
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Upgradvisor: Early Adopting Dependency
Updates Using Hybrid Program Analysis

and Hardware Tracing
Yaniv David, Columbia University; Xudong Sun, Nanjing University;

Raphael J. Sofaer, Columbia University; Aditya Senthilnathan, IIT, Delhi;
Junfeng Yang, Columbia University; Zhiqiang Zuo, Nanjing University;

Guoqing Harry Xu, UCLA; Jason Nieh and Ronghui Gu, Columbia University
https://www.usenix.org/conference/osdi22/presentation/david

UPGRADVISOR: Early Adopting Dependency Updates
Using Hybrid Program Analysis and Hardware Tracing

Yaniv David1, Xudong Sun∗2, Raphael J Sofaer1,
Aditya Senthilnathan3, Junfeng Yang1, Zhiqiang Zuo∗2, Guoqing Harry Xu4, Jason Nieh1 and Ronghui Gu†1

1Columbia University, 2Nanjing University, 3IIT, Delhi, 4UCLA

Abstract
Applications often have fast-paced release schedules,

but adoption of software dependency updates can lag by
years, leaving applications susceptible to security risks and
unexpected breakage. To address this problem, we present
UPGRADVISOR, a system that reduces developer effort in
evaluating dependency updates and can, in many cases, auto-
matically determine which updates are backward-compatible
versus API-breaking. UPGRADVISOR introduces a novel
co-designed static analysis and dynamic tracing mechanism
to gauge the scope and effect of dependency updates on an
application. Static analysis prunes changes irrelevant to an
application and clusters relevant ones into targets. Dynamic
tracing needs to focus only on whether targets affect an
application, making it fast and accurate. UPGRADVISOR
handles dynamic interpreted languages and introduces call
graph over-approximation to account for their lack of type
information and selective hardware tracing to capture program
execution while ignoring interpreter machinery.

We have implemented UPGRADVISOR for Python and eval-
uated it on 172 dependency updates previously blocked from
being adopted in widely-used open-source software, including
Django, aws-cli, tfx, and Celery. UPGRADVISOR automati-
cally determined that 56% of dependencies were safe to update
and reduced by more than an order of magnitude the number of
code changes that needed to be considered by dynamic tracing.
Evaluating UPGRADVISOR’s tracer in a production-like
environment incurred only 3% overhead on average, making
it fast enough to deploy in practice. We submitted safe updates
that were previously blocked as pull requests for nine projects,
and their developers have already merged most of them.

1 Introduction

Powered by agile development methodologies and supported
by continuous integration and testing infrastructure, modern

∗Also with State Key Laboratory for Novel Software Technology.
†Also Founder of CertiK with an equity interest.

software companies achieve blazing fast release cycles, quickly
pushing bug fixes and new features to production servers or
client devices. For instance, Google’s Chrome ships a new
major version to the stable channel every four weeks [3], while
Facebook publishes updates to their front-end three times a day
and releases a new version for iOS and Android every week [7].

A key enabler to this fast development cycle is the large col-
lection of preexisting frameworks and libraries to build on. One
open source software (OSS) discovery service tracking popu-
lar libraries in leading package managers lists almost 5 million
open-source libraries [40]. We surveyed OSS projects devel-
oped with prominent interpreted languages1 (§2) and found
that an application, on average, depends on tens to hundreds
of frameworks and libraries; these are known as dependencies.

Unfortunately, our survey shows that despite the fast pace
of application updates, the adoption of dependency updates
is delayed by years, and this delay is getting worse (see Fig. 1
in §2). We believe a key reason behind this dichotomy is the
knowledge gap between application and dependency devel-
opers. Although dependency developers invest significant
effort in creating robust and often backward-compatible
updates, they typically have no direct access to the dependent
applications, hindering their ability to gauge potential update
risks. Application developers want the security fixes and
performance enhancements in dependency updates, but lack
knowledge of the dependency internals and therefore fear that
dependency updates may cause the application to malfunction.

The effect of dependency update delays aggregates across
projects and even whole software ecosystems. For a given
installation composed of an ensemble of software components,
even if only one component requires an older version of
a dependency, the entire installation is forced to use the
same older version. This older version might accumulate
unpatched vulnerabilities over time or break unexpectedly
due to deprecation. Moreover, when many older dependency
versions are involved, attempts to update subsets of the
dependency graph become impossible due to dependency

1We surveyed Python, JavaScript, and Ruby projects from GitHub.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 751

conflicts (a.k.a "dependency hell" [30]).
Ideally, an application’s test suite should discover any

malfunctions due to interactions with dependencies, but this is
sadly not the reality. Application and dependency developers
strive to make their unit, integration, and system tests have
high coverage of their projects. However, state of the art tools
for coverage metrics do not examine the difficult-to-measure
interfaces between applications and their dependencies. Thus,
it is dangerous to rely on application test suites to detect
dependency update incompatibilities. The problem is worse
for dynamic interpreted languages, as without compilation,
API breaking changes not discovered during testing become
runtime errors on production servers.

We present UPGRADVISOR, a system for maximizing the
safety of and reducing developer efforts invested in depen-
dency updates. UPGRADVISOR is based on the observation
that changed dependency code that does not run cannot affect
application semantics. UPGRADVISOR works by combining
sound static analysis with efficient dynamic tracing to aid
developers in the timely adoption of dependency updates.
Given a dependency update that developers want to adopt,
UPGRADVISOR computes the code difference between its old
and new versions and then employs static analysis to discard
semantically irrelevant differences and cluster potentially
meaningful ones into tracing targets.

To enable this process for modern applications written in
widely-used interpreted languages, UPGRADVISOR first builds
an over-approximating call graph that accurately accounts
for the lack of type information in variables and function
arguments in these languages as well as handling implicit
language-specific call-site creation features. It then creates a
fused abstract syntax tree (AST) representing both the old and
new versions of the dependency and tags all changes on a per
statement basis. The change tags are propagated up the AST
to the call graph, clustering code differences into call targets
(Python functions or methods) for later tracing. UPGRADVI-
SOR can then statically discard unreachable or semantically
irrelevant code changes, such as backward-compatible changes
to API signatures and changes in imports location (see §7).
If there are no call targets tagged with change tags, the depen-
dency update is safe because it has no changes that can possible
affect application execution. Unlike test suites, the static analy-
sis provides complete code coverage, allowing UPGRADVISOR
to accurately determine if a dependency update is safe.

While static analysis may be sufficient in many cases to
determine the safety of a dependency update, it is conservative,
identifying calls not actually used in practice. UPGRADVISOR
therefore performs dynamic tracing to determine if call targets
with change tags remaining after static analysis actually
influence application execution. Dynamic tracing is performed
without applying the dependency update and is designed to
incur little overhead. Both of these features allow it to be used
in a production environment, giving a complete trace of a
production server over a substantial amount of time to serve

as the ground truth of application-dependency interactions.
Running UPGRADVISOR on production servers allows
mitigating the inherent unsoundness of dynamic analysis.

UPGRADVISOR achieves low-overhead tracing using two
key mechanisms. First, UPGRADVISOR can select which parts
of application execution to trace, tracing only the call targets
with change tags identified through static analysis. Second, UP-
GRADVISOR leverages the hardware tracing module in modern
CPUs using a novel coarse-grained tracing technique to collect
data only for chosen bytecodes while ignoring unnecessary
low-level interpreter instructions. In particular, using our
technique, each bytecode branch executes exactly one native
branch. Tracing only one branch creates one trace record,
reducing tracing data size and runtime overhead. Combining
the two allows lowering overhead while retaining precision:
we only collect the minimal information required to fully
capture control flow in the updated parts of the dependency.

We have built an UPGRADVISOR prototype that supports
dependency updates for Python programs. It contains an
analysis framework and a tracer implanted into our fork of the
Python 3.7 interpreter. We evaluated UPGRADVISOR on 172
potential dependency updates that were previously blocked
from being adopted by applications in top-starred OSS repos-
itories on GitHub. The dependency updates include popular
frameworks such as Django, aws-cli, tfx and Celery. Our
results show that UPGRADVISOR is effective. UPGRADVISOR
determines through static analysis that 98 (56%) dependencies
can be automatically updated, meaning the majority of
blocked dependency updates can be adopted without manual
inspection. When static analysis cannot completely determine
if an update is safe, the analysis reduces the code differences
that must still be reviewed by an order of magnitude compared
to the overall changes between old and new dependency
versions. UPGRADVISOR determines through dynamic tracing
that various dependencies not automatically deemed safe
through static analysis can still be updated. (see §7.1)

We randomly sampled several dependency updates deemed
safe: although we were not developers of either the applica-
tions or the dependencies, we were able to quickly submit pull
request (PR)s, most of which were subsequently merged by the
corresponding developers. The PRs that were merged included
dependency updates deemed safe by just static analysis as well
as by combining static and dynamic analysis, demonstrating
that dynamic tracing can indeed provide additional upgrade
opportunities beyond static analysis.

Finally, we performed an extensive performance evaluation,
including running a production Django workload published by
Instagram and Intel [8]. Our measurements show that our tracer
incurs an average overhead of 3%, much lower than other tools.

