
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Johnny Cache: the End of DRAM Cache Conflicts
(in Tiered Main Memory Systems)

Baptiste Lepers, Université de Neuchâtel; Willy Zwaenepoel, University of Sydney

https://www.usenix.org/conference/osdi23/presentation/lepers

Johnny Cache: the End of DRAM Cache Conflicts
(in Tiered Main Memory Systems)

Baptiste Lepers
University of Neuchâtel

Willy Zwaenepoel
University of Sydney

Abstract
We demonstrate that hardware management of a tiered

memory system offers better performance for many applica-
tions than current methods of software management. Hard-
ware management treats the fast tier as a cache on the slower
tier. The advantages are that caching can be done at cache line
granularity and that data appears in fast memory as soon as it
is accessed. The potential for cache conflicts has, however, led
previous works to conclude these hardware methods generally
perform poorly.

In this paper we show that low-overhead conflict avoidance
techniques eliminate conflicts almost entirely and thereby
address the above limitation. We explore two techniques. The
static technique tries to avoid conflicts between pages at page
allocation time. The dynamic technique relies on monitoring
memory accesses to distinguish between hot and cold pages.
It uses this information to avoid conflicts between hot pages,
both at page allocation time and by dynamic remapping at
runtime.

We have implemented these techniques in the Linux ker-
nel on an Intel Optane machine in a system called Johnny
Cache (JC). We use HPC applications, key-value stores and
databases to compare JC to the default Linux tiered memory
management implementation and to HeMem, a state-of-the-
art software management approach.

Our measurements show that JC outperforms Linux and
HeMem for most applications, in some cases by up to 5×. A
surprising conclusion of this paper is that a cache can provide
close-to-optimal performance by minimizing conflicts purely
at page allocation time, without any access monitoring or
dynamic page remapping.

1 Introduction

Tiered memory systems combine DRAM with a slower, but
more abundant, storage tier (SSD, PMEM, CXL memory ex-
tension modules [8], ...). Most systems rely on a software dae-
mon that monitors accesses to the data. Frequently accessed

data is migrated to DRAM, while less frequently accessed
data is migrated to the slower tier [1, 9, 11, 14, 20, 23, 25].
Tiered memory systems have also been implemented purely
in hardware, using DRAM as an "L4" cache that sits between
the CPU and the slower tier [13].

Previous work has argued that hardware implementations
of tiered systems are inefficient because the hardware lacks a
high-level view of the application requirements and because
caching strategies have to be kept simple to be executed in
hardware. For instance, in tiered DRAM+PMEM systems,
software daemons have been shown to outperform the "mem-
ory mode" of Intel CPUs (in "memory mode", the CPU uses
DRAM as a directly-mapped cache for PMEM) [20].

This paper is based on the observation that the previously
mentioned limitations of hardware caching are not fundamen-
tal and can be addressed at the operating system level. In par-
ticular, we demonstrate that the poor performance observed
in earlier hardware-based systems is due to cache conflicts
resulting from Linux’s page allocation policy, and that simple
improvements to the page allocation policy can reduce cache
conflicts with little or no overhead.

Linux’s page allocation does not take into consideration
the location of pages in hardware caches. As a consequence,
Linux suffers from the birthday paradox: the DRAM cache is
large, but many pages tend to map to a subset of the available
cache locations. We propose the following simple static page
allocation policy to reduce conflicts: we allocate a new page
such that its physical address maps to a cache slot with the
fewest pages currently mapped to it. For example, if we have a
cache with 2 million slots and 4 million pages to be allocated,
we allocate 2 pages to each slot. The static policy has no
noticeable overhead, but it vastly reduces conflicts.

We also investigate a dynamic policy that takes into ac-
count the access frequency of pages, distinguishing between
hot and cold pages. The dynamic policy allocates a new page
to the cache slot with the lowest access frequency and reacts
to workload changes by dynamically remapping pages when
it detects conflicts. Surprisingly, we find that in many work-
loads the static policy already results in few conflicts, and the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 519

overheads of the dynamic policy offset the benefits of any
further gains in conflict reduction.

We compare our conflict avoidance policies to software
migration, as proposed by, among others, HeMem [20]. With
software migration, access frequency is monitored as well,
producing the same set of hot and cold pages and incurring
the same monitoring overhead as our dynamic approach. Soft-
ware migration, however, uses this information for an entirely
different purpose, namely to migrate hot pages from slow
to fast memory, and vice versa for cold pages, unlike our
dynamic policy which uses it to reduce conflicts.

We have implemented the static and dynamic policies at the
kernel level in a subsystem named Johnny Cache (JC), and we
refer to these systems as JC-static and JC-dyn, respectively.
We have evaluated these systems on a tiered DRAM+PMEM
system against the Linux page allocation mechanism and
against HeMem, a state-of-the-art software-based page mi-
gration system [20]. JC outperforms Linux and HeMem for
the vast majority of applications, in some cases by up to 5×.
We document these results in more detail in the paper and
also discuss the limitations of a cache-based approach. In
addition, we find that JC-static often suffices to obtain good
performance. Methods involving profiling such as HeMem
and JC-dyn suffer from profiling and migration overheads
and the inability to detect hot pages in some workloads. In
contrast, avoiding conflicts in the DRAM cache at allocation
time, as done by JC-static, is robust and sufficient to achieve
near-optimal performance for most workloads.

In summary, the paper makes the following contributions:

• The observation that hardware-managed DRAM caches
can be made efficient by minor modifications to the op-
erating system page allocation algorithms.

• The idea of placing conflict avoidance as a first principle
of page management in tiered memory systems, instead
of relying on migration of data.

• The design, implementation and evaluation of page
placement policies that outperform state-of-the-art page
migration systems.

The rest of the paper is organized as follows. Section 2 ex-
plains how tiered-main memory systems are managed in soft-
ware and in hardware. Section 3 presents the design of our
policies, Section 4 presents their implementation, and Section
5 their evaluation. Section 6 provides further discussion of
the strengths and weaknesses of various approaches. Section
7 presents related work and Section 8 concludes.

2 Tiered main memory systems

In this section, we give an overview of existing software- and
hardware-managed tiered memory systems, and we compare
their overheads.

2.1 Software-based migration

In software-managed tiered memory systems, the operating
system chooses which pages are allocated in DRAM and
which pages are allocated in the slower tier. The kernel usually
allocates as many pages in DRAM as possible and, when
DRAM is full, subsequent pages are allocated in the slow tier.
A daemon is in charge of migrating frequently accessed pages
(hot pages) from the slow tier to DRAM, and infrequently
accessed pages (cold pages) from DRAM to the slow tier. The
techniques vary but aim at inferring the set of hot pages with
high accuracy and low overhead. For instance, HeMem [20]
uses the hardware performance unit of Intel CPUs to track
memory accesses and migrates pages between DRAM and
PMEM using DMA to minimize CPU overheads.

Software-based migration gives the operating system full
control over page placement, but it comes with some down-
sides. First, data migrations are costly because they can only
happen at page granularity (4KB or 2MB), and each migration
requires modifying the page table, modifying the kernel VMA
metadata and flushing the TLBs. Migrations may also cause
latency spikes in write-heavy applications because pages have
to be write-protected while being migrated. Second, since
access frequency is collected on a per-page basis, for appli-
cations that mix hot and cold data in the same page, DRAM
may need to be used for cold data to allow fast access to
hot data in the same page. Finally, page migrations happen
asynchronously: data may be accessed for a while in the slow
tier before being migrated to DRAM. As a consequence, the
performance of software-based migration is heavily depen-
dent on the fast and accurate detection and migration of the
working set. To do so, memory access must be sampled with
high frequency, a costly proposition.

2.2 Hardware caching

In hardware, the CPU uses DRAM as a cache for the slow
tier. In existing implementations [13], the DRAM is config-
ured as a 1-way cache, indexed by physical address. Unlike
software-based approaches, hardware caches are synchronous:
all accessed data is cached in DRAM. In this section, we de-
scribe the implementation of the "memory mode" of Intel
processors for tiered DRAM+PMEM systems.

When looking for a physical address W , the memory con-
troller first checks if W is in the DRAM cache (at location
"W mod cachesize"). If W is not present in DRAM, W is
fetched from PMEM, copied to the DRAM cache and to the
CPU cache (see Figure 1(a)).

