIR (d=2)
P-SPIR (d=1)
P-SPIR (d=2)

Figure 7—Server-side CPU time per subround with a varying number
of users. A subround corresponds to 480 ms of voice call; in a
subround, each user sends and receives one 96 byte message.

response to the recipient—in total, the message traverses two
hops (§3.2). In contrast, while the sender in Pung pushes a
message to the server in one hop, a recipient has to make
dlog2(n + 1)e sequential round-trips to the server to fetch a
message, where n is the number of users. Second, Addra uses
FastPIR, which has lower server-side CPIR answer generation
time than XPIR or SealPIR used in Pung; we will expand on
this difference shortly (§6.2, §6.5).

Variation with the number of worker machines. Figure 6
(right) shows the 99-th percentile message latency as a func-
tion of the number of worker machines when the number of
users is fixed to 32,768. Latency decreases for all systems
with an increase in the number of worker machines due to in-
creased parallelization for CPIR answer generation, but only
up to an inflection point. Beyond this inflection point, adding
workers does not improve latency as the time to replicate
mailboxes from the master to the workers goes up, while the
CPU on the workers starts to become idle. Thus, an immedi-
ate scalability bottleneck in Addra is the time to broadcast
mailboxes from the master to the workers. Distributing the
master or reducing the number of workers by extracting more
efficiency from each may further push out the inflection point.

6.2 Server-side CPU consumption

Figure 7 shows that server-side CPU time increases with the
number of users. This is expected as both the number of CPIR
queries and the time to generate an answer for each query
increases with the number of users (§3.2). Addra’s CPU con-
sumption is lower than Pung’s. For instance, for 32,768 users,
Addra takes 22.3 minutes while Pung (with XPIR and CPIR
recursion depth d = 2) takes 77.1 minutes (3.45× higher).
If we convert these times to CPU provisioning requirements,
then for each subround lasting 480 ms or 0.48 seconds, Ad-
dra’s server consumes 22.3 minutes, or 1,338 seconds, of CPU,
which is provided by provisioning 1, 338/0.48 = 2788 CPUs,
or 0.085 CPU per user. Similarly, each Pung user requires 0.29
CPU per user. A key reason for this difference is that FastPIR
in Addra consumes lower amount of server-side CPU relative
to XPIR or SealPIR in Pung (§6.5). We note that even though
a recursion depth of d = 2 reduces CPU consumption relative

to no recursion (d = 1), increasing depth further (d = 3)
does not reduce CPU consumption [7]. Furthermore, a higher
depth increases network overhead (§6.3). Thus, as mentioned
earlier (§6), we restrict our experiments to a depth of d = 2.

6.3 Client-side resource overheads

Network transfers. Figure 8 shows the amount of data a
client downloads and uploads for one round of communica-
tion (a round corresponds to five minutes of voice call).

An Addra user downloads ≈55.1 MiB in a five-minute
round when 32,768 users use Addra. That is, each user re-
quires 1.46 Mbps of network download bandwidth. Of the
55.1 MiB, ≈39 MiB is due to the communication phase of
the round while the rest is due to the dialing phase (§3.2). Fur-
ther, the former is independent of the number of system users,
while the latter depends linearly on the number of users.

Relative to a non-private baseline which does not hide meta-
data, Addra’s network overhead is significantly higher due to
the use of CPIR, which encrypts messages into BFV cipher-
texts. For example, if the non-private baseline uses LPCNet
which encodes 480 ms of speech in 96 bytes of data, then a
user’s network download bandwidth will be 1.56 Kbps. In
contrast, Addra encrypts the 96 bytes into a 64 KB ciphertext,
which is a 682× increase.

However, relative to Pung, an Addra user downloads less
data, by 4.5–45.7×, depending on the Pung variant. The im-
provement is due to two reasons. First, Pung requires a mes-
sage recipient to make multiple CPIR queries with the server
to search through the message library that is organized as a
tree. Second, CPIR answer size increases with a higher CPIR
recursion depth (d = 2 versus d = 1). Addra’s FastPIR, on
the other hand, operates at d = 1 to keep CPIR answer sizes,
and thus the downloads, smaller (§4).

An Addra user uploads one CPIR query per round during its
dialing phase. The Addra server then reuses the query across
subrounds (§3.2). Even though the query size for Addra is
larger compared to that of Pung (§6.5), unlike Pung, this cost
is amortized over multiple subrounds of the communication
phase. As a result, Addra’s upload network transfers are small:
≈1.1 MiB per round, or 30 Kbps.

We remark that even though Addra’s instantaneous network
overhead (1.46 Mbps download and 30 Kbps upload) appears
manageable, it adds up over time due to the involvement of
a client in dummy calls (§3.2). Thus, Addra requires certain
conditions such as unlimited network downloads for its clients
to be deployable. We anticipate that in the future, as the need
for privacy increases, so will advances in network technology
that will provide options for unlimited data.

CPU time. An Addra client consumes ≈27.5 seconds of CPU
time per a five-minute round when the number of users is
32,768. 94% of this time is from the dialing protocol (§5).
For the same configuration, a Pung client consumes 1.7–63×
higher CPU, primarily due to multiple CPIR queries with the
server for transmitting each message.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 323

 10

 100

 1000

 10000

 100000

2
12

2
13

2
14

2
15

2
16

N
e
tw

o
rk

 d
o

w
n

lo
a
d

 (
M

iB
)

Number of users

Addra
P-XPIR (d=1)
P-XPIR (d=2)

P-SPIR (d=1)
P-SPIR (d=2)

 0.1

 1

 10

 100

 1000

 10000

 100000

2
12

2
13

2
14

2
15

2
16

N
et

w
o

rk
 u

p
lo

ad
 (

M
iB

)

Number of users

Addra
P-XPIR (d=1)
P-XPIR (d=2)

P-SPIR (d=1)
P-SPIR (d=2)

Figure 8—Data downloaded and uploaded by a user per round with varying number of users. A round corresponds to five minutes of voice call.

6.4 Discussion on voice quality

The quality of voice calls and user experience depends on
several factors including message transmission latency, jitter
(the inconsistencies among packet arrival intervals [41]), and
the effectiveness of the voice encoder that converts human
speech into a digital signal. This section briefly discusses
Addra’s performance on these metrics.

We reported Addra’s message transmission latency in §6.1.
Specifically, latency varies with the number of users, and
is lower for a lower number of users. For example, for 8K
users, the latency is 306 ms, which is below the ITU-G.114
recommended value of 400ms [40]. As the number of users
increases, Addra’s latency crosses the recommended value,
but stays below one second for a significant number of users
(32,768); this value of one second is critical as it is possible
to make voice calls at this latency [49].

To measure jitter, we ran Addra for one round (i.e., 5 min-
utes of voice call) with 80 worker machines and a varying
number of users. Ideally, a user should receive a voice packet
every 480 ms, which is the duration of one subround. We mea-
sured the interval between consecutive packet arrival times-
tamps and calculated the absolute deviation of this value from
480 ms as jitter. Addra’s mean jitter is 4.1 ms for 4,096 users
and increases to 36.8 ms for 32,768 users. This increase with
the number of users is correlated with higher CPU and network
load at the server.

Finally, the effectiveness of voice encoding is a property of
the encoder. Addra’s current prototype uses the LPCNet [57]
encoder developed by Mozilla. Conducting a user experience
study on LPCNet’s quality is outside the scope of this paper,
but we refer the reader to the original paper on LPCNet that
discusses a subjective assessment of LPCNet’s quality based
on an experiment with one hundred human listeners [75].

6.5 Comparison of CPIR schemes

A core component of Addra and Pung is the CPIR crypto-
graphic primitive. Pung uses either XPIR or SealPIR, which
are also the state-of-the-art schemes. Addra uses FastPIR
(§4). This section compares the cost of these CPIR schemes
in isolation. Besides, since CPIR applies to several other
contexts [14, 30, 36, 56], this section sheds light on which

scheme could be better for which application.
We microbenchmarked the XPIR, SealPIR, and FastPIR

libraries on a single CPU of an AWS instance of type
c5.12xlarge (48 vCPU, 3.6 GHz, 96 GiB RAM). We config-
ured all three libraries for a 128-bit security level. However,
XPIR does not set parameters from the homomorphic encryp-
tion standard [6], and its parameters are smaller relative to
those for SealPIR and FastPIR.

We varied the number of messages in the library (n ∈
{213, . . . , 220}) and the size of each message (m ∈
{96B, 256B, 1024B}). The lowest value of n captures a small
library with a few thousand messages, while the other extreme
of n = 220 demonstrates how FastPIR scales with the number
of messages relative to the other CPIR libraries. Similarly, the
different message sizes demonstrate performance for scenar-
ios with small messages (for example, Addra) and also larger
messages.

We measure and report both CPU and network overhead
for query generation (QUERY), answer generation (ANSWER),
and answer decode (DECODE) CPIR procedures, for 10 trials.
Given that the CPIR cost in Addra is dominated by the cost
to run the ANSWER procedure, we describe the results while
focusing on ANSWER. At a high level, FastPIR keeps both the
CPU cost for ANSWER and the size of ANSWER output small,
while XPIR and SealPIR sacrifice one of the two.

CPU time for ANSWER. Figure 9 shows the CPU time for the
ANSWER procedure for different values of n and m. Beyond
a threshold n, and for all values of m, FastPIR consumes the
least amount of CPU time for ANSWER independent of whether
the baselines use recursion or not (d = 1 is no recursion, and
d = 2 enables it). For instance, when n=220 and m=256B,
ANSWER in FastPIR takes 2.5× less time than XPIR (d = 2)
and 2.7× less time than SealPIR (d = 2).

The figure also shows the impact of FastPIR’s optimiza-
tions (§4.3, §4.4) in reducing its CPU overhead. For smaller
values of n, the impact of these optimizations is significant.
For instance, for n=215 and m=256B, FastPIR without the
two optimizations (F-1 in the figure) is 2.73× more expen-
sive than the full-fledged FastPIR, while FastPIR without its
last optimization in §4.4 (F-2 in the figure) is 1.45× more
expensive than FastPIR will all optimizations enabled. But,

324 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

10
0

10
1

10
2

10
3

10
4

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

R
ep

ly
 g

en
.
ti

m
e

(m
s)

Number of messages (n)

Message size (m) = 96 bytes

F-1
F-2

F

X (d=1)
X (d=2)
S (d=1)

S (d=2)

10
0

10
1

10
2

10
3

10
4

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

R
ep

ly
 g

en
.
ti

m
e

(m
s)

Number of messages (n)

 Message size (m) = 256 bytes

F-1
F-2

F

X (d=1)
X (d=2)
S (d=1)

S (d=2)

10
0

10
1

10
2

10
3

10
4

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

R
ep

ly
 g

en
.
ti

m
e

(m
s)

Number of messages (n)

 Message size (m) = 1024 bytes

F-1
F-2

F

X (d=1)
X (d=2)
S (d=1)

S (d=2)

Figure 9—CPU time to run the ANSWER CPIR procedure for XPIR (X), SealPIR (S), and three variants of FastPIR (F) with a varying number
of messages n in the server library and a varying size m of each message. F-1 and F-2 are intermediate baselines for FastPIR: F-1 leaves out
both optimizations for the rotation operations (§4.3 and §4.4), while F-2 leaves out only the optimization in §4.4. Both axes are log-scaled.
d denotes recursion depth (§4). FastPIR does not use recursion (sets d = 1, which means no recursion). For both XPIR and SealPIR, an
optimization to aggregate multiple small messages into a larger one (called aggregation in the literature) is enabled.

n = 32,768 n = 1,048,576

X (d = 1) X (d = 2) S (d = 1) S (d = 2) F (d = 1) X (d = 1) X (d = 2) S (d = 1) S (d = 2) F (d = 1)

query size (KiB)
m = 96 bytes 33,856 2,112 32 64 1,024 1,082,432 11,776 928 64 32,768
m = 256 bytes 95,328 3,520 96 64 1,024 3,050,432 19,776 2,752 64 32,768
m = 1024 bytes 524,288 8,192 512 64 1,024 16,777,216 46,368 16,384 64 32,768

answer size (KiB)
m ∈ {96B, 256B, 1024B} 32 256 32 320 64 32 288 32 320 64

client CPU costs (ms)
QUERY (m = 96B) 118.6 7.4 0.7 1.4 21.3 3801.8 41.5 19.2 1.4 679.0
QUERY (m = 256B) 335.2 12.4 2.0 1.4 21.4 10711.3 69.8 56.9 1.4 678.6
QUERY (m = 1024B) 1841.6 28.8 10.6 1.4 21.4 58990.8 164.2 338.8 1.4 678.7
DECODE (m ∈ {96B, 256B, 1024B}) 0.1 0.41 0.19 1.88 0.36 0.1 0.37 0.2 1.86 0.41

Figure 10—Network costs and client-side CPU costs for XPIR (X), SealPIR (S), and FastPIR (F) with a varying number of messages (n) and
the size of each message (m) in the server library. d denotes recursion depth (§4). FastPIR does not use recursion (sets d = 1, which means no
recursion). For both XPIR and SealPIR, an optimization to aggregate multiple small messages into a larger one (called aggregation in the
literature) is enabled.

as n increases the lower CPU time benefit of the optimizations
diminishes. This trend is expected as for larger n the cost
for the ANSWER procedure is dominated by the time to run
the BFV.SCMULT and BFV.ADD operations rather than the
rotation operations, which is what the optimizations focus on
(§4.2–§4.4).

Output size of ANSWER. Figure 10 shows the size of the
CPIR response generated by the ANSWER procedure for the
three CPIR schemes. When the schemes do not use recursion
(d = 1), their answer output sizes are smaller relative to when
they use recursion, although FastPIR’s response size is double
the size of XPIR and SealPIR. However, d = 1 is not a viable
solution for either XPIR or SealPIR. For XPIR, the query
size is large for d = 1, which increases network bandwidth
and CPU time for processing of CPIR queries (Figure 7). For
SealPIR, the compressed query is smaller on the wire, but
the expanded query has comparable size to that of XPIR.
Furthermore, the cost to expand adds significant CPU time for
SealPIR d = 1.

When the schemes use recursion (d = 2), both XPIR and
SealPIR do not have the query-size drawback, but increase

answer output size, by 8 to 10 times, relative to the d = 1
setting. Overall, FastPIR produces smaller responses (answer
outputs) without large queries (XPIR with d = 1) or signifi-
cant addition to computation time (SealPIR with d = 1).

Query-related overheads. Query generation time and query
sizes are significantly larger in FastPIR than SealPIR (espe-
cially when the latter uses recursion). For instance, query
size for 215 items in SealPIR with d = 2 is 17 times smaller
than the query size in FastPIR (with d = 1). However, Fast-
PIR’s query sizes are either smaller or comparable to those
for XPIR, depending on recursion depth and message size.

Summary. If ANSWER is invoked frequently for an applica-
tion with a library that has over several tens of thousands of
messages, then FastPIR is a better fit. However, if the applica-
tion cannot be designed such that its costs are dominated by
those of ANSWER, then SealPIR or XPIR may be a better fit.

7 Related work
Onion-routing. Systems such as Tor [72], which are based
on onion-routing [35, 65], can support anonymous VoIP calls

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 325

with low message latency. However, they do not provide
strong guarantees. Indeed, a network adversary, such as an ISP,
can learn call metadata via traffic analysis [16, 38, 44, 58, 62].

Mix-nets. Chaum introduced a mix-net: a network of nodes
in which each node (called a mix) batches incoming mes-
sages and releases them in a permuted order [18]. A mix-net
based system fundamentally requires at least one mix to be
trusted [45–49, 51, 52, 64, 73, 76]. Yodel [49] is a state-of-the-
art system based on mix-nets that specifically targets voice
calls. Yodel scales to a few million users while providing a
sub-second message latency. However, Yodel assumes that
a fraction of the mixes it uses (80%) are not compromised.
As one relaxes this assumption, say to make the fraction of
trusted mixes to be 70% or lower, Yodel increases the latency
between a caller and a callee.

DC-nets. Unlike a mix-net, a dining cryptographers network
(DC-net) provides unconditional security using a technique
that requires broadcasting of messages between network par-
ticipants [17]. Due to the broadcasting requirement, earlier
systems based on DC-nets scaled to only tens of partici-
pants [24, 34, 70]. Later systems [25, 77] improved scala-
bility but at the cost of relaxing the threat model. For instance,
Dissent in numbers [77] scales to 5000 clients with 600 ms
latency for 600-client groups, but runs a DC-net among a
(smaller) group of servers while assuming that one of them
is trusted. PriFi [13] is the latest DC-net based system. It
improves latency for a LAN setting of a small organization
with a few hundred users (latency is 100 ms for 100 users).
PriFi does not scale to thousands or tens of thousands of users.
It also assumes that one of its servers in the group of servers
is trusted.

Private mailboxes. Systems based on private mailboxes ei-
ther obliviously write to [23, 32] or read from [7, 10, 14, 42,
68] mailboxes hosted over untrusted servers. The state-of-the-
art system based on this strategy that works over completely
untrusted infrastructure is Pung [7, 10] (rest of the systems
assume non-colluding servers).

We empirically compared Addra to Pung, particularly to its
scalable tree-based message retrieval scheme called BST (§6).
Pung offers two other retrieval schemes: one called explicit
retrieval and the other based on Bloom filters. The explicit
scheme requires two round trips between a message recipient
and the server, and incurs comparable server-side CPU over-
head as the BST scheme. However, it is not viable in terms
of network overhead as the server has to frequently broadcast
a mapping comparable in size to the entire message library.
For instance, for 32K users, the server pushes 625 MiB of
mapping data every five minutes to every user, thus adding
a bandwidth requirement of 16.6 Mbps per user. The Bloom
filter scheme significantly lowers the network overhead rel-
ative to the explicit scheme. However, its overhead is still
linear in the number of objects (so it is not a viable solution
as the system scales up to hundreds of thousands of users).

Besides, it works probabilistically: a message recipient is not
guaranteed to download the message sent by the sender, thus
degrading the quality of service by a non-zero amount.

Although Addra supports synchronous voice calls at scale,
and Pung does not (§6.1), Addra does not replace Pung, which
is designed for asynchronous applications such as email and
chat. Indeed, Addra cannot retrieve long-lived messages from
the server, which is a requirement for such applications.

Private information retrieval (PIR). Chor et al. [19, 20]
introduced the problem of PIR over multiple non-colluding
servers, while Kushilevitz and Ostrovsky [43] introduced
CPIR over a single untrusted server. Since these decades old
seminal works, there have been numerous improvements to
concrete constructions of PIR. For instance, some schemes
reduce PIR overheads [4, 7, 28, 29, 71], while others improve
answer recovery against a byzantine server [31, 60]. In this
paper, we introduced FastPIR, a new CPIR scheme that re-
duces the server-side computation overhead relative to the
state-of-the-art CPIR schemes [4, 7] (§6.5).

8 Summary and future work
Metadata from voice calls contains rich information about
people’s lives, and is a prime target for powerful adversaries
such as nation states. Prior work that hides metadata either
requires trusted intermediaries or does not scale to more than
tens of users for low-latency voice calls. This paper described
Addra, the first system that hides metadata for voice calls
over completely untrusted infrastructure for tens of thousands
of users. Addra’s current prototype supports 32,768 users on
a cluster of 80 machines with a message latency of 726 ms
and a voice synthesis rate of 1.6 Kbps. Addra provides its
performance and privacy properties through a new, simple,
and efficient protocol to access private mailboxes hosted on an
untrusted server (§3), and a new private information retrieval
(PIR) scheme, FastPIR (§4).

Our future work involves further scaling Addra from tens of
thousands of users to hundreds of thousands or a few million
users. To accelerate CPIR computation, a promising direction
could be to explore efficient implementations of the master-
worker architecture of Addra’s server, as well as increased
efficiency for the workers using GPUs and FPGAs. For the
latter, one would have to address challenges related to running
PIR on a heterogeneous system. Finally, a full-fledged Addra
system would require extending its support from peer-to-peer
voice calls to group calls.

Acknowledgments
We thank Sujaya Maiyya, Udit Paul, Nazmus Saquib, our
shepherd Sebastian Angel, and the anonymous reviewers of
OSDI 2021 for their feedback and insightful comments that
helped improve this paper. This work is funded in part by
NSF grants CNS-1703560 and CNS-1815733.

326 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Libscapi - the secure computation API. https://

github.com/cryptobiu/libscapi.
[2] PALISADE homomorphic encryption software library.

https://palisade-crypto.org/.
[3] rpclib - modern msgpack-rpc for C++. http://

rpclib.net/.
[4] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.

Killijian. XPIR: Private information retrieval for ev-
eryone. Privacy Enhancing Technologies Symposium
(PETS), 2016(2):155–174, 2016.

[5] I. Ahmad, Y. Yang, D. Agrawal, A. E. Abbadi, and
T. Gupta. Addra: Metadata-private voice communica-
tion over fully untrusted infrastructure (extended ver-
sion). Cryptology ePrint Archive, Report 2021/044,
2021. https://eprint.iacr.org/2021/044.

[6] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser,
S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter,
S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sa-
hai, and V. Vaikuntanathan. Homomorphic encryption
security standard. Technical report, HomomorphicEn-
cryption.org, November 2018.

[7] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with
compressed queries and amortized query processing. In
IEEE Symposium on Security and Privacy (S&P), 2018.

[8] S. Angel, S. Kannan, and Z. Ratliff. Private resource
allocators and their applications. In IEEE Symposium
on Security and Privacy (S&P), 2020.

[9] S. Angel, D. Lazar, and I. Tzialla. What’s a little leak-
age between friends? In Workshop on Privacy in the
Electronic Society (WPES), 2018.

[10] S. Angel and S. Setty. Unobservable communication
over fully untrusted infrastructure. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[11] S. G. Angel. Unobservable communication over un-
trusted infrastructure. PhD thesis, The University of
Texas at Austin, 2018.

[12] J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras,
and J. Risen. AT&T helped US spy on Internet on a vast
scale. The New York Times, 2015.

[13] L. Barman, I. Dacosta, M. Zamani, E. Zhai, A. Pyrge-
lis, B. Ford, J. Feigenbaum, and J.-P. Hubaux. PriFi:
Low-latency anonymity for organizational networks.
Privacy Enhancing Technologies Symposium (PETS),
2020(4):24–47, 2020.

[14] N. Borisov, G. Danezis, and I. Goldberg. DP5: A pri-
vate presence service. Privacy Enhancing Technologies
Symposium (PETS), 2015(2):4–24, 2015.

[15] Z. Brakerski. Fully homomorphic encryption without
modulus switching from classical GapSVP. In Advances
in Cryptology—CRYPTO, 2012.

[16] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touch-
ing from a distance: Website fingerprinting attacks and

defenses. In ACM Conference on Computer and Com-
munications Security (CCS), 2012.

[17] D. Chaum. The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability. Journal of
cryptology, 1(1):65–75, 1988.

[18] D. L. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84–90, 1981.

[19] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Symposium on Founda-
tions of Computer Science (FOCS), 1995.

[20] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

[21] D. Cole. We kill people based on metadata. The New
York Review, May 2014.

[22] D. Cole. Is privacy obsolete? The Nation, Mar. 2015.
[23] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:

An anonymous messaging system handling millions of
users. In IEEE Symposium on Security and Privacy
(S&P), 2015.

[24] H. Corrigan-Gibbs and B. Ford. Dissent: Accountable
anonymous group messaging. In ACM Conference on
Computer and Communications Security (CCS), 2010.

[25] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford. Proac-
tively accountable anonymous messaging in Verdict. In
USENIX Security Symposium, 2013.

[26] R. Cramer and V. Shoup. Design and analysis of practi-
cal public-key encryption schemes secure against adap-
tive chosen ciphertext attack. SIAM Journal on Comput-
ing, 33(1):167–226, 2003.

[27] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and
V. D. Blondel. Unique in the crowd: The privacy bounds
of human mobility. Scientific reports, 3(1):1–5, 2013.

[28] D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR:
Practical multi-server PIR. In ACM Workshop on Cloud
Computing Security (CCSW), 2014.

[29] C. Devet. Evaluating private information retrieval on the
cloud. Technical report, University of Waterloo, 2013.

[30] C. Devet and I. Goldberg. The best of both worlds: Com-
bining information-theoretic and computational PIR for
communication efficiency. In Privacy Enhancing Tech-
nologies Symposium (PETS), pages 63–82, 2014.

[31] C. Devet, I. Goldberg, and N. Heninger. Optimally
robust private information retrieval. In USENIX Security
Symposium, pages 269–283, 2012.

[32] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and
D. Boneh. Express: Lowering the cost of metadata-
hiding communication with cryptographic privacy. In
USENIX Security Symposium, 2021.

[33] J. Fan and F. Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144, 2012.

[34] S. Goel, M. Robson, M. Polte, and E. Sirer. Herbivore:

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 327

https://github.com/cryptobiu/libscapi
https://github.com/cryptobiu/libscapi
https://palisade-crypto.org/
http://rpclib.net/
http://rpclib.net/
https://eprint.iacr.org/2021/044

A scalable and efficient protocol for anonymous com-
munication. Technical report, Cornell University, 2003.

[35] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2):39–41, 1999.

[36] M. Green, W. Ladd, and I. Miers. A protocol for pri-
vately reporting ad impressions at scale. In ACM Confer-
ence on Computer and Communications Security (CCS),
2016.

[37] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and
M. Walfish. Scalable and private media consumption
with Popcorn. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016.

[38] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How
much anonymity does network latency leak? ACM
Transactions on Information and System Security (TIS-
SEC), 13(2):1–28, 2010.

[39] S. Humphreys and M. De Zwart. Data retention, journal-
ist freedoms and whistleblowers. Media International
Australia, 165(1):103–116, 2017.

[40] ITU-T. G.114 : One-way transmission time. https:

//www.itu.int/rec/T-REC-G.114-200305-I/en,
2003.

[41] M. Kassim, R. A. Rahman, M. A. A. Aziz, A. Idris, and
M. I. Yusof. Performance analysis of VoIP over 3G
and 4G LTE network. In 2017 International Confer-
ence on Electrical, Electronics and System Engineering
(ICEESE), pages 37–41. IEEE, 2017.

[42] L. Kissner, A. Oprea, M. K. Reiter, D. Song, and
K. Yang. Private keyword-based push and pull with
applications to anonymous communication. In Interna-
tional Conference on Applied Cryptography and Net-
work Security (ACNS), 2004.

[43] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private infor-
mation retrieval. In Symposium on Foundations of Com-
puter Science (FOCS), 1997.

[44] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and
S. Devadas. Circuit fingerprinting attacks: Passive
deanonymization of Tor hidden services. In USENIX
Security Symposium, 2015.

[45] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford.
Atom: Horizontally scaling strong anonymity. In ACM
Symposium on Operating Systems Principles (SOSP),
2017.

[46] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An
efficient communication system with strong anonymity.
Privacy Enhancing Technologies Symposium (PETS),
2016(2):115–134, 2016.

[47] A. Kwon, D. Lu, and S. Devadas. XRD: Scalable mes-
saging system with cryptographic privacy. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2020.

[48] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Dis-
tributed private messaging immune to passive traffic

analysis. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[49] D. Lazar, Y. Gilad, and N. Zeldovich. Yodel: Strong
metadata security for voice calls. In ACM Symposium
on Operating Systems Principles (SOSP), 2019.

[50] D. Lazar and N. Zeldovich. Alpenhorn: Bootstrapping
secure communication without leaking metadata. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[51] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel,
and N. Merritt. Herd: A scalable, traffic analysis re-
sistant anonymity network for VoIP systems. In ACM
SIGCOMM Conference, 2015.

[52] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Bal-
lani, and P. Francis. Towards efficient traffic-analysis
resistant anonymity networks. ACM SIGCOMM Com-
puter Communication Review, 43(4):303–314, 2013.

[53] R. Lenzner. ATT, Verizon, Sprint are paid cash by NSA
for your private communications. Forbes, 2013.

[54] J. Mayer, P. Mutchler, and J. C. Mitchell. Evaluating the
privacy properties of telephone metadata. Proceedings
of the National Academy of Sciences, 113(20):5536–
5541, 2016.

[55] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Dr-
uschel. You are who you know: Inferring user profiles
in online social networks. In International conference
on Web search and data mining, 2010.

[56] P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg. PIR-Tor: Scalable anonymous communi-
cation using private information retrieval. In USENIX
Security Symposium, 2011.

[57] Mozilla. LPCNet: Efficient neural speech synthesis.
https://github.com/mozilla/LPCNet.

[58] S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of Tor. In IEEE Symposium on Security and Privacy
(S&P), 2005.

[59] Office of the Director of National Intelli-
gence. Statistical transparency report regard-
ing the use of national security authorities.
https://www.dni.gov/files/CLPT/documents/
2020_ASTR_for_CY2019_FINAL.pdf, 2020.

[60] F. Olumofin and I. Goldberg. Revisiting the computa-
tional practicality of private information retrieval. In
International Conference on Financial Cryptography
and Data Security (FC), 2011.

[61] P. Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), 1999.

[62] A. Panchenko, L. Niessen, A. Zinnen, and T. En-
gel. Website fingerprinting in onion routing based
anonymization networks. In Workshop on Privacy in
the Electronic Society (WPES), 2011.

[63] A. Pfitzmann and M. Hansen. A terminol-

328 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.itu.int/rec/T-REC-G.114-200305-I/en
https://www.itu.int/rec/T-REC-G.114-200305-I/en
https://github.com/mozilla/LPCNet
https://www.dni.gov/files/CLPT/documents/2020_ASTR_for_CY2019_FINAL.pdf
https://www.dni.gov/files/CLPT/documents/2020_ASTR_for_CY2019_FINAL.pdf

ogy for talking about privacy by data minimiza-
tion: Anonymity, unlinkability, undetectability, un-
observability, pseudonymity, and identity manage-
ment. http://www.maroki.de/pub/dphistory/
2010_Anon_Terminology_v0.34.pdf, 2010.

[64] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and
G. Danezis. The Loopix anonymity system. In USENIX
Security Symposium, 2017.

[65] M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous connections and onion routing. IEEE Jour-
nal on Selected areas in Communications, 16(4):482–
494, 1998.

[66] A. Rusbridger. The Snowden leaks and the public. The
New York Review, Nov. 2013.

[67] D. Rushe. Yahoo $250,000 daily fine over NSA data
refusal was set to double “every week”. The Guardian,
2014.

[68] L. Sassaman, B. Cohen, and N. Mathewson. The Pyn-
chon Gate: A secure method of pseudonymous mail
retrieval. In Workshop on Privacy in the Electronic
Society (WPES), 2005.

[69] Microsoft SEAL (release 3.5). https://github.com/
Microsoft/SEAL, Apr. 2020. Microsoft Research,
Redmond, WA.

[70] E. G. Sirer, S. Goel, M. Robson, and D. Engin. Elud-
ing carnivores: File sharing with strong anonymity. In
Proceedings of the ACM SIGOPS European workshop,
2004.

[71] J. P. Stern. A new and efficient all-or-nothing disclosure
of secrets protocol. In International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), 1998.

[72] P. Syverson, R. Dingledine, and N. Mathewson. Tor: The
second-generation onion router. In USENIX Security
Symposium, 2004.

[73] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zel-
dovich. Stadium: A distributed metadata-private messag-
ing system. In ACM Symposium on Operating Systems
Principles (SOSP), pages 423–440, 2017.

[74] J.-M. Valin and J. Skoglund. LPCNet: Improving neural
speech synthesis through linear prediction. In IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019.

[75] J.-M. Valin and J. Skoglund. A real-time wideband
neural vocoder at 1.6 kb/s using LPCNet. arXiv preprint
arXiv:1903.12087, 2019.

[76] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zel-
dovich. Vuvuzela: Scalable private messaging resistant
to traffic analysis. In ACM Symposium on Operating
Systems Principles (SOSP), 2015.

[77] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-
son. Dissent in numbers: Making strong anonymity
scale. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2012.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 329

http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Bringing Decentralized Search to Decentralized Services
Mingyu Li, Jinhao Zhu, Tianxu Zhang, Cheng Tan†, Yubin Xia, Sebastian Angel⋆, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
Shanghai AI Laboratory

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
†Northeastern University ⋆University of Pennsylvania

Abstract
This paper addresses a key missing piece in the current ecosys-
tem of decentralized services and blockchain apps: the lack of
decentralized, verifiable, and private search. Existing decen-
tralized systems like Steemit, OpenBazaar, and the growing
number of blockchain apps provide alternatives to existing
services. And yet, they continue to rely on centralized search
engines and indexers to help users access the content they
seek and navigate the apps. Such centralized engines are in a
perfect position to censor content and violate users’ privacy,
undermining some of the key tenets behind decentralization.

To remedy this, we introduce DESEARCH, the first decen-
tralized search engine that guarantees the integrity and privacy
of search results for decentralized services and blockchain
apps. DESEARCH uses trusted hardware to build a network
of workers that execute a pipeline of small search engine
tasks (crawl, index, aggregate, rank, query). DESEARCH then
introduces a witness mechanism to make sure the completed
tasks can be reused across different pipelines, and to make
the final search results verifiable by end users. We implement
DESEARCH for two existing decentralized services that han-
dle over 80 million records and 240 GBs of data, and show
that DESEARCH can scale horizontally with the number of
workers and can process 128 million search queries per day.

1 Introduction
Most of today’s online services—including search, social net-
works, and e-commerce—are centralized for reasons such
as economies of scale, compatible monetization strategies,
network effects, legal requirements, and technical limitations.
Yet, since the birth of the Internet, there have been periods of
intense interest in decentralization, including the peer-to-peer
systems bonanza of the early and mid 2000s [57, 90, 107] and
the current blockchain boom [39, 94, 113]. A rich set of de-
centralized services have appeared and are able to offer most
of the functionalities that common centralized online services
provide, as listed in Figure 1. Proponents of decentralization
argue that centralized services often employ anti-consumer
practices owing to their monopolistic positions [18, 27], and
the mismatch between users’ expectations and operators’ in-
centives [44]. Further, centralized services are particularly sus-
ceptible to censorship [4, 41] (either self-imposed or coerced
through technical or legal means) and collect vast amounts of
user information [13, 14].

Service Centralized Decentralized

Currency U.S. Dollars Bitcoin [94]
Online Marketplace eBay OpenBazaar [28]
Social Media Twitter Steemit [40]
Video Sharing Youtube DTube [8]
Social Network Facebook Mastodon [16]
Public Storage DropBox IPFS [59]
Messaging Slack Matrix [25]
Video Conference Zoom Zipcall [50]
Website Hosting WiX [47] ZeroNet [49]
Financial Betting Etoro [12] Augur [1]
Supercomputing Titan [45] Golem [17]
Document Collaboration Google Docs Graphite [21]

FIGURE 1—Centralized services and decentralized alternatives.

While the idea of building fully decentralized services is
alluring, developers must currently make a significant com-
promise: they must defer search functionality to a central-
ized service. For example, OpenBazaar [28] makes a strong
case for a decentralized marketplace, but users must use a
centralized search engine such as Bazaar Dog [46] or Duo
Search [9] to discover what items are for sale in the first
place. A similar compromise is made by other popular ser-
vices [8, 16, 28, 40, 49]. This state of affairs is problematic be-
cause search is not an optional feature but rather a core compo-
nent of these systems. Without decentralized search, the pur-
ported goals of anti-censorship is hard to attain: the search en-
gine could trivially track users’ queries, and opaquely censor
particular content [3, 4, 7, 32, 41]. For example, Steemit [40]
is a decentralized social media service where posts are stored
on the public Steem blockchain [39], but Steemit developers
have been known to prevent users’ posts from appearing on
the front end site [41].

Prior proposals. Several search engines [29, 81] propose
reaching consensus amongst replicas to ensure the correctness
of search indexes. However, these engines rely on a central
website hosted at the third party to answer queries. As a result,
an end-user who visits this website has no way to validate
the integrity of the displayed results, or to determine whether
there are missing entries. As an alternative, peer-to-peer-based
search engines [24, 48] allow shared indexes between peers
and queries can be issued to any peer (essentially implement-
ing a distributed hash table). However, these engines do not
support verifiable indexes, and allow peers to monitor clients’

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 331

requests, leading to severe privacy concerns. Finally, many
blockchains encourage users to run their own indexer node
or to use a third-party indexer [30, 35] to access the content
in the blockchain. However, most users lack the resources
and the expertise needed to deploy their own indexers, and
third-party indexers must be trusted to not censor content or
violate users’ privacy.

Goals and contribution. Building a decentralized search en-
gine that avoids the aforementioned shortcomings is far from
trivial. First, the search engine should be able to authenticate
the data source to make sure the dataset contains all data
items and is free from forgeries. Second, the user’s intention,
including the query keywords and search results, should be
kept private from any party. Third, the search engine should
be able to provide a proof of execution to clients that explains
how the search results were generated, and why the results
are correct. Last, the search engine should have reasonable
costs and scale to support many users.

To meet these goals, we introduce DESEARCH, the first
decentralized search engine that allows users to verify the
correctness of their search results, and preserves the privacy
of user queries. DESEARCH outsources fragments of search
tasks such as crawling, indexing, aggregation, ranking, and
query processing to trusted execution environments (TEEs)
running on untrusted executors that compose a decentralized
network, and introduces new data structures and mechanisms
that make executors’ operations reusable and externally veri-
fiable.

First, since each executor only has a local view of the com-
putation, DESEARCH uses witnesses, which are a type of
object that reflects the dataflow and establishes the correct-
ness of results. A witness ensures that executors cannot lie
about which sources they crawled, how they aggregated data,
computed the index, or responded to a query. Verifying wit-
nesses is not cheap, so DESEARCH amortizes the verification
cost by reusing previously checked witnesses across queries,
using designated executors—verifiers—to check witnesses
on behalf of clients.

Second, DESEARCH uses a public storage service called
Kanban. Kanban allows executors in the network to exchange
intermediate information, agree on a snapshot of data in the
system, manage membership, tolerate faults, and verify re-
sults. To detect rollback on Kanban data, DESEARCH summa-
rizes an epoch-based snapshot and stores it on an append-only
distributed log.

Finally, DESEARCH protects the privacy of queries with
two techniques. To prevent leaks from access patterns, DE-
SEARCH adapts an existing oblivious RAM library [102]. To
resist volume side channels, DESEARCH returns the same
amount of data for all search queries. It does so by equalizing
the lengths of result entries. This approach does not reduce
the performance or quality of the service because search en-
gines need not display all of the content but rather a small

snippet. As an analogy in the Web context, search engines
like Google do not display the entirety of a Web site’s content
in the search result; instead, they typically display the URL
of each site and a small text snippet.

We built a prototype of DESEARCH in 2, 600 lines of code,
and have adapted it to work with Steemit (a decentralized
social media service), and OpenBazaar (a decentralized e-
commerce service). Our evaluation of DESEARCH on 1312
virtual machines across the wide-area network with variable
network latency and executor failures shows that DESEARCH
scales well as executors join the network, and can handle over
128 million requests per day. Checking the correctness of the
displayed results is also affordable: users can verify results in
under 1.2 seconds by consulting dedicated verifiers.

To summarize, the contributions of this paper are:

• The design of DESEARCH, the first decentralized search
engine that allows any executors with a TEE to join and
provide search functionality for decentralized services.

• A witness mechanism that organizes verifiable proofs from
short-lived executors to form a global dataflow graph.
Through these witnesses, DESEARCH offers fast verifi-
cation for search queries.

• A prototype of DESEARCH built for Steemit [40] and
OpenBazaar [28], and an evaluation of DESEARCH’s per-
formance and scalability.

While DESEARCH enables, for the first time, scalable, ver-
ifiable, and private search for existing decentralized services,
it is not a viable replacement for traditional Web search en-
gines (e.g., Google). Besides the obvious issue of scale, DE-
SEARCH’s target applications expose a single source of data
(their underlying distributed log or proof of storage mech-
anism), which gives DESEARCH an anchor for its witness
data structure. In contrast, the Web has no such single log,
which would prevent DESEARCH from proving that all Web
pages had been crawled and indexed. Nevertheless, we believe
DESEARCH fills a crucial void.

The rest of the paper is organized as follows. Section 2
describes the motivation, the problem, and the threat model of
DESEARCH, and discusses potential solutions. Section 3 pro-
vides an overview of DESEARCH, highlights DESEARCH’s
components, and explains how they work cooperatively. Sec-
tion 4 presents how DESEARCH achieves a decentralized
yet verifiable search; Section 5 introduces Kanban, a verifi-
able storage; Section 6 describes how DESEARCH provides
oblivious search. Section 7 gives the implementation details.
Section 8 evaluates DESEARCH in a local heterogeneous clus-
ter and a geo-distributed environment. Finally, Section 9 dis-
cusses other aspects and Section 10 compares related work.

2 Motivation and problem statement
This section describes our motivation, target setting and threat
model, and potential solutions that fall short.

332 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.1 Motivation

We give a brief overview of two representative decentralized
services and the problems related to search that might arise
in those systems.

Social Media. Steemit [40] is a social media platform
that stores user-generated contents on the public Steem
blockchain [39]. Although the raw data from the blockchain
is tamper-proof, Steemit’s front-end servers can censor or ma-
nipulate the search results before delivering them to users [41].
One can think of these servers as centralized curators for de-
centralized storage. These servers also know who searches
for what, which may reveal users’ interests and preferences.

Marketplaces. OpenBazaar [28] is an e-commerce market-
place built on top of a peer-to-peer network and storage. To
help users search for items, OpenBazaar provides an API [5]
for third-party search engines to crawl and index items. But
existing search engines [2, 9, 34, 46] are opaque; they can
bias results towards item listings that benefit them financially.
For example, a listing owner could pay the search engine to
promote its listing or hide other listings. Additionally, these
engines can learn users’ purchasing habits (and other infor-
mation) from keywords and search histories.

In short, existing decentralized services currently lack
trusted search that offers integrity and privacy. A decentral-
ized search engine should have strict requirements on the
visibility of the search queries and the correctness of the
search results. Below, we formalize these goals.

2.2 Decentralized search

Consider a decentralized system where volunteers called ex-
ecutors together operate a search engine. Users want to search
over some source data (e.g., data stored in a blockchain) using
some search algorithm. Both the source data and the search
algorithm are public and accessible to all users. For each
search, a user sends keywords to the executors running the
search algorithm and expects a search result—a ranked list
of summaries for entries in the source data alongside pointers
to the corresponding full entries.

After receiving the search results, users want to verify that
the results are actually correct—that they are derived from
executing the search algorithm on the latest source data and
the provided keywords. Users also want to keep their searches
private. In detail, the challenge is to design a decentralized
search engine that meets these goals:

• Integrity: the search results should correspond to the cor-
rect execution of the published search algorithm on the
most recent source data. We divide this into two prop-
erties: (1) Execution integrity, meaning that the search
algorithm is faithfully executed on some source data and
the output search results are ranked in the correct order.
(2) Data integrity, meaning that the source data used is
legitimate, up-to-date, and there are no missing or forged

Search Engine Integrity Privacy Scalability
Execution Data Content Metadata

YaCy [48]
Presearch [29]
The Graph [20]
IPSE [24]
BITE [89]

Rearguard [108]
Oblix [91]
vChain [114]
GEM2-Tree [117]

X-Search [92]
CYCLOSA [98]

DESEARCH

FIGURE 2—Comparison between prior work and DESEARCH. X-
Search [92] obfuscates query keywords but does not hide them.
Rearguard [108] hides the index size but not the result size.

data records. In combination, these two properties prevent
(undetectable) biased results and censorship.

• Privacy: the search engine (or any third party) should not
leak the user’s search query or the corresponding search re-
sults. There are two aspects to this. (1) Content: the user’s
query (search keywords) and the corresponding search re-
sults are never available in the clear to the search engine.
(2) Metadata: the number and size of the messages ex-
changed by the user and the search engine is independent
of the search results and the provided keywords.

• Scalability: executors that join the search engine should
contribute meaningfully towards its capacity: more execu-
tors should result in higher search throughput.

Figure 2 shows existing decentralized or private search
engines. None of them meets all of our desired goals.

2.3 Potential approaches

How to provide integrity and/or privacy for an execution
(for example, search) has been studied broadly. We list some
approaches below (see more in Section 10).

Replication such as PBFT [67] and Ethereum [113] is one
approach to build systems that can guarantee execution in-
tegrity within a given number of (Byzantine) faults. However,
it requires performing the computation multiple times and
traditional replication protocols do not provide privacy.

Another line of work [99, 105, 111] uses cryptography—
such as fully homomorphic encryption (FHE) [74], secure
multi-party computation (MPC) [116], and verifiable com-
putation (VC) [62, 97, 105]—to provide execution integrity
and/or privacy. Though promising, it remains an open prob-
lem to build a system that can support a complex enough
search model and the large-scale datasets used by today’s
decentralized services.

Trusted execution environments (TEE) provide another
approach to build systems that protect a sensitive execution
from being tampered with or eavesdropped. However, exist-
ing TEEs either (1) have limited private memory (128 MB

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 333

per node); (2) lack memory encryption [55] which makes
them vulnerable to physical attacks that are realistic in a
decentralized setting; or (3) are susceptible to memory tam-
pering [54, 84]. Although newly proposed TEEs [43] have
expanded enclave memory to 1 TB, they relax the security
guarantees (e.g., they are vulnerable to physical replay at-
tacks) owing to the loss of integrity tree protection. Prior
distributed frameworks like VC3 [104] and Ryoan [77] ad-
dress many of the above shortcomings but are not designed
for a decentralized environment. Their predefined computa-
tion graph is not a good fit for a dynamic environment where
the source data and the set of executors is constantly in flux.

Finally, systems like Dory [71] that implement private
search for a file system allow users to get pointers to objects
that match certain keywords, but they do not implement fea-
tures expected from a search engine such as finding non-exact
matches, ranking results, or providing summaries.

DESEARCH uses a combination of new and existing
techniques—TEEs, an append-only log, an epoch-based stor-
age service, authenticated data structures (hash trees), and
oblivious RAM—to address the challenges in Section 2.2.

2.4 Threat model

DESEARCH assumes a decentralized network where untrusted
executors are operated by unknown parties, but are equipped
with TEEs. We assume reliable TEEs with no microarchitec-
tural or analog side channels [64, 110] or vulnerabilities to
voltage changes or physical tampering [93]. We also assume
the TEE manufacturers do not inject backdoors into TEEs,
or share their private keys. Finally, we assume that the TEE
remote attestation mechanism works as intended. While these
assumptions are undeniably strong given existing TEE’s track
record, we expect this technology to mature over the years
and for many of the current weaknesses to be addressed.

In DESEARCH, executors join the system and volunteer
their TEEs (or they are paid or incentivized to do so, which
is orthogonal). Executors can be malicious: they can deny
services, modify the inputs that go into the TEE or the out-
puts that come out of it. They can also corrupt data outside
the TEE’s protected memory, or replay inputs and outputs.
Moreover, executors observe memory accesses, and I/O pat-
terns [65, 115] (either which memory is accessed or how
much data/how many times).

DESEARCH requires that the data over which the decentral-
ized service will offer search be stored in a publicly auditable
source. This requirement boils down to ensuring that the data
source has its own mechanism to check that the data added
is not removed or tampered with (e.g., storing the data in a
blockchain or IPFS [59]).

3 System overview
In this section we give the design principles of DESEARCH,
which is a decentralized search engine for decentralized ser-
vices and blockchain apps. We start by highlighting some of

Items

Indexes

Users

Kanban (epoch N)

Data
Source

Witnesses

Crawlers

Indexers

Queriers
Request

Response

Kanban (epoch …)

Kanban (epoch 1)

Generated by
executors

Executors

Verify

Private Domain

FIGURE 3—DESEARCH’s architecture. DESEARCH obtains raw
data from public decentralized services (e.g., Steem blockchain)
as the data sources, and stores the intermediate data (i.e., items
and indexes) on Kanban, a public append-only storage that creates
snapshots periodically. DESEARCH executors generate witnesses
along with the search pipeline. Privacy (§2.2) is offered for users in
the query phase (within the dashed rectangle).

the challenges present when building a decentralized search
engine that meets our requirements (§2.2). Some of these
challenges stem from our decentralized environment, while
others come from the limitations of today’s TEEs and the
dynamic nature of search.

First, decentralization requires that executors be allowed
to freely join and depart the system (§2.2), which means
that executors can go offline unexpectedly. Thus, a standard
search engine design with long-running tasks and stateful
components is unfavorable, as one executor’s leaving can
heavily impact the service.

Second, today’s TEE instances (DESEARCH uses Intel
SGX) have limited memory (128MB or 256MB); working
sets in excess of this limit require expensive paging mech-
anisms. Indeed, our experiments reveal that the latency in-
curred by paging far exceeds what is acceptable for a user-
facing service like search. For example, when we run a search
service for Steemit, which requires a 31 GB index, in a single
optimized SGX instance, it takes 16 (resp., 65) seconds to
respond to a single-keyword (resp., two-keyword) query. Re-
cent work [95, 96] has explored ways to enlarge the trusted
memory through software-based swapping (either via a man-
aged runtime or compiler instrumentation), but those solutions
leak the application’s memory access pattern. As a result, we
find that to achieve acceptable latency, it is necessary for the
search engine’s functionality to be split into small tasks that
are processed by many SGX instances in parallel.

Third, search services are dynamic, and it is hard to track
and verify the whole search process from crawling to query
servicing. In particular, a search engine is unable to plan a
computation graph (like in big-data [73, 104, 111] or machine-
learning [79, 87] systems) as the arrival of new source data or
user search queries is unpredictable, and the set of available
executors is unknown a priori.

Overview. DESEARCH addresses these challenges by de-
composing a search into a pipeline of short-lived tasks where

334 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

each executor is responsible for a single task at a time and op-
erates only on a small portion of data. Executors are stateless.
They fetch inputs and write outputs from and to a storage
service named Kanban. Kanban is a cloud-based key-value
store that provides high-availability and data integrity. We
describe Kanban in detail in Section 5.

To track the completion of the dynamically executing tasks
within the search pipeline, DESEARCH uses witnesses (§4),
which are cryptographic summaries that capture the correct
transfer of data among executors. A witness is also a proof
of an executor’s behavior, which allows users to verify their
search results ex post facto.

Figure 3 shows the architecture of DESEARCH.

Search pipeline and Kanban. In DESEARCH, executors
are categorized into four roles: crawlers, indexers, queriers,
and masters (for simplicity, masters are omitted in Fig-
ure 3). The first three roles comprise a full search pipeline—
crawlers fetch data from public sources (for example a
blockchain [39, 94, 113] or P2P storage [28, 59]); indexers
construct inverted indexes; queriers process queries, rank and
build search results.

Instead of point-to-point communication, executors in the
pipeline communicate through Kanban. Kanban also stores
the data (items, indexes, and witnesses) generated by ex-
ecutors, and provides data integrity (but not confidentiality)
by periodically creating snapshots of all current state and
committing a digest of the snapshot to a public log (e.g.,
Ethereum [113] or Steem [39]). We call the time between two
consecutive snapshots an epoch; we call the data correspond-
ing to the beginning of an epoch, an epoch snapshot.

For privacy (§2.2), DESEARCH comprises public and pri-
vate domains. Executors in the public domain access public
data (like public source data) and produce shared information
(like indexes). On the other hand, users’ interactions with
DESEARCH happen in the private domain, and their com-
munication (for example, search requests and responses) are
encrypted and kept secret.

Masters. Masters are the executors that provide crucial mem-
bership services: (1) a service that authenticates a TEE node
who wants to join DESEARCH; (2) a job assignment service
that coordinates the independent executors to form the search
pipeline with minimal repeated work; (3) a key management
service (KMS) that allows anyone to identify if an executor
is a legitimate DESEARCH member. Regarding managing
the KMS and task coordination, masters periodically (in the
beginning of an epoch), release a list of public keys from
legitimate executors on Kanban so that users can verify their
signatures and communicate with them. This list includes
the active nodes to ensure the service’s availability. Masters
hold the root key that serves as the identity of the DESEARCH
system, allowing the public to recognize DESEARCH. We
describe how the system is bootstrapped, how new masters
join, and how the root key is generated in Section 9.

Timelineepoch1 epoch2 epoch3 epoch4…

Crawlers

Indexers

Queriers

Users
DeSearch Pipeline

FIGURE 4—In DESEARCH, executors and users use data from the
last epoch as inputs, which we call the offset-by-one strategy. For
example, an indexer uses items of the last epoch to generate new
indexes (denoted by oblique arrows), and may merge indexes from
the prior epoch (denoted by horizontal arrows).

Workflow. DESEARCH’s executors perform an ordinary
search pipeline—crawling, indexing, and serving queries. In
DESEARCH, data integrity (§2.2) is defined with respect to a
particular epoch snapshot; DESEARCH uses an offset-by-one
strategy where an executor always uses data from the last
epoch in order to ensure that the flow of data is verifiable
when expressed as a pipeline of tasks. Figure 4 shows an ex-
ample of this process. Along every step of the pipeline, each
executor generates a witness, a proof of what the executor has
seen, has done, and how the data has been transferred. We
discuss witnesses in Section 4.

To conduct a search, a user first retrieves a list of active
queriers. This list is maintained by both masters and queriers:
queriers update their status on the list with signed proofs
specifying that they have seen the most-recent epoch; the
legitimacy of the status proofs is verified by masters. Users
know this by checking that the list is signed by masters.

With the active querier list, the user randomly selects one
as the leader, and sends (encrypted) search keywords to the
leader. The leader then seeks more peer queriers to collec-
tively handle the request. That is, different queriers have dif-
ferent portions of indexes and together serve one user search
request. The leader finally aggregates results by ranking based
on relevance, and returns to the user a list of the k most rele-
vant items. One item comprises a link (to the original content)
and a content snippet that summarizes the item and often
contains the searched keywords.

Together with the search results, the user also receives wit-
nesses from queriers. The witnesses produced by the search
pipeline (all of them) form a witness tree, which users can
verify by starting from the witnesses received from the leader
querier, traversing the tree, checking every node (witness),
and confirming that the search has been correctly executed.
We discuss this verification process next.

4 Verifiable search
In DESEARCH, search functions are outsourced to indepen-
dent executors in a decentralized environment, and data is

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 335

Witness
Sandbox Function

Computation Sandbox

Input & Witnessin

Output & Witnessout

Verifiable
Lambda

FIGURE 5—A verifiable lambda is composed of a witness sandbox
and a computation sandbox. The function is one of: crawling, in-
dexing, and querying. The witnessin contains the hash for inputs
and is from prior lambdas. The witnessout is the witness generated
by this lambda. The sandbox design is necessary because it isolates
the witness processing from the function execution; the buggy or
malicious function cannot tamper with the integrity of witness.

partitioned across executors. As a result, an executor only has
a local view of its own computation and cannot protect the en-
tire search pipeline even though it runs on a TEE assumed to
be correct. Specifically, guaranteeing integrity (§2.2) has two
parts: (a) ensuring that results are generated by the correct al-
gorithm (execution integrity) despite intermediate data being
transferred among executors through untrusted channels; and
(b) ensuring that results are derived from the desired dataset
without the absence of data records or the inclusion of bogus
data (data integrity).

DESEARCH uses verifiable lambdas and witnesses to ad-
dress challenge (a), and Kanban with epochs for challenge
(b). We detail them below.

Verifiable lambda and witnesses. As stated earlier (§3),
DESEARCH splits a search pipeline into small tasks. Each
task is executed by a basic unit, called verifiable lambda. The
concept of a verifiable lambda (short as lambda) is borrowed
from serverless computing [36] and SGX sandboxing sys-
tems [77, 104]. A key difference is that DESEARCH’s lambda
requires a TEE enclave abstraction that yields a witness (we
discuss it briefly, but it is a type of certificate of correct ex-
ecution) after every computation, allowing the intermediate
data to be verified and reused.

A lambda is composed of the two sandboxes shown in
Figure 5: (1) a witness sandbox that validates the input upon
loading, and generates a witness before delivering the result
to the next lambda; (2) a computation sandbox which runs
the main function in a self-contained execution environment
that does not use any external services; the goal is to resist
Iago attacks [68] (attacks in which a malicious OS causes the
process to harm itself). All I/O activity of the computation
sandbox must be routed to the witness sandbox, which logs
the I/O data and produces a auditable record stored within the
witness. This design isolates the buggy or malicious function
execution from witness processing, so that the integrity of
the witness is easier to reason about. For multiple inputs, a
lambda can batch them to avoid generating many witnesses.

For a chain of lambdas, to ensure correct results, a seem-

ingly straightforward solution is to encode a signed nonce in
each execution of the pipeline. However, this approach does
not work for search because a search pipeline often requires
the data (such as crawling data and indexes) from multiple
previous pipeline executions, and a signed nonce fails to cap-
ture the relationship between these multiple inputs and the
output (critical for verifying data integrity such as data com-
pleteness). Hence, we introduce a certificate called witness
for each lambda.

A lambda’s witness is a tuple:〈[
H(in1), H(in2), · · ·

]
, H(func), H(out)

〉
signed

that mirrors how an output is generated by performing a func-
tion over a list of inputs. The H(in) and H(out) are hashes
of the input and output blobs, and H(func) is the hash of the
program binary that runs in this lambda. A witness is signed
by the lambda, and anyone can verify the signature using
DESEARCH’s KMS (§3). A witness has a feature called “mul-
tiple input, single output” (MISO), which consumes multiple
inputs and produces exactly one output. We find that search
is a natural fit for MISO, as mutilple on-chain items yield an
index, and multiple indexes serve a query.

Generally speaking, witnesses can be thought of as a proof-
carrying metadata for a decentralized system, which explains
how an output is being generated and with which piece of
code, and enables a user to examine the computation process
from the effect to the cause for a whole-pipeline verification.
The notion of verifiable lambda and its witness mechanism
are general enough to support other scenarios such as a de-
centralized and verifiable recommender system (§9).

Witness-based verification. All witnesses from a search
process form a tree, which we call a witness tree (see an
example in Figure 6). Users can verify their search results by
traversing and checking the corresponding trees, the roots of
which are the witnesses that users receive from queriers.

To check a single witness, a user first verifies whether the
witness is signed by a legitimate executor and then checks
if the hash of the executed function is as expected. This ap-
proach, combined with the integrity guarantees of the underly-
ing TEE, ensures that the lambda which produced the witness
faithfully executed the desired function.

Now consider the data transition between two adjacent
lambdas in a search pipeline. The former lambda commits
its output and a signed witness to Kanban; the latter lambda
fetches one (or multiple) pair of data and witnesses from Kan-
ban, checks their signatures, validates if the hash in the wit-
ness matches the data, and feeds the data to the computation
function. A user can verify that the inputs of a latter lambda
are indeed the outputs from a former lambda by checking
whether H(in) of the latter equals H(out) from the former.

Finally, users check if data sources are genuine by checking
whether H(in) in the beginning (the crawling phase) is indeed
a correct summary of the original data source. Users need

336 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

<[H(block1)],

H(Crawler),
H(item1)>

<[H(item1), H(item2)],

H(Indexer),
H(index1)>

<[H(item3), H(item4)],

H(Indexer),
H(index2)>

<[H(index1), H(item5)],

H(Indexer),
H(index3)>

<[H(q1), H(index1), H(index2)],

H(Querier),
H(answer1)>

<[H(q2), H(index2), H(index3)],

H(Querier),
H(answer2)>

<[H(block2)],

H(Crawler),
H(item2)>

<[H(block5)],

H(Crawler),
H(item5)>

New

<[H(block3)],

H(Crawler),
H(item3)>

<[H(block4)],

H(Crawler),
H(item4)> Index

merge

Root

FIGURE 6—Two example witness trees. A rectangle represents a
witness, edges represent data dependencies, and “H(...)” indicates
hashes. This figure contains two search queries (“q1” and “q2”): q1
happens first, and there is a merge update to the indexes (index3

derives from index1 and item5), then q2 happens. As a result, q1
and q2 share a subtree indicated in gray color.

to download the contents from the data source and calculate
their hashes, which is a very expensive procedure (we address
this issue shortly). If all the above checks pass, users con-
firm that their search results are faithfully produced because
all steps—crawling from the data source, the intermediate
data transferring between tasks, and each task in the search
pipeline—are verified to be authentic and faithfully executed.

Providing efficient verification. The aforementioned veri-
fication process works in principle, but in practice, a perfor-
mance challenge arises. To verify a search, a user would have
to download all the witnesses, check all the signatures and
hashes, and examine the data source. To lighten the burden
of verification on the user side, DESEARCH uses delegated
verification: users offload parts of their verifications to some
executors dedicated for verification, which we call verifiers.

Beyond simplifying user-side verification, delegated verifi-
cation also saves work by batching and deduplicating verifi-
cations from different users. This is based on an observation
that serving different search requests uses a lot of shared in-
dexes, hence the witnesses from the shared portion can be
reused (as an example, see the gray subtree in Figure 6). Be-
cause of delegated verification, verifiers have the opportunity
to batch many common witnesses, which they verify once
for all. Finally, users only have to verify the final step—the
querier phase’s witness, significantly accelerating the verifi-
cation (see delegated verification’s speedup in §8.2). Because
verifiers are only delegated to accelerate the verification of
the witnesses in the public domain, it does not leak any infor-
mation about particular users or their queries.

Data integrity. The above verification ensures that functions
are executed as expected, but there is no guarantee that these
functions see all data even if all functions are protected by
TEEs. In fact, there is no definition of “all data” from a user’s
perspective because newly generated data takes time to be
reflected in the search results. It is therefore unspecified what
data must appear in any particular search result.

To define data completeness (a part of data integrity, §2.2)
for searches, DESEARCH divides time into epochs, and execu-

tors write data to Kanban annotated with the current epoch
(we elaborate on epochs in §5). We define a search that uses
a complete set of data if each step (represented by witnesses)
in a search pipeline (represented by a witness tree) uses all
inputs in Kanban before the step’s epoch, and each input is
from the most recent epoch available. For example, a querier’s
task in epoch i satisfies our condition if the querier loads all
indexes generated before epoch i, and the loaded portions of
the indexes are from their latest version before epoch i.

To check the data integrity of a witness, verifiers first rec-
ognize the epoch when the witness was generated, then load
the snapshot of Kanban immediately before that epoch (§5),
and finally verify if the executor used all the up-to-date inputs.
In practice, verifiers need not load the data in the snapshot;
they load the metadata including data ids and their hashes.

5 Kanban
As mentioned in Section 4, Kanban is a storage system that
provides high availability and data integrity. Kanban is hosted
in public clouds for availability, but as a decentralized sys-
tem, DESEARCH does not trust these cloud providers for
correctness. Instead, DESEARCH creates snapshots of Kan-
ban periodically for each epoch, called epoch snapshots, and
commits their digests (hashes) to a public distributed log. This
approach provides epoch-based data integrity: DESEARCH
guarantees the integrity of all of the data included in a commit-
ted epoch. Of course, an alternative—using SGX-based cloud
storage [100] for Kanban—works in principle, but current
SGX cannot scale to a large trusted memory with integrity
support (§3).

The rest of this section will introduce Kanban’s usage and
guarantees, and then discuss how DESEARCH uses Kanban
as a storage and coordination service.

Kanban overview. Kanban serves two main purposes: stor-
ing data for the search pipeline (including items, indexes, and
their witnesses), and enabling executors to communicate and
coordinate their tasks. Kanban exposes APIs for each service.

As a data storage, Kanban exposes key-value-like APIs
with put(key, val) and get(key). Keys are constructed
by the data types, epoch numbers, and chunk numbers. For
example, “INDEX-#1000-v3” represents the 3rd chunk of the
index for epoch 1000. Witnesses are also stored in the data
storage, using the output hash H(out) as the key. Thanks to
the MISO feature of witnesses (§4), anyone can download a
particular value from Kanban via get(), calculate its hash,
and use this hash as the key to retrieve the corresponding
witness in order to understand how the data was generated.

For communication, Kanban provides a mailbox for every
executor with send(mailbox, msg) and recv(mailbox),
using the executor’s public key as the mailbox address. In-
voking send() allows an executor to submit a message to a
specified mailbox, and recv() to download messages. All
messages are encrypted using the mailbox owner’s public key,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 337

which can be obtained from the KMS (§3). Consequently,
only owners can read message contents. For example, masters
and queriers use the mailbox to negotiate the active querier
list; this negotiation is encrypted in case Kanban maliciously
attempts to forge or block particular executors.

Note that both storage and communication APIs are wrap-
pers of the canonical key-value APIs, and Kanban can easily
adapt to different underlying (cloud) storage systems. Our
Kanban implementation uses Redis, a popular key-value store,
as the underlying storage (see §7).

Epoch-based data integrity. Kanban requires executors to
sign their submitted data (using Ed25519) to prevent data tam-
pering or forgeries. Still, the underlying storage can equivo-
cate and show different views of the data to different executors
by omitting, rolling back, or forking the data. Detecting such
divergences often requires clients (executors in our context)
to synchronize out-of-band [83, 86], which is too expensive
in a decentralized environment.

DESEARCH uses a loose synchronization approach: mas-
ters periodically synchronize Kanban’s states with other ex-
ecutors. This loose synchronization works because of two
observations. First, search engines are not supposed to in-
stantly reflect newly generated data in search results because
crawling and indexing takes time; as a (admittedly apples-
to-oranges) comparison, Google crawls a site every 3 days
or even longer [6]. Second, most of the tasks in the search
pipeline are idempotent, so it is acceptable if two executors
end up working on the same task. For example, it is safe for
two crawlers to crawl the same data source, or two indexers
to generate indexes for the same items, as the results are the
same. Duplicate work sacrifices efficiency but not correctness.

To synchronize states with other executors, masters period-
ically create epoch snapshots of Kanban’s data (excluding the
data in the mailboxes which is used for coordination and is
ephemeral), summarizes the snapshot as a digest, and com-
mits the digest to a public append-only log (DESEARCH’s
implementation uses an EOS blockchain [11]). After the log
accepts the digest, a new epoch is committed and is visible to
all executors (assuming the public log is available).

DESEARCH guarantees epoch-based data integrity: for a
committed epoch, all data included in this epoch is immutable
and must be visible to all executors; otherwise, verification
will fail. To see how DESEARCH guarantees this, if Kanban
hides data from or returns stale data to an executor, the data
integrity checks (§4) of this executor’s witness will fail. This
is because verifiers know the epoch of the witness (say epoch
i) and the data this executor should have read (data in epoch
i− 1). If the witness missed any data or read some stale ver-
sion, the verifier rejects. Before using one epoch for checking
the data integrity, verifiers must ensure that the data (repre-
sented by their ids and hashes) in one epoch is consistent with
the digest on the log. The verifier fetches all the data ids and
hashes in one epoch, calculates their digest, and compares it

with the digest on the public log.

Task coordination by epochs. DESEARCH’s pipeline is co-
ordinated through Kanban, which is based on epochs. An
epoch is 15 minutes by default. Executors learn the current
epoch number by querying the public log. As mentioned ear-
lier, executors follow an offset-by-one strategy where they
read data from the last committed epoch rather than the
current epoch (see Figure 4). This guarantees that the DE-
SEARCH pipeline only uses data that is already authenticated
by the epoch-based digests on the log.

Our current implementation uses masters to assign jobs
for crawlers and indexers. Masters also take charge of data
collection in each epoch—they decide what data to include
in the current epoch. DESEARCH requires other executors to
put the current/correct epoch number in their outputs. If an
executor in epoch i fails to do so, for example, it disregards
the epoch or fails to submit its outputs on time (before masters
commit epoch i), the data is discarded by the masters and
the work is wasted. But this waste is acceptable as tasks are
small.

Supporting multiple clouds. Though our current implemen-
tation only uses one cloud as Kanban’s underlying storage,
we plan to extend Kanban with multiple clouds for better
availability [60], and more importantly, to lower the risk of
vendor lockdown. With multiple clouds, executors write to
all clouds and read from any one of them. Master executors
are obligated to synchronize different clouds.

Data synchronization among clouds is challenging, which
often requires running an expensive consensus protocol. How-
ever, by Kanban’s epoch design, DESEARCH is able to do
synchronization infrequently, only when committing an epoch.
And if data diverges between clouds (note that data cannot
be forged, due to signatures), master executors are in charge
of merging the data. The key takeaway is that DESEARCH
(or rather a search service) can tolerate infrequent synchro-
nizations, so masters have plenty of leeway to orchestrate an
epoch on which all clouds agree.

6 Oblivious search
DESEARCH guarantees integrity (§2.2) by leveraging wit-
nesses and SGX. One might hope that SGX would also pro-
vide privacy for searches, as SGX supports confidential com-
puting [26] and we assume that SGX works as designed (§2.4).
However, DESEARCH’s design in Section 4 leaks informa-
tion: an adversary can learn users’ keywords without breaking
any of the guarantees of SGX. Below, we discuss concrete
privacy violations, and then show how DESEARCH addresses
these violations with ORAM and equalizing message lengths.

Privacy violations. To start a search, a user initiates an en-
crypted session (via TLS) to a querier selected from the active
list of queriers published on Kanban by masters. Although the
messages are encrypted/authenticated and computations are
confidential (offered by SGX), adversaries can still conduct

338 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Users

Executor Machine

Verifiable Lambda

Network
Adversary

Executor
Adversary

Keyword Volume

apple 1018*20

… …

zip 256*10

Keyword Location

apple 0xffff000a

… …

zip 0xfffffccc

Request

Response

FIGURE 7—A search faces two privacy challenges: a network adver-
sary can learn keyword information by monitoring request/response
volumes, and an executor adversary can infer keywords by observing
memory accesses.

two types of attacks (see examples in Figure 7).
First, an executor adversary that runs queriers can observe

memory access patterns (both EPC and DRAM) to infer user
keywords. Specifically, the adversary issues search requests
with all possible keywords to the querier it hosts; by observing
memory accesses, it can construct a dictionary that maps a
keyword to a memory location [115]. Consequently, when
a real user sends a query, the adversary can infer the user’s
keywords by observing which memory locations are accessed
by looking them up in the dictionary.

Second, a network adversary can eavesdrop on the com-
munication between users and queriers, and among queriers
(which occurs when collaboratively serving one request). By
monitoring the number of packets and their sizes, the ad-
versary can learn information about keywords [66] because
candidate lists for different keywords have different lengths,
and returned items (e.g., a post on Steemit) also vary in size.
Similar to an executor adversary, a network adversary can con-
struct a dictionary that maps keywords to response lengths.

DESEARCH + ORAM. To prevent attacks from the executor
adversaries, DESEARCH, like much prior work [89, 102], uses
Oblivious RAM (ORAM) to hide memory access patterns. In
particular, DESEARCH uses Circuit-ORAM [112] as follows:
DESEARCH creates a key-value store where the keys are
search keywords and values are lists of item ids. ORAM then
guarantees that an executor adversary cannot learn anything
about which object in the key-value store is being accessed
(that is, which search keywords or item ids) from the memory
accesses themselves. For a keyword that does not match any
item, DESEARCH performs dummy accesses.

Note that Circuit-ORAM does not support concurrent ac-
cesses, so DESEARCH leverages multiple ORAM replicas
for higher throughput. Specifically, DESEARCH encodes the
underlying data in multiple ORAM instances, and accesses
different instances to process queries. This is safe because we
use ORAM exclusively for read-only workloads, and each
instance is independent and has its own position map. This re-
quires more storage space, but DESEARCH allows executors
to make this trade-off.

Equalizing response lengths. Beyond ORAM, DESEARCH
needs to avoid leaking information from the number of
matched result items (count) and the length of each item (vol-

DESEARCH Components Language Total LoC

Openbazaar Crawler Golang 178
Steemit Crawler Python 190
Indexer C++ 701
Querier C++ 925
Master C++ 106
Verifier C++ 502

Search Engine Library (Sphinx [38]) C++ 37, 271 (+63)
ORAM Library (ZeroTrace [102]) C++ 3, 851 (+188)
Crypto Library (HACL⋆) C/C++ 4, 071

FIGURE 8—Lines of code of each component in DESEARCH.

ume). We observe that results from search engines are highly
regular: search results are displayed in multiple pages; each
page contains a fixed number of items; and each item contains
a link (e.g., URL) and a small content snippet highlighting
the keywords. Therefore, DESEARCH equalizes result lengths
by returning a fixed number of entries for each search request,
and each entry has a 256-byte summary of the original con-
tents, which we believe to be sufficient for most cases. For
comparison, we find that over 80% of search results from
Google are within 256 bytes. DESEARCH hides the counts
and volume of keywords by padding search queries to the
same length and limiting the number of keywords to 32 (the
maximum supported by Google).

7 Implementation

System components. Figure 8 lists the components of DE-
SEARCH’s implementation. We implement our own crawlers
that parse raw data from Steemit and OpenBazaar. The
Steemit crawlers aggregate data from the Steem blockchain,
and the OpenBazaar crawlers work as OpenBazaar peers to
retrieve the online shopping items. Our indexer and querier
borrow the tokenizer implementation from Sphinx v2.0 [38].
DESEARCH’s indexer is implemented to support oblivious
index access with ZeroTrace’s ORAM implementation [102].

DESEARCH’s verifiable lambda is built on Intel SGX SDK
2.13. We use Redis v6.2 as Kanban, and implement a Kanban
protocol using Redis++ v1.2 [31] (a Redis client library).
DESEARCH commits epoch snapshot digests to an EOS
blockchain [11] testnet, which acts as an append-only log.
Further, we deploy a dedicated smart contract that provides
APIs to read and write the on-log data.

DESEARCH parameters. DESEARCH has several parame-
ters that heavily influence the search performance. We elabo-
rate on these parameters and our choices below.

We set up Circuit-ORAM with a bucket size of 2 (parameter
Z) and set the stash size to 10 because they can achieve the
best temporal and spatial efficiency. We use two independent
ORAM instances, one for the index and another for the search
result summaries, and overlap their operations to minimize
the latency.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 339

Shard Size

Metrics 10K 100K 1M

SGX Load Time 0.3s 2.9s 20.8s
ORAM Setup Time 2.0s 23.6s 267.7s
Worst Response Time 24ms 52ms 452ms

DRAM Required 121MB 285MB 2.34GB
SGX EPC Used 79MB 80MB 86MB

FIGURE 9—Execution time and memory usage of a DESEARCH

querier under different shard sizes. SGX load time includes fetching
the index/summary files from Kanban and in-enclave deserialization.
ORAM setup time includes initializing two Circuit-ORAM instances
for inverted index and search result summaries, respectively.

When the targeted dataset exceeds one executor’s capacity
(including both SGX EPC’s and ORAM’s capacity), DE-
SEARCH has to split the dataset into shards. We experiment
with several shard sizes (Figure 9), and choose 1M data items
per shard because 1M-item-shard does not exceed SGX phys-
ical memory capacity and the response time is acceptable
(within 1 second).

In DESEARCH, each epoch is set to 15min because most
existing blockchains yield at least one block in this time
frame [22]. It is also long enough for the master to summarize
the epoch snapshot on Kanban. For shorter epochs, one could
use an incremental hash function [58, 105] to create the digest
incrementally throughout the epoch.

Side-channel defenses. DESEARCH use the Ed25519 im-
plementation from a formally verified cryptographic library
HACL⋆ v0.2.1 [120], which is resistant to digital (cache and
timing) side channels [69, 82]. For ORAM block encryp-
tion, we choose AES-NI-based AES-128-GCM. AES-NI is
purportedly side-channel resistant according to Intel [78]. Fi-
nally, we apply patch (commit f74c8a4) from Intel for SGX-
OpenSSL [23] to mitigate hardware vulnerabilities [110].

Limitations. DESEARCH’s current implementation only sup-
ports full-text search. The links of images, audio, or video,
encoded in the texts may be hosted in other unverified servers.
DESEARCH does not guarantee their integrity. In terms of pri-
vacy, DESEARCH implementation does not hide the frequency
of ORAM accesses. Frequency smoothing techniques [76]
can help at the cost of additional storage overhead.

8 Evaluation
Our evaluation answers the following questions:
• What is the overall performance of DESEARCH, in terms

of end-to-end latency, throughput, and scalability? (§8.1)
• How long does it take to verify a search result? (§8.2)
• Does DESEARCH tolerate executor failures? (§8.3)

Experimental setup. We deploy DESEARCH on a small set
of SGX-enabled desktop machines: three machines with 12-
core Intel i7-8700, three with 8-core Intel i7-8559U, three

with 8-core Intel i7-9700, and all nine machines have at least
8GB DRAM. These machines are connected by a 1Gbps
local network. To simulate a large-scale decentralized envi-
ronment, we also deploy DESEARCH on 1312 nodes of AWS
EC2 VMs. Each node is an AWS t2.medium instance with 2-
vCPU of Xeon E5-2676 and 4GB of DRAM. These nodes are
spread across four geographic regions: Singapore (Asia), Lon-
don (Europe), West Virginia (East America), Califonia (West
America), and are connected through a wide-area network.

In the following experiments, we run DESEARCH in one of
two modes: (1) normal mode, in which we run DESEARCH as-
is; and (2) simulation mode, where we run DESEARCH under
SGX SDK simulation mode and add ORAM latencies to
each query instead of actually interacting with DESEARCH’s
ORAM implementation. We use the simulation mode for
the large-scale scalability experiment (“Scalability” in §8.1)
which requires hundreds to thousands of executors.

Datasets. We run DESEARCH on two datasets:
• Steemit. Steemit [40] is a decentralized blogging and so-

cial media service built upon the Steem blockchain [39].
DESEARCH crawlers constantly fetch the latest posts from
the Steem blockchain and write them to Kanban. At the
time of evaluation, we fetched a total of 81,681,388 posts,
distributed across 952 epochs (nearly 10 days) leading to a
234GB dataset. The corresponding indexes contain 296K
keywords (we omit 659 stopwords according to Google
stopword list [42]). All of this results in 37.68GB crawling-
phase witnesses and 6.25GB indexing-phase witnesses.

• OpenBazaar. OpenBazaar [28] is a decentralized e-
commerce platform where individuals can trade goods
without middlemen. The OpenBazaar frontend provides
an API [5] for a customized search engine to update the
shop contents by crawling IPFS [59], an append-only stor-
age. DESEARCH crawls all OpenBazaar’s shopping lists
but ignores the ones that are removed by sellers (though
they still exist in IPFS). At the time of evaluation, Open-
Bazaar has (on average) 21K listings per day, and there
are 85K keywords in the indexes. Crawling and indexing
witnesses are 10.26MB and 1.28MB in size.

8.1 Serving performance

Querier bootstrap. To offer search for Steemit, DESEARCH
splits the Steemit dataset (234GB) into 82 shards, each manag-
ing 1 million data items (Steemit posts). One Steemit querier
serves one shard. It takes 333.5s for a querier to finish boot-
strap, which includes establishing an SGX verifiable lambda,
fetching the index and summary files from Kanban, and ini-
tializing ORAM instances. An OpenBazaar querier takes 25s
to boot because it has a much smaller dataset—a querier
serves 21K OpenBazaar data items.

Search throughput and latency. We run a DESEARCH
querier for the two datasets on an SGX normal-mode machine
and run clients on another machine. To capture a steady-state

340 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

1 2 3 4 5

L
a
te

n
c
y
 (

m
s
)

Number of keywords

Vanilla

Vanilla+SGX

Vanilla+SGX+Witness

Vanilla+SGX+Witness+ORAM

(a) The 99th percentile latency of multi-keyword searches.

 10

 100

 1000

1 2 3 4 5

T
h
ro

u
g
h
p
u
t
(r

e
q
s
/s

e
c
)

Number of keywords

Vanilla

Vanilla+SGX

Vanilla+SGX+Witness

Vanilla+SGX+Witness+ORAM

(b) The average throughput of multi-keyword searches.

FIGURE 10—Differential analysis of latency and throughput for
multi-keyword searches. “Vanilla” is a native (unprotected) querier;
“SGX” represents the SGX-based isolation; “Witness” represents the
lambda confinement; “ORAM” represents the Circuit-ORAM pro-
tection. Note that the applied ORAM does not support concurrency
while others use 8 threads.

performance, we warm up each querier by issuing 10,000
requests before the experiments. We measure the end-to-end
throughput and latency by randomly searching from a list of
10,000 frequently appeared keywords (in each dataset).

For the Steemit dataset, DESEARCH has an average
throughput of 133.8 requests/sec, and the 99 percentile end-
to-end latency is 21.71ms. Although the measured throughput
is modest, we expect that a decentralized network can achieve
higher throughput as more executors join (see “Scalability”
below). For OpenBazaar, DESEARCH’s throughput is 581 re-
quests/sec on average, and the 99 percentile latency is 9.19ms.

Overhead analysis. How do DESEARCH’s techniques (in-
cluding trusted hardware, the witness mechanism, and oblivi-
ous protections) affect search performance? To answer this
question, we conduct a differential analysis for a Steemit
querier, which manages 1M data items. Again, clients is-
sue search queries by randomly picking keywords from a
top-10,000 keyword list. But now we experiment with multi-
keyword searches with up to 5 keywords. Figure 10 shows
the average throughputs and the 99th percentile latency for
different multi-keyword searches.

Figure 10 illustrates that putting a querier into SGX with
DESEARCH’s lambda enforcement decreases throughputs by
15.2% and adds 0.4% overhead to latency. This is because
each request triggers ecalls (i.e., a context switch between
SGX enclave and user-space) in DESEARCH’s isolated sand-
boxes. In the future, we can optimize DESEARCH with the
asynchronous call mechanism as studied in SCONE [56].

 10

 100

 1000

 10000

1 2 3 4 5

T
h
ro

u
g
h
p
u
t
(r

e
q
s
/s

e
c
)

Number of keywords

ES(w/ cache) ES(w/o cache) DS(unprotected) DS(secure)

FIGURE 11—Throughput comparison between ElasticSearch and
DESEARCH for multi-keyword searches. “ES” represents Elastic-
Search and “DS” represents DESEARCH. Both “ES” and “DS (un-
protected)” use multi-threading with 8 threads (CPU core number
is 8).“DS (secure)” uses ORAM which does not support concurrent
accesses, hence it does not benefit from multi-threading.

DESEARCH’s witness generation imposes 7.6% overhead in
throughput and 8ms in latency. Specifically, the witness gener-
ation consists of hashing the lambda’s inputs and outputs with
standard SHA-256, and signing this witness with Ed25519.
Finally, the dominating overhead factor is Circuit-ORAM,
which incurs 12.6× throughput degradation and increases
latency by 4.5–11.9×. While this overhead is considerable,
ORAM provides strong privacy guarantees against the execu-
tor adversary that controls the lambda.

Considering different multi-keyword searches, their latency
is proportional to the number of keywords as searching mul-
tiple keywords requires fetching multiple rounds of index
blocks from the Circuit-ORAM server. Historical statistics
[19] show that 71.3% search queries do not exceed four key-
words. Four-keyword ORAM-based searches in DESEARCH
have a 46.3ms (99 percentile) latency, which is acceptable in
a human interactive process.

Comparison with ElasticSearch. ElasticSearch [10] (or ES)
is a popular search engine system that has been widely de-
ployed. We compare DESEARCH with ES under an 1M-items
dataset. We configure ES’s Java runtime memory to 2.5GB,
which is the maximum memory consumed by a DESEARCH
Steemit querier. Figure 11 depicts the results.

By enabling caching, ES can achieve a throughput of 13.9K
requests/sec, 4.8× faster than a DESEARCH implementation
without integrity and privacy protection. But this is an un-
fair comparision because DESEARCH does not have caches
(caches will break the security guarantee of ORAM). We
further experiment with ES by disabling caching. Figure 11
shows that DESEARCH has higher throughputs than ES with-
out caching because DESEARCH’s implementation is simpler
and has less functionality (e.g., complex item ranking policy).
Finally, we compare ES with the full-fledged DESEARCH
with SGX verifiable lambda and ORAM. As the ORAM op-
erations limit the concurrency of the service, DESEARCH’s
throughput drops significantly.

We also observe that ES’s throughput decreases mildly
as the number of search keywords increases (around 11%

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 341

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 4 8 12 16

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

Number of replicas

FIGURE 12—DESEARCH’s throughputs for different number of
replicas. Each replica consists of 82 queriers.

Native Delegated Speedup

Execution Integrity
Witness Download 517.0s –
Signature Verification 4h25min –

Data Integrity
Witness Tree Verification 201.9s –

Final-Phase Verify
Verifier Interaction 0s 1.0s
Signature Verification 0s 0.2s

Total Time 4h33min 1.2s 13,681x

FIGURE 13—User-side verification costs for a native (with an 8-core
CPU) verification and a delegated verification.

decrease from single-keyword to five-keyword search), while
the throughput of the full-fledged DESEARCH drops more
rapidly (72.3% decrease). This is because multi-keyword
searches require multiple rounds of ORAM item retrievals.

Scalability. To evaluate DESEARCH’s scalability, we mea-
sure the overall throughput of DESEARCH with different
number of replicas; each replica is a fully functional DE-
SEARCH instance that consists of 82 Steemit queriers. We run
DESEARCH in simulation mode, and use 82×16 2-core AWS
EC2 VMs as servers to simulate a decentralized network of
executors. Each virtual machine hosts a Steemit querier. From
4 to 16 replicas, we compose a geo-distributed setup where
these replicas are equally deployed on four regions (i.e., Sin-
gapore, London, West Virginia, Califonia). We deploy clients
on 8 other 96-core c5.24xlarge machines.

The results are shown in Figure 12. DESEARCH’s through-
puts increase horizontally with the number of replicas. With
16 replicas, DESEARCH can support 1484 requests/sec, that
is 128 million requests per day.

8.2 Verification cost

A user verifies the final results by holding: (1) the digests of
each epoch-based snapshot (retrieved from the public log),
(2) executors’ public keys, (3) witnesses from queriers (sent
to users with search results) and other executors (stored on
Kanban). Since the first two can be prefetched, a verification
does not include fetching them. Figure 13 shows the user-side
costs of native verifications and delegated verifications for a

 200

 400

 600

 800

 1000

 1200

 1400

0 20 40 60 80 100 120

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

Time (min)

1% Failure Model
5% Failure Model

FIGURE 14—DESEARCH throughput changes under 1% and 5%
per-epoch executor failure rate. The experiment uses Steemit dataset
with 16 replicas and runs for 2 hours (8 epochs).

single-keyword search on the Steemit dataset.
In a native verification, a user verifies the search results

on their own. To verify execution integrity, it takes 517s to
download witnesses from Kanban, and 15698s to verify the
signatures using Ed25519. The majority of the time is spent
on checking crawlers’ witnesses, as the number of witnesses
is proportional to the number of items crawled. To verity data
integrity, the user first ensures the witnesses from Kanban
are consistent with the digests from the public log, and then
breadth-first traverses the witness tree. This process takes
201.9s to complete.

In a delegated verification, the user sends the witnesses
received from queriers to a verifier, and the verifier examines
the execution and data integrity on behalf of the user. If the
verifier accepts, the user only needs to verify the witnesses
in the private domain, namely the witnesses from queriers.
It takes 1.0s to interact with a verifier and 0.2s to verify the
hashes and signatures of queriers’ witnesses.

8.3 Fault tolerance

To understand how executor failures affect DESEARCH’s
performance, we run DESEARCH for Steemit with 16 replicas
and 20 shards (4× 20 queriers), and randomly kill a certain
number of queriers in each epoch. In particular, we have
two failure workloads: one kills 1% of the current available
queriers in each epoch (15 min), and the other kills 5% per
epoch. If a querier does not respond in 1 second, clients will
issue the request to other queriers. Note that our experiment
ensures that the remaining online queriers always comprise
a complete dataset, otherwise all queries will fail (since they
will only be able to provide partial results).

We run the experiments under these two workloads for 2
hours (8 epochs) each. Figure 14 shows the results. When
1% queriers fail per epoch, we observe that DESEARCH’s
throughput drops from 1,179 requests/sec to 761 requests/sec
after 2 hours, a 35.4% decrease. As a comparison, in the last
epoch, DESEARCH loses 7.7% (= 1 − 0.998) of the initial
queriers. The throughput degrades significantly because ev-
ery search has to get responses from all shards to make up a
full result, but killed nodes do not perfectly distribute across
shards. Hence, shards with fewer available queriers become a
performance bottleneck. In the workload with 5% failure rate

342 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

per epoch, the throughput drops from 1,171 requests/sec to
412 requests/sec in 8 epochs (a 64.8% throughput degrada-
tion), while 33.7% (= 1− 0.958) queriers are killed.

9 Discussion

Incentive model. As with existing decentralized systems [94,
113], DESEARCH relies on volunteers to offer service avail-
ability. To encourage TEE owners to join in DESEARCH, we
discuss a possible incentive model, inspired by Teechain [85],
where cryptocurrency can be securely transferred from a
blockchain to a TEE enclave. We observe that current Steem
Dollars (SBD) flow from readers to mostly popular post au-
thors as rewards. Our incentive model, instead, transfers SDB
from readers → queriers → indexers → crawlers → authors,
where data needs to be paid for the usage. Our witness is
a natural fit for proving the usage. A higher contribution of
TEE computing power would then translate into a higher
cryptocurrency reward.

System bootstrap. To bootstrap DESEARCH, any TEE ex-
ecutor can become a master, as long as it downloads the code
of master and runs the code within an attestable enclave. The
master’s initialization will generate a pair of public/private
keys. The former is recorded on the append-only log for pub-
lic availability, and the latter is kept within the enclave, being
DESEARCH’s root key. Any party can use the TEE’s remote
attestation mechanism to verify the root key’s genuineness.
The first master then registers itself in the active list on Kan-
ban. A set of executors (say, 21, a DESEARCH parameter) are
required to join and serve as masters to start the first epoch.
DESEARCH masters run independently and form a decentral-
ized network to avoid a single point of failure. Masters can
change over time via periodic selections (e.g., BFT sortition
protocols [75]). Executors that join at a later time after the
masters network is active will simply be assigned other roles.

Further, to resist possible supply-chain attacks [37], DE-
SEARCH can use reproducible builds [33] to ensure verifiabil-
ity from source code to lambda images.

Beyond search. DESEARCH, as a general framework, is not
limited to search. As an example, it is intuitive to extend DE-
SEARCH to a verifiable recommender system for OpenBazaar
by replacing querier’s ranking function with a recommenda-
tion function. A user can verify that the advertisements are
chosen based on their interests, without opaque manipulation.
Also, DESEARCH can be used as a “watchdog” for other
search services. Users can continue to use an existing search
engine, and cross-validate the results with DESEARCH.

10 Related Work

Decentralized search engines. There are several prior ef-
forts in building decentralized search services. For exam-
ple, YaCy [48] is a peer-to-peer distributed search engine
since 2004. It enables decentralized index generation and

supports shared indexes among peers. YaCy assumes that
peers are honest, which might not be true in an open envi-
ronment. Presearch [29] leverages a blockchain to provide
decentralized search, but inherits blockchain’s characteristics,
including duplicated computations and no privacy guarantees.
The Graph [20] and PureStake [30] are indexing services
for decentralized storage, but neither provides privacy, and
PureStake does not provide integrity either.

Verifiable search for decentralized services. There is an
increasing interest in providing verifiable search for decen-
tralized services, due to the diversified usages of decentral-
ized applications (see Figure 1). For verifiable blockchain
searches, vChain [114] adopts authenticated data structures
(ADS) while GEM2-Tree [117] explores on-chain indexes.
Compared with vChain and GEM2-Tree which only support
range-based searches, DESEARCH provides full-text search
and offers verifiability via witness-based dataflow tracking.

IPSE [24] provides search over IPFS [59] (a decentral-
ized storage) and provides hash-based content verifiability.
Freenet [15] is an anonymous file-sharing network (similar
to BitTorrent) but is not search-oriented. Compared to DE-
SEARCH, IPSE and Freenet lack data integrity (§2.2), which
is troublesome because incomplete data sources can make the
search vulnerable to censorship [41].

Private search with TEE. TEE is a hot topic for pro-
viding private search. To hide users’ search intention, X-
Search [92] uses a cloud-side TEE proxy while Cyclosa
[98] adopts browser-side TEE proxies. X-Search and Cy-
closa are metasearch engines (a proxy between users and
a search engine) that reveal query keywords and results to
search providers, whereas DESEARCH is a complete search
engine that provides query and result privacy.

A long line of prior works (Opaque [119], OCQ [72], Ze-
roTrace [102], Oblix [91], Obliviate [51], etc.) have explored
TEE and ORAM combination to protect search. Similar ef-
forts have been made by combining symmetric searchable
encryption and TEEs (e.g., Rearguard [108]), or private in-
formation retrieval and TEE (e.g., SGX-IR [106]). While
DESEARCH uses similar primitives, DESEARCH’s architec-
ture results in the first fully built decentralized system to serve
searches on real-world datasets with integrity and privacy.

Secure big-data systems with TEE. Many prior systems
use TEEs for big-data computation [61, 72, 77, 101, 104, 119].
VC3 [104] secures a map-reduce framework with TEE, and
Opaque [119] protects SQL queries for Spark SQL. Unlike
the setting of VC3 and Opaque, DESEARCH faces a dynamic
computation graph because the set of live executors is con-
stantly changing given our decentralized environment. DE-
SEARCH therefore employs an epoch-based snapshot and
witnesses mechanism to ensure data and execution integrity.
Ryoan [77] provides distributed sandboxes for private data
computation. Compared with Ryoan, DESEARCH offers pub-
licly verifiable witnesses for reusable intermediate data and

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 343

effectively reduces the verification cost (see Section 8.2).

TEE and serverless computing. The notion of verifiable
lambda is inspired by serverless computing. DESEARCH ex-
tends this notion from centralized cloud-based computing to
decentralized computing. S-FaaS [52], T-FaaS [63], Clemmys
[109] are TEE-based serverless systems that protect server-
less workloads with TEE. Instead, DESEARCH utilizes epoch-
based Kanban and TEE-generated witnesses to maintain and
verify the state of the (stateless) TEE lambdas.

New decentralized systems. Recently, new architectures of
decentralized systems have been proposed to address the lim-
itations (low-throughput, resource waste, lack of privacy) of
conventional decentralized ledgers or blockchains. Algorand
[75] and Blockene [103] propose new consensus protocols
to achieve high-throughput. Omniledger [80] and Protean
[53] introduce sharding to scale out the blockchain. Similarly,
DESEARCH shards executors to different roles, and offloads
states to Kanban to achieve high scalability.

Other TEE-based systems for decentralized services.
TEEs have been used to build a provable blockchain ora-
cle [118], off-chain smart contracts [70], Bitcoin fast payment
channel [85] and lightweight clients [89], and online-service
secure sharing [88]. They share the same goal towards shap-
ing a better decentralized world but differ from DESEARCH
in their target functionality.

11 Conclusion
DESEARCH is the first decentralized search engine to support
existing decentralized services, while guaranteeing verifia-
bility owing to its witness mechanism and offering privacy
for query keywords and search results. DESEARCH achieves
good scalability and minimizes fault disruptions through a
novel architecture that decouples the decentralized search
process into a pipeline of verifiable lambdas and leverages
a global and highly available Kanban to exchange messages
between lambdas. We implement DESEARCH on top of In-
tel SGX machines and evaluate it on two decentralize sys-
tems: Steemit and OpenBazaar. Our evaluation shows that
DESEARCH can scale horizontally with the number of execu-
tors and can achieve the stringent subsecond latency required
for a search engine to be widely usable.

DESEARCH ’s source code will be released at:
https://github.com/SJTU-IPADS/DeSearch

Acknowledgments
We thank the anonymous reviewers of OSDI 2020 and
OSDI 2021 for their helpful and constructive comments,
and our shepherd Marko Vukolic for his guidance. We also
thank Sajin Sasy for helpful discussion about ORAM. This
work was supported in part by National Key Research and
Development Program of China (No. 2020AAA0108500),
China National Natural Science Foundation (No. 61972244,

U19A2060, 61925206), the HighTech Support Program
from Shanghai Committee of Science and Technology (No.
19511121100). Sebastian Angel was funded by NSF Award
CNS-2045861 and DARPA contract HR0011-17-C0047.
Cheng Tan was funded by AFOSR FA9550-18-1-0421 and
NSF CNS-1514422. Yubin Xia (xiayubin@sjtu.edu.cn) is the
corresponding author.

References
[1] Augur. https://www.augur.net/.
[2] Blockstamp openbazaar explorer. https://bazaar.

blockstamp.market/.
[3] Cam4 live-streaming adult site exposed 7tb records

publicly. https://www.2-spyware.com/cam4-live-
streaming-adult-site-exposed-7tb-records-
publicly.

[4] Censorship by google. https://en.wikipedia.org/
wiki/Censorship_by_Google.

[5] Content discovery on OpenBazaar. https://openbazaar.
org/blog/decentralized-search-and-content-
discovery-on-openbazaar/.

[6] Crawl stats report - search console help - google
support. https://support.google.com/webmasters/
answer/9679690.

[7] Data-enriched profiles on 1.2b people exposed in gigan-
tic leak. https://threatpost.com/data-enriched-
profiles-1-2b-leak/150560/.

[8] Dtube. https://d.tube.
[9] Duo search is a search engine for openbazaar.

https://bitcoinist.com/duo-search-is-a-
search-engine-for-openbazaar/.

[10] Elasticsearch. https://www.elastic.co/.
[11] Eosio blockchain software & services. https://eos.io/.
[12] Etoro. https://stocks.etoro.com/.
[13] Facebook is illegally collecting user data, court rules.

https://thenextweb.com/facebook/2018/02/12/
facebook-is-illegally-collecting-user-data-
court-rules/.

[14] Facebook suspends cambridge analytica for mis-
use of user data, which cambridge denies. https:
//www.cnbc.com/2018/03/16/facebook-bans-
cambridge-analytica.html.

[15] Freenet. https://freenetproject.org/.
[16] Giving social networking back to you - the mastodon project.

https://joinmastodon.org/.
[17] Golem network. https://golem.network/.
[18] Google faces antitrust investigation by 50 us states and ter-

ritories. https://www.theguardian.com/technology/
2019/sep/09/google-antitrust-investigation-
monopoly.

[19] Google search statistics and facts 2020. https://
firstsiteguide.com/google-search-stats/.

[20] The graph is an indexing protocol for querying networks like
ethereum and ipfs. https://thegraph.com.

[21] Graphite docs. https://www.graphitedocs.com/.
[22] How many bitcoins are mined everyday? https:

//www.buybitcoinworldwide.com/how-many-
bitcoins-are-there/.

344 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SJTU-IPADS/DeSearch
https://www.augur.net/
https://bazaar.blockstamp.market/
https://bazaar.blockstamp.market/
https://www.2-spyware.com/cam4-live-streaming-adult-site-exposed-7tb-records-publicly
https://www.2-spyware.com/cam4-live-streaming-adult-site-exposed-7tb-records-publicly
https://www.2-spyware.com/cam4-live-streaming-adult-site-exposed-7tb-records-publicly
https://en.wikipedia.org/wiki/Censorship_by_Google
https://en.wikipedia.org/wiki/Censorship_by_Google
https://openbazaar.org/blog/decentralized-search-and-content-discovery-on-openbazaar/
https://openbazaar.org/blog/decentralized-search-and-content-discovery-on-openbazaar/
https://openbazaar.org/blog/decentralized-search-and-content-discovery-on-openbazaar/
https://support.google.com/webmasters/answer/9679690
https://support.google.com/webmasters/answer/9679690
https://threatpost.com/data-enriched-profiles-1-2b-leak/150560/
https://threatpost.com/data-enriched-profiles-1-2b-leak/150560/
https://d.tube
https://bitcoinist.com/duo-search-is-a-search-engine-for-openbazaar/
https://bitcoinist.com/duo-search-is-a-search-engine-for-openbazaar/
https://www.elastic.co/
https://eos.io/
https://stocks.etoro.com/
https://thenextweb.com/facebook/2018/02/12/facebook-is-illegally-collecting-user-data-court-rules/
https://thenextweb.com/facebook/2018/02/12/facebook-is-illegally-collecting-user-data-court-rules/
https://thenextweb.com/facebook/2018/02/12/facebook-is-illegally-collecting-user-data-court-rules/
https://www.cnbc.com/2018/03/16/facebook-bans-cambridge-analytica.html
https://www.cnbc.com/2018/03/16/facebook-bans-cambridge-analytica.html
https://www.cnbc.com/2018/03/16/facebook-bans-cambridge-analytica.html
https://freenetproject.org/
https://joinmastodon.org/
https://golem.network/
https://www.theguardian.com/technology/2019/sep/09/google-antitrust-investigation-monopoly
https://www.theguardian.com/technology/2019/sep/09/google-antitrust-investigation-monopoly
https://www.theguardian.com/technology/2019/sep/09/google-antitrust-investigation-monopoly
https://firstsiteguide.com/google-search-stats/
https://firstsiteguide.com/google-search-stats/
https://thegraph.com
https://www.graphitedocs.com/
https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there/
https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there/
https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there/

[23] Intel® software guard extensions ssl. https://github.
com/intel/intel-sgx-ssl.

[24] Ipfs search. https://ipfs-search.com/#/search.
[25] Matrix - an open network for secure, decentralized communi-

cation. https://matrix.org/.
[26] Microsoft azure confidential computing. https://azure.

microsoft.com/en-us/solutions/confidential-
compute/.

[27] The monopoly-busting case against google, amazon, uber,
and facebook. https://www.theverge.com/2018/
9/5/17805162/monopoly-antitrust-regulation-
google-amazon-uber-facebook.

[28] OpenBazaar. https://openbazaar.org/.
[29] Presearch is a decentralized search engine, powered by the

community. https://www.presearch.io/.
[30] Purestake: Blockchain infrastructure for proof of stake net-

works. https://www.purestake.com/.
[31] Redis client written in c++. https://github.com/

sewenew/redis-plus-plus.
[32] Report: 267 million facebook users ids and phone numbers

exposed online. https://www.comparitech.com/
blog/information-security/267-million-phone-
numbers-exposed-online/.

[33] Reproducible Builds. https://reproducible-builds.
org/.

[34] Searchbizarre. https://searchbizarre.com/.
[35] Searching the blockchain (indexer v2) - algorand devel-

oper docs. https://developer.algorand.org/docs/
features/indexer/.

[36] Serverless computing. https://en.wikipedia.org/
wiki/Serverless_computing.

[37] The solarwinds orion breach, and what you should
know. https://blogs.cisco.com/security/the-
solarwinds-orion-breach-and-what-you-should-
know.

[38] Sphinx: Open source search server. http://sphinxsearch.
com/.

[39] Steem. https://steem.com/.
[40] Steemit. https://steemit.com/.
[41] Steemit censoring users on immutable social media

blockchain’s front-end. https://cryptoslate.com/
steemit-censoring-users-immutable-blockchain-
social-media/.

[42] Stop words - words ignored by search engines. https://
www.link-assistant.com/seo-stop-words.html.

[43] Supporting intel sgx on multi-socket platforms.
https://www.intel.com/content/www/us/en/
architecture-and-technology/software-guard-
extensions/supporting-sgx-on-multi-socket-
platforms.html.

[44] A timeline of facebook’s privacy issues — and its re-
sponses. https://www.nbcnews.com/tech/social-
media/timeline-facebook-s-privacy-issues-its-
responses-n859651.

[45] Tital-advancing the era of accelerated computing. https:
//www.olcf.ornl.gov/olcf-resources/compute-
systems/titan/.

[46] Welcome to bazaar dog, your scrappy open bazaar search
provider. https://www.bazaar.dog/.

[47] Wix.com: Free website builder. https://www.wix.com/.
[48] Yacy - decentralized search engine. https://yacy.net/.
[49] Zeronet. https://zeronet.io/.
[50] Zipcall.io. https://meet.questo.ai/.
[51] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sar-

faraz, and Byoungyoung Lee. Obliviate: A data oblivious
filesystem for intel sgx. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[52] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd,
and Michael Steiner. S-faas: Trustworthy and accountable
function-as-a-service using intel SGX. In Proceedings of the
ACM Cloud Computing Security Workshop (CCSW), 2019.

[53] Enis Ceyhun Alp, Eleftherios Kokoris-Kogias, Georgia Fragk-
ouli, and Bryan Ford. Rethinking general-purpose decentral-
ized computing. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS), 2019.

[54] AMD. AMD Secure Encrypted Virtualization (SEV). https:
//developer.amd.com/sev/.

[55] ARM. Arm TrustZone Technology. https://developer.
arm.com/ip-products/security-ip/trustzone.

[56] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind, Di-
vya Muthukumaran, Daniel O’Keeffe, Mark L Stillwell, et al.
Scone: Secure linux containers with intel sgx. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[57] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattachar-
jee, and Daniel Starin. Persona: An online social network with
user-defined privacy. In Proceedings of the ACM SIGCOMM
Conference, 2009.

[58] Mihir Bellare and Daniele Micciancio. A new paradigm for
collision-free hashing: Incrementality at reduced cost. In Pro-
ceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT),
1997.

[59] Juan Benet. Ipfs - content addressed, versioned, p2p file
system. ArXiv, abs/1407.3561, 2014.

[60] Alysson Neves Bessani, Miguel P. Correia, Bruno Quaresma,
Fernando André, and Paulo Sousa. Depsky: dependable and
secure storage in a cloud-of-clouds. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
2011.

[61] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya
Mironov, Ananth Raghunathan, David Lie, Mitch Rudominer,
Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 2017.

[62] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath
T. V. Setty, Andrew J. Blumberg, and Michael Walfish. Ver-
ifying computations with state. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2013.

[63] Stefan Brenner and Rüdiger Kapitza. Trust more, server-
less. In Proceedings of the ACM International Conference on
Systems and Storage (SYSTOR), 2019.

[64] Jo Van Bulck, M. Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, F. Piessens, M. Silberstein, T. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 345

https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://ipfs-search.com/#/search
https://matrix.org/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.theverge.com/2018/9/5/17805162/monopoly-antitrust-regulation-google-amazon-uber-facebook
https://www.theverge.com/2018/9/5/17805162/monopoly-antitrust-regulation-google-amazon-uber-facebook
https://www.theverge.com/2018/9/5/17805162/monopoly-antitrust-regulation-google-amazon-uber-facebook
https://openbazaar.org/
https://www.presearch.io/
https://www.purestake.com/
https://github.com/sewenew/redis-plus-plus
https://github.com/sewenew/redis-plus-plus
https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/
https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/
https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://searchbizarre.com/
https://developer.algorand.org/docs/features/indexer/
https://developer.algorand.org/docs/features/indexer/
https://en.wikipedia.org/wiki/Serverless_computing
https://en.wikipedia.org/wiki/Serverless_computing
https://blogs.cisco.com/security/the-solarwinds-orion-breach-and-what-you-should-know
https://blogs.cisco.com/security/the-solarwinds-orion-breach-and-what-you-should-know
https://blogs.cisco.com/security/the-solarwinds-orion-breach-and-what-you-should-know
http://sphinxsearch.com/
http://sphinxsearch.com/
https://steem.com/
https://steemit.com/
https://cryptoslate.com/steemit-censoring-users-immutable-blockchain-social-media/
https://cryptoslate.com/steemit-censoring-users-immutable-blockchain-social-media/
https://cryptoslate.com/steemit-censoring-users-immutable-blockchain-social-media/
https://www.link-assistant.com/seo-stop-words.html
https://www.link-assistant.com/seo-stop-words.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.nbcnews.com/tech/social-media/timeline-facebook-s-privacy-issues-its-responses-n859651
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.bazaar.dog/
https://www.wix.com/
https://yacy.net/
https://zeronet.io/
https://meet.questo.ai/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

USENIX Security Symposium, 2018.
[65] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank

Piessens, and Raoul Strackx. Telling your secrets without
page faults: Stealthy page table-based attacks on enclaved ex-
ecution. In Proceedings of the USENIX Security Symposium,
2017.

[66] David Cash, Paul Grubbs, Jason Perry, and Thomas Risten-
part. Leakage-abuse attacks against searchable encryption.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

[67] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 1999.

[68] Stephen Checkoway and Hovav Shacham. Iago attacks: why
the system call API is a bad untrusted RPC interface. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2013.

[69] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H. Lai. Sgxpectre attacks: Leaking
enclave secrets via speculative execution. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 2019.

[70] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He,
Nicholas Hynes, Noah M. Johnson, Ari Juels, Andrew Miller,
and Dawn Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts. In
Proceedings of the IEEE European Symposium on Security
and Privacy (EuroS&P), 2019.

[71] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa,
and Ion Stoica. Dory: An encrypted search system with
distributed trust. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2020.

[72] Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E.
Gonzalez, and Ion Stoica. Oblivious coopetitive analytics us-
ing hardware enclaves. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2020.

[73] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang,
Beng Chin Ooi, and Chunwang Zhang. M2r: Enabling
stronger privacy in mapreduce computation. In Proceedings
of the USENIX Security Symposium, 2015.

[74] Craig Gentry. A Fully Homomorphic Encryption Scheme.
PhD thesis, Stanford University, 2009.

[75] Y. Gilad, Rotem Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich. Algorand: Scaling byzantine agreements for cryp-
tocurrencies. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2017.

[76] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité,
Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas Ris-
tenpart. Pancake: Frequency smoothing for encrypted data
stores. In Proceedings of the USENIX Security Symposium,
2020.

[77] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and
Emmett Witchel. Ryoan: a distributed sandbox for untrusted
computation on secret data. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2016.

[78] Intel. Intel® 64 and IA-32 Architectures Software Devel-
oper Manuals. https://software.intel.com/content/

www/us/en/develop/articles/intel-sdm.html.
[79] Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski,

Matei Zaharia, and Alex Aiken. TASO: optimizing deep
learning computation with automatic generation of graph
substitutions. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[80] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ewa Syta, and Bryan Ford. Omniledger:
A secure, scale-out, decentralized ledger via sharding. In
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2018.

[81] Ziliang Lai, Chris Liu, Eric Lo, Ben Kao, and Siu-Ming
Yiu. Decentralized search on decentralized web. ArXiv,
abs/1809.00939, 2019.

[82] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. Inferring fine-grained control
flow inside SGX enclaves with branch shadowing. In Pro-
ceedings of the USENIX Security Symposium, 2017.

[83] Jinyuan Li, M. Krohn, David Mazières, and D. Shasha. Se-
cure untrusted data repository (sundr). In Proceedings of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[84] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin.
Exploiting unprotected I/O operations in amd’s secure en-
crypted virtualization. In Nadia Heninger and Patrick Traynor,
editors, Proceedings of the USENIX Security Symposium,
2019.

[85] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter R. Pietzuch. Teechain: a secure
payment network with asynchronous blockchain access. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2019.

[86] Prince Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with min-
imal trust. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2010.

[87] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fer-
takis, Andrei-Octavian Brabete, and Peter Pietzuch. Kungfu:
Making training in distributed machine learning adaptive. In
Proceedings of the USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2020.

[88] Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels,
and Srdjan Capkun. Delegatee: Brokered delegation us-
ing trusted execution environments. In Proceedings of the
USENIX Security Symposium, 2018.

[89] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kosti-
ainen, Ghassan Karame, and Srdjan Capkun. BITE: bitcoin
lightweight client privacy using trusted execution. In Pro-
ceedings of the USENIX Security Symposium, 2019.

[90] P. Maymounkov and David Mazières. Kademlia: A peer-to-
peer information system based on the xor metric. In Interna-
tional Workshop on Peer-to-Peer Systems, 2002.

[91] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro
Chiesa, and Raluca Ada Popa. Oblix: An efficient oblivious
search index. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2018.

[92] Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo
Pasin, Rafael Pires, and Valerio Schiavoni. X-search: revisit-
ing private web search using intel SGX. In Proceedings of the

346 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

ACM/IFIP/USENIX International Middleware Conference,
2017.

[93] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-
based fault injection attacks against intel sgx. In Proceed-
ings of the 41st IEEE Symposium on Security and Privacy
(S&P’20), 2020.

[94] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf, 2008.

[95] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark
Silberstein. Eleos: Exitless OS services for SGX enclaves. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2017.

[96] Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark
Silberstein. Cosmix: A compiler-based system for secure
memory instrumentation and execution in enclaves. In
USENIX ATC, 2019.

[97] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2013.

[98] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara
Bouchenak, Antoine Boutet, Pascal Felber, Rüdiger Kapitza,
Marcelo Pasin, and Valerio Schiavoni. CYCLOSA: decen-
tralizing private web search through sgx-based browser ex-
tensions. In Proceedings of the International Conference on
Distributed Computing Systems (ICDCS), 2018.

[99] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. Cryptdb: protecting confiden-
tiality with encrypted query processing. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
2011.

[100] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
clavedb: A secure database using SGX. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2018.

[101] Do Le Quoc, Franz Gregor, Jatinder Singh, and Christof
Fetzer. Sgx-pyspark: Secure distributed data analytics. In
International World Wide Web Conference (WWW), 2019.

[102] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher.
Zerotrace : Oblivious memory primitives from intel SGX. In
Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2018.

[103] Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla,
Karan Grover, Muthian Sivathanu, Nishanth Chandran, Di-
vya Gupta, and Satya Lokam. Blockene: A high-throughput
blockchain over mobile devices. In Proceedings of the
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2020.

[104] Felix Schuster, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark
Russinovich. Vc3: Trustworthy data analytics in the cloud
using sgx. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2015.

[105] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan
Lee. Proving the correct execution of concurrent services in
zero-knowledge. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2018.

[106] Fahad Shaon and Murat Kantarcioglu. Sgx-ir: Secure infor-

mation retrieval with trusted processors. In DBSec, 2020.
[107] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans

Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In Proceedings
of the ACM SIGCOMM Conference, 2001.

[108] Wenhai Sun, Ruide Zhang, Wenjing Lou, and Y. Thomas Hou.
REARGUARD: secure keyword search using trusted hard-
ware. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), 2018.

[109] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod
Bhatotia, and Christof Fetzer. Clemmys: towards secure
remote execution in faas. In Proceedings of the ACM In-
ternational Conference on Systems and Storage (SYSTOR),
2019.

[110] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz
Lipp, Marina Minkin, Daniel Genkin, Yarom Yuval, Berk
Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
Transient Execution through Microarchitectural Load Value
Injection. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2020.

[111] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell,
Mayank Varia, Andrei Lapets, and Azer Bestavros. Conclave:
secure multi-party computation on big data. Proceedings of
the ACM European Conference on Computer Systems (Eu-
roSys), 2019.

[112] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit
ORAM: on tightness of the goldreich-ostrovsky lower bound.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2015.

[113] Gavin Wood. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151, 2014.

[114] Cheng Xu, Ce Zhang, and Jianliang Xu. vChain: Enabling
verifiable boolean range queries over blockchain databases.
In Proceedings of the ACM SIGMOD Conference, 2019.

[115] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2015.

[116] Andrew C. Yao. Protocols for secure computations. In Pro-
ceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1982.

[117] Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron
Choi. GEM2-Tree: A gas-efficient structure for authenticated
range queries in blockchain. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), 2019.

[118] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and
Elaine Shi. Town crier: An authenticated data feed for smart
contracts. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), 2016.

[119] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca A.
Popa, Joseph Gonzalez, and Ion Stoica. Opaque: An oblivious
and encrypted distributed analytics platform. In Proceedings
of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017.

[120] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. Hacl*: A verified mod-
ern cryptographic library. In Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS),
2017.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 347

https://bitcoin.org/bitcoin.pdf

Finding Consensus Bugs in Ethereum via Multi-transaction Differential Fuzzing

Youngseok Yang1 Taesoo Kim2 Byung-Gon Chun1,3*
1Seoul National University 2Georgia Institute of Technology 3FriendliAI

Abstract
Ethereum is the second-largest blockchain platform next to
Bitcoin. In the Ethereum network, decentralized Ethereum
clients reach consensus through transitioning to the same
blockchain states according to the Ethereum specification.
Consensus bugs are bugs that make Ethereum clients transi-
tion to incorrect blockchain states and fail to reach consensus
with other clients. Consensus bugs are extremely rare but can
be exploited for network split and theft, which cause reliability
and security-critical issues in the Ethereum ecosystem.

We describe Fluffy, a multi-transaction differential fuzzer
for finding consensus bugs in Ethereum. First, Fluffy mu-
tates and executes multi-transaction test cases to find consen-
sus bugs which cannot be found using existing fuzzers for
Ethereum. Second, Fluffy uses multiple existing Ethereum
clients that independently implement the specification as
cross-referencing oracles. Compared to a state-of-the-art
fuzzer, Fluffy improves the fuzzing throughput by 510× and
the code coverage by 2.7× with various optimizations: in-
process fuzzing, fuzzing harnesses for Ethereum clients, and
semantic-aware mutation that reduces erroneous test cases.

Fluffy found two new consensus bugs in the most popu-
lar Geth Ethereum client which were exploitable on the live
Ethereum mainnet. Four months after we reported the bugs to
Geth developers, one of the bugs was triggered on the mainnet,
and caused nodes using a stale version of Geth to hard fork
the Ethereum blockchain. The blockchain community consid-
ers this hard fork the greatest challenge since the infamous
2016 DAO hack. We have made Fluffy publicly available at
https://github.com/snuspl/fluffy to contribute to the security
of Ethereum.

1 Introduction

The case is perhaps Ethereum’s greatest challenge
since the 2016 DAO fork, and it raises questions about
Ethereum’s oft-touted decentralization and the effective-
ness of its developer coordination going into Ethereum
2.0.

— Coindesk, November 12th, 2020 [11]

*Corresponding author.

An extremely rare consensus bug1, which makes
Ethereum [17, 54] clients transition to incorrect blockchain
states and fail to reach consensus with other clients, was
triggered on the Ethereum mainnet on November 11th,
2020 [2, 11, 43, 45]. This was one of the two consensus bugs
we found and reported to Ethereum developers four months
before that date. The bug caused Ethereum nodes using a
stale version of Geth [19], the most popular Ethereum client,
to hard fork the Ethereum blockchain. One of the affected
nodes was Infura [15], the largest infrastructure service that
allows decentralized applications (DApps) to connect to the
Ethereum network without having to run their own Ethereum
nodes.

Consequently, Infura went down, and with it some of most
popular Ethereum applications such as Metamask, Maker-
DAO, Uniswap, and Compound went down [11]. Shortly af-
ter, cryptocurrency exchanges around the world including
Binance, the largest exchange, halted the trading of ETH,
the cryptocurrency of Ethereum [2, 11]. Infura and others
quickly upgraded their Geth clients to fix the bug. Neverthe-
less, around 30 Ethereum blocks from block 11234873 on the
forked chain were lost [23], which transferred approximately
8.6 million USD worth of ETH2. The blockchain commu-
nity considers this hard fork the greatest challenge since the
infamous DAO hack of 2016 [11, 13].

This paper describes how we found such extremely rare,
high-impact consensus bugs in the heavily-tested Ethereum
network through fuzzing [9, 30, 38], an automated software
testing technique that randomly mutates inputs and tests the
target program on the resulting data.

Finding new consensus bugs in actively used Ethereum
clients is challenging, because consensus bugs are extremely
rare. Attackers can exploit consensus bugs for network split
and theft, which cause reliability (e.g., delaying transac-
tions) and security-critical issues (e.g., stealing ETH) in the
Ethereum ecosystem. To prevent such issues, Ethereum devel-
opers make preventing consensus bugs a top priority, and
invest heavily in auditing, testing, and fuzzing Ethereum

1We focus on consensus bugs in state management that make Ethereum
clients transition to incorrect blockchain states. Bugs in blockchain consensus
algorithms such as proof of work are not the focus of this paper.

2(Total amount of ETH transferred by block 11234873 to 11234902 on
the canonical chain) × (Closing price of ETH/USD on November 10th)

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 349

https://github.com/snuspl/fluffy

EVMLab EVM
libFuzzer

EVM
Fuzzer Fluffy

Transactions per test Single Single Single Multiple
Contract language Bytecode Bytecode Solidity Bytecode
In-process fuzzing - X - X
Coverage-guided - X - X

Open source X - X X
Created in 2017 2017 2019 2020

Impact of newly
found bugs (Count)

High (1),
Low (2)

Low (2) N/A High (2)

Table 1: A comparison of Fluffy and existing fuzzers for
finding consensus bugs in Ethereum.

clients [18, 21, 22, 33]. Since the Ethereum network launched
in July 2014, only 13 consensus bugs have been found in
the most popular Geth [19] and OpenEthereum [41] clients,
and only 6 of them would have been exploitable on the live
Ethereum mainnet [34].

Ethereum fuzzers have found most of the consensus
bugs [18, 22, 33, 34]. These existing fuzzers focus on the
blockchain state, which is a set of Ethereum accounts that
hold a balance of ETH. Specifically, the fuzzers model an
Ethereum client as a blockchain state model, in which the
blockchain state is transitioned by an Ethereum transaction.
As a result, in each fuzzing iteration, they generate and test a
pre-transaction blockchain state and a single transaction that
transitions the blockchain state. Table 1 compares the existing
fuzzers. EVMLab [18] generates random Ethereum Virtual
Machine (EVM) bytecode of Ethereum smart contracts [54],
and invokes the contracts with a single transaction. EVM-
Lab has found in the most popular Geth and OpenEthereum
clients one high-impact bug that was exploitable on the main-
net and two low-impact bugs that were not exploitable on a
live network. EVM libFuzzer [33] is a closed source fuzzer
whose details are unknown. EVM libFuzzer integrates with
libFuzzer [30] and has found two low-impact bugs. EVM-
Fuzzer [22] is a more recent fuzzer that generates Solidity [20]
code of contracts.

However, the blockchain state model of existing fuzzers
falls short to cover the full search space for finding consensus
bugs. The full search space consists of the set of possible client
program states, which are the values of program variables of
Ethereum clients that can be reached after executing Ethereum
transactions. For each pre-transaction blockchain state (e.g.,
Account A has 0 ETH), the blockchain state model can cover
only a single pre-transaction program state (e.g., account_a
= { ETH: 0, deleted: false}). Consequently, existing fuzzers
fail to test other possible pre-transaction program states (e.g.,
account_a = { ETH: 3, deleted: true}) that represent the same
blockchain state. This leads existing fuzzers to miss consensus
bugs which are triggered only when a transaction is applied
to such other pre-transaction program states.

To fully cover the search space for finding consensus bugs,
we propose to model an Ethereum client as a client program
state model, in which the client program state is transitioned
by a transaction. Based on this model, in each fuzzing itera-
tion, we generate and execute a sequence of multiple transac-
tions that transition an initial client program state. This allows
us to indirectly generate various intermediate pre-transaction
program states, which can be reached after executing transac-
tions and can lead to the discovery of new consensus bugs.

We embody our approach in Fluffy, a multi-transaction
differential fuzzer for finding consensus bugs in Ethereum.
Fluffy mutates and executes multi-transaction test cases to
find consensus bugs which cannot be found using existing
fuzzers for Ethereum. In addition, Fluffy uses multiple ex-
isting Ethereum clients that independently implement the
specification as cross-referencing oracles, similar in concept
to N-versioning [5]. This technique is known as differential
fuzzing [9, 36] in the testing community.

Our Fluffy design employs several new fuzzing techniques.
First, we modify existing Ethereum clients to provide an exe-
cution model that enables efficient multi-transaction fuzzing.
Second, we use multi-transaction test cases that encode de-
pendencies between multiple Ethereum transactions and en-
able mutating transaction contexts (i.e., sequence of transac-
tions that are executed prior to the transaction) rather than
pre-transaction blockchain states. Third, we introduce new
semantic-aware mutation strategies for mutating transaction
contexts, transaction parameters, and EVM bytecode.

We have implemented Fluffy in Rust and Go, and
made it publicly available at https://github.com/snuspl/fluffy.
Our current implementation supports fuzzing Geth and
OpenEthereum, which are used by 98% of nodes in the
Ethereum mainnet, as of August 2020 [6]. Our implementa-
tion adopts various optimizations including in-process fuzzing
and optimized fuzzing harnesses for Ethereum clients, and
also provides a debugger to analyze crashes due to consen-
sus bugs. Our evaluation on a 12-core machine shows that
Fluffy finds 10 out of 11 real-world consensus bugs in Geth
and OpenEthereum within just 12 hours of fuzzing. Fluffy
also improves the fuzzing throughput by 510× and the code
coverage by 2.7× compared to EVMLab.

2 Background

We first provide an overview of Ethereum [17, 54], and then
describe consensus bugs in Ethereum.

2.1 Ethereum

The Ethereum blockchain network consists of decentralized
peer-to-peer Ethereum clients that implement the Ethereum
Virtual Machine (EVM) specification [54]. EVM is a Turing-
complete machine that specifies how the Ethereum blockchain

350 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/snuspl/fluffy

state, a set of Ethereum accounts, is altered through trans-
actions recorded on Ethereum blocks. Accounts in the
blockchain state have an address and hold a balance of ETH,
the cryptocurrency of Ethereum. There are two types of ac-
counts: the externally-owned account (EOA) owned by an
Ethereum user, and the smart contract account which is owned
by code and has a key-value storage. In addition to the ac-
counts, EVM provides precompiled contracts that perform
specialized operations at fixed addresses. Ethereum trans-
actions are either message call transactions that can invoke
smart contracts, or contract creation transactions that create
new smart contracts.

Blockchain state. EVM transitions blockchain states through
processing Ethereum bytecode instructions invoked by trans-
actions. EVM provides around 140 distinct instructions. Each
instruction makes specific changes to EVM internal states
such as the EVM stack and the EVM memory, as well as the
blockchain state such as the ETH balance of EOAs and the
storage of smart contracts. Each instruction also has a specific
gas cost, a fee that the transaction sender pays to compensate
for the computational effort that it takes to execute the instruc-
tion in the network. EVM throws an out-of-gas error when
the sum of the gas cost exceeds the gas limit of a transaction.

Client program state. Ethereum clients implement EVM
with a specific programming language such as Go and
Rust [19, 41]. As a result, a client maintains its own client
program state, which are the values of program variables
(e.g., Rust or Go variables) that are reached after executing
Ethereum transactions. There can be multiple different client
program states that represent the same blockchain state, since
the client determines the blockchain state it is in by interpret-
ing the values of a subset of its program variables.

Example. Figure 1 shows how an Ethereum client executes a
sequence of two transactions to transition an initial blockchain
state (State 0). Transaction 1 first creates contract C by in-
voking the bytecode in its data field, which returns (RETURN)
the bytecode that becomes the code of contract C (State 1).
Transaction 2 then invokes the code of C with specific value
and data parameters, such that a particular key-value pair is
stored (SSTORE) in the storage of C (State 2).

Suppose we initialize an Ethereum client implementation
in two different ways. First, we initialize the client directly
with the blockchain state after Transaction 1 (State 1). Second,
we initialize the client with the initial blockchain state (State
0), and then execute Transaction 1 to transition the blockchain
state. Although the resulting blockchain state (State 1) is the
same for the two clients, the resulting client program state may
not be the same depending on the client implementation. As a
result, the two clients can behave differently when executing
the subsequent Transaction 2.

We show why it is important to fully test such different
behaviors when testing whether clients transition to incorrect
blockchain states, which we describe next.

Ethereum Client

Ethereum
Network

Ethereum Virtual Machine

Stack

Memory

…

Bytecode (hex)
...
60 05 (PUSH1 0x05)
60 01 (PUSH1 0x01)
F3 (RETURN)

Ethereum Virtual Machine

Stack

Memory

…

Bytecode (hex)
35 (CALLVALUE)
36 (CALLDATASIZE)
55 (SSTORE)
...

State 0 State 1 State 2

Account A
(EOA)

Address: 0xf1a2…
Balance: 5ETH

…

Transaction 1
Contract creation (A⇒C)
Value: 2ETH
GasLimit: 30,000gas
Data: 0x...60056001F3

Transaction 2
Message call (A⇒C)
Value: 0ETH
GasLimit: 30,000gas
Data: 0x13

Account C
(Contract)

Address: 0x3b2c…
Balance: 2ETH
Code: 0x353655…
Storage: {}

Account C
(Contract)

Address: 0x3b2c…
Balance: 2ETH
Code: 0x353655…
Storage: {0x01=>..}

… …

Figure 1: Multiple Ethereum transactions interact to deter-
mine the transitions of Ethereum blockchain states.

2.2 Consensus Bugs

Consensus bugs are implementation bugs that make Ethereum
clients transition to incorrect blockchain states, and fail to
reach consensus with other clients that transition to correct
states according to the EVM specification [54]. The Ethereum
community has fostered the development of diverse client im-
plementations with a goal to verify the EVM specification and
make the Ethereum network more secure. Nevertheless, only
two Ethereum clients are used by 98% of nodes participat-
ing in the Ethereum mainnet, as of August 2020 [6]. Around
80% of nodes use Geth [19] written in Go, and 18% use
OpenEthereum [41], previously called Parity, written in Rust.
Therefore, consensus bugs that affect Geth and OpenEthereum
have the most critical impacts on the Ethereum ecosystem.
Known bugs. Consensus bugs in actively used Ethereum
clients are extremely rare. Table 2 shows the list of con-
sensus bugs [34] reported to have been found in Geth, and
OpenEthereum under the former name of Parity. Since the
Ethereum network launched in July 2014 until 2019, only
13 consensus bugs were found. Only 6 of the 13 bugs are
high-impact bugs that would have been exploitable on the live
Ethereum mainnet. In addition to these 6 high-impact bugs,
we were able to find 2 new high-impact consensus bugs in
2020, which we describe in detail later in the paper.

Consensus bugs are extremely rare for the following rea-
sons. First, the Ethereum community makes preventing con-
sensus bugs a top priority, and heavily invest in auditing,
testing, and fuzzing Ethereum clients [18, 21, 22, 33]. Second,
Ethereum clients are continuously being tested on the live

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 351

Client Date Consensus bug description Tx Impact Finding method Fluffy (Time)

1 Geth Aug 2020 The balance of a deleted account is carried over to a new account 2 High Fluffy X (291m)
2 Geth Jul 2020 The DataCopy precompile performs shallow rather than deep copy 1 High Fluffy X (386m)
3 Geth Mar 2019 Block timestamps exceeding uint64 lead to a wrong block hash 1 High Unknown N/A
4 Parity Oct 2018 The SSTORE gas refund counter does not go below zero when it should 1 Medium Triggered-Testnet X (57m)*
5 Parity Jun 2018 Unsigned transactions are accepted and treated as valid 1 Medium Triggered-Testnet N/A
6 Geth Feb 2018 Subgroups in elliptic curve pairings are not validated properly 1 High Unknown N/A
7 Parity Oct 2017 CREATE in static context without enough balance throws a wrong error 1 High EVMLab X (41m)*
8 Geth Oct 2017 CALL in static context with less than three stack elements crashes 1 Low EVM libFuzzer X (38m)
9 Parity Oct 2017 The gas for the ModExp precompile overflows for certain inputs 1 Low Manual auditing Timeout-12h

10 Parity Oct 2017 RETURNDATACOPY overflows during addition of offset and length 1 Low EVM libFuzzer X (14m)*
11 Parity Oct 2017 The gas for the ModExp precompile overflows for large numbers 1 Low EVMLab X (15m)
12 Parity Oct 2017 RETURNDATASIZE from a precompile returns a non-zero size 1 Low EVMLab X (2m)
13 Geth Feb 2017 The EVM stack underflows for SWAP, DUP, and BALANCE 1 High Unknown X (6s)
14 Geth Jan 2017 Undisclosed - High Unknown N/A
15 Geth Nov 2016 Fails to revert the deletion of touched accounts on out of gas 1 High Triggered-Mainnet X (5m)

Table 2: The list of consensus bugs [34] found in Geth and Parity, which is the former name of OpenEthereum. The first two
bugs are new bugs found by Fluffy. The number of transactions (Tx) indicates the minimum number of depending transactions
required to trigger the bug. High-impact and medium-impact bugs are bugs that would have been exploitable on the live Ethereum
mainnet and testnet respectively. Low-impact bugs are bugs that were fixed before they became exploitable on a live Ethereum
network. The last column shows the time it takes Fluffy to find the bugs, which is explained in § 7.1.

mainnet for consensus bugs with real-world transactions. On
the mainnet, multiple versions of multiple Ethereum clients
have reached consensus on a total of more than 800 million
transactions as of August 2020.
Ethereum fuzzers. All consensus bugs have been found with
fuzzing [9,36], except for the bugs triggered on a live network,
found with manual auditing, or whose finding method is un-
known. Existing Ethereum fuzzers [18, 22, 33] focus on the
blockchain state. Specifically, the fuzzers model an Ethereum
client as a blockchain state model, in which the blockchain
state is transitioned by an Ethereum transaction. As a result, in
each fuzzing iteration, they generate and test a pre-transaction
blockchain state and a single transaction that transitions the
blockchain state.

However, the blockchain state model of existing fuzzers
falls short to cover the full search space for finding consensus
bugs. The full search space consists of the set of possible client
program states that can be reached after executing Ethereum
transactions. For each pre-transaction blockchain state (e.g.,
Account A has 0 ETH), the blockchain state model can cover
only a single pre-transaction program state (e.g., account_a
= { ETH: 0, deleted: false}). Consequently, existing fuzzers
fail to test other possible pre-transaction program states (e.g.,
account_a = { ETH: 3, deleted: true}) that represent the same
blockchain state. This leads existing fuzzers to miss consensus
bugs which are triggered only when a transaction is applied
to such other pre-transaction program states.
Bug impacts. Attackers can exploit consensus bugs for net-
work split and theft. First, an attacker can trigger a con-
sensus bug to make buggy client nodes create a fork of
the blockchain, which only they agree on. The transactions

recorded on the forked chain are eventually nullified, when
the consensus bug is fixed and the fork is abandoned [23, 51].
Second, an attacker can steal ETH from certain vulnerable
smart contracts on buggy client nodes. Even if the business
logic of a smart contract is perfectly secure, a consensus bug
can alter how the buggy client executes the contract and allow
the theft of ETH.

Attackers have strong incentives to find and exploit con-
sensus bugs. Attackers can short ETH on cryptocurrency ex-
changes after triggering a consensus bug, with the expectation
that the price of ETH will fall, when investors learn about the
attack and lose trust in Ethereum. Attackers also can trade
their ETH with an off-chain item (e.g., other cryptocurrency
such as Bitcoin [39]) on the forked chain after triggering the
bug, such that the traded ETH is given back to them when
the bug is fixed and the forked chain is abandoned. Finally,
attackers can steal ETH from vulnerable smart contracts.

3 Overview

We describe Fluffy, a multi-transaction differential fuzzer for
finding consensus bugs in Ethereum. Unlike existing fuzzers
which use the blockchain state model, Fluffy fully covers the
search space for finding consensus bugs, by modelling an
Ethereum client as a client program state model. Using this
client program state model where the client program state
is transitioned by a transaction, Fluffy tests a sequence of
multiple transactions in each iteration. In addition, Fluffy
uses different Ethereum clients as cross-referencing oracles.

