
P3: Distributed Deep Graph
Learning at Scale

Swapnil Gandhi, Anand Iyer
Microsoft Research

OSDI 2021

Graph Neural Networks

ReLU SoftMax

Graph ConvolutionGraph Convolution

Link Prediction

Node
Classification

Graph

?

?
?

?

Graph
Classification

?

Graph Neural Networks

Input Graph

Graph Structure: What (to propagate?)
Neural Network: How (information is transformed)

A
B

C

E
F

D

G
H

I

J
Layer 1

Layer 2

A

E

B

F

A

F

A

C

2-hop computation graph of A

NN2

NN1

NN1

2

GNN Training

Large Graphs

Millions of nodes,
billions of edges

Hundreds or
thousands of features

New Models

More sophisticated,
complex architectures

Several proposals: GCN,
GAT, GIN, …

Significant interest in distributed GNN training 33

+

Distributed Graph Processing
Techniques

Distributed Neural Network
Techniques

Distributed Graph
Neural Networks

=

4

Graph
Partitioning

Distributed Graph
Processing
Techniques

Local Edge Cut Edge

A
B

C

E
F

D

G
H

I

J

A
B

C

E
F

D

G
H

I

J

M1

M2

M3 M4

5

Graph
Partitioning

Distributed Graph
Processing
Techniques

M3

F

G
H

M4

B

E
F

D

H I

J

A
B

E
F

M1 M2

B
C

F

D

Edge-cut, vertex-cut, hybrid, …

Local Edge Cut Edge 6

M3

M1 M2

M4

Data
Samples

Data-parallel
Training

Distributed Neural
Network Processing

Techniques

Gradient
Synchronization

7

Distributed Graph Neural Networks

S1

S2

S4

Layer 1

Layer 1

Layer 1

Layer 1

Layer 2

Layer 2

Layer 2

Layer 2

Layer K

Layer K

Layer K

Layer K

…

…

…

…

M1

M2

M3

M4

Input

Input

Input

Input

Partitioned
Graph FeaturesM1

M2

M3

M4

GNN Computational Graph Forward Pass Backward Pass Gradient Sync EmbeddingInput Features

S2

8

10

Network overhead dominates epoch time,
rendering GPUs underutilized ~80% of the time

Partitioning is ineffective, and in many cases
counterproductive

0

4

8

12

OGB-Product OGB-Paper OGB-Product OGB-Paper

GCN GraphSAGE

A
ve

ra
ge

 E
po

ch
 T

im
e

(s
)

Scheme Part.
Time

Epoch Time
k=2 k=3 k=4

Hash 2.87 9.8 13.6 29.3
METIS 4264 5.3 9.2 21.1

k=Number of GNN Layers

~80%

P3 proposes push-pull parallelism, a new
technique for distributed GNN training that

effectively eliminates these overheads
9

P3: Pipelined Push Pull

10

Feature movements cause
dominant network traffic

Graph structure can be
compactly represented

Partition them as
single-entity

Existing systems consider
graph & features indivisible

Reduce data communicated
by avoiding feature movement

Independent Partitioning of
Graph & Features

A
B

C

E
F

D

G
H

I

J

Independent Partitioning
Graph Structure: Partitioned using random hash func
Features: Partitioned along feature dimension

A
B

C

E
F

D

G
H

I

J

M1 M2

M3 M4

Graph Structure Features

M1 M2 M3 M4

11

Independent Partitioning
Graph Structure: Partitioned using random hash func
Features: Partitioned along feature dimension

A
B

E
F

M1 M2

B
C

D

F

M3

F

G
H

M4

B

E F
D

H
I

J

12

Pull 2-hop neighborhood of node A on machine M1

GetInNeighbors(E) GetInNeighbors(B)

A B

E
F

M1 M2

B
C

F
D

M3

F

G H
M4

B
E F

D

H I
J

A B
C

F
E

F

A

RemoteLocal

Computation Graph Creation

Features not moved
over network

Structure moved
over network

Results in significant reduction in data communication 14

A

E B

A C FA F

13

Hybrid Parallelism

A B

E
F

M1 M2

B
C

F
D

M3

F

G H
M4

B
E F

D

H I
J

Model parallelism
incurs overheads
P3 combines data

and model
parallelism

Cannot use data
parallelism

Use Data
Parallelism

A

E B

A C FA F

Existing Systems

A

E B

A C FA F

P3

14

P3: Distributed Graph Neural Networks

Partitioned
Graph Feature Slice

Computation
Graph Creation Push Computation Graph

M1

M2

M3

M4

15

P3: Distributed Graph Neural Networks

Layer 1M

Layer 1M

Layer 1M

Layer 1M

⨁

⨁

⨁

⨁

Intra-Layer Model Parallelism

M1

M2

M3

M4

GNN Computational Graph Forward Pass Backward Pass Gradient Sync EmbeddingInput Features