A conflict occurs when W maps to a cache slot that is al-
ready occupied by X , in which case X must first be removed
from the cache. In the best case, X is clean, and the cost is
equal to that of a PMEM read. If X is dirty, then X must be
written back to PMEM before W can be loaded in the cache,
making the cost the sum of a PMEM write and a PMEM

520 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

PMEM

DRAM

① copy line W

② copy line W

CPU

64B

(a)

PMEM

DRAM

CPU

64B

① copy line W

② evict dirty line X

③ copy line W ④ evict dirty line Y

(b)

⑤ evict dirty line Z

Figure 1: Caching in memory mode. (a) In the best case data
found in PMEM is cached in DRAM and in the CPU caches,
and in the (b) worst case the caching may result in evictions,
causing up to two writebacks to PMEM.

read. A worst-case scenario can arise as described in Fig-
ure 1(b). In addition to the writeback of X , a dirty line Y may
be evicted from the CPU cache, resulting in a writeback of Y
to the DRAM cache, which itself may result in a writeback
of another dirty line Z to PMEM (the DRAM cache is not
inclusive).

Regardless of the precise sequence of events, conflicts are
expensive. Table 1 compares the latency of performing 8B
random reads or random writes in DRAM, in PMEM, and
in the worst-case scenario presented in Figure 1(b). Reading
from PMEM (in AppDirect mode) is 3.2× slower than read-
ing from DRAM, and writing is 4.4× slower. A read causing
two writebacks to PMEM is 9.7× slower than a read from
DRAM, and a write causing two writebacks is 7.2× slower
than a write to DRAM. (Causing two writebacks to PMEM
is not exactly equivalent to performing two writes to PMEM,
which would be 8.8× slower, because the CPU overlaps the
evictions with other processing done by the application, re-
sulting in slightly more in-CPU parallelism).

Memory mode thus performs suboptimally when frequently
accessed data conflicts in the cache. If, however, conflicts can
be avoided, then memory mode offers several advantages
over software migration. First, caching avoids costly whole-
page migration as well as virtual memory operations. Second,
caches operate at the cache line level, while software migra-
tion can only migrate data at the page granularity. Therefore,
they avoid wasting DRAM space if hot and cold data are lo-
cated in the same page. Finally, caching is synchronous: hot
data appears in DRAM on the first access.

Read in DRAM 96ns
Plain read from PMEM 305ns

Write in DRAM 130ns
Plain write from PMEM 578ns

Read/Write causing 2 writebacks 938ns
Table 1: Latency of memory access in various scenarios.

2.3 Comparison
Table 2 summarizes the costs of migrating data vs. caching
data. These costs show that caching data in DRAM is a priori
a more parsimonious solution: data is cached at cache line
granularity (vs. page granularity), caching data requires no
kernel metadata updates, and no memory profiling is neces-
sary to infer which pages to cache.

3 Design

Our design is based on the idea that a DRAM cache is efficient,
as long as conflicts in the cache are rare. Conflicts happen
when two data items are mapped to the same cache location.
Conflicts become problematic if the data items are accessed
in turn. We have designed two policies that aim at minimizing
conflicts in the cache. The hardware caches data at cache
line granularity, but the kernel can only allocate data at page
granularity, so our policies try to minimize conflicts between
pages.

Static policy: The static policy minimizes the number of
allocated pages that map to the same DRAM cache location.
Assuming a DRAM cache that can store D pages, the static
policy allocates the first D pages so that they map to different
cache locations. The next D pages are allocated so that they
possibly conflict with a single other page, and so on.

Dynamic policy: The dynamic policy samples memory ac-
cesses to compute the heat of every page and every cache
location. When a new page is allocated, the kernel maps it to
the coldest available location.

A conflict avoidance daemon monitors for conflicts be-
tween hot pages at the same cache location. When two pages,
mapped to the same DRAM cache location, are both fre-
quently accessed, one of the pages is remapped to a different
cache location.

Rationale: The main advantage of the static policy is that
it requires no monitoring of memory accesses, and so it runs
with no overhead. The intuition behind the static policy is
that minimizing the number of pages that overlap in the cache
reduces significantly the likelihood of conflicts between hot
data items. Indeed, in most workloads, at most of a few GBs
of data is hot, even in workloads whose memory footprint
vastly exceeds the available DRAM. Minimizing overlaps
makes conflicts between hot pages unlikely. For instance, let’s
consider an application that allocates data twice the available
DRAM size, 5% of which is hot. The static policy allocates

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 521

Software migration Hardware caching
Granularity Page Size (4KB, 2MB) 64B

Cost of migrating/caching Page copy from PMEM to DRAM Best case
Page copy from DRAM to PMEM 1 cache line copied from PMEM to DRAM

2 page table updates Worst case
2 VMA updates 1 cache line copied from PMEM to DRAM

TLB flush 2 cache lines copied from DRAM to PMEM
Strategy Software defined All memory accesses are cached in DRAM

Table 2: Comparison of the cost of migration vs. caching.

pages such that exactly 2 pages map to each cache location.
A given hot page has a 5% chance to compete for the cache
with another hot page, and a 95% chance to compete with a
cold page. In other words, most hot pages are "paired" with a
cold page, and are thus unlikely to be evicted frequently from
the DRAM cache.

The dynamic policy makes more informed choices at page
allocation time, and the daemon fixes conflicts that may have
been missed at allocation time. The dynamic policy borrows
the notion of heat from software migration systems, but the
heat is used to track and avoid conflicts between hot pages
rather than to migrate hot pages to DRAM. We demonstrate
in Section 5.2 that, in the general case, avoiding conflicts is
less costly than migrating hot data to DRAM.

4 Implementation

In this section, we describe the implementation of the page al-
location policies and the migration daemon. The code is avail-
able at https://github.com/BLepers/JohnnyCache.

4.1 Page initialization and associated metadata

Our policies are implemented in the kernel, as hooks in the
kernel initialization function, the page initialization function,
the page fault handler and the page unmap handler. To ease the
development of policies, we implemented a framework that
contains the logic common to the policies. In the remainder of
the paper, we refer to the framework as Johnny Cache (JC).

In this paper, we assume a directly-mapped 1-way cache,
in which data is cached at its physical address modulo the
size of the cache – as implemented by Intel in the "memory
mode" of tiered DRAM+PMEM systems. It would be easy to
account for associativity in JC by changing the definition of a
conflict: currently, a conflict involves 2 or more pages; in an
N-way cache, a conflict would involve N+1 or more pages.

While DRAM caches data at cache line granularity, the
kernel can only allocate and migrate data at page granularity.
All the metadata maintained by JC are thus at the page level.
When the kernel boots, we query the processor’s memory
controller to find out the size of the DRAM cache. In the
remainder of this section, we refer to the maximum number of

pages that the cache can hold as the cache capacity. Because
the cache is directly-mapped, every page in the system maps
to a unique index in the cache, which we call a bin. The bin
of a page is its page frame number (physical address of the
first byte of the page / size of a page) modulo the capacity of
the cache. Furthermore, each bin of the cache has a heat. The
definition of heat depends on the policy. For instance, for the
static policy it corresponds to the number of allocated pages
that map to that bin.

As is the case with the default page allocation policy of
Linux, we use a lazy page allocation mechanism: pages are
physically allocated only when they are first accessed. We thus
hook the page fault handler to implement our page placement
policies. The framework maintains a list of bins with available
pages, sorted per heat. When a page fault occurs, a page from a
bin with the lowest heat is returned, and the current allocation
policy is informed of the page fault. Similarly, whenever a
page is freed, the kernel unmap handler is called, and the
current allocation policy is made aware of the unmapping.

Listing 1 summarizes the metadata and code of the page
fault hook used by our framework. The overhead of keeping
the metadata in memory is small (less than 50MB for a system
with 128GB of DRAM and 1TB of PMEM).

Our policies are implemented at the kernel level and oblivi-
ous to the notion of a thread or an application. The policies
try to minimize conflicts across the entire machine, and no
partitioning of the cache is done (unlike page-coloring ap-
proaches). A major benefit of this approach is that conflicts
are minimized globally. For instance, the conflict avoidance
daemon remaps hot conflicting pages even if they belong to
different applications.