Figure 2 illustrates an overview of Fluffy. First, Fluffy

352 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Tx1 {Create,
Data =

0x60..., ...}

Tx2 {Call,
Value =
3ETH, ...}

Tx3 {Create,
Data =

0x35..., ...}

Block {Number:
1000000, ...}

Block {Number:
3000000, ...}

Client A

Client B

Fluffy Ethereum Clients

…

Corpus
Pick

Mutate

Tx1

Mutator 1

2

S3
S2
S1

S3'
S2'
S1'

…

Coverage feedback & States4

S0 S1 Tx2 S2 Tx3 S3

Tx1 Tx2 Tx3

3 Execute
States

Checker

Test Case

Save5

S0 S1' S2' S3'

Figure 2: An overview of Fluffy. Fluffy first selects a test case from the corpus (1©). Next, Fluffy mutates transactions in the
test case using a semantic-aware mutation strategy (2©). Fluffy then executes the new test case on multiple Ethereum clients
(3©). The clients transition the initial blockchain state to new states, while executing the transactions in the test case. When the
execution completes, Fluffy collects the new states and coverage feedback (4©). Fluffy saves the new test case if new code paths
are discovered (5©). Fluffy proceeds to the next iteration if the clients transitioned to the same states, and crashes otherwise.

selects a test case from the corpus of previously executed
test cases (1©). Each test case contains multiple transactions,
and information about dependencies between the transactions.
Fluffy then generates a new test case by mutating the transac-
tions in the selected test case using a semantic-aware mutation
strategy (2©). Fluffy then executes the new test case on mul-
tiple Ethereum clients (3©). The clients transition the initial
blockchain state (S0) to new states (Client A: (S1, S2, S3),
Client B: (S1′, S2′, S3′)), while executing the transactions
(Tx1, Tx2, Tx3) in the test case. When the execution com-
pletes, Fluffy collects the new blockchain states and code
coverage feedback from the clients (4©). Fluffy saves the
new test case in the corpus if new code paths are discovered
(5©). Fluffy cross-checks the blockchain states collected from
different clients, and crashes if the clients transitioned to a
different state during execution (S1 != S1′ || S2 != S2′ || S3 !=
S3′). Otherwise, Fluffy proceeds to the next fuzzing iteration.

4 Design

We describe the design of Fluffy, focusing on the execution
model, the test case, and the mutation algorithm.

4.1 Execution Model

We modify existing Ethereum clients to provide an execution
model that enables efficient multi-transaction fuzzing.
Genesis account. We modify clients to use an initial
blockchain state that contains the genesis account, which
we define as an EOA that has a large balance of ETH. The
genesis account serves as the starting point for creating new
smart contracts and invoking the code of the contracts (i.e.,
we set the sender of transactions to the genesis account).
Activated addresses. We modify clients to convert 20-byte
Ethereum addresses to activated addresses, which we define

as an address either owned by a precompiled contract, or
owned by a contract created in previous EVM execution. The
rationale is that it is extremely inefficient to explore the 20-
byte Ethereum address space, especially given that we rewrite
blockchain history and almost all of the addresses are not
used by a contract. Moreover, we cannot know in advance
which addresses will be activated and used by smart contracts
in the future, since new contracts can be created dynamically
during the execution of EVM bytecode (CREATE).

4.2 Test Case
We use test cases that are tailored to multi-transaction fuzzing.
Figure 3 shows the data structure of test cases used in Fluffy.
We execute test cases on Ethereum clients through iterating
over the blocks and the transactions of each block in the
list order, and applying each transaction to the blockchain
state. Our design has several unique characteristics that enable
efficient multi-transaction fuzzing.

First, we enable mutating the context of transactions, which
we define as the ordered sequence of transactions that are ex-
ecuted prior to the transaction. Our approach is in contrast to
existing approaches [18, 22, 33] that directly generate a pre-
transaction blockchain state and test a single transaction. The
blockchain state mutation strategy of existing approaches are
limited to testing only a single pre-transaction client program
state for each pre-transaction blockchain state. In contrast, our
approach is able to generate and test various pre-transaction
client program states (e.g., (account_a = { ETH: 0, deleted:
false}), (account_a = { ETH: 3, deleted: true})) for each pre-
transaction blockchain state (e.g., Account A has 0 ETH).
This is because the values of program variables of Ethereum
clients can change in various ways depending on which se-
quence of transactions are executed. This lets us find bugs
like the transfer-after-destruct bug (§ 6.2), which requires test-
ing particular pre-transaction client program states that the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 353

class FluffyTestCase:
Block[] blocks

class Block:
Transaction[] transactions
int versionNumber // hard-fork upgrades
int timestamp // between prev/next block
// Constants: author, gasLimit, ...

class Transaction:
int gasLimit // minimum to threshold
int value // 0, 1, or random
byte[] data // bytes
// Constants: signature, gasPrice, ...

class CreateContract extends Transaction:
byte[] constructor // invoked bytecode
byte[] codeToReturn // code of new contract

class MessageCall extends Transaction:
int receiver // activated address

Figure 3: The data structure of test cases used in Fluffy.

blockchain state mutation strategy is unable to generate.
Second, we introduce the constructor and the code-to-return

fields for contract creation transactions. These fields, along
with a number of injected instructions which we describe later,
become part of the data field. Our approach enables directly
mutating the code of the newly created smart contracts, which
is set to the code-to-return when the transaction completes.
Existing Ethereum fuzzers [18, 22, 33] do not consider this
approach, since they execute a single transaction per fuzzing
iteration and do not invoke the code of smart contracts created
by transactions.

Third, we limit the possible values of transactions and block
parameters to reduce wasting CPU cycles in meaningless mu-
tations and executions. We use constant values for parameters
that have limited effects on how clients execute transactions.
Our approach reduces the overhead of mutating and executing
multiple transactions.

4.3 Mutation

We use three mutation strategies to mutate test cases: context
mutation, bytecode mutation, and parameter mutation. Our
bytecode and context mutation strategies have not been em-
ployed in existing Ethereum fuzzers [18, 22, 33]. Minor parts
of the parameter mutation strategy, such as setting the times-
tamp of a block within a certain range, share some similarities
with existing fuzzers.
Context mutation. We randomly mutate the list of blocks
and the list of transactions to mutate transaction contexts. We
use four strategies: add, delete, clone, copy. We add a new
block or a new transaction to the list, or delete an existing one.

Transaction (Contract creation)
byte[] data

// byte[] constructor

1: …

2: …

// Skip code-to-return

15: PUSH1 0X1b

16: JUMP

// byte[] codeToReturn

17: ….

18: ….

// Copy and return

27: PUSH1 0x0a

28: PUSH1 0x11

29: PUSH1 0x11

30: CODECOPY

31: PUSH1 0x0a

32: PUSH1 0x11

33: RETURN

EVM Memory

Execute
Constructor

1

Copy to EVM
Memory

3

Skip Code-
To-Return

2

Bytes returned
(Code of the new
smart contract)

// codeToReturn

0x…

Return the
copied Code-
To-Return

4

0: 0x00

1: 0x00
2: 0x00
…

// codeToReturn

17: ….

18: ….

…

Figure 4: Fluffy mutates the data field of contract creation
transaction by mutating the constructor field and the code-to-
return field that become part of the data field along with a
number of injected bytecode instructions. When the transac-
tions are executed, the constructor is executed and the code-
to-return is returned.

We also clone an existing block or a transaction, or copy its
contents to another block or transaction.
Bytecode mutation. We mutate the constructor and the code-
to-return fields of contract creation transactions to mutate
bytecode. Specifically, we randomly add, delete, mutate, and
copy bytecode instructions in the fields. Among the vari-
ous EVM instructions, we do not add the PUSH instructions
(PUSH1-PUSH32), which make EVM push a number of fol-
lowing bytes (1B-32B) in the fields onto the EVM stack,
rather than interpreting the bytes as bytecode instructions and
executing them. Our approach enables preserving the seman-
tics of bytecode instructions that are not directly modified by
Fluffy across mutations.

We then update the data field using the mutated constructor
and code-to-return, as illustrated by Figure 4. We concate-
nate the constructor, instructions to skip the execution of the
code-to-return (JUMP), the code-to-return, instructions to copy
the code-to-return to the EVM memory (CODECOPY), and in-
structions to return the copied bytecode (RETURN). When the
transaction is executed and the bytecode of the data field is
invoked, the constructor is executed and the code-to-return is
returned.

In contrast, it is difficult to generate smart contract con-
structors that return appropriate bytecode, if we treat the data
field as a single sequence of instructions and mutate the data
field as a whole. The reason is that the generated constructor
is likely to prematurely terminate before invoking RETURN

354 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to return bytecode. Moreover, appropriate bytes should be
stored in the right region of the EVM memory before invok-
ing RETURN, and a small mutation is likely to completely alter
the stored bytes.

Nevertheless, we do note that in Fluffy the code of a smart
contract is not always equal to the code-to-return field of the
transaction that creates the contract. This is because errors
such as EVM stack underflow can still occur during the exe-
cution of the constructor field of the transaction, and prevent
the following injected instructions to copy and return the
code-to-return.
Parameter mutation. We mutate transaction parameters as
follows. We simply set the transaction receiver address to
a random integer, assuming that the target clients convert it
to an activated address. We set the gas limit to the sum of
the minimum gas required for EVM to not reject the transac-
tion before invoking any bytecode, and a randomly generated
number in the range between 0 to a threshold to avoid long se-
quences of meaningless instructions such as an infinite while
loop. For example, we can set the threshold to 1.6 million
gas that allows executing the CREATE instruction 50 times,
which is the most expensive instruction that costs 3.2 thou-
sand gas. 1.6 million gas costs only around 0.8 ETH on the
Ethereum mainnet as of August 2020. In case of value, which
determines the amount of ETH transferred by the transaction,
we randomly choose 0, 1, or a random integer.

We also randomly mutate the parameters of blocks. Most
notably, we mutate the block version number, which deter-
mines the version of EVM that executes the transaction. Since
Ethereum launched in 2014, there has been around 10 non-
backward compatible EVM hard-fork upgrades that came into
effect at particular block version numbers. We use the version
numbers that mark the start of a new EVM hard-fork upgrade,
rather than covering all of the block version numbers used in
mainnet, which are more than 10 million as of August 2020.

5 Implementation

We implement Fluffy on top of libFuzzer [30] using Rust and
Go. We adopt the basic infrastructure of libFuzzer, including
the code coverage bitmap and test case scheduling, but intro-
duce several key components. We replace the default mutator
of libFuzzer with our multi-transaction mutator. We also intro-
duce fuzzing harnesses for OpenEthereum and Geth to enable
in-process fuzzing and several other optimizations. Finally,
we implement a crash debugger for analyzing crashes due
to consensus bugs. The rest of the section describes notable
implementation details.

5.1 Fuzzing Harnesses
We implement fuzzing harnesses as long-running processes
that integrate with the transaction processing components of
Ethereum clients.

In-process fuzzing. We reuse fuzzing harnesses across
fuzzing iterations to avoid having to spawn new Ethereum
client processes for every new test. We link the mutator with
the OpenEthereum harness to mutate test cases and collect
code coverage statistics in the same process, and run the Geth
harness in a separate process. We use Linux FIFO files for
exchanging test cases and execution results between the two
processes.

Initial blockchain state. In addition to the genesis account,
we add to the initial blockchain state accounts with a balance
of 1 Wei (1×10−18 ETH) under the addresses of precompiled
contracts. These non-zero balance accounts let us avoid trig-
gering a false positive consensus bug in Geth related to a bug
that was previously exploited in the live Ethereum mainnet
(Bug #15 in Table 2) [51].

Activated addresses. We maintain a list of activated ad-
dresses in the harnesses. While executing transactions, we
add addresses of newly created contracts to the list and con-
vert Ethereum addresses to activated addresses (i.e., acti-
vatedList[bigInteger(address) % activatedList.length()]). To
test deleted addresses, we do not remove addresses from the
list when contracts invoke SELFDESTRUCT and destroy them-
selves.

Transaction verification. Ethereum clients use the
secp256k1 ECDSA algorithm to verify the signature of
transactions [54]. This requires signing and verifying each
of the many transactions that Fluffy generates, which is
costly considering that most of EVM bytecode instructions
consume few CPU cycles. We skip these procedures in our
harnesses, since we do not focus on signature verification.

Jump destinations. EVM throws an error if the destination of
JUMP and JUMPI is not JUMPDEST, which marks a valid jump
target. This increases the chance of Fluffy terminating pre-
maturely due to an error when testing loops and conditional
branches. To address this issue, we disable the checking of
JUMPDEST and allow jumping to non-JUMPDEST instructions
in our harnesses.

Number of transactions. Fluffy uses its mutator and the test
case scheduler to determine the number of transactions it
should use per test case. Fluffy randomly generates test cases
with few transactions to build the initial corpus. If new code
paths are not easily discovered with few transactions, Fluffy
gradually generates test cases with more transactions through
the transaction context mutations, adding the new test cases
to the corpus if they discover new code paths. Fluffy provides
an option to configure a libFuzzer parameter (-len_control),
which determines whether to prefer to generate small test
cases over large test cases. Fluffy also provides an option to
set a hard limit on the number of transactions in a fuzzing
iteration. We note that the search space of Fluffy, which is the
Ethereum client program state model, is constant regardless
of the number of transactions that Fluffy executes for each
test case.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 355

// CALL to precompiled

// DataCopy (0x0..04)

…..

21: PUSH1 0X04 // addr

23: PUSH2 0xffff // gas

26: CALL

// Corrupt copied data

27. PUSH1 0xf9 // value

29: PUSH1 0x00 // offset

31: MSTORE

EVM

(Spec)

byte[]

returnData

byte[]

memory

Memory Output of
last CALL

Geth

(Impl)

0: 0x32
… nil

Before CALL (line 20) CALL (line 26) MSTORE (line 31)Bytecode

0x32 …

byte[]

returnData

byte[]

memory

nil

Memory Output of
last CALL

0: 0x32
… 0x32

Memory Output of
last CALL

0: 0xf9
… 0x32

0x32 …

byte[]

returnData

byte[]

memory

0xf9 …

Figure 5: A minimal test case for the shallow copy bug in Geth. An attacker can exploit this bug to corrupt data copied through
the precompiled DataCopy contract, making Geth deviate from the EVM specification.

5.2 Crash Debugger

The crash debugger enables analyzing crashes due to consen-
sus bugs.
Analyzing the root cause. We find the first states that the
clients output differently while processing the test case, which
we call triggering states. We also find the last state that can
reach the triggering states when used as the starting point of
EVM execution, which we call the starting state. We then
find which EVM bytecode instruction invoked during the
execution of transactions between the starting state and the
triggering states cause different behaviors in Ethereum clients.
Finally, we use tools like Delve [14] on corresponding code
in Ethereum clients to analyze the root cause.
Validating exploitability. We compare the latest blockchain
state in the Ethereum mainnet with the starting state of the bug.
We check whether an Ethereum user can transition the latest
blockchain state to a new state that includes the accounts in the
starting state. We also check whether the transactions between
the starting state and the triggering states are processed by the
latest version of EVM used in the mainnet. Finally, we convert
the transactions into new transactions that can reproduce the
bug on vanilla Ethereum clients. In particular, we convert
active addresses to Ethereum addresses through examining
EVM traces [19,41], and insert JUMPDESTs where appropriate.

6 New Consensus Bugs

Fluffy found two new consensus bugs in Geth which were
exploitable on the live Ethereum mainnet: shallow copy bug
and transfer-after-destruct bug. Existing ethereum fuzzers [18,
22, 33] that test only a single transaction per iteration are not
able to find the transfer-after-destruct bug, because finding
it requires testing particular pre-transaction client program
states which the fuzzers are unable to generate. Although the
shallow copy bug can be found by testing a single transaction,
existing fuzzers failed to reach deep states of Ethereum clients
and failed to find the bug during the time from when the bug
became exploitable in the live Ethereum mainnet in November

2019 (Geth v1.9.7 release) to when we found and reported
the bug in July 2020 [43]. In this section we describe the
bugs using minimal test cases, and discuss the impact of the
bugs. We also explain how the bugs were reported, fixed, and
triggered, with a focus on vulnerability disclosure issues that
occurred.

6.1 Shallow Copy Bug

The root cause of this bug is that the implementation of the
precompiled DataCopy contract (address: 0x0..04) in Geth
performs a shallow copy upon invocation, although the con-
tract should perform a deep copy according to the EVM spec-
ification.

Figure 5 shows a minimal test case that triggers the bug.
Suppose that a message call transaction is issued to a con-
tract account that contains bytecode instructions shown in the
figure. The figure shows the inner workings of the EVM spec-
ification (top) as well as the Geth implementation (bottom)
when processing the bytecode of the contract invoked by the
transaction. Geth implements the EVM memory and the out-
put of the last CALL to external contracts with byte[]memory
and byte[]returnData respectively, which are pointers to a
byte buffer.

The following steps trigger the bug. Between line 1 to line
20, the contract stores a byte 0x32 in the EVM memory at
offset 0. Geth carries out the execution by storing the byte
0x32 in the byte buffer that byte[]memory points to. At this
point byte[]returnData is nil, since no CALL has been made
from the contract yet.

Next, the contract CALLs the DataCopy contract at address
0x0..04, passing in the 1-byte data at the EVM memory off-
set 0 as the argument. This leads to the execution of the
DataCopy implementation in Geth, which is a single line of
code that simply returns the byte[] pointer that is given to
it. In this case the pointer points to the 1-byte data in the
byte buffer that byte[]memory is pointing to. Geth then sets
byte[]returnData to this pointer.

The contract corrupts the copied data by simply storing

356 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

// Contract (Address: A)

1: If VALUE == 0

2: SELFDESTRUCT

3: ELSE

4: STOP

// Contract (Address: B)

1: CALL A with 0 ETH

2: CALL A with 2 ETH

EVM

(Spec)

Account A

Geth

(Impl)

Transaction 1 (C⇒B, 5 ETH):

CALL A with 0 ETH (line 1)

Transaction 1 (C⇒B, 5 ETH):

CALL A with 2 ETH (line 2)
Transaction 2 (C⇒A, 1 ETH)Pseudocode

Balance: 0ETH

Account object

Balance: 0ETH

Deleted: true

Address
A

Account object

Balance: 2ETH

Deleted: true

Address
A

Account object

Balance: 3ETH

Deleted: false

Address
A

Code: 0x6003…

Account A

Balance: 2ETH

Code: 0x6003…

Account A

Balance: 1ETH

Figure 6: A minimal test case for the transfer-after-destruct bug in Geth. Transaction 1 invokes B, which leads to two CALLs to A.
Transaction 2 invokes A. An attacker can exploit this bug to carry over the balance of a deleted account to a new account under
the same address, making Geth deviate from the EVM specification.

new data, 0xf9, in the EVM memory at offset 0 (MSTORE). Ac-
cording to the specification, storing data in the EVM memory
should never affect the data copied through DataCopy. How-
ever, in Geth, the contents of byte[]returnData changes
from 0x32 to 0xf9.

Now, the contract can corrupt the blockchain state, for
example through a sequence of bytecode instructions that
stores the corrupted data in the storage of the contract
(RETURNDATACOPY, MLOAD, SSTORE). After the transaction,
Geth expects that 0xf9 is stored in the storage, whereas
OpenEthereum and all other clients that comply with the
specification expect 0x32.

Although this shallow copy bug is conceptually simple to
understand, it is difficult to detect through code reviews, and
tools such as static checkers which the Ethereum developers
are actively using. The reason is that in the actual Go code
of Geth it is not straightforward to track how pointers move
across multiple files, classes, and functions.
Impact. When exploited, this bug can trigger a network split
where Geth client nodes create a fork of the blockchain that
stores 0xf9 in the storage. Furthermore, this bug can be ex-
ploited for smart contract theft. For example, suppose a con-
tract invokes DataCopy by passing in an Ethereum address,
overwrites the address with user input, and then transfers ETH
to the copied address returned from DataCopy. Attackers can
withdraw ETH from this contract to their account by specify-
ing the address of their account as the user input, while others
believe that the result of DataCopy should always be equal
to the original address. Existing techniques for finding smart
contract vulnerabilities [26, 32, 40, 49, 50, 57] are not capable
of finding such vulnerability because they assume that the
underlying Ethereum clients faithfully carry out the semantics
of EVM bytecode instructions and precompiled contracts.

6.2 Transfer-After-Destruct Bug
The root cause of this bug is that Geth carries over the balance
of a deleted account object to the newly created account object

under the same Ethereum address, although it should not
according to the EVM specification.

Figure 6 shows a minimal test case that triggers this bug.
The initial blockchain state consists of two contracts. If the
value of the transaction that invokes the contract is 0 ETH,
the contract under address A destroys itself by invoking
SELFDESTRUCT. If not, contract A simply terminates execu-
tion with STOP. The contract under address B issues two
CALLs to A. To trigger the bug, we send a transaction to B,
and then a transaction to A. The figure illustrates how the
EVM specification (top) and the Geth implementation (bot-
tom) handle the two transactions.

The first transaction (Transaction 1) is a message call trans-
action sent to B. The code of contract B is then executed as
follows. First, we CALL A with 0 ETH (Contract B, line 1),
which results in destroying contract A with SELFDESTRUCT.
Geth carries out SELFDESTRUCT by marking the account ob-
ject under address A as deleted, rather than destroying the
account object as a whole. Geth also sets the balance of the
account object to 0 ETH. Next, we CALL A with 2 ETH (Con-
tract B, line 2). This makes Geth look up the account object
under address A, and add 2 ETH to the balance of the object.

When the first transaction finishes, Geth transitions to
a blockchain state where the account under address A is
nil, through recognizing that the account object is marked
as deleted and ignoring the balance of 2 ETH. This lets
Geth comply with the EVM specification, which speci-
fies that all information associated with the addresses of
SELFDESTRUCTed accounts should become nil after a transac-
tion is processed [54].

However, Geth fails to comply with the EVM specification
when processing the second transaction (Transaction 2). The
second transaction is a message call transaction sent to A
with 1 ETH. According to the specification, the balance of
the account under address A should become 1 ETH after this
transaction, since the balance of the account was nil, and thus
was 0 ETH before the transaction. However, Geth mistakenly
thinks that the account has 3 ETH after the transaction. When

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 357

processing the transaction, Geth does recognize that the ac-
count object under address A is marked as deleted. Geth thus
attempts to replace the old object with a new account object,
but mistakenly carries over the balance of the old object to that
of the new object during the process. This results in adding
to the balance of the new account object 2 ETH from the old
object, as well as 1 ETH from the transaction.
Impact. Similar to the shallow copy bug, this bug can be ex-
ploited for network split and theft. Moreover, this bug makes
the total supply of ETH in circulation inconsistent between
Geth and other Ethereum clients, which adds to the argu-
ment that the total supply of Ethereum is impossible to calcu-
late [1, 53].

6.3 Responsible Vulnerability Disclosure

Responsible vulnerability disclosure in cryptocurrencies is
hard because decentralized systems give no single party au-
thority to push code updates [7]. To ensure that Ethereum
mainnet nodes update securely, we privately reported the bugs
to the Geth developers through the Ethereum bug bounty
program [21]. Geth developers confirmed that the bugs are
exploitable on the live Ethereum mainnet, and silently fixed
the bugs in new versions of Geth to reduce the risk of an at-
tacker exploiting the bugs. Ethereum mainnet nodes upgraded
organically over time, thereby fixing the bugs.

Unfortunately, not all mainnet nodes upgraded, and this
caused nodes using Geth v1.9.7 to v1.9.16 to hard fork the
Ethereum block chain when the shallow copy bug was trig-
gered four months later, on November 11th, 2020 [2, 11,
15, 43, 45]. Affected Ethereum infrastructure services and
decentralized applications (DApps) went down, and cryp-
tocurrency exchanges halted the trading of ETH. Around 30
Ethereum blocks from block 11234873 on the forked chain
were lost [23], which transferred approximately 8.6 million
USD worth of ETH. The blockchain community considers
this hard fork the greatest challenge since the infamous DAO
hack of 2016 [11, 13].

The hard fork sparked an active discussion on vulnerability
disclosure protocols [11, 43, 52]. As a result, the Geth team
created a public transparency policy for disclosing bugs [19].
The Geth team also revealed security advisories, including an
advisory on the shallow copy bug (CVE-2020-26241) [35].

7 Evaluation

We evaluate Fluffy to answer the following questions.

• Does Fluffy effectively find real-world consensus bugs
in Ethereum? (§ 7.1)

• Does Fluffy cover deep code paths that lead to consensus
bugs in Ethereum clients? (§ 7.2)

• Does Fluffy efficiently test many instances of multiple
transactions that rewrite blockchain history? (§ 7.3)

• Does Fluffy enable analyzing crashes triggered by con-
sensus bugs? (§ 7.4)

We evaluate Fluffy on Intel(R) Xeon(R) CPU E5-2680
v3 (12 cores) with 128 GB memory. We compare Fluffy
with EVMLab [18], which is an open-source, state-of-the-art
differential fuzzer that is maintained by Ethereum developers.
EVMLab is also the only existing fuzzer that found a high-
impact consensus bug that would have been exploitable on
the live Ethereum mainnet [34].

Unless noted otherwise, we configure the fuzzers as fol-
lows. For Fluffy, we configure libFuzzer parameters to run
24 parallel fuzzing instances (-fork=24), and prefer gener-
ating and executing small inputs rather than large inputs (-
len_control=100). For EVMLab, we run 24 instances of the
fuzzer in parallel. We run the fuzzers without any seed corpus
for each experiment.

We use OpenEthereum v3.0.0 and Geth v1.9.14 as the
target programs. EVMLab uses the vanilla version of the
Ethereum clients. Fluffy uses the modified version that also
fixes the two new bugs Fluffy found, since without the bug
fixes Fluffy crashes due to the bugs during experiments.

7.1 Bug Finding Capability

We measure the time it takes for Fluffy to find the consensus
bugs that occurred in Geth and OpenEthereum including the
two new bugs Fluffy found, which are listed in Table 2. For
each bug, we port the bug to OpenEthereum v3.0.0 or Geth
v1.9.14, run Fluffy for 12 hours, and check if Fluffy finds the
bug. We do not experiment with Bug #3 and Bug #5 which
are associated with block mining and signature verification
that Fluffy and existing fuzzers for Ethereum [18, 22, 33]
do not focus on, Bug #6 which was fixed by switching to
a different external library, and Bug #14 whose details are
undisclosed [34].

Table 2 presents the result of the experiment. Fluffy
finds 10 out of 11 real-world consensus bugs in Geth and
OpenEthereum within just 12 hours of fuzzing. Among the
10 bugs, Fluffy finds Bug #7 and Bug #10 with a configura-
tion that bounds the number of transactions and the length
of the data of transactions, and finds Bug #4 with an earlier
implementation of the multi-transaction mutator. The only
bug Fluffy fails to find within 12 hours is Bug #9, which was
originally found with manual auditing.
Result. Fluffy finds 10 out of 11 real-world consensus bugs in
Geth and OpenEthereum within just 12 hours of fuzzing. The
result shows that Fluffy is able to effectively find consensus
bugs in Ethereum.

358 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0k

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

 0 1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
co

v
er

ed
 c

o
d

e
p

at
h

s

Time (hour)

Fluffy
Fluffy−Random−Bytecode

EVMLab

Figure 7: The number of code paths covered by Fluffy, a
modified version of Fluffy called Fluffy-Random-Bytecode,
and EVMLab over time.

7.2 Code Coverage
We measure the number of code paths covered by Fluffy, a
modified version of Fluffy called Fluffy-Random-Bytecode,
and EVMLab. Fluffy-Random-Bytecode simply generates
random bytecode instructions rather than using the sophisti-
cated bytecode mutation strategy (§ 4.3) of Fluffy. In case of
Fluffy and Fluffy-Random-Bytecode, we measure the size of
the corpus, which represents the number of code paths, over
time. In case of EVMLab, which does not use and report code
coverage, we replay the corpus it generates using libFuzzer
on OpenEthereum.

Figure 7 shows the covered code paths over time. The result
shows that Fluffy covers more code paths than EVMLab at
all times. In the first 1 hour, Fluffy quickly covers more than
4,000 code paths, whereas EVMLab covers less than 2,000
paths. After 12 hours, Fluffy covers 5,809 code paths, which
is 2.7 times as many code paths as 2,185 code paths that
EVMLab covers.

Fluffy-Random-Bytecode performs better than EVMLab,
but worse than Fluffy at all times. After 12 hours, Fluffy-
Random-Bytecode covers 3,202 code paths, which is close
to half of the paths covered by Fluffy and 1.5 times as many
code paths as those covered by EVMLab. This show that the
bytecode mutation strategy of Fluffy contributes significantly
to the effectiveness of Fluffy.
Result. Fluffy explores 2.7 times as many code paths as EVM-
Lab. The result shows that Fluffy is able to cover deep code
paths in Ethereum clients that lead to consensus bugs.

7.3 Throughput
We evaluate whether Fluffy efficiently tests many instances of
multiple transactions. For this evaluation we measure metrics
such as the number of processed transactions, the number of
executed fuzzing iterations, and the CPU usage.

Figure 8 shows the total number of Ethereum transactions

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
u
m

u
la

ti
v

e
co

u
n

t

Time (hour)

Fluffy (Transactions)
Fluffy (Fuzzing iterations)

EVMLab

Figure 8: The total number of transactions and fuzzing iter-
ations processed by Fluffy and EVMLab over time. Fluffy
processes a varying number of transactions across iterations,
whereas EVMLab processes 1 transaction per iteration.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0 5 10 15 20 25 30 35 40 45

C
o

u
n

t

Number of transactions per fuzzing iteration

Figure 9: The distribution of the number of transactions that
Fluffy processes per fuzzing iteration in 12 hours.

and fuzzing iterations processed by Fluffy and EVMLab over
time. Fluffy processes a varying number of transactions across
iterations, whereas EVMLab processes exactly 1 transaction
in every iteration. After 12 hours, Fluffy processes more than
350 million transactions and more than 38 million fuzzing
iterations. On average, Fluffy processes 9.2 transactions per
fuzzing iteration. In contrast, EVMLab processes less than
700 thousand transactions and fuzzing iterations after 12
hours. In total, Fluffy processes 510 times as many trans-
actions and 55 times as many iterations as EVMLab.

We then examine the number of transactions that Fluffy
processes in each fuzzing iteration. Figure 9 shows the distri-
bution of the number of transactions. 3 to 8 transactions are
processed most frequently, except for the test cases with zero
transaction. The largest number of transactions that Fluffy
tests in an iteration for this specific 12-hour fuzzing experi-
ment is 46. As a comparison, the number of transactions that
have produced the blockchain state in the live Ethereum main-
net is more than 800 million transactions, as of August 2020.
Therefore, this result shows that Fluffy tests Ethereum clients

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 359

0

10
0

10
1

10
2

10
3

10
4

10
5

 0 1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
ex

ec
s

p
er

 m
in

u
te

Time (hour)

Fluffy
EVMLab

Figure 10: The number of fuzzing iterations executed per
minute over time. We run the fuzzers in sequential mode
without parallel fuzzing for this experiment.

using a small number of transactions that rewrite blockchain
history.

Although the largest number of transactions is 46 for this
experiment, Fluffy can test more or fewer number of transac-
tions in a different experiment that runs for the same 12 hours,
since how Fluffy determines the number of transactions is
nondeterministic (§ 5.1). Furthermore, there can be consensus
bugs that require more than 46 transactions to trigger.

Next, we examine the throughput of a single fuzzing in-
stance through running Fluffy and EVMLab in sequential
execution mode without parallel fuzzing for 12 hours. Fig-
ure 10 shows the number of fuzzing iterations executed per
minute over time.

Fluffy achieves and sustains an order of magnitude higher
throughput compared to EVMLab. In the beginning, Fluffy ex-
ecutes up to 16,805 fuzzing iterations per minute. We observe
that in the beginning Fluffy generates and executes transac-
tions that invoke a small number of bytecode instructions,
which allows Fluffy to quickly execute more iterations. The
throughput decreases gradually over time, as Fluffy discov-
ers new inputs that invoke many bytecode instructions and
executes mutations of those inputs. After 12 hours, Fluffy
executes around 3,500 fuzzing iterations per minute.

In contrast, the throughput of EVMLab is overall flat, but
fluctuates wildly at certain times during fuzzing. In particu-
lar, EVMLab fails to complete a fuzzing iteration for more
than a minute between 6 and 7 hours, and 10 and 11 hours
after fuzzing. We observe that such fluctuations occur when
EVMLab is stuck in processing an excessively long sequence
of bytecode instructions. Fluffy does not experience this, be-
cause Fluffy limits the number of bytecode instructions that
are executed through limiting the gas limit of transactions.

We now measure the CPU usage to analyze why Fluffy
achieves higher throughput, as both Fluffy and EVMLab are
CPU-bound. Figure 11 shows the CPU usage breakdown
when running Fluffy and EVMLab. We obtain the numbers

 0

 20

 40

 60

 80

 100

Fluffy EVMLab

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

Fuzzer
Geth

OpenEthereum
Others

Figure 11: The CPU usage breakdown when running Fluffy
and EVMLab.

through running the Linux perf command for one minute
while running each fuzzer.

In case of Fluffy, most of the CPU time is spent in executing
the code of OpenEthereum and Geth. We also observe that
the majority of the CPU time spent in the clients is used to
execute the core EVM interpreter logic, where most of the
consensus bugs have been found.

In contrast, EVMLab suffers from the overhead of execut-
ing its own code, which is written in Python, and handling
other tasks. We observe that much of the other tasks are as-
sociated with Docker [37], although EVMLab reuses Docker
containers when spawning new OpenEthereum and Geth pro-
cesses to test new inputs. We also observe that a large portion
of the CPU time for executing the clients is spent in parsing
test inputs and initializing the clients, where consensus bugs
are unlikely to be found.

We emphasize that Fluffy does not outperform EVMLab
by simply using a more efficient programming language and
using specific configurations. In Figure 11, excluding the
overhead of the fuzzer code (Fuzzer) and other tasks (Others),
the CPU used for the Ethereum clients (OpenEthereum and
Geth) is 18.2% for EVMLab and 89.9% for Fluffy, which
is 4.9×. However, Fluffy processes 510× transactions and
55× fuzzing iterations compared to EVMLab, which is much
larger than 4.9×. This shows that Fluffy executes Ethereum
clients much more efficiently, even if the overhead external to
Ethereum clients is the same as EVMLab.
Result. Fluffy processes 510 times and 55 times as many
transactions and fuzzing iterations as EVMLab. The result
shows that Fluffy efficiently tests many instances of multiple
transactions that rewrite blockchain history.

7.4 Debugging
We used the crash debugger of Fluffy to analyze crashes.
We encountered a false positive bug, when we set the initial
blockchain state to a state that contains only the genesis ac-
count. We analyzed that the latest mainnet blockchain state

360 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cannot transition to a state that contains the accounts in the
starting state of the bug, because the starting state contains
a zero-balance account under the address of a precompiled
contract. Creating such account was possible only before a
previous EVM upgrade (related to Bug #15 in Table 2). To
avoid triggering this false positive bug, we added to the ini-
tial blockchain state non-zero balance accounts under the
addresses of precompiled contracts. We also used the crash
debugger to analyze the shallow copy bug and the transfer-
after-destruct bug, and create minimal test cases.
Result. Fluffy enables analyzing crashes triggered by consen-
sus bugs.

8 Discussion and Limitations

We discuss future research directions, and limitations of the
current design of Fluffy.
Smart contract blockchains. Our idea of multi-transaction
differential fuzzing can be applied to other blockchains that
provide smart contract capabilities like Ethereum. Smart
contract blockchains have a total market capitalization of
95 billion USD, as of December 2020, and include popular
blockchains such as Ethereum, Cardano, Stellar, EOS, Tron,
Tezos, and Neo [12]. Like Ethereum, multiple depending
transactions which create and invoke smart contracts deter-
mine the transitions of blockchain states in these blockchains.
Therefore, techniques of Fluffy such as multi-transaction test
cases and semantic-aware mutation strategy can be applied to
find consensus bugs in these other blockchains.
Many-client fuzzing. Another research direction is to fuzz
multiple versions of many Ethereum clients in addition to a
single version of OpenEthereum (Rust) and Geth (Go). Al-
though the two clients are used by 98% of nodes partici-
pating in the Ethereum mainnet, as of August 2020 [6], the
Ethereum community is becoming more aware of the bene-
fits of using multiple different clients since the shallow copy
bug we reported was triggered in the live mainnet [15]. Ex-
amples of other Ethereum clients are Aleth (C++), Trinity
(Python), Besu (Java), Nethermind (.NET), and EthereumJS
(Javascript) [16]. Moreover, it is worthwhile to fuzz not only
the latest version of the clients but also previous versions,
since many of the decentralized Ethereum nodes in the main-
net do not immediately upgrade when new versions are re-
leased, and keep on using a previous version [6]. While it
is straightforward to extend the current implementation of
Fluffy to fuzz many clients, it remains a challenge to achieve
high fuzzing throughput while executing multiple transactions
on many clients.
Mutating client program states. Fluffy models an Ethereum
client as a client program state model, rather than an EVM
state model. Nevertheless, Fluffy mutates the Ethereum client
program state indirectly through setting the initial program
state to a corresponding initial EVM state and executing mul-
tiple transactions. This is because, like other fuzzers, Fluffy

does not directly mutate internal states of the target programs.
An alternative approach is to directly mutate client program
states. However, it would be challenging to directly generate
valid client program states that are reachable with transactions,
such that the found bugs are exploitable on the Ethereum
mainnet.
Limitations of differential fuzzing. Similar to existing dif-
ferential fuzzers for Ethereum, Fluffy is unable to find bugs
when the Etherum clients transition to the same incorrect
blockchain state due to the same consensus bug. A practical
solution to this limitation is to fuzz many different versions
of different client implementations, since it is unlikely that
the same bug exists in all of these different clients. A more
fundamental solution is to utilize the EVM specification itself
as an oracle, similar to how Hydra [27] implements an em-
ulator along with a fuzzer. However, this approach reduces
the number of input generation and testing as well as requires
extensive engineering efforts unlike differential testing. We
also note that, to our knowledge, there has been no previous
case of the same bug occurring in multiple Ethereum client
implementations.
Limitations of fuzzing. Like existing fuzzers for Ethereum,
Fluffy inherits the limitations of fuzzing. Although fuzzing
is good at exploring code paths with loose branch conditions
(e.g., x > 0), fuzzing struggles to drive the target program
into paths with tight branch conditions (e.g., x == 0xdead-
beef) [9, 48, 56]. This limitation is demonstrated by Fluffy
failing to find Bug #9 in Table 2 within 12 hours, which re-
quires specific inputs that satisfy tight branch conditions to
trigger. We can address the limitation by combining fuzzing
with concolic execution [9, 25, 48, 56], which interprets target
program variables as symbolic variables and uses constraint
solving to generate specific inputs that satisfy branch condi-
tions.

9 Related Work

Fluffy is the first multi-transaction differential fuzzer for find-
ing consensus bugs in Ethereum. In this section we describe
existing works that are related to Fluffy.
Consensus in blockchains. Consensus in blockchains are
increasingly becoming important as blockchains such as Bit-
coin [39] and Ethereum [17] are becoming increasingly used.
Researchers have proposed various techniques related to con-
sensus in blockchains to improve the scalability, security, and
usability of blockchains [4, 24, 28, 29, 31, 44, 47]. Our work
complements these works by focusing on the implementation
aspects of consensus in blockchains, and finding consensus
bugs in Ethereum clients that lead to network split and theft.
Differential testing for consensus bugs. Differential testing
is an effective software testing method that has been applied
to various systems [3, 8, 10, 36, 42, 55]. Several fuzzers have
been proposed to apply differential testing techniques to find
consensus bugs in Ethereum [18, 22, 33]. These fuzzers gen-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 361

erate a blockchain state and a transaction that transforms the
state. Fluffy is also a differential fuzzer for finding consensus
bugs, but Fluffy generates and runs multiple transactions that
rewrite blockchain history and adopts various optimizations
to improve the fuzzing throughput and the code coverage.
Coverage-guided fuzzing. Coverage-guided fuzzers such as
libFuzzer [30] and AFL [38] leverage code path statistics
to mutate test inputs. Fluffy extends such coverage-guided
fuzzing mechanisms through extending libFuzzer. Leveraging
more sophisticated mechanisms like gradient-guided tech-
niques [46] is left as future work.
Smart contract vulnerabilities. Existing techniques for find-
ing smart contract vulnerabilities [26, 32, 40, 49, 50, 57] focus
on vulnerabilities in the business logic of smart contracts
and transactions, whereas Fluffy focuses on vulnerabilities
in the underlying Ethereum client implementations. For ex-
ample, TxSpector [57] replays transaction history to extract
logic relations, and applies user-specific logic rules to uncover
vulnerabilities such as the re-entrancy vulnerability. In con-
trast, Fluffy generates and tests transactions which have never
occurred in blockchain history to trigger consensus bugs in
Ethereum clients that alter how the vulnerable clients execute
the business logic of smart contracts.

10 Conclusion

Consensus bugs in Ethereum are extremely rare but can be
exploited for network split and theft, which cause reliability
and security-critical issues in the Ethereum ecosystem. Our
fuzzer, called Fluffy, shows how to find consensus bugs hid-
den in deep states of Ethereum clients. Unlike existing fuzzers
for Ethereum, Fluffy supports multi-transaction tests and uses
different Ethereum clients as cross-referencing oracles. Fluffy
also greatly improves the fuzzing throughput and the code cov-
erage with various optimizations: in-process fuzzing, fuzzing
harnesses for Ethereum clients, and semantic-aware multi-
transaction mutation that reduces erroneous test cases. Fluffy
found two new consensus bugs in the most popular Geth client
which were exploitable on the live Ethereum mainnet. Fluffy
is publicly available at https://github.com/snuspl/fluffy.

11 Acknowledgements

We thank our shepherd Ding Yuan and the anonymous re-
viewers for their insightful feedback. We thank the mem-
bers of the Software Platform Lab at Seoul National Uni-
versity for their valuable input. This work was supported by
Institute of Information & communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No.2015-0-00221, Development of a Unified
High-Performance Stack for Diverse Big Data Analytics).

References

[1] Adriana Hamacher. So, what is the Ethereum
(ETH) total supply?, August 2020. https:
//decrypt.co/38271/so-what-is-the-ethereum-
eth-total-supply.

[2] Andrey Shevchenko. Binance briefly pauses Ethereum
withdrawals as network suffers ‘minor hard-fork’,
November 2020. https://cointelegraph.com/
news/binance-pauses-ethereum-withdrawals-
as-network-suffers-minor-hard-fork.

[3] George Argyros, Ioannis Stais, Suman Jana, Angelos D.
Keromytis, and Aggelos Kiayias. SFADiff: Automated
Evasion Attacks and Fingerprinting Using Black-box
Differential Automata Learning. In Proceedings of the
23rd ACM Conference on Computer and Communica-
tions Security (CCS), 2016.

[4] Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert
Morris, and Nickolai Zeldovich. Notary: A Device for
Secure Transaction Approval. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[5] Algirdas Avizienis. The N-Version Approach to Fault-
Tolerant Software. IEEE Transactions on Software En-
gineering, 1985.

[6] Bitfly. Ethereum Mainnet Statistics. https://
ethernodes.org, Accessed August 2020.

[7] Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula,
Tim Ruffing, and Aviv Zohar. Responsible Vulnerability
Disclosure in Cryptocurrencies. Commun. ACM, 2020.

[8] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz
Khurshid, and Vitaly Shmatikov. Using Frankencerts
for Automated Adversarial Testing of Certificate Vali-
dation in SSL/TLS Implementations. In Proceedings
of the 35th IEEE Symposium on Security and Privacy
(Oakland), 2014.

[9] George Candea and Patrice Godefroid. Automated Soft-
ware Test Generation: Some Challenges, Solutions, and
Recent Advances. In Computing and Software Science -
State of the Art and Perspectives. Springer, 2019.

[10] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su,
and Jianjun Zhao. Coverage-Directed Differential Test-
ing of JVM Implementations. In Proceedings of the
2016 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2016.

[11] Colin Harper. Ethereum’s ‘Unannounced Hard
Fork’ Was Trying to Prevent the Very Disruption It
Caused, November 2020. https://coindesk.com/
ethereums-hard-fork-disruption.

362 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/snuspl/fluffy
https://decrypt.co/38271/so-what-is-the-ethereum-eth-total-supply
https://decrypt.co/38271/so-what-is-the-ethereum-eth-total-supply
https://decrypt.co/38271/so-what-is-the-ethereum-eth-total-supply
https://cointelegraph.com/news/binance-pauses-ethereum-withdrawals-as-network-suffers-minor-hard-fork
https://cointelegraph.com/news/binance-pauses-ethereum-withdrawals-as-network-suffers-minor-hard-fork
https://cointelegraph.com/news/binance-pauses-ethereum-withdrawals-as-network-suffers-minor-hard-fork
https://ethernodes.org
https://ethernodes.org
https://coindesk.com/ethereums-hard-fork-disruption
https://coindesk.com/ethereums-hard-fork-disruption

[12] CryptoSlate. Smart Contracts Coins: Protocols
intended to digitally facilitate, verify, or enforce the
negotiation or performance of a contract. https:
//cryptoslate.com/cryptos/smart-contracts,
Accessed December 2020.

[13] David Siegel. Understanding The DAO Attack,
June 2016. https://coindesk.com/understanding-
dao-hack-journalists.

[14] Derek Parker. Delve: A Debugger for the Go Program-
ming Language. https://github.com/go-delve/
delve, Accessed August 2020.

[15] Eleazar Galano. Infura Mainnet Outage
Post-Mortem 2020-11-11, November 2020.
https://blog.infura.io/infura-mainnet-
outage-post-mortem-2020-11-11.

[16] Ethereum. Clients, tools, dapp browsers, wal-
lets and other projects. https://github.com/
ethereum/wiki/wiki/Clients,-tools,-dapp-
browsers,-wallets-and-other-projects, Ac-
cessed December 2020.

[17] Ethereum. Ethereum Whitepaper: A Next-Generation
Smart Contract and Decentralized Application Platform.
https://ethereum.org/en/whitepaper/, Accessed
August 2020.

[18] Ethereum. EVM lab utilities: Utilities for inter-
acting with the Ethereum virtual machine. https:
//github.com/ethereum/evmlab, Accessed August
2020.

[19] Ethereum. Go Ethereum: Official Go implementation of
the Ethereum protocol. https://geth.ethereum.org,
Accessed August 2020.

[20] Ethereum. Solidity: An object-oriented, high-
level language for implementing smart contracts.
https://solidity.readthedocs.io/en/develop,
Accessed August 2020.

[21] Ethereum. The Ethereum Bounty Program. https:
//bounty.ethereum.org, Accessed August 2020.

[22] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang,
Yu Jiang, Huizhong Li, and Xiang Shi. EVMFuzzer:
Detect EVM Vulnerabilities via Fuzz Testing. In Pro-
ceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE),
2019.

[23] Geth team. Geth security release: Critical
patch for CVE-2020-28362, November 2020.
https://blog.ethereum.org/2020/11/12/
geth_security_release.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling Byzan-
tine Agreements for Cryptocurrencies. In Proceedings
of the 26th ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2017.

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2005.

[26] Everett Hildenbrandt, Manasvi Saxena, Nishant Ro-
drigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Bran-
don M. Moore, Daejun Park, Yi Zhang, Andrei Ste-
fanescu, and Grigore Rosu. KEVM: A Complete For-
mal Semantics of the Ethereum Virtual Machine. In
31st IEEE Computer Security Foundations Symposium
(CSF), 2018.

[27] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding Semantic Bugs
in File Systems with an Extensible Fuzzing Framework.
In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (SOSP), 2019.

[28] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Guang Yang, Wei Xu, Fan Long, and Andrew Chi-
Chih Yao. A Decentralized Blockchain with High
Throughput and Fast Confirmation. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC),
2020.

[29] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter Pietzuch. Teechain: A Se-
cure Payment Network with Asynchronous Blockchain
Access. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[30] LLVM Project. libFuzzer - a library for coverage-
guided fuzz testing. https://llvm.org/docs/
LibFuzzer.html, Accessed August 2020.

[31] Marta Lokhava, Giuliano Losa, David Mazières, Gray-
don Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove,
Rafał Malinowsky, and Jed McCaleb. Fast and Secure
Global Payments with Stellar. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making Smart Contracts Smarter.
In Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security (CCS), 2016.

[33] Martin Holst Swende. One year of Ethereum Security,
November 2017. Devcon 3.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 363

https://cryptoslate.com/cryptos/smart-contracts
https://cryptoslate.com/cryptos/smart-contracts
https://coindesk.com/understanding-dao-hack-journalists
https://coindesk.com/understanding-dao-hack-journalists
https://github.com/go-delve/delve
https://github.com/go-delve/delve
https://blog.infura.io/infura-mainnet-outage-post-mortem-2020-11-11
https://blog.infura.io/infura-mainnet-outage-post-mortem-2020-11-11
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects
https://ethereum.org/en/whitepaper/
https://github.com/ethereum/evmlab
https://github.com/ethereum/evmlab
https://geth.ethereum.org
https://solidity.readthedocs.io/en/develop
https://bounty.ethereum.org
https://bounty.ethereum.org
https://blog.ethereum.org/2020/11/12/geth_security_release
https://blog.ethereum.org/2020/11/12/geth_security_release
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

[34] Martin Holst Swende. Protecting The Baselayer - from
Shanghai to Osaka, October 2019. Devcon 5.

[35] Martin Holst Swende. Shallow copy in the
0x4 precompile could lead to EVM mem-
ory corruption, November 2020. https:
//github.com/ethereum/go-ethereum/security/
advisories/GHSA-69v6-xc2j-r2jf.

[36] William M. McKeeman. Differential Testing for Soft-
ware. Digital Technical Journal, 1998.

[37] Dirk Merkel. Docker: Lightweight Linux Containers
for Consistent Development and Deployment. Linux
Journal, March 2014.

[38] Michał Zalewski. american fuzzy lop. https://
lcamtuf.coredump.cx/afl, Accessed August 2020.

[39] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Elec-
tronic Cash System, 2008. https://bitcoin.org/
bitcoin.pdf.

[40] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Sax-
ena, and Aquinas Hobor. Finding The Greedy, Prodigal,
and Suicidal Contracts at Scale. In Proceedings of the
34th Annual Computer Security Applications Confer-
ence (ACSAC), 2018.

[41] OpenEthereum. OpenEthereum: Fast and feature-
rich multi-network Ethereum client. https:
//github.com/openethereum/openethereum,
Accessed August 2020.

[42] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana.
DeepXplore: Automated Whitebox Testing of Deep
Learning Systems. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP),
2017.

[43] Péter Szilágyi. Geth v1.9.17 Post Mortem, Novem-
ber 2020. https://gist.github.com/karalabe/
e1891c8a99fdc16c4e60d9713c35401f.

[44] Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla,
Karan Grover, Muthian Sivathanu, Nishanth Chandran,
Divya Gupta, and Satya Lokam. Blockene: A High-
throughput Blockchain Over Mobile Devices. In Pro-
ceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[45] Scott Chipolina. How a Dormant Bug Briefly
Split the Ethereum Blockchain, November 2020.
https://decrypt.co/47891/how-a-dormant-bug-
briefly-split-the-ethereum-blockchain.

[46] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. NEUZZ: Efficient

Fuzzing with Neural Program Smoothing. In Proceed-
ings of the 40th IEEE Symposium on Security and Pri-
vacy (Oakland), 2019.

[47] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakr-
ishnan, Kathleen Ruan, Parimarjan Negi, Lei Yang, Rad-
hika Mittal, Giulia Fanti, and Mohammad Alizadeh.
High Throughput Cryptocurrency Routing in Payment
Channel Networks . In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2020.

[48] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Proceedings of the 2016 Annual
Network and Distributed System Security Symposium
(NDSS), 2016.

[49] Christof Ferreira Torres, Mathis Steichen, et al. The
Art of The Scam: Demystifying Honeypots in Ethereum
Smart Contracts. In Proceedings of the 28th USENIX
Security Symposium (Security), 2019.

[50] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev. Se-
curify: Practical Security Analysis of Smart Contracts.
In Proceedings of the 25th ACM Conference on Com-
puter and Communications Security (CCS), 2018.

[51] Vitalik Buterin. Security alert [11/24/2016]: Con-
sensus bug in geth v1.4.19 and v1.5.2, November
2016. https://blog.ethereum.org/2016/11/
25/security-alert-11242016-consensus-bug-
geth-v1-4-19-v1-5-2.

[52] William Foxley. Developers Debate Disclosure Proto-
cols After ‘Accidental’ Ethereum Hard Fork, November
2020. https://coindesk.com/developers-
debate-disclosure-protocols-accidental-
ethereum-hard-fork.

[53] William Foxley. How Much Ether Is Out
There? Ethereum Developers Create New
Scripts for Self-Verification, August 2020.
https://coindesk.com/how-much-ether-is-
out-there-ethereum-developers-create-new-
scripts-for-self-verification.

[54] Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger, 2014. https://
gavwood.com/paper.pdf.

[55] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in C compilers. In
Proceedings of the 2011 ACM SIGPLAN Conference

364 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ethereum/go-ethereum/security/advisories/GHSA-69v6-xc2j-r2jf
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-69v6-xc2j-r2jf
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-69v6-xc2j-r2jf
https://lcamtuf.coredump.cx/afl
https://lcamtuf.coredump.cx/afl
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/openethereum/openethereum
https://github.com/openethereum/openethereum
https://gist.github.com/karalabe/e1891c8a99fdc16c4e60d9713c35401f
https://gist.github.com/karalabe/e1891c8a99fdc16c4e60d9713c35401f
https://decrypt.co/47891/how-a-dormant-bug-briefly-split-the-ethereum-blockchain
https://decrypt.co/47891/how-a-dormant-bug-briefly-split-the-ethereum-blockchain
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2
https://coindesk.com/developers-debate-disclosure-protocols-accidental-ethereum-hard-fork
https://coindesk.com/developers-debate-disclosure-protocols-accidental-ethereum-hard-fork
https://coindesk.com/developers-debate-disclosure-protocols-accidental-ethereum-hard-fork
https://coindesk.com/how-much-ether-is-out-there-ethereum-developers-create-new-scripts-for-self-verification
https://coindesk.com/how-much-ether-is-out-there-ethereum-developers-create-new-scripts-for-self-verification
https://coindesk.com/how-much-ether-is-out-there-ethereum-developers-create-new-scripts-for-self-verification
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf

on Programming Language Design and Implementation
(PLDI), 2011.

[56] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM : A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of
the 27th USENIX Security Symposium (Security), 2018.

[57] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and
Zhiqiang Lin. TXSPECTOR: Uncovering Attacks in
Ethereum from Transactions. In Proceedings of the 29th
USENIX Security Symposium (Security), 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 365

MAGE: Nearly Zero-Cost Virtual Memory for Secure Computation

Sam Kumar, David E. Culler, and Raluca Ada Popa
University of California, Berkeley

Abstract
Secure Computation (SC) is a family of cryptographic prim-
itives for computing on encrypted data in single-party and
multi-party settings. SC is being increasingly adopted by in-
dustry for a variety of applications. A significant obstacle to
using SC for practical applications is the memory overhead of
the underlying cryptography. We develop MAGE, an execu-
tion engine for SC that efficiently runs SC computations that
do not fit in memory. We observe that, due to their intended
security guarantees, SC schemes are inherently oblivious—
their memory access patterns are independent of the input
data. Using this property, MAGE calculates the memory ac-
cess pattern ahead of time and uses it to produce a memory
management plan. This formulation of memory management,
which we call memory programming, is a generalization of
paging that allows MAGE to provide a highly efficient virtual
memory abstraction for SC. MAGE outperforms the OS vir-
tual memory system by up to an order of magnitude, and in
many cases, runs SC computations that do not fit in memory
at nearly the same speed as if the underlying machines had
unbounded physical memory to fit the entire computation.

1 Introduction
Secure Computation (SC) refers to cryptographic primitives
that allow computation on encrypted data. An example of SC
is secure multi-party computation, which allows two parties to
perform a collaborative computation on private input data. Ad-
vances in cryptography over the years have steadily brought
SC closer to practice. Recently, the use of SC in industry—in
particular, homomorphic encryption (HE) and secure multi-
party computation (SMPC)—has burgeoned. Companies offer
services based on SC [12,19,27,38,46,75] (from secure collab-
orative learning to decentralized authentication and custody),
large financial enterprises have added SC-based products [64],
and cryptocurrencies secure billions of dollars with SC [91].

SC not only has high CPU overhead, but also requires
high memory usage and, in the case of SMPC, high network
usage. For example, a 64-bit integer, which requires only 8 B
of memory when computing in plaintext, takes up 1 KiB
of memory when using a garbled circuit (a type of SMPC).
Efficiently running SC requires careful attention to not only
CPU efficiency, but also memory and network demands.

CPU overheads can be reduced using hardware accelerators
(e.g., GPUs, FPGAs) or specialized hardware (e.g., AES-NI).
Network bandwidth continues to grow exponentially accord-
ing to Nielsen’s Law [62], and recent cryptographic improve-
ments have relaxed network bandwidth demands for some SC

protocols [10, 15]. But memory management remains prob-
lematic. Many recent cryptographic systems based on SC re-
port that SC systems quickly run out of memory [66,79,94,95].
Once they do, the computation becomes prohibitively slow be-
cause the OS inefficiently swaps the large memory footprint to
secondary storage. For example, the authors of Conclave [79]
report that Obliv-C, an SMPC framework, can run a join on
only 30,000 records before running out of memory, and state
that SMPC “in practice only scales to a few thousand input
records.” Similarly, Senate [66], a secure collaborative ana-
lytics engine based on SMPC, can run a 16-party private set
intersection on only 10,000 integers per party.

In this context, we address the research question: Can SC
execute efficiently when it does not fit in memory? We
answer this in the affirmative with our system MAGE.1

A natural starting point for MAGE is to specialize the OS
page replacement policy to SC workloads. Unsurprisingly,
this design suffers from some of the same pitfalls as classic
virtual memory systems. Pages may not be fetched until a
page fault occurs, requiring multiprogramming to keep the
CPU busy [26]. Furthermore, classic page replacement algo-
rithms perform poorly on some workloads [3], and a policy
specialized to SC would likely be no different.

To mitigate these issues, we observe that SC is inherently
oblivious. In particular, many SC protocols have no data-
dependent memory accesses. This is because an SC proto-
col must not leak any information about the data contents
via its memory access pattern. Our key insight in MAGE is
that SC’s inherent obliviousness allows us to calculate the
access pattern for any computation in advance and use it
to manage memory in a fundamentally more efficient way
than classic OS paging. Unlike paging, which typically re-
sponds to page faults reactively, MAGE can proactively pro-
duce a memory management plan based on the program’s
memory access pattern. To highlight this distinction, we call
our approach memory programming and the resulting plan
a memory program. MAGE preplans the exact sequence of
memory-storage transfers to issue at runtime, given a target
memory consumption. Enabled by memory programming and
the compute-to-memory ratio of SC workloads, MAGE exe-
cutes certain SC programs that do not fit in memory at nearly
in-memory speeds, as if memory were unbounded—in effect,
virtual memory at nearly zero cost.

To understand the power of MAGE’s preplanning based on
SC’s obliviousness, consider Belady’s theoretically optimal

1MAGE stands for Memory-Aware Garbling Engine.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 367

paging algorithm (MIN) [3]. MIN, being a clairvoyant algo-
rithm, is not realizable in the classic formulation of paging;
it is typically used as a point of comparison to other realiz-
able heuristics. But in the context of memory programming,
MAGE can use MIN directly, because it knows the access
pattern in advance. Memory programming allows MAGE to
use an algorithm that is well-grounded in theory, instead of a
heuristic (e.g., LRU or LFU) that sometimes performs poorly.

Yet memory programming also raises the bar for possible
memory management strategies. For example, although MIN
is an optimal paging algorithm, it unfortunately does not pro-
duce an optimal memory program. The reason is that MIN,
like other paging algorithms, brings a page into memory only
at the moment it is needed, thereby causing the program to
stall while transferring the page. We can overcome this by
leveraging SC’s obliviousness once again, to prefetch accord-
ing to the access pattern (i.e., with no false positives or false
negatives) so that the program never stalls.

At its core, our approach to memory management is quite
simple: MAGE optimizes storage bandwidth by evicting
pages using MIN, and optimizes latency via prefetching and
asynchronous eviction. Whereas classic paging algorithms
typically rely on heuristics and empirical observations of
what works well in practice [9], our memory programming
approach is simple, well-grounded, robust, and performant.

While conceptually simple, the above strategy is challeng-
ing to instantiate efficiently. The reason is that MIN requires
the entire memory access pattern to be materialized at once; it
cannot be applied in a streaming fashion. Using Intel Pin [54],
we found that an SC workload that runs in under an hour can
issue trillions of memory accesses. Thus, materializing the
access trace could require terabytes of space.

To address this, we leverage the strong precedent for using
DSLs to specify SC programs [34, 78]. MAGE’s planner rep-
resents the program as a bytecode recording higher-level op-
erations specified in the DSL program. This is more succinct
than recording individual memory accesses. For example, con-
sider a program that adds two integers using garbled circuits,
an SMPC protocol. Garbled circuits support only AND and
XOR operations on encrypted bits, so the integer addition is
ultimately decomposed into encrypted AND and XOR opera-
tions, each of which comprises many memory accesses. Yet,
MAGE records the entire addition operation as a single entry
in the bytecode. This works well because most of the addition
operation’s memory accesses are “uninteresting”—they are
accesses to temporary variables (e.g., on the stack) that fit
easily in memory, or to SC protocol state that should remain
in memory for the entire program. The only consequential
accesses for memory management—reading the two input
integers and writing the output integer—are captured in the
single entry MAGE records.

Once MAGE allows SC to efficiently expand beyond the
physical memory limit, another limited resource (e.g., stor-
age/network bandwidth or CPUs) of a single machine could

become the bottleneck. Thus, we design MAGE to support
parallel SC execution across multiple network flows, CPU
cores, or machines. To do so, we observe that a distributed
memory programming model allows SC to be parallelized in
this way, without requiring MAGE’s planner to reason about
threads executing concurrently in the same address space.

Finally, we aim to support a variety of applications and
protocols, including new ones that may emerge in the coming
years. The challenge is that different SC protocols may be
very different cryptographically and may support different
operations efficiently. Fortunately, our memory programming
approach allows us to build MAGE entirely in userspace on
a Linux system, helping to make MAGE extensible to new
applications and protocols. We carefully design a layered
architecture for MAGE so that the DSL, bytecode, and inter-
preter can be extended for new SC protocols.

We implemented MAGE in C++ and apply it to two SC
protocols: (1) garbled circuits, a type of SMPC, and (2) CKKS,
a type of HE. We evaluated MAGE using 10 workloads, sized
such that they do not fit in memory. MAGE outperforms the
operating system’s virtual memory for all 10 workloads, and
outperforms it by 4–12× for 7 of them. Additionally, MAGE
executes all 10 workloads at within 60% of in-memory speeds,
and runs 7 of them at within 15% of in-memory speeds.

Even with our techniques, SC remains orders of magni-
tude slower than plaintext computation due to CPU and net-
work overheads. That said, various applications like federated
data analytics [1, 66], coopetitive machine learning [94], and
privacy-preserving recommendation [63] require SC. Due to
privacy constraints, running these applications in plaintext is
not an option. By bringing memory management overhead
for SC to nearly zero, MAGE helps make SC more practical
and potentially enables more SC-based applications.

2 Secure Computation Background
2.1 Circuit Representation
As explained earlier, SC is inherently oblivious, meaning
that any function f computed using SC cannot have data-
dependent memory accesses. Thus, it is natural to describe
the function f as a circuit C [13, 23, 37, 55]. C is a combina-
tional circuit that accepts the arguments to f as inputs and
produces the result of f applied to those arguments as its
output. We write C = (W,G), where W is a set of wires and
G is a set of gates. Each wire represents a datum whose type
is the unit of computation in the SC scheme (in most cases, it
is the information stored in a single ciphertext). We denote
the subset of W storing C’s input as I, and the subset of W
storing C’s output as O. Each gate represents a computation
supported by the SC scheme. We will typically assume that
each gate has exactly one output wire, and that each w 6∈ O is
the input wire of at least one gate. Thus, |W |= |G|+ |I|.

The particular data types represented in the wires and
the types of supported gates depend on the particular SC
scheme of interest. For the CKKS homomorphic encryption

368 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

scheme [16], each wire represents a vector of real numbers
and each gate represents an element-wise addition or mul-
tiplication of those vectors. For garbled circuits [88], each
wire represents a single bit and each gate represents a binary
AND operation or XOR operation on those bits. Other SC
schemes can be similarly formulated this way. Below, we
explain CKKS and garbled circuits in greater depth.

2.2 CKKS Homomorphic Encryption
In the CKKS scheme [16], each ciphertext encodes a vector
of real or complex numbers (stored with limited precision).
Given ciphertexts c1 = Enc(~v1) and c2 = Enc(~v2), one can
compute Enc(~v1 +~v2) and Enc(~v1 ◦~v2) (where ◦ is element-
wise multiplication). The dimension of each vector depends
on parameters chosen during key generation. Each ciphertext
is assigned a level, which is a nonnegative integer. When per-
forming the element-wise multiplication operation, both input
ciphertexts must have the same level; the level of the output
ciphertext is one less than the level of the inputs. Performing
element-wise addition does not reduce the ciphertext level
the way element-wise multiplication does. A ciphertext at
level 0 cannot be used for element-wise multiplication. The
maximum level of a ciphertext depends on the parameters
chosen during key generation. While one can run a bootstrap-
ping procedure to increase the level of a ciphertext, it is very
expensive, and therefore not implemented by all libraries.

2.3 Garbled Circuits
Yao’s garbled circuit protocol [88] (referred to simply as gar-
bled circuits) allows two parties, called the garbler and the
evaluator, to jointly compute a function f over their private
inputs x1 and x2. The protocol requires f to be represented as
a boolean circuit C. Unlike CKKS, there are no restrictions on
C’s depth. However, both parties have to execute the circuit.

First, the two parties run a protocol called oblivious transfer
to obtain the (encrypted) wire values for their inputs without
revealing their inputs. Then the garbler encrypts C in a special
way called garbling to obtain C̃, called a garbled circuit. The
process of garbling is analogous to executing the circuit; a
gate cannot be garbled until the (encrypted) values of both
input wires are obtained, and garbling a gate produces, as a
side effect, the (encrypted) value of the output wire. Then, the
garbler sends C̃ to the evaluator. The evaluator executes the
circuit, executing each gate using the gate’s garbled informa-
tion in C̃. Finally, the two parties communicate to decipher
the plaintext values of the output wires.

If the parties would like to repeat the computation again
with different inputs, they must re-garble C. It is insecure to
reuse the same garbled circuit C̃ with different sets of inputs.

More comprehensive explanations of garbled circuits, their
underlying cryptography, and their state-of-the-art optimiza-
tions are available in other resources [6, 69, 86].

2.4 Efficiently Executing Circuits
In this section, we give background on existing techniques for
efficiently executing cryptographic circuits. Although many

of these techniques were developed for garbled circuits, they
mostly apply to homomorphic encryption as well.
2.4.1 Naïve Baseline
Early garbled circuit systems, like Fairplay [55], JKS [41],
and PSPW [65], allocate memory for all wires and store the
entire garbled circuit in memory. The memory overhead is
O(|W |+ |G|). Because, for a well-formed circuit, |G|+ |I|=
|W |, this is equivalent to O(|W |).
2.4.2 Pipelining Garbling and Evaluation
After the garbler garbles a gate to include in C̃, the garbler
does not use that gate’s garbled data. Similarly, once the eval-
uator evaluates a gate, it never again uses that garbled gate.
Based on this observation, the HEKM system [37] operates
without keeping the entire garbled circuit in memory, as fol-
lows. The garbler and the evaluator first agree on an order
in which to execute the gates in C. Then, the garbler garbles
each gate and streams the garbled gates to the evaluator, who
evaluates the gates in the same order. In this way, all gates are
garbled and evaluated, without materializing the full set of
garbled gates at any one time. Because space is allocated for
all wires in the circuit, the memory overhead is still O(|W |).
2.4.3 Reclaiming Wire Memory
When executing a circuit, one can discard the memory for
a wire once all gates it feeds into have been executed. Only
wires whose values have been computed and will be used in
the future—the live wires—must be kept in memory. The KSS
system [49] takes advantage of this by dynamically attaching
a reference count to each wire; PCF [48] statically calculates
when to reuse wire memory. Using interpretation techniques
developed in PCF [48] and refined in Frigate [60], not even the
plaintext circuit is materialized in memory. TinyGarble [73],
EMP-toolkit [82] (for semi-honest SMPC), and EVA [23]
also use variants of this technique. With this optimization, the
memory demand is O(w), where w is the size of the largest
set of live wires when executing the circuit. MAGE builds
on this line of work by exploring how to efficiently swap to
storage when w wires do not fit in memory.

3 Memory Overhead of Secure Computation
First, we discuss the memory overhead of SC. Then, we dis-
cuss the memory overhead for collaborative applications.

3.1 Analysis of the Memory Demand
The size of the circuit, for a computation, is proportional to
the size of the computation. But in many cases, the memory
demand is substantially smaller than the circuit size; only w
wires need to be stored, where w is the size of the largest set
of live wires when executing the circuit (§2.4.3).

In practice, circuits are often described in a programming
language [34,78] and gates are executed in the same order as
the program is interpreted. In this execution order, live wires
correspond to in-scope variables in the program. Thus, the
memory usage of running an SC program has the same order
of growth as running the same algorithm in plaintext.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 369

Program
...
while	(...)	{
		a[i]=b[i]+c[i]
}
...

Memory Program
add	32,64,96
issue-swap-in	6,8
add	108,120,152
finish-swap-in	6

MAGE's Planner
(memory

programming)

Memory Program
add	32,64,96
issue-swap-in	6,8
add	108,120,152
finish-swap-in	6

MAGE's
Interpreter

(engine+protocol)
Output

Input

(can be reused)

Figure 1: Overview of MAGE. It consists of two phases:
planning (top) and execution (bottom)

The memory cost of SC lies in the constant factors. When
executing a secure computation protocol, the wire values
are encrypted. Thus, a key parameter is the expansion factor
of the encryption. In garbled circuits using a 128-bit block
cipher, including state-of-the-art optimizations (Point-and-
Permute [2], Free XOR [47], Half Gates [90], and Fixed-Key
Block Cipher [5, 31]), each wire value is 16 bytes. Each wire
represents only 1 bit of plaintext, so this is a 128× expansion
factor. For CKKS, ciphertexts at higher levels are larger than
ciphertexts at lower levels. For the parameters we used in
our evaluation, each ciphertext is hundreds of kilobytes and
encodes a vector of dimension up to 4,096.

3.2 Scaling Collaborative Applications
SMPC supports collaborative applications over secret data,
such as federated data analytics [1] and cooperative machine
learning [59]. A common technique to reduce SMPC’s over-
head is to use SMPC in a minimal way. For example, some
approaches aim to use SMPC for only a small part of the over-
all computation [1, 43, 53, 79, 94]. Others carefully choose
algorithms that can be executed efficiently in SMPC or use
approximations that incur less overhead [58,59,68]. But even
with these approaches, the SMPC computation often has high
memory demands [66]. Thus, it remains important to effi-
ciently execute SMPC computations that do not fit in memory.

4 Overview of MAGE
SC workloads are oblivious by nature. Thus, MAGE can work
out the program’s memory access pattern in advance, and
use this information to produce a memory management plan,
called a memory program, tailored to the particular access
pattern. Importantly, obliviousness is not merely an artifact of
certain existing SC schemes; it is inherent to SC. Otherwise,
an adversary could potentially infer information about secret
data based on the memory access pattern.

To support this paradigm, MAGE’s workflow has two
phases, as shown in Fig. 1. An SC application is written in a
DSL internal to C++. MAGE’s planner unrolls the DSL code
to produce a bytecode, and then performs transformations on
the bytecode to produce a memory program. In MAGE, the
memory program is a bytecode that includes swap directives
describing when to transfer data between storage and memory.

Finally, the memory program is given to MAGE’s interpreter,
which executes it using the SC protocol.

For multi-party protocols, the parties run separate instances
of MAGE’s interpreter. In the case of garbled circuits, garbled
gates are streamed from the garbler to the evaluator, as de-
scribed in §2.4.2. Both the garbler and evaluator use MAGE to
follow a memory program and run with constrained memory.

Our approach of including swap directives in the memory
program relies on the planner knowing how much memory
will be available at runtime. An alternative approach is for
memory programs to be agnostic to the amount of available
memory. This would add runtime overhead, as MAGE’s inter-
preter would need to decide which pages to evict. In contrast,
our approach moves this overhead to the planning phase, keep-
ing the execution phase as lightweight as possible.

4.1 Address Translation in MAGE
The application programmer should not have to manage pag-
ing, so it is natural to write DSL programs in a virtual address
space that is, in effect, infinitely large. Central to designing
MAGE is deciding at which point in Fig. 1 to translate this
address space into a physical address space that fits in RAM.

One possibility (which MAGE does not use) is to perform
address translation at runtime, using standard operating sys-
tem mechanisms for prefetching and address translation. At
runtime, swap directives in the memory program would ask
the operating system to page parts of the virtual address space
out to storage or in to RAM. Unfortunately, the existing way
for a Linux process to do this—the madvise system call—is
too limited. As of Linux 5.10, pages brought into RAM using
the MADV_WILLNEED hint are not mapped in the page table,
so a minor page fault is incurred on the first subsequent ac-
cess. Similarly, the MADV_PAGEOUT hint merely marks pages
as inactive; it does not swap out pages immediately.

In contrast, MAGE does not rely on OS address transla-
tion for demand paging. MAGE’s engine moves data between
memory and storage via explicit I/O operations, so that its
resident set size never exceeds the available RAM. At the
surface, this is similar to buffer management in a DBMS. But
unlike a DBMS, MAGE’s planner can be viewed as solving
an address translation problem in advance. The DSL variables
declared by the programmer exist in a MAGE-virtual address
space, and the final memory program output by the planner
references data (i.e., wire values) in a MAGE-physical address
space that fits within RAM. MAGE’s planner creates these ad-
dress spaces and performs their translation in software during
the planning phase. It includes swap directives in the memory
program so that the interpreter does not run out of RAM.

To avoid confusion, we will refer to the addresses created by
the OS and sent over the memory bus as OS-virtual addresses
and OS-physical addresses. At runtime, MAGE’s interpreter
stores the program’s memory in an array, and each MAGE-
physical address in the memory program is treated as an
index into this array. Thus, MAGE-physical addresses roughly
correspond to the OS-virtual addresses of MAGE’s interpreter.

370 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

MAGE’s approach to address translation has several ad-
vantages. First, in contrast to an madvise-based approach,
MAGE’s planner has nearly complete control over when pages
are brought into memory and evicted to storage. Second, by
translating addresses in the planner, MAGE avoids address-
translation-related overheads at runtime. In contrast, relying
on OS address translation would mean minor page faults, page
table updates, and TLB invalidations at runtime.

MAGE’s approach also has a few drawbacks, however.
First, the planning phase takes longer because MAGE’s plan-
ner must translate all addresses in software. Second, memory
programs are considerably larger because they must contain
not only swap directives, but also a copy of the program trans-
lated to operate on MAGE-physical addresses. In particular,
the memory program’s length is proportional to the program’s
execution time because a variable local to a function or loop
could be assigned different physical addresses each time the
function is called or on each iteration of the loop.

Overall, we felt that the advantages of this design out-
weighed its drawbacks. Longer planning times seemed rea-
sonable because planning can happen offline and the resulting
memory program can be used repeatedly. The larger memory
program size was an acceptable tradeoff because MAGE’s
planner materializes an unrolled form of the program anyway
to run Belady’s algorithm. Meanwhile, MAGE’s planner is
afforded nearly full control of page eviction and replacement
and MAGE’s runtime overheads remain relatively small.

4.2 MAGE’s Bytecode Representation
Recall that MAGE’s planner expresses the program as an
unrolled (branch-free) bytecode, and performs transforma-
tions on it to compute the memory program bytecode. What
operations should the bytecode instructions support?

One possibility would be for the bytecode to describe low-
level operations similar to those supported by a CPU, exclud-
ing control flow instructions. Unfortunately, such a bytecode
includes the raw memory trace of the program, which, as
discussed in §1, can be impractically large.

One alternative, used by PCF [48] and Frigate [60]2 (but
not MAGE), is to have each instruction correspond to a gate
in the circuit C being executed. This approach would require a
protocol driver in MAGE’s interpreter that executes each gate
using the SC protocol. To understand why this is inefficient,
consider garbled circuits, for which gates are binary and wires
represent bits. The programmer specifies the circuit in terms
of operations on high-level types such as integers, which are
then compiled into bit-level operations. Thus, each time the
program performs a high-level operation (e.g., adding two
integers), the same subcircuit (e.g., describing integer addition
in terms of binary gates) is repeated in the bytecode.

To eliminate this repetition, MAGE has each instruction
describe a high-level operation directly. This requires not only
a protocol driver, but also an engine in MAGE’s interpreter

2Unlike MAGE, these systems also include control flow operations.

MAGE's Planner

Integer to
AND/XOR

Integer to
Binary

Garbled
Circuits WRK CKKS

Integer
DSL

Batched
Real DSL

Analytics (Sort,
Join, etc.)

Machine Learning
(Matrix-Vector
Multiply, etc.)

Application

DSL

Planner

Engine

Protocol
Ops supported by protocol

Instruction types output by DSL

Instruction formats output by DSL

Features provided by DSL

Figure 2: MAGE’s envisioned ecosystem, with planning as
the narrow waist

that expands each instruction into the relevant subcircuit at
runtime. MAGE’s planner does not need to materialize the
subcircuits because wires internal to the subcircuits are very
short-lived and therefore can be ignored.

4.3 MAGE’s Ecosystem and its Extensibility
An important consideration in MAGE’s design is to be appli-
cable to a range of SC protocols. For example, garbled circuits
and homomorphic encryption (CKKS) have quite different
computation models, yet we show how MAGE captures both.
MAGE’s envisioned ecosystem can be understood as a set of
layers with a narrow waist, as shown in Fig. 2. The narrow
waist is MAGE’s planner; MAGE’s core planning algorithms
can be used with a variety of applications and interpreters.

MAGE’s interpreter has two layers. The upper layer, called
the engine, decomposes each instruction into a subcircuit of
gates supported by the target SC protocol (§4.2). The lower
layer, called the protocol driver, evaluates gates with the SC
protocol. For example, when using a protocol that supports
only binary AND and XOR operations (e.g., garbled circuits),
one must use an engine that decomposes each instruction
into a circuit of AND and XOR gates. In contrast, when
using a protocol that supports all types of binary gates (e.g.,
TFHE [17]), one can use an engine that uses all types of gates.

One must choose compatible implementations at each layer.
For example, once one has selected an SC protocol, one should
choose an engine that executes each instruction using oper-
ations supported by that protocol. Then, one should select a
DSL that outputs instructions that the chosen engine under-
stands. Finally, one must write the application in that DSL.

MAGE’s planner, however, is universally compatible, al-
lowing it to be the “narrow waist” of the ecosystem. The
first reason is that MAGE’s planner does not have to un-
derstand what each instruction does, only what memory it
accesses. Thus, even if a new instruction is introduced into
a DSL, extending a header file to specify its format (which
includes which fields are memory addresses) is enough for
the planner to understand that instruction. The second reason
is that MAGE’s planner does not introduce any new instruc-
tions except for swap directives, which all engines understand.
Thus, if an engine understands the instruction types output by
MAGE’s DSL, then the engine will also be able to interpret
the planner’s output (i.e., the memory program).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 371

A number of frameworks and DSLs for SC [34, 78] aim
to make it easier for non-SC-experts to use SC. In contrast,
MAGE is an efficient SC execution engine; its DSLs are not
necessarily geared toward non-experts, do not optimize the
resulting circuit, and might expose low-level SC operations.
We discuss how these frameworks fit into Fig. 2 in §9.

5 MAGE’s Engine
MAGE’s execution engine is an interpreter for the final mem-
ory program. First, it allocates an array to store the program’s
data. Each MAGE-physical address is an index into this ar-
ray. To execute an instruction, MAGE reads the instruction’s
arguments from this array, makes calls to the protocol layer
to compute the output, and writes the output back to the ar-
ray. Each instruction in the memory program references its
input and output data directly by MAGE-physical address; the
engine sees no MAGE-virtual addresses. Some instructions,
such as those requesting pages to be transferred between stor-
age and memory, are handled directly by the engine, without
calling the protocol. We call such instructions directives.

5.1 Parallel/Distributed Engine
SC is resource-intensive, so it is natural to scale SC by ex-
ecuting the protocol in a distributed fashion across multiple
CPU cores or multiple machines. The multiple-machine case
is useful to overcome resource constraints associated with a
single machine such as limited CPU cores, limited storage
I/O, or, in the case of SMPC, limited network bandwidth. This
is different from having multiple parties in SMPC. Here, we
are parallelizing a single trust domain—for example, a single
logical party in SMPC may execute using multiple machines.

MAGE’s engine supports distributed execution across mul-
tiple workers. Each worker is a thread of computation, run-
ning MAGE’s engine, operating on its own memory region
(a MAGE-physical address space). Workers differ from OS
processes as follows: (1) each worker contains exactly one
thread, (2) workers are not necessarily isolated by hardware
such as an MMU—multiple workers in a MAGE computa-
tion could, in principle, run within the same process, and (3)
memory is statically partitioned among the workers.

MAGE’s planner does not automatically infer how to par-
allelize the computation. Rather, the programmer writes DSL
code in a distributed memory model, explicitly indicating
asynchronous network operations to transfer data among the
different workers. The resulting memory program bytecode
contains network directives that the engine interprets. Simi-
larly, the protocol driver must be written to function properly
when the computation is distributed over multiple workers.

Programs for MAGE are parameterized by the Worker ID.
MAGE’s planner is run once for each worker. To generate the
memory program for a worker, the planner processes only the
accesses for that worker—it does not need to consider other
workers’ accesses, because each worker can only access its
own memory region. Thus, the workers’ memory programs
can be generated independently and in parallel.

W

W W

W

W

W W

W
Party 1's MAGE

Computation
Party 2's MAGE

Computation
Figure 3: Example of distributed SMPC with MAGE. Workers
are denoted as circles with W. Solid lines indicate connections
managed by MAGE’s engine; dashed lines indicate connec-
tions managed by the protocol driver

Using a distributed memory model provides two benefits.
First, it allows MAGE to be agnostic to whether workers are
placed on a single machine or across multiple machines. Sec-
ond, it guarantees that the access pattern for each region of
memory consists of a single well-defined sequence, simplify-
ing planning. To ease the difficulty of explicitly specifying
network transfers, one can build easier-to-use DSL libraries
for common communication patterns (e.g., our implementa-
tion provides a ShardedArray<T> abstraction).

5.2 Distributed SMPC
Some SC protocols, like SMPC, require interaction over the
network between mutually distrusting parties. For such proto-
cols, each party runs a separate MAGE computation, with its
own set of workers. Whereas the MAGE engine handles intra-
party communication between workers in the same party, the
protocol implementation handles inter-party communication
among workers in different parties. The inter-party topology
is up to the protocol driver; our protocol driver for garbled
circuits uses a one-to-one inter-party topology (Fig. 3).

6 MAGE’s Planner
Our memory programming approach is to calculate the mem-
ory access pattern in advance and use it to preplan memory
management. One can potentially preplan the following:
• Placement. How should we divide up a circuit into pages?
• Ordering. In what order should we evaluate the gates in

the SC circuit to result in the best memory behavior?
• Scheduling. When should pages that will be used in the

future be swapped in from storage?
• Replacement. How should we choose pages to evict when

making room for pages from storage?
MAGE produces an approximate solution, using a heuristic
for placement and optimizing scheduling and replacement.
Note that MAGE does not optimize ordering; it evaluates
gates in the order implicit in the DSL program for the circuit.3

6.1 Organization of MAGE’s Planner
We organize MAGE’s planner into stages (Fig. 4):

3Optimizing ordering may be NP-hard [76]. A system that does so would
be very powerful—for example, it would automatically block a loop join or
tile a matrix multiplication. It is beyond the scope of this work.

372 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Program
...
while (...) {
 a[i]=b[i]+c[i]
}
...

Virtual Bytecode
...
add 160,192,224
add 256,288,320
...

Memory Program
add 32,64,96
issue-swap-in 6,8
add 108,120,152
finish-swap-in 6

Placement

Execute DSL

Annotations
...
Page 1 next used
at Instr. 12
...

Replacement
Belady's
Algorithm

Physical Bytecode
...
add 32,64,96
add 108,120,152
swap-in 6,8
...

Scheduling
Add

Prefetching

Reverse
Pass

Figure 4: MAGE’s planner’s workflow, with its three stages

1. Placement. This stage accepts a DSL program and orga-
nizes wires into MAGE-virtual pages. It outputs instruc-
tions referencing wires by MAGE-virtual address.

2. Replacement. This stage adds instructions to swap pages
to/from storage, deciding which pages to evict. It outputs
instructions referencing wires by MAGE-physical address.

3. Scheduling. This stage moves swap instructions within
the instruction stream and relocates wires to mask the
latency of moving data between memory and storage.
For a parallel/distributed program, MAGE’s planner is

invoked separately for each worker, with separate MAGE-
virtual and MAGE-physical address spaces. Network direc-
tives in the program transfer data among those address spaces.

MAGE’s planner does not benefit from MAGE’s memory
programming techniques, so it is important that planning does
not consume an unreasonable amount of memory. We keep the
planner’s memory usage lightweight by (1) writing/reading
the intermediate bytecodes to/from files instead of keeping it
all in memory, (2) designing the DSLs to be lightweight, and
(3) keeping track of pages instead of individual bytes.

6.2 MAGE’s First Stage: Placement
MAGE’s placement module is, in effect, a page-aware mem-
ory allocator for the DSL. It unrolls the DSL, allocating space
for each variable and intermediate value in the MAGE-virtual
address space. It outputs a bytecode for the program in which
each variable is referenced by its MAGE-virtual address.
6.2.1 Unrolling the DSL Code
MAGE’s DSLs are internal to C++. This means that the DSL
is a set of convenient C++ APIs to specify the program’s
behavior, often involving operator overloading. The program
is specified as a C++ function that uses these APIs.

Fig. 5 shows a program that solves Yao’s Millionaire’s prob-
lem [87]. Integer<width> describes an Integer datum with
the specified width in bits. Bit is an alias for Integer<1>.

MAGE’s planner does not parse the DSL program’s source
code or manipulate its AST. Instead, it simply calls the C++
function containing the DSL program. As the DSL code exe-
cutes, it produces a bytecode describing the computation. For
example, the overloaded + operator for Integer emits an Add
instruction in the output bytecode; it does not actually add
integers using secure computation. Each output instruction
references its operands by MAGE-virtual address. Thus, the
DSL (e.g., the Integer class) calls MAGE’s placement mod-

void millionaire(const ProgramOptions& args) {
Integer<32> alice_wealth, bob_wealth;
alice_wealth.mark_input(Party::Garbler);
bob_wealth.mark_input(Party::Evaluator);
Bit result = alice_wealth >= bob_wealth;
result.mark_output();

}

Figure 5: Example code in an Integer-based DSL internal to
C++ to solve Yao’s Millionaire’s problem

ule to allocate memory in the MAGE-virtual address space
for intermediate results, including those stored in variables.

For example, see Fig. 5. On the mark_input and >= oper-
ations, an allocation request is made to MAGE’s placement
module to obtain a MAGE-virtual address, and an instruction
is emitted to perform that operation (obtain input or integer
comparison) and store the result at that MAGE-virtual address.
Once an Integer’s destructor is called, or if an Integer is
reassigned to a new MAGE-virtual address, a deallocation
request is made to MAGE’s placement module for the MAGE-
virtual address previously held by that Integer.

For a parallel/distributed program, the worker ID and total
number of workers are provided via the ProgramOptions
structure. The C++ code can branch on these variables, to
have each worker operate differently and exchange data ap-
propriately to perform the parallel/distributed computation.

Each Integer object contains only the MAGE-virtual
address of its contents; other attributes, such as width, are
template arguments and do not consume memory. Thus,
Integers and other DSL-provided data types are typically
smaller than the encrypted data items they represent. For
example, a 32-bit integer encrypted for the garbled circuit pro-
tocol is 1 KiB in size, whereas an Integer<32> object used
during planning is just 8 B (a single MAGE-virtual pointer).
This helps keep the memory cost of the planning phase small.

6.2.2 Memory Allocation Strategy
When MAGE’s placement module allocates memory for a
variable, it ensures that the variable is contained in a single
MAGE-virtual page; a variable must never straddle two pages.
The reason is that two adjacent MAGE-virtual pages may not
be adjacent in the OS-virtual address space at runtime.

A key issue in designing the placement module’s memory
allocator is internal fragmentation [25, 67]. Some fragmen-
tation, which we call classic fragmentation, arises from the
inability to pack variables onto pages (e.g., part of a page’s
space cannot store any variable). Another type of fragmenta-
tion, which we call effective fragmentation, arises from the
page’s lifetime exceeding some of the variables it stores; if
even one wire on a page is alive, the entire page remains alive.

To reduce classic fragmentation, MAGE’s placement stage
uses techniques from slab allocators [8]. Each page contains
only variables of a particular size. When a variable goes out
of scope in the DSL, its “slot” in its page is marked as free.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 373

When a space for a variable must be allocated, MAGE’s place-
ment module look for a free slot in a page containing variables
of that size; if no such pages have free slots, it allocates a new
page for variables of that size. The slab size is one MAGE-
virtual page. This ensures that no variable will straddle a page
boundary. Just as in slab allocators, some leftover space at the
end of a page may be unusable, but this can be controlled by
tuning the page size. Unlike slab allocators, MAGE’s place-
ment module does not preserve object state across allocations.

To reduce effective fragmentation, MAGE’s placement
stage uses the following heuristic when allocating memory
for a variable. If multiple pages, for the specified variable
size, have free slots available, then MAGE uses the candidate
page with the fewest free slots. This allows the number of live
pages to decrease if the number of live variables decreases,
by giving a chance for all variables on a page to die.

6.3 MAGE’s Second Stage: Replacement
We apply Belady’s MIN algorithm [3]. MIN is theoretically
optimal in the number of SWAP-IN operations, but it does
not minimize the number of swap operations if SWAP-OUT
operations are also considered. The reason is that only dirty
pages need to be written back to storage (i.e., “swapped out”).
Minimizing the number of swaps when taking this into ac-
count is NP-hard [28]. Regardless, MIN produces a solution
with at most 2× as many swaps as the theoretical optimum,4

so it is useful in MAGE’s replacement stage.
To use MIN, we first make a backward pass over the pro-

gram to determine, each time a page is used, the time (instruc-
tion ID) at which it is used next. Then we make a forward
pass over the program, using the annotated next use time to
determine which page to swap out. This requires us to main-
tain a priority queue of resident pages, so that we can quickly
identify which one’s next use is farthest in the future. Each
instruction, even if its arguments are already resident, requires
us to also perform a decrease_key operation on the priority
queue to adjust pages’ next use time. Therefore, if N is the
number of instructions and T is the number of pages that fit
in memory, applying Belady’s MIN algorithm is O(N logT).

This stage outputs an instruction stream that contains swap
directives and references wires by MAGE-physical address.
To support this, MAGE’s planner maintains a data structure
that maps MAGE-virtual page numbers to MAGE-physical
frame numbers, similar to a page table.

When planning a parallel/distributed program, the planner
must be careful to not steal a page that is currently being used
for network I/O. Thus, MAGE’s replacement phase reads
the network directives to infer the outstanding asynchronous
network operations. When stealing pages, it issues network
barrier directives, as necessary, to ensure that the engine waits
for the relevant network I/Os to complete.

4This occurs in the worst case where it evicts only dirty pages, but there
is an optimal solution that evicts the same number of clean pages.

6.4 MAGE’s Third Stage: Scheduling
We introduce a parameter ` called the lookahead. To prefetch
data, MAGE’s scheduling algorithm attempts to move SWAP-
IN directives ` instructions earlier in the instruction stream.
However, this does not work if one of the ` intervening in-
structions uses the page frame into which we are bringing in
data. We solve this by budgeting B extra physical page frames,
called the prefetch buffer; the replacement stage is now run
with a capacity of T−B frames, not T frames. Data is brought
asynchronously into a free slot in the prefetch buffer. Only
when it is finally needed is it copied from the prefetch buffer
into its destination physical page frame. Instead of SWAP-IN
directives, the memory program contains ISSUE-SWAP-IN
directives, which initiate the transfer of a page into memory,
and FINISH-SWAP-IN directives, which block execution until
a swap operation has completed. Ideally, swap operations will
be scheduled such that FINISH-SWAP-IN never blocks, but
it serves as an important fallback to prevent old/corrupt data
from being used if the transfer is unpredictably delayed.

We use the prefetch buffer similarly to swap out pages. The
page to be swapped out is copied into a free slot in the prefetch
buffer and then swapped out to storage with an ISSUE-SWAP-
OUT directive while execution of subsequent instructions con-
tinues. Unlike SWAP-IN operations, there is no clear deadline
by which the write to storage must complete. Thus, we delay
issuing a FINISH-SWAP-OUT directive for as long as possible;
we only issue it when allocating a slot in the prefetch buffer
fails. In such a situation, we identify the oldest ISSUE-SWAP-
OUT operation, issue the FINISH-SWAP-OUT directive for it,
and reclaim its page in the prefetch buffer.

One could eliminate the copying of pages to/from the
prefetch buffer by rewriting future instructions. We did not
implement this optimization because it would introduce addi-
tional complexity and MAGE performs well without it.

A natural question is how large B must be. SSDs have band-
widths less than 10 GB/s and latencies that are usually less
than 1 ms. Based on these measurements, Little’s Law gives:
B = 10 GB/s ·1 ms = 10 MB. For server-class machines, this
is < 1% of physical memory. In practice, we use 16–32 MiB
to account for burstiness/queuing, still only a small fraction
of available memory. Thus, MAGE’s scheduling promises to
mask storage latency with only a small memory penalty.

7 Implementation
We implemented a prototype of MAGE in C++, including
support for two protocols: garbled circuits and CKKS. Using
cloc, we found that our implementation is ≈ 11,000 lines
of code, excluding comments and blank lines, broken down
as follows: ≈ 2,800 for common libraries used throughout
MAGE (e.g., data buffering for I/O, configuration file pars-
ing, etc.); ≈ 1,300 for MAGE’s planner; ≈ 900 for protocol
drivers (not including the underlying cryptography); ≈ 1,000
for MAGE’s DSLs and libraries for those DSLs (e.g., for
sharding data);≈ 1,100 for MAGE’s engines;≈ 1,600 for SC

374 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

programs written in MAGE’s DSLs, used for testing and eval-
uating MAGE; ≈ 1,900 for the underlying cryptography for
garbled circuits, much of which is based on EMP-toolkit [82];
and ≈ 400 for in-progress (not yet complete) support for a
third protocol. We build MAGE using clang++ version 10.0.0
with the optimization flags -Ofast -march=native. MAGE
runs as a Linux process, with no changes to kernel code.

7.1 MAGE’s Interpreter
Engine. The Engine class implements common functional-
ity for the engine layer, including support for directives. It
establishes pairwise TCP connections among workers within
a single party, to support network directives. Swap directives
are implemented using the aio facility provided by the kernel
(not to be confused with POSIX aio); the swap file/device
is opened with the O_DIRECT flag. MAGE engines are im-
plemented as class templates that extend (inherit from) the
Engine class. The protocol driver class is provided to the en-
gine as a template argument, so the engine can make calls to it.
We avoided using virtual functions for this, as their overhead
can be significant (e.g., for free XORs).
Protocol Driver. The protocol driver exposes the SC pro-
tocol’s native operations to the engine as a set of methods.
When the engine invokes these methods, it provides pointers
to data to operate on, stored in a large array representing the
MAGE-physical address space. The protocol driver specifies
the type of entries in the engine’s array, in effect dictating
what each MAGE-physical address actually corresponds to
for its protocol (plaintext bits, ciphertext bytes, etc.), and pro-
vides a plugin to the DSL so it can allocate MAGE-virtual
memory accordingly. The protocol driver must not store point-
ers to dynamically allocated memory in the array. The reason
is that the engine swaps out only the contents of the array,
not including any dynamically-allocated memory it points to.
In addition to the SC protocol’s cryptographic routines, the
driver manages all protocol-specific operations. This includes
sharing protocol-specific state among workers within a party,
obtaining input data, writing output data, and managing intra-
party communication where necessary (e.g., sending garbled
gates from the garbler to the evaluator).

7.2 Extending MAGE with New Protocols
To extend MAGE with a new protocol, one must, at minimum,
write a protocol driver to support it. If the operations exposed
by the new protocol driver are identical to those exposed by
an existing protocol driver, then one can use the same engine
that works with the existing protocol. Otherwise, one must
implement a new engine or modify an existing engine. This
involves deciding which instruction types the new engine
will be compatible with. If the supported instruction types
differ from what existing DSLs produce, then one may have
to implement a new DSL or modify an existing DSL.

We implemented protocol drivers for garbled circuits and
CKKS. Garbled circuits and CKKS support different op-
erations, so we implemented a separate DSL (Integers vs.

Batches) and engine (AND-XOR vs. Add-Multiply) for each
protocol. This conveniently allows us to showcase MAGE’s
ability to support different implementations of each layer.
That said, it is not uncommon for related SC protocols to
expose similar interfaces. For example, the WRK proto-
col [83, 84] exposes the same interface as garbled circuits
(AND-XOR), so support for WRK, if added, could reuse our
Integer DSL and AND-XOR engine.

7.3 Garbled Circuit Protocol Driver
For garbled circuits, wires have uniform size, so we allow
MAGE address spaces to be wire-addressed; the DSL is un-
aware of the size of wires in bytes. Some subcircuits used
by the AND-XOR engine are based on those used by Obliv-
C [89]. Our garbled circuit driver uses cryptographic kernels
from EMP-toolkit [82]. We implement oblivious transfer (OT)
using multiple background threads. Concurrently with our
work, EMP-toolkit was updated to use the MiTCCRH hash
function [31]; our implementation is based on an older version
of EMP-toolkit based on fixed-key AES [5]. When we com-
pare MAGE to EMP-toolkit in §8, we use the older version of
EMP-toolkit so the comparison is fair. This is not a limitation
of MAGE; our driver could be changed to use MiTCCRH.

7.4 CKKS Protocol Driver
CKKS ciphertexts vary in size depending on their level, so
for CKKS’ DSL and engine, MAGE address spaces are byte-
addressed. The protocol driver provides a plugin to the DSL
describing the particular wire sizes in bytes. It uses the CKKS
implementation in Microsoft SEAL [71]. We chose param-
eters for CKKS that allow a multiplicative depth of 2. A
challenge was that SEAL ciphertext objects contain pointers
and dynamically-allocated memory. MAGE cannot swap such
objects to storage (see §7.1). Thus, TE protocol driver serial-
izes ciphertexts using SEAL’s built-in serialization methods
when they are not in use; each operation (e.g., add, multiply)
deserializes the arguments, computes the result, and then seri-
alizes the result. We quantify the cost of serialization in §8.
This overhead is not fundamental; CKKS ciphertexts could be
implemented as flat buffers, or homomorphic operations could
be implemented to operate directly on serialized ciphertexts.

After a multiplication, CKKS ciphertexts are typically re-
linearized and rescaled before the next multiplication. But
if two products are added (e.g., ab+ cd), one can perform
relinearization once for the overall result instead of for each
multiplication separately (e.g., ab and cd). MAGE’s DSL
supports this optimization, which is crucial to achieve good
performance on rstats and the linear algebra workloads.

8 Evaluation
8.1 Workloads
We now establish a set of SC workloads for our evaluation.
Garbled circuits and CKKS support different operations—
bitwise operations for garbled circuits, and add-multiply cir-
cuits of low multiplicative depth for CKKS—so we design

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 375

separate workloads for each protocol. These workloads are
data-intensive “kernels” that may be used as part of larger SC
applications. We discuss larger SC applications in §8.8.
8.1.1 SMPC Collaborative Applications
One application of SMPC is federated data analytics [66, 79].
Aggregations (GROUP BY operations) and joins are particu-
larly memory-intensive. A federated data analytics system
may express equi-joins as set intersections (SI) and aggrega-
tions as set unions (SU), both of which can be implemented
by merging sorted lists [66]. This inspires our first benchmark,
merge: merging sorted lists of records. In some cases, the
input lists may not be already sorted. This inspires our second
benchmark, sort: sorting a list of records. For joins other than
equi-joins, the system must fall back to a classic loop join.
This is our third benchmark, ljoin: loop join. For concrete-
ness, we assume that each record is 128 bits long, and that
the first 32 bits are the key used for sorting or joining; the
problem size n is the number of records per party.

Privacy-preserving machine learning applications inspire
our fourth benchmark, mvmul: matrix-vector multiply with
8-bit integers. A recent proposal for secure neural network
inference, XONN [68], suggests binarizing the neural net-
work. This inspires our fifth benchmark, binfclayer: binary
fully-connected layer. It consists of a series of XNOR and
PopCount operations similar to multiplying a binary matrix
by a binary vector, followed by a binary activation function.
For simplicity, we do not include batch normalization.
8.1.2 CKKS Homomorphic Encryption
We restrict ourselves to workloads for which CKKS is
efficient—workloads that can be expressed as arithmetic cir-
cuits of low multiplicative depth. The sixth workload is rsum:
sum of a list of real numbers, which requires no multiplica-
tions. The seventh workload is rstats: computing the mean
and variance of real numbers, which requires a multiplicative
depth of 2. These represent simple data analytics workloads;
the problem size n is the number of elements.

Our remaining workloads are inspired by machine learn-
ing and linear algebra. The eighth workload is rmvmul:
matrix-vector multiply with real numbers. Finally, we consider
two variants of matrix multiplication. The ninth workload is
n_rmatmul: matrix-matrix multiply with a naïve nested for
loop. The tenth workload is t_rmatmul: tiled matrix-matrix
multiply. The problem size n is the length of one side of the
matrix (also for mvmul and binfclayer).
8.1.3 Implementation of Workloads
For simplicity, our implementations of some of these work-
loads only support power-of-two sizes and power-of-two
number of workers, but this is not a fundamental limitation
of MAGE. Some workloads can, in principle, be optimized
through streaming. For example, rsum could read each in-
put one at a time, add the result to an accumulator, and then
output the accumulator, instead of holding the entire input
dataset in memory. We deliberately avoided such “optimiza-
tions,” as they would not be possible if the workload were

part of a larger computation whose intermediate results are
held in memory. Thus, each workload operates in three non-
overlapping phases: (1) the inputs are read into memory, (2)
the computation is performed, materializing the output in
memory, and (3) the output is written to a file.

For the parameters we chose, the CKKS scheme encrypts
vectors of dimension 4096. Thus, each of our workloads for
CKKS could be applied to 4096 instances of the problem in a
SIMD fashion with no additional overhead. There are ways to
use the 4096 slots in the vector to speed up a single problem,
for example, by vectorizing matrix multiplication [42]. Our
workloads, for simplicity, do not apply such techniques, but
MAGE is not incompatible with them.

8.2 Empirical Methodology
We compare MAGE’s performance to an upper bound and a
lower bound. The upper bound, OS Swapping, is the speed
when relying on the operating system’s paging. The lower
bound, Unbounded, is the speed when the entire computation
fits in memory. We measure these three scenarios as follows:
1. Unbounded. MAGE’s planner is run assuming enough mem-
ory to fit the program. Thus, MAGE’s planner does not insert
swap directives in the memory program. Finally, MAGE’s
engine executes the memory program outside of any cgroup.
2. OS Swapping. A memory program is generated in the same
way as for the Unbounded solution. However, it is executed
in a cgroup that limits physical memory to a fixed amount.
3. MAGE. MAGE’s planner is run assuming a fixed physical
memory capacity, minus the prefetch buffer and the inter-
preter’s overhead. The resulting plan is run within a cgroup
that limits physical memory to 1 GiB or 16 GiB, to ensure
that the memory overhead fits in the limit.

Except where stated otherwise, we used D16d_v4 instances
on Microsoft Azure [57]. We chose this instance type for a
few reasons. First, it has enough memory to fit the entire com-
putation for most experiments, necessary for the Unbounded
scenario. Second, it contains a local “temporary” SSD. We
use it for swap space (one of its recommended uses [20]) and
for the file containing the memory program. Third, it provides
enough network bandwidth so as not to be a bottleneck for
garbled circuits (we explore the WAN setting in §8.7).

We set MAGE’s parameters as follows. For garbled circuits,
we used a page size of 64 KiB, lookahead ` of 10,000 instruc-
tions, and prefetch buffer size B of 256 pages. For CKKS, we
used a page size of 2 MiB, lookahead ` of 100 instructions,
and a prefetch buffer size B of 16 pages. Because CKKS ci-
phertexts are large, we used a larger page size (slab size) than
for garbled circuits to reduce external fragmentation. Addi-
tionally, we left an additional 32–64 MiB of memory unused,
to accommodate the memory used by MAGE’s interpreter.

8.3 Comparison to Existing Frameworks
We compare MAGE’s garbled circuits performance to that
of EMP-toolkit. Our goal is to demonstrate that MAGE’s
techniques do not limit the performance of garbled circuits

376 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 200000 400000
Problem Size (Records Per Party)

0

50

100

150

200

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
EMP 1 GiB

0 500000 1000000
Problem Size (Records Per Party)

0

200

400

600

800

1000

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
EMP 1 GiB

Figure 6: Comparison of MAGE and EMP-toolkit

0 1000 2000 3000 4000
Problem Size (Number of Elements)

0

2

4

6

8

10

Ti
m

e
(s

)

Unbounded
OS 1 GiB
MAGE 1 GiB
SEAL 1 GiB

0 5000 10000 15000
Problem Size (Number of Elements)

0

50

100

150

200

250

Ti
m

e
(s

)
OS 1 GiB
Unbounded
MAGE 1 GiB
SEAL 1 GiB

Figure 7: Comparison of MAGE and SEAL

compared to an existing system. We use merge for the com-
parison. We implemented merge in EMP-toolkit’s DSL, and
used EMP-toolkit’s library for merging sorted arrays.

We discovered that EMP-toolkit is an order of magnitude
slower than MAGE. This was because EMP-toolkit performs
a separate invocation of OT extension, which involves a net-
work round-trip, each time an Integer input is read for the
evaluator. Our garbled circuits implementation for MAGE
does not have this problem because it performs OTs in larger
batches using background threads, regardless of the units by
which the program reads the input. To eliminate this effect,
we exclude the time to read the input, for both EMP-toolkit
and MAGE, for this experiment only; we measured the time
to merge the two arrays once they are materialized in memory.

We also compare MAGE’s CKKS performance on rstats to
a C++ program that uses SEAL directly. The main source of
overhead in MAGE is the need to deserialize the input cipher-
texts and serialize the output ciphertext, for each instruction.

The results are shown in Fig. 6 and Fig. 7. The graphs on
the left are zoomed in to smaller problem sizes to show the
point where memory demand exceeds available physical mem-
ory. “OS” refers to scenario 2 in §8.2; “EMP” and “SEAL”
refer to those systems similarly running in a cgroup. EMP
performs about 3× worse than OS when the problem fits in
memory; when it does not, the relative overhead is small (≈
33%). We found that EMP performs worse than OS primarily
due to (1) the overhead of its “real-time circuit optimization”
feature, (2) inefficient data buffering when using the network,
and (3) virtual function overhead when executing the circuit.
OS uses MAGE’s runtime, so it does not have these issues.
SEAL is faster than OS when the problem fits in memory,
but only slightly (less than 20%), indicating that the serializa-
tion overhead is not large. When the problem size does not
fit in memory, SEAL improves further compared to OS, but
remains less than 2× faster than OS.

8.4 Overhead of Swapping Pages
We ran the three scenarios on all 10 workloads, using a 1 GiB
memory limit. The results are shown in Fig. 8. We ran 8 trials

on different Azure instances (8 different pairs of instances,
for garbled circuits) and plot the median; error bars are the
quartiles. We additionally ran experiments using a 16 GiB
memory limit. We increased the problem sizes so that their
memory use exceeded 16 GiB (necessary for the OS scenario)
but fit within the 64 GiB available on the virtual machines
(necessary for the Unbounded scenario). Our methodology is
the same as for the 1 GiB memory limit. We do not include
sort in our results for the 16 GiB memory limit, because
the intermediate bytecodes produced while planning were
too large for the local SSD. The results are shown in Fig. 9.
MAGE outperforms OS swapping by at least 4× on 7 of the
workloads, with improvements of≈ 12× for ljoin and≈ 10×
for rsum. Its performance is within 15% of Unbounded for 7
of the workloads (including sort from Fig. 8).

MAGE’s improvement compared to OS is higher for binf-
clayer and rmvmul than for mvmul; although all three have
similar access patterns, mvmul has lower memory intensity
because multiplying integers in a garbled circuit has high
overhead. For complex access patterns, like merge and sort,
MAGE’s improvement is not markedly higher than for simple
scans like ljoin, rsum, and rstats (note that both input tables
for ljoin fit in memory; it is the output, populated in order,
that does not fit). MAGE is less affected by high memory
intensity than OS, allowing it to perform well.

8.5 Overhead of Planning
The time and peak memory use for planning each workload
for the MAGE scenario in Fig. 8 and Fig. 9 is shown in Table
1. Note that MAGE’s planning is outside of the critical path:
for a given circuit, MAGE’s planner can be run before the
parties’ inputs are known. For garbled circuits, although the
garbled circuit C̃ cannot be reused if the computation is re-run,
MAGE’s memory program can be safely reused.

The planning time and final memory program size are linear
in the size of the computation (size of C), not in the size of
the memory demand. Nevertheless, the planning times are
generally less than the time to perform the execution and the
planner’s memory consumption is significantly smaller than
the available memory at runtime for all experiments.

Generating memory programs for CKKS is more efficient
than for garbled circuits. This is because each instruction for
CKKS operates on more memory than for garbled circuits,
which means that the problem sizes that fill a given physical
memory size tend to require smaller bytecodes for CKKS than
for garbled circuits. For example, an instruction operating on
integers in a garbled circuit program may operate on a few
kilobytes of memory (each bit of each integer is 16 bytes),
but for CKKS, each instruction operates on a vector of real
numbers, whose encrypted size is hundreds of kilobytes.

For CKKS, the final memory programs were < 100 MiB
for Fig. 8 and < 1 GiB for Fig. 9. For garbled circuits other
than sort, they were < 5 GiB for Fig. 8 and < 65 GiB for Fig.
9. For sort, it was less than < 25 GiB for Fig. 8. MAGE’s
planner requires about 4–5× times more storage space than

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 377

merge
n = 1048576

sort
n = 1048576

ljoin
n = 2048

mvmul
n = 8192

binfclayer
n = 16384

rsum
n = 65536

rstats
n = 16384

rmvmul
n = 256

n_rmatmul
n = 128

t_rmatmul
n = 128

0

5

10

15

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

16
3.

7

13
50

50
.4

31
0.

9

27
.1

22
.7

38
.8

98
.4

14
96

15
10

17
4.

5

13
60

58
.3

31
3.

9

33
.7

31
.7

42
.1

10
5.

6

15
80

15
44

69
8.

1

21
42

43
5.

4

42
9.

4 13
4.

0

22
4.

3

18
9.

8

59
3.

3

71
48

24
13

Unbounded
MAGE 1 GiB
OS 1 GiB

Figure 8: Performance of Unbounded, OS Swapping, and MAGE, normalized by the time for Unbounded; absolute times, in
seconds, are printed at the upper left corner of each bar

merge
n = 8388608

ljoin
n = 3840

mvmul
n = 20480

binfclayer
n = 57344

rsum
n = 458752

rstats
n = 147456

rmvmul
n = 448

n_rmatmul
n = 256

t_rmatmul
n = 224

0

5

10

15

20

25

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

11
89

12
6.

7

14
47

27
2.

2

13
8.

6

33
4.

8

30
9.

0

11
58

4

78
34

12
61

16
0.

0

15
58

35
5.

6

22
0.

2

37
7.

1

32
8.

8

11
73

3

79
1266

45

18
89

32
65 18

54

21
87

24
02 25
90

52
58

3

13
95

5

Unbounded
MAGE 16 GiB
OS 16 GiB

Figure 9: Repeat of Fig. 8, with larger problem sizes and a 16 GiB memory limit (note the larger y-axis scale)

Problem Time (8) Mem. (8) Time (9) Mem. (9)
merge 38.0 42.6 291.6 299.4
sort 367.3 42.7 N/A N/A
ljoin 6.7 121.0 23.6 411.4

mvmul 56.0 527.5 298.2 3268
binfclayer 77.2 19.1 1041 165.7

rsum 0.04 9.6 0.29 30.2
rstats 0.04 10.9 0.34 48.5

rmvmul 0.09 16.4 0.24 36.9
n_rmatmul 2.2 246.1 18.6 1927
t_rmatmul 2.3 246.5 12.9 1246

Table 1: Planning times (s) and peak memory use of the plan-
ner (MiB) for workloads in Fig. 8 and Fig. 9

the final memory program due to the need to materialize inter-
mediate bytecodes of similar size, but this could be optimized
by pipelining stages of MAGE’s planner where it is possible
to do so (e.g., replacement and scheduling in Fig. 4).

8.6 Impact of Parallelism
We now explore how the relative performance of Unbounded,
OS, and MAGE are affected by parallelizing the computation.
We did experiments parallelizing the computation across four
workers (per party, for garbled circuits). We place each worker
on a separate VM instance, each with a separate SSD.

We ran each experiment three times, using the same cluster
of machines for all trials, and report the median in Fig. 10.
Most experiments follow a similar pattern as Fig. 8, indicat-
ing that MAGE’s performance gains persist when we paral-
lelize the computation. For two experiments, merge and sort,
MAGE’s improvement over OS Swapping visibly increases.
Whereas the other workloads are parallelized by splitting
the input among the workers in a communication phase at
the beginning and then computing independently thereafter,
merge and sort have a communication phase in the middle
of the computation (several such phases in the case of sort).

That OS Swapping performs worse for these workloads, but
MAGE does not, suggests that the OS virtual memory system
might be introducing jitter, which interacts poorly with the
communication phase and induces stragglers.

8.7 SMPC in Wide-Area Networks
SC does not always require significant data transfer over the
wide area. In HE, computation is done by a single logical party.
Even in SMPC, there may be ways for multiple parties to co-
locate for an SMPC computation while remaining physically
and logically distinct. But in some cases, it is desirable to run
SMPC over a wide-area network. We explore this below.

We measure performance of garbled circuits with the two
parties hosted on different cloud providers. The garbler was
always on Azure in the US West 2 region (Oregon). The eval-
uator was on Google Cloud (n2-highcpu-2 [30]). We com-
pare two setups: one where the evaluator was in us-west1
(Oregon) and one where it was in us-central1 (Iowa).

Initially, higher latencies and limited single-flow bandwidth
limited performance. For example, the round-trip time in the
Oregon setup was ≈11 ms, which made OTs a bottleneck.

First, we tuned the local TCP stack, increasing the maxi-
mum window size to 32 MiB. Then, we increased the number
of OT rounds performed concurrently, pipelining multiple OT
rounds over a single connection, which significantly improved
performance (Fig. 11a). Additionally, we explore paralleliz-
ing the computation, assigning multiple workers to the same
machine, so that multiple TCP flows are used. The results
are in Fig. 11b. The dashed line at the bottom is the time
to run the experiment with both the garbler and evaluator on
Azure (taken from Fig. 8). For the Oregon setup, we can come
close to the Local performance using two flows. The Iowa
setup is more challenging because less bandwidth is available
per flow. Using multiple parallel flows helps, but the perfor-
mance improvement in the Iowa setup is limited by variation
in wide-area flow performance, which induces stragglers.

378 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

merge
n = 4194304

sort
n = 4194304

ljoin
n = 4096

mvmul
n = 16384

binfclayer
n = 32768

rsum
n = 262144

rstats
n = 65536

rmvmul
n = 512

n_rmatmul
n = 256

t_rmatmul
n = 256

0

5

10

15

Ti
m

e
(N

or
m

al
ize

d
by

 U
nb

ou
nd

ed
)

20
5.

3

16
87

50
.5

31
1.

7

29
.7

23
.0

39
.6

99
.9

33
07

30
55

22
4.

7

20
75

58
.5

31
4.

3

36
.5

31
.9

42
.7

10
6.

7

33
62

31
04

14
42

51
75

48
9.

2

45
8.

3 13
5.

5

22
3.

5

19
1.

0

58
4.

1

14
33

7

47
36

Unbounded
MAGE 1 GiB
OS 1 GiB

Figure 10: Normalized performance of Unbounded, OS Swapping, and MAGE, parallelized over p = 4 workers (per party)

0 100 200
OT Concurrency

500

1000

1500

Ti
m

e
(s

)

us-west1

(a) Time to run merge vs. number
of concurrent OTs

1 2 3 4
Number of workers

0

250

500

750

1000

Ti
m

e
(s

)
Local (US West 2)
us-west1
us-central1

(b) Time to run merge vs. number
of workers

Figure 11: Wide-area garbled circuit performance in MAGE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Users/Passwords Per Party 1e8

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(h
ou

rs
)

MAGE with all available RAM
OS with all available RAM

Figure 12: Scaling password reuse detection with MAGE

In both cases, the performance overhead of operating in the
wide area is less than the performance overhead of swapping
(Fig. 8), indicating that MAGE’s techniques confer substantial
benefit even in wide-area settings.

8.8 Applications
For these experiments, we did not use cgroups to limit RAM.
The OS and MAGE setups ran using all of the available RAM.
8.8.1 Detecting Password Reuse
When users reuse a password across multiple websites, they
become prone to “credential stuffing” attacks, in which an
attacker uses a user’s password leaked by one site to com-
promise that user’s account on other sites. To address this
problem, sites may wish to identify which of their users reuse
their passwords on other sites [81]. Senate [66, Query 2 in §2]
proposes a protocol for this. First, the sites arrange to assign
user IDs and hash passwords such that they will match across
sites. Then, they use SMPC to detect which user IDs are
shared between the sites and have the same password hash.
Note that user IDs and password hashes cannot be shared
directly, since they are sensitive (the hashes can be reversed).

We write a two-party version of the password reuse pro-
gram in MAGE’s DSL for garbled circuits, based on Senate’s
password reuse program. Senate uses a different SMPC pro-
tocol, so its results are not directly comparable to ours.

We use MAGE to scale the password reuse program to 227

users per party, which requires 1.125 TiB on each party. A sin-
gle D16d_v4 instance does not have enough swap space. Thus,

0.0 0.5 1.0 1.5 2.0
Number of Batches (4096 Real Numbers Per Batch) 1e6

0

20

40

60

80

Ex
ec

. T
im

e
(m

in
ut

es
)

MAGE with all available RAM
OS with all available RAM

Figure 13: Scaling computational PIR with MAGE

we use four D16d_v4 instances on Azure for the garbler party,
and four n2-highmem-4 instances on Google Cloud [30] for
the evaluator party. As explored in §8.7, we use two workers
per instance (total of eight workers per party) to efficiently use
wide-area network bandwidth. The results are shown in Fig.
12. For a given time budget, MAGE increases the number of
user-password records by ≈ 3×. This improvement may have
been larger had we been able to obtain Ddv4-series instances
with a greater swap-space-to-RAM ratio.
8.8.2 Private Information Retrieval
Private Information Retrieval (PIR) is a family of protocols
that allow a user to retrieve a data item at a particular index
from a database without the database learning which item
was accessed. PIR can be used to support public queries on
private data [80]. We evaluate MAGE by using CKKS to
instantiate the classic Kushilevitz-Ostrovsky single-server
computational PIR scheme [50, §3]. PIR’s access pattern is
particularly simple—a linear scan over the database—so ad-
hoc approaches to prefetching, or multi-threading to improve
swap performance, may be quite effective. Our focus is on
what MAGE optimizes automatically, so we do not include
such ad-hoc optimizations in the OS baseline. We use a single
worker (thread) to compute the PIR. The database consisted
of plaintext data pre-encoded into batches to use with CKKS.
We wrote a DSL program that populates the database (with
hardcoded elements) and then performs a PIR query on it;
the reported measurements are the time to perform the PIR
query, not including the time to populate the database. The
results are in Fig. 13. For a given time budget, MAGE allows
for ≈ 5× as many database elements to be processed.

9 Related Work
Much existing work has looked at high-performance algo-
rithms for SMPC [21, 22, 44, 45, 84] and HE [17, 29]. These
works focus on the cryptography, not how to manage a com-
puter’s resources to perform large computations efficiently.

A complementary line of work explores tailoring SMPC

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 379

computations to a specific application [15,43,68,94]. The goal
of MAGE is to perform the same computation more efficiently,
so its techniques generalize across different applications. For
an application, one may first simplify the computation us-
ing application-specific observations, and then execute the
resulting computation as efficiently as possible.

Research works including Fairplay [55], HEKM [37],
KSS [49], MLB [61], PCF [48], and TinyGarble [73] are
frameworks for garbled circuit execution. We described many
of them in §2.4. One work [11] explores parallelizing execu-
tion of a garbled circuit, using programming language tools
to automatically extract parallelism. None of them explore
how to efficiently swap memory to storage, as MAGE does.

There already exist many DSLs and compilers for
SMPC [34, 36, 51, 60, 82, 89, 93] and HE [13, 23, 78]. These
tools often aim to make SC more accessible to non-expert
developers, by automatically optimizing the SC program.
MAGE addresses the complementary problem of executing
the resulting SC circuit more efficiently. To use an existing
tool with MAGE (as in Fig. 2), one could modify it to out-
put its optimized circuits in one of MAGE’s DSLs, and then
run MAGE’s planner on that DSL code. Alternatively, one
could modify the tool to output a bytecode directly usable by
MAGE’s planner (e.g., the “Virtual Bytecode” in Fig. 4).

AIFM [70] uses similar C++ language features as MAGE’s
DSLs. AIFM uses them at runtime for fine-grained memory
management. In contrast, MAGE (1) executes DSL programs
only to extract the memory access pattern during the planning
phase and (2) manages memory at the granularity of pages.

There is an extensive literature concerning memory man-
agement in traditional operating systems [3, 4, 24–26]. A re-
lated line of work looks at how operating systems can give
memory-intensive applications, such as scientific simulations,
more control over paging [32]. While these works focus pri-
marily on paging in the classic sense, our work explores
memory programming. Additionally, our work, unlike sci-
entific simulations, is capable of general computations within
SC. Scheduling page movement according to real-time con-
straints imposed by computation also draws from the real-time
scheduling literature [52]. These techniques do not manage
memory directly and are complementary to ours.

Some systems in other domains, like neural network train-
ing, formulate memory management problems as an integer
linear program and use an exponential-time solver [40]. This
approach exploits the high-level structure of the application to
coarsen the dataflow graph. For MAGE, the dataflow graph is
much larger because general SC computations do not conform
to any particular high-level structure. By operating on a pro-
gram representation of the circuit (§4.2), MAGE does coarsen
the graph, but it nevertheless remains enormous. Thus, we
use our staged approach (§6) to find a good approximation.

Some systems use observations of past memory accesses or
past working sets (e.g., from prior invocations of a program)
to perform targeted prefetching [33,35,56,77,92] and approx-

imate Belady’s algorithm (MIN) [72]. SC’s obliviousness and
our memory programming approach allow MAGE to compute
the memory access pattern without first running the program,
and then apply these techniques using the access pattern itself.

The recent DEMAND-MIN [39] algorithm combines MIN
with prefetching. DEMAND-MIN tells which item to evict
given an access pattern sequence and prefetch sequence fixed
in advance. It is not directly applicable to MAGE because
MAGE’s prefetch sequence is not fixed in advance.

At a technical level, MAGE’s planning is similar to register
allocation in compiler theory [14, 18, 74, 85]—variables, reg-
isters, and memory in register allocation correspond to wire
values, slots in memory, and storage swap space in the context
of MAGE. The key difference is that register allocators must
deal with conditional branches whose outcomes cannot be
predicted at compile time. From the perspective of register
allocation, the entire circuit that MAGE operates on would
be viewed as a single basic block. We discussed a result from
register allocation theory for a single basic block in §6.3. An-
other result is that, for a fixed number of registers, there is a
linear-time algorithm that can reorder instructions within a
structured program to optimize its register allocation [7, §3.2]
(though the time is exponential in the number of registers).

10 Conclusion
This paper explores how to efficiently execute SC computa-
tions that do not fit in memory. Our key observation is that SC
is inherently oblivious. This enables memory programming,
in which one computes the access pattern of an SC program
in advance and uses it to produce a memory management plan.
By using memory programming to preplan data transfers be-
tween memory and storage, MAGE runs SC up to an order of
magnitude faster than the OS virtual memory system and can
execute some SC programs at nearly in-memory speeds.

Some non-SC programs, like plaintext neural network infer-
ence and programs designed for hardware enclaves like Intel
SGX, are also oblivious. Applying memory programming to
such workloads is an interesting direction for future work.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Na-
dav Amit, for their helpful feedback. We would also like to
thank Katerina Sotiraki and other students/postdocs from the
RISELab Security Group for their feedback on early drafts.

This work is supported by NSF CISE Expeditions Award
CCF-1730628, NSF CAREER 1943347, and gifts from the
Sloan Foundation, Bakar Fellows Program, Alibaba, Amazon
Web Services, Ant Group, Ericsson, Facebook, Futurewei,
Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk, and
VMware. This research is also supported in part by the Na-
tional Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE-1752814. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

380 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] J. Bater, G. Elliott, V. Eggen, S. Goel, A. Kho, and

J. Rogers. SMCQL: Secure querying for federated
databases. VLDB, 10(6), 2017.

[2] D. Beaver, S. Micali, and P. Rogaway. The round com-
plexity of secure protocols. In STOC. ACM, 1990.

[3] L. A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Syst. J., 5(2), 1966.

[4] L. A. Belady, R. A. Nelson, and G. S. Shedler. An
anomaly in space-time characteristics of certain pro-
grams running in a paging machine. CACM, 12(6),
1969.

[5] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In S&P.
IEEE, 2013.

[6] O. Biçer. Efficiency optimizations on Yao’s garbled
circuits and their practical applications. Master’s thesis,
Istanbul Şehir University, 2017. Chapters 3 and 4.

[7] H. Bodlaender, J. Gustedt, and J. A. Telle. Linear-time
register allocation for a fixed number of registers. In
SODA. SIAM, 1998.

[8] J. Bonwick. The slab allocator: An object-caching
kernel. In USENIX Summer Technical Conference.
USENIX Association, 1994.

[9] D. P. Bovet and M. Cesati. Page frame reclaiming. In
Understanding the Linux Kernel, chapter 17, page 679.
O’Reilly Media, 2006.

[10] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl,
and P. Scholl. Efficient pseudorandom correlation
generators: Silent OT extension and more. Cryptol-
ogy ePrint Archive, Report 2019/448, 2019. https:
//eprint.iacr.org/2019/448.

[11] N. Buescher and S. Katzenbeisser. Faster secure com-
putation through automatic parallelization. In USENIX
Security. USENIX, 2015.

[12] Cape Privacy. https://medium.com/dropoutlabs.

[13] S. Carpov, P. Dubrulle, and R. Sirdey. Armadillo: A
compilation chain for privacy preserving applications.
In SCC. ACM, 2015.

[14] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein. Register allocation
via coloring. Computer Languages, 6(1), 1981.

[15] H. Chen, M. Kim, I. P. Razensteyn, D. Rotaru, Y. Song,
and S. Wagh. Maliciously secure matrix multiplication
with applications to private deep learning. 2020. https:
//eprint.iacr.org/2020/451.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomor-
phic encryption for arithmetic of approximate numbers.
In ASIACRYPT. Springer, Cham, 2017.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In ASIACRYPT. Springer, Berlin,
Heidelberg, 2016.

[18] K. D. Cooper and L. T. Simpson. Live range splitting
in a graph coloring register allocator. In CC. Springer,
Berlin, Heidelberg, 1998.

[19] Curv. Curv | digital asset security infrastructure. https:
//www.curv.co/.

[20] D. McDaniel. Virtual machines best practices:
Single VMs, temporary storage and uploaded disks.
https://azure.microsoft.com/en-us/blog/
virtual-machines-best-practices-single-
vms-temporary-storage-and-uploaded-disks/,
2014.

[21] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl,
and N. P. Smart. Practical covertly secure MPC for
dishonest majority – or: breaking the SPDZ limits. In
ESORICS. Springer, Berlin, Heidelberg, 2013.

[22] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Mul-
tiparty computation from somewhat homomorphic en-
cryption. Cryptology ePrint Archive, Report 2011/535,
2011. https://eprint.iacr.org/2011/535.

[23] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine,
and M. Musuvathi. EVA: An encrypted vector arith-
metic language and compiler for efficient homomorphic
computation. ACM, 2020.

[24] P. J. Denning. Thrashing: its causes and prevention. In
AFIPS. ACM, 1968.

[25] P. J. Denning. Virtual memory. CSUR, 2(3), 1970.

[26] P. J. Denning. Working sets past and present. IEEE
Trans. Softw. Eng., SE-6(1), 1980.

[27] Duality. https://dualitytech.com/.

[28] M. Farach and V. Liberatore. On local register allocation.
In SODA. SIAM, 1998.

[29] C. Gentry, S. Halevi, and N. P. Smart. Fully homo-
morphic encryption with polylog overhead. In EURO-
CRYPT. Springer, Berlin, Heidelberg, 2012.

[30] Google Cloud. Machine types. https://
cloud.google.com/compute/docs/machine-types.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 381

https://eprint.iacr.org/2019/448
https://eprint.iacr.org/2019/448
https://medium.com/dropoutlabs
https://eprint.iacr.org/2020/451
https://eprint.iacr.org/2020/451
https://www.curv.co/
https://www.curv.co/
https://azure.microsoft.com/en-us/blog/virtual-machines-best-practices-single-vms-temporary-storage-and-uploaded-disks/
https://azure.microsoft.com/en-us/blog/virtual-machines-best-practices-single-vms-temporary-storage-and-uploaded-disks/
https://azure.microsoft.com/en-us/blog/virtual-machines-best-practices-single-vms-temporary-storage-and-uploaded-disks/
https://eprint.iacr.org/2011/535
https://dualitytech.com/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types

[31] C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu. Better
concrete security for half-gates garbling (in the multi-
instance setting). Cryptology ePrint Archive, Report
2019/1168, 2019. https://eprint.iacr.org/2019/
1168.

[32] K. Harty and D. R. Cheriton. Application-controlled
physical memory using external page-cache manage-
ment. In ASPLOS. ACM, 1992.

[33] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan. Learning
memory access patterns. In ICML, 2018.

[34] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic.
SoK: General purpose compilers for secure multi-party
computation. In S&P. IEEE, 2019.

[35] J. He, J. Bent, A. Torres, G. Grider, G. Gibson,
C. Maltzahn, and X.-H. Sun. I/O acceleration with
pattern detection. In HPDC. ACM, 2015.

[36] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith.
Secure two-party computations in ANSI C. In CCS.
ACM, 2012.

[37] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. USENIX,
2011.

[38] Inpher. https://inpher.io/.

[39] A. Jain and C. Lin. Rethinking belady’s algorithm to
accommodate prefetching. In ISCA. ACM/IEEE, 2018.

[40] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel,
K. Keutzer, I. Stoica, and J. Gonzalez. Checkmate:
Breaking the memory wall with optimal tensor remate-
rialization. In MLSys, 2020.

[41] S. Jha, L. Kruger, and V. Shmatikov. Towards practical
privacy for genomic computation. IEEE, 2008.

[42] X. Jiang, M. Kim, K. Lauter, and Y. Song. Secure out-
sourced matrix computation and application to neural
networks. ACM, 2018.

[43] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
GAZELLE: A low latency framework for secure neu-
ral network inference. In USENIX Security. USENIX,
2018.

[44] M. Keller, E. Orsini, and P. Scholl. MASCOT: faster
malicious arithmetic secure computation with oblivious
transfer. In CCS. ACM, 2016.

[45] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT. Springer, Cham,
2018.

[46] Keyless. Keyless | zero-trust passwordless authentica-
tion. https://keyless.io/.

[47] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free XOR gates and applications. In ICALP.
Springer, Berlin, Heidelberg, 2008.

[48] B. Kreuter, B. Mood, A. Shelat, and K. Butler. PCF:
A portable circuit format for scalable two-party secure
computation. In USENIX Security. USENIX, 2013.

[49] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
USENIX Security. USENIX, 2012.

[50] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: single databse, computationally-private infor-
mation retrieval. In FOCS. IEEE, 1997.

[51] C. Liu, X. Wang, K. Nayak, Y. Huang, and E. Shi.
ObliVM: A programming framework for secure com-
putation. In S&P. IEEE, 2015.

[52] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1), 1973.

[53] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural
network predictions via MiniONN transformations. In
CCS. ACM, 2017.

[54] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI. ACM, 2005.

[55] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
— a secure two-party computation system. In USENIX
Security. USENIX, 2004.

[56] H. Al Maruf and M. Chowdhury. Effectively prefetching
remote memory with leap. In ATC. USENIX, 2020.

[57] Microsoft Azure. Ddv4 and Ddsv4-series.
https://docs.microsoft.com/en-us/azure/
virtual-machines/ddv4-ddsv4-series, 2020.

[58] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa. Delphi: A cryptographic inference service
for neural networks. In USENIX Security. USENIX,
2020.

[59] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In S&P.
IEEE, 2017.

[60] B. Mood, D. Gupta, H. Carter, K. R. B. Butler, and
P. Traynor. Frigate: A validated, extensible, and efficient
compiler and interpreter for secure computation. In
EuroS&P. IEEE, 2016.

382 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://eprint.iacr.org/2019/1168
https://eprint.iacr.org/2019/1168
https://inpher.io/
https://keyless.io/
https://docs.microsoft.com/en-us/azure/virtual-machines/ddv4-ddsv4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ddv4-ddsv4-series

[61] B. Mood, L. Letaw, and K. Butler. Memory-efficient
garbled circuit generation for mobile devices. In FC.
Springer, Berlin, Heidelberg, 2012.

[62] J. Nielsen. Nielsen’s law of Internet bandwidth. Ac-
cessed: May 26, 2020.

[63] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regres-
sion on hundreds of millions of records. In S&P. IEEE,
2013.

[64] T. Peng. Shared machine learning: Ant fi-
nancial’s solution for data privacy. https:
//medium.com/syncedreview/shared-machine-
learning-ant-financials-solution-for-data-
privacy-8069cffe7bb6.

[65] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams.
Secure two-party computation is practical. In ASI-
ACRYPT. Springer, Berlin, Heidelberg, 2009.

[66] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa,
and J. M. Hellerstein. Senate: A maliciously-secure
MPC platform for collaborative analytics. In USENIX
Security. USENIX, 2021.

[67] B. Randell. A note on storage fragmentation and pro-
gram segmentation. CACM, 12(7), 1969.

[68] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter,
and F. Koushanfar. XONN: XNOR-based oblivious
deep neural network inference. In USENIX Security.
USENIX, 2019.

[69] M. Rosulek. A brief history of practical garbled circuit
optimizations, 2015. https://simons.berkeley.edu/
talks/mike-rosulek-2015-06-09, https:
//www.youtube.com/watch?v=FTxh908u9y8.

[70] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In OSDI. USENIX, 2020.

[71] Microsoft SEAL (release 3.6). https://github.com/
Microsoft/SEAL, 2020. Microsoft Research, Red-
mond, WA.

[72] Z. Song, D. S. Berger, K. Li, and W. Lloyd. Learning
relaxed Belady for content distribution network caching.
In NSDI. USENIX, 2020.

[73] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schnei-
der, and F. Koushanfar. TinyGarble: Highly compressed
and scalable sequential garbled circuits. In S&P. IEEE,
2015.

[74] O. Traub, G. Holloway, and M. D. Smith. Quality and
speed in linear-scan register allocation. In SIGPLAN.
ACM, 1998.

[75] Unbound. https://www.unboundtech.com/.

[76] Laakeri (https://cs.stackexchange.com/users/
95646/laakeri). Is there an algorithm to min-
imize working set during a topological traver-
sal? Computer Science Stack Exchange, 2020.
https://cs.stackexchange.com/q/120274.