16

17

0

25

50

75

100

OGB-Product OGB-Paper OGB-Product OGB-Paper

GCN GraphSAGE

Co
m

m
un

ic
at

io
n

O
ve

rh
ea

d
(%

 o
f e

po
ch

 ti
m

e)
Feature Activation

~20%

GNNs typically use small
hidden dimensions

small intermediate
activations

Enables faster training across range of GNN models and datasets 17

P3: Distributed Graph Neural Networks

Layer 1M Layer 2

Layer 1M Layer 2

Layer 1M Layer 2

Layer 1M Layer 2

⨁

⨁

⨁

⨁

Layer K

Layer K

Layer K

Layer K

…

…

…

…

Layer 1D

Layer 1D

Layer 1D

Layer 1D

Intra-Layer Model Parallelism Data Parallelism
SWITCH

M1

M2

M3

M4

GNN Computational Graph Forward Pass Backward Pass Gradient Sync EmbeddingInput Features

18

…

P3: GNN Training

Forward Pass Backward Pass

M1

M2

M3

M4

1M 1D 1D 1M

1M 1D 1D 1M

1M 1D 1D 1M

1M 1D 1D 1M

2M 2D 2D 2M

2M 2D 2D 2M

2M 2D 2D 2M

2M 2D 2D 2M

Data Dependency

Mini-Batch B1 Mini-Batch B2

Hybrid Parallelism requires communication in
forward and backward pass

19

P3: GNN Training

M1

M2

M3

M4

1M

1M

1M

1M

Mini-Batch B1

1D 1D

1D 1D

1D 1D

1D 1D

1M

1M

1M

1M

…

Communication results in computation stall

Forward Pass Backward Pass Data DependencyStall

20

P3: Pipelining

Comm. 3M Comm. 3D

M1

M2

M3

M4

1M 2M W1 W2 W3

Weight Versions

W1 W2 W3

W1 W2 W3

W1 W2 W3

1D 1D 3M 2D 2D 1M 4M 3D 3D 2M 5M 4D 4D 3M

1M 2M 1D 1D 3M 2D 2D 1M 4M 3D 3D 5M 4D 4D 3M

1M 2M 1D 1D 3M 2D 2D 1M 4M 3D 3D 5M 4D 4D 3M

1M 2M 1D 1D 3M 2D 2D 1M 4M 3D 3D 5M 4D 4D 3M

2M

2M

2M

Overlaps computation with communication
Improves performance by up to 50%

Steady State

Forward Pass Backward Pass Data DependencyStall

21

P3: Caching
Cache graph structure and/or features
Improves performance by up to 1.7x

22

A B

E
F

M1

M3

F

G
H

M4

B
E F

D

H I
J

M2

B
C

D
F

Structure : Partitioned
Feature : Partitioned

M1

A
B

C

E F
D

G H I
J

M2

A
B

C

E F
D

G H I
J

M3

A
B

C

E F
D

G H I
J

M4

A
B

C

E F
D

G H I
J

Structure : Cached
Feature : Partitioned

P3 exposes a simple API for developers

partition() Independently partition graph and features,
and cache if possible

scatter() Generate message vector

gather() Aggregate message vector

transform() Compute partial activation

sync() Accumulate partial activation

apply() Compute output activation

P3: API

P3: Distributed Deep Graph Learning at Scale

Swapnil Gandhi?
Microsoft Research

Anand Padmanabha Iyer
Microsoft Research

Abstract
Graph Neural Networks (GNNs) have gained significant atten-
tion in the recent past, and become one of the fastest growing
subareas in deep learning. While several new GNN architec-
tures have been proposed, the scale of real-world graphs—in
many cases billions of nodes and edges—poses challenges
during model training. In this paper, we present P3, a sys-
tem that focuses on scaling GNN model training to large
real-world graphs in a distributed setting. We observe that
scalability challenges in training GNNs are fundamentally
different from that in training classical deep neural networks
and distributed graph processing; and that commonly used
techniques, such as intelligent partitioning of the graph do not
yield desired results. Based on this observation, P3 proposes
a new approach for distributed GNN training. Our approach
effectively eliminates high communication and partitioning
overheads, and couples it with a new pipelined push-pull par-
allelism based execution strategy for fast model training. P3

exposes a simple API that captures many different classes
of GNN architectures for generality. When further combined
with a simple caching strategy, our evaluation shows that P3 is
able to outperform existing state-of-the-art distributed GNN
frameworks by up to 7⇥.