4.2 Static policy
The static policy allocates a new page in a bin with the fewest
allocated pages. The static policy consists of counting the
number of allocated pages that map to a given cache bin. The
policy is called on every page fault and page unmap by the
framework. Listing 2 summarizes the code of the static policy.
During a page fault, the policy increments by one the heat of
the bin of the newly allocated page. Because the page fault
handler of the common framework allocates a page from the
bins which have the lowest heat, subsequent page faults will

522 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Listing 1 JC framework.

1 // struct for each cache bin (page granularity)
2 struct bin* bins[CACHE_CAPACITY] = { ... };
3 // avail[heat] = list of bins with free pages
4 struct bin* avail_bins[HEAT_LEVELS];
5 // full[heat] = list of fully allocated bins
6 struct bin* full_bins[HEAT_LEVELS];
7
8 struct page* page_fault_handler(void) {
9 for(i = 0; i < HEAT_LEVELS; i++) {

10 bin = list_first(avail_bins[i]);
11 if(bin) {
12 struct page *p =
13 list_pop(bin->avail_pages);
14 current_policy.page_fault(bin, p);
15 if(list_empty(bin->avail_pages))
16 list_move(bin, full_bins[bin->heat]);
17 else
18 list_move(bin, avail_bins[bin->heat]);
19 return p;
20 }
21 }
22 // OOM
23 }
24
25 void page_unmap(struct page *p) { ... }

likely avoid that bin. When a page is unmapped, the heat of
the bin is decremented by one, increasing the likelihood of
that bin being chosen for subsequent allocations.

Listing 2 In the static policy, the heat of a bin corresponds to
the number of pages allocated to that bin.

1 void static_pf(struct bin *b, struct page *p) {
2 b->heat++;
3 }
4
5 static_policy = {
6 .page_fault = static_pf, .unmap = ...
7 };

4.3 Dynamic policy and migration daemon
The dynamic policy allocates a page in a bin with available
pages and with the lowest heat. The dynamic policy monitors
memory accesses to infer the heat of each page and bin. We
monitor read accesses to the DRAM cache, read accesses
to PMEM and all stores using the Processor Event-Based
Sampling (PEBS) feature of Intel’s CPUs. When a memory
access is sampled, we increase the heat of the accessed page
and accessed bin. We also artificially increase the heat of the
bin of newly allocated pages to avoid multiple pages being
mapped to the same bin during bursts of allocations. To avoid
heat continually increasing over time, we trigger page cooling
as soon as a page becomes "super hot", i.e., when its heat
becomes double that of the threshold to detect a hot page.

In theory, our dynamic policy could monitor conflicts in
the cache instead of monitoring memory accesses, but no
such event exists in Intel CPUs. Our heat detection and cool-
ing approaches are identical to those used by HeMem [20],
which allows for a fair comparison between software-based
migration and conflict-avoidance (both solutions use the same
PEBS events, the same definition of heat and the same cooling
function).

The migration daemon monitors conflicts between allo-
cated pages. When two hot pages are present in the same bin,
one of them is remapped to a physical location in a different
bin. The daemon periodically looks for pages in the upper
heat buckets and remaps them. The remapping operation calls
the page fault handler which allocates a new page in a cold
bin and calls the unmap function, which decreases the heat of
the original bin. Algorithm 3 summarizes the approach of the
dynamic policy and migration daemon.

HeMem triggers migrations as soon as a hot page is de-
tected. To allow for a fair comparison, we trigger the daemon
as soon as we detect a bin containing two hot pages (i.e., as
soon as we detect a conflict that involves two hot pages).

Listing 3 The dynamic policy and migration daemon that
remaps pages from highly accessed bins.

1 // Migration daemon
2 void migration_daemon() {
3 wait();
4 for(i=HEAT_LEVELS-1; i>MIN_CONTENTION; i--) {
5 foreach(bin, avail_bins[i]) {
6 if(bin->nb_hot_pages >= 2)
7 remap(get_hot_page(bin));
8 }
9 foreach(bin, full_bins[i]) {

10 if(bin->nb_hot_pages >= 2)
11 remap(get_hot_page(bin));
12 }
13 }
14 }
15
16 // Called on every sampled memory access
17 void add_sample(struct bin *b, struct page *p){
18 b->heat++;
19 ... // increase the page’s heat &
20 ... // update the metadata
21 if(b->nb_hot_pages > 2)
22 migration_daemon.wakeup();
23 }
24
25 void dyn_pf(struct bin *b, struct page *p) {
26 b->heat++;
27 ... // increase the page’s heat &
28 ... // update the metadata
29 }
30
31 dynamic_policy = {
32 .page_fault = dyn_pf,
33 .unmap = ...
34 };

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 523

5 Evaluation

The evaluation aims at answering the following questions:

• What is the performance of JC compared to state-of-the-
art tiered memory management systems?

• What is the overhead of JC, in terms of performance and
latency spikes, compared to other systems?

• What are the limitations of JC? Which applications ben-
efit from hardware caches, and which benefit from page
migration?

We show that the static page allocation policy of JC
achieves close-to-optimal performance in many applications,
and sometimes outperforms the dynamic policy (and related
work) when minimizing CPU overhead is essential for per-
formance. The surprising conclusion of this evaluation is
thus that hardware caches often outperform existing software-
based migration strategies, provided minimal changes in the
kernel page allocation policy are put in place.

5.1 Setup
Hardware configuration. All the experiments presented in
this paper are run on a two-node NUMA machine, with 40
Intel Xeon Gold 6230 cores running at 2.10GHz (20 cores
per NUMA node), 128GB of DRAM, and 8*128GB Intel
Optane NV-DIMMs (64GB DRAM and 512GB PMEM per
NUMA node). In memory mode, each NUMA node has a
DRAM cache of 48GB (16GB is used by the CPU for the
cache metadata).
Workloads. We borrow the workloads used to evaluate
HeMem [20], a state-of-the-art software page migration sys-
tem. The GUPS microbenchmark allocates a large array, ze-
roes it, and then threads perform updates to a random subset
of 8-byte array elements. BC, from the GAP benchmark suite,
computes the betweenness centrality algorithm on a powerlaw
graph [4]. Silo [22] is an in-memory database running the
standard TPC-C benchmark suite. Finally, Masstree [16] is
an in-memory key-value store, running a YCSB workload1.
We also present results from the NAS benchmark suite [3].
JC equals or more commonly outperforms the related work
in all these benchmarks, with the exception of the MG.E ap-
plication from the NAS benchmark suite, which allows us to
demonstrate the limitations of our approach. As in the origi-
nal HeMem evaluation, NUMA effects of tiered memory are
beyond the scope of this paper, and we run the applications
on a single NUMA node.
Software configuration. We compare JC against unmodified
Linux and HeMem. Linux uses the machine in memory mode

1HeMem benchmarked FlexKVS [17], an in-memory key-value store
which we could not evaluate due to the lack of an RDMA network card on
our server.

with the default Linux page allocation policy. With the de-
fault page allocation policy, pages are allocated on the local
NUMA node, but contiguous virtual memory ranges may end
up fragmented in physical memory. Any array larger than 2
pages may thus conflict with itself in the DRAM cache (the
larger the array, the more likely 2 pages of the array conflict).
We refer to JC-static as the machine in memory mode with
our static page allocation policy and to JC-dyn as the machine
in memory mode with the dynamic page allocation policy
plus the page remapping daemon. We benchmark HeMem
using the provided artifact [19].

5.2 GUPS

The GUPS microbenchmark, from HeMem [20], allocates a
large array, a subset of which is hot. 90% of the updates are
done on the hot section of the array, and 10% on the cold
section. We configure the array to be 96GB, twice the DRAM
cache size and measure performance when 10% of the array
is hot (9.6GB).

The performance of HeMem and JC-dyn is dependent on
their ability to detect hot and cold pages. Intuitively, the more
threads perform memory accesses, the easier it is to detect hot
pages. To assess the impact of the workload on the detection
of hot and cold pages, we thus vary the number of threads.
Furthermore, HeMem and JC-dyn use two separate threads
to sample memory accesses and to migrate pages. To assess
the overhead of these threads, we either run them on separate
cores or on the cores used by GUPS. We refer to these con-
figurations as (M+N) where M is the number of cores used
by GUPS, and N is either 0 or 2 and reflects the number of
cores dedicated to monitoring and migration in HeMem and
JC-dyn. We use three such configurations: (16+2), (8+2) and
(8+0). These results are presented in Section 5.2.1.