[77] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and
B. Grot. Benchmarking, analysis, and optimization of
serverless function snapshots. In ASPLOS. ACM, 2021.

[78] A. Viand, P. Jattke, and A. Hithnawi. SoK: Fully homo-
morphic encryption compilers. In S&P. IEEE, 2021.

[79] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia,
A. Lapets, and A. Bestavros. Conclave: secure multi-
party computation on big data. In EuroSys. ACM, 2019.

[80] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and
M. Zaharia. Splinter: Practical private queries on public
data. In NSDI. USENIX, 2017.

[81] K. C. Wang and M. K. Reiter. How to end password
reuse on the web. In NDSS. Internet Society, 2019.

[82] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016.

[83] X. Wang, S. Ranellucci, and J. Katz. Authenticated
garbling and efficient maliciously secure two-party com-
putation. In CCS. ACM, 2017.

[84] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure
multiparty computation. In CCS. ACM, 2017.

[85] C. Wimmer and H. Mössenböck. Optimized interval
splitting in a linear scan register allocator. In VEE. ACM,
2005.

[86] S. Yakoubov. A gentle introduction to Yao’s garbled
circuits, 2017. http://web.mit.edu/sonka89/www/
papers/2017ygc.pdf.

[87] A. C.-C. Yao. Protocols for secure computations. In
FOCS. IEEE, 1982.

[88] A. C.-C. Yao. How to generate and exchange secrets. In
FOCS. IEEE, 1986.

[89] S. Zahur and D. Evans. Obliv-C: A language for
extensible data-oblivious computation. Cryptology
ePrint Archive, Report 2015/1153, 2015. https://
eprint.iacr.org/2015/1153.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 383

https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://medium.com/syncedreview/shared-machine-learning-ant-financials-solution-for-data-privacy-8069cffe7bb6
https://simons.berkeley.edu/talks/mike-rosulek-2015-06-09
https://simons.berkeley.edu/talks/mike-rosulek-2015-06-09
https://www.youtube.com/watch?v=FTxh908u9y8
https://www.youtube.com/watch?v=FTxh908u9y8
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://www.unboundtech.com/
https://cs.stackexchange.com/users/95646/laakeri
https://cs.stackexchange.com/users/95646/laakeri
https://cs.stackexchange.com/q/120274
https://github.com/emp-toolkit
https://github.com/emp-toolkit
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
https://eprint.iacr.org/2015/1153
https://eprint.iacr.org/2015/1153

[90] S. Zahur, M. Rosulek, and D. Evans. Two halves make a
whole: Reducing data transfer in garbled circuits using
half gates. In EUROCRYPT. Springer, Berlin, Heidel-
berg, 2015.

[91] Zcash. Parameter generation. https://z.cash/
technology/paramgen/.

[92] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr.
Fast restore of checkpointed memory using working set
estimation. In VEE. ACM, 2011.

[93] W. Zheng, R. Deng, W. Chen, R. A. Popa, A. Panda,
and I. Stoica. Cerebro: A platform for multi-party cryp-
tographic collaborative learning. In USENIX Security.
USENIX, 2021.

[94] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica.
Helen: Maliciously secure coopetitive learning for linear
models. In S&P. IEEE, 2019.

[95] R. Zhu, D. Cassel, A. Sabry, and Y. Huang. NANOPI:
Extreme-scale actively-secure multi-party computation.
In CCS. ACM, 2018.

A Artifact Appendix
Abstract
Our artifact consists of a MAGE prototype and scripts to use
it to run our experiments from §8. The MAGE prototype can
execute SC efficiently even when the computation does not
fit in memory. It does so by using memory programming
to provide a very efficient virtual memory abstraction. Our
prototype supports distributing an SC computation across
workers that communicate over the network, allowing for
parallel and distributed SC execution. The MAGE prototype
presently supports two SC protocols: garbled circuits and
CKKS. It follows the layered architecture described in §4.3.

Scope
Our artifact can be used to validate our central claim that,
using memory programming, MAGE can execute SC compu-
tations that do not fit in memory at nearly in-memory speeds.
Specifically, our artifact can be used to validate the perfor-
mance claims made in the figures and table in §8. Our submit-
ted artifact package allowed the artifact evaluation committee
to reproduce those results present in our submitted paper; we
have since added support for reproducing the measurements
we have added since the original submission.

Our artifact can also be used to run SC computations unre-
lated to our evaluation of MAGE in §8. The user can describe
a custom SC computation using a DSL internal to C++, and
then use our MAGE prototype to generate a memory program
for it and execute it efficiently.

Contents
Our artifact comprises (1) a prototype of MAGE and (2)
scripts to run experiments from §8.

Prototype. Our MAGE prototype includes:
• The planner and interpreter for the MAGE system.
• A utility program to read the bytecode format used by our

implementation and print a memory program in human-
readable form.

• Implementations of the workloads used in our evaluation
(§8.1) in MAGE’s DSLs.

• Utility programs to prepare inputs for these workloads.
• A wiki page that walks the user through using our MAGE

prototype to perform a computation.

Scripts. Our scripts to run our experiments include:
• A program, magebench.py, that can spawn cloud instances

on Microsoft Azure and Google Cloud and run experiments
on the resulting cloud setup. The command line parameters
passed to this program can be used to specify the cloud
setup and experiments to run; the user can change these
command line parameters to change aspects of the setup
(e.g., number of workers, memory size, problem size, etc.).

• A README file that describes how to use magebench.py
to run our experiments from §8 and obtain log files contain-
ing the results.

• An IPython notebook to produce graphs from the log files
output by magebench.py.

• Utility scripts to help automate invoking magebench.py to
run experiments from §8.

Hosting
Our artifact is available on GitHub. Our MAGE prototype is
available at https://github.com/ucbrise/mage and our
scripts to run our experiments are available at https://
github.com/ucbrise/mage-scripts. The version we pro-
vided to the artifact evaluation committee is marked in both
repositories using the osdi21ae tag. However, we encourage
users to use the latest versions of each repository (on the main
branch), as they include the newest features and bug fixes,
including scripts for additional experiments in §8.

Requirements
We developed and tested our artifact on Intel x86-64 sys-
tems running Ubuntu 20.04. We used clang++ 10.0.0 to
compile our MAGE prototype. The magebench.py script
spawns cloud instances with an environment appropriate for
building and running our MAGE prototype. Spawning those
cloud instances requires a subscription to Microsoft Azure
and Google Cloud. The particular software dependencies for
our artifact are specified in the README files of our two
GitHub repositories.

Workflow
To use our MAGE prototype, the user first writes a config-
uration file in YAML describing the execution setup (e.g.,
network information and swap file for each worker, number

384 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://z.cash/technology/paramgen/
https://z.cash/technology/paramgen/
https://github.com/ucbrise/mage
https://github.com/ucbrise/mage-scripts
https://github.com/ucbrise/mage-scripts

of concurrent OTs for garbled circuits, etc.). For SMPC, in-
formation needed only by other parties (e.g., the swap file
for other parties’ workers) can be omitted from the configu-
ration file. Next, the user writes a program in a DSL internal
to C++ specifying the computation to run. Then, the user
runs MAGE’s planner, which accepts the DSL program and
configuration file as input, for each worker the user will run,
and outputs a file containing a memory program for each
worker. The user prepares a file for each worker describing
that worker’s input for the computation. Finally, the user runs
MAGE’s interpreter for each worker, which accepts files con-

taining the memory program, configuration, and input data
and writes a file containing the program’s output. Further
details are given in the README file and wiki pages of the
mage repository on GitHub.

To use our script to run experiments, the user invokes
magebench.py to spawn cloud virtual machines. The user
can then invoke magebench.py to run MAGE on those cloud
virtual machines, copy the resulting log files to the machine
where magebench.py is run, and finally, deallocate the cloud
virtual machines. Further details are given in the README
file of the mage-scripts repository on GitHub.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 385

Zeph: Cryptographic Enforcement of End-to-End Data Privacy

Lukas Burkhalter∗, Nicolas Küchler∗, Alexander Viand, Hossein Shafagh, Anwar Hithnawi

ETH Zürich

Abstract

As increasingly more sensitive data is being collected to
gain valuable insights, the need to natively integrate privacy
controls in data analytics frameworks is growing in impor-
tance. Today, privacy controls are enforced by data curators
with full access to data in the clear. However, a plethora of
recent data breaches show that even widely trusted service
providers can be compromised. Additionally, there is no as-
surance that data processing and handling comply with the
claimed privacy policies. This motivates the need for a new
approach to data privacy that can provide strong assurance
and control to users. This paper presents Zeph, a system that
enables users to set privacy preferences on how their data can
be shared and processed. Zeph enforces privacy policies cryp-
tographically and ensures that data available to third-party
applications complies with users’ privacy policies. Zeph exe-
cutes privacy-adhering data transformations in real-time and
scales to thousands of data sources, allowing it to support
large-scale low-latency data stream analytics. We introduce
a hybrid cryptographic protocol for privacy-adhering trans-
formations of encrypted data. We develop a prototype of
Zeph on Apache Kafka to demonstrate that Zeph can perform
large-scale privacy transformations with low overhead.

1 Introduction

The availability of rich data and the advancement of tools and
algorithms to process data at scale has enabled tremendous
innovations in various fields ranging from health and retail to
agriculture and industrial automation [68, 79, 81]. However,
the accumulation of sensitive data has made service providers
hosting data lakes a desirable target for attacks. In addition, a
surge of incidents of unauthorized data monetization, instru-
mentation, and sharing has raised societal concerns [50, 85].
This has pushed regulatory bodies to enact data privacy regula-
tions to prevent misuse of private data and ensure the privacy

∗These authors contributed equally to this work.

of personal data [2, 3]. Today, the most integral parts of ex-
isting data protection systems are security controls such as
authentication, authorization, and encryption which protect
data by guarding it and limiting unnecessary exposure. Secu-
rity controls alone, however, are not sufficient. We ultimately
need to ensure that user’s privacy is respected even by entities
authorized to use the data. Thus, privacy solutions that control
the extent of what can be inferred [15] from data and protect
individuals’ privacy [45] are crucial if we are to continue to
extract utility from data safely.

Today’s Data Privacy Landscape: The advent of new data
privacy regulations such as GDPR and CCPA, coupled with
the increasing importance of data, has led to a growing de-
mand for privacy solutions that protect sensitive data while
retaining its value. Despite recent advancements in pri-
vacy enhancing technologies [41, 78, 84], privacy frame-
works [26, 43, 44, 61, 76, 82] remain shaped by regulatory
requirements that predominately focus on the notion of notice
and consent [5,11,59]. Though an essential step towards trans-
parency and user control, it is important to emphasize that
user consent is not the answer to data privacy. Bad practices
in data use and sharing remain pervasive in consent-based
systems [48, 57, 67], and often consent does not adequately
express the complexities of real-world privacy preferences.
The status quo has three shortcomings that we aim to ad-
dress with this work: (i) Trusted data curators: In the current
model, privacy controls are implemented and enforced by
data curators who have full access to data in the clear. Fre-
quent data breaches [25, 38, 66] have shown that even trusted
providers can be compromised or fall prone to data misuse
temptations. Additionally, there are no assurances that data
processing actually complies with the stated privacy policies.
Consequently, there is a need for built-in data privacy mecha-
nisms that do not require data curators to access data in the
clear. (ii) Lack of user control: Though privacy regulations
mandate services to grant users more control over their data,
the materialization of this has been disappointing in practice.
Services have been drafting privacy policies that unilaterally
dictate how users’ data will be used. Users have no option

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 387

to exert their data privacy preferences except to give blanket
consent if they choose to use the service [49, 59]. (iii) End-
to-end privacy: Privacy solutions today are mostly ad hoc
efforts [14] rather than an integral part of the data process-
ing ecosystem. We need a cohesive end-to-end approach to
data privacy that follows data from source to downstream.
Such solutions should integrate with existing data processing
and analytics frameworks and coexist with data protection
mechanisms already in place.
Zeph: In this work, we propose Zeph, a new data pri-
vacy platform that provides the means to safely extract value
from encrypted data while ensuring data confidentiality and
privacy by serving only privacy-compliant data. Zeph ad-
dresses the above shortcomings with two key ideas: (i) a
user-centric privacy model that enables users to express their
privacy preferences. In Zeph, a user can authorize services
to access raw data or privacy-compliant data securely. This
aligns with data sharing practices claimed in privacy poli-
cies today: e.g., "we share or disclose your personal data
with your consent" or "we only provide aggregated statis-
tics and insights" [6, 13]. In addition to this commonly ref-
erenced aggregation policy, Zeph supports more advanced
privacy-compliant data transformations. For example, trans-
formations that restrict what can be inferred from the data
(e.g, generalization techniques [24, 72, 78]) or ensure dif-
ferential privacy – a mathematically rigorous definition of
privacy. (ii) Zeph cryptographically enforces privacy com-
pliance and executes privacy transformations on-the-fly over
encrypted data, ensuring that the generated transformed views
conform to users’ privacy policies.

The design concepts underpinning Zeph are generic and
could be adapted to other systems. In this work, we specif-
ically target data stream analytics/processing pipelines and
build on the typical structure of such systems. Hence, we fo-
cus on cryptographic building blocks that optimize efficiency
for this type of data. Streaming compute tasks are increasingly
relevant in various privacy-sensitive sectors [17, 35, 47, 55].
The online nature of stream processing makes low latency and
high throughput critical requirements for privacy-preserving
stream processing solutions.
Cryptographically Enforced Privacy Transformations.
There are three key challenges in designing a data platform
that enables privacy-compliant data transformations on en-
crypted data. First, we need to ensure compatibility with the
data flow of existing data processing pipelines (e.g., storage
and compute) and meet their strict performance requirements.
Second, the platform must enable a wide range of existing
privacy transformations and allow for different transforma-
tions to be applied to the same underlying data. Finally, in
addition to single-source privacy transformations, we need
to support transformations that require combining data from
multiple users (e.g., aggregate private data releases).

Existing practical encrypted data processing systems gen-
erally use partially homomorphic encryption schemes that

already support the single-source privacy transformations re-
quired in our system [33, 39, 54, 69, 70, 80]. However, ho-
momorphic evaluation alone is insufficient to support ag-
gregations across data from different users. Supporting
these functions is typically achieved via multi-party com-
putation protocols that are optimized for aggregation opera-
tions [16, 39, 63, 73]. These protocols ensure that user inputs
remain private and only the aggregation result is revealed
to the server. However, these protocols are either limited to
specific functions (e.g., updating sketches) or require the data
producers to take an active part in the computation.

We address these challenges in Zeph using two ideas: (i) a
new approach for encryption that decouples data encryption
from privacy transformations. This logical separation of the
data and privacy plane allows us to remain compatible with
data flows in existing systems. Data producers remain obliv-
ious to the transformations and do not need to encrypt data
towards a fixed privacy policy. (ii) we introduce the concept
of cryptographic privacy transformation tokens to realize flex-
ible data transformations. These tokens are, in essence, the
necessary cryptographic keying material that enables the re-
spective transformation on encrypted data. Zeph creates these
tokens via a hybrid construction of secure multi-party compu-
tation (MPC) and a partially homomorphic encryption scheme.
Outputs of privacy transformations over encrypted data at the
server-side are then released by combining the encrypted data
with corresponding cryptographic transformation tokens.

We have built a prototype of Zeph1that is interfaced with
Apache Kafka [21]. Our evaluation results show that Zeph
can serve real-time privately transformed streams in different
applications with a 2x to 5x latency overhead compared to
plaintext. We optimize the interactive part of the underlying
MPC protocol with ideas from graph theory to achieve the
scalability requirements of Zeph. Our optimization improves
performance up to 55x compared to the baseline.

2 Overview

In this section, we discuss end-to-end privacy and its require-
ments, give an overview of Zeph, and describe our security
and privacy model.

2.1 End-to-End Privacy

In this work, we investigate a new cohesive end-to-end design
for data privacy. Despite being heavily intertwined with users’
data, data systems have evolved with design objectives cen-
tered around availability, performance, and scalability, while
privacy is essentially overlooked. As privacy becomes a more
urgent concern, we need system designs that retrofit privacy
into existing established data framework designs. Embedding

1Zeph’s code available at: https://github.com/pps-lab/zeph-
artifact

388 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/pps-lab/zeph-artifact
https://github.com/pps-lab/zeph-artifact

Name Zeph Description
DATA MASKING

Field Redaction [7, 9, 11] Reveal some attributes and hide others
Predicate Redaction [7] G# Only reveal data that satisfy a predicate
Det. Pseudonym. [12] # Replace value with a deterministic pseudonym
Rand. Pseudonym. [12] Replace value with a random pseudonym
Shifting [4] Shift actual values by a fixed offset
Perturbation [41] Perturb data by adding random noise

i.e., additive differential privacy mechanism

DATA GENERALIZATION
Bucketing [4, 11] G# Map values to a coarse space
Time Resolution [33] Aggregate data across time
Population [28, 37, 39, 73] Aggregate data across a population

Table 1: Overview of existing privacy transformations: Data
Masking techniques (top), Data Generalization techniques
(bottom). We use (full support), G# (partial support), and
(no support) to indicate which of these techniques are
currently supported in Zeph.

privacy in the current complex, data-rich systems while en-
suring the desired level of utility is, however, challenging.
What is considered an appropriate privacy/utility balance in
one context might not be a proper trade-off for another con-
text. Therefore, end-to-end system designs for privacy need
to account for various privacy solutions and accommodate
heterogeneous privacy preferences. Next, we discuss some
key design aspects for realizing end-to-end data privacy.
User-Centric Privacy. Users’ perception of privacy varies
widely across individuals, cultures, and contexts. Therefore,
the system needs to provide the means for users to set their
privacy preferences and define how their data can be accessed,
processed, and shared. In practice, user preferences can also
vary with respect to the trade-offs between increased privacy
and utility. Their preferences can vary based on the data
involved and the target consumer. While we want to offer
users the option of strong privacy guarantees, we also need
to provide options for more relaxed privacy guarantees when
incentives to do so exist. For example, users might voluntar-
ily share their off-platform shopping activities with a service
provider in return for financial incentives [71]. Therefore, a
practical system needs to support a range of privacy prefer-
ences and be able to build privacy-compliant views across
data covered by heterogeneous policies.
Retrofit into Existing Data Pipelines. A practical privacy
solution should augment existing data pipelines while ensur-
ing the privacy of the underlying data. Additionally, privacy
transformations need to respect/adhere to traditional data pro-
tection mechanisms already in place (i.e., end-to-end encryp-
tion). Therefore, the design needs to offer composability to
support a variety of privacy solutions and ensure that privacy
solutions can work with encrypted data. We want to leave the
flow of data in end-to-end encrypted systems intact.
Privacy Transformations. Privacy solutions for data analyt-
ics focus on allowing the use of data or computation on data
subject to privacy restrictions specified by users (e.g., restrict

Privacy
Controller

Data
Producer

Privacy Compliant
Views

Encrypted Data
Storage/Processing

Federated Privacy
Control

D
at

a
Pl

an
e

Pr
iv

ac
y

Pl
an

e

Policy

Token

Policy Manager

Privacy Transformation

Figure 1: Overview of Zeph’s end-to-end approach to privacy.

what can be inferred from the data). They are designed to
enable extracting the utility from data while preserving indi-
vidual’s privacy preferences. This is often achieved through a
range of data modifications that we refer to as privacy transfor-
mations, i.e., functions applied to the data to limit and control
the extent of sensitive information revealed to authorized par-
ties. Solutions in this space can be grouped into three broad
classes (Table 1): (i) data masking techniques that obfuscate
sensitive parts of the data, (ii) generalization techniques that
reduce data fidelity, e.g., by aggregating data, (iii) combina-
tions of (i) and (ii) which can realize complex transformations
by chaining masking and generalization techniques. Privacy
transformations are the primary tools to safely release data,
achieving either a range of privacy guarantees common in
practice (e.g., as in aggregate statistics) or formal privacy def-
initions such as k-anonymity [78] or differential privacy [40].
A useful end-to-end system design for privacy therefore needs
to support a broad set of existing privacy transformations.

2.2 Zeph in a Nutshell

Zeph is a privacy platform that augments encrypted stream
processing pipelines with the means to enforce privacy con-
trols cryptographically. Figure 1 shows an overview of Zeph’s
design. We aim to enable authorized third-party services to
access and process data and to gain insights from it without vi-
olating the privacy preferences of the data owners. We design
Zeph to encapsulate state-of-the-art privacy solutions (e.g.,
generalization, differential privacy) while preserving the data
flow in existing streaming pipelines.
Privacy Plane. To illustrate a deployment of Zeph, we con-
sider a health monitoring provider that stores health-related
data from wearable devices such as heart rate and other met-
rics. We assume that the data streams are already end-to-end
encrypted, i.e., the wearables encrypt data before uploading,
while applications (e.g., health dashboard) query encrypted
data and locally decrypt the result [33]. We refer to this
data flow through a streaming platform as the data plane.
The privacy logic resides and is executed outside of the data
plane, allowing data sources to continue writing encrypted
data streams to a remote stream processing pipeline as before.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 389

Zeph exposes an API for data owners to set their privacy
preferences, which forms the base for users’ privacy poli-
cies. A Zeph deployment augments the data plane with a
privacy plane that enables the provider to extract information
from the encrypted data streams through privacy transformers.
Hence, the service gets access to privacy-compliant trans-
formed views of the underlying raw data streams. For exam-
ple, the service might collect the average heart-rate per day
for different age-groups (i.e., population aggregate transfor-
mations). To collect these statistics, Zeph allows the service
to express privacy options for data stream attributes through a
modified data schema (§4.1), which describes a set of possible
privacy transformations for attributes. Upon registering with
the services, data owners set their privacy preferences for each
stream based on these options, forming the base for users’
privacy policies. For example, they can indicate if the service
is allowed to include their heart rate stream in the specified
aggregate transformations. The additional logic for handling
privacy options and coordinating transformations is handled
by an additional server component, the policy manager. The
policy manager offers an API to handle privacy options per
data stream and coordinates privacy transformations as stream
processors in the streaming pipeline.

Privacy Controller. Policy enforcement in Zeph is handled
by the privacy controller. The privacy controller is respon-
sible for supplying the cryptographic privacy transformation
tokens that enable privacy transformations at the server. As
some privacy policies require data to be aggregated across
different users before being made available, generating tokens
specific to these types of transformations require interaction
between several privacy controllers in what we refer to as
federated privacy control. While the tokens generated by the
privacy controllers cryptographically enforce the data own-
ers’ privacy policies, the server is responsible for composing
and executing transformations efficiently. The privacy con-
troller does not require access to the data and can be hosted
in a location with higher availability guarantees. Zeph al-
lows users to choose a variety of deployment scenarios for
privacy controllers. Privacy controllers could be self-hosted,
hosted on-premise for corporations, or outsourced to a trusted
provider (e.g., OpenID identity providers).

Data Consumers. We distinguish between two types of data
consumers: (a) services that access the data to provide utility
to the user (i.e., personalization), and (b) third-party services,
e.g., to provide a utility that is beneficial to the public or
the service itself, but not directly to the user (e.g., allow your
health data records to contribute to a medical study). Enabling
direct access to the data for the first type of data consumers is
handled by cryptographic access control and is supported in
our design, but it is not the focus of this work. In Zeph, we
focus instead on the latter with the goal to continue enabling
the benefits of these services while respecting users’ privacy.

2.3 Threat Model

Zeph enforces users’ privacy preferences cryptographically,
i.e., users are guaranteed that the data is transformed with the
privacy transformation corresponding to their privacy prefer-
ence before it is released to applications. Meanwhile, their
original data remains end-to-end encrypted.
Setting. We assume an honest-but-curious [70] server, i.e.,
the server performs the computations correctly but will ana-
lyze all observed data to gain as much information as possible.
We also assume the existence of a public-key infrastructure
(PKI) for authentication of privacy controllers/data producers.
In this setting, Zeph ensures data confidentiality, more specif-
ically input privacy, guaranteeing that the adversary learns
nothing about the raw data streams except what can be learned
from the output of the transformation F (i.e., F̂-privacy [39])
with some modest leakage function due to encodings (§3).
Zeph also ensures that an adversary controlling the server and
at most a fraction α of privacy controllers is unable to violate
the privacy policies of other data owners.
Data Plane. In Zeph, data streams are encrypted at the source
with a semantically secure encryption scheme, while the meta-
data (e.g., timestamps) is sent in plaintext. Decryption keys
are never disclosed to the server; therefore, raw data confiden-
tiality is guaranteed even in the case of a server compromise.
If an adversary gains control over a data producer or the re-
sponsible privacy controller, only the data associated with
that producer/controller is revealed.
Privacy Plane. Zeph ensures input privacy for honest data
owners even if the stream processor executing a privacy trans-
formation or the policy manager coordinating it is compro-
mised by an adversary. For the case where F is an aggregation
function involving data from different privacy controllers (i.e.,
federated privacy control), we assume that at most a fraction
of α of the entities in the aggregation transformation are con-
trolled by the adversary. Note that this can also include the
server. The choice of α depends on the deployment scenario.
In (§3.4), we show how this choice affects performance. For
our evaluation, we use a pessimistic value of α = 0.5, but
real-world deployments might use significantly lower values.
Robustness. While Zeph can handle various failures in prac-
tice, formal robustness against misconfigured or malicious
privacy controllers or data producers is out of scope for this
design. A privacy controller sending corrupted tokens cannot
compromise privacy but could alter the output of a transfor-
mation or prevent a transformation from completing.

3 Encryption for Privacy Transformations

In this section, we describe our approach to enable privacy
transformations in end-to-end encrypted systems. Our de-
sign serves privacy-compliant transformed views of data
without affecting the data flow of an end- to-end encrypted
stream-processing system. To meet this goal, our design

390 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

logically decouples privacy transformations and policy en-
forcement from the generation and storage of data. Data
producers remain oblivious to the transformations and do
not need to encrypt data towards a fixed privacy policy. The
modifications needed for privacy transformations are instead
executed outside the data plane (i.e., conventional data flow),
working exclusively on encryption keys to generate what we
call cryptographic transformation tokens. These tokens are,
in essence, the necessary cryptographic keying material that
enables the respective transformation on encrypted data. Out-
puts of privacy transformations over encrypted data at the
server-side are then released by combining the encrypted data
with corresponding cryptographic transformation tokens. In-
troducing a logical separation between the data plane and
privacy plane allows for heterogeneous policies atop the same
data and leaves the conventional data flow unaffected. In
this realization of Zeph we focus on streaming data. Hence,
we focus on cryptographic building blocks that optimize ef-
ficiency for this type of data. The design concepts under-
pinning Zeph are generic and could be adapted to other sys-
tems using other cryptographic building blocks. These, how-
ever, can introduce their own trade-offs between computation
expressiveness and performance.

3.1 Decoupling Encryption from Privacy
Transformations

This design requires an encryption approach that supports
homomorphic evaluation in a variety of settings. Namely,
it needs to support: (i) evaluation on encrypted data, i.e.,
encrypted data processing, (ii) construction of cryptographic
transformation tokens, and (iii) combining the encrypted data
with the matching cryptographic transformation tokens for
selective release of privacy-compliant transformed data views.
Encrypted Data Processing. Existing encrypted data pro-
cessing systems utilize homomorphic encryption schemes
to enable server-side computation on encrypted data [33, 69,
70, 80]. To meet applications’ stringent performance require-
ments, systems typically combine efficient partially homomor-
phic encryption schemes [27, 33, 39, 54, 69] with specialized
client-side encodings to support a wider set of queries. How-
ever, standard homomorphic encryption schemes do not lend
themselves to support selective release of data (i.e., handing
out the decryption key allows to decrypt all data) or support
privacy transformations that require data evaluation across
different users (i.e., different trust domains). Supporting func-
tions across populations in the multi-client/single-server set-
ting is typically achieved via specialized multi-party com-
putation protocols [16, 39, 63, 73]. These existing protocols
ensure that the user inputs remain private and only the output
of the function evaluation is revealed to the server. However,
they require active participation by the data producers and are
often limited to specific functions. We want to remove the
need for – potentially resource-limited – data producers to
take part in or even be aware of privacy transformations.

Homomorphic Secret Sharing. To decouple encryption
from privacy transformations, we draw on ideas from the
Homomorphic Secret Sharing (HSS) [31, 32] literature. In
essence, HSS allows computing a function F on secret shared
messages by combining the outputs of a function F̂ applied
on the individual secret shares. HSS could be used to split
stream events into two shares: one for the data plane (server)
and one for the privacy plane. The privacy plane could au-
thorize a transformation F by computing the same function
F̂ as the server on their local input shares, and releasing the
output. Here, F̂ supports all of the required core functions, as
secret shares can also be aggregated across different data own-
ers. Applying standard HSS in our setting raises two issues:
(i) general-purpose HSS incurs non-negligible overhead [31],
and (ii) with this approach privacy controllers remain depen-
dent on data producers as they continue to receive a secret
share for each new stream event.

To address the first issue, we employ additively homo-
morphic secret sharing. This is considerably more efficient
than general-purpose HSS, allowing our system to sustain the
high throughput needed for streaming data workloads. Used
naively, additively homomorphic secret sharing can signifi-
cantly limit expressiveness. However, as we show in the next
section, using carefully selected data encodings allows us to
support a wide set of privacy transformations.

To break the dependency between privacy controllers and
data producers, we enable the privacy controller to indepen-
dently derive the tokens (i.e., its shares) based only on meta-
data about the stream. Given a shared common master secret,
the data producer and privacy controller never have to com-
municate or even be online at the same time. We introduce
our scheme in more detail in §3.3. Our tailored scheme offers
both the required efficiency and the flexibility necessary to
decouple the data plane from the privacy plane. The data
producer and the responsible privacy controller need to only
agree on a shared master secret. Then, the privacy plane
can authorize a transformation F by deriving the involved
shares and executing F̂ on them, which results in a transfor-
mation token. This token allows the server to compute and
reveal the output of F by performing F̂ on the ciphertexts
and combining the result with the transformation token. If
the transformation F spans multiple trust domains, i.e., the
privacy plane consists of multiple privacy controllers, the pri-
vacy controllers run an MPC protocol to compute the final
transformation token. Note that this does not require the data
producers to participate or even be online. Next, we show
how we can support a broad set of privacy transformations
with this scheme.

3.2 Privacy Transformation Functions

Broadly, privacy transformations (§2.1) generally involve
computation/perturbation of individual user’s data, computa-
tions across different users’ data, or combinations of the two.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 391

Based on this insight, Zeph exposes three core functions for
developers that allow for privacy transformations in the en-
crypted setting: (i) ΣS, which enable ciphertext aggregation
operations within the same user’s data streams. (ii) ΣM , which
enables ciphertext aggregation across streams from a popula-
tion of users, (iii) ΣDP, which supports perturbation via noise
addition to streams aggregated across multiple users.

Privacy Transformations in Zeph. A privacy transforma-
tion F in Zeph is realized by combining a chain of core func-
tions and/or withholding certain shares when creating a token.
(i) Data Masking. Data masking techniques such as field-
redaction and randomized pseudonymization are directly sup-
ported by the secrecy properties of our scheme. The privacy
controller redacts or pseudonymizes a field by withholding the
corresponding shares from the transformation token. Shifting
and perturbation are realized with ΣS by adding a constant or
calibrated random offset to the transformation token. Zeph
supports a subset of predicate redactions using client-side
encodings that represent a value as a vector of elements. A
privacy controller can then construct a transformation token
that only reveals a subset of elements in the vector or a certain
sum of the elements (ΣS). For example, to enable predicate
redaction based on a threshold, the client would encode the
value as a vector of two elements. If the value is above the
threshold, the client stores the value as the first element in
the vector or else as the second element. To only reveal the
values above the threshold, the privacy controller can disclose
the first elements of the vectors with the tokens.

(ii) Data Generalization. Bucketing similarly builds on
client-side encodings that map a value to a one-hot vector
representing the whole domain. Instead of releasing a token
for all elements, the privacy controller uses ΣS to release a
sum of shares for elements mapping to the same bucket. For
values with a large domain, we can approximate the frequency
count with a histogram using a larger bin width. Zeph sup-
ports data generalization over time with ΣS and population
with ΣM . Moreover, Zeph provides ΣDP to release a differ-
entially private aggregate across a population. To extend
the supported aggregation functions, we leverage existing
encoding techniques [27, 33, 39, 54, 69, 83]. In essence, these
encodings map a value to a vector with different statistics
that allows the computing platform to execute functions by
performing element-wise addition. The aggregate functions
sum and count are inherently additions. With a vector of
sum and count, a party can obtain the mean by dividing the
sum by the count. By adding the square of a value to the
encoding vector, a party can calculate the variance using that
Var(x) = E(x2)−E(x)2. Moreover, with the one-hot encod-
ing, constructing a histogram corresponds to the element-wise
sum of a set of one-hot vectors. Given a histogram, a party can
compute the median or other percentiles, min, max, mode,
range, or topk. Prior work [39] presents further encoding
techniques for other functions that we support in Zeph.

3.3 Transformation Tokens
In Zeph, we build upon a symmetric homomorphic encryp-
tion scheme [33] explicitly designed for streaming workloads.
We use this scheme to realize efficient additively homomor-
phic secret sharing for our setting. The scheme efficiently
derives a unique sub-key for each message from a master se-
cret and encryption is performed via modular addition of the
key and the message. Here, the encrypted message and the
(message-specific) sub-key can be seen as additive shares of
the message. Since encryption and decryption are linear oper-
ations, the scheme supports linear aggregation by computing
the function on both the sub-keys and the encrypted messages
independently. Transformation tokens, which authorize the
release of privacy transformation results, are derived from
the sub-keys via aggregations. We now describe how these
are constructed in our system. We start with a description
of a simplified version of Zeph that assumes a single privacy
controller and extend our description to consider multiple
privacy controllers in §3.4.
Symmetric Homomorphic Stream Encryption. First, we
give a brief summary of the symmetric homomorphic stream
encryption scheme [33] we build upon. Let a data stream be a
continuous stream of events {e0,e1, ...,ei,ei+1, ...} for events
ei := (ti,mi) consisting of a message and a timestamp. Each
message mi is an integer modulo M and is annotated with a
discrete timestamp ti ∈ I. We assume events are ordered by
their timestamps and created in-order.

In the setup phase, a master secret k is generated, the group
size M is defined (e.g., 264), and a keyed pseudo-random
function (PRF) fk : I→ [0,M−1] that outputs a fresh pseudo-
random key ki for timestamp ti is selected. To encrypt an
event ei, the data producer uses the event timestamp from the
last encrypted message ti−1 and computes:

Enc(k, ti−1,ei) = (ti, ti−1,mi + ki− ki−1 mod M) (1)

where ki = fk(ti), ki−1 = fk(ti−1). This scheme is additively
homomorphic: ciphertexts can be aggregated via modular
additions. Keys can be aggregated the same way, but for a
time-window [ti, t j], the client can decrypt more efficiently by
deriving only the two outer keys ki = fk(ti) and k j = fk(t j)
because the inner keys cancel out. This encryption scheme
hides the inputs from the server and allows the server to
perform aggregations among the streams without accessing
the plaintext data.
Authorizing Transformations. The intuition in Zeph is that
the encryption scheme essentially splits a message mi into two
additive secret shares: the key −ki + ki−1 and the ciphertext
ci, with mi = ci +(−ki +ki−1) mod M. Therefore, any trans-
formation F consisting of the three core aggregate operations
can be performed independently on both the ciphertexts and
the keys using modular additions. The latter produces a trans-
formation token τF , which the server can use to reveal the out-
put oF of a transformation F by computing oF + τF mod M.

392 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hence, a privacy controller that is in possession of the master
keys of the streams can authorize a transformation F by deriv-
ing the necessary keys and performing the transformation on
top of them to produce a matching transformation token τF .
In the following, we assume that all additions are performed
modulo the parameter M.
Single-Stream Transformation Tokens. We now describe
how a privacy controller can create transformation tokens
for ΣS transformations, e.g., only reveal the approximate lo-
cations aggregated over a month. We start with a window
aggregation to reduce the time resolution. The server adds
values within the specified time window ti to ti+w , where
w is the window size. As long as data producers submit
a value on each window border, the resulting ciphertext of
the window aggregation on the server shares has the form
cw = maggr +ki+w−ki−1. The privacy controller can compute
the transformation token for this window τ = −ki+w + ki−1
by deriving only the two outer keys ki = fk(ti) and k j = fk(t j)
as the inner-keys cancel each other out [33, 69]. With this
token, the server can decrypt the window aggregation if and
only if the correct windows were aggregated, as the keys
directly encode the window range. For aggregations within
events, the privacy controller uses modular addition to add
the respective sub-keys to create the transformation token.
The privacy controller can construct transformation tokens
for values with encodings (§3.2) by selectively releasing the
sub-keys of certain elements in the encoding vector or by
aggregating sub-keys of elements in the vector.
Multi-Stream Transformation Tokens. Multi-stream trans-
formation tokens reveal the output of ΣM transformations,
which aggregate data over multiple streams, e.g., only reveal
the approximate location aggregated among multiple users. In
multi-stream aggregation, the server sums a fixed window ti
to ti+w across different streams. Let S be the set of streams in
the aggregation. For each stream j ∈ S we have a window ag-
gregated share c(j)

w = m(j)
aggr +k(j)

aggr where k(j)
aggr = k(j)

i+w−k(j)
i−1.

The aggregation over all streams in S results in the sum of
all window aggregates and the sum of all window share keys.
Hence, a privacy controller can compute the transformation
token by aggregating the window keys τ(j) =−∑ j∈S k(j)

aggr.
Differentially-Private Transformations. Differential Pri-
vacy [40] provides formal bounds on the leakage of an in-
dividual’s private information in aggregate statistics. The
most common technique to achieve a differentially private
release of information is to add carefully calibrated noise.
Zeph supports noisy transformations (i.e., ΣDP) on multi-
stream window transformations, but could be extended to
the single-stream setting. The privacy controllers add care-
fully calibrated noise to the keys (i.e., submit noisy keys):
τ̃ j = τ j +η j where η j is the noise. Zeph therefore supports
all additive noise mechanisms from the Differential Privacy
literature [41] with noise drawn from a divisible distribution.
However, mechanisms like the Sparse Vector Technique [42]
that require access to the underlying data cannot be applied

this way. In previous work, noise is added to plaintexts prior to
encryption, whereas in Zeph noise is added to the decryption
keys. The two approaches are cryptographically equivalent.
However, previous work requires deciding on the noise to add
at encryption time. Our approach has the advantage of allow-
ing noise to be added to data that was previously encrypted
without consideration for noise. This also means, that the
same data is reusable for encrypted storage and to facilitate
one or multiple differentially private privacy transformations.

3.4 Transformations Across Different
Trust Domains

Until now we assumed a single privacy controller that is in
control of all streams. We now discuss how Zeph enables
multiple privacy controllers that are each responsible for a
distinct subset of streams. While we assume that data owners
trust their own privacy controller, different data owners might
not want to trust the same controller. In such multi-trust set-
ting, the server needs to interact with all privacy controllers
involved in a transformation. Hence, when aggregating across
streams the server needs to request a transformation token
from each privacy controller. In a naïve approach, the pri-
vacy controllers might simply send a combined token for
the aggregation of the streams under their control. However,
this leaks the intermediate result from each controller to the
server. Instead, we need the individual tokens to reveal no
additional information while still enabling correct decryption
of the transformation output. We enable this in Zeph using
secure aggregation [16, 28], a specialized secure MPC proto-
col. For our system, we require a secure aggregation protocol
that is (i) lightweight in terms of computation for privacy
controllers and (ii) can be efficiently executed multiple times
with similar participants. Based on these requirements, Zeph
builds on the secure aggregation protocol from Ács et al. [16]
to create transformation tokens over multiple parties. The pro-
tocol goes hand in hand with the design of the transformation
tokens, as it also relies on additive masking. In the following,
we outline the core protocol and then describe our optimiza-
tions that reduce the computation cost for privacy controllers.

Core Protocol. We consider a set P consisting of N pri-
vacy controllers and a server that aggregates the inputs.
Each privacy controller p ∈ P owns a token τp that is con-
structed by aggregating the tokens for the corresponding
ΣS transformation for each stream under their control. The
goal of the protocol is to compute τ = −∑p∈P τp without
revealing the individual inputs τp to the server or to the
other privacy controllers. Each privacy controller masks
its input τp with a nonce kp, i.e., it computes τp + kp
mod M. The nonces are constructed such that the sum over
all nonces results in ∑p∈P kp = 0. As a consequence, the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 393

sum over all encrypted inputs results in the sum of inputs:

∑
p∈P

τp + ∑
p∈P

kp mod M = ∑
p∈P

τp mod M (2)

To construct the canceling nonce, each privacy controller
establishes N−1 pairwise shared secrets k′p,q with all other
privacy controllers which are aggregated to form the nonce
kp. In particular, if p > q, then the controller p adds −k′p,q
else k′p,q.

kp = ∑
p>q
−k′p,q + ∑

p<q
k′p,q mod M (3)

Hence, the pairwise secrets cancel each other out when the
masks are combined in the aggregation. For conciseness, we
refer to Ács et al. [16] for a description of dropout handling.
Constructing Canceling Nonces. In Zeph, the secure ag-
gregation protocol is run repeatedly for multiple rounds due
to the continuous nature of streaming queries. Thus, pri-
vacy controllers require an efficient method to establish many
pairwise shared secrets. The standard protocol achieves this
with a setup phase where the parties create pairwise shared
secrets kp,q using a Diffie-Hellman key exchange. These
pairwise secrets then serve as seeds (or keys) for a PRF to
establish nonces for each round r: kr

p,q = PRF(kp,q,r). Even
though PRF computations are significantly more efficient than
a Diffie-Hellman key exchange, this protocol still requires
each privacy controller to evaluate O(N) PRF’s and additions
to create the blinding nonce kp for a single transformation
token, which can be expensive for large N.

To improve this theoretical overhead, we view the complex-
ity of creating a shared blinding nonce as a graph G = (V,E)
with the set of vertices V representing the involved parties
(|V |= N), and the set of edges E denoting the pairwise can-
celing masks k′p,q. In the standard form described above,
the graph G forms a Clique because every privacy controller
includes a pairwise mask k′p,q with every other privacy con-
troller. To reduce the number of PRF evaluations in the on-
line phase for a privacy controller (i.e., reduce the number
of edges in the graph G), we propose an optimization that
leverages the fact that the protocol is repeated over a long
period of time with similar participants, i.e., the long-running
nature of streaming queries.
Online Phase Optimization. We reduce the communication
overhead during the online phase by choosing privacy con-
troller’s nonce as to only include a small random subset of
the pairwise-secrets in each round. In graph terms, this corre-
sponds to a small expected degree of each vertex. As long as
the graph remains connected2, confidentiality is guaranteed.
We divide the online phase into epochs consisting of t rounds.
At the beginning of each epoch, we use N− 1 evaluations
of the PRF to bootstrap the secure aggregation graphs for
the epoch. A privacy controller assigns each edge to a small

2More specifically, the subgraph of honest nodes must remain connected.

Stream Processing Platform

Streaming Jobs
Orchestrator

Policy
Manager

Privacy
Transformation
Streaming Job

Schema Registry

Data
Producer

Privacy
Controller

Data

orchestrate

Policies

Privacy
Compliant Data

SchemaSchema

Figure 2: Overview of Zeph’s architecture and integration
into existing data streaming pipelines. Zeph’s components
are highlighted in gray.

number of rounds, based on the output of a PRF evaluated on
the shared secrets. More specifically, we divide the output of
PRF(kp,q,r), where r is a public epoch-identifier, into b-bit
segments. Each segment assigns the edge ep,q to one of 2b

graphs using the number encoded in the b-bit segment.
Assuming a 128-bit output size of a PRF (e.g., AES), an

epoch consists of t = b128/bc ·2b rounds. In comparison, the
protocol of Ács et al. [16] uses the same N− 1 PRF evalu-
ations to create only a single secure aggregation graph (i.e.,
epoch size of one). Ideally, we want to create as many graphs
as possible, i.e., select a large b, since with increasing b, an
epoch consists of more rounds. However, with increasing
b, each of the associated graphs has fewer edges, which in-
creases the risk of a graph being disconnected. In the extended
version of this paper [34], we show how to select b so that
the probability of any honest subset of nodes being isolated
in any of the t generated graphs is bounded by δ, assuming a
fraction of at most α parties collude.

For example, for 10k privacy controllers, assuming that
up to half are colluding (α = 0.5), and bounding the failure
probability by δ = 1×10−9, allows for b = 7, which results
in an epoch consisting of 2304 rounds where each vertex has
a expected degree of 78. As a consequence, our optimiza-
tion requires 190k PRF evaluations and 180k additions for
constructing all 2304 blinding nonces of an epoch. In compar-
ison, the basic protocol requires 23 million PRF evaluations
and additions while the protocol from Ács et al. [16] requires
23.2 million PRF evaluations and 180k additions3.

4 Zeph System Design

Zeph is a privacy platform that cryptographically enforces
user-defined privacy preferences in streaming platforms by
sharing only transformed privacy-compliant views of the un-
derlying encrypted data. So far, we have described the crypto-
graphic building blocks that enable privacy transformations in
Zeph. Here, we describe how we overcome the system chal-
lenges that need to be addressed to allow practical deployment.

3All results assume that τp is at most 128-bit long and hence a single
evaluation of AES is sufficient for encryption.

394 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Zeph augments existing stream processing pipelines, similar
to existing frameworks operating on data in-the-clear [64]: (i)
On data producers, Zeph adds a proxy module for encoding
and encryption. (ii) On the server, Zeph adds a microservice
running in the existing stream processing platform. This mi-
croservice transforms the incoming encrypted streams into
privacy-compliant output streams (Figure 2), which can then
be consumed by existing stream processing queries for arbi-
trary post-processing.

4.1 User API and Privacy Policies

Before introducing the Zeph components in detail, we discuss
aspects related to users’ interaction with Zeph.
Privacy Preferences. Zeph provides the capabilities for
users to set their privacy preferences (i.e., user-centric pri-
vacy) and the means to cryptographically enforce various
privacy policies in a unified system. In this paper, we do not
consider the question of what this set of privacy preferences
should be. Nevertheless, we suggest and implement a sen-
sible set of options to demonstrate how Zeph can be used
in practice. In the current design, data owners can set their
preferences as follows: (i) do not share my data, (ii) share
my data without restrictions, (iii) share my data only when
aggregated with other users, and (iv) share only generalized
views of my data and/or mask sensitive data, i.e., share but
limit inference of sensitive information from my data. The
realization of these preferences in practice is application- and
data-dependent (i.e., generalization and data minimization
techniques can differ depending on the data type, e.g., image,
location, heart rate).
Data Stream Schema. In Zeph, developers can translate
user preferences to an application-specific set of transfor-
mations by mapping them in a schema language. Zeph’s
schema language builds on the Avro [20] schema language
(Figure 3). Using our extended schema language, developers
can translate users’ privacy options to configurations, encod-
ings, and transformations for their application. In addition,
the schema contains meta-information about the stream and
the contents of events within a stream. This enables seam-
less integration into existing streaming services employing
schema registries to store structural information about the
events flowing through the system. A Zeph stream schema
contains: (i) Metadata attributes describing static fields that
remain constant for an extended period of time and are public
information. Zeph’s microservice uses these metadata tags to
group and filter streams for transformations over different pop-
ulations (§4.3). For example, the region where a data stream
originates from (Figure 3). (ii) Stream attributes describe the
private contents of an event message and are annotated with
all possible supported queries. These explicit annotations are
required to derive the necessary encodings to execute queries
using the three core functions (§3). For example, a heart rate
sensor might have two stream attributes such as heart-rate and

id: 235632224234
ownerID: 2474b75564b
serviceID: app.com
validFrom: 2020-04-20
validTo: 2021-04-20
stream:

type: MedicalSensor
metadataAttributes:
ageGroup: middle-aged
region : California

privacyPolicy:
- heartrate:

option: aggr
clients: medium
window: 1hr

- hrv:
option: priv

name: MedicalSensor
metadataAttributes:

- name: ageGroup
type: [enum, optional]
symbols: [young, middle-

aged, senior]
- name: region
type: string

streamAttributes:
- name: heart-rate
type: integer
aggregations: [var]

- name: hrv
type: integer

streamPolicyOptions:
- name: aggr
option: aggregate
clients: [medium, large]
window: [1hr]

- name: priv
option: private

Figure 3: An example privacy policy schema of a medical
sensor (left) and a stream annotation for this schema (right).
(YAML format for display)

heart-rate variability (Figure 3). The heart-rate is annotated to
support aggregates with variance statistics. (iii) The privacy
options for stream attributes. A privacy option describes the
set of transformations that the service can perform to reveal an
output. The options stream-aggregate (ΣS), aggregate (ΣM),
and dp-aggregate (ΣDP) directly correspond to the three core
functions defined in §3. In addition, private does not allow
any transformations on the stream while public allows access
to the raw data. For each transformation set, one can add
further constraints, e.g., defining a minimum population size,
specifying a lower temporal resolution by aggregating over
time or providing a privacy budget for the transformation.
Annotating Streams. The Zeph schema for a particular ap-
plication can be accessed by all privacy controllers. A user’s
privacy selection in the application triggers the responsible
privacy controller to create a matching stream annotation and
share it with the server. A stream annotation contains the
selected privacy option along with values of the metadata
attributes and additional information about the stream (Fig-
ure 3). This information later allows Zeph’s server to identify
suitable streams to include in privacy transformations. Stream
annotations contain an identifier of the data owner (e.g., the
hash of their public key) that maps to the data owner’s public
key in the PKI.

4.2 Writing Encrypted Data Streams

Data producers submit streams of events to the pipeline where
each event conforms to a data schema in the schema reg-
istry, as in standard streaming pipelines. However, Zeph
augments data producers with a proxy module to handle
encoding and encryption.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 395

Setup. To initialize a new data stream matching a Zeph
schema, the data producer generates a master secret and shares
both the schema and the master secret with the associated
privacy controller. After the initial setup phase, the data
producer can start sending encrypted data to the server without
any further coordination with the privacy controller.
Encrypting Data Streams. The proxy module encrypts
each record with a symmetric homomorphic encryption
scheme (§3), using the master secret from the setup phase.
In order to allow the privacy controller to derive a transforma-
tion token without observing the data (§3), the data producer
sends a neutral value at regular intervals (e.g., every minute)
to terminate the window. This does not affect the result of
computations but is required for efficient ΣS transformations
across time. Additionally, these messages allow Zeph’s mi-
croservice to detect and handle dropout of data producers
(e.g., due to network interruptions).

4.3 Matching Queries with Privacy Policies

Zeph’s microservice contains a policy manager that maintains
a global view of the system and coordinates active streams,
privacy controllers, and transformations in the streaming
pipeline. It provides a query interface for launching new
transformations and matches queries with available streams
by considering their chosen privacy options. Privacy trans-
formations are constructed from chains of the core opera-
tions (§3.2) and are executed as stream processing queries
running continuously on a set of encrypted streams.

Zeph’s policy manager includes a query planner that lever-
ages the fact that privacy transformation queries follow the
same structure, which we discuss in more detail below. The
policy manager needs to ensure that queries comply with all
the stream’s selected policy options. Otherwise, it will not
receive the required transformation tokens from the privacy
controllers.
Query Language. The query language of Zeph builds on
ksql [51], an SQL-like query language for expressing con-
tinuous queries on data streams. Any authorized service can
express privacy transformations that follow the pattern ex-
plained above. Figure 4 shows an example query, which
creates a transformed stream for the hourly average heart rate
of seniors in California, including at most 1k streams.
Query Planner. The query planner executes queries from
authorized services in three steps: (i) streams are filtered
by their metadata attributes (e.g., all medical sensor streams
in California). (ii) an ΣS operation using a time-window is
performed on certain attributes of each selected stream (e.g.,
average heart rate over 1 hour). The query planner checks for
each selected stream that the transformation complies with
the annotated privacy options for the attributes used, else
the stream is excluded. (iii) If more than one stream is se-
lected, an ΣM or ΣDP operation is performed on the results
of the previous step. The query planner checks for each re-

CREATE STREAM HearthRateCalifornia
(heartrate) AS

SELECT AVG(heartrate)

WINDOW TUMBLING (SIZE 1 HOUR)

FROM MedicalSensor BETWEEN 1 AND 1000

WHERE region = California AND age >= 60

Partici

Query: AGGREGATE, 1hr

Participants: {
113b0266760d154e4024ab71196af346,
755ed828adfe899e69b5b6bf642fd41d,
…
188f62206ff7d37475742b8dbc424784
}

transformation planprivacy transformation

MinParticipants: 100

Figure 4: The query planner converts privacy transformations
into transformation plans with complying data streams.

maining stream that the transformation complies with the
privacy option and checks that the population constraints are
met (e.g., minimum population size), or otherwise excludes
the stream. These compliance checks are necessary, as privacy
controllers would not provide the required tokens for a stream
where the privacy options do not allow the query. To prevent
an attacker from combining outputs of different transforma-
tions to violate privacy policies, any stream attribute can be
matched to only one transformation, and is removed from the
set of queriable streams for this attribute as long as the stream
is part of the running transformation. The privacy controller
generally only supplies a single transformation token for each
window in a given stream, preventing differencing or re-use
attacks. For DP aggregations, a stream value can contribute
to multiple transformations if allowed by its current privacy
budget. The privacy controller maintains the privacy budget
and suppresses transformation tokens if the privacy budget
is used up. After processing the query, the query planner
outputs a transformation plan that encodes the list of streams
in the transformation, fault tolerance details (i.e., number of
participants dropout the system can handle), and the sequence
of operations the system need to perform (Figure 4).

4.4 Coordinating Privacy Transformations

Once the query planner outputs a transformation plan, Zeph
executes the privacy transformation in the streaming pipeline.
Zeph provides a customized stream processor that handles
the required coordination between the transformation job
running in the streaming pipeline and the privacy controllers.
In addition to handling data, it consumes event messages (i.e.,
tokens) from privacy controllers and writes events about the
state of the transformation back to the privacy controllers.
Transformation Setup. Zeph introduces a coordinator com-
ponent that initiates the setup based on transformation plans
provided by the query planner. In order to initialize a new
job, the coordinator first determines the involved privacy con-
trollers and distributes the transformation plan to them. This
step enables the privacy controllers to verify the compliance
of the transformation against the user-defined privacy option.
The verification involves checking the privacy policy based
on the included attributes, window size, aggregation size,
and/or noise configurations. If the transformation plan in-
cludes multiple data owners, each privacy controller needs

396 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to verify the identities involved in the transformation plan
by fetching their certificates from the PKI. Afterwards, each
privacy controller initiates the setup phase of the secure aggre-
gation protocol (§3.4) among the involved privacy controllers.
Once all privacy controllers agree, the coordinator initiates
the transformation job in the streaming pipeline.
Transformation Execution. The stream processor continu-
ously aggregates incoming encrypted events into windows
and applies the transformation tokens received from the pri-
vacy controllers. Zeph runs an interactive protocol with the
privacy controllers once per window, to robustly adjust to
failures of both data producers and privacy controllers. At
the end of each window, the stream requests a heartbeat from
all privacy controllers in the transformation. Note that data
producer dropouts can be detected by the absence of their
events. After a specified timeout, the data transformer com-
putes the intersection of available data producers and privacy
controllers and broadcasts a membership delta in comparison
to the previous window to all involved privacy controllers.

After receiving an update, the privacy controllers verify
that the transformation still complies with the selected privacy
options and update the tokens they send to match the new
transformation. Upon the arrival of all transformation tokens,
Zeph can complete the transformation and output the result.

5 Implementation

Our prototype of Zeph is implemented on top of Apache
Kafka [21], consisting of roughly 4500 SLOC for Zeph and
and additional 5500 SLOC for benchmarks. We provide a
data producer proxy library written in Java that relies on
the Bouncy Castle library [58] for cryptographic operations,
and Avro [20] for serialization. The privacy controller is
implemented in Java but, via the Java native interface (JNI),
calls native code in Rust for the secure aggregation protocol.
For the PRF, we rely on CPU-based AES-NI using the AES
Rust crate [74], and for the ECDH key exchanges we use
the secp256r1 elliptic curve from Bouncy Castle [58]. We
use the Apache Kafka Streams [22] to implement the stream
processor for the privacy transformations. We emulate the
policy manager with a configurable Ansible [19] playbook.

6 Evaluation

Meeting the performance requirements of data stream process-
ing is a key goal of Zeph’s design. Therefore our experimental
evaluation is designed to validate this and more concretely
answer the following two questions: (i) what is the cost of
enforcing privacy policies with encryption in Zeph?, and (ii)
can Zeph provide the means to support practical privacy for
various applications in an acceptable overhead?

sum avg var reg hist
0.0

0.4

0.8

1.2

1.6

C
om

pu
ta

tio
n

[μ
s]

Encode
Encrypt

(a) EC2 instance

sum avg var reg hist
0

20
40
60
80

100

C
om

pu
ta

tio
n

[μ
s]

Encode
Encrypt

(b) Raspberry Pi

Figure 5: The computation cost at the data producer for en-
cryption and different stream encodings: sum, average, vari-
ance, linear regression, histogramm. The encoding for the
histogramm has ten buckets.

6.1 Experimental Setup

The experimental evaluation consists of two parts. First, we
quantify the overhead of Zeph components with microbench-
marks. We start by quantifying the performance of our pro-
posed secure aggregation optimization compared to a Straw-
man with no optimizations (§3.4) and the optimized protocol
by Ács et al. Dream [16]. The second part of the evaluation
aims to quantify the end-to-end performance of Zeph as we in-
tegrate it into three applications with different privacy options.
Moreover, we show how various data-dependent privacy logic
can be realized in Zeph. In these experiments, we consider a
setting where each data producer has a separate privacy con-
troller; this represents the worst-case scenario – the number
of privacy controller involved in the MPC protocol is equal to
the number of data streams.
Compute. We run the microbenchmarks on Amazon EC2
machines (m5.xlarge, 4 vCPU, 16 GiB, Ubuntu Server 18.04
LTS). Additionally, we run the data producer microbench-
marks on a Raspberry Pi 3 B to analyze the performance on
more resource-constrained edge devices. For the end-to-end
evaluation, we employ Amazon MSK [18], which provides
a Kafka cluster as a fully managed service. The Kafka clus-
ter contains two broker nodes (m5.xlarge) spread over two
availability zones in Frankfurt. The stream processor appli-
cation spreads over a set of two EC2 machines (m5.2xlarge)
using Kafka streams. Data producers and privacy controllers
are grouped into partitions of up to 100 entities. A single
producer- or controller-partition runs on one EC2 machine
(m5.large). We run the partitions in three different regions
London, Paris, and Stockholm, to simulate federation.
Configuration. In the microbenchmarks, Zeph uses an event
with a single stream attribute x encoded as~x = [x,x2,1] while
for the end-to-end setup, we use application-specific encod-
ings. Throughout the evaluation, Zeph’s optimized secure
aggregation assumes that up to half the participants are col-
luding (i.e., α = 0.5), and that the failure probability is below
δ = 1e−7. For the end-to-end evaluation the data producer
uses a Poisson process with a mean of 0.5 to time inserts (i.e.,
an average of 2 inserts/s).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 397

Privacy Controllers 100 1k 10k 100k
Bandwidth 9.0 KB 91 KB 910 KB 9.1 MB
Bandwidth Total 901 KB 91 MB 9.1 GB 910 GB
Shared Keys 3.2 KB 32 KB 0.3 MB 3.2 MB
ECDH 25 ms 249 ms 2.5 sec 25 sec
ECDH Total 2.5 sec 4 min 7 h 693 h

Table 2: The computation and bandwidth costs for the pri-
vacy controller in the setup phase of a multi-stream trans-
formation. The total amount consists of the sum of all cost
involved over all privacy controllers of the transformation,
versus the costs for a single privacy controller. The Elliptic-
curve Diffie–Hellman (ECDH) key exchange dominates the
computation and bandwidth costs.

6.2 Data Producer

We now discuss Zeph’s overhead at the data producers.
Computation. The encryption cost for a single record with
Enc is 0.19µs on EC2 and 16µs on a Raspberry Pi, the cost
is low because the encryption scheme relies on symmetric
primitives (i.e., efficient AES). Figure 5 shows the encryption
latency for different encodings. A data producer can encrypt
events at a rate in the range of 5.3m to 524k records per second
(rps), depending on the encoding. Even on a Raspberry Pi,
the computation cost is moderate, and a throughput of 7.7k to
76.6k rps can be observed. To accommodate for window bor-
ders, the data producer has to additionally submit a ciphertext
per-window, which increases the cost at a fixed rate.
Bandwidth. Compared to plaintext, Zeph’s aggregation-
based encodings and timestamp introduce a ciphertext expan-
sion which manifests itself in increased bandwidth require-
ments. The expansion varies from 24 bytes (1.5x) with one
encoding to 96 bytes (6x) with 10 encodings, i.e., grows by 8
bytes per encoding. Besides this, the window border cipher-
texts increase bandwidth with an additional constant factor.

6.3 Privacy Controllers

The cost of the privacy controller depends on the executed
transformations on the service side. Single-stream window
transformations are efficient both in computation and band-
width because no MPC is involved. The privacy controller
computes the transformation tokens on a per-window basis
from the master secret with a computation cost of around
0.2µs and bandwidth cost of 8 bytes per token.

For the multi-stream case, the privacy controller engages in
the secure aggregation protocol (§3.4). We quantify the over-
head by running the secure aggregation protocol for different
numbers of privacy controllers and compare it against the
strawman approach. As a first step, all these protocols require
a setup phase to establish pairwise shared secrets with all in-
volved parties. Afterward, the privacy transformation phase

0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

Zeph Dream Strawman

100 1k 2k 5k 10k
Parties

0.0

0.5

1.0

1.5

2.0

C
om

pu
ta

tio
n

[m
s]

(a) Average per round

8 16 64 128 512
Rounds

0.00

0.05

0.10

0.15

0.20

C
om

pu
ta

tio
n

[m
s]

(b) Varied rounds for 1k parties

Figure 6: Computation costs for privacy controllers in the
privacy transformation phase to execute multi-stream queries.
A round corresponds to a transformation of a single time
window.

starts, during which the privacy controllers create the required
transformation tokens at the end of each window.
Setup Phase. The setup phase overhead increases quadrat-
ically with the number of privacy controllers, i.e., O(N2).
However, we assume that realistic deployments will feature
at most a few thousand privacy controllers in a single ag-
gregation. Beyond this point, further scalability should be
realized through hierarchical transformations. In our evalu-
ation, we explore aggregations with up to 10k privacy con-
trollers, which is the current limit of feasibility without resort-
ing to hierarchies. Table 2 shows a quadratic increase of the
bandwidth and computation costs for running the setup phase
with the ECDH key exchanges. However, the overall amount
is reasonable even for 10k participants, setting with 910 KB
bandwidth and 2.5 sec computation cost per privacy controller.
Note that the setup phase has to be performed only when a
new transformation query is created. In terms of memory,
the privacy controllers need to store their private-key (i.e.,
150 bytes) and the established shared secrets of the current
privacy transformation. Each shared key requires 32 bytes,
e.g., 3.2MB for 100k shared keys.
Privacy Transformation Phase (Optimization). Zeph op-
timizes the cost of the secure aggregation protocol per round
by computing the shares in random sub-groups (§3.4). In the
initial phase, the controllers have to invest more resources to
compute the random subgroup for the upcoming rounds (i.e.,
epoch). After a few rounds, the additional work performed
at the beginning of an epoch is amortized and, therefore, the
overall cost of the computation reduces significantly in the
long run, as depicted in Figure 6. With 1k participants, the
computation costs for the first window is 1 ms for a privacy
controller, while in the following windows Zeph reduces the
computation cost by 2.6x. Already for 8 and 16 windows for
10k and 1k participants, respectively, the Zeph optimization
is more efficient on average and the amortized performance
improvement increase linearly with the number of rounds the
transformation runs, as shown in Figure 6a. For 10k privacy
controllers, an individual participant requires less than 2 MB

398 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0k 2k 4k 6k 8k 10k
Number of Data Streams

0

2

4

6

8

T
ra

ff
ic

 [K
B

] pΔ = 0
pΔ = 0.05
pΔ = 0.1

(a) Bandwidth for transforma-
tion phase depending on delta
probability p∆.

0k 2k 4k 6k 8k 10k
Parties

0
500

1000
1500
2000
2500

St
or

ag
e

[K
B

] Shared Keys + Graphs
Shared Keys

(b) Memory costs for a privacy con-
troller during the privacy transfor-
mation phase.

Figure 7: Bandwidth and memory costs for privacy controllers
in the privacy transformation phase.

0 100 200 300 400
Parties [Δ]

0.0

0.2

0.4

0.6

C
om

pu
ta

tio
n

[m
s] Dropped

Returned
Combined

Figure 8: Computation cost
for a privacy controller to
adapt to ∆ dropping or joining
parties. In the combined case,
∆ members dropped out and ∆

other members returned.

to store the shared keys and the secure aggregation graphs
of the epoch (Figure 7b). As a result, even though the over-
head increases in the number of privacy controllers, the total
memory remains acceptable. In case memory is scarce (e.g.,
because a privacy controller is in charge of large number of
data streams), a privacy controller can resort to storing a frac-
tion of the secure aggregation graphs and recalculate the next
batch of graphs at the required time.
Dropout. In Zeph, privacy controllers can dynamically join
or leave in the transformation phase, which increases both
the computational cost and the required bandwidth due to the
additional communication, as depicted in Figure 8. The com-
putation and bandwidth costs for adapting the transformation
token are linear in the number of returning participants as
well as dropout participants. These costs are modest, even
for the extreme fraction of dropping and joining users (i.e.,
400 each), the induced cost remains below 0.5 ms. In terms
of bandwidth, a privacy controller observes less than 10KB
bandwidth, even under the assumption of a 10% fluctuation
of dropout participants (Figure 7a).

6.4 End-to-End Application Scenarios

This section evaluates the end-to-end overhead of Zeph and its
effectiveness in supporting a variety of privacy policies rele-
vant to real-world applications. We develop three applications
with Zeph that represent different complexities of privacy
transformations. We evaluate each application with 300 and
1200 active data producers, each producing two events per
second with a window size of 10 seconds. Each data producer
has its own privacy controller and we set α = 0.5 as usual.

300 1200
0.0

0.5

1.0

1.5

2.0

La
te

nc
y

[s
ec

]

300 1200
Data Producers / Privacy Controllers

300 1200

Plaintext
Zeph

Fitness App Web Analytics Car Sensors

Figure 9: Computation cost for Plaintext (no encryption) and
Zeph for different Applications. The latency measures the
time after the grace period (5s) of a window is over until the
result of the transformation is available.

Fitness Application. We consider the Polar App [10] which
collects data during users’ sports activities. Recorded data
includes heart-rate, altitude and weather information, among
others. We consider a privacy policy that limits the resolutions
of sensor data temporally and/or spatially. In our evaluation,
we gather statistics about the average heart-rate of a popu-
lation organized into per-altitude buckets with a maximum
resolution of 5 meters. Each exercise event consists of 18
attributes that are encoded in 683 values in Zeph.
Web Analytics. We implement Zeph on a subset of statistics
from the Matamo [8] web analytics platform for gathering
website statistics such as page views, user flows, and click
maps. Here we evaluate aggregation queries using a privacy
policy that translates to only differentially private (i.e., noised)
information aggregated over all users being made available to
a third-party service. To enable this functionality in Zeph, we
encode the 24 attributes into 956 values.
Car Predictive Maintenance. We consider a car metric data
platform that contains a predictive maintenance service [1].
We consider a setting where users allow a third-party service
to observe sensor readings only if they are out of the ordinary
or differ too much from long-term aggregates across different
cars. Therefore we compute both the long-term aggregates
across many users and individual histograms for each user.
The application records 23 different attributes from car sen-
sors and encodes them into 169 values.
Performance. Figure 9 shows the observed stream trans-
formation latencies for the different applications compared
against plaintext. The latency overhead varies between 2x and
5x for the different applications. Zeph completes processing
the current window before the next one needs to be processed.
With this, we show that Zeph is capable of performing real-
time privacy transformations atop encrypted streams for a
variety of application scenarios.

7 Related Work

Privacy Policy Enforcement. Enforcing privacy policies au-
tomatically in real-world data processing systems is often

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 399

achieved by resorting to Information Flow Control (IFC) to
check and constrain how information flows through the sys-
tem [26, 43, 44, 61, 76, 82]. These systems feature different
variations on how IFC rules can be expressed and who en-
forces these rules in application code. In contrast to Zeph,
these approaches rely on a trusted service or trusted hard-
ware for privacy enforcement. Riverbed [82] is a practical
IFC system that enforces user-defined privacy policies with
information flow techniques by grouping users with similar
policies into separately running containers (i.e., universes).
Ancile [23] introduces a trusted data processing library that
automatically enforces user-defined privacy preferences on
passively generated data by only releasing policy comply-
ing transformations of data to applications. In a multiverse
database [60, 75], global privacy policies are enforced by
only exposing materialized views of the database to each user
in an application. A multiverse database is fully trusted to
enforce privacy policies correctly. Qapla [62] allows a policy
compliance team to associate a set of policies to database
schemas, which a trusted reference monitor then enforces.
Private Aggregate Statistics. Secure aggregation protocols
have been used in a variety of private system designs, largely
to enable services to collect statistics over users’ data with-
out accessing individual data [16, 28, 36, 39, 56, 63, 73, 77].
Compared to Zeph, these systems require data producers to
actively participate in the aggregation protocol, keep data
local, and do not support a wide range of privacy transforma-
tions. While we utilize a secure aggregation protocol [16, 28]
to construct privacy transformation tokens that require inputs
from multiple trust domains, this does not impact data produc-
ers in Zeph design. Several systems [16, 63, 73, 77] combine
differential privacy techniques [40, 42] (i.e., by adding noise
to inputs) with secure aggregation in a way that minimizes
the amount of added noise. This line of work is orthogonal to
this work, and some can be integrated with Zeph.
Private Outsourced Computation. A different line of work
investigates how to protect the confidentiality of data while
allowing a server to compute on encrypted data either with
homomorphic encryption [33,69,70,80] or secret sharing [52,
53]. This line of work is orthogonal to Zeph, and the goal
of Zeph is to augment these systems with the capability to
selectively release encrypted data following an evaluation
of a privacy transformation. Encrypted processing systems
can be adapted to perform privacy transformations but then
require clients first to decrypt the outputs. Zeph supports both
direct release of privacy-compliant views of data and privacy
transformations to a targeted authorized party.
Functional Encryption. Another closely related line of work
is functional encryption [29, 30, 46] (FE). Functional encryp-
tion allows a data owner to issue restricted secret keys that
enable the key holder to learn only the output of a specific
function. Existing constructions are currently not yet efficient
enough for practical systems. Additionally, some of the pri-
vacy transformations in Zeph require functions on multiple

inputs from multiple trust domains, which requires techniques
that are even more complex than standard FE [65].

8 Conclusion

The practice of massive data collection is not likely to dimin-
ish anytime soon. Corporations across all sectors consider
data as a valuable asset that has enormous value to their busi-
ness. However, as we accumulate more and more sensitive
data, protecting individuals’ privacy is gaining critical ur-
gency. Today’s privacy landscape presents a unique set of
challenges and opportunities that make this an auspicious
time to reshape our data ecosystems for privacy. Adequately
addressing privacy in the current complex computing land-
scape is an acute challenge and is vital to avoid the pitfalls
of big data. The path for achieving this necessitates develop-
ing privacy tools that can easily be implemented in existing
data pipelines. In this paper, we propose a new end-to-end
design for privacy. A design that empowers users with more
control with a user-centric model to privacy and that ensures
strong data protection and compliance assurance with a cryp-
tographic enforcement approach to privacy policies.

Acknowledgments

We thank our shepherd Amit Levy, the anonymous review-
ers, Hidde Lycklama, and Emanuel Opel for their valuable
feedback. This work was supported in part by the SNSF
Ambizione Grant No. 186050 and an ETH Grant.

References

[1] Bosch Predictive Maintenance. Online:
https://www.bosch-mobility-solutions.
com/en/products-and-services/mobility-
services/predictive-diagnostics/. Accessed:
09-12-2020.

[2] California Consumer Privacy Act (CCPA). CCPA,
Online: https://oag.ca.gov/privacy/ccpa. Ac-
cessed: 09-12-2020.

[3] General Data Protection Regulation: GDPR. GDPR,
Online: https://gdpr-info.eu/. Accessed: 09-12-
2020.

[4] Google Cloud De-identification. Online: https:
//cloud.google.com/dlp/docs/classification-
redaction. Accessed: 09-12-2020.

[5] Immuta Platform. Online: https://www.immuta.
com/. Accessed: 09-12-2020.

400 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.bosch-mobility-solutions.com/en/products-and-services/mobility-services/predictive-diagnostics/
https://www.bosch-mobility-solutions.com/en/products-and-services/mobility-services/predictive-diagnostics/
https://www.bosch-mobility-solutions.com/en/products-and-services/mobility-services/predictive-diagnostics/
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/
https://cloud.google.com/dlp/docs/classification-redaction
https://cloud.google.com/dlp/docs/classification-redaction
https://cloud.google.com/dlp/docs/classification-redaction
https://www.immuta.com/
https://www.immuta.com/

[6] Instagram Data Policy. Online: https://help.
instagram.com/519522125107875. Accessed: 09-
12-2020.

[7] IRI Total Data Management Redaction. Online:
https://www.iri.com/blog/data-protection/
redaction-options-for-data-privacy/. Ac-
cessed: 09-12-2020.

[8] Matomo Web Analytics. Online: https://matomo.
org/. Accessed: 09-12-2020.

[9] Oracle Responsys Data Redaction. Online:
https://docs.oracle.com/en/cloud/saas/
marketing/responsys-user/DataRedaction.htm.
Accessed: 09-12-2020.

[10] Polar Platform. Online: https://www.polar.com/
accesslink-api/#detailed-sport-info-values-
in-exercise-entity. Accessed: 09-12-2020.

[11] Privitar Privacy Platform. Online: https://www.
privitar.com/. Accessed: 09-12-2020.

[12] Pseudonymisation techniques and best prac-
tices. Online: https://www.enisa.europa.eu/
publications/pseudonymisation-techniques-
and-best-practices/. Accessed: 09-12-2020.

[13] Twitter Privacy Policy. Online: https://twitter.
com/en/privacy. Accessed: 09-12-2020.

[14] Gartner Says Just Four in 10 Privacy Executives
Are Confident About Adapting to New Regula-
tions. Gartner, Online: https://www.gartner.
com/en/newsroom/press-releases/2019-04-
23-gartner-says-just-four-in-10-privacy-
executives-are-confident-about-adapting-
to-new-regulations, April 2019.

[15] John M. Abowd. The U.S. Census Bureau Adopts
Differential Privacy. In ACM SIGKDD, 2018.

[16] Gergely Ács and Claude Castelluccia. I Have a
DREAM! (DiffeRentially privatE smArt Metering).
In International Workshop on Information Hiding.
Springer, 2011.

[17] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
Wheel: Fault-Tolerant Stream Processing at Internet
Scale. VLDB, 6(11):1033–1044, 2013.

[18] Amazone MSK. Online: https://aws.amazon.com/
de/msk/. Accessed: 09-12-2020.

[19] Ansible. Online: https://www.ansible.com/. Ac-
cessed: 09-12-2020.

[20] Apache Avro. Online: https://avro.apache.org/.
Accessed: 09-12-2020.

[21] Apache Kafka. Online: https://kafka.apache.
org/. Accessed: 09-12-2020.

[22] Apache Kafka Streams. Online: https://kafka.
apache.org/documentation/streams/. Accessed:
09-12-2020.

[23] Eugene Bagdasaryan, Griffin Berlstein, Jason Water-
man, Eleanor Birrell, Nate Foster, Fred B. Schneider,
and Deborah Estrin. Ancile: Enhancing Privacy for
Ubiquitous Computing with Use-Based Privacy. In
ACM WPES, 2019.

[24] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS:
Obfuscation-Based Private Web Search. In IEEE Sym-
posium on Security and Privacy, 2012.

[25] John Biggs. It’s time to build our own Equifax with
blackjack and crypto. Online. http://tcrn.ch/
2wNCgXu, September 2017.

[26] Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse,
Håvard Johansen, Dag Johansen, and Fred B. Schneider.
SGX Enforcement of Use-Based Privacy. In ACM
WPES, 2018.

[27] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and
Shafi Goldwasser. Secure large-scale genome-wide
association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences,
117(21):11608–11613, 2020.

[28] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical Secure
Aggregation for Privacy-Preserving Machine Learning.
In ACM CCS, 2017.

[29] Dan Boneh, Amit Sahai, and Brent Waters. Func-
tional Encryption: Definitions and Challenges. In TCC.
Springer, 2011.

[30] Elette Boyle, Kai-Min Chung, and Rafael Pass. On
extractability obfuscation. In TCC. Springer, 2014.

[31] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
and Michele Orrù. Homomorphic secret sharing: opti-
mizations and applications. In ACM CCS, 2017.

[32] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and
Stefano Tessaro. Foundations of homomorphic secret
sharing. In ITCS, 2018.

[33] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand,
Hossein Shafagh, and Sylvia Ratnasamy. TimeCrypt:
Encrypted Data Stream Processing at Scale with Cryp-
tographic Access Control. In USENIX NSDI, 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 401

https://help.instagram.com/519522125107875
https://help.instagram.com/519522125107875
https://www.iri.com/blog/data-protection/redaction-options-for-data-privacy/
https://www.iri.com/blog/data-protection/redaction-options-for-data-privacy/
https://matomo.org/
https://matomo.org/
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/DataRedaction.htm
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/DataRedaction.htm
https://www.polar.com/accesslink-api/#detailed-sport-info-values-in-exercise-entity
https://www.polar.com/accesslink-api/#detailed-sport-info-values-in-exercise-entity
https://www.polar.com/accesslink-api/#detailed-sport-info-values-in-exercise-entity
https://www.privitar.com/
https://www.privitar.com/
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/
https://www.enisa.europa.eu/publications/pseudonymisation-techniques-and-best-practices/
https://twitter.com/en/privacy
https://twitter.com/en/privacy
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://www.gartner.com/en/newsroom/press-releases/2019-04-23-gartner-says-just-four-in-10-privacy-executives-are-confident-about-adapting-to-new-regulations
https://aws.amazon.com/de/msk/
https://aws.amazon.com/de/msk/
https://www.ansible.com/
https://avro.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
http://tcrn.ch/2wNCgXu
http://tcrn.ch/2wNCgXu

[34] Lukas Burkhalter, Nicolas Küchler, Alexander Viand,
Hossein Shafagh, and Anwar Hithnawi. [Extended
Version] Zeph: Cryptographic Enforcement of End-to-
End Data Privacy. In arXiv, 2021.

[35] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and Batch Processing in a Single Engine.
IEEE Data Engineering, 36(4), 2015.

[36] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient
Aggregation of Encrypted Data in Wireless Sensor Net-
works. In ACM MobiQuitous, July 2005.

[37] Claude Castelluccia, Aldar CF Chan, Einar Mykletun,
and Gene Tsudik. Efficient and Provably Secure Aggre-
gation of Encrypted Data in Wireless Sensor Networks.
ACM TOSN, 2009.

[38] Long Cheng, Fang Liu, and Danfeng Daphne Yao. En-
terprise Data Breach: Causes, Challenges, Prevention,
and future Directions. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 7(5), 2017.

[39] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
Robust, and Scalable Computation of Aggregate Statis-
tics. In USENIX NSDI, 2017.

[40] Cynthia Dwork. Differential Privacy. In ICALP, Lec-
ture Notes in Computer Science, 2006.

[41] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC. Springer, 2006.

[42] Cynthia Dwork and Aaron Roth. The Algorithmic
Foundations of Differential Privacy. Found. Trends
Theor. Comput. Sci., 2014.

[43] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-
Oberwagner, Deepak Garg, and Peter Druschel. Thoth:
Comprehensive Policy Compliance in Data Retrieval
Systems. In USENIX Security, 2016.

[44] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In USENIX OSDI, 2010.

[45] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
Rappor: Randomized Aggregatable Privacy-Preserving
Ordinal Response. In ACM CCS, 2014.

[46] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana
Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryp-
tion for all circuits. In IEEE FOCS, 2013.

[47] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans
Kaashoek, and Robert Morris. Noria: dynamic,
partially-stateful data-flow for high-performance web
applications. In USENIX OSDI, 2018.

[48] Eloise Gratton. Beyond Consent-based Privacy
Protection. Online: https://www.eloisegratton.
com/files/sites/4/2016/07/Gratton_Beyond-
Consent-based-Privacy-Protection_-
July2016.pdf, July 2016.

[49] Stephanie Hare. These new rules were meant to protect
our privacy. They don?t work. The Guardian, Online:
https://www.theguardian.com/commentisfree/
2019/nov/10/these-new-rules-were-meant-
to-protect-our-privacy-they-dont-work,
November 2019.

[50] Amnesty International. The google-fitbit merger
must include human rights risks. Online.
https://www.amnesty.eu/wp-content/uploads/
2020/11/Google-Fitbit-merger-complaint-to-
the-EU-Commission-FINAL.pdf, November 2020.

[51] Hojjat Jafarpour and Rohan Desai. KSQL: Streaming
SQL Engine for Apache Kafka. In EDBT, 2019.

[52] Thomas P. Jakobsen, Jesper Buus Nielsen, and Clau-
dio Orlandi. A Framework for Outsourcing of Secure
Computation. In ACM CCSW, 2014.

[53] Seny Kamara, Payman Mohassel, and Mariana Raykova.
Outsourcing Multi-Party Computation. IACR Cryptol.
ePrint Arch. Report 2011/272, 2011.

[54] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and
Jerome P Reiter. Secure regression on distributed
databases. Journal of Computational and Graphical
Statistics, 14(2):263–279, 2005.

[55] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter Heron: Stream Processing at Scale. In ACM
SIGMOD, 2015.

[56] Klaus Kursawe, George Danezis, and Markulf
Kohlweiss. Privacy-Friendly Aggregation for the Smart-
Grid. In PoPETS, 2011.

[57] Crystal Lee and Jonathan Zong. Consent Is Not an
Ethical Rubber Stamp. Online: https://slate.
com/technology/2019/08/consent-facial-
recognition-data-privacy-technology.html,
August 2019.

402 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.eloisegratton.com/files/sites/4/2016/07/Gratton_Beyond-Consent-based-Privacy-Protection_-July2016.pdf
https://www.theguardian.com/commentisfree/2019/nov/10/these-new-rules-were-meant-to-protect-our-privacy-they-dont-work
https://www.theguardian.com/commentisfree/2019/nov/10/these-new-rules-were-meant-to-protect-our-privacy-they-dont-work
https://www.theguardian.com/commentisfree/2019/nov/10/these-new-rules-were-meant-to-protect-our-privacy-they-dont-work
https://www.amnesty.eu/wp-content/uploads/2020/11/Google-Fitbit-merger-complaint-to-the-EU-Commission-FINAL.pdf
https://www.amnesty.eu/wp-content/uploads/2020/11/Google-Fitbit-merger-complaint-to-the-EU-Commission-FINAL.pdf
https://www.amnesty.eu/wp-content/uploads/2020/11/Google-Fitbit-merger-complaint-to-the-EU-Commission-FINAL.pdf
https://eprint.iacr.org/2011/272.pdf
https://slate.com/technology/2019/08/consent-facial-recognition-data-privacy-technology.html
https://slate.com/technology/2019/08/consent-facial-recognition-data-privacy-technology.html
https://slate.com/technology/2019/08/consent-facial-recognition-data-privacy-technology.html

[58] Java BouncyCastle Cryptograpy Library. Online:
https://www.bouncycastle.org/. Accessed: 28-
04-2020.

[59] Kevin Litman-Navarro. We Read 150 Privacy Policies.
They Were an Incomprehensible Disaster. nytimes,
Online: https://www.nytimes.com/interactive/
2019/06/12/opinion/facebook-google-privacy-
policies.html, June 2019.

[60] Alana Marzoev, Lara Timbó Araújo, Malte
Schwarzkopf, Samyukta Yagati, Eddie Kohler,
Robert Morris, M. Frans Kaashoek, and Sam Madden.
Towards Multiverse Databases. In ACM HotOS, 2019.

[61] Miti Mazmudar and Ian Goldberg. Mitigator: Privacy
Policy Compliance using Trusted Hardware. In PoPETS,
2020.

[62] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak
Garg, and Peter Druschel. Qapla: Policy Compliance
for Database-Backed Systems. In USENIX Security,
2017.

[63] Luca Melis, George Danezis, and Emiliano De Cristo-
faro. Efficient Private Statistics with Succinct Sketches.
In NDSS, 2016.

[64] David Millman. Blog: Data Privacy, Security,
and Compliance for Apache Kafka. Online:
https://www.confluent.io/blog/kafka-data-
privacy-security-and-compliance/. Accessed:
09-12-2020.

[65] Muhammad Naveed, Shashank Agrawal, Manoj Prab-
hakaran, XiaoFeng Wang, Erman Ayday, Jean-Pierre
Hubaux, and Carl Gunter. Controlled Functional En-
cryption. In ACM CCS, 2014.

[66] Lily Hay Newman. The Alleged Capital One
Hacker Didn’t Cover Her Tracks. WIRED,
Online: https://www.wired.com/story/capital-
one-hack-credit-card-application-data/, July
2019.

[67] Cristina Onose. 10 privacy issues and trends. On-
line: https://www.pwc.com/ca/en/services/
consulting/privacy/privacy-canadian-
business-hub/2020-and-beyond-10-privacy-
issues-and-trends-part-1.html, January 2020.

[68] Oracle. Innovation in Retail: Using Machine Learning
to Optimize Retail Performance. Online: http:
//www.oracle.com/us/industries/retail/data-
analytics-retail-perform-info-4124126.pdf.
Accessed: 09-12-2020.

[69] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth
Chandran, Ramachandran Ramjee, Andreas Haeberlen,
Harmeet Singh, Abhishek Modi, and Saikrishna Badri-
narayanan. Big Data Analytics over Encrypted Datasets
with Seabed. In USENIX OSDI, 2016.

[70] Raluca Ada Popa, Catherine Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. CryptDB: Protecting
Confidentiality with Encrypted Query Processing. In
ACM SOSP, 2011.

[71] PYMNTS. Amazon to pay consumers for their
shopping data. https://www.pymnts.com/amazon/
2020/amazon-to-pay-consumers-for-their-
shopping-data/, 21 October 2020.

[72] J. L. Raisaro, J. R. Troncoso-Pastoriza, M. Misbach,
J. S. Sousa, S. Pradervand, E. Missiaglia, O. Michielin,
B. Ford, and J. P. Hubaux. MedCo: Enabling Secure
and Privacy-Preserving Exploration of Distributed Clin-
ical and Genomic Data. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 16(4):1328–
1341, 2019.

[73] Edo Roth, Daniel Noble, Brett Hemenway Falk, and
Andreas Haeberlen. Honeycrisp: Large-Scale Differen-
tially Private Aggregation without a Trusted Core. In
ACM SOSP, 2019.

[74] Rust AES Crate. Online: https://docs.rs/aes/0.
3.2/aes/. Accessed: 09-12-2020.

[75] Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek,
and Robert Tappan Morris. Position: GDPR Compli-
ance by Construction. In Heterogeneous Data Manage-
ment, Polystores, and Analytics for Healthcare - VLDB
2019 Workshops, pages 39–53, 2019.

[76] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K.
Rajamani, Janice Tsai, and Jeannette M. Wing. Boot-
strapping Privacy Compliance in Big Data Systems. In
IEEE Symposium on Security and Privacy, 2014.

[77] Elaine Shi, Richard Chow, T-H. Hubert Chan, Dawn
Song, and Eleanor Rieffel. Privacy-preserving Aggrega-
tion of Time-series Data. In NDSS, 2011.

[78] Latanya Sweeney. Achieving k-Anonymity Pri-
vacy Protection Using Generalization and Suppression.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):571–588, 2002.

[79] Jeroen Tas. Going virtual to combat COVID-
19. Online: https://www.philips.com/a-
w/about/news/archive/blogs/innovation-
matters/2020/20200403-going-virtual-to-
combat-covid-19.html, April 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 403

https://www.bouncycastle.org/
https://www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-privacy-policies.html
https://www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-privacy-policies.html
https://www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-privacy-policies.html
https://www.confluent.io/blog/kafka-data-privacy-security-and-compliance/
https://www.confluent.io/blog/kafka-data-privacy-security-and-compliance/
https://www.wired.com/story/capital-one-hack-credit-card-application-data/
https://www.wired.com/story/capital-one-hack-credit-card-application-data/
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
https://www.pwc.com/ca/en/services/consulting/privacy/privacy-canadian-business-hub/2020-and-beyond-10-privacy-issues-and-trends-part-1.html
http://www.oracle.com/us/industries/retail/data-analytics-retail-perform-info-4124126.pdf
http://www.oracle.com/us/industries/retail/data-analytics-retail-perform-info-4124126.pdf
http://www.oracle.com/us/industries/retail/data-analytics-retail-perform-info-4124126.pdf
https://www.pymnts.com/amazon/2020/amazon-to-pay-consumers-for-their-shopping-data/
https://www.pymnts.com/amazon/2020/amazon-to-pay-consumers-for-their-shopping-data/
https://www.pymnts.com/amazon/2020/amazon-to-pay-consumers-for-their-shopping-data/
https://docs.rs/aes/0.3.2/aes/
https://docs.rs/aes/0.3.2/aes/
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/2020/20200403-going-virtual-to-combat-covid-19.html

[80] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and
Nickolai Zeldovich. Processing Analytical Queries over
Encrypted Data. VLDB, 6(5):289–300, 2013.

[81] Iowa State University. Iowa State University sci-
entists propose a new strategy to accelerate plant
breeding by turbocharging gene banks. On-
line: https://www.news.iastate.edu/news/2016/
10/03/sorghumgenebanks, October 2016.

[82] Frank Wang, Ronny Ko, and James Mickens. Riverbed:
Enforcing User-defined Privacy Constraints in Dis-
tributed Web Services. In USENIX NSDI, 2019.

[83] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
Private Queries on Public Data. In USENIX NSDI, 2017.

[84] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Global-Scale Secure Multiparty Computation. In ACM
CCS, 2017.

[85] Shoshana Zuboff. The Age of Surveillance Capitalism.
Profile Books, 2019.

404 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.news.iastate.edu/news/2016/10/03/sorghumgenebanks
https://www.news.iastate.edu/news/2016/10/03/sorghumgenebanks

DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols

Jianan Yao Runzhou Tao Ronghui Gu Jason Nieh Suman Jana Gabriel Ryan
Columbia University

Abstract
Distributed systems are notoriously hard to implement cor-

rectly due to non-determinism. Finding the inductive invariant
of the distributed protocol is a critical step in verifying the
correctness of distributed systems, but takes a long time to do
even for simple protocols. We present DistAI, a data-driven au-
tomated system for learning inductive invariants for distributed
protocols. DistAI generates data by simulating the distributed
protocol at different instance sizes and recording states as
samples. Based on the observation that invariants are often
concise in practice, DistAI starts with small invariant formulas
and enumerates all strongest possible invariants that hold
for all samples. It then feeds those invariants and the desired
safety properties to an SMT solver to check if the conjunction
of the invariants and the safety properties is inductive. Starting
with small invariant formulas and strongest possible invariants
avoids large SMT queries, improving SMT solver performance.
Because DistAI starts with the strongest possible invariants,
if the SMT solver fails, DistAI does not need to discard failed
invariants, but knows to monotonically weaken them and try
again with the solver, repeating the process until it eventually
succeeds. We prove that DistAI is guaranteed to find the ∃-free
inductive invariant that proves the desired safety properties
in finite time, if one exists. Our evaluation shows that DistAI
successfully verifies 13 common distributed protocols
automatically and outperforms alternative methods both in
the number of protocols it verifies and the speed at which it
does so, in some cases by more than two orders of magnitude.

1 Introduction

Distributed systems are hard to design and implement
correctly. This is due to the intrinsic non-determinism from
asynchronous node communications and various failure
scenarios. Formal verification techniques offer a solution
by proving that a distributed system is correct under all
circumstances [10, 16, 32]. The verification of distributed
systems consists of two components: i) proving that the

desired safety properties hold for the distributed protocol itself,
and ii) proving that the protocol implementation is correct.

While much work has focused on proving a system correctly
implements a protocol [10, 16, 31–33], we focus on proving
the protocol itself has the desired safety properties. A safety
property is an invariant that should hold true at any point in
a system’s execution. It ensures the protocol does not reach
invalid or dangerous states. For example, the safety property
for a distributed lock protocol [10] is that no two nodes in the
system hold a lock at the same time. The typical proof strategy
is to prove that an invariant that implies the safety property
is inductive, meaning that if the system starts from a state
that satisfies the invariant, the invariant will still hold for any
state that is reachable via a valid transition from the previous
state. If the safety property itself is inductive, the proof is done.
However, this is not true for almost all nontrivial distributed
protocols, so that the proof requires finding an invariant that
implies the safety property, then proving that it is inductive.

Finding the inductive invariant for distributed protocols
is difficult, taking a long time for even simple protocols [18].
IVy [24] provides an interactive tool to make this easier. A
developer provides a set of invariants and protocol specifica-
tion that defines its safety property, which IVy automatically
checks using an SMT solver. Each invariant can be expressed
as a logical formula, which consists of a prefix with quantifiers
(∀ or ∃) and a certain number of variables, and a set of logical
relations among the variables. IVy checks if adding the
invariants to the safety property makes it inductive, meaning
that the conjunction of all invariants with the safety property
is inductive. Conjunction requires each invariant to hold, so
IVy reports whether any invariant fails, at which point the
developer can try again with a different set of invariants. This
requires substantial manual effort by the developer.

Recent work has focused on automating invariant generation
for distributed protocols, but with various limitations. I4 [18]
observes that invariants for some distributed protocols do not
depend on the size of the system, so I4 uses a specialized model
checker to generate invariants for a small size system, then gen-
eralizes them and uses IVy to check if the conjunction of the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 405

invariants with the safety property is inductive for the protocol
specification. If not, IVy indicates which invariants failed. I4 re-
moves them and tries again, and if that fails, tries using a larger
size system to generate invariants. However, I4 provides no
guarantee that it can find the inductive invariant, as it may not be
possible to verify a protocol based on invariants derived from a
single instantiation of the protocol. For example, if the protocol
involves the parity of nodes, then no single instance can capture
all behaviors of the protocol. I4 still requires manual effort, as a
developer must inspect a protocol to add additional constraints
that reduce the state space to make model checking feasible.

FOL-IC3 [11] infers invariants by searching for logical
separators between reachable and invalid states in the protocol.
It searches for separators by checking if a separator exists for
a fixed number of variables and logical constraints, iteratively
increasing the number of possible variables and constraints
it considers if it fails. FOL-IC3 provides a strong theoretical
guarantee that it can always find the inductive invariant, but
does not scale to more complex protocols due to the large
space of possible separators that it enumerates and its heavy
and repeated use of expensive SMT queries.

We present DistAI (DISTributed protocol Automated learn-
ing of Invariants), a fully-automated system for learning in-
ductive invariants for distributed protocols. Like I4, DistAI
uses IVy to check invariants, but takes a completely different
approach to generating invariants and retrying when invariants
fail. We observe that even though a distributed protocol may be
used in very large systems, its invariants are likely to be concise,
as protocols need to be designed and understood by humans
to be correct. For example, the two-phase commit protocol has
an invariant that one node can commit only if all nodes have
voted yes, which can be expressed as the following formula:

∀N1 N2. go_commit(N1)⇒vote_yes(N2). (1)

The formula for this invariant only requires two variables, N1
and N2, and two relations, go_commit(N1) and vote_yes(N2),
to represent the constraint, but applies to all possible pairs
of nodes in an implementation of the protocol regardless
of the number of nodes in the implementation. Rather than
picking a finite size system from which to generate invariants
as in I4, DistAI operates in formula space and picks a finite
formula size, with a maximum number of quantified variables
(a variable and its quantifier ∀ or ∃) and literals (a relation such
as go_commit(N1) in the above example or its negation), for
which it enumerates candidate invariants. It then combines the
candidate invariants with the desired safety property and feeds
them to IVy. If DistAI does not succeed for a given formula
size, it increases the formula size and repeats the process until
the inductive invariant is found.

Although formula space is finite, enumerating and checking
all possible invariants with an SMT solver for even a modest
size formula is prohibitively expensive. DistAI limits the set of
candidate invariants it feeds IVy to check such that it can still
provide a strong theoretical guarantee of finding the inductive

invariant while delivering fast performance. DistAI provides
this key feature by introducing a novel data-driven approach
that uses data from protocol simulations to prune the invariants
that are checked to only those that hold for the simulations.

DistAI’s data-driven approach starts with the protocol
specification used by IVy and automatically converts it into
a form it can use to simulate the protocol for various size
systems. Protocol simulation simply performs protocol actions
by modifying the system state as described in the specification.
This generates many raw data samples, where a sample is a
snapshot of the system state after an action. Given a formula
size, DistAI projects these data samples into subsamples
that only involve at most the number of variables allowed
by the formula size. For example, if DistAI simulates the
two-phase commit protocol for a system with 100 nodes, each
data sample would contain the system state for 100 nodes, but
each subsample would contain the state of only two of the 100
nodes, assuming a formula size with two variables is being
considered as shown in Equation (1).

Using this data, DistAI introduces a novel approach that
enumerates only the strongest candidate invariants that hold
for all subsamples. An invariant I is stronger than I′ if I
implies I′. DistAI decomposes the enumeration space of
possible invariants based on the number of variables in a
formula and starts enumerating smallest formulas first. Any
weaker invariants already covered by an already enumerated
candidate invariant are skipped. For example, if DistAI has
found a candidate invariant ∀X .p(X), it will not enumerate
∀X .p(X)∨q(X) since the latter is implied by the former. This
approach results in fewer candidate invariants being generated,
and the candidate invariants generated having smaller formula
sizes, but still cover the enumeration space. Feeding these
candidate invariants to IVy results in fewer and smaller SMT
queries, improving performance. Currently, DistAI only
enumerates universal (∀ not ∃) invariants.

DistAI does not require sampling to be extensive or complete
as the candidate invariants are checked by IVy. If adding the
candidate invariants to the desired safety property is inductive,
the proof is done; IVy checks if the conjunction of all candidate
invariants with the desired safety property is inductive. Oth-
erwise, IVy indicates the invariants that failed, which DistAI
then refines. DistAI introduces a novel monotonic invariant re-
finement approach that we prove is guaranteed to find the right
inductive invariant if it can be represented by a given formula
size. We prove that the candidate invariants initially generated
by DistAI are guaranteed to be stronger than the inductive
invariant. As a result, for each candidate invariant that failed,
DistAI does not need to discard it, but instead can refine it to a
weaker invariant, simply by adding literals. It then tries again by
feeding the updated candidate invariants back to IVy. This re-
finement procedure is strictly monotonic and will converge in a
finite number of rounds. If the procedure still fails to find the in-
ductive invariant, DistAI increases the formula size and repeats
the whole process of sampling, enumeration, and refinement.

406 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Distributed
Protocol

Two-stage Sampling
(Section 3)

Enumeration
(Section 4)

IVy
Monotonic
Refinement
(Section 5)

Subsamples

Candidate
Invariants Candidate

Invariants Fail

Safety
Property

Fails

Loop variable:max-literal , template

Inductive
Invariant

Succeed Weakened Candidate
Invariants

Increase or

Figure 1: DistAI workflow.

We prove that if a protocol is verifiable with universal
invariants, DistAI is guaranteed to verify it eventually.
DistAI operates on formula space, and any invariant formula
contains a finite number of variables and literals, so DistAI
will converge eventually. Furthermore, DistAI is simple
and self-contained, only relying on IVy. It has no other
requirements for external components, such as a complex
model checker. It also supports protocol abstraction, making
it possible to verify protocols that use other protocols, without
the need of an executable protocol implementation; only the
protocol specification already required to use Ivy is needed.

We demonstrate the effectiveness of DistAI by evaluating
it using 14 widely-used distributed protocols in a head-to-head
comparison against I4 and FOL-IC3. DistAI outperforms I4
and FOL-IC3 in terms of both the number of protocols for
which it finds the inductive invariant and the speed at which
it does so. Most protocols take a few seconds and all solved
protocols are proven in less than a minute. DistAI succeeds on
almost 50% more protocols than either I4 or FOL-IC3. DistAI
achieves these results up to an order of magnitude faster than
I4 and two orders of magnitude faster than FOL-IC3, without
requiring manual effort to add constraints or tune parameters.

2 Overview

Figure 1 illustrates how DistAI works. Starting with a
distributed protocol specification for IVy, first, DistAI does
two-stage sampling, as discussed in Section 3. It simulates
the protocol on different sizes of systems, which we refer to as
different size protocol instances, and records the system state
as it changes as a sequence of data samples. It then projects the
samples into subsamples based on the formula size currently
being considered. We express formulas in prenex normal form

(PNF), so that the prefix, which we refer to as an invariant
template, has a maximum number of quantified variables and
the matrix has a maximum number of literals. Second, DistAI
does enumeration, as discussed in Section 4. It enumerates
all strongest candidate invariants that satisfy the subsamples.
Third, DistAI feeds the candidate invariants to IVy, which
either succeeds with the conjunction of the invariants and the
desired safety property as the inductive invariant, or fails and
indicates each invariant that does not hold. Fourth, DistAI
performs monotonic refinement, as discussed in Section 5. For
each candidate invariant that does not hold, DistAI weakens the
invariant by adding literals, then feeds the new set of candidate
invariants to IVy, repeatedly weakening failed invariants until
either it finds the inductive invariant or the safety property
itself fails. In the latter case, DistAI increases the formula size
by increasing either the maximum number of variables or the
maximum number of literals allowed, and repeats the whole
process of sampling, enumeration, and refinement.

We use the Ricart-Agrawala protocol [26] as an example
of how DistAI works. Figure 2 shows the IVy specification
of this classic distributed mutual exclusion protocol, which
has five key pieces we use for learning invariants:
1. Types. (line 2) Types define different domains of the pro-

tocol (e.g., nodes, packets, epochs). The Ricart-Agrawala
protocol only has one type, node.

2. Relations. (lines 4-6) Relations define the state of the
protocol, with variables that represent types used as argu-
ments. The Ricart-Agrawala protocol has three relations.
For example, relation holds(N) has one variable N of type
node, and indicates if N is in the critical section. If the
current instance has three nodes N1,N2,N3, then there are
three concrete predicates holds(N1),holds(N2),holds(N3)
associated with relation holds. Each predicate is either
true or false at a certain system state.

3. Initialization. (lines 8-12) Initialization defines the initial
state of the protocol in terms of its relations. For the
Ricart-Agrawala protocol, all relations are initially false.

4. Actions. (lines 13-35) Actions define how the protocol
may transition from one state to another, modifying the
state by setting relations to true or false. Actions are
defined with preconditions using the require keyword,
which must be satisfied for the protocol to take the action.

5. Safety Property. (line 43) The target invariant, defined
with logical constraints on the types and relations.
As shown in the specification, a node can send a request

for the critical section to another node and can only enter
the critical section after it has received replies from all other
nodes. When receiving a request, a node delays its reply if it is
currently holding the critical section, or if it has requested the
critical section and already received a reply from the requester,
which indicates an earlier timestamp and a higher priority.
The node then sends the reply after it leaves the critical section.
The safety property at line 43 asserts that at any time, there
is no more than one node holding the critical section. For

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 407

1 #lang ivy1.7
2 type node
3

4 relation requested(N1:node , N2:node)
5 relation replied(N1:node , N2:node)
6 relation holds(N:node)
7

8 after init {
9 requested(N1, N2) := false;

10 replied(N1, N2) := false;
11 holds(N) := false;
12 }
13 action request(requester: node , responder: node) = {
14 require ~requested(requester , responder);
15 require requester ~= responder;
16 requested(requester , responder) := true;
17 }
18 action reply(requester: node , responder: node) = {
19 require ~replied(requester , responder);
20 require ~holds(responder);
21 require ~replied(responder , requester);
22 require requested(requester , responder);
23 require requester ~= responder;
24 requested(requester , responder) := false;
25 replied(requester , responder) := true;
26 }
27 action enter(requester: node) = {
28 require N ~= requester -> replied(requester , N);
29 holds(requester) := true;
30 }
31 action leave(requester: node) = {
32 require holds(requester);
33 holds(requester) := false;
34 replied(requester , N) := false;
35 }
36

37 export request
38 export reply
39 export enter
40 export leave
41

42 # safety property
43 invariant [safety] holds(N1) & holds(N2) -> N1 = N2

Figure 2: Ricart-Agrawala protocol written in IVy. “~” stands for
negation. Capitalized variables are implicitly quantified. For example,
line 9 means ∀N1 N2∈node, requested(N1,N2) := f alse.

simplicity, Figure 2 specifies the protocol without explicit
timestamps and only shows one requested relation as opposed
to separate request_send and request_received relations
which would be part of the real protocol. The safety property
of Ricart-Agrawala is not an inductive invariant itself. One
needs to add the following two invariants to the safety property
so that the resulting conjunction forms an inductive invariant:

∀N1 N2.¬(replied(N1,N2)∧replied(N2,N1)) (2)
∀N1 N2. holds(N1)∧N1 6=N2→replied(N1,N2). (3)

The first invariant asserts the absence of bidirectional reply,
meaning that any two nodes cannot both give the other one
a higher priority. The second invariant says that any node
holding the critical section must have received replies from all
other nodes. DistAI automatically finds the inductive invariant
by learning the additional invariants.

Two-stage sampling. To automatically learning the induc-
tive invariant and prove the correctness of the Ricart-Agrawala

protocol, DistAI first does two-stage sampling, as shown in
Figure 1. It simulates the protocol at different instance sizes
and records the system state as a sequence of data samples,
each of which presents the values of all the relations. For
example, a data sample for an instance size of five nodes (i.e.,
n1, n2, ···, n5) using the Ricart-Agrawala protocol consists of
55 boolean values denoting if the following 55 predicates hold
or not at the current state:

requested(n1,n1), requested(n1,n2),···, requested(n5,n5)

replied(n1,n1), replied(n1,n2),···, replied(n5,n5)

holds(n1), holds(n2),···, holds(n5).

DistAI chooses a maximum formula size for a candidate
invariant, which defines the maximum number of quantified
variables that can be used per domain and the maximum num-
ber of literals (a predicate or its negation) in the formula. DistAI
projects data samples to subsamples, which only contain
values of predicates that match the formula size. For example,
given a formula with two variables {∀N1 N2}, indicating that
candidate invariants start with ∀N1 N2···, each subsample only
contains the value of predicates related to two assigned nodes.
Enumeration. DistAI then enumerates all strongest candi-
date invariants that satisfy the subsamples, up to the maximum
formula size. Invariants are expressed as formulas in first-order
logic. For example, given a maximum formula size of at most
two variables and two literals, the following three formulas
could be enumerated, assuming they all satisfy the subsamples:

∀N1 6=N2. replied(N1,N2) (4)
∀N1 6=N2. replied(N1,N2)∨replied(N2,N1) (5)
∀N1 6=N2. replied(N1,N2)∨¬holds(N1). (6)

However, DistAI would only generate the first one as a
candidate invariant because the first one implies the other two,
so the latter two formulas can be skipped. The first formula
is the strongest candidate invariant among the three formulas.
Monotonic refinement. DistAI feeds the candidate invari-
ants and the protocol specification to IVy, which runs its
SMT solver to check if the conjunction of the invariants with
the safety property is an inductive invariant. If the solver
passes, DistAI has succeeded. Succeeding means that if the
conjunction of the invariants with the safety property holds
before a protocol action is taken, each invariant still holds after
the action is taken. Otherwise, IVy outputs which candidate
invariants failed, and DistAI weakens each failed invariant and
tries again with IVy with the candidate invariants, each failed
invariant being replaced by weakened invariants with no more
variables and literals than the maximum formula size. For
the Ricart-Agrawala protocol, IVy shows that the invariant
in Equation (4) is incorrect. The invariant is then weakened
into Equations (5) and (6), among others, which will then be
checked by IVy. Later, IVy will also invalidate Equation (5),
and since it has reached the maximum formula size, it will be

408 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

requested(X,Y):
X\Y n1 n2 n3 n4 n5
n1 0 1 1 1 0
n2 1 0 1 0 1
n3 0 0 0 0 0
n4 1 1 0 0 0
n5 1 1 1 1 0

replied(X,Y):
X\Y n1 n2 n3 n4 n5
n1 0 1 0 0 1
n2 0 0 0 0 1
n3 1 1 0 1 1
n4 1 1 0 0 0
n5 0 0 0 1 0

holds(X):
X n1 n2 n3 n4 n5
 0 0 1 0 0

Subsampling

Template:
Forall N1 N2,

requested(X,Y):
X\Y N1 N2
N1 0 1
N2 0 0

holds(X):
X N1 N2
 0 1

replied(X,Y):
X\Y N1 N2
N1 0 0
N2 1 0

Subsample: N1 ← n2, N2 ← n3
Sample

Figure 3: The subsampling process. The frame on the left shows a single sample state of a finite instance of the Ricart-Agrawala protocol with
five nodes. A single subsample with two quantified variables {∀N1 N2} is generated by mapping the quantified variables to concrete nodes
in the finite instance, n2 and n3, and extracting their associated values (shown in blue boxes in the sample frame). 0/1 stand for false/true.

simply discarded. Equation (6) is never invalidated by IVy and
will be part of the inductive invariant in the end. If IVy indicates
that the safety property failed, it means that the formula size
is not sufficient. DistAI will then increase the formula size
by either increasing the maximum number of variables or the
maximum number of literals, then re-run the process.

3 Two-Stage Sampling

Obtaining data samples for a distributed protocol requires simu-
lating a finite instance of the protocol and recording the system
state on each action. However, invariants are usually composed
of quantified variables that impose constraints on all domains
of the protocol, not just the specific domains of a finite instance.
Therefore, DistAI projects the collected finite state samples
into abstract subsamples on quantified variables that also apply
to all domains of the protocol and represent potential predicates
in the invariant. We refer to these two procedures as sampling
and subsampling respectively, since many abstract subsamples
can be generated from a single concrete data sample.

The two-stage sampling has four parameters: the absolute
maximum number of instances to consider before terminating
(MI), the maximum number of instances to consider before
terminating if no further subsamples are generated (MIS), the
number of actions to take when simulating a finite instance
(MA), and the number of subsamples to generate from one
data sample (SD). As we show in Section 6, DistAI’s ability to
find an inductive invariant is not sensitive to the specific values
of these parameters, which are always set to their defaults of
1000, 20, 50, and 3, respectively.
Sampling. DistAI first translates the protocol from IVy into
Python, with relations simulated by multidimensional arrays,
and actions simulated by Python functions. This allows DistAI
to efficiently simulate the protocol. The translation is not in the
trusted computing base since learned invariants are eventually
validated by IVy.

DistAI then simulates the protocol in Python from different
valid initial states on randomly chosen finite instances of the
protocol. DistAI randomly chooses an instance size from some
range of sizes using a simple discrete uniform distribution. For

each domain T (e.g., node), a protocol typically has some min-
imum instance size to function well, which we refer to as NT

min.
In practice, the minimum instance size NT

min is determined as
the maximum number of variables of type T in any relation; a
protocol will not function well if its relations have variables that
cannot be mapped to the instance size. For example, for a pro-
tocol with two relations p(n1 :T1,n2 :T1,m1 :T2) and q(m1 :T2),
we have NT1

min =max(2,0)= 2 and NT2
min =max(1,1)= 1. The

probability for choosing a given domain size NT is then:

Pr[NT]=1/w (NT
min≤NT <NT

min+w)

DistAI uses w = 4 by default. This allows sampling from
multiple instance sizes, but limits the instance sizes to within
w of the minimum instance size for performance, as larger
instances take more time to simulate.

For each valid initial state, DistAI simulates the protocol
by performing MA number of actions. Since the distributed
protocols are nondeterministic with regard to the next action
taken (e.g., we do not know which node will send the next
request or reply), multiple runs from the same initial state
will result in different samples. Given an initial state s0,
DistAI uses the simple method formalized in Algorithm 1, to
simulate a protocol, which randomly chooses an action from
an action pool (line 6) with randomly chosen arguments from
an argument pool (line 9) that satisfy the precondition (line
10). It then performs the action, records the new system state,
and repeats the process (line 16-17). An action is removed
from the action pool once its argument pool is exhausted,
and the protocol terminates if the action pool is exhausted.
Since some protocols may never terminate, MA defines an
upper bound on the number of actions performed. Once the
simulation completes, the set of reached states S is returned.

For example, for the Ricart-Agrawala protocol, during each
iteration of the algorithm, DistAI first randomly selects one of
the four possible actions: request, reply, enter, and leave. If
request is selected, DistAI then randomly chooses the nodes
for its two arguments, requester and responder. However,
not every pair of nodes are valid arguments as the two nodes
must satisfy lines 14-15, the two preconditions to legitimately
trigger the request action under the protocol. If the current

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 409

Algorithm 1 Stochastic Sampling Algorithm.

Input: Protocol P with actions A . Initial state s0
Output: A simulation trace, represented by a set of states S

1: S :={s0}, s :=s0
2: for iter :=1 to MA do
3: action_pool :=A
4: action_ f ound := f alse
5: while¬action_ f ound∧|action_pool|>0 do
6: action := select_random(action_pool)
7: args_pool := enum_arguments(s,a)
8: while |args_pool|>0 do
9: args := select_random(args_pool)

10: if precondition_holds(P ,s,action,args) then
11: action_ f ound := true
12: break
13: args_pool :=args_pool\{args}
14: action_pool :=action_pool\{action}
15: if action_ f ound then
16: s:=execute_protocol(P ,s,a,args)
17: S:=S∪{s}
18: else
19: break
20: return S

〈requester,responder〉 pair violates the precondition, DistAI
removes it from the argument pool and randomly selects
another one. This repeats until a valid pair of arguments is
found or the pool is exhausted, in which case DistAI removes
request from the action pool and selects another action.

After each iteration, DistAI logs the current system state,
represented by the value of all the relations. In Figure 2, that
is the value of predicates requested(N1,N2), replied(N1,N2),
and holds(N1) for all N1 and N2. Figure 3 shows a sample
of the Ricart-Agrawala algorithm for an instance size of five
nodes in the left frame. The requested and replied relations
each take two nodes as arguments, so their samples record
the relations for all possible pairs of nodes, resulting in 25
boolean values each. The holds relation only takes a single
node as argument, so five boolean values are recorded, one
for each of the five nodes in the protocol instantiation.

DistAI can also simulate protocols calling other protocols,
even when the protocol being called is a blackbox. When a
protocol calls another protocol through a blackbox interface,
described by a specification without a concrete implemen-
tation, DistAI treats it as an action with nondeterministic
behavior. If the action is selected with arguments that satisfy
its preconditions, DistAI selects randomly updated states that
satisfy its postconditions as the execution result.

Our simple stochastic sampling procedure, while very
efficient, may not achieve high coverage and can leave corner
cases uncovered. More sophisticated techniques [1, 25, 30]

can be applied to improve coverage for complex protocols
with sparse inputs and difficult to reach states. However, the
correctness of learned invariants is guarded by the Z3 SMT
solver used by IVy. If the samples are incomplete and the
invariants fail the SMT check, DistAI will iteratively refine
the invariants until they are correct, as discussed in Section 5.

Subsampling. The data samples from protocol simulation
may be of all different lengths depending on the instance size
used. We want to map the concrete samples from simulation
to an invariant template, the small set of quantified variables
that may appear in the invariant, denoted by τ. Given a set
of data samples and an invariant template, DistAI applies a
subsampling procedure translating the variable length data
samples to fixed length vectors, which we call subsamples.
Formally, a subsample corresponds to an assignment α of
the variables in τ and contains the values of relations given
the assignment to the template. Subsamples taken with an
invariant template with variables V1,...,Vn can then be used
to learn invariants (denoted I) on those variables:

τ={∀V1...Vn} ∀V1...Vn. I(V1,...,Vn).

For example, in the Ricart-Agrawala protocol, the relations
requested and replied each operate on two nodes, so the initial
template is τ={∀N1 N2}. Under this template, there are only
10 predicates that may appear in an invariant formula, namely:

requested(N1,N1), requested(N1,N2), requested(N2,N1),

requested(N2,N2), replied(N1,N1), replied(N1,N2),

replied(N2,N1), replied(N2,N2), holds(N1), holds(N2).

For this template, a 5-node data sample can induce 5∗4=20
subsamples, by first assigning one node X1 for N1 and then an-
other node X2 for N2 , as illustrated in Figure 3. Since there are
10 predicates, each subsample has 10 possible boolean values,
so one data sample results in 20×10=200 boolean values.

Enumerating all valid subsamples from each sample can
be computationally undesirable, especially for multi-domain
protocols. If we add a new domain msg, and let the template be
{∀N1 N2∈node, M1 M2∈msg}, then a sample with five nodes
and 10 messages will induce 1,800 subsamples. Therefore,
DistAI randomly chooses SD valid subsamples from each sam-
ple. Two-stage sampling terminates when MI instances have
been simulated, or no new subsample is found after simulating
MIS consecutive instances of the protocol. The subsamples
are then deduplicated and passed on to invariant enumeration.

Although DistAI’s sampling has several parameters, they do
not need to be manually tuned to find inductive invariants. We
use the default values for all protocols. For example, when MA
or SD become larger, each simulation round will take longer,
but fewer rounds will be required to converge. Similarly, a
small MI/MIS may stop two-stage sampling prematurely,
but the missing states will be resolved later by monotonic
refinement. The parameters do not affect whether DistAI finds

410 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

inductive invariants, only how fast it finds them. Sampling is
useful simply as a performance optimization that reduces the
number of SMT queries required during refinement.

4 Candidate Invariant Enumeration

Algorithm 2 shows DistAI’s enumeration-based algorithm to
generate candidate invariants from the subsamples obtained
in Section 3. To reduce the number of candidate invariants
required for covering the invariant space and reduce the
maximum number of literals needed for finding the inductive
invariant, we partition the invariant space into multiple
regions, each represented by a constrained template called a
subtemplate. We then enumerate all possible invariants in each
region (i.e., under each subtemplate), and retain candidate
invariants that hold for the collected subsamples.
Template decomposition. Before enumerating candidates
invariants, we decompose templates into subtemplates that
incorporate additional constraints (line 1). A template with N
variables in the same domain will be split into N subtemplates
which have from 1 to N variables. A subtemplate with more
variables is said to be larger than a subtemplate with fewer
variables. For example, a template τ={∀N1 N2}will be split
into two subtemplates, τ1 ={∀N1 N2. N1 =N2}={∀N1} and
τ2 ={∀N1 N2. N1 6=N2}, abbreviated as {∀N1 6=N2}, with τ2
being larger than τ1. All operations that use subtemplates in
Algorithm 2 traverse them from smallest to largest (lines 2 & 5).

This subtemplate optimization reduces the cost of enu-
meration in two ways. First, subtemplates reduce the number
of candidates that need to be enumerated due to symmetry.
For example, for the Ricart-Agrawala protocol, when using
template τ, both of the following invariants will be enumerated:

∀N1 N2.¬replied(N1,N1) ∀N1 N2.¬replied(N2,N2).

On the other hand, when using the subtemplate τ1, the
equivalent enumeration would only result in one candidate:

∀N1.¬replied(N1,N1). (7)

Furthermore, DistAI will project Equation (7) using τ2 to the
following candidate invariants:

∀N1 6=N2.¬replied(N1,N1) ∀N1 6=N2.¬replied(N2,N2),

which are then marked as validated using τ1, avoiding further
redundant validations. We refer to this as invariant projection.

Second, subtemplates can reduce the maximum number of
literals in the invariant formula. For example, one invariant of
the Ricart-Agrawala protocol (Equation 3) can be rewritten as:

∀N1 N2.¬(N1 6=N2)∨¬holds(N1)∨replied(N1,N2) (8)

This is a disjunction of three literals under the full template τ.
However, using subtemplate τ2 ={∀N1 6=N2}, an equivalent

Algorithm 2 Invariant Enumeration Algorithm.

Input: Template τ, subsample table ST , max-literal l
Output: A set of invariants I∗

1: subtemplates := decompose_templates(τ)
2: for τ′∈ traverse(subtemplates) do
3: proj_table[τ′] := ST|τ′
4: I[τ′] := /0

5: for τ′∈ traverse(subtemplates) do
6: predicates := proj_table[τ′].header
7: Pτ := predicates∪{¬p|p∈predicates}
8: for n :=1 to l do
9: for inv∈ combinations(Pτ, n) do

10: if check_subset_exists(inv, I[τ′]) then
11: continue
12: if check_inv_holds(inv, proj_table[τ′]) then
13: I[τ′] := I[τ′]∪{inv}
14: for τ′succ∈successors(τ′) do
15: for inv∈ I[τ′]) do
16: I[τ′succ] := I[τ′succ]∪ proj_inv(inv,τ′,τ′succ)
17: I∗ := {(τ′ : inv) | τ′ ∈ subtemplates, inv ∈

I[τ′], inv was checked against subsamples}

form of this invariant can be learned using a formula size with
a maximum of two literals:

∀N1 6=N2.¬holds(N1)∨replied(N1,N2)

We can denote an invariant as τ : inv, where τ is the subtemplate
under which the invariant formula inv is found and inv is
expressed as a disjunction of literals. In this example, we
effectively can denote the same invariant using subtemplate
τ2 as τ2 : inv′, where one literal that was previously part of inv
is no longer part of inv′ because it is now a part of τ2. Because
DistAI operates in formula space and the time complexity
of enumeration is exponential in the maximum number of
literals, such a small reduction in the number of literals can
have a significant impact on the overall cost of enumeration.

Subtemplates can also reduce the maximum number of lit-
erals by exploiting another form of symmetry. If there is a
total order on a domain, such as with node identifiers, we will
further assign an order on the variables in the subtemplate and
strengthen {∀N1 6=N2} into {∀N1<N2}Because of symmetry,
invariant formulas with {∀N1 < N2} are equivalent to those
with{∀N2<N1}, so we do not need to enumerate the latter once
we have done the former. This is useful since inductive invari-
ants often contain comparisons between variables in a domain
with a total order. For example, this optimization helps reduce
the maximum number of literals required from six to four for
the database chain replication protocol evaluated in Section 6.

Subtemplates work with multiple domains as well. Consider
a protocol with two domains, T1 and T2, where T1 defines a total
order, and the template τ is {∀X1 X2 X3∈T1,Y1 Y2∈T2}. After

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 411

FED

A B C

Figure 4: Dependency relations between the six subtemplates
derived from the template {∀X1 X2 X3∈T1,Y1 Y2∈T2}.

template decomposition we get six subtemplates, as shown in
Figure 4. For multiple domains, there may not exist a total or-
dering of all subtemplates from smallest to largest, so the only
requirement for the order of traversal of subtemplates is that
the quantified variables in each subtemplate are not a subset of
a prior one, such that formulas can always be validated with the
smallest possible subtemplate. In Figure 4, A→B→C→D→
E→F is a valid traversal order, while A→D→E→B→C→
F would be invalid because the quantified variables {X1,X2,Y1}
for subtemplate B are a subset of {X1,X2,Y1,Y2} of subtemplate
E. We follow graph terminology and call subtemplates B and
D the successors of A, and A the predecessor of B and D.
Subtemplate projection. Because DistAI uses subtem-
plates for candidate enumeration instead of templates, the full
subsamples of the invariant template need to be projected onto
each subtemplate (line 3). This is done similarly to how data
samples are projected onto full subsamples using an invariant
template, as discussed in Section 3, except in this case, full
subsamples are projected onto subsamples using a subtemplate.
For example, for this multi-domain protocol, when projecting
full subsamples to subtemplate {∀X1 < X2 ∈ T1, ∀Y1 ∈ T2}
(node B in Figure 4), there are six possible variable mappings:
{X1→X1,X2→X2,Y1→Y1},...,{X1→X2,X2→X3,Y1→Y2}.
Note that the total order on T1 needs to be preserved, otherwise
there would be 12 possible mappings. Similarly, going to back
the Ricart-Agrawala protocol example, when projecting full
subsamples of the invariant template τ to subtemplate τ1, there
are two possible variable mappings: {N1→N1,N1→N2}.
Subtemplate candidate enumeration. DistAI enumerates
and checks all possible candidates for each subtemplate
τ′ (lines 6-13). Each subtemplate τ′ has a certain number
of predicates m. For example, for the Ricart-Agrawala
protocol using template τ1, there are three predicates:
requested(N1, N1), replied(N1, N1), holds(N1). DistAI
adds the m predicates p1, p2, ..., pm and their negations
¬p1,¬p2,...,¬pm to the literal pool Pτ (line 7).

Given a formula size with the maximum number of literals
l, DistAI enumerates all subsets of Pτ with size at most l as
candidate invariants. For example, if m = 3 and l = 1, there
would be six candidate invariants: p1,¬p1, p2,¬p2, p3,¬p3.
By default, DistAI initially sets l=3, and iteratively increases
it later in the refinement process (see Section 5). We only

consider invariants in the form of disjunctions of literals since
invariants with conjunctions can simply be split into multiple
invariants. If a candidate invariant C includes both a predicate
and its negation, it will be discarded. If not, DistAI checks
the validity of C against the subsamples. If C is satisfied by
all subsamples for the subtemplate, C is added to the set of
generated invariants, which we refer to as the invariant set.

DistAI exploits symmetry to prune the candidate enumer-
ation space. Whenever an invariant is learned, we permute the
quantified variables with the same type and emit equivalent
candidates without needing to check if they are satisfied
by the subsamples. For example, under the subtemplate
{∀ X 6=Y ∈T1, A 6=B∈T2}, if p(X ,Y)∨¬q(Y)∨r(X ,A,B) is
an invariant, then p(Y,X)∨¬q(X)∨r(Y,B,A), along with two
other formulas, are also invariants.

Enumeration is ordered by the number of literals in the
candidate invariants, and any candidate that is weaker than
an invariant already added to the invariant set is skipped (lines
8-11). For example, if we already know p∨¬q is an invariant,
then for any predicate r, p∨¬q∨r is guaranteed to be a valid
but weaker invariant, and can be skipped in the enumeration.
Based on Figure 3, applying this enumeration procedure to
the Ricart-Agrawala protocol with subtemplate {∀N1} and
l=2 results in the following two generated invariants:

¬requested(N1,N1) ¬replied(N1,N1)

Invariant projection. After finding all candidates on
one subtemplate, DistAI calculates the projection of the
candidates on each successor, then propagates the projection
and moves on to enumerate the next subtemplate (line 14-16).
This reduces the cost of validating candidates using larger
subtemplates against their subsamples. For example, for the
Ricart-Agrawala protocol, suppose we have learned two
invariants ¬requested(N1,N1) and ¬replied(N1,N1) under
subtemplate τ1 = {∀N1}. Before enumerating candidates
under subtemplate τ2={∀N1 N2}, we know the following four
candidates must hold under τ2 because they are projections
of the learned invariants under the simpler template τ1:

¬requested(N1,N1) ¬replied(N1,N1)

¬requested(N2,N2) ¬replied(N2,N2)

As a result, these four candidates can simply be added to the
invariant set under τ2 without enumerating and validating
them against any subsamples (line 16). Any weaker candidates
will also be skipped, further reducing the cost of enumeration.
For example,¬requested(N1,N1)∨holds(N1) can be skipped
since it is weaker than¬requested(N1,N1).
Strongest possible invariant set. Finally, after traversing
all subtemplates, DistAI unions together the subtemplate
invariant sets to form the initial set of generated invariants
(line 17) which will be fed to IVy. Since all possible candidate
invariants have been considered for each subtemplate, we can
prove that, for any invariant inv (in the form of disjunctions of

412 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

literals) under template τ with a maximum number of literals
of no more than l, there must exist an invariant inv′ in the con-
structed invariant set such that inv′⇒ inv. General invariants
can be converted into conjunctive normal form (CNF) and
then split into multiple invariants in the form of disjunctions
of literals. Thus, the initial invariant set for a subtemplate is a
strongest possible invariant set that is guaranteed to be at least
as strong as the inductive invariant if there are no more than
τ variables, also known as quantifiers, and l literals.

Intuitively, since each subtemplate provides the strongest
possible invariant set, the invariant checked by IVy, which is
constructed using the conjunction of all invariants across the
union of subtemplate invariant sets, should also be the strongest
with regard to the subsamples. In practice, when unioning
the invariant sets, we can exclude invariants generated by
projection from predecessors because they can be implied by
their original counterparts. We formalize this in Theorem 1:

Theorem 1. Let I∗ be the output of Algorithm 2. For any invari-
ant set I under template τ with a maximum number of literals of
no more than l, if I is satisfied by every subsample, then I∗⇒ I.
Proof. First we consider a variant of Algorithm 2 where Line
17 does not exclude invariants generated by projection. We
prove this by contradiction. Suppose there exists I under
template τ with a maximum number of literals of no more
than l, I is satisfied by every subsample and I∗; I. Consider
any invariant τ′ : inv∈ I but τ′ : inv /∈ I∗. Recall each individual
invariant is a disjunction of literals, assuming CNF. Since I is
satisfied by every subsample, τ′ : inv is also satisfied by every
subsample. If we reach lines 12-13 in Algorithm 2, it will be
added to the invariant set. The only possibility of τ′ : inv /∈ I∗ is
that the branch condition at line 10 evaluates to true. However,
this indicates that a subset of inv is already in the invariant set.
The subset of inv implies inv (e.g., p∨q⇒ p∨q∨r). So we still
have I∗⇒τ′ : inv. To conclude, every τ′ : inv∈ I but τ′ : inv /∈ I∗

can be implied by I∗, which is a contradiction to I∗; I.
Now we exclude invariants generated by projection and get

a new I∗new. From lines 15-16, every excluded invariant can be
implied by another invariant in its predecessor subtemplate,
so we can show I∗⇔ I∗new, thus completing the proof.

Constants and function symbols. Although the discussion
above assumes a literal can only be a predicate or its negation,
DistAI also supports constants and function symbols as literals.
For example, given a template {∀X Y ∈ T} and a constant
c∈T , DistAI considers X = c and Y = c as two independent
predicates and reasons about them like any other predicate. As
another example, given a template {∀X1 X2∈T1,Y1∈T2} and
a function f : T1→T2, DistAI can introduce Y2 = f (X1),Y3 =
f (X2) and treat Y2,Y3 as variables like Y1.

5 Monotonic Invariant Refinement

When DistAI feeds the enumerated invariants to IVy, IVy
may find that the conjunction of the invariants and the safety

Algorithm 3 Minimum Weakening Algorithm.

Input: Invariant set
I[τ′] for each subtemplate τ′, and the broken invariant τ′0 : inv
Output: Updated invariant set I[τ′] for each subtemplate τ′

1: I[τ′0] := I[τ′0]\{inv}
2: if inv.length< l then
3: for literal∈ valid_literals(τ′0) do
4: if literal /∈ inv then
5: new_inv := inv∪{literal}
6: if ¬ check_subset_exists(new_inv, I[τ′0]) then
7: I[τ′0] := I[τ′0]∪{new_inv}
8: for τ′succ∈successors(τ′0) do
9: new_invs:=proj_inv(inv,τ′0,τ

′
succ)

10: for new_inv∈new_invs do
11: I[τ′succ] := I[τ′succ]∪{new_inv}

property are not inductive and return a list of invariants that
failed. This is likely to happen at least for the initial invariants
that DistAI enumerates as its sampling is not guaranteed to be
complete. Because sampling is not complete and is primarily
to improve performance, DistAI may generate invariants
that would not hold if sampling was done for more protocol
instances. In general, when IVy indicates that an invariant
fails, it is difficult to know whether the solution is to weaken or
strengthen the invariant. Prior work uses different methods to
evade this challenge but gives no fundamental solution [19,35].

DistAI provides a simple and clean solution to this problem
by starting with the strongest possible invariants and ensuring
that the invariants remains the strongest possible ones
throughout the refinement process. For each invariant that
fails, which we refer to as a broken invariant, DistAI applies
mimimum weakening to the invariant. The candidate invariant
space becomes strictly smaller after each failure. DistAI
ensures that the conjunction of the weakened invariants will
remain stronger than the eventual invariants that must be added
to the safety property to make it inductive, if it is expressible
under the current template τ and maximum number of literals
l. The overall process is guaranteed to converge to find the
inductive invariant.

Algorithm 3 shows the minimum weakening algorithm used,
given an initial invariant set and a broken invariant. We denote
an invariant as τ′ : inv, where τ′ is the subtemplate under which
inv is found and inv is the invariant expressed as a disjunction
of literals. The algorithm consists of three steps. First, DistAI
removes the broken invariant from the initial invariant set.
When IVy returns that τ′0 : inv fails, DistAI removes τ′ : inv
from the invariant set that was initially passed to IVy (line 1).

Second, DistAI finds all weakened versions of the broken
invariant and adds them back to the invariant set. A weakened
version of τ′ : inv is created by add one more literal via disjunc-
tion to inv (lines 2-7). For example, suppose inv = p∨¬q is

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 413

rejected by IVy. Recall that during the invariant enumeration,
since p∨¬q was considered as an invariant, for all literals r,
the candidate p∨¬q∨r would be skipped. Now, for any literal
r, p∨¬q∨r becomes a meaningful invariant. DistAI updates
the invariant set by adding the weakened invariants back to
the invariant set as long as they can not be implied by some
other invariant that is already in the invariant set (e.g., p∨r).
If the broken invariant has reached the maximum number of
literals, this second step will be skipped.

Third, DistAI projects the broken invariant to higher subtem-
plates, and adds all such projections. For each successor τ′succ
of τ′0, DistAI adds all the projections of inv on τ′succ to the invari-
ant set (line 8-11). To see why this is necessary, consider the
following candidate invariant in some leader election protocol:

∀X ∈T.¬leader(X). (9)

This asserts no one can be a leader. This invariant may fail
in IVy because the SMT solver observes a system state
{leader(i1),¬leader(i2), i2< i1} (suppose T has total order).
Recall that DistAI uses a traversal order to enumerate invariants
under different subtemplates, and the invariants from smaller
subtemplates will be projected to larger subtemplates to
avoid repeated enumeration. So previously, the following two
candidate invariants, under a larger subtemplate {∀X <Y ∈T},
were skipped because they could be implied by Invariant (9).

∀X <Y ∈T.¬leader(X) (10)
∀X <Y ∈T.¬leader(Y). (11)

But now, after Invariant (9) is invalidated and removed, we
need to reconsider Invariants (10) and (11) and add them to the
candidate invariant set. We validate the new invariants using
IVy again. If successful, DistAI outputs the current invariant
set as the inductive invariant, otherwise we will enter the
next refinement round. In this case, if the distributed protocol
has the property that only the greatest user can be the leader,
then Invariant (11) will be invalidated in a later round, while
Invariant (10) is likely to be correct and remain valid to the end.

The three-step minimum weakening procedure guarantees
after any number of refinement rounds, the invariant set is
always a strongest possible one that is satisfied by all the
subsamples. This “strongest possible” property implies that
throughout refinement, the invariant set is always stronger than
the correct invariant set required for an inductive invariant,
so whenever an invariant fails, we should always weaken the
broken invariant. The guarantee can be formally stated as:

Theorem 2. Let I∗ be the invariant set after n refinement
rounds, and Bn={τ′1 : inv1,τ

′
2 : inv2,...,τ

′
n : invn} be the broken

invariants in each round. For any invariant set I under template
τ with no more than l literals, if I is satisfied by every subsample,
and does not imply any broken invariant in Bn, then I∗⇒ I.

