
UPGRADVISOR: Early Adopting
Dependency Updates Using Hybrid

Program Analysis and Hardware Tracing
Yaniv David1, Xudong Sun2, Raphael J Sofaer1, Aditya Senthilnathan3,

Junfeng Yang1, Zhiqiang Zuo2, Guoqing Harry Xu4, Jason Nieh1 and Ronghui Gu1

1

1Columbia University 2Nanjing University 3IIT Delhi 4UCLA

Modern Software Development is fast-paced

● Facebook(Meta) updates their front-end three times a day, and release
new iOS and Android apps every week

● A key enabler for new features is pre-exiting libraries

● Average of 12 direct dependencies 100+ transitive dependencies
(Our survey of top-stared Python, JS, Ruby GitHub projects)

2

● Dependencies' developers are releasing updates frequently, too

● Currently averaging 400 days in update adaption delay

Dependency Update Adoption Is Slow

3

Ruby

Av
er

ag
e

of
 D

el
ay

 D
ay

s

Jan
-2020

Jan
-2021

Aug-2
019

Nov-2
021

Jan
-2020

Jan
-2021

Aug-2
019

Nov-2
021

Jan
=2020

Jan
-2021

Aug-2
019

Nov-2
021

Jun-2020

Jun-2020

Jun-2020

Jun-2021

Jun-2021

Jun-2021

Dependency Delays Lead to Bad Consequences

● Fixed bugs in dependencies continue to affect applications

● Closed security holes put dependent applications at risk

● Conflicts arise in transitive dependency graphs

○ Some can be resolved by using the oldest supported version

○ Other fall into a “dependency hell”

4

Dependency Delays Lead to Bad Consequences

● Fixed bugs in dependencies continue to affect applications

● Closed security holes put dependent applications at risk

● Conflicts arise in transitive dependency graphs

○ Some can be resolved by using the oldest supported version

○ Other fall into a “dependency hell”

5

● As dependency APIs change, blindly updating might fail
○ Noisy run-time crash

Naïve Solutions Fall Short

6× [#updates]× [#deps]

● As dependency APIs change, blindly updating might fail
○ Noisy run-time crash

○ Or worse, fail silently

● Integration tests fail or don’t even try covering dependency interfaces1

● Manual inspection is not feasible

Naïve Solutions Fall Short

7× [#updates]× [#deps]

● As dependency APIs change, blindly updating might fail
○ Noisy run-time crash

○ Or worse, fail silently

Naïve Solutions Fall Short

8

● As dependency APIs change, blindly updating might fail
○ Noisy run-time crash

○ Or worse, fail silently

● Integration tests fail or don’t even try covering dependency interfaces1

Naïve Solutions Fall Short

9× [#updates]× [#deps]
1Joseph Hejderup & Georgios Gousios, “Can we trust tests to automate dependency updates? A case study of Java Projects”, Journal of Systems and Software

● As dependency APIs change, blindly updating might fail
○ Noisy run-time crash

○ Or worse, fail silently

● Integration tests fail or don’t even try covering dependency interfaces1

● Manual inspection is not feasible

Naïve Solutions Fall Short

10× [#updates]× [#deps]

UPGRADVISOR

UPGRADVISOR: Upgrade-Advisor

11

Dependency
Code

Application
Code

Updated
Dependency

Code

Upgrade
SAFE

Reduced
Diff

Upgrade
not safe

Built UPGRADVISOR-Python3 and evaluated on 172 dependency updates

Production Servers

56%

Average Overhead 3%
(Max 6%)

90%
Smaller

UPGRADVISOR: Upgrade-Advisor

12

Application
Code

Upgrade
SAFE

Built UPGRADVISOR-Python3 and evaluated on 172 dependency updates

Production Servers

56%

Manually submitted a sample of 9 PR
7 already merged

Insight: What You Can’t Reach Won’t Hurt You

??

13

?

???
??