In the original GUPS implementation the hot and cold
data items are located in separate regions of the array. While
this microbenchmark reflects the partitioning done by some
applications, it implies that all hot items are located in a small
number of pages, and all cold items are located in the other
pages. To reflect the behavior of applications that do not
partition their hot and cold items in this manner, we also run
GUPS with hot items scattered randomly in the array. These
results are presented in Section 5.2.2. Finally, in Section 5.2.3
we explore the performance of the different systems with a
larger data set of 480GB.

We measure the throughput achieved for a given combina-
tion of system and workload. When the hot data fits in DRAM,
we present the results as the percentage of the throughput
achieved when all hot data is manually allocated in DRAM.
Otherwise, we present the result in terms of millions of up-
dates per second.

524 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2.1 Random updates to clustered hot values

We first benchmark GUPS with hot values clustered on a few
pages, the scenario favoring page migration.

The allocated array is twice the size of the DRAM cache so,
initially, half of the array is in DRAM, and all systems start
with low throughput. Figure 2 presents the performance of JC-
static, JC-dyn, HeMem, and Linux over time, as a percentage
of the performance achieved when all hot pages are manually
allocated in DRAM.

Steady-state performance in configuration (16+2): Both
HeMem and JC-dyn achieve 100% of DRAM performance,
JC-static 85% and Linux 60%. There is (conflict-free) space
in the cache for all hot pages, so JC-dyn eventually eliminates
all conflicts, and HeMem eventually moves all hot pages to
DRAM, explaining their performance being equal to DRAM.

The good performance of JC-static is explained by the low
number of conflicts on hot data. The array is twice the size of
the cache, and JC allocates exactly 2 pages per cache bin. Let
P be a hot page. P conflicts with a single other page Q, and Q
only has a 10% probability of being hot. JC thus only suffers
from conflicts between 10% of the hot data (0.96GB).

The low performance of Linux is explained by the large
number of conflicts when no care is taken to properly spread
the pages in the cache. Just as with the "birthday paradox",
even though a year has many days (even though the cache has
many bins), in a small group of people, many are likely born
on the same day (many pages are mapped to the same cache
bin, even when allocating only 100GB). On average, Linux
uses only 32GB of the DRAM cache because the allocated
pages map to a subset of the available cache bins, while JC
takes advantage of the full cache. Figure 2(d) presents the
performance of an average run of Linux, but, depending on
page placement, performance varies between runs from 20%
to 80% of DRAM performance. These extreme values are
rare, with most runs achieving around 60%.

Steady-state performance in configuration (8+2) - The dif-
ficult configuration of heat detection systems: The perfor-
mance of JC-static and Linux relative to DRAM performance
remains the same as in configuration (16+2). HeMem does
not reach steady state even after 2 minutes, only reaching 40%
of DRAM speed. JC-static is between 4× faster than HeMem
(at the beginning of the execution) and 2.2× faster (after 2
minutes of execution). JC-dyn also does not reach steady state,
but its performance is closer to DRAM performance (85% at
the beginning of the execution, 90% at the end).

With 8 threads, fewer samples are generated, and the cool-
ing mechanisms of HeMem and JC-dyn reduce the heat of
pages faster than it increases as a result of accesses. HeMem
and JC-dyn trigger page cooling as soon as any given page
becomes "super hot", i.e., when its heat becomes double the
threshold to detect a hot page (see Section 4). We imple-
mented other cooling algorithms, but none ended up working

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(a)

%
 D

R
A

M
 p

e
rf

o
rm

a
n

c
e

JC-static (16 threads)
JC-static (8 threads)

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(b)JC-dyn (16+2 threads)
JC-dyn (8+2 threads)
JC-dyn (8+0 threads)

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(c)

Hemem (16+2 threads)
Hemem (8+2 threads)
Hemem (8+0 threads)

0%
20%
40%
60%
80%

100%

 0 20 40 60 80 100 120 140 160

(d)

Time (s)

Linux (16 threads)
Linux (8 threads)

Figure 2: Hot values clustered in the array. Performance
achieved by JC, HeMem, and Linux compared to the per-
formance achieved when all the hot values are manually al-
located in DRAM (optimal page placement). (a) JC-static,
which does not use any profiling, performs close-to-optimally.
(b) The profiling threads of the migration daemon can nega-
tively interfere with the application threads (brown line). (c)
The performance of HeMem is highly dependent on its abil-
ity to detect hot pages. When GUPS is launched with a low
number of threads, hot pages are rarely detected and HeMem
performs suboptimally. (d) The default page placement policy
of Linux performs suboptimally because of conflicts.

in all configurations of GUPS. For instance, forcing cool-
ing to happen periodically but less frequently results in most
of the array being detected as hot in some other configura-
tions (e.g., on smaller arrays). Replacing periodic cooling
with other algorithms such as LRU also performs poorly in
some configurations (e.g., when the hot set size exceeds the
DRAM size). Most of the related work on page migration
explores new ways of measuring heat accurately and with low
overhead [1, 9, 11, 12, 14, 20, 23–25] but, in our experience,
these heuristics require fine-tuning for each application and
configuration.

It is possible to tune the sampling rate of memory accesses
to gather more samples in a given amount of time, but doing
so is also fraught with problems. For instance, doubling the
sampling rate actually decreases the performance of GUPS
running with 16 threads by 20%, due to profiling overheads.
Some literature describes attempts to use dynamic sampling
rates, but these algorithms also need to be precisely tuned for
each machine or workload (e.g., to detect pages that need to
be migrated between NUMA nodes, Carrefour [11] adjusts

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 525

its sampling rate based on the workload, but all its parameters
are fine-tuned for each machine).

The inability to detect most hot pages negatively impacts
the performance of HeMem. In comparison, caches "work
well", even without any heat detection or page migration.
Once an item is updated, it is cached in DRAM. After a few
seconds, most items have been updated, and the cache has
reached its warmed-up state. JC-static and JC-dyn perform
close-to-optimally without any fine-tuning, regardless of the
number of GUPS threads. Just as HeMem, JC-dyn only man-
ages to detect a subset of the (conflicting) hot pages. The
partial detection of hot pages explains why JC-dyn is unable
to reach optimal performance, but also explains why it per-
forms slightly better than JC-static.

Performance over time in configuration (16+2) - Caches
reach steady-state performance faster: As expected, the
performance of JC-static and Linux remains constant after
allocation is completed, since the number of conflicts remains
the same throughout the execution. HeMem and JC-dyn re-
quire some time to reach maximum performance, in the case
of JC-dyn to migrate pages to avoid conflicts, in the case of
HeMem to migrate hot pages initially allocated in PMEM
to DRAM and vice versa for cold pages. The time to reach
this steady state performance is, however, much longer for
HeMem than for JC-dyn, 38 seconds versus 2 seconds.

HeMem needs to sample memory accesses in order to per-
form informed migration decisions, and each migration con-
sists in evicting a cold page to PMEM and promoting a hot
page to DRAM. Migrations are thus inherently asynchronous
and costly. In JC, once an item is updated, it is cached in
DRAM. After a few seconds, most items have been updated,
and the cache has reached its warmed-up state.

A surprising observation is that fixing conflicts requires
fewer page migrations than migrating hot and cold pages.
Indeed, before doing any page migration, only 0.96GB of
the data conflicts, and these conflicts can be avoided by mi-
grating 0.48GB of data. In HeMem, 4.8GB of the hot data
is misplaced and needs to be brought to DRAM, which also
causes 4.8GB of cold data to be migrated to PMEM. HeMem
thus migrates 9.6GB (20× more data) to reach steady state
performance.

Performance over time in configuration (8+0) - A back-
ground daemon can be counterproductive: JC-static and
Linux do not use any profiling threads, and their performance
is obviously the same as in configuration (8+2). The perfor-
mance of both HeMem and JC-dyn becomes quite variable,
and JC-dyn on average drops below JC-static in terms of
performance. When the monitoring and migration threads
execute on dedicated cores, JC-static and JC-dyn have similar
performance, but, when they are scheduled on the same cores
as the GUPS application, they have a non-negligible impact
on performance. In that situation, JC-static outperforms JC-
dyn by 10% on average and maintains a much more stable

throughput over time.