Proof. We prove this by induction on the number of rounds.
The base case is simple. In Round 0, there is no broken

invariant, and the statement degenerates to Theorem 1. Now we
focus on the induction case. Suppose after k refinement rounds,
we get invariant set I∗k . For any invariant set I under template τ

with no more than l literals, if I is satisfied by every subsample,
and does not imply any broken invariant in Bk, then I∗k⇒ I.

Now we come to round k+1. We prove by contradiction.
Suppose we have an invariant set I under template τ with no
more than l literals such that 1) I is satisfied by every subsam-
ple, 2) I does not imply any broken invariant in Bk+1, and 3)
I∗k+1 ; I. Consider any invariant τ′ : inv such that I⇒ τ′ : inv
but I∗k+1 ; τ′ : inv. From the induction hypothesis, we know
I∗k ⇒ τ′ : inv. Let τ′k+1 : invk+1 be the invalidated invariant
in round k+1. From the algorithm, τ′k+1 : invk+1 is the only
removed invariant in this round. Since each invariant is a dis-
junction of literals,we can show τ′k+1 : invk+1⇒τ′ : inv. In other
words, the hypothetical “missing” invariant must be implied
by the removed invariant. We further know either inv includes
more literals than inv, or τ′ includes more quantified variables
not in τ′k+1, or both. Otherwise we have τ′ : inv⇒τ′k+1 : invk+1.
Then τ′ : inv= τ′k+1 : invk+1, a contradiction to I⇒ τ′ : inv and
I does not imply the broken invariant τ′k+1 : invk+1.

Now we consider the two cases separately. 1) inv includes a
literal p not in invk+1. Consider the formula F =τk+1 : invk+1∨
p. From τ′k+1 : invk+1 ⇒ τ′ : inv, we can show F ⇒ τ′ : inv.
However, F is added to the new invariant set I∗k+1 unless it can
be implied by existing invariants (Line 3-7 in Algorithm 3). So
we have I∗k+1⇒F⇒τ′ : inv. 2) τ′ includes a quantified variable
X not in τ′k+1. Consider the formula G=τ′′ : invk+1, where τ′′ is
τ′ extended with X . Again, from τ′k+1 : invk+1⇒τ′ : inv, we can
show G⇒τ′ : inv. However, G is added to the new invariant set
I∗k+1(Line 8-11 in Algorithm 3). So we have I∗k+1⇒G⇒τ′ : inv.
In both 1) and 2), we reach I∗k+1⇒ τ′ : inv, which means the
“missing” invariant is already implied by the existing invariant
set output by the algorithm, a contradiction.

Intuitively, Theorem 2 ensures that starting from a too
strong invariant set, the minimum weakening steps never
over-weaken the invariants and “bypass” the correct invariants
in between. Combined with Theorem 1, which guarantees
that monotonic refinement indeed starts from the strongest
invariant set, we have the following corollary:

Corollary 1. If there exists a correct invariant set expressible
with template τ and maximum number of literals l, then the
refinement procedure will terminate with one such invariant
set within a finite number of rounds, otherwise the refinement
procedure will terminate with a broken safety property.

Sometimes, the weakened versions of a broken invariant are
all discarded in the end. Then, minimum weakening provides
no benefits versus just removing the broken invariants. In
practice, DistAI first applies only the first step of minimum
weakening — removing the broken invariants. Then if failed,
DistAI applies refinement again with the first and second
step. If failed again, DistAI applies the standard three-step

414 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

minimum weakening in Algorithm 3. This practice optimizes
performance when the weakened versions of a broken invariant
are all discarded while maintaining Theorem 2 and Corollary 1.

If available, DistAI can use counterexamples to check
weakened invariants, only adding them if they satisfy the
counterexamples. However, DistAI’s refinement procedure
currently does not use them because obtaining counterexam-
ples from IVy for an entire invariant set is extremely inefficient.
When IVy is configured to return a counterexample, it halts
early and returns the counterexample once it identifies the
first broken invariant in a set. Using IVy in this configuration
would force DistAI to weaken broken invariants one at a time
and perform many redundant SMT checks of the invariant set
through IVy, instead of weakening all failed invariants at once
between each IVy call.
Convergence and Feedback loop. Since the invariant set
is weakened after each refinement round, we can prove that the
refinement procedure terminates in a finite number of rounds,
resulting in an inductive invariant set.

If the safety property has never been violated during the
refinement process, the resulting set is the correct inductive set
and can derive the desired safety property. If, at any point, the
safety property is violated and needs to be weakened (when all
other candidates are weak enough), it means that the correct in-
variant set cannot be expressed under the current formula size,
with its per-domain template size and maximum number of
literals. DistAI will then increase the formula size, increasing
the per-domain template size or the maximum number of liter-
als, and relearn the invariants. By default, DistAI increases the
formula size by alternating between increasing the maximum
number of literals or increasing the template size, the latter by
increasing the number of quantified variables for each domain
in the template. For example, in Figure 4, i) we first increase
the maximum number of literals by one, ii) if it fails, increase
the template size by adding a new variable in type T1, iii) if
fails again, add another new variable in T2, iv) and if still fails,
increase the maximum number of literals by one again.

After increasing the formula size, we redo sampling,
enumeration, and refinement. Since any invariant contains a
finite number of quantified variables and a finite number of
literals, the feedback loop will eventually reach a template
and literal size large enough to express the correct invariant
set if one exists. Once a sufficient formula size is reached,
Corollary 1 guarantees that a correct invariant set will
be generated. Therefore, DistAI provides the following
end-to-end convergence guarantee:

Theorem 3. If the safety property of a protocol is provable
with a ∃-free invariant set, then DistAI will terminate with one
such invariant set in finite time.

Theorem 3 guarantees conditional convergence of DistAI.
However, if the safety property does not hold for the protocol
or existential quantifiers are necessary to prove it correct,
DistAI may continue in the feedback loop forever.

6 Evaluation

To demonstrate its effectiveness at determining inductive
invariants, we implemented and evaluate DistAI on a collection
of 14 distributed protocols, including all 7 protocols previously
evaluated with I4 [18]. The implementation consists of 1.6K
lines of Python code for protocol simulation and sampling and
1.6K lines of C++ code for enumeration and refinement. For
comparison, we also evaluated I4 and FOL-IC3, in both cases
using the implementations created by the original authors. All
experiments were performed on a Dell Precision 5829 worksta-
tion with a 4.3GHz 28-core Intel Xeon W-2175, 62GB RAM,
and a 512GB Intel SSD Pro 600p. Table 1 shows the results for
each protocol, including the number of domains and relations
for each protocol as indicators of protocol complexity.

DistAI outperforms both I4 and FOL-IC3 in terms of the
number of protocols for which it infers the correct invariants.
DistAI automatically infers the correct invariants for 13 out of
the 14 protocols, only failing for Paxos, on which both I4 and
FOL-IC3 also fail. I4 only solves 9 protocols, and FOL-IC3
only solves 3 protocols using its default setting, which searches
over all first-order logic formulas, but improves to solving 9
protocols if an option is enabled that limits the search space
to only ∀ quantifiers. Each approach was allowed to run for an
entire week, 168 hours, per protocol before timing out, more
than two orders of magnitude longer than the worst runtime
reported in Table 1.

DistAI and I4 only time out trying to solve Paxos, but FOL-
IC3 times out on many protocols. This is because DistAI only
uses the SMT solver for validating rather than generating in-
variants, I4 uses a model checker to generate invariants only
for a specific, small instance, while FOL-IC3 invokes the SMT
solver to generate invariants for the general protocol, multiple
times for each invariant, which is undecidable in general and
very expensive in practice. FOL-IC3 performs worse with the
default setting since the formula search space is larger and the
SMT solver performs worse for formulas with existential quan-
tifiers. In fact, FOL-IC3 fails for database chain replication, de-
centralized lock, and distributed lock with the default setting be-
cause Z3, the underlying SMT solver, fails and reports unknown,
indicating that the formula generated by FOL-IC3 does not
fall in the supported decidable fragment of first-order logic. In
contrast, DistAI never generates an undecidable formula.

Although both DistAI and I4 fail to solve Paxos, a complex
and realistic consensus protocol, the reasons for the failures
are different. I4 fails because its model checker is unable to
produce any candidate invariants. Model checking is complex
and quite resource intensive, and I4’s authors report its model
checker runs out of memory trying to solve Paxos [18].
In contrast, DistAI produces candidate invariants, but it
fails because it does not support invariants with existential
quantifers, which Paxos requires; I4 also has this limitation.
Upon failed refinement, DistAI keeps increasing the formula
size until it times out or exhausts memory. By manual

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 415

Distributed Domains Variables Refinements DistAI time(s) I4 time(s) FOL-IC3 time(s)
Protocol Relations Literals Invariants final total ∀ default
asynchronous lock server [5] 2 5 3 2 0 12 1.1 generalize fails 6.9 -*

chord ring maintenance [24] 1 8 3 4 48 163 52.8 586.1‡ 594.4 -* -*

database chain replication [24] 4 13 7 4 158 66 58.8 20.2‡ 63.1 -* Z3 fail
decentralized lock [9] 2 2 4 2 150 16 9.4 generalize fails 37.1d Z3 fail
distributed lock [24] 2 4 4 3 82 45 12.6 152.1‡ 204.7 1451.3 Z3 fail
hashed sharding [11] 3 3 5 2 0 15 1.1 nondet fails 9.2 -*

leader election [24] 2 3 6 3 0 17 1.9 4.9‡ 4.9 26.3 -*

learning switch [24] 2 4 4 3 8 71 27.6 10.5‡ 12.4 -* -*

lock server [24] 2 2 2 2 0 1 0.8 0.5‡ 0.8 0.5 2.1
Paxos [13, 15, 23] 4 9 - - - - -* -* -* -* -*

permissioned blockchain [17] 4 10 6 3 2 13 4.9 blackbox fails 21.2 -*

Ricart-Agrawala [26] 1 3 2 2 0 6 0.9 0.8 0.8 0.7 3.2
simple consensus [11] 3 8 5 3 19 50 23.3 41.8 68.7 -* -*

two-phase commit [18] 1 7 2 3 3 30 1.9 3.1‡ 8.0 3.4 7.9
* Time out after 1 week.
‡ I4 runtimes on our machine are similar (6 out of 7 protocols slightly faster) to those previously reported for I4 [18].
s “generalize fail” means I4’s implementation fails to convert invariants from the AVR model checker to generalized universally quantified invariants.

“nondet fail” means failed on nondeterministic initialization. “blackbox fail” means error triggered on reasoning of blackbox functions.
d FOL-IC3 initially completed in less than a second, but this turned out to be incorrect due to a bug in the mypyvy protocol specification used by

FOL-IC3, which does not exist in the Ivy protocol specification used by DistAI and I4.

Table 1: Evaluation results on 14 distributed protocols from multiple sources.

inspection, we find that DistAI infers all ∃-free invariants for
Paxos. FOL-IC3 supports finding invariants with existential
quantifiers, but it also fails to solve Paxos, the one protocol
in our evaluation with existential quantifiers.

The most common reason overall why I4 fails to solve
protocols is its dependency on modeling checking a small size
implementation of the protocol to generate candidate invariants.
I4 also fails to infer the correct invariants for decentralized lock
and asynchronous lock server because it cannot generalize
the candidate invariants generated by the model checker for a
small size implementation to universally quantified invariants.
Although I4 succeeds on lock server, it fails on asynchronous
lock server because the latter explicitly models packet loss
in the network, resulting in more complex invariants.

DistAI takes a fundamentally different approach that does
not require model checking a finite instance. DistAI operates
in formula space, allowing it to enumerate invariants that hold
for any instance size. It optimizes the enumeration by running
protocol simulations across different size systems, but does
not rely on the simulations to find candidate invariants, only
to reduce the number of invariants it needs to enumerate. By
taking this data-driven approach, it is able to produce better
initial invariants to achieve greater success with more protocols
and guarantee success if there are no invariants with existential
quantifiers. Unlike I4, DistAI is simple and self-contained,
avoiding the need for, and dependence on, a complex external
model checker that, like all complex software, may have bugs.

Permissioned blockchain is another example that demon-
strates the effectiveness of DistAI. It has a blackbox Byzan-
tine broadcast protocol as a subprocedure. In permissioned
blockchain, n users have a synchronized clock. At epoch E,
only one user nE , the round-robin leader of the epoch, can (op-

tionally) propose a block, if it has found a valid one extending
its longest chain. The epoch leader uses the Byzantine broad-
cast protocol to broadcast the block in the P2P network. An hon-
est user always adds all outstanding transactions in the block it
proposed and follows the Byzantine broadcast protocol, while
an adversary can neglect certain transactions, delay block pro-
posal, and send conflicting block messages to any node at any
epoch, regardless of who the leader is. A Byzantine broadcast
protocol satisfies agreement, if all honest users always share
the same eventual result regardless of the leader is honest or
not. A Byzantine broadcast protocol satisfies validity, if when
the leader is honest, all honest users will eventually decide on
the message of the leader. A blockchain satisfies consistency,
if at any epoch, all honest users have the same view of the
blockchain (i.e., no forks or orphaned blocks). That is, for any
two honest users at any time,a block is either confirmed by both,
or confirmed by none. A blockchain satisfies liveness, if all
transaction will be confirmed within a finite number of epochs.

DistAI successfully proves that for any Byzantine broadcast
procedure that satisfies agreement and validity, the resulting
permissioned blockchain satisfies consistency and liveness1.
The Byzantine broadcast procedure is described by pre-
conditions and post-conditions in IVy without the need for
an executable implementation. When simulating the blackbox
Byzantine procedure, DistAI simply picks a random state that
satisfies the post-condition as the execution result. This random
selection may leave corner cases uncovered, but the eventual
correctness is guarded by the SMT solver, and we monoton-

1We prove a variant of the liveness property — if the leader of epoch T
is honest, then all transactions before T will be confirmed at T . The original
liveness property cannot be encoded as a safety property, thus falling out of
the scope of DistAI, I4, and FOL-IC3.

416 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Distributed Protocol Sample Enumerate Refine Total
asynchronous lock server 0.6 0.0 0.5 1.1
chord ring maintenance 11.1 1.2 40.5 52.8
database chain replication 36.3 0.1 24.4 58.8
decentralized lock 2.1 0.1 7.2 9.4
distributed lock 0.8 0.1 11.7 12.6
hashed sharding 0.6 0.1 0.4 1.1
leader election 0.8 0.1 1.0 1.9
learning switch 19.4 0.3 7.9 27.6
lock server 0.5 0.0 0.3 0.8
permissioned blockchain 3.5 0.1 1.3 4.9
Ricart-Agrawala 0.5 0.0 0.4 0.9
simple consensus 18.8 0.4 4.1 23.3
two-phase commit 0.5 0.1 1.3 1.9

Table 2: DistAI runtime breakdown in seconds for each protocol.

ically weaken the invariant set to reach a correct solution. In
contrast, the use of a blackbox procedure poses difficulty and
triggers errors in I4. We should note DistAI solves permis-
sioned blockchain for not one, but any valid implementation of
the Byzantine broadcast protocol because it does not depend
on or require its implementation, a key benefit of our approach.

DistAI also outperforms both I4 and FOL-IC3 in terms of the
time required to infer the correct invariants. For I4, we report
both the runtime for the final instance size on which the correct
invariant is generated, as reported in [18], as well as the total
runtime, which includes trying increasingly larger instance
sizes that fail until the final instance size succeeds. Except for
learning switch, DistAI is about the same or faster than I4 for all
of the protocols solved by I4, up to an order of magnitude faster.
The runtime comparisons between DistAI and I4 are conser-
vative as they do not include the time required for concretiza-
tion [18], a step required by I4 to manually introduce additional
constraints to the protocol to limit the search space of the model
checker. DistAI is also faster than FOL-IC3 for all but the two
simplest protocols solved by FOL-IC3, in many cases by more
than one to two orders of magnitude. This is because SMT
queries are expensive and FOL-IC3 uses them extensively.

Table 1 also shows for DistAI the number of invariants identi-
fied for the correct invariant set, the total number of refinement
steps required (i.e., the number of times Algorithm 3 is called),
the total number of quantified variables of all domains in the
final template used, and the maximum number of literals used
for each protocol. Most protocols have a maximum number
of literals of 2 or 3, and in two cases 4. This validates our key
assumption that inductive invariants of distributed protocols
should be human-readable and concise. DistAI uses invariant
refinement to address missing cases during sampling for all but
the five simplest protocols, Ricart-Agrawala, hashed sharding,
leader election, lock server, and asynchronous lock server, in
which no refinement is needed as the subsample set is complete
and the correct invariant is learned without refinement.

Runtime breakdown. Table 2 provides a breakdown of the
total runtime using DistAI for each protocol. One can see the

bottleneck is either sampling or refinement, but not enumer-
ation. Sampling is expensive when the argument space for
actions is sparse because DistAI randomly selects arguments
so it can end up trying many arguments that are invalid for
each set of valid arguments, increasing the simulation runtime.
This is the reason why sampling is most expensive for database
chain replication, a protocol that guarantees serializability
and atomicity for distributed databases. A transaction is split
into subtransactions that operate sequentially on data that
is sharded across multiple nodes. For one subtransaction
to commit, it must operate on the correct node and satisfy
a set of constraints (e.g., no uncommited previous writes).
Most randomly selected subtransactions will not satisfy these
constraints. As a result, sampling spends significant time
finding valid arguments because most arguments are invalid.

Sampling is also expensive for learning switch, the only pro-
tocol for which DistAI is slower than I4. One reason is the argu-
ment space for actions is sparse, so it takes a while to find a data
sample,but the other is because the subsample space is too large
to explore. With learning switch, each node maintains a routing
table that matches destination addresses to outbound ports (i.e.,
neighbors), and updates the table upon receiving new packets.
It has a 3-ary single-domain relation route_tc(N1,N2,N3),
which means the routing trace from N2 to N1 includes N3.
Under template ∀N1 N2 N3, this single relation yields 27
predicates (route_tc(N1,N1,N1),route(N1,N1,N2),...). There
are 60 predicates across all relations, meaning that each
subsample is a 60-bit vector, so the candidate subsample space
has size 260. Although valid subsamples are sparse, DistAI
generates 33K subsamples before it cannot find anymore and
terminates. This takes a while.

Refinement can be the dominant factor in performance,
as is the case for chord ring maintenance, database chain
replication, and distributed lock, but Table 2 shows that DistAI
is successful overall at avoiding substantial SMT query costs
as refinement runtime, which includes the cost of IVy checking
the initial candidate invariants, is modest in most cases.

Figure 5 shows how sampling helps reduce the cost of
refinement for the simple consensus protocol. DistAI has prov-
able guarantees to find the correct invariants for any sample
sizes, but if the number of samples is too small (e.g., 100 in
Figure 5), it takes much longer due to many more SMT queries
on refinement. Increasing the number of samples increases
sampling time roughly linearly but decreases refinement time
roughly exponentially. However, once a minimum threshold of
samples is met, it becomes more of an even tradeoff. Sampling
can be faster by obtaining fewer samples, but because more
corner cases are missing, the refinement process takes longer to
“fix” the invariants through monotonic weakening. Conversely,
more samples require more time to simulate the protocol, while
the refinement process will be faster. The default sampling
parameters, discussed in Section 3 and used for all experiments,
resulted in 50K samples for the simple consensus protocol.

We also reran the protocol experiments with DistAI for other

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 417

60

65
sampling
enumeration
refinement

2K 10K 18K 26K 34K 42K 50K
number of samples

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

(s
)

Figure 5: Runtime breakdown of DistAI on simple consensus.

sampling parameters, ranging from MA = 25 to MA = 100,
and SD= 2 to SD= 5. In all cases, DistAI was able to solve
the same 13 protocols with mostly similar runtimes and in
the worst case, three times slower runtimes than the defaults.
Detailed runtimes are omitted due to space constraints.

7 Related Work

Much work [10,14,16,28,31–33] has shown how to verify the
correctness of distributed protocols and distributed systems
given inductive invariants,but they rely on a user or external sys-
tem to provide them. Various approaches have explored learn-
ing invariants for distributed protocols. Dinv [8] identifies and
tracks critical variables in distributed systems, and then infers
likely correct invariants over these variables with Daikon [2],
a data-driven invariant learning tool. The invariants inferred
using Dinv are not guaranteed to be valid and may not be induc-
tive. Phase-PDR∀ [5] showed how to generate invariants for
distributed protocols if users can provide phase structures. In
contrast, DistAI is fully automated and does not require users
to provide any additional knowledge about the protocol.

More recently, approaches have been developed for learning
inductive invariants for distributed protocols. I4 [18] is the
first. Its key idea is to use model checking on a finite protocol
instance to generate candidate invariants. Although generated
invariants by model checking some small instance always gen-
eralized in [18], this is not guaranteed. Our evaluation shows
several protocols for which generalizing fails. I4 does not
support existential quantifiers and also requires a manual con-
cretization step. In contrast, DistAI is fully automated and
provably guaranteed to learn inductive invariants without ex-
istential quantifiers. FOL-IC3 [11] can learn invariants with
existential quantifiers by invoking an SMT solver to generate a
candidate formula that can separate a positive and a negative ex-
ample set. However, its heavy use of an SMT solvers slows its
performance to the point that in practice, it fails to find inductive
invariants for protocols that are efficiently handled by DistAI.

SWISS [9] is concurrent work that searches for invariants by
template enumeration and checking candidate invariants with
SMT queries. It does not do sampling, enumerating strongest
possible invariants, or monotonic refinement, but does
incorporate existential quantifiers in its invariant templates and

uses counterexamples to prune the formula search space. In its
reported evaluation, SWISS finds a correct existentially quan-
tified invariant for Paxos, but fails or takes orders of magnitude
more time than DistAI to find correct invariants for many other
protocols listed in Table 1, despite being multithreaded.

Many automated invariant inference tools have been built
for systems verification. Most of these tools focus on finding
invariants in sequential programs with loops. Traditional meth-
ods use symbolic reasoning to infer invariants [6, 12], while re-
cently data-driven methods using execution traces and/or coun-
terexamples have shown promise. Guess-and-check, Numinv,
and G-CLN recast invariant inference as a curve-fitting task
on execution traces, and learn loop invariants represented by
polynomials of program variables [20,27,29,34]. ICE-DT and
LoopInvGen (PIE) apply decision tree learning and PAC learn-
ing on counterexamples and iteratively refine the invariants [7,
21,22]. FreqHorn exploits both syntax and data in its inference
tool and learns ∀-quantified array invariants [3, 4]. Recently,
data-driven invariant inference has been used in other domains,
such as solving CHC clauses [35] and proving properties on
inductive algebraic data types [19]. None of these methods
consider nondeterminism in concurrent or distributed settings,
thus they cannot be directly applied to distributed protocols.

8 Conclusions

DistAI is a fully automated, data-driven methodology for
learning inductive invariants for distributed protocols. DistAI
uses data samples from protocol simulation to enumerate the
strongest possible set of candidate invariants, then feeds them
to an SMT solver to check if adding them to the safety property
is inductive. If any invariants fail, DistAI refines them by mono-
tonically weakening the invariant set and tries again with the
solver until it eventually succeeds. Starting with small invariant
formulas and strongest possible invariants based on data from
protocol simulation avoids large and frequent SMT queries,
improving performance. Starting with strongest possible in-
variants makes refinement via monotonic weakening possible,
enabling DistAI to provably guarantee that it will learn the cor-
rect inductive invariant set without existential quantifiers in fi-
nite time. Our evaluation shows that DistAI successfully learns
inductive invariants for real distributed protocols and outper-
forms alternative methods, solving almost 50% more protocols
and doing so up to one to two orders of magnitude faster.

Acknowledgments

Manos Kapritsos provided helpful comments on earlier
paper drafts. This work was supported in part by an Amazon
Research Award, a Guggenheim Fellowship, an NDSEG Fel-
lowship, DARPA contract N6600121C4018, an NSF CAREER
award, and NSF grants CNS-2052947 and CCF-1918400.

418 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Joeri de Ruiter and Erik Poll. Protocol state fuzzing
of TLS implementations. In Proceedings of the 24th
USENIX Security Symposium (USENIX Security ’15),
pages 193–206, August 2015.

[2] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen
McCamant, Carlos Pacheco, Matthew S Tschantz, and
Chen Xiao. The Daikon system for dynamic detection
of likely invariants. Science of computer programming,
69(1-3):35–45, December 2007.

[3] Grigory Fedyukovich, Sumanth Prabhu, Kumar Mad-
hukar, and Aarti Gupta. Solving constrained Horn
clauses using syntax and data. In Proceedings of the
18th Conference on Formal Methods in Computer Aided
Design (FMCAD ’18), pages 1–9, October 2018.

[4] Grigory Fedyukovich, Sumanth Prabhu, Kumar
Madhukar, and Aarti Gupta. Quantified invariants
via syntax-guided synthesis. In Proceedings of the
31st International Conference on Computer Aided
Verification (CAV ’19), pages 259–277, July 2019.

[5] Yotam MY Feldman, James R Wilcox, Sharon Shoham,
and Mooly Sagiv. Inferring inductive invariants from
phase structures. In Proceedings of the 31st International
Conference on Computer Aided Verification (CAV ’19),
pages 405–425, July 2019.

[6] Pranav Garg, Christof Löding, P Madhusudan, and
Daniel Neider. Learning universally quantified invari-
ants of linear data structures. In Proceedings of the
25th International Conference on Computer Aided
Verification (CAV ’13), pages 813–829, July 2013.

[7] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan
Roth. Learning invariants using decision trees and
implication counterexamples. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’16),
page 499–512, January 2016.

[8] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh.
Inferring and asserting distributed system invariants. In
Proceedings of the 40th International Conference on
Software Engineering (ICSE ’18), pages 1149–1159,
May 2018.

[9] Travis Hance, Marijn Heule, Ruben Martins, and Bryan
Parno. Finding invariants of distributed systems: It’s a
small (enough) world after all. In Proccedings of the 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’21), pages 115–131, April 2021.

[10] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R
Lorch, Bryan Parno, Michael L Roberts, Srinath Setty,
and Brian Zill. IronFleet: Proving practical distributed
systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15), pages
1–17, October 2015.

[11] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex
Aiken. First-order quantified separators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20), page
703–717, September 2020.

[12] Soonho Kong, Yungbum Jung, Cristina David, Bow-Yaw
Wang, and Kwangkeun Yi. Automatically inferring
quantified loop invariants by algorithmic learning from
simple templates. In Proceedings of the 8th Asian
Symposium on Programming Languages and Systems
(APLAS ’10), pages 328–343, November 2010.

[13] LESLIE LAMPORT. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
1998.

[14] Leslie Lamport. Byzantizing Paxos by refinement. In
Proceedings of International Symposium on Distributed
Computing (DISC ’11), pages 211–224, 2011.

[15] Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[16] Mohsen Lesani, Christian J. Bell, and Adam Chlipala.
Chapar: Certified causally consistent distributed
key-value stores. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’16), page 357–370,
January 2016.

[17] Kuan-Ching Li, Xiaofeng Chen, Hai Jiang, and Elisa
Bertino. Essentials of Blockchain Technology. CRC
Press, 2019.

[18] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A Sakallah.
I4: Incremental inference of inductive invariants for
verification of distributed protocols. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19), pages 370–384, October 2019.

[19] Anders Miltner, Saswat Padhi, Todd Millstein, and
David Walker. Data-driven inference of representation
invariants. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’20), pages 1–15, June 2020.

[20] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef,
and Michael Hicks. Counterexample-guided approach to
finding numerical invariants. In Proceedings of the 11th

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 419

Joint Meeting on Foundations of Software Engineering
(FSE ’17), pages 605–615, August 2017.

[21] Saswat Padhi, Rahul Sharma, and Todd Millstein.
Data-driven precondition inference with learned features.
In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’16), page 42–56, June 2016.

[22] Saswat Padhi, Rahul Sharma, and Todd Millstein. Loop-
invgen: A loop invariant generator based on precondition
inference. arXiv preprint arXiv:1707.02029v4, October
2019.

[23] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon
Shoham. Paxos made EPR: Decidable reasoning about
distributed protocols. In Proceedings of the ACM on
Programming Languages (OOPSLA), volume 1, pages
1–31, October 2017.

[24] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly
Sagiv, and Sharon Shoham. Ivy: Safety verification by
interactive generalization. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16), pages 614–630,
June 2016.

[25] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. AFLNET: A greybox fuzzer for network protocols.
In Proceedings of the IEEE 13th International Confer-
ence on Software Testing, Validation and Verification
(ICST ’20), pages 460–465, October 2020.

[26] Glenn Ricart and Ashok K Agrawala. An optimal
algorithm for mutual exclusion in computer networks.
Communications of the ACM, 24(1):9–17, 1981.

[27] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu,
and Suman Jana. CLN2INV: Learning loop invariants
with continuous logic networks. In Proceedings of 8th
International Conference on Learning Representations
(ICLR ’20), March 2020.

[28] Ilya Sergey, James R Wilcox, and Zachary Tatlock.
Programming and proving with distributed protocols. In
Proceedings of the ACM on Programming Languages
(POPL), volume 2, pages 1–30, December 2018.

[29] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex
Aiken, Percy Liang, and Aditya V Nori. A data driven
approach for algebraic loop invariants. In Proceedings of
the 22nd European Symposium on Programming (ESOP

’13), pages 574–592, March 2013.

[30] Suphannee Sivakorn, George Argyros, Kexin Pei,
Angelos D. Keromytis, and Suman Jana. HVLearn:
Automated black-box analysis of hostname verification
in SSL/TLS implementations. In Proceedings of the

38th IEEE Symposium on Security and Privacy (IEEE
S&P ’17), pages 521–538, May 2017.

[31] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan,
Oded Padon, Mooly Sagiv, Sharon Shoham, James R.
Wilcox, and Doug Woos. Modularity for decidability
of deductive verification with applications to distributed
systems. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’18), page 662–677, June 2018.

[32] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary
Tatlock, Xi Wang, Michael D Ernst, and Thomas
Anderson. Verdi: A framework for implementing and
formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15), pages
357–368, June 2015.

[33] Doug Woos, James R Wilcox, Steve Anton, Zachary
Tatlock, Michael D Ernst, and Thomas Anderson.
Planning for change in a formal verification of the Raft
consensus protocol. In Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs
(CCP ’16), pages 154–165, January 2016.

[34] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana,
and Ronghui Gu. Learning nonlinear loop invariants
with gated continuous logic networks. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’20), pages
106–120, June 2020.

[35] He Zhu, Stephen Magill, and Suresh Jagannathan. A
data-driven CHC solver. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’18), pages 707–721,
June 2018.

A Artifact Appendix

Abstract
An accompanying artifact includes all DistAI source code as
well a docker image. Instructions are provided to reproduce
the results in Table 1, Table 2, and Figure 5. The artifact can
also be used to learn inductive invariants for other distributed
protocols written in IVy.

Scope
The docker image can reproduce Table 1, Table 2, and Figure 5.
The file https://github.com/VeriGu/DistAI/blob/
master/docker_usage.md provides instructions to set up
and use the docker. Alternatively, one can build DistAI from
source, and reproduce the DistAI results in Table 1, Table 2,

420 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/VeriGu/DistAI/blob/master/docker_usage.md
https://github.com/VeriGu/DistAI/blob/master/docker_usage.md

and Figure 5. The README file (https://github.com/
VeriGu/DistAI/blob/master/README.md) describes how
to use DistAI to learn inductive invariants for other distributed
protocols written in IVy.

Contents
The README file describes the structure of the artifact. The
src-py and src-c directories include the Python portion and
C++ portion of the source code. The benchmarks directory
includes IVy specifications for the 14 protocols used in the
evaluation.

Hosting
The artifact is hosted on GitHub in the repository
https://github.com/VeriGu/DistAI. Future updates
will be pushed to the master branch, and we encourage you
to use the latest version available.

Requirements
The docker image has all dependencies installed. The
installation guide (https://github.com/VeriGu/DistAI/
blob/master/install.md) provides instructions to build
DistAI from source. Note that IVy only works on Python 2,
while the source code of DistAI is written in Python 3 and
C++. The artifact has been tested on Ubuntu 20.04.1 LTS with
ms-ivy 1.7.0, Python 2.7.18, and Python 3.8.5.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 421

https://github.com/VeriGu/DistAI/blob/master/README.md
https://github.com/VeriGu/DistAI/blob/master/README.md
https://github.com/VeriGu/DistAI
https://github.com/VeriGu/DistAI/blob/master/install.md
https://github.com/VeriGu/DistAI/blob/master/install.md

GoJournal: a verified, concurrent, crash-safe journaling system
Tej Chajed
MIT CSAIL

Joseph Tassarotti
Boston College

Mark Theng
MIT CSAIL

Ralf Jung
MPI-SWS

M. Frans Kaashoek
MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

Abstract
The main contribution of this paper is GoJournal, a verified,
concurrent journaling system that provides atomicity for stor-
age applications, together with Perennial 2.0, a framework
for formally specifying and verifying concurrent crash-safe
systems. GoJournal’s goal is to bring the advantages of jour-
naling for code to specs and proofs. Perennial 2.0 makes
this possible by introducing several techniques to formalize
GoJournal’s specification and to manage the complexity in
the proof of GoJournal’s implementation. Lifting predicates
and crash framing make the specification easy to use for de-
velopers, and logically atomic crash specifications allow for
modular reasoning in GoJournal, making the proof tractable
despite complex concurrency and crash interleavings.

GoJournal is implemented in Go, and Perennial is imple-
mented in the Coq proof assistant. While verifying GoJournal,
we found one serious concurrency bug, even though GoJour-
nal has many unit tests. We built a functional NFSv3 server,
called GoNFS, to use GoJournal. Performance experiments
show that GoNFS provides similar performance (e.g., at least
90% throughput across several benchmarks on an NVMe disk)
to Linux’s NFS server exporting an ext4 file system, suggest-
ing that GoJournal is a competitive journaling system. We
also verified a simple NFS server using GoJournal’s specs,
which confirms that they are helpful for application verifica-
tion: a significant part of the proof doesn’t have to consider
concurrency and crashes.

1 Introduction
Storage systems, such as file systems, need to be carefully
structured to not lose persistent user data, even in the face of
application and whole-system crashes. They often achieve
this crash safety property by delegating writing to storage
to a journaling system, which exposes an API for executing
an operation such that its writes appear on disk atomically.
The journaling system simplifies implementing the storage
system’s logic: to atomically modify a set of objects, the file
system simply writes to them one at a time within a single
journal operation. The result is that each storage operation is
atomic with respect to crashes.

While a journaling system exposes a simple API, its imple-
mentation must address crash safety and also be concurrent for
good performance. Maintaining correctness in the presence of
both concurrency and crashes is challenging. For example, in

pursuit of performance, journaling systems often avoid holding
locks while performing I/O, but reasoning about the correct-
ness of such optimizations requires considering what happens
if one thread’s disk reads interleave with another thread’s disk
writes, and what happens when the system crashes anywhere
during that interleaving.

This paper presents GoJournal, a Go package that provides
the first formally verified concurrent journaling system. To ver-
ify GoJournal, we developed Perennial 2.0, an extension to the
Perennial [5] framework with several features designed to en-
able modular reasoning about concurrent, crash-safe systems.
In this work we set a goal of giving GoJournal a specification
that reflects the simplicity of using a journal for crash atomic-
ity. GoJournal can be used by an application like a file system
or a key-value store. As long as the application follows a lock-
ing discipline for its on-disk state, such as per-file locks for a
file system, proving the correctness and crash-safety of that
implementation on top of GoJournal should involve largely
sequential reasoning, despite the fact that the application has
multiple concurrent threads and can crash at any time.

Realizing this goal raises two challenges: specifying Go-
Journal in a way that makes application reasoning sequential,
and proving GoJournal’s implementation correct. The speci-
fication makes reasoning about an operation sequential with
a lifting interface where the proof has an abstraction of a
“checked out” private fragment of the disk that the operation
appears to synchronously modify. At commit time the private
fragment is “checked in”, at which point it is durable and
can be exposed to other threads. The journal guarantees the
operation is atomic by delaying all writes to commit time,
so the developer should not need to explicitly reason about
crash safety until commit time. Perennial 2.0 supports a new
technique called crash framing to formalize the intuition that
during an operation the developer need not explicitly consider
crash safety.

The second challenge lies in proving GoJournal itself. This
is difficult because we desire modularity to make the system’s
proof tractable, which requires giving suitable specifications
to the internal interfaces of the system. While the user-visible
interface of GoJournal is simple, the internal interfaces of a
high-performance journaling system are hard to specify and fit
together. To address this challenge, Perennial 2.0 contributes
logically atomic crash specifications which enable natural
specifications of system layers in terms of a transition system
with atomic transitions for the public methods. These specifi-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 423

cations include a crash transition to describe what happens to
the state of a layer during a crash. Such specifications make
it possible to build upper layers of the system on top without
worrying about implementation details of how atomic transi-
tions are achieved. This separation of concerns lines up with
the modularity in the implementation; the proof layers divide
up the reasoning along the same lines that the code divides up
functionality among Go packages.

To test the performance and completeness of GoJournal,
we built GoNFS, a functional (but unverified) NFSv3 server
that can be mounted through the Linux NFS client. GoNFS
imports GoJournal and uses it to achieve crash consistency
for NFS operations. We focus on NFSv3 because it is widely
used in practice, its performance matters for applications, and
it has a crash-safety and correctness specification in the form
of RFC 1813 [2]. The crash-safety properties are advanced;
for example, the protocol supports unstable writes which let
the implementation delay flushing them to disk.

On a combination of microbenchmarks and a software-
development workload, GoNFS achieves at least 90% of the
throughput of Linux’s in-kernel NFS server exporting ext4
running on either a RAM disk or fast NVMe storage. On
slower SSD storage without using unstable writes GoNFS
gets 20% of Linux’s throughput due to inefficient I/O. GoJour-
nal’s concurrency is crucial to performance: the throughput
of GoNFS scales with the number of clients, but if GoJournal
is modified to execute sequentially (as in previous verified
storage systems), even with 20 clients GoNFS achieves only
double the throughput of a single client.

To demonstrate that GoJournal’s specifications enable ef-
fective verification of client applications, we implemented and
verified a simplified NFS server, which we call SimpleNFS,
covering the core operations, such as READ, WRITE, GETATTR,
and SETATTR (which can shrink and grow a file). By using
GoJournal’s specifications, the proof for SimpleNFS largely
involves crash-free reasoning (only 44 lines of code, out of a
total of 462, require explicit reasoning about crashes). This
translates into a lower proof overhead: SimpleNFS requires
3,749 lines of proof for 462 lines of Go code. GoJournal itself
requires 25,797 lines of proof for 1,345 lines of Go code.

The contributions of this paper are (1) GoJournal, a con-
current journaling system with a machine-checked proof of
correctness and crash-safety; (2) the Perennial 2.0 framework,
with extensions to the original Perennial framework that en-
able modularity and crash-free reasoning on top of GoJournal;
and (3) SimpleNFS, a verified core of an NFSv3 file server
built on top of GoJournal.

Although GoJournal is advanced enough to support a high-
performance NFS server, it has some limitations. GoJournal’s
internals (code and proof) support deferred durability, but
for simplicity, GoJournal’s top-level specification requires
applications to immediately flush committed journal opera-
tions, which is sufficient to prove SimpleNFS. GoJournal is
also less general than JBD2 (e.g., GoJournal does not sup-

port floating commit blocks), and less general than database
transaction systems (e.g., GoJournal does not support undoing
journaled operations). While GoJournal provides atomic up-
dates for crash consistency, it does not implement automatic
concurrency control. Objects accessed by a journal operation
cannot be concurrently accessed by another thread. GoJour-
nal provides a verified library for locking objects tracked by
the journal, which clients can use to implement concurrency
control.

2 Related work
To the best of our knowledge, GoJournal is the first verified
concurrent, crash-safe journaling system. The verification
of GoJournal builds on a large body of previous work, as
described in the rest of this section.

2.1 Perennial 2.0 vs Perennial 1.0
The verification approach we take is based on a new version of
our earlier Perennial [5] framework, so we draw a contrast be-
tween the two here. The new implementation is conceptually
similar in that it supports reasoning about concurrency and
crash-safety, it is implemented on top of the Iris [17, 18] con-
currency verification system, and it uses Goose [6] to enable
verification of Go programs by translating them into a model
in Perennial 2.0. However, to make verification of GoJournal
feasible, we had to re-write many core parts of the framework.
To clarify which framework is being referenced we will write
Perennial 1.0 for the original framework and Perennial 2.0
for the new one in this section, in order to highlight the new
features Perennial 2.0 supports. The rest of the paper generally
refers only to Perennial 2.0.

Some of Perennial 2.0’s features are needed to support the
GoJournal top-level specification and enable verification on
top of this interface. The reason this problem is complicated
is because the journal does not make operations automatically
atomic but requires the caller to correctly manage ownership,
and Perennial 1.0’s refinement specifications do not give a
good way to talk about ownership. The top-level specification
of GoJournal relies on crash framing (§5.5) and crash-aware
locks (§5.4) to enable application proofs that reason about
ownership of durable data.

Perennial 2.0 also scales to a larger system than the mail
server verified in Perennial 1.0. One of the challenges with the
larger system is that it has many internal layers that need their
own specifications, so that the proof can be carried out modu-
larly. Normally a separation logic or refinement-based specifi-
cation would be sufficient, but we need internal specifications
that capture the crash and concurrent behavior of each internal
library. To that end Perennial 2.0 incorporates a new specifica-
tion style which adds crash atomicity to the logically atomic
specification styles developed in earlier work [10, 15, 27].
Modularity in the proof was necessary to scale verification to
all of GoJournal’s performance optimizations and concurrency.

424 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Method Description Spec

func Begin() *Op Start operation §5.2
func (*Op) ReadBuf(addr Addr, sz uint64) *Buf Read a buffer §5.3
func (*Buf) SetDirty() Mark a buffer as modified §5.3
func (*Op) OverWrite(a Addr, sz uint64, data []byte) Write without reading §5.3
func (*Op) Commit(wait bool) bool Commit by appending to in-memory log. §5.6

If wait=true, also wait until changes are on disk.
func Flush() bool Flush in-memory log

func (*Lockmap) Acquire(i uint64) Acquire ith lock §5.4
func (*Lockmap) Release(i uint64) Release ith lock §5.4

Figure 1: GoJournal interface and API for lockmap. Not shown are auxiliary interfaces for initialization; checking operation size; etc.

At the same time, GoJournal’s specification allows the proof
of SimpleNFS to mostly avoid reasoning about crashes.

2.2 Related verification frameworks
Crash-safe systems. Any crash-safe system must reason
about the possible states after a crash, and several prior works
have formalized this in different ways for sequential crash-safe
systems. FSCQ [7, 8] uses Crash Hoare Logic (CHL) to spec-
ify crash behavior through a crash condition, which describes
the state of a system if a crash happens during execution of
a function. Alternatively, a number of systems verify crash
safety using refinement reasoning [4, 12, 14, 26], but none
support the combination of concurrency and crash-safety.

Although they are not concurrent, some of these systems ad-
dress other aspects of performant storage systems that are not
found in GoJournal. DFSCQ [7] verifies a high-performance
file system built on top of a logging system with asynchronous
disks and log-bypass writes, which are challenging optimiza-
tions that GoJournal does not support. VeriBetrKV [14] veri-
fies a key-value store based on Bε trees, a data structure that
also underlies BetrFS [16]. GoJournal and SimpleNFS use
simple data structures; the challenge lies in accounting for
concurrent accesses.

Concurrent systems. In addition to specifying behavior at
intermediate crash points, Perennial 2.0’s specifications de-
scribe the atomic commit points of concurrent operations. A
range of verification techniques have been used to address this
kind of challenge in concurrent systems. AtomFS [29] uses
a framework called CRL-H (concurrent relational logic with
helpers) to verify a concurrent in-memory file system imple-
mented in C. Refinement-based systems such as CSPEC [3],
Armada [23], and Concurrent CertiKOS [13] typically prove
that a function implements an atomic operation at a more
abstract layer. However, in GoJournal, many internal APIs
provide operations that are only atomic if the caller owns some
data. This kind of conditional atomicity is easy to express in
Perennial 2.0 using separation logic, but hard to express as a
precondition in a transition system.

Concurrent, crash-safe reasoning. Program logics other
than Perennial have been developed for formal reasoning about

concurrent, crash-safe systems. Fault-Tolerant Concurrent
Separation Logic (FTCSL) [24] extends the Views [11] con-
currency logic to incorporate crash-safety. POG [25] is a
program logic for reasoning about the interaction of x86-TSO
weak-memory consistency and non-volatile memory. Neither
logic has a mechanism for modular proofs of layers, which
we found essential to scale verification to a system of GoJour-
nal’s complexity. Both are restricted to pen-and-paper proofs,
whereas both Perennial 1.0 and 2.0 have machine-checked
proofs.

A specification called the Push/Pull model of transac-
tions [19] is similar to the lifting technique in the journal
system’s specification (§5.2) — the core problem addressed
is that a journal operation atomically modifies a small num-
ber of objects, but other objects can change between the start
of the operation and when it commits. The Push/Pull model
also discusses reasoning on top of the specification, using
Lipton’s reduction [22] rather than separation-logic ownership
to handle concurrency. However that work is about on-paper
specifications and proofs, while we also prove an implementa-
tion meets our specification and proved SimpleNFS on top.

3 System design
The verified artifact of this paper is GoJournal, a Go pack-
age that gives clients an abstraction of a disk with crash-safe
writes. This section aims to convey what the journal is, why
its implementation deserves verification, and how systems can
be built using it. First, §3.1 explains how a developer uses
GoJournal to write a concurrent storage system, informally
laying out what the package’s requirements and guarantees
are. Then, §3.2 explains how the journal is implemented.

3.1 Programming with GoJournal
Developers use the journal to turn several storage operations
into an atomic journal operation that commits to disk using the
GoJournal interface listed in Figure 1. Begin starts a journal
operation, returning a *Op object, which keeps track of the
objects read or written in the operation. An object is addressed
by the Addr struct, which names a block address and bit offset
within the block. SimpleNFS has objects for on-disk blocks

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 425

1 func NFS3_WRITE(args WRITE3args) WRITE3res {
2 inum := fh2ino(args.File)
3 if !validInum(inum) {
4 return WRITE3res{Status: NFS3ERR_INVAL}
5 }
6 inode_locks.Acquire(inum)
7 reply := NFS3_WRITE_locked(args, inum)
8 inode_locks.Release(inum)
9 return reply

10 }
11

12 func NFS3_WRITE_locked(args WRITE3args,
13 inum Inum) (reply WRITE3res) {
14 op := Begin()
15 if !NFS3_WRITE_op(op, args, inum, &reply) {
16 return
17 }
18 if txn.Commit(true) {
19 reply.Status = NFS3_OK
20 } else {
21 reply.Status = NFS3ERR_SERVERFAULT
22 }
23 return
24 }

Figure 2: RPC handler for NFS WRITE showing locking and committing a
journal operation.

and on-disk inodes, while the complete NFS server also uses
objects for individual allocator bits.
ReadBuf reads an object into an in-memory *Buf struct,

returning the latest value of the object within this journal op-
eration. If the operation hasn’t read the object yet, it reads
the latest value from disk (or from a recently committed op-
eration). A journal operation can modify the returned buffer
in place and then mark the buffer as dirty with SetDirty. To
overwrite an object without reading it the application can call
OverWrite. When the operation is fully prepared, the appli-
cation commits it atomically using Commit; setting wait=true
additionally forces the journal to flush the results to disk. In
either case the writes in the operation appear together on disk
or not at all even if the system crashes. The application can
also call Flush to make the journal persist several committed
but unstable operations to disk.

While GoJournal provides crash-safe atomic updates to
disk with this interface, it is the developer’s job to provide
concurrency control to prevent concurrent operations from
manipulating the same on-disk objects. In a file system a
common strategy for concurrency control is to use a per-file
lock that protects both the file metadata and any data blocks
associated with the file, and this strategy is the one used by
GoNFS and SimpleNFS. To make it easier for a file system to
maintain these locks, GoJournal includes a lockmap library
that behaves as if it were a large array of locks but with a
more memory-efficient implementation; the Guava Striped
documentation describes the idea well [1].

Figure 2 and Figure 3 show how SimpleNFS uses the Go-

1 func NFS3_WRITE_op(op *Op, args WRITE3args,
2 inum Inum, reply *WRITE3res) bool {
3 ip := ReadInode(op, inum)
4 count, ok := ip.Write(op, args.Offset,
5 args.Count, args.Data)
6 ... // set count and status
7 }
8

9 func (ip *Inode) Write(op *Op, off uint64,
10 count uint64, data []byte) (uint64, bool) {
11 if count != uint64(len(data)) ||
12 util.SumOverflows(off, count) ||
13 off+count > disk.BlockSize ||
14 off > ip.Size {
15 return 0, false
16 }
17

18 buf := op.ReadBuf(block2addr(ip.Data),
19 NBITBLOCK)
20 copy(buf.Data[off:], data)
21 buf.SetDirty()
22 if off+count > ip.Size {
23 ip.Size = off + count
24 ip.WriteInode(op)
25 }
26 return count, true
27 }
28

29 func (ip *Inode) WriteInode(op *Op) {
30 op.OverWrite(inum2Addr(ip.Inum),
31 INODESZ*8, ip.Encode())
32 }

Figure 3: NFS3_WRITE_op prepares a journal operation op for the WRITE RPC.

Journal API and the lockmap. The server runs each NFS
request in a separate Go thread running a single journal op-
eration. Figure 2 shows the RPC handler for an NFS WRITE
RPC, in particular acquiring a per-inode lock (lines 6 and 8)
and preparing an operation starting at line 14.

The handler is split into several nested functions for ease
of verification. Figure 3 shows how the WRITE RPC’s journal
operation of type *Op is prepared. For example, lines 18–21
read and modify the block data, while line 30 modifies the
inode. The combination of per-file locking and using the
journal for disk access frees the developer from thinking about
either concurrency or crashes during the entire NFS3_WRITE_op
code, which we will show is also the case in the proof using
Perennial’s specification techniques in §5.

For ease of explanation, SimpleNFS has the limitation that
each file consists of only one block, but note that WRITE
modifies two on-disk objects: the inode and the block owned
by the file; the two together must be written atomically, which
the proof shows using the GoJournal specification. Also note
that there is no explicit locking of blocks; ownership of the
data block is implicit because a block can belong to only one
file.

426 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Layer Description

JRNL In-memory object operations
OBJ Journaling sub-block writes
WAL Whole-block write-ahead logging
CIRCULAR Circular log structure

Figure 4: GoJournal layers.

3.2 GoJournal implementation
The journal is structured into several layers, as shown in Fig-
ure 4. At a high level, the system is split into two halves. The
low-level half is a write-ahead log that behaves like a disk
with an atomic multiwrite operation, which appears to update
multiple disk blocks simultaneously even if the system crashes.
The upper half, called the object system, allows callers to per-
form read and write operations on objects smaller than a block
(“sub-block” objects). Writes are buffered in memory until
the caller chooses to commit, at which point a multiwrite to
the write-ahead log commits the writes to disk.

The write-ahead log is implemented by organizing the disk
into a small, fixed-size circular buffer and a remaining data
region. Data is first atomically logged to the circular buffer
and then eventually installed to the data region, to free space
in the circular buffer. Reads first go through the circular buffer
(which is cached for efficiency) and then access the data re-
gion.

The object system maintains a list of buffers of data read
or written by each journal operation. Reads first check the
write-ahead log’s cache since they must observe committed
operations. To commit, the object layer gathers all the dirty
buffers and submits them as a multiwrite to the write-ahead
log. To allow reading and writing objects that are smaller than
a block, the object layer assembles these into block writes by
doing a read-modify-write sequence.

Because disk writes are slow, for good performance the
journal executes many tasks in parallel. Committing new jour-
nal operations in memory, logging operations from memory
to disk, waiting for operations to be made durable, and in-
stalling logged writes all happen concurrently. Concurrency
ensures that in-memory operations need not wait for any in-
flight disk reads or writes, and that many disk reads and writes
can happen at the same time. Finally, to reduce the number of
disk writes, the write-ahead log implements two optimizations.
Multiwrites are combined and written together (“group com-
mit”), and if they update the same disk block multiple times,
only the most recent update of that disk block is written to the
log (“absorption”). Concurrency makes these optimizations
useful even for synchronous operations, which can be commit-
ted together and absorbed if they are issued concurrently.

Concurrency in the write-ahead log complicates not just its
internals but also reasoning about the multiwrite abstraction
built on top. One difficulty is that reading requires checking
the log’s in-memory cache and then falling back to the disk, but
the disk read happens without a lock. If a multiwrite commits

Iris + Coq
Perennial 2.0Go

GoJournal

GoNFS SimpleNFS

Toy Client

GoJournal Spec

SimpleNFS Spec

Example Spec

Proof

Proof

Proof

a.out

go build

Goose

OK?

Figure 5: Overview of Perennial, GoJournal, SimpleNFS, and GoNFS.

after the read misses in the cache, then the disk read will not
observe the latest value. The write-ahead log specification
specifies that reading the installed value might return an old
view of the disk, and the object layer can handle this weak
specification with an invariant that guarantees the object being
read has not been modified since that old view.

The object layer implements sub-block access on top of the
write-ahead log’s block-level multiwrites. Objects accessed
by an operation must be locked, so supporting fine-grained
access is necessary to allow operations to run concurrently
even if they happen to access the same disk block. For exam-
ple, a file system might pack inodes into a block, and locking
an inode should not prevent concurrent operations for other
inodes in the same block. The object-layer implementation is
able to execute reads and writes during an operation without
any additional locks, but something more is needed to commit.
Imagine a situation where between reading some disk block
and writing it an unrelated object was modified in the same
block; committing the modified block would overwrite the con-
current modification, losing data. The code addresses this with
a global commit lock that prevents concurrent modifications
while reading the blocks to be written.

4 Verification overview
Figure 5 gives an overview of how GoJournal and systems
building on it are verified using Perennial. On the left of the
figure is the executable code, which is written in Go. On top of
GoJournal, we have implemented two NFS servers to evaluate
GoJournal along different dimensions. GoNFS is a functional
NFS server that is sufficient to run real applications, which
we use to assess GoJournal’s scalability and performance.
Meanwhile, SimpleNFS is a verified, core subset of GoNFS’s
functionality, which evaluates the usability of GoJournal’s
specs for building verified systems on top of it.

On the right side of the figure is the verification stack. The
verification builds on the Perennial 2.0 framework, which is
itself implemented in the Iris framework in the Coq proof as-
sistant. To reason about executable code, a tool called Goose
translates a Go implementation into a model that we can prove
specifications about in Perennial. Perennial provides a model
of execution for Go code that incorporates crash-safety and

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 427

concurrency, which includes a model of the disk (with atomic,
synchronous reads and writes of 4KB sectors) as well as a
model of crashes and recovery (crashes at arbitrary points dur-
ing execution, and jumping to specific boot code for recovery
after a crash).

GoJournal’s top-level specification describes its API in
terms of an extension of concurrent separation logic, with
pre-, post-, and crash conditions. These specifications capture
the behavior of individual Go functions: if the function is
run in a state satisfying its precondition, then the final state
will satisfy the postcondition, and if the system crashes the
state will satisfy the crash condition. The specification for the
journaling API is described in detail in §5. We demonstrate
the usefulness of this specification by proving correctness of
the SimpleNFS server using logically atomic crash specifi-
cations (§6.2). The top-level theorem for SimpleNFS states
that its RPCs atomically follow transitions of a state machine
formalizing the NFSv3 protocol (based on RFC 1813 [2]).

As described in FSCQ and Argosy [4, 8], crash conditions
can be used to reason about recovery procedures, even crashes
during recovery. A recovery procedure can safely be re-run af-
ter a crash if its specification is idempotent: its crash condition
should imply its precondition. As an end-to-end check of the
crash specs in SimpleNFS and GoJournal, showing they sup-
port recovery correctly, we prove an idempotent specification
for a toy example client on top of SimpleNFS, establishing
that it can successfully execute even if SimpleNFS crashes
and recovers an arbitrary number of times.

The proof of GoJournal’s specification depends on a number
of assumptions. We assume that the disk writes 4KB blocks
atomically, even on crash, and assume that the code executes
according to the Perennial model generated by Goose. The
specification relies on the caller to provide concurrency con-
trol; the proof of SimpleNFS checks that locking is performed
correctly, but GoNFS is unverified and we trust that its con-
currency control is correct in order to make operations atomic
(though this does not say they correctly implement the NFS
specification).

5 Specifying GoJournal
The goal of GoJournal’s specification is to support convenient
reasoning about atomic operations, like the NFS WRITE im-
plementation in Figure 2 and Figure 3. In this section we
walk through how the specification guarantees atomicity for
the caller without forcing the caller to do much application-
specific reasoning about concurrency or crashes.

The key to this specification is tracking resources, like the
disk blocks making up a file, as they flow through the steps of
the proof. We start by reviewing how separation logics like
Perennial represent these resources, and how specifications
in the logic track logical ownership of resources (§5.1). The
specification for GoJournal introduces resources that distin-
guish between a journal operation’s local view of an object
and the durable, on-disk representation; obtaining either re-

source requires the caller to use correct synchronization, as
required by the journal’s implementation. Lifting provides a
way to translate a locked object from its on-disk view to a
local view within the operation (§5.2). While preparing a jour-
nal operation, reads and writes modify the local view (§5.3).
Finally, committing an operation writes its updates to disk, so
the specification asserts that the local view becomes a view
over durable state.

To take full advantage of the durable and operation-local
views of journal objects, the proof of WRITE uses two new
techniques introduced by Perennial 2.0: crash-aware lock-
ing (§5.4) and crash framing (§5.5). With these techniques, the
proof of NFS3_WRITE_op uses entirely sequential reasoning for
preparing the journal operation, even though concurrent opera-
tions might write to disk and its disk writes are buffered rather
than synchronous. Finally, §5.7 summarizes how the proof
techniques combine to prove correctness and crash-safety for
the NFS WRITE example.

5.1 File representation
First, in both designing the code and writing the proof, the
NFS server must establish a disk layout to arrange its data in
terms of disk objects. The disk layout is expressed using a
separation-logic representation invariant, a predicate which
connects the logical (specification-level) contents of files to
the objects (inodes and blocks) that encode those files.

Representation invariants over the state of the journal use
a “points-to predicate” a 7→ o, which serves two purposes: it
asserts that the address a (of type Addr) contains an object
o (which is represented by the *Buf type in the API), and it
represents exclusive ownership over the address a. When a
thread has a 7→ o in its precondition, ownership allows the
proof to assume that the value at address a does not change
until the thread gives up ownership, and that it will not be
read by other threads. Locks help threads transfer ownership
so a thread only retains exclusive ownership during a critical
section.

The SimpleNFS proof connects each file to its representa-
tion with the following representation invariant:

file_rep(i,data)≜ ∃meta,∃blk,

i 7→ meta∗meta.blkno 7→ blk∧
meta.size= length(data)∧prefix(data,blk)

Informally the representation invariant says the file i with
logical contents data is represented by some metadata meta
stored at the inode number i and a data block at meta.blkno. It
then says the file’s bytes are a meta.size-length prefix of the
data block.

This definition uses the separating conjunction P∗Q (pro-
nounced “P and separately Q”), which says that two predicates
hold over disjoint state. For example, this asserts the inode and
its data block are stored separately. To initialize the system the
caller must prove that the file_rep predicates hold separately

428 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

for each file, that is, file_rep(1,data1)∗file_rep(2,data2)∗
· · · . Here the separating conjunction asserts files are repre-
sented disjointly, so that when a thread modifies one file it is
guaranteed not to affect data in other files.

5.2 Lifting
The key idea of GoJournal’s specification is to consider two
view of the disk: a conceptual in-memory view that a buffered
journal operation observes, as well as an on-disk view that re-
flects what would be on disk after a crash. Parts of both views
are constantly changing as other threads commit operations
concurrently, so we use separation logic to define a local view
that contains only objects locked by and involved in a journal
operation. Because the journal operation logically owns these
objects, the caller can use sequential reasoning—disk objects
have the same value throughout—and can commit all of the
objects written in the operation at the end without fear of inter-
fering with concurrent journal operations. The specification
makes this informal reasoning concrete using lifting, which
we use to refer to this strategy of transferring ownership to
and from the on-going operation.

To do anything with the journal, a thread must first Begin
an atomic operation:

{True}
Begin()

{ret op, is_op(op)∗durable_pred(op,True)}

The specification above is a Hoare triple for the Begin()
function. It says that executing Begin() starting with its pre-
condition (in this case True) will run without errors and if
it terminates it will return op along with the postcondition,
namely is_op(op)∗durable_pred(op,True). The is_op part
of the post-condition simply says that op is a valid *Op object.
The durable_pred(op,True) clause is what tracks the on-disk
data “underneath” a journal operation, which would be left
behind if the operation aborted; since the operation starts out
with an empty local view, it starts out with no on-disk footprint,
written as True.

The different views of a journal operation are tracked using
ghost state in Iris. Ghost state is separate from the physical
state of the program—the contents of memory and disk—and
is only manipulated by the proof. The journaling system’s
proof introduces ghost state for durable state of the system,
including an a 7→d o predicate for ownership over individual
objects. Note that an object is expressed through ghost state
because the block holding the object might be located in the
on-disk log or in the data region, and ownership of an object
says nothing about other objects in the same disk block.

The proof also introduces a similar a 7→op o predicate for
the local view of operation op, and it is this ownership that is
needed for reads and writes. A caller obtains these predicates
with a logical operation we call lifting that converts ownership
of a 7→d o into a 7→op o, granting the ability to read and write.

To make it easier to work with lifting, the specification
allows lifting an entire predicate P and transforms all of its
points-to facts simultaneously, which we denote this paper
denotes by switching subscripts. For example, we re-use the
definition file_rep from §5.1 for both a file laid out on disk
and a file as owned by a journal operation, which we denote
with file_repd and file_repop respectively. The specifica-
tion for lifting a generic predicate P is:

{Pd ∗durable_pred(op,Qd)}
noop{

Pop ∗durable_pred(op,Pd ∗Qd)
}

Since lifting is purely logical (it only modifies ghost state),
we write it as a Hoare triple for a no-op, much like how
Dafny and F⋆ lemmas are simply methods with pre- and post-
conditions but no code [21: §12.2.3].1 The outcome of lifting
is to expand the memory covered by the journal operation to
incorporate Pd . Observe that durable_pred is expanded to
“snapshot” Pd , which tracks that if the operation were to abort
or crash, the durable Pd that we started with would still hold.
The on-disk values do not change over the course of a buffered
journal operation (as expected, since these are in-memory
writes). The key part of the postcondition, however, is Pop:
the a 7→op o predicates within Pop (e.g., the i 7→op meta within
file_repop(i,data)) give the caller the right to read and write
objects from within the operation, as we will see in §5.3.

5.3 Reads and writes

The specification for OverWrite describes the effect of writing
to the local memory of a buffered journal operation:

{
is_op(op)∗a 7→op o∗buf_obj(bu f ,o′)

}
op.OverWrite(a,bu f){
is_op(op)∗a 7→op o′

}
The precondition includes buf_obj(bu f ,o′) to say that the

in-memory buffer bu f encodes the object to be written o′. The
is_op predicate is both required and returned by the specifi-
cation, which reflects the fact that OverWrite operates on the
in-memory state covered by this predicate.

The specification for ReadBuf is more subtle. ReadBuf re-
turns a buffer that the caller is allowed to modify in-place,
which has the side-effect of updating the in-memory state of
the ongoing journal operation, which will in turn be committed
by Commit. Figure 3 shows an example, where lines 18–20
modify a read buffer in-place. The specification captures this

1In case the reader is already familiar with Iris, these Hoare triples repre-
sent what is usually called a “view shift” in Iris.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 429

behavior as follows:{
is_op(op)∗a 7→op o

}
op.ReadBuf(a)ret bu f ,

buf_obj(buf ,o)∗
(∀o′,buf_obj(buf ,o′)−∗
is_op(op)∗a 7→op o′)

This states that, when ReadBuf finishes, it returns a buffer

buf and two resources: buf_obj(buf ,o) says the buffer has the
old object o, while the second is a separating implication or
wand −∗. The wand says that if the caller modifies the buffer
to produce buf_obj(buf ,o′) for some other data o′ (or leaves
it unchanged, picking o′ = o), it can get back the is_op(op)
predicate, along with a a 7→op o′ fact indicating that a has been
modified in-place to the new data o′.2 The wand is just another
resource that the caller can invoke at the right time in the proof
(e.g., after the call to SetDirty in Figure 3 on line 21).

5.4 Crash-aware locking
As seen in Figure 2, the NFS server acquires a per-file lock
(within the lockmap) to prevent concurrent access to the same
disk object. Each lock logically protects both the file metadata
stored in its inode and the data block pointed to by the inode.
The usual specification for a lock in concurrent separation
logic says that it protects some lock invariant, guaranteeing
that this invariant holds upon acquiring the lock and conversely
obliging the caller to prove the lock invariant to release. This
invariant may claim ownership of resources which are then
owned by clients during their critical section. The file i’s lock
in SimpleNFS protects roughly file_repd(i,data), where we
write d to indicate the file is laid out on disk; we make the
invariant more precise later when we connect it to crash safety.

This lock specification, however, is insufficient to prove that
the SimpleNFS server maintains all relevant invariants when
the system crashes. The specification makes no guarantees
about the protected data during a critical section—however, a
crash while the lock is held exposes any durable data that was
protected by the lock. The lock specification fails to express
that the lock holder should keep the durable data in a state that
can be recovered from after a crash.

To solve this problem, Perennial 2.0 contributes a new speci-
fication for locks called crash-aware lock specifications that is
useful for protecting durable data like file_repd . We proved
this specification both for ordinary locks (*sync.Mutex in Go)
and for the stripes in the lockmap, but here we present just
the lockmap version. With this specification, the proof asso-
ciates not just a lock invariant but also a crash obligation Ic(i)
to each file. Like the ordinary lock specification, acquiring
the lock gives the caller access to the lock invariant I(i), but
unlike that spec, this specification also obliges the caller to
prove the crash obligation Ic(i) at every intermediate step. The

2To simplify the presentation, we have omitted the obligation that forces
the caller to call buf .SetDirty() before getting back is_op.

proof enforces this using crash specifications: {P} e {Q}{Qc}
is like a Hoare triple but it has an extra predicate Qc, the crash
condition, describing what holds if the system crashes during
e’s execution. When the caller wants to prove something about
code that acquires a lock using the crash-aware specification,
it must do so with Ic(i) in its crash condition for the critical
section:

{P∗ I(i)} f() {Q∗ I(i)}{Ic(i)}
⊢ {P} Acquire(i); f(); Release(i) {Q}

In exchange for the extra work of having to prove a crash
specification, the crash-aware lock spec guarantees that the
lock’s crash obligation holds at crash time, ready to be used
by new threads spawned following the crash.

One final subtlety in the specification is that Perennial dis-
tinguishes between the disk while running dk and the new disk
following a crash dk+1, where k is a so-called generation num-
ber. This creates a distinction between the invariant protected
by the lock (in generation k) and the crash obligation (in the
next generation):

I(i)≜ ∃data,file_repdk(i,data)

Ic(i)≜ ∃data,file_repdk+1(i,data)

It is important that on crash the developer show file_rep
holds in the post-crash generation dk+1, because any
ephemeral resources in the current generation do not survive
to the next. Any in-memory state the system requires has to
be reconstructed from only the durable state.

5.5 Crash framing
As we have seen, acquiring a crash-aware lock imposes that
the crash obligation holds at every step until the crash lock is
released. For example, the developer must show that the crash
obligation Ic(i) holds at every step of NFS3_WRITE_locked.
However, much of the code for NFS3_WRITE_locked resides in
NFS3_WRITE_op, which modifies only in-memory state. This
presents an opportunity to simplify the proof: because no
durable state is modified, the developer should not need to
think about crashes at each individual step.

Perennial 2.0 formalizes this using the crash framing tech-
nique, expressed in the following rule:

{P} f() {Q}
⊢ {Ic ∗P} f() {Ic ∗Q}{Ic}

Informally, this rule says that if we currently own the crash
condition Ic, we can temporarily “give up” access to that own-
ership when proving f(). In exchange, the crash condition is
removed from our proof obligation: it is sufficient to prove
a regular crash-free Hoare triple for f(). Ic is not available
for the proof of f() (this is the “giving up” aspect of crash
framing), but the proof can continue to use Ic after the call to
f() returns.

430 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The proof of NFS3_WRITE gets access to I(i) by acquiring
the ith lock, lifts the file_repdk predicate into its buffered
operation, and then immediately uses the crash framing rule
to give up access to durable_pred(op,file_repdk) and prove
the crash condition for the duration of NFS3_WRITE_op (which
only manipulates the in-memory file_repop). The crash fram-
ing rule gives back the durable_pred predicate at the end of
the operation, which is required to reason about commit.

5.6 Commit
The remainder of the proof after preparing file_repop with
the new data is to reason about committing the operation
with the new file. The code commits this operation using the
following specification for Commit:{

Qop ∗is_op(op)∗durable_pred(op,Pd)
}

op.Commit(true)
{ret ok, if ok then Qd else Pd}
{Pd ∨Qd}

This specification nicely captures how Commit works: if
we started with data Pd on disk, then modified it to Qop in
memory, then if Commit succeeds the new data Qd is on disk.
If Commit fails (which happens if the journal operation is too
large to fit on disk) then the data reverts back to Pd . On crash
either of these could happen, depending on when the crash
occurs.3

The caller will sometimes start an operation and then abort
it, say due to encountering an error. The API has no method
for this because aborting is a purely logical operation that
restores ownership of the on-disk objects:

{durable_pred(op,Qd)} noop {Qd}

The Commit proof internally executes the same logical op-
eration when the commit fails in order to return the original
durable data.

5.7 Summary
The combination of above features mean the developer is
mostly left with sequential crash-free reasoning about how
each operation (for example, each NFS3 RPC implementation)
transitions from the representation invariant in one state to
another, following the transition system of the specification.
We illustrate that proof flow using the NFS3_WRITE call in
Figure 2 as an example.

First, the function starts a journal operation and acquires
a lock on i. Then the proof requires some purely mechani-
cal work to lift the lock invariant (§5.2) and frame the crash
obligation (§5.5). Next, the developer proves the correctness
of the sequential code. This proof does involve the bulk of
the application code, but it requires neither worrying about

3For op.Commit(false), which does not flush to disk right away, GoJournal
provides a lower-level spec that allows expressing the more complex resulting
crash condition.

concurrency (since reads and writes operate on the exclusive
ownership of a 7→op o) nor about crash safety (since crash
framing has dismissed any crash obligations while reasoning
about the in-memory operations on the *Op).

The sequential code must prove that the reads and
writes with ReadBuf, SetDirty, and OverWrite transform
file_repop(i,data) to produce file_repop(i,data′), where
data′ is the correct state of the file as described by the tran-
sition of the formalized NFS state machine for a write. The
new file representation with contents data′ is the Qop in the
precondition to Commit’s specification, while Pd is the old file
with contents data on disk (snapshotted while lifting).

If the system doesn’t crash and Commit returns true, then
the operation succeeds, producing a new file representation
file_repdk(i,data′). If the operation fails (say due to not
fitting in the log), then Commit returns the old representation
invariant with contents data. On crash, either of these two is
possible, but not some inconsistent combination of the two,
guaranteeing crash atomicity.

The proof for NFS3_WRITE wraps up by releasing the lock.
Whether or not Commit succeeds, we have a file with some
contents: ∃data,file_repdk(i,data); this is exactly the lock
invariant I(i) required to release the lock.

6 Verifying GoJournal
GoJournal consists of multiple layers, as described in §3.2.
This section provides some highlights of the complexity in-
volved in GoJournal’s implementation, along with the proof
techniques required to formally reason about that complexity.

6.1 Write-ahead logging (WAL)
The write-ahead log layer is responsible for updating multiple
disk blocks (a multiwrite) atomically. Each multiwrite is a list
of updates, where an update consists of a disk block number
and the new data to write in that block. A background logger
thread moves multiwrites from an in-memory buffer to an
on-disk log. To make this atomic, the logger first writes the
contents of a multiwrite in a log entry, and then updates a
designated header block to indicate the entry is complete. If
a crash happens before the header is updated, none of the
multwrite’s updates are applied; if a crash happens after the
header update, the multiwrite will be applied during recovery.
Meanwhile, an installer thread applies entries in the log to the
disk, clearing space for new multiwrites. If a crash happens
before the updates in an entry are fully installed, recovery
installs the updates again from the on-disk log.

The write-ahead log implements two optimizations related
to combining multiwrites. Two or more multiwrites can be
group committed by logging them together, which still guaran-
tees their atomicity. If multiwrites being committed together
update the same block, the first update can be absorbed and
replaced with the second. These optimizations trigger both for
multiwrites that are committed without waiting for durability
and also for concurrent, synchronous multiwrites.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 431

Internal abstract state: logical log. To prove the write-ahead
log layer correct, GoJournal represents the state of the write-
ahead log as a logical list of multiwrites, as shown in Figure 6.
Multiwrites before memStart have already been installed, and
their log entries do not physically exist in memory or on disk.
Multiwrites from memStart to diskEnd are already logged on
disk. Multiwrites from diskEnd to nextDiskEnd are currently
being logged from memory to disk. Finally, multiwrites be-
tween nextDiskEnd and memEnd are purely in-memory, and are
eligible for absorption.

Installed
writes

Logged
writes

Writes
being

logged

Unstable
writes

↑ 0 ↑ memStart ↑ diskEnd ↑ nextDiskEnd ↑ memEnd
Advanced by

installer
Advanced by

logger
Advanced by
Flush

Advanced by
Commit

Figure 6: The logical write-ahead log. Vertical arrows indicate designated
positions in the logical log. Labels below the arrows indicate what thread or
function is responsible for advancing that logical position to the right.

This representation allows GoJournal to precisely specify
how concurrent operations modify this abstract state, and
how the state changes on crash. For example, although the
installer thread performs many disk writes to install multi-
writes, its only effect on the abstract state is that it advances
memStart. Similarly, the logger thread’s only change to the ab-
stract state is to advance diskEnd. Calling Flush() advances
nextDiskEnd, freezing the data to be logged, then waits for the
logger to advance diskEnd up to that point. Committing a new
multiwrite simply appends it at memEnd. Finally, on crash, an
arbitrary suffix of the log from diskEnd onwards is discarded.

External abstract state: durable lower bound. Although
the details of the logical log are important for proving the WAL
layer, the caller (i.e., the OBJ layer) does not need to know
about installation, group commit, etc. To abstract away these
details, the WAL provides a simplified state as its interface, as
shown in Figure 7. The simplified state consists of the same
list of multiwrites, together with durable_lb, which is a lower
bound on what set of multiwrites will be preserved on crash.
Using a lower bound instead of precisely exporting diskEnd
means that this abstract view does not need to change if the
logger thread adds more multiwrites to disk in the background,
and thus hides this concurrency.

Lock-free logging and installation. For performance, Go-
Journal has dedicated threads that perform logging and instal-
lation. However, these threads do not hold any locks while
reading or writing to disk. To allow these threads to run concur-
rently, GoJournal uses two separate header blocks, as shown
in Figure 8. One header block (owned by the installer thread)
stores the start of the on-disk log, and another header block
(owned by the logger thread) stores the end of the on-disk log.

Record update := { addr: u64; data: Block; }.
Record State :=
{ multiwrites: list (list update);
(* at least durable_lb elements are durable *)
durable_lb: nat; }.

Definition mem_append (ws: list update) :
transition State unit :=

modify (set multwrites (fun l => l ++ [ws]));
ret tt.

(* non-deterministically pick how many
multiwrites survive the crash. *)

Definition crash : transition State unit :=
durable <- suchThat (fun s i => durable_lb s ≤ i);
modify (set multiwrites (fun l => l[:durable]));
modify (set durable_lb (fun _ => durable));
ret tt.

Figure 7: Parts of the specification for the WAL interface.

Logger
end

pointer

Installer
start

pointer

Logged
multiwrites

Installed
blocks

↑ 0 ↑ 513

CIRCULAR

Figure 8: The physical write-ahead log.

This lets the installer and logger concurrently advance their
pointers (memStart and diskEnd respectively) without locks.

Although the logger and installer threads can perform lock-
free disk writes, they must still coordinate with one another.
For example, the installer cannot run ahead of the logger
thread, and the logger thread must coordinate with threads
that are appending new multiwrites in memory. GoJournal’s
proof uses the notion of monotonic counters to reason about
the safety of the logger and installer’s lock-free operations.

The logger thread needs to check that memStart is far
enough along that the log will have space for the new multi-
write. The proof gets a lower bound on the memStart variable
while holding a lock, which remains true even after releas-
ing the lock. Even though memStart might grow after the
initial check, the log will only have more space and thus the
multiwrite will still fit.

The installer has a similar lock-free region that also reasons
using a lower bound. The installer retrieves the updates from
the current memStart to diskEnd in order to start installing
them to disk. When the installer eventually trims the log, it
needs to be sure not to advance beyond the current logger
position, which the proof demonstrates using a lower bound
on diskEnd from when the logger initially started.

6.2 Logically atomic crash specifications
Throughout the GoJournal stack we specify internal layers
using a transition-system specification, such as the examples

432 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

func Append(txns, {P}noop{Q}) {
... // write data
hdr := ...
disk.Write(LOGHDR, hdr)
...
}

Append proof in CIRCULAR Logger proof in WAL

use
{P}noop{Q} diskEnd+= len(txns)

Figure 9: Illustration of how the proof of Append executes a logical callback
{P}noop{Q}. The logger passes a callback that adds len(txns) to diskEnd.

illustrated in Figure 7 for the WAL layer. Perennial formalizes
what it means for the code in a layer to implement a transition
using Hoare triples in a style we call logically atomic crash
specifications. While the precise encoding involves some
technical details of Iris, we explain here the intuition behind
these specifications as well as why they are useful.

As a motivating example, consider the moment when the
logger thread commits a new batch of multiwrites to the phys-
ical log in order to advance the durable point diskEnd in the
logical log of the WAL layer. It does this by calling into the
Append method of the CIRCULAR layer, which appends to the
small buffer of logged multiwrites. The code for Append com-
mits at some internal step when it writes the header block and
makes the data valid, and it is at this instant that the logical
log’s diskEnd should be incremented. How can we verify
Append in the CIRCULAR layer separately from the WAL layer,
while still executing the right update in the logger proof?

Logically atomic specifications achieve this separation by
having the precondition to Append take a logical callback [15],
which the proof promises to “execute” at the commit point.
This callback is a Hoare triple of the form {P} noop {Q},
where P and Q are later selected by the logger proof to update
the diskEnd ghost state of the logical log, as shown in Figure 9.
This specification for Append provides modularity in that the
Append proof does not need to know about the logical log
and its diskEnd, and the logger proof does not need to worry
about why Append is atomic. A key advance of Perennial’s
logically atomic crash specs lies in additionally capturing the
crash behavior in this callback style, so as to enable a complete
proof of crash safety across layers.

6.3 Concurrency within a block (OBJ)
GoJournal’s OBJ layer allows the caller to issue reads and
writes that are smaller than a full block. This finer granularity
helps increase concurrency: for example, the NFS file server
packs multiple inodes into a single disk block, and OBJ allows
threads to concurrently read and write multiple inodes even if
they share a disk block.

At commit time, OBJ’s Commit may need to perform an
“installation read” and read a full block, update the range that
was modified by the caller as part of a journal operation, and
write back the full block using the WAL layer. To ensure
correctness of this read-modify-write operation, Commit uses
a lock to serialize all commit operations. However, Read

operations are lock-free: they can execute concurrently with
one another and concurrently with Commit.

Lock-free reads pose a verification challenge because the
disk block can be modified during the read. Consider the
example shown in Figure 10, where a single disk block stores
many inodes. Inode 1 initially contains the value A, while
inode 4 contains B. Thread 1 is committing a write of B’
to inode 4 in that block, while thread 2 concurrently reads
inode 1 from the same block. To read inode 1, thread 2 will
read the entire block, and then copy out the part of the block
corresponding to inode 1. The block seen by thread 2 will
differ depending on whether thread 1’s write happens before
or after the read, but inode 1 will contain A in either case.

A B . . .Disk Block:

0 1 2 3 4 5 6 7

A B’ . . .Thread 1:

A B/B’ . . .Thread 2:
Figure 10: An example of a concurrent Read of inode 1 and Commitmodifying
inode 4 in the OBJ layer.

Formally reasoning about the Read operation requires the
OBJ layer to connect the a 7→op o predicate about a disk object
(such as an inode) to the disk block containing that object at
the WAL layer. However, due to the race condition described
above, the Read implementation might observe many possible
values of the containing disk block. As a result, it is important
for the OBJ invariant to relate the a 7→op o predicate not just
to the latest value of the containing block, but to all recent
contents of that block. Specifically, the invariant for a 7→op
o requires that all recent writes to a’s block (since Read(a)
started) must agree on the part of the block storing o. As a
result, regardless of what block happened to be read, the caller
is guaranteed to see the correct object o.

7 Implementation
Perennial 2.0 is a re-write of the Perennial 1.0 framework [5],
implemented on top of Goose [5, 6], Iris [17, 18], and Coq [28].
Figure 11 shows the lines of specifications and proof for Peren-
nial. Perennial extends the Iris Proof Mode [20] to support
convenient interactive proofs in Coq for crashes and Peren-
nial’s atomic crash specifications.

Perennial’s program logic for crashes provides the formal
foundations for framing away crash conditions and for atomic
crash specifications. Lifting is implemented as part of the
helper libraries. Ghost resources implement lock-free con-
current reasoning, including monotonic counters (to track log
positions in Figure 6) and multi-versioned disks (to track logi-
cal disk contents at crash time for disk-object ownership).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 433

Component Lines of Coq

Helper libraries (maps, lifting, tactics) 5,760
Ghost state and resources 5,125
Program logic for crashes 9,375
Total 20,260

Figure 11: Lines of specs and proofs for Perennial.

Lines of code Lines of proof Ratio
(Go) (Coq)

CIRCULAR 109 1,905 17×
WAL-STS 555 10,125

23×
WAL — 2,854
OBJ 133 2,971 22×
JRNL-STS 121 1,261

24×
JRNL — 1,640
LOCKMAP 118 864 7×
Misc. 311 4,177 13×
GoJournal total 1,345 25,797 19×

GoNFS 3,911 Not verified —
SimpleNFS 462 3,749 8×

Figure 12: Lines of code and proof for the components of GoJournal and
for SimpleNFS. Ratio is the proof:code ratio, a rough measure of verification
overhead.

Using GoJournal, we implemented GoNFS and its core
verified subset, SimpleNFS. Both implementations can be
mounted by the Linux NFS client, which translates file-system
calls into NFS RPCs. GoNFS is sufficiently complete that it
can run fsstress and fsx-linux tests through the Linux NFS
client.

The breakdown of lines of code and proof by layer, as seen
in Figure 12, shows a proof-to-code ratio of about 20× for
the layers that involve tricky crash safety and concurrency
reasoning. Notably the SimpleNFS proof is relatively short
due to the GoJournal implementation and specification largely
hiding crash reasoning. The WAL and JRNL layers are split
into two parts for proof purposes; the layers labeled “STS”
are specified with an atomic state-transition system while the
next layer presents an easier-to-use ownership-based interface
using separation logic. The write-ahead log’s proof is largely
in establishing its atomic transitions, while half of the top-level
GoJournal proof is proving its separation logic specification
as described in §5.

All of the proofs for Perennial, GoJournal, and SimpleNFS
are checked by Coq, and we used Print Assumptions to ver-
ify that the proofs are complete. The code is publicly avail-
able.4

8 Evaluation
This section empirically answers several questions:

4GoJournal is available at https://github.com/mit-pdos/go-
journal while GoNFS and SimpleNFS are at https://github.com/mit-
pdos/go-nfsd.

• Is GoJournal sophisticated enough to support real storage
systems and to achieve good performance? (§8.1)

• Is GoJournal’s concurrency important for storage systems
to achieve high performance? (§8.2)

• Are Perennial’s verification techniques important for prov-
ing the correctness of GoJournal (§8.4) and for enabling
application developers to prove their code on top of Go-
Journal (§8.3)?

• How much effort is required to prove the correctness of
GoJournal and applications on top of GoJournal? (§8.5)

• Does verification help developers avoid bugs? (§8.6)

8.1 GoJournal is functional and performant
To evaluate whether GoJournal is sophisticated enough to sup-
port real storage systems and to achieve good performance,
we measure the performance of GoNFS using three bench-
marks: the LFS smallfile and largefile benchmarks, as well
as a development workload, consisting of running git clone
on the xv6 source-code repository [9] and compiling it with
make. These benchmarks were also used by DFSCQ [7], a
previous state-of-the-art verified file system. As a compari-
son point for GoNFS, we run the Linux kernel NFS server
exporting an ext4 file system. The ext4 file system writes data
through the journal (using the data=journal mount option),
so that both systems provide the same crash-safety guarantees.
The GoJournal implementation supports atomic but unstable
writes, which match the semantics of unstable NFS WRITE
operations. While all the internal layers of the proof support
unstable writes, the separation logic specification presented
in §5 does not, so we conducted the evaluation without using
unstable writes in GoNFS.

We ran the benchmarks on Linux 5.12.3, using its NFS
client to mount both GoNFS and the Linux NFS server. The
experiments are run on two machines, a desktop with a rel-
atively slow SSD and an EC2 machine with a fast NVMe
disk. The desktop has an Intel Xeon E5-2640 20-core CPU
at 2.4 GHz, 64 GB of RAM, and a 256 GB Samsung 850
PRO SSD, which we use to measure in-memory performance
with no disk bottleneck as well as the impact of relatively
slow storage. The EC2 instance is an i3.metal, which has 72
vCPUs, 512 GB of RAM, and a local 1.9 TB NVMe SSD,
which we use to measure performance on fast storage with
good random-access performance. To reduce variability we
limit the experiment to a single socket, disable turbo boost,
disable processor sleep states, and disable Spectre mitigations
in the kernel.

We first evaluate GoNFS’s performance with a single client
issuing requests. Figure 13 shows the results on the Intel Xeon
desktop with both file systems backed by RAM, to avoid any
I/O overhead — GoNFS takes a simple Go interface for the
disk, which we implemented with a large array, while ext4

434 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/mit-pdos/go-journal
https://github.com/mit-pdos/go-journal
https://github.com/mit-pdos/go-nfsd
https://github.com/mit-pdos/go-nfsd

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

smallfile largefile app

2
4

0
8

 fi
le

/s

2
8

6
 M

B
/s

0
.4

3
3

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Linux
GoNFS

Figure 13: Performance of Linux NFS and GoJournal + GoNFS for
smallfile, largefile, and app workload, on a RAMdisk. On an NVMe
disk GoNFS achieves at least 90% of Linux’s throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SSD NVMe

6
4

 M
B

/s

1
6

6
 M

B
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Linux
GoNFS

Figure 14: Performance of largefile depends on the storage medium. Linux
takes advantage of unstable writes to write a large amount of data between
barriers but GoNFS flushes to disk frequently.

uses a file in tmpfs.5 GoNFS achieves at least the throughput
of ext4 across the different workloads.

On both the NVMe and slower SSD, GoJournal’s perfor-
mance relative to ext4 is similar on the smallfile and app
workloads (not plotted), again achieving at least 90% of the
throughout of ext4. However, GoNFS performance on the
largefile benchmark is sensitive to disk I/O characteristics,
as shown in Figure 14. On the faster NVMe device, GoNFS’s
large file performance is comparable to ext4’s, but on the
slower SSD, it drops to under 20% of ext4’s throughput. The
reason is that the largefile benchmark produces a large num-
ber of parallel, unstable writes to the same file. GoNFS runs
them sequentially due to a per-inode lock, and then journals
sequentially because it ignores the unstable write flag. A disk
barrier on the SSD takes about 2 milliseconds, so getting good
disk throughput requires writing a large amount of data be-
fore issuing a barrier, and the 64 KB batch size is insufficient
to get the maximum SSD write throughput. Re-running the
experiment with unstable writes enabled in GoNFS raises its
throughput to 90% of ext4’s.

8.2 GoJournal concurrency improves performance
To test whether the concurrency of GoJournal is important for
performance we measure the aggregate throughput of GoNFS
with an increasing number of clients that run the smallfile
benchmark. We run the experiment on a physical disk in-
stead of an in-memory file system so that while a thread is
waiting for the disk another thread can run. We compare

5Running GoNFS on tmpfs performs slightly worse due to the around 1
microsecond syscall overhead of each disk operation, which ext4 does not
incur since everything happens within the kernel.

the performance of GoNFS to that of Linux ext4, and to a
single-threaded version of GoNFS that has no concurrency.

Figure 15 shows the results on an EC2 i3.metal instance
with an NVMe SSD. Both GoNFS and Linux ext4 take ad-
vantage of concurrent requests to increase throughput. The
single-threaded GoNFS does just barely improve performance,
from parallelization among the clients and NFS server, but
this amounts to less than 2× throughput with 20 clients than
with one. Even with one client, GoNFS achieves 35% higher
throughput than single-threaded GoNFS due to concurrency
between the RPC thread, the logger thread, and the installer
thread. GoNFS achieves higher throughput than Linux ext4,
but it is hard to pin down the reason why, because there are
many differences in the designs. One possibility is that Linux
ext4 does not have concurrent logging and installation (but
GoJournal does); another possibility is that ext4 waits for
outstanding transactions to finish before flushing to disk (but
GoJournal does not).

Figure 16 shows the scaling of GoNFS and Linux, this time
on the Xeon desktop with a slower SSD. While GoNFS obtains
comparable performance for 7 or fewer cores, Linux scales lin-
early beyond while GoNFS does not. The scaling in this case
primarily comes from batching writes from concurrent clients,
resulting in better disk write throughput. GoJournal is not as
careful about this, sometimes committing a small amount of
data rather than gathering many multi-writes and issuing them
together. The NVMe experiment in Figure 15 uses storage
with fast enough random-write access that CPU efficiency is
more important than issuing large sequential writes; while a
disk barrier takes 2 milliseconds on the SSD it takes only 30
microseconds on the NVMe disk.

0

2k

4k

6k

8k

10k

 0 4 8 12 16 20 24 28 32 36

fi
le

s
/

se
c

clients

GoNFS
Linux NFS

Serial GoNFS

Figure 15: Combined throughput of multiple parallel smallfile microbench-
marks, each creating files in different directories, on an NVMe SSD.

8.3 Journaling atomicity simplifies proofs
Many storage systems use journaling because they simplify
the implementation in terms of crash safety: the only point at
which durable state is modified is when an operation commits.
A goal of GoJournal is to carry this insight into proofs, so
that a storage system using the journal can prove an operation
is atomic using reasoning about durable storage only at the
commit point.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 435

0

100

200

300

400

500

600

 0 2 4 6 8 10 12 14 16 18 20

fi
le

s
/

se
c

clients

GoNFS
Linux NFS

Serial GoNFS

Figure 16: Combined throughput of multiple parallel smallfile microbench-
marks, each creating files in different directories, on a (slow) SSD.

One measure of how well GoJournal achieves this goal is
the lines of code in SimpleNFS that require reasoning about
durable state. SimpleNFS consists of 462 lines of verified code.
Only 44 lines of code require proofs to explicitly consider
durable state, using crash conditions. In Figure 3, for example,
crash reasoning is only needed for lines 6–8 when acquiring
and releasing with the crash-aware lock specification. All of
the other code does not require reasoning about durable state;
it suffices to prove simple crash-free specifications that have a
pre- and post-condition, but no crash condition. This formal
reasoning is enabled by two techniques from Perennial: lifting
disk-object ownership and crash framing.

8.4 Perennial enables modular crash reasoning
Atomic crash specifications are crucial for enabling modular
reasoning about crash safety. In GoJournal, atomic crash specs
are used at many layer boundaries. Out of the layers shown in
Figure 4, CIRCULAR, WAL, OBJ, and JRNL all provide atomic
crash specifications, which are used by the layer above. One
benefit of atomic crash specs is that they allowed us to develop
these layers independently, using the specifications of lower
layers before their implements were fully proven, as one would
expect of any good API.

The modularity in Perennial largely follows the same struc-
ture as the code. Figure 12 shows that the WAL and JRNL
proofs were split into an atomic transition specification about
the code and a proof-only abstraction on top, but the bulk of
the division was due to boundaries in the code that made the
implementation manageable. Using separation logic it was
easy to prove data structures (like the striped lockmap) and
individual utility functions and use their abstract specifications
elsewhere in the proof.

8.5 Proof effort
Figure 12 shows the lines of code and lines of proof for Go-
Journal and SimpleNFS. The hardest part of GoJournal lies
in the WAL layer, which has significant lock-free concurrency,
and requires careful reasoning about crashes and recovery.
This is reflected in WAL’s relatively high lines of code, lines of
proof, and proof:code ratio. In contrast, SimpleNFS leverages

GoJournal’s atomicity, and ends up with a much smaller proof
relative to its code size.

8.6 Verification prevents bugs
When developing GoJournal, we wrote unit tests to quickly
find problems before starting verification, but they did not
catch all bugs. While proving GoJournal, we found a subtle
bug in absorption. When appending a new transaction in mem-
ory, GoJournal has an optimization called absorption where
earlier writes to the same address are replaced with the new
values. However, we discovered a race condition, where the
logger thread could have been already flushing those earlier
writes to disk, leading to unpredictable disk contents depend-
ing on the order of absorption vs logging. We fixed this issue
by introducing the nextDiskEnd boundary, as shown in Fig-
ure 6: the logger thread only logs up to nextDiskEnd, and ab-
sorption is only allowed to modify values after nextDiskEnd.

9 Conclusion
GoJournal is the first concurrent crash-safe journaling system
with a machine-checked proof, built on top of the Perennial 2.0
framework. GoJournal uses Perennial’s techniques, including
lifting and crash framing, to carry over the atomic benefits
of journaling to its formal specification. This enables storage
applications to use mostly crash-free reasoning in their proofs.
For example, in the verified SimpleNFS server, only 44 lines
of code, out of 462, required crash reasoning. GoJournal is so-
phisticated enough to implement a functional (but unverified)
NFSv3 server, GoNFS, that achieves 90% of the performance
of a Linux ext4 NFSv3 server on a development workload, far
higher than any previous verified file systems, and GoJournal’s
concurrency enables GoNFS to scale with concurrent client
requests. To simplify GoJournal’s proofs, Perennial provides
logically atomic crash specifications, which capture the crash
properties of internal interfaces as single logical transitions,
enabling modular proofs for GoJournal’s internal layers.

Acknowledgments
We are grateful for feedback from many people that improved
this paper, especially Alexandra Henzinger, Jonathan Behrens,
Henry Corrigan-Gibbs, Jon Howell, the anonymous reviewers,
and our shepherd, James Bornholt. This research was sup-
ported by NSF awards CNS-1563763 and CCF-1836712, and
by a European Research Council (ERC) Consolidator Grant
for the project “RustBelt”, funded under the European Union’s
Horizon 2020 Framework Programme (grant agreement no.
683289).

References
[1] Dimitris Andreou. Striped (Guava: Google core

libraries for Java 19.0). https://guava.dev/
releases/19.0/api/docs/com/google/common/
util/concurrent/Striped.html.

436 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://guava.dev/releases/19.0/api/docs/com/google/common/util/concurrent/Striped.html
https://guava.dev/releases/19.0/api/docs/com/google/common/util/concurrent/Striped.html
https://guava.dev/releases/19.0/api/docs/com/google/common/util/concurrent/Striped.html

[2] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
version 3 protocol specification. RFC 1813, Network
Working Group, June 1995.

[3] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software using
movers in CSPEC. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 307–322, Carlsbad, CA, October
2018.

[4] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Argosy: Verifying layered storage
systems with recovery refinement. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
1037–1051, Phoenix, AZ, June 2019.

[5] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
pages 243–258, Huntsville, Ontario, Canada, October
2019.

[6] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent Go code in
Coq with Goose. In Proceedings of the 6th International
Workshop on Coq for Programming Languages (CoqPL),
New Orleans, LA, January 2020.

[7] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), pages 270–286, Shanghai,
China, October 2017.

[8] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
Crash Hoare Logic for certifying the FSCQ file system.
In Proceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 18–37, Monterey,
CA, October 2015.

[9] Russ Cox, M. Frans Kaashoek, and Robert T. Morris.
Xv6, a simple Unix-like teaching operating system, 2016.
http://pdos.csail.mit.edu/6.828/xv6.

[10] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and
Philippa Gardner. TaDA: A logic for time and data
abstraction. In Proceedings of the 28th European Confer-
ence on Object-Oriented Programming (ECOOP), pages
207–231, Uppsala, Sweden, July–August 2014.

[11] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gard-
ner, Matthew Parkinson, and Hongseok Yang. Views:
Compositional reasoning for concurrent programs. In
Proceedings of the 40th ACM Symposium on Principles
of Programming Languages (POPL), pages 287–300,
Rome, Italy, January 2013.

[12] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, and Wolf-
gang Reif. Modular, crash-safe refinement for ASMs
with submachines. Science of Computer Programming,
131:3–21, 2016.

[13] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu,
Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David
Costanzo, and Tahina Ramananandro. Certified con-
current abstraction layers. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 646–661,
Philadelphia, PA, June 2018.

[14] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage systems
are distributed systems (so verify them that way!). In
Proceedings of the 14th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
99–115, Banff, Alberta, Canada, November 2020.

[15] Bart Jacobs and Frank Piessens. Expressive modular fine-
grained concurrency specification. In Proceedings of the
38th ACM Symposium on Principles of Programming
Languages (POPL), pages 271–282, Austin, TX, January
2011.

[16] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies (FAST), pages 301–315, Santa Clara, CA,
February 2015. USENIX Association.

[17] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,
Ales Bizjak, Lars Birkedal, and Derek Dreyer. Iris from
the ground up: a modular foundation for higher-order
concurrent separation logic. Journal of Functional Pro-
gramming, 28:e20, 2018.

[18] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper
Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. In Proceedings of the
42nd ACM Symposium on Principles of Programming
Languages (POPL), Mumbai, India, January 2015.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 437

http://pdos.csail.mit.edu/6.828/xv6

[19] Eric Koskinen and Matthew Parkinson. The Push/Pull
model of transactions. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 186–195, Port-
land, OR, June 2015.

[20] Robbert Krebbers, Amin Timany, and Lars Birkedal.
Interactive proofs in higher-order concurrent separation
logic. In Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL), pages
205–217, Paris, France, January 2017.

[21] K. Rustan M. Leino, Richard L. Ford, and
David R. Cok. Dafny reference manual.
https://github.com/dafny-lang/dafny/raw/
master/docs/DafnyRef/out/DafnyRef.pdf,
December 2020.

[22] Richard J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of the
ACM, 18(12), December 1975.

[23] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-effort verifi-
cation of high-performance concurrent program. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI),
pages 197–210, London, United Kingdom, June 2020.

[24] Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner.
Fault-tolerant resource reasoning. In Proceedings of the
13th Asian Symposium on Programming Languages and
Systems (APLAS), pages 169–188, Pohang, South Korea,
November–December 2015.

[25] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. Persistent
Owicki-Gries reasoning: A program logic for reasoning
about persistent programs on Intel-x86. In Proceed-
ings of the 2020 Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), Chicago, IL, November 2020.

[26] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 1–16, Savannah, GA, November
2016.

[27] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkin-
son. Modular reasoning about separation of concurrent
data structures. In Proceedings of the 22nd European
Symposium on Programming (ESOP), pages 169–188,
Rome, Italy, March 2013.

[28] The Coq Development Team. The Coq Proof Assistant,
version 8.12.0, July 2020.

[29] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using concurrent relational logic
with helper for verifying the AtomFS file system. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Huntsville, Ontario, Canada,
October 2019.

A Artifact
A.1 Abstract
The artifact has the code for three tasks: calculating lines
of code, running performance experiments, and checking the
proofs. Since the artifact is packaged as a virtual machine,
the generated graphs do not look exactly like the ones in the
paper, but they do demonstrate respectable performance and
that everything runs correctly.

A.2 Scope
The artifact will reproduce Figure 11 and Figure 12 (the lines
of code tables). It has the code to run the performance eval-
uation, generating Figure 13 and Figure 16. To back up the
claim that the proofs verify, we include the Coq source code
and compilation instructions. For convenience the source code
already includes the Goose-generated Perennial model of the
source code, so the artifact also includes instructions on re-
generating this output from scratch.

The paper includes a broader array of graphs than the ar-
tifact scripts generate, because it combines data from two
benchmarking machines. The performance evaluation was ex-
panded after artifact evaluation to include these more detailed
results.

Note that the performance is highly sensitive to your ma-
chine and SSD’s performance characteristics. We ran the
paper’s experiments with a litany of techniques to control vari-
ance, such as disabling turbo boost and using a single socket
(as described in §8.1); until we did this, results were vari-
able, and often hurt GoJournal more than Linux. The artifact
is packaged as a VM which doesn’t have the same careful
setup, but we still believe it is useful because the VM setup
documents the software requirements to run the benchmarks.

A.3 Contents
The artifact consists of a virtual machine with all the software
required pre-installed and a checkout of the GoNFS source
code, which has all the evaluation scripts.

A.4 Hosting
You can obtain the artifact’s VM image via Zenodo
DOI 10.5281/zenodo.4657115. The artifact instructions
are at https://github.com/mit-pdos/go-nfsd/tree/
master/artifact, as well as the Vagrantfile used to gen-
erate the VM image.

438 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dafny-lang/dafny/raw/master/docs/DafnyRef/out/DafnyRef.pdf
https://github.com/dafny-lang/dafny/raw/master/docs/DafnyRef/out/DafnyRef.pdf
https://zenodo.org/record/4657115
https://github.com/mit-pdos/go-nfsd/tree/master/artifact
https://github.com/mit-pdos/go-nfsd/tree/master/artifact

A.5 Requirements
The virtual machine uses VirtualBox. We configured it with
8GB of RAM (though 4GB is probably fine) and 4 cores;
more cores might improve scalability numbers, although more
clients help saturate the SSD even if you have fewer cores
than clients. If the drive hosting the image is a hard drive, the
“SSD” performance numbers will look quite bad.

Running the evaluation natively requires a variety of soft-
ware that is documented by the VM provisioning scripts, which
are in the mit-pdos/go-nfsd repo alongside the instructions.

A.6 Results from artifact VM
On a MacBook Pro with a 2.4 GHz Intel i9-9980HK, we
obtained the performance results in this section from running
the artifact in a virtual machine. These experiments use the
default VM configuration, with 8GB of RAM and 4 cores, on
a host with 8 cores.

Figure 17 shows the results of running the microbenchmarks
on this hardware configuration. Figure 17a is analogous to
Figure 13. Figure 17b includes the largefile results shown
in Figure 14. Between these two figures we see more vari-
ability on smallfile than when run on physical hardware.
The largefile results are as expected, since the SSD in this
machine has performance somewhere in between the SSD in
the desktop machine and the NVMe drive from an i3.metal
instance.

Figure 17c shows the results of running the largefile bench-
mark across a variety of software configurations, all on an
SSD; these were not directly shown in the paper. From these
results we concluded that GoNFS can get good performance,
if using unstable writes. The “Linux (sync)” configuration
uses ext4 in data=journal mode but additionally mounts the
NFS share with the sync flag, which changes the benchmark
to a completely sequential and synchronous one. In this con-
figuration Linux’s optimizations do not kick in and it obtains
the same performance as GoNFS using stable writes.

Finally, Figure 18 shows scalability of the smallfile bench-
mark, analogous to Figure 16. Even though this disk gets much
better throughput and has a barrier latency of only 0.4 ms (in
the virtual machine) rather than 2 ms, the experiment has the
same trend as on the slower SSD.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

smallfile largefile app

1
6

0
8

 fi
le

/s

3
3

7
 M

B
/s

0
.6

8
5

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
p

u
t

Linux
GoNFS

(a) bench.pdf (RAM)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

smallfile largefile app

6
5

4
 fi

le
/s

2
3

2
 M

B
/s

0
.5

7
1

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
p

u
t

Linux (SSD)
GoNFS (SSD)

(b) bench-ssd.pdf (SSD)

 0

 50

 100

 150

 200

 250

 300

largefile

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Linux (data=journal)
GoNFS (unstable)

Linux (sync)
GoNFS (stable)

(c) largefile.pdf (SSD)
Figure 17: Microbenchmarks and app benchmark run inside a VM.

0

500

1000

1500

2000

2500

3000

 1 2 3 4 5 6 7 8 9 10 11 12

fi
le

s
/

se
c

clients

GoNFS
Linux NFS

Serial GoNFS

Figure 18: scale.pdf, showing scalability of the smallfile benchmark. The
VM had 4 CPU cores for this experiment.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 439

https://github.com/mit-pdos/go-nfsd

STORM: Refinement Types for Secure Web Applications

Nico Lehmann
UC San Diego

Rose Kunkel
UC San Diego

Jordan Brown
Independent

Jean Yang
Akita Software

Niki Vazou
IMDEA Software Institute

Nadia Polikarpova
UC San Diego

Deian Stefan
UC San Diego

Ranjit Jhala
UC San Diego

Abstract
We present STORM, a web framework that allows developers
to build MVC applications with compile-time enforcement of
centrally specified data-dependent security policies. STORM
ensures security using a Security Typed ORM that refines the
(type) abstractions of each layer of the MVC API with logical
assertions that describe the data produced and consumed by
the underlying operation and the users allowed access to that
data. To evaluate the security guarantees of STORM, we build a
formally verified reference implementation using the Labeled
IO (LIO) IFC framework. We present case studies and end-to-
end applications that show how STORM lets developers specify
diverse policies while centralizing the trusted code to under 1%
of the application, and statically enforces security with modest
type annotation overhead, and no run-time cost.

1 Introduction

We trust web applications with our most sensitive data: our
finances, health records, email, or even our participation in
political protests. While application developers go to great
lengths to protect this data, today’s approach to safeguarding
sensitive data by sprinkling access control checks throughout
the application is not working. Even companies with dedicated
security teams are failing. For example, in 2018 Facebook
accidentally allowed third-party applications to access the
photos of 6.8 million users without their explicit permission [1].
This was not their first (nor last) leak. And Facebook is not
unique: sensitive data exposure and broken access control
are—and have been for almost a decade—on the OWASP top
ten list of most common web application vulnerabilities [2, 3].

To fundamentally address this class of bugs, we need
to reduce the amount of code developers need to get right.
One promising approach to doing this is to centralize policy
specification, i.e., specify data access control policies in a
centralized place, and enforce policies automatically. This
could reduce the code developers need to get right from the
whole application—as a single missing check could introduce
a vulnerability—to the policy specification code.

Centralizing policy specification is not a new idea. Several
web frameworks (e.g., HAILS [4], JACQUELINE [5], and
LWEB [6]) already do this. These frameworks, however, have
two shortcomings that have hindered their adoption. First,
they enforce policies at run-time, typically using dynamic
information flow control (IFC). While dynamic enforcement
is better than no enforcement, dynamic IFC imposes a high
performance overhead, since the system must be modified to
track the provenance of data and restrict where it is allowed
to flow. More importantly, certain policy violations are only
discovered once the system is deployed, at which point they
may be difficult or expensive to fix, e.g., on applications
running on IoT devices [7].

Second, these frameworks are invasive—they typically
require modifications to the language runtime and database
object-relational mapping (ORM). For example, JACQUELINE
uses a faceted ORM and runtime to keep track of multiple
facets of any individual value and only shows the right facet
to the right user (e.g., when reading a password, a user can
see their own password but get a default facet when trying
to read another user’s password). HAILS and LWEB, on the
other hand, use labeled values at the ORM and language
level to restrict the flow of sensitive, labeled data. This means
that developers need to write code that is aware of faceted or
labeled values, i.e., they need to write code that is aware of the
underlying IFC enforcement mechanism. Worse, this invades
policy specification. For example, in HAILS, developers can’t
simply write declarative policies, they often need to use the
low-level APIs used to track and enforce IFC to, for example,
inspect and manipulate labeled values [4, 8]. This not only
increases the amount of code they need to get right, but also
makes it hard to get the policy right since manipulating labeled
values is still an IFC expert—and not web developer—task.

We built the STORM web framework to address these
shortcomings. With STORM, users specify all security policies
in a declarative language, alongside the data model, the
description of the application database schema. Policies are
logical assertions that describe which users are allowed to
view, insert, or update particular rows and columns of each

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 441

table in the database. STORM enforces these policies statically,
at compile-time—and non-invasively, without translating
them to labels or facets. This means that (1) STORM does
not impose any run-time overhead, (2) developers can catch
bugs due to policy violations (e.g., where the application
incorrectly handles sensitive data) early, and (3) they don’t
need to understand the details of the underlying enforcement
mechanism to specify or audit policy code.

STORM statically enforces policies using refinement
types [9]: types decorated with logical assertions that can
constrain values, e.g., to say that an Int is non-negative or
that a User is the author of a Paper. Our key insight is to refine
STORM’s API with logical assertions that describe the data
produced and consumed by the underlying operation and the
users allowed access to that data. We use this insight to realize
STORM via four contributions.

1. Design (§ 3) Our first contribution is a novel design that
enriches the data model with a declarative policy—the refined
data model—to generate an application-specific ORM layer,
which STORM annotates with refinement types that reflect the
security policies. To our knowledge, this is the first framework
to statically and unobtrusively enforce policies previously
thought to only be expressible using runtime enforcement.

2. Implementation (§ 5) Our second contribution is an imple-
mentation of STORM in Haskell that uses LIQUIDHASKELL,
an off-the-shelf refinement type checker to statically and
automatically verify whether the application code using the
security-typed ORM—e.g., code handling user requests
and rendering HTML responses—adheres to the policies.
STORM does this without imposing any invasive changes to
the language runtime or database ORM interface. At most,
developers write (untrusted and verified) light-weight type
annotations to help the checker prove their code does not leak.

3. Verification (§ 6) Our third contribution is a formally
verified reference implementation that proves that the STORM
API is secure by showing how to reduce a well-typed STORM
program into an LIO [10] program that never throws security
exceptions. This allows us to carry over the previously
mechanized non-interference results from LIO [6, 10] to show
that well-typed programs cannot leak or corrupt sensitive data.

4. Evaluation (§ 7) Our final contribution is an empirical eval-
uation of the expressiveness of STORM’s policy mechanism,
the programmer effort needed for static enforcement, and,
ultimately, of the reduction in the amount of code the developer
has to get right to not leak data in real web applications. First,
we show that our centralized policy specification approach
is expressive enough to describe, often more naturally, a large
suite of policies from the literature. Second, we use STORM
to write statically verified implementations of several case
studies from the literature, including those that had previously
only been amenable to dynamic policy enforcement, and
show that the effort is modest: the programmer need only
write 1 line of refinement type signatures per 20–30 lines

System Audit Static Uninvasive IFC

SWIFT [11] 7 3 7 3

SELINKS [12] 3* 3 7 7

RESIN [13] 7 7 3* 7

URFLOW [14] 3 3 3 3*
IFDB [15] 3 7 7 3

HAILS [4] 3* 7 7 3

JACQLN [5] 3 7 7 3

LWEB [6] 3* 7 7 3

DAISY [16] 3 7 7 3

STORM 3 3 3 3

Figure 1: We compare STORM to previous web frameworks
along various design goals. Audit: are the policies centralized
and easily auditable; Static: is the enforcement at compile-
time; Uninvasive: does enforcement require changes to the
run-time; and IFC: does the framework enforce information
flow control. We write 3*for almost-met goals.

of code (LOC). Third, we use STORM to build and deploy
two new end-to-end web applications for collaborative text
editing and video-based social interaction, that have been
used at our university and at several academic workshops,
respectively. We demonstrate that STORM distills the code that
the developer has to get right to compact, auditable policies
(under 70 LOC) that comprise under 1% of the application.

2 Goals & Related Work

We designed STORM with several goals in mind. First, the
framework should provide information flow control (IFC)
security to prevent not only explicitly bad data flows, but also
implicit leaks where publicly viewable results are conditioned
on sensitive data. Second, the framework should enable a
centralized, and hence, easily auditable policy specification.
Third, to find errors early, provide design-time feedback and
avoid run-time overhead, the framework should permit static
enforcement via automatic, compile-time verification. Fourth,
the framework should not require invasive modifications to
language run-times, database ORMs, or libraries. STORM
builds on previous work, summarized in Figure 1, which have
made great strides towards these goals.
IFC There are many flavors of IFC with different trade-
offs [17, 18]. Systems differ in when they enforce IFC: at
run-time via labels [10, 19–22], faceted values [19, 22, 23],
secure multi-execution [24], or at compile-time via
types [12, 25–28], or static analysis [29], or a hybrid combi-
nation [30–32]. Even within the same category, these systems
differ in granularity of enforcement—from fine-grained to
coarse-grained [33, 34], and the kinds of policies users can
specify [35]. The SWIFT [11] system uses a static IFC type
system [30] to enforce compile time security, but does not
integrate with database ORMs, and hence, lacks centralized

442 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

auditable specifications. IFDB [15] and DAISY [16] show
how to perform fine-grained IFC within DB systems, but
are not static, and focus on databases—and are thus not
complete frameworks for building applications. STORM
draws inspiration from the HAILS [4], LWEB [6], and
JACQUELINE [5] frameworks which enforce auditable IFC
policies that are associated with the application’s data model.
However, these approaches all perform dynamic enforcement
and require invasive changes to the DB layer or run-time.

Static Several static frameworks express data-dependent
policies using dependent types [36–38, 38, 39], la-
bels [11, 12, 28, 40], or first-order logic formulas [41]. All the
above require the programmer to sprinkle policy specifications
across the application controller and view code, which is error
prone and makes auditing difficult. SELINKS [12] centralizes
policies within special functions that un/wrap data with labels,
but requires invasive changes to the DB and run-time to propa-
gate labels and does not prevent implicit leaks. URFLOW [14]
enables verification of centralized and auditable specifications
without requiring invasive changes, by using a bespoke sym-
bolic execution algorithm to statically verify that the generated
SQL queries are (semantically) contained in some allowed set.
However, to statically compute the SQL queries, URFLOW
requires programmers to write their applications in a domain-
specific language (DSL). Further, URFLOW’s approach is
insufficient for full IFC as it misses implicit flows through SQL
queries (as illustrated in § 3.4). In contrast, STORM enforces
full IFC via off-the-shelf refinement type checking for a general
purpose language with a rich ecosystem with tools and libraries
for networking, databases, data serialization, etc. STORM uses
a statically typed API for monadic IFC in the style of [42, 43],
specifically, the approach of LIFTY [44], a core calculus that
shows how to track IFC with logical refinement types. Unlike
STORM, LIFTY cannot be used to build secure applications: it
does not have database APIs, a language to specify centralized
policies, formal guarantees for data-dependent policies, or
even a way to write executable code.

System-based Security Several frameworks employ privilege
separation to run application components with least privi-
lege [45–49]. Others like RESIN [13] and QAPLA [50] restrict
access to data by modifying the run-time to use fine-grained
discretionary access control, or use cryptography to provide
data confidentiality, authenticity, and integrity in the presence
of compromised application components [51–53], or use
proxies to implement web application firewalls [54,55]. While
some of these approaches, e.g., the use of cryptography are
complementary to our approach, without IFC, they cannot
prevent leaks that STORM eliminates by construction.

3 Design

We illustrate the design of STORM with a WishList application
where users can share wishes with followers. STORM uses the

model-view-controller (MVC) paradigm, where an application
has three key elements: models which describe the persistent
data important to the application, typically stored in a
database (DB) and accessed via an Object-relational mapping
(ORM); views which describe how the data corresponding
to, e.g., users’ requests are rendered on webpages via some
combination of CSS, HTML and JavaScript; and controllers
that respond to user’s requests by suitably querying the DB
via the models API, to produce an HTML or JSON results.

3.1 Auditable Policies via Refined Models
The key innovation in STORM is to centralize data-dependent
security policies with the data model, in a refined models file.
Models & Policies Figure 2 shows the refined models file for
the WishList app. The left column describes the data schema,
as a collection of three tables User, Wish and Follower. Each
row of the User table comprises the user’s name and email

address. Each row of the Wish table has an owner that identifies
the User that the wish belongs to, a text description of the
wish, and a numeric price. Each row of the Follower table
describes a tuple where user1 follows user2, with the status

column indicating whether a follow-request has been initiated
("pending"), accepted ("ok") or rejected ("no"). STORM lets
the programmer specify policies that govern which DB rows
can be inserted and which DB columns can be read or updated.
A policy is a predicate over a row and user that is True if the
user has access and False otherwise. The policy predicate can
refer to all the columns of the row (whose column the policy
is attached to) and so the values of those other columns can be
used to determine whether the user has access. For example, we
specify that Wishes can only be inserted by their owners via the
policy @IsOwnerwhich holds when the user equals the owner of
the row. Similarly, we specify that each Wish’s description and
price should only be read by the owner unless they are explic-
itly public via the policy @Public which holds when the user is
the owner or the level is "public". (Ignore the shaded Follow

for now: we will return to it in § 3.3.) Finally, we specify that
only the owner is allowed to update the description and price.
Default Policies The programmer can associate default poli-
cies with all the rows and columns not explicitly constrained
otherwise. For example, Allow grants access to all users, while
Deny grants access to none. Hence, default read @Allow and
default insert, update @Deny say that (unless otherwise
specified) anyone can read every column, and no one can
insert rows or update columns.

3.2 Access Control
Let’s see how STORM enforces the Public policy. Figure 3
shows a controller showWishes that responds to a request to dis-
play the wish list for a given user. (For now, ignore the shaded
code.) The controller uses the models API to create a Query

of the form Owner ==. user, which it executes using the ORM

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 443

User
name Text
email Text

Wish
owner UserId
descr Text
level Text
price Int

insert @IsOwner
read [descr ,price] @Public Follow
update [descr ,level] @IsOwner

Follower
user1 UserId
user2 UserId
status Text

assert @OkFollows
insert @IsPending
update [status] @OkOrNo

default read @Allow
default insert , update @Deny

declare follows : UserId → UserId → Bool

def IsOwner(row: Wish , user: User):
row.owner == user.id

def Public(row: Wish , user: User):
IsOwner(row , user) || row.level == "public"

def Follow(row: Wish , user: User):
row.level == "follower" && follows(user.id, row.owner)

def PublicFollow(row: Wish , user: User):
Public(row , user) || Follow(row , user)

def OkFollows(row: Follower):
row.status == "ok" ⇒ follows(row.user1 , row.user2)

def IsPending(row: Follower , user: User):
row.user1 == user.id && row.status == "pending"

def OkOrNo(old: Follower , new: Follower , user: User):
old.user2 == user.id && new.status `in` ["ok", "no"]

def Allow(row: a, user: User): True
def Deny(row: a, user: User): False

Figure 2: Refined Models: A centralized specification for the Wishlist App

showWishes user = do
viewer <- authUser
let pub = Level ==. "public"
let chk = if viewer == user then true else pub
let qry = Owner ==. user &&. chk
wishes <- select qry
descrs <- mapM (project Descr) wishes
respond (show descrs)

Figure 3: A showWishes controller. The highlighted code is
needed for conformance with the Public policy.

API function select to get all the DB Wish rows belonging to
user. Next, it extracts the description column for each row
by invoking the ORM API function project with the name
of the desired field. Finally, the controller uses the view API
function respond to send the descriptions to the session user.

Enforcement Recall that the policy Public stipulates that
descriptions should only be visible to the owner unless the
level is "public". Indeed, the showWishes controller, sans the
shaded parts, is dodgy as the current session user could be
asking for someone else’s wishes! STORM detects this error at
compile time, by: (1) inferring that the qry will return all rows
owned by user, (2) using the policy on Descr to determine
that the project’s results depend on values that are allowed

to be viewable only by user (unless marked "public"), and
then (3) complaining that by calling respond the results can be
observed by the sessionUser who may be different than user.

We can fix showWishes by modifying the query when user

is different than sessionUser. The modifications are shaded
in Figure 3. First, we use the view API’s authUser function
to get the current session (viewer), which we use to add a chk

clause to the DB query. When the target user is the session
user, the chk clause is the trivial query true (which holds of
all rows). However, if the target user is different, then the
chk clause stipulates that the level column be "public". The
type checker infers that qry returns all rows owned by the
session user, but only the public rows of other users. Hence,
the type checker determines that the subsequent data release
via project and respond conforms to the Public policy.

3.3 Information Flow Control

Next, let’s see how STORM lets the programmer enforce IFC
policies that (1) span values across different rows and tables,
and (2) restrict how data flows to multiple users who may be
unknown at the point where the data is accessed.

Policy Let us add social capabilities to our application by
letting users have followers with whom they can share their
wishes. We model this notion as a many-to-many Followers

relationship table and then add "follower" as a new possible

444 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

level value. Now the access to a particular Wish depends on
data residing in another row, in another table—a record existing
in the Followers table. STORM lets the programmer specify
this requirement simply by changing the read policy for descr
and price to @PublicFollow which is defined on the right
in Figure 2. The key insight to specifying such a cross-table
policy is that the existence of a Follower record witnesses the
follows relationship between two users. The refined-models
in Figure 2 makes this notion manifest as follows. First, at the
top, we declare the relationship as a binary predicate follows

between two UserIds. Second, the line assert @OkFollows

says that for each row of the Follower table, the follows

predicate holds between user1 and user2 if the status is "ok".
Third, we use the predicate to define the Follow policy that
says that when a wish’s level is restricted to "follower" then
the viewer user must be a follower of the wish owner. Finally,
we use Follower to define a new policy PublicFollow that
governs who is allowed to read the descr and price fields.
This new policy captures our informal requirement about the
three levels of viewers: "public", "private" and "follower".
Controller Continuing with the social aspect of the applica-
tion, a nice feature would be to send an email notification
containing a user’s (non-"private") wish list, to all of the
user’s followers, a few days before that user’s birthday. Our
application implements this feature in the notifyFriends

controller in Figure 4. The code starts by selecting the list
of non-private wishes and projecting out their descriptions
into the list descrs. Next, we query the DB to determine the
list of followers flwUsrs. Finally, we use sendMail containing
the wish decriptions descrs to all the users in flwUsrs.
Enforcement In the first phase notifyFriends accesses sen-
sitive information that should only be made available to a
data-dependent set of users who are, at that point, still to be
determined. However, STORM’s models API tracks this fact by
combining the semantics of the wshQ query with the read policy
associated with Descr to infer that only the followers of user
are allowed access to the results of the first sub-computation
that creates descrs. In the second phase, STORM’s models
API tracks the semantics of the flwQ query to determine that
flws is a set of valid follows-tuples, and hence, that each user
in flwUsrs is a valid follower of user. In the final phase, the
signature for sendMail in STORM’s view API checks that all the
recipients in flwUsrs have the right access, and hence verifies
the controller. If the programmer forgot the Status ==. "ok"

clause, type checking would fail as flws would contain pairs
with pending status, and hence, flwUsrswould contain possible
non-followers outside the set allowed access by the first phase.

3.4 Implicit Flow Control
Next, let’s see how STORM prevents implicit IFC violations in-
volving publicly viewable data that was generated conditioned
upon data the recipient should not be privy to. Recall, from
Figure 2, that each wish has a price that should only be read

notifyFriends user = do
-- Get list of wishes
let wshQ = Owner ==. user &&.

Level <-. ["public","follower"]
wishes <- select wshQ
descrs <- mapM (project Descr) wishes
-- Get list of followers
let flwQ = User1 ==. user &&. Status ==. "ok"
flws <- select flwQ
flwIds <- mapM (project User2) flws
flwUsrs <- select (UserId <-. flwIds)
-- Notify followers
sendMail flwUsrs (show descrs)

Figure 4: A notifyFriends controller. The highlighted code
eliminates the IFC violation of the PublicFollow policy.

usersWithExpensiveWishes min = do
let qry = Price ≥. min &&. Level ==. "public"
wishes <- select qry
users <- mapM (project Owner) wishes
respond (show (nub users))

Figure 5: A usersWithExpensiveWishes controller: The
highlighted code eliminates the implicit flow violating the
PublicFollow policy. The nub function removes duplicates
from a list.

per the PublicFollow policy, i.e., by everyone (if "public"), by
followers (if "follows") or else, only by the owner. The code
in Figure 5 implements a controller that shows the session user
a list of all the users that have a wish whose price exceeds
the min threshold. (For now, ignore the shaded code.) If a
programmer is not careful, they may think this code conforms
to the application’s policy as it returns a list of wish owners
and owner is a publicly viewable column governed by the
default read @Allow policy.

Enforcement However (absent the shaded code) STORM is
unimpressed, as the list of expensive wishes was obtained
by conditioning over the sensitive price column. STORM’s
models API tracks that the qry accesses the Price field, and
infers that the result of the DB computation select qry should
only be observed by users that satisfy the PublicFollow policy.
Thus, when responding to the session user on the last line,
STORM reports an error as it cannot prove that the session
user satisfies the PublicFollow policy. To fix the code we must
restrict the Price comparison to the wishes that the session user
is allowed to access, for example, to all "public" wishes, as
shown by the shaded diff in Figure 5. Now, as detailed in § 5.1,
the type checker uses the models API to track the semantics
of qry to infer that the results of the select computation may
be made available to all viewers, thus verifying that the code
conforms to the application’s centralized policy.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 445

4 Brief Intro to Refinement Types & IFC

STORM is implemented using two foundational blocks:
Refinement types (§ 4.1) and Compositional IFC (§ 4.2).

4.1 Refinement Types
Refinement types let the programmer decorate the source
program’s types with logical assertions from a decidable logic
to specify subsets of values of the decorated type [56, 57]. For
example, the non-negative integers can be specified as

type Nat = {v:Int | 0≤v}

Pre- and Post-Conditions The user can write pre- and
post-conditions for functions by refining the input and output
types of functions. For example, sum adds the integers 0...n

sum :: n:Nat → {v:Nat | n≤v}
sum 0 = 0
sum n = let t = sum (n-1) in n + t

We assign sum a refined function type, comprising an input
type (pre-condition) that says that the function should only
be invoked on non-negative integers, and an output type (post-
condition) that says the result is a non-negative integer lower-
bounded by the input n. Refinement type checking proceeds
be generating a verification condition (VC), a logical formula
whose validity implies the program type checks [9, 39, 58–60].

Bounded Refinements Generic APIs require a means of
abstracting over particular policies and invariants of individual
applications. We do so using bounded refinements [61]
which allow (1) abstracting over the refinements (like
type variables <A ...> abstract over concrete types) and
(2) constraining the refinements with which the variables
can be instantiated (like subtyping bounds <A extends ...>

constrain type instantiation). For example, we can type the
function composition operator compose f g x = f (g x) as

compose :: (Cmp f g r) ⇒ (y:b → {v:c| f (y,v)})
→ (z:a → {v:b|g(z,v)})
→ (x:a → {v:c|r(x,v)})

where Cmp f g r .
= ∀x,y,z. g(x,y)⇒ f (y,z)⇒ r(x,z)

In the above, f , g and r are (abstract) refinement variables. The
specification says that compose takes as input two functions
that respectively map their argument y (resp. z) to an output
v that satisfies the assertion f (y,v) (resp. g(z,v)), and returns
as output a function that maps its input x to a value v that
satisfies the assertion r(x,v). The abstract refinements f , g and
r are related by the refinement bound Cmp f g r which states
that r is the relational composition of f and g. The signature
is generic and precise in that it abstracts over the concrete
post-conditions established by the arguments to compose while
still letting us characterize the semantics of the result. Further,
the (Horn clause) structure of the bound ensures that type

checking remains decidable. Thus, we can use an SMT solver
to automatically verify

sum2 :: n:Nat → {v:Nat | n≤v}
sum2 = compose sum sum

by automatically inferring that the refinement variables f , g,
and r can all be instantiated to the refinement λ n v→n≤v.

4.2 Compositional IFC
Next, we give a high-level overview of the method used by
STORM to enforce IFC in a compositional manner.

Primitive Operations and Computations An application is a
collection of request handlers. Each handler is the sequential
composition of a set of primitive operations that either read
from or write to the database or send results to some users. For
example, consider the handler e14 illustrated in Figure 6 that
is composed from the primitive operations e1,...,e4 as:

e12 = do e1;e2 e34 = do e3;e4 e14 = do e12;e34

Thus e12, e34 and e14 are computations built from primitive
operations using the sequential composition (;) operator.

Authorizees and Observers Each primitive operation either
reads data, e.g., from the database, that only a subset of users,
the authorizees, are allowed to view, or writes data, e.g., to
the network, thus providing it to a subset of recipients, the
observers. For example, suppose that in the handler in Figure 6,
the operations e1 and e2 read sensitive data with authorizees
auth1 and auth2 respectively. Similarly, assume that e3 and
e4 write data to observers obs3 and obs4 respectively.

Information Flow Control requires that whenever some
primitive operation ei reads data that is restricted to authorizees
authi, all subsequent operations e j only write data to observers
obs j that are contained in authi. For example, the handler in
Figure 6 respects the given security policy if

obs3⊆auth1 obs4⊆auth1
obs3⊆auth2 obs4⊆auth2

(1)

To enforce IFC we could expand each handler out into its
sequences of primitive operations and then do the inclusion
checks, e.g., via symbolic execution [14]. Sadly, this approach
runs aground when there is a combinatorial explosion of
paths through the handlers, or with loops or recursion which
generate infinitely many possible computations.

Compositional Enforcement STORM circumvents path ex-
plosion using a two-step compositional approach [42, 44, 62],
where each computation e is typed as 〈auth, obs〉where auth
(resp. obs) under-approximates (resp. over-approximates) the
authorizees (resp. observers) of e. First, STORM assigns the
primitive operations the types

e1 ::〈auth1, /0〉 e3 ::〈 /̄0, obs3〉
e2 ::〈auth2, /0〉 e4 ::〈 /̄0, obs4〉

446 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: A request handler that sequences the primitive
operations e1−e4 with authorizees authi and observers obs j.

where /0 and /̄0 are the empty and universal sets of users.
Next, STORM assigns the ; operator a type that ensures that
whenever we compose two computations e and e′: (a) The
observers of e′ are contained in the authorizees of e, i.e.,
obs′ ⊆ auth (b) The authorizees of e;e′ are the intersection
of those of e and e′, i.e., auth∩auth′, and (c) The observers
of e;e′ are the the union of those of the sub-computations,
i.e., obs∪obs′. The implementations of e12 and e34 yield the
(trivial) constraints /0⊆auth1 and obs4⊆ /̄0, and types

e12 ::〈auth1∩auth2, /0〉 e34 ::〈 /̄0, obs3∪obs4〉

Finally, when we compose e12 and e34 to get the computation
e14 we get the constraint obs3∪obs4 ⊆ auth1∩auth2 which
is equivalent to the IFC constraints (1). Next, let us see how
our implementation represents the authorizees and observers
with refinements and uses a typed API to compute, propagate
and check those sets to enforce centralized security policies.

5 Implementation

We designed STORM to enable compile-time enforcement of
centralized, data-dependent policies without any modification
to the run-time. To achieve these goals, our design requires:
(1) An expressive, data-dependent way to associate DB fields
with the authorizees allowed access to those fields. (2) A way
to connect DB queries with the authorizees allowed access
to the query results. This set of users depends on the data in
the underlying rows, so we also need to characterize the values
of the rows returned by the query. (3) A way to aggregate the
authorizees and observers across computations. (4) A way to
ensure that observers who are provided sensitive data are a
subset of the users authorized by the policy.

STORM achieves the above goals by refining the type
abstractions (API) provided by each MVC layer with logical
assertions that describe the invariants of the data processed by
the operations, and the policies that govern access to that data.
This is tricky as the assertions must simultaneously satisfy
three properties. First, they must be precise to capture the
semantics of the policies and DB operations. Second, they
must be generic to enable reuse across many different web
applications. Third, they must be decidable so applications can
be automatically verified by SMT solvers. Next, we introduce
the three principal data types of the STORM API (Figure 7)
and use them to design a precise, generic and decidable API.

Policies A STORM policy is a binary predicate on a DB
row and user, which we represent as a predicate of type
row → user → Bool. The policy is data dependent as the
predicate can use the row’s values to determine if a user is
authorized. For example, Figure 2 specifies the policy Public
as a predicate on the Wish row and a user. Each policy is
attached to a column of a row specified in the ORM description
in the models file. For example, in Figure 2 we attach the
policy Public to the description column to specify that the
description should only be viewable to users other than the
owner when the row’s access level is "public".

Fields ORM libraries typically represent individual database
columns as their own datatypes. STORM uses the PERSISTENT
library [63] which represents each DB column as a type
Field row valwhere row represents the underlying row (table),
and val represents the value of the column itself. For example,
in the code below, the DB table on the left is translated to the
fields Owner, Descr and Level which respectively represent the
corresponding DB columns as plain program values.

DB Table ORM Fields
Wish
owner UserId Owner :: Field Wish UserId
descr Text Descr :: Field Wish Text
level Text Level :: Field Wish Text
price Int Price :: Field Wish Int

Policies in Fields STORM’s first pillar is a refined Field that
represents policies at the type-level, by parameterizing the
datatype with two abstract refinements (Figure 7):

pol: row→ user→ Bool sel: row→ val→ Bool

The refinement pol is instantiated with the policy attached to
the Field; sel is a selector predicate that provides a type-level
description of the value of the corresponding column. STORM
uses the models file in Figure 2 to automatically generate the
following types for Owner, Descr, Level and Price

Field 〈⊥, λr v → v=r.owner 〉 Wish UserId
Field 〈PublicFollow, λr v → v=r.descr 〉 Wish Text
Field 〈⊥, λr v → v=r.level 〉 Wish Text
Field 〈PublicFollow, λr v → v=r.price〉 Wish Int

Thus, STORM’s refined fields provide a uniform mechanism
to lift data-dependent specifications up into types.

Queries Modern ORMs, going back at least to LINQ [64],
allow the user to use Fields to build queries, e.g., of type
Query row to represent query objects (or ASTs, not the results
themselves) that access the DB table represented by row.
STORM introduces a way to refine the types of the query API
to track, at the type-level, the authorizees of the query results.
As the policies are data-dependent, our API must also track the
values of the rows in the query results. STORM achieves these
goals via the second pillar of its API, a type that represents
each DB Query parameterized by two refinements (Figure 7):

pol: row→ user→ Bool inv: row→ Bool

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 447

data Field 〈 pol: row → user → Bool , sel: row → val → Bool 〉 row val
data Query 〈 pol: row → user → Bool , inv: row → Bool 〉 row
data RIO 〈auth: user → Bool , obs: user → Bool 〉 val

Figure 7: The central types of the STORM API

As with Field, the refinement pol denotes the authorizees for
each row returned by the query. Crucially, our query building
API will ensure that pol intersects the authorizees across all
the columns read by Query, not only those for the particular
fields that are ultimately viewed by the viewers. This allows
STORM to track implicit flows when filtering over sensitive
columns, e.g., in the usersWithExpensiveWishes controllers
from Figure 5. The refinement inv is an assertion that holds
of every row returned by the query. The inv refinement enables
type-level tracking of the query semantics which is essential
for data-dependent policies. For example, the type

Query 〈PublicFollow, λr→r.level=“public”〉 Wish

describes a query on the Wish table, where (1) the query’s
results may only be accessed when the level is "public" or
by the owner’s followers, and (2) each returned row’s level

column has the value "public".
Computations Standard ORMs use a monadic type to
represent computations with side-effects. Haskell’s IO val

describes computations that access the DB, send email or net-
work responses to yield a val value. The last pillar of STORM’s
API is the monadic RIO type that describes handlers and is
parameterized with two refinements that track the authorizees
and observers of the underlying computations (Figure 7):

auth: user→ Bool obs: user→ Bool

STORM ensures that in every RIO 〈auth, obs〉 val computation
(1) auth is an under-approximation of the authorizees of
the data the computation depends upon, and (2) obs is an
over-approximation of the observers to whom the computation
provides data. STORM then prevents leaks by ensuring that
when sub-computations e1 and e2 are sequenced, the observers
of e2 are contained in the authorizees of e1 (§ 3.3).