UPGRADVISOR’s code, evaluation datasets, and other re-
sources are available at http://upgradvisor.github.io.

752 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://upgradvisor.github.io

(a) Python (b) JavaScript (c) Ruby

Figure 1: The average delay days for all the projects surveyed for each month between August 2019 and November 2021.

2 Survey of Dependency Usage in OSS

Modern applications declare their dependency require-
ments in metadata files as a list of (package name, version

specifier) tuples. These direct dependencies also have
their own dependencies, creating a graph of transitive
dependencies for the application. The version specifier follows
a common version structure, “MAJOR.MINOR.PATCH”,
where MAJOR increments signal API breakage, MINOR
increments signal backwards-compatible feature additions,
and PATCH increments signal backwards-compatible bug
fixes. For example, if the old API is foo(int a, int b) and
the new one is foo(int a, int b, int c) the API was broken.
A version specifier in a metadata file can be expressed as
conditions, which can directly point to a specific version, also
called pinning, or use a combination of lower/upper-bounding
terms to define a range of possible versions. Out of a range
of allowed versions, the latest one is selected. A given
dependency may be specified by the application and by any
number of dependencies. All these specifiers must overlap to
have a viable dependency set. Using range-defining conditions
allow developers to block a version update if they deem it not
compatible with their code, e.g., <=2.5.1.

Dependencies

Language Projects
Direct Transitive

max avg std max avg std
Python 389 118 7.1 11.5 480 15.9 41.3
JS 462 130 17.1 23.3 >1000
Ruby 501 91 12.3 17.3 548 28.1 103.9

Table 1: Dependency usage in OSS projects on GitHub.

To better understand dependency usage patterns in the
leading dynamic interpreted languages, Python, Ruby, and
JavaScript (JS), we performed a survey of OSS projects
using them. We randomly sampled top starred (>1k) project
repositories on GitHub, for which Python, Ruby, or JS, was the
primary programming language. Starting from 1,382 Python,
913 Ruby, and 1,144 JS projects, we examined the dependency
requirement conditions of the latest version of each project and

filtered those with no direct dependents as of November 2021.2

Table 1 summarizes the results for projects with dependencies,
showing the maximum, average, and standard deviation in the
number of dependencies per project. Each project is considered
an application. For example, Python applications averaged
seven direct dependencies and 16 transitive ones for an average
of 23 total dependencies per application, but the standard
deviations (STDs) show significant differences among appli-
cations. The number of direct and transitive dependencies for
a Python application was as high as 118 and 480, respectively.

For the 389 Python applications, we examined the depen-
dency requirement conditions for not just the latest version
of the application, but also earlier versions published from
August 2019 to October 2021. 2% have no restrictions
(latest), 29% are lower-bound only, 38% are double-bound
(both lower- and upper-bound), and 31% are pinned version
specifiers. In other words, more than two-thirds of the version
specifiers, double-bound and pinned, may block available
updates. A developer whose application may have dozens
of dependencies, including transitive dependencies, cannot
update dependency X unless every other dependency which
depends on X also includes the new version in the specifier.

We measured the historical delay for Python, Ruby, and JS
applications in updating their dependencies by examining all
versions of the applications published from August 2019 to
November 2021. For each released application version, we
examine direct dependency requirements. Considering only
the dependency versions which existed on the application
version’s release date, we check if the dependency offered an
updated version. If an updated version exists, we consider the
application to be delaying updates and measure the number
of delay days. Delay days are counted from the dependency’s
new version release date up to the application’s release date. If
an application has multiple delayed dependencies, we consider
only the most severely delayed dependency.

Fig. 1 shows the delay days for all applications as measured
each month from August 2019 to November 2021. We show
both the average delay days as well as the standard deviation.
For example, Fig. 1a shows that Python applications start from

2Unlike JS and Ruby, Python projects declare dependencies implicitly
in their setup scripts. We discarded projects when we could not extract
dependency constraints.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 753

def main_worker_helper(...):
if os.name != ' nt':
signal(SIGHUP, hdlr_shutdown)

signal(SIGHUP, hdlr_shutdown)
signal(SIGINT, hdlr_shutdown)

(a)

def run(self, ...):
earlier code is unchanged
with tqdm(disable=not prog_bar)

as pbar:
while n_queued < N:

(b)

def serial_evaluate(self, ...):
for trial in self.trials._dynamic_trials:

if trial['state'] == STATE_NEW:
trial['state'] = STATE_RUNNING
Above, `==` changed into `=`

(c)

Figure 2: Three code change snippets from hyperopt’s update from version 0.1.1 to version 0.1.2.

an average of roughly 20 delays days for August 2019 and bal-
loon to reach roughly 200 delay days by August 2021, an order
of magnitude increase in delay over two years. Fig. 1 shows that
this pattern of increasing delay in adopting dependency updates
persists across applications in all languages, indicating that the
problem of timely adoption of dependency updates worsens
over time. Digging into the data shows that while some projects
invest consistently in dependency upkeep, other projects strug-
gle. This difference leads to the significant variations as ex-
pressed by the standard deviation bars in Fig. 1. The standard
deviation in delay days is so large for Ruby applications that
they exceed the visible range in Fig. 1c for most months; the
visible maximum was capped at 1,200 delay days to provide a
consistent visual comparison across languages while keeping
the graphs readable. Because dependency requirements cater to
the lowest-common-denominator, having even one such strug-
gling project as a dependency forces the use of an old version.

We designed UPGRADVISOR to address this problem.

3 UPGRADVISOR Overview

We use Qlib, a popular Python AI-oriented quantitative
investment platform developed by Microsoft, as a motivating
example of the dependency update problem and show how
UPGRADVISOR solves it. Qlib version 0.7.1, released on
15-Sep-2021, relies on 30 direct dependencies. One of them is
hyperopt 0.1.1, released on 27-Aug-2018, a distributed asyn-
chronous hyper-parameter optimization library for Python.

3.1 An Example Dependency Update Problem
hyperopt’s developers changed 828 line of code (LOC) span-
ning 14 files to go from version 0.1.1 to 0.1.2. Because Qlib

uses a pinned version specifier “hyperopt==0.1.1”, it did not
adopt version 0.1.2. Counting the days between hyperopt’s
version 0.1.2 release on 21-Feb-2019 to Qlib’s 0.7.1 release
on 15-Sep-2021, the number of delay days for Qlib due to not
updating hyperopt is 937.

To update Qlib to use hyperopt version 0.1.2, Qlib’s
developers need to ensure the update is safe. It should not
cause Qlib to crash, experience other silent failures, or
change Qlib’s API. A change in hyperopt’s output content
or structure could propagate to Qlib’s output. An update
solving a bug in hyperopt might benefit Qlib, yet still requires
Qlib’s developers to check for unexpected side effects. Ideally,

Qlib’s developers can use the opportunity of updating to a new
hyperopt version to incorporate improvements in hyperopt’s
functionality they already use or explore its new features.

This process offers the developers a tradeoff between short-
term safety by not updating versus investing efforts towards
gaining long-term safety and quality. We aim to maximize
the safety of the update and its benefits while reducing the
developer’s efforts required to examine the dependency update.

The easiest way to evaluate the updated dependency is to
run Qlib’s test suite with hyperopt’s new version. It turns out
that all of Qlib’s tests pass. Sadly, this result is ambiguous as it
can not differentiate between the tests not covering hyperopt

and the update being safe. In fact, measuring the coverage of
hyperopt when running Qlib’s test suites shows that no line
in hyperopt’s code is covered.

Instead of using its test suite, Qlib’s developers can examine
all code changes made to hyperopt to assess the safety of
the update. Fig. 2 shows a few changed code snippets from
hyperopt’s update. Fig. 2a shows a change in the way worker
helpers initialize signal handlers. After the update, when the
code runs in a Windows environment, the SIGHUP handler
is no longer set. Fig. 2b shows a change in the run method
in charge of running the trial’s computations, adding an
optional progress bar (controlled by the disable flag). Fig. 2c
shows a change to the serial_evaluation method, turning
the condition on trial[’state’], which was never assigned
(effectively redundant code), into an assignment.

Fig. 2a and Fig. 2c are bug fixes, which might benefit Qlib,
but Fig. 2b constitutes a change to Qlib’s CLI, which might
break other systems using the CLI output.

The changes in these procedures3 require human review.
Doing this for a few changes may be manageable, but is
too difficult for all changes on each update; manual code
examination is not scalable.

3.2 Using UPGRADVISOR to Update Qlib

UPGRADVISOR is based on the observation that changed
dependency code that does not run cannot affect application
semantics. If we can show such code is unreachable, we can
ignore it. Fig. 3 shows UPGRADVISOR’s process for analyzing
the dependency update (steps 1-3), employing the tracer (steps
4-6), and gathering and summarising results towards update
advice (steps 7-8).

3For brevity, we use procedure in place of “method or function”.

754 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 3: UPGRADVISOR’s process of analyzing, tracing and
providing update advice for our motivating example.

Analyzing the dependency update. Our analysis goal is to
determine statically if the update is safe, or if not possible,
reduce the number of changed procedures that need to be
tracked by the tracer or examined by a developer. Static
analysis involves the following steps.