5.2.2 Random updates to distributed hot values

In the previous experiment, all the hot items were clustered
on the same pages, which is the best case scenario for page
migration systems. However, hot items may not be clustered
together in memory. To account for this behavior, we execute
GUPS with hot items randomly scattered in the allocated
array. As before, we allocate a 96GB array, 10% of which is
hot. We execute GUPS with 16 threads, and dedicated cores
for the profiling (16+2 configuration). Figure 3 presents the
performance of HeMem, Linux and JC over time. JC is 4.5×
faster than HeMem.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

M
U

p
d

a
te

s/
s

Time (s)

JC (all) Linux Hemem

Figure 3: 16+2 threads, hot values distributed in the array
and profiling running on dedicated cores. GUPS throughput
over time when the hot set size is equal to 20% of the DRAM
cache (higher is better).

In this experiment, because hot items are scattered in the
array, most pages contain one or a few hot items. HeMem
cannot bring all the hot pages in DRAM because the number
of pages that contain hot items exceeds the number of pages
that fit in DRAM. Interestingly, the hot data set does not need
to be large for HeMem to be unable to migrate data to DRAM.
Indeed, 1% of the data being hot (1GB) translates to 134
million 8-byte values, so all pages of the array likely contain
many hot values (100GB is "only" 51K 2MB pages).

Just as HeMem, JC-dyn cannot perform any useful remap-
pings, and as a result JC-static and JC-dyn perform equally
well in this benchmark. Although hot items are scattered on
all pages, since data is cached at the cache line granularity,
the hot items rarely overlap in the cache. In this configuration
of GUPS, JC reads on average 7× less data from PMEM than
HeMem.

5.2.3 Performance on large datasets

In the previous experiments, GUPS was configured with a
96GB dataset (2× the cache size), 10% of which was hot. In
this experiment, we configure GUPS to use 480GB (10× the
cache size), the maximum workload size that fits on a single
NUMA node, and we vary the percentage of hot data so that
the hot data either fits in the cache or not. We run HeMem
with dedicated cores for profiling and migration.

526 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Because GUPS allocates all the available memory, JC’s
static page allocation policy and Linux have the same perfor-
mance. Indeed, JC allocates pages in an order that minimizes
conflicts but, in the end, both JC and Linux end up allocating
all the pages of the system.

When the hot dataset is clustered and fits in the cache.
We measure performance when 2% of the data is hot (9.6GB,
same as in the smaller experiments). Figure 4 presents the
performance of JC and HeMem compared to the performance
obtained when the hot data is placed in DRAM.

As in the smaller dataset experiment, HeMem and JC’s
dynamic performance depends on their ability to detect hot
pages. When GUPS is configured to run with 8 threads,
HeMem does not reach steady state after 2 minutes of ex-
ecution. In comparison, caches "work well", even without
heat detection or page migration.

When GUPS is configured with 16 threads, both HeMem
and JC-dyn eventually reach optimal performance. As seen
earlier, caches reach optimal performance faster because
avoiding conflicts requires fewer page migrations (1.7GB
of the data initially conflicts in JC, 4.3GB of the data is ini-
tially misplaced in HeMem). The number of conflicting pages
is higher in the 480GB experiment than in the 96GB experi-
ments, even though the same number of pages are hot, because
more pages map to the same slot. In the 96GB experiment, 2
pages map on a given slot, so a hot page has a 10% probability
of conflicting with another hot page. In the 480GB experi-
ment, a hot page conflicts with 9 other pages, each of which
has a 2% probability of being hot, so it has a 16% probability
of conflicting with another hot page. The higher number of
conflicts explains why JC-static performs worse on bigger
datasets than on smaller datasets: large datasets hinder the
ability of JC-static to minimize conflicts at allocation time.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(a)

%
 D

R
A

M
 p

e
rf

o
rm

a
n

c
e

Time (s)

JC static (8 threads)
JC dyn (8+2 threads)

Hemem (8+2 threads)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(b)

Time (s)

JC static (16 threads)
JC dyn (16+2 threads)

Hemem (16+2 threads)

Figure 4: Hot values clustered in the array. 480GB dataset, 2%
of which is hot (9.6GB). (a) With few threads, hot pages are
rarely detected, and HeMem performs suboptimally. (b) With
a large number of threads, JC reaches optimal performance
faster than HeMem.

When the hot dataset is clustered but does not fit in the
cache. We measure performance when 50% of the data
is hot (240GB, 5× the cache size). Figure 5 presents the
performance of JC and HeMem compared to the performance
that GUPS would get if all the data were to fit in DRAM.

Interestingly, HeMem’s performance slightly increases at
the beginning of the benchmark as it brings hot pages in the
DRAM cache. JC’s performance slightly decreases as the
cache fills with dirty data. Regardless of the policy, GUPS
end up doing most of its memory accesses in PMEM because
most of the data does not fit in the cache. In their steady state,
all solutions have the same performance.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

%
 D

R
A

M

Time (s)

JC static (16 threads)
JC dyn (16+2 threads)

Hemem (16+2 threads)

Figure 5: Hot values clustered in the array. 480GB dataset,
50% of which is hot (250GB). JC and HeMem do most of their
accesses in PMEM because the hot dataset vastly exceeds
DRAM capacity, which explains the low overall performance.

When the hot dataset is not clustered. Figure 6 presents
the performance of GUPS when the hot data is not clustered.

As in the smaller experiment, HeMem cannot bring the hot
data to DRAM and performs most of its accesses in PMEM.
The performance of JC depends on the likelihood of conflicts.
When a small percentage of the data is hot (2%, 9.6GB), then
conflicts in the cache are unlikely. When most of the data is
hot, JC also performs most of its accesses in PMEM and has
the same performance as HeMem.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(a)

M
U

p
d
a
te

s/
s

Time (s)

JC (all) - 2% hot data
Hemem - 2% hot data

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

(b)

M
U

p
d

a
te

s/
s

Time (s)

JC (all) - 50% hot data
Hemem - 50% hot data

Figure 6: Hot values distributed in the array, 480GB dataset.
The performance of JC depends on the percentage of hot
values. Because hot values are spread on most pages, HeMem
cannot improve performance and performs suboptimally.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 527

5.2.4 Summary

In summary:

+ Hardware caches perform well, even without any active
monitoring and page remapping. Software migration is
highly dependent on its ability to detect hot pages.

+ Hardware caches reach steady-state performance faster
than software migration.

+ Hardware caches often vastly outperform software mi-
gration when working with scattered small hot items.

5.3 BC
In this section, we evaluate the performance of BC, running
with as many threads as cores, using the default Linux page
allocator, HeMem and JC. Figure 7 presents the average dura-
tion of an iteration of the betweenness centrality algorithm.

 0
 5

 10
 15
 20
 25
 30
 35

BC 26

R
u
n
tim

e
 (

s)

Linux-DRAM
Linux-MemMode

 Hemem

JC-static
JC-dyn

 0

 20

 40

 60

 80

BC 27
 0

 30
 60
 90

 120
 150
 180

BC 28

Figure 7: BC, average duration of an iteration, in seconds
(lower is better). Linux-DRAM is the performance of BC
when all data is manually allocated in DRAM. Linux-DRAM
runs out of memory on BC 27 and BC 28. JC-static outper-
forms HeMem and JC-dyn.

When the hot data fits in DRAM With a scale of 26, BC
allocates 35GB of memory and fits in DRAM. With a scale of
27, BC allocates 70GB, but then only actively accesses 45GB,
so its "hot" dataset also fits in DRAM.

We confirm the results of the original HeMem paper:
HeMem is faster than Linux in these two configurations.
However, JC-static outperforms Linux and HeMem by up
to 3.2× and 2× respectively. On BC 26, JC-static matches
the performance of manually allocating all the data in DRAM
(Linux-DRAM in Figure 7).

The performance differences are explained by the nature
of the processing performed by BC. BC is an OpenMP ap-
plication, and each of its threads performs a fixed fraction of
the computation. The monitoring used by HeMem and JC-
dyn uses two CPU-intensive threads, and these two threads
compete for CPU with BC’s threads. Because BC’s threads
frequently wait for each other in barriers, interrupting a single
thread causes the whole application to be delayed at barriers.
When run with HeMem or JC-dyn, BC 26 spends 50% of

its time waiting at barriers. In comparison, JC-static has no
overhead during the execution of BC, BC’s threads progress
at the same pace and spend only 2.5% of their time at barriers.