1 Introduction
Deep learning, in the form of Deep Neural Networks (DNNs),
has become the de-facto tool for several challenging applica-
tions in diverse fields such as computer vision [27], speech
recognition [28] and natural language processing [18], where
they have produced results on par with human experts [9].
In the recent past, there has been a significant interest in
Graph Neural Networks (GNNs)—neural networks that op-
erate on graph structured data—which has made them one
of the fastest growing subareas in deep learning [25]. Due to
the expressiveness of graphs in capturing the rich relational
information between input elements, GNNs have enabled
breakthroughs in many important domains including recom-
mendation systems [51,66], knowledge graphs [53], and drug
discovery [46, 58].

In a GNN, the nodes in the input graph are associated
with features and labels. Typical tasks in GNNs include node
classification (predicting the class label of a node) [41], link
prediction (predicting the possibility of a link between given
nodes) [70] and graph classification (predicting the class label

?Work done during an internship at Microsoft Research.

of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure to learn representations—low-
dimensional vector embeddings—of nodes. Thus, learning
such deep encodings is the key goal of GNNs. Several novel
GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17, 41] and Graph
Attention Networks (GATs) [59]. While each have their own
unique advantages, they fundamentally differ in how the graph
structure is used to learn the embeddings and what neural net-
work transformations are used to aggregate neighborhood
information [64].

At a high level, GNNs learn embeddings by combining
iterative graph propagation and DNN operations (e.g., ma-
trix multiplication and convolution). The graph structure is
used to determine what to propagate and neural networks
direct how aggregations are done. Each node creates a k-hop
computation graph based on its neighborhood, and uses their
features to learn its embedding. One of the key differentiators
between training GNNs and DNNs is the presence of depen-
dencies among data samples: while traditional DNNs train
on samples that are independent of each other (e.g., images),
the connected structure of graph imposes dependencies. Fur-
ther, it is common to have a large number of dense features
associated with every node—ranging from 100s to several
1000s [29, 66, 68]—in the graph. Due to this, the k-hop com-
putation graphs created by each node can be prohibitively
large. Techniques such as neighborhood sampling [24] help
to some extend, but depending on the graph structure, even
a sampled computation graph and associated features may
not fit in the memory of a single GPU, making scalability a
fundamental issue in training GNNs [71]. With the prevalence
of large graphs, with billions of nodes and edges, in academia
and the industry [55], enabling GNN training in a distributed
fashion1 is an important and challenging problem.

In this paper, we propose P3,2 a system that enables ef-
ficient distributed training of GNNs on large input graphs.
P3 is motivated by three key observations. First, due to the
data dependency, we find that in distributed training of GNNs,
a major fraction of time is spent in network communication
to generate the embedding computation graph with features.
Second, we notice that relying on distributed graph processing
techniques such as advanced partitioning schemes, while use-
ful in the context of graph processing, do not benefit GNNs

1Using more than one machine, each with 1 or more GPUs.
2for Pipelined Push-Pull.

23

Implementation & Evaluation

• Implemented on Deep Graph Library (DGL) v0.5
• Uses PyTorch v1.6

• Evaluated using 16 NVIDIA Tesla P100 GPUs
§ OGN-Product: 123M edges, |F|=100
§ OGN-Paper: 1.6B edges, |F|=128
§ UK-2006-05: 2.9B edges, |F|=256

• Several GNN architectures
• GCN [NeurIPS ‘16]
• GraphSAGE [NeurIPS ‘17]

24

P3 Performance

58
.1

6

59
.2

6 88
.4

3

89
.3

5

15
1.

32 17
7.

92

7.
91

8.
91 12

.7
2

13
.8

6

21
.3

4

23
.1

4

0

50

100

150

200

250

GCN GraphSage GCN GraphSage GCN GraphSage

OGB-Product OGB-Paper UK-2006-05

A
ve

ra
ge

 E
po

ch
 T

im
e

(s
)

DGL P3

Up to 7x speedup

25

P3

P3 Scaling

3.14 4.47 5.98
9.83

16.68

26.38

2.18 2.32 2.49 3.11 3.97 5.53
0

10

20

30

16 32 64 128 256 512

Features

A
ve

ra
ge

 E
po

ch
 T

im
e

(s
) DGL P3

GraphSAGE | OGB-Paper

26

P3

P3 Shortcomings

89.36 89.35 89.87 90.54 90.73 90.18 90.73 91.29

11.67 13.86

31.91

46.72

71.34

97.21

114.67
123.72

0

50

100

150

16 32 48 64 80 96 112 128

A
ve

ra
ge

 E
po

ch
 T

im
e

(s
)

#Hidden Dimension

DGL P3

GraphSAGE | OGB-Paper | Feature Size: 128

27

P3

More evaluation in the paper

• GNN Models: GAT [ICLR’18], SGCN [ICML’19]
• Larger Datasets: UK-Union (|E|=5.5B), Facebook (|E|=10B)
• Study impact of
• Sampling
• Partitioning Strategies
• Number of Layers
• Pipelining
• Caching