Step 1: Build call graphs for Qlib (the application) and
hyperopt’s old version (the dependency). Call graph nodes rep-
resent procedures, and directed edges represent call relations.

Step 2: Compare hyperopt versions to create a fused
abstract syntax tree (AST) containing a set of fine-grain
change tags. Change tags label the affected AST subtree with
the type of change made and the change position in the source
code. As we see later, specific change types and location
combinations will be handled differently. A change can be a
statement modification (e.g., Fig. 2c), an addition of several
statements to an existing procedure (e.g., Fig. 2a), or the
deletion of a method from a class, possibly breaking any code
calling it. We group all change tags in the same procedure
because UPGRADVISOR traces at procedural level.

All non-semantic changes, adding a space or changing
comment text, are ignored by using an AST representation.
Change tags are discarded by employing a language-specific
analysis using the AST-subtrees content. For example, for
Python, any changes involving type annotations and order
changes between unrelated import statements are discarded.

Step 3: Merge the application and dependency graphs,
connecting all interfaces between Qlib and hyperopt in the
graph, and infuse the grouped changes into the relevant graph
nodes. We discard hyperopt nodes that are not reachable from
any of Qlib’s nodes, along with any change tags connected
to these nodes. For example, the changes depicted in Fig. 2a
are discarded as no graph path from Qlib into hyperopt leads
to the main_worker_helper function.

Starting from 72 changed procedures in hyperopt, per-
forming steps 1-3 leaves only four nodes with change tags
in the merged graph. Fig. 4 shows part of the merged call
graph containing these four nodes, which represent changed
procedures. Qlib’s only procedure calling into a changed
procedure in hyperopt is contrib.tuner.(...) (in green),
calling fmin, a part of hyperopt’s API (in orange). The changed
procedures, e.g., FMinIter.init are marked as red stars, while
other non-changed hyperopt procedures connecting them,

Change

No Change

Dep: hyperopt

App: Qlib

Figure 4: The graph of hyperopt’s code changes reduced to
only show changes affecting Qlib.

e.g., (...).exhaust, are shown as well (in red).

Employing the tracer. UPGRADVISOR traces the existing
dependency code, ideally running on a production server.
These traces can then be used to simulate the dependency
update, which can catch breaking changes and discard changes
to unreached parts of the dependency.

Step 4: After statically determining the four changed
hyperopt procedures which might be reachable from Qlib’s
code, their names are sent on the fly to the tracer already
running on the production server.

Step 5: The tracer then starts tracking them by logging
every control-flow decision in the procedure, including
conditional branches and exceptions. Qlib’s test suite did
not cover any of hyperopt’s code and specifically did not
exercise contrib.tuner.(...) which calls the changed part
of hyperopt from Qlib. However, if a production environment
is not available to trace, the static analysis provides insight on
what kind of test cases should be created to provide better cov-
erage. For this example, we manually created a production-like
workload which covered calls to hyperopt and ran them on
the traced system. Specifically, we made Qlib use hyperopt’s
asynchronous computation mode. Tracing relevant methods
in hyperopt incurs only ~5% runtime overhead on the system.

Step 6: The tracer’s output is decoded offline to reconstruct
execution traces for tracked procedures.

Gathering and summarizing results. Step 7: The graph
created in step 3 is augmented with the collected traces. Any
change tag is excluded if its code location is not present in the
traces. If all tags in a group are excluded, the whole procedure
is discarded. The changed statement in serial_evaluate,
shown in Fig. 2c, does not exist in the traces, so it is discarded.

At this stage, only three changed procedures, including
run shown in Fig. 2c, require manual examination. Taking
a closer look at the changes in these three methods shows

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 755

that all changes relate to the addition of the progress
bar in run. fmin.fmin’s signatures adds a new variable:
def fmin(... , prog_bar=True): Its value is then prop-
agated to the fmin.FminIter class, which then uses it when
calling tqdm(disable=prog_bar).

Adding arguments to a function declaration might be a
source for API breakage, as a change to required positional
arguments might cause a runtime error. In this example,
because the new argument has a default value (“True”), a
runtime error will not occur. UPGRADVISOR still marks this
update as a “possible API break” due to the change in Qlib’s
output caused by the progress bar. Specifically, this can be
avoided by changing Qlib’s code to assign “False” to prog_bar

when calling fmin.fmin. Following this, developers can move
forward with the updating hyperopt to version v0.1.2.

We submitted a PR to the Qlib project, recommending the
changes described above. This PR was adopted quickly by
the maintainers and merged into the Qlib’s main code branch
within five hours, even though hyperopt’s version 0.1.2 had
been available almost three years (released 21-Feb-2019) at
the time of the PR.

4 Static Analysis of Dependency Updates

As shown in steps 1-3 from Fig. 3, UPGRADVISOR uses static
analysis to determine if a dependency update is safe, or identify
what procedures may be affected by the update so they can
be further considered by dynamic tracing. The inputs are the
application code, A, and dependency code D in two versions
before and after the update, DBe f ore and DA f ter, respectively.

Throughout this section, we use Python terminology for
methods and functions, where a method is a block of code
associated with a class and a function is a block of code that
can be called but is not associated with a class.

4.1 Application and Dependency Call Graphs

UPGRADVISOR first builds call graphs for A and DBefore,
which are merged into one graph G. Building an accurate call
graph requires: (1) mapping call sites and (2) detecting callees
(call targets). However, dynamic interpreted languages such
as Python typically do not require specifying types, causing
callee uncertainty. Consider the following Python snippet:

def foo(a):
return a.get_size()

The function foo has an untyped argument a, and it calls
a’s method get_size. a can be any class that has a method
get_size, and there is no type information to help narrow
down the potential callees. We refer to get_size as a named
method with an unknown class because the method name
called is known but the class to which it belongs to is unknown.
Alternatively, consider the following Python code snippet:

def foo(a):
return a()

The function foo has an untyped argument a, and it calls
a. a can resolve to any function in the code, and there is no
type information to help narrow down the potential callees.
We refer to a as an anonymous function. There are ways to
explicitly specify types in Python using type annotations [36],
as in the following code snippet:

def foo(a:arg_type) -> ret_type:
return a.get_size()

However, this is optional in Python, so call graph construction
must account for the absence of types.

We use call graphs to decide if an update is safe or identify
tracing targets, so their soundness is crucial. While false edges
can be tolerated (false positives), there cannot be missing edges
(false negatives). We achieve this by over-approximating
calls in the graph. The basic idea is to use type information
when available to build a context-sensitive [15] call graph
to pinpoint the exact method called, but then combine this
with context-insensitive analysis for missing targets. We
split missing targets into two types: (1) named methods with
unknown class and (2) anonymous functions. To express the
first type of missing targets in our call graph, we create an
edge with a “magic” prefix followed by the callee name, e.g.,
UNK.get_size. To express the second type in the graph, we
create a magic edge from the node to ANON.

Using the process described above, we construct call
graphs for A and DBefore, and merge them into one graph
G = (V,E) with V nodes and E edges. We split V into two
groups depicting M methods or F functions, respectively:
V = M ∪ F . To make G over-approximate for missing call
targets we apply the following edge adding rules:

1. (n,UNK.x)∈E,∃y.x∈M⇒E=E∪{(n,y.x)}

2. (n,ANON)∈E,x∈F ⇒E=E∪{(n,x)}.

The first rule adds edges from the respective node to all
methods with the same name as the named method with
unknown class. The second rule adds edges from the respective
node to all functions. These rules add all possible call targets
for named and anonymous missing targets. Exploring the
Python projects discussed in §2, we find a limited amount of
named method missing targets exist in almost every project,
while anonymous function missing targets were scarce.

Due to their scripting-oriented roots, most dynamic
languages allow placing statements in the source-code
file outside of procedures or classes. Running this file
as a script or importing it from another file will execute
these statements. For example, given a file named "h.py"
including print("Hello World"), putting the import statement
from h import * in another file will result in “Hello World”
printed on the screen. To represent these statements in the
call graph, we place them into a special module_ctor pseudo-
procedure node and add an edge to relevant importing files.

756 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A graph will contain an edge from a procedure to module_ctor

if the procedure contains the relevant import statement.
Similarly, we place class fields and their optional initializa-

tion in a special pseudo-class-initializer X_cinit node, adding
edges to and from it between every call site to any class con-
structor. For example, a statement creating a new class instance,
ClassA(), placed inside a procedure named foo will create the
following call path: foo→ ClassA_cinit→ ClassA_ctor.

We treat other language-specific container for representing
code, such as Python’s decorators (see §6), similarly.

4.2 Grouping Changes

UPGRADVISOR introduces a novel static approach for creating
grouped fine-grain changes. We introduce change tags, used
for tagging individual statements that have changed between
DBEFORE and DAFTER as additions, deletions, or modifications.
These fine-grain per statement tags are then grouped together
by the lowest-level procedure that contains the respective tags.