Application Code

Dependency CodeUpdated Dependency Code

Production

Requirements for production run:

● Study the update without applying it

● No interruption

● Incur low overhead

Insight: What You Can’t Reach Won’t Hurt You

??

14

?

???
??

Application Code

Dependency CodeUpdated Dependency Code

Production

Requirements for production run:

● Study the update without applying it

● No interruption

● Incur low overhead

Insight: What You Can’t Reach Won’t Hurt You

??

15

?

???
??

Application Code

Dependency CodeUpdated Dependency Code

Production

Tracing production environment over time can serve
as ground truth for dependency usage

● Safely discard non-reachable changes via hybrid program analysis

○ Static analysis to discard never-reachable changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead by employing hardware-based tracer

Key Ideas Driving UPGRADVISOR’s Design

16

● Safely discard non-reachable changes via hybrid program analysis

○ Static analysis to discard never-reachable changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead by employing hardware-based tracer

● Design for dynamic languages to maximize usability

Key Ideas Driving UPGRADVISOR’s Design

17

2.42 M

455 K

179 K

● Safely discard non-reachable changes via hybrid program analysis

○ Static analysis to discard never-reachable changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead by employing hardware-based tracer

● Design for dynamic languages to maximize usability

Key Ideas Driving UPGRADVISOR’s Design

18

No Types

Interpreted

Analyzing Our Motivating Example

19

QLib 0.7.1 HyperOpt
v0.1.1

Analyzing Our Motivating Example

20

QLib 0.7.1 HyperOpt
v0.1.1

Call-G
raph

Call-Graph

Analyzing Our Motivating Example

21

QLib 0.7.1 HyperOpt
v0.1.1

App → Dependency Call

Analyzing Our Motivating Example

22

QLib 0.7.1 HyperOpt
v0.1.1

HyperOpt
v0.1.2

def main_worker_helper(...):
if os.name != 'nt’:

+ signal(SIGUP, hdlr_shutdown)
- signal(SIGUP, hdlr_shutdown)
signal(SIGINT, hdlr_shutdown)

Classify Changes In Motivating Example

23

QLib 0.7.1

HyperOpt
v0.1.2

HyperOpt
v0.1.1

Never-reachable

Classify Changes In Motivating Example

24

QLib 0.7.1

HyperOpt
v0.1.2

HyperOpt
v0.1.1

Never-reachable

Only trace maybe-
reachable changes

Classify Changes In Motivating Example

25

QLib 0.7.1

HyperOpt
v0.1.2

HyperOpt
v0.1.1

Never-reachable

Only trace maybe-
reachable changes

def serial_evaluate(self, ...):
for trial in self.dyn_trials:
if trial['state'] == NEW:

- trial['state’] == RUNNING
+ trial['state'] = RUNNING
...

Classify Changes In Motivating Example

26

QLib 0.7.1

HyperOpt
v0.1.2

HyperOpt
v0.1.1

Never-reachable

Only trace maybe-
reachable changes

Changes
Initial
Count

Discarded
Left

Static Dynamic

Functions 72 68 (94%) 1 3

Classify Changes In Motivating Example

27

QLib 0.7.1

HyperOpt
v0.1.2

HyperOpt
v0.1.1

Never-reachable

def main_worker_helper(...):
if os.name != 'nt’:

+ signal(SIGUP, hdlr_shutdown)
- signal(SIGUP, hdlr_shutdown)
signal(SIGINT, hdlr_shutdown)

Only trace maybe-
reachable changes

def serial_evaluate(self, ...):
for trial in self.dyn_trials:
if trial['state'] == NEW:

- trial['state’] == RUNNING
+ trial['state'] = RUNNING
...