The BC example again illustrates the difficulty of fine-
tuning software-migration systems. In BC, we found that the
optimal performance was reached when dividing the default
sampling rate by 10× and performing page cooling once every
second. In that configuration, the Hemem and JC-dyn versions
of BC 26 match that of JC-static in performance, and for BC
27 they improve from 60% slower to 10% slower. However,
with such a low sampling rate, no hot page is detected in
the previously tested configurations of GUPS, resulting in
JC-static being 4× faster than HeMem in that benchmark.

The poor performance of Linux is explained by conflicts
in the DRAM cache. Conflicts between hot pages are rare
(on average 500MB of hot pages conflict in BC 26), but these
conflicts are not evenly distributed between threads: some
threads end up manipulating pages that mostly conflict, while
others manipulate pages that mostly do not conflict. Threads
impacted by conflicts slow down the whole application be-
cause the fast threads spend most of their time waiting at
barriers. We measured that threads spend on average 63% of
their time waiting at barriers in BC 26.

When the hot data does not fit in DRAM With a scale of
28, BC allocates 140GB of memory and accesses 90GB of
it. In this configuration, JC-static is 5× faster than HeMem,
and HeMem is slower than the default Linux page allocation
mechanism.

The low performance of HeMem and JC-dyn is again ex-
plained by the interference between their monitoring threads
and BC, and pressure put by page migrations on PMEM.
HeMem copies data from DRAM to PMEM using DMA,
which has low CPU overhead, but still increases contention
on PMEM. HeMem ends up migrating 40GB of data dur-
ing the execution of BC 28, continuously putting pressure
on PMEM, and exacerbating the imbalance issues observed
at scale 26 and 27. At scale 28, on average threads spend
65% of their time waiting at barriers. JC-dyn performs better
than HeMem on BC 28 because it creates less contention on
PMEM: JC-dyn only infrequently migrates data (on average
4GB per run). Its overhead comes mostly from monitoring
memory accesses and cooling pages.

JC-static performs well because it is able to avoid most
conflicts at allocation time. Indeed, BC mostly operates on
two arrays: a 10GB array is frequently accessed, the other
one less so. JC-static allocates the pages of the frequently
accessed array so that they do not conflict with each other,
effectively minimizing conflicts without the need for any mi-
gration. It may seem "lucky" that the hot data was allocated at
once, which causes JC-static to place all hot pages in different
cache bins, but we found this pattern to be extremely common
in HPC applications (e.g., all the NAS applications start by
allocating large arrays, only a subset of which are hot).

528 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0
 5

 10
 15
 20
 25

YCSB A YCSB B YCSB C YCSB D

T
h
ro

u
g
h
p
u
t

(M
O

p
s/

s)

Linux Hemem JC-static JC-dyn

 0

 50

 100

 150

 200

YCSB E

T
h
ro

u
g
h
p
u
t

(K
O

p
s
/s

)

Figure 8: Masstree throughput (higher is better).

Summary Software-based migration requires monitoring
memory accesses to perform informed migrations. The over-
head of this monitoring can have cascading effects on HPC
applications that rely on barriers to synchronize their threads.
In contrast, it is possible to minimize conflicts in hardware
caches at allocation time, without any profiling. Hardware
caches thus vastly outperform software migrations when CPU
overheads need to be avoided.

5.4 Masstree

We configured Masstree to execute with a 120 GB database,
and we use 16 threads to avoid competition for CPU between
Masstree’s threads and the profiling and migration threads,
which run on dedicated cores. The YCSB workload used
by Masstree uses 128B items (1 billion items in total) and
follows a Zipfian distribution: 20% of the dataset is accessed
80% of the time. Most of the accesses thus target the index
(5GB) and a subset of the values (25GB).

5.4.1 Performance

Throughput Figure 8 summarizes the performance of
Masstree on the YCSB workload. In both applications, JC
outperforms Linux and HeMem by up to 2×.

The memory access behavior of Masstree is similar to that
of GUPS when the hot items are randomly scattered in the
allocated array. During initialization, items are inserted in the
key-value store in random order. It is thus possible for a hot
value to be allocated next to a cold value. Similarly, the nodes
of the index are populated in random order, and it is possible
for a hot node to sit next to a cold one. Because the hot data
is scattered on all pages, it is not possible to bring the hot
dataset to DRAM.

In the case of GUPS with distributed hot values, HeMem
could not improve the performance of the application at all
because hot items were uniformly hot. In Masstree, the index
is slightly hotter than the values, and values are accessed in
a Zipfian way. HeMem thus manages to migrate some of
the "hottest" pages to DRAM, but 45% of the memory ac-
cesses performed by Masstree still hit PMEM. In comparison,
hardware caches operate at the cache line granularity, and the

hottest nodes and values are unlikely to conflict. On average,
only 15% of the memory accesses hit PMEM with JC-static.

JC-dyn performs marginally better than JC-static because
it detects that the pages used by the index are hotter than the
pages used by the values. The difference with JC-static is
negligible (14% of the data found in PMEM vs 15%).

It may seem surprising that migrations do not improve
performance and that statically minimizing conflicts is enough
to achieve close to optimal performance in Zipfian workloads,
but conflicts between the hottest items are extremely unlikely
(items are only 128B each in a 48GB cache). The benefit
of adding active monitoring and conflict avoidance is thus
negligible on average.

Latency The migrations performed by HeMem and JC-dyn
have an impact on the observed latencies. Table 3 summarizes
the latency spikes observed while running YCSB. While all
systems have excellent 99p tail latency, the migration daemon
pre-empts the Masstree threads, sometimes delaying the pro-
cessing of a request by up to 4ms. Even though we use fewer
threads than cores, the threads are not pinned to cores. The
scheduler sometimes schedules two threads on the same core,
explaining the pre-emption delays. The phenomenon happens
when the scheduler tries to schedule threads that frequently
block and unblock, such as the migration daemon.

Configuration 99p Maximum latency
Linux 10us 10us

HeMem 10us 4ms
JC-static 10us 10us
JC-dyn 10us 4ms

Table 3: Maximum latency observed on the YCSB workload.

5.4.2 Performance over time, impact of the sampling rate

Both JC and HeMem perform better after a warm-up period:
the DRAM cache needs time to cache accessed data, and
HeMem needs time to detect and migrate hot pages to DRAM.
Figure 9 presents the evolution of the performance of YCSB
C. We initialize Masstree by inserting keys in random or-
der, and then launch multiple iterations of YCSB C. Each
iteration of YCSB C performs 10 million lookups, and keys

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 529

are accessed following a Zipfian distribution. For HeMem,
we compare 4 configurations with varying sampling rates.
HeMem-1K corresponds to the highest sampling rate, with 1
sample analyzed every 1,000 memory accesses, and HeMem-
50K to the lowest sampling rate. The default rate of HeMem
is HeMem-10K. We also evaluate the impact of the sampling
rate on JC-dyn (JC-10K and JC-50K).

Figure 9 illustrates the impact of the sampling rate on per-
formance. When the sampling rate is too high, the overhead
of sampling negatively impacts performance (HeMem-1K).
Even when the profiling and migration threads run on dedi-
cated cores, the other cores still handle the interrupts gener-
ated by the performance monitoring units of the CPU when a
memory access is sampled. These interrupts explain the lower
performance of HeMem-1K. When the sampling rate is too
low, many accessed pages are never marked as hot and are
never migrated to DRAM (HeMem-50K). In this benchmark,
the optimal performance of HeMem is reached when the sam-
pling rate is close to the default sampling rate (Hemem-5K,
Hemem-10K).

JC is less impacted by such considerations because its
performance is good even without any conflict avoidance
daemon. JC-dyn (JC-50K) also fails to detect any conflicts,
but its performance reaches 3% of our optimal configuration
after 100s of execution. Even without any conflict avoidance
daemon (JC-static), JC is only 5% slower than the optimal
configuration.

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 20 40 60 80 100M
ill

io
n

 L
o

o
ku

p
s/

s

Number of iterations of YCSB C

Hemem-1K
Hemem-5K

Hemem-10K

 Hemem-50K
Linux-Mem

JC-static

JC-10K
JC-50K

Figure 9: Performance of YCSB C. Every iteration of YCSB
C runs 10 million queries.