UPGRADVISOR fuses the code in DBEFORE and DAFTER into
one AST and marks changes with change tags. For example,
for Python, we create one AST per Python module. Each
module is contained in a file and has procedures, classes, and
other statements. The fused AST contains all deleted and
added statements, while modified statements contain the code
from DBEFORE. For modified code, the code in DBEFORE’s
copy is stored in the AST because UPGRADVISOR will
later need to identify DBEFORE code when combining it with
collected traces generated by running DBEFORE, as discussed
in §5. Each change tag represents a change in a statement and
contains a pointer and a type, the type being either addition,
deletion, or modification. The pointer points to the affected
statement, i.e., the lowest statement-tree-node containing
the change. For example, in Fig. 2c, the modification tag is
applied to AST node representing trial['state'] = ..., while
in Fig. 2b an addition tag is applied to the node representing
with tqdm(...), and no tag is applied to the node representing
while n_queued. Changes to procedure declarations, such as
adding an argument or default value for one, are represented as
a tag on the procedure’s declaration node in the AST. If a file
was deleted or added, we create an AST with all statements
and procedure declarations containing deletion or addition
tags to represent it. Change tags are then grouped by the lowest
procedure, class, or module containing them by following
each AST pointer and moving up the tree.

4.3 Clustering Changes Into Call Targets

UPGRADVISOR attaches the grouped changes to nodes in
the call graph G, discussed in §4.1. As grouped changes
are associated with the lowest procedure, class, or module
containing them, it is straightforward to attach them to nodes in
the call graph. Any node with at least one change tag attached

to it is considered a changed node. Note that changed nodes
exclusively appear in the part of G constructed from DBEFORE.

UPGRADVISOR then performs the following two steps.
First, it discards change tags that, in G’s context, do not affect
the semantics of the code. Examples include (1) called APIs
adding unused default values, and (2) changes in import
location or procedures moving between files. If all change tags
in a specific group were discarded, the node associated with
this group is no longer considered a changed node. Second,
UPGRADVISOR discards any changed node not reachable
from an application node. Any changed nodes remaining
after this two-step process are marked as call targets, and their
corresponding procedures will then be sent to the tracer. These
call targets represent changes that can potentially affect the
application. If there are no call targets, static analysis alone was
successful in automatically determining that the update is safe.

Propagating the indirect effects of direct updates to data
is currently out of scope for UPGRADVISOR. These include
direct updates to external data used by the code, such as HTML
templates, or changes to data in the code itself, such as data
used for initialization. UPGRADVISOR can be configured
to report on changes to external data. As changes to data in
the code are necessarily a changes to the code, these will be
detected statically through the call graph if it is reachable from
the application, ensuring the correctness of the static analysis.
However, any effects due to changed data on other non-
changed parts of the code will not be propogated. For example,
if a dependency’s internal state, such as a global variable, is
updated and an unchanged method reads this global variable,
UPGRADVISOR will not identify the unchanged method as
a call target. UPGRADVISOR can be expanded to propagate
the effect of the changed state and mark these methods for
tracing or report more methods for developer inspection, and
we intend to explore this in future work. As discussed in §7,
we find such transitive state changes in the code to be rare.

5 Dynamic Hardware Tracing

UPGRADVISOR uses dynamic tracing to determine what an
application actually does in practice. By tracing application
execution in a production environment, we can obtain the
ground truth of application-dependency interactions and
see which call targets are actually used. To allow dynamic
tracing in production environments, it is crucial that tracing
have minimal impact in production, including avoiding
application changes and incurring minimal overhead. For the
former, UPGRADVISOR traces the existing application without
applying any dependency updates, so no application changes
are required. For the latter, UPGRADVISOR introduces two key
mechanisms, target-focused tracing and hardware-assisted
coarse-grained tracing for interpreted languages.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 757

// given a code block with a sequence of bytecode

for (each opcode in code block){
switch (opcode) {

case opcode_1:
subroutine_1(); //interpretation logic for opcode_1

break;
case opcode_2:

subroutine_2(); //interpretation logic for opcode_2

break;
…
case opcode_i:

subroutine_i(); //interpretation logic for opcode_i

break;
…

}
}

Figure 5: Original interpretation loop inside an interpreter.

5.1 Target-focused Tracing

UPGRADVISOR does not need to trace the entire application
execution, but needs only to trace call targets generated from
the static analysis discussed in §4.3. This small handful
of methods is not known in advance, and may change for
different updates. For languages such as Python, a compiler
compiles the program written in the interpreted language to
a sequence of bytecode instructions, and the interpreter runs a
loop that interprets bytecodes one by one at runtime, as shown
in Figure 5. UPGRADVISOR enables on-the-fly selection of
which methods are traced by interposing on the interpretation
loop used to interpret the intermediate bytecode for dynamic
interpreted languages. This logic is illustrated in Listing 1.

1 // given a code block with a sequence of bytecodes
2 maintain set of methods to be traced;
3 if(signature of code block is in the set)
4 { goto traced loop; }
5 else{ goto original loop; }
6 original loop:
7 loop code shown as Figure 5;
8 traced loop:
9 loop code shown as Figure 6;

Listing 1: UPGRADVISOR’s target-focused tracing check logic.

We modify the interpreter to allow running a traced version
of the loop on demand. UPGRADVISOR maintains a set,
updatable during runtime, of signatures for all methods marked
for tracing. Before running any method, the interpreted checks
if it is part of this set, directing the execution to the traced
or original version (where no tracing is enabled) of the loop
accordingly. The traced loop is shown in Figure 6, which only
differs from the original loop by adding a jump instruction
before each call to a subroutine in the interpreter loop, which
enables tracing as discussed further in §5.2.

// given a code block with a sequence of bytecode

for (each opcode in code block){
switch (opcode) {

case opcode_1:
jump_to_trace(opcode_1);
subroutine_1();
break;

case opcode_2:
jump_to_trace(opcode_2);
subroutine_2();
break;

…
case opcode_i:

jump_to_trace(opcode_i);
subroutine_i();
break;

…
}

}

jump back to
subroutine_1

jump back to
subroutine_2

…

jump back to
subroutine_i

…

Figure 6: Traced interpretation loop inside an interpreter.

5.2 Coarse-grained Hardware Tracing
To further reduce tracing overhead, UPGRADVISOR leverages
hardware tracing mechanisms widely available in modern
CPUs, specifically Intel Processor Trace (PT) [21]. Intel PT
records dynamic control-flow information such as branch
targets and branch taken indications, encoding them as trace
packets. With the trace packets collected and the program’s
native code as input, a software decoder [20] can then be in-
voked to reconstruct the control flow of the program executed.
Although hardware tracing has advantages in terms of low
overhead and the absence of intrusiveness, a key challenge is
how to leverage it to meaningfully trace interpreted languages
since it can only profile native instructions directly running on
physical CPUs [43]. For a native program, native instructions
can be readily mapped back to the source code with the aid
of compilation metadata. This is not the case for programs
written in interpreted languages. For interpreted languages
such as Python running in a virtual machine, the intermediate
bytecode corresponds to the source code, but the native
instructions executed by the CPU are those of the interpreter.

To leverage the efficiency of hardware tracing, we need
to develop tracing support that can bridge the gap by relating
hardware traces generated by CPU to bytecode instructions
of interpreted languages that developers can understand. A
naive way to obtain the execution trace at the bytecode level
is to trace the execution of the entire interpreter code and then
reconstruct the execution flow of high-level bytecode based
on the mapping between bytecode types and their respective
interpreter subroutines. For example, Intel PT generates trace
packets with instruction pointers (IPs) to identify the address
range for each instruction. In Figure 5, interpreter subroutines
such as subrountine_1 and subrountine_2 have static address
ranges for their instructions. Knowing that the executed
instructions are within the address range of a particular
function suggests which bytecode opcode is being interpreted.

Unfortunately, this approach may suffer from data loss as it
can record a huge amount of unnecessary low-level trace data.

758 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Intel PT uses a memory buffer to store trace data. Data loss
occurs when there is more trace data generated than can be
written into the buffer. It is extremely challenging to determine
after the fact what data is lost and how to recover it [43]. How-
ever, what we are interested in is only the sequence of bytecode
instructions executed, not the low-level control flow of the
interpreter subroutines. What is needed is a coarse-grained
tracing mechanism that focuses on the collection of the
high-level bytecode sequences without capturing extraneous
details of the subroutine implementations.

To this end, we developed a novel coarse-grained tracing
mechanism that avoids capturing low-level interpretation
instructions. We leverage a feature of Intel PT that allows trace
packets to be filtered based on their IPs. An address range
can be specified such that packets whose IPs are not in the
range will be filtered out by the CPU. We create a trampoline
(i.e., jump table) and use it as a special memory region that
allows us to quickly filter out irrelevant instructions while
retaining those that correspond to the bytecode. As shown in
Figure 6, the jump table consists of a sequence of contiguously
allocated tablets, each corresponding to a particular opcode.
A tablet contains only one single jump instruction that jumps
back to the call to the subroutine for the opcode. The traced
interpretation loop has a jump instruction before each call
to a subroutine in the interpreter. This instruction takes the
control to its corresponding tablet; executing the instruction
in the tablet takes the control back to the interpreter code.
Essentially, the interpreter takes a “detour” to visit a specific (a
priori known) address range defined by the jump table. We use
this address range to allow Intel PT to filter out all instructions
whose IPs are not in the range. As a result, the trace that
PT ends up generating contains only the executed jump
instructions in the tablets, and these instructions immediately
reveal the bytecode opcodes due to their one-to-one mapping.