Changes
Initial
Count

Discarded
Left

Static Dynamic

Functions 72 68 (94%) 1 3

Key Challenges for Designing UPGRADVISOR

28

● Hybrid program analysis to safely discard non-reachable changes

○ Safely discard non-reachable changes via hybrid program analysis

■ Create sound call-graphs

■ Reachable-but-non-affecting changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead using a hardware-based tracer

■ Low-overhead & selective tracing

Key Challenges for Designing UPGRADVISOR

29

● Hybrid program analysis to safely discard non-reachable changes

○ Safely discard non-reachable changes via hybrid program analysis

■ Create sound call-graphs

■ Reachable-but-non-affecting changes

○ Dynamic analysis to test maybe-reachable changes

● Achieve low-overhead using a hardware-based tracer

■ Low-overhead & selective tracing

void foo(int a){
if (a==0){

// something
} else {

// something else
}

}

Hardware Tracing for Native Code

30

Jump Not Taken

cmp rdi, 0
jne .EL
nop
jmp RET

.EL
nop

.RET
ret

Tracing Records

Recreate Trace Offline

Cyclic-write RAM buffer
(Usually dumped to disk)

Hardware Tracing for Interpreter Code

31

Tracing Records

Jump to LOAD_GLOBAL

<jumps @ LOAD_GLOBAL>

Jump to LOAD_CONST

<jumps @ LOAD_CONST>
…

def foo(a):
if a==0:

something
else:

something else

LOAD_GLOBAL 0 (a)
LOAD_CONST 1 (0)
COMPARE_OP 2 (==)
POP_JUMP_IF_FALSE 10

for (ByteCode bc : allcode)
switch (bc){

case LOAD_GLOBAL:
// do load global
break;

case LOAD_CONST:
// do load const
break;

case ...:
}

JPortal: Precise and Efficient Control-Flow Tracing for JVM Programs
with Intel Processor Trace [PLDI ’ 21]

Hardware Tracing for Interpreter Code

32

Tracing Records

Jump to LOAD_GLOBAL

<jumps @ LOAD_GLOBAL>

Jump to LOAD_CONST

<jumps @ LOAD_CONST>
…

def foo(a):
if a==0:

something
else:

something else

LOAD_GLOBAL 0 (a)
LOAD_CONST 1 (0)
COMPARE_OP 2 (==)
POP_JUMP_IF_FALSE 10

for (ByteCode bc : allcode)
switch (bc){

case LOAD_GLOBAL:
// do load global
break;

case LOAD_CONST:
// do load const
break;

case ...:
}

Recreate Interpreter Trace

Recreate Bytecode Trace

Hardware Tracing for Interpreter Code

33

Tracing Records

Jump to LOAD_GLOBAL

<jumps @ LOAD_GLOBAL>

Jump to LOAD_CONST

<jumps @ LOAD_CONST>
…

def foo(a):
if a==0:

something
else:

something else

LOAD_GLOBAL 0 (a)
LOAD_CONST 1 (0)
COMPARE_OP 2 (==)
POP_JUMP_IF_FALSE 10

for (ByteCode bc : allcode)
switch (bc){

case LOAD_GLOBAL:
// do load global
break;

case LOAD_CONST:
// do load const
break;

case ...:
}

Recreate Interpreter Trace

Recreate Bytecode Trace

High overhead
& Data loss

Hardware Tracing for Interpreted Code

34

Only trace this
code segmentOnly Selected

Functions

Hardware Tracing for Interpreted Code

35

Only trace this
code segment

Tracing Records

Jump Back 1

Only Selected
Functions

for (ByteCode bc : all_code)
switch (bc){

case Op_Code_1:
// do Op_Code_1
break;

case POP_JUMP_IF_F:
jump_to_trace1()
// do POP_JUMP_IF_F
break;

case : ...
}

jump_back_trace1()

jump_back_trace2()

jump_back_trace3()

Hardware Tracing for Interpreted Code

36

Only trace this
code segment

Tracing Records

Jump Back 1

Only Selected
Functions

for (ByteCode bc : all_code)
switch (bc){

case Op_Code_1:
// do Op_Code_1
break;

case POP_JUMP_IF_F:
jump_to_trace1()
// do POP_JUMP_IF_F
break;

case : ...
}

jump_back_trace1()

jump_back_trace2()

jump_back_trace3()