5.4.3 Summary

Hardware caches outperform page-based migrations when
working with scattered small items. Again, caches tend to
"work well" when conflicts are minimized at allocation time,
and their performance is not strongly dependent on monitor-
ing memory accesses to find and fix possible conflicts.

5.5 Silo

Silo is configured to execute a TPC-C workload on a 100GB
database. The TPC-C workload is heavily skewed: most of

the TPC-C data consists of the description of (sold) items, but
most of the memory accesses are done on the customer and
warehouse metadata. Figure 10 summarizes the performance
of Silo, varying the number of threads.

Due to the order of initialization of the database, most of
the hot working set used by Silo is allocated at the beginning
of the execution. JC is able to allocate hot pages in a non-
conflicting way, and HeMem allocates most of the hot pages
in DRAM. Both JC and HeMem perform equally well on this
workload, but better than Linux.

 0
 100
 200
 300
 400
 500

1 2 4 8

T
h
ro

u
g
h
p
u
t

(K
O

p
s/

s)

Number of threads

Linux-MemMode
 Hemem

JC-static
JC-dyn

Figure 10: SILO (TPC-C) throughput (higher is better)

5.6 NAS benchmarks
Figure 11 presents the performance of the NAS benchmark
suite running with Linux, HeMem and JC. We only include
applications that executed in less than 24 hours on our ma-
chine.

Most HPC applications follow the same pattern as BC:
large arrays are allocated and initialized at the beginning of
the application, and then only a subset of the arrays is used
during the execution of the algorithm. When the hot arrays
fit in the DRAM cache, JC and Linux outperform HeMem by
up to 2.8× (class D size of the NAS benchmark, on the left
of Figure 11). As BC, the NAS applications use OpenMP to
parallelize their computation, and the profiling and migration
threads of JC-dyn and HeMem have cascading effects on the
performance of threads waiting at barriers.

 0

 1000

 2000

 3000

 4000

 5000

BT.D
CG.D

EP.D
LU.D

MG.D
SP.D

UA.D

R
u

n
tim

e
 (

s)

Linux

 Hemem
JC-static

0

10k

20k

30k

CG.E
EP.E

MG.E

Figure 11: NAS application runtime (lower is better). JC
outperforms Linux and HeMem except when the hot set size
vastly exceeds the cache size (CG.E, MG.E).

The NAS benchmarks also allow us to demonstrate the lim-
itations of our approach. On MG.E, HeMem runs 1.8× faster
than JC, despite its profiling overhead. MG uniformly ac-
cesses a large array and does not benefit from DRAM caching:

530 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

most of the cached data is evicted before being reused. It is
well known that applications with uniform access to large data
sets or streaming access patterns do not benefit from caching.
For instance, in large streaming workloads, the streamed con-
tent keeps replacing itself in the cache, and data is always
evicted before being re-read. In the worst case scenario, with
DRAM caching, 100% of the memory accesses end up in
PMEM. With software-based migration, some of the data is
allocated in DRAM, and some of the memory accesses are
resolved in DRAM.

Such applications are hard to support efficiently at the ker-
nel level because no data is hot, and no conflict is particularly
worthy of fixing. However, caching could be improved at
the hardware level. CPUs already implement special cases
for streaming workloads in their CPU caches: most recent
CPUs implement QLRU, in which data that was cached by
a streaming thread is evicted before data cached by threads
performing random accesses [7]. Such a strategy could be
implemented in a DRAM cache as well, for instance by avoid-
ing caching large streams. The performance of the DRAM
cache could also be improved by optimistically flushing dirty
data to PMEM, when PMEM is idle, to reduce the latency of
future evictions of dirty data.

Summary JC-static equals or outperforms Linux and
HeMem on most NAS benchmarks. When, however, an ap-
plication does not have a clear hot dataset, but rather streams
or accesses large datasets that do not fit in the DRAM cache,
DRAM caches are inferior to software migration.

6 Discussion

Recommendations From our experience, working with
hardware caches and page migration systems, no solution
fits all workloads, but the general rule of thumb is:

• Systems that rely on monitoring memory accesses are
finicky to configure and can introduce huge performance
overheads if not properly fine-tuned. In our experience,
it is more likely for a migration daemon to be misconfig-
ured than to perform well. This observation is not unique
to this paper nor to the monitoring done by HeMem and
JC-dyn. For instance, by default, most Linux distribu-
tions deactivate AutoNUMA, the page migration dae-
mon of Linux because it negatively impacts most work-
loads. So, unless working with a known and predictable
workload, we recommend using hardware caches with a
static page allocation policy.

• When working with very large datasets that do not have
a clear hot subset, caches should be avoided.

A surprising observation of this paper is that, for many
workloads, large hardware caches perform close to optimally
with a static page allocation policy, and that having a conflict

avoidance daemon is unnecessary. This seemingly counter-
intuitive observation is explained as follows: conflicts that
would be fixed by a daemon happen between frequently ac-
cessed cache lines. The number of such cache lines has to be
small compared to the size of the DRAM: at current DRAM
speed, it takes a few seconds to read the full DRAM cache,
so any dataset that is large compared to the DRAM cache
size cannot be "frequently" accessed. Because the number
of frequently accessed cache lines is small compared to the
DRAM size, the likelihood of problematic conflicts is small
and a conflict avoidance daemon is more often a source of
overheads than useful.

It is possible to craft adversarial workloads for which the
static page allocation policy underperforms, and in which the
dynamic policy performs well. In hand-crafted corner-case
workloads, we found that running the conflict avoidance dae-
mon infrequently and with a low sampling rate was enough to
detect the most problematic conflicts and get close-to-optimal
performance.

Applicability to systems other than DRAM+PMEM To
the best of our knowledge, Intel’s Memory Mode is the only
currently commercially available hardware DRAM cache, so
we focused the performance evaluation on DRAM+PMEM
systems. We believe that the findings of this paper apply
more broadly. Indeed, we have shown that tracking memory
accesses at the software level is costly (profiling overhead)
and requires migrating a large amount of data (migration
overhead). These observations are fundamental limitations of
software migration and independent of the underlying technol-
ogy. If anything, software migration cost is likely to increase
in future hardware with larger and faster memory – higher
sampling rates will be required to detect and migrate more
pages faster, incurring even more CPU overhead.

In comparison, provided that conflicts are minimized, hard-
ware caches tend to "work well by default". Because hardware
caches perform close to optimally even without any active
conflict avoidance daemon, they can be operated with limited
or no CPU overhead, and are more likely to perform well on
future hardware.

7 Related Work

Software-managed migration Previous work focused on
managing tiered memory systems at the software level.
HeMem [20] is the state-of-the-art page migration system
for DRAM+PMEM systems. HeMem focused on reducing
the overhead of page migration, but still suffers from profil-
ing and metadata overheads. Over the years, multiple metrics
have been explored to accurately infer the heat of pages. Ther-
mostat [1] and AutoNUMA [9] compute heat by sampling
the accessed bit of the page table. Nimble [25] uses the OS
active/inactive page list. TMO [23] counts the number of cy-
cles wasted waiting for unavailable resources. HeteroOS [14]

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 531

uses hints from guest OSes to help the host OS perform in-
formed page placement decisions. X-Mem [12] uses hints
from the application developers to compute the hottest pages.
UniMEM [24] uses performance counters and hints from the
MPI runtime. Carrefour [11] gathers high-level performance
metrics from the CPU (e.g., average latency of memory ac-
cesses) to tune the frequency of memory access sampling. All
these works show that measuring heat accurately is a hard
problem, but crucial to the performance of software migration.
In this paper, we have shown that hardware caches are less
sensitive to heat measurement and can even operate efficiently
without if conflicts are statically minimized at page allocation
time.

CPU cache management systems In this work, we assume
the DRAM cache to be a 1-way directly mapped cache. This
assumption holds true on current systems, and is likely to hold
true in the future – for large caches DRAM, 1-way caches
have been shown to outperform multi-way caches [18].