5.3 Gather Trace Results

Once hardware traces are collected, we decode them offline
to reconstruct the dynamic control-flow of the program
execution and deduce the code executed at runtime. The
decoder decompresses the hardware trace data as a sequence of
executed jump instructions, each corresponding to one tablet
in the jump table. Using the one-to-one mapping between
tablets and bytecodes, we reconstruct a partial sequence of
bytecodes interpreted at runtime. Using the static control-flow
graph for each traced method and partial bytecode sequence
we project the sequence of bytecodes onto the graph so as
to reconstruct the dynamic control flow executed. Once the
concrete dynamic control-flow is determined at the bytecode
level, we then leverage the available compilation metadata to
obtain the exact lines of source code executed.

We then return to the call graph discussed in §4.3 and
discard additional changed nodes based on the trace results.
Specifically, UPGRADVISOR discards any change tag not

associated with a statement present in the traces. Any
remaining changed nodes are used to create a reduced diff
file, containing differences between DBEFORE and DAFTER
where only reachable changes appear. This reduced diff file
is then made available to the developer for further examination
to determine if the update is safe for adoption. If there are no
changed nodes remaining, the update is considered safe.

The current version of UPGRADVISOR lacks support
for exceptions. Once an exception is raised, the exception
mechanism’s unusual execution flow affects the control-flow
reconstruction mentioned earlier. In future work, we would
like to support exception handling. In brief, an exception
redirects execution to a dedicated block inside the interpreter.
This block is responsible for directing the execution flow back
to the corresponding exception handling bytecode determined
by the point where the exception occurs. Supporting hardware
tracing of exceptions requires tracing that redirection block
to bridge the exception control flow gap.

Apart from interpretation, certain language runtimes also
enable just-in-time (JIT) compilation mode for the sake of
performance. Our design focuses on interpreted mode. Adding
a similar design to the one we proposed by [43] will allow for
hardware tracing JITed code.

6 Implementation

We have implemented an UPGRADVISOR prototype for
Python 3 applications. We built the static analyzer on top
of Pyre-check [9], a type-checker for Python 3. Pyre infers
missing types and generates a set of calling targets for each call
site it soundly resolves. For non-resolved targets, we inserted
the magic edges explained in §4.1. To perform an AST-based
code comparison, we used GumTreeDiff [10], a state-of-the-art
code differencing tool employing its JSON-edit scripts
creation function to help generate fused and tagged AST.

UPGRADVISOR handles Python decorators [35] by defining
them as procedures so they are represented as nodes in the
call graph. For example, given a function bar decorated with
@dec, a function foo calling bar will result in the following
graph path: foo → dec → bar. We leave for future work a
more subtle analysis allowing separation of the different parts
of the decorator logic (i.e., set up, wrapper and cleanup) and
subsequent graph edge creation. Any change (add, modify or
delete) to a procedure’s decorator or its arguments is handled
similarly to a procedure declaration change.

We built the hardware tracer on top of CPython [12], the de-
fault and most widely used interpreter of Python. In CPython,
the interpretation functionality is directly written as a loop in
C code and Python code is compiled into executables once
the interpretation starts. We modified the interpretation loop
as explained in §5. Instead of allocating a buffer, we statically
inserted a trampoline block (equivalent to a jump table) into
the interpreter’s codebase. As CPython does not feature any
JIT-related optimizations, we only need to monitor bytecodes

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 759

Updatable: 172

Minor: 127

Major: 45

Static-Safe: 98

Tracing Required: 74

Safe for Update: 103

Production-Like Tracing: 5

Active: 60

Non-Active: 42

PRs Welcome: 23

PRs Submitted: 9
Merged: 7

Figure 7: UPGRADVISOR’s effectiveness on 172 dependency updates. Its hybrid static and dynamic analysis identified 102 updates
as safe. A sample of safe updates were submitted as PRs, almost all of which have been merged.

resulting in control-flow divergence. Five kinds of Python
bytecode are taken into account: POP_JUMP_IF_FALSE,
POP_JUMP_IF_TRUE, JUMP_IF_FALSE_OR_POP,
JUMP_IF_TRUE_OR_POP, and FOR_ITER. Each of them
has two potential branches, true or false. Thus, the trampoline
block has ten tablets.

The current prototype supports only applications written
entirely in Python. Performance-minded Python projects may
convert computation-heavy code into C. A prominent example
is numpy, a scientific computing package. We leave extending
UPGRADVISOR’s approach to mixed language projects for
future work, and currently UPGRADVISOR will alert and
stop processing when C code is detected in the project. The
prototype supports tracing only on bare-metal machines. To
extend it to run in a virtualized environment (e.g., VMs or
containers) will require OS support and further changes in
memory mappings for tracing. We note that Intel already added
initial support to KVM [19], and leave the rest for future work.

7 Evaluation

We evaluated the effectiveness of UPGRADVISOR in adopting
blocked dependency updates and its performance overhead.
We first used UPGRADVISOR to examine possible Python
dependency updates from our survey discussed in §2.
Although the vast majority of the 389 Python applications
blocked dependency updates, we only considered those
written entirely in Python 3. Altogether, we examined 50
applications with 172 possible dependency updates. We
further tested UPGRADVISOR’s ability to detect API breakage
using known API changing updates. We then measured the
performance overhead of UPGRADVISOR’s tracer using a
subset of the 50 applications with available performance test
suites. Finally, we also measured UPGRADVISOR’s tracer
performance using Instagram’s django-workload [8], based
on a real-world large-scale production workload.

Static analysis was done on a machine with an AMD

Opteron 6168 CPU (48 cores) and 62GB of RAM. Dynamic
tracing was done on a machine with an Intel i7-10700 CPU
(8 cores) with 16 GB of RAM. All machines ran Ubuntu 16.4.

7.1 Facilitating Dependency Updates

We evaluated UPGRADVISOR’s ability to adopt 172 previously
blocked dependency updates for 50 GitHub projects, including
Django, aws-cli, tfx and Celery. Some of these projects
were also dependencies for other projects. When the latest
version of a project blocked a dependency update, by pinning
or double-bounding dependency requirement conditions, we
explored the possibility of removing the block and updating
it to the next version of the dependency. For example, in our
motivating example presented in §3, Qlib v0.7.1 pinned the
dependency hyperopt to version v0.1.1, while version v0.1.2
exists. Out of these 172 possible updates, 45 were major
version updates, and the other 127 were minor. Fig. 7 depicts
the high-level view of this process.

UPGRADVISOR’s static analysis was able to determine that
the majority of dependency updates, 76 minor and 22 major,
were safe and could be automatically updated without further
dynamic tracing. These 98 updates are marked as “Static-Safe”
in Fig. 7. Referring back to our survey for update delays
in Python, Fig. 1a, performing all of these updates to the
next available dependency version would save an aggregate
of 11,310 delay days, averaging 115 delay days saved per
dependency. We further confirmed the "Static-Safe" results by
sampling roughly 10% of them, 11 to be exact, and manually
validated that the code changes were safe.

We measured the reduction in code differences that still re-
mained to be considered after static analysis versus the entire
code differences of the updates. The total number of diff lines
in all 172 updated versions we considered for this experiment
was 667,604, with the average update constituting 3,881 diff
lines (STD 9,078). While not a perfect metric, we use diff size
as a proxy for manual developer effort required to study a de-

760 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Project (Dependency)
Diff

(LOC)
% Discarded

Static Dynamic Total
AutoML (distributed) 850 95 5 100
Electrum (qdarkstyle) 641 88 8 96
Flair (gdown) 1500 71 29 100
Qlib (Hyperopt) 828 90 9 99
Scylla (requests) 449 90 8 98

Table 2: Diff reduction for dependency updates, showing diff
size in LOC and the percentage of lines discarded statically,
using dynamic tracing, and in total.

pendency update. UPGRADVISOR’s static analysis was able to
reduce the diff sizes by an average of 91%. The reductions are
consistently large across updates, with a standard deviation of
17.58%. These reductions also count cases in which UPGRAD-
VISOR finds the update safe, eliminating the whole diff file.

We also quantified the prevalence of direct changes to data
such as global variables that could potentially be used by
unchanged methods. We found that only 10 out of the 172
updates contained such transitive state changes, indicating
that they are infrequent. Furthermore, UPGRADVISOR was
able to statically determine 5 of the 10 as safe, so only the
remaining 5 still requiring dynamic tracing could be impacted
by the current limitation of UPGRADVISOR not identifying
unchanged methods using changed data.

Among the remaining 74 dependency updates that could
not be resolved statically, denoted “Tracing required” in Fig. 7,
we selected a representative sample to evaluate further using
dynamic tracing. The specific projects and dependencies
evaluated are listed in Table 2.

