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Modern Software Development is fast-paced

● Facebook(Meta) updates their front-end three times a day, and release 
new iOS and Android apps every week

● A key enabler for new features is pre-exiting libraries

● Average of 12 direct dependencies 100+ transitive dependencies 
(Our survey of top-stared Python, JS, Ruby GitHub projects)
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● Dependencies' developers are releasing updates frequently, too

● Currently averaging 400 days in update adaption delay

Dependency Update Adoption Is Slow
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Dependency Delays Lead to Bad Consequences

● Fixed bugs in dependencies continue to affect applications

● Closed security holes put dependent applications at risk

● Conflicts arise in transitive dependency graphs 

○ Some can be resolved by using the oldest supported version

○ Other fall into a “dependency hell”
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● As dependency APIs change, blindly updating might fail
○ Noisy run-time crash

Naïve Solutions Fall Short

6× [#updates]× [#deps]
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● Manual inspection is not feasible
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UPGRADVISOR

UPGRADVISOR: Upgrade-Advisor
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UPGRADVISOR: Upgrade-Advisor
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Insight: What You Can’t Reach Won’t Hurt You

??
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Requirements for production run:

● Study the update without applying it

● No interruption

● Incur low overhead

Insight: What You Can’t Reach Won’t Hurt You
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Tracing production environment over time can serve 
as ground truth for dependency usage



● Safely discard non-reachable changes via hybrid program analysis

○ Static analysis to discard never-reachable changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead by employing hardware-based tracer

Key Ideas Driving UPGRADVISOR’s Design
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Analyzing Our Motivating Example
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Analyzing Our Motivating Example
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Analyzing Our Motivating Example
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Analyzing Our Motivating Example
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def main_worker_helper(...):
if os.name != 'nt’:

+   signal(SIGUP, hdlr_shutdown)
- signal(SIGUP, hdlr_shutdown)
signal(SIGINT, hdlr_shutdown)

Classify Changes In Motivating Example
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def serial_evaluate(self, ...):
for trial in self.dyn_trials:
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+     trial['state'] = RUNNING
...



Classify Changes In Motivating Example
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Key Challenges for Designing UPGRADVISOR
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● Hybrid program analysis to safely discard non-reachable changes 

○ Safely discard non-reachable changes via hybrid program analysis

■ Create sound call-graphs

■ Reachable-but-non-affecting changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead using a hardware-based tracer

■ Low-overhead & selective tracing
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void foo(int a){
if (a==0){

// something
} else {

// something else
}

}

Hardware Tracing for Native Code
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Jump Not Taken

cmp rdi, 0
jne .EL
nop
jmp RET

.EL
nop

.RET
ret

Tracing Records

Recreate Trace Offline

Cyclic-write RAM buffer
(Usually dumped to disk)



Hardware Tracing for Interpreter Code
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Tracing Records

Jump to LOAD_GLOBAL

<jumps @ LOAD_GLOBAL>

Jump to LOAD_CONST

<jumps @ LOAD_CONST>
…

def foo(a):
if a==0:

# something
else:

# something else

LOAD_GLOBAL        0 (a)
LOAD_CONST         1 (0)
COMPARE_OP         2 (==)
POP_JUMP_IF_FALSE  10

for (ByteCode bc : allcode)
switch (bc){

case LOAD_GLOBAL:
// do load global
break;

case LOAD_CONST:
// do load const
break;

case ...:
}

JPortal: Precise and Efficient Control-Flow Tracing for JVM Programs 
with Intel Processor Trace [PLDI ’ 21]



Hardware Tracing for Interpreter Code
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Hardware Tracing for Interpreter Code
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Tracing Records

Jump to LOAD_GLOBAL
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Recreate Interpreter Trace

Recreate Bytecode Trace

High overhead
& Data loss



Hardware Tracing for Interpreted Code
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Hardware Tracing for Interpreted Code
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Hardware Tracing for Interpreted Code
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for (ByteCode bc : all_code)
switch (bc){

case Op_Code_1:
// do Op_Code_1
break;

case POP_JUMP_IF_F:
jump_to_trace1()
// do POP_JUMP_IF_F
break;

case : ...
}

jump_back_trace1()

jump_back_trace2()

jump_back_trace3()

Selective Low-overhead



Evaluation – Facilitating Dependency Updates 

PR Submitted: 9
PR Merged: 7
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Updateable: 172

Static-Safe: 98 (56%) Tracing Required:74 
(44%) 

For 5 Projects: Production-Like Tracing



The Dynamic Tracing Contribution
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Project (Dependency) Diff (LOC)
% Discarded

% Left
Static Dynamic

AutoML(Distributed) 820 95 5 0

Electrum (qdarkstyle) 641 88 8 4

Flair (gdown) 1500 71 29 0

Qlib (Hyperopt) 828 90 9 1

Scylla (requests) 449 90 8 2



Tracer Overhead Testing Setup

● Selected Python projects with robust test-suites from our data-set 
○ For Django’s also running in parallel: using 1, 8, and 16 cores
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for (ByteCode bc : allcode)
switch (bc){

case LOAD_GLOBAL:
// do load global
break;

case LOAD_CONST:
// do load const
break;

case ...:
}



Tracer Overhead Testing Setup

● Selected Python projects with robust test-suites from our data-set 
○ For Django’s also running in parallel: using 1, 8, and 16 cores

● UPGRADVISOR-Targeted
● UPGRADVISOR-ALL
● Jportal4Py
● UPGRADVISOR-SW
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Instagram’s Django performance workbench 
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Conclusion

● We presented UPGRADVISOR: a system for reducing developer effort 
and error risk in adopting dependency updates 

● Want to know more? See our website!

● Want to use UPGRADVISOR-Python3? Install our free GitHub App
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https://upgradvisor.github.io

https://upgradvisor.github.io/


Conclusion

● Want to use UPGRADVISOR? Install our free GitHub App
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Thank You!
Questions?
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