Multiple strategies have been proposed for maximizing
the efficiency of CPU caches. In the early 90s, Kessler et
al. [15] simulated the relationship between page placement
and conflicts in caches and showed that it is possible to reduce
the number of conflicts at allocation time. Bershad et al. [5]
simulated the impact of page migration on the efficiency of
caches. The generalization of caches with large associativ-
ity (many-ways CPU caches) allowed CPUs to keep a few
conflicting cache lines in their caches and reduced the im-
pact of system-level page placement on the performance of
caches. These techniques have gradually been replaced by
much coarser-grain page coloring techniques that partition
the cache to avoid cache trashing between users or applica-
tions [6, 26] or by scheduling techniques to better share the
cache between cache-intensive and cache-friendly applica-
tions [2, 21, 27]. It is interesting to note that current DRAM
caches resemble the state of large CPU caches simulated in
the 90s, and that page allocation policies matter in current
tiered memory systems. In this work, we chose to avoid par-
titioning the cache. Adding page coloring on top of conflict
minimization could be implemented to give a larger portion
of the DRAM cache to an application.

The impact of page placement on cache performance has
also been studied on Intel Xeon Phis. Xeon Phis can be con-
figured to use a large MCDRAM pool as a hardware cache
that sits in front of DRAM. Intel’s Zonesort [28] aims at
limiting conflicts in the MCDRAM pool at page allocation
time. In its first release, ZoneSort [10] periodically sorted the
list of available free pages in an order that limits conflicts
with already allocated pages. The module incurred significant
CPU overhead and only partially limited conflicts. A later
version of ZoneSort [28] allocated pages from bins in a round-
robin order, an approach which does not always minimize
conflicts when pages are not freed in the same order as they
are allocated. JC always allocates pages from the bin with the

lowest heat. Zonesort was thought of as a temporary solution
for applications that have not been adapted to the Xeon Phi
architecture. In our paper, we show that the hardware manage-
ment of a tiered memory system, combined with low-overhead
conflict avoidance techniques, outperforms traditional page
migration on a wide range of workloads. We believe that
this novel counter-intuitive conclusion is important in the
widening context of cacheable disaggregated memory.

8 Conclusion

We have demonstrated that hardware caches offer better per-
formance than software management of tiered main memory
systems, provided minor modifications of the operating sys-
tem. We have shown that, surprisingly, statically minimizing
conflicts at allocation time is sufficient to avoid most conflicts
between hot pages in the cache.

Acknowledgements. We would like to thank our shepherd,
Emery Berger, and the anonymous reviewers for all their help-
ful comments and suggestions. This work was supported in
part by the Australian Research Council Grant DP210101984.

References

[1] Neha Agarwal and Thomas F Wenisch. Thermo-
stat: Application-transparent page management for two-
tiered main memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 631–644, 2017.

[2] Reza Azimi, David K Tam, Livio Soares, and Michael
Stumm. Enhancing operating system support for multi-
core processors by using hardware performance monitor-
ing. ACM SIGOPS Operating Systems Review, 43(2):56–
65, 2009.

[3] David Bailey, Tim Harris, William Saphir, Rob Van
Der Wijngaart, Alex Woo, and Maurice Yarrow. The
nas parallel benchmarks 2.0. Technical report, Techni-
cal Report NAS-95-020, NASA Ames Research Center,
1995.

[4] Scott Beamer, Krste Asanović, and David Patterson. The
gap benchmark suite. arXiv preprint arXiv:1508.03619,
2015.

[5] Brian N Bershad, Dennis Lee, Theodore H Romer, and
J Bradley Chen. Avoiding conflict misses dynamically in
large direct-mapped caches. In Proceedings of the sixth
international conference on Architectural support for
programming languages and operating systems, pages
158–170, 1994.

532 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[6] Edouard Bugnion, Jennifer M Anderson, Todd C Mowry,
Mendel Rosenblum, and Monica S Lam. Compiler-
directed page coloring for multiprocessors. ACM SIG-
PLAN Notices, 31(9):244–255, 1996.

[7] Zixian Cai, Stephen M Blackburn, and Michael D
Bond. Understanding and utilizing hardware transac-
tional memory capacity. In Proceedings of the 2021
ACM SIGPLAN International Symposium on Memory
Management, pages 1–14, 2021.

[8] Many contributors. Samsung Electronics Introduces
Industry’s First 512GB CXL Memory Module.
"https://news.samsung.com/global/samsung-
electronics-introduces-industrys-first-
512gb-cxl-memory-module", 2022.

[9] Jonathan Corbet. AutoNUMA: the other approach to
NUMA scheduling. "https://lwn.net/Articles/
488709/", 2019.

[10] Intel Corporation. ZoneSort module.
"https://github.com/oslab-swrc/flsched/
blob/main/knc/linux/drivers/zonesort/
zonesort_module.c", 2017.

[11] Mohammad Dashti, Alexandra Fedorova, Justin Fun-
ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,
Vivien Quema, and Mark Roth. Traffic management: a
holistic approach to memory placement on numa sys-
tems. ACM SIGPLAN Notices, 48(4):381–394, 2013.

[12] Subramanya R Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings
of the Eleventh European Conference on Computer Sys-
tems, pages 1–16, 2016.

[13] Intel. How Does the DRAM Caching Work in
Memory Mode Using Intel® Optane™ Persistent
Memory? "https://www.intel.com/content/
www/us/en/support/articles/000055901/
memory-and-storage/intel-optane-persistent-
memory.html", 2021.

[14] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and
Karsten Schwan. Heteroos: Os design for heterogeneous
memory management in datacenter. In Proceedings of
the 44th Annual International Symposium on Computer
Architecture, pages 521–534, 2017.

[15] Richard E Kessler and Mark D Hill. Page placement
algorithms for large real-indexed caches. ACM Trans-
actions on Computer Systems (TOCS), 10(4):338–359,
1992.

[16] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[17] Amar Phanishayee, David G Andersen, Himabindu
Pucha, Anna Povzner, and Wendy Belluomini. Flex-
kv: Enabling high-performance and flexible kv systems.
In Proceedings of the 2012 workshop on Management
of big data systems, pages 19–24, 2012.

[18] Moinuddin K Qureshi and Gabe H Loh. Fundamental la-
tency trade-off in architecting dram caches: Outperform-
ing impractical sram-tags with a simple and practical
design. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 235–246. IEEE,
2012.

[19] Amanda Raybuck, Tim Stamler, Wei Zhang, Mat-
tan Erez, and Simon Peter. Hemem - artifact.
"https://sysartifacts.github.io/sosp2021/
results.html", 2021.

[20] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. Hemem: Scalable tiered memory
management for big data applications and real nvm. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 392–407, 2021.

[21] David Tam, Reza Azimi, and Michael Stumm. Thread
clustering: sharing-aware scheduling on smp-cmp-smt
multiprocessors. ACM SIGOPS Operating Systems Re-
view, 41(3):47–58, 2007.

[22] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[23] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, et al. Tmo:
transparent memory offloading in datacenters. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 609–621, 2022.

[24] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Run-
time data managementon non-volatile memory-based
heterogeneous main memory. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–14,
2017.

[25] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble page management for tiered

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 533

https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://lwn.net/Articles/488709/
https://lwn.net/Articles/488709/
https://github.com/oslab-swrc/flsched/blob/main/knc/linux/drivers/zonesort/zonesort_module.c
https://github.com/oslab-swrc/flsched/blob/main/knc/linux/drivers/zonesort/zonesort_module.c
https://github.com/oslab-swrc/flsched/blob/main/knc/linux/drivers/zonesort/zonesort_module.c
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055901/memory-and-storage/intel-optane-persistent-memory.html
https://sysartifacts.github.io/sosp2021/results.html
https://sysartifacts.github.io/sosp2021/results.html

memory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
331–345, 2019.

[26] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. To-
wards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM European
conference on Computer systems, pages 89–102, 2009.

[27] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra
Fedorova. Addressing shared resource contention in
multicore processors via scheduling. ACM Sigplan No-
tices, 45(3):129–142, 2010.

[28] Daniluk Łukasz. mm: Add cache coloring mechanism.
"https://lkml.org/lkml/2017/8/23/195", 2017.

534 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lkml.org/lkml/2017/8/23/195

	Introduction
	Tiered main memory systems
	Software-based migration
	Hardware caching
	Comparison

	Design
	Implementation
	Page initialization and associated metadata
	Static policy
	Dynamic policy and migration daemon

	Evaluation
	Setup
	GUPS
	Random updates to clustered hot values
	Random updates to distributed hot values
	Performance on large datasets
	Summary

	BC
	Masstree
	Performance
	Performance over time, impact of the sampling rate
	Summary

	Silo
	NAS benchmarks

	Discussion
	Related Work
	Conclusion