Unfortunately, we did not have access to actual production
environments for these applications, so we used the results of
the static analysis to help construct production-like workloads
to cover application-dependency interactions for these applica-
tions. For AutoML, an automated machine learning framework,
we ran selected sk-learn tutorials. For Electrum, a GUI-based
Electrum Bitcoin wallet, we manually interacted with the GUI
to try and trigger the relevant parts of the dependency code.
For Flair, a framework for state-of-the-art (SOTA) Natural
Language Processing (NLP), we used publicly available
datasets for multiple supported languages (used for training),
employed trained models, and ran tutorial examples. For Qlib,
we set up a MongoDB instance to allow hyperopt to conduct
asynchronous hyper-parameter optimization, and generated
testing inputs for various optimization calculations, as
discussed in §3.2. For Scylla, a proxy search and connection
tool, we scanned for available proxies and used them to
crawl major news sites. When applicable, to further increase
coverage for possible program behaviors, we used inputs
included by the project or created in our environment to drive
the atheris fuzzer for Python [14].

Table 2 shows the results of running UPGRADVISOR end-
to-end process on the project’s production-like environments.

Figure 8: Using UPGRADVISOR on 75 application-dependency
pairs with eight or more blocked updates.

On average, using the tracer further reduced diff sizes by 12%.
Furthermore, the tracer allowed for classifying more updates
as safe. For other updates, e.g., Qlib, additional manual
inspection was required as not all code changes could be
discarded from dynamic tracing, but only ~2% of the original
code changes required manual inspection, significantly
reducing developer effort in adopting the dependency update.

7.2 Analyzing Multiple Blocked Updates

When applications fail to perform their dependency’s first up-
date, subsequent updates are blocked as well. Among the 172
blocked dependency updates, the number of blocked updates
per dependency is 12.5 on average, the median being 5, with a
standard deviation of 43.67. For example, by pinning hyperopt

to version 0.1.1,Qlib blocked eight updates, from 0.1.2 to 0.2.6.
More generally, among the 172 blocked dependency updates,
there are 75 dependencies with eight or more blocked updates.

Fig. 8 shows the result of using UPGRADVISOR on each
of the eight or more blocked updates for the 75 dependencies.
The blocked update index indicates how many versions after
the adopted dependency is the update being considered. For
example, the first bar shows the next version of the dependency,
which is the subset of results from the study in §7.1 limited
to just these 75 dependencies. For each blocked update index,
we show the percentage of updates UPGRADVISOR requires
tracing for as opposed to deeming safe statically. Starting from
34%, this percentage steadily increases to 44% in the eighth
update, constituting a ~30% increase. If we count blocked
updates as retaining their previous status (static-safe or tracing
required) when no further updates are available, this trend
continues as the blocked update index increases from 9 to 20.

To test UPGRADVISOR’s hybrid approach contribution to the
analysis of multiple blocked dependency updates, we employ
our production-like testing environment to Qlib’s hyperopt

dependency for all available updates. Fig. 9 shows diff sizes
and UPGRADVISOR’s ability to statically and dynamically

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 761

Figure 9: Diff sizes and static and dynamic discards for
hyperopt’s eight updates.

discard changed code across hyperopt’s eight updates. Note
that the first bar represents the same Qlib data as in Table 2.

7.3 Contributing to the OSS Community
To further validate our results, we selected a sample of de-
pendency updates that UPGRADVISOR considered safe and
submitted them to the respective project via a PR. Except Qlib,
which was the first PR we submitted, all other dependencies
were updated to their latest version. As submitting a PR re-
quires manual effort, we focused on active projects welcoming
PRs. We deem projects active if their latest commit was made
in or after 2021, and PR-welcoming if they accepted a PR
from an external developer in the last month and have less than
100 open PRs. Each PR clearly explained UPGRADVISOR’s
goals and affiliation, provided UPGRADVISOR outputs (e.g.,
graphs such as the one shown in Fig. 4), and any other rele-
vant information (e.g., dependency change log) allowing the
developers to examine the updates and validate our results. In
some cases, our PR prompted discussions with the develop-
ers providing us with ideas for improving UPGRADVISOR’s
outputs. Out of nine PRs submitted, seven were merged and
two received no response. Furthermore, five of the merged PRs
were for dependencies listed in Table 2, validating the results
of UPGRADVISOR’s dynamic tracing.

7.4 Detecting API Breakage
We noticed that in OSS projects, API breakage is discovered
by dependency users in a few days/weeks. The relevant
version will quickly be “yanked” from the repositories, so
that the API breaking version ends up not being visible in
our experiments in §7.1. As a result, none of the dependency
updates considered in §7.1 caused API breakage. While this
shows the advantages of OSS, for the individual entities, this
discovery might have been made at the price of production
failures or even data corruption, and UPGRADVISOR’s goal
is to detect these before they happen.

To evaluate UPGRADVISOR’s ability to detect API
breakage, we conducted a small controlled experiment with
two applications, django-oscar and label-studio, which

were examined by UPGRADVISOR in §7.1. These applications
have a dependency on Django, which has a well-documented
deprecation timeline [4] allowing us to study API breakage.
We consider the recent 7-Dec-2021 release of Django 4.0,
which contains 28 API breaking changes including arguments
losing default value, removed APIs, etc. Both django-oscar

and label-studio are stuck on much earlier 3.x versions of
Django. Instead of considering an update to the next available
3.x version of Django, we used UPGRADVISOR to statically
analyze the difference between version 4.0 and the 3.x version
specified by the application. In these cases, UPGRADVISOR
correctly identified all API breaking changes with no false pos-
itives or negatives, which we manually confirmed by studying
UPGRADVISOR’s output and comparing it to the deprecation
information. This experiment also showcases UPGRADVISOR
ability to direct developers to the relevant portions of their
code which will break and provide context for the fix.

7.5 Tracing Overhead

We evaluated UPGRADVISOR’s tracer overhead using appli-
cations from our previous experiments in §7.1 with test suites
that we could set up and execute without errors. Ironically,
some test suites failed to run due to broken or conflicting
dependencies. We selected a subset of qualifying projects
to represent the Python open-source eco-system, including
ML (Qlib and Flair), data-science (Faust), blockchain
(Electrum and Vyper), administration tools (aws-cli), and
website-building (Django). Django allowed us to experiment
with multi-process code and control the number of processes
used. We ran Django’s test suite using 1, 8, and 16 logical
CPUs. Each project had some dependency update among
the 172 possible updates considered in §7.1. Specifically,
the dependency updates for Qlib, Flair, Faust, Electrum,
Vyper, aws-cli, and Django were hyperopt, gdown, Croniter,
qdarkstyle, asttokens, colorama, and pytz, respectively.

We compared the performance of UPGRADVISOR to several
other tools, including cProfile, Coverage.py, and JPortal4Py.
cProfile is a de-facto standard tool for cPython that profiles
executions at the method-level. Coverage.py is a de-facto stan-
dard tool for cPython that tracks statement-level test coverage.
Neither of them provide the same functionality of UPGRAD-
VISOR’s tracer, but provide useful performance comparisons.
JPortal4Py is a Python-compatible implementation of a
hardware tracer that traces the whole interpreter [43]. We also
compared against UPGRADVISOR-SW, an implementation
of UPGRADVISOR’s tracer that uses software tracing in lieu of
Intel PT to trace all procedures. In evaluating UPGRADVISOR,
we compared two configurations, UPGRADVISOR-ALL to
trace all procedures, and UPGRADVISOR-Targeted to trace
only procedures marked by UPGRADVISOR’s static analysis.
We ran each application on each tool five times and report the
average and standard deviation of the overhead measurements.

Fig. 10 shows the performance overhead measurements

762 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: Comparing the performance of UPGRADVISOR’s two modes, ALL and Targeted, with cProfile, Coverage.py,
JPortal4Py, and UPGRADVISOR-SW, a software-only tracer.

normalized to native execution of the application without
any tracing. UPGRADVISOR in targeted mode has the least
overhead in all cases, averaging 3%, with a standard deviation
of 2.15%. It is an order of magnitude faster than all other
tools for some applications, except for UPGRADVISOR-ALL.
Django’s multiprocess test-suite measurements showcase
the advantages of using hardware features for tracing, as all
software-based approaches suffer from significant overhead
trying to record all control operations made by the interpreter
across several processes. Nevertheless hardware tracing is
not a panacea as the JPortal4Py hardware tracer performs
much worse than UPGRADVISOR-SW on most of the single
process measurements. This is because JPortal4Py traces the
whole interpreter as well, flooding the memory buffer with
trace packets and causing significant disk I/O.

While tracing all methods, UPGRADVISOR-ALL manages
to only incurs an average of 6.4%, over 60% worse than UP-
GRADVISOR-Targeted but still much better than all other tools.
However, because it traces many more methods and fills up
the memory buffer quickly, it suffers data loss, which can lead
to misdiagnosing unsafe updates as safe. Data loss measures
lost tracing events, those overwritten before they could be read
from memory by the CPU and written to disk, as a percentage
of all tracing events. We calculated data loss rates by compar-
ing UPGRADVISOR-ALL versus UPGRADVISOR-SW, which
also traces all methods but does not suffer the data loss of
hardware tracing. UPGRADVISOR-ALL’s data loss rates across
the different applications rose as high as 16% for single process
workloads and over 20% for Django running with 16 logical
CPUs. In our experiments, we set a memory buffer size limit

of 128MB per logical CPU. Increasing this limit or using faster
disks/memory might help convert some data loss into overhead.
In contrast, UPGRADVISOR-Targeted does not suffer from any
data loss due to the reduced amount of trace records generated.