• Scaling Characteristics
• Comparison with ROC [MLSys’20]

P3: Distributed Deep Graph Learning at Scale

Swapnil Gandhi?
Microsoft Research

Anand Padmanabha Iyer
Microsoft Research

Abstract
Graph Neural Networks (GNNs) have gained significant atten-
tion in the recent past, and become one of the fastest growing
subareas in deep learning. While several new GNN architec-
tures have been proposed, the scale of real-world graphs—in
many cases billions of nodes and edges—poses challenges
during model training. In this paper, we present P3, a sys-
tem that focuses on scaling GNN model training to large
real-world graphs in a distributed setting. We observe that
scalability challenges in training GNNs are fundamentally
different from that in training classical deep neural networks
and distributed graph processing; and that commonly used
techniques, such as intelligent partitioning of the graph do not
yield desired results. Based on this observation, P3 proposes
a new approach for distributed GNN training. Our approach
effectively eliminates high communication and partitioning
overheads, and couples it with a new pipelined push-pull par-
allelism based execution strategy for fast model training. P3

exposes a simple API that captures many different classes
of GNN architectures for generality. When further combined
with a simple caching strategy, our evaluation shows that P3 is
able to outperform existing state-of-the-art distributed GNN
frameworks by up to 7⇥.

1 Introduction
Deep learning, in the form of Deep Neural Networks (DNNs),
has become the de-facto tool for several challenging applica-
tions in diverse fields such as computer vision [27], speech
recognition [28] and natural language processing [18], where
they have produced results on par with human experts [9].
In the recent past, there has been a significant interest in
Graph Neural Networks (GNNs)—neural networks that op-
erate on graph structured data—which has made them one
of the fastest growing subareas in deep learning [25]. Due to
the expressiveness of graphs in capturing the rich relational
information between input elements, GNNs have enabled
breakthroughs in many important domains including recom-
mendation systems [51,66], knowledge graphs [53], and drug
discovery [46, 58].

In a GNN, the nodes in the input graph are associated
with features and labels. Typical tasks in GNNs include node
classification (predicting the class label of a node) [41], link
prediction (predicting the possibility of a link between given
nodes) [70] and graph classification (predicting the class label

?Work done during an internship at Microsoft Research.

of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure to learn representations—low-
dimensional vector embeddings—of nodes. Thus, learning
such deep encodings is the key goal of GNNs. Several novel
GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17, 41] and Graph
Attention Networks (GATs) [59]. While each have their own
unique advantages, they fundamentally differ in how the graph
structure is used to learn the embeddings and what neural net-
work transformations are used to aggregate neighborhood
information [64].

At a high level, GNNs learn embeddings by combining
iterative graph propagation and DNN operations (e.g., ma-
trix multiplication and convolution). The graph structure is
used to determine what to propagate and neural networks
direct how aggregations are done. Each node creates a k-hop
computation graph based on its neighborhood, and uses their
features to learn its embedding. One of the key differentiators
between training GNNs and DNNs is the presence of depen-
dencies among data samples: while traditional DNNs train
on samples that are independent of each other (e.g., images),
the connected structure of graph imposes dependencies. Fur-
ther, it is common to have a large number of dense features
associated with every node—ranging from 100s to several
1000s [29, 66, 68]—in the graph. Due to this, the k-hop com-
putation graphs created by each node can be prohibitively
large. Techniques such as neighborhood sampling [24] help
to some extend, but depending on the graph structure, even
a sampled computation graph and associated features may
not fit in the memory of a single GPU, making scalability a
fundamental issue in training GNNs [71]. With the prevalence
of large graphs, with billions of nodes and edges, in academia
and the industry [55], enabling GNN training in a distributed
fashion1 is an important and challenging problem.

In this paper, we propose P3,2 a system that enables ef-
ficient distributed training of GNNs on large input graphs.
P3 is motivated by three key observations. First, due to the
data dependency, we find that in distributed training of GNNs,
a major fraction of time is spent in network communication
to generate the embedding computation graph with features.
Second, we notice that relying on distributed graph processing
techniques such as advanced partitioning schemes, while use-
ful in the context of graph processing, do not benefit GNNs

1Using more than one machine, each with 1 or more GPUs.
2for Pipelined Push-Pull.

28

Takeaway

§Distributed training of graph neural networks increasingly
important
• Frameworks = Graph Processing + DNN Training
• Incur high network communication and partitioning overhead

§ P3 eliminates the overheads with distributed GNN training
• Independent partitioning of graph structure and features
• Hybrid parallelism combined with pipelining and caching
• Simple API for users

Thank you!
https://swapnilgandhi.com

29