Selective Low-overhead

Evaluation – Facilitating Dependency Updates

PR Submitted: 9
PR Merged: 7

37

Updateable: 172

Static-Safe: 98 (56%) Tracing Required:74
(44%)

For 5 Projects: Production-Like Tracing

The Dynamic Tracing Contribution

38

Project (Dependency) Diff (LOC)
% Discarded

% Left
Static Dynamic

AutoML(Distributed) 820 95 5 0

Electrum (qdarkstyle) 641 88 8 4

Flair (gdown) 1500 71 29 0

Qlib (Hyperopt) 828 90 9 1

Scylla (requests) 449 90 8 2

Tracer Overhead Testing Setup

● Selected Python projects with robust test-suites from our data-set
○ For Django’s also running in parallel: using 1, 8, and 16 cores

39

Tracer Overhead Testing Setup

● Selected Python projects with robust test-suites from our data-set
○ For Django’s also running in parallel: using 1, 8, and 16 cores

● UPGRADVISOR-Targeted

40

Tracer Overhead Testing Setup

● Selected Python projects with robust test-suites from our data-set
○ For Django’s also running in parallel: using 1, 8, and 16 cores

● UPGRADVISOR-Targeted
● UPGRADVISOR-ALL
● Jportal4Py

41

for (ByteCode bc : allcode)
switch (bc){

case LOAD_GLOBAL:
// do load global
break;

case LOAD_CONST:
// do load const
break;

case ...:
}

Tracer Overhead Testing Setup

● Selected Python projects with robust test-suites from our data-set
○ For Django’s also running in parallel: using 1, 8, and 16 cores

● UPGRADVISOR-Targeted
● UPGRADVISOR-ALL
● Jportal4Py
● UPGRADVISOR-SW

42

0

5

10

15

20

25

30

35

40

ELECTRUM VYPER AWS-CLI FLAIR FAUST QLIB DJANGO-1 DJANGO-8 DJANGO-16 AVG

O
VE

RH
EA

D
%

UPGRADVISOR-SW JPortal4Py UPGRADVISOR (ALL) UPGRADVISOR (Targeted)

UPGRADVISOR’s Tracer Incurs Low-Overhead

43

<1

>100

0

5

10

15

20

25

30

35

40

ELECTRUM VYPER AWS-CLI FLAIR FAUST QLIB DJANGO-1 DJANGO-8 DJANGO-16 AVG

O
VE

RH
EA

D
%

UPGRADVISOR-SW JPortal4Py UPGRADVISOR (ALL) UPGRADVISOR (Targeted)

UPGRADVISOR’s Tracer Incurs Low-Overhead

44

In the paper: Compare to cProfile & Coverage.py
Instagram’s Django performance workbench

<1

>100

Conclusion

● We presented UPGRADVISOR: a system for reducing developer effort
and error risk in adopting dependency updates

● Want to know more? See our website!

● Want to use UPGRADVISOR-Python3? Install our free GitHub App

45

https://upgradvisor.github.io

https://upgradvisor.github.io/

Conclusion

● Want to use UPGRADVISOR? Install our free GitHub App

46

Conclusion

47

Conclusion

48

Thank You!
Questions?

49

Dependency Update Adoption Is Slow HW-based Tracing is Production-Ready

Ruby

Av
er

ag
e

of
 D

el
ay

 D
ay

s

20
20

20
21

Oc
t-2
01
9

No
v-2
02
1

20
20

20
21

Oc
t-2
01
9

No
v-2
02
1

20
20

20
21

Oc
t-2
01
9

No
v-2
02
1

UPGRADVISOR
Dependency

Code

Application
Code

Updated
Dependency

Code

Upgrade
SAFE

Reduced
Diff

Upgrade
not safe

Production Servers

90%
smaller

56%

UPGRADVISOR: a system for reducing developer
effort and error risk in adopting dependency updates

Average Overhead 3%
(Max 6%)