To further stress UPGRADVISOR’s tracer, we used In-
stagram’s django-workload [8]. This testing environment
includes a Cassandra database [2], memcached [27] in-memory
key-value instance, a Django installation and the Siege
load generator [13]. We set up Django according to its
recommended configuration for production systems [6]
using the WSGI interface. Django depends on pytz, a
frequently updated package dealing with time-zone related
date manipulations, and supports thousands of plugins and
sub-packages [5], including django-cassandra-engine used
by django-workload. We measured the performance of
UPGRADVISOR’s tracer using django-workload when eval-
uating updates to both pytz and django-cassandra-engine.
Running this workload using both UPGRADVISOR-ALL and
UPGRADVISOR-Targeted, we found that UPGRADVISOR
incurs an average overhead of only 7% and 3%, respectively.
These results are consistent with those in Fig. 10, and indicate
that our measurements of UPGRADVISOR’s tracer overhead
provide a good indication of its expected performance when
running real-world production workloads.

8 Related Work

Dependency upgrade surveys. Other surveys also show
that many projects suffer from dependency update de-
lays [23, 38, 41]. For example, a survey of 7.3K Java projects

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 763

reports that 81.5% of projects display dependency update
lag [23], and a survey of 610K JS projects in the NPM package
repository between 09-11-2010 and 02-11-2017 reports a
similar number of delay days as ours [41]. Our survey focuses
on three modern dynamic languages and investigates historical
dependency upgrade patterns.

AST differencing algorithms. AST differencing algo-
rithms [10, 11, 16, 29] compute an edit script between two
versions of an AST. GumTree [10] first finds isomorphic
subtrees through a greedy top-down algorithm then executes
a bottom-up algorithm to match sub-trees which share
a large number of matching nodes. As discussed in §6,
UPGRADVISOR uses GumTree’s AST-diffing and builds upon
its generated edit-script to generate a fused AST representing
the dependency before and after the update.

Changeset and impact analysis. Given a set of code changes
and test suite runs, change impact analysis tools generate a
list of tests affected by the change and re-test them to verify
if they pass after the change is adopted. Approaches can be
classified based on the techniques used, the granularity of
changes considered, and whether static or dynamic analysis
is used [24]; only one approach explored statically studying
changes at the code-snippet scope (below the method/class
level) [32]. Chianti [33] introduced a change impact analysis
tool for Java programs, incorporated in the Eclipse IDE. Prior
techniques all rely on application test suites and do not scale
to allow usage in production servers. UPGRADVISOR expands
on these works, representing changes at the statement level
and statically discarding them before using a dynamic tracer
to validate them on production servers.

Call graph construction. PyCG [34] builds call graphs for
Python code using assignment graphs. It prioritizes analysis
speed and completeness and thus exhibits unsoundness in its
evaluation. UPGRADVISOR prioritizes soundness, achieved by
over-approximating call targets. Various approaches dynam-
ically generate call graphs for JS code [17]. NodeProf [39]
instruments the code under test and gather information in
the face of code generation and other JS-born challenges.
UPGRADVISOR records similar information via tracking
jumps and calls online and then decoding this information
offline to avoid high overhead. We plan to leverage these
works to add JS support for UPGRADVISOR.

Hardware tracing. Modern CPUs provide hardware features
for tracing, including Intel PT [21] and ARM embedded trace
macrocell (ETM) [26, 37]). These have generally only been
applicable to native programs. Our previous work, JPortal [43],
showed how to enable hardware tracing for Java bytecode, but
it suffers from high overhead and data loss from needing to
trace the whole virtual machine. UPGRADVISOR improves
on JPortal via novel coarse-grained and selective tracing
mechanisms which achieve low overhead without data loss.

Statistical debugging. Statistical debugging [25, 42] reduces
tracing overhead through randomized sampling and dispersing

data collection among different users. UPGRADVISOR
achieves low overhead through selective hardware tracing,
which maintains completeness.

Multi variant execution (MVE). MVE methods [18, 28]
split test suite execution at the point of change, then run
the two versions (before and after upgrade) and merge
them back to show compliance. MVE concepts have also
been applied towards detecting exploitation attempts and
test generation [22, 31]. To overcome lacking coverage in
test-suites, UPGRADVISOR traces production servers focusing
only on parts relevant to the dependency update.

Patch analysis in continuous integration. SubmitQueue [1] is
a system for examining simultaneous application code updates.
It combines a build dependency graph with a continuously
trained statistical model to optimize the order of application
code updates to maximize parallelism for integration tests.
In contrast, UPGRADVISOR provides decision support for
evaluating dependency updates using production traces.

9 Conclusions and Future Work

We have shown that many projects suffer from prolonged
delays in adopting dependency updates. We have designed and
built UPGRADVISOR, a system for reducing developer effort
and error risk in adopting dependency updates. UPGRADVISOR
features the co-design of a sound static analysis constructed to
pinpoint a carefully selected target set of methods to trace and a
low-overhead production-ready tracer to observe dependency
usage. Using this hybrid analysis together with hardware trac-
ing, UPGRADVISOR has analyzed 172 upgrade opportunities,
determining that ~60% of them can be updated safely. For
the rest, UPGRADVISOR benefits developers by reducing the
manual effort of going over the changes in the dependency.

We plan to extend UPGRADVISOR to benefit more dynamic
languages. Moreover, we wish to build upon UPGRADVISOR’s
analysis to alert about malicious updates and generate
application tests for increasing dependency update coverage.
We believe UPGRADVISOR’s low-overhead tracing technique
can become useful in other domains and intend to explore its
use in debugging and fault isolation.

Acknowledgments

Landon Cox provided helpful comments on earlier drafts.
Andrew Magid helped with system implementation. This work
was supported in part by DARPA contract N66001-21-C-4018;
ONR grants N00014-17-1-2788 and N00014-18-1-2037;
NSF grants CNS-1564055, CNS-1703598, CNS-1763172,
CNS-1907352, CCF-1918400, CNS-2052947, CNS-2007737,
CNS-2006437, CNS-2128653, CNS-2106838, and CCF-
2124080; Faculty Research Awards from Facebook, JP Mor-
gan, DiDi, Cisco, and Accenture; and a Columbia CAIT Award.
(Corresponding authors: Junfeng Yang and Zhiqiang Zuo)

764 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Sundaram Ananthanarayanan, Masoud Saeida Ardekani,
Denis Haenikel, Balaji Varadarajan, Simon Soriano,
Dhaval Patel, and Ali-Reza Adl-Tabatabai. Keeping
master green at scale. In Proceedings of the 14th
European Conference on Computer Systems (EuroSys
’19), March 2019.

[2] Apache. Cassandra - open source nosql database.
https://cassandra.apache.org/_/index.html.
Accessed: 2022-05-24.

[3] Google Chrome. Chrome release cycle. https://ch
romium.googlesource.com/chromium/src/+/ref
s/heads/main/docs/process/release_cycle.md.
Accessed: 2022-05-24.

[4] Django. Django deprecation timeline. https:
//docs.djangoproject.com/en/dev/internals/
deprecation/. Accessed: 2022-05-24.

[5] Django. Django Packages is a directory of reusable apps,
sites, tools, and more for your Django projects. https:
//djangopackages.org. Accessed: 2022-05-24.

[6] Django. How to deploy Django. https://docs.d
jangoproject.com/en/4.0/howto/deployment/.
Accessed: 2022-05-24.

[7] Facebook Engineering. Rapid release at massive scale.
https://engineering.fb.com/2017/08/31/web/
rapid-release-at-massive-scale/. Accessed:
2022-05-24.

[8] Facebook. Django workload by Instagram and Intel,
v1.0 RC. https://github.com/facebookarchive
/django-workload. Accessed: 2022-05-24.

[9] Facebook. Pyre: A performant type-checking for Python
3. https://pyre-check.org. Accessed: 2022-05-24.

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc,
Matias Martinez, and Martin Monperrus. Fine-grained
and accurate source code differencing. In Proceedings
of the 29th IEEE/ACM International Conference on
Automated Software Engineering (ASE ’14), pages
313–324, September 2014.

[11] Beat Fluri, Michael Wursch, Martin PInzger, and
Harald Gall. Change distilling: Tree differencing for
fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743,
October 2007.

[12] Python Software Foundation. Cpython. https://gi
thub.com/python/cpython. Accessed: 2022-05-24.

[13] Jeffrey Fulmer. Siege 4.1.1 - an http load tester and
benchmarking utility. https://github.com/JoeDo
g/siege. Accessed: 2022-05-24.

[14] Google. Atheris: A coverage-guided, native python
fuzzer. https://github.com/google/atheris.
Accessed: 2022-05-24.