5.1 Model API
STORM’s models API lets applications compose Fields to
build a Query and then to execute each Query to obtain an RIO

computation that provides access to DB values (Figure 8).
Query Operators Standard ORMs let the programmer write
atomic queries using relational operators that test whether the
value of a column equals (or disequals, exceeds, etc.) some
run-time program value. For example, Level ==. "public"

in Figure 3 denotes a Query that will return all Wish rows
whose Level column is "public". Similarly, Price ≥. min in
Figure 5 is a Query that will return all Wish rows whose price
column exceeds the value of min.

Compile-time enforcement poses three challenges. First,
the constructed Query’s type must track the policy describing
the set of users who are allowed access to the Fields upon
which the query result depends. Second, the constructed
Query’s type must capture the invariant that each row returned
by the query will, in fact, have the corresponding field-value
equal-to "public", or greater than min, etc. Finally, we must
achieve the above in a generic fashion that abstracts over the
underlying DB column, so that the programmer can reuse the
operators like ==. across different tables.
Refined Query Operators We solve the above challenges
with the types for the refined query operators equals (==.)

, not-equals (/=.), less-than (<=.), element-of (<-.) in
Figure 8. For example, the signature for the equality operator
(==.) says that given (1) a Field indexed by a policy and
selector, and (2) a comparison value satisfying a property p,
the operator returns as output a Query with the same policy
as the input Field where the resulting rows are guaranteed
to satisfy the invariant. The crucial equality relationship is
specified by the bound FldEq sel inv p which says that

∀r, fv, v. sel(r, fv) ⇒ p(v) ⇒ fv=v ⇒ inv(r) (2)

Recall that each Field’s sel-ector predicate characterizes the
value of the Field in a given row. That is, sel(r, fv) holds when
the value of the Field in row r is fv. Thus, the bound (2) says
that for any row r, the invariant inv(r) holds whenever the
field’s value fv equals any value v that satisfies p. To get a dif-
ferent comparison, e.g., less-than or disequality, we need only
modify the = relationship in the bound to≤ or 6= respectively.
Query Combinators ORMs let us use combinators to build
complex queries from simpler ones. For example, the query
Level ==. "public" &&. Price ≥. min in Figure 5 returns all
Wish rows whose Level is "public" and Price exceeds min.

Compile-time enforcement requires the combinators’
signatures meet two goals. First, the combined Query’s policy
predicate should be the intersection of the users allowed
access to each sub-query. Second, the combined Query’s
invariant should be the conjunction (for (&&.)) or disjunction
(for (||.)) of the sub-query invariants.
Refined Query Combinators We achieve the above with the
signatures for (&&.) and (||.) in Figure 8. The conjunction
combinator (&&.) takes two input sub-queries of type
Query 〈pol1, inv1〉 row and Query 〈pol2, inv2〉 row respectively,
and returns a Query 〈pol1tpol2, inv〉 row. The output Query’s
policy is the join of the two inputs, i.e., the set of authorized
users is the intersection of those allowed by pol1 and pol2.

448 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(==.) :: (FldEq sel inv p) ⇒ Field 〈pol, sel〉 row val → val 〈 p〉 → Query 〈pol, inv〉 row
where

FldEq sel inv p .
= ∀r, fv,v.sel(r,v)⇒ p(fv)⇒ (fv=v)⇒ inv(r)

(&&.) :: (And inv1 inv2 inv) ⇒ Query 〈pol1, inv1〉 row → Query 〈pol2, inv2〉 row → Query 〈pol1tpol2, inv〉 row
where

pol1tpol2
.
= λr u→ pol1(r,u)∧ pol2(r,u)

And p q r .
= ∀x. p(x)⇒ q(x)⇒ r(x)

select :: (PolAuth pol inv auth) ⇒ Query 〈pol, inv〉 row → RIO 〈auth, >〉 [row 〈 inv〉]
where

PolAuth pol inv auth .
= ∀r,u. inv(r)⇒ auth(u)⇒ pol(r,u)

project :: (PolAuth pol inv auth) ⇒ Field 〈pol, sel〉 row val → row 〈 inv〉 → RIO 〈auth, >〉 val
where

PolAuth pol inv auth .
= ∀r,u. inv(r)⇒ auth(u)⇒ pol(r,u)

join :: (Auth1 sel1 sel2 pol1 inv auth, Auth1 sel1 sel2 polq inv auth, Auth2 sel1 sel2 pol2 inv auth, SelOn sel1 sel2 on) ⇒
Field 〈pol1, sel1〉 row1 val → Field 〈pol2, sel2〉 row2 val → Query 〈polq, inv〉 row1 →
RIO 〈auth, >〉 [(row1 〈 inv〉 , row2) 〈on〉]

where
SelOn sel1 sel2 on .

= ∀r1,r2,v.sel1(r1,v)⇒ sel2(r2,v)⇒ on(r1,r2)
Auth1 sel1 sel2 pol inv auth .

= ∀r1,r2,v,u.sel1(r1,v)⇒ sel2(r2,v)⇒ inv(r1)⇒ auth(u)⇒ pol(r1,u)
Auth2 sel1 sel2 pol inv auth .

= ∀r1,r2,v,u.sel1(r1,v)⇒ sel2(r2,v)⇒ inv(r1)⇒ auth(u)⇒ pol(r2,u)

Figure 8: Selected functions from STORM’s Models (ORM) API

The bound And inv1 inv2 inv states that the output Query’s
invariant is the conjunction of that of the inputs’ inv1 and inv2.

Example: Building Queries Let’s see how STORM’s API
types the query Level ==. "public" &&. Price ≥. min from
Figure 5. First, by composing the respective Field types
for Level and Price with that of the (==.) operator, the type
checker infers the left and right conjuncts have types

Query 〈⊥, λr→r.level=“public”〉 Wish
Query 〈PublicFollow, λr→r.price ≥ min 〉 Wish

which (&&.) combines to type the conjoined query as

Query 〈PublicFollow,λr→r.level=“public” ∧ ...〉 Wish

Selecting Rows Lastly, the API has functions to query the
database. ORMs export a select function that executes a
Query to return a list of matching rows. STORM’s API refines
the type of select to use the Query’s policy and invariant
to determine: (1) the set of users authorized access to the
results, and (2) the invariants of the result itself, as the data
may then be used to generate subsequent queries. To this
end, STORM assigns select the signature in Figure 8, which
says that it takes as input a Query 〈pol, inv〉 row and returns
as output a computation RIO 〈auth, >〉 [row〈inv〉]. That is, the
computation produces a list of rows where each row satisfies
inv. The resulting computation’s observers are the empty set
> .
=λu→ false. However, the computation’s authorizees auth

are defined by the bound PolAuth pol inv auth which says a

user u is authorized to access a row r that satisfies the Query

invariant only when that row and user satisfy the Query policy.

Projecting Fields In standard ORMs, the rows returned by
select are opaque: a project operation must be used to extract
the value of a given column (Field). STORM’s API refines the
type of project to track the authorizees of the extracted value
via the signature in Figure 8, which says that project takes
an input Field 〈pol, sel〉 row val and a row〈inv〉 and returns a
computation RIO 〈auth, >〉 val. Like select the computation
has an empty set of observers (>). Further, the signature
reuses select’s bound to ensure that computations authorizees
auth are contained within those specified by Field’s policy.

Example: Selection and Projection Recall the Query in
Figure 5 which looks for all the public Wish rows whose price
exceeds min. As shown in the previous example, the Query’s
policy and invariant predicates were inferred to be

pol .
=PublicFollow inv .

=λr→r.level=“public” ∧ ...

Thus, at the select the type checker infers the authorizees auth
to be the set of all users, as the invariant implies the policy
predicate. If, as in Figure 5, the Level ==. "public" clause
was absent, the above implication would not hold, yielding
a smaller set of authorizees auth. This would would render
the handler ill-typed, as it (implicitly) leaks the sensitive Price

value to observers outside auth.

Joining Tables ORMs let the user replace inefficient nested
loops over multiple tables with efficient join operations.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 449

STORM provides a join function that tracks (1) the authorizees
of the sensitive data accessed by the query, and (2) the invari-
ants of the resulting rows. STORM’s join accounts for the
policies in both tables via the signature in Figure 8. The type
says that join takes as input the two Fields to join on (the ON

clause) and a Query to filter the results (the WHERE clause), and
returns a list of record pairs that satisfy the Query’s invariant
and the on condition. The on condition is defined by the SelOn
bound which says the condition holds for rows r1 and r2 if their
respective join fields are equal. Further, the resulting compu-
tation’s authorizees auth are defined by the bounds Auth1 and
Auth2 which limits auth to users authorized to view the join
and query fields for the subset of rows selected by the query.

Example: Join Recall the controller in Figure 4 which notifies
the followers of a user after inefficiently computing them
(flwUsrs) with two select queries: one to access the rows of
the Follower table and one to get the corresponding rows of
User. We can efficiently compute flwUsrs with a single join

let joinQ = User1 ==. user &&. Status ==."ok"
flwUsrs <- join User2 UserId joinQ

which returns a list of (Follower, User) pairs whose second
component are user’s followers who can then be notified.

5.2 Controller & View API

Existing ORMs for effect-sensitive languages like Haskell
encapsulate controllers and views in a monadic API to
distinguish effectful DB and network computations from pure
ones. STORM refines the monadic API to track the authorizees
and observers of each controller computation.

Controller API The key element of the controller API is the
monadic bind operator that sequences computations. When c1
and c2 are computations, of type RIO a and RIO b respectively,
the expression bind c1 (λx → c2) is the computation that
runs c1, binds its result of type a to x and then runs c2. In
Haskell and similar languages, sequential blocks

do {x1 <- e1; ... xn <- en; e}

are translated to

bind e1 (λx1 → ... bind en (λxn → e))

STORM’s signature for bind (Figure 9) ensures three prop-
erties of any sequential composition bind c1 (λx → c2).
(Leak-freedom) First, we ensure that c2 does not leak sensitive
information accessed in c1. That is, we ensure that the
observers obs2 of c2 are contained in the authorizees auth1 of
c1, via the bound auth1 v obs2. (Authorizee-strengthening)
Second, the the authorizees of the sequenced computation are
auth1tauth2: the users authorized to access the data read by
both sub-computations. (Observer-weakening) Finally, the
the observers of the sequenced computation are obs1uobs2:
the users who are observers of either sub-computation.

return :: a → RIO 〈⊥, >〉 a

bind :: (auth1vobs2) ⇒
RIO 〈auth1, auth2〉 a →
(a → RIO 〈auth2, obs2〉 b) →
RIO 〈auth1tauth2, obs1uobs2〉 b

where
authvobs .

= ∀u. obs(u)⇒ auth(u)

authUser : RIO 〈⊥, >〉 {u :User|u=sessionUser}
respond : Text→ RIO 〈⊥, λu→u=sessionUser〉 ()
sendMail : [user 〈 p〉] → Text → RIO 〈⊥, p〉 ()

Figure 9: Selections from STORM’s Controller & View APIs

View API STORM’s view API provides a function authUser

whose signature (Figure 9) states that it returns the identity of
the currently authenticated session user. Handlers can use this
function to determine suitable responses to HTTP requests,
e.g., by constructing and executing DB queries using authUser

(§ 3.2). The view API has a respond function whose signature,
shown in Figure 9, specifies that it takes Text or JSON data
and sends it back to the currently authenticated sessionUser.
Recall that the Leak-freedom guarantee provided by the type
of bind ensures that whenever respond is used, the recipient is
authorized to view the data used to construct the corresponding
Text or JSON payload. Unlike previous frameworks which
require potentially unsafe declassification [6], STORM’s view
API includes a way to sendMail responses to lists of users,
where type checking ensures that data is disclosed per the
application’s centralized policy (§ 3.3).

5.3 Policies and Updates

Non-trivial applications require policies that relate rows
across tables. (We found 9/11 of the benchmarks in our
evaluation require policies that span tables § 7.1.) For example,
in the WishList app (§ 3.3) we required that only the owner’s
followers be allowed to read the description of a non-public
Wish. The follower relationship is naturally stored in a separate
Follower table. Hence, we must support policies that say that
access is allowed if there exists a particular row in a different
table. In the case of WishList a user can view a descr for a Wish
when there exists a row in the Follower table whose status

is "ok" that relates the viewer with the Wish owner. The direct
way to specify such a policy is with existentially quantified
refinement predicates, or alternatively to add a relational join
to the set of logical operations. Unfortunately, both of these ap-
proaches take the predicate language out of the efficiently SMT
decidable fragment, thus precluding automatic verification.

Witnessing Existentials with Predicates STORM allows cross-
table policies by using uninterpreted predicates to provide
evidence that certain rows exist in (other) tables. First, the

450 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

policy declares there is a suitable relation without providing
any definition for it. For example, in Figure 2 we declare a
binary follows predicate that holds for a pair of users. Second,
the policy asserts that each record establishes the predicate
holds for the tuple of values in the record. This predicate is
then added as an invariant that holds of every record of the cor-
responding table. For example, in Figure 2 we assert that, e.g.,
OkFollows holds for each Follower record. Consequently, the
type checker assumes that every term of type Follower satisfies
the invariant, and hence, provides concrete evidence that the
follows relationship holds between users in the record’s fields,
if the status is "ok". In this way, STORM lets us specify cross-
table policies, while ensuring refinements stay decidable.

Predicates vs. Updates Predicates are timeless: once the
relationship is established it holds forever. This is problematic,
e.g., if the record is updated or deleted, which would require
us to similarly invalidate those invariants in the code. We
reconcile the tension between timeless predicates and updates
by separating two goals: (1) provide security guarantees
locally within a single controller action, and (2) reflect the
effects of updates and deletions globally across multiple
controller actions. That is, locally, we want that within a single
action, a Alice should be able to view Bob’s wishes only if at
some point during the action the Follower table contained a
tuple (Alice, Bob, "ok"). However, if during an action, Bob
revoked access, e.g., by updating the "ok" to "no", then in
subsequent controller actions we must deny Alice access.

Soundness via Monotonicity and Erasure Our uninterpreted-
predicate method achieves these goals as follows. First, we
impose a syntactic restriction that the predicates appear posi-
tively (i.e., not under a negation). Implicitly, the predicates are
interpreted to be true if they held of any database snapshot dur-
ing the handler action. In other words, the predicates are mono-
tonic: i.e., once established, they continue to hold till the end of
the action. Second, STORM’s compositional design erases the
assertions at the end of each controller action, as each action
is checked in isolation starting with no assertions. That is, the
assertions must be re-established by future actions by querying
the database, ensuring that if one action updates the database,
e.g., to revoke privileges, then accesses will be prevented in
subsequent handler actions. Thus, monotonicity lets us soundly
enforce the policy locally in an action, and erasure lets us prop-
agate the effects of updates globally across actions, essentially
by viewing the predicates as holding per handler action.

6 Verification

We establish the security guarantees of STORM in two steps.
First, we implement a formally verified Labeled IO (LIO)
library [10], whose API ensures that well-typed clients do not
throw dynamic IFC exceptions, i.e., do not leak. Second, we
use our typed LIO library to implement λSTORM, a simplified
reference implementation of the STORM API. (Unlike λSTORM,

the full STORM implementation supports tables with arbitrary
many columns and SQL types, and implements DB queries
using existing ORM libraries backed by SQL databases.) As
well-typed λSTORM applications are well-typed LIO clients,
we are guaranteed they do not leak.
IFC with Labeled Values In LIO, Labels are elements from
a lattice whose partial order v specifies allowed flows [10].
LIO secures data by wrapping it with Labels indicating the
level at which it is visible

data Labeled a = {val: a, lbl: Label}

LIO enforces IFC by maintaining an ambient (or current)
label lc which keeps track of the most sensitive value read
during the computation. The ambient label lc starts at⊥ and is
updated, i.e., monotonically increased using the labels of the
sensitive data accessed during the computation. The system
enforces IFC by blocking any output to a security level below
lc, as this would correspond to an (undesirable) information
flow from a high (e.g., Secret) level to a low (e.g., Public)
level. The undesirable flow is blocked via a dynamic IFC
exception that aborts the computation.
Refined LIO Computations LIO encapsulates secure com-
putations in a monadic interface that systematically creates,
propagates, updates labels to enforce IFC. To this end, LIO
structures computations as label-transformers of type LIO a

which are functions that take as argument the current label
l and returns the updated label l′ and the computation’s result:
a value of type a. λSTORM refines LIO a to implement the
computation type (§ 5) as

type RIO 〈auth, obs〉 a =
{l :Label|lvobs}→({l′ :Label|l′v ltauth}, a)

The precondition requires that obs over-approximates the
observers who are given access by the computation’s ambient
label l. The postcondition ensures that the updated label l′

includes the authorizees for the computation.
Verified RIO API We make the RIO type abstract, and let de-
velopers write secure applications by exposing a monadic API
(bind and return) extended with three operations. (1) label l

v protects a value v by wrapping it with a label l. The operation
enforces IFC by checking that the label l is not below the
ambient label lc. If the check fails, the program aborts with a
(dynamic) IFC error [10]. (2) unlabel lv takes a labeled value
lv of type Labeled a and returns a computation producing the
(unwrapped) a value. unlabel ensures the ambient label is
updated at each sensitive data access by raising the ambient
label to be at least that of lv’s label. (3) downgrade l k lets us
safely unlabel Boolean-valued computations by taking ceiling
label l and a Boolean-valued computation k, and then executes
k at label l, updating the ambient label to lc t l: Crucially, if
the computation k’s label exceeds the ceiling l, then downgrade

returns a default value False. This ensures that the True result
is only observed for computations that safely occur under the
ceiling l. We type the RIO API with refinements that verify

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 451

(a) the λSTORM implementation of the API type-checks, and
(b) well-typed clients do not throw IFC exceptions.
Policies For brevity, in λSTORM we assume the DB stores a
single type Val of primitive values and that each table has
exactly two columns. In λSTORM, a data-dependent policy is
a function that maps DB rows’ Values to Labels that protect
access to each column

type Policy = Val → Val → Label

A Spec declares the policy for a table via one per column

data Spec = {p1 :Policy , p2 :Policy}

Tables A DB Row is a pair of labeled values

data Row = { f1 :Labeled Val , f2 :Labeled Val}

We define a type for Rows that are protected by the Spec s via
the refinement sat s r which states that the row r’s columns
are labeled per s’ policies

type RowS s = {r :Row| sat s r}
where sat s r .

= ∧i∈1,2 s.pi r. f1.val r. f2.val= r. fi.lbl

Thus, we implement database Tables as a package

data Table = {spec : Spec , rows : [RowS spec]}

comprising a policy specification spec, and a collection of
rows protected by labels satisfying spec. Thus, type checking
ensures that every Table contains rows that are protected as
mandated by the Table’s spec.
Verified ORM λSTORM implements the models API (Figure 8)
on top of our refined LIO interface in about 800 lines of code.
We use label and unlabel to respectively implement insert
and project. We implement Query using an algebraic datatype
indexed with predicates that respectively represent the policy,
and invariant associated with the query. Finally, we use
downgrade to implement select, update and join and verify
their correctness with a reference eval function that represents
query semantics at the type-level. We use LIQUIDHASKELL
to verify [65] that λSTORM implements the API, which, coupled
with previously established non-interference results for
LIO [6, 10] proves λSTORM applications do not leak.

7 Evaluation

We evaluate STORM by asking three questions: How expres-
sive is STORM’s policy specification mechanism? (§ 7.1)
What typing burden does STORM’s static verification place
on developers? (§ 7.2) Does STORM reduce the code that
developers need to get right in real applications? (§ 7.3)

7.1 Expressiveness
We evaluate the expressiveness of STORM’s specification
mechanism porting the security policies of nine case studies
spanning four state-of-the-art approaches for centralized

System Benchmark Model Policy

URFLOW secret 8 9
poll 14 16
calendar 15 29
gradebook 18 24
forum 19 34

JACQUELINE conference 42 46
course 32 11
health 79 23

HAILS gitstar 16 21
LWEB bibifi 312 101

Table 1: Expressiveness comparison: Numbers are LOC.

policy enforcement in web applications, summarized in
Table 1: (i) From URFLOW [14] we ported a minimal
application for storing Secrets; a message Forum with
fine-grained access-control; a Calendar app where users share
details of their schedule specifying who may learn details
about it; and an anonymous Poll app where the creator can
draft a poll and later mark it as live; (ii) From HAILS [66]
we ported GitStar, a code hosting web platform inspired by
GitHub; (iii) From JACQUELINE [5] we ported a Conference

manager that supports designation of roles, paper submissions,
assignment of reviews and review submissions; a Course

manager that allows instructors and students to organize
assignments and submissions; a HealthRecord Manager based
on the HIPAA privacy standards; (iv) From LWEB [6] we
ported BIBIFI, a web-site to host the “Build it, Break it, Fix
it” security-oriented programming contest [67].

URFLOW’s specification language is the closest to ours: poli-
cies are specified as declarative SQL queries over the DB state,
instead of STORM’s logical assertions. As such, we found
porting URFLOW policies to STORM to be straightforward.

JACQUELINE uses multi-faceted execution to dynamically
enforce policies specified as boolean functions. We were
able to express all but one policy from the JACQUELINE case
studies. The sole exception was a policy from the Conference

manager where conflicts between PC members and papers
are stored in a PaperPCConflict table. A PC member can only
see the author and the content of a paper if there is no conflict
present in this table. Our specification language does not
support policies that depend on the absence of rows, and we
thus have to express conflicts differently. Like in URFLOW,
policies in STORM are limited to those that can be proven to
hold issuing simple queries to the database, including joins,
but without using more complex features like grouping or
sorting rows, which we leave to future work.

HAILS and LWEB use labels to dynamically enforce
policies. The policies in their case studies directly ported
over to STORM. In many situations we were able to specify
the requirements in a more natural and declarative way.
Specifically, HAILS and LWEB accommodate data-dependent

452 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

policies by querying the database at runtime to associate labels
with meaning derived from the database state. For example, to
even specify the Follow in the wishlist app (§ 3) one needs to
query the database to check a corresponding Follower record
exists. This is a problem. First, they duplicate DB queries as
the data returned by these policy queries is often also relevant
for the application logic. Worse, the queries may leak or fail,
making it hard to reason about policy specification. In LWEB,
such queries are trusted and written outside their declarative
policy specification language. But even when they are not
trusted (e.g., as in HAILS), exceptions in policy specification
code due to failed (or unsafe) queries are hard to debug.

7.2 Effort

We evaluate the burden that STORM’s static typing puts on the
programmer by implementing three case-studies—WishList

(§ 3) and the Course and Conference apps from JACQUELINE.
We pick these because they have a wide range of policies that
were previously thought to only be enforceable dynamically.

WishList (§ 3) allows users to save wishes and browse
those of other users. We implemented a version with the
PublicFollow policy which allows access to others’ wishes
when the wish is public or the user is a follower.

Conference [5] models a conference manager with a blind
review process. Users can be authors of papers or PC members
who write reviews. STORM enforces several policies: only
a PC member should be able to view data that could reveal the
identity of a reviewer; scores or the overall decision should
be viewable by non-PC users only when the PC has made deci-
sions public; even in the public stage, a paper’s reviews should
only be accessible to PC members or the papers’ authors;
some data like a paper’s text should be visible to the PC or
authors, but can be made public if the paper has been accepted.

Course [5] is a course management system with two kinds of
users: students who enroll in courses, receive assignments and
turn in submissions, and instructors who grade submissions
and send final scores. STORM enforces policies like: only the
instructor of the class or the student can view certain data like
the student’s final grade for the class; only the instructor or
the authoring student can access an assignment submission.

Typing Annotations Static enforcement requires program-
mers to write some untrusted (and verified) type annotations.
STORM uses the off-the-shelf LIQUIDHASKELL checker
whose inference engine reduces the typing annotations needed
for verification [68]. Hence, programmers need only annotate
the allows and gives labels for top-level controllers with
assertions describing the access provided by the controller.
Many of these are trivial assertion where the computation
(1) does not read or output sensitive data and may be typed
RIO 〈⊥,>〉 a or (2) is not composed with other sensitive
computations and may be typed RIO 〈>,⊥〉 a. The remainder

express restrictions specified in policies, as exemplified by
the signature for Conference’s getReviews controller:

p:Paper → RIO 〈λv→PcOrAuth(v,p),>〉 [Review]

This says that user v can access the Reviews of p only if v is
on the PC or the decisions have been made and v authored p.
Quantitative Evaluation Table 2 summarizes our quantitative
evaluation of the programmer effort needed for static enforce-
ment. For each case-study, we show (1) the total lines of code
of the application split across the client (where applicable),
server, the DB model, and the policy specification; (2) the typ-
ing annotations required to statically verify that the server code
conforms to the policy; and (3) the time taken to verify the ap-
plication. Overall, our results show the programmer overhead
is modest: 1 line of type (resp. non-trivial type) annotations ev-
ery 19 (resp. 29) lines of code across the three case studies. We
measured verification times using a commodity laptop running
Arch Linux with 16GB of memory and a quad core Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz processor. While the
results show room for improvement the times themselves were
acceptable for interactive development: refinement type check-
ing is modular and the developer focuses on one controller
at a time, for which verification typically takes a few seconds.

7.3 Auditability
The ultimate proof-of-the-pudding is: does STORM reduce
the amount of code the developer has to get right in real
web applications? To answer this question, we built and
deployed two new applications: VOLTRON and DISCO. In
both applications, the code is divided into a browser-based
client written using the VUE.JS framework [69] and a STORM
server that handles and provides sensitive data. The client does
not know anything about the security policies: all enforcement
is done server-side, where the policies are used to statically
restrict how data is provided in response to client requests.
VOLTRON allows instructors to simultaneously view the
progress of multiple groups of students collaborating on
in-class programming exercises. Administrators can create
new classes and assign them an instructor. Instructors can
then enroll students and assign them to groups. Each group
is assigned a hash which gives them access to a text buffer
that is synchronized in real-time using Google’s firebase
service [70], providing collaborative editing. While students
can only access their group’s buffer, instructors can view all
their classes’ buffers. VOLTRON has two essential policies:
(1) only administrators can create classes and only instructors
can enroll students to a class; and (2) a group’s buffer is only
accessible to the group’s members and the class’ instructor.
We deployed VOLTRON for four month in Fall 2020 and
regularly use it in two classes with about 50 and 100 students.
DISCO abbreviates Distant Socialing, an application that
simulates the “hallway track” for facilitating social interaction
in, e.g., a conference or workshop. In DISCO, an organizer

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 453

Application LOC Ver. (s)

Server Models Policy Client Annot.

Conference 644 25 57 - 43 (32) 79
Course 198 24 19 - 5 (1) 20
WishList 334 12 21 - 20 (12) 27
Voltron 756 32 37 1012 29 (17) 44
Disco 859 43 32 4630 43 (16) 120

Total 2851 140 166 5844 125 (72) 290

Table 2: Time (in seconds) to verify each application and
lines taken by Server code, DB Model definitions, Policy
specification code, Client code and typing Annotations.
Non-trivial typing annotations are shown within parentheses.

can set up video chat rooms for attendees to join and talk to
each other. Once logged in, attendees find themselves in the
“Lobby” where they can see other users currently connected
and view their “badges”. Users can choose to “join” a room, in
which case they enter a video chat with the other participants
in that room. Organizers can limit the capacity of rooms and
broadcast announcements to all users. Additionally, attendees
can directly message each other. The majority of DISCO’s
policies correspond to some form of access control—e.g.,
operations like managing rooms and sending invitations are
restricted to organizers, and personal details about individuals
can only be edited by those users. We do, however, enforce
two information flow policies: (1) only the recipient of a direct
message is allowed to see its content; and (2) if a user has their
visibility set to private, only people currently in their room
can see their location.

DISCO was deployed at the Programming Languages Men-
toring Workshop (PLMW) in June 2020 and at the Verification
Mentoring Workshop (VMW) in July 2020. In the latter, we
had about 107 registered users in all and a peak of 55 users
using DISCO simultaneously. The application elicited very pos-
itive responses from users who wrote: “DISCO is great, it has
been fantastic having it as a platform for social interactions at
VMW!”, “In my experience, DISCO worked amazingly well!”,
and “DISCO was among the best parts of VMW this year”.

Quantitative Evaluation Table 2 compares the size of the
policy specification code—that the developer has to get right—
with the rest of the web application: the implementation of the
server, and additionally the JavaScript clients for VOLTRON
and DISCO. We find that for real applications like VOLTRON
and DISCO, which require many controllers to implement the
application functionality, STORM’s policies account for under
4% of the server code, and under 1% if we include the client.

Discussion STORM helped discover an information flow bug in
DISCO that arose due to the subtle interaction of two seemingly
independent features—and would likely have gone unnoticed
otherwise. First, DISCO users can set their visibility to private
and the UI, accordingly, should not reveal to others when they

join a room. Second, each DISCO room has an associated
topic which is protected by a policy that allows users inside the
room to change it. A type error alerted us to a conflict between
these policies. In particular, enforcing the topic policy could
implicitly reveal the location of an invisible user (violating the
first policy). We designed and implemented VOLTRON without
using explicit policies, and only added them afterwards. While
the process of building VOLTRON took several person-months,
the verification process required only minor changes to the
code—including the checks that eliminated the implicit
leak—and was finished in under two days. Our experience
suggests developers informally consider policies when
programming and structure code to facilitate verification.

8 Conclusion & Future Work

We presented the STORM framework for writing MVC-style
web applications with statically enforced, data dependent se-
curity policies. STORM shows how the MVC architecture nat-
urally lends itself to IFC, by centralizing policies as part of the
model and then using a type-refined ORM API to track infor-
mation flow across database queries and handler computations.

The RIO monad is the glue that binds together the different
elements of STORM to precisely track the effects—each
computation’s authorizees and observers—needed to enforce
IFC. In principle, it should be possible to integrate our
approach to any language that supports similar fine-grained
effect tracking. On the flip side, however, a limitation of our
design is that programmers have to structure their controllers
in the restricted RIO monad which limits the effects available
to them. Our evaluation shows how a broad range of effects
(database queries, HTTP requests, emails, random number
generation) can be integrated into the RIO monad which
sufficed to build real web applications. It would be interesting
to investigate how to securely integrate other classes of effects
(e.g., exceptions which are historically leaky).

Another limitation apparent from our models API is that it
takes some toil to extend STORM to support DB operations like
select or join, which restricts the DB queries the developer
can write. In future work, it would be valuable to see how
to support more expressive queries by designing a way to
systematically and automatically refine an ORM library that
supports a large fragment of SQL.

Acknowledgments

Many thanks to the reviewers and Geoff Voelker for providing
excellent feedback on early drafts of this work. We are
especially grateful to our shepherd Jon Howell for spending
hours to help illuminate murky passages in the exposition. This
work was supported by the NSF under grant no. CNS-1514435,
CCF-1943623, CCF-1918573, CCF-1911213, CNS-2048262,
and by generous gifts from Microsoft Research and Cisco.

454 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] T. Bar, “Notifying our developer ecosystem about
a photo api bug,” 2018, https://developers.facebook.
com/blog/post/2018/12/14/notifying-our-developer-
ecosystem-about-a-photo-api-bug/.

[2] The OWASP Foundation, “OWASP Top Ten,” 2020,
https://owasp.org/www-project-top-ten/.

[3] ——, “Top 10 2013,” 2013, https://wiki.owasp.org/
index.php/Top_10_2013-Top_10.

[4] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo, “Hails: Protecting data privacy
in untrusted web applications,” Journal of Computer
Security, vol. 25, 2017.

[5] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama,
C. Flanagan, and S. Chong, “Precise, dynamic informa-
tion flow for database-backed applications,” in PLDI.
New York, NY, USA: ACM, 2016, pp. 631–647.

[6] J. Parker, N. Vazou, and M. Hicks, “Lweb: information
flow security for multi-tier web applications,” PACMPL,
vol. 3, no. POPL, pp. 75:1–75:30, 2019. [Online].
Available: https://doi.org/10.1145/3290388

[7] T. Armerding, “The IoT: Too big (and buggy) to patch?”
2018, https://www.synopsys.com/blogs/software-
security/iot-big-buggy-patch/.

[8] D. Stefan, “LambdaChair policy,” 2014,
https://github.com/deian/lambdachair/blob/master/
LambdaChair/Policy.hs.

[9] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and
S. L. Peyton Jones, “Refinement types for haskell,”
in ICFP, J. Jeuring and M. M. T. Chakravarty,
Eds. ACM, 2014, pp. 269–282. [Online]. Available:
https://doi.org/10.1145/2628136.2628161

[10] D. Stefan, D. Mazières, J. C. Mitchell, and
A. Russo, “Flexible dynamic information flow
control in the presence of exceptions,” J. Funct.
Program., vol. 27, p. e5, 2017. [Online]. Available:
https://doi.org/10.1017/S0956796816000241

[11] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng, “Secure web application via
automatic partitioning,” in SOSP, T. C. Bressoud and
M. F. Kaashoek, Eds. ACM, 2007, pp. 31–44. [Online].
Available: https://doi.org/10.1145/1294261.1294265

[12] B. J. Corcoran, N. Swamy, and M. Hicks, “Cross-tier,
label-based security enforcement for web applications,”
in SIGMOD, 2009, pp. 269–282.

[13] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Improving application security with data flow assertions,”
SOSP, 2009.

[14] A. Chlipala, “Static checking of dynamically-varying
security policies in database-backed applications,” in
OSDI, 2010.

[15] D. A. Schultz and B. Liskov, “IFDB: decentralized
information flow control for databases,” in Eurosys,
Z. Hanzálek, H. Härtig, M. Castro, and M. F. Kaashoek,
Eds. ACM, 2013, pp. 43–56. [Online]. Available:
https://doi.org/10.1145/2465351.2465357

[16] M. Guarnieri, M. Balliu, D. Schoepe, D. Basin,
and A. Sabelfeld, “Information-flow control for
database-backed applications,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS P), 2019,
pp. 79–94.

[17] A. Sabelfeld and A. Myers, “Language-based
information-flow security,” 2003. [Online]. Available:
citeseer.ist.psu.edu/article/sabelfeld03languagebased.
html

[18] A. Sabelfeld and A. Russo, “From dynamic to static
and back: Riding the roller coaster of information-flow
control research,” in International Andrei Ershov Memo-
rial Conference on Perspectives of System Informatics.
Springer, 2009, pp. 352–365.

[19] T. H. Austin, J. Yang, C. Flanagan, and A. Solar-Lezama,
“Faceted execution of policy-agnostic programs,” in
PLAS, 2013.

[20] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley,
and E. Witchel, “Laminar: Practical Fine-grained
Decentralized Information Flow Control,” in PLDI.
ACM, 2009, pp. 63–74.

[21] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett, “All your ifcexception are belong to us,” in
2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 3–17.

[22] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language
for automatically enforcing privacy policies,” 2012.

[23] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo,
and T. Schmitz, “A better facet of dynamic information
flow control,” in Companion Proceedings of the The Web
Conference 2018, 2018, pp. 731–739.

[24] D. Devriese and F. Piessens, “Noninterference through
secure multi-execution,” in 2010 IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 109–124.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 455

https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://owasp.org/www-project-top-ten/
https://wiki.owasp.org/index.php/Top_10_2013-Top_10
https://wiki.owasp.org/index.php/Top_10_2013-Top_10
https://doi.org/10.1145/3290388
https://www.synopsys.com/blogs/software-security/iot-big-buggy-patch/
https://www.synopsys.com/blogs/software-security/iot-big-buggy-patch/
https://github.com/deian/lambdachair/blob/master/LambdaChair/Policy.hs
https://github.com/deian/lambdachair/blob/master/LambdaChair/Policy.hs
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1017/S0956796816000241
https://doi.org/10.1145/1294261.1294265
https://doi.org/10.1145/2465351.2465357
citeseer.ist.psu.edu/article/sabelfeld03languagebased.html
citeseer.ist.psu.edu/article/sabelfeld03languagebased.html

[25] D. Volpano, C. Irvine, and G. Smith, “A sound type
system for secure flow analysis,” Journal of computer
security, vol. 4, no. 2-3, pp. 167–187, 1996.

[26] F. Pottier and V. Simonet, “Information flow inference for
ml,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
2002, pp. 319–330.

[27] N. Broberg, B. van Delft, and D. Sands, “Paragon–
practical programming with information flow control,”
Journal of Computer Security, vol. 25, no. 4-5, pp.
323–365, 2017.

[28] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A
language for enforcing user-defined security policies,”
in 2008 IEEE Symposium on Security and Privacy (sp
2008). IEEE, 2008, pp. 369–383.

[29] D. E. Denning and P. J. Denning, “Certification of pro-
grams for secure information flow,” vol. 20, no. 7, 1977.

[30] A. C. Myers, “JFlow: Practical mostly-static information
flow control,” in POPL, 1999.

[31] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers, “Fabric: a platform for secure distributed
computation and storage,” in SOSP. ACM, 2009.

[32] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing
static and dynamic typing for information-flow control
in haskell,” in ICFP, 2015, pp. 289–301.

[33] V. Rajani and D. Garg, “On the expressiveness and
semantics of information flow types,” Journal of
Computer Security, no. Preprint, pp. 1–28, 2019.

[34] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan,
“From fine-to coarse-grained dynamic information flow
control and back,” Proceedings of the ACM on Program-
ming Languages, vol. 3, no. POPL, pp. 1–31, 2019.

[35] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of
information-flow labels,” in 2013 IEEE 26th Computer
Security Foundations Symposium. IEEE, 2013, pp.
3–17.

[36] L. Lourenço and L. Caires, “Information flow analysis
for valued-indexed data security compartments,” in
Trustworthy Global Computing. Springer, 2014, pp.
180–198.

[37] ——, “Dependent information flow types,” in Pro-
ceedings of the 42nd Symposium on Principles of
Programming Languages. ACM, 2015, pp. 317–328.

[38] N. Swamy, J. Chen, and R. Chugh, “Enforcing stateful
authorization and information flow policies in Fine,” in
ESOP, 2010.

[39] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bharga-
van, and J. Yang, “Secure distributed programming with
value-dependent types,” in ICFP, 2011.

[40] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing
confidentiality and integrity in web applications,” in
USENIX Security, 2007.

[41] E. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. Schneider, “Logical attestation: an
authorization architecture for trustworthy computing,”
in SOSP, 2011, pp. 249–264.

[42] P. Li and S. Zdancewic, “Encoding information flow in
haskell,” in 19th IEEE Computer Security Foundations
Workshop, (CSFW-19 2006), 5-7 July 2006, Venice,
Italy. IEEE Computer Society, 2006, p. 16. [Online].
Available: https://doi.org/10.1109/CSFW.2006.13

[43] D. Schoepe, D. Hedin, and A. Sabelfeld, “Selinq:
tracking information across application-database
boundaries,” in ICFP, J. Jeuring and M. M. T.
Chakravarty, Eds. ACM, 2014, pp. 25–38. [Online].
Available: https://doi.org/10.1145/2628136.2628151

[44] N. Polikarpova, D. Stefan, J. Yang, S. Itzhaky,
T. Hance, and A. Solar-Lezama, “Liquid information
flow control,” Proc. ACM Program. Lang., vol. 4, no.
ICFP, pp. 105:1–105:30, 2020. [Online]. Available:
https://doi.org/10.1145/3408987

[45] M. N. Krohn, “Building secure high-performance web
services with OKWS.” in USENIX Annual Technical
Conference (ATC), General Track, Jun. 2004.

[46] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner,
“Diesel: applying privilege separation to database
access,” in Symposium on Information, Computer and
Communications Security. ACM, 2011, pp. 416–422.

[47] R. Cheng, W. Scott, P. Ellenbogen, J. Howell, and
T. Anderson, “Radiatus: Strong user isolation for
scalable web applications,” University of Washington,
Tech. Rep., 2014.

[48] A. Blankstein and M. J. Freedman, “Automating
isolation and least privilege in web services,” in Security
and Privacy. IEEE, 2014, pp. 133–148.

[49] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn,
A. DeHon, and J. M. Smith, “Breakapp: Automated, flex-
ible application compartmentalization,” in NDSS, 2018.

[50] A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Dr-
uschel, “Qapla: Policy compliance for database-backed
systems,” in USENIX Security Symposium. USENIX,
2017, pp. 1463–1479.

456 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1145/2628136.2628151
https://doi.org/10.1145/3408987

[51] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich,
M. F. Kaashoek, and H. Balakrishnan, “Building web
applications on top of encrypted data using Mylar,” in
NSDI, 2014, pp. 157–172.

[52] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun,
“Verena: End-to-end integrity protection for web
applications,” in 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 2016, pp. 895–913.

[53] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song,
“Shadowcrypt: Encrypted web applications foreveryone,”
in CCS, 2014, pp. 1028–1039.

[54] D. Muthukumaran, D. O’Keeffe, C. Priebe, D. M.
Eyers, B. Shand, and P. R. Pietzuch, “Flowwatcher:
Defending against data disclosure vulnerabilities in web
applications,” in CCS, I. Ray, N. Li, and C. Kruegel,
Eds. ACM, 2015, pp. 603–615. [Online]. Available:
https://doi.org/10.1145/2810103.2813639

[55] F. Wang, R. Ko, and J. Mickens, “Riverbed: Enforcing
user-defined privacy constraints in distributed web
services,” in NSDI. Boston, MA: USENIX, 2019, pp.
615–630.

[56] R. L. Constable and S. F. Smith, “Partial objects in
constructive type theory,” in LICS, 1987.

[57] J. Rushby, S. Owre, and N. Shankar, “Subtypes for speci-
fications: Predicate subtyping in PVS,” IEEE TSE, 1998.

[58] P. Rondon, M. Kawaguchi, and R. Jhala, “Liquid types,”
in PLDI, 2008.

[59] J. Bengtson, K. Bhargavan, C. Fournet, A. Gor-
don, and S. Maffeis, “Refinement types for secure
implementations,” in CSF, 2008.

[60] J. Hamza, N. Voirol, and V. Kuncak, “System FR:
formalized foundations for the stainless verifier,”
PACMPL, vol. 3, no. OOPSLA, pp. 166:1–166:30, 2019.
[Online]. Available: https://doi.org/10.1145/3360592

[61] N. Vazou, A. Bakst, and R. Jhala, “Bounded
refinement types,” in ICFP, K. Fisher and J. H. Reppy,
Eds. ACM, 2015, pp. 48–61. [Online]. Available:
https://doi.org/10.1145/2784731.2784745

[62] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A
core calculus of dependency,” in POPL. ACM, 1999,
pp. 147–160.

[63] M. Snoyman and G. Weber, https://www.yesodweb.com/
book/persistent.

[64] M. Torgersen, “Querying in c#: how language integrated
query (LINQ) works,” in OOPSLA, R. P. Gabriel,
D. F. Bacon, C. V. Lopes, and G. L. S. Jr., Eds.

ACM, 2007, pp. 852–853. [Online]. Available:
https://doi.org/10.1145/1297846.1297922

[65] R. Jhala and N. Lehmann, github.com/storm-
framework/core.

[66] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. C. Mitchell, and A. Russo, “Hails: Protecting
data privacy in untrusted web applications,” in
OSDI, C. Thekkath and A. Vahdat, Eds. USENIX
Association, 2012, pp. 47–60. [Online]. Available:
https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/giffin

[67] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek,
and P. Mardziel, “Build it, break it, fix it: Contesting
secure development,” in CCS, 2016, pp. 690–703.

[68] B. Cosman and R. Jhala, “Local refinement typing,”
Proc. ACM Program. Lang., vol. 1, no. ICFP, Aug. 2017.
[Online]. Available: https://doi.org/10.1145/3110270

[69] “Vue.js: The progressive javascript framework,”
https://vuejs.org/.

[70] “Firebase realtime database,” https://firebase.google.
com/docs/database.

A Artifact Appendix

Abstract

Our artifact contains (a snapshot of) the source code for the
implementation of STORM from § 5, the formally verified refer-
ence implementation λSTORM described in § 6), the various poli-
cies, case-studies and applications used in our evaluation § 7.

Scope

The artifact provides a way to reproduce the results in the
paper. First, we provide examples of how a programmer might
write insecure code that fails to respect particular policies,
as described in Section 3 and show how those mistakes are
caught by refinement type checking. Next, the code shows
how STORM is implemented on top of existing ORM and
networking libraries as described in § 5. Further, the artifact
contains the verified reference implementation of λSTORM

from Section 6 which shows how the API can be implemented
on top of an LIO interface. Finally, addition, to the source
code described above we include the various scripts used to
compile the applications and measure the verification time
and code annotation overheads that we report in Section 7.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 457

https://doi.org/10.1145/2810103.2813639
https://doi.org/10.1145/3360592
https://doi.org/10.1145/2784731.2784745
https://www.yesodweb.com/book/persistent
https://www.yesodweb.com/book/persistent
https://doi.org/10.1145/1297846.1297922
github.com/storm-framework/core
github.com/storm-framework/core
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/giffin
https://doi.org/10.1145/3110270
https://vuejs.org/
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database

Contents

The artifact comprises the following sub-directories and files:
storm-core—the source for the verified reference implemen-
tation λSTORM (§ 6); models—the ported policies from the
expressiveness benchmarks (§ 7.1); case-studies—the source
for the ported case-studies (§ 7.2); disco and voltron—the
source for the end-to-end applications (§ 7.3); and fig9.py—
the script used to generate Table 2. Each sub-directory contains
a manifest file that links to the github commits for STORM and
LIQUIDHASKELL that are needed to compile the application.

Hosting

You can obtain the artifact from github by run-
ning git clone --recursive on the repository
https://github.com/storm-framework/artifact It suf-
fices to use the main branch, specifically, commit 3

eb138ab5145e688504eff71c669c6570701e10b.

Requirements

You can run the artifact on any machine computer running
Linux or MacOS after installing the following software. The
artifact requires python 3.7 and the following dependencies.
(1) stack v2.5.1 which can be installed by following these
instructions1; (2) z3 v4.8.8 which can be installed by
downloading the binary 2. You can ignore the shared libraries
and bindings for Java and Python; just download and place a
suitable z3 binary somewhere in your PATH. (3) tokei v12.1.2

which is used to count lines of code 3. Familiarity with the
stack build system for Haskell would be useful to evaluate
the artifact but it is not necessary.

λSTORM Implementation (§ 6)

Directory storm-core has the source for the verified ref-
erence implementation λSTORM from § 6. To verify, run
cd storm-core && stack build.

Policies (§ 7.1)

The code in models/ contains the policies ported to evaluate
expressiveness as described in § 7.1. This directory does not
contain verifiable code, only the ported models files. The
models files are grouped by the original tool they were taken
from, e.g., the models file for the Calendar application in
URFLOW is in models/src/UrWeb/Calendar/Model.storm.

1https://docs.haskellstack.org/en/stable/README
2https://github.com/Z3Prover/z3/releases/tag/z3-4.8.8
3https://github.com/XAMPPRocky/tokei#installation

Case Studies (§ 7.2)
The case studies used to evaluate the burden STORM puts on
programmers as described in § 7.2 are in case-studies. There
is a stack project for each case study.

Verify the Code To verify one of the case studies go
to the corresponding directory and build the project.
For example, to verify the WishList application run
cd case-studies/wishlist && stack build.

Breaking the Code To check how STORM catches leaks open
case-studies/wishlist/src/Controllers/Wish.hs. The func-
tion getWishData at line 156 extracts the information out of a Wish.
The query between lines 164 and 171 checks if the viewer is friends
with the owner of the wish. Remove the check frienshipStatus
==. "accepted" from the query, i.e., the query should look like:

friends <- selectFirst
(friendshipUser1 ' ==. owner &&:

friendshipUser2 ' ==. viewerId)

Then verify by running stack build. Forgetting to check if the
friendship is "accepted" causes a leak as the viewer may not be
friends with the Wish owner, yielding an error:

|
173 | level == "friends" →

| project wishDescription ' wish
| ^^^^^^^^^^^^^^^^

Automation Evaluation (Fig 2)
To produce the count of lines of code in 2 run python3 fig9.py

Application: Disco (§ 7.3)

Verify the Code To verify Disco’s server code is leak free run
cd disco/server && stack build

Break the Code Open the file disco/server/src/Controllers
/Room. The function updateTopic on line 36 implements the
functionality that allows a user to update a room’s topic. If not done
carefully, this operation may produce a subtle information flow bug
as described in the discussion of § 7.3. Line 42 checks that the user’s
visibility is set to "public" and only then allows them to update the
topic. Update lines 42 to 50 to

Just roomId → do
UpdateTopicReq {..} <- decodeBody
validateTopic updateTopicReqTopic
_ <- updateWhere

(roomId ' ==. roomId)
(roomTopic ' `assign ` updateTopicReqTopic)

room <- selectFirstOr notFoundJSON
(roomId ' ==. roomId)

roomData <- extractRoomData room
respondJSON status200 roomData

Nothing → respondError status403 Nothing

and run stack build. Forgetting to check if the visibility is set to
public produces an error when accessing the user’s current room as
the information may be leaked. You should see:

458 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://docs.haskellstack.org/en/stable/README
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.8
https://github.com/XAMPPRocky/tokei#installation

**** LIQUID: UNSAFE ***********************
src/Controllers/Room.hs :39:23: error:
...

|
39 | userRoom <- project userRoom ' viewer

| ^^^^^^^^^

Application: Voltron (§ 7.3)

Verify the Code You can verify the code by cd voltron/server
&& stack build

Break the Code Open the file voltron/server/src/Controllers
/Class.hs The function addRoster at line 102 implements the
functionality to enroll a list of students to a class. This operation is
restricted to instructors of the class which is checked by the query
in lines 109 and 110. Removing the clause classInstructor' ==.
instrId so the query reads:

cls <- selectFirstOr
(errorResponse status403 Nothing)
(className ' ==. rosterClass)

produces an error as the user does not have enough permissions:

**** LIQUID: UNSAFE ************************
src/Controllers/Class.hs :113:19: error:
...

|
113| mapT (addGroup clsId) (rosterGroups r)

| ^^^^^

src/Controllers/Class.hs :114:19: error:
...

|
114| mapT (addEnroll clsId) (rosterEnrolls r)

| ^^^^^

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 459

Horcrux: Automatic JavaScript Parallelism for Resource-Efficient Web Computation
Shaghayegh Mardani1, Ayush Goel2, Ronny Ko3, Harsha V. Madhyastha2, Ravi Netravali4

1UCLA, 2University of Michigan, 3Harvard University, 4Princeton University

Abstract
Web pages today commonly include large amounts of

JavaScript code in order to offer users a dynamic experience.
These scripts often make pages slow to load, partly due to a
fundamental inefficiency in how browsers process JavaScript
content: browsers make it easy for web developers to reason
about page state by serially executing all scripts on any frame
in a page, but as a result, fail to leverage the multiple CPU
cores that are readily available even on low-end phones.

In this paper, we show how to address this inefficiency
without requiring pages to be rewritten or browsers to be
modified. The key to our solution, Horcrux, is to account
for the non-determinism intrinsic to web page loads and
the constraints placed by the browser’s API for parallelism.
Horcrux-compliant web servers perform offline analysis of
all the JavaScript code on any frame they serve to conserva-
tively identify, for every JavaScript function, the union of the
page state that the function could access across all loads of
that page. Horcrux’s JavaScript scheduler then uses this in-
formation to judiciously parallelize JavaScript execution on
the client-side so that the end-state is identical to that of a se-
rial execution, while minimizing coordination and offloading
overheads. Across a wide range of pages, phones, and mo-
bile networks covering web workloads in both developed and
emerging regions, Horcrux reduces median browser compu-
tation delays by 31-44% and page load times by 18-37%.

1 INTRODUCTION

Despite accounting for over half of all global web traf-
fic [28, 30, 76], mobile browsing in the wild continues to
operate far slower than what users can endure [17, 18, 34],
with page loads often taking upwards of 10 seconds [14, 79].
Since users are more likely to abandon pages that are slow to
load [39], the current sub-optimal state of mobile web per-
formance negatively impacts not only user experience, but
also the revenue of content providers [31].

A key contributor to slow page loads on mobile devices
is the computation that browsers must perform to load a
page [85, 62, 64, 22], most of which is accounted for by the
execution of JavaScript code (§2). Numerous solutions have
attempted to reduce the amount of necessary client-side com-
putation, either by requiring developers to manually rewrite
pages [37] or by having clients offload page load computa-
tions to more powerful servers [68, 67, 71, 13, 64, 32]. How-
ever, solutions of the former class come at the expense of
manual effort and page functionality, while those in the latter

class are largely unviable in practice (§7). Offloading to prox-
ies [68, 67, 71] is infeasible in today’s HTTPS-by-default
web, while systems [64] in which origin servers return post-
processed pages that elide computations risk compromising
correctness since servers lack visibility into client-side state
(e.g., localStorage) that can affect control flow in a page load.

We pursue an alternative and complementary approach:
instead of attempting to reduce the amount of computation
that web clients must perform, we seek to execute the neces-
sary computation on client devices more efficiently. In partic-
ular, we observe that there exists a fundamental inefficiency
in the computation model that browsers employ (§2). To
simplify page development, JavaScript execution is single-
threaded [65, 64], and worse, JavaScript and rendering tasks
are forced to share a single “main” thread per frame in a
page [38]. Consequently, browsers are unable to take advan-
tage of the growing number of CPU cores available on popu-
lar phones in both developed and emerging regions [24, 25].
This inefficiency will only worsen as, due to energy con-
straints, increased core counts have become the main source
of compute resource improvements on phones [77, 35].

A natural solution to this inefficiency is to parallelize
JavaScript computations across a device’s available cores.
Browsers have included support for pages to spin up paral-
lel JavaScript computation threads in the form of Web Work-
ers [55, 2] for over 8 years now. Yet, only a handful of the top
1,000 sites use Workers on their landing pages, largely due to
the challenges of writing efficient, concurrent code [15, 45].
These challenges manifest in two ways for the web.

• Determining which JavaScript executions on a page frame
can be safely parallelized requires a precise understanding
of the page state accessed by every script, due to the lan-
guage’s lack of synchronization mechanisms (e.g., locks).
Placing the onus of this task on web developers [53, 6]
is impractical, while reliance on browsers to speculatively
make parallelism decisions [21, 56] is inefficient (§6.3).

• How to efficiently execute scripts in parallel is also not
straightforward due to the restrictions that browsers im-
pose on Workers. In particular, they cannot access a page’s
JavaScript heap or DOM tree, and coordinating with the
main thread, which has these privileges, adds overheads.

Our goal is to automatically parallelize JavaScript compu-
tations for legacy pages on unmodified browsers, thereby ad-
dressing the cognitive and operational overheads involved in
explicitly making parallelism decisions. Our solution, Hor-
crux, achieves these goals by employing a judicious split

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 461

between clients and servers, hence preserving HTTPS’ end-
to-end content integrity and privacy guarantees [67]. Servers
perform the heavy lifting of finding parallelism opportunities
and embed that information in their pages. Clients then run
a JavaScript scheduler that efficiently manages parallelism
using runtime information that servers lack, i.e., number of
available threads, control flows taken in the current load.
Three primary insights guide our design of Horcrux.

First, we ensure that any introduced parallelism preserves
the final page state that developers expected when they wrote
the page. For this, Horcrux forces computations that exhibit
state dependencies (e.g., a read-write dependency on a global
variable) to run serially in an order that matches the legacy
load, while allowing other computations to run in parallel.
Key to enabling this is Horcrux’s offline use of concolic exe-
cution [48, 36, 80] on servers to explore all possible control
flows on a page and identify all state that each JavaScript
function might access, irrespective of how client-side nonde-
terminism could affect any particular load.

Second, Horcrux minimizes client-side coordination over-
heads by carefully partitioning responsibilities between the
main browser thread and the Web Workers it spawns. Hor-
crux reserves the main thread for coordinating Worker of-
floads, managing global page state, and running DOM com-
putations (which Workers cannot); all other computations are
offloaded. This yields two benefits. First, scripts typically in-
terleave computations that can and cannot be offloaded; Hor-
crux maximally parallelizes the former while carefully me-
diating the latter. Second, by keeping the main thread largely
idle, Horcrux quickly adapts the parallelization schedule to
the runtimes of JavaScript computations, offloading the next
computation as soon as a Worker becomes available.

Third, the granularity at which Horcrux parallelizes
JavaScript execution is crucial with respect to overheads and
potential parallelism. A natural solution would be to offload
the invocations of JavaScript functions, which account for
94% of JavaScript source code. However, the sheer number
of invocations in a typical page load makes this too costly. In-
stead, we observe that functions are typically invoked hierar-
chically (i.e., nested functions), with significant state sharing
within a hierarchy, but less across them. Therefore, Horcrux
offloads at the granularity of root function invocations, or
the root of each hierarchy along with its nested constituents.
Compared to per-function offloading, this requires 4× fewer
offloads while achieving 73% of the potential speedup.

We evaluated Horcrux using over 650 diverse pages, live
mobile networks (LTE and WiFi), and three phones, that col-
lectively represent browsing scenarios in both developed and
emerging regions. Our experiments across these conditions
reveal that Horcrux reduces median browser computation de-
lays by 31-44% (0.9-1.5 secs), which translates to page load
time and Speed Index speedups of 18-29% and 24-37%, re-
spectively. Further, Horcrux’s median benefits are 1.3-2.1×

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5
Page Load Time (s)

C
D

F

Developed, SI
Developed, PLT
Emerging, SI
Emerging, PLT

10.0

Figure 1: Load times often exceed user tolerance levels (3 sec-
onds) even when all network delays are removed.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
(JavaScript execution time)/(Total compute time)

C
D

F

Developed
Emerging

1.00

Figure 2: JavaScript’s role in browser computation delays.

larger than prior compute-focused web accelerators, and 1.4-
2.1× more than (complementary) network optimizations.

Taken together, our results highlight that, despite being
written for a serial browser computation model, existing
pages are surprisingly ripe with parallelization opportunities.
Horcrux shows how such opportunities can be exploited un-
der the hood, without having developers manually rewrite
their pages. Source code and datasets for Horcrux are avail-
able at https://github.com/ShaghayeghMrdn/horcrux-osdi21.

2 MOTIVATION AND BACKGROUND

Numerous studies have reported that client-side (browser)
computation is a significant contributor to poor mobile web
performance [85, 62, 79, 64]. We reproduce this finding
below (§2.1), present measurements to elucidate why such
delays are so pronounced (§2.1), and trace the origins for
this poor performance to the computation model used by
browsers today (§2.2). Our experimental setup (§6.1) covers
web workloads in both developed and emerging markets by
considering popular pages in the US and Pakistan and load-
ing those pages on common phones in each region. Pages in
the emerging region generally involve less JavaScript code,
but are loaded on phones with fewer compute resources.

2.1 Web Computation Delays
Computation delays are significant. To quantify the com-
putation delays in page loads, we replayed each page locally,
without any network emulation, i.e., all object fetches took
≈ 0 ms. As shown in Figure 1, even without network delays,
popular pages in developed and emerging markets have me-
dian load times of 2.7 and 3.8 seconds, respectively. Worse,
48% and 63% of pages require more than the 3 second load

462 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ShaghayeghMrdn/horcrux-osdi21

0.0

2.5

5.0

7.5

10.0

1 2 3 4 5 6 7 8
Number of Enabled Cores

Pa
ge

 L
oa

d
Ti

m
e

(s
)

Region: Developed Emerging

Figure 3: Additional CPU cores have minimal impact on load
times. The developed and emerging region phones have 8 and 4
cores. Bars list medians, with error bars for 25-75th percentiles.

times that users tolerate [3]. These intolerable delays per-
sist with metrics evaluating page visibility (i.e., Speed In-
dex [40]), with 39% and 52% of pages in the developed and
emerging regions taking more than 3 seconds to fully render.

JavaScript execution is the main culprit. To break down
these high computation delays, we analyzed data from the
browser’s in-built profiler which lists the time spent perform-
ing various browser tasks including JavaScript execution,
HTML parsing, rendering, and so on. Figure 2 illustrates our
finding that JavaScript computation is the primary contrib-
utor, accounting for 52% and 58% of overall computation
time for the median page in the two settings.

Browsers make poor use of CPU cores. Computation re-
sources on mobile phones have globally increased in recent
years, with improvements in both CPU clock speeds and total
CPU cores. However, due to the energy constraints on mo-
bile devices, increased core counts have been (and likely will
continue to be) the primary source of improvements [77, 35].
For example, since their inception in 2016, Google’s Pixel
smartphones (our developed region phone) have improved
clock speeds from 1.88 GHz to 2.15 GHz, while doubling
the number of CPU cores (from 4 to 8). Similarly, the pop-
ular Redmi A series in India and Pakistan [4] (our emerging
market phone) observed the same doubling in CPU cores (2
to 4) during that time period, while seeing only a modest
clock speed improvement from 1.4 GHz to 1.75 GHz.

Unfortunately, although browsers can automatically bene-
fit from clock speed improvements, we find that they fail to
leverage available cores. To illustrate this, we iteratively dis-
abled CPU cores on the phones in each setting and observed
the impact on page load times. As shown in Figure 3, ad-
ditional CPU cores yield minimal load time improvements,
e.g., going from 1 to 8 cores on the Pixel 3 resulted in only a
8% speedup for the median page.

2.2 Browser Computation Model
To determine the origin of these computation inefficiencies,
we must consider the computation model that browsers use
today. Our discussion will be based on the Chromium frame-
work [38], which powers the Chrome, Brave, Opera, and
Edge browsers that account for 70% of the global market

Internal	code	
(e.g.,	interpreter)

Network

GUI

Storage
JavaScript	Heap

O
perating	System

JavaScript	Engine

Renderer	Process

Browser	Process

Main	
thread

Web	Workers

Internal	code
(e.g.,	HTML	parser,	layout	engine)

Rendering	Engine
C++	Heap	and	DOM	tree

DOM	interface

Figure 4: Computation model for Chromium browsers.

share [8, 5]. Figure 4 depicts Chromium’s multi-process ar-
chitecture. We focus on the renderer process which houses
the Rendering and JavaScript engines, and thus embeds the
core functionality for parsing and rendering pages.

The Rendering engine parses HTML code, issues fetches
for referenced files (e.g., CSS, JavaScript, images), applies
CSS styles, and renders content to the screen. During the
HTML parse, the rendering engine builds a native represen-
tation of the HTML tree called the DOM tree, which con-
tains a node per HTML tag. As the DOM tree is updated,
the rendering engine recomputes a layout tree specifying on-
screen positions for page content, and issues the correspond-
ing paint updates to the browser process.

The JavaScript engine is responsible for parsing and in-
terpreting JavaScript code specified in HTML <script>
tags, either as inline code or referenced external files. Dur-
ing the page load, the JavaScript engine maintains a managed
heap which stores both custom, page-defined JavaScript state
and native JavaScript objects (e.g., Dates and RegExps).
JavaScript code can initiate network fetches via the browser
process (e.g., using XMLHttpRequests), and can also ac-
cess the rendering engine’s DOM tree (to update the UI)
using the DOM interface. The DOM interface provides na-
tive methods for adding/removing nodes and altering node
attributes; DOM nodes accessed via these methods are rep-
resented as native objects on the JavaScript heap.

The problem: single-threaded execution. JavaScript ex-
ecution is single-threaded and non-preemptive [65, 64].
Worse, within a renderer process, all tasks across the two
engines are coordinated to run on a single thread, called the
main thread.1 This lack of parallelism largely explains the
poor use of CPU cores in §2.1. A primary reason for this
suboptimal computation model is that the JavaScript lan-
guage and DOM data structure (shared between the two en-
gines) lack synchronization mechanisms (e.g., locks) to en-
able safe concurrency. Adding thread safety is feasible, but
browsers have continually opted for a serial-access model
to simplify page development. Browsers do create a separate
renderer process per cross-domain iframe in a page (as per

1Some Chromium implementations move final-stage rendering tasks to
raster/composite threads that create bitmaps of tiles to paint to the screen.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 463

Original	HTML
Signature	Generator

Concolic
execution	
engine

Headless	
browser

Original	Objects	
in	Frame

Dynamic	
Instrumentation	

Rewriter

HTML	
JavaScript

JavaScript	to	
execute

Concrete	inputs
Final	Frame	
Generator

Web	Server

Unmodified	
Browser

HTTP(S)	
request

JS	Scheduler
Function	
signatures

Function	
signatures

Instrumented	
frame

Figure 5: Overview of the generation and fetch of each frame’s top-level HTML file with Horcrux. Offline, servers collect a frame’s
files (both local and third-party), generate comprehensive state access signatures for each JavaScript function, and embed that infor-
mation in their pages. Parallelism decisions are made online by unmodified client browsers using the Horcrux JavaScript scheduler,
which manages computation offloads to Web Workers and maintains the page’s JavaScript heap and DOM tree.

of Cores % Speedup in Total JavaScript Runtime
2 cores 54%
4 cores 79%
8 cores 88%

Table 1: Potential parallelism speedups with varying numbers
of cores. Results list median speedups in total time to run all
JavaScript computations per page in the developed region.

the Same-origin content sharing policy [7]). However, for the
median page in the Alexa top 10,000, the top-level frame ac-
counts for 100% of JavaScript execution delays.

In summary, despite benefits regarding simplified page
development, the single-threaded execution model that
browsers impose results in significant underutilization of
mobile device CPU cores, inflated computation delays, and
degraded page load times. We expect this negative interac-
tion to persist (and worsen) moving forward given the steady
and unrelenting increase in the number of JavaScript bytes
included in mobile web pages, e.g., there has been a 680%
increase over the last 10 years [44].

3 OVERVIEW

Given the results in §2, a natural solution to alleviate client-
side computation delays in mobile page loads is to paral-
lelize JavaScript execution across a device’s available CPU
cores. However, not all workloads are amenable to parallel
execution. In particular, we face the restriction that any in-
troduced parallelism should preserve the page load behavior
(and the final page state) that developers expected when writ-
ing their legacy pages—we call this property safety.

3.1 Potential Benefits
To estimate the potential benefits of parallelism with legacy
pages, we analyzed the JavaScript code for each page in our
corpus; in this section, we focus on page loads representa-
tive of those in developed regions, and we show later in §6
that similar benefits are achievable for page loads in emerg-
ing markets. Since JavaScript functions account for 94% of
the JavaScript source code on the median page, our analysis

operates at the granularity of functions, i.e., when splitting
computations on a page across CPU cores, all code within a
function runs sequentially on the same core. For complete-
ness, we convert all code outside of functions into anony-
mous functions. For each function, we recorded both its run-
time in a single load, as well as all accesses that it made to
page state (in the JavaScript heap or DOM tree, as described
below) in that load; §4.1.1 details the data collection process.

Using these logs, we estimated an upper bound on paral-
lelism benefits by maximally packing function invocations to
available cores and recording the resulting end-to-end com-
putation times. To ensure safety (defined above), our analy-
sis respects two constraints: 1) functions can run in parallel
if they access disjoint subsets of page state or only read the
same state, and 2) functions that exhibit state dependencies
(i.e., access the same state and at least one writes to that state)
execute in an order matching that in the legacy page load.

As shown in Table 1, legacy pages are highly amenable to
safely reaping parallelism speedups. For example, distribut-
ing computation across 4 cores could bring a 75% reduction
in the total time required to complete all JavaScript computa-
tions on the median page. These resources are now common
in both developed and emerging markets [24].

3.2 Goals and Approach
To realize these benefits in practice, we seek an approach that
minimizes the bar to adoption. As a result, requiring develop-
ers to rewrite pages [53] is a non-starter, given the complexi-
ties involved in manually reasoning about the impact of con-
currently running portions of the JavaScript code on a page.
Moreover, approaches that only require changes to browsers
would either have to speculatively parallelize code [21, 56]
or perform client-side analysis of JavaScript code (akin to the
analysis that informed our estimated benefits above). As we
show in §6.3, the overheads imposed by either strategy make
them untenable, especially on energy-constrained phones.

Therefore, we pursue an approach which can safely par-
allelize JavaScript execution on legacy web pages with un-
modified browsers. As shown in Figure 5, our solution, Hor-

464 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Delay type 0.5 KB 1 KB 100 KB 1 MB
Startup 128 ms 155 ms 237 ms 317 ms

Value I/O 0 ms 1 ms 1 ms 7 ms
Table 2: Web Worker overheads for different sizes of state
transfers, i.e., source code size for startup delays and JavaScript
object size for I/O delays.

crux, only necessitates server-side changes that do not re-
quire developer participation to rewrite pages. Web servers
perform the expensive task of tracking the state accessed (in
the JavaScript heap or DOM tree) by every JavaScript func-
tion in a page frame, and include this information in that
frame in the form of per-function signatures. Servers also
embed a JavaScript (JS) scheduler library in the frames they
serve, which enables unmodified client browsers to perform
the cheap task of managing parallelism using function sig-
natures obtained from servers. Dynamically determining the
parallelization schedule at the client helps Horcrux account
for information only available at runtime, e.g., the number of
available threads and the control flows in the current load.

3.3 Challenges
The key building block in Horcrux is the widespread sup-
port in browsers for the Web Workers API [55], which al-
lows the JavaScript engine to employ additional computation
threads (Figure 4), as specified by a page’s source code. Us-
ing Web Workers to parallelize JavaScript execution, how-
ever, presents numerous challenges that complicate achiev-
ing the idealistic parallelism benefits from above.

1. Ensuring correctness. Determining what JavaScript
code can be safely offloaded requires a comprehensive
understanding of how that code will access JavaScript
heap and DOM state in the current page load. This,
in turn, depends on the traversed control flows, which
can vary due to both client-side (e.g., Math.Random)
and server-side (e.g., cookies) sources of nondetermin-
ism in JavaScript execution [59]. Missed state accesses
can lead to dependency violations and broken pages.

2. Constrained API. Web Workers impose restricted
computation models in two ways. First, due to the lack
of synchronization mechanisms in JavaScript, Workers
cannot access the JavaScript heap, and instead can only
operate on values explicitly passed in by the browser’s
main thread (via postMessages). Thus, offloading
computations to a Worker requires knowledge of pre-
cisely what state is required for those computations.
Workers must then communicate computation results
back to the main thread, which applies the results to the
heap. Second, regardless of the state passed in, Workers
cannot perform any DOM computations, including in-
vocations of native DOM methods or operations on live
DOM nodes referenced in the heap. We note that Work-

ers can spawn and manage other Workers, but still must
rely on the main thread for access to any global state.

3. Offloading costs. Lastly, operating Web Workers is not
free. Instead, as shown in Table 2, spinning up a Web
Worker can take over 100 ms, even for small amounts of
source code being passed in. Pass-by-value I/O adds an
additional several milliseconds, depending on the size
of the transferred state. Moreover, JavaScript execution
is non-preemptive; so, Workers that finish their tasks
may go idle for long durations if the thread responsi-
ble for assigning them more tasks is busy.

We posit that, it is for these reasons that only a handful of
the Alexa top 1,000 pages use Workers, despite support by
commodity browsers for over 8 years. We next describe how
Horcrux overcomes these issues to automatically parallelize
JavaScript execution for legacy pages.

4 DESIGN

In designing Horcrux, we primarily need to answer two ques-
tions: 1) how to determine which JavaScript functions on a
page can be executed in parallel without compromising cor-
rectness?, and 2) how to realize parallel execution at low
overhead despite constraints placed by the browser’s API?
We present our solutions to these issues by separately de-
scribing server-side and client-side operation in Horcrux. Ta-
ble 3 summarizes the main techniques underlying our design.

4.1 Server-side Operation
The goal of Horcrux’s server-side component is to annotate
page frames with per-function signatures that list the state
that each function might access. Operating at a frame level,
rather than at the granularity of entire pages, is in accordance
with the browser’s content sharing model [7, 64]. As in prior
web optimizations that involve page alterations [63, 64, 54],
Horcrux assumes access to a frame’s source files. These files
can be quickly collected either using a headless browser2 or
via integration into content management systems (for local
files) [27, 89]. Source file collection and signature genera-
tion is retriggered based on hooks that many content man-
agement systems fire any time a (local) file-altering change
is pushed [27, 89, 47, 54], e.g., for A/B testing; we discuss
third-party content changes and personalization in §4.2.2.

4.1.1 Generating signatures
Since web servers cannot precisely predict the control flows
that will arise in any particular page load (e.g., due to client-
side nondeterminism), each function’s signature must con-
servatively list all possible state accesses for that function.
For this reason, we cannot directly apply recent web depen-
dency tracking tools [63, 64] that rely purely on dynamic
analysis to track data flows in a given page load. At the
same time, pure static analysis approaches are ill-suited for
JavaScript’s dynamic typing, use of blackbox browser APIs,

2A headless browser performs all of the tasks that a normal browser
performs during a page load except those that involve a GUI.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 465

Goal Techniques Section
Ensure For each function, use concolic execution to identify union of the state it accesses across all control flows §4.1.1
correctness Adapt offloading schedule during a page load to account for control flow in current load §4.2.2
Account for
API

Main browser thread centrally manages global page state, coordinates offloads, and performs unoffloadable
(DOM) computations

§4.2.1,
§4.2.3

restrictions Intercept any Web Worker’s DOM tree accesses and relay to the main thread §4.2.3
Use function signatures to determine what heap values to pass-by-value from main thread to workers and back §4.2.3

Minimize Offline server-side generation of per-function signatures §4.1.1
overheads Offload at the granularity of root functions §4.1.2

Dynamically determine offloading schedule based on function runtimes in current page load §4.2.1

Table 3: Overview of the main insights that Horcrux uses to address the challenges outlined in §3.

and event-driven/asynchronous execution [75, 52]. For ex-
ample, static analysis of variable name resolution is compli-
cated by JavaScript statements that push objects to the front
of the scope resolution chain (with(obj){}), or dynam-
ically generate code (eval()). Similar issues arise from
JavaScript’s extensive use of variable aliasing for DOM ob-
jects, and the fact that property names are routinely accessed
via dynamically-generated strings instead of static ones.

Thus, we turn to concolic execution [36, 80, 48], a vari-
ant of symbolic execution that executes programs concretely
(rather than symbolically) while ensuring complete cover-
age of all control paths. A concolic execution engine loads
a program with a concrete set of input values and observes
its execution; §5 describes the inputs we consider, including
browser state (e.g., cookies, screen size) and nondeterminis-
tic functions. Each input value and program-generated value
is also given a symbolic expression constrained only by its
type. For example, an input integer a may get a concrete
value of 10 and an expression of 0 ≤ a ≤ 232 − 1; sym-
bolic expressions for a given variable are inherited by oth-
ers via assignment statements. At each branch condition, the
execution follows the appropriate path based on the current
program state. In addition, the engine restricts the symbolic
expressions for the values that influenced the chosen path ac-
cording to the branching predicate. Once the program com-
pletes, the engine performs a backwards scan through the
executed code, selects branching decisions to invert, and in-
verts the relevant symbolic expressions; an SMT solver [26]
then generates concrete input values that satisfy the new con-
straints. This process repeats until all paths are explored.

Note that, for efficiency, many recent symbolic execution
tools opt for a form of concolic execution, rather than a
purely symoblic approach [20]. More specifically, concolic
execution engines consult the expensive constraint solver
only at the end of each path (rather than at intermediate
branches), and eliminate the need to accurately model each
input source to a program (and the ensuing traversal of paths
that arise due to modeling errors).

To generate function signatures, in addition to the default
output of a concolic execution engine – a list of potential
control paths, with a concrete set of inputs to force each
one – we must also log the state accessed by each path. To

do this, prior to concolic execution, Horcrux instruments the
JavaScript source code to log all accesses to state in both the
JavaScript heap and DOM tree; our instrumentation matches
recent dynamic analysis tools [63, 66, 64], but with the fol-
lowing differences based on our parallelism use case.

• First, we care not just about the state that remains at the
end of the page load [64], but also any state accessible by
multiple functions during a page load. Hence, in addition
to global heap objects, Horcrux tracks all accesses to clo-
sure state: non-global state that is defined by a function
X and is accessible by all nested functions that execute in
X’s enclosed scope (anytime during the page load) [57].

• Since signatures will ultimately be used for pass-by-value
offloading to Workers, only the finest granularity of ac-
cesses are logged. For instance, if object a’s “foo” prop-
erty is read, Horcrux would log a read to a.foo, not a.

• For the DOM tree, Horcrux adopts a coarser approach than
prior work. Instead of logging reads and writes to individ-
ual nodes in the DOM tree, Horcrux only logs whether a
function accesses any live DOM nodes, either via DOM
methods or references on the heap, and if so, whether they
are reads or writes. Tracking at the coarse granularity of
accesses to the entire DOM tree is conservative with re-
spect to parallelism. However, finer-grained tracking is not
beneficial because, as we explain later, our design has the
browser’s main thread serialize all DOM operations.

4.1.2 Signature granularity
Ideally, to limit client-side bookkeeping overheads, signa-
tures should match the granularity at which computation is
offloaded. However, determining the appropriate offloading
granularity is challenging. On the one hand, fine-grained of-
floading reduces the chance that offloadable computations
access shared state, thereby improving the potential paral-
lelism and use of available Workers. On the other hand, finer
granularities imply increased coordination overheads.

To address this tradeoff, Horcrux generates signatures
(and offloads computation) at the granularity of root function
invocations, i.e., invocations made directly from the global
JavaScript scope. The signature for each root function invo-
cation includes the state accessed not only by that function,

466 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

but also by any nested functions that are invoked in the call
chain until the global scope is reached again.

Root function signatures are desirable for two reasons.
First, they leverage our finding that functions already ac-
count for 94% of JavaScript code on the median page (§3)
and thus provide a natural granularity for offloading; as in
§3, Horcrux servers wrap all JavaScript code outside of any
function into anonymous functions. Second, and more im-
portantly, root functions impose far smaller offloading over-
heads compared to finer-grained function-level offloading,
while enabling comparable parallelism benefits: the number
of offloads drops by 4×, while the median potential benefits
remain within 27% of those in Table 1. The reason is that
there often exists significant state sharing within the invoca-
tions for a given root function (and its nested components),
but less so across root functions, enabling parallelism.

4.2 Client-side Operation
Even with function signatures, a server cannot precompute a
parallel execution schedule because the precise control flow,
and hence, the set of functions executed and their runtimes,
will vary across loads. Instead, Horcrux employs a client-
side JavaScript computation scheduling library that unmodi-
fied browsers can run to dynamically make parallelism deci-
sions based on signatures and the aforementioned runtime in-
formation. The key challenges are in efficiently ensuring cor-
rectness while offloading to multiple Workers, and handling
the fact that signatures may be missing for certain functions.
We next discuss how Horcrux addresses these challenges.

4.2.1 Dynamic scheduling
To load a page frame, any unmodified browser first down-
loads the top-level HTML, whose initial tag is an inline
<script> housing Horcrux’s scheduler library and all root
function signatures. The scheduler runs on the browser’s
main thread and begins by asynchronously creating a pool
of uninitialized Workers. This helps hide the primary over-
head of spawning Workers amongst unavoidable delays for
parsing initial HTML tags and fetching files they reference.

The scheduler then operates entirely in event-driven mode,
whereby it waits for incoming postmessages specifying com-
putations to perform or those that have completed, and makes
subsequent offloading decisions. Importantly, to keep the
main thread as idle as possible, the scheduler offloads all
computations that Web Workers can support, and is primar-
ily responsible for managing Workers and maintaining the
page’s global JavaScript heap and DOM state. This helps
adapt the parallelization schedule within any page load to
the runtimes of every root function in that load. The reason
is that the main thread will be available to quickly assign a
new function invocation (if one exists) to any worker that
completes executing the function previously assigned to it.

Once the scheduler is defined, the browser operates
normally, recursively fetching and evaluating referenced
HTML, JavaScript, CSS, and image files. However, all

JavaScript function invocations are modified to pass through
the scheduler for offloading. More specifically, each root
function is rewritten such that, upon invocation, the function
sends a post message to the scheduler specifying its original
source code and that of any nested functions. Special care is
taken for asynchronous functions (e.g., timers) whose invo-
cations are regulated by the browser’s internal event queue
which the scheduler does not have access to. To ensure visi-
bility to such functions, the downloaded page includes shims
around registration mechanisms for asynchronous functions,
e.g., setTimeout(). Each shim modifies registered func-
tions to send messages to the scheduler upon invocation.

Each time a root function is invoked, the scheduler uses
its signature to determine whether or not it can be immedi-
ately offloaded. If not, the function is stored in an in-memory
queue of ordered, to-be-invoked functions along with its sig-
nature. Functions are not offloadable if there are no available
Workers, or if they might access state that is being modified
by an already-offloaded or queued function. Note that func-
tions that may access the DOM can be offloaded in parallel;
we will discuss how to ensure safety in these cases shortly.

Regardless of the decision for a given invocation, the
browser continues its execution. At first glance, it may ap-
pear that continuation after a queued invocation may gener-
ate errors since the queued function could alter the set of
downstream invocations. However, recall that Horcrux of-
floads at the granularity of root functions—any nested invo-
cations are already offloaded, and the ordering of root func-
tions is mostly predefined by the page’s source code. There
are two exceptions. First, a function can alter downstream
source code using document.write(); to handle this,
the scheduler synchronously offloads such functions, thereby
blocking downstream execution. Second, a root function can
register an asynchronous function with a 0-ms timer—such
functions are intended to run immediately after the current
invocation. For this, the root signature includes state accesses
for the 0-ms timeout functions they define. Once the root
function is discovered, the scheduler adds a placeholder for
the timeout function to its queue, thereby blocking down-
stream invocations that share state with the timeout function.

4.2.2 Handling Missing Signatures
We have assumed so far that the HTML file of every page
frame includes accurate signatures for all JavaScript func-
tions executed in that frame. This may not always hold.

• Stale signatures. A frame can include JavaScript content
from multiple origins, and to preserve HTTPS content in-
tegrity and security [67], Horcrux has each origin serve its
own files directly to clients. A third-party origin may up-
date a script without explicitly informing the top-level ori-
gin to regenerate signatures. We expect this to be rare for
two reasons. First, JavaScript files often have long cache
lives (median of 1 day in our corpus), indicating infrequent
changes. Second, scripts in a frame can share state [7].

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 467

Thus, even today, if a third-party origin significantly alters
a script it serves, this should be communicated to other
origins to avoid unexpected or broken behavior.

• Dynamically-generated or personalized scripts.
JavaScript files may be created or personalized in
response to user requests [54], e.g., based on Cook-
ies. Unfortunately, generating signatures during client
page loads would be far too slow. To handle this, for
dynamically-generated or personalized first-party content,
Horcrux could perform concolic execution on server-side
content generation logic to determine the execution paths
for all variants of a given response (§5). Third-party
content of this type may result in missing signatures
since the top-level origin does not have access to a user’s
third-party Cookies (or personalized content). However,
many browsers preclude third-party Cookies in frames to
prevent the tracking of users across sites [23].

• Timeouts of concolic execution. Given infinite time, con-
colic execution is guaranteed to explore all possible
JavaScript execution paths in a page [36, 80]. However,
the process may timeout, either during the execution of a
given path (if the SMT solver cannot invert a branch con-
dition), or less likely, due to a time bound placed on overall
signature generation. Regardless of the reason, the effect is
a potentially missing or incomplete signature. Such time-
outs did not arise (i.e., concolic execution completed) for
any pages in our experiments (§6.1). However, in the event
that concolic execution does not complete, Horcrux could
detect such timeouts prior to serving content to clients,
and could thus address the corresponding missing signa-
tures (described below) or revert to a normal page load.

Horcrux accounts for missing or inaccurate signatures in
two ways. First, any underexplored function X is assigned a
signature of *, indicating that X may access all page state.
This overconstrains the client’s load, but ensures correct-
ness: the client will execute X serially, and will also serialize
downstream functions since X might alter the state they ac-
cess. Second, signatures are keyed by a hash of the function’s
source code. Invocations without matching signatures are as-
signed signatures of * by Horcrux’s client-side scheduler.

4.2.3 Function Offloading and Execution
Lastly, we discuss the mechanics of how every function invo-
cation that is offloaded by the Horcrux scheduler is executed
in a Web Worker. Figure 6 illustrates this process.

For each offloadable function, the scheduler uses its sig-
nature to generate a JSON package listing the information
that the Worker will require for execution, i.e., the source
code (including nested functions) and the current values for
the function’s read state. The source code is modified such
that, upon completion, values in the write state are gathered
and sent to the main thread (as execution results). In addi-
tion, closure values in the read state are embedded into the
corresponding function’s source code. Upon reception, the

Main	browser	thread Worker

Select	function1

Horcrux Scheduler

Get	signature2

Obtain	read
state	from	heap

3

Offload	computation4

Initialize	read state5

Execute	function6

Intercept	DOM	
access

7Mediate	DOM	access8

Collect	write state9
Apply	write state
to	heap

10

x =	`foo’	
y={a:	3}

x	=	`bar’
z	=	7	

Horcrux State

Page	State

Functions	to	invoke

Signatures

JavaScript	
heap

DOM	tree

•Function
•Signature
•Read	state

Figure 6: A single function offload with Horcrux.

post message handler inside the Worker sets up the read state
in the Worker’s global scope via assignment statements, and
runs the code using the browser’s Function constructor.

For the most part, functions execute normally, with
JavaScript heap accesses hitting in the Worker’s global
scope, or for nested functions, in the scope of their parents–
recall that Horcrux offloads entire root functions so nesting
relationships are preserved. However, the key difference is
with respect to DOM accesses: workers cannot call native
DOM methods or operate on live DOM nodes referenced
in the heap (§3.2). To handle this, all DOM computations
are mediated by the scheduler and are serially applied to the
live DOM tree. To intercept DOM computations, Horcrux
includes shims around all DOM methods in each Worker en-
vironment; returned DOM nodes are replaced with proxy ob-
jects to interpose on direct accesses. Each intercepted DOM
access blocks execution in the Worker, and is sent to the
scheduler where it is queued; blocking is enforced using
JavaScript generator functions [58].

The scheduler grants readers-writer locks to each Worker
that may need to access the DOM tree (as per their signa-
tures). Locks are granted in the order that the scheduler re-
ceives function invocations; note that this may not match
the order in which functions are offloaded, but it preserves
the relative ordering of DOM updates seen in a normal page
load. As a concrete example, consider a function a that reads
from the DOM, and a later function b that writes to the
DOM. b may attempt to access the DOM first (e.g., if it
is offloaded earlier or its DOM access occurs early in the
function), but the scheduler will block it and wait to grant
the lock to a first. Workers release DOM locks at the end of
their execution. In essence, root functions that only read from
the DOM tree can run in parallel, although their constituent
DOM accesses are serialized on the browser’s main thread.
Root functions that write to the DOM are run serially with
respect to other DOM-accessing root functions (to match the
relative ordering of DOM updates in an unmodified load); for
context, only 7.4% of the root functions on the median page
in our corpus involve DOM writes, mitigating the effects of
such serialization. Importantly, locking is done at the gran-
ularity of entire root invocations because the scheduler does
not definitively know whether a given function will access

468 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the DOM in the current load (and if so, how many times);
signatures only list that a DOM access may occur.

Once a function completes execution, the Web Worker
sends its computation results (i.e., its write state) to the
scheduler. The Worker then clears any state in its scope in
order to be ready for the next offload. Upon receiving com-
putation results, the scheduler applies the writes to the global
JavaScript heap; recall that DOM writes have already been
made. One subtlety here is with respect to scope, and closure
state in particular. The scheduler can access and apply com-
putation results to the global scope’s heap. However, root
functions can also modify shared closure variables which are
not accessible from the global scope (§4.1). For such writes,
the scheduler maintains a global hash map listing the lat-
est closure values. This map is updated as Workers complete
computations, and is also queried to obtain read values when
offloading; note that correctness is ensured because all of-
floads and computation results pass through the scheduler.

Finally, once the scheduler applies computation results to
the JavaScript heap, it scans through its queue of ordered,
to-be-executed functions and offloads the next one that can
safely run. Given the serialization of DOM computations de-
scribed above, if a function that writes to the DOM is queued,
the scheduler prioritizes queued functions that do not access
the DOM (and thus won’t incur locking delays).

4.3 Discussion
Key to Horcrux’s operation is the decision to maximally of-
fload and parallelize JavaScript computations at the granular-
ity of root functions. Recall that this decision was motivated
by our analysis of the JavaScript computation on the pages in
our experimental corpus (§3.1 and §4.2), which revealed that
root function offloading favorably balances client-side over-
heads (e.g., pass-by-value I/O, main thread responsiveness)
with the achievable speedups from parallelization.

However, these decisions may not deliver the largest
speedups for certain pages. For example, root function-level
offloading might be too restrictive and forego significant par-
allelism benefits, e.g., if a root function includes two nested
functions that access entirely disjoint state but both involve
significant runtime. Similarly, the root functions for cer-
tain pages could each embed only a single nested function,
thereby inflating offloading costs relative to parallelization
speedups, and potentially harming overall performance.

Although we did not observe these behaviors for any of
the pages in our experiments (§6), we note that developers
could perform analyses similar to the one presented in §3.1
to determine whether automatic parallelization of JavaScript
code is desirable for (i.e., can speed up) their pages, and if
so, what the best offloading granularity is. Importantly, these
analyses do not require further instrumentation of web pages,
and instead can directly leverage Horcrux’s signatures, the
per-function runtimes reported by in-built browser profilers,
and the relatively stable offloading costs reported in Table 2.

5 IMPLEMENTATION

Horcrux instruments JavaScript source code to generate sig-
natures and prepare frames using Beautiful Soup [78], Es-
prima [43], and Estraverse [84]. To employ concolic exe-
cution, we use a modified version of Oblique [48], which
runs atop a headless version of Google Chrome (v85) and
the ExpoSE JavaScript concolic execution engine [50]. Our
Oblique implementation considers inputs specified by HTTP
headers (e.g., Cookie, User-Agent, Origin, Host), the device
(e.g., screen coordinates), and built-in browser APIs includ-
ing nondeterministic functions [59] (e.g., Math.Random)
and DOM methods. Input values suggested by the SMT
solver are fed into the page load via either 1) rewritten HTTP
headers, or 2) shims for browser APIs.

We grant Oblique a maximum of 10 mins to consider a
given execution path, and 45 mins to explore all paths for a
given page; we find that these time values are sufficient to en-
sure that concolic execution completes for all of the pages in
our experimental corpora (§6.1). Signatures from each load
are sent to a dedicated analysis server for aggregation. Since
our current implementation operates directly on downloaded
page source code and not live web backends (§6.1), Horcrux
eschews Oblique’s ability to perform concolic execution on
server-side application logic. In total, Horcrux’s implemen-
tation involves 5.6k LOC in addition to Oblique, including
4.5k for dynamic tracing (both static instrumentation and
runtime tracking) and 1.1k for client-side scheduling.
Overheads. On the client-side, Horcrux inflates page sizes
by 13 KB at the median (when using Brotli compres-
sion [41]). The scheduler accounts for 3 KB of that.

6 EVALUATION

We empirically evaluate Horcrux across a wide range of real
pages, live mobile networks, and phones from both devel-
oped and emerging markets. Our key findings are:
• Horcrux reduces median browser computation delays by

31-44% (0.9-1.5 secs), which translates to page load time
and Speed Index improvements of 18-29% and 24-37%.
Improvements grow with warm browser caches (§6.2).

• Horcrux delivers larger speedups than prior web optimiza-
tions that 1) reduce required computations (by 1.7-2.1×),
2) speculatively parallelize computations (by 1.3-1.6×),
and 3) mask network round trips (by 1.4-2.1×); Horcrux
is complementary to network optimizations and running
them together lowers load times by 31-45% (§6.3).

• Although the median page has 12 possible execution
paths, Horcrux’s reliance on conservative signatures (for
correctness) only foregoes 7-10% of speedups compared
to using signatures that target a specific load (§6.4).

• Horcrux is highly amenable to partial deployment: bene-
fits are within 2% of total adoption when only a page’s
top-level origin runs Horcrux. Benefits persist for person-
alized pages and desktop settings (§6.5).

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 469

6.1 Methodology
We evaluated Horcrux in two different scenarios:

• Developed regions. We consider 700 US pages, randomly
selected from and equally distributed amongst the follow-
ing sources: popular landing pages from the Alexa [12]
and Tranco [49] top 1000 lists, popular interior pages from
the Hispar 100,000 list [16], and less popular pages (land-
ing and interior) from the 0.5 million-site DMOZ direc-
tory [1]. Thus, our corpus involves diversity in terms of
both page popularity and location within a website (i.e.,
landing vs. interior). From this set, we report results for
the 582 pages that our current implementation could gen-
erate accurate signatures for. More specifically, we re-
moved pages for the following reasons: 1) inaccurate sig-
natures due to unsupported language features, which led
to premature JavaScript termination (92) or rendering de-
fects (22), and 2) unsupported features with Oblique (4).
For all of the remaining pages, Horcrux’s concolic execu-
tion and overall signature generation completes, the total
JavaScript runtime with Horcrux falls within a standard
deviation of that in default loads, and the final rendered
page is unchanged. Our experiments consider two pow-
erful phones, a Pixel 3 (Android Pie; 2.0 GHz octa-core
processor; 4 GB RAM) and a Galaxy Note 8 (Android
Oreo; 2.4 GHz octa-core; 6 GB RAM). For space, we only
present results for the Pixel 3, but note comparable results
with the Galaxy Note 8.

• Emerging regions. Web experiences in emerging regions
often comprise different page compositions and devices
than those considered above [24, 10, 11, 90]. To mimic
such scenarios, we focus on a single emerging region: Pak-
istan. We consider a corpus of 100 landing and interior
pages (50 each) selected from the Alexa Top 500 sites in
Pakistan. Our evaluation uses the Redmi 6A phone (An-
droid Oreo; 2.0 GHz quad-core processor; 2 GB RAM)
that is popular in the region [4]. As per the same correct-
ness checks as above, we report numbers on 91 pages.

Unless otherwise noted, page loads were run with Google
Chrome for Android (v85). Mobile-optimized (including
AMP [37]) pages were always used when available.

To create a reproducible test environment, and because
Horcrux involves page rewriting, we use the Mahimahi web
record-and-replay tool [68]. Emerging regions pages were
recorded using a VPN to mimic a client in Pakistan. As
described in §4, Horcrux’s signature generation and page
rewriting were performed offline. To replay pages, we hosted
the Mahimahi replay environment on a desktop machine.
Our phones were connected to the desktop via USB tethering
and live Verizon LTE and WiFi networks with strong signal
strength; LTE speeds for emerging regions experiments were
throttled to Pakistan’s 7 Mbps average [70]. We used Light-
house [42] to initiate page loads via the USB connection, and
all page load traffic traversed the wireless networks.

0

20

40

60

80

Developed Emerging

%
 Im

pr
ov

em
en

t
in

 T
C

T

Network: WiFi LTE

Figure 7: Cold cache TCT improvements over default page
loads. Bars list medians, with error bars for 25-75th percentiles.

0.00

0.25

0.50

0.75

1.00

0 25 50 75
% Improvement

C
D

F

LTE, PLT
LTE, SI
WiFi, PLT
WiFi, SI

100

(a) Developed region.

0.00

0.25

0.50

0.75

1.00

0 25 50 75
% Improvement

C
D

F

LTE, PLT
LTE, SI
WiFi, PLT
WiFi, SI

100

(b) Emerging region.

Figure 8: Distributions of cold cache per-page improvements
with Horcrux vs. default page loads.

We evaluated Horcrux on multiple web performance met-
rics: 1) Total Computation Time (TCT), or the critical path
of time spent parsing/executing source files and rendering
the page, 2) Page Load Time (PLT) measured as the time
between the navigationStart and onload JavaScript
events, and 3) Speed Index (SI) [40] which captures the time
required to progressively render the pixels in the initial view-
port to their final form. TCT and PLT are measured using the
browser profiler, while SI was reported by Lighthouse. In all
experiments, we load each page three times with each system
under test, rotating amongst them in a round robin; we report
numbers per system from the load with the median TCT.

6.2 Page Load Speedups
Cold cache. Figure 7 illustrates Horcrux’s ability to reduce
browser computation delays compared to default page loads.
TCT reductions were 41% (1.0 sec) and 44% (1.5 sec) for the
median page in the developed and emerging region’s WiFi
settings, respectively. Improvements were 34% and 31%
with LTE. Figure 8 shows how these computation speedups
translate into faster end-to-end (i.e., including network de-
lays) loads. For example, on WiFi, median improvements in
the developed region setting were 27% for PLT and 35% for
SI. Despite the lower CPU clock speeds, these numbers only
marginally increase to 29% and 37% in the emerging region.
Further improvements were hindered primarily by the lower
number of available cores (and thus ability to parallelize).
Benefits with Horcrux on LTE were comparable, but consis-
tently lower than with WiFi. For example, in the developed
region, PLT and SI speedups were 22% and 29%. The rea-
son is that network delays (which Horcrux does not improve)
account for larger fractions of end-to-end load times on LTE.

470 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

20

40

60

80

Developed
(b2b)

Developed
(24hrs)

Emerging
(b2b)

Emerging
(24hrs)

%
 Im

pr
ov

em
en

t Metric: TCT SI PLT

Figure 9: Warm cache speedups over default page loads on
LTE. Bars list medians, with error bars for 25-75th percentiles.

0

20

40

60

80

Developed
(LTE)

Developed
(WiFi)

Emerging
(LTE)

Emerging
(WiFi)

%
 Im

pr
ov

em
en

t
in

 P
LT

Vroom Horcrux Vroom+Horcrux

Figure 10: Horcrux vs. Vroom [79] over LTE networks. Bars
list medians, with error bars for 25-75th percentiles.

Warm cache. Figure 9 shows Horcrux’s speedups in dif-
ferent browser caching scenarios. We consider back-to-back
page loads, as well as those separated by 12 and 24 hours.
As shown, Horcrux’s improvements grow as browsers house
more objects in their caches. For example, in the back-to-
back scenario, PLT and SI improvements in the developed
region’s LTE setting were 35% and 44%; for context, these
improvements were 22% and 29% with cold caches. Im-
provements drop to 27% and 39% in the 24-hour warm cache
scenario. The reason is that more cache hits lead to lower net-
work delays and computation dominating end-to-end perfor-
mance. In addition, cache hits enable browsers to begin pro-
cessing JavaScript files earlier. This, in turn, provides Hor-
crux’s scheduler with more invocation options at any time,
thereby increasing the amount of potential parallelism.

6.3 Comparison to State-of-the-Art

Network optimizations. We first considered Vroom [79],
a system in which web servers intelligently use HTTP/2’s
server push and preload features to aid clients in discover-
ing (and downloading) required files ahead of time. Thus,
Vroom is primarily a network-focused optimization. How-
ever, key to Vroom’s benefits is the improved CPU utiliza-
tion that results from eliminating blocking network fetches.

As shown in Figure 10, Horcrux delivers larger speedups
than Vroom. For example, in the developed region, median
PLT speedups with Horcrux are 2.1× and 1.3× higher than
Vroom’s on WiFi and LTE, respectively. In the LTE setting,
Vroom delivers larger PLT speedups for 9% of pages. The
reason is that network delays play a larger role in end-to-end
load times for these pages, either due to less computation
or more required network fetches. This drops to 1% and 3%
when we move to the developed region’s WiFi network or the
emerging market’s LTE network; in both cases, compute be-

System Developed Emerging
Horcrux 1.63 (1.98) 2.15 (2.37)

Prepack [32] 2.19 (2.47) 2.82 (3.36)
Speculative parallelization 2.01 (2.28) 2.50 (3.07)

Table 4: Comparing Horcrux with prior compute optimiza-
tions. Results are for WiFi networks and list median (75th) per-
centile TCTs in seconds.

comes more of a determinant of overall delays. Importantly,
Figure 10 also confirms that Horcrux and Vroom are largely
complementary to one another, with the combined systems
outperforming each in isolation.
Reducing required computations. Prepack [32] is a server-
side system that reduces the amount of JavaScript com-
putation that clients must perform to load pages. To do
this, Prepack performs static analysis on a page’s JavaScript
code, identifies expressions whose results are statically com-
putable, and replaces those expressions with equivalent but
simpler versions that remove intermediate computations. Im-
portantly, computations involving client-side or nondeter-
ministic state are unmodified; this helps Prepack preserve
page behavior and correctness, unlike other computation re-
duction systems (§7). As shown in Table 4, Horcrux is more
effective at reducing computation delays than Prepack: me-
dian TCTs are 26% and 24% lower with Horcrux in the de-
veloped and emerging regions, respectively.
Speculative parallelism. Prior efforts to increase paral-
lelism in page loads (§7) primarily rely on speculative de-
cisions about what can run in parallel, and runtime checks
to detect (and revert from) dependency violations. Although
these systems do not target all JavaScript execution, we con-
sidered a baseline that employs a similar parallelism strategy
for JavaScript computation. Our baseline opportunistically
parallelizes all root function invocations, and uses JavaScript
proxy objects to track state accesses in each Worker. Any
parallelized computations that share state are discarded, and
the corresponding functions are rerun serially on the main
browser thread. As shown in Table 4, Horcrux delivers su-
perior median TCT values that are 14-19% lower across the
two regions. The reason is twofold. First, proxy-based track-
ing to ensure correctness adds 10% overhead to JavaScript
runtimes. Second, any speculation errors result in serial exe-
cution on the main thread and wasted computation (and thus,
more overall computation). Using the setup in §6.5, we ob-
serve that this wasted computation inflates mobile device en-
ergy consumption by 9% for the median page on WiFi.

6.4 Understanding Horcrux’s Benefits

Dissecting Horcrux’s speedups. We analyzed Horcrux’s be-
havior (and improvements) along three different axes. We fo-
cus on the developed region, but note that the trends hold for
the emerging region setting. First, as expected, Horcrux’s im-
provements are larger for pages that require more computa-
tion to load. For instance, with WiFi, median PLT improve-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 471

ments with Horcrux were 35% for pages with more than 3
seconds of computation time, as compared to 23% for pages
that did not meet that criteria. This divide carries over to dif-
ferent page types as well: improvements were 15% higher for
interior pages than landing pages. The reason is that interior
pages often involve more computation [16, 64].

Second, within each load, we investigated the degree of
parallelism that Horcrux achieves for JavaScript computa-
tion. For the median page, when loaded over WiFi, Horcrux
reaches a maximum of 6 concurrent Web Workers; this drops
to 4 on LTE due to the aforementioned network delays lim-
iting the scheduler’s parallelism options.

Third, in addition to JavaScript parallelization, Horcrux
reduces TCT by freeing the browser’s main thread for ren-
dering tasks. To understand the contribution of each source to
Horcrux’s speedups, we analyzed the browser’s computation
profiler. Overall, we find that both sources provide substan-
tial benefits. For instance, on WiFi, Horcrux shrinks effective
JavaScript computation times by a median of 42% (557 ms),
and decreases end-to-end rendering delays by 36% (465 ms).

Server-side overheads. Signature generation took 33 min-
utes for the median page, and involved two primary over-
heads: the median page involved exploring 12 different ex-
ecution paths via concolic execution, and our dynamic in-
strumentation (incurred in each load) inflated load times by
44%. These non-negligible delays are why Horcrux performs
comprehensive signature generation offline, on servers. To
understand how often servers have to incur these overheads,
we recorded a random set of 50 pages from our emerging re-
gion’s corpus every 12 hours for 1 week. The median page’s
signatures remained unchanged for the entire duration, in
part due to Horcrux’s coarse-grained DOM tracking which
is unaffected by changes to HTML state (e.g., headlines).

Cost of conservative signatures. Horcrux relies on conser-
vative signatures that list the state accesses across all possible
control flows. While this ensures correctness, it may over-
constrain a client load that traverses only a subset of those
control flows. To understand the impact of this conservative
strategy, we compared Horcrux with a variant that generates
signatures for the precise control flows traversed in the target
client load. Surprisingly, we observe that Horcrux’s conser-
vative behavior results in only mild performance degrada-
tions: improvements drop by 10% and 7% for PLT and SI,
respectively, for the developed region WiFi setting. The rea-
son is that conservative signatures typically either add only
a few extra state accesses to a given root function, or many
that are only accessed for short durations (i.e., within a root
function)—neither significantly restricts parallelism.

6.5 Additional Results

Partial deployment. Our results thus far assumed that each
frame in a page adopts Horcrux, i.e., embeds Horcrux’s
scheduler and signatures in the HTML. Figure 11 shows Hor-
crux’s benefits when only the top-level origin for the page

0.00

0.25

0.50

0.75

1.00

0 25 50 75
% Improvement in SI

C
D

F

Developed (Partial)
Developed (Total)
Emerging (Partial)
Emerging (Total)

100

Figure 11: Evaluating Horcrux when only a page’s top-level
origin participates. Results are for WiFi networks.

participates—this represents the simplest deployment sce-
nario as the top-level origin is directly incentivized to accel-
erate loads of its pages. In this scenario, all JavaScript code
in third-party-owned frames runs serially; JavaScript in the
main frame can still be safely parallelized as browsers pre-
vent cross-frame state sharing [7]. As shown, most of Hor-
crux’s benefits persist, despite the lack of adoption by third-
party frames. For example, in the developed region’s WiFi
setting, median SI benefits are within 2% of those with total
adoption. The reason is that most JavaScript runtime (100%
on the median page) resides in the page’s main frame.
Personalized pages. To evaluate Horcrux in settings where
pages dynamically generate or personalize their content, we
selected 20 pages from our developed region’s corpus that
supported user accounts. For each page, we created two user
accounts, selecting different preferences when possible, e.g.,
order results based on time or popularity. For every file that
does not appear in both loads, or whose content is different
across the page versions, we assign its constituent functions
signatures of * (§4.2.2). Overall, we observe that such per-
sonalization has minimal impact on Horcrux’s speedups: in
the WiFi setting, Horcrux’s median load time benefits drop
by only 4%. The reason is that only 6% of computation de-
lays are accounted for by personalized scripts.
Energy savings. We connected our Pixel 3 phone to a Mon-
soon power monitor [60] and loaded the pages in our devel-
oped region corpus. With cold caches, Horcrux’s speedups
drop median per-page energy usage by 12% and 15% on
WiFi and LTE. Savings are primarily from accelerating end-
to-end computation (and load times), which results in lower
active durations for WiFi or LTE radios.
Desktop page loads. Horcrux’s acceleration techniques can
also speed up desktop page loads. To evaluate this, we
recorded desktop versions for the pages in our developed re-
gion corpus, and loaded them using a Dell G5 desktop and
a wired network connection. We find that Horcrux reduces
median TCT by 39% (0.52 secs). These speedups translate to
PLT and SI improvements of 25% and 31%, respectively. At
first glance, these improvements may appear surprising given
the faster CPU clock speeds that desktops possess. However,
desktops also possess more cores and load pages with more
JavaScript computation [44], enabling more parallelism.

472 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

7 RELATED WORK

Parallelization efforts. ParaScript [56] and others [61]
leverage new runtimes and compiler information to specu-
latively parallelize iterations for hot loops in long-running
JavaScript code (not page loads, where compilation over-
heads are too costly). In contrast, Horcrux operates with un-
modified browsers, targets parallelism for general JavaScript
code beyond loop iterations, and sidesteps the signifi-
cant overheads of speculation errors and runtime checks
(§6.3) by using conservative signatures. Zoomm [21] and
Adrenaline [53] leave JavaScript execution unchanged, and
instead parallelize tasks such as CSS rule parsing. These
systems are orthogonal to Horcrux, which focuses entirely
on JavaScript parallelization. Lastly, several libraries [6, 9]
aid developers in writing parallel JavaScript code by ab-
stracting inter-worker messaging. However, developers are
responsible for identifying and enforcing (safe) parallelism
decisions—Horcrux automates these tasks for legacy pages.

Reducing web computation overheads. Prior measure-
ment studies have analyzed the performance of mobile web
browsers [85, 62, 24, 73]. Like us (§2), they find that browser
computations are a primary contributor to high page load
times. In response to these studies, three separate lines
of work have aimed to alleviate browser computation de-
lays. First, certain sites have manually developed mobile-
optimized versions of their pages using restricted forms of
HTML, JavaScript, and CSS, e.g., according to the Google
AMP standard [37, 46]. In contrast, Horcrux accelerates
legacy pages without developer effort. Further, we find that
Horcrux is able to accelerate the loading of AMP pages,
which constitute 27% of our corpora.

Second, some systems [13, 87, 71, 22] offload computa-
tion tasks to well-provisioned proxy servers, which return
computation results that are fast to apply. Though effective,
such systems pose significant scalability challenges to sup-
port large numbers of mobile clients [82]. Worse, by relying
on (often third-party) proxy servers, these systems violate
HTTPS’ end-to-end security guarantees [67]; clients must
trust proxies to preserve the integrity of their HTTPS objects,
and also must share private Cookies to accelerate personal-
ized page content. In contrast, Horcrux is HTTPS-compliant.

Third, systems like Prophecy [64] enable servers to re-
turn post-processed page files that elide intermediate com-
putations. However, content alterations with these systems
may break page functionality [10], particularly for pages that
adapt execution based on client-side state that servers are un-
aware of, e.g., localStorage. In contrast, Horcrux does not
alter the set of computations required to load a page, and in-
stead aims to execute those computations more efficiently.

Network optimizations for the web. Systems such as
Alohamora [47], Vroom [79], and others [29, 86] lever-
age HTTP/2’s server push and preload features to proac-
tively serve files to clients in anticipation of future re-

quests (thereby hiding download delays). Fawkes [54] de-
velops static HTML templates that can be rendered while
dynamic data is fetched. Polaris [63] and Klotski [19] re-
order network requests to minimize the number of effec-
tive round trips while respecting inter-object dependencies.
Cloud browsers [83, 67, 68] shift network round trips to
wired proxy server links. Content delivery networks [69, 33]
serve popular objects from proxy servers that are geographi-
cally close to clients, while compression proxies [10, 81, 72]
selectively compress objects in-flight between servers and
clients. Lastly, a handful of systems prefetch content ac-
cording to predicted user browsing behavior [74, 51, 88]. As
shown in §6.3, these efforts are complementary to Horcrux,
which reduces browser computation delays by parallelizing
JavaScript execution. Further, recall that computation delays
often exceed user tolerance levels on their own (§2).

Concolic execution for web optimization. Like Horcrux,
Oblique [48] uses concolic execution to accelerate web page
loads. Indeed, Horcrux’s server-side component builds atop
Oblique’s JavaScript concolic execution engine by adding
dynamic instrumentation to capture per-function signatures
(§5). However, despite this similarity, Oblique and Horcrux
target different delays in the page load process: Oblique en-
ables third-party servers to securely prefetch URLs that a
client will need during a page load (hiding the associated net-
work fetch delays), while Horcrux parallelizes the JavaScript
execution required to load a page (reducing the associated
computation delays). Consequently, as with other network-
focused optimizations (§6.3), Oblique can run alongside
Horcrux to provide complementary benefits.

8 CONCLUSION

Horcrux automatically parallelizes JavaScript computations
in legacy pages to enable unmodified browsers to leverage
the multiple CPU cores available on commodity phones. To
account for the non-determinism in page loads and the con-
straints of the browser’s API for parallelism, Horcrux em-
ploys a judicious split between clients and servers. Servers
perform concolic execution of JavaScript code to conser-
vatively identify parallelism opportunities based on poten-
tial state accesses, while clients use those insights along
with runtime information to efficiently manage parallelism.
Across browsing scenarios in developed and emerging re-
gions, Horcrux reduced median browser computation delays
and load times by 31-44% and 18-37%.

Acknowledgements: We thank James Mickens, Amit Levy,
Anirudh Sivaraman, and Harry Xu for their valuable feed-
back on earlier drafts of the paper, as well as Blake Loring
for useful discussions on the ExpoSE JavaScript concolic ex-
ecution engine. We also thank our shepherd, Ryan Huang,
and the anonymous OSDI reviewers for their constructive
comments. This work was supported in part by NSF grants
CNS-1943621 and CNS-2006437.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 473

REFERENCES

[1] Directory of the web. https://dmoz-odp.org/.
[2] Web Workers. https://w3c.github.io/workers/, 2017.
[3] Find out how you stack up to new industry benchmarks

for mobile page speed). https://www.thinkwithgoogle.
com / marketing-strategies / app-and-mobile /
mobile-page-speed-new-industry-benchmarks/,
2018.

[4] 10 Most Popular Phones in India in 2020 – Xi-
aomi and Samsung Rules. https : / / candytech . in /
most-popular-phones-in-india/, 2020.

[5] Browser Market Share Worldwide. https : / / gs .
statcounter.com/browser-market-share, 2020.

[6] Parallel.js. https://github.com/parallel-js/parallel.js,
2020.

[7] Same-origin Policy. https: / /developer.mozilla .org/
en-US/docs/Web/Security/Same-origin policy, 2020.

[8] The 10 Best Chromium Browser Alternatives Bet-
ter Than Chrome. https://www.makeuseof.com/tag/
alternative-chromium-browsers/, 2020.

[9] Threads.js. https:/ /github.com/andywer/threads.js,
2020.

[10] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek, C. Scott,
M. Welsh, and B. Yin. Flywheel: Google’s Data
Compression Proxy for the Mobile Web. NSDI ’15.
USENIX, 2015.

[11] S. Ahmad, A. L. Haamid, Z. A. Qazi, Z. Zhou, T. Ben-
son, and I. A. Qazi. A View from the Other Side: Un-
derstanding Mobile Phone Characteristics in the Devel-
oping World. In Proceedings of the 2016 Internet Mea-
surement Conference, IMC ’16, page 319–325. Associ-
ation for Computing Machinery, 2016.

[12] Alexa. Top Sites in the United States. http://www.
alexa.com/topsites/countries/US, 2018.

[13] Amazon. Silk Web Browser. https : / /docs .aws .
amazon.com/silk/latest/developerguide/introduction.
html, 2018.

[14] D. An. Find out how you stack up to
new industry benchmarks for mobile page
speed. https : / / www . thinkwithgoogle .
com / marketing-resources / data-measurement /
mobile-page-speed-new-industry-benchmarks/,
2018.

[15] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and
D. I. August. Perspective: A Sensible Approach to
Speculative Automatic Parallelization. In Proceedings
of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’20, page 351–367. Associ-
ation for Computing Machinery, 2020.

[16] W. Aqeel, B. Chandrasekaran, A. Feldmann, and
B. Maggs. On Landing and Internal Web Pages. In Pro-
ceedings of the 2020 ACM SIGCOMM Conference on

Internet Measurement Conference, IMC. ACM, 2020.
[17] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating

User-perceived Quality into Web Server Design. World
Wide Web Conference on Computer Networks : The
International Journal of Computer and Telecommuni-
cations Networking, 2000.

[18] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in
the Eye of the Beholder: Meeting Users’ Requirements
for Internet Quality of Service. CHI, The Hague, The
Netherlands, 2000. ACM.

[19] M. Butkiewicz, D. Wang, Z. Wu, H. Madhyastha, and
V. Sekar. Klotski: Reprioritizing Web Content to Im-
prove User Experience on Mobile Devices. In Proceed-
ings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI. USENIX
Association, 2015.

[20] C. Cadar and K. Sen. Symbolic Execution for Soft-
ware Testing: Three Decades Later. Commun. ACM,
56(2):82–90, Feb. 2013.

[21] C. Cascaval, S. Fowler, P. Montesinos-Ortego,
W. Piekarski, M. Reshadi, B. Robatmili, M. Weber,
and V. Bhavsar. ZOOMM: A parallel web browser
engine for multicore mobile devices. In PPoPP, 2013.

[22] M. Chaqfeh, Y. Zaki, J. Hu, and L. Subramanian.
JSCleaner: De-Cluttering Mobile Webpages Through
JavaScript Cleanup. In Proceedings of The Web Con-
ference 2020, WWW ’20. ACM, 2020.

[23] Cookiebot. Google ending third-party cookies
in Chrome. https : / / www . cookiebot . com / en /
google-third-party-cookies/, 2020.

[24] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubra-
manian, S. R. Das, and M. Ferdman. Impact of Device
Performance on Mobile Internet QoE. In Proceedings
of the Internet Measurement Conference 2018, IMC
’18, New York, NY, USA, 2018. ACM.

[25] M. Dasari, S. Vargas, A. Bhattacharya, A. Balasubra-
manian, S. R. Das, and M. Ferdman. Impact of device
performance on mobile internet QoE. In IMC, 2018.

[26] L. De Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, page 337–340. Springer-
Verlag, 2008.

[27] Drupal. Drupal - Open Source CMS. https://www.
drupal.org/, 2019.

[28] E. Enge. MOBILE VS. DESKTOP USAGE IN
2019. https : / /www.perficientdigital . com/ insights /
our-research/mobile-vs-desktop-usage-study, 2019.

[29] J. Erman, V. Gopalakrishnan, R. Jana, and K. K.
Ramakrishnan. Towards a SPDY’Ier Mobile Web?
IEEE/ACM Trans. Netw., 23(6):2010–2023, Dec. 2015.

[30] D. Etherington. Mobile internet use
passes desktop for the first time, study

474 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dmoz-odp.org/
https://w3c.github.io/workers/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://candytech.in/most-popular-phones-in-india/
https://candytech.in/most-popular-phones-in-india/
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://github.com/parallel-js/parallel.js
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.makeuseof.com/tag/alternative-chromium-browsers/
https://www.makeuseof.com/tag/alternative-chromium-browsers/
https://github.com/andywer/threads.js
http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.cookiebot.com/en/google-third-party-cookies/
https://www.cookiebot.com/en/google-third-party-cookies/
https://www.drupal.org/
https://www.drupal.org/
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study

finds. https : / / techcrunch . com / 2016 / 11 / 01 /
mobile-internet-use-passes-desktop-for-the-first-time-study-finds/,
2016.

[31] T. Everts and T. Kadlec. WPO stats. https://wpostats.
com/, 2019.

[32] Facebook. Prepack. https://github.com/facebook/
prepack, 2019.

[33] M. J. Freedman, E. Freudenthal, and D. Mazières. De-
mocratizing content publication with coral. NSDI.
USENIX, 2004.

[34] D. F. Galletta, R. Henry, S. McCoy, and P. Polak. Web
Site Delays: How Tolerant are Users? Journal of the
Association for Information Systems, 2004.

[35] Y. Geng, Y. Yang, and G. Cao. Energy-Efficient Com-
putation Offloading for Multicore-Based Mobile De-
vices. In IEEE Conference on Computer Communica-
tions, INFOCOM, pages 46–54, 2018.

[36] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected Automated Random Testing. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, page
213–223. ACM, 2005.

[37] Google. Accelerated Mobile Pages Project – AMP.
https://www.ampproject.org/.

[38] Google. Chromium. https:/ /www.chromium.org/
Home.

[39] Google. Why performance matters? https :
/ / developers . google . com / web / fundamentals /
performance/why-performance-matters.

[40] Google. Speed Index - WebPagetest Documenta-
tion. https://sites.google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index, 2012.

[41] Google. Brotli compression format. https://github.com/
google/brotli, 2019.

[42] Google. Lighthouse. https://developers.google.com/
web/tools/lighthouse/, 2019.

[43] A. Hidayat. Esprima. http://esprima.org.
[44] HTTP Archive. State of Javascript. https://httparchive.

org/reports/state-of-javascript, 2020.
[45] J. Huang, P. Prabhu, T. B. Jablin, S. Ghosh, S. Apos-

tolakis, J. W. Lee, and D. I. August. Speculatively Ex-
ploiting Cross-Invocation Parallelism. In Proceedings
of the 2016 International Conference on Parallel Ar-
chitectures and Compilation, PACT ’16, page 207–221,
New York, NY, USA, 2016. Association for Computing
Machinery.

[46] B. Jun, F. E. Bustamante, S. Y. Whang, and Z. S.
Bischof. AMP up your Mobile Web Experience: Char-
acterizing the Impact of Google’s Accelerated Mobile
Project. In Proceedings of the 25th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, MobiCom. ACM, 2019.

[47] N. Kansal, M. Ramanujam, and R. Netravali. Alo-
hamora: Reviving HTTP/2 Push and Preload by Adapt-

ing Policies On the Fly. In Proceedings of the 18th
USENIX Conference on Networked Systems Design
and Implementation, NSDI, Berkeley, CA, USA, 2021.
USENIX Association.

[48] R. Ko, J. Mickens, B. Loring, and R. Netravali.
Oblique: Accelerating Page Loads Using Symbolic Ex-
ecution. In Proceedings of the 18th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI, Berkeley, CA, USA, 2021. USENIX Asso-
ciation.

[49] V. Le Pochat, T. V. Goethem, S. Tajalizadehkhoob,
M. Korczynski, and t. . T. s. . N. y. . . Joosen, Wouter.

[50] B. Loring, D. Mitchell, and J. Kinder. ExpoSE: Prac-
tical Symbolic Execution of Standalone JavaScript.
In Proceedings of the 24th ACM SIGSOFT Interna-
tional SPIN Symposium on Model Checking of Soft-
ware, SPIN 2017. ACM, 2017.

[51] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and
A. Ntoulas. PocketWeb: Instant Web Browsing for
Mobile Devices. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XVII. ACM, 2012.

[52] M. Madsen, B. Livshits, and M. Fanning. Practical
Static Analysis of JavaScript Applications in the Pres-
ence of Frameworks and Libraries. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, page 499–509. Associ-
ation for Computing Machinery, 2013.

[53] H. Mai, S. Tang, S. T. King, C. Cascaval, and P. Mon-
tesinos. A Case for Parallelizing Web Pages. In Pro-
ceedings of the 4th USENIX Conference on Hot Topics
in Parallelism, HotPar. USENIX Association, 2012.

[54] S. Mardani, M. Singh, and R. Netravali. Fawkes: Faster
Mobile Page Loads via App-Inspired Static Templat-
ing. In Proceedings of the 17th USENIX Conference on
Networked Systems Design and Implementation, NSDI,
Berkeley, CA, USA, 2020. USENIX Association.

[55] MDN. Web Workers API. https://developer.mozilla.
org/en-US/docs/Web/API/Worker, 2020.

[56] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke.
Dynamic Parallelization of JavaScript Applications Us-
ing an Ultra-lightweight Speculation Mechanism. In
Proceedings of the 2011 IEEE 17th International Sym-
posium on High Performance Computer Architecture,
HPCA, 2011.

[57] J. Mickens. Rivet: Browser-Agnostic Remote Debug-
ging for Web Applications. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
USENIX ATC’12, USA, 2012. USENIX Association.

[58] J. Mickens. Pivot: Fast, Synchronous Mashup Isolation
Using Generator Chains. SP ’14, page 261–275. IEEE
Computer Society, 2014.

[59] J. Mickens, J. Elson, and J. Howell. Mugshot: De-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 475

https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds/
https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds/
https://wpostats.com/
https://wpostats.com/
https://github.com/facebook/prepack
https://github.com/facebook/prepack
https://www.ampproject.org/
https://www.chromium.org/Home
https://www.chromium.org/Home
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://developers.google.com/web/fundamentals/performance/why-performance-matters
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://github.com/google/brotli
https://github.com/google/brotli
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/lighthouse/
http://esprima.org
https://httparchive.org/reports/state-of-javascript
https://httparchive.org/reports/state-of-javascript
https://developer.mozilla.org/en-US/docs/Web/API/Worker
https://developer.mozilla.org/en-US/docs/Web/API/Worker

terministic Capture and Replay for Javascript Appli-
cations. In Proceedings of the 7th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI’10. USENIX Association, 2010.

[60] Monsoon Solutions Inc. Power monitor software. http:
//msoon.github.io/powermonitor/, 2018.

[61] Y. Na, S. W. Kim, and Y. Han. JavaScript Parallelizing
Compiler for Exploiting Parallelism from Data-Parallel
HTML5 Applications. ACM Trans. Archit. Code Op-
tim., 12(4):64:1–64:25, Jan. 2016.

[62] J. Nejati and A. Balasubramanian. An In-depth Study
of Mobile Browser Performance. In Proceedings of
the 25th International Conference on World Wide Web,
WWW ’16, pages 1305–1315. International World
Wide Web Conferences Steering Committee, 2016.

[63] R. Netravali, A. Goyal, J. Mickens, and H. Balakrish-
nan. Polaris: Faster Page Loads Using Fine-grained
Dependency Tracking. In Proceedings of the 13th
USENIX Conference on Networked Systems Design
and Implementation, NSDI, Berkeley, CA, USA, 2016.
USENIX Association.

[64] R. Netravali and J. Mickens. Prophecy: Accelerating
Mobile Page Loads Using Final-state Write Logs. In
Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI,
Berkeley, CA, USA, 2018. USENIX Association.

[65] R. Netravali and J. Mickens. Reverb: Speculative
debugging for web applications. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’19.
ACM, 2019.

[66] R. Netravali, V. Nathan, J. Mickens, and H. Balakrish-
nan. Vesper: Measuring Time-to-Interactivity for Web
Pages. In Proceedings of the 15th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion, NSDI, Renton, WA, USA, 2018. USENIX Asso-
ciation.

[67] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakr-
ishnan. WatchTower: Fast, Secure Mobile Page Loads
Using Remote Dependency Resolution. In Proceed-
ings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys
’19, pages 430–443. ACM, 2019.

[68] R. Netravali, A. Sivaraman, K. Winstein, S. Das,
A. Goyal, J. Mickens, and H. Balakrishnan. Mahimahi:
Accurate Record-and-Replay for HTTP. Proceedings
of ATC ’15. USENIX, 2015.

[69] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai
network: A platform for high-performance internet ap-
plications. SIGOPS Oper. Syst. Rev., 44(3):2–19, Aug.
2010.

[70] OpenSignal. Pakistan: Mobile Network Experience Re-
port, February 2020. https://www.opensignal.com/
reports/2020/02/pakistan/mobile-network-experience,
2020.

[71] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2018.

[72] Opera. Opera Turbo. http://www.opera.com/turbo,
2018.

[73] A. Osmani. The Cost of JavaScript.
https : / / medium . com / @addyosmani /
the-cost-of-javascript-in-2018-7d8950fbb5d4, 2018.

[74] V. N. Padmanabhan and J. C. Mogul. Using Predic-
tive Prefetching to Improve World Wide Web Latency.
SIGCOMM Comput. Commun. Rev., 26(3):22–36, July
1996.

[75] J. Park, I. Lim, and S. Ryu. Battles with False Pos-
itives in Static Analysis of JavaScript Web Applica-
tions in the Wild. In Proceedings of the 38th Interna-
tional Conference on Software Engineering Compan-
ion, ICSE ’16, page 61–70. ACM, 2016.

[76] C. Petrov. 52 Mobile vs. Desktop Usage Statistics
For 2019 [Mobile’s Overtaking!]. https://techjury.net/
stats-about/mobile-vs-desktop-usage/, 2019.

[77] G. Phillips. Smartphones vs. desktops: Why is my
phone slower than my pc? https://www.makeuseof.
com/tag/smartphone-desktop-processor-differences/.

[78] L. Richardson. Beautiful Soup Documentation. https:
//www.crummy.com/software/BeautifulSoup/bs4/doc/,
2019.

[79] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.
Madhyastha. Vroom: Accelerating the Mobile Web
with Server-Aided Dependency Resolution. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM. ACM,
2017.

[80] K. Sen, D. Marinov, and G. Agha. CUTE: A Con-
colic Unit Testing Engine for C. In Proceedings of
the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, page 263–272. ACM, 2005.

[81] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and
R. Govindan. FlexiWeb: Network-Aware Compaction
for Accelerating Mobile Web Transfers. In Proceed-
ings of the 21st Annual International Conference on
Mobile Computing and Networking, MobiCom. ACM,
2015.

[82] A. Sivakumar, C. Jiang, S. Nam, P. Shankaranarayanan,
V. Gopalakrishnan, S. Rao, S. Sen, M. Thottethodi, and
T. Vijaykumar. Scalable Whittled Proxy Execution for
Low-Latency Web over Cellular Networks. In Proceed-
ings of the 23rd Annual International Conference on
Mobile Computing and Networking, Mobicom. ACM,
2017.

[83] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakr-
ishnan, S. Lee, S. Rao, and S. Sen. Parcel: Proxy as-
sisted browsing in cellular networks for energy and la-
tency reduction. In Proceedings of the 10th ACM Inter-

476 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://msoon.github.io/powermonitor/
http://msoon.github.io/powermonitor/
https://www.opensignal.com/reports/2020/02/pakistan/mobile-network-experience
https://www.opensignal.com/reports/2020/02/pakistan/mobile-network-experience
http://www.opera.com/mobile/mini
http://www.opera.com/mobile/mini
http://www.opera.com/turbo
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://techjury.net/stats-about/mobile-vs-desktop-usage/
https://techjury.net/stats-about/mobile-vs-desktop-usage/
https://www.makeuseof.com/tag/smartphone-desktop-processor-differences/
https://www.makeuseof.com/tag/smartphone-desktop-processor-differences/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

national on Conference on Emerging Networking Ex-
periments and Technologies, CoNEXT ’14, pages 325–
336, New York, NY, USA, 2014. ACM.

[84] Y. Suzuki. Estraverse. https://github.com/estools/
estraverse.

[85] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying Page Load Perfor-
mance with WProf. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI. USENIX Association, 2013.

[86] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. How Speedy is SPDY? In Proceed-
ings of NSDI, NSDI’14, pages 387–399, Berkeley, CA,
USA, 2014. USENIX Association.

[87] X. S. Wang, A. Krishnamurthy, and D. Wetherall.

Speeding Up Web Page Loads with Shandian. In Pro-
ceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI. USENIX
Association, 2016.

[88] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How
Far Can Client-only Solutions Go for Mobile Browser
Speed? In Proceedings of the 21st International Con-
ference on World Wide Web, WWW ’12. ACM, 2012.

[89] WordPress. Blog Tool, Publishing Platform, and CMS
– WordPress. https://wordpress.org/, 2019.

[90] Y. Zaki, J. Chen, T. Pötsch, T. Ahmad, and L. Subrama-
nian. Dissecting Web Latency in Ghana. In Proceed-
ings of the 2014 Conference on Internet Measurement
Conference, IMC ’14, page 241–248. Association for
Computing Machinery, 2014.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 477

https://github.com/estools/estraverse
https://github.com/estools/estraverse
https://wordpress.org/

SANRAZOR: Reducing Redundant Sanitizer Checks in C/C++ Programs

Jiang Zhang1 Shuai Wang2∗ Manuel Rigger3 Pingjia He3 Zhendong Su3

University of Southern California1 HKUST2 ETH Zurich3

Abstract
Sanitizers detect unsafe actions such as invalid memory ac-
cesses by inserting checks that are validated during a pro-
gram’s execution. Despite their extensive use for debugging
and vulnerability discovery, sanitizer checks often induce a
high runtime cost. One important reason for the high cost is,
as we observe in this paper, that many sanitizer checks are
redundant — the same safety property is repeatedly checked
— leading to unnecessarily wasted computing resources.

To help more profitably utilize sanitizers, we introduce
SANRAZOR, a practical tool aiming to effectively detect and
remove redundant sanitizer checks. SANRAZOR adopts a
novel hybrid approach — it captures both dynamic code cov-
erage and static data dependencies of checks, and uses the
extracted information to perform a redundant check analysis.
Our evaluation on the SPEC benchmarks shows that SANRA-
ZOR can reduce the overhead of sanitizers significantly, from
73.8% to 28.0–62.0% for AddressSanitizer, and from 160.1%
to 36.6–124.4% for UndefinedBehaviorSanitizer (depending
on the applied reduction scheme). Our further evaluation on
38 CVEs from 10 commonly-used programs shows that SAN-
RAZOR-reduced checks suffice to detect at least 33 out of
the 38 CVEs. Furthermore, by combining SANRAZOR with
an existing sanitizer reduction tool ASAP, we show synergis-
tic effect by reducing the runtime cost to only 7.0% with a
reasonable tradeoff of security.

1 Introduction

Software sanitizers are designed to detect software bugs
and vulnerabilities in code written in unsafe languages like
C/C++ [33]. A sanitizer typically inserts additional checks
into the program during compilation; at run time, the sani-
tizer check terminates the program if it detects unsafe actions
or states (e.g., a buffer overflow). To date, various sanitizers
have been designed to help detect vulnerabilities in C/C++
programs [4, 8, 24, 32, 35].

∗Corresponding author.

Sanitizers are commonly used by developers to find bugs
before software deployment. In principle, they could also be
used in deployed software, where they terminate program
executions to prevent vulnerabilities from being exploited.
In practice, however, the high runtime overhead of sanitizers
inhibits their adoption in this application scenario [33, 40].
For example, our study on SPEC CPU2006 benchmarks [34]
shows that the geometric mean overheads induced by Ad-
dressSanitizer (ASan) [32] and UndefinedBehaviorSanitizer
(UBSan) [8] are, respectively, 73.8% and 160.1% (cf. Sec. 6).

It is difficult to reduce the overhead of sanitizer checks and
therefore accelerate the execution of sanitization-enabled pro-
grams. To date, a number of approaches have been proposed
aiming at finding unnecessary sanitizer checks with static
analysis [6,9,11,12,15,25,37,39,44,45]. For example, some
approaches remove array bound checks by checking whether
the value range of an index falls within the array size. They
usually perform heavyweight, specialized program analyses
to reduce specific sanitizer checks. In contrast, ASAP [40],
the most closely related work to ours, elides sanitizer checks
deemed the most costly based on a user-provided overhead
budget. Despite being general and supporting sanitizers of dif-
ferent implementations, ASAP removes checks irrespective
of their importance and may overoptimisitcally remove them,
resulting in missed vulnerabilities. Thus, prior approaches for
reducing sanitizer checks use either sanitizer-specific static
analyses (e.g., [9,37]) to remove only semantically redundant
checks, or general heuristics [40] to remove costly sanitizer
checks irrespective of their semantics.

This work explores a new, novel design point — it intro-
duces a general framework, SANRAZOR, for effectively re-
moving likely redundant checks. SANRAZOR is designed as
a hybrid approach. First, it gathers coverage statistics during
a profiling phase (e.g., based on a program’s test suite). It
then performs a correlation analysis, employing both the pro-
filed coverage patterns as well as static data dependencies,
to pinpoint and remove checks identified as likely redundant.
Like ASAP [40], SANRAZOR is general and orthogonal to
existing sanitizer reduction approaches that focus on specific

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 479

sanitizer check implementations [9, 37, 44]. Distinct from
ASAP, SANRAZOR identifies and removes sanitizer checks
that repeatedly check the same program property, while ASAP
removes sanitizer checks of high cost and may miss vulnera-
bilities. Although, like ASAP, SANRAZOR is unsound, i.e., it
may remove checks even when they are unique, in practice,
our evaluation results show that it accurately maintains the
sanitizer’s effectiveness in discovering defects and provides
significantly reduced runtime overhead.

We evaluate the performance gain of SANRAZOR on the
SPEC CPU2006 benchmark. The results show that SANRA-
ZOR reduces geometric mean runtime overhead caused by
ASan from 73.8% to 28.0–62.0% (depending on the differ-
ent reduction schemes in SANRAZOR). Similarly, geometric
mean overhead incurred by UBSan on SPEC programs is re-
duced from 160.1% to 36.6–124.4%. To measure the accuracy
of SANRAZOR, we evaluate 10 popular programs with a total
of 38 known CVEs. Results show that after removing redun-
dant sanitizer checks, at least 33 CVEs can still be discovered.
Compared with ASAP, SANRAZOR significantly outperforms
ASAP by discovering more CVEs when achieving the same
amount of cost reduction. We also explored practical methods
to combine SANRAZOR and ASAP and reduce runtime cost
to only 7.0% with a reasonable tradeoff of security. These
promising results suggest that SANRAZOR could help pro-
mote the adoption of sanitizers in production usage. In sum,
we make the following main contributions:
• At the conceptual level, we introduce the novel approach

to reducing performance overhead incurred by sanitizers
by identifying and removing likely redundant checks. By
reducing sanitizer cost, sanitization-enabled programs can
be executed faster, making sanitizer adoption in production
use more practical.

• At the technical level, we design and implement a practical
tool, SANRAZOR, to reduce sanitizer checks. SANRAZOR
performs a hybrid analysis by leveraging both coverage
patterns and static data dependency features to identify
sanitizer checks as likely redundant.

• At the empirical level, our evaluation on the SPEC bench-
marks shows that SANRAZOR can significantly reduce
runtime overhead caused by ASan and UBSan. Moreover,
our evaluation on real-world software with known CVEs
shows that after applying SANRAZOR to reduce sanitizer
checks, almost all CVEs can still be discovered.
We have publicly released SANRAZOR on GitHub at

https://github.com/SanRazor-repo/SanRazor.

2 Preliminaries
Sanitizers are dynamic tools for finding software defects [33].
Sanitizers insert sanitizer checks, which are statements for
monitoring program behaviors and validating whether they
violate certain properties. We now introduce two sanitizers
provided by the LLVM framework, ASan and UBSan, which
have helped to detect many vulnerabilities [33].

ASan. Memory access errors like buffer overflow and use-
after-free are severe vulnerabilities in C/C++ programs. ASan
is designed to detect memory errors [32], and consists of an
instrumentation module and a runtime library. The instru-
mentation module allocates shadow memory regions for each
memory address used by the program. It also instruments each
memory load and store operation such that before a memory
address a is used to access memory, a will be mapped to its
corresponding shadow memory address sa; the value stored
in sa is then loaded and checked to decide whether the access
via a is safe. The instrumentation module also allocates a
“bad” region for each shadow memory region; directly using
a shadow memory address sa in the application code will be
redirected to the “bad” region, which is inaccessible via page
protection. The runtime library hooks the malloc function
to create poisoned “redzones” next to allocated memories to
detect memory access errors. Similarly, the free function is
instrumented to put the entire deallocated memory region into
“redzones.” This ensures that the recently-freed region will
not be used by malloc for reallocation.
UBSan. Undefined behaviors can incur severe software vul-
nerabilities [41]. UBSan [8] detects a large set of common
undefined behaviors in C/C++ code, such as out-of-bounds
access, divided by zero, and invalid shift. We briefly introduce
one undefined behavior that UBSan can detect:
Out-of-bounds Array Access Unlike ASan, which relies on
shadow memory, UBSan detects out-of-bounds array accesses
by comparing each array index with the array size. Consider
the sample code below:

1 UChar buf[32]; // buf size is 32
2 for(i = 0; i < nBuf; i++)
3 out[i] = buf[nBuf -i-1];

where buf has 32 elements. When nBuf is greater than 32,
executing buf[nBuf-i-1] may trigger an out-of-bounds ac-
cess (e.g. when i is 0). UBSan identifies this by placing an
extra if condition to compare the array index nBuf-i-1 with
the array size 32 before executing the loop body.

3 Problem Formulation
Conceptually, a sanitizer check c(v) (v is the input parameter)
can be defined as follows:

if(P(v) does not hold) abort_or_alert();

where c checks whether a property P holds w.r.t. parameter
v. Usually, v denotes critical program information (e.g., code
pointers), and by violating property P, e.g., a null pointer
dereference, c either aborts program execution or alerts the
user. Considering a program p with N sanitizer checks in-
serted, we use ci.v and ci.P to denote the parameter of the ith
check ci and its checked property throughout this section.

As introduced in Sec. 2, computation overhead can be intro-
duced by each ci, since ci performs complex safety property
checking, and may require extra memory to store metadata.

480 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SanRazor-repo/SanRazor

LLVM IR
with sanitizer

checks
Static

Patterns

Instrument each
identified check

Workload

Identify
checks

Check List Profile instrumented
code

Instrumented
LLVM IR

Construct data
dependency graph

Check List
Check redundancy

analysis
Check

reduction

Dynamic
Patterns Redundant

Check List

LLVM IR with
reduced sanitizer

checks

SanRazor

Figure 1: Workflow of SANRAZOR.

Nevertheless, a large portion of sanitizer checks repeatedly as-
sert identical properties, thus wasting computing resources on
properties deemed safe. We aim to remove redundant checks
to reduce cost, thus making the production adoption of san-
itizer checks more practically feasible. Next, we present a
motivating example, and then formulate the notion of “redun-
dant sanitizer checks” from a functionality perspective.

3.1 Sample Redundant Checks in bzip2
We show an example of checks in bzip2 that repeatedly vali-
date the same array index as follows:

for(i=0; i < nblock; i++) {
j = eclass8[i]; //ASan1
k = ftab[j] - 1; //ASan2;
ftab[j] = k; //ASan3; ASan2 and ASan3 identical?
fmap[k] = i; //ASan4; k < fmap_size always hold?

When ASan is enabled, four sanitizer checks are inserted
to detect out-of-bound array access. Existing research could
remove ASan4, by asserting k always falls within the size
of fmap. In contrast, SANRAZOR advocates a new and or-
thogonal focus by deciding that ASan2 and ASan3 validate
the same index, and therefore, ASan3 can be removed without
missing potential defects.1 Indeed, our study shows that check
redundancy is a general concern in real-world software (see
Sec. 6), motivating a strong need for optimization. Also, to
the best of our knowledge, standard compiler optimizations
and previous research in this field (e.g., [6,9,11,12,15,28]) do
not strive to use “similarity analysis” to reveal the equalivance
of ASan2 and ASan3 and shave ASan3 accordingly. In fact,
our study shows that, when full optimizations (-O3) of clang
are enabled, no sanitizers can be shaved for this case. This
observation underlies the key novelty of SANRAZOR, whose
design will be introduced in Sec. 4.

3.2 Redundant Sanitizer Checks
We start by giving a general definition of what a redundant
check is, before refining the notion in an operational way:

Definition 1. Assume that a sanitizer check ci that could
detect a hypothetical bug B in program p is removed. If B can

1We scope SANRAZOR to single threaded programs. See Sec. 4 for further
discussion of application scope.

still be detected, either by another sanitizer check c j or by a
user-defined check, then ci is a redundant sanitizer check.

More formally, given a nontrivial, single-threaded program
p with a set of checks c ∈C, two checks ci and c j are deemed
identical, when the following condition holds:

(ci ∈ dom(c j)∨c j ∈ dom(ci))∧ [[ci.v]] = [[c j.v]]∧ci.P = c j.P

where ci ∈ dom(c j) and c j ∈ dom(ci) denote that ci dominates
c j in the control flow graph or vice versa. Therefore, every
execution from the program entry point to c j goes through
ci or vice versa [5]. [[ci.v]] = [[c j.v]] represents that ci.v and
c j.v are semantically equivalent. ci.P = c j.P means that ci
and c j are the same kind of checks (e.g., they are both ASan
checks, which can be recognized with pattern matching; cf.
Sec. 4.1). When ci and c j satisfy the given condition and
ci ∈ dom(c j), c j can be removed because if c j is executed,
ci must be executed and they check the same property. The
given condition specifies the functional equivalence of ci and
c j. However, computability theory (e.g., Rice’s theorem [29])
suggests that it could be very difficult, if possible at all, to
assert [[ci.v]] = [[c j.v]] for nontrivial programs. Moreover, per-
forming control flow analysis to recover the dominator tree
(e.g., dom(c j)) information can be challenging and lead to
false alarms, especially for cases where points-to analyses are
extensively used in performing control flow analysis.

Given the theoretical challenge of identifying redundant
sanitizer checks, we instead propose a practical approxima-
tion to identify likely redundant checks. Our approximation
extracts both code coverage patterns and static input depen-
dency patterns of checks (cf. Sec. 4); two checks are deemed
“redundant” when they yield identical dynamic and static pat-
terns. Specifically, we search for a pair of checks ci and c j and
flag them as redundant if all the following conditions hold:
• ci and c j have correlated dynamic code coverage patterns,

when executing the software with a nontrivial amount of
workload inputs. Here, coverage patterns are checked re-
garding their “correlation”, such that they can be identical,
or one check’s coverage pattern can subsume the other’s
pattern (see Sec. 4.4 for details).

• ci.P(ci.v) and c j.P(c j.v) are approximately equivalent w.r.t.
static data dependency patterns deduced by our technique:
[[ci.P(ci.v)]]≈ [[c j.P(c j.v)]].

The first condition can be determined by instrumenting
and profiling the program, and for the second, we assert

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 481

[[ci.P(ci.v)]]≈ [[c j.P(c j.v)]] by checking the data dependency
of two check inputs (see Sec. 4.4 for technical details).

4 Design

Fig. 1 depicts the workflow of SANRAZOR. SANRAZOR
starts by identifying both user-defined checks and sanitizer
checks (Sec. 4.1). It then instruments each check to record
code coverage patterns (Sec. 4.2). We select a suitable work-
load (Workload in Fig. 1) and run the instrumented program
with this workload to gather code coverage for each check.
SANRAZOR then performs static analysis to construct data
dependency graphs per check input and extract static patterns
(Sec. 4.3). After obtaining static and dynamic characteris-
tics for each check, SANRAZOR conducts an unsound check
redundancy analysis (Sec. 4.4). The dynamic and static pat-
terns are both analyzed, and checks with identical patterns
will be marked as redundant and removed. The program with
remaining checks will be compiled into an executable.
Application Scope. We implement SANRAZOR to analyze
LLVM intermediate representation (IR) [17] and remove re-
dundant ASan and UBSan checks. While the current imple-
mentation focuses on C/C++ programs, SANRAZOR does not
rely on any specific features of C/C++. Therefore, programs
written in any programming language can be analyzed, as long
as they can be compiled to LLVM IR. Static and dynamic
patterns leveraged by SANRAZOR are orthogonal to particular
sanitizer implementations; hence, in principle SANRAZOR
can reduce checks of different sanitizers. Contrarily, existing
work often aims to flag useless checks with dedicated pro-
gram analysis, while our approach generally circumvents this
limitation. See Sec. 8 for comparisons with existing research.
Application Scenario. The focus and typical application sce-
nario of SANRAZOR are to practically accelerate sanitization-
enabled programs in production usage. When a production
software cannot afford all the sanitizer checks, SANRAZOR
can help effectively remove those checks that are least useful
in terms of discovering unique problems. As will be shown in
Sec. 6, SANRAZOR can reduce the overhead of ASan and UB-
San significantly without primarily undermining vulnerability
detectability. Moreover, SANRAZOR may be combined with
complementary approaches to further reduce the overhead
of sanitizer checks. For example, by combining SANRAZOR
with ASAP, it is plausible to run these sanitizers in production
(at 7% overhead) for their security benefits and vulnerability
detectability. Thus, we believe users should generally incline
to accept a low overhead (e.g., less than 10% when combining
ASAP and SANRAZOR) for improved security and vulner-
ability detectability compared to running without sanitizer
checks. In contrast, enabling full ASan can incur much higher
cost (e.g., around 73.8%, as reported in Sec. 6) and is thus un-
realistic in production. In practice, we would encourage users
to explore combining SANRAZOR with other sanitization op-
timization tools [9, 37, 44] which share generally orthogonal

focuses with SANRAZOR. We give further discussion and
comparison with contemporary research works in Sec. 8.

4.1 Check Identification
We start by discussing how ASan and UBSan checks are iden-
tified. As aforementioned, each check can be represented as
a comparison instruction followed by a control-flow transfer
instruction in LLVM IR statements:

1 %o = icmp cond %a, %b
2 br i1 %o, label %bb1, label %bb2

where %a and %b are two LLVM IR identifiers, and icmp com-
pares %a and %b w.r.t. the condition specified by cond (equal,
greater than, etc.). A one-bit comparison output will be stored
in %o, which is subsequently consumed by the control-flow
instruction br. In case %o equals to one (i.e., the condition
evaluates to “True”), the control flow will be transferred to
the basic block pointed by %bb1; otherwise the basic block
pointed by %bb2 will be executed.

To distinguish sanitizer checks from user checks (i.e.,
branches in the source code), we search for calls to specific
functions that are used by sanitizers. Specifically, a condition
represents an ASan check, if a call to _ASan_report can be
found in blocks pointed by label %bb1 or %bb2. Similarly, a
call to the _UBSan_handle_XXX function indicates the corre-
sponding condition represents a UBSan check. Note that XXX
denotes the name of an undefined behavior that this partic-
ular UBSan check detects. Overall, while ASan checks are
designed to capture memory access errors, UBSan subsumes
a much broader set of defects. The type of checked unde-
fined behaviors can be seen from the handler name above, and
indeed, the corresponding icmp statements can have differ-
ent constant operands, characterizing the checked undefined
behavior types.

4.2 Dynamic Check Pattern Capturing
SANRAZOR captures the dynamic patterns of checks by in-
strumenting the LLVM IR and inserting a counter statement
before the br statement of identified checks (see the sample
code in Sec. 4.1). We count how many times the control-flow
statements are executed. We also record how many times
the true and false branches are taken, by checking the one-
bit operand of the control-flow statement. Sanitizer checks
can be configured to abort the process or output an alert. To
smoothly collect dynamic coverage patterns, we configure
sanitizer checks to “alert users” instead of aborting the pro-
cess. The collected coverage patterns will be used to identify
redundant checks (cf. Sec. 4.4).
Workload Selection. Ideally, the more execution traces the
selected workload can cover, the more comprehensive the
dynamic patterns could become. SANRAZOR uses default
test cases shipped with software to record dynamic patterns.

482 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Our observation shows that the runtime overhead is primar-
ily caused by sanitizer checks on hot paths. The shipped test
cases typically suffice covering hot paths and derive nontrivial
coverage patterns of most sanitizer checks. If one sanitizer
check is never covered, it is not removed, since no dynamic
pattern analysis is available. Sec. 7.4 presents further empiri-
cal evidences and discussions regarding workload selection.

4.3 Static Check Pattern Capturing
A user check or sanitizer check asserts certain program prop-
erties with a comparison statement (i.e., icmp in Sec. 4.1).
For the static phase, we extract data-flow information from
operands of each icmp statement. The extracted data flow
facts constitute the static feature of a check.

To this end, SANRAZOR performs backward-dependency
analysis to construct the data dependency graph for the branch
condition operand. The analysis starts from the checked con-
dition in the control-flow statement (the br instruction in
Sec. 4.1; recall that br takes a LLVM identifier of one bit as
its input). The checked condition register has a data depen-
dency on two operands of the comparison statement. The con-
structed dependency tree will be used to constitute the static
patterns of each check (see Sec. 4.3.1). The backward traver-
sal will be stopped when we encounter terminal operands,
including constants, phi [46] nodes, global variables, and
function parameters. Also, when encountering function calls
during the traversal (e.g., malloc), instead of performing
heavyweight inter-procedural analysis, we take all function
parameters as the dependency of the function return value.

4.3.1 Extracting Static Features with Three Schemes

After constructing the value dependency tree for the operand
of the control-flow instruction br, the next step is to extract
static features from the dependency tree. At this step, we
design three schemes (L0, L1, and L2) by calibrating the ex-
tracted static features. Three schemes are designed as follows:
• L0, which gathers all the leaf nodes on the dependency tree

into a set.
• L1, which canonicalizes the collected set of leaf nodes,

by eliminating all constants from the set except constant
operands from the comparison statement (icmp instruction)
associated with each sanitizer or user check.

• L2, which canonicalizes the collected set of leaf nodes, by
eliminating all constants from the set.
L0 collects all the leaf nodes into a set while L1 and L2

further canonicalize the constructed set by removing constant
leaf nodes. In other words, we might treat checks for the
following two pointer dereferences as “redundant”, although
they check different program properties:

1 int a = *ptr; // ASan check on ptr
2 int b = *(ptr + 4); // ASan check on (ptr+4)

123: ; preds = %114
......
%ftab3 = getelementptr inbounds %struct.EState,

%struct.EState* %s, i64 0, i32 6
%125 = ptrtoint i32** %ftab3 to i64
%126 = lshr i64 %125, 3
%127 = add i64 %126, 2147450880
%128 = inttoptr i64 %127 to i8*
%129 = load i8, i8* %128
%130 = icmp ne i8 %129, 0
br i1 %130, label %131, label %132

131: ; preds = %123
call void @__ASan_report_load8(i64 %125)
call void asm sideeffect "", ""()
unreachable

132: ; preds = %123
%133 = load i32*, i32** %ftab3, align 8
......

%130 icmp

%129 load 0

%128 inttoptr

%127 add 21247450880

%126 lshr 0

%125 ptrtoint 0

%ftab getelementptr

%s 0 6

Value

dependency

1

2
3
4
5
6
7
8

9
10
11

12

UInt32* ftab = s->ftab;

LLVM
IR

Figure 2: Tracing static data flow dependency.

With ASan enabled, the first and second ASan checks
would take ptr and ptr+4 as the inputs. Since both L1 and L2
schemes would eliminate constants (i.e., 4 for this case) from
the leaf node set, these two checks are treated as redundant
by L1 and L2. Nonetheless, L1 and L2 schemes would un-
likely miss discovering bugs derived from pointer arithmetics,
in the sense that if an expression using pointer arithmetic
(e.g., ptr+4) can provoke sanitizer check alerts, the pointer in
the expression (i.e., ptr) is presumably invalid and provokes
sanitizer check alerts as well. We present further discussion
regarding security considerations in Sec. 4.3.2.

Overall, scheme L1 and L2 relax the notion of check “equiv-
alence” by distilling pointer arithmetic expressions while still
preserving rich information of the built dependency tree. Also,
L1 is designed to retain the constant operand of icmp state-
ment associated with each check. As aforementioned, UBSan
uses constant operands in the icmp statement to assert differ-
ent program properties, keeping these specific constants can
help to distinguish UBSan checks of different types. Sec. 6
further presents empirical results regarding each strategy; con-
sistent with our intuition, evaluation results (Sec. 6.1) show
that the relatively more aggressive scheme L2 can help to
identify more redundant checks and reduce runtime overhead.
Moreover, Sec. 6.2 shows that even L2 can still help to dis-
cover 33 (out of in total 38) CVEs from complex software.
SANRAZOR provides all three schemes to extract static pat-
terns, and we leave it to users to decide which one to use.

Fig. 2 illustrates feature extraction with an example. Once
a path condition statement (line 8; the call statement on line
9 indicates this condition belongs to an ASan check) is iden-
tified, we trace the data dependency on the condition (%130)
and construct a dependency tree. The dependency recovery
forms a depth-first search, and we stop the search when en-
countering terminal nodes (e.g., the constants in Fig. 2). The
recovered dependency tree will be used for comparison, fol-
lowing one of the schemes noted above.

4.3.2 Security Consideration

As previously mentioned, we deem that the L1 and L2
schemes would unlikely miss discovering bugs derived from

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 483

pointer arithmetics, given that if ptr+4 is invalid, checking
ptr is presumably sufficient to reveal the issue in practice.
However, there are few corner cases, i.e., if ptr points to the
end of an allocated memory, then *ptr is safe while *(ptr+4)
corrupts. Similarly, ptr may point before the start of an allo-
cated memory chunk: *ptr thus corrupts whereas *(ptr+4)
is safe. As clarified in Application Scenario in Sec. 4, we fo-
cus on practically accelerating sanitization-enabled programs.
Users concerned about “sophisticated attackers” can use L0
or resort to full sanitization. When facing active attackers,
another optimization opportunity is to first identify program
attack interface, and then shave sanitizer checks out side those
security sensitive code fragments. To do so, users can first
employ information flow analysis techniques (e.g., taint anal-
ysis [31]). We leave it as future work to explore this direction.

4.3.3 Extension Using Static Analysis

As discussed in Sec. 3.2, computability theory suggests that
it is difficult, and in general theoretically impossible, to rig-
orously establish the equivalence of two arbitrary nontrivial
code fragments. Nevertheless, in practice, it is feasible to
use static analysis to identify (likely) equivalent checks. In
particular, we envision that symbolic techniques, e.g., (under-
constrained) symbolic execution [27] and constraint solving,
can be used to prove the equivalence of sanitizer checks.

We have observed a line of research seeking to perform
code equivalence checking, by first collecting program input-
output relations using symbolic execution [10, 19, 21]. Then,
given symbolic constraints representing input-output relations
of two code fragments, constraint solver can prove that these
two code fragments are equivalent (suppose side effects are
not considered). Moreover, constraint solvers can also be used
to prove the inclusion of two symbolic constraints, i.e., de-
ciding whether the satisfiability of one symbolic constraint
will always induce the satisfiability of the other constraint.
As a result, a potential extension of SANRAZOR is to decide
whether check ci validates a weaker property that can be in-
ferred by a stronger property validated in another check c j. If
so, ci could be redundant and removed. Overall, using such
symbolic techniques could be the follow-up work of SAN-
RAZOR to provide more principled guarantees; the tradeoff
would be cost and scalability, given most symbolic execution-
based code equivalent checking analyzes only basic blocks or
execution traces [10, 20, 21].

In Sec. 7.2, we will show that the proposed technique can
induce a number of false positive cases, i.e., treating distinct
sanitizer checks as equivalent. However, most false positives
discussed in Sec. 7.2 could be solved through intra-procedural
static analysis, e.g., differentiating accesses to different fields
in the same structure. We leave it as one future work to explore
using field-sensitive point-to analysis (e.g., SVF [36, 38]) to
alleviate false positives of SANRAZOR. Also, SANRAZOR
currently omits to perform inter-procedural analysis, and as a

result, sanitizer checks inside two procedures would be treated
as different. This design decision may potentially lead to
false negative cases (i.e., missing a pair of redundant checks).
However, we find that in practice, false negative cases are
primarily due to other reasons; see discussion in Sec. 7.3.

4.4 Sanitizer Check Reduction
For each pair of checks, SANRAZOR decides whether one
check is redundant to the other, by comparing their static and
dynamic patterns. In case two checks are identical w.r.t. both
static and dynamic patterns, only one check will be retained.
Comparing Dynamic Coverage Patterns. Let the coverage
pattern of sanitizer check sci be a tuple 〈sbi,stbi,s f bi〉, where
sbi denotes the total coverage times of sci, stbi and s f bi rep-
resent that sci executes its true branch stbi times and its false
branch s f bi times. Similarly, the dynamic pattern of a user-
defined check uci can be denoted as a tuple 〈ubi,utbi,u f bi〉,
where ubi denotes the total coverage times of uci, utbi and
u f bi represent that uci executes its true branch utbi times
and its false branch u f bi times. Then, for dynamic coverage
patterns extracted from sanitizer check sci and user-defined
check uci, if they satisfy one of the following conditions, we
consider sci and uci having identical coverage patterns:

(a) (sbi = ubi)∧
(
(stbi = utbi)∨ (stbi = u f bi)

)
(b) (sbi = utbi)∧

(
(stbi = sbi)∨ (s f bi = sbi)

)
(c) (sbi = u f bi)∧

(
(stbi = sbi)∨ (s f bi = sbi)

) (1)

The first condition implies that two checks have the same
dynamic pattern. This can happen when they reside on the
same path and the sanitizer check sci’s false branch has the
same coverage times as the user check uci’s true or false
branch. As illustrated in Fig. 3(a), suppose sci and uci check
the same program property, then the predicates of sci and uci
shall be satisfied and failed for the same numbers of times.
The latter two conditions are satisfied when sci is guarded by
one branch of uci and one branch of sci is never executed. For
instance, to understand the second condition (suppose sci and
uci check the same property; see Fig. 3(b)), whenever uci is
true, sci within its true branch (i.e., sbi = utbi) should always
be evaluated to the same direction, as implied by (stbi =
sbi)∨ (s f bi = sbi).

Similarly, for two sanitizer checks sci and sc j, if they sat-
isfy the following condition, we assume that sci has identical
dynamic patterns with sc j (one case shown in Fig. 3(c)):

(sbi = sb j)∧
(
(stbi = stb j)∨ (stbi = s f b j)

)
(2)

As mentioned in Sec. 4.2, when collecting the dynamic cov-
erage pattern, we configure sanitizer checks to “alert” users
(not abort programs) and collect the coverage patterns for
comparison. Depending on the implementation details, the
program aborting/alerting routine could be found in either the
true branch or the false branch of a sanitizer check. Hence, we

484 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

uci

Branch

......

sci

Branch’

......

True False

Alert
True False

sci

......

scjAlert

......

True

False

Alert
True

False

......

(a) (c)

uci

Branch

......

Branch’

......

True False

sci

......
Alert

True False

(b)

Figure 3: Coverage patterns. Sanitizer checks can be configured to
abort programs or alert users. As noted in Sec. 4.2, we configure
sanitizer checks to “alert” users (not abort programs) and collect the
coverage patterns for comparison.

define a set of general conditions in Formulas 1 and 2, which
shall take both cases (i.e., the “aborting” routine resides in
true or false branches) into account.

We also note that we did not observe any alerts yielded
by sanitizer checks in our experiments. In general, the alert
branch of a sanitizer check is much less likely to execute, if
at all, than the non-alert branch. The consequence is that a
subset of the conditions in Formulas 1 and 2 are in fact used
in our experiments. For instance, when the sanitizer check
sci is within the true branch of uci, the second condition in
Formula 1 must be satisfied. Nevertheless, in practice, this
rarely affects the correctness of our redundancy judgement.
Comparing Static Dependency Patterns. As discussed in
Sec. 4.3.1, we provide three schemes to extract static patterns
(into sets) from dependency trees of operands in control trans-
fer statements. Given two sets Si and S j formed by analyzing
two checks ci and c j, ci and c j are considered to have identical
static patterns, in case Si and S j are identical.
Removing Sanitizer Checks. SANRAZOR does not remove
user-defined checks; we prune sanitizer checks in case they
are redundant w.r.t. user or other sanitizer checks. Given a
pair of likely redundant sanitizer checks ci and c j, we remove
the check c j if it was dominated by ci. Users can also config-
ure SANRAZOR to decide which one to remove. To remove
a check, we set the condition of its control-flow statement
(see Sec. 4.1) as false such that the branch for alerting/abort-
ing will never be executed. This would let the dead-code-
elimination of LLVM remove the redundant code.
Extension by Considering Dominating Cases. The afore-
mentioned coverage pattern reasonably flags redundant
checks and achieves high effectiveness of reducing overhead
incurred by sanitizer checks. Nevertheless, we point that that
Formula 2 only considers the equality cases; the dominating
cases are not considered, which introduces false positives and
the primary false negatives, as will be shown in Sec. 7.2 and
Sec. 7.3. An improvement at this step is to maintain the po-
tential dominating checks (denoted as Di) for sanitizer check
ci. Check ci can be removed in case its dominating check
ck ∈ Di manifests identical data dependency features with ci.
This extension primarily eliminates false negatives presented
in Sec. 7.3.

5 Implementation

SANRAZOR [3] is written primarily in C++ with approxi-
mately 2,000 lines of code. We integrate SANRAZOR into
the LLVM framework [17] by providing a wrapper of clang,
namely SanRazor-clang. Users can replace clang in their
building scripts with SanRazor-clang. SanRazor-clang in-
serts sanitizer checks to a C/C++ program, and then invokes
our follow-up passes to reduce redundant checks. To use SAN-
RAZOR, users need to prepare a reasonable amount of inputs.
We note that standard test inputs would usually suffice remov-
ing a large amount of sanitizer checks; see our empirical study
of workload selection in Sec. 7.4.

6 Evaluation

We give the cost evaluation of SANRAZOR in Sec. 6.1. We
measure the reduction accuracy (in terms of vulnerability de-
tectability) in Sec. 6.2 and compare it with ASAP in Sec. 6.3.

6.1 Cost Study
We start by measuring how well SANRAZOR can reduce the
performance penalty of sanitizer checks. To this end, we
leverage the industry-standard CPU-intensive benchmark
suite, SPEC CPU2006, for the evaluation. SPEC CPU2006
contains 19 C/C++ programs. We are able to compile
11 SPEC benchmarks with the Clang compiler (version
9.0.0) and with ASan or UBSan enabled. These 11 test
cases are 401.bzip2, 429.mcf, 445.gobmk, 456.hmmer,
458.sjeng, 462.libquantum, 433.milc, 444.namd,
470.lbm, 482.sphinx3, and 453.povray. We encountered
compatibility issues for the other benchmarks.2

Each SPEC benchmark is shipped with a training workload,
a testing workload, and a reference workload. Following the
convention, we use the training workload to profile these
programs and obtain the dynamic patterns of sanitizer checks
(see Sec. 4.2). After redundant sanitizer checks are removed
by SANRAZOR, the reference workload is used to measure
the performance of the optimized programs. We do not use
test workload since it leads to much shorter execution time
compared with the reference and training workload.

To evaluate the effectiveness of SANRAZOR, we mea-
sure the execution time reduction after eliminating redundant
checks (referred to as M0 metrics). We also count the number
of removed sanitizer checks (referred to as M1 metrics), and
the execution cost (in terms of CPU cycles) saved by reducing
sanitizer checks (referred to as M2 metrics). M0 is determined
by measuring the execution CPU time. To calculate M1, we
record the total number of sanitizer checks inserted by the
compiler and the number of sanitizer checks reduced by SAN-
RAZOR. The calculation of M2 is consistent with ASAP [40]

2Similar compatibility issues were also reported by ASAP [40]. We
provide error messages in our artifact [3] for reference.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 485

401.bzip2
429.m

cf
433.m

ilc
444.nam

d
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum

470.lbm
482.sphinx3

0

20

40

60

80

100

120

140
R

u
n

ti
m

e
o

v
er

h
ea

d
/%

ABSan

ABSan+SanRazor+L0

ABSan+SanRazor+L1

ABSan+SanRazor+L2

453.povray

0

50

100

150

200

250

Figure 4: Comparison results w.r.t. M0 metrics (execution time re-
duction) on ASan.

401.bzip2
429.m

cf
433.m

ilc
444.nam

d
445.gobm

k
453.povray
458.sjeng
462.libquantum

470.lbm
482.sphinx3

0

50

100

150

200

250

R
u

n
ti

m
e

o
v

er
h

ea
d

/%

UBSan

UBSan+SanRazor+L0

UBSan+SanRazor+L1

UBSan+SanRazor+L2

456.hm
m

er

0

200

400

600

800

Figure 5: Comparison results w.r.t. M0 metrics (execution time re-
duction) on UBSan.

(see comparison with ASAP in Sec. 6.3). In general, each
sanitizer check performs a sequence of operations to assert
a program property, and for each operation oi (e.g., loading
shadow memory), ASAP predefines a constant fi denoting
how many CPU cycles oi takes. Suppose a sanitizer check is
executed for c times and each execution requires in total F
CPU cycles (F = ∑i=1 fi), its execution cost is calculated as
c×F . We reuse fi defined in ASAP to compute M2.
Processing Time. All experiments are conducted on a work-
station with an Intel i7-8700 CPU and 16GB memory. We
use scripts provided by SPEC to profile programs and collect
coverage patterns. It takes on average 323 CPU seconds to
profile one SPEC program. The static dependency analysis
phase of SANRAZOR takes on average 27 seconds per case.

Cost Evaluation Results

Fig. 4 reports the execution cost that is induced by ASan
checks with, and without applying SANRAZOR. The geo-
metric mean runtime overhead increase with full ASan en-

abled (the blue line) is 73.8%. After reducing redundant
ASan checks, performance overhead is reduced by 12.1%
(L0), 35.2% (L1), and 53.5% (L2), with the geometric mean
remaining overhead being 62.0% (L0; the orange line), 35.8%
(L1; the yellow line), and 28.0% (L2; the purple line). The
reduced runtime overhead with the L2 scheme can be up to
91.7% (for 470.lbm), and the smallest reduction (445.sjeng,
which exhibits the highest overhead with ASan enabled) still
reduces the runtime cost by 30.8%.

Fig. 5 also illustrates the performance overhead for UBSan.
In general, the runtime overhead caused by UBSan (geometric
mean 154.3%; see the blue line) is much higher than ASan. By
reducing redundant checks, the performance overhead can be
reduced by 13.7% (L0), 35.5% (L1), and 75.5% (L2), with the
geometric mean remaining overhead being 124.4% (L0; the
orange line), 94.7% (L1; the yellow line), and 36.6% (L2; the
purple line). The reduced runtime overhead of L2 strategies
is up to 97.5% (470.lbm), and at least 62.1% (401.bzip2).

We measure how many sanitizer checks are reduced by
SANRAZOR and the saved CPU cycles. Table 1 reports the
portion of reduced checks w.r.t. the total number of checks
(M1). Similarly, it also reports the portion of saved CPU cycles
during run time w.r.t. the total CPU cycles taken by sanitizer
checks (M2). SANRAZOR can eliminate on geometric mean
up to 29.5% of the ASan checks for the SPEC programs
(with L2 applied), which leads to 41.0% less CPU cycle cost
of ASan checks during run time. We also observed a simi-
larly promising trend for the UBSan evaluation. As shown in
Table 1, SANRAZOR can eliminate up to 39.3% of UBSan
checks for the SPEC programs on geometric mean (with L2
applied), corresponding to 77.0% less cost during run time.

Sanitizer checks contribute differently to the total execution
cost (i.e., some checks are executed far more often than oth-
ers). For instance, SANRAZOR (with L2 enabled; see Table 1)
eliminates 13.1% of ASan checks in 456.hmmer. However,
the M2 metrics is reduced by up to 70.4%, indicating that the
removed checks are on the program’s hot paths. Our manual
investigation confirms this intuition; more than 99.3% of the
runtime overhead caused by ASan stems from one function
P7Viterbi in module fast_algorithms.c, which contains
intensive memory access checks within a loop. SANRAZOR
successfully identifies many redundant sanitizer checks within
this loop, inducing effective check reduction for 456.hmmer.

We also find some reduced sanitizer checks on the cold
path of the benchmarks. For instance, while 22.6% of the
UBSan checks are removed from 462.libquantum, these
checks have low runtime coverage and therefore remov-
ing them does not significantly improve performance. An
aligned trend can be seen from the performance evaluation of
462.libquantum in Fig. 5. Our manual study indicates that
for 462.libquantum, sanitizer checks in gates.c (on the
hot path) contribute more than 99.2% of the total runtime cost.
However, these checks assert different undefined behaviors
and cannot be flagged as “redundant” by SANRAZOR.

486 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Evaluation results w.r.t. M1 (number of removed sanitizer checks) and M2 (saved CPU cycles by reducing sanitizer checks). Note
that “empty cells” for imageworsener, zziplib, libzip, graphicsmagick, jasper, potrace, and mp3gsin are not due to setup errors; they
indicate those CVEs are not discovered by the corresponding ASan (or UBSan) checks.

Benchmark ASan-M1 ASan-M2 UBSan-M1 UBSan-M2
L0 L1 L2 L0 L1 L2 L0 L1 L2 L0 L1 L2

401.bzip2 22.4% 54.4% 58.1% 4.3% 30.3% 34.2% 38.7% 54.8% 66.0% 27.3% 37.9% 68.1%
429.mcf 10.2% 53.0% 60.9% 3.0% 46.6% 60.1% 35.0% 51.8% 76.2% 37.8% 47.6% 86.0%

445.gobmk 5.2% 23.4% 26.6% 7.2% 33.7% 41.0% 12.6% 21.6% 51.3% 21.4% 23.3% 73.9%
456.hmmer 5.9% 11.7% 13.1% 14.4% 70.3% 70.4% 8.2% 11.0% 14.8% 49.2% 60.7% 78.3%
458.sjeng 5.9% 12.6% 13.4% 4.4% 34.4% 36.7% 12.1% 18.3% 51.0% 20.7% 25.2% 79.2%

462.libquantum 7.4% 16.3% 22.6% 0.8% 1.4% 2.4% 12.7% 15.6% 26.9% 0.8% 0.8% 58.8%
433.milc 23.5% 32.5% 33.5% 35.8% 80.9% 82.7% 27.6% 42.2% 54.6% 51.0% 60.6% 83.6%
444.namd 6.4% 18.9% 24.0% 10.2% 29.8% 57.7% 8.7% 16.0% 26.2% 40.4% 54.1% 84.8%
470.lbm 1.6% 68.5% 72.1% 0.0% 88.7% 92.5% 17.7% 48.2% 51.3% 46.0% 92.5% 97.6%

482.sphinx3 10.7% 27.1% 32.5% 2.5% 56.9% 58.3% 18.2% 23.7% 40.0% 11.9% 45.3% 67.2%
453.povray 7.2% 9.5% 21.2% 2.3% 12.1% 69.1% 11.1% 11.9% 22.6% 22.6% 24.0% 75.5%
autotrace 12.2% 27.6% 35.7% 22.4% 65.4% 73.1% 20.6% 25.2% 39.0% 48.6% 57.5% 78.3%

imageworsener - - - - - - 26.8% 37.1% 53.3% 17.8% 21.6% 64.0%
lame 9.5% 38.5% 40.8% 11.0% 57.5% 74.9% 23.3% 34.1% 47.5% 17.0% 46.6% 71.4%

zziplib 3.8% 20.4% 23.9% 12.9% 80.2% 90.3% - - - - - -
libzip 6.2% 19.9% 27.8% 1.0% 3.9% 44.9% - - - - - -

graphicsmagick 1.2% 4.5% 5.8% 20.1% 49.4% 63.3% - - - - - -
tiff 7.8% 21.7% 29.8% 0.2% 2.1% 2.6% 12.3% 15.8% 21.7% 7.6% 10.5% 65.6%

jasper - - - - - - 12.8% 17.3% 25.9% 19.6% 20.6% 69.6%
potrace 13.0% 31.2% 38.8% 5.4% 41.9% 48.7% - - - - - -
mp3gsin 11.6% 43.6% 46.0% 4.8% 74.8% 78.4% - - - - - -

6.2 Vulnerability Detectability Study

This section explores whether sanitizer checks marked as re-
dundant are true positive w.r.t. Definition 1 given in Sec. 3.2.
This study reflects the accuracy of SANRAZOR. We select
a number of programs with CVE vulnerabilities from an
actively-maintained CVE list [22, 23], which documents pro-
cedures to compile each program and reproduce its CVEs.
We select programs based on whether it can be successfully
compiled and whether their documented CVEs can be trig-
gered by the shipped inputs, and whether those CVEs can be
detected by ASan/UBSan.

Ten programs (with in total 38 CVEs) are used for this
evaluation. These ten programs are not cherry-picked; when
selecting these ten programs, we checked each program in the
CVE program list from the beginning [22, 23] and skipped
only those that could not be properly set up for our study.
For the evaluation setup, we start by compiling the provided
source code with ASan or UBSan enabled. We report that
those 38 CVEs can all be triggered by at least one input
provided by the CVE list [22, 23], and after enabling ASan
or UBSan, all the CVE-triggering inputs can be captured by
either ASan or UBSan (i.e., all CVEs can be discovered). We
then use SANRAZOR to perform check reduction with three
schemes (L0, L1, and L2) and check whether after pruning, the
CVE-triggering inputs can still be captured. Table 2 reports
the evaluation results in terms of which CVE vulnerabilities
can still be discovered by the pruned checks.

The static analysis phase of SANRAZOR takes on average
17.5 CPU seconds to process one program. Programs in the
CVE list are typically shipped with a small number of inputs,

including both regular and bug-triggering inputs. At this step,
we use regular inputs to generate dynamic coverage patterns
and shave sanitizer checks. We then test if bugger-triggering
inputs can still be captured by the remaining sanitizer checks.
The execution of most programs takes negligible amount of
time (on average 1.5 CPU seconds). Overall, their shipped
inputs are used for asserting functionality, not for benchmark-
ing. Regarding M0 metrics, we report that SANRAZOR re-
duces geometric mean runtime overhead caused by ASan
from 24.9% to 15.8–22.4% (depending on the different reduc-
tion schemes). Similarly, geometric mean overhead incurred
by UBSan on these CVE programs is reduced from 7.0% to
1.5–5.0%. We also report that we observed significant hot-path
vs. cold-path distinction of these CVE programs, given their
inputs of relatively low comprehensiveness. Nevertheless, we
note that in case a sanitizer check is not covered by a shipped
regular input, we will not even have its dynamic coverage
pattern, and thus will not remove it. This way, vulnerabilities
relevant to this check can be protected.

We then evaluate these programs w.r.t. the M1 and M2
metrics. As shown in Table 1, there is no significant gap com-
paring the number of checks removed from the CVE and
SPEC programs, e.g., 9.9% vs. 8.2% with ASan-M1&L0 and
19.1% vs. 19.2% with UBSan-M2&L0. Therefore, Table 2
shows, even if approximate reduction is achieved, almost all
CVEs can still be discovered. The rest of this section elab-
orates on each case. We discuss all false positive cases (i.e.,
missed CVEs due to incorrectly removed checks) exposed in
Table 2 in Sec. 7.
autotrace is an open-source software written in C, trans-
forming bitmap images into vector images. We reproduce

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 487

19 CVEs in six modules of autotrace-0.31.1. The UBSan
checks avert nine CVEs, including eight signed integer over-
flows (CVE-2017-9161∼9163, CVE-2017-9183∼9187), and
one left shift of negative value (CVE-2017-9188). The rest
are heap buffer overflows detected by ASan checks (CVE-
2017-9167∼9173, CVE-2017-9164∼9166). As reported in
Table 2, all of these CVEs can still be detected, after eliminat-
ing redundant sanitizer checks with the L0 and L1 schemes.
Nevertheless, L2 generates two false positives for the UBSan
cases (see Sec. 7.2).

imageworsener is a C/C++ library supporting scal-
ing and processing images with multiple formats. We
evaluate the performance of SANRAZOR with five CVEs
found in imageworsener-1.3.1, including two divide-
by-zero CVEs (CVE-2017-9201∼9202) in imagew-cmd.c,
two null pointer dereferences (CVE-2017-9204∼9205) in
imagew-util.c, and one out-of-bounds access (CVE-2017-
9203) in imagew-main.c. As reported in Table 2, both L0
and L1 strategies in SANRAZOR can detect all these CVEs,
while the L2 strategy generates one false positive in CVE-
2017-9203. As for the performance gain, Table 1 shows en-
couraging results by saving up to 64.0% w.r.t. M2 metrics.

lame is a MP3 encoder written in C. We reproduce two CVEs
in two C files of lame-3.99.5, where one is a division by
zero vulnerability detected by UBSan in get_audio.c (CVE-
2017-11720), and the other is a heap buffer overflow detected
by ASan in util.c (CVE-2015-9101). Table 2 shows that
both UBSan and ASan can still discover these two CVEs
for all three settings. For the inserted ASan checks, Table 1
reports that up to 74.9% cost can be saved. Similar trends (up
to 71.4%) can be observed for UBSan.

zziplib is a lightweight C library for extracting data
from a zip file. Two CVEs (CVE-2017-5976∼5977) in
zziplib-0.13.62 are evaluated, and both of them are caused
by heap buffer overflow in memdisk.c. Our evaluation shows
that after check reduction with all three settings, both CVEs
can still be discovered by ASan.

libzip is a C library for processing zip files. There is a
use-after-free CVE (CVE-2017-12858) in libzip-1.2.0,
whose triggering-inputs can be captured by ASan. As shown
in Table 2, only the L2 scheme mistakenly eliminates the
corresponding ASan check and missed one CVE.

graphicsmagick is a tool for viewing and editing
commonly-used file formats including PDF, PNG, and JPEG.
We evaluate SANRAZOR on CVE-2017-12937, a heap use-
after-free vulnerability in sun.c. Table 2 shows that this CVE
can be detected by ASan checks for all three settings.

libtiff is a library for viewing and editing tiff images.
Four CVEs, including two heap buffer overflows (CVE-2016-
10270, CVE-2016-10271), one stack buffer overflow (CVE-
2016-10095) and one division-by-zero (CVE-2017-7598), are
used to evaluate SANRAZOR. Experimental results show that
SANRAZOR can detect all CVEs in all three settings.

jasper is also a complex image processing tool (with over
40K LOC). We evaluate SANRAZOR on CVE-2017-5502, a
left shift of a value less than zero that can be detected when
UBSan checks are fully enabled. Our evaluation shows that
after check reduction, this CVE can still be discovered by the
remaining UBSan checks.
potrace is a commonly-used C tool for converting bitmaps
into smooth and scalable images. We evaluate SANRAZOR
on CVE-2017-7263, a heap buffer overflow in bitmap.c of
potrace-1.2. Table 2 shows that ASan can still discover this
CVE after redundant checks are removed in all three settings.
mp3gain is a C library for analyzing MP3 files. We re-
produce five CVEs in mp3gain-1.5.2, including one null
pointer dereference (CVE-2017-14406) in interface.c, one
buffer overflow (CVE-2017-14407) in gain_analysis.c,
and two buffer overflows (CVE-2017-14408∼14409) in
layer3.c. As reported in Table 2, one false positive is found,
where both the L1 and L2 schemes over-aggressively remove
the sanitizer check for detecting CVE-2017-14406.

The evaluation has demonstrated the promising and prac-
tical accuracy of SANRAZOR: vulnerability detectability is
unlikely impacted even if we reduce sanitizer cost. Also, read-
ers may suspect that if during the profiling phase software is
not “stressed enough”, SANRAZOR will elide a small set of
checks and, as expected, catch the respective CVEs. However,
we again note that all sanitizer checks detecting the 38 CVEs
are covered during the profiling phase. That is, our observa-
tion — at least 33 CVEs are discovered by the remaining
checks — is not due to “under-stressed profiling”, rather, the
corresponding checks are not incorrectly deemed redundant.

6.3 Comparison Study

We compare SANRAZOR with the closely related work,
ASAP [40]. ASAP reduces sanitizer checks with high cost
in order to satisfy an overhead budget specified by users. In
contrast to SANRAZOR, ASAP does not identify “likely iden-
tical checks”. Given an overhead budget T , ASAP first esti-
mates the performance cost that a sanitizer check c can incur.
Sanitizer checks will then be ranked by cost and iteratively
removed starting from the most expensive one until the esti-
mated cost is lower than the budget T . We compare SANRA-
ZOR with ASAP by running ASAP on our CVE cases with
different overhead budgets, and reports whether the known
CVEs can still be discovered (i.e., evaluation conducted in
Sec. 6.2). Contrarily, we do not evaluate ASAP on the san-
itizer overhead it can save. ASAP reduces sanitizer checks
to meet a fixed cost budget; it is easy to see that comparing
ASAP and SANRAZOR on this matter (i.e., SPEC evaluation
in Sec. 6.1) is not reasonable.

In this evaluation, we start by using the default budget of
ASAP, 5%, to measure the check reduction. As shown in Ta-
ble 2, setting the overhead budget to 5% (i.e., Budget0) prunes
23 out of 38 checks that can detect CVEs. Furthermore, to

488 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: CVE case study. N denotes the number of CVEs. The “SANRAZOR” and “ASAP” columns report the number of remaining CVEs that
can be discovered by sanitizer checks after reduction. ASAP allows to configure arbitrary overhead budget. We evaluate ASAP by using its
default budget (Budget0), and with the same overhead as SANRAZOR (i.e., Budget1, Budget2, Budget3 correspond to L0, L1, L2, respectively).
See Sec. 6.3 for the setup.

Software CVE SANRAZOR ASAP
Type Sanitizer N L0 L1 L2 Budget0 Budget1 Budget2 Budget3

autotrace
signed integer overflow UBSan 8 8 8 6 6 8 8 8
left shift of 128 by 24 UBSan 1 1 1 1 1 1 1 1
heap buffer overflow ASan 10 10 10 10 0 8 2 2

imageworsener
divide-by-zero UBSan 2 2 2 2 2 2 2 2

index out of bounds UBSan 1 1 1 0 1 1 1 1

lame
divide-by-zero UBSan 1 1 1 1 1 1 1 1

heap buffer overflow ASan 1 1 1 1 0 1 0 0
zziplib heap buffer overflow ASan 2 2 2 2 0 0 0 0
libzip user after free ASan 1 1 1 0 0 1 1 1

graphicsmagick heap use after free ASan 1 1 1 1 0 1 1 1

libtiff
heap buffer overflow ASan 2 2 2 2 0 2 2 2
stack buffer overflow ASan 1 1 1 1 1 1 1 1

divide-by-zero UBSan 1 1 1 1 1 1 1 1
jasper left shift of negative value UBSan 1 1 1 1 1 1 1 1
potrace heap buffer overflow ASan 1 1 1 1 0 1 1 0

mp3gain
stack buffer overflow ASan 2 2 2 2 0 2 0 0
global buffer overflow ASan 1 1 1 1 0 0 0 0

null pointer dereference ASan 1 1 0 0 1 1 1 1
In total 38 38 37 33 15 33 24 23

present a fair comparison with SANRAZOR, we iterate each
tested program and put their CVEs into different types (the
second column of Table 2). We then use the M2 metrics of
SANRAZOR in terms of each CVE type as three different over-
head budgets of ASAP (i.e., budget1, budget2, budget3). For
instance, the “divide-by-zero” CVE of imageworsener can
be captured by UBSan checks. After applying SANRAZOR
(with L0, L1, and L2 schemes) on imageworsener with full
UBSan checks enabled, we report that the remaining M2 over-
head is 82.2%, 78.4%, and 36.0%, respectively. Then, ASAP
is configured to take these three remaining M2 overhead as its
overhead budget and performs sanitizer check reduction. As
shown in Table 2, two CVEs of imageworsener (the “divide-
by-zero” row) can still be discovered for all three budgets.
Overall, ASAP is configured to achieve the same amount of
performance cost as SANRAZOR, and we record how many
CVEs can still be discovered in this “apple-to-apple” setting.

We record the remaining M2 overhead (geometric mean
89.2%) for each CVE type after using SANRAZOR with the
L0 scheme enabled. As shown in Table 2, five CVEs cannot be
detected when assuming this budget for ASAP. The L1 and L2
schemes perform a relatively more tolerant reduction (73.5%
and 45.7% geometric mean remaining M2 overhead), and ac-
cordingly, ASAP removes 14 and 15 checks, respectively. We
find that considerable critical CVEs are not discovered after
using ASAP, since the corresponding checks are in the “hot
paths” of test cases, incurring high cost, and therefore are
removed. Overall, we interpret the comparison as encourag-
ing, showing that ASAP neglects the important observation
of sanitizer redundancy, causing it to fail discovering CVEs
on hot paths. Contrarily, Table 2 shows that SANRAZOR can
help discover more CVEs after reducing identical cost.

6.4 Combining SANRAZOR with ASAP

We also conduct a case study on autotrace to explore how
we could achieve potential synergistic effects by combining
SANRAZOR with ASAP and reduce the M2 overhead for pro-
duction usage. To this end, we explore whether, after applying
ASAP, SANRAZOR can find further opportunities for elimi-
nating redundancy that ASAP may have missed.

Specifically, we first set the overhead budget of ASAP
to the reasonable, but arbitrary threshold of 30% and run
it on autotrace with full ASan enabled to remove high-cost
checks. ASAP aggressively reduces ASan checks; after re-
ducing the M2 overhead to 30%, six out of in total 10 CVEs
are missed. We then leverage SANRAZOR to identify redun-
dant checks. We report that when applying SANRAZOR with
the L0 scheme, we observe that the M2 overhead can be fur-
ther reduced to 7.0%, without missing any additional CVEs.
In contrast, using ASAP with this aggressive budget (7.0%),
would reduce too many ASan checks and miss all 10 CVEs
(cf. Table 2).
SANRAZOR Extension and Future Directions. Note that
ASAP primarily focuses on shaving costly checks on the
hot paths, which indicates promising potential of fine-tuning
SANRAZOR’s schemes to be more adaptive by taking cost
into consideration. SANRAZOR can thus be extended to apply
L0/L1 schemes to shave checks with low costs and L1/L2
schemes to shave checks with high costs. This should better
balance performance and safety, rather than using the same
scheme to all checks.

Our study in this section sheds light on the significant
potential in combining SANRAZOR with previous works
(e.g., [14,37,44]) and exploring their synergistic effects, since
the strategies for which checks to remove are generally orthog-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 489

Table 3: Quantitative analysis of the removed sanitizer checks.

Software Sanitizer #Reduced #Identical #Correlated
Type Checks Checks Checks

401.bzip2 UBSan 11,406 6,562 4,844
autotrace ASan 2,434 460 1,974

onal. Also, in addition to the combination strategy demon-
strated above, we envision using other feasible schemes to
combine SANRAZOR and ASAP. For instance, given a user-
specified budget, we first use SANRAZOR to remove all the
likely redundant checks, and if the budget is still not met, we
use ASAP to remove further checks. We leave it as future
work to explore other practical methods to combine SANRA-
ZOR with existing sanitizer reduction tools.

This section demonstrates combining SANRAZOR with
ASAP to reveal more debloating opportunities. In addition,
we also expect that by using SANRAZOR to shave likely equiv-
alent checks, sanitizer-guided security applications can be
boosted. For instance, by shaving redundant checks, sanitizer-
guided fuzz testing tool, ParmeSan [26], may have a higher
throughput and likely find more bugs within a given time
budget. We leave this as one future work to explore using
SANRAZOR to boost ParmeSan.

7 Discussion

7.1 Characteristics of Removed Checks

This section further explains the characteristics of the checks
that are removed. Given the observation that thousands of san-
itizer checks are inserted into each program, we deem investi-
gating all test cases infeasible. Rather, we manually checked
SPEC program 401.bzip2 (with UBSan) and CVE program
autotrace (with ASan) and analyzed check reduction pat-
terns (Table 3). The two programs contain in total 24,132
checks (17,272 in 401.bzip2 and 6,860 in autotrace).
SANRAZOR with the L2 scheme enabled removes 66.0% san-
itizer checks from bzip2 and 35.7% checks from autotrace.
We studied each removed check to identify two common pat-
terns that we refer to as “identical checks” and “correlated
checks”. Below, we present typical cases for each category.
Checks that are identical with other checks. Sanitizer
checks of this class have the same functionality as other
checks. Consider the code snippet in bzip2.c as follows:

1 void BZ_blockSort(EState* s){
2 UInt32* ptr = s→ ptr;
3 UChar* block = s→ block;

where two UBSan checks are inserted to check whether s
is a null pointer. However, these two checks indeed assert
the same property and are therefore identical with each other.
Removing one of them can still ensure that the null pointer
is detected. SANRAZOR will remove one of them since their
coverage patterns are exactly the same and their control-flow

statements (i.e., the br statement in LLVM IR) have condition
operands of identical dependency trees.
Checks that are correlated with other checks. SANRAZOR
removes this class of checks since they have the same dynamic
and static patterns with other checks, indicating strong corre-
lation with each other, as, for instance, for different pointer
arithmetic expressions over the same pointer (as discussed in
Sec. 4.3.1). Consider CVE-2017-9169 as an example:

1 *(temp++)= buffer[xpos * 3 + 2]; //line 353
2 *(temp++)= buffer[xpos * 3 + 1]; //line 354
3 *(temp++)= buffer[xpos * 3]; //line 355

which is a heap buffer overflow in line 353 of file input_-
bmp.c (temp in above code). When enabling ASan, three sani-
tizer checks (sc1,sc2,sc3) are inserted for this case to check the
shadow memory of pointer temp (in line 1-3 above). When us-
ing SANRAZOR (with L1 or L2 enabled) to analyze this case,
all three checks exhibit identical dynamic and static patterns.
Thus, two checks will be removed. Although the heap buffer
overflow in CVE-2017-9169 roots in the invalid memory ac-
cess of pointer temp in line 353, ASan can presumably detect
the vulnerability when using any of the other two checks.

7.2 False Positive Analysis
SANRAZOR can also induce false positives (i.e., unique
checks that are removed), since the captured dynamic pat-
terns only provide statistical information of sanitizer checks
and the static pattern sets used for the redundancy analysis
could be optimistic as well. Below, we provide detailed anal-
ysis of all five false positive cases caused by the L2 scheme
of SANRAZOR (the false positive case of using L1 scheme is
also subsumed).
CVE-2017-9203 is an index out of bounds vulnerability in
imagew-main.c of imageworsener-1.3.0 as follows:

1 int_ci = &ctx→ intermed_ci[intermed_channel];
2 output_channel = int_ci→

corresponding_output_channel; // CVE
3 out_ci = &ctx→ img2_ci[output_channel];

Specifically, ctx is an input argument of the enclosing func-
tion (line 2), which has a struct iw_context* type. When
compiling this module with UBSan, three sanitizer checks
will be inserted to detect index out of bounds, type check, and
pointer overflow vulnerabilities on line 2. Recall as introduced
in Sec. 4.1, these three UBSan checks can be differentiated
by the constant operands of their associated icmp statement.
Nevertheless, since all these checks take the memory address
of ctx as its inputs, they have the same value dependency
on ctx when using the L2 scheme (recall L2 eliminates all
constants). Therefore, SANRAZOR will identify two of them
as redundant sanitizer checks and remove them, causing UB-
San to fail reporting the index out of bounds vulnerability
in this CVE. However, if SANRAZOR is configured with L1,
these checks can be kept since the constant parameter used to
differentiate these three UBSan checks are preserved.

490 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CVE-2017-12858 is a use-after-free vulnerability detected
by ASan in zip_buffer.c of libzip-1.2.0. As shown be-
low, variable buffer of zip_buffer_t* type attempts to
access its element free_data in the if condition (line 5):

1 void _zip_buffer_free(zip_buffer_t *buffer){
2 if (buffer == NULL) return;
3 if(buffer→ free_data){ // CVE
4 free(buffer→ data);

When ASan is enabled, a check is inserted to assert whether
the memory pointed by buffer has been freed before access-
ing its element free_data. SANRAZOR with the L2 scheme
enabled eliminates this check since it has the same dynamic
coverage pattern with two user checks (two if conditions on
line 2 and line 3), which also share the same data dependency
pattern (since variable buffer is used for all three user and
sanitizer checks). However, the check inserted by ASan per-
forms shadow memory calculation, which indeed depends
on different constant values with two user checks. Therefore,
SANRAZOR with L1 scheme can retain this check.
CVE-2017-9184 is a signed integer overflow in
autotrace=0.31.1 reported by UBSan. It is derived
from a heap memory allocation in input-bmp.c as follows:

1 XMALLOC(image , width * height
2 * 1 * sizeof(unsigned char)); // CVE
3 ypos = height - 1;
4 switch (...) {
5 case 1: {
6 while (ypos >= 0 && xpos <= width) { ...

XMALLOC allocates memory buffers on the heap by taking
the second parameter as the buffer length, where a UBSan
check is inserted in line 1 to detect the signed integer overflow
when multiplying height with width. Moreover, we find
a user check in the while loop condition (line 6), which
shares the same value dependency with this critical sanitizer
check (ypos derives from height and xpos is a constant).
Therefore, SANRAZOR with L2 enabled removes this check.
Nevertheless, the inserted UBsan check and while condition
assert different program properties, exposing a false positive.
In contrast, this false positive can be avoided when using the
L1 scheme, since the user check also depends on constant
value 0, exhibiting different value dependency patterns with
the inserted sanitizer check by UBSan.
CVE-2017-9187 is a signed integer overflow vulnerability
found from autotrace=0.31.1. Consider the following code
snippet showing the CVE in input-bmp.c:

1 unsigned char *temp2 , *temp3;
2 XMALLOC(image , width * height
3 * 3 * sizeof(unsigned char)); // CVE
4 temp3 = image; //another UBSan check

When compiling this code snippet with UBSan enabled,
a sanitizer check is inserted to check whether the second
parameter of XMALLOC can incur an integer overflow. Also,
another check is added to detect whether the pointer temp3

is null. Since temp3 points to image and the value of image
is assigned by XMALLOC, the parameter of the second UBSan
check depends on variable width and height (recall as men-
tioned in Sec. 4.3, for interprocedural analysis the function
call output, image for this case, conservatively depends on
all function parameters). Therefore, SANRAZOR with L2 en-
abled will consider this sanitizer check to be redundant with
the assertion, while the L1 scheme would not, as these two
checks can be differentiated by their constant parameters.
CVE-2017-14406 is a null pointer dereference found in
interface.c of mp3gain-1.5.2. Consider the code below:

1 int sync_buffer(PMPSTR mp,int free_match) {
2 for (i=0; i<mp→ bsize; i++) // CVE
3 { ... }
4 struct frame *fr = &mp→ fr;
5 h = head_check(head ,fr→ lay);

Two ASan checks are used to check mp and fr when ac-
cessing their struct elements bsize (line 2) and lay (line 5),
respectively. fr is initialized with mp->fr (line 4), which de-
pends on the function parameter mp (line 1). That is, the two
ASan checks have identical data dependencies w.r.t. the L1
and L2 schemes. SANRAZOR eliminates the first ASan check
and becomes incapable of detecting the CVE vulnerability on
line 2. However, SANRAZOR with L0 enabled can differenti-
ate these two checks, since they depend on different constant
offsets when accessing the struct elements.

7.3 False Negative Analysis
SANRAZOR could also have false negatives (i.e., redundant
checks are not removed). Take the following piece of code
in 462.libquantum for example, where ASan inserts two
checks to detect a buffer overflow in reg->node[i]. Let the
inserted check in line 2 and line 3 as sc1 and sc2, respectively.
Although sc2 is redundant with sc1 for this specific case, SAN-
RAZOR does not recognize sc2 as a redundant sanitizer check
during our experiment, because the dynamic pattern of sc2
differs from that of sc1. Such cases are the primary cause
for generating false negatives, according to our observations.
Nevertheless, Sec. 4.4 has discussed that these false negative
cases can be primarily eliminated by considering dominating
relations in comparing dynamic coverage patterns.

1 for(i=0; i<reg→ size; i++) {
2 if(reg→ node[i].state & ...) {
3 if(reg→ node[i].state & ...) {

7.4 Effects of Workload Selection
As mentioned in Sec. 4.2, SANRAZOR relies on dynamic
coverage patterns to pinpoint potentially redundant checks.
Therefore, in this section, we present study and discussion on
the efficiency of check reduction w.r.t. the size of workload.
To do so, we incrementally enlarge the workload for profiling
bzip2 record both the number of reduced sanitizer checks

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 491

0 5 10 15 20 25 30 35 40

Number of inputs for profiling

30

40

50

60

70
P

er
ce

n
ta

g
e/

%

Reduced checks

Reduced run-time overhead

Figure 6: Effects of workload selection evaluation on ASan.

and the runtime overhead caused by ASan. For this study, we
configure SANRAZOR with the L2 scheme for check reduc-
tion. We download a bzip2 testsuite with 38 different inputs
from [2] and conduct experiments on bzip2 (a single-file
version from [1]).

As illustrated in Fig. 6, the percentage of reduced sanitizer
checks will increase when more inputs are fed to the test case.
However, when the number of test inputs are more than eight,
the number of reduced checks reach the saturation point at
58.0%. Similarly, the percentage of reduced runtime cost can
also become stable when the number of inputs is larger than
12. Also, notice that the blue line will first increase (when
the input is less than five), and then decrease until reaching
the saturation point (when input is 13). The reason is that
with insufficient amount of inputs in the workload, irrelevant
checks may exhibit identical dynamic coverage patterns and
be treated as “redundant.” In other words, SANRAZOR may re-
port false positives when the available inputs are insufficient,
and aggressively flag too many “redundant” checks (Sec. 7
discusses false positives and false negatives of this research).
In general, when adopting SANRAZOR in real-world scenar-
ios, sufficient inputs are needed for achieving good reduction
results and reducing false alarms, but they may not need to
be too many.

8 Related Work

Static Check Reduction. Existing research has proposed
heavyweight program analyses to elide redundant bounds
check by inferring the value ranges of certain variables. For
example, some approaches deem checks unnecessary if the
value range of an index is below the size of its accessed ar-
ray [6, 11, 12, 15, 25, 37, 39, 44, 45]. SIMBER [7, 45] uses
statistical inference to identify redundant bounds checks from
past executions. RedCard [9] flags unnecessary race condition
checks by scoping specific “release-free” code region where
it is proved that only one race check is needed for each region.
BigFoot [28] coalesces race checks on arrays and C structs.
Overall, the extensive existing work on this topic focuses on
specific types of checks, and cannot be easily generalized
to other checks. For instance, [9] identifies a “release-free”
region by checking if no lock release synchronization oper-

ations (e.g., wait, fork) can be found in that region. Hence,
race checks only need to be done once within each region.
Scoping such a “safe region” could be very difficult for other
checks: to decide such a safe region for ASan, we anticipate
to perform expensive alias analysis for every pointer within
that region to confirm a checked pointer is never modified. In
contrast, SANRAZOR analyze the equivalence of checks in a
general and practical way to eliminate duplications.

The most closely related work is ASAP [40], which, like
SANRAZOR, is unsound but general. ASAP is designed based
on the observation that a few “hot” sanitizer checks account
for most of the overhead and that most CVEs are located in
the “cold” parts of a program. ASAP removes sanitizer checks
with high runtime overhead until the overall overhead meets a
user-provided cost budget. Different from SANRAZOR, ASAP
does not consider check redundancy and is prone to removing
critical checks on a program’s hot paths as we have shown.
Run-time Check Reduction. Safe Sulong [30] is a sanitizer
that relies on the dynamic compiler of the Java Virtual Ma-
chine to reduce checks. Java compilers are capable of eliding
certain unneeded checks [42]. However, Safe Sulong can be
overly conservative since it eliminates only those checks that
are identified as redundant by the compiler.

Some approaches reduce sanitizer checks by runtime par-
titioning. Kurmus et al. split the kernel into an unprotected
and a protected partition to reduce overhead caused by kernel
hardening [16]. Bunshin [43] distributes sanitizer checks into
different program variants and executes them in parallel to
reduce the overall overhead. PartiSan [18] is a runtime sani-
tizer partitioning tool using control-flow diversity to improve
sanitizer efficiency. Varan [13] is a multi-version monitor that
uses selective binary rewriting to execute multiple versions
of a system (e.g., instrumented by multiple sanitizers). How-
ever, these approaches reduce sanitization cost with parallel
execution, rather than analyzing redundancy offline.

9 Conclusion

We have presented SANRAZOR, a novel, practical tool for
sanitizer check reduction. SANRAZOR identifies redundant
checks by analyzing their dynamic coverage patterns and
static data dependency patterns. Evaluation on CPU bench-
marks and programs with CVEs shows that SANRAZOR can
effectively lower the overhead caused by ASan and UBSan,
while still retaining high vulnerability detection capability.

Acknowledgments

We thank anonymous reviewers and our shepherd, Shan Lu,
for their valuable feedback. We also thank Fuqiang Fan, who
proofread an early version of the paper and pointed out an
error in Definition 1.

492 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Large single compilation-unit C programs.
https://people.csail.mit.edu/smcc/projects/
single-file-programs/, 2006.

[2] Bzip2 testsuite. https://sourceware.org/git/?p=
bzip2-tests.git, 2019.

[3] SanRazor. https://github.com/SanRazor-repo/
SanRazor, 2021.

[4] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel
Costa, and Miguel Castro. Preventing memory error ex-
ploits with WIT. In 2008 IEEE Symposium on Security
and Privacy, pages 263–277. IEEE, 2008.

[5] Andrew W. Appel. Modern Compiler Implementation
in ML: Basic Techniques. Cambridge University Press,
1997.

[6] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. ABCD:
eliminating array bounds checks on demand. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 321–333, 2000.

[7] Yurong Chen, Hongfa Xue, Tian Lan, and Guru
Venkataramani. CHOP: Bypassing runtime bounds
checking through convex hull optimization. Computers
& Security, 90:101708, 2020.

[8] LLVM Developers. Undefined behavior san-
itizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, 2017.

[9] Cormac Flanagan and Stephen N Freund. Redcard: Re-
dundant check elimination for dynamic race detectors.
In European Conference on Object-Oriented Program-
ming, pages 255–280. Springer, 2013.

[10] Debin Gao, Michael K. Reiter, and Dawn Song. Bin-
Hunt: Automatically finding semantic differences in
binary programs. ICICS, 2008.

[11] Rigel Gjomemo, Phu H Phung, Edmund Ballou, Kedar S
Namjoshi, VN Venkatakrishnan, and Lenore Zuck.
Leveraging static analysis tools for improving usability
of memory error sanitization compilers. In International
Conference on Software Quality, Reliability and Security
(QRS), pages 323–334, 2016.

[12] William H. Harrison. Compiler analysis of the value
ranges for variables. IEEE Transactions on software
engineering, (3):243–250, 1977.

[13] Petr Hosek and Cristian Cadar. Varan the unbelievable:
An efficient N-version execution framework. In Pro-
ceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 339–353, 2015.

[14] Yuseok Jeon, Wookhyun Han, Nathan Burow, and Math-
ias Payer. FuZZan: Efficient sanitizer metadata design
for fuzzing. In USENIX Annual Technical Conference
(USENIX ATC), pages 249–263, 2020.

[15] Priyadarshan Kolte and Michael Wolfe. Elimination of
redundant array subscript range checks. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), page 270–278, 1995.

[16] Anil Kurmus and Robby Zippel. A tale of two kernels:
Towards ending kernel hardening wars with split kernel.
In ACM Conference on Computer & Communications
Security (CCS), 2014.

[17] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In International Symposium on Code Generation
and Optimization (CGO), pages 75–, 2004.

[18] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen,
Stijn Volckaert, and Michael Franz. PartiSan: fast and
flexible sanitization via run-time partitioning. In Inter-
national Symposium on Research in Attacks, Intrusions,
and Defenses, pages 403–422, 2018.

[19] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and
Nikolai Tillmann. Measuring code behavioral similarity
for programming and software engineering education.
In International Conference on Software Engineering
Companion (ICSE-C), pages 501–510, 2016.

[20] Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu.
Automatic grading of programming assignments: an ap-
proach based on formal semantics. In International
Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET), pages
126–137, 2019.

[21] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and
Sencun Zhu. Semantics-based obfuscation-resilient bi-
nary code similarity comparison with applications to
software plagiarism detection. In FSE, 2014.

[22] Dongliang Mu. CVE list. https://github.com/
VulnReproduction/VulnReproduction.github.
io, 2019.

[23] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities. In 27th USENIX Security Symposium
(USENIX Security 18), pages 919–936, 2018.

[24] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly compatible
and complete spatial memory safety for C. In ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), page 245–258, 2009.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 493

https://people.csail.mit.edu/smcc/projects/single-file-programs/
https://people.csail.mit.edu/smcc/projects/single-file-programs/
https://sourceware.org/git/?p=bzip2-tests.git
https://sourceware.org/git/?p=bzip2-tests.git
https://github.com/SanRazor-repo/SanRazor
https://github.com/SanRazor-repo/SanRazor
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/VulnReproduction/VulnReproduction.github.io
https://github.com/VulnReproduction/VulnReproduction.github.io
https://github.com/VulnReproduction/VulnReproduction.github.io

[25] George C. Necula and Peter Lee. The design and imple-
mentation of a certifying compiler. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), page 333–344, 1998.

[26] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and
Cristiano Giuffrida. ParmeSan: Sanitizer-guided grey-
box fuzzing. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2289–2306, 2020.

[27] David A Ramos and Dawson Engler. Under-constrained
symbolic execution: Correctness checking for real code.
In 24th USENIX Security Symposium (USENIX Security
15), pages 49–64, 2015.

[28] Dustin Rhodes, Cormac Flanagan, and Stephen N. Fre-
und. Bigfoot: Static check placement for dynamic race
detection. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
page 141–156, 2017.

[29] Henry Gordon Rice. Classes of recursively enumerable
sets and their decision problems. Transactions of the
American Mathematical Society, 74(2):358–366, 1953.

[30] Manuel Rigger, Roland Schatz, René Mayrhofer,
Matthias Grimmer, and Hanspeter Mössenböck. Sulong,
and thanks for all the bugs: Finding errors in C pro-
grams by abstracting from the native execution model.
In International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 377–391, 2018.

[31] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In 2010 IEEE symposium on
Security and privacy, 2010.

[32] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer: A
Fast Address Sanity Checker. In Proceedings of the
2012 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’12, pages 28–28, 2012.

[33] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: Sanitizing for security. 2019.

[34] Cloyce D Spradling. SPEC CPU2006 benchmark
tools. ACM SIGARCH Computer Architecture News,
35(1):130–134, 2007.

[35] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: Fast detector of uninitialized memory use in
C++. In International Symposium on Code Generation
and Optimization (CGO), pages 46–55, 2015.

[36] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In International Confer-
ence on Compiler Construction (CC), pages 265–266,
2016.

[37] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Eliminat-
ing redundant bounds checks in dynamic buffer overflow
detection using weakest preconditions. IEEE Transac-
tions on Reliability, 65(4):1682–1699, 2016.

[38] Yulei Sui, Ding Ye, and Jingling Xue. Detecting mem-
ory leaks statically with full-sparse value-flow analysis.
IEEE TSE, 40(2):107–122, 2014.

[39] Norihisa Suzuki and Kiyoshi Ishihata. Implementation
of an array bound checker. In ACM SIGACT-SIGPLAN
symposium on Principles of Programming Languages
(POPL), pages 132–143, 1977.

[40] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In IEEE Symposium on Security and
Privacy, pages 866–879, 2015.

[41] Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and
Armando Solar-Lezama. Towards optimization-safe
systems: Analyzing the impact of undefined behavior.
In ACM Symposium on Operating Systems Principles
(SOSP), pages 260–275, 2013.

[42] Thomas Würthinger, Christian Wimmer, and Hanspeter
Mössenböck. Array bounds check elimination for the
Java HotSpot client compiler. In International Sym-
posium on Principles and Practice of Programming in
Java (PPPJ), pages 125–133, 2007.

[43] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee.
Bunshin: Compositing security mechanisms through
diversification. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 271–283, 2017.

[44] Zhichen Xu, Barton P. Miller, and Thomas Reps. Safety
checking of machine code. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation (PLDI), page 70–82, 2000.

[45] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian
Lan, and Guru Venkataramani. Simber: Eliminating
redundant memory bound checks via statistical infer-
ence. In IFIP International Conference on ICT Systems
Security and Privacy Protection, pages 413–426, 2017.

[46] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin,
and Steve Zdancewic. Formal verification of SSA-based
optimizations for LLVM. pages 175–186, 2013.

494 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Dorylus: Affordable, Scalable, and Accurate GNN Training with
Distributed CPU Servers and Serverless Threads

John Thorpe†♣ Yifan Qiao†♣ Jonathan Eyolfson† Shen Teng† Guanzhou Hu†‡ Zhihao Jia§

Jinliang Wei∗ Keval Vora[Ravi Netravali] Miryung Kim† Guoqing Harry Xu†

UCLA† University of Wisconsin‡ CMU§ Google Brain∗ Simon Fraser[Princeton University]

Abstract
A graph neural network (GNN) enables deep learning on

structured graph data. There are two major GNN training
obstacles: 1) it relies on high-end servers with many GPUs
which are expensive to purchase and maintain, and 2) limited
memory on GPUs cannot scale to today’s billion-edge graphs.
This paper presents Dorylus: a distributed system for training
GNNs. Uniquely, Dorylus can take advantage of serverless
computing to increase scalability at a low cost.

The key insight guiding our design is computation separa-
tion. Computation separation makes it possible to construct a
deep, bounded-asynchronous pipeline where graph and ten-
sor parallel tasks can fully overlap, effectively hiding the
network latency incurred by Lambdas. With the help of thou-
sands of Lambda threads, Dorylus scales GNN training to
billion-edge graphs. Currently, for large graphs, CPU servers
offer the best performance per dollar over GPU servers. Just
using Lambdas on top of Dorylus offers up to 2.75× more
performance-per-dollar than CPU-only servers. Concretely,
Dorylus is 1.22× faster and 4.83× cheaper than GPU servers
for massive sparse graphs. Dorylus is up to 3.8× faster and
10.7× cheaper compared to existing sampling-based systems.

1 Introduction
Graph Neural Networks (GNN) [40, 55, 71, 50, 53, 35]
are a family of NNs designed for deep learning on graph
structured data [103, 92]. The most well-known model in
this family is the graph convolutional network (GCN) [40],
which uses the connectivity structure of the graph as the fil-
ter to perform neighborhood mixing. Other models include
graph recursive network (GRN) [51, 67], graph attention net-
work (GAT) [6, 78, 100], and graph transformer network
(GTN) [96]. Due to the prevalence of graph datasets, GNNs
have gained increasing popularity across diverse domains
such as drug discovery [85], chemistry [19], program anal-
ysis [2, 5], and recommendation systems [91, 95]. In fact,
GNN is one of the most popular topics in recent AI/ML con-
ferences [32, 45].

♣ Contributed equally.

GPUs are the de facto platform to train a GNN due to their
ability to provide highly-parallel computations. While GPUs
offer great efficiency for training, they (and their host ma-
chines) are expensive to use. To train a (small) million-edge
graph, recent works such as NeuGraph [55] and Roc [34]
need at least four such machines. A public cloud offers flex-
ible pricing options, but cloud GPU instances still incur a
non-trivial cost — the lowest-configured p3 instance type on
AWS has a price of $3.06/h; training realistic models requires
dozens/hundreds of such machines to work 24/7. While cost
is not a concern for big tech firms, it can place a heavy finan-
cial burden on small businesses and organizations.

In addition to being expensive, GPUs have limited mem-
ory, hindering scalability. For context, real-world graphs are
routinely billion-edge scale [69] and continue to grow [95].
NeuGraph and Roc enable coordinated use of multiple GPUs
to improve scalability (at higher costs), but they remain un-
able to handle the billion-edge graphs that are commonplace
today. Two main approaches exist for reducing the costs
and improving the scalability of GNN training, but they each
introduce new drawbacks:

• CPUs face far looser memory restrictions than GPUs, and
operate at significantly lower costs. However, CPUs are un-
able to provide the parallelism in computations that GPUs
can, and thus deliver far inferior efficiency (or speed).

• Graph sampling techniques select certain vertices and sam-
ple their neighbors when gathering data [25, 95]. Sampling
techniques improve scalability by considering less graph
data, and it is a generic technique that can be used on ei-
ther GPU or CPU platforms. However, our experiments
(§7.5) and prior work [34] highlight two limitations with
graph sampling: (1) sampling must be done repeatedly
per epoch, incurring time overheads and (2) sampling typi-
cally reduces accuracy of the trained GNNs. Furthermore,
although sampling-based training converges often in prac-
tice, there is no convergence guarantee for trivial sampling
methods [9].

Affordable, Scalable, and Accurate GNN Training. This

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 495

paper devises a low-cost training framework for GNNs on
billion-edge graphs. Our goal is to simultaneously deliver
high efficiency (e.g., close to GPUs) and high accuracy (e.g.,
higher than sampling). Scaling to billion-edge graphs is cru-
cial for applicability to real-world use cases. Ensuring low
costs and practical performance improves the accessibility for
small organizations and domain experts to make the most out
of their rich graph data.

To achieve these goals, we turn to the serverless computing
paradigm, which has gained increasing traction [20, 43, 37] in
recent years through platforms such as AWS Lambda, Google
Cloud Functions, or Azure Functions. Serverless computing
provides large numbers of parallel “cloud function” threads,
or Lambdas, at an extremely low price (i.e., $0.20 for launch-
ing one million threads on AWS [3]). Furthermore, Lambda
presents a pay-only-for-what-you-use model, which is much
more appealing than dedicated servers for applications that
need only massive parallelism.

Although it appears that serverless threads could be used
to complement CPU servers without significantly increasing
costs, they were built to execute light asynchronous tasks,
presenting two challenges for NN training:

• Limited compute resources (e.g., 2 weak vCPUs)
• Restricted network resources (e.g., 200 Mbps between

Lambda servers and standard EC2 servers [42])

A neural network makes heavy use of (linear algebra based)
tensor kernels. A Lambda1 thread is often too weak to exe-
cute a tensor kernel on large data; breaking the data to tiny
minibatches mitigates the compute problem at the cost of
higher data-transfer overheads. Consequently, using Lamb-
das naı̈vely for training an NN could result in significant
slowdowns (e.g., 21× slowdowns for training of multi-layer
perceptron NNs [29], even compared to CPUs).
Dorylus. To overcome these weaknesses, we developed
Dorylus2, a distributed system that uses cheap CPU servers
and serverless threads to achieve the aforementioned goals for
GNN training. Dorylus leverages GNN’s special computation
model to overcome the two challenges associated with the
use of Lambdas. Details are elaborated below:

The first challenge is how to make computation fit into
Lambda’s weak compute profile? We observed: not all opera-
tions in GNN training need Lambda’s parallelism. GNN train-
ing comprises of two classes of tasks [55] – neighbor propa-
gations (e.g., Gather and Scatter) over the input graph and
per-vertex/edge NN operations (such as Apply) over the ten-
sor data (e.g., features and parameters). Training a GNN over
a large graph is dominated by graph computation (see §7.6),
not tensor computation that exhibits strong SIMD behaviors
and benefits the most from massive parallelism.

Based on this observation, we divide a training pipeline into

1We use “Lambda” in this paper due to our AWS-based implementation
while our idea is generally applicable to all types of serverless threads.

2Dorylus is a genus of army ants that form large marching columns.

a set of fine-grained tasks (Figure 3, §4) based on the type of
data they process. Tasks that operate over the graph structure
belong to a graph-parallel path, executed by CPU instances,
while those that process tensor data are in a tensor-parallel
path, executed by Lambdas. Since the graph structure is taken
out of tensors (i.e., it is no longer represented as a matrix), the
amount of tensor data and computation can be significantly
reduced, providing an opportunity for each tensor-parallel
task to run a lightweight linear algebra operation on a data
chunk of a small size — a granularity that a Lambda is capable
of executing quickly.

Note that Lambdas are a perfect fit to GNNs’ tensor compu-
tations. While one could also employ regular CPU instances
for compute, using such instances would incur a much higher
monetary cost to provide the same level of burst parallelism
(e.g., 2.2× in our experiments) since users not only pay for
the compute but also other unneeded resources (e.g., storage).

The second challenge is how to minimize the negative im-
pact of Lambda’s network latency? Our experiments show
that Lambdas can spend one-third of their time on communi-
cation. To not let communication bottleneck training, Dorylus
employs a novel parallel computation model, referred to as
bounded pipeline asynchronous computation (BPAC). BPAC
makes full use of pipelining where different fine-grained tasks
overlap with each other, e.g., when graph-parallel tasks pro-
cess graph data on CPUs, tensor-parallel tasks process tensor
data, simultaneously, with Lambdas. Although pipelining
has been used in prior work [34, 63], in the setting of GNN
training, pipelining would be impossible without fine-grained
tasks, which are, in turn, enabled by computation separation.

To further reduce the wait time between tasks, BPAC in-
corporates asynchrony into the pipeline so that a fast task
does not have to wait until a slow task finishes even if data
dependencies exist between them. Although asynchronous
processing has been widely used in the past, Dorylus faces a
unique technical difficulty that no other systems have dealt
with: as Dorylus has two computation paths, where exactly
should asynchrony be introduced?

Dorylus uses asynchrony in a novel way at two distinct lo-
cations where staleness can be tolerated: parameter updates
(in the tensor-parallel path) and data gathering from neighbor
vertices (in the graph-parallel path). To not let asynchrony
slow down the convergence, Dorylus bounds the degree of
asynchrony at each location using different approaches (§5):
weight stashing [63] at parameter updates and bounded stale-
ness at data gathering. We have formally proved the conver-
gence of our asynchronous model in §5.
Results. We have implemented two popular GNNs – GCN
and GAT – on Dorylus and trained them over four real-world
graphs: Friendster (3.6B edges), Reddit-full (1.3B),
Amazon (313.9M), and Reddit-small (114.8M). With the
help of 32 graph servers and thousands of Lambda threads,
Dorylus was able to train a GCN, for the first time without
sampling, over billion-edge graphs such as Friendster.

496 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

To enable direct comparisons among different platforms,
we built new GPU- and CPU-based training backends based
on Dorylus’ distributed architecture (with computation separa-
tion). Across our graphs, Dorylus’s performance is 2.05× and
1.83× higher than that of GPU-only and CPU-only servers
under the same monetary budget. Sampling is surprisingly
slow — to reach the same accuracy target, it is 2.62× slower
than Dorylus due to its slow accuracy climbing. In terms of
accuracy, Dorylus can train a model with an accuracy 1.05×
higher than sampling-based techniques.

Key Takeaway. Prior work has demonstrated that Lambdas
can only achieve suboptimal performance for DNN training
due to the limited compute resources on a Lambda and the ex-
tra overheads to transfer model parameters/gradients between
Lambdas. Through computation separation, Dorylus makes
it possible, for the first time, for Lambdas to provide a scal-
able, efficient, and low-cost distributed computing scheme
for GNN training.

Dorylus is useful in two scenarios. First, for small organi-
zations that have tight cost constraints, Dorylus provides an
affordable solution by exploiting Lambdas at an extremely
low price. Second, for those who need to train GNNs on very
large graphs, Dorylus provides a scalable solution that sup-
ports fast and accurate GNN training on billion-edge graphs.

2 Background
A GNN takes graph-structured data as input, where each ver-
tex is associated with a feature vector, and outputs a feature
vector for each individual vertex or the whole graph. The out-
put feature vectors can then be used by various downstream
tasks, such as, graph or vertex classification. By combining
the feature vectors and the graph structure, GNNs are able
to learn the patterns and relationships among the data, rather
than relying solely on the features of a single data point.

GNN training combines graph propagation (e.g., Gather
and Scatter) and NN computations. Prior work [17, 89]
discovered that GNN development can be made much easier
with a programming model that provides a graph-parallel
interface, which allows programmers to develop the NN with
familiar graph operations. A typical example is the deep
graph library (DGL) [17], which unifies a variety of GNN
models with a common GAS-like interface.
Forward Pass. To illustrate, consider graph convo-
lutional network (GCN) as an example. GCN is the
simplest and yet most popular model in the GNN family, with
the following forward propagation rule for theL-th layer [40]:

(R1) HL+1 = σ(ÂHLWL)

A is the adjacency matrix of the input graph, and
Ã = A + IN is the adjacency matrix with self-loops
constructed by adding A with IN , the identity matrix. D̃ is
a diagonal matrix such that D̃ii = ΣjÃij . With D̃, we
can construct a normalized adjacency matrix, represented by
Â = D̃−

1
2 ÃD̃−

1
2 . WL is a layer-specific trainable weight

matrix. σ(.) denotes a non-linear activation function, such as

ApplyVertex
(AV)

ApplyEdge
(AE)

Gather (GA)

Scatter (SC)

GA

AV

SC

AE

GA

AV

SC

AE

ÂHL

σ
((

ÂHL

)
WL

)

(a) Computation model (b) Annotated dataflow graph

Figure 1: A graphical illustration of GCN’s computation
model and dataflow graph in each forward layer. In (a), edges
in red represent those along which information is being propa-
gated; solid edges represent standard Gather/Scatter oper-
ations while dashed edges represent NN operations. (b) shows
a mapping between the SAGA-NN programming model and
the rule R1.

ReLU . HL is the activations matrix of the L-th layer; H0 =
X is the input feature matrix for all vertices.

Mapping R1 to the vertex-centric computation model is
familiar to the systems community [55] — each forward
layer has four components: Gather (GA), ApplyVertex
(AV), Scatter (SC), and ApplyEdge (AE), as shown in Fig-
ure 1(a). One can think of layer L’s activations matrix HL as
a group of activations vectors, each associated with a vertex
(as analogous to vertex value in the graph system’s terminol-
ogy). The goal of each forward layer is to compute a new
activations vector for each vertex based on the vertex’s previ-
ous activations vector (which, initially, is its feature vector)
and the information received from its in-neighbors. Different
from traditional graph processing, the computation of the
new activations matrix HL+1 is based on computationally
intensive NN operations rather than a numerical function.

Figure 1(b) illustrates how these vertex-centric graph op-
erations correspond to various components in R1. First, GA
retrieves a vector from each in-edge of a vertex and aggregates
these vectors into a new vector v. In essence, applying GA
on all vertices can be implemented as a matrix multiplication
ÂHL, where Â is the normalized adjacency matrix and HL

is the input activations matrix. Second, (ÂHL) is fed to AV,
which performs neural network operations to obtain a new
activations matrix HL+1. For GCN, AV multiplies (ÂHL)
with a trainable weight matrix WL and applies a non-linear
activation function σ. Third, the output of AV goes to SC,
which propagates the new activations vector of each vertex
along all out-edges of the vertex. Finally, the new activations
vector of each vertex goes into an edge-level NN architecture
to compute an activations vector for each edge. For GCN, the
edge-level NN is not needed, and hence, AE is an identity

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 497

function. We leave AE in the figure for generality as it is
needed by other GNN models.

The output of AE is fed to GA in the next layer. Repeat-
ing this process k times (i.e., k layers) allows the vertex to
consider features of vertices k hops away. Other GNNs such
as GGNNs and GATs have similar computation models, but
each varies the method used for aggregation and the NN.
Backward Pass. A GNN’s backward pass computes
the gradients for all trainable weights in the vertex- and
edge-level NN architectures (i.e., AV and AE). The backward
pass is performed following the chain rule of back propa-
gation. For example, the following rule specifies how to
compute the gradients in the first layer for a 2-layer GCN:

(R2) ∇W0L =
(
ÂX

)T [
σ′ (in1)� ÂT (Z − Y)WT

1

]

Here Z is the output of the GCN, Y is the label matrix (i.e.,
ground truth), X is the input features matrix, Wi is the weight
matrix for layer i, and in1 = ÂXW0. ÂT and WT

i are the
transpose of Â and Wi, respectively.

A training epoch consists of a forward and a backward
pass, followed by weights update, which uses the gradients
computed in the backward pass to update the trainable weights
in the vertex- and edge-level NN architectures in a GNN.
The training process runs epochs repeatedly until reaching
acceptable accuracy.

3 Design Overview
This section provides an overview of the Dorylus architecture.
The next three sections discuss technical details including
how to split training into fine-grained tasks and connect them
in a deep pipeline (§4), and how Dorylus bounds the degree
of asynchrony (§5), manages and autotunes Lambdas (§6).

Figure 2 depicts Dorylus’s architecture, which is comprised
of three major components: EC2 graph servers, Lambda
threads for tensor computation, and EC2 parameter servers.
An input graph is first partitioned using an edge-cut algo-
rithm [104] that takes care of load balancing across partitions.
Each partition is hosted by a graph server (GS).

GSes communicate with each other to execute graph com-
putations by sending/receiving data along cross-partition
edges. GSes also communicate with Lambda threads to exe-
cute tensor computations. Graph computation is done in a con-
ventional way, breaking a vertex program into vertex-parallel
(e.g., Gather) and edge-parallel stages (e.g., Scatter).

Each vertex carries a vector of float values and each edge
carries a value of a user-defined type specific to the model.
For example, for a GCN, edges do not carry values and
ApplyEdge is an identity function; for a GGNN, each edge
has an integer-represented type, with different weights for
different edge types. After partitioning, each GS hosts a
graph partition where vertex data are represented as a two-
dimension array and edge data are represented as a single
array. Edges are stored in the compressed sparse rows (CSR)

format; inverse edges are also maintained for the backpropa-
gation.

Each GS maintains a ghost buffer, storing data that are
scattered in from remote servers. Communication between
GSes is needed only during Scatter in both (1) forward pass
where activation values are propagated along cross-partition
edges and (2) backward pass where gradients are propagated
along the same edges in the reverse direction.

Tensor operations such as AV and AE, performed by Lamb-
das, interleave with graph operations. Once a graph operation
finishes, it passes data to a Lambda thread, which employs
a high-performance linear algebra kernel for tensor compu-
tation. Both the forward and backward passes use Lambdas,
which communicate frequently with parameter servers (PS)
— the forward-pass Lambdas retrieve weights from PSes to
compute layer outputs, while the backward-pass Lambdas
compute updated weights.

a	a	a	a	a	a	
b	b	b	b	b	b	
x	x	x	x	x	x	
y	y	y	y	y	y	

l	
l	
l	
l	

z	z	z	z	z	z	z	z	z	z	z	

…	
z	z	z	z	z	z	z	z	z	z	z	

c	c		c	c		c	c	
d	d	d	d	d	d	
e	e	e	e	e	e	
f		f		f		f		f		f		

…	 c	c	c	c			
d	d	d	d		

e	e	e	e		
f		f		f		f			

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

EC2	Graph		
Servers	

Lambda	
Threads	

EC2	Parameter	
Servers	

Graph	
Partition	1	

Graph		
Partition	2	

c	c		c	c		c	c	
d	d	d	d	d	d	

Features,	each	line	is		
a	vector	for	a	vertex	

w	w	w	
w	w	w	
w	w	w	

Weights	
z	z	z	z	z	z	z	z	z	z	z	

Ghost		
buffer	

Edge	cut	

l	
l	
l	
l	

l	
l	
l	
l	

	Edge		
values	

Linear		
Algebra	

l	
l	
l	

a	a	a	a		
b	b	b	b		

w	w	w	
w	w	w	
w	w	w	

l	
l	
l	

	x	x	x	x	
	y	y	y	y	

w	w	w	
w	w	w	
w	w	w	

w	w	w	
w	w	w	
w	w	w	

l	
l	
l	

l	
l	
l	

Figure 2: Dorylus’s architecture.

4 Tasks and Pipelining
Fine-grained Tasks. As discussed in §1, the first challenge
in using Lambdas for training is to decompose the process
into a set of fine-grained tasks that can (1) overlap with each
other and (2) be processed by Lambdas’ weak compute. In
Dorylus, task decomposition is done based on both data type
and computation type. In general, computations that involve
the adjacency matrix of the input graph (i.e., any computation
that multiplies any form of the adjacency matrix A with other
matrices) are formulated as graph operations performed on
GSes, while computations that involve only tensor data can
benefit the most from massive parallelism and hence run in
Lambdas. Next, we discuss specific tasks over each training
epoch, which consists of a forward pass that computes the
output using current weights, followed by a backward pass
that uses a loss function to compute weight updates.

A forward pass can be naturally divided into four tasks,
as shown in Figure 1(a). Gather (GA) and Scatter (SC)
perform computation over the graph structure; they are thus
graph-parallel tasks for execution on GSes. ApplyVertex

498 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(AV) and ApplyEdge (AE) multiply matrices involving only
features and weights and apply activation functions such as
ReLU . Hence, they are executed by Lambdas.

For AV, Lambda threads retrieve vertex data (HL in §2)
from GSes and weight data (WL) from PSes, compute their
product, apply ReLU , and send the result back to GSes as
the input for Scatter. When AV returns, SC sends data,
along cross-partition edges, to the machines that host their
destination vertices.

AE immediately follows SC. To execute AE on an edge,
each Lambda thread retrieves (1) vertex data from the source
and destination vertices of the edge (i.e., activations vectors),
and (2) edge data (such as edge weights) from GSes. It
computes a per-edge update by performing model-specific
tensor operations. These updates are streamed back to GSes
and become the inputs of the next layer’s GA task.

SC

▽SC ▽GA

WU WU

GA AV AE

▽AV ▽AE

…

…
Flow BackNext Epoch

Layer 1 forward

Layer 1 backward

Layer 2, …, N forward

…

Layer 2, …, N backward

…

Figure 3: Dorylus’s forward and backward dataflow with
nine tasks: Gather (GA) and Scatter (SC) and their cor-
responding backward tasks OGA and OSC; ApplyVertex
(AV), ApplyEdge (AE), and their backward tasks OAV and
OAE; the weight update task WeightUpdate (WU).

A backward pass involves GSes, Lambdas, and PSes that
coordinate to run a graph-augmented SGD algorithm, as spec-
ified by R2 in §2. For each task in the forward pass, there
is a corresponding backward task that either propagates in-
formation in the reverse direction of edges on the graph or
computes the gradients of its trainable weights with respect to
a given loss function. Additionally, a backward pass includes
WeightUpdate (WU), which aggregates the gradients across
PSes. Figure 3 shows their dataflow. OGA and OSC are the
same as GA and SC except that they propagate information in
the reverse direction. OAE and OAV are the backward tasks
for AE and AV, respectively. AE and AV apply weights to
compute the output of the edge and vertex NN. Conversely,
OAE and OAV compute weight updates for the NNs, which
are the inputs to WU.

OAE and OAV perform tensor-only computation and are
executed by Lambdas. Similar to the forward pass, GA and
SC in the backward pass are executed on GSes. WU performs
weights updates and is conducted by PSes.
Pipelining. In the beginning, vertex and weight data take
their initial values (i.e.,H0 andW0), which will change as the
training progresses. GSes kick off training by running parallel
graph tasks. To establish a full pipeline, Dorylus divides
vertices in each partition into intervals (i.e., minibatches).

For each interval, the amount of tensor computation (done
by a Lambda) depends on both the numbers of vertices (i.e.,
AV) and edges (i.e., AE) in the interval, while the amount
of graph computation (on a GS) depends primarily on the
number of edges (i.e., GA, and SC). To balance work across
intervals, our division uses a simple algorithm to ensure that
different intervals have the same numbers of vertices and
vertices in each interval have similar numbers of inter-interval
edges. These edges incur cross-minibatch dependencies that
our asynchronous pipeline needs to handle (see §5).

Each interval is processed by a task. When the pipeline is
saturated, different tasks will be executed on distinct intervals
of vertices. Each GS maintains a task queue and enqueues a
task once it is ready to execute (i.e., its input is available). To
fully utilize CPU resources, the GS uses a thread pool where
the number of threads equals the number of vCPUs. When
the pool has an available thread, the thread retrieves a task
from the task queue and executes it. The output of a GS task
is fed to a Lambda for tensor computation.

Backward Phase

PS
WU

Forward Phase

……
CPU Threads

Lambda

EC2

PS
WU

PS PS

31-40
▽AE

21-30
▽GA

11-20
▽AV

0-10
▽SC

71-80
GA

61-70
AV

51-60
SC

41-50
AE

Figure 4: A Dorylus pipeline for an epoch: the number range
(e.g., 71-80) in each box represents a particular vertex interval
(i.e., minibatch); different intervals are at different locations
of the pipeline and processed by different processing units:
GS, Lambda, or PS.

Figure 4 shows a typical training pipeline under Dorylus.
Initially, Dorylus enqueues a set of GA tasks, each processing
a vertex interval. Since the number of threads on each GS is
often much smaller than the number of tasks, some tasks finish
earlier than others and their results are pushed immediately
to Lambda threads for AV. Once they are done, their outputs
are sent back to the GS for Scatter. During a backward
phase, both OAE and OAV compute gradients and send them
to PSes for weight updates.

Through effective pipelining, Dorylus overlaps the graph-
parallel and tensor-parallel computations so as to hide Lamb-
das’ communication latency. Note that although pipelining is
not a new idea, enabling pipelining in GNN training requires
fine-grained tasks and the insight of computation separation,
which are our unique contributions.

5 Bounded Asynchrony
To unleash the full power of pipelining, Dorylus performs a
unique form of bounded asynchronous training so that work-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 499

ers do not need to wait for updates to proceed in most cases.
This is paramount for the pipeline’s performance especially
because Lambdas run in an extremely dynamic environment
and stragglers almost always exist. On the other hand, a great
deal of evidence [13, 63, 99] shows that asynchrony slows
down convergence — fast-progressing minibatches may use
out-of-date weights, prolonging the training time.

Bounded staleness [15, 65] is an effective technique for mit-
igating the convergence problem by employing lightweight
synchronization. However, Dorylus faces a unique challenge
that does not exist in any existing system, that is, there are
two synchronization points in a Dorylus pipeline: (1) weight
synchronization at each WU task and (2) synchronization of
(vertex) activations data from neighbors at each GA.

5.1 Bounded Asynchrony at Weight Updates

To bound the degree of asynchrony for weight updates, we
use weight stashing proposed in PipeDream [63]. A major
reason for slow convergence is that, under full asynchrony,
different vertex intervals are at their own training pace; some
intervals may use a particular version v0 of weights during
a forward pass to compute gradients while applying these
gradients on another version v1 of weights on their way back
in the backward pass. In this case, the weights on which gra-
dients are computed are not those on which they are applied,
leading to statistical inefficiency. Weight stashing is a simple
technique that allows any interval to use the latest version of
weights available in a forward pass and stashes (i.e., caches)
this version for use during the corresponding backward pass.

Although weight stashing is not new, applying it in Dorylus
poses unique challenges in the PS design. Weight stashing oc-
curs at PSes, which host weight matrices and perform updates.
To balance loads and bandwidth usage, Dorylus supports mul-
tiple PSes and always directs a Lambda to a PS that has the
lightest load. Since Lambdas can be in different stages of an
epoch (e.g., the forward and backward passes, and different
layers), Dorylus lets each PS host a replication of weight
matrices of all layers, making load balancing much easier to
do since any Lambda can use any PS in any stage. Note that
this design is different from that of traditional PSes [49], each
of which hosts parameters for a layer. Since a GNN often has
very few layers, replicating all weights would not take much
memory and is thus feasible to do at each PS. Clearly, this
approach does not work for regular DNNs with many layers.

However, weight stashing significantly complicates this de-
sign. A vertex interval can be processed by different Lambdas
when it flows to different tasks — e.g., its AV and AE are
executed by different Labmdas, which can retrieve weights
from different PSes. Hence, if we allow any Lambda to use
any PS, each PS has to maintain not only the latest weight
matrices but also their stashed versions for all intervals in the
graph; this is practically impossible due to its prohibitively
high memory requirement.

To overcome this challenge, we do not replicate all weight

stashes across PSes. Instead, each PS still contains a repli-
cation of all the latest weights but weight stashes only for a
subset of vertex intervals. For each interval in a given epoch,
the interval’s weight stashes are only maintained on the first
PS it interacts with in the epoch. In particular, once a Lambda
is launched for an AV task, which is the first task that uses
weights in the pipeline, its launching GS picks the PS with the
lightest load and notifies the Lambda of its address. Further-
more, the GS remembers this choice for the interval — when
this interval flows to subsequent tensor tasks (i.e., AE, OAV,
OAE, and WU), the GS assigns the same PS to their executing
Lambdas because the stashed version for this interval only
exists on that particular PS in this epoch.

PSes periodically broadcast their latest weight matrices.

5.2 Bounded Asynchrony at Gather

Asynchronous Gather allows vertex intervals to progress
independently using stale vertex values (i.e., activations vec-
tors) from their neighbors without waiting for their updates.
Although asynchrony has been used in a number of graph
systems [82, 15], these systems perform iterative process-
ing with the assumption that with more iterations they will
eventually reach convergence. Different from these systems,
the number of layers in a GNN is determined statically and
an n-layer GNN aims to propagate the impact of a vertex’s
n-hop neighborhood to the vertex. Since the number of layers
cannot change during training, an important question that
needs be answered is: can asynchrony change the semantics
of the GNN? This boils down to two sub-questions: (1) Can
vertices eventually receive the effect of their n-hop neighbor-
hood? (2) Is it possible for any vertex to receive the effect
of its m-hop neighbor where m > n after many epochs? We
provide informal correctness/convergence arguments in this
subsection and turn to a formal approach in §5.3.

The answer to the first question is yes. This is because the
GNN computation is driven by the accuracy of the computed
weights, which is, in turn, based on the effects of n-hop neigh-
borhoods. To illustrate, consider a simple 2-layer GNN and
a vertex v that moves faster in the pipeline than all its neigh-
bors. Assume that by the time v enters the GA of the second
layer, none of its neighbors have finished their first-layer SC
yet. In this case, the GA task of v uses stale values from its
neighbors (i.e., the same as what were used in the previous
epoch). This would clearly generate large errors at the end of
the epoch. However, in subsequent epochs, the slow-moving
neighbors update their values, which are gradually propagated
to v. Hence, the vertex eventually receives the effects of its
n-hop neighborhood (collectively) across different epochs
depending on its neighbors’ progress. After each vertex ob-
serves the required values from the n-hop neighborhood, the
target accuracy is reached.

The answer to the second question is no. This is because
the number of layers determines the farthest distance the im-
pact of a vertex can travel despite that training may execute

500 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

many epochs. When a vertex interval finishes an epoch, it
comes back to the initial state where their values are reset
to their initial feature vectors (i.e., the accumulative effect
is cleared). Hence, even though a vertex v progresses asyn-
chronously relative to its neighbors, the neighbors’ activation
vectors are scattered out in the previous SC and carry the
effects of their at most {n−1}-hop neighbors (after which the
next GA will cycle back to effects of 1-hop neighbors), which,
for vertex v, belong strictly in its n-hop neighborhood. This
means, it is impossible for any vertex to receive the impact of
any other vertex that is more than n-hops away.

We use bounded staleness at Gather — a fast-moving
vertex interval is allowed to be at most S epochs away from the
slowest-moving interval. This means vertices in a given epoch
are allowed to use stale vectors from their neighbors only if
these vectors are within S epochs away from the current
epoch. Bounded staleness allows fast-moving intervals to
make quick progress when recent updates are available (for
efficiency), but makes them wait when updates are too stale
(to avoid launching Lambdas for useless computation).

5.3 Convergence Guarantee
Asynchronous weight updates with bounded staleness has
been well studied, and its convergence has been proved
by [30]. The convergence of asynchronous Gather with
bounded staleness S is guaranteed by the following theorem:

Theorem 1. Suppose that (1) the activation σ(·) is ρ-
Lipschitz, (2) the gradient of the cost function ∇zf(y, z) is
ρ-Lipschitz and bounded, (3) the gradients for weight updates
‖gAS(W)‖∞, ‖g(W)‖∞, and ‖∇L(W)‖∞ are all bounded
by some constant G > 0 for all Â, X , and W , (4) the loss
L(W) is ρ-smooth3. Then given the local minimizer W ∗,
there exists a constant K > 0, s.t., ∀N > L× S where L is
the number of layers of the GNN model and S is the staleness
bound; if we train a GNN with asynchronous Gather under
a bounded staleness for R ≤ N iterations where R is chosen
uniformly from [1, N], we will have

ER ‖∇L (WR)‖2F ≤ 2
L (W1)− L (W ∗) +K + ρK√

N
,

for the updates Wi+1 = Wi − γgAS(Wi) and the step size

γ = min
{

1
ρ ,

1√
N

}
.

In particular, we have limN→∞ ER ‖∇L (WR)‖2 = 0, in-
dicating that asynchronous GNN training will eventually con-
verge to a local minimum. The full-blown proof can be found
in Dorylus’ arXiv version [77]. It mostly follows the conver-
gence proof of the variance reduction (VR) algorithm in [9].
However, our proof differs from [9] in two major aspects: (1)

3L is ρ-Lipschitz smooth if ∀W1,W2, |L(W2) − L(W1) −
〈∇L (W1) ,W2 −W1〉 | ≤ ρ

2
‖W2 −W1‖2F , where 〈A,B〉 =

tr(ATB) is the inner product of matrix A and matrix B, and ‖A‖F is
the Frobenius norm of matrix A.

Dorylus performs whole-graph training and updates weights
only once per layer per epoch, while VR samples the graph
and trains on mini-batches and thus it updates weights mul-
tiple times per layer per epoch; (2) Dorylus’s asynchronous
GNN training can use neighbor activations that are up to
S-epoch stale, while VR can take only 1-epoch-stale neigh-
bor activations. Since S is always bounded in Dorylus, the
convergence is guaranteed regardless of the value of S.

Note that compared to a sampling-based approach, our
asynchronous computation is guaranteed to converge. On the
contrary, although sampling-based training converges often
in practice, there is no guarantee for trivial sampling meth-
ods [9], not to mention that sampling incurs a per-epoch
overhead and reduces accuracy.

6 Lambda Management
Each GS runs a Lambda controller, which launches Lamb-
das, batches data to be sent to each Lambda, monitors each
Lambda’s health, and routes its result back to the GS.

Lambda threads are launched by the controller for a task
t at the time t’s previous task starts executing. For example,
Dorylus launches n Lambda threads, preparing them for AV
when n GA tasks start to run. Each Lambda runs with Open-
BLAS library [93] that is optimized to use AVX instructions
for efficient linear algebra operations. Lambdas communicate
with GSes and PSes using ZeroMQ [97].

All of our Lambdas are deployed inside the virtual private
cloud (VPC) rather than public networks to maximize Lamb-
das’ bandwidth when communicating with EC2 instances.
When a Lambda is launched, it is given the addresses of its
launching GS and a PS. Once initialized, the Lambda initiates
communication with the GS and the PS, pulling vertex, edge
and weight data from these servers. Since Lambda threads are
used throughout the training process, these Lambdas quickly
become “warm” (i.e., the AWS reuses a container that already
has our code deployed instead of cold-starting a new con-
tainer) and efficient. Our controller also times each Lambda
execution and relaunches it after timeout.
Lambda Optimizations. One significant challenge to over-
come is Lambdas’ limited network bandwidth [29, 42]. Al-
though AWS has considerably improved Lambdas’ network
performance [4], the per-Lambda bandwidth goes down as
the number of Lambdas increases. For example, for each GS,
when the number of Lambdas it launches reaches 100, the
per-Lambda bandwidth drops to ∼200Mbps, which is more
than 3× lower than the peak bandwidth we have observed
(∼800Mbps). We suspect that this is because many Lambdas
created by the same user get scheduled on the same machine
and share a network link.

Dorylus provides three optimizations for Lambdas:
The first optimization is task fusion. Since AV of the last

layer in a forward pass is connected directly to OAV of the
last layer in the next backward pass (see Figure 4), we merge
them into a single Lambda-based task, reducing invocations

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 501

of thousands of Lambdas for each epoch and saving a round-
trip communication between Lambdas and GSes.

The second optimization is tensor rematerialization [33,
41]. Existing frameworks cache intermediate results during
the forward pass as these results can be reused in the back-
ward pass. For GNN training, for instance, ÂHW is such a
computation whose result needs to be cached. Here tensor
computation is performed by Lambdas while caching has to
be done on GSes. Since a Lambda’s bandwidth is limited and
network communication is a bottleneck, it is more profitable
to rematerialize these intermediate tensors by launching more
Lambdas rather than retrieving them from GSes.

The third optimization is Lambda-internal streaming. In
particular, if a Lambda is created to process a data chunk, we
let the Lambda retrieve the first half of the data, with which
it proceeds to computation while simultaneously retrieving
the second half. This optimization overlaps computation with
communication from within each Lambda, leading to reduced
Lambda response time.
Autotuning Numbers of Lambdas. Due to inherent dy-
namism in Lambda executions, it is not feasible to statically
determine the number of Lambdas to be used. On the perfor-
mance side, the effectiveness of Lambdas depends on whether
the pipeline can be saturated. In particular, since certain graph
tasks (such as SC) rely on results from tensor tasks (such as
AV), too few Lambdas would not generate enough task in-
stances for the graph computation G to saturate CPU cores.
On the cost side, too many Lambdas overstaturate the pipeline
— they can generate too many CPU tasks for the GS to handle.
The optimal number of Lambdas is also related to the pace
of the graph computation, which, in turn, depends on the
graph structure (e.g., density) and partitioning that are hard
to predict before execution.

To solve the problem, we develop an autotuner that starts
the pipeline by using min(#intervals, 100) as the num-
ber of Lambdas where intervals represents the number
of vertex intervals on each GS. Our autotuner auto-adjusts
this number by periodically checking the size of the CPU’s
task queue — if the size of the queue constantly grows, this
indicates that CPU cores have too many tasks to process,
and hence we scale down the number of Lambdas; if the
queue quickly shrinks, we scale up the number of Lambdas.
The goal here is to stabilize the size of the queue so that the
number of Lambdas matches the pace of graph tasks.

7 Evaluation
We wrote a total of 11629 SLOC in C++ and CUDA. There
are 10877 of the lines of C++ code: 5393 for graph servers,
2840 for Lambda management (and communication), 1353
for parameter servers, and 1291 for common libraries and
utilities. There are 752 lines of CUDA code for GPU kernels
including common graph operations like GCN and mean-
aggregators with cuSPARSE [66]. Our CUDA code includes
deep learning operations such as dense layer and activation

layer with cuDNN [12]. Dorylus supports common stochastic
optimizations including Xavier initialization [22], He initial-
ization [27], a vanilla SGD optimizer [38], and an Adam
optimizer [39], which help training converge smoothly.

Graph Size (|V |, |E|) # features # labels Avg. degree

Reddit-small [25] (232.9K, 114.8M) 602 41 492.9
Reddit-large [25] (1.1M, 1.3B) 301 50 645.4
Amazon [60, 28] (9.2M, 313.9M) 300 25 35.1
Friendster [48] (65.6M, 3.6B) 32 50 27.5

Table 1: We use 4 graphs, 2 with billions of edges.

7.1 Experiment Setup
We experimented with four graphs, as shown in Table 1.
Reddit-small and Reddit-large are both generated
from the Reddit dataset [68]. Amazon is the largest graph in
RoC’s [34] evaluation. We added a larger 1.8 billion (undi-
rected) edge Friendster social network graph to our exper-
iments. For GNN training, we turned undirected edges into
two directed edges, effectively doubling the number of edges
(which is consistent with how edge numbers are reported in
prior GNN work [34, 55]). The first three graphs come with
features and labels while Friendster does not. For scala-
bility evaluation we generated random features and labels for
Friendster.

We implemented two GNN models on top of Dorylus:
graph convolutional network (GCN) [40] and graph attention
network (GAT) [96] with 279 and 324 lines of code. GCN is
a popular network that has AV but not AE, while GAT is a
recently-developed recurrent network with both AV and AE.
Their development is straightforward and other GNN models
can be easily implemented on Dorylus as well. Each model
has 2 layers, consistent with those used in prior work [34, 55].

Value is the major benefit Dorylus brings to training GNNs.
We define value as a system’s performance per dollar, com-
puted as V = 1/(T ×C) where T is the training time and C is
the monetary cost. For example: if system A trains a network
twice as fast as system B, and yet costs the same to train, we
say A has twice the value of B. If one has a time constraint,
the most inexpensive option to train a GNN is to pick the
system/configuration that meets the time requirement with
the best value. In particular, value is important for training
since users cannot take the cheapest option if it takes too
long to train; neither can they take the fastest option if it is
extremely expensive in practice. Throughout the evaluation,
we use both value and performance (runtime) as our metrics.

We evaluated several aspects of Dorylus. First, we com-
pared several different instance types to determine the con-
figurations that give us the optimal value for each backend.
Second, we compared several synchronous and asynchronous
variants of Dorylus. In later subsections, we use our best
variant (which is asynchronous with a staleness value of 0) in
comparisons with other existing systems. Third, we compared
the effects of Lambdas using Dorylus against more traditional
CPU- and GPU-only implementations in terms of value, per-

502 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

formance, and scalability. Next, we evaluate Dorylus against
existing systems. Finally, we break down our performance
and costs to illustrate our system’s benefits.

Backend Graph Instance Type Relative Value

CPU
Reddit-large

r5.2xlarge (4) 1
c5n.2xlarge (12) 4.46

Amazon
r5.xlarge (4) 1

c5n.2xlarge (8) 2.72

GPU Amazon
p2.xlarge (8) 1

p3.2xlarge (8) 4.93

Table 2: Comparison of the values provided by different
instance types. r5 and p2 instances provided significantly
lower values than the (c5 and p3) instances we chose.

7.2 Instance Selection
To choose the instance types for our evaluation, we ran a
set of experiments to determine the types that gave us the
best value for each backend. We compared across memory
optimized (r5) and compute optimized (c5) instances, as well
as the p2 and p3 GPU instances, which have K80 and V100
GPUs, respectively. As r5 offers high memory, we were able
to fit the graph in a smaller number of instances, lowering
costs in some cases. However, due to the smaller amount of
computational resources available, training on the r5 instances
typically took nearly 3× as long as computation on c5. There-
fore, as shown in Table 2 the average increases in value c5
instances provided relative to r5 instances are 4.46 and 2.72,
respectively, for Reddit-large and Amazon. We therefore
selected c5 as our choice for any CPU based computation.

Similarly, for GPU instances, training on Amazon with 8
K80s took 1578 seconds and had a total cost of $3.16. Using
8 V100s took 385 seconds and cost $2.62—it improves both
costs and performance, resulting in a value increase of 4.93×
compared to training on K80 GPUs. As value is the main
metric which we use to evaluate our system, we choose the
instance type which gives the best value to each different
backend to ensure a fair comparison.

Given these results, we selected the following instances
to run our evaluation: (1) c5, compute-optimized instances,
and (2) c5n, compute and network optimized instances. c5n
instances have more memory and faster networking, but their
CPUs have slightly lower frequency than those in c5. The
base c5 instance has 2 vCPU, 4 GB RAM, and 10 Gbps per-
instance network bandwidth costing $0.085/h4. The base c5n
instance has 2 vCPU, 5.25 GB RAM (33% more), and 25
Gbps per-instance network bandwidth, costing $0.108/h. We
used the base p3 instance, p3.2xlarge, with Telsa V100 GPUs.
Each p3 base instance has 1 GPU (with 16 GB memory), 8
vCPUs, and 61 GB memory, costing $3.06/h.

Each Lambda is a container with 0.11 vCPUs and 192
MB memory. Lambdas have a static cost of $0.20 per 1 M
requests, and a compute cost of $0.01125/h (billed per 100

4These prices are from the Northern Virginia region.

ms). This billing granularity enables serverless threads to
handle short bursts of massive parallelism much better than
CPU instances.

Model Graph CPU cluster GPU cluster

GCN

Reddit-small c5.2xlarge (2) p3.2xlarge (2)
Reddit-large c5n.2xlarge (12) p3.2xlarge (12)

Amazon c5n.2xlarge (8) p3.2xlarge (8)
Friendster c5n.4xlarge (32) p3.2xlarge (32)

GAT
Reddit-small c5.2xlarge (10) p3.2xlarge (10)

Amazon c5n.2xlarge (12) p3.2xlarge (12)
Table 3: We used (mostly) c5n instances for CPU clusters,
and equivalent numbers of p3 instances for GPU clusters.

Table 3 shows our CPU and GPU clusters for each pair of
model and graph we evaluated. For each graph, we picked the
number of servers such that they have just enough memory to
hold the graph data and their tensors. For example, Amazon
needs 8 c5n.2xlarge servers (with 16 GB memory) provide
enough memory. For Friendster we need 32 c5n.4xlarge
instances (with a total of 1344 GB memory). Our goal is to
train a model with the minimum amount of resources. Of
course, using more servers will lead to better performance and
higher costs (discussed in §7.4). For all experiments (except
Reddit-small), c5n instances offered the best value.

TPU has become an important type of computation acceler-
ator for machine learning. This paper focuses on AWS and its
serverless platform, and hence we did not implement Dorylus
on TPUs. Although we did not compare directly with TPUs,
we note several important features of GNNs that make the lim-
itations of TPUs comparable to GPUs. First, GNNs are unlike
conventional DNNs in that they require large amounts of data
movement for neighborhood aggregation. As a result, GNN
performance is mainly bottlenecked by memory constraints
and the resulting communication overheads (e.g., between
GPUs or TPUs), not computation efficiency [34]. Second,
GNN training involves computation on large sparse tensors
that incur irregular data accesses, resulting in sub-optimal
performance on TPUs which are optimized for dense matrix
operations over regularly structured data.

7.3 Asynchrony
We compare three versions of Dorylus: a synchronous version
with full intra-layer pipelining (pipe), and two asynchronous
versions using s = 0 and s = 1 as the staleness values over
all four graphs. Pipe synchronizes at each Gather — a vertex
cannot go into the next layer until all its neighbors have their
latest values scattered. As a result, all vertex intervals have to
be in the same layer in the same epoch. However, inside each
layer, pipelining is enabled, and hence different tasks are fully
overlapped. Async enables both pipelining and asynchrony
(i.e., stashing weights and using stale values at GA). When
the staleness value is s = 0, Dorylus allows a vertex to use a
stale value from a neighbor as long as the neighbor is in the
same epoch (e.g., can be in a previous layer). In other words,
Async (s=0) enables fully pipelining across different layers

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 503

0 20 40 60 80 100 120
Epochs

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Te
st

 A
cc

Dorylus-pipe
Dorylus-async (s=0)
Dorylus-async (s=1)

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

Te
st

 A
cc

Dorylus-pipe
Dorylus-async (s=0)
Dorylus-async (s=1)

0 25 50 75 100 125 150
Epochs

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

Dorylus-pipe
Dorylus-async (s=0)
Dorylus-async (s=1)

(a) Reddit-small (b) Amazon (c) Reddit-large
R[s=0]:1.00, R[s=1]:1.07, Accuracy:94.96% R[s=0]:1.09, R[s=1]:1.57, Accuracy:64.08% R[s=0]:1.14, R[s=1]:1.58, Accuracy:60.07%

Figure 5: Asynchronous progress for GCN: All three versions of Dorylus achieve the final accuracy i.e., 94.96%, 64.08%,
60.07% for the three graphs). Friendster is not included because it does not come with meaningful features and labels.

Reddit-sm
all

Reddit-la
rge

Amazon
Friendster

0

1

0.63

0.72

Ti
m

e
(r

el
at

iv
e)

Async (s=0) Async (s=1) Pipe

Figure 6: Per-epoch GCN time for async (s=0) and async
(s=1) normalized to that of pipe.

in the same epoch, but pipelining tasks in different epochs
are not allowed and synchronization is needed every epoch.
Similarly, async (s=1) enables a deeper pipeline across two
consecutive epochs.
Training Progress. Due to the use of asynchrony, it may
take the asynchronous version of Dorylus more epochs to
reach the same accuracy as pipe. To enable a fair compar-
ison, we first ran Dorylus-pipe until convergence (i.e., the
difference of the model accuracy between consecutive epochs
is within 0.001, unless otherwise stated) and then used this
accuracy as the target accuracy to run async when collect-
ing training time. However, this approach does not work
for Friendster, because it uses randomly generated fea-
tures/labels and hence accuracy is not a meaningful target. To
solve this problem, we computed an average ratio, across the
other three graphs, between the numbers of epochs needed
for async and pipe, and used this ratio to estimate the training
time for Friendster. For example, this ratio is 1.08 for s=0
and 1.41 for s=1. As such, we let async (s=0) run N×1.08
epochs and async (s=1) run N×1.41 epochs when measur-
ing performance for Friendster where N is the number of
epochs pipe runs.

Figure 5 reports the GCN training progress for each variant,
that is, how many epochs it took for a version to reach the
target accuracy. Annotated with each figure are two ratios:

R[s=0] and R[s=1], representing the ratio between the num-
ber of epochs needed by async (s=0/1) and that by Dorylus-
pipe to reach the same target accuracy. On average, async
(s=0/1) increases the number of epochs by 8%/41%.

Figure 6 compares the per-epoch running time for each
version of Dorylus, normalized to that of pipe. As expected,
async has lower per-epoch time; in fact, async (s=0) achieves
almost the same reduction (∼15%) in per-epoch time as s=1.
This indicates that choosing a large staleness value has little
usefulness — it cannot further reduce per-epoch time and yet
the number of epochs grows significantly.

To conclude, asynchrony can provide overall performance
benefits in general but too large a staleness value leads to slow
convergence and poor performance, although the per-epoch
time reduces. This explains why async (s=0) outperforms
async (s=1) by a large margin. Overall, async (s=0) is 1.234×
faster than pipe and 1.233× than async (s=1). It also provides
1.288× and 1.494× higher value than pipe and async (s=1)
respectively. Thus we choose it as the default Lambda vari-
ant in our following experiments unless otherwise specified.
From this point on, Dorylus refers to this particular version.

7.4 Effects of Lambdas

We developed two traditional variants of Dorylus to isolate
the effects of serverless computing using Lambdas, one using
CPU-only servers for computations, and the other using GPU-
only servers (both without Lambdas). These variants perform
all tensor and graph computations directly on the graph server.
They both use Dorylus’ (tensor and graph) computation sepa-
ration for scalability. Note that without computation separa-
tion, no existing GPU-based training system has been shown
to scale to a billion-edge graph.

Since Lambdas have weak compute that we cannot find
in regular EC2 instances, it is not possible for us to trans-
late Lambda resources directly into equivalent EC2 resources,
keeping the total amount of compute constant when selecting
the number of servers for each variant. To address this con-

504 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cern, we compared the value of different systems in addition
to their absolute times and costs.

Model Graph Mode Time (s) Cost ($)

GCN

Reddit-small
Dorylus 860.6 0.20

CPU only 1005.4 0.19
GPU only 162.9 0.28

Reddit-large
Dorylus (pipe) 1020.1 1.69

CPU only 1290.5 1.85
GPU only 324.9 3.31

Amazon
Dorylus 512.7 0.79

CPU only 710.2 0.68
GPU only 385.3 2.62

Friendster
Dorylus 1133.3 13.8

CPU only 1990.8 15.3
GPU only 1490.4 40.5

GAT

Reddit-small
Dorylus 496.3 1.15

CPU only 1270.4 1.20
GPU only 130.9 1.11

Amazon
Dorylus 853.4 2.67

CPU only 2092.7 3.01
GPU only 1039.2 10.60

Table 4: We ran Dorylus in 3 different modes: “Dorylus”, our
best Lambda variant using async(s=0) (except in one case),
the “CPU only” variant, and the “GPU only” variant. For
each mode we used multiple combinations of models and
graphs. For each run we report the total end-to-end running
time and the total cost.

We ran GCN and GAT on our graphs (Table 4). We only ran
the GAT model on one small and large graph because it was
simply too monetarily expensive (even for our system!). GAT
has an intensive AE computation, which adds cost. Note that
this is not a limitation of our system—our system can scale
GAT to graphs larger than Amazon if cost is not a concern.

Performance and cost by themselves do not properly illus-
trate the value of Dorylus. For example, training GAT on
Amazon with Dorylus is both more efficient and cheaper than
the CPU- and GPU-only variants. Hence, we report the value
results as well. Recall that to compute the value, we take the
reciprocal of the total runtime (i.e., the performance or rate
of completion) and divide it by the cost. In this case Dorylus
with Lambdas provides a 2.75× higher value than CPU-only
(i.e., 1/(853.4× 2.67) compared to 1/(2092.7× 3.01)). Fig-
ure 7 shows the value results for all our runs, normalized to
GPU-only servers.

Dorylus adds value for large, sparse graphs (i.e., Amazon
and Friendster) for both GCN and GAT, compared to
CPU- and GPU-only variants. Sparsity of each graph can
be seen from the average vertex degree reported in Table 1.
As shown, Amazon and Friendster are much more sparse
than Reddit-small and Reddit-large. For these graphs,
the GPU-only variant has the lowest value, even compared to
the CPU-only variant. In most cases, the CPU-only variant
provides twice as much value (i.e., performance per dollar)

Reddit-sm
all

Reddit-la
rge

Amazon
Friendster

Reddit-sm
all
Amazon

0

1

2

3

4 3.86
4.83

1.98 1.75

V
al

ue
(r

el
at

iv
e)

Dorylus CPU only GPU only
GCN GAT

Figure 7: Dorylus, with Lambdas, provides up to 2.75×
performance-per-dollar than using the CPU-only variant.

than the GPU-only variant. Dorylus adds another leap in
value over the CPU-only variant.

However, for small dense graphs (i.e., Reddit-small and
Reddit-large), both Dorylus and the CPU-only variant
have a value lower that that of the GPU-only variant (i.e.,
below 1 in Figure 7). Dorylus always provides more value
than the CPU-only variant. These results suggest that GPUs
may be better suited to process small, dense graphs rather
than large, sparse graphs.

4 8 16
0

1

2

3 2.97

Servers

Pe
rf

or
m

an
ce

(r
el

at
iv

e)

Dorylus CPU only
GPU only

4 8 16
0

1

2

3 2.68

Servers

V
al

ue
(r

el
at

iv
e)

Dorylus CPU only
GPU only

Figure 8: Normalized GCN training performance and value
over Amazon with varying numbers of graph servers.

Scaling Out. Dorylus can gain even more value by scaling
out to more servers, due to the burst parallelism provided
by Lambdas and deep pipelining. To understand the impact
of the number of servers on performance/costs, we varied
the number of GSes when training a GCN over Amazon. In
particular, we ran Dorylus and the CPU-only variant with
4, 8, and 16 c5n.4xlarge servers, and the GPU-only variant
with the same numbers of p3.xlarge servers. Figure 8 reports
their performance and values, normalized to those of Dorylus
under 4 servers.

In general, Dorylus scales well in terms of both perfor-
mance and value. Dorylus gains a 2.82× speedup with only
5% more cost when the number of servers increases from
4 to 16, leading to a 2.68× gain in its value. As shown in
Figure 8(b), Dorylus’s value curve is always above that of the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 505

CPU-only variant. Furthermore, Dorylus can roughly provide
the same value as the CPU-only variant with only half of
the number of servers. For example, Dorylus with 4 servers
provides a comparable value to the CPU-only variant with 8
servers; Dorylus with 8 servers provides more value to the
CPU-only variant with 16 servers. These results suggest that
as more servers are added, the value provided by Dorylus
increases, at a rate much higher than the value increase of the
CPU-only variant. As such, Dorylus is always a better choice
than the CPU-only variant under the same monetary budget.

Other Observations. In addition to the results discussed
above, we make three other observations on performance.

Our first observation is that the more sparse the graph, the
more useful Dorylus is. For Amazon and Friendster, Dory-
lus even outperforms the GPU-only version for two reasons:

First, for all the three variants, the fraction of
time on Scatter is significantly larger when training
over Friendster and Amazon than Reddit-small and
Reddit-large. This is, at first sight, counter-intuitive be-
cause one would naturally expect less efforts on inter-partition
communications for sparse graphs than dense graphs. A thor-
ough inspection discovered that the Scatter time actually
depends on a combination of the number of ghost vertices
and inter-partition edges. For the two Reddit graphs, they
have many inter-partition edges, but very few ghost vertices,
because (1) their |V | is small and (2) many inter-partition
edges come from/go to the same ghost vertices due to their
high vertex degrees.

Second, Scatter takes much longer time in GPU clus-
ters. Moving ghost data between GPU memories on different
nodes is much slower than data transferring between CPU
memories. As a result, the poor performance of the GPU-only
variant is due to a combinatorial effect of these two factors:
Dorylus scatters significantly more data for Friendster and
Amazon, which amplifies the negative impact of poor scat-
ter performance in a GPU cluster. Note that p3 also offers
multi-GPU servers, which may potentially reduce scatter time.
We have also experimented with these servers, but we still
observed long scatter time due to extensive communication
between between servers and GPUs. Reducing such com-
munication costs requires fundamentally different techniques
such as those proposed by NeuGraph [55]. We leave the
incorporation of such techniques to future work.

Our second observation is that Lambda threads are more
effective in boosting performance for GAT than GCN. This
is because GAT includes an additional AE task, which per-
forms intensive per-edge tensor computation and thus benefits
significantly from a high degree of parallelism.

Our third observation is that Dorylus achieves comparable
performance with the CPU-only variant that uses twice as
many servers. For example, the training time of Dorylus
under 4 servers is only 1.1× longer than that of the CPU only
variant with 8 servers. Similarly, Dorylus under 8 servers is

only 1.05× slower than the CPU only variant with 16 servers.
These results demonstrate our efficient use of Lambdas.

7.5 Comparisons with Existing Systems
Our goal was to compare Dorylus with all existing GNN tools.
However, NeuGraph [55] and AGL [98] are not publicly
available; neither did their authors respond to our requests.
Roc [34] is available but we could not run it in our environ-
ment due to various CUDA errors; we were not able to resolve
these errors after multiple email exchanges with the authors.
Roc was not built for scalability because each server needs to
load the entire graph into its memory during processing. This
is not possible when processing billion-edge graphs. This
subsection focuses on the comparison of Dorylus, DGL [17],
which is a popular GNN library with support for sampling, as
well as AliGraph [94], which is also a sampling-based system
that trains GNNs only with CPU servers. All experiments
use the cluster configuration specified above for each graph
unless otherwise stated.

DGL represents an input graph as a (sparse) matrix; both
graph and tensor computations are executed by PyTorch or
MXNet as matrix multiplications. We experimented with two
versions of DGL, one with sampling and one without. DGL-
non-sampling does full-graph training on a single machine.
DGL-sampling partitions the graph and distributes partitions
to different machines. Each machine performs sampling on
its partition and trains a GNN on sampled subgraphs.

AliGraph runs in a distributed setting with a server that
stores the graph information. A set of clients query the server
to obtain graph samples and use them as minibatches for
training. Similar to DGL, AliGraph uses a traditional ML
framework as a backend and performs all of its computation
as tensor operations.

0 200 400 600
Time (Sec)

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

Dorylus
Dorylus (GPU only)
AliGraph
DGL (sampling)
DGL (non-sampling)

0 500 1000 1500
Time (Sec)

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

Dorylus
Dorylus (GPU only)
AliGraph
DGL (sampling)

(a)Reddit-small (b) Amazon

Figure 9: Accuracy comparisons between Dorylus, Dorylus
(GPU only), AliGraph, DGL (sampling), and DGL (non-
sampling). DGL (non-sampling) uses a single V100 GPU and
could not scale to Amazon. Each dot indicates five epochs for
Dorylus and DGL (non-sampling), and one epoch for DGL
(sampling) and AliGraph.

Accuracy Comparison with Sampling. Figure 9 reports the
accuracy-time curve for five configurations: Dorylus, Do-
rylus (GPU-only), DGL (sampling), DGL (non-sampling),

506 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Graph System Time (s) Cost ($)

Reddit-small

Dorylus 165.77 0.045
Dorylus (GPU only) 28.06 0.052

DGL (sampling) 566.33 0.480
DGL (non-sampling) 33.64 0.028

AliGraph – –

Amazon

Dorylus 415.23 0.654
Dorylus (GPU only) 308.27 2.096

DGL (sampling) 842.49 5.728
DGL (non-sampling) – –

AliGraph 1560.66 1.498
Table 5: Evaluation of end-to-end performance and costs of
Dorylus and other GNN training systems. Each time reported
is the time to reach the target accuracy.

and AliGraph, over Reddit-small and Amazon. When run
enough epochs to fully converge, Dorylus can reach an accu-
racy of 95.44% and 67.01%, respectively, for the two graphs.
DGL (non-sampling) can run only on the Reddit-small

graph, reaching 94.01% as the highest accuracy. DGL (sam-
pling) is able to scale to both graphs, and its accuracy reaches
93.90% and 65.78%, respectively, for Reddit-small and
Amazon. AliGraph is able to scale to both Reddit-small

and Amazon. On Reddit-small it reaches a maximum ac-
curacy of 91.12% and 65.23% on Amazon.
Performance. To enable meaningful performance compar-
isons and make training finish in a reasonable amount of time,
we set 93.90% and 63.00% as our target accuracy for the two
graphs. As shown in Figure 9(a), Dorylus (GPU only) has the
best performance, followed by DGL (non-sampling). Since
Reddit-small is a small graph that fits into the memory of a
single (V100) GPU, DGL (non-sampling) performs much bet-
ter than DGL (sampling), which incurs per-epoch sampling
overheads. To reach the same accuracy (93.90%), Dorylus
is 3.25× faster than DGL (sampling), but 5.9× slower than
Dorylus (GPU only). AliGraph is unable to reach our target
accuracy after many epochs.