[15] David Grove, Greg DeFouw, Jeffrey Dean, and Craig
Chambers. Call graph construction in object-oriented
languages. SIGPLAN Notices, 32(10):108–124, October
1997.

[16] Masatomo Hashimoto and Akira Mori. Diff/ts: A tool for
fine-grained structural change analysis. In Proceedings
of the 15th Working Conference on Reverse Engineering
(WCRE ’08), pages 279–288, October 2008.

[17] Zoltán Herczeg and Gábor Lóki. Evaluation and com-
parison of dynamic call graph generators for JavaScript.
In Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering
(ENASE ’19), pages 472–479, May 2019.

[18] Petr Hosek and Cristian Cadar. Safe software updates
via multi-version execution. In Proceedings of the
35th International Conference on Software Engineering
(ICSE ’13), pages 612–621, May 2013.

[19] Intel. Intel Processor Trace virtualization enabling.
https://lwn.net/Articles/737839/. Accessed:
2022-05-24.

[20] Intel. libipt: an Intel Processor Trace decoder library.
https://github.com/intel/libipt. Accessed:
2020-10-31.

[21] Intel. Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 3 (3A, 3B, 3C & 3D):
System Programming Guide, chapter 35: Intel Processor
Trace. June 2019.

[22] Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Secure and efficient multi-variant execution using
hardware-assisted process virtualization. In Proceedings
of the 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’16), pages
431–442, June 2016.

[23] Raula Gaikovina Kula, Daniel M. German, Ali Ouni,
Takashi Ishio, and Katsuro Inoue. Do developers
update their library dependencies? Empirical Software
Engineering, 23(1):384–417, February 2018.

[24] Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang.
A survey of code-based change impact analysis tech-
niques. Software Testing, Verification and Reliability,
23(8):613–646, December 2013.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 765

https://cassandra.apache.org/_/index.html
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/process/release_cycle.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/process/release_cycle.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/process/release_cycle.md
https://docs.djangoproject.com/en/dev/internals/deprecation/
https://docs.djangoproject.com/en/dev/internals/deprecation/
https://docs.djangoproject.com/en/dev/internals/deprecation/
https://djangopackages.org
https://djangopackages.org
https://docs.djangoproject.com/en/4.0/howto/deployment/
https://docs.djangoproject.com/en/4.0/howto/deployment/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://github.com/facebookarchive/django-workload
https://github.com/facebookarchive/django-workload
https://pyre-check.org
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/JoeDog/siege
https://github.com/JoeDog/siege
https://github.com/google/atheris
https://lwn.net/Articles/737839/
https://github.com/intel/libipt

[25] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I.
Jordan. Bug isolation via remote program sampling.
SIGPLAN Notices, 38(5):141–154, May 2003.

[26] Arm Limited. Arm® Embedded Trace Macrocell
Architecture Specification ETMv4.0 to ETMv4.5,
December 2019.

[27] memcached. memcached - a distributed memory object
caching system. https://memcached.org. Accessed:
2022-05-24.

[28] Hung Viet Nguyen, Christian Kästner, and Tien N.
Nguyen. Exploring variability-aware execution for
testing plugin-based web applications. In Proceedings
of the 36th International Conference on Software
Engineering (ICSE ’14), pages 907–918, May 2014.

[29] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham,
and Tien N. Nguyen. Operation-based, fine-grained
version control model for tree-based representation. In
Proceedings of the 13th Conference on Fundamental
Approaches to Software Engineering (FASE ’10), pages
74–90, March 2010.

[30] npm. How npm works: Dependency hell.
https://npm.github.io/how-npm-works-docs
/theory-and-design/dependency-hell.html.
Accessed: 2022-05-24.

[31] Hristina Palikareva, Tomasz Kuchta, and Cristian
Cadar. Shadow of a doubt: Testing for divergences
between software versions. In Proceedings of the 38th
International Conference on Software Engineering
(ICSE ’16), pages 1181–1192, May 2016.

[32] Maksym Petrenko and Václav Rajlich. Variable gran-
ularity for improving precision of impact analysis. In
Proceedings of the IEEE 17th International Conference
on Program Comprehension (ICPC ’09), pages 10–19,
May 2009.

[33] Xiaoxia Ren, B.G. Ryder, M. Stoerzer, and F. Tip. Chi-
anti: a change impact analysis tool for Java programs. In
Proceedings of the 27th International Conference on Soft-
ware Engineering (ICSE ’05), pages 664–665, May 2005.

[34] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas,
Diomidis Spinellis, and Dimitris Mitropoulos. PyCG:
Practical call graph generation in Python. In Proceedings
of the 43rd International Conference on Software
Engineering (ICSE ’21), pages 1646–1657, May 2021.

[35] Python steering council. Pep 318 – decorators for
functions and methods. https://peps.python.org/
pep-0318/. Accessed: 2022-05-24.

[36] Python steering council. Pep 484 – type hints.
https://peps.python.org/pep-0484/. Accessed:
2022-05-24.

[37] Neal Stollon. ARM ETM, pages 213–218. Springer US,
Boston, MA, October 2010.

[38] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens
Dietrich. Technical lag of dependencies in major pack-
age managers. In Proceedings of the 27th Asia-Pacific
Software Engineering Conference (APSEC ’20), pages
228–237, July 2020.

[39] Haiyang Sun, Daniele Bonetta, Christian Humer, and
Walter Binder. Efficient dynamic analysis for node.js.
In Proceedings of the 27th International Conference
on Compiler Construction (CC ’18), pages 196–206,
February 2018.

[40] TIDELIFT. libraries.io - the open source discovery ser-
vice. https://libraries.io. Accessed: 2022-05-24.

[41] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Grego-
rio Robles, and Jesús González-Barahona. An empirical
analysis of technical lag in npm package dependencies.
In Proceedings of the 17th International Conference for
Software Reuse (ICSR ’18), pages 95–110, May 2018.

[42] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur
Naik, and Alex Aiken. Statistical debugging: Simulta-
neous identification of multiple bugs. In Proceedings of
the 23rd International Conference on Machine Learning
(ICML ’06), pages 1105–1112, June 2006.

[43] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang
Wang, Xuandong Li, and Guoqing Harry Xu. JPortal:
Precise and efficient control-flow tracing for JVM
programs with Intel Processor Trace. In Proceedings
of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation
(PLDI ’21), pages 1080–1094, June 2021.

766 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://memcached.org
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://npm.github.io/how-npm-works-docs/theory-and-design/dependency-hell.html
https://peps.python.org/pep-0318/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-0484/
https://libraries.io

A Artifact Appendix

Abstract
The version of UPGRADVISOR used to perform the exper-
iments described in the paper may be downloaded from
figshare.com. The artifact contains the code for the package sur-
vey, the static analyzer, and the hardware tracer. It also contains
scripts to compile the tracer, run the experiments described in
the paper, and produce most of the figures. For the most up to
date version of UPGRADVISOR and other resources please refer
to may be accessed on Github at http://upgradvisor.github.io.

Requirements
We provide the analyzer pre-installed in a docker container.
The tracer requires a bare-metal machine. It directly employs
a tracing capability found in Intel 5th generation CPUs
(Broadwell) and above. Installing the tracer software requires
root access to the OS.

This artifact will run on a i7-10700 CPU workstation
with 16GB RAM. A slower machine may result in reduced
performance. We set up the docker container on the tracer
machine and encourage you to do the same.

Scope
The artifact may be used to reproduce the experiments
described in the paper, including Fig. 1, Fig. 4, Fig. 8, Fig. 9,
Fig. 10, Table 1, and Table 2.

Contents
• AnalyzerDocker.tar.gz: A docker container for running

the survey and static analysis portions of Upgradvisor.
• Cache[2].tar.gz: Cached intermediate results of Upgrad-

visor to serve as examples and troubleshooting aids.
• UpgradvisorArtifact-main.tar.gz: The code of the

Upgradvisor analyzer and tracer.
• README.md: Instructions for setting up and running

the Upgradvisor experiments.
We recommend following the README’s instructions for
running the survey, and static analysis, as well as for checking
compatibility with, compiling, and running the hardware tracer.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 767

https://figshare.com/articles/software/UPGRADVISOR_Early_Adopting_Dependency_Updates_Using_Production_Traces/19593457
 http://upgradvisor.github.io
https://figshare.com/articles/software/UPGRADVISOR_Early_Adopting_Dependency_Updates_Using_Production_Traces/19593457?file=34826392

	Introduction
	Survey of Dependency Usage in OSS
	Upgradvisor Overview
	An Example Dependency Update Problem
	Using Upgradvisor to Update Qlib

	Static Analysis of Dependency Updates
	Application and Dependency Call Graphs
	Grouping Changes
	Clustering Changes Into Call Targets

	Dynamic Hardware Tracing
	Target-focused Tracing
	Coarse-grained Hardware Tracing
	Gather Trace Results

	Implementation
	Evaluation
	Facilitating Dependency Updates
	Analyzing Multiple Blocked Updates
	Contributing to the OSS Community
	Detecting API Breakage
	Tracing Overhead

	Related Work
	Conclusions and Future Work
	Artifact Appendix