For the Amazon graph, DGL cannot scale without sam-
pling. As shown in Figure 9(b), to reach the same target
accuracy, Dorylus is 1.99× faster than DGL (sampling), and
1.37× slower than Dorylus (GPU only). AliGraph is able to
reach the target accuracy for Amazon. However, Dorylus is
significantly faster. As these results show, graph sampling
improves scalability at the cost of increased overheads and
reduced accuracy.

The times reported for Dorylus and its GPU-only variant
in Table 5 are smaller than those reported in Table 4. This is
due to the lower target accuracy we set for these experiments.
Value Comparison. To demonstrate the promise of Dory-
lus, we compared these systems using the value metric. As
expected, given the small size of the Reddit-small graph,
the GPU-based systems perform quite well. In fact, in this
case the normalized value of DGL (non-sampling) is 1.48,

providing a higher value than Dorylus (GPU only). However,
as mentioned earlier, DGL cannot scale without sampling;
hence, this benefit is limited only to small graphs. As we
process Amazon, the value of Dorylus quickly improves as is
consistent with our findings earlier (on large, sparse graphs).
With this dataset, Dorylus provides a higher performance-per-
dollar rate than all the other systems—17.7× the value of
DGL (sampling) and 8.6× the value of AliGraph.

7.6 Breakdown of Performance and Costs

Dorylus-
no-pipe

CPU GPU0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ta
sk

 T
im

e
(S

ec
)

GA
AV
SC
▿GA
▿AV
▿SC

Dorylus-
pipe

s=0 s=1 CPU GPU0.0

0.5

1.0

1.5

2.0

2.5

Co
st

 (
$)

Server
Lambda

(a) Task time breakdown (b) Cost breakdown

Figure 10: Time and cost breakdown for the Amazon graph.

Figure 10 shows a breakdown in task time (a) and costs (b)
for training a GCN over the Amazon graph. In Figure 10(a), to
understand the time each task spends, we disabled pipelining
and asynchrony in Dorylus, producing a version referred to as
no-pipe, in which different tasks never overlap. This makes
it possible for us to collect each task’s running time. Note
that no-pipe represents a version that uses Lambdas naı̈vely
to train a DNN. Without pipelining and overlapping Lambdas
with CPU-based tasks, we saw a 1.9× degradation, making
no-pipe lose to both CPU and GPU in training time.

As shown, the tasks GA, AV, and OAV take the major-
ity of the time. Another observation is that to execute the
tensor computation AV, GPU is the most efficient backend
and Lambda is the least efficient one. This is expected —
Lambdas have less powerful compute (much less than CPUs
in the c5 family) and high communication overheads. Nev-
ertheless, these results also demonstrate that when CPUs on
graph servers are fully saturated with the graph computation,
large gains can be obtained by running tensor computation
in Lambdas that fully overlap with CPU tasks!

To compute the cost breakdown in Figure 10(b), we simply
calculated the total amounts of time for Lambdas and GSes
for each of the five Dorylus variants and used these times to
compute the costs of Lambdas and servers. Due to Dorylus’
effective use of Lambdas, we were able to run a large number
of Lambdas for the forward and backward pass. As such, the
cost of Lambdas is about the same as the cost of CPU servers.

8 Related Work
Dorylus is the first system that successfully uses tiny Lambda
threads to train a GNN by exploiting various graph-related
optimizations. There are three categories of techniques in par-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 507

allelization (§8.1), GNN training (§8.2), and graph systems
(§8.3).

8.1 Parallel Computation for Model Training

How to exploit parallelism in model training is a topic that has
been extensively studied. There are two major dimensions in
how to effectively parallelize the training work: (1) what to
partition and (2) how to synchronize between workers.
What to Partition. The most straightforward parallelism
model is data parallelism [8, 14, 16, 24, 72, 73, 76, 99], where
inputs are partitioned and processed by individual workers.
Each worker learns parameters (weights) from its own portion
of inputs and periodically shares its parameters with other
workers to obtain a global view. Both share-memory sys-
tems [8, 73, 24] and distributed systems [49, 99, 13] have
been developed for data-parallel training. Another paralleliza-
tion strategy is to partition the work, often referred to as
model parallelism [61] where the operators in a model are
partitioned and each worker evaluates and updates only a
subset of parameters w.r.t. its model partition for all inputs.

A recent line of work develops techniques for hybrid paral-
lelism [63, 31, 36, 44]. PipeDream [63] adds pipelining into
model parallelism to fully utilize compute without introduc-
ing significant stalls. Although Dorylus also uses pipelining,
tasks on a Dorylus pipeline are much finer-grained. For ex-
ample, instead of splitting a model into layers, we construct
graph and tensor tasks in such a way that graph tasks can be
parallelized on graph servers, while each tensor task is small
enough to fit into a Lambda’s resource profile. Dorylus uses
pipelining to overlap graph and tensor computations specifi-
cally to mitigate Lambdas’ network latency. FlexFlow [36]
automatically splits an iteration along four dimensions.
How Workers Synchronize. When workers work on differ-
ent portions of inputs (i.e., data parallelism), they need to
share their learned parameters with other workers. Parame-
ter updating requires synchronization between workers. For
share-memory systems, they often rely on primitives such
as all reduce [8] that broadcasts each worker’s parameters
to all other workers. Distributed systems including Dorylus
use parameter servers [49, 99, 13], which periodically com-
municate with workers for updating parameters. The most
commonly-used approach for synchronization is the bulk syn-
chronous parallel (BSP) model, which poses a barrier at the
end of each epoch. All workers need to wait for gradients
from other workers at the barrier. Wait-free backpropaga-
tion [99] is an optimization of the BSP model.

Since synchronous training often introduces computation
stalls, asynchronous training [8, 16] has been proposed to re-
duce such stalls — each worker proceeds with the next input
minibatch before receiving the gradients from the previous
epoch. An asynchronous approach reduces time needed for
each epoch at the cost of increased epochs to reach particu-
lar target accuracy. This is because allowing workers to use
parameters learned in epoch m to perform forward compu-

tations in epoch n (n 6= m) leads to statistical inefficiency.
This problem can be mitigated with a hybrid approach such
as bounded staleness [63, 15, 82, 65].

8.2 GNN Training and Graph Systems

As the GNN family keeps growing [91, 96, 18, 47, 95, 103,
51, 35, 94, 98], developing efficient and scalable GNN train-
ing systems becomes popular. GraphSage [25] uses graph
sampling, NeuGraph [55] extends GNN training to multi-
ple GPUs, and RoC [34] uses dynamic graph partitioning
to achieve efficiency. Other systems that can scale to large
graphs are all based on sampling [94, 98].

Programming frameworks such as DGL [17] have been
proposed to create a graph-parallel interface (i.e., GAS) for
developers to easily mix graph operations with NNs. How-
ever, such frameworks still represent the graph as a matrix
and push it to an underlying training framework such as Ten-
sorFlow for training. We solve this fundamental scalability
problem with a ground-up system redesign that separates the
graph computation from the tensor computation.

8.3 Graph-Parallel Systems

There exists a body of work on scalable and efficient
graph systems of many kinds: single-machine share-memory
systems [75, 64, 21, 59, 58], disk-based out-of-core sys-
tems [46, 70, 105, 87, 52, 102, 86, 26, 84, 56, 79, 1, 88],
and distributed systems [57, 54, 23, 10, 69, 11, 104, 101, 74,
81, 62, 90, 7, 80, 83]. These systems were built on top of a
graph-parallel computation model, whether it is vertex-centric
or edge-centric. Inspired by these systems, Dorylus formu-
lates operations involving the graph structure as graph-parallel
computation and runs it on CPU servers for scalability.

9 Conclusion
Dorylus is a distributed GNN training system that scales to
large billion-edge graphs with low-cost cloud resources. We
found that CPU servers, in general, offer more performance
per dollar than GPU servers for large sparse graphs. Adding
Lambdas added 2.75× more performance-per-dollar than
CPU only servers, and 4.83× more than GPU only servers.
Compared to existing sampling-based systems Dorylus is up
to 3.8× faster and 10.7× cheaper. Based on the trends we
observed Dorylus can scale to even larger graphs than we
evaluated, offering even higher values.

Acknowledgments
We thank the anonymous reviewers for their comments. We
are grateful to our shepherd Amar Phanishayee for his feed-
back. This work is supported by NSF grants CCF-1629126,
CNS-1703598, CCF-1723773, CNS-1763172, CCF-1764077,
CNS-1907352, CNS-1901510, CNS-1943621, CHS-
1956322, CNS-2007737, CNS-2006437, CNS-2106838,
ONR grants N00014-16-1-2913 and N00014-18-1-2037, as
well as a Sloan Fellowship.

508 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

A.1 Artifact Summary

Dorylus is a distributed GNN training system that
scales to large billion-edge graphs using cheap cloud re-
sources—specifically CPU servers and serverless threads.
It launches a set of graph servers which are used for pro-
cessing graph data and doing operations such as gather and
scatter. In addition, parameter servers hold the weights for
the model. It can be configured to run with multiple different
backends, such as a pure CPU backend and a GPU backend.
By separating the graph and tensor components of a graph
neural network Dorylus is able to effectively utilize serverless
threads by providing a deep asynchronous-parallel pipeline
in which tensor and graph operations are overlapped. By
doing this Dorylus significantly improves the performance-
per-dollar of serverless training over both the CPU and GPU
backends.

A.2 Artifact Check-list

• Hardware: AWS cloud account
• Public link: https://github.com/uclasystem/
dorylus

• Code licenses: The GNU General Public License (GPL)

A.3 Description

A.3.1 Dorylus’s Codebase

Dorylus contains the following three components:

• The Graph Server which performs graph operations and
manages Lambda threads (which can also use CPU and
GPU backends)

• The Weight Server which holds the model parameters and
sends them to the workers

• The Lambda functions which can be uploaded to AWS to
be used during training

A.3.2 Deploying Dorylus

To build Dorylus, the first step is to make sure you have the
following dependencies installed on your local machine:

• awscli

• python3-venv

Make sure to run aws configure and set up your creden-
tials to allow you to have access to AWS services. Once these
are installed, we need to download the code and setup the
environment:

git clone

git@github.com:uclasystem/dorylus.git

cd dorylus/

git checkout v1.0 # artifact tag

python3 -m venv venv

source venv/bin/activate

pip install -U pip

pip install -r requirements.txt

Set Up the Cluster. We now discuss how to setup the cluster
with all different roles. To do this, we use the ec2man python
module. To start, setup the profile in the following way:

$ vim ec2man/profile

default # Profile from /̃.aws/credentials

ubuntu # Cluster username

${HOME}/.ssh/id rsa # Path to SSH key

us-east-2 # AWS region

As mentioned previously, we work with two types of work-
ers which we call ’contexts’, specifically graph and weight
servers. To add machines to these two contexts, we use one
of the following commands:

python -m ec2man allocate --ami [AMI]

--type [ec2 type] --cnt [#servers]

--sg [security group]

--ctx [weight|graph]

python -m ec2man add [graph|weight]

[list of ec2 ids]

Run the first command with an AMI ID that presents a fresh
install of Ubuntu, ideally with about 36 GB of storage. Al-
ternatively if you have created instances already, say 4 graph
servers you can add them to the module using the add com-
mand with a list of their IDs. Finally, run the command
python -m ec2man setup to get the data about the in-
stances so they can be managed by the module. To make sure
everything is setup correctly, try SSHing into graph server 0
using python -m ec2man graph 0 ssh.
Building Dorylus. The next step is to make sure all depen-
dencies are installed to build Dorylus on the cluster machines.
To do this, run the following commands:

local$./gnnman/send-source [--force]

’--force’ removes existing code

local$./gnnman/install-dep

This will sync the source code with the nodes on the cluster.
Then, it will install all dependencies required to build Dorylus.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 509

https://github.com/uclasystem/dorylus
https://github.com/uclasystem/dorylus

If this fails for some reason you may need to ssh into each
node, move into the dorylus/gnnman/helpers directory,
and run:

remote$./graphserver.install

remote$./weightserver.install

Parameter Files. There are a number of parameter files
relating to things such as the ports used during training. Most
of these will be fine as they are and should only be changed
if there is a conflict.
Compiling the Code. To build and synchronize the code on
all nodes in the cluster run:

local$./gnnman/setup-cluster

local$./gnnman/build-system

[graph|weight] [cpu|gpu]

The first command sets up each node of the cluster to be aware
of each other. This is important as we only build the code on
node 0 and distribute it to other nodes. The second command
runs CMake to build the actual system. Not specifying a
context builds for all contexts. Not specifying either cpu or
gpu as the backend builds the serverless version.
Setting up Lambda Functions. To install the Lambda func-
tions, you can SSH into one of the weight or graph servers.
Once there, run the following commands:

Install the Lambda dependencies
remote$./funcs/manage-funcs.install

Build and upload the function to the cloud
remote$ cd src/funcs

remote$./<function-name>/upload-func

A.3.3 Preparing the Data
There are 4 main inputs to Dorylus:
• The graph structure
• Graph partition info
• Input features
• Training labels

Graph Input. To prepare an input graph for Dorylus, the
format should be a binary edge list with vertices numbered
from 0 to |V | with no breaks using 4 byte values. The file
should be named graph.bsnap.
Partition Info. Dorylus uses edge-cut partitioning. While
we do limit partitioning to edge-cuts, we allow flexibility in
how the edge cut is implemented by partitioning at runtime.
Provide a text file that lists partition assignments line by line,
where each line number corresponds to the vertex ID and the
number is the partition to which it is assigned. The file should
be called graph.bsnap.parts.
Input Features. The input features take the form of a tensor
of size |V | × d where d is the number of input features. The
file should be binary and take the format of:

[numFeats][v0 feats][v1 feats][v2 feats]...

The file should be called features.bsnap.
Training Labels. The labels file should be binary and take
the form:

[numLabels][label0][label1]...

This file should be called labels.bsnap.
Preparing the NFS Server. On an NFS server setup the
dataset in the following format under a directory called
/mnt/filepool/. If the dataset we are preparing is called
amazon, the directory structure would look like this:

amazon

|-- features.bsnap

|-- graph.bsnap

|-- labels.bsnap

|-- parts <#partitions>/

|-- graph.bsnap.edges

|-- graph.bsnap.parts

where graph.bsnap.edges is a symlink to
../graph.bsnap. Use the add command from above to
add the NFS server to a special context called nfs so that
ec2man knows where to look for it. Finally, run

local$./gnnman/mount-nfs-server

A.3.4 Running Dorylus.
Once the cluster has been setup, the code compiled, the
Lambda functions installed, and the datasets prepared, we can
run Dorylus. To run it use the following command from the
dorylus/ directory on your local machine:

<dataset>: the dataset you prepared
--l: the #lambdas/server
--p: enable asynchronous pipelining
--s: degree of staleness
[cpu|gpu]: backend to use (blank means lambda)

./run/run-dorylus <dataset>

[--l=#lambdas] [--lr=learning rate]

[--p] [--s=staleness] [cpu|gpu]

You will see the output of the Graph Servers, but can
see the output of both the Graph and Weight Servers
in graphserver-out.txt and weightserver-out.txt.
More details of Dorylus’s installation and deployment can be
found in Dorylus’s code repository.

510 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and

W. Zheng. Squeezing out all the value of loaded data:
An out-of-core graph processing system with reduced
disk i/o. In USENIX ATC, pages 125–137, 2017.

[2] M. Allamanis, M. Brockschmidt, and M. Khademi.
Learning to represent programs with graphs. In ICLR,
2018.

[3] Amazon. AWS Lambda Pricing.
https://aws.amazon.com/lambda/pricing/, 2020.

[4] A. AWS. Announcing improved vpc
networking for aws lambda functions.
https://aws.amazon.com/blogs/compute/announcing-
improved-vpc-networking-for-aws-lambda-
functions/, 2019.

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin,
and D. Tarlow. Deepcoder: Learning to write programs.
In ICLR, 2017.

[6] X. Bresson and T. Laurent. Residual gated graph con-
vnets. CoRR, abs/1711.07553, 2017.

[7] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie.
Pregelix: Big(ger) graph analytics on a dataflow engine.
Proc. VLDB Endow., 8(2):161–172, Oct. 2014.

[8] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz.
Revisiting distributed synchronous sgd. In ICLR Work-
shop Track, 2016.

[9] J. Chen, J. Zhu, and L. Song. Stochastic training of
graph convolutional networks with variance reduction.
In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 942–950, Stockholmsmässan, Stockholm Swe-
den, 10–15 Jul 2018. PMLR.

[10] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and
H. Guan. Computation and communication efficient
graph processing with distributed immutable view. In
HPDC, pages 215–226, 2014.

[11] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra:
Differentiated graph computation and partitioning on
skewed graphs. In EuroSys, pages 1:1–1:15, 2015.

[12] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen,
J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN:
Efficient primitives for deep learning, 2014.

[13] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanara-
man. Project adam: Building an efficient and scalable
deep learning training system. In OSDI, pages 571–
582, 2014.

[14] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao,
J. Zhang, P. Bailis, K. Olukotun, C. Ré, and M. Zaharia.
Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. SIGOPS Oper. Syst.
Rev., 53(1):14–25, 2019.

[15] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar,
J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.
Gibson, and E. P. Xing. Exploiting bounded staleness
to speed up big data analytics. In USENIX ATC, pages
37–48, June 2014.

[16] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and
E. P. Xing. GeePS: Scalable deep learning on dis-
tributed GPUs with a gpu-specialized parameter server.
In EuroSys, 2016.

[17] DeepGraphLibrary. Why DGL?
https://www.dgl.ai/pages/about.html, 2018.

[18] M. Defferrard, X. Bresson, and P. Vandergheynst. Con-
volutional neural networks on graphs with fast local-
ized spectral filtering. In NIPS, pages 3844––3852,
Red Hook, NY, USA, 2016.

[19] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre,
R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NIPS, pages
2224–2232, 2015.

[20] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Bala-
subramaniam, W. Zeng, R. Bhalerao, A. Sivaraman,
G. Porter, and K. Winstein. Encoding, fast and slow:
Low-latency video processing using thousands of tiny
threads. In NSDI, pages 363–376, 2017.

[21] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An
overview of the system software of A parallel rela-
tional database machine GRACE. In VLDB, pages
209–219, 1986.

[22] X. Glorot and Y. Bengio. Understanding the difficulty
of training deep feedforward neural networks. AIS-
TATS, pages 249–256, 2010.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[24] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He. Accurate, large minibatch SGD: training Ima-
geNet in 1 hour. CoRR, abs/1706.02677, 2017.

[25] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive
representation learning on large graphs. In NIPS, pages
1024–1034, 2017.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 511

[26] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. TurboGraph: A fast parallel graph
engine handling billion-scale graphs in a single PC. In
KDD, pages 77–85, 2013.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In ICCV, pages 1026–1034,
2015.

[28] R. He and J. McAuley. Ups and downs: Modeling
the visual evolution of fashion trends with one-class
collaborative filtering. In WWW, pages 507–517, 2016.

[29] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-
Smith, V. Sreekanti, A. Tumanov, and C. Wu. Server-
less computing: One step forward, two steps back. In
CIDR, 2019.

[30] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gib-
bons, G. A. Gibson, G. R. Ganger, and E. P. Xing.
More effective distributed ml via a stale synchronous
parallel parameter server. In NIPS, pages 1223–1231,
Red Hook, NY, USA, 2013.

[31] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V.
Le, and Z. Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. CoRR,
abs/1811.06965, 2018.

[32] C. Huyen. Key trends from NeurIPS 2019.
https://huyenchip.com/2019/12/18/key-trends-
neurips-2019.html, 2019.

[33] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel,
J. Gonzalez, K. Keutzer, and I. Stoica. Checkmate:
Breaking the memory wall with optimal tensor remate-
rialization. In MLSys, pages 497–511, 2020.

[34] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken.
Improving the accuracy, scalability, and performance
of graph neural networks with Roc. In MLSys, 2020.

[35] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and
A. Aiken. Redundancy-free computation for graph
neural networks. In KDD, pages 997–1005, 2020.

[36] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and
model parallelism for deep neural networks. In MLSys,
2019.

[37] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and
B. Recht. Occupy the cloud: Distributed computing
for the 99%. In SoCC, pages 445–451, 2017.

[38] J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. Annals of Mathe-
matical Statistics, 23:462–466, 1952.

[39] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization, 2014.

[40] T. N. Kipf and M. Welling. Semi-supervised classifi-
cation with graph convolutional networks. In ICLR,
2017.

[41] M. Kirisame, S. Lyubomirsky, A. Haan, J. Brennan,
M. He, J. Roesch, T. Chen, and Z. Tatlock. Dynamic
tensor rematerialization. In ICLR, 2021.

[42] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfef-
ferle, and A. Trivedi. Understanding ephemeral storage
for serverless analytics. In USENIX ATC, pages 789–
794, 2018.

[43] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfef-
ferle, and C. Kozyrakis. Pocket: Elastic ephemeral
storage for serverless analytics. In OSDI, pages 427–
444, 2018.

[44] A. Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. CoRR, abs/1404.5997, 2014.

[45] M. Kustosz and B. Osinski. Trends and fads in
machine learning – topics on the rise and in decline in
ICLR submissions. https://deepsense.ai/key-findings-
from-the-international-conference-on-learning-
representations-iclr/, 2020.

[46] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-Scale Graph Computation on Just a PC. In OSDI,
pages 31–46, 2012.

[47] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and
A. Rao. Graph convolutional networks with motif-
based attention. In CIKM, pages 499–508, 2019.

[48] J. Leskovec. Stanford network analysis project.
https://snap.stanford.edu/, 2020.

[49] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In OSDI, pages 583–598, 2014.

[50] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.
Gated graph sequence neural networks. In ICLR, 2016.

[51] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel.
Gated graph sequence neural networks. In Y. Bengio
and Y. LeCun, editors, ICLR, 2016.

[52] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee,
, and U. Kang. MMap: Fast billion-scale graph com-
putation on a pc via memory mapping. In BigData,
pages 159–164, 2014.

512 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[53] Q. Liu, M. Nickel, and D. Kiela. Hyperbolic graph
neural networks. In NIPS, pages 8230–8241. Curran
Associates, Inc., 2019.

[54] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A new
framework for parallel machine learning. In UAI, pages
340–349, 2010.

[55] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,
and Y. Dai. NeuGraph: Parallel deep neural network
computation on large graphs. In USENIX ATC, pages
443–457, 2019.

[56] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar,
and T. Kim. Mosaic: Processing a trillion-edge graph
on a single machine. In EuroSys, pages 527–543, 2017.

[57] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehn-
ert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[58] M. Mariappan, J. Che, and K. Vora. DZiG: Sparsity-
Aware Incremental Processing of Streaming Graphs.
In EuroSys, page 83–98, 2021.

[59] M. Mariappan and K. Vora. GraphBolt: Dependency-
Driven Synchronous Processing of Streaming Graphs.
In EuroSys, page 25:1–25:16, 2019.

[60] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel.
Image-based recommendations on styles and substi-
tutes. In SIGIR, pages 43–52, 2015.

[61] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner,
R. Larsen, Y. Zhou, N. Kumar, M. Norouzi, S. Bengio,
and J. Dean. Device placement optimization with re-
inforcement learning. In ICML, pages 2430—-2439,
2017.

[62] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely dataflow
system. In SOSP, pages 439–455, 2013.

[63] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,
N. R. Devanur, G. R. Ganger, P. B. Gibbons, and M. Za-
haria. PipeDream: Generalized pipeline parallelism
for DNN training. In SOSP, page 1–15, 2019.

[64] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In SOSP, pages 456–
471, 2013.

[65] F. Niu, B. Recht, C. Re, and S. J. Wright. HOGWILD!
a lock-free approach to parallelizing stochastic gradi-
ent descent. In NIPS, pages 693—-701, 2011.

[66] NVIDIA. The cuSPARSE CUDA toolkit.
https://docs.nvidia.com/cuda/cusparse/index.html,
2020.

[67] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W. Yih.
Cross-sentence n-ary relation extraction with graph
LSTMs. TACL, 5:101–115, 2017.

[68] Reddit. The reddit datasets.
https://www.reddit.com/r/datasets/, 2020.

[69] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: Scale-out graph processing
from secondary storage. In SOSP, pages 410–424,
2015.

[70] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric graph processing using streaming parti-
tions. In SOSP, pages 472–488, 2013.

[71] F. Scarselli and et al. The graph neural network model.
IEEE Trans. Neur. Netw., 20(1):61–80, Jan. 2009.

[72] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit
stochastic gradient descent and application to data-
parallel distributed training of speech dnns. In Inter-
speech 2014, September 2014.

[73] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On par-
allelizability of stochastic gradient descent for speech
dnns. In ICASSP, pages 235–239, 2014.

[74] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and
concurrent RDF queries with rdma-based distributed
graph exploration. In USENIX ATC, pages 317–332,
2016.

[75] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In PPoPP,
pages 135–146, 2013.

[76] R. Thakur, R. Rabenseifner, and W. Gropp. Optimiza-
tion of collective communication operations in mpich.
Int. J. High Perform. Comput. Appl., 19(1):49—-66,
2005.

[77] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia,
J. Wei, K. Vora, R. Netravali, M. Kim, and G. H. Xu.
Dorylus: affordable, scalable, and accurate GNN train-
ing with distributed CPU servers and serverless threads.
https://arxiv.org/abs/2105.11118, 2021.

[78] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio. Graph attention networks. In
ICLR, 2018.

[79] K. Vora. LUMOS: Dependency-driven disk-based
graph processing. In USENIX ATC, pages 429–442,
2019.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 513

[80] K. Vora, R. Gupta, and G. Xu. Synergistic analysis
of evolving graphs. ACM Trans. Archit. Code Optim.,
13(4):32:1–32:27, 2016.

[81] K. Vora, R. Gupta, and G. Xu. KickStarter: Fast and ac-
curate computations on streaming graphs via trimmed
approximations. In ASPLOS, pages 237–251, 2017.

[82] K. Vora, S. C. Koduru, and R. Gupta. ASPIRE: Exploit-
ing asynchronous parallelism in iterative algorithms
using a relaxed consistency based dsm. In OOPSLA,
pages 861–878, 2014.

[83] K. Vora, C. Tian, R. Gupta, and Z. Hu. CoRAL: Con-
fined Recovery in Distributed Asynchronous Graph
Processing. In ASPLOS, page 223–236, 2017.

[84] K. Vora, G. Xu, and R. Gupta. Load the edges you
need: A generic I/O optimization for disk-based graph
processing. In USENIX ATC, pages 507–522, 2016.

[85] A. D. Vose, J. Balma, D. Farnsworth, K. Anderson,
and Y. K. Peterson. PharML.Bind: Pharmacologic
machine learning for protein-ligand interactions, 2019.

[86] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. A. Sani.
Graspan: A single-machine disk-based graph system
for interprocedural static analyses of large-scale sys-
tems code. In ASPLOS, pages 389–404, 2017.

[87] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ:
Graph query processing with abstraction refine-
ment—programmable and budget-aware analytical
queries over very large graphs on a single PC. In
USENIX ATC, pages 387–401, 2015.

[88] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H.
Xu. Rstream: Marrying relational algebra with stream-
ing for efficient graph mining on a single machine. In
OSDI, pages 763–782, 2018.

[89] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye,
M. Li, J. Zhou, Q. Huang, C. Ma, Z. Huang, Q. Guo,
H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola,
and Z. Zhang. Deep graph library: Towards effi-
cient and scalable deep learning on graphs. CoRR,
abs/1909.01315, 2019.

[90] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,
H. Lin, Y. Dai, and L. Zhou. GraM: Scaling graph
computation to the trillions. In SoCC, pages 408–421,
2015.

[91] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan.
Session-based recommendation with graph neural net-
works. AAAI, 33:346–353, Jul 2019.

[92] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S.
Yu. A comprehensive survey on graph neural networks.
CoRR, abs/1901.00596, 2019.

[93] Z. Xianyi and M. Kroeker. OpenBLAS.
https://www.openblas.net, 2019.

[94] H. Yang. Aligraph: A comprehensive graph neural
network platform. In KDD, pages 3165–3166, 2019.

[95] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec. Graph convolutional neu-
ral networks for web-scale recommender systems. In
KDD, pages 974–983, 2018.

[96] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim.
Graph transformer networks. In Annual Conference on
Neural Information Processing Systems 2019, pages
11960–11970, 2019.

[97] ZeroMQ. ZeroMQ networking library for C++.
https://zeromq.org/, 2020.

[98] D. Zhang, X. Huang, Z. Liu, J. Zhou, Z. Hu, X. Song,
Z. Ge, L. Wang, Z. Zhang, and Y. Qi. AGL: A scalable
system for industrial-purpose graph machine learning.
Proc. VLDB Endow., 13(12):3125–3137, 2020.

[99] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing. Poseidon: An
efficient communication architecture for distributed
deep learning on GPU clusters. In USENIX ATC, pages
181—-193, 2017.

[100] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Ye-
ung. GaAN: Gated attention networks for learning on
large and spatiotemporal graphs. In A. Globerson and
R. Silva, editors, UAI, pages 339–349, 2018.

[101] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and
W. Zheng. Exploring the hidden dimension in graph
processing. In OSDI, pages 285–300, 2016.

[102] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. FlashGraph: processing
billion-node graphs on an array of commodity ssds. In
FAST, pages 45–58, 2015.

[103] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun.
Graph neural networks: A review of methods and ap-
plications. CoRR, abs/1812.08434, 2018.

[104] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini:
A computation-centric distributed graph processing
system. In OSDI, pages 301–316, 2016.

[105] X. Zhu, W. Han, and W. Chen. GridGraph: Large
scale graph processing on a single machine using 2-
level hierarchical partitioning. In USENIX ATC, pages
375–386, 2015.

514 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration
on GPUs

Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding
University of California, Santa Barbara

Abstract
As the emerging trend of graph-based deep learning, Graph
Neural Networks (GNNs) excel for their capability to gener-
ate high-quality node feature vectors (embeddings). However,
the existing one-size-fits-all GNN implementations are insuf-
ficient to catch up with the evolving GNN architectures, the
ever-increasing graph sizes, and the diverse node embedding
dimensionalities. To this end, we propose GNNAdvisor, an
adaptive and efficient runtime system to accelerate various
GNN workloads on GPU platforms. First, GNNAdvisor ex-
plores and identifies several performance-relevant features
from both the GNN model and the input graph, and uses them
as a new driving force for GNN acceleration. Second, GN-
NAdvisor implements a novel and highly-efficient 2D work-
load management, tailored for GNN computation to improve
GPU utilization and performance under different application
settings. Third, GNNAdvisor capitalizes on the GPU mem-
ory hierarchy for acceleration by gracefully coordinating the
execution of GNNs according to the characteristics of the
GPU memory structure and GNN workloads. Furthermore,
to enable automatic runtime optimization, GNNAdvisor in-
corporates a lightweight analytical model for an effective
design parameter search. Extensive experiments show that
GNNAdvisor outperforms the state-of-the-art GNN comput-
ing frameworks, such as Deep Graph Library (3.02× faster on
average) and NeuGraph (up to 4.10× faster), on mainstream
GNN architectures across various datasets.

1 Introduction

Graph Neural Networks (GNNs) emerge to stand on the front-
line for handling many graph-based deep learning tasks (e.g.,
node embedding generation for node classification [9, 14, 23]
and link prediction [6, 28, 51]). Compared with standard
methods for graph analytics, such as random walks [16, 47]
and graph Laplacians [7, 34, 35], GNNs highlight themselves
with the interleaved two-phase execution of both graph op-
erations (scatter-and-gather [15]) at the Aggregation phase,

and Neural Network (NN) operations (matrix multiplication)
at the Update phase, to achieve significantly higher accu-
racy [27, 52, 55] and better generality [17]. Yet, the state-
of-the-art GNN frameworks [11, 36, 53, 54], which follow a
one-size-fits-all implementation scheme, often suffer from
poor performance when handling more complicated GNN ar-
chitectures (i.e., more layers and higher hidden dimensionality
in each layer) and diverse graph datasets.

Specifically, previous work that supports both GNN train-
ing and inference can be classified into two categories. The
first type [36,54] is built on popular graph processing systems
and is combined with NN operations. The second type [11,53],
in contrast, starts with deep learning frameworks and is ex-
tended to support vector-based graph operations. However,
these existing solutions are still preliminary and inevitably fall
short in the following three major aspects, even on common
computing platforms such as GPUs.

Failing to leverage GNN input information. GNN mod-
els demonstrate great diversity in terms of layer sequences,
types of aggregation methods, and the dimension size of node
embeddings. These profoundly impact the effectiveness of
various system optimization choices. The diversity of input
graphs further complicates the problem. Unfortunately, cur-
rent GNN frameworks [11, 36, 53] follow a one-size-fits-all
optimization scheme and fail to craft an optimization strategy
that maximizes efficiency for a particular GNN application’s
settings. Some classical graph systems [2, 3] have exploited
input characteristics to facilitate more efficient optimizations,
but they only focus on simple graph algorithms like PageR-
ank [45] while having no support for GNN models.

Optimizations not tailored to GNN. While the update
phase in GNNs involves NN operations that are dense in com-
putation and regular in memory access, the aggregation phase
is usually sparse in computation and highly irregular in mem-
ory access. Without dedicated optimization, it will inevitably
become the performance bottleneck. Existing GNN frame-
works [11, 36, 53] simply extend the optimization schemes
from classical graph systems [26, 54], and do not address the
difference between GNN and graph processing. For example,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 515

GNNAdvisor
Pytorch-based

Frontend
(An example code

in Listing 1)

Kernel & Runtime Crafter
2D Workload

Management (§)

Parameterized
GNN Kernel Specialized Mem.

Optimization (§)Decider (§)

GNNAdvisor

GPU Runtime

Loader&Extractor (§)

GNN Model Info.
(e.g., #Layers, Hidden Dim,

Output Dim)

Graph Info.
(e.g., Node Degree,

Input Dim, Community)

Analytical
Modeling
Param.

Selection

Runtime
Param.

 Neighbor
Partitioning

Dimension
Partitioning

Thread
Mapping

Node
Renumbering

Memory
Customization

Input
Properties

Optimized
Imple. & Exec.

Figure 1: Overview of GNNAdvisor.

each node is associated with an embedding attribute in GNNs
while each node only has a single scalar attribute in tradi-
tional graph processing. Such difference invokes novel design
principles for GNNs towards more aggressive parallelism and
more efficient memory optimization.

Listing 1: Example of a 2-layer GCN in GNNAdvisor.
1 import GNNAdvisor as GNNA
2 import torch
3 # import other packages ...
4

5 # Create a GCN class.
6 class GCN(torch.nn.Module):
7 def __init__(self, inDim, hiDim, outDim, nLayers):
8 self.layers = torch.nn.ModuleList()
9 self.layers.append(GNNA.GCNConv(inDim, hiDim))

10 for i in range(nLayers - 2):
11 layer = GNNA.GCNConv(hiDim, hiDim)
12 self.layers.append(layer)
13 self.layers.append(GNNA.GCNConv(hiDim, outDim))
14 self.softmax = torch.nn.Softmax()
15

16 def forward(self, X, graph, param):
17 for i in range(len(self.layers)):
18 X = self.layers[i](X, graph, param)
19 X = self.ReLU(X)
20 X = self.softmax(X)
21 return X
22

23 # Define a two-layer GCN model.
24 model = GCN(inDim=100, hiDim=16, outDim=10, nLayers=2)
25

26 # Loading graph and extracting input propertities.
27 graphObj, inputInfo = GNNA.LoaderExtractor(graphFile,
28 model)
29 # Set runtime parameters automatically.
30 X, graph, param = GNNA.Decider(graphObj, inputInfo)
31

32 # Run model.
33 predict_y = model(X, graph, param)
34

35 # Compute loss and accuracy.
36 # Gradient backpropagation for training.

Poor runtime support for input adaptability. Prior GNN
frameworks [11,36,53] rely on a Python-based high-level pro-
gramming interface for ease of user implementation. These
frameworks employ static optimizations through a compiler
or manually-optimized libraries. Nevertheless, some critical
performance-related information for a GNN is only available
at runtime (e.g., node degree and embedding size). Without
adaptable designs that can leverage such runtime information,
we would easily suffer from an inferior performance because
of the largely under-utilized the GPU computing resources
and inefficient irregular memory access. This limitation moti-

vates the need for runtime environments with flexible designs
to handle a wide spectrum of inputs effectively.

To this end, we propose, GNNAdvisor, an adaptive and
efficient runtime system for GNN acceleration on GPUs.
GNNAdvisor leverages Pytorch [46] as the front-end to im-
prove programmability and ease user implementation. We
show a representative 2-layer Graph Convolutional Network
(GCN) [27] in GNNAdvisor at Listing 1. At the low level,
GNNAdvisor is built with C++/CUDA and integrated with Py-
torch framework by using Pytorch Wrapper. It can be viewed
as a new type of Pytorch operator with a set of kernel optimiza-
tions and runtime support. It can work seamlessly with exist-
ing operators from the Pytorch Framework. Data is loaded
with the data loader written in Pytorch and passed as a Tensor
to GNNAdvisor for computation on GPUs. Once the GNNAd-
visor completes its computation at the GPU, it will pass the
data Tensor back to the original Pytorch framework for further
processing. As detailed in Figure 1, GNNAdvisor consists of
several key components to facilitate the GNN optimization
and execution on GPUs. First, GNNAdvisor introduces an
input Loader&Extractor to exploit the input-level informa-
tion that can guide our system-level optimizations. Second,
GNNAdvisor incorporates a Decider consisting of analytical
modeling for automatic runtime parameter selection to re-
duce manual effort in design optimization, and a lightweight
node renumbering routine to improve graph structural locality.
Third, GNNAdvisor integrates a Kernel&Runtime Crafter
to customize our parameterized GNN kernel and CUDA run-
time, which consists of an effective 2D workload management
(considering both the number of neighbor nodes and the node
embedding dimensionality) and a set of GNN-specialized
memory optimizations.

Note that in this project, we mainly focus on the setting of
single-GPU GNN computing, which is today’s most popular
design adopted as the key component in many state-of-the-art
frameworks, such as DGL [53] and PyG [11]. Single-GPU
GNN computing is desirable for two reasons: First, many
GNN applications with small to medium size graphs (e.g.,
molecule structure) can easily fit the memory of a single GPU.
Second, in the case of large-size graphs that can only be han-
dled by out-of-GPU-core and multi-GPU processing, numer-
ous well-studied graph partition strategies (e.g., METIS [22])
can cut the giant graphs into small-size subgraphs to make
them suitable for a single GPU. Therefore, the optimization of

516 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

both the out-of-GPU-core (e.g., GPU streaming processing)
and multi-GPU GNN computation still largely demands per-
formance improvements on a single GPU. Moreover, while
our paper focuses on GNNs, our proposed methodology can
be applied to optimize various types of irregular workload
(e.g., social network analysis) targeting GPUs as well.

Overall, we make the following contributions:

• We are the first to explore GNN input properties (§3)
(e.g., GNN model architectures and input graphs), and
give an in-depth analysis of their importance in guiding
system optimizations for GPU-based GNN computing.

• We propose a set of GNN-tailored system optimizations
with parameterization, including a novel 2D workload
management (§4) and specialized memory customiza-
tion (§5) on GPUs. We incorporate the analytical model-
ing and parameter auto-selection (§6) to ease the design
space exploration.

• Comprehensive experiments demonstrate the strength of
GNNAdvisor over state-of-the-art GNN execution frame-
works, such as Deep Graph Library (average 3.02×) and
NeuGraph (average 4.36×), on mainstream GNN archi-
tectures across various datasets.

2 Background and Related Work

In this section, we introduce the basics of GNNs and two
major types of GNN computing frameworks: GPU-based
graph systems and deep learning frameworks.

2.1 Graph Neural Networks
Figure 2 visualizes the computation flow of GNNs in one
iteration. GNNs compute the node feature vector (embedding)
for node v at layer k+1 based on the embedding information
at layer k (k ≥ 0), as shown in Equation 1,

a(k+1)
v = Aggregate(k+1)(h(k)u |u ∈ N(v)∪h(k)v)

h(k+1)
v = Update(k+1)(a(k+1)

v)
(1)

where h(k)v is the embedding vector for node v at layer k; h(0)v is
computed from the task-specific features of a vertex (e.g., the
text associated with the vertex, or some scalar properties of the
entity that the vertex represents) via some initial embedding
mapping that is used only for this ingest of symbolic values
into the embedding space; a(k+1)

v is the aggregation results
through collecting neighbors’ information (e.g., node embed-
dings); N(v) is the neighbor set of node v. The aggregation
method and the order of aggregation and update could vary
across different GNNs. Some methods [17,27] just rely on the
neighboring nodes while others [52] also leverage edge prop-
erties, by combining the dot product of the end-point nodes of
each edge, along with any edge features (edge type and other

attributes). The update function is generally composed of stan-
dard NN operations, such as a single fully connected layer or
a multi-layer perceptron (MLP) in the form of w ·a(k+1)

v +b,
where w and b are the learnable weight and bias parameters,
respectively. The common choices for node embedding di-
mensions are 16, 64, and 128, and the embedding dimension
may change across different layers.

A
B

D

F

C

E

D

A

F

Aggregate Update

param
sharing

D
A

C

B

F
E GNN Layer

𝒉𝟎 𝒂𝟏 𝒉𝟏

Node Classes
Prediction

GNN Layer-1

ReLU

GNN Layer-N

Softmax

…
.

Node
Embedding

A
B
C
D
E
F

Figure 2: GNN General Computation Flow.

After passing through several iterations of aggregation and
update (i.e., several GNN layers), we will get the output em-
bedding of each node, which can usually be used for various
downstream graph-based deep learning tasks, such as node
classification [9, 14, 23] and link prediction [6, 28, 51]. Note
that the initial node embedding for GNN’s input layer may
come with the original graph dataset or can be generated
by a set of graph embedding algorithms, such as [5, 10, 16],
which is not included in the computation of GNNs models
(generating the hidden and output node embeddings).

2.2 Graph Processing Systems
Numerous graph processing systems [26, 32, 33, 38, 54]
have been proposed to accelerate traditional graph algo-
rithms. The major commonalities of these systems include the
vertex/node-centric programming abstraction, edge-centric
processing, and system optimizations to reduce the compu-
tation irregularity (e.g., workload imbalance) and memory
access irregularity (e.g., non-coalesced global memory ac-
cess). However, extending these graph processing systems to
support GNN computing meets with substantial challenges.

First, the common algorithm optimizations in graph pro-
cessing may not benefit GNNs. For example, graph traversal
algorithms, such as Breadth-first Search, rely on iterative com-
puting on node frontiers (active neighbors). Therefore, a set of
frontier-based optimizations, such push-pull traversal [32,33],
and frontier filtering [32,33,54], have been extensively studied.
However, GNNs consistently maintain fixed-sized frontiers
(all neighbors) of each node across iterations.

Second, the system optimization techniques for graph
processing would benefit GNNs only after careful adap-
tion and calibration. For example, node/edge-centric process-
ing [33, 54] and shard-based graph representation [26] are

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 517

tailored for processing nodes/edges represented with a single
scalar attribute. In GNNs, there’s another dimension for data
parallelism, namely the embedding dimension, which tends
to be large Therefore, previous design trade-offs between the
coarse-grained node-level parallelism and node-value locality
should be further extended to balance dimension-wise paral-
lelism and node-embedding locality at a finer granularity.

Third, some essential functionalities of GNN computing
are missing in graph systems. For example, the node update
based on NN computing for both the forward value propaga-
tion and the complicated backward gradient propagation is
not available in graph systems [26, 29, 32, 33, 38, 49, 54]. In
contrast, Pytorch [46] and Tensorflow [1] feature an analytic
differentiation function for automatic gradient computations
on various deep learning model architectures and functions.
Therefore, extending the graph-processing system to support
GNN computing requires non-trivial efforts, and thus we de-
velop GNNAdvisor on top of a deep learning framework.

2.3 Deep Learning Frameworks
Various NN frameworks have been proposed, such as Ten-
sorflow [1], and Pytorch [46]. These frameworks provide the
end-to-end training and inference support for traditional deep-
learning models with various NN operators, such as linear
and convolutional operators. These operators are highly op-
timized for Euclidean data (e.g., image) but lack support for
non-Euclidean data (e.g., graph) in GNNs. Extending NN
frameworks to support GNN that takes the highly-irregular
graphs as the input is facing several challenges.

First, NN-extended GNN computing platforms [11, 53] fo-
cus on programmability and generality for different GNN
models but lack efficient backend support to achieve high per-
formance. For example, Pytorch-Geometric (PyG) [11] uses
the torch-scatter [12] library implemented with CUDA as its
major building block of graph aggregation operations. The
torch-scatter implementation scales poorly when encounter-
ing large sparse graphs with high-dimensional node embed-
ding because its kernel design essentially borrows the design
principles of graph-processing systems by using excessive
high-overhead atomic operations to support node embedding
propagation. A similar scalability problem is also observed in
Deep Graph Library (DGL) [53], which incorporates an off-
the-shelf Sparse-Matrix Multiplication (SpMM) (e.g., csrmm2
in cuSparse [39]) for simple sum-reduced aggregation [17,27]
and leverages its own CUDA kernel for more complex aggre-
gation scheme with edge attributes [52, 55].

Second, major computation kernels [11,53] are hard-coded
without design flexibility, which is essential to handle di-
verse application settings with different input graph sizes and
node embedding dimensionality. From the high-level inter-
face, users are only allowed to define the way of composing
these kernels externally. Users are not allowed to customize
kernels internally based on the known characteristics of GNN
model architectures, GPU hardware, and graph properties.

3 Input Analysis of GNN Applications

In this section, we argue that the GNN input information can
guide the system optimization, based on our key observation
that different GNN application settings would favor different
optimization choices. We introduce two types of GNN input
information and discuss their potential performance benefits
and extraction methods.

3.1 GNN Model Information
While the GNN update phase follows a relatively fixed com-
puting pattern, the GNN aggregation phase shows high diver-
sity. The mainstream aggregation methods of GNNs can be
categorized into two types:

The first type is aggregation (e.g., sum, and min) with only
the embeddings of neighbor nodes, as in Graph Convolutional
Network (GCN) [27]. For GNNs with this type of aggregation,
the common design practice is to reduce the node embedding
dimensionality during the update phase (i.e., multiplying the
node embedding matrix with the weight matrix) [11, 27, 53]
before the aggregation (gather information from neighbor
node embedding) at each GNN layer, thereby, largely reduc-
ing the data movements during the aggregation. In this case,
improving memory locality would be more beneficial, in that
more node embeddings can be cached in fast memory (e.g.,
L1 cache of GPUs) to exploit performance benefits.

The second type is aggregation with special edge features
(e.g., weights, and edge vectors that are computed by combin-
ing source and target nodes) applied to each neighbor node,
as in Graph Isomorphism Network (GIN) [55]. This type of
GNN must work on large full-dimensional node embeddings
to compute the special edge features at the node aggregation.
In this case, the fast memory (e.g., shared memory of GPU
Stream-Multiprocessors) is not large enough to exploit mem-
ory locality. However, improving computation parallelization
(e.g., workload partitioning along the embedding dimension)
would be more helpful, considering that workloads can be
shared among more concurrent threads for improving overall
throughput.

We illustrate this aggregation-type difference with the math-
ematical equations for GCN and GIN. With GCN, the output
embedding X is computed as follows:

X′ = D̂−1/2ÂD̂−1/2XW, (2)

where D̂ is the diagonal node degree matrix; W is the weight
matrix; Â is the graph adjacency matrix. For GIN, the output
embedding X for each layer is computed as follows:

x′i = h

(1+ ε) ·xi + ∑
j∈N (i)

x j

 (3)

where h denotes a neural network, e.g., an MLP, which maps
node features x with input embedding dimension and output

518 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

embedding dimension; ε is a configurable/trainable parameter
depending on the users’ demands or application settings; N (i)
denotes the neighbor IDs of the node i.

Assume we have GCN and GIN with hidden dimension 16,
and the input dataset has a node embedding dimension of 128.
In the case of GCN, we will first do node update (GEMM1-
based linear transformation) of the node embedding, thus, at
the aggregation, we only need to do aggregation on nodes with
hidden dimension 16. In the GIN case, we have to do neighbor
aggregation on nodes with 128 dimensions then do node
update to linearly transform node embedding from 128 to 16
dimensions. Such an aggregation difference would also lead
to different optimization strategies, where GCN would prefer
more memory optimization on the small node embeddings
while GIN would prefer more computing parallelism on the
large node embeddings.

To conclude, the type of aggregation in GNNs should be
considered for system-level optimization and it can be ob-
tained by GNNAdvisor’s built-in parser of GNN model pro-
prieties.

3.2 Graph Information
Node Degree & Embedding Dimensionality: Real-world
graphs generally follow the power-law distribution [50] of
node degrees. Such distribution already causes workload im-
balance in traditional graph processing systems [18, 25, 32].
In GNN aggregation, such workload imbalance would be
exacerbated due to the higher dimensionality of the node em-
beddings if we perform node-centric workload partitioning.
Moreover, node embedding would invalidate some cache-
based optimizations that are originally applied to graph pro-
cessing systems, since caches are usually small in size and
insufficient to hold enough nodes with their embeddings. For
example, in the graph processing scenarios with a scalar at-
tribute for each node, we can improve performance by putting
16×103 nodes on the 64KB L1 cache of each GPU thread
block. However, in typical GNNs with a 64-dimension em-
bedding for each node, we can only fit 256 nodes on each
GPU block’s cache.

With node degree and embedding dimensionality informa-
tion, new optimization opportunities for GNNs may appear
because we can estimate the node’s workload and its concrete
composition based on such input information. If the work-
load size is dominated by the number of node neighbors (e.g.,
large node degree), we may customize the design that could
concurrently process more neighbors to increase the comput-
ing parallelism among neighbors. On the other hand, if the
workload size is dominated by node embedding size (e.g.,
high-dimensional node embedding), we may consider boost-
ing the computing parallelism along the node embedding
dimension. Note that the node degree and embedding dimen-
sion information can be extracted based on the loaded graph

1General Matrix-Matrix Multiplication.

(b) Loading without Community(a) Graph Community

B C

...

a b c d e ...

LD LD

......

LDLDLD LDLD LDLD

a b c d e

... ...Node Embedding

...

...Updated
Node Embedding

...

a b c d e

a b c d e

... ...

...

a b c d e

...

...

LD LD

... ...

... ...

LD

Updated
Node Embedding

Node Embedding

(c) Loading with Community

COM-A COM-B COM-C

a

c

d

e
b

A

Figure 3: Graph community and its potential benefits. Note
that “LD”: loading operation. “COM”: community.

structure and node embedding vectors. GNNAdvisor manages
the GNN workload based on such information (Section 4).

Graph Community: Graph community [13,30,37] is one
key feature of real-world graphs, which describes that a small
group of nodes tend to hold “strong” intra-group connections
(many edges) while maintaining “weak” connections (fewer
edges) with the remaining part of the graph. A motivating ex-
ample of GNN optimization with graph community structure
is shown in Figure 3a. Existing node-centric aggregation em-
ployed by many graph processing systems [26, 54] is shown
in Figure 3b, where each node will first load its neighbors
and then do aggregation independently. This strategy can
achieve great computation parallelism when each neighbor
has a lightweight scalar attribute. In this case, the benefit of
loading parallelization would offset the downside of duplicate
loading of some shared neighbors. However, in GNN com-
puting where node embedding size is large, this node-centric
loading would trigger significant unnecessary memory access
since the cost of duplicate neighbor loading is now dominant
and not offset by per-node parallelism For example, aggrega-
tion of node a, b, c, d, and e would load the embeddings of
15 nodes in total and most of these loads are repeated (both
node a and b load the same node d during the aggregation).
Such loading redundancy is exacerbated with the increase of
embedding dimensionality. On the other side, by considering
the community structure of real-world graphs, unnecessary
data loading for these “common” neighbors can be well re-
duced (Figure 3c), where aggregation only requires loads of
5 distinct nodes.

This idea sounds promising, but the effort to realize its
benefits on GPUs is non-trivial. Existing approaches [19, 37]
of exploiting the graph communities mainly target CPU plat-
forms with a limited number of parallelized threads and MB-
level cache sizes for each thread. Their major goal is to exploit
the data locality for every single thread. GPUs, on the other
side, are equipped with a massive number of parallel threads
and KB-level cache sizes per thread. Therefore, the key to
exploiting graph community on GPUs is to effectively ex-
ploit the data locality among threads by leveraging the L1
cache. Specifically, we need first capture the communities of
a graph and then map such locality from input level (node-ID
adjacency) to underlying GPU kernels (thread/warp/block-ID

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 519

0 1 2

7 8 93 6 10 3 5 0 3 42

Target Node

Neighbor Node
Target Node
Embedding

Neighbor Embedding

NP-0 NP-1 NP-2

EP0 EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8 EP9 EP10 EP11
NG-0 NG-1 NG-2 NG-3 NG-4 NG-5

Edge Partitioning

Neighbor Partitioning

Node PartitioningWorkload
Imbalance

Atomic
Operations

0
1

2

3

6

10

4

7
8

9

5

Graph CSR

Figure 4: Neighbor Partitioning. Note that “NP”: Node Parti-
tioning; “EP”: Edge Partitioning; “NG”: Neighbor Group.

adjacency). The major hardware-level insight is that threads
close in their IDs are more likely to share memory and com-
puting resources, thus, improving the data spatial and tem-
poral locality. GNNAdvisor handles all these details through
community-aware node renumbering and GNN-specialized
memory optimizations (Section 5).

4 2D Workload Management

GNNs employ a unique space in graph computations, due
to the representation of each node by a high-dimensional
feature vector (the embedding). GNN workloads grow in two
major dimensions: the number of neighbors and the size of the
embedding dimension. GNNAdvisor incorporates an input-
driven parameterized 2D workload management tailored for
GNNs, including three techniques: coarse-grained neighbor
partitioning, fine-grained dimension partitioning, and warp-
based thread alignment.

4.1 Coarse-grained Neighbor Partitioning

Coarse-grained neighbor partitioning is a novel workload
balance technique tailored to GNN computing on GPUs. It
aims to tackle the challenge of inter-node workload imbalance
and redundant atomic operations.

Specifically, based on the loaded graph compressed-sparse
row (CSR) representation, our coarse-grained neighbor parti-
tioning will first break down the neighbors of a node into a
set of equal-sized neighbor groups, and treat the aggregation
workload of each neighbor group (NG) as the basic workload
unit for scheduling. Figure 4 exemplifies an undirected graph
and its corresponding neighbor partitioning result. The neigh-
bors of Node-0 are divided into two neighbor groups (NG-0
and NG-1) with a pre-determined group size of 2. Neighbors
(Node-3 and Node-5) of Node-1 are covered by NG-2, while
the neighbors of Node-2 are spread among NG-{3,4,5}. To
support the neighbor group, we introduce two components, the
neighbor-partitioning module and the neighbor-partitioning
graph store. The former is a lightweight module built on top

of the graph loader by partitioning the graph CSR into equal-
size groups. Note that each neighbor group only covers the
neighbors of one target node for ease of scheduling and syn-
chronization. The neighbor-partitioning graph store maintains
the tuple-based meta-data of each neighbor group, including
its IDs, starting and ending position of its neighbor nodes in
the CSR representation, and the source node. For example,
the meta-data of NG-2 will be stored as (2, 1, (4, 6)), where 2
is the neighbor-group ID, 1 is the target node ID, (4, 6) is the
index range of the neighbor nodes in CSR.

The benefits of applying the aggregation based on parti-
tioning neighbors are three-fold: 1) compared with the more
coarse-grained aggregation based on node/vertex-centric par-
titioning [26], neighbor partitioning can largely mitigate the
size irregularity of the workload units, which would improve
GPU occupancy and throughput performance; 2) compared
with the more fine-grained edge-centric partitioning (used by
existing GNN frameworks, such as PyG [11], for batching
and tensorization, and graph processing systems [33, 54] for
massive computing parallelization), the neighbor-partitioning
solution can avoid the overheads of managing many tiny work-
load units that might hurt the performance in many ways, such
as scheduling overheads and the excessive amount of synchro-
nizations; 3) it introduces a performance-related parameter,
neighbor-group size (ngs), which is used for design param-
eterization and performance tuning. Neighbor partitioning
works at a coarse granularity of individual neighbor nodes.
It can largely mitigate the workload imbalance problem for
low-dimension settings. For high-dimensional node embed-
dings, we employ a fine-grained dimension partitioning dis-
cussed in the next subsection to further distribute workloads
of each neighbor group to threads. Note that when the number
of neighbors is not divisible by the neighbor group size, it
will raise neighbor-group imbalance. Such irregularity can
be amortized by setting the neighbor-group size to a small
number (e.g., 3).

4.2 Fine-grained Dimension Partitioning

GNN distinguishes itself from traditional graph algorithms in
its computation on the node embedding. To explore the poten-
tial acceleration parallelism along this dimension, we lever-
age a fine-grained dimension partitioning to further distribute
the workloads of a neighbor group along the embedding di-
mension to improve aggregation performance. As shown in
Figure 5, the original neighbor-group workloads are evenly
distributed to 11 consecutive threads, where each thread man-
ages the aggregation along one dimension independently (i.e.,
accumulation of all neighbor node embeddings towards the
target node embedding). If the dimension size is larger than
the number of working threads, more iterations would be
required to finish the aggregation.

There are two major reasons for using dimension parti-
tioning. First, it can accommodate a more diverse range of

520 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

...Neighbor Embedding

Iterate

Target Embedding

NG-1

Working Threads Working Threads

Figure 5: Dimension Partitioning.
⊕

: Accumulated add.

embedding dimension sizes. We can either increase the num-
ber of concurrent dimension workers or enable more iterations
to handle the dimension variation flexibly. This is essential
for modern GNNs with increasingly complicated model struc-
tures and different sizes of embedding dimension. Second, it
introduces another performance-related parameter – the num-
ber of working threads (dimension-worker (dw)) for design
customization. The value of this parameter can help to balance
the thread-level parallelism and the single thread efficiency
(i.e., computation workload per thread).

4.3 Warp-based Thread Alignment

While the above two techniques answer how we balance
GNN workloads logically, how to map these workloads to
underlying GPU hardware for efficient execution is still un-
resolved. One straightforward solution is to assign consecu-
tive threads to concurrently process workloads from differ-
ent neighbor groups (Figure 6a). However, different behav-
iors (e.g., data manipulation and memory access operations)
among these threads would result in thread divergence and
GPU underutilization. Threads from the same warp proceed
in a single-instruction-multiple-thread (SIMT) fashion and
the warp scheduler can only serve one type of instruction
per cycle. Therefore, different threads have to wait for their
turn for execution until the Stream-Multiprocessor (SM) warp
scheduler issues their corresponding instructions.

To tackle this challenge, we introduce a warp-aligned
thread mapping in coordination with our neighbor and di-
mension partitioning to systematically capitalize on the per-
formance benefits of balanced workloads. As shown in Fig-
ure 6b, each warp will independently manage the aggregation
workload from one neighbor group. Therefore, the execution
of different neighbor groups (e.g., NG-0 to NG-5) can be
well parallelized without inducing warp divergence. There are
several benefits in employing warp-based thread alignment.
First, inter-thread synchronization (e.g., atomic operations)
can be minimized. Threads of the same warp are working
on different dimensions of the same neighbor group, thus no
conflicts occur for either global or shared memory accesses
by threads from the same warp.

Second, the workload of a single warp is reduced and dif-
ferent warps will process more balanced workloads. There-
fore, more small warps can be managed flexibly by SM warp
schedulers to improve overall parallelism. Considering the

Warp-0 Warp-1

Warp-0 Warp-1 Warp-2 Warp-3 Warp-4 Warp-5

NG-0 NG-1 NG-2 NG-3 NG-4 NG-5

NG-0 NG-1 NG-2 NG-3 NG-4 NG-5
(a) Continuous Mapping.

(b) Warp-Aligned Mapping.

Warp-1

Global Memory

Warp-0

Serialized non-Coalesced Access

Global Memory

Warp-1 Warp-2 Warp-5Warp-3 Warp-4

Parallelized Coalesced Transactions

(c) Continuous Mapping Memory Access.

(d) Warp-Aligned Mapping Memory Access.

Figure 6: Warp-based Thread Alignment.

unavoidable global memory access of each warp during ag-
gregation, increasing the number of warps can improve SM
occupancy to hide latency. Third, memory access can be co-
alesced. Threads with consecutive IDs from the same warp
will access continuous memory addresses in global memory
for node embeddings. Therefore, compared with continuous
thread mapping (Figure 6c), warp-aligned thread mapping can
merge memory requests from the same warp into one global
memory transaction (Figure 6d).

5 Specialized Memory Optimization

To further exploit the benefits of 2D workload, we introduce
GNN-specialized memory optimizations, community-aware
node renumbering and warp-aware memory customization.

5.1 Community-aware Node Renumbering

To explore the performance benefits of graph community (Sec-
tion 3.2), we incorporate lightweight node renumbering by
reordering node IDs to improve the temporal/spatial local-
ity during GNN aggregation without compromising output
correctness. The key idea is that the proximity of node IDs
would project to the adjacency of computing units on GPU
where they get processed. In GNNAdvisor, our 2D workload
management assigns neighbor groups of a node to consecu-
tive warps based on their node ID. If two nodes are assigned
with consecutive IDs, their corresponding neighbor groups
(warps) would be close to each other in their warp IDs as well.
Thus, they are more likely to be scheduled closely on the same
GPU SM with a shared L1 cache to improve the data locality
on loaded common neighbors. To apply node renumbering
effectively, two key questions must be addressed.

When to apply: While graph reordering provides poten-
tial benefits for performance, we still need to figure out what
kind of graph would benefit from such reordering optimiza-
tion. Our key insight is that for graphs already in a shape ap-
proximating block-diagonal pattern in their adjacency matrix
(Figure 7a), reordering could not bring more locality benefits,
since nodes within each community are already close to each
other in terms of their node-IDs. For graphs with a more irreg-
ular shape (Figure 7b), where edge connections are distributed
among nodes with an irregular pattern, the reordering could

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 521

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

(a) (b)

Figure 7: Graph Edge Connection Patterns. Note that each
colored square represents the edge between two nodes. Differ-
ent colors in (a) represent edges from different communities.
The red dot-line box indicates the sub-community.

bring notable performance improvement (up to 2× speedup,
later discussed in Section 7.5). To this end, we propose a new
metric – Averaged Edge Span (AES), to determine whether it
is beneficial to conduct a graph reordering.

AES =
1

#E ∑
(srcid ,trgid)∈E

|srcid − trgid | (4)

where E is the edge set of the graph; #E is the number of total
edges; srcid and trgid are the source and target node IDs of
each edge. Computing AES is lightweight and can be done on-
the-fly during the initial graph loading. Our profiling of a large
corpus of graphs also shows that when

√
AES > b

√
#N

100 c node
numbering is more likely to improve runtime performance.

How to apply: We leverage Rabbit Reordering [2], which
is a fully parallelized and low-cost graph reordering tech-
nique. Specifically, it first maximizes the graph modularity
by hierarchically merging edges and clustering nodes. And it
then generates node order within each cluster through DFS
traversal. Rabbit Reordering has also been proved to out-
perform other graph clustering approaches [4, 8, 21, 22, 48],
including Community-based methods, such as METIS [22],
and BFS-based methods, such as Reverse Cuthill-McKee
(RCM) [8]) in terms of better quality (data locality) of the
captured graph communities, the ease of parallelization, and
performance. More importantly, Rabbit Reordering can cap-
ture the graph communities hierarchically (i.e., a set of smaller
sub-communities are included in a larger community, as exem-
plified in Figure 7a). Such communities at different levels of
granularities would be a good match for the GPU cache hierar-
chy, where smaller sub-communities (occupying one SM) can
enjoy the data locality benefit from the L1 cache, while larger
communities (occupying multiple SMs) can enjoy the data
locality from the larger L2 cache. We quantitatively discuss
such a locality benefit in Section 7.4.

5.2 Warp-aware Memory Customization
Existing works [11, 54] utilize a large number of global
memory accesses for reading and writing the embedding

and a large number of atomic operations for aggregation
(a reduction operation). However, this approach leads to
heavy overhead and fails to exploit the potential benefits from
shared memory. In particular, when aggregating on a target
node with k neighbor groups (each has ngs neighbors with
Dim-Dimensional embeddings) into a Dim-dimensional em-
bedding, it involves O(k · ngs ·Dim) atomic operations and
O(k ·ngs ·Dim) global memory accesses.

By contrast, we propose a warp-centric shared memory
optimization technique. Our key insight is that by customiz-
ing shared memory layout according to the block-level warp
organization pattern (Figure 7), we can significantly reduce
the number of atomic operations and global memory access.
First of all, we reserve a shared memory space (4×Dim bytes
for floating-point embeddings) for the target node of each
neighbor group (warp), such that the threads from a warp can
cache the intermediate results of reduction in shared memory.
Later on, within a thread block, we designate only one warp
(called leader) for copying the intermediate results of each
target node to global memory considering that neighbors of
each node can be spread across different warps. The detailed
customization procedure is described in Algorithm 1. Specifi-
cally, each warp (maintained in warpPtr) has three properties:
nodeSharedAddr (a shared memory address for the aggrega-
tion result of a neighbor-group), nodeID (the ID of the target
node), and leader (a boolean flag indicating whether the cur-
rent warp is a leader warp for flushing out the result from
the shared memory to the global memory). The major cus-
tomization routine (Line 4 to Line 22) handles different warps
based on their index position relative to thread blocks. Note
that such a shared memory customization is low-cost and is
done only once on-the-fly with the regular graph initialization
process before the GPU kernel execution.

In our design, when a target node with k neighbor groups
(each has ngs neighbors with Dim-dimensional embeddings),
it involves O(Dim) atomic operations and O(Dim) global
memory accesses. To this end, we can save the atomic oper-
ations and global memory access by (k ·ngs)×, thus signifi-
cantly accelerating the aggregation operations. Here, we treat
ngs as a hyper-parameter to balance memory access efficiency
and computation parallelism, and we further discuss its value
selection in Section 6.

6 Design Optimization

The parameters in our GPU kernel configurations can be
tuned to accommodate various GNN models with graph data
sets. But it is not yet known how to automatically select the
parameters which can deliver the optimal performance. In
this section, we introduce the analytical model and the auto
parameter selection in the Decider of GNNAdvisor.

Analytical Modeling: The performance/resource analyti-
cal model of GNNAdvisor has two variables, workload per

522 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 Warp-aware Memory Customization.
. Compute #neighbor-groups (#warps).

1: warpNum = neighborGroups = computeGroups(ngs);
. Compute the number of warps per thread block.

2: warpPerBlock = floor(threadPerBlock/threadPerWarp)
. Initialize tracking variables.

3: cnt = 0; local_cnt = 0; last = 0;
4: while cnt < warpNum do

. Warp in the front of a thread block.
5: if cnt % warpPerBlock == 0 then
6: warpPtr[cnt].nodeSharedAddr = local_cnt×Dim;
7: last = warpPtr[cnt].nodeID;
8: warpPtr[cnt].leader = true;

. Warp in the middle of a thread block.
9: else

. Warp with the same target node as
its predecessor warp.

10: if warpPtr[cnt].nodeID == last) then
11: warpPtr[cnt].nodeSharedAddr = local_cnt;

. Warp with the different target node as
its predecessor warp.

12: else
13: local_cnt++;
14: warpPtr[cnt].nodeSharedAddr = local_cnt;
15: last = warpPtr[cnt].nodeID;
16: warpPtr[cnt].leader = true;
17: end if
18: end if

. Next warp belongs to a new thread block.
19: if (++ cnt)%warpPerBlock == 0 then
20: local_cnt = 0;
21: end if
22: end while

thread (WPT), and shared memory usage per block (SMEM).

WPT = ngs× Dim
dw

, SMEM =
tpb
tpw
×Dim×FloatS (5)

where ngs and dw is the neighbor-group and dimension-
worker size (Section 4.2), respectively; Dim is the node em-
bedding dimension; IntS and FloatS are both 4-byte on GPUs;
tpb is the thread-per-block and tpw is the thread-per-warp;
tpw is 32 for GPUs, while tpb is selected by users.

Parameter Auto Selection: To determine the value of the
ngs and dw, we follow two steps. First, we determine the value
of dw based on tpw (hardware constraint) and Dim (input
property), as shown in Equation 6. Note that we develop this
equation by profiling different datasets and GNN models.

dw =

{
tpw Dim≥ tpw
tpw
2 Dim < tpw

(6)

Second, we determine the value of ngs based on the selected
dw and the user-specified tpb. The constraints include mak-
ing WPT ≈ 1024 and SMEM ≤ SMEMperBlock. Note that
SMEMperBlock is 48KB to 96KB on modern GPUs [42,44].
Across different GPUs, even though the number of CUDA
cores and global memory bandwidth would be different, the
single-thread workload capacity (measured by WPT) remains
similar. tpb is usually chosen as a power of 2 but less than
or equal 1024. Our insight based on micro-benchmarking

and previous literature [56] shows that smaller blocks (1 to 4
warps, i.e., 32≤ tpb≤ 128) can improve SM warp schedul-
ing flexibility and avoid tail effects, thus leading to higher
GPU occupancy and throughput. We further demonstrate the
effectiveness of our analytical model in Section 7.5.

7 Evaluation
In this section, we comprehensively evaluate GNNAdvisor in
terms of the performance and adaptability on various GNN
models, graph datasets, and GPUs.

7.1 Experiment Setup

Benchmarks: We choose the two most representative
GNN models widely used by previous work [11, 36, 53]
on node classification tasks to cover different types of
aggregation. 1) Graph Convolutional Network (GCN) [27]
is one of the most popular GNN model architectures. It
is also the key backbone network for many other GNNs,
such as GraphSAGE [17], and differentiable pooling (Diff-
pool) [57]. Therefore, improving the performance of GCN
will also benefit a broad range of GNNs. For GCN eval-
uation, we use the setting: 2 layers with 16 hidden di-
mensions, which is also the setting from the original pa-
per [27]. 2) Graph Isomorphism Network (GIN) [55]. GIN
differs from GCN in its aggregation function, which weighs
the node embedding values from the node itself. In addi-
tion, GIN is also the reference architecture for many other
advanced GNNs with more edge properties, such as Graph
Attention Network (GAT) [52]. For GIN evaluation, we use
the setting: 5 layers with 64 hidden dimensions, which is the
setting used in the original paper [55].

Baselines: we choose several baseline implementations for
comparison. 1) Deep Graph Library (DGL) [53] is the state-
of-the-art GNN framework on GPUs, which is built upon the
famous tensor-oriented platform – Pytorch [46]. DGL signifi-
cantly outperforms the other existing GNN frameworks [11]
over various datasets on many mainstream GNN architectures.
Therefore, we make an in-depth comparison with DGL in
our evaluation; 2) Pytorch-Geometric (PyG) [11] is another
GNN framework in which users can define their edge con-
volutions when building customized GNN aggregation lay-
ers; 3) NeuGraph [36] is a dataflow-centered GNN system
on GPUs built on Tensorflow [1]; 4) Gunrock [54] is the
GPU-based graph processing framework with state-of-the-art
performance on traditional graph algorithms (e.g., PageRank).

Datasets: We cover all three types of datasets, which have
been used in previous GNN-related work [11, 36, 53]. Type I
graphs are the typical datasets used by previous GNN algo-
rithm papers [17,27,55]. They are usually small in the number
of nodes and edges, but rich in node embedding information
with high dimensionality. Type II graphs [24] are the popular
benchmark datasets for graph kernels and are selected as the
built-in datasets for PyG [11]. Each dataset consists of a set of

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 523

Table 1: Datasets for Evaluation.
Type Dataset #Vertex #Edge Dim. #Class

I

Citeseer 3,327 9,464 3,703 6
Cora 2,708 10,858 1,433 7
Pubmed 19,717 88,676 500 3
PPI 56,944 818,716 50 121

II

PROTEINS_full 43,471 162,088 29 2
OVCAR-8H 1,890,931 3,946,402 66 2
Yeast 1,714,644 3,636,546 74 2
DD 334,925 1,686,092 89 2
TWITTER-Partial 580,768 1,435,116 1,323 2
SW-620H 1,889,971 3,944,206 66 2

III

amazon0505 410,236 4,878,875 96 22
artist 50,515 1,638,396 100 12
com-amazon 334,863 1,851,744 96 22
soc-BlogCatalog 88,784 2,093,195 128 39
amazon0601 403,394 3,387,388 96 22

small graphs, which only have intra-graph edge connections
without inter-graph edge connections. Type III graphs [27,31]
are large in terms of the number of nodes and edges. These
graphs demonstrate high irregularity in structure, which is
challenging for most of the existing GNN frameworks. De-
tails of these datasets are listed in Table 1.

Platforms & Metrics: We implement GNNAdvisor’s
backend with C++ and CUDA C and its front-end with Python.
Our major evaluation platform is a server with an 8-core
16-thread Intel Xeon Silver 4110 CPU [20] and a Quadro
P6000 [42] GPU. Besides, we use Tesla V100 [44] GPU
on the DGX-1 system [40] to demonstrate the generality of
GNNAdvisor. Runtime parameters of different input settings
are optimized by GNNAdvisor Decider. To measure the per-
formance speedup, we calculate the averaged latency of 200
end-to-end inference (forward propagation) or training (for-
ward+backward propagation).

7.2 Compared with DGL
In this section, we first conduct a detailed experimental analy-
sis and comparison with DGL on GNN inference, then extend
our comparison for GNN training. As shown in Figure 8,
GNNAdvisor achieves 4.03× and 2.02× speedup on average
compared to DGL [53] over three types of datasets for GCN
and GIN on inference, respectively. We next provide detailed
analysis and give insights for each type of datasets.

Type I Graphs: The performance improvement against
DGL is significantly higher for GCN (on average 6.45×) than
GIN (on average 1.17×). The major reason is their different
GNN computation patterns. For GCN, node dimension reduc-
tion (DGEMM) is always placed before aggregation. This
largely reduce data movement and thread synchronization
overheads during the aggregation phase, which could gain
more benefits from GNNAdvisor’s 2D workload management
and specialized memory optimization for data locality im-
provements. GIN, on the other side, has aggregation phase
that must be finished before the node dimension reduction.
Thus, it cannot avoid high-volume memory access and data

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ci
te

se
er

Co
ra

Pu
bm

ed PP
I

PR
O

TE
IN

S_
fu

ll

O
VC

AR
-8

H

Ye
as

t

DD

TW
IT

TE
R

-P
ar

tia
l

SW
-6

20
H

am
az

on
05

05

ar
tis

t

co
m

-a
m

az
on

so
c-

B
lo

gC
at

al
og

am
az

on
06

01

Type I Type II Type III

No
rm

. S
pe

ed
up

 (x
)

GCN GIN

14.46

6.54

9.61

3.99

Figure 8: Inference speedup (×) over DGL on GCN and GIN.

movements during the aggregation phase. Therefore, it gets
lower benefits from the data locality and the shared memory
on GPUs for fast and low-overhead memory access. However,
our fine-grained dimension partitioning can still handle these
high-dimensional cases effectively.

Type II Graphs: Performance shows less difference be-
tween GCN (4.02×) and GIN (2.86×) on the same datasets
except for TWITTER-Partial, which has the highest node em-
bedding dimension (1323) in Type II graphs. It is worth notic-
ing that the speedup for GIN is consistently better compared
with Type I. There are two major reasons: 1) node feature
dimension is much lower (average 66.5, excluding TWITTER-
Partial) versus Type I (average 1421), which can gain more
performance benefits from data spatial and temporal locality
of our specialized memory optimizations; 2) Type II graphs in-
trinsically have good locality in their graph structure. The rea-
son is that Type II datasets consist of small graphs with very
dense intra-graph connections but no inter-graph edges, plus
nodes within each small graph are assigned with consecutive
IDs. Therefore, the performance gains of such graph-structure
locality can be scaled up when combining with GNNAdvi-
sor’s efficient workload and memory optimizations.

Type III Graphs: The speedup is also evident (average
2.10× for GCN and average 1.70× for GIN) on graphs with
a large number of nodes and edges, such as amazon0505. The
reason is the high overhead inter-thread synchronization and
global memory access can be well reduced through our 2D
workload management and specialized memory optimization.
Besides, our community-aware node renumbering further fa-
cilitates an efficient workload sharing among adjacent threads
(working on a group of nodes) through improving the data
spatial/temporal locality. On the dataset artist, which has the
smallest number of nodes and edges within Type III, we no-
tice a lower performance speedup for GIN. And we find that
the artist dataset has the highest standard deviation of graph
community sizes within Type III graphs, which makes it chal-
lenging to 1) use the group community information to capture
the node temporal and spatial locality in the GNN aggrega-
tion phase, and 2) capitalize on the performance benefits of
using such a community structure for guiding system-level
optimizations (e.g., warp-aligned thread mapping and shared
memory customization) on GPUs, which have a fixed number

524 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ci
te

se
er

Co
ra

Pu
bm

ed PP
I

PR
OT

EI
NS

_f
ul

l

OV
CA

R-
8H

Ye
as

t

DD

TW
ITT

ER
-P

ar
tia

l

SW
-6

20
H

am
az

on
05

05

ar
tis

t

co
m

-am
az

on

so
c-

Bl
og

Ca
tal

og

am
az

on
06

01

Type I Type II Type III

No
rm

. S
pe

ed
up

 (x
) GCN GIN

Figure 9: Training speedup (×) over DGL on GCN and GIN.

of computation and memory units within each block/SM.
Kernel Metrics: For detailed kernel metrics analysis, we

utilize NVProf [41] to measure two performance-critical
(computation and memory) CUDA kernel metrics: Stream
Processor (SM) efficiency and Cache (L1 + L2 + Texture) Hit
Rate. GNNAdvisor achieves on average 24.47% and 12.02%
higher SM efficiency compared with DGL for GCN and GIN,
respectively, which indicates that our 2D workload manage-
ment can strike a good balance between the single-thread
efficiency and the multi-thread parallelism that are crucial to
the overall performance improvement. GNNAdvisor achieves
on average 75.55% and 126.20% better cache hit rate com-
pared with DGL for GCN and GIN, correspondingly, which
demonstrates the benefit of specialized memory optimizations.

Training Support: We also evaluate the training perfor-
mance of GNNAdvisor on all three types of datasets com-
pared with the DGL on both GCN and GIN. Compared with
inference, training is more challenging, since it involves more
intensive computation with the forward value propagation and
the backward gradient propagation, both of which heavily rely
on the underlying graph aggregation kernel for computation.
As shown in Figure 9, GNNAdvisor consistently outperforms
the DGL framework with average 1.61× and average 2.00×
speedup on GCN and GIN, respectively, which shows the
strength of our input-driven optimizations. The key difference
between training and inference of GNNs is two-fold: First,
backpropagation is needed in training. This step benefits from
our improvements, as the backpropagation step is similar to
the forward computation during the inference, and all the pro-
posed methods are still beneficial; Second, training incurs
extra memory and data movement overheads for storing/ac-
cessing the activations of the forward pass until gradients can
be propagated back.

7.3 Compared with other Frameworks
We compare with DGL on all input settings, since DGL is the
overall best-performance GNN framework. In this section, we
further compare GNNAdvisor with three other representative
GNN computing frameworks on their best settings.

Compared with PyG: As shown in Figure 10, GNNAd-
visor can outperform PyG with 1.78× and 2.13× speedup

0.0

0.5
1.0

1.5
2.0
2.5

3.0
3.5

No
rm

. S
pe

ed
up

 (x
) GCN GIN

PROTEINS_full YeastOVCAR-8H SW-620HTWITTER-PartialDD

Figure 10: Training speedup (×) over PyG on GCN and GIN.

Table 2: Latency (ms) comparison with NeuGraph (NeuG).

Dataset NeuG (ms) Ours (ms) Speedup
reddit-full 2460 599.69 4.10×
enwiki 1770 443.00 3.99×
amazon 1180 474.57 2.48×

on average for GCN and GIN, respectively. For GCN, GN-
NAdvisor achieves significant speedup on datasets with high-
dimensional node embedding, such as TWITTER-Partial,
through 1) node dimension reduction before aggregation and
2) workload sharing among neighbor partitions and dimension
partitions. For GIN, GNNAdvisor reaches 2.45× speedup on
datasets with a higher average degree, such as DD, since GN-
NAdvisor can effectively distribute the workload of each node
along their embedding dimension to working threads while
balancing the single-thread efficiency and inter-thread paral-
lelism. PyG, however, achieves inferior performance because
1) it has poor thread management in balancing workload and
controlling synchronization overhead; 2) it heavily relies on
the scatter-and-gather kernel, which lacks flexibility.

Compared with NeuGraph: For a fair end-to-end train-
ing comparison with NeuGraph that has not open-sourced
its implementation and datasets, we 1) use the GPU (Quadro
P6000 [42]) that is comparable with the GPU of NeuGraph
(Tesla P100 [43]) in performance-critical factors, such as GPU
architecture (both have the Pascal architecture) and the num-
ber of CUDA cores; 2) use the same set of inputs as NeuGraph
on the same GNN architecture [36]; 3) use the datasets that
are presented in their paper and are also publicly available. As
shown in Table 2, GNNAdvisor outperforms NeuGraph with a
significant amount of margin (1.3× to 7.2× speedup) in terms
of computation and memory performance. NeuGraph relies
on general GPU kernel optimizations and largely ignores the
input information. Moreover, the optimizations in NeuGraph
are built-in and fixed inside the framework without perfor-
mance tuning flexibility. In contrast, GNNAdvisor leverages
GNN-featured GPU optimizations and demonstrates the key
contribution of input insights for system optimizations.

Compared with Gunrock: We make a performance com-
parison between GNNAdvisor and Gunrock [54] on a sin-
gle neighbor aggregation kernel of GNNs (i.e., the Sparse-
Matrix Dense-Matrix Multiplication (SpMM)) over the Type
III graphs. As shown in Figure 11, GNNAdvisor outperforms
Gunrock with 2.89× to 8.41× speedup. There are two major
reasons behind such a evident performance improvement on
the sparse GNN computation: 1) Gunrock focuses on graph-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 525

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

amazon0505 artist com-amazon soc-BlogCatalog amazon0601

N
or

m
. S

pe
ed

up
 (x

) Gunrock (x)
GNNAdvisor (x)

Figure 11: Speedup (×) comparison with Gunrock.

algorithm operators (e.g., frontier processing) but lacks effi-
cient support for handling high-dimensional node embedding;
2) Gunrock leverages generic optimizations without consid-
ering the input differences, thus, losing the adaptability for
handling different GNN inputs efficiently.

7.4 Optimization Analysis

In this section, we explore and analyze the optimizations used
in Sections 4 and 5 in detail.

Neighbor partitioning: From Figure 12a, we can see that
with the increase of the neighbor-group size, the running
time of GNNAdvisor will first decrease. The increase of the
neighbor-group size saturates the computation capability of
each thread meanwhile improving the data locality and reduc-
ing the number of atomic operations (i.e., inter-thread syn-
chronization overhead). However, when the neighbor-group
size becomes larger than a certain threshold (e.g., 32 for the
artist dataset), each thread reaches its computation capac-
ity upper bound, and further increasing the neighbor-group
size offers no more performance benefit instead increases the
overall latency.

Dimension partitioning: As shown in Figure 12b, the di-
mension worker impact is more evident in performance com-
pared with the neighbor-group size at the range from 1 to 16.
When the number of dimension worker increases from 16 to
32, the runtime performance shows very minor difference due
to the already balanced single-worker efficiency and multi-
worker parallelism. Therefore, further increase the number of
dimension workers brings no more benefits.

Node renumbering: We demonstrate the benefit of node
renumbering by profiling Type III datasets for GCN and GIN.
As shown in Figure 12c, renumbering nodes within a graph
can bring up to 1.74× and 1.49× speedup for GCN and GIN,
respectively. The major reason is that our community-aware
node renumbering can increase the data spatial and temporal
locality during GNN aggregation.

To quantify such locality benefits, we extract the detailed
GPU kernel metric – memory access in terms of read and
write bytes from DRAM for illustration. Our CUDA kernel
metric profiling results show that node renumbering can ef-
fectively reduce the memory access overhead (on average
40.62% for GCN and 42.33% for GIN) during the runtime
since more loaded node embeddings are likely to be shared
among the nodes with consecutive IDs. We also notice one in-

put case that benefits less from our optimization – artist, since
1) the community size inside artist displays a large variation
(high standard deviation), making it challenging to capture the
neighboring adjacency and locality; 2) such a variation hur-
dles system-level (computation and memory) optimizations to
effectively capitalize on the locality benefits of renumbering.

Block-level optimization: We show the optimization ben-
efits of our block-level optimization (including warp-aligned
thread mapping, and warp-aware shared memory customiza-
tion). We analyze two kernel metrics (atomic operations re-
duction and DRAM access reduction) on three large graphs
for illustration. As shown in Figure 12d, GNNAdvisor can
effectively reduce the atomic operations and DRAM memory
access by an average 47.85% and 57.93%. This result demon-
strates 1) warp-aligned thread mapping based on neighbor
partitioning can effectively reduce a large portion of atomic
operations; 2) warp-aware shared memory customization can
avoid a significant amount of global memory access.

7.5 Additional Studies

Hidden dimensions of GNN: In this experiment, we an-
alyze the impact of the GNN architecture in terms of the
size of the hidden dimension for GCN and GIN. As shown
in Figure 13a, we observe that with the increase of hidden
dimension of GCN, the running time of GNNAdvisor is also
increased due to more computation (e.g., additions) and mem-
ory operations (e.g., data movements) during the aggregation
phase and a larger size of the node embedding matrix during
the node update phase. Meanwhile, we also notice that GIN
shows a larger latency increase versus GCN, mainly because
of the number of layers (2-layer GCN vs. 5-layer GIN) that
make such a difference more pronounced.

Overhead analysis: Community-aware node renumber-
ing is the major source of overhead for leveraging GNN input
information, and other parts are negligible. Here as a case
study, we evaluate its overhead on the training phase of GCN
on Type III graphs, given the optimization decision from our
GNNAdvisor Decider (as discussed in Section 5). Here we
use training for illustration; inference in a real GNN appli-
cation setting would also use the same graph structure many
times [17, 27, 27] with different node embeddings inputs. As
shown in Figure 13b, node-renumbering overhead is consis-
tently small (average 4.00%) compared with overall training
time. We thus conclude that such one-time overhead can be
amortized over GNN running time, which demonstrates its
applicability in real-world GNN applications.

Performance on Tesla V100: To demonstrate the po-
tential of GNNAdvisor in the modern data-center environ-
ment, we showcase the performance of GNNAdvisor on an
enterprise-level GPU – Tesla V100 [44]. As shown in Fig-
ure 13c, GNNAdvisor can scale well towards such a high-end
device, which can achieve 1.97× and 1.86× speedup com-
pared with P6000 for GCN and GIN due to more computa-

526 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1 2 4 8 16 32 64 128 256 512

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

No
rm

.R
un

tim
e

(%
)

(a)

0%

20%

40%

60%

80%

100%

120%

1 2 4 8 16 32

No
rm

. R
un

tim
e

(%
)

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

(b)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

amazon0505 artist com-amazon

N
or

m
. S

pe
ed

up
 (x

)

GCN GIN

(c)
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Atomic-Ops. Reduction Mem. Access Reduction

amazon0505 artist soc-BlogCatalog

(d)

Figure 12: Optimization Analysis. (a) Normalized latency as the neighbor group size (ngs) grows (latency at ngs = 1 is set as
100%); (b) Normalized latency as the number of dimension workers grows (latency at dw = 1 is set as 100%); (c) Normalized
speedup when using node renumbering compared to without renumbering; (d) Normalized GPU kernel metrics when using
block-level optimizations compared to without block-level optimizations.

1

10

100

1000

16 32 64 128 256 512 1024 2048

R
un

tim
e

(m
s)

Hidden Dimsnion

amazon0505
artist
com-amazon
soc-BlogCatalog
amazon0601

(a)

0% 20% 40% 60% 80% 100%

amazon0505

artist

com-amazon

web-BerkStan

soc-BlogCatalog

amazon0601

Reordering Training

(b)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ci
te

se
er

Co
ra

Pu
bm

ed PP
I

PR
O

TE
IN

S_
fu

ll

O
VC

AR
-8

H

Ye
as

t

DD

TW
IT

TE
R-

Pa
rti

al

SW
-6

20
H

am
az

on
05

05

ar
tis

t

co
m

-a
m

az
on

so
c-

Bl
og

Ca
ta

lo
g

am
az

on
06

01

Type I Type II Type III

No
rm

. S
pe

ed
up

 (x
)

GCN GIN

(c)

Figure 13: Additional Studies. (a) Latency (ms) analysis as the hidden dimension grows on GCN; (b) Overhead (%) analysis for
node renumbering; (c) Speedup (×) on Tesla V100 over Quadro P6000 (set as 1×).

2 4 8 16 32 64 128 256 512 1024

(b) Setting II24 ms

54 ms

2
4
8
16
32

2 4 8 16 32 64 128 256 512 1024

38 ms

103 ms

(a) Setting I

2 4 8 16 32 64 128 256 512 1024

(d) Setting IV74 ms

610 ms

2 4 8 16 32 64 128 256 512 1024

(c) Setting III11 ms

70 ms

2
4
8
16
32

ngs
dw

ngs
dw

ngs
dw

ngs
dw

2
4
8
16
32

2
4
8
16
32

Figure 14: Parameter Selection for Four Settings. Note that the
solid-black dot indicates the parameter (dw and ngs) selected
by GNNAdvisor Decider based on analytical modeling.

tion resources (e.g., 2.6× SMs, and 1.33× CUDA cores, and
1.13× throughput performance) and higher memory band-
width (e.g., 2.08× peak memory bandwidth). This compar-
ison shows that GNNAdvisor well adapts towards more ad-
vanced GPU hardware for seeking better performance. We
also foresee that our current work of GNNAdvisor can be ex-
tended to the multi-GPU or distributed data center, benefiting
overall performance by improving single GPU efficiency.

Parameter selection: To show the effectiveness of our
analytical modeling in kernel parameter selection, we consider
four different settings: I: amazon0505 on GCN at P6000
GPU as our base setting; II: amazon0505 GCN on V100
to demonstrate device adaptation; III: amazon0505 and soc-
BlogCatalog on P6000 to demonstrate adaptation to different
datasets; IV: amazon0505 on GIN at P6000 to demonstrate
adaptation to a different GNN model architectures. As shown

in Figure 14, our parameter selection strategy can pinpoint the
optimal low-latency design for the above four settings. This
demonstrates the effectiveness of our analytical modeling in
assisting parameter selection to optimize the performance of
GNN computation.

8 Conclusion
In this work, we propose, GNNAdvisor, an adaptive and effi-
cient runtime system for GNN acceleration on GPUs. Specifi-
cally, we explore the potential of GNN input-level information
in guiding system-level optimizations. We further propose
a set of GNN-tailored system-level optimizations (e.g., 2D
workload management, and specialized memory optimiza-
tions) and incorporate them into our parameterized designs
to improve performance and adaptability. Extensive exper-
iments on a wide range of datasets and mainstream GNN
models demonstrate the effectiveness of our design. Overall,
GNNAdvisor provides users a handy tool to accelerate GNNs
on GPUs systematically and comprehensively.

9 Acknowledgment
We would like to thank our shepherd, Petros Maniatis, and the
anonymous OSDI reviewers. This work was supported in part
by NSF 1925717. Use was made of computational facilities
purchased with funds from the National Science Foundation
(OAC-1925717) and administered by the Center for Scientific
Computing (CSC). The CSC is supported by the California
NanoSystems Institute and the Materials Research Science
and Engineering Center (MRSEC; NSF DMR 1720256) at
UC Santa Barbara.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 527

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI), 2016.

[2] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and
S. Iwamura. Rabbit order: Just-in-time parallel reorder-
ing for fast graph analysis. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), 2016.

[3] Vignesh Balaji and Brandon Lucia. When is graph
reordering an optimization? studying the effect of
lightweight graph reordering across applications and
input graphs. In 2018 IEEE International Symposium
on Workload Characterization (IISWC). IEEE.

[4] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebas-
tiano Vigna. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social
networks. In Proceedings of the 20th international con-
ference on World wide web (WWW), 2011.

[5] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. In
Advances in Neural Information Processing Systems
(NeurIPS), 2013.

[6] Hsinchun Chen, Xin Li, and Zan Huang. Link predic-
tion approach to collaborative filtering. In Proceedings
of the 5th ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL). IEEE, 2005.

[7] De Cheng, Yihong Gong, Xiaojun Chang, Weiwei Shi,
Alexander Hauptmann, and Nanning Zheng. Deep fea-
ture learning via structured graph laplacian embedding
for person re-identification. Pattern Recognition, 2018.

[8] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th National Conference, 1969.

[9] Alberto Garcia Duran and Mathias Niepert. Learn-
ing graph representations with embedding propagation.
In Advances in neural information processing systems
(NeurIPS), 2017.

[10] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-
Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional
networks on graphs for learning molecular fingerprints.
arXiv preprint, 2015.

[11] Matthias Fey and Jan E. Lenssen. Fast graph repre-
sentation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and
Manifolds (ICLR), 2019.

[12] Matthias Fey and Jan E. Lenssen. Pytorch extension
library of optimized scatter operations, 2019.

[13] Santo Fortunato. Community detection in graphs.
Physics reports, 2010.

[14] Jaume Gibert, Ernest Valveny, and Horst Bunke. Graph
embedding in vector spaces by node attribute statistics.
Pattern Recognition, 2012.

[15] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In The
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012.

[16] Aditya Grover and Jure Leskovec. node2vec: Scalable
feature learning for networks. In Proceedings of the
22nd ACM international conference on Knowledge dis-
covery and data mining (SIGKDD), 2016.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In
Advances in neural information processing systems
(NeurIPS), 2017.

[18] Minyang Han, Khuzaima Daudjee, Khaled Ammar,
M Tamer Özsu, Xingfang Wang, and Tianqi Jin. An
experimental comparison of pregel-like graph process-
ing systems. The VLDB Endowment, 2014.

[19] Bruce Hendrickson and Tamara G Kolda. Graph parti-
tioning models for parallel computing. Parallel comput-
ing, 2000.

[20] Intel. Xeon sliver 4110. https://ark.intel.
com/content/www/us/en/ark/products/123547/
intel-xeon-silver-4110-processor-11m-cache\
-2-10-ghz.html.

[21] Konstantinos I Karantasis, Andrew Lenharth, Donald
Nguyen, Mara J Garzaran, and Keshav Pingali. Paral-
lelization of reordering algorithms for bandwidth and
wavefront reduction. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2014.

[22] George Karypis and Vipin Kumar. MeTis: Unstructured
Graph Partitioning and Sparse Matrix Ordering System,
Version 4.0. http://www.cs.umn.edu/~metis, 2009.

[23] Riesen Kaspar and Bunke Horst. Graph classification
and clustering based on vector space embedding. World
Scientific, 2010.

528 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache\-2-10-ghz.html
http://www.cs.umn.edu/~metis

[24] Kristian Kersting, Nils M. Kriege, Christopher Morris,
Petra Mutzel, and Marion Neumann. Benchmark data
sets for graph kernels, 2016.

[25] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani
Jamjoom, Dan Williams, and Panos Kalnis. Mizan: A
system for dynamic load balancing in large-scale graph
processing. In Proceedings of the 8th ACM European
Conference on Computer Systems (EuroSys), 2013.

[26] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N Bhuyan. Cusha: vertex-centric graph pro-
cessing on gpus. In Proceedings of the 23rd interna-
tional symposium on High-performance parallel and
distributed computing (HPDC), 2014.

[27] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In-
ternational Conference on Learning Representations
(ICLR), 2017.

[28] Jérôme Kunegis and Andreas Lommatzsch. Learning
spectral graph transformations for link prediction. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning (ICML), 2009.

[29] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a pc.
In The 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2012.

[30] Andrea Lancichinetti, Santo Fortunato, and Filippo
Radicchi. Benchmark graphs for testing community
detection algorithms. Physical review E, 2008.

[31] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, 2014.

[32] Hang Liu and H Howie Huang. Enterprise: breadth-first
graph traversal on gpus. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2015.

[33] Hang Liu and H Howie Huang. Simd-x: Programming
and processing of graph algorithms on gpus. In USENIX
Annual Technical Conference (ATC), 2019.

[34] Dijun Luo, Chris Ding, Heng Huang, and Tao Li. Non-
negative laplacian embedding. In Ninth IEEE Interna-
tional Conference on Data Mining (ICDM), 2009.

[35] Dijun Luo, Feiping Nie, Heng Huang, and Chris H Ding.
Cauchy graph embedding. In The 28th International
Conference on Machine Learning (ICML), 2011.

[36] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue,
Ming Wu, Lidong Zhou, and Yafei Dai. Neugraph: par-
allel deep neural network computation on large graphs.
In USENIX Annual Technical Conference (ATC’19).

[37] Mark EJ Newman. Spectral methods for community
detection and graph partitioning. Physical Review E,
2013.

[38] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia
Zhao. Tigr: Transforming irregular graphs for gpu-
friendly graph processing. In Proceedings of the Twenty-
Third International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2018.

[39] Nvidia. Cuda sparse matrix library (cusparse).
developer.nvidia.com/cusparse.

[40] Nvidia. Dgx-1. https://www.nvidia.com/en-us/
data-center/dgx-1/.

[41] Nvidia. Profiling tools. docs.nvidia.com/cuda/
profiler-users-guide/index.html.

[42] Nvidia. Quardo p6000 gpu. https:
//www.nvidia.com/content/dam/en-zz/
Solutions/design-visualization/
productspage/quadro/quadro-desktop/
quadro-pascal-p6000-data-sheet-us-nv\
-704590-r1.pdf.

[43] Nvidia. Tesla p100. https://www.nvidia.com/
en-us/data-center/tesla-p100/.

[44] Nvidia. Tesla v100. https://www.nvidia.com/
en-us/data-center/v100/.

[45] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, 1999.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems (NeurIPS). 2019.

[47] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
walk: Online learning of social representations. In The
20th ACM International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD), 2014.

[48] Usha Nandini Raghavan, Réka Albert, and Soundar Ku-
mara. Near linear time algorithm to detect community
structures in large-scale networks. Physical review E,
2007.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 529

http://snap.stanford.edu/data
http://snap.stanford.edu/data
developer.nvidia.com/cusparse
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
docs.nvidia.com/cuda/profiler-users-guide/index.html
docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p6000-data-sheet-us-nv\-704590-r1.pdf
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/

[49] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(SOSP), 2013.

[50] Alessandra Sala, Haitao Zheng, Ben Y. Zhao, Sabrina
Gaito, and Gian Paolo Rossi. Brief announcement:
Revisiting the power-law degree distribution for so-
cial graph analysis. In Proceedings of the 29th ACM
SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing (PODC), 2010.

[51] Tomasz Tylenda, Ralitsa Angelova, and Srikanta Be-
dathur. Towards time-aware link prediction in evolving
social networks. In Proceedings of the 3rd workshop on
social network mining and analysis, 2009.

[52] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations (ICLR), 2018.

[53] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma,
Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin,
Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng
Zhang. Deep graph library: Towards efficient and scal-
able deep learning on graphs. ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds, 2019.

[54] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D Owens. Gunrock:
A high-performance graph processing library on the gpu.
In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), 2016.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations
(ICLR), 2019.

[56] Carl Yang, Aydın Buluç, and John D Owens. Design
principles for sparse matrix multiplication on the gpu.
In European Conference on Parallel Processing, 2018.

[57] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
William L. Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pool-
ing. In The 32nd International Conference on Neural
Information Processing Systems (NeurIPS), 2018.

530 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract Summary
GNNAdvisor is an efficient and adaptive runtime system for
GNN computing on GPUs. GNNAdvisor consists of two
parts. The first part is the host-side CPU program. It is respon-
sible for dataset loading, runtime configuration generation,
and invoking the GPU-side program. The second part is the
device-side GPU program. It is responsible for the major com-
putation of the GNN model on sparse neighbor-aggregation
and dense node-update phase. GNNAdvisor improves the per-
formance of GNN computing with its highly configurable and
efficient 2D workload management and specialized memory
design. Moreover, the runtime configuration generation on the
host-side CPU program makes GNNAdvisor more adaptive
towards various kinds of input settings.

Artifact Checklist
• Link: github.com/YukeWang96/OSDI21_AE.git.

• Hardware:

– Intel CPU x86_64 with host memory >= 32GB.
Tested on Intel Xeon Silver 4110 (8-core 16-thread)
CPU with 64GB host memory.

– NVIDIA GPU (arch>=sm_60) with devcie mem-
ory >= 16GB. Tested on NVIDIA Quadro P6000
(sm_61), Tesla V100 (sm_70), and RTX3090
(sm_86). Note that upon creating this artifact, we
mainly evaluate our design on RTX3090. The
execution time may be different across differ-
ent devices but the overall trend of performance
(speedup) is similar.

• OS & Compiler: Ubuntu 16.04+, GCC 7.5+, CMAKE
3.14+, CUDA 10.2+.

Environment Setup
Step-1: Setup the basic environment. Two options:

• Setup the environment via Docker (Recommended).

• Setup via conda and pip.

Details of the above two options can be found in README.md.

Step-2: Install GNNAdvisor Pytorch Binding.

• Go to GNNAdvisor/GNNConv, then python setup.py
install to install the GNNAdvisor modules.

• Go to rabbit_module/src, then python setup.py
install to install the rabbit reordering modules.

Step-3: Download the graph datasets. Our preprocessed
graph datasets in .npy format can be downloaded via this

link 2 (filename: osdi-ae-graphs.tar.gz). Unzip the
graph datasets tar -zxvf osdi-ae-graphs.tar.gz at the
project root directory. Note that node initial embedding is
not included, and we generate an all 1s embedding matrix
according to users input dimension parameter at the runtime
for just performance evaluation.

Experiments
• Running DGL baseline on GNN training (Figure 9).

– Go to dgl_baseline/ directory.
– ./0_run_gcn.sh and ./0_run_gin.sh to run

DGL and generate .csv result for GCN and GIN.

• Running PyG baseline on GNN training (Figure 10).

– Go to pyg_baseline/ directory.
– ./0_run_gcn.sh and ./0_run_gin.sh to run

PyG and generate .csv result for GCN and GIN.

• Running Gunrock for single SpMM (neighbor aggrega-
tion) kernel.

– Go to Gunrock/ call ./build_spmm.sh.
– ./0_bench_Gunrock.py for profile spmm.

• Running GNNAdvisor (Figure 9 and 10).

– Go to GNNAdvisor/ directory.
– ./0_run_gcn.sh and ./0_run_gin.sh to run

GNNAdvisor and generate .csv for GCN/GIN.

• Running some additional studies (Figure 11(a,b,c), and
12(a)). Detailed commands of running all these studies
can be found in README.md.

Note that accuracy evaluation are omitted for all implemen-
tations and each sparse kernels are tested via the unitest.py
We focus on the training evaluation of the GNNs, and the re-
ported time per epoch only includes the GNN model forward
and backward computation, excluding the data loading and
some preprocessing. Since the paper draft submission and the
creation of this artifact, DGL has update several of its kernel
library (from v0.52 to v0.60). In this comparion we focus
on the latest DGL version (v0.60). Based on our profiling on
RTX3090 and Quadro P6000, our design would show minor
speedup on the simple GCN model (2-layer and 16 hidden
dimension), but show more evident speedup on more compli-
cated GIN model (5-layer and 64 hidden dimension), which
can still demonstrate the effectiveness of our optimizations.
Our observation is that on small Type I graphs, our frame-
works achieve significant speedup for both GCN and GIN
model on RTX3090 and Quadro P6000. On larger Type II
and Type III datasets, our GIN model implementation would
show more evident speedups.

2https://bit.ly/3ys86a5

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 531

github.com/YukeWang96/OSDI21_AE.git

Marius: Learning Massive Graph Embeddings on a Single Machine

Jason Mohoney, Roger Waleffe, Henry Xu*, Theodoros Rekatsinas, Shivaram Venkataraman
University of Wisconsin-Madison

Abstract
We propose a new framework for computing the em-

beddings of large-scale graphs on a single machine. A
graph embedding is a fixed length vector representa-
tion for each node (and/or edge-type) in a graph and
has emerged as the de-facto approach to apply mod-
ern machine learning on graphs. We identify that cur-
rent systems for learning the embeddings of large-scale
graphs are bottlenecked by data movement, which re-
sults in poor resource utilization and inefficient training.
These limitations require state-of-the-art systems to dis-
tribute training across multiple machines. We propose
Marius, a system for efficient training of graph embed-
dings that leverages partition caching and buffer-aware
data orderings to minimize disk access and interleaves
data movement with computation to maximize utiliza-
tion. We compare Marius against two state-of-the-art in-
dustrial systems on a diverse array of benchmarks. We
demonstrate that Marius achieves the same level of ac-
curacy but is up to one order of magnitude faster. We
also show that Marius can scale training to datasets an
order of magnitude beyond a single machine’s GPU and
CPU memory capacity, enabling training of configura-
tions with more than a billion edges and 550 GB of to-
tal parameters on a single machine with 16 GB of GPU
memory and 64 GB of CPU memory. Marius is open-
sourced at www.marius-project.org.

1 Introduction
Graphs are used to represent the relationships between

entities in a wide array of domains, ranging from so-
cial media and knowledge bases [38, 7] to protein in-
teractions [3]. Moreover, complex graph analysis has
been gaining attention in neural network-based machine
learning with applications in clustering [30], link predic-
tion [39, 32], and recommendation systems [37]. How-
ever, to apply modern machine learning on graphs one
needs to convert discrete graph representations (e.g., tra-
ditional edge-list or adjacency matrix) to continuous vec-
tor representations [10]. To this end, learnable graph
embedding methods [9, 5, 35] are used to assign each

*Currently at Maryland, work done while at UW-Madison.

Figure 1: The GPU utilization of DGL-KE and PBG for
one training epoch of ComplEx embeddings on the Free-
base86m knowledge graph.

node (and/or edge) in a graph to a specific continuous
vector representation such that the structural properties
of the graph (e.g., the existence of an edge between two
nodes or their proximity due to a short path) can be ap-
proximated using these vectors. In general, graph em-
bedding models aim to capture the global structure of a
graph and are complementary to graph neural networks
(GNNs) [19]. Graph embedding models are primarily
used in link prediction tasks and can also be used to ob-
tain vector representations that form the input to GNNs.

However, learning a graph embedding model is a re-
source intensive process. First, training of graph em-
bedding models can be compute intensive: many graph
embedding models assign a high-dimensional continu-
ous vector to each node in a graph [2, 36, 33]. For exam-
ple, it is common to assign a 400-dimensional continuous
vector to each node [18, 40]. Consequently, the compu-
tational capabilities of GPUs and optimization methods
such as mini-batch Stochastic Gradient Descent (SGD)
are needed to accelerate training. Second, graph embed-
ding models are memory intensive: the model from our
previous example needs 1600 bytes of storage per node
and requires 80 GB (the largest GPU memory) for a mod-
est 50 million node graph. Thus, it is necessary to store
the learnable parameters in off-GPU memory. Third, the
training of graph embedding models requires optimizing
over loss functions that consider the edges of the graph
as training examples (e.g., the loss can enforce that the
cosine similarity between the vector representations of
two connected nodes is close to one, see Section 2.1)
making training IO-bound for models that do not fit in
GPU memory. This limitation arises due to irregular data
accesses imposed by the graph structure. As a result,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 533

training of large graph embedding models is a non-trivial
challenge.

Due to the aforementioned factors, scaling graph em-
bedding training to instances that do not fit in GPU
memory introduces costly data movement overheads that
can result in poor resource utilization and slow train-
ing. In fact, current state-of-the-art systems, includ-
ing DGL-KE [40] from Amazon, and Pytorch BigGraph
(PBG) [18] from Facebook, exhibit poor GPU utilization
due to these overheads. Figure 1 shows the GPU utiliza-
tion during a training epoch when using a single GPU
for DGL-KE and PBG. As shown, DGL-KE only utilizes
10% of the GPU, and average utilization for PBG is less
than 30%, dropping to zero during data movement.

GPU under-utilization can be attributed to how these
systems handle data movement: To support out-of-GPU-
memory training, DGL-KE stores parameters in CPU
memory and uses synchronous GPU-based training over
minibatches. However, the core computation during
graph embedding training corresponds to dot-product op-
erations between vectors (see Section 2), and thus, data
transfers dominate the end-to-end run time. Moreover,
DGL-KE is fundamentally limited by CPU memory ca-
pacity. To address this last limitation, PBG uses a dif-
ferent approach for scaling to large graphs. PBG parti-
tions the embedding parameters into disjoint, node-based
partitions and stores them on disk where they can be ac-
cessed sequentially. Partitions are then loaded from stor-
age and sent to the GPU where training proceeds syn-
chronously. Doing so avoids copying data from the CPU
memory for every batch, but results in GPU underutiliza-
tion when partitions are swapped.

This problem is exacerbated if the storage device has
low throughput. Thus, to scale to large instances both
systems opt for distributed training over multiple com-
pute nodes, making training resource hungry. However,
the problems these systems face are not insurmountable
and can be mitigated. We show that one can train embed-
dings on billion-edge graphs using just a single machine.

We introduce a new pipelined training architecture that
can interleave data access, transfer, and computation to
achieve high utilization. In contrast to prior systems, our
architecture results in high GPU utilization throughout
training: for the same workload shown in Figure 1, our
approach can achieve an average ⇠ 70% GPU utilization
while achieving the same accuracy (see Section 5).

To achieve this utilization, our architecture introduces
asynchronous training of nodes with bounded staleness.
We combine this with synchronous training for edge em-
beddings to handle graphs that may contain edges of dif-
ferent types, for example knowledge graphs where an
edge may capture different relationships between nodes.
Specifically, we consider learning a separate vector rep-
resentation for each edge-type. For clarity, we refer to

edge-type embeddings as relation embeddings. This is
because updates to the embedding vectors for nodes are
sparse and therefore well suited for asynchronous train-
ing. However due to the small number of edge-types in
real-world graphs (10, 000s), updates to relation embed-
ding parameters are dense and require synchronous up-
dates for convergence. We design the pipeline to main-
tain and update node embedding parameters in CPU
memory asynchronously, allowing for staleness, while
keeping and updating relation embeddings in GPU mem-
ory synchronously. Using this architecture, we can train
graph embeddings for a billion-edge Twitter graph one
order of magnitude faster than state-of-the-art industrial
systems for the same level of accuracy: Using a single
GPU, our system requires 3.5 hours to learn a graph em-
bedding model over the Twitter graph. For the same set-
ting, DGL-KE requires 35 hours.

To scale training beyond CPU memory, unlike prior
out-of-memory graph processing systems [17], we need
to iterate over edges while computing on data associ-
ated with both endpoints. We propose partitioning the
graph and storing embedding parameters on disk. We
then design an in-memory partition buffer that can hide
and reduce IO from swapping of partitions. Partitions are
swapped from disk into the partition buffer in CPU mem-
ory and then used by the training pipeline. Our partition
buffer supports pre-fetching and async writes of parti-
tions to hide waiting for IO, resulting in a reduction of
training time by up to 2⇥. Further, we observe that the
order in which edge partitions are traversed can impact
the number of IOs. Thus, we introduce a buffer-aware
ordering that uses knowledge of the buffer size and what
resides in it to minimize the number of IOs. We show
that this ordering achieves IO close to the lower bound
and provides benefits when compared to locality-based
orderings such as Hilbert ordering [14].

In summary, the key technical contributions of our
work are: 1) to show that existing state-of-the-art graph
embedding systems are hindered by IO inefficiencies
when moving data from disk and from CPU to GPU, 2)
to introduce the Buffer-aware Edge Traversal Algorithm
(BETA), an algorithm to generate an IO minimizing data
ordering for graph learning, 3) to combine the BETA or-
dering with a partition buffer and async IO via pipelining
to introduce the first graph learning system that utilizes
the full memory hierarchy (Disk-CPU-GPU).

Our design is implemented in Marius, a graph embed-
ding engine that can train billion-edge graphs on a sin-
gle machine. Using one AWS P3.2xLarge instance, we
demonstrate that Marius improves utilization of compu-
tational resources and reduces training time by up to an
order of magnitude in comparison to existing systems.
Marius is 10⇥ faster than DGL-KE on the Twitter graph
with 1.46 billion edges, reducing training times from 35

534 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GA

MB

A

TA

Plays for

Teammate of

Brother of

Born in

?

Figure 2: A sample knowledge graph.

hours to 3.5 hours. Marius is 1.5⇥ faster than PBG on
the same dataset. On Freebase86m with 86 million nodes
and 338 million edges, Marius trains embeddings 3.7⇥
faster than PBG, reducing training times from 7.5 hours
to 2 hours. We also show that Marius can scale to con-
figurations where the parameter size exceeds GPU and
CPU memory by an order of magnitude, training a con-
figuration with 550 GB of total parameters, 35⇥ and 9⇥
larger than GPU and CPU memory respectively. Finally,
we show that despite using a single-GPU on a single-
machine, Marius achieves comparable runtime with the
multi-GPU configurations of PBG and DGL-KE, thus,
providing a cost reduction on cloud resources between
2.9⇥ and 7.5⇥ depending on the configuration.

2 Preliminaries
We first discuss necessary background on graph em-

beddings and related systems. Then, we review chal-
lenges related to optimizing data movement for training
large scale graph embedding models. These are the chal-
lenges that this work addresses.

2.1 Background and Related Work
Graphs with Multiple Edge Types We focus on graphs
with multiple edge types defined as G = (V,R,E)
where V is the set of nodes, R is a set of edge-types
or relations, and E is the set of edges. Each edge
e = (s, r, d) 2 E is defined as a triplet containing a
source node, relation, and destination node. An example
of such a graph is a knowledge graph, e.g., Freebase [8].
Here, the source node in a triplet defines a subject (an en-
tity), the relation defines a predicate, and the destination
node an object (see example in Figure 2). Knowledge
graphs are commonly used both in industry and academia
to represent real-world facts.
Graph Embedding Models A graph embedding is a
fixed length vector representation for each node (and/or
edge-type) in a graph. That is, each node and relation is
represented by a corresponding d-dimensional vector ✓,
also known as an embedding [10]. There are d(|V |+|R|)
total learnable parameters. To learn these vector rep-
resentations, embedding models rely on score functions
that capture structural properties of the graph. We de-
note the score function f(✓s, ✓r, ✓d) where ✓s, ✓r, ✓d are

the vector representations of the elements of a triplet
e = (s, r, d). For example, a score function can be the
scaled dot product f(✓s, ✓r, ✓d) = ✓Ts diag(✓r)✓d with
the requirement that the parameter vectors are such that
f(✓s, ✓r, ✓d) ⇡ 1.0 if nodes s and d are connected via
an edge of type r and f(✓s, ✓r, ✓d) ⇡ 0.0 otherwise.
There are several score functions proposed in the liter-
ature ranging from linear score functions [2, 22] to dot
products [36, 33, 27] and complex models [11, 10].

Score functions are used to form loss functions for
training. The goal is to maximize f(✓s, ✓r, ✓d) if e 2 E
and minimize it if e 62 E. Triplets that are not present
in E are known as negative edges. A standard ap-
proach [40, 18] is to use the score function f(✓s, ✓r, ✓d)
with a contrastive loss of the form:

L = �
X

s,r,d2E

(f(e✓)� log(
X

s0,r0,d0 62E

ef(e✓
0))) (1)

where e✓ = (✓s, ✓r, ✓d) and e✓ 0 = (✓0s, ✓
0
r, ✓

0
d).

The first summation term is over all true edges in
the graph and the second summation is over all nega-
tive edges. There are a total of |V |2|R| � |E| negative
edges in a knowledge graph; this makes it computation-
ally infeasible to perform the full summation and thus
it is commonly approximated by negative sampling, in
which a set of negatives edges is generated by taking a
(typically uniform) sample of nodes from the graph for
each positive edge. With negative sampling the term in
the logarithm is approximated as

P
s,r,d02Ne

ef(e✓
0). Where

Ne is the set of negative samples for e.
Graph embeddings are commonly used for link predic-

tion, where the similarity of two node vector representa-
tions is used to infer the existence of a missing edge in
a graph. For example, in the knowledge graph in Fig-
ure 2 we can use the vector representation of TA and
MB and the relation embedding for plays-for to predict
the existence of the edge TA plays-for

=====) MB, marked with
a questionmark in the figure.
The Need for Scalable Training The largest publicly
available multi-relation graphs have hundreds of millions
of nodes and tens of thousands of relations [34] (Table 1).
Companies have internal datasets which are an order of
magnitude larger than these, e.g., Facebook has over 3
billion users [4]. Learning a 400-dimensional embed-
ding for each of the users will require the ability to store
and access 5 TB of embedding parameters efficiently, far
exceeding the CPU memory capacity of the largest ma-
chines. Furthermore, using a larger embedding dimen-
sion has been shown to improve overall performance on
downstream tasks [31]. For these two reasons it is im-
portant that a system for learning graph embeddings can
scale beyond the limitations of GPU and CPU memory.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 535

3210

(3, 0) (3, 3)(3, 1) (3, 2)

(2, 3)(2, 0) (2, 1) (2, 2)

(1, 1)(1, 0) (1, 3)(1, 2)

(0, 3)(0, 2)(0, 1)(0, 0)

Node Partitions

Destination Node
Partition

So
ur

ce
 N

od
e

Pa
rti

tio
n

Edge Buckets

Figure 3: Partitions and edge-buckets with p = 4. All
edges in edge-bucket (0, 2) have a source node in node-
partition 0 and a destination node in node-partition 2.

Scaling Beyond GPU-Memory We review approaches
for scaling the training of graph embedding models out
of GPU memory. Prior works follow in two categories:
1) methods that use CPU Memory to store embedding
parameters, and 2) methods that use block storage and
partitioning of the model parameters. We discuss these
two approaches in turn.

Following the first approach, systems such as DGL-
KE [40] and GraphVite [41], store node embedding pa-
rameters in CPU memory and relation embedding pa-
rameters in GPU memory. Shown in Algorithm 1, mini-
batch training is performed synchronously and batches
are formed and transferred on-demand. While syn-
chronous training is beneficial for convergence, it is re-
source inefficient. The GPU will be idle while waiting
for the batch to be formed and transferred; furthermore,
gradient updates also need to be transferred from the
GPU to CPU memory and applied to the embedding ta-
ble, adding additional delays. The effect of this approach
on utilization can be seen in Figure 1, where DGL-KE
on average only utilizes about 10% of the GPU. This ap-
proach is also fundamentally limited by the size of the
CPU memory, preventing the training of large graph em-
bedding models.

Algorithm 1: Synchronous Embedding Training
for i in range(num_batches) do

1 Bi = getBatchEdges(i);
2 ⇥n = getCpuParameters(Bi);
3 transferBatchToDevice(Bi,⇥n);
4 ⇥r = getGpuParameters(Bi);
5 B✓ = formBatch(Bi,⇥n,⇥r);
6 Gn,Gr = computeGradients(B✓);
7 updateGpuParameters(Bi,Gr);
8 transferGradientsToHost(Gn);
9 updateCpuParameters(Bi,Gn);

The second approach is adopted by PyTorch BigGraph
(PBG) [18]. PBG uses uniform partitioning to split up
node embedding parameters into p disjoint partitions and
stores them on a block storage device (see example in

Figure 3). Edges are then grouped according the partition
of their source and destination nodes into p2 edge buck-
ets, where all edges in edge bucket (i, j) have a source
node which has an embedding in the i-th partition, and
the destination node which has an embedding in the j-th
partition. A single epoch of training requires performing
mini-batch training over all edge buckets while swapping
corresponding pairs of node embedding partitions into
memory for each edge bucket. This approach enables
scaling beyond CPU memory capacity.

The major drawback of partitioning is that partition
swaps are expensive and lead to the GPU being idle while
a swap is happening. In fact, utilization goes towards
zero during swaps as shown in Figure 1. We find that
PBG yields an average GPU utilization of 28%. To best
utilize resources, a system using partitioning to scale be-
yond the memory size of a machine, will need to mitigate
overheads that arise from swapping partitions.

2.2 Data Movement Challenges
We discuss how to optimize data movement and re-

lated challenges that Marius’ architecture addresses; we
discuss the architecture in detail in Sections 3 and 4.
Traditional Optimizations for Data Movement
Pipelining is a common approach used in a number
of system designs to overlap computation with data
movement, thereby improving utilization [13, 25, 28].
Using an image classifier as an example, a simple
pipeline will consist of multiple worker threads that
pre-process training images in parallel, forming batches
and transferring them to the GPU. Once on the GPU,
batches of training data are pushed onto a queue, with
a training process constantly polling the queue for new
batches. By keeping the queue populated with new
batches, the GPU will be well utilized.

In IO-bound applications, buffer management can also
be used to prevent unnecessary IO by caching data in
memory. Buffer management is well studied in the area
of databases and operating systems and has been ap-
plied to a myriad of applications and workloads [29, 12].
When using a buffer, the order in which data is accessed
and swapped impacts end-to-end performance. When the
data access pattern exhibits good locality, buffer man-
agers typically yield good performance. Additionally, if
the ordering is known ahead of time the buffer manager
may prefetch data items and use Belady’s optimal cache
replacement algorithm to minimize IO [1].

In graph processing, locality-aware data layouts of
graph edges have been shown to improve locality of ac-
cesses and performance of common graph algorithms
such as PageRank [24]. One such data layout, utilizes
Hilbert space filling curves to define an ordering over the
adjacency matrix of the graph. The ordering produced
is a 1D index that preserves the locality of the 2D adja-

536 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Node
Embedding
Parameters

Compute
Relation

Embedding
Parameters

CPU Memory GPU Memory

Edges

Transfer

TransferLoad

Update

Legend
Queue

 Batch

 Data flow

 Stage

Figure 4: Marius training pipeline.

cency matrix. Storing and accessing edges according to
this index improves OS cache hit rates [24, 23].
Challenges for Graph Embeddings For large graphs
and embedding sizes, graph embedding models can be
multiple orders of magnitude larger than the GPU’s
memory capacity, a key difference from deep neural net-
work models that typically fit in a single GPU. To design
a pipeline for graph embedding training, not only will
training data (formed by considering edges) have to be
piped to the GPU but also the corresponding model pa-
rameters (the node and relation embeddings of the end-
points and the type of each edge). Furthermore, model
updates need to be piped back from the GPU and applied
to the underlying storage. By pipelining model param-
eters and updates, we introduce the possibility of stale
parameters, which must mitigated (see Section 3).

Buffer management techniques paired with data or-
derings can be used to buffer partitions in CPU mem-
ory to reduce IO from disk. However, we find that prior
locality-aware data orderings such as space-filling curves
fall short and still result in IO bound training due to a
non-optimal amount of swaps (Sections 4.1 and 5.3). To
address this challenge we propose a buffer-aware data or-
dering which results in a near-optimal number of swaps,
referred to as BETA ordering, in Section 4.

3 Pipelined Training Architecture
We review Marius’ pipelined architecture for training

graph embedding models. We first discuss the overall
design, then the details of each stage, and finally dis-
cuss how staleness arises due to interleaving computation
with data movement and how we can mitigate it.
Pipeline Design Our architecture follows Algorithm 1
and divides its steps into a five-stage pipeline with
queues separating each stage (Figure 4). Four stages are
responsible for data movement operations, and one for
model computation and in-GPU parameter updates. The
four data movement stages have a configurable number
of worker threads, while the model computation stage
only uses a single worker to ensure that relation embed-
dings stored on the GPU are updated synchronously.

We now describe the different stages of the pipeline
and draw connections to the steps in Algorithm 1:

Stage 1: Load This stage is responsible for loading the
edges (i.e., entries that correspond to a pair of node-ids
and the type of edge that connects them) and the cor-
responding node embedding vectors that form a batch of
inputs used for training. The edge payload constructed in
this stage includes the true edges appearing in the graph
and a uniform sample of negative edges (i.e., fake edges)
necessary to form the loss function in Equation 1 (Lines
1-2 in Algorithm 1).
Stage 2: Transfer The input to this stage consists of the
edges (node-id and edge-type triples) and the node em-
beddings from the previous stage. Worker threads in this
stage asynchronously transfer data from CPU to GPU us-
ing cudaMemCpy (Line 3 in Algorithm 1).
Stage 3: Compute The compute stage is the only stage
that does not involve data movement. This stage takes
place on GPU where the payload of edges and node em-
beddings created in Stage 1 is combined with relation
embedding vectors (corresponding to the edge-type asso-
ciated with each entry) to form a full batch. The worker
thread then computes model updates and applies updates
to relation embeddings stored in the GPU. The updates to
node embeddings (i.e., the scaled gradients that need to
be added to the previous version of the node embedding
parameters) are placed on the output queue to be trans-
ferred from GPU memory (Lines 4-7 in Algorithm 1).
Stage 4: Transfer The node embedding updates are
transferred back to the CPU. We use similar mechanisms
as in Stage 2 (Line 8 in Algorithm 1).
Stage 5: Update. The final stage in our pipeline applies
node embedding updates to stored parameters in CPU
memory (Line 9 in Algorithm 1).

This hybrid-memory architecture allows us to exe-
cute sparse parameter updates asynchronously (i.e., the
node embedding parameter updates) and dense updates
(i.e., the relation embedding parameter updates) syn-
chronously, and optimize resource utilization as we show
experimentally in Section 5.
Bounded Staleness The main challenge with using a
pipelined design as described above, is that it introduces
staleness due to asynchronous processing [15]. To illus-
trate this, consider a batch entering the pipeline (Stage 1)
with the embedding for node A. Once this batch reaches

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 537

the GPU (Stage 3), the gradients for the embedding for A
will be computed. While the gradient is being computed,
consider another batch that also contains the embedding
for node A entering the pipeline (Stage 1). Now, while
the updates from the first batch are being transferred back
to the CPU and applied to parameter storage, the second
batch has already entered the pipeline, and thus it con-
tains a stale version of the embedding for node A.

To limit this staleness, we bound the number of
batches in the pipeline at any given time. For example,
if the bound is 4, embeddings in the pipeline will be at
worst 4 updates behind. However, due to the sparsity of
node embedding updates, it is unlikely a node embed-
ding will even become stale. To give a realistic exam-
ple, take the Freebase86m graph which has 86 million
nodes. A typical batch size and staleness bound for this
benchmark is 10,000 and 16 respectively. Each batch
of 10,000 edges will have at most 20,000 node embed-
dings and given this staleness bound there can be at most
320,000 node embeddings in the pipeline at any given
time, which is just about .4% of all node embeddings.
Even with this worst case, only a very small fraction of
node embeddings will be operated on at a given time.
The same property does not hold for relation embeddings
since there are very few of them (15K in Freebase86m),
hence our design decision to keep relation embeddings in
GPU memory and update them synchronously, bypasses
the issue of stale relation embeddings. We study the ef-
fect of staleness and Marius’ performance as we vary the
bound in Section 5.5.

4 Out-of-memory Training
As described in Section 2.1, to learn embedding mod-

els for graphs that do not fit in CPU memory, existing
systems partition the graph into non-overlapping blocks.
They correspondingly partition the parameters as well
so that they can be loaded sequentially for processing.
However as IO from disk can be slow (e.g, a partition can
be around 10s of GB in size), it is desirable to hide the
IO wait times and minimize the number of swaps from
disk to memory. In this section, we describe how we
can effectively hide IO wait time by integrating our train-
ing pipeline with a partition buffer that constitutes an in-
memory buffer of partitions. We also describe how we
can minimize the number of swaps from disk to memory
by developing a new ordering for traversing graph data.
Partition-based training Consider a graph that is par-
titioned into p2 edge buckets corresponding to p node-
partitions. Training one epoch requires iterating over
all p2 edge buckets, where each edge in a given bucket
(i, j), will have a source node in partition i and destina-
tion node in partition j.

When processing an edge bucket (i, j), node parti-

Algorithm 2: Training Using a Partition Buffer
1 Buffer = {};
2 for k in range(p2) do
3 Eij, i, j = getEdgeBucket(Ordering[k]);
4 if i not in Buffer then
5 if Buffer.size() == c then
6 Buffer.evictFurthest(Ordering, k);
7 Buffer.admit(i);
8 if j not in Buffer then
9 if Buffer.size() == c then

10 Buffer.evictFurthest(Ordering, k);
11 Buffer.admit(j);
12 ⇥i = Buffer.get(i); // Source Node Partition
13 ⇥j = Buffer.get(j); // Destination Node Partition
14 trainEdgeBucket(Eij,⇥i,⇥j);

tion i and node partition j must be present in the CPU
partition buffer in order for learning to proceed using
the pipelined training architecture (see Section 3). If ei-
ther one is not present, it must be loaded from disk and
swapped into the buffer, replacing an already present par-
tition if the buffer is full. Partition-based training is de-
scribed in Algorithm 2.

Given a partitioned graph, there are a number of edge
bucket orderings that can be used for traversal. To min-
imize the number of times partitions need to be loaded
from disk, we seek an ordering over edge buckets which
minimizes the number of required partition swaps.

We note that once an edge bucket ordering has been
selected, we can further mitigate IO overhead by 1)
prefetching to load node partitions as they are needed
in the near future and 2) using the optimal buffer evic-
tion policy which removes partitions used farthest in the
future.

We next discuss the problem of determining an opti-
mal ordering over edge buckets and describe the BETA
ordering, a new ordering scheme that achieves near-
optimal number of partition swaps.

4.1 Edge Bucket Orderings
We develop an edge bucket ordering scheme that min-

imizes the number of swaps. First, we derive a lower
bound on the number of swaps necessary to complete
one training epoch for a buffer of size c and p (p >= c)
partitions. To derive the lower bound, we view an edge
bucket ordering as a sequence of partition buffers over
time, where each item in the sequence describes what
node partitions are in the buffer at that point. Each suc-
cessive buffer differs by one swapped partition.

Given such a sequence, an edge bucket ordering can be
constructed by processing edge bucket (i, j) when parti-
tions i and j are in the buffer. For simplicity, we can do
this the first time i and j appear together. Note that 1)

538 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 3: BETA Ordering Buffer Sequence
1 PartitionBufferSequence = {};
2 CurrentBuffer = [0 . . . c� 1];
3 OnDisk = [c . . . p� 1];
4 PartitionBufferSequence.append(CurrentBuffer);
5 while OnDisk.size() > 0 do
6 for i in range(OnDisk.size()) do
7 swap(CurrentBuffer[�1], OnDisk[i]);
8 PartitionBufferSequence.append(CurrentBuffer);
9 n = 0;

10 for i in range(c� 1) do
11 if i � OnDisk.size() then
12 break;
13 n = n+ 1;
14 CurrentBuffer[i] = OnDisk[i];
15 PartitionBufferSequence.append(CurrentBuffer);
16 OnDisk = OnDisk[n : end];
17 return PartitionBufferSequence;

Algorithm 4: Buffer Seq. to Edge Bucket Order
1 EdgeBuckets = {};
2 SeenPairs = zeros(p, p);
3 for Buffer in PartitionBufferSequence do
4 NewEdgeBuckets = {};
5 for i in Buffer do
6 for j in Buffer do
7 if SeenPairs[i, j] == 0 then
8 SeenPairs[i, j] = 1;
9 NewEdgeBuckets.append((i, j));

10 shuffle(NewEdgeBuckets);
11 EdgeBuckets.append(NewEdgeBuckets);
12 return EdgeBuckets;

i and j must appear together at least once otherwise no
ordering over all edge buckets can be constructed, 2) self-
edge buckets (i.e. (i, i)) can also be added to the order-
ing the first time i appears in the buffer, and 3) there are
many edge bucket orderings with the same sequence of
partition buffers (depending on the order in which edge
buckets in a particular buffer are processed). Viewed in
this light, we seek the shortest (min. swaps) buffer se-
quence where all node partition pairs appear together in
the buffer at least once.
Lower bound We assume that initializing the first full
buffer does not count as part of the total number of
swaps as all orderings must incur this cost. Thus, there
are p(p�1)

2 (the total number of pairs) minus c(c�1)
2 (the

number of pairs we get in the first buffer) remaining
partition pairs that must appear together in the partition
buffer. On any given swap, the most new pairs we can
cover is if the partition entering the buffer has not been
paired with anything already in the buffer (everything in
the buffer has already been paired with everything else

in the buffer). Thus, for each swap the best we can hope
for is to get c � 1 pairs we have not already seen. With
this in mind a lower bound on the minimum number of
swaps required is:

&
p(p�1)

2 � c(c�1)
2

c� 1

'
(2)

We use this lower bound to evaluate the performance
of different edge bucket orderings in the next section. We
experimentally show that the new ordering strategy we
propose is nearly optimal with respect to this bound.
BETA ordering We describe the Buffer-aware Edge
Traversal Algorithm (BETA), an algorithm to compute
the edge bucket ordering that achieves close to optimal
number of partition swaps and improves upon locality-
aware orderings such as Hilbert space-filling curves [14].

Algorithm 3 describes how the BETA ordering of par-
tition buffers is generated. Consider a partition buffer
that was initialized with the first c node-partitions in the
graph (Line 2 in Algorithm 3). The remaining p�c node-
partitions start on disk (Line 3 in Algorithm 3). To gen-
erate the partition buffer sequence we then proceed as
follows: First we fix the leading c � 1 node-partitions
in the buffer and swap each of the outstanding partitions
into the final buffer spot, one at a time (Line 6-8 in Al-
gorithm 3). Each swap creates a new partition buffer in
the sequence. Once this is complete, the fixed c� 1 par-
titions have been paired in the buffer with all other node-
partitions and are therefore no longer needed. We refresh
our buffer by replacing the finished c� 1 partitions with
new node-partitions from the unfinished set on disk (Line
10-15 in Algorithm 3). The incoming partitions can then
be deleted from the on disk set (Line 16 in Algorithm 3)
since they are now in the buffer. As before, each swap
results in a partition buffer added to the sequence. We
repeat this process until there are no remaining unfin-
ished node-partitions (Line 5 and 11-12 in Algorithm 3).
As described at the beginning of Section 4.1 and in more
detail in Algorithm 4, the partition buffer sequence can
be easily converted to the final edge bucket ordering. We
show an example BETA ordering in Figure 5.

We observe that our BETA ordering has a number of
useful properties that make it advantageous to implement
in practice. Since all partitions are symmetrically pro-
cessed we do not need to track any extra state or use any
priority mechanisms. Further, for every disk IO (swap)
with a fixed set of c�1 partitions (Line 7 in Algorithm 3),
the incoming node-partition has yet to be paired with any
other partition in the buffer. This means we can process
c�1 edge buckets before performing another swap—the
most possible (excluding self edge buckets)—allowing
us to hide IO operations behind longer compute times.
The only bottleneck arises when the fixed c�1 partitions

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 539

Partition Buffers

0, 1, 2 0, 1, 3 0, 1, 4 0, 1, 5 2, 1, 5 2, 3, 5 2, 3, 4 5, 3, 4

fix: {0, 1}, cycle: {2, 3, 4, 5} replace: {0, 1} with {2, 3}, cycle: {4, 5}swap 2 with 3

Destination Node Partition

S
o
u
rc

e
 N

o
d

e
 P

a
rt

iti
o
n 0 1 2 3 4 5

0

1

2

3

4

5

Edge Bucket Ordering Node Partitions: {0, 1, 2, 3, 4, 5}
0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

50 1 2 3 4

0

1

2

3

4

5

replace: {2, 3} with {5}

Figure 5: Example BETA ordering for p = 6 and c = 3. The sequence of partition buffers corresponds to first fixing
{0, 1}, then replacing {0, 1} with {2, 3}, fixing {2, 3}, and finally replacing {2, 3} with {5}. Each successive buffer
differs by one swap. A corresponding edge bucket ordering is shown above the buffers. For each partition buffer in
the sequence, all previously unprocessed edge buckets which have their source and destination node partitions in the
buffer are added to the ordering (red edge buckets). For each buffer, these edge buckets can be added in any order.

(a) Hilbert Ordering (b) BETA Ordering

Figure 6: Hilbert and BETA edge bucket orderings.
Numbers indicate the order in which the bucket is pro-
cessed. Gray cells indicate misses to the buffer.

are replaced, but this only happens at most
j
p�c
c�1

k
+ 1

times in one epoch. Additionally, the BETA ordering
can be randomized to create different graph traversals by
shuffling which partitions start in the buffer, by permut-
ing the buffer and/or on disk set before Line 6 in Algo-
rithm 3, or by permuting the on disk set before Line 10
in Algorithm 3.

Finally, we analyze the number of swaps generated by
the BETA ordering: given p partitions and a buffer of size
c the number of swaps is

(p� c) + (x+ 1)

(p� c)� 1

2
x(c� 1)

�

where x =

�
p� c

c� 1

⌫
.

(3)

Comparison with Hilbert, lower bound We compare
the number of IO operations incurred by the BETA or-
dering with space-filling curve based orderings, and the
analytical lower bound. Space filling curve orderings like
Hilbert [14] attempt to define a graph traversal that pre-
serves 2D locality over the n⇥n matrix of edge buckets.
We also compare to a second version of the Hilbert or-
dering, termed Hilbert Symmetric, which modifies the
former by processing edge buckets (i, j) and (j, i) suc-
cessively. A key advantage of the BETA ordering when

BETA

Figure 7: Simulated total IO performed during a single
epoch of training Freebase86m with d = 100.

compared to these methods is that it is buffer-aware, i.e.,
the algorithm knows the buffer size and specifically aims
to minimize partition swaps. In contrast, space-filling
curve based orderings are unaware of this information,
aiming instead for locality.

We illustrate how the BETA ordering compares to a
Hilbert space-filling curve on a small p = 4, c = 2
case in Figure 6. We see that while the Hilbert ordering
has nine buffer misses the BETA ordering only has five
misses. We also performed simulations to compare each
method. Figure 7 shows the number of IO accesses when
varying p and using a buffer with size p

4 for the BETA,
Hilbert, and Hilbert Symmetric orderings, together with
the lower bound. The BETA ordering yields nearly opti-
mal performance across partition configurations and re-
quires significantly less IO than the other methods.

We leave an investigation of a provably-optimal or-
dering for future work. Our initial studies have shown
that there exist cases of p, c where no valid ordering can
match the lower bound as well as cases where an order-
ing which requires slightly fewer swaps than the BETA
ordering does exist. Thus, the optimal algorithm requires
IO-swaps somewhere between the lower bound and the
BETA ordering in Figure 7.

4.2 Partition Buffer
We next describe mechanisms that we use in the par-

tition buffer to further minimize IO overhead. The par-

540 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tition buffer is a fixed sized memory region that has ca-
pacity to store c embedding partitions in memory. We
co-design the buffer replacement policies with the BETA
ordering described above. Co-designing the edge traver-
sal with buffer replacement policy means that we have
knowledge about which partitions will be accessed in the
future. This allows the buffer to use the optimal replace-
ment policy: evict the partition that will be used furthest
in the future [1]. Given this policy we also design a
prefetching mechanism that can minimize the amount of
time spent waiting for partitions to swap. Again, based
on knowing the order in which partitions are used, we
use a prefetching thread that reads the next partition in
the background. Correspondingly when a partition needs
to be evicted from memory, we perform asynchronous
writes using a background writer thread.

5 Evaluation
We evaluate Marius on standard benchmarks using a

single AWS P3.2xLarge instance and compare against
SoTA graph embedding systems. We show that:
(1) Due to optimized resource utilization, Marius yields
up to 10⇥ faster training in comparison to SoTA systems
and cost reductions on cloud resources between 2.9⇥ and
7.5⇥ depending on the configuration.
(2) The BETA ordering reduces IO required by up to 2⇥
when compared to other locality-based graph orderings,
thus alleviating the IO bottleneck during training.
(3) Marius is able to scale to graph embedding mod-
els that rely on increased vector dimensions to achieve
higher accuracy. Due to the increased vector dimensions
these models exceed CPU memory size. For instance, we
show that Marius can learn an embedding model using
800-d vector representations on a graph with 86M nodes
on a single machine. In this configuration there are 550
GB of total parameters and optimizer state, which is 35⇥
GPU memory size and 9⇥ CPU memory size.

5.1 Setup
Implementation Marius is implemented in about 10,000
lines of C++. We use LibTorch [21], which is the
C++ API of PyTorch, as the underlying tensor engine.
LibTorch provides access to the wide-ranging function-
ality of PyTorch, making it easy to extend Marius to sup-
port more complex embedding models. We also imple-
ment an abstracted storage API, which allows for embed-
ding parameters to be stored and accessed across a vari-
ety of backends under one unified API. This allows us to
easily switch between storage backends, say from using
a CPU memory-based backend to a disk-based backend.
Hardware Setup Single machine experiments are run on
a single AWS P3.2xLarge instance which has: 1 Telsa

V100 GPU with 16 GB of memory, 8 vCPUs with 64
GB of memory, and an attached EBS volume with 400
MBps of read and write bandwidth. For multi-GPU ex-
periments, we use the AWS P3.16xLarge instance which
has 8 Tesla V100 GPUs with 16 GB of memory each,
64 vCPUs, and 524 GB of CPU memory. For distributed
multi-core experiments we use 4 c5a.8xLarge instances
with 32 vCPUs and 69 GB of CPU memory each. DGL-
KE ran out of memory when using a single GPU with
the Twitter and Freebase86m datasets. For these cases,
we use a larger machine with 1 Telsa V100 GPU with 32
GB of memory and 200 CPUs with 500 GB of memory.
Datasets For our evaluation, we use standard bench-
mark datasets that include social networks (Twitter [16],
Livejournal [20]) and knowledge graphs (FB15k and
Freebase86m [18, 40] derived from Freebase [8]). A
summary of the dataset properties is shown in Table 1.
FB15k uses an 80/10/10 train, validation and test split.
All others use a 90/5/5 split.
Embedding Models On FB15k, we use ComplEx [33]
and DistMult [36]. On LiveJournal and Twitter we use
Dot [19], which is a dot product between the node em-
beddings of an edge. On Freebase86m we use ComplEx
embeddings. We chose these models to match the evalu-
ation of Zheng et al. [40] and Lerer et al. [18].
Hyperparameters To ensure fair comparisons, we use
the same hyperparameters across each system instead of
tuning separately. Hyperparameter values for each con-
figuration were chosen based on those used in the eval-
uation of DGL-KE and PBG and are shown in Table 1.
All systems use the Adagrad optimizer [6] for training,
which empirically yields much higher-quality embed-
dings over SGD. One drawback of using Adagrad is that
it effectively requires storing a learning rate per param-
eter, doubling the overall memory footprint of the em-
beddings during training. For Marius, we use a staleness
bound of 16 for all cases which utilize the pipeline.
Evaluation Task and Metrics We evaluate the quality
of the embeddings using the link prediction task. Link
prediction is a commonly used evaluation task in which
embeddings are used to predict if a given edge is present
in the graph. Link prediction metrics reported are Mean
Reciprocal Rank (MRR) and Hits@k, which are derived
from the rank of the score of each candidate edge, where
the scores are produced from the embedding score func-
tion f . For a given candidate edge i, it has a rank ri
which denotes the position of the score of the candidate
edge in descending sorted array Si, where Si contains
the score of the candidate edge and the scores of a set of
negative samples. Given this, the MRR and Hits@k can
be computed from a set of candidate edges C as follows:
1

|C|
P

i2C

1

ri
and

1

|C|
P

i2C 1ri<=k respectively.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 541

Name Type |E| |V| |R| Size Hyperparameters

FB15k KG 592k 15k 1.3k 52 MB d = 400, lr = .1, b = 104, nt = 103, ↵nt = .5, FilteredMRR
LiveJournal Social 68M 4.8M - 1.9 GB d = 100, lr = .1, b = 5⇥ 104, nt = 103, ↵nt = .5, ne = 104, ↵ne = 0

Twitter Social 1.46B 41.6M - 33.2 GB d = 100, lr = .1, b = 5⇥ 104, nt = 103, ↵nt = .5, ne = 103, ↵ne = .5
Freebase86m KG 338M 86.1M 14.8K 68.8 GB d = 100, lr = .1, b = 5⇥ 104, nt = 103, ↵nt = .5, ne = 103, ↵ne = .5

Table 1: Datasets used for evaluation. The size column indicates total size of embedding parameters with the embed-
ding dimension d, including the Adagrad optimizer state. lr: learning rate, b: batch size, nt: training negatives, ↵nt :
train degree-based negatives fraction, ne: evaluation negatives, ↵ne : eval degree-based negatives fraction.

Metrics can be filtered or unfiltered. Filtered evalua-
tion involves comparing candidate edges with |N | neg-
ative samples, produced using all of the nodes in the
graph. Some of the produced negative samples will be
false negatives, which will not be used in filtered evalu-
ation. Because all nodes in the graph are used, filtered
evaluation is expensive for large graphs. Unfiltered eval-
uation samples ne nodes from the graph, with a fraction
↵nene by degree and (1� ↵ne)ne uniformly. False neg-
atives are not removed in unfiltered evaluation, but will
not be common if ne << |V |. Unfiltered evaluation is
much less expensive and is well suited for large scale
graphs. We use filtered metrics only on FB15k and unfil-
tered metrics elsewhere. The same evaluation approach
is adopted by prior systems [18].

5.2 Comparison with Existing Systems
To demonstrate that Marius utilizes resources better

than current SoTA systems leading to faster training, we
compare Marius with PBG and DGL-KE on four bench-
mark datasets. We do not compare with GraphVite since
it is significantly slower than DGL-KE as reported in
Zheng et al. [40]. FB15k and LiveJournal fit in the ma-
chine’s GPU memory and therefore do not have data
movement overheads. Twitter exceeds GPU memory
which introduces data movement overheads from stor-
ing parameters off-GPU. Freebase86m exceeds the CPU
memory of the machine, which prevents DGL-KE from
training these embeddings on a single P3.2xLarge in-
stance, therefore we only compare against PBG.
FB15k In this experiment, we compare Marius with PBG
and DGL-KE on FB15k to show that Marius achieves
similar embedding quality as the other systems on a com-
mon benchmark. We measure the FilteredMRR, Hits@k,
and runtime of the systems when training ComplEx and
DistMult embeddings with d = 400 to peak accuracy,
averaged over five separate runs. Results are shown
in Table 2. It should be noted that all parameters and
training data fit in GPU memory for this dataset. We
find that Marius achieves near identical metrics as PBG
when learning the same embeddings, this is expected as
both systems have similar implementations for sampling
edges and negative samples. DGL-KE on the other hand
only achieves a similar FilteredMRR. DGL-KE has im-
plementation differences for initialization and sampling

System Model Filtered Hits Time
MRR @1 @10 (s)

DGL-KE ComplEx .795 .766 .848 35.6s ± .69
PBG ComplEx .795 .736 .888 40.3s ± .1

Marius ComplEx .795 .736 .888 27.7s ± .12
DGL-KE DistMult .792 .766 .848 32.8s ± .88

PBG DistMult .790 .728 .888 46.2s ± .46
Marius DistMult .790 .727 .889 28.7s ± .15

Table 2: FB15k Results. All systems reach peak accu-
racy at about the same number of epochs with 30 and 35
epochs for ComplEx and DistMult respectively.

System Model MRR Hits Time
@1 @10 (min)

DGL-KE Dot .753 .675 .876 25.7m +-.17
PBG Dot .751 .672 .873 23.6m +-.17

Marius Dot .750 .672 .872 12.5m +-.01

Table 3: LiveJournal results after 25 epochs.

which likely account for the difference in metrics. While
Marius is not designed for small knowledge graphs, we
can see that it performs comparably to SoTA systems,
achieving similar embedding quality in lesser time.
LiveJournal To show that the systems are compara-
ble on social graphs, we compare the quality of 100-
dimensional embeddings learned by the three systems
using a dot product score function. While Livejournal
is two orders of magnitude larger than FB15k, all param-
eters still fit in GPU memory with a total of 2 GB. As
before, we measure MRR, hits@k, and runtime, averag-
ing over three runs; but we use unfiltered MRR instead of
FilteredMRR. We do so because FilteredMRR is compu-
tationally expensive to evaluate on larger graphs (Section
5.1). Instead of using all nodes in the graph to construct
negative samples, we sample 10,000 nodes uniformly for
evaluation, as done in Lerer et al. [18]. Results are shown
in Table 3. We see that all three systems achieve near
identical metrics for this dataset. There are slight differ-
ences in runtimes that can be attributed to implementa-
tion differences. PBG checkpoints parameters after each
epoch, while this is optional in Marius and DGL-KE.
Without checkpointing, PBG would likely achieve sim-
ilar runtimes to DGL-KE and Marius. Overall, we find
that Marius performs as well or better than SoTA systems
on this social graph benchmark.
Twitter We now move on to evaluating Marius on large-
scale graphs for which embedding parameters do not fit

542 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

System Model MRR Hits Time
@1 @10

PBG Dot .313 .239 .451 5h15m
DGL-KE Dot .220 .153 .385 35h3m
Marius Dot .310 .236 .445 3h28m

Table 4: Twitter results after training for 10 epochs.
System Model MRR Hits Time

@1 @10
PBG ComplEx .725 .692 .789 7h27m

Marius ComplEx .726 .694 .786 2h1m

Table 5: Freebase86m results with embedding size 100
after training for 10 epochs.

in GPU memory. The Twitter follower network has ap-
proximately 1.4 billion edges and 41 million nodes. We
train 100-dimensional embeddings on each system us-
ing a dot product score function. We report results for
one run for each system since we observed that train-
ing times and MRR are stable between runs. In total,
there are 16 GB of embedding parameters with another
16 GB of optimizer state, since all systems use the Ada-
grad optimizer, as discussed above. To construct nega-
tives for evaluation we use the approach from Zheng et
al. [40], where 1,000 nodes are sampled uniformly from
the graph, and 1,000 nodes are sampled by degree.

Unlike the previous two datasets, each system uses a
different methodology for training embeddings beyond
GPU memory sizes. DGL-KE uses the approach de-
scribed in Algorithm 1, storing parameters in CPU mem-
ory and processing batches synchronously while waiting
for data movement. PBG does not utilize CPU memory
and instead uses the partitioning approach with 16 par-
titions. Marius stores parameters in CPU memory, and
utilizes its pipelined training architecture to overlap data
movement with computation.

We compare the peak embedding quality learned by
each of the systems after ten epochs of training in Table
4. We find that Marius is able to train similar quality em-
beddings faster than the other systems, 10⇥ faster than
DGL-KE and 1.5⇥ faster than PBG. DGL-KE’s long
training times can be attributed to data movement wait
times inherent in synchronous processing. PBG on the
other hand, only pays a data movement cost when swap-
ping partitions. PBG achieves comparable runtimes be-
cause this dataset has a large amount of edges relative to
the total number of parameters, meaning that computa-
tion times dominate partition swapping times.

Turning our attention to the embedding quality, we
find that Marius learns embedding of comparable qual-
ity to the next-best system: Marius yields an MRR of
0.310 versus 0.313 PBG. On the other hand, DGL-KE
only achieves an MRR of 0.220. We attribute this gap
in quality to to implementation differences between the
systems (all use the same hyperparameters for training).

Figure 8: GPU utilization of Marius, DGL-KE and PBG
during a single epoch of training d = 50 embeddings on
Freebase86m. Utilization is smoothed over 25 seconds.

Freebase86m We now evaluate Marius on a large-
scale knowledge graph for which embedding parame-
ters do not fit in CPU or GPU memory. We train 100-
dimensional ComplEx embeddings for each system. In
total, there are about 32 GB of embedding parameters
with another 32 GB of Adagrad optimizer state. We do
not evaluate DGL-KE on this dataset since it is unable
to process this configuration on a single P3.2xLarge in-
stance. For evaluation, we sample 1000 nodes uniformly
and 1000 nodes based on degree as negative samples.

We compare the peak embedding quality of Marius
and PBG where both systems are trained to 10 epochs in
Table 5. Both systems use 16 partitions for training and
in Marius we vary the number of partitions we hold in the
CPU memory buffer. We find that Marius is able to train
to peak embedding quality 3.7⇥ faster when the buffer
has a capacity of 8 partitions while reaching a similar ac-
curacy. The runtime difference between the two systems
can be attributed to the fewer number of partition swaps
Marius performs and the ability to prefetch partitions.
Utilization We include a comparison of GPU utilization
during a single epoch of training d = 50 embeddings on
Freebase86m. Figure 8 shows the utilization of two con-
figurations of Marius compared to DGL-KE and PBG.
One configuration of Marius stores embeddings in CPU
memory while the other uses eight partitions on disk with
four partitions buffered in CPU memory. We see that
Marius is able to utilize the GPU 8⇥ more than DGL-
KE when training in memory and about 6⇥ more when
using the partition buffer. Compared to PBG, our par-
tition buffer design leads to nearly 2⇥ GPU utilization
with fewer drops in utilization when waiting for parti-
tion swaps. While better than the baseline systems, Mar-
ius still doesn’t achieve 100% GPU utilization for this
configuration. When profiling Marius with NVIDIA’s
nvprof, we found that all GPU operations were executed
on the default CUDA stream, which is the default be-
havior of PyTorch. We plan to improve our implemen-
tation to leverage multiple CUDA streams thereby en-
abling GPU data transfer and compute to run in parallel,
thereby improving GPU utilization. We have also found

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 543

System Deployment Epoch Time (s) Per Epoch Cost ($)
Marius 1-GPU 288 .248

DGL-KE 2-GPUs 761 1.29
DGL-KE 4-GPUs 426 1.45
DGL-KE 8-GPUs 220 1.50
DGL-KE Distributed 1237 1.69

PBG 1-GPU 1005 .85
PBG 2-GPUs 430 .73
PBG 4-GPUs 330 1.12
PBG 8-GPUs 273 1.86
PBG Distributed 1199 1.64

Table 6: Cost comparisons with d=50 on Freebase86m.

System Deployment Epoch Time (s) Per Epoch Cost ($)
Marius 1-GPU 727 .61

DGL-KE 2-GPUs 1068 1.81
DGL-KE 4-GPUs 542 1.84
DGL-KE 8-GPUs 277 1.88
DGL-KE Distributed 1622 2.22

PBG 1-GPU 3060 2.6
PBG 2-GPUs 1400 2.38
PBG 4-GPUs 515 1.75
PBG 8-GPUs 419 2.84
PBG Distributed 1474 2.02

Table 7: Cost Comparisons with d=100 on Freebase86m.

that the host CPU utilization could be a potential bottle-
neck (P3.2xLarge instance only has 8 vCPUs) and we
plan to study techniques to mitigate CPU bottlenecks.
Comparison vs. Distributed and Multi-GPU We com-
pare the training time and cost per epoch1 for Mar-
ius with the multi-GPU and distributed multi-CPU con-
figurations of PBG and DGL-KE. PBG and DGL-KE
support single machine multi-GPU training, and have
a distributed multi-machine mode which is CPU-only.
In the distributed configurations, the two systems par-
tition parameters across the CPU memory of the ma-
chines and perform asynchronous training with CPU
workers [18, 40]. Tables 6 and 7 show the configura-
tion for each system and the corresponding epoch run-
time and cost based on On-Demand AWS pricing. We
observe that despite using a single GPU, Marius achieves
comparable runtime with the multi-GPU configurations,
while being more cost effective than all cases, ranging
from 2.9⇥ to 7.5⇥ cheaper depending on the configura-
tion. We also note that Marius can be extended to the
multi-GPU setting; we discuss this in future work.

5.3 Partition Orderings
We now evaluate our buffer-aware BETA ordering and

compare it to two Hilbert curve based orderings. The
first, Hilbert, is the ordering generated directly from
a Hilbert curve over the n ⇥ n matrix of edge buck-
ets. The second, HilbertSymmetric, modifies the previ-
ous curve by processing edge buckets (i, j) and (j, i) to-
gether, which reduces the overall number of swaps that
need to be performed by about 2⇥. All experiments use
32 partitions and a buffer capacity of 8 partitions.

1All three systems converge in a similar number of epochs.

BETA

Figure 9: Total IO during a single epoch of training.

We compare the orderings on Freebase86m with d =
50 and d = 100 sized embeddings, where the latter con-
figuration exceeds CPU memory size. For d = 50 we
include an in-memory configuration which does not use
partitioning as a baseline. Results are shown in Figure
10. We find that the BETA ordering reduces training time
to nearly in-memory speeds, while only keeping 1/4 of
the partitions in memory at any given time. The run-
time of the three orderings is directly correlated with the
amount of IO required to train a single epoch (Figure
9). Since the Hilbert and HilbertSymmetric orderings re-
quire more IO, training stalls more often waiting for IO
to complete. Results for d = 100, also in Figure 10, show
that BETA has the lowest training time, which is directly
correlated with the amount of IO performed. Overall,
the BETA ordering is well suited for training large-scale
graph embeddings through reducing IO.

We also compare the orderings on Twitter with d =
100 and d = 200 sized embeddings. Results are shown
in Figure 11. We find that the choice of ordering does
not impact runtime for this configuration. Even though
BETA results in the smallest amount of total IO, the
prefetching of partitions to the buffer always outpaces
the speed of computation for the other orderings. We see
this in Twitter and not Freebase86m, because Twitter has
nearly 10⇥ the density of Freebase86m, i.e., more com-
putation needs to be performed per partition. When we
increase the embedding dimension to d = 200 (Figure
11) we see a difference in running time. By increasing
the embedding dimension by 2⇥ we increase the total
amount of IO by 2⇥, and now the prefetching of parti-
tions is outpaced by the computation.

Overall, we see that certain configurations are data
bound and others are compute bound. For data bound
configurations like d = 50 and d = 100 on Freebase86m
and d = 200 on Twitter, the choice of ordering will im-
pact overall training time, with BETA performing best.
But for compute bound workloads such as d = 100 on
Twitter, the choice of ordering makes little difference
since the prefetching always outpaces computation.

5.4 Large Embeddings
We evaluate the ability of Marius to scale training be-

yond CPU memory sizes in this section. We vary the em-
bedding dimension from a small dimension of d = 20,
for which training fits in GPU memory, to a large em-

544 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

BETA

Figure 10: 10 epochs runtime per edge
bucket ordering on Freebase86m.

BETA

Figure 11: 10 epochs runtime per
edge bucket ordering on Twitter.

Sync Relations
Async Relations
All Sync

Ed
ge
s/s
ec

M
R
R

0.25

0.50

Staleness Bound

0.75

Figure 12: Impact of staleness bound.

d Size Partitions MRR Runtime (Epoch)
20 13.6 GB - .698 4m
50 34.4 GB - .722 4.8m
100 68.8 GB 32 .726 12.1m
400 275.2 GB 32 .731 92.4m
800 550.4 GB 64 .731 396m

Table 8: Freebase86m. d = 400 and d = 800 trained to
5 epochs, other cases are trained to 10.

bedding dimension d = 800, which is well beyond the
memory capacity of a single P3.2xLarge instance. The
results are shown in Table 8. We find that the embed-
ding quality increases with increased embedding dimen-
sion. We also see that as the embedding size increases,
the training time increases quadratically. We see this be-
cause the number of swaps and total IO scales quadrat-
ically with the number of partitions, if the buffer capac-
ity is held fixed. And because training is bottlenecked
by IO for large embedding sizes, we see quadratic run-
time increases. It should be noted that with a faster disk
we would observe improved runtimes, with a 2⇥ faster
disk leading to 2⇥ faster training for large embeddings.
With NVMe-based SSDs becoming more common, the
design of Marius will best be able to leverage future fast
sequential storage mediums and scale training to embed-
ding sizes beyond what we show here.

5.5 Microbenchmarks
Bounded Staleness We now show how our pipelined
training architecture with bounded staleness affects the
embedding quality and throughput of training. We train
Marius on Freebase86m with d = 50, and vary the num-
ber of batches allowed into the pipeline at any given
time. We evaluate how the performance and MRR vary
as we vary the staleness bound. We compare three cases,
synchronous updates to all parameters, synchronous up-
dates to only the relation embeddings, and asynchronous
updates to all parameters.2 Results are shown in Fig-
ure 12. We see that increasing the staleness bound when
asynchronously updating the relation embeddings results
in severe degradation of embedding quality. For syn-
chronous updates of the relation embeddings and asyn-

2For asynchronous updates to the relation embeddings, we pipe
them to the GPU from CPU memory as with the node embeddings.

Figure 13: Effect of prefetching with Freebase86m.

chronous updates to the node embeddings, we see that
MRR does not degrade significantly with increasing stal-
eness bound. This suggests that relation embeddings are
sensitive to staleness, which might be due to dense up-
dates. These results additionally show that node embed-
dings are not sensitive to asynchronous updates, which
may be due to sparse updates. We also find that increas-
ing the bound improves the throughput of the system by
about a factor of 5 over synchronous training but that the
benefits diminish beyond a staleness bound of 8.
Prefetching Effects We evaluate the effect of prefetch-
ing partitions to the buffer on GPU utilization. We train
Marius on Freebase86m with d = 100, 32 partitions, and
a buffer capacity of eight. We show the average utiliza-
tion of the GPU during each iteration of a single epoch
of training in Figure 13. We can see that prefetching re-
sults in a higher sustained utilization of the GPU since
less time is spent waiting for partition swaps. Interest-
ingly, both configurations see a utilization bump start-
ing at about iteration 12,000. This is because the BETA
ordering does not require any swaps during this period.
Overall, prefetching is able to mitigate wait times for par-
tition swaps improving utilization and training times.

6 Discussion
We next discuss some lessons learned from Marius de-

ployments in the cloud and discuss how the BETA order-
ing aims to optimize a workload that is fundamentally
different than those considered by prior large-scale graph
processing paradigms.

6.1 Deployment Considerations
Given the diverse set of cloud computing instances of-

fered by vendors, there are a wide variety of possible
hardware deployments with associated costs and bene-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 545

fits. It is challenging to determine what the best deploy-
ment option is, especially with performance also being
impacted by the choice of model and dataset. Here we
list some considerations when deploying Marius.
Properties of the Input Graph Training time and stor-
age overhead are largely driven by the size of the input
graph. More edges lead to more computation, and more
nodes and edge-types results in a larger storage footprint.
The density of the graph impacts the bottleneck of the
system when using the partition buffer. A graph with
high density will be compute bound, as more computa-
tion will have to be performed on each node partition, as
we see in Figure 11. For sparse graphs the training will
be data bound, as we see in Figure 10. For data bound
settings, utilizing a storage device with high throughput
can improve training times, while for compute bound
workloads, more GPUs and parallelism can help.
Model Complexity Some models such as DistMult,
ComplEx, and Dot are computationally simple, only re-
quiring dot products and element-wise multiplication,
while others such as CapsE [26] utilize convolutions and
a capsule neural network. Training simple models re-
quires less compute to perform the forward and back-
wards pass and therefore is more likely to be data bound.
The opposite is true for complex models.
Configuration and Tuning A major challenge with
training graph embedding models is the number of hy-
perparameters which impact embedding quality, training
throughput, and convergence rates. In terms of batch
size, we observe that large batches (⇡10000) can im-
prove training throughput with no impact on model ac-
curacy for large graphs, but throughput benefits dimin-
ish after a certain batch size. Throughput can also be
increased by using a larger number of partitions (Fig-
ure 7), but this affects embedding quality. IO can also be
reduced by increasing the capacity of the buffer, which
quadratically reduces the number of swaps; thus it is best
to size the buffer to the maximum number of partitions
that will fit in CPU memory. Finally, as seen in Fig-
ure 12, increasing the staleness bound improves training
throughput but can negatively impact embedding quality.
Overall, the effect of these parameters are graph depen-
dent, and efficiently tuning hyperparameters for a given
graph is an interesting direction for future work.

6.2 Out-of-core Graph Processing
The graph embedding workload requires iterating over

edges and computing on data associated with both end-
points (i.e., the embeddings of source, destination). The
BETA ordering is designed to minimize IO when access-
ing node embedding vectors associated with edges that
are being processed. Classic graph processing systems
and methods such as GraphChi’s Parallel Sliding Win-

dow (PSW) [17] are tailored for workloads that iterate
over vertices and process data associated with the in-
coming edges of each node. Applying such schemes
(e.g., PSW) to graph embeddings would require perform-
ing redundant IO (scaling quadratically with partitions)
to access embeddings for both incoming/outgoing ver-
tices. Furthermore, for classic graph processing algo-
rithms such as PageRank, the storage overhead of node
data is only a single float or a low dimensional vector.
Based on this, traditional graph processing systems make
the assumption that storing and accessing node data is in-
expensive and fits in memory. In contrast, graph embed-
dings are high dimensional vectors making storing and
accessing node data costly, and hence the workload re-
quires new graph traversal algorithms to minimize IO.

7 Conclusion
We introduced Marius, a new framework for comput-

ing large-scale graph embedding models on a single ma-
chine. We demonstrated that the key to scalable train-
ing of graph embeddings is optimized data movement.
To optimize data movement and maximize GPU utiliza-
tion, we proposed a pipelined architecture that leverages
partition caching and the BETA ordering, a novel buffer-
aware data ordering scheme. We showed using standard
benchmarks that Marius achieves the same accuracy but
is up to an order-of magnitude faster than existing sys-
tems. We also showed that Marius can scale to graph
instances with more than a billion edges and up to 550
GB of model parameters on a single AWS P3.2xLarge
instance. In the future, we plan to explore how the ideas
behind Marius’ design and our new data ordering can be
applied to distributed setting and help speed up training
of graph neural networks.

Acknowledgements This work was supported by NSF
under grant 1815538 and DARPA under grant ASKE
HR00111990013. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views, policies, or en-
dorsements, either expressed or implied, of DARPA or
the U.S. Government. This work is also supported by
the National Science Foundation grant CNS-1838733, a
Facebook faculty research award and by the Office of the
Vice Chancellor for Research and Graduate Education at
UW-Madison with funding from the Wisconsin Alumni
Research Foundation.

546 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Laszlo A. Belady. A study of replacement algo-

rithms for a virtual-storage computer. IBM Systems
journal, 5(2):78–101, 1966.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-
relational data. Advances in neural information
processing systems, 26:2787–2795, 2013.

[3] Sylvain Brohee and Jacques Van Helden. Evalua-
tion of clustering algorithms for protein-protein in-
teraction networks. BMC bioinformatics, 7(1):488,
2006.

[4] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Fer-
ris, Anthony Giardullo, Sachin Kulkarni, Harry Li,
et al. Tao: Facebook’s distributed data store for the
social graph. In USENIX ATC 2013, pages 49–60,
2013.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-
Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applica-
tions. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616–1637, 2018.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. Journal of machine learn-
ing research, 12(7), 2011.

[7] Kimm Fairchild, Steven E Poltrock, and George W
Furnas. Graphic representations of large knowledge
bases. Cognitive science and its applications for
human-computer interaction, page 201, 1988.

[8] Google. Freebase data dumps.
https://developers.google.com/freebase, 2018.

[9] Palash Goyal and Emilio Ferrara. Graph embed-
ding techniques, applications, and performance:
A survey. Knowledge-Based Systems, 151:78–94,
2018.

[10] Aditya Grover and Jure Leskovec. node2vec:
Scalable feature learning for networks. CoRR,
abs/1607.00653, 2016.

[11] William L. Hamilton, Rex Ying, and Jure
Leskovec. Representation learning on graphs:
Methods and applications. CoRR, abs/1709.05584,
2017.

[12] Joseph M Hellerstein, Michael Stonebraker, and
James Hamilton. Architecture of a database sys-
tem. Now Publishers Inc, 2007.

[13] John L Hennessy and David A Patterson. Com-
puter architecture: a quantitative approach. Else-
vier, 2011.

[14] David Hilbert. Über die stetige abbildung einer
line auf ein flächenstück. Mathematische Annalen,
38(3):459–460, 1891.

[15] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu
Kim, Seunghak Lee, Phillip B. Gibbons, Garth A.
Gibson, Gregory R. Ganger, and Eric P. Xing. More
effective distributed ml via a stale synchronous
parallel parameter server. In Proceedings of the
26th International Conference on Neural Informa-
tion Processing Systems - Volume 1, NIPS’13, page
1223–1231, Red Hook, NY, USA, 2013. Curran
Associates Inc.

[16] Haewoon Kwak, Changhyun Lee, Hosung Park,
and Sue Moon. What is twitter, a social network
or a news media? In Proceedings of the 19th Inter-
national Conference on World Wide Web, WWW
’10, page 591–600, 2010.

[17] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a
pc. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation,
OSDI’12, page 31–46, USA, 2012. USENIX Asso-
ciation.

[18] Adam Lerer, Ledell Wu, Jiajun Shen, Timo-
thee Lacroix, Luca Wehrstedt, Abhijit Bose, and
Alex Peysakhovich. Pytorch-biggraph: A large-
scale graph embedding system. arXiv preprint
arXiv:1903.12287, 2019.

[19] Jure Leskovec. WWW-18 Tutorial:
Representation Learning on Networks.
http://snap.stanford.edu/proj/embeddings-www/.

[20] Jure Leskovec and Andrej Krevl. Snap datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

[21] LibTorch: PyTorch C++ API.
https://pytorch.org/cppdocs.

[22] Hailun Lin, Yong Liu, Weiping Wang, Yinliang
Yue, and Zheng Lin. Learning entity and relation
embeddings for knowledge resolution. Procedia
Computer Science, 108:345–354, 2017.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 547

[23] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim.
Mosaic: Processing a trillion-edge graph on a sin-
gle machine. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, EuroSys
’17, pages 527–543, New York, NY, USA, 2017.
ACM.

[24] Frank McSherry, Michael Isard, and Derek G Mur-
ray. Scalability! but at what {COST}? In 15th
Workshop on Hot Topics in Operating Systems (Ho-
tOS {XV}), 2015.

[25] Deepak Narayanan, Aaron Harlap, Amar Phan-
ishayee, Vivek Seshadri, Nikhil R Devanur, Gre-
gory R Ganger, Phillip B Gibbons, and Matei Za-
haria. Pipedream: generalized pipeline parallelism
for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
1–15, 2019.

[26] Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen,
Dat Quoc Nguyen, and Dinh Phung. A capsule
network-based embedding model for knowledge
graph completion and search personalization, 2019.

[27] Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. A three-way model for collective learn-
ing on multi-relational data. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML’11, page
809–816, 2011.

[28] Shoumik Palkar and Matei Zaharia. Optimiz-
ing data-intensive computations in existing libraries
with split annotations. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles,
pages 291–305, 2019.

[29] Raghu Ramakrishnan, Johannes Gehrke, and Jo-
hannes Gehrke. Database management systems,
volume 3. McGraw-Hill New York, 2003.

[30] Satu Elisa Schaeffer. Graph clustering. Computer
science review, 1(1):27–64, 2007.

[31] C. Seshadhri, Aneesh Sharma, Andrew Stolman,
and Ashish Goel. The impossibility of low-rank
representations for triangle-rich complex networks.
Proceedings of the National Academy of Sciences,
117(11):5631–5637, 2020.

[32] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and
Daphne Koller. Link prediction in relational data.
Advances in neural information processing sys-
tems, 16:659–666, 2003.

[33] Théo Trouillon, Johannes Welbl, Sebastian Riedel,
Eric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In Proceed-
ings of The 33rd International Conference on Ma-
chine Learning, volume 48, pages 2071–2080, 20–
22 Jun 2016.

[34] Denny Vrandečić and Markus Krötzsch. Wikidata:
a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78–85, 2014.

[35] Quan Wang, Zhendong Mao, Bin Wang, and
Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on
Knowledge and Data Engineering, 29(12):2724–
2743, 2017.

[36] Bishan Yang, Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575, 2014.

[37] Rex Ying, Ruining He, Kaifeng Chen, Pong
Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining,
pages 974–983, 2018.

[38] Reza Zafarani, Mohammad Ali Abbasi, and Huan
Liu. Social media mining: an introduction. Cam-
bridge University Press, 2014.

[39] Muhan Zhang and Yixin Chen. Link prediction
based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165–
5175, 2018.

[40] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan,
Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang,
and George Karypis. DGL-KE: Training knowl-
edge graph embeddings at scale. arXiv preprint
arXiv:2004.08532, 2020.

[41] Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian
Tang. Graphvite: A high-performance cpu-gpu hy-
brid system for node embedding. In The World
Wide Web Conference, pages 2494–2504. ACM,
2019.

548 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Artifact Appendix

Abstract
The artifact includes the Marius source code, configu-

ration and scripts for all experiments, including the base-
lines. Details on how to use the artifact can be found in
the README file in our Github repository.

Scope
The artifact can be used to validate and reproduce

the results for all experiments. The source code and
experiment configuration can be viewed to obtain any
implementation details that were not mentioned in the
paper for brevity. We do not include the source code to
PyTorch Big-Graph and DGL-KE, the versions used in
this work can be found at: https://github.com/
facebookresearch/PyTorch-BigGraph/tree/
4571deee78d0fff974a81312c0c3231d7dc96a69
and https://github.com/awslabs/dgl-ke/
releases/tag/0.1.1

Contents
Marius: The source code for Marius is mostly written in
C++ with bindings to support a Python API. Located in
/src. The version of Marius in the artifact (osdi2021
branch) corresponds to the version used to produce re-
sults in this paper. We are also actively making improve-
ments to Marius and the latest version of the system can
be found in the main branch of the repository. The main
branch of the repository also contains documentation on
how to use Marius directly.
Experiment runner: A collection of Python scripts
that can be used to run the experiments used in the pa-
per. Located in /osdi2021. Experiments can be run
with python3 osdi2021/run_experiment.py
--experiment <EXPERIMENT>. A full list of ex-
periments can be found by passing the --help flag.
Once an experiment has run to completion, results are
output to the terminal and detailed results, metrics and
figures can be found in the experiment directory.
Experiment configuration: Configuration files for all
experiments and baselines are stored in their correspond-
ing experiment directory. The experiment directories
are named based on their corresponding experiment in
this paper. For example, the experiment configura-
tion files and results after running the experiments for
Section 5.2 can be found in /osdi2021/system_
comparisons/<DATASET>/<SYSTEM/

Datasets and preprocessing code: Code to down-
load and preprocess the datasets used in this pa-
per are included in the artifact. For Marius they
can be found in /src/python/tools. For DGL-
KE and PBG, they can be found in /osdi2021/

dglke_preprocessing and /osdi2021/pbg_
preprocessing. We used four datasets in our eval-
uation (Table 1). FB15k and Freebase86m are a sub-
set of the Freebase knowledge graph [8], where each
edge is encoded as a triple. Each triple encodes
general factual information. An example triple is of
the form: (Giannis Antetokounmpo, Plays,
Basketball). LiveJournal [20] is a social network
dataset where nodes represent users and edges denote
friendships between them. Similarly, the Twitter [16]
dataset contains a follower network between users.
Buffer simulator: The buffer simulator was used to de-
velop and test edge bucket orderings. It computes the
number of swaps for any edge bucket ordering for any
number of partitions and any buffer size.

Hosting
Artifact:
https://github.com/marius-team/
marius/tree/osdi2021

Latest version:
https://github.com/marius-team/marius

Requirements
Detailed software requirements and dependencies are

listed in the artifact README. The artifact must be run
on a machine with an NVIDIA GPU. The target deploy-
ment for this artifact is the P3.2xLarge instance from
AWS. There are a few experiments which cannot run on
this instance due to memory limitations. We detail these
in the README.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 549

P3: Distributed Deep Graph Learning at Scale

Swapnil Gandhi?

Microsoft Research
Anand Padmanabha Iyer

Microsoft Research

Abstract
Graph Neural Networks (GNNs) have gained significant atten-
tion in the recent past, and become one of the fastest growing
subareas in deep learning. While several new GNN architec-
tures have been proposed, the scale of real-world graphs—in
many cases billions of nodes and edges—poses challenges
during model training. In this paper, we present P3, a sys-
tem that focuses on scaling GNN model training to large
real-world graphs in a distributed setting. We observe that
scalability challenges in training GNNs are fundamentally
different from that in training classical deep neural networks
and distributed graph processing; and that commonly used
techniques, such as intelligent partitioning of the graph do not
yield desired results. Based on this observation, P3 proposes
a new approach for distributed GNN training. Our approach
effectively eliminates high communication and partitioning
overheads, and couples it with a new pipelined push-pull par-
allelism based execution strategy for fast model training. P3

exposes a simple API that captures many different classes
of GNN architectures for generality. When further combined
with a simple caching strategy, our evaluation shows that P3 is
able to outperform existing state-of-the-art distributed GNN
frameworks by up to 7×.

1 Introduction
Deep learning, in the form of Deep Neural Networks (DNNs),
has become the de-facto tool for several challenging applica-
tions in diverse fields such as computer vision [27], speech
recognition [28] and natural language processing [18], where
they have produced results on par with human experts [9].
In the recent past, there has been a significant interest in
Graph Neural Networks (GNNs)—neural networks that op-
erate on graph structured data—which has made them one
of the fastest growing subareas in deep learning [25]. Due to
the expressiveness of graphs in capturing the rich relational
information between input elements, GNNs have enabled
breakthroughs in many important domains including recom-
mendation systems [51,66], knowledge graphs [53], and drug
discovery [46, 58].

In a GNN, the nodes in the input graph are associated
with features and labels. Typical tasks in GNNs include node
classification (predicting the class label of a node) [41], link
prediction (predicting the possibility of a link between given
nodes) [70] and graph classification (predicting the class label

?Work done during an internship at Microsoft Research.

of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure to learn representations—low-
dimensional vector embeddings—of nodes. Thus, learning
such deep encodings is the key goal of GNNs. Several novel
GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17, 41] and Graph
Attention Networks (GATs) [59]. While each have their own
unique advantages, they fundamentally differ in how the graph
structure is used to learn the embeddings and what neural net-
work transformations are used to aggregate neighborhood
information [64].

At a high level, GNNs learn embeddings by combining
iterative graph propagation and DNN operations (e.g., ma-
trix multiplication and convolution). The graph structure is
used to determine what to propagate and neural networks
direct how aggregations are done. Each node creates a k-hop
computation graph based on its neighborhood, and uses their
features to learn its embedding. One of the key differentiators
between training GNNs and DNNs is the presence of depen-
dencies among data samples: while traditional DNNs train
on samples that are independent of each other (e.g., images),
the connected structure of graph imposes dependencies. Fur-
ther, it is common to have a large number of dense features
associated with every node—ranging from 100s to several
1000s [29, 66, 68]—in the graph. Due to this, the k-hop com-
putation graphs created by each node can be prohibitively
large. Techniques such as neighborhood sampling [24] help
to some extend, but depending on the graph structure, even
a sampled computation graph and associated features may
not fit in the memory of a single GPU, making scalability a
fundamental issue in training GNNs [71]. With the prevalence
of large graphs, with billions of nodes and edges, in academia
and the industry [55], enabling GNN training in a distributed
fashion1 is an important and challenging problem.

In this paper, we propose P3,2 a system that enables ef-
ficient distributed training of GNNs on large input graphs.
P3 is motivated by three key observations. First, due to the
data dependency, we find that in distributed training of GNNs,
a major fraction of time is spent in network communication
to generate the embedding computation graph with features.
Second, we notice that relying on distributed graph processing
techniques such as advanced partitioning schemes, while use-
ful in the context of graph processing, do not benefit GNNs

1Using more than one machine, each with 1 or more GPUs.
2for Pipelined Push-Pull.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 551

and in many cases could be detrimental. Finally, due to the
network communication issue, we observed that GPUs in dis-
tributed GNN training are underutilized, and spend as much
as 80% of the time blocked on communication (§2). Thus, P3

focuses on techniques that can reduce or even eliminate these
inefficiencies, thereby boosting performance.

P3 is not the first to address GNN scalability challenges.
While there are many available frameworks for GNN training,
a majority of them have focused on single machine multi-
GPU training and limited graph sizes [20, 45, 47]. Popular
open-source frameworks, such as the Deep Graph Library
(DGL) [1] have incorporated distributed training support. But
as we show in this paper, it faces many challenges and ex-
hibits poor performance due to high network communication.
ROC [36] is a recent system that shares the same goal as P3

but proposes a fundamentally different approach. ROC exten-
sively optimizes GNN training using a sophisticated online
partitioner, memory management techniques that leverage
CPU and GPU, and relies on hardware support such as high
speed interconnects (NVLink and InfiniBand). In contrast, P3

only assumes PCIe links and Ethernet connection, and doesn’t
rely on any intelligent partitioning scheme. During training,
ROC requires movement of features across machines, while in
P3, features are never transmitted across the network. Finally,
our evaluation datasets are significantly larger than ROCs,
which helped us uncover several challenges that may have
been missed with smaller graphs.

To achieve its goal, P3 leverages a key characteristic of
GNNs: unlike traditional DNNs where the data samples
(e.g., images) are small and model parameters are large (e.g., 8
billion for Megatron [56], 17 billion for TuringNLG [7]),
GNNs have small model parameters but large data samples
due to the dense feature vectors associated with each node’s
sampled computation graph. As a result, movement of these
feature vectors account for the majority of network traffic
in existing GNN frameworks. In P3, we avoid movement of
features entirely, and propose distributing the graph structure
and the features across the machines independently. For this,
it only relies on a random hash partitioner that is fast, compu-
tationally simple and incurs minimal overhead. Additionally,
the hash based partitioning allows work balance and efficiency
when combined with other techniques P3 incorporates (§3.1).

During embedding computation, P3 takes a radically dif-
ferent approach. Instead of creating the computation graph
by pulling the neighborhood of a node and the associated
features, P3 only pulls the graph structure, which is signifi-
cantly smaller. It then proposes push-pull parallelism, a novel
approach to executing the computation graph that combines
intra-layer model parallelism with data parallelism. P3 never
moves features across the network, instead it pushes the com-
putation graph structure in the most compute intensive layer
(layer 1) to all the machines, and thereafter executes opera-
tions of layer 1 using intra-layer model parallelism. It then
pulls much smaller partial activations, accumulates them, and

NN

NN

Layer 1 Layer 2

⨁

⨁

Figure 1: A two-layer GNN that uses DNN at each layer along
with iterative graph propagation for learning.

proceeds to execute operations of the remaining k−1 layers
using data parallelism (§3.2).

Due to the partitioning strategy and the push-pull paral-
lelism based execution, P3 is able to use a simple pipelining
technique that overlaps most of the computation and commu-
nication efficiently, thus effectively hiding (the already small)
communication latencies (§3.3). Further, the partitioning strat-
egy also enables P3 to propose a simple caching mechanism
that greedily caches graph and/or feature partitions on mul-
tiple machines if memory permits for further reduction in
network communication (§3.4). P3’s proposed techniques are
general and are applicable to several state-of-the-art GNN ar-
chitectures. P3 also wraps all these optimizations in a simple
P-TAGS API (partition, transform, apply, gather, scatter
and sync) that developers can use to write new GNN architec-
tures that can benefit from its techniques (§3.5).

The combination of these techniques enable P3 to outper-
form DGL [1], a state-of-the-art distributed GNN framework,
by up to 7×. Further, P3 is able to support much larger graphs
and scale gracefully (§5).

We make the following contributions in this paper:
• We observe the shortcomings with applying distributed

graph processing techniques for scaling GNN model train-
ing (§2). Based on this, P3 takes a radically new approach
of relying only on random hash partitioning of the graph
and features independently, thus effectively eliminating the
overheads with partitioning. (§3.1)

• P3 proposes a novel hybrid parallelism based execution
strategy that combines intra-layer model parallelism with
data parallelism that significantly reduces network com-
munication and allows many opportunities for pipelining
compute and communication. (§3.2)

• We show that P3 can scale to large graphs gracefully and
that it achieves significant performance benefits (up to 7×
compared to DGL [1] and up to 2× compared to ROC [36])
that increase with increase in input size. (§5)

2 Background & Challenges

We begin with a brief background on GNNs, and then motivate
the challenges with distributed training of GNNs.

552 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

KVStore

Partitioned
Graph Structure Features

Minibatch
Data

Meta-Data

Trainer

K-Hop
SamplerGNN Computational

Graph + Features

H
os

t M
em

or
y

D
ev

ic
e

M
em

or
y

GNN Model

1

3

4 Copy Data to
Device Memory

5 Model
Computation

Minibatch Data

M2

M3

M4

2Batch
Size

Machine M1

Construct
Graph

Network
Comm.

Figure 2: Existing GNN frameworks combine distributed graph
processing and DNN techniques.

2.1 Graph Neural Networks

A GNN is a neural network that operates on graph structured
data as input. The input graphs contain nodes (entities), and
edges (relation between nodes) and features for all nodes. The
basic operation in GNNs is to obtain the representations of
nodes in the graph. They map nodes to a d-dimensional em-
bedding space such that similar nodes (e.g., by proximity) in
the graph are embedded close to each other. To obtain these
embeddings, GNNs combine feature information associated
with the nodes and the graph structure using information prop-
agated and transformed from its neighborhood. In computing
the embedding, the graph structure indicates what is prop-
agated, and a neural network is used to determine how the
propagated information is transformed. The exact neighbor-
hood from which the embedding is derived is configurable,
and typically GNNs use k (usually 2 or more) hops from a
node [26]. The neural network which transforms informa-
tion at each hop is called a layer in the GNN, hence a 2-hop
(k-hop) neighborhood translates to a 2 (k) layer GNN (fig. 1).

Theoretically, the embedding zv of node v after k layers of
neighborhood aggregation can be obtained as hk

v [24], where:

hk
N(v) = AGGREGATE(k)(

{
hk−1

u | u ∈ N(v)
}
) (1)

hk
v = σ

(
Wk ·COMBINE(k)(hk−1

v ,hk
N(v))

)
(2)

Here, hi
v is the representation of node v after i layers of

aggregation and Wi is the trainable weight matrix that is
shared by all nodes for layer i (i ≥ 1). h0

v is initialized us-
ing the node features. The choice of AGGREGATE(k)(.) and
COMBINE(k)(.) is crucial for how the layers are defined and
the embeddings are computed.

1

2 5

65 34
Layer 1

Layer 2

1 2 3

4 5 6

6

F

Figure 3: Sampling a two-layer GNN computation graph by
restricting the neighborhood size to 2 (minibatch size: 1).

2.2 Distributed Training of GNNs

Existing frameworks for training GNNs, such as the Deep
Graph Library (DGL) [1], support distributed training by com-
bining distributed graph processing techniques with DNN
techniques, as shown in fig. 2. The input graph along with the
features is partitioned across machines in the cluster. Given a
batch size (1), the computation graph for each node, com-
monly referred to as a training sample, in the batch is gener-
ated by pulling the k-hop neighborhood of each node along
with the associated features (2). This requires communica-
tion with other machines in the cluster. Once the computation
graphs are constructed, standard DNN techniques such as data
parallelism is used to execute the computation—minibatches
are created and copied to the GPU memory (4), and then
the model computation is triggered (5).

2.3 Challenges in Distributed GNN Training

There are several challenges that need to be addressed to make
distributed GNN training efficient.

2.3.1 Challenge #1: Communication Bottlenecks Due to
Data Dependencies

Unlike traditional DNNs where the training data are inde-
pendent of each other (e.g., images), GNNs impose a de-
pendency between the training inputs in the form of graph
structure. Thus, even though provided batch size could be
small (e.g., 1000), the computation graph samples could be
exponentially larger due to the k-hop neighborhood and the as-
sociated features. A major reason for such large size is not the
graph structure in itself, but the features, whose sizes typically
range in 100s to several 1000s [29, 41, 66, 68]. In real world
graphs consisting of billions of nodes and edges [15, 55], the
2-hop neighborhoods could be up to an order of magnitude
larger than the 1-hop neighborhood [43]. When combined
with the features, the resulting computation graph may easily
exceed the memory of a single GPU or even main memory of
a server. A common technique used to address such neighbor-
hood explosion is sampling [24]. That is, instead of getting
all the neighbors of the node in each hop, we select only a
fixed number. An example is shown in fig. 3, where node 1’s
2-hop computation graph is generated by sampling two neigh-
bors at each hop. However, even with sampling, the size of
the computation graph could grow substantially, based on the
sampling used and the number of layers in the GNN. Since
these neighborhood nodes and their features must be obtained
through the network, distributed training of GNNs spend a
major fraction of time in network communication.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 553

Scheme Time(s) Memory(GB) Epoch(s)

Hash [48] 2.87 58 9.833
METIS [38] 4264 63 5.295
RandomVertexCut [22] 36.95 185 5.494
GRID [23] 51.82 128 6.866
3D [69] 134 118 6.027

Table 1: Partitioning techniques are not effective in GNNs. All
schemes, except hash, reduce the epoch time, but at the cost of
significant partitioning time or memory overheads.

2.3.2 Challenge #2: Ineffectiveness of Partitioning

Partitioning is a common approach used to achieve scalability
in distributed graph processing, and existing GNN frame-
works leverage popular partitioning strategies to distribute the
graph and features across machines. However, there are two
shortcomings with this approach.

First, many partitioning scheme incur a cost in terms of
computation and/or memory overhead. In table 1, we show the
partitioning time, memory consumption and the time to com-
plete one epoch of training on a representative GNN, Graph-
SAGE [24] for four different partitioning schemes: Hash [48],
which partitions nodes using random hashing, METIS [38], a
balanced min edge-cut partitioner, RandomVertexCut [22] and
GRID [23], are vertex-cut partitioners, and 3D [69], a recently
proposed scheme for machine learning workloads. We see
that the best performing partitioning schemes (e.g., edge-cut)
incur high computation overheads. Computationally faster
schemes incur either high memory overhead (due to replica-
tion, e.g., vertex-cut) or performance hit.

Second, the benefits of partitioning are severely limited as
the layers in the GNN increase. Recall that GNNs use k-hop
neighborhood to compute the embedding. While partitioning
schemes reduce communication, they only optimize commu-
nication at the first hop. Thus, when the number of layers
increase, all partitioning schemes fail.

2.3.3 Challenge #3: GPU Underutilization

Existing GNN frameworks utilize DNN techniques, such as
data parallelism to train GNN models. In data parallel exe-
cution, each machine operates on a different set of samples.
However, due to the data dependency induced communication
bottleneck described earlier, we observed that in distributed
GNN training using the popular framework DGL, GPUs are
only being utilized ≈ 20% of the time. For a large fraction
(≈ 80%) of the time, GPUs are waiting on communication.
Recent work has reported data copy to be the major bottleneck
in training GNNs in single machine multi-GPU setup [45],
but we found that data copy only accounts for 5% of the time
while training GNNs using distributed multi-GPU setup. We
note that the proposed techniques in [45] are orthogonal to our
work and can benefit if applied to P3. Thus, GPUs are heav-
ily underutilized in distributed GNN training due to network
communication. Alternative parallelism techniques, such as

model parallelism do not work for GNNs. This is because
for each layer, they would incur intra-layer communication
in-addition to data dependency induced communication and
thus perform even worse compared to data parallelism.

3 P3: Pipelined Push-Pull
P3 proposes a new approach to distributed GNN training that
reduces the overhead with computation graph generation and
execution to the minimum. To achieve this, P3 incorporates
several techniques, which we describe in detail in this section.

3.1 Independent Hash Partitioning Graph & Features

As we show in §2, partitioning of the input graph in an intelli-
gent manner doesn’t benefit GNN architectures significantly
due to the characteristics of GNNs. Hence, in P3, we use the
simplest partitioning scheme and advocate for independently
partitioning the graph and its features.

The nodes in the input graph are partitioned using a ran-
dom hash partitioner, and the edges are co-located with their
incoming nodes. This is equivalent to the commonly used
1D partitioning scheme available in many distributed graph
processing frameworks [22, 67], and is computationally sim-
ple. Unlike other schemes (e.g., 2D partitioning), this scheme
doesn’t require any preprocessing steps (e.g., creating local
ids) or maintaining a separate routing table to find the parti-
tion where a node is present, it can simply be computed on the
fly. Note that this partitioning of the graph is only to ensure
that P3 can support large graphs. In several cases, the graph
structure (nodes and edges without the features) of real-world
graphs can be held in the main memory of modern server
class machines. In these cases, P3 can simply replicate the
entire graph structure in every machine which can further
reduce the communication requirements.

While the graph structure may fit in memory, the same can-
not be said for input features. Typical GNNs work on input
graphs where the feature vector sizes range in 100s to several
1000s [29, 41, 66, 68]. P3 partitions the input features along
the feature dimension. That is, if the dimension of features
is F , then P3 assigns F/N features of every node to each of
the machines in a N machine cluster. This is in contrast to ex-
isting partitioning schemes tuned for machine learning tasks,
including the recently proposed 3D partitioning scheme [69].
Figure 4 shows how P3 partitions a simple graph in compari-
son with existing popular partitioning schemes.

As we shall see, this independent, simple partitioning of
the graph and features enable many of P3’s techniques. Break-
ing up the input along the feature dimension is crucial, as it
enables P3 to achieve work balance when computing embed-
dings; as the hash based partitioner ensures that the nodes and
features in the layers farther from the node whose embedding
is computed to be spread across the cluster evenly. The sim-
plicity of independently partitioning the structure and features
also lets P3 cache structure and features independently in its
caching mechanism (§3.4).

554 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

M1 M2

M3 M4
F

F

F

F

1 2

2 2 3

4 5 6

1 2

5

2 3

6

1

1 2

4 6

(a) 1D

1 2

4 5

2

4 5

2 3

6

3

5 6

M1 M2

M3 M4
F

F

F

F

4

3

3

3

(b) 2D

M1 M2

M3 M4

4 4

1 2

4 5

4

F
2

F
2

4
2 3

5 6

1 2

4 5

2 3

5 6F
2

F
2

(c) 3D

M1 M2

M3 M4

2 3

4 5 6

1 2

5

2 3

6

1 2

4 6

6

F
4

F
4

6

F
4

6

F
4

(d) P3

Figure 4: P3 independently partitions the graph structure and the associated features (shown in fig. 3) using simple random hash
partitioning in contrast to more intelligent schemes. This allows P3 to achieve work balance, and enables many of its techniques.

3.2 Push-Pull Parallelism

With the input graph and features partitioned, P3 adopts the
common, minibatch centric computation for GNNs, similar
to existing GNN frameworks, where it first generates the
computation graph for a node and then executes it. We use
fig. 5 to explain this in detail.

3.2.1 Computation Graph Generation

At the beginning of every minibatch, each node whose embed-
ding is being computed generates its computation graph. To
do so P3 pulls 3 the k-hop neighborhood for the node. If the
GNN architecture supports a sampling based embedding com-
putation, P3 pulls the sampled k-hop neighborhood, otherwise
it pulls the full k-hop neighborhood. Note that unlike exist-
ing GNN frameworks, the features are not pulled in either
case. This significantly reduces the network communication
necessary for creating the computation graph. If the entire
graph structure is available in every machine, this is a local
operation, otherwise it results in minimal network commu-
nication as the graph structure is very light weight. At the
end of this process, P3 ends up with the k-layer computation
graph of each node in the minibatch at the machine which
owns the node (e.g., the four samples in fig. 5 correspond
to computation graphs of four nodes in the minibatch). Note
that existing GNN frameworks pulls features in addition to
the structure, so in these frameworks, the machine owning
the node ends up with both the computation graph and all the
features necessary for embedding computation.

In the case of existing GNNs, each machine can now in-
dependently execute the complete computation graph with
features it obtained in a data parallel fashion, starting at layer
1 and invoking global gradient synchronization at each layer
boundary as shown in fig. 5a in the backward pass. How-
ever, since P3 does not move features, the computation graphs
cannot be executed in a data parallelism fashion. Here, P3

proposes a hybrid parallelism approach that combines model
parallelism and data parallelism, which we term push-pull
parallelism. While model parallelism is rarely used in tra-
ditional DNNs due to the underutilization of resources and
difficulty in determining how to partition the model [49], P3

3Pulling refers to copying, possibly over the network if not local.

uses it to its advantage. Due to the nature of GNNs, the model
(embedding computation graphs) is easy to partition cleanly
since the boundaries (hops) are clear. Further, due to P3’s
partitioning strategy, model parallelism doesn’t suffer from
underutilization of resources in our context.

3.2.2 Computation Graph Execution

To start the execution, P3 first pushes the computation graph
for layer 1 to all the machines, as shown in 1 in fig. 5b. Note
that layer 1 is the most compute intensive, as it requires input
features from layer 0 (having most fan-out) which are evenly
spread in P3 due to our partitioning scheme. Each machine,
once it obtains the computational graph, can start the forward
pass for layer 1 in a model parallel fashion (layer 1M). Here,
each machine computes partial activations for layer 1M using
the partition of input features it owns (2). Since all GPUs
in the cluster collectively execute the layer which requires
input from the most fan-out, this avoids underutilization of
GPUs. We observed that GPUs in existing GNN frameworks
(e.g., DGL) spend ≈ 80% of the time blocked on network
compared to ≈ 15% for P3. Once the partial activations are
computed, the machine assigned to each node in our hash
partitioning scheme pulls them from all other machines. The
node receiving the partial activations aggregates them using
a reduce operation (3). At this point, P3 switches to data
parallelism mode (layer 1D). The aggregated partial activa-
tions are then passes through the rest of layer 1D operations
(if any, e.g., non-linear operations that cannot be partially
computed) to obtain the final activations for layer 1 (4). The
computation proceeds in a data-parallel fashion to obtain the
embedding at which point the forward pass ends (5).

The backward pass proceeds similar to existing GNN
frameworks in a data parallel fashion, invoking global gra-
dient synchronizations until layer 1D (6). At layer 1D, P3

pushes the error gradient to all machines in the cluster (7)
and switches to model parallelism. Each machine now has
the error gradients to apply the backward pass for layer 1M
locally (8) and the backward pass phase ends.

While the partial activation computation in a model par-
allel fashion seemingly works in the general sense, they
are restricted to transformations that can be aggregated
from partial results. However, in certain GNN architectures

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 555

GNN Computational Graph Forward Pass Backward Pass Gradient Sync EmbeddingGNN Computational Graph + Input Features

Samples

Data Parallelism

S1

S2

S4

Layer 1

Layer 1

Layer 1

Layer 1

M1

M2

M3

M4

Layer 2

Layer 2

Layer 2

Layer 2

Layer K

Layer K

Layer K

Layer K

…

…

…

…

S1

S2

S3

S4

(a) DGL

S1

S2

S3

S4

Samples

1 4 5

Layer 1M Layer 2

Layer 1M Layer 2

Layer 1M Layer 2

Layer 1M Layer 2

M1

M2

M3

M4

⨁

⨁

⨁

⨁

Layer K

Layer K

Layer K

Layer K

…

…

…

…

Layer 1D

Layer 1D

Layer 1D

Layer 1D

Intra-Layer Model Parallelism Data Parallelism

SWITCH

2 3

7 68

(b) P3

Figure 5: How existing GNN frameworks generate and execute computation graphs (left) and how P3 does it (right) (§3.2).

(e.g., GAT [59]), layer 1M in itself may introduce non-linear
transformations. P3 relies on developer input to determine the
tensors that require global synchronizations during the model
parallel execution to ensure correctness (§3.5).

At a first glance, the additional steps in P3, namely the need
to push graph structure in layer 1, aggregation of partial acti-
vations during the forward pass and the additional movement
of gradients in the backward pass may seem like overheads
that may lead to inefficiencies compared to simply pulling the
features along with the graph structure and executing every-
thing locally as in existing GNN frameworks. However, P3’s
approach results in significant savings in network communica-
tion. First, P3 doesn’t pull features at all which tremendously
reduces network traffic—typically the 2-hop neighborhood in
the GNN computation graphs is an order of magnitude more
than the 1-hop neighborhood. Second, regardless of the num-
ber of layers in the GNN, only layer 1 needs to be partially
computed and aggregated. Finally, the size of the activations
and gradients are small in GNNs (due to the smaller number
of hidden dimensions), thus transferring them incurs much
less overhead compared to transferring features.

To illustrate this, we use a simple experiment where we
run a representative GNN, a 2-layer GraphSAGE [24] on the
open-source OGB-Product [29] dataset on 4 machines. We
pick 1000 labeled nodes to compute the embeddings and use
neighborhood sampling (fan-out:25,10). The nodes are associ-
ated with feature vectors of size 100, and there are 16 hidden
dimensions. At layer 0 (2-hops), there are 188339 nodes and
at layer 1 (1-hop) there are 24703 nodes. Pulling features
along with graph structure would incur 71.84 MB of network
traffic. On the other hand, the activation matrix is of size input
× hidden dimension. P3 only needs to transfer the partial
activations from 3 other machines, thus incurring just 5 MB
(3 × 24703 × 16). Hence, by distributing the activation com-

Comm. 3M Comm. 3D

M1

M2

M3

M4

Forward Pass Backward Pass

W1 W2 W3

Weight Versions

Data Dependency

1M 2M

W1 W2 W3

W1 W2 W3

W1 W2 W3

1D 1D 3M 2D 2D 1M 4M 3D 3D 2M 5M 4D 4D 3M

1M 2M 1D 1D 3M 2D 2D 1M 4M 3D 3D 5M 4D 4D 3M

1M 2M 1D 1D 3M 2D 2D 1M 4M 3D 3D 5M 4D 4D 3M
1M 2M 1D 1D 3M 2D 2D 1M 4M 3D 3D 5M 4D 4D 3M

2M

2M
2M

Figure 6: We employ a simple pipelining mechanism in P3, in-
spired by the work in PipeDream [49]. This allows P3 to effec-
tively hide communication latencies by overlapping communica-
tion with computation.

putation of the layer that holds the largest number of features,
P3 is able to drastically reduce network communication.

3.3 Pipelining

Although P3’s push-pull parallelism based GNN computation
graph creation and execution incurs less network communica-
tion compared to existing GNN frameworks, it needs to com-
municate more times: P3 needs to push the graph structure of
layer 1, pull partial activations in the forward pass and finally
push the gradients in the backward pass. Further, since P3 fo-
cuses on distributed settings, data copy is necessary between
CPU and GPU. As a result, the computation is stalled during
communication unless they are overlapped using pipelining
techniques. Note that current GNN frameworks (e.g., DGL)
already overlap computation and communication—while the
CPU is busy creating the computation graph, the GPU is used
to execute an already prepared mini batch.

In P3, we employ a simple pipelining mechanism, inspired
by PipeDream’s pipeline parallelism [49]. Due to the ap-
proach we take in P3 to enable push-pull parallelism, namely
switching between model and data parallelism at layer 1, P3

needs to execute four phases per minibatch: a model parallel

556 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

API Description
partition(graph, feat,
topo_part_fn, ft_part_fn)

Partition graph and input features independently using topo_part_fn and ft_part_fn
respectively.

scatter(graph, feat, udf)→ msg Generates message msg by combining src_ft, edge_ft, and dst_ft.
gather(msg, udf)→ a_ft Computes aggregated neighbourhood representation from incoming messages.
transform(v_ft, a_ft)→ t_ft Computes partial output representation from partial input representation; requires sync.
sync(t_ft, op='sum')→ sync_ft Accumulates partial representations using user-defined arithmetic operation.
apply(v_ft, sync_ft)→ ft Computes output representation from input representation.

Table 2: The simple P-TAGS API exposed by P3. Developers can use this API to scale up new GNN architectures.

phase in the forward pass, a data parallel phase in the forward
pass, a data parallel phase in the backward pass and finally
a model parallel phase in the backward pass. This provides
us the opportunity to schedule 3 minibatches of computation
before a data dependency is created between phases. Thus,
we overlap computations between these, as shown in fig. 6.
As shown, in the forward pass, the data parallel phase of mini-
batch 3 (denoted as 3D) has a data dependency on the model
parallel phase (3M) in the forward pass. Hence, when phase
3M starts communication, we schedule two forward and two
backward passes from other minibatches. This 2 forward, 2
backward static scheduling strategy allows us to avoid stalls.
We currently use static pipeline scheduling—while a profil-
ing based methodology to identify a pipeline schedule may
provide benefits, we defer it to a future work.

Bounded Staleness The main challenge with using pipelin-
ing as described above is the introduction of staleness which
can be characterized by pipeline delay: the number of opti-
mizer steps that have passed between when a weight is read
for computing gradient and when that computed gradient is
used for updating the weight. This delay is bound by the num-
ber of minibatches in the pipeline at any time and also exists
in prior work [49, 52]. For P3, this delay is fixed and bound
to three, resulting in weight updates of the form:

wt+1 = wt −α ·∇ f (wt−3) (3)

where, wt is weight values after t optimizer steps, ∇ f is the
gradient function, α is learning rate and wt−3 the weight used
in forward and backward passes. While unbounded stale gra-
dient updates can negatively affect the statistical efficiency of
the network, preventing convergence and producing models
with lower accuracy, bounded delay enables P3 reach target
accuracy in the same number of epochs as data parallelism.

Memory Overhead While P3’s peak memory footprint is
relatively on par to data parallelism, stashed weights can re-
sult in additional memory overhead. Presently, GNN models
typically contain only a couple of layers of small DNN mod-
els, and therefore even with weight stashing the overhead is
relatively small. This however may change in future as GNN
models become larger and complex. P3’s memory overhead
can be further reduced by leveraging prior work aimed at de-
creasing memory footprint of training DNN models [33, 34].

3.4 Caching

The use of independent partitioning for the graph structure
and features allows P3 to employ a simple caching scheme
that can reduce the already minimal communication overhead.
This is based on the observation that depending on the graph
and the size of the features, either the graph or the features
may be accommodated in less machines than what is avail-
able. By default, the features and the graph are partitioned
without duplication across all available machines. However,
when host memory is available, P3 uses a simple greedy ap-
proach to utilize all the available free memory by caching the
partitions of the graph and/or features on multiple machines
using a user-defined setting. In its current state, we do simply
caching, where we try to fit the input in the minimum number
of machines, and create copies (caches) of partitions on other
machines. We assume homogeneous machines, which is typ-
ically the standard in DNN/GNN training [35]. We believe
that there are opportunities to design a better caching scheme,
and plan to explore it in the future.

3.5 P3 API

P3 wraps its independent partitioning strategy, pipelined push-
pull parallelism and caching in a simple API, which devel-
opers can use to speed up new GNN architectures. The API,
shown in table 2, consists of the following six functions :
• partition is a user-provided composite function which

independently partitions graph topology and input features
across machines. This step is essential to balance load and
reduce communication.

• scatter uses a user-provided message function defined on
each edge to generate a message by combining the edge
representation with the representations of source and desti-
nation vertices.

• gather uses a user-provided commutative and associative
function (e.g. sum, mean) defined on each vertex to compute
the neighborhood representation by aggregating incoming
messages.

• transform is a user-provided composite function defined
on each vertex to generate partial representation by apply-
ing zero or more element-wise NN operations4 (e.g. add),

4Element-wise NN operation operates on elements occupying the same
index position within respective tensors.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 557

class GraphSAGE(nn.module):
def __init__(in_ft, out_ft):

fc_self = fc_neigh = Linear(in_ft, out_ft)
Generates message
def scatter_udf(s_ft, e_ft, d_ft): return s_ft
Aggregates messages
def gather_udf(msg): return mean(msg)
Computes partial activation; requires sync.
def transform(v_ft, a_ft):

return fc_self(v_ft) + fc_neigh(a_ft)
Computes vertex representation
def apply(v_ft, t_ft):

return ReLU(t_ft)
def forward(graph, feat):

graph['m'] = scatter(graph, feat, scatter_udf)
graph['n_p'] = gather(graph['m'], gather_udf)
graph['n_p'] = transform(feat, graph['n_p'])
return apply(feat,sync(graph['n_p'],op='sum'))

Listing 1: Using P3’s P-TAGS API to implement GraphSAGE.

followed by at most one non-element-wise NN operation
(e.g. convolution) on vertex features and the aggregated
neighborhood representation.

• sync accumulates partial representation (generated by the
transform API) over the network using the user-provided
arithmetic operation.

• apply is a user-provided composite function defined on
each vertex to generate representation by applying zero or
more element-wise and non-element-wise NN operations
on vertex features and input representation.

Listing 1 outlines how GraphSAGE [24] can be imple-
mented in P3. Using our API, the developer composes forward
function—function which generates output tensors from in-
put tensors. Generated computational graph (see §3.2.1) and
representation computed in the previous layer (or input vertex
features partitioned along feature dimension if the first layer
is being trained) are inputs to the forward function. For every
layer in the GNN model, each vertex first aggregates the repre-
sentation of its immediate neighborhood by applying element-
wise mean (see gather_udf) over the incoming source vertex
representation (see scatter_udf). Next, vertex’s current repre-
sentation and aggregated neighborhood representation are fed
through a fully connected layer, element-wise summed (see
transform) and passed through the non-linear function ReLU
(see apply), which generates the representation used by the
next layer. If this is the last layer, the generated representation
is used as the vertex embedding for downstream tasks.

While training the first layer, the input representation is
partitioned along the contracting (feature) dimension and
evenly spread across machines, which results in the output
representation generated by non-element-wise operators re-
quiring synchronization. Notably, element-wise operations
can still be applied without requiring synchronization. Since
transform feeds the partitioned input representation through a

fully connected layer, a non-element wise operator, its output
representation must be synchronized before applying other
downstream operators. sync accumulates partial representa-
tion over the network and produces the output representation
which can be consumed by apply. Input representation in all
layers except the first are partitioned along the batch dimen-
sion, and therefore the corresponding output representations
do not require synchronization; thus sync is a no-op for all
layers except the first.

4 Implementation
P3 is implemented on Deep Graph Library (DGL) [1], a popu-
lar open-source framework for training GNN models. P3 uses
DGL as a graph propagation engine for sampling, neighbor-
hood aggregation using message passing primitives and other
graph related operations, and PyTorch as the neural network
execution runtime. We extended DGL in multiple ways to sup-
port P3’s pipelined push-pull based distributed GNN training.
First, we replaced the dependent graph partitioning strategy—
features co-located with vertices and edges—in DGL with
a strategy that supports partitioning graph structure and fea-
tures independently. We reuse DGL’s k-hop graph sampling
service: for each minibatch a sampling request is issued via
an Remote Procedure Call (RPC) to local and remote sam-
plers. These samplers access locally stored graph partitions
and return sampled graph—topology and features—to the
trainer. Unlike DGL, sampling service in P3 only returns the
sampled graph topology and does not require input features
to be transferred. Second, trainers in P3 execute the GNN
model using pipelined data and model parallelism. Each mini-
batch is assigned a unique identifier, and placed in a work
queue. The trainer process picks minibatch samples and its
associated data from the front of the queue,minibatch and
applies neural network operations. P3 schedules 3 concurrent
minibatches using 2 forward, 2 backward static scheduling
strategy (§3.3) to overlap communication with computation.
Before the training mode for a minibatch can be switched
from model to data parallelism, partial activations must be
synchronized. To do so, we extended DGL’s KVStore to store
partial activations computed by trainers. KVStore uses RPC
calls to orchestrate movement of partial activation across ma-
chines, and once synchronized, copies accumulated activation
to device memory and places a pointer to the associated buffer
in the work queue, shared with the trainer process. PyTorch’s
DistributedDataParallel module is used to synchronize
weights before being used for weight update.

5 Evaluation
We evaluate P3 on several real-world graphs and compare it
to DGL and ROC, two state-of-the-art GNN frameworks that
support distributed training. Overall, our results show that:

• P3 is able to improve performance compared to DGL
by up to 7× and ROC by up to 2.2×; and its benefits
increase with graph size.

558 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Graph Nodes Edges Features
OGB-Product [29] 2.4 million 123.7 million 100
OGB-Paper [29] 111 million 1.6 billion 128

UK-2006-05 [10, 11] 77.7 million 2.9 billion 256
UK-Union [10, 11] 133.6 million 5.5 billion 256

Facebook [19] 30.7 million 10 billion 256

Table 3: Graph datasets used in evaluating P3. Features column
shows the number of features per node.

• We find that P3 can achieve graceful scaling with number
of machines and that it matches the published accuracy
results for known training tasks.

• Our caching and pipelining techniques improve perfor-
mance by up to 1.7×, with benefits increasing with more
caching opportunities.

Experimental Setup: All of our experiments were conducted
on a GPU cluster with 4 nodes, each of which has one 12-
core Intel Xeon E5-2690v4 CPU, 441 GB of RAM, and four
NVIDIA Tesla P100 16 GB GPUs. GPUs on the same node
are connected via a shared PCIe interconnect, and nodes are
connected via a 10 Gbps Ethernet interface. All servers run
64-bit Ubuntu 16.04 with CUDA library v10.2, DGL v0.5,
and PyTorch v1.6.0.
Datasets & Comparison: We list the five graphs we use in
our experiments in table 3. The first two are the largest graphs
from the OGB repository [29]—OGB-Products [29], an Ama-
zon product co-purchasing network, and OGB-Papers [29], a
citation network between papers indexed by Microsoft Aca-
demic Graph [57]—where we can ensure correctness and val-
idate the accuracy of P3 on various tasks compared to the best
reported results [4]. The latter three—UK-2006-05 [10, 11],
a snapshot of .uk domains, UK-Union [10, 11], a 12-month
time-aware graph of the same and Facebook [19], a synthetic
graph which simulates the social network—are used to eval-
uate the scalability of P3. We selected these due to the lack
of open-source datasets of such magnitude specifically for
GNN tasks. The two OGB graphs contain features. For the
remaining three, we generate random features ensuring that
the ratio of labeled nodes remain consistent with what we
observed in the OGB datasets. Together, these datasets rep-
resent some of the largest open-source graphs used in the
evaluation in recent GNN research5. We present comparisons
against DGL [1, 61] and ROC [36], two of the best perform-
ing open-source GNN frameworks that support distributed
training—to the best of our knowledge—at the time of our
evaluation. However, due to the limitations imposed by ROC
at the time of writing, specifically its support for only full-
batch training and the availability of GCN implementation
only, we compare against ROC only when it is feasible to do
so and use DGL for the rest of the experiments. While DGL
uses the METIS partitioner as the default, we change it to
use hash partitioning in all the evaluations unless specified.

5Larger industry datasets have been reported (e.g., [65, 68]) but they are
unavailable to the public.

This is due to two reasons. First, hash is the only partitioner
that can handle all the five graphs in our datasets without
running out of memory. Second, METIS incurs significant
computational overheads that often exceed the total training
time (see §2).
Models & Metrics: We use four different GNN models: S-
GCN [63], GCN [17, 41], GraphSAGE [24] and GAT [59],
in the increasing order of model complexity. These models
represent the state-of-the-art architectures that can support
all GNN tasks (§2). Unless mentioned otherwise, we use a
standard 2-layer GNN model for all tasks. We enable sampling
(unless stated) for all GNN architectures because it represents
the best case for our comparison system and one of standard
approaches to scaling. The sampling approach we adopted,
based on recent literature [24], is a (25, 10) neighborhood
sampling where we pick a maximum of 25 neighbors for the
first hop of a node, and then a maximum of 10 neighbors for
each of those 25. Both GraphSAGE and GCN use a hidden-
size of 32. For the GAT model, we use 8 attention heads.
Minibatch size is set to 1000 in all our experiments. We use
a mix of node classification and link prediction tasks where
appropriate for the input. Graph classification tasks are usually
done on a set of small graphs, hence we do not include this
task. We report the average epoch time, which is the time taken
to perform one pass over the entire graph, unless otherwise
stated. We note that for training tasks to achieve reasonable
accuracy, several 100s or even 1000s of epochs are needed. In
the experiment evaluating the accuracy attained by the model,
we report the total time it takes to achieve the best reported
accuracy (where available). For experiments that evaluate the
impact of varying configurations (e.g., features), we pick a
middle of the pack dataset in terms of size (OGB-Paper) and
GNN in terms of complexity (GraphSAGE).

5.1 Overall Performance

We first present the overall results. Here, we compare DGL
and P3 in terms of per epoch time. For P3, we disable caching
(§3.4) so that it uses the same amount of memory as DGL for
a fair comparison. Note that enabling caching only benefits
P3, and we show the benefits of caching later in this section.
We train all the models on all the graphs, and report the mean
time per epoch. The results are shown in table 4.

We see that P3 outperforms DGL across the board, and
the speedups range from 2.08× to 5.43×. The benefits in-
crease as the input graph size increases. To drill down on
why P3 achieve such superior performance, we break down
the epoch time into its constituents: embedding computation
graph creation time (indicated as DAG), data copy time and
the computation time which is the sum of the forward pass
time, backward pass time and update time (§2). Clearly, P3’s
independent partitioning strategy and the hybrid parallelism
significantly reduces the time it takes to create the computa-
tion graph, which dominates the epoch time. We see a slight
increase in data copy and compute times for P3 due to the

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 559

Graph Model DGL P3
SpeedupEpoch DAG Copy Compute Epoch DAG Copy Compute

OGB-Product

SGCN 4.535 4.051 0.233 0.251 1.019 0.256 0.364 0.399 4.45
GCN 4.578 3.997 0.253 0.328 1.111 0.248 0.372 0.491 4.12

GraphSage 4.727 4.056 0.258 0.413 1.233 0.245 0.361 0.627 3.83
GAT 5.067 4.164 0.271 0.632 1.912 0.248 0.379 1.285 2.65

OGB-Paper

SGCN 9.059 7.862 0.436 0.761 2.230 0.447 0.605 1.178 4.06
GCN 9.575 8.117 0.461 0.997 2.606 0.457 0.619 1.530 3.67

GraphSage 9.830 8.044 0.441 1.345 3.107 0.451 0.597 2.059 3.16
GAT 10.662 8.094 0.462 2.106 5.138 0.462 0.652 4.024 2.08

UK-2006-05

SGCN 6.435 5.682 0.279 0.474 1.481 0.259 0.416 0.806 4.34
GCN 7.023 6.146 0.282 0.595 1.509 0.252 0.408 0.849 4.65

GraphSage 7.085 6.005 0.272 0.808 1.880 0.259 0.395 1.226 3.77
GAT 8.084 6.378 0.330 1.376 3.379 0.234 0.472 2.673 2.39

UK-Union

SGCN 11.472 10.168 0.401 0.903 2.379 0.353 0.597 1.429 4.82
GCN 12.523 10.815 0.444 1.264 2.864 0.343 0.624 1.897 4.37

GraphSage 12.481 10.452 0.435 1.594 3.395 0.368 0.619 2.408 3.68
GAT 13.597 10.693 0.480 2.424 5.752 0.371 0.652 4.729 2.36

Facebook

SGCN 22.264 19.765 0.627 1.872 4.102 0.509 0.907 2.686 5.43
GCN 24.356 20.673 0.760 2.923 5.624 0.494 1.010 4.120 4.33

GraphSage 23.936 19.756 0.755 3.425 6.298 0.554 1.027 4.717 3.80
GAT 24.872 19.472 0.758 4.642 8.439 0.623 0.953 6.863 2.95

Table 4: P3 is able to gain up to 5.4× improvement in epoch time over DGL. The gains increase with graph size. The table also provides
a split up of epoch time into its constituents: computation graph creation (DAG), data copy, and compute. The compute time is the sum
of the forward pass, backward pass and update.

need for pushing the graph structure, and the overheads as-
sociated with additional CUDA calls necessary to push the
activations (§3). We remind the reader that caching/replica-
tion for P3 is disabled for this experiment, and enabling it
would reduce the data copy time. However, P3’s aggressive
pipelining is able to keep the additional overheads in forward
pass to a minimum. We also notice that as the model complex-
ity increases, the dominance of computation graph creation
phase reduces in the overall epoch time as the forward and
backward passes become more intensive.

5.2 Impact of Sampling

In the last experiment, we enabled aggressive sampling, which
is a common strategy used by existing GNNs to achieve scal-
ability and load balancing. However, sampling affects the ac-
curacy of the task, and the number of epochs it is necessary to
achieve the best accuracy. Further, some GNN architectures
may not support sampling, or require more samples (com-
pared to the (25, 10) setting we used). To evaluate how P3

performs when the underlying task cannot support sampling,
we repeat the experiment by disabling sampling. Everything
else remains the same. Figure 7 shows the result.

Without sampling, we note that the largest graphs (UK-
Union and Facebook) cannot be trained in our cluster. This
is because the computation graphs exhaust the memory in
the case of DGL and the only way to solve it is to enable
sampling. Additionally, for the more complex model (GAT),
DGL struggles to train on all datasets. Thus, we do not report

GCN GraphSage
OGB-Product

GCN GraphSage
OGB-Paper

GCN GraphSage
UK-2006-05

0

50

100

150

200

Ep
oc

h
Ti

m
e

(s
)

58.2

7.9

59.3

8.9

88.4

12.7

89.3

13.9

151.3

21.3

177.9

23.1

DGL
P3

Figure 7: Without sampling, DGL struggles to train complex
models and larger graphs. P3’s benefits increase up to 7.69 ×.

the results on these two large graphs and for GAT. Even
otherwise, we note that P3’s benefits increase compared to the
sampled case, with speed ups ranging from 6.45× to 7.69×.
This clearly indicates the benefits of pulling only the graph
structure across the network.

5.3 Impact of Partitioning Strategy

Here, we investigate how different partitioning strategies
affect the training time. DGL only supports edge-cut par-
titioning (using METIS [38]) by default, so we imple-
mented four different partitioning schemes: hash, which is
the same partitioner used by P3, RandomVertexCut [22, 23]
and GRID [12, 22] which are vertex-cut partitioners, and 3D,
which is the 3-d partitioner proposed in [69]. We train one
model, GraphSAGE in DGL with different partitioning strate-

560 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OGB-Product OGB-Paper UK-2006-05 UK-Union
0

5

10

15

Ep
oc

h
Ti

m
e

(s
)

4.
8

1.
9 2.
3 2.

9
2.

7
1.

2

9.
8

5.
3 5.
5 6.

9
6.

0
3.

1

7.
1

3.
9 4.

8
1.

9

12
.5

3.
4

OO
M

OO
M

OO
M

OO
M

OO
M

OO
M

DGL DGL-METIS

(a) P3 is able to gain up to 3.8× speed up in terms
of epoch time compared to DGL.

OGB-Product OGB-Paper UK-2006-05 UK-Union
100

101

102

103

104

Pa
rti

tio
ni

ng
 T

im
e

(s
)

1
35

3 4
17

3

4264

37 52
13

4

2
18

79
70 94

22
9

3

14
1 18
3 44

2

OO
M

DGL-RandomVertexCut DGL-GRID

(b) Schemes except random hash incur signifi-
cant overheads in partitioning time (in log scale).

OGB-Product OGB-Paper UK-2006-05 UK-Union
0

100

200

300

M
em

or
y

(G
B)

14 15
49 36 32

15

58 63
18

5
12

8
11

8
62

11
6 13

0

25
8

12
7

16
3 17

5

OO
M

OO
M

OO
M

OO
M

OO
M

OO
M

DGL-3D P3

(c) Vertex-cut schemes incur significant memory
overheads due to the need to replicate data.

Figure 8: P3’s random hash partitioning outperforms all schemes, including the best strategy in DGL (METIS).

2 3
OGB-Product

4 2 3
OGB-Paper

4 2 3
UK-2006-05

4
0

10
20
30
40
50

Ep
oc

h
Ti

m
e

(s
)

4.
7

1.
9

1.
2

8.
8

3.
7

2.
1

21
.4

12
.3

4.
7 9.

8
5.

3
3.

1
13

.6
9.

2
4.

0
29

.3
21

.0
7.

3
7.

1
3.

9
1.

9
12

.4
5.

6
2.

7
36

.0
19

.1
5.

9

DGL
DGL-METIS
P3

Figure 9: P3’s benefits increase with increase in layers in the
GNN. With more layers, partitioning schemes do not help.

gies, and compare against P3 with its random hash partitioner.
We report the average epoch time in fig. 8a.

We notice that P3’s random hash partitioning outperforms
all schemes, even the best strategy in DGL (METIS), and the
speedups for P3 ranges from 1.7× (against METIS) to 3.85×
(against random hash). The RandomVertexCut, GRID and 3D
partitioners run out of memory for larger graphs. The only
partitioning scheme that works for the Facebook graph is the
random hash partitioner, so we omit it in this experiment. It
may be tempting to think that an intelligent partitioner (other
than hash partitioner) may benefit DGL. However, this is not
true due to two reasons. First, partitioners incur preprocessing
time as shown in fig. 8b. We see that METIS incurs the most
time, and the overhead is often more than the total training
time. It also cannot support large graphs. Other strategies may
seem reasonable, but fig. 8c proves otherwise. This figure
shows the memory used by various partitioning strategies.
It can be seen that vertex cut schemes (RandomVertexCut,
GRID, 3D) need to replicate data, and hence incur significant
memory overhead. In contrast, not only does P3’s independent
partitioning strategy outperform the best performing strategy
in DGL (METIS) in terms of memory and epoch time, but it
also incurs almost no preprocessing cost.

5.4 Impact of Layers

In this experiment, we evaluate the effect of the number of
layers in the GNN. To do so, we pick GraphSAGE and create
three different variants of the model, each having different
number of layers, from 2 to 4. We then train the model using

16 32 64 128 256 512
Number of Input Features

0

10

20

30

Ep
oc

h
Ti

m
e

(s
) DGL

P3

Figure 10: P3’s benefits increase as feature sizes increase, depict-
ing the advantage of not moving features over the network.

DGL and P3. Sampling is enabled in this experiment, as DGL
is unable to train deeper models (more layers) even on small
graphs without it. The results are shown in fig. 9. We see that
P3’s benefits increase with increase in the number of layers,
outperforming DGL by up to 6.07×. This is because as the
network becomes deeper, the computation graph also grows
larger. Further, we see that as the network becomes deeper,
the benefits of intelligent partitioning strategies (METIS) start
to diminish compared to random hash partitioning. This is
due to existing partitioning schemes being optimized for the
first hop neighborhood. P3 is not impacted by either due to its
independent partitioning of graph and features and the hybrid
parallelism in executing the GNN.

5.5 Impact of Features

To evaluate the impact of feature size on training performance,
we vary the number of node features for OGB-Paper dataset
from 16 to 512. Since the dataset originally had 128 features,
we either prune or duplicate them to obtain the desired number
of features. We use GraphSAGE model with sampling for
training and report the average epoch time in fig. 10.

We clearly see the benefits of P3’s hybrid parallelism based
execution. DGL’s performance degrades with the increase in
the number of features. This is expected, because to create
the computation graph, DGL needs to pull the features, and
with more features it incurs more network traffic. In contrast,
since P3 only needs to use network to get the activations, its
performance incurs minimal degradation—the epoch time

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 561

Graph Partitions Cached Memory(GB) Epoch(s) SpeedupGraph Features

OGB-Product 1 1 15 1.233 -
4 4 68 0.724 1.703

OGN-Paper 1 1 62 3.107 -
4 4 252 1.896 1.639

Facebook 1 1 158 6.298 -
1 4 362 4.646 1.356

UK-2006-05 1 1 127 1.880 -
2 2 262 1.524 1.233

UK-Union 1 1 175 3.395 -
2 1 345 2.748 1.235

Table 5: By caching partitions of graph structure and features in-
dependently, P3 is able to achieve up to 1.7×more performance.

only doubles when the number of features increase by a factor
of 32. Here, P3 outperforms DGL by 4.77×.

5.6 Microbenchmarks

Impact of Caching: In this experiment, we evaluate the bene-
fits of P3’s caching (§3.4). Like in table 4, we use GraphSAGE
for training on four graph datasets, but cache the partitions
of the graph and features on multiple machines as memory
permits. It is interesting to note that for some graphs, it is pos-
sible to replicate the structure on multiple machines (e.g., UK-
Union) but not features and vice-versa (e.g., Facebook). This
shows that independently partitioning the structure and fea-
tures makes it possible to do caching which was otherwise not
possible (i.e., DGL cannot leverage our caching mechanism).
Here, P3 is able to achieve up to 1.7× better performance, and
the improvement increases with more caching opportunities.
Moreover, caching extends training speedup of P3 over DGL
from 3.6× (in table 4) to 5.23× (here).
Impact of Pipelining: Here we evaluate the benefits of
pipelining in P3 (§3.3). To do so, we use P3 to train Graph-
SAGE on four different datasets twice; first with pipelining en-
abled and then with it disabled. Figure 11 shows that pipelin-
ing effectively overlaps most of the communication with com-
putation, and that P3 is able to extract 30-50% more gains.
GPU Utilization: Figure 12 depicts the peak GPU utilization
while training GraphSAGE model on OGB-Product dataset
during a five second window for DGL and P3. Here, the
GPU utilization is measured every 50 milliseconds using
the nvidia-smi [3] utility. We observe that the peak GPU
utilization for both DGL and P3 are similar (≈ 28%). This is
due to the nature of GNN models, they perform sparse com-
putations that fail to leverage peak hardware efficiency across
all cores6. However, we see that during the duration of this
experiment, DGL is able to keep the GPU busy—keep at least
one of the many GPU cores active—for ≈ 20% of the time
only. For the remaining ≈ 80%, GPU resources are blocked
on the network and thus their utilization drops to zero. On the
other hand, P3 is able to keep the GPU busy for ≈ 85% of the

6Improving peak utilization of accelerators such as GPUs by leveraging
the sparsity of the workloads is outside the scope of this work.

OGB-Product OGB-Paper UK-2006-05 UK-Union
0

2

4

6

Ep
oc

h
Ti

m
e

(s
)

1.6 1.2

4.1
3.1 2.6

1.9

5.1

3.4

Pipelining-OFF Pipelining-ON

Figure 11: Pipelining boosts P3’s performance by up to 50%.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Timeline (s)

0

10

20

30

GP
U

Ut
iliz

at
io

n
(%

) DGL P3

Figure 12: P3 is able to keep the GPU busy for significantly more
time (≈ 85%) compared to DGL (≈ 20%).

time. As a result, it is able to complete 4 epochs of training in
the five second duration, compared to 1 in the case of DGL.

5.7 P3’s Scaling Characteristics

Here we evaluate the strong scaling properties of P3. We
again choose the OGB-Paper dataset and train GraphSAGE
model on it. To understand the scaling properties, we vary the
number of machines, there by varying the number of GPUs
used by P3 and DGL. We report the average throughput (the
number of samples processed per second) in fig. 13.

P3 exhibits near linear scaling characteristics; its through-
put doubles when the number of machines (and hence the
number of GPUs) are doubled. In contrast, DGL’s throughput
remains nearly the same as the number of machines increase.
This is mainly because GPU resources in DGL are constrained
by data movement over network, while P3 is able to effec-
tively eliminate this overhead using its proposed techniques.
As the number of machines continue to grow, we expect P3

to exhibit less optimal scaling. In P3, each machine needs
to pull activations from all other machines, and this grows
linearly with the number of machines resulting in increased
data movement that may adversely affect performance. This
is a fundamental problem in model parallelism, and hence
existing mitigation techniques are directly applicable to P3.

5.8 Accuracy

Here, we evaluate the correctness of our approach in P3. To do
so, we train GraphSAGE model with sampling, but this time
on the OBG-product graph (the smallest graph in our datasets).
The best accuracy reported on this graph is approximately
78.2% using about 50 epochs [4]. Due to the lack of published
accuracy results for larger graphs, we were unable to repeat
this experiment for large graphs in our dataset. We run both
DGL and P3 on this dataset until we obtain the same accuracy

562 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2(8) 3(12) 4(16)
Number of Machines (#GPUs)

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

x100000

DGL
P3

Figure 13: P3 exhibits graceful
and near linear scaling.

0 10 20 30 40 50
Number of Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

DGL P3

20 30 40 50
72
74
76
78

Figure 14: P3 achieves the same accuracy as
DGL, but much faster.

0

10

20

Ep
oc

h
Ti

m
e

(s
)

With Sampling

DGL P3

16 32 48 64 80 96 112 128
Number of Hidden Dimensions

0

50

100

150

Without Sampling

DGL P3

Figure 15: As the number of hidden dimensions
increases, benefits of P3 decreases.

OGB-Paper UK-2006-05
0

60

120

180

Ep
oc

h
Ti

m
e

(s
)

88.4

26.9
12.7

151.3

47.6
21.3

DGL
ROC
P3

Figure 16: P3 is able to outperform ROC by up to 2.2×, and its
benefits increase with input graph size.

as reported. We show the results in fig. 14. We notice that
stock DGL and P3 both achieve the same accuracy iteration
by iteration, and that they both achieve approximately 76.2%
accuracy at the end of 51 iterations. P3 is able to complete this
training in 61.65 seconds, while DGL takes 236.37 seconds
when using random hash partitioning of the input, and 96.3
seconds when using METIS partitioner. However, METIS
takes 35.09 seconds to partition the graph, making the total
training time 126.39 seconds. This experiment shows that not
only is P3 able to replicate the same accuracy as DGL thus
ensuring its correctness, it is able to complete the training
much faster than DGL even for the smallest of the graphs.

5.9 Comparison with ROC

Next we present comparison against ROC. Since ROC does
not support sampling, we turn off sampling on all systems. At
the time of evaluation, ROC only supported full batch training,
and only had implementation for GCN available, so we use
that as defaults for this experiment. We run 50 epochs of a
2-layer GCN on OGB-Paper and UK-2006-05 graphs. ROC
uses an online partitioner that relies on moving parts of the
graphs during the execution of the GNN. Due to this, we
skip the first few epochs to allow ROC to complete its data
movement and measure the average epoch time after that. The
result of this experiment is shown in fig. 16.

ROC is able to process both the input graphs significantly
faster than DGL due to its highly optimized graph engine.
However, P3 is able to outperform ROC, completing epochs

up to 2.2× faster. We also notice that P3’s benefits increase
with the size of the input graph. This is due to the fundamental
differences in P3 and ROC’s design. While ROC’s online par-
titioner is able to obtain superior partitions based on the access
patterns, it still relies on moving features while training the
GNN model. As the graph size increases, this results in more
features being transferred across the network. In contrast, P3’s
design tries to spread the computation of the bottle-necked
layer across the cluster and avoids feature movement entirely.
Moreover, as the number of layers increase, ROC (and DGL)
would need to move exponentially more features, thereby
resulting in increased network overhead.

While perusing this result, we wish to remind the reader
about few caveats. Our evaluation uses 10 Gbps Ethernet in-
terconnect which favours techniques resulting in lesser data
movement. Hence, some of the observed network overheads
due to feature movement for ROC (and DGL) can be mini-
mized by using faster interconnects such as InfiniBand. Fur-
ther, unlike ROC, P3 and DGL require training data—the
graph topology, features, model parameters and activations—
to fit in device memory, and failure to do so results in out-of-
memory error during training. On the other hand, ROC only
requires training data to fit in DRAM, and leverages a cost-
based memory manager to selectively move tensors between
device memory and DRAM, which may affect performance.

5.10 P3 Shortcomings

Finally, we present cases where P3 does not provide bene-
fits. Recall that the fundamental assumption made by P3 is
that the hidden dimensions in GNNs are typically smaller
which results in the activations being significantly smaller
than features. As this assumption is violated, P3 starts losing
its benefits, and may even incur performance penalties.

To illustrate this, we evaluate the impact of hidden dimen-
sions in this experiment. We train GraphSAGE on the OGB-
Product dataset, and fix the number of features to 100. For
varying number of hidden dimensions, we record the aver-
age epoch time for DGL and P3 with and without sampling
enabled. Figure 15 shows the result. As we expect, the ben-
efits of P3 decreases as we increase the number of hidden

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 563

dimensions (thereby increasing the size of the activations),
and P3 becomes strictly worser than DGL once the hidden
dimension size reach close to the feature size. We note that
P3 also incurs additional overhead due to model parallelism,
due to which the exact point of transition varies depending
on the characteristics of the graph. Dynamically determining
whether P3 would provide benefits in a given scenario and
switching appropriately is part of our planned future work.

6 Related Work
Graph Processing Systems Several large-scale graph pro-
cessing systems that provide an iterative message passing
abstraction have been proposed in literature for efficiently
leveraging CPUs [12,21–23,31,32,48,50] and GPUs [39,62].
These systems have been shown to be capable of scaling to
huge graphs, in order of trillion edges [15]. However, these
are focused mainly on graph analysis and mining, and lack
support for functionalities that are crucial for GNN training,
such as auto differentiation and dataflow programming.
Deep Learning Frameworks like PyTorch [5], Tensor-
Flow [6], and MXNet [2] commonly use Data Paral-
lelism [44] and Model Parallelism [14, 16] to speedup par-
allel and distributed DNN training. To scale even further,
some recent works have proposed combining data and/or
model parallelism with pipelining, operator-level partitioning,
and activation compression [30, 42, 49, 54]. GPipe [30] and
PipeDream [49] are aimed at alleviating low GPU-utilization
problem of model parallelism. Both permit partitioning model
across workers, allowing all workers to concurrently process
different inputs, ensuring better resource utilization. GPipe
maintains one weight version, but requires periodic pipeline
flushes to update weight consistently, thus limiting overall
throughput. PipeDream keeps multiple weight versions to en-
sure consistency, thereby avoiding periodic flushes at the cost
of additional memory overhead. Prior works [37, 60] have
even shown how to automatically find fast parallelization
strategy for a setting using guided randomized search.
GNN Frameworks Driven by emerging popularity in training
GNN models, several specialized frameworks [1,20,36,45,47,
65,68] and accelerators [40] have been proposed. They can be
categorized in two broad classes: systems [36, 65, 68] which
extend existing graph processing systems with NN operations,
and systems [1,20,45,47] which extend existing tensor-based
deep learning frameworks to support graph propagation op-
erations. Both use graph partitioning as a means of scaling
GNN training across multiple CPUs and/or GPUs either in a
single machine or over multiple machines. Some frameworks,
like AliGraph [65] and AGL [68], only support training us-
ing CPUs, while others [1, 20, 36, 45, 47] support performing
training on GPUs and use CPU memory for holding graph
partitions and exchanging data across GPUs.

PyTorch-Geometric [20] and DGL [1] wrap existing deep
learning frameworks with a message passing interface. They
focus on designing a graph oriented interface for improving

GNN programmability by borrowing optimization principles
for traditional graph processing systems and DNN frame-
works. However, as we show, they fail to effectively leverage
the unique context of GNNs workload and thereby yield poor
performance and resource underutilization.

ROC [36] is a recent distributed multi-gpu GNN train-
ing system that shares the same goal as P3, but proposes a
fundamentally different approach. It explores using a linear
regression model as a sophisticated online partitioner, which
is jointly-learned with GNN training workload. Unlike P3,
despite the sophisticated partitioner, ROC must still move
graph structure and features over network, which as we show
results in high overheads.

PaGraph [45] and NeuGraph [47] are single machine multi-
gpu frameworks for training GNNs. PaGraph reports data
copy to be a major bottleneck and focuses on reducing data
movement between CPU and GPU by caching features of
most frequently visited vertices. On the other hand, NeuGraph
uses partitioning and a stream scheduler to better overlap data
copy and computation. However, in distributed multi-gpu
setting, we observe that network communication is a major
bottleneck and accounts for a large fraction, up to 80%, of
training time while data copy time only accounts for 5%. We
note that the proposed techniques in PaGraph and NeuGraph
are orthogonal to our work and can only benefit P3, if applied.

Besides above mentioned system-side optimizations to alle-
viate scalability bottlenecks, node-wise [24], layer-wise [72],
and subgraph-based [13] sampling techniques have been
proposed. These are orthogonal to and compatible with P3.

7 Conclusion
In this paper, we looked at the problem of scalability issues in
distributed GNN training and their ability to handle large input
graphs. We found that network communication accounts for
a major fraction of training time and that GPUs are severely
underutilized due to this reason. We presented P3, a system
for distributed GNN training that overcomes the scalability
challenges by adopting a radically new approach. P3 practi-
cally eliminates the need for any intelligent partitioning of
the graph, and proposes independently partitioning the input
graph and features. It then completely avoids communicat-
ing (typically huge) features over the network by adopting a
novel pipelined push-pull execution strategy that combines
intra-layer model parallelism and data parallelism and further
reduces overheads using a simple caching mechanism. P3

exposes its optimizations in a simple API for the end user. In
our evaluation, P3 significantly outperforms existing state-of-
the-art GNN frameworks, by up to 7×.

Acknowledgements
We thank our shepherd, Chuanxiong Guo, all the anonymous
OSDI reviewers and Ramachandran Ramjee for the invaluable
feedback that improved this work. We also thank the contrib-
utors and maintainers of PyTorch and DGL frameworks.

564 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Deep Graph Library. https://www.dgl.ai/.

[2] MXNet. https://mxnet.apache.org/.

[3] NVIDIA System Management Interface.
https://developer.nvidia.com/
nvidia-system-management-interface.

[4] Open Graph Benchmark Leaderboards. https://ogb.
stanford.edu/docs/leader_nodeprop/.

[5] PyTorch. https://pytorch.org/.

[6] TensorFlow. https://www.tensorflow.org/.

[7] Turing-NLG: A 17-billion-parameter language model
by Microsoft.
https://www.microsoft.com/en-us/research/
blog/turing-nlg-a-17-billion-parameter-
language-model-by-microsoft/.

[8] Davide Bacciu, Federico Errica, and Alessio Micheli.
Contextual graph Markov model: A deep and genera-
tive approach to graph processing. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
294–303, Stockholmsmässan, Stockholm Sweden, 10–
15 Jul 2018. PMLR.

[9] Y. Bengio, A. Courville, and P. Vincent. Representation
learning: A review and new perspectives. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, 2013.

[10] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebas-
tiano Vigna. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social
networks. In Sadagopan Srinivasan, Krithi Ramam-
ritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar, editors, Proceedings of the 20th interna-
tional conference on World Wide Web, pages 587–596.
ACM Press, 2011.

[11] Paolo Boldi and Sebastiano Vigna. The WebGraph
framework I: Compression techniques. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004), pages 595–601, Manhattan, USA, 2004.
ACM Press.

[12] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
Powerlyra: Differentiated graph computation and parti-
tioning on skewed graphs. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys
’15, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[13] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient al-
gorithm for training deep and large graph convolutional
networks. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD ’19, pages 257–266, New York, NY,
USA, 2019. Association for Computing Machinery.

[14] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project adam: Building an effi-
cient and scalable deep learning training system. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 571–582, Broomfield,
CO, October 2014. USENIX Association.

[15] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. One trillion
edges: Graph processing at facebook-scale. Proc. VLDB
Endow., 8(12):1804–1815, August 2015.

[16] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, and Andrew Y. Ng. Large scale distributed
deep networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems
- Volume 1, NIPS’12, page 1223–1231, Red Hook, NY,
USA, 2012. Curran Associates Inc.

[17] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems, volume 29, pages 3844–3852. Curran Associates,
Inc., 2016.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics.

[19] S. Edunov, D. Logothetis, C. Wang, A. Ching, and
M. Kabiljo. Generating synthetic social graphs with
darwini. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), pages 567–
577, 2018.

[20] Matthias Fey and Jan E. Lenssen. Fast graph repre-
sentation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and
Manifolds, 2019.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 565

https://www.dgl.ai/
https://mxnet.apache.org/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://pytorch.org/
https://www.tensorflow.org/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

[21] Swapnil Gandhi and Yogesh Simmhan. An Interval-
centric Model for Distributed Computing over Temporal
Graphs. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pages 1129–1140, 2020.

[22] Joseph Gonzalez, Reynold Xin, Ankur Dave, Daniel
Crankshaw, and Ion Franklin, Stoica. Graphx: Graph
processing in a distributed dataflow framework. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), Broomfield, CO, October
2014. USENIX Association.

[23] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Pro-
ceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, page
17–30, USA, 2012. USENIX Association.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30,
pages 1024–1034. Curran Associates, Inc., 2017.

[25] William Hamilton. Graph Representation Learn-
ing Book. https://www.cs.mcgill.ca/~wlh/grl_
book/.

[26] William L. Hamilton, Rex Ying, and Jure Leskovec.
Representation Learning on Graphs: Methods and Ap-
plications. IEEE Data Engineering Bulletin, page
arXiv:1709.05584, September 2017.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[28] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open Graph Benchmark: Datasets for
Machine Learning on Graphs. arXiv e-prints, page
arXiv:2005.00687, May 2020.

[30] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient

training of giant neural networks using pipeline paral-
lelism. In Advances in neural information processing
systems, pages 103–112, 2019.

[31] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shiv-
aram Venkataraman, Vladimir Braverman, and Ion Sto-
ica. ASAP: Fast, approximate graph pattern mining
at scale. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
745–761, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[32] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel,
Joseph E. Gonzalez, and Ion Stoica. TEGRA: Efficient
ad-hoc analytics on evolving graphs. In 18th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), pages 337–355. USENIX Associ-
ation, April 2021.

[33] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In Proceed-
ings of the 45th Annual International Symposium on
Computer Architecture, ISCA ’18, page 776–789. IEEE
Press, 2018.

[34] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gho-
lami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer, and
Ion Stoica. Checkmate: Breaking the memory wall with
optimal tensor rematerialization. In I. Dhillon, D. Papail-
iopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 497–511, 2020.

[35] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, unjie Qian, Wencong Xiao, and Fan Yang. Anal-
ysis of large-scale multi-tenant gpu clusters for dnn train-
ing workloads. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’19, page 947–960, USA, 2019. USENIX
Association.

[36] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and
Alex Aiken. Improving the accuracy, scalability, and
performance of graph neural networks with roc. In
I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Pro-
ceedings of Machine Learning and Systems, volume 2,
pages 187–198, 2020.

[37] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
In A. Talwalkar, V. Smith, and M. Zaharia, editors, Pro-
ceedings of Machine Learning and Systems, volume 1,
pages 1–13, 2019.

[38] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, December 1998.

566 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.cs.mcgill.ca/~wlh/grl_book/

[39] Farzad Khorasani, Keval Vora, Rajiv Gupta, and
Laxmi N. Bhuyan. Cusha: Vertex-centric graph pro-
cessing on gpus. In Proceedings of the 23rd Interna-
tional Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’14, page 239–252, New
York, NY, USA, 2014. Association for Computing Ma-
chinery.

[40] Kevin Kiningham, Christopher Re, and Philip Levis.
GRIP: A Graph Neural Network Accelerator Architec-
ture. arXiv e-prints, page arXiv:2007.13828, July 2020.

[41] Thomas N. Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks. In
Proceedings of the 5th International Conference on
Learning Representations, ICLR ’17, 2017.

[42] Alex Krizhevsky. One weird trick for parallelizing
convolutional neural networks. arXiv e-prints, page
arXiv:1404.5997, April 2014.

[43] Jurij Leskovec. Dynamics of Large Networks. PhD
thesis, USA, 2008.

[44] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In Pro-
ceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, page
583–598, USA, 2014. USENIX Association.

[45] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and
Yinlong Xu. Pagraph: Scaling gnn training on large
graphs via computation-aware caching. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, pages 401–415, New York, NY, USA, 2020.
Association for Computing Machinery.

[46] Yu-Chen Lo, Stefano E. Rensi, Wen Torng, and Russ B.
Altman. Machine learning in chemoinformatics and
drug discovery. Drug Discovery Today, 23(8):1538 –
1546, 2018.

[47] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue,
Ming Wu, Lidong Zhou, and Yafei Dai. Neugraph:
Parallel deep neural network computation on large
graphs. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), pages 443–458, Renton, WA,
July 2019. USENIX Association.

[48] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’10, page 135–146, New York, NY, USA, 2010.
Association for Computing Machinery.

[49] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, pages 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.

[50] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, SOSP ’13, page 456–471,
New York, NY, USA, 2013. Association for Computing
Machinery.

[51] Aditya Pal, Chantat Eksombatchai, Yitong Zhou,
Bo Zhao, Charles Rosenberg, and Jure Leskovec. Pinner-
sage: Multi-modal user embedding framework for rec-
ommendations at pinterest. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’20, page 2311–2320,
New York, NY, USA, 2020. Association for Computing
Machinery.

[52] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T.
Nguyen, Seungmin Lee, Jaesik Choi, Sam H. Noh, and
Young ri Choi. Hetpipe: Enabling large DNN train-
ing on (whimpy) heterogeneous GPU clusters through
integration of pipelined model parallelism and data par-
allelism. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 307–321. USENIX Associa-
tion, July 2020.

[53] Namyong Park, Andrey Kan, Xin Luna Dong, Tong
Zhao, and Christos Faloutsos. Estimating node impor-
tance in knowledge graphs using graph neural networks.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’19, page 596–606, New York, NY, USA, 2019.
Association for Computing Machinery.

[54] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &;
Data Mining, KDD ’20, page 3505–3506, New York,
NY, USA, 2020. Association for Computing Machinery.

[55] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu,
Jimmy Lin, and M. Tamer Özsu. The ubiquity of large
graphs and surprising challenges of graph processing.
Proc. VLDB Endow., 11(4):420–431, December 2017.

[56] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 567

Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv e-prints,
page arXiv:1909.08053, September 2019.

[57] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June (Paul) Hsu, and Kuansan Wang. An
overview of microsoft academic service (mas) and appli-
cations. In Proceedings of the 24th International Con-
ference on World Wide Web, WWW ’15 Companion,
page 243–246, New York, NY, USA, 2015. Association
for Computing Machinery.

[58] Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wen-
gong Jin, Andres Cubillos-Ruiz, Nina M. Donghia,
Craig R. MacNair, Shawn French, Lindsey A. Car-
frae, Zohar Bloom-Ackermann, Victoria M. Tran, Anush
Chiappino-Pepe, Ahmed H. Badran, Ian W. Andrews,
Emma J. Chory, George M. Church, Eric D. Brown,
Tommi S. Jaakkola, Regina Barzilay, and James J.
Collins. A deep learning approach to antibiotic dis-
covery. Cell, 180(4):688 – 702.e13, 2020.

[59] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations, 2018.

[60] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[61] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. Deep Graph Library: A Graph-
Centric, Highly-Performant Package for Graph Neu-
ral Networks. arXiv e-prints, page arXiv:1909.01315,
September 2019.

[62] Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D. Owens. Gun-
rock: A high-performance graph processing library on
the gpu. SIGPLAN Not., 51(8), February 2016.

[63] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph
convolutional networks, 2019.

[64] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S.
Yu. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, pages 1–21, 2020.

[65] Hongxia Yang. Aligraph: A comprehensive graph neu-
ral network platform. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD ’19, pages 3165–3166,
New York, NY, USA, 2019. Association for Computing
Machinery.

[66] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L. Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD ’18, pages 974–983, New
York, NY, USA, 2018. Association for Computing Ma-
chinery.

[67] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[68] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang
Hu, Xianzheng Song, Zhibang Ge, Lin Wang, Zhiqiang
Zhang, and Yuan Qi. AGL: A scalable system for
industrial-purpose graph machine learning. Proc. VLDB
Endow., 13(12):3125–3137, August 2020.

[69] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai
Qian, Xue Li, and Weimin Zheng. Exploring the hidden
dimension in graph processing. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 285–300, Savannah, GA, November
2016. USENIX Association.

[70] Muhan Zhang and Yixin Chen. Link prediction based
on graph neural networks. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 5165–5175. Curran Asso-
ciates, Inc., 2018.

[71] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. Graph neural networks: A review of
methods and applications, 2019.

[72] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou
Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional
networks. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 32, pages 11249–11259. Curran Associates, Inc.,
2019.

568 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	osdi21-01-front-matter
	osdi21_full_proceedings_interior_papers.pdf
	osdi21-qiao
	Introduction
	Background: Distributed DL Training
	System Throughput
	Statistical Efficiency
	Existing DL Schedulers

	The Goodput of DL Training and Pollux
	Modeling Statistical Efficiency
	Modeling System Throughput

	Pollux Design and Architecture
	PolluxAgent: Job-level Optimization
	PolluxSched: Cluster-wide Optimization
	Implementation

	Evaluation
	Experimental Setup
	Testbed Macrobenchmark Experiments
	Simulator Experiments
	Scheduling Fairness
	Other Effects on Scheduling

	More Applications of Pollux
	Cloud Auto-scaling
	Hyper-parameter Optimization (HPO)

	Artifact

	Additional Related Work
	Conclusion
	Acknowledgements

	osdi21-lai
	Introduction
	Background and Motivation
	Federated Learning
	Challenges in Federated Learning
	Limitations of Existing FL Solutions

	Oort Overview
	Architecture
	Oort Interface

	Federated Model Training
	Tradeoff Between Statistical and System Efficiency
	Client Statistical Utility
	Trading off Statistical and System Efficiency
	Adaptive Participant Selection

	Federated Model Testing
	Preserving Data Representativeness
	Enforcing Diverse Data Distribution

	Implementation
	Evaluation
	Methodology
	FL Training Evaluation
	End-to-End Performance
	Performance Breakdown
	Sensitivity Analysis

	FL Testing Evaluation
	Preserving Data Representativeness
	Enforcing Diverse Data Distribution

	Related Work
	Conclusion

	osdi21-wang-haojie
	Approximate_Graph_Transfer_OSDI_2021 (11)
	Introduction
	Background and Motivation
	Design Overview
	Mutation Generator
	Mutation Generation Algorithm
	Example Mutant Categories

	Mutation Corrector
	Theoretical Foundations
	Mutation Correction Algorithm
	Fusing Correction Kernels

	Program Optimizer
	Program Splitting
	Subprogram Optimization
	Post-Optimizations

	Implementation
	Evaluation
	Experimental Setup
	End-to-End Evaluation
	[C1]Case Studies
	Tensor-Level Optimization
	Operator-Level Optimization
	Graph-Level Optimization
	Kernel Fusion

	TVM and Ansor
	Ablation and Sensitivity Studies
	Searching Time

	Related work
	Conclusion

	Approximate_Graph_Transfer_OSDI_2021 (4)
	Artifact Appendix

	osdi21-luo
	Introduction
	Threat Model and Background
	Threat Model
	Differential Privacy
	Assumptions

	PrivateKube Architecture
	Overview
	PrivateKube Abstractions
	Example Pipeline
	Kubernetes – PrivateKube Distinctions

	DPF Algorithm
	Limitations of DRF and Variations
	DPF
	DPF Analysis
	Best-effort Scheduling for Higher Demands
	Scheduling Compute Alongside Privacy

	DPF Extensions
	Time-based DPF
	DPF with Rényi DP
	Supporting Varied DP Semantics

	Evaluation
	Microbenchmark (Q1, Q2, Q3)
	DPF Behavior on a Single Block
	DPF Behavior with Mice Percentage
	DPF Behavior on Multiple Blocks
	DPF-N vs. DPF-T
	Traditional DP vs. Rényi DP

	Macrobenchmark (Q1, Q4, Q5)
	Accuracy of Individual Models with DP Semantic
	DPF Behavior with Macrobenchmark

	Kubernetes Tool Reuse (Q6)

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Additional Evaluation Results

	osdi21-koo
	Introduction
	Background and Related Work
	Traditional Block I/O Interface
	Review of In-Storage Indexing
	File System over Key-value Store
	LSM-Tree Basics

	Overall Architecture of Kevin
	Mapping of File and Directory
	Indexing of KV Objects
	Mitigating Indexing Overhead

	Implementing VFS Operations
	Crash Consistency
	Maintaining Consistency in KevinFS
	Transaction Processing in KevinSSD

	Experiments
	Experimental Setup
	Experimental Results
	Results with Micro-benchmarks
	Results with Realistic Workloads
	Results under Aged File Systems
	Analyzing Effects of In-storage Indexing

	Conclusion
	Artifact Appendix

	osdi21-wang-qing
	Introduction
	Background and Motivation
	NUMA Impacts on PM
	NUMA Impacts on PM Indexes
	Limitations of DRAM-orient approaches

	Key Ideas
	Design
	Overview
	Global & Volatile View (GV-View)
	Partial & Crash-consistent View
	Hot Set Identification
	NAL Switch
	Recovery
	Correctness
	Definitions
	Isolation Guarantee
	Failure Atomicity

	Implementation
	Evaluation
	Experimental Setup
	Real Indexes
	Variable-length Values
	Dynamic Workloads
	Sensitivity Analysis
	Comparison with NR
	Overheads of Nap
	Real Application

	Discussion
	Related Work
	Conclusion

	osdi21-hwang
	Introduction
	Understanding Existing Storage Stacks
	Measurement Setup
	Existing Storage Stacks: Low latency or high throughput, but not both

	blk-switch Design
	Block Layer is the New Switch
	Request Steering
	Application Steering

	blk-switch Implementation Details
	Evaluation
	Evaluation Setup
	Goal: Low-Latency and High-Throughput
	RocksDB with blk-switch
	Understanding blk-switch Performance

	Related Work
	Conclusion

	osdi21-tai
	Introduction
	Background and Related Work
	Cinterrupts
	Design Overview
	Adaptive Coalescing
	Urgent
	Barrier
	Out-of-Order Urgent

	Implementation
	Software Modifications
	Kernel Modifications
	Application Case Studies

	Hardware Modifications
	Firmware Emulation

	Discussion

	Evaluation
	Methodology
	Selection of and thr
	Microbenchmarks
	Macrobenchmarks
	RocksDB
	KVell

	Colocated Applications
	RocksDB + Dump Tool
	RocksDB + KVell

	Cinterrupts for Networking
	Conclusion
	Acknowledgements

	osdi21-han
	Introduction
	Background
	SSD Architecture
	Zone Mapping in ZNS SSD
	F2FS Segment Management

	ZNS+ Interface and File System Support
	Motivation
	LFS-aware ZNS+ Interface
	Internal Zone Compaction
	Sparse Sequential Overwrite

	ZNS+-aware LFS Optimization
	Copyback-aware Block Allocation
	Hybrid Segment Recycling

	Experiments
	Segment Compaction Performance
	Threaded Logging Performance
	SSD-internal Chip Utilization
	Copyback-aware Block Allocation
	Performance at High H/W Parallelism
	Real SSD Performance

	Related Work
	Conclusion and Future Work

	osdi21-khan
	Introduction
	Challenges
	Selective Profiling
	Targeted Monitoring
	Incremental Monitoring
	Sampling

	DMon
	Static Memory Access Pattern Analysis
	Optimizations Implemented in DMon

	Implementation
	Evaluation
	Selective Profiling Efficiency
	Effectiveness
	Real-World Case Studies
	Sensitivity Analysis

	Related Work
	Conclusion
	Artifact Appendix

	osdi21-rodrigues
	Introduction
	Design Overview
	Compression
	Parsing Messages
	Compressing Messages
	Decompressing Messages
	On-disk Format

	Search
	Handling Ambiguous Tokens
	Optimizing CLP Queries

	Handling Special Cases
	Distributed Architecture

	Wildcards and Schemas
	Wildcard String Tokenization
	Comparing Expressions

	Schema Design
	Compressed Persistent Caching
	Data Scrubbing and Obfuscation
	Evaluation
	Experiment Setup
	Compression Speed and Ratio
	Search Performance
	Horizontal, Vertical, and Capacity Scaling

	Related Work
	Conclusion

	osdi21-wang-jiachen
	Introduction
	Background and Motivation
	Learning Concurrency Control
	The learning framework
	Decomposing existing CC algorithms

	Polyjuice Design
	Overview
	CC policy: state space
	CC policy: action space
	Validation for correctness
	Learning backoff time

	Training Policies
	Training using Evolutionary Algorithm
	Alternative training method
	Training for real-world deployments

	Implementation
	Evaluation
	Experimental setup
	TPC-C
	A case study of learned policy
	Bigger benchmarks
	Training
	Coping with real-world workloads
	Trace analysis
	Cost of policy switching
	Running a policy trained on a different workload

	Related Work
	Discussion
	Artifact Appendix

	osdi21-shen
	Introduction
	Background
	Approach and Challenges
	Our approach
	Challenges

	Design and Implementation
	Consistent and Parallel Log Cleaning
	Locality-preserving Multi-version Column Store
	Two-phase Concurrent Index Updating

	No Compromise: Availability
	Evaluation
	Experimental Setup
	Overall Performance
	Performance Degradation
	Freshness
	Recovery
	Parallel Log Cleaning
	Multi-version Column Store
	Concurrent Index Updating

	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix

	osdi21-ibanez
	Introduction
	The nanoPU Design
	Thread-Safe Register File Interface
	How an application uses the interface

	Thread Scheduling in Hardware
	How the hardware thread scheduler works

	The nanoPU NIC Pipeline

	Our nanoPU Implementation
	RISC-V Register File Network Interface
	Bounded Thread Scheduling in Hardware
	Prototype NIC Pipeline
	The nanoPU HW/SW Interface
	How It All Fits Together

	The nanoPU Applications
	Example Application Classes

	Evaluation
	Methodology
	Microbenchmarks
	Register file interface
	Hardware thread scheduling
	Prototype NIC pipeline

	Application Benchmarks

	Discussion
	Related Work
	Conclusion
	Artifact Appendix

	osdi21-hunter
	Introduction
	The challenges of coordinating Hugepages
	Overview of TCMalloc
	Temeraire's approach
	The overall algorithm
	HugeAllocator
	HugeCache
	HugeFiller
	HugeRegion
	Memory Release

	Evaluation of Temeraire
	Application Case Studies
	Fleet experiment
	Full rollout trajectories

	Strategies used in building Temeraire
	``Empirical'' distribution sampling
	Heap tracing
	Telemetry
	Experiment framework

	Future Work
	Related work
	Conclusion

	osdi21-feng
	Introduction
	Motivation
	State-of-the-art Enclaves
	State-of-the-art Fall Short

	System Overview
	Architecture
	Threat Model

	Design
	Fine-grained Flexible Memory Isolation
	Scalable Memory Integrity Protection
	Secure Memory initialization with Shadow Fork
	On-demand Cache Line Locking

	Implementation
	Hardware Implementation
	Software Implementation

	Evaluation
	Methodology
	Microbenchmarks
	Benchmark Suites
	Case Study: Serverless Computing
	Case Study: Secure MapReduce
	Hardware Costs

	Discussion
	Related Work
	Conclusion
	Acknowledgments

	osdi21-bhardwaj
	Introduction
	Background and Related Work
	Node Replication (NR)
	NR Example

	Concurrent Node Replication (CNR)
	CNR Example
	Multi-log Scan Operations

	NrOS Design
	Physical Memory Management
	Virtual Memory Management
	File System
	Scaling NR-FS Writes

	Process Management and Scheduling
	Log Garbage Collection

	Implementation
	Evaluation
	Baseline Node Replication Performance
	NR-FS
	Microbenchmark: NR-FS vs tmpfs
	LevelDB Application Benchmark

	NR-vMem
	Map Performance
	Unmap and TLB Shootdown Performance
	Page Table Replication with Memcached

	Conclusion and Future work
	Artifact Appendix

	osdi21-ahmad
	1 Introduction
	2 Goals, threat model, and challenges
	2.1 Goals
	2.2 Threat model and assumptions
	2.3 Challenges

	3 Architecture and overview of design
	3.1 Architecture
	3.2 Protocol

	4 FastPIR: A new CPIR scheme
	4.1 Background: The BFV cryptosystem
	4.2 The FastPIR scheme
	4.3 Reducing the cpu cost of rotations
	4.4 Reducing the number of rotations

	5 Implementation details
	6 Evaluation
	6.1 Message latency
	6.2 Server-side cpu consumption
	6.3 Client-side resource overheads
	6.4 Discussion on voice quality
	6.5 Comparison of CPIR schemes

	7 Related work
	8 Summary and future work

	osdi21-li
	1 Introduction
	2 Motivation and problem statement
	2.1 Motivation
	2.2 Decentralized search
	2.3 Potential approaches
	2.4 Threat model

	3 System overview
	4 Verifiable search
	5 Kanban
	6 Oblivious search
	7 Implementation
	8 Evaluation
	8.1 Serving performance
	8.2 Verification cost
	8.3 Fault tolerance

	9 Discussion
	10 Related Work
	11 Conclusion

	osdi21-yang
	Introduction
	Background
	Ethereum
	Consensus Bugs

	Overview
	Design
	Execution Model
	Test Case
	Mutation

	Implementation
	Fuzzing Harnesses
	Crash Debugger

	New Consensus Bugs
	Shallow Copy Bug
	Transfer-After-Destruct Bug
	Responsible Vulnerability Disclosure

	Evaluation
	Bug Finding Capability
	Code Coverage
	Throughput
	Debugging

	Discussion and Limitations
	Related Work
	Conclusion
	Acknowledgements

	osdi21-kumar
	Introduction
	Secure Computation Background
	Circuit Representation
	CKKS Homomorphic Encryption
	Garbled Circuits
	Efficiently Executing Circuits
	Naïve Baseline
	Pipelining Garbling and Evaluation
	Reclaiming Wire Memory

	Memory Overhead of Secure Computation
	Analysis of the Memory Demand
	Scaling Collaborative Applications

	Overview of MAGE
	Address Translation in MAGE
	MAGE's Bytecode Representation
	MAGE's Ecosystem and its Extensibility

	MAGE's Engine
	Parallel/Distributed Engine
	Distributed SMPC

	MAGE's Planner
	Organization of MAGE's Planner
	MAGE's First Stage: Placement
	Unrolling the DSL Code
	Memory Allocation Strategy

	MAGE's Second Stage: Replacement
	MAGE's Third Stage: Scheduling

	Implementation
	MAGE's Interpreter
	Extending MAGE with New Protocols
	Garbled Circuit Protocol Driver
	CKKS Protocol Driver

	Evaluation
	Workloads
	SMPC Collaborative Applications
	CKKS Homomorphic Encryption
	Implementation of Workloads

	Empirical Methodology
	Comparison to Existing Frameworks
	Overhead of Swapping Pages
	Overhead of Planning
	Impact of Parallelism
	SMPC in Wide-Area Networks
	Applications
	Detecting Password Reuse
	Private Information Retrieval

	Related Work
	Conclusion
	Artifact Appendix

	osdi21-burkhalter
	Introduction
	Overview
	End-to-End Privacy
	Zeph in a Nutshell
	Threat Model

	Encryption for Privacy Transformations
	Decoupling Encryption from Privacy Transformations
	Privacy Transformation Functions
	Transformation Tokens
	Transformations Across Different Trust Domains

	Zeph System Design
	User API and Privacy Policies
	Writing Encrypted Data Streams
	Matching Queries with Privacy Policies
	Coordinating Privacy Transformations

	Implementation
	Evaluation
	Experimental Setup
	Data Producer
	Privacy Controllers
	End-to-End Application Scenarios

	Related Work
	Conclusion

	osdi21-yao
	Introduction
	Overview
	Two-Stage Sampling
	Candidate Invariant Enumeration
	Monotonic Invariant Refinement
	Evaluation
	Related Work
	Conclusions
	Artifact Appendix

	osdi21-chajed
	Introduction
	Related work
	Perennial 2.0 vs Perennial 1.0
	Related verification frameworks

	System design
	Programming with GoJournal
	GoJournal implementation

	Verification overview
	Specifying GoJournal
	File representation
	Lifting
	Reads and writes
	Crash-aware locking
	Crash framing
	Commit
	Summary

	Verifying GoJournal
	Write-ahead logging (wal)
	Logically atomic crash specifications
	Concurrency within a block (obj)

	Implementation
	Evaluation
	GoJournal is functional and performant
	GoJournal concurrency improves performance
	Journaling atomicity simplifies proofs
	Perennial enables modular crash reasoning
	Proof effort
	Verification prevents bugs

	Conclusion
	Artifact
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Results from artifact VM

	osdi21-lehmann
	Introduction
	Goals & Related Work
	Design
	Auditable Policies via Refined Models
	Access Control
	Information Flow Control
	Implicit Flow Control

	Brief Intro to Refinement Types & IFC
	Refinement Types
	Compositional IFC

	Implementation
	Model API
	Controller & View API
	Policies and Updates

	Verification
	Evaluation
	Expressiveness
	Effort
	Auditability

	Conclusion & Future Work
	Artifact Appendix

	osdi21-mardani
	Introduction
	Motivation and Background
	Web Computation Delays
	Browser Computation Model

	Overview
	Potential Benefits
	Goals and Approach
	Challenges

	Design
	Server-side Operation
	Generating signatures
	Signature granularity

	Client-side Operation
	Dynamic scheduling
	Handling Missing Signatures
	Function Offloading and Execution

	Discussion

	Implementation
	Evaluation
	Methodology
	Page Load Speedups
	Comparison to State-of-the-Art
	Understanding Horcrux's Benefits
	Additional Results

	Related Work
	Conclusion

	osdi21-zhang
	Introduction
	Preliminaries
	Problem Formulation
	Sample Redundant Checks in bzip2
	Redundant Sanitizer Checks

	Design
	Check Identification
	Dynamic Check Pattern Capturing
	Static Check Pattern Capturing
	Extracting Static Features with Three Schemes
	Security Consideration
	Extension Using Static Analysis

	Sanitizer Check Reduction

	Implementation
	Evaluation
	Cost Study
	Vulnerability Detectability Study
	Comparison Study
	Combining SanRazor with ASAP

	Discussion
	Characteristics of Removed Checks
	False Positive Analysis
	False Negative Analysis
	Effects of Workload Selection

	Related Work
	Conclusion

	osdi21-thorpe
	Introduction
	Background
	Design Overview
	Tasks and Pipelining
	Bounded Asynchrony
	Bounded Asynchrony at Weight Updates
	Bounded Asynchrony at Gather
	Convergence Guarantee

	Lambda Management
	Evaluation
	Experiment Setup
	Instance Selection
	Asynchrony
	Effects of Lambdas
	Comparisons with Existing Systems
	Breakdown of Performance and Costs

	Related Work
	Parallel Computation for Model Training
	GNN Training and Graph Systems
	Graph-Parallel Systems

	Conclusion
	Artifact Appendix
	Artifact Summary
	Artifact Check-list
	Description
	Dorylus's Codebase
	Deploying Dorylus
	Preparing the Data
	Running Dorylus.

	osdi21-wang-yuke
	Introduction
	Background and Related Work
	Graph Neural Networks
	Graph Processing Systems
	Deep Learning Frameworks

	Input Analysis of GNN Applications
	GNN Model Information
	Graph Information

	2D Workload Management
	Coarse-grained Neighbor Partitioning
	Fine-grained Dimension Partitioning
	Warp-based Thread Alignment

	Specialized Memory Optimization
	Community-aware Node Renumbering
	Warp-aware Memory Customization

	Design Optimization
	Evaluation
	Experiment Setup
	Compared with DGL
	Compared with other Frameworks
	Optimization Analysis
	Additional Studies

	Conclusion
	Acknowledgment
	Artifact Appendix

	osdi21-mohoney
	osdi21-gandhi
	Introduction
	Background & Challenges
	Graph Neural Networks
	Distributed Training of GNNs
	Challenges in Distributed GNN Training
	Challenge #1: Communication Bottlenecks Due to Data Dependencies
	Challenge #2: Ineffectiveness of Partitioning
	Challenge #3: GPU Underutilization

	P3: Pipelined Push-Pull
	Independent Hash Partitioning Graph & Features
	Push-Pull Parallelism
	Computation Graph Generation
	Computation Graph Execution

	Pipelining
	Caching
	P3 API

	Implementation
	Evaluation
	Overall Performance
	Impact of Sampling
	Impact of Partitioning Strategy
	Impact of Layers
	Impact of Features
	Microbenchmarks
	P3's Scaling Characteristics
	Accuracy
	Comparison with ROC
	P3 Shortcomings

	Related Work
	Conclusion

	Blank Page

