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Why Persistent Memory (PM)?
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What is Persistent Memory (PM)?

* PM is a collective term:

Ferroelectric RAM Magnetic RAM Phase-Change RAM Resistive RAM
(FERAM) (MRAM) (PCRAM) (ReRAM)
e corzine [iATEES

* The first PM product is commercially available in 2019.

Storage-like Capacity _ Intel® Optane ™! DCPMM Memory-like Speed
- 128, 256, 512 GB - DRAM-level latency
- Native persistence - DRAM-level bandwidth

e ¢ - Direct load/store access
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Differences exist between DRAM & PM!
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 Indexes/algorithms need to be “re-tailored” for PM!

— Tree: NV-tree [asti15, wB+-Tree vor1s;, WORT [Fast1e), BzTree vios1g;,
FAST&FAlR[FAST18], LB+ Trees vior20, and ROART [rast21;, etc.




Existing PM Hashing Schemes: Two Series
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* Level-based PM Hashing  EH-based PM Hashing
(Level Hashing[OSDI'18], Clevel Hashing[ATC’20]) (CCEH [FAST’19], Dash [VLDB’20])
— Sharing-based two-level structure — Inherited from Extendible Hashing
— Cost-efficient resizing to mitigate — Cacheline-conscious designs for

the performance degradation high throughput



 Observation 1: Existing PM hashing schemes face the
dilemma between the performance efficiency and predictability.
Efficiency

Real-time Throughput (ops)

Motivation (1/2)
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(b) (Level-based) Clevel Hashing
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Motivation (2/2)

* Observation 2: Performance scalability is limited due
excessive writes in handling concurrency control.
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Our Goal
Limited scalability?

Semi Lock-Free Concurrency Control

Scalability

SEPH
Efficiency Predictability
(e.g., EH-based) (e.g., Level-based)

Dilemma between efficiency and predictability?
Level Segment Structure & Low-Overhead Split



SEPH: Level Segment based Hash Table

* Level segment (LS), a novel structure proposed to combine
the respective strengths of the two series of PM hashing.

Hash (key) = 01010...

B ——
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* Physical Segment = cacheline-conscious designs (for efficiency)
* Level Segment = cost-efficient resizing (for predictability) 9



SEPH: Low-Overhead Split (1/2)

* One-third Split
— Splits one LS into two, but only rehashes “1/3” of the KV items

Directory 00 01 10 11
O Allocate two new PSs  _-----"~ LS50 ee-e IS
LS 2 (New) _{, ©® Modify directory entries \\‘v. LS 3 (New)
ST T T T T TTT T T T T T T 7 @ Rehash
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LSO LS1
O Deallocate the lower-level buckets
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SEPH: Low-Overhead Split (2/2)

« Common Practice: Variable-length key = store KV pointers

» Potential Problem: @Rehashing requires petter-aererererees
to calculate Hash(key) < PM random read

* Dereference-Free Rehashing
— Only two bits of Hash(key) are needed for ®@ Rehashing.
— We stores these bits in advance, as a foreseer of KV's future position.

MSB S H Stale Flag LSB ...............................................................................................................................
0 1516171819 63 MSB S: Stale Flag LSB
Slot ||Foreseer (16b)||S|M|D| Pointer to KV (45b) 0 >lel71819 63
Slot | Foreseer (1l6b) |S|M|D| Pointer to KV (45b)
?::;) 0010101010101101[10100010 .. Hash @ Update in the background
0 8 16 24 63 (key) 001010L101010110110100010
O Foresee the sliding bucket index for dereference-free rehashing 0 8 LAS 24 63
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SEPH: Semi Lock-Free Concurrency Control

« Scalability @ < excessive PM writes for concurrency control

Lock-based Designs Lock-free Designs
(e.g. Level Hashing, CCEH, Dash) (e.g. Clevel Hashing)
PM writes are to Manage Locks Guarantee Correctness

 SEPH solves it by

{ Frequent Operations J { Infrequent operatoins J

(e.g. insert, search, update, delete) (e.g. split)
Be Lock-free Be Lock-based
(to save PM writes) (to ease correctness guarantee)

* Thus, SEPH achieves nearly minimal PM writes and scales well.
12



Evaluation Setup

* The following hashing schemes are compared with SEPH:
- DRAM-converted: PCLHT [sosP’19]

- Level-based: Level Hashing [osDr18), Clevel Hashing [ATc20],
- EH-based: CCEH/CCEH-C [FasT19], Dash [vLDB20]

 All experiments are conducted on
— Intel Xeon Platinum 8260 CPU
— Six 128 GB Intel® Optane™ DCPMM 100 series in App Direct mode.
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Evaluation Results (1/3): Efficiency & Predictability

x10° %108 x 10° x10° x10° x10° x10° x10°
20+ —140 20} 4140 20 |- -140 20} -403

................................................................................................................................................................................................................................................................................................ [e)
% 10F 420 10} 420 10} 120 10 20 2
g 1.99 1.27 237 M £
ot = - - — e — - - -r'q’—-ﬁ'-\w-s--‘-n-
c 0 50 100 0 50 100 150 0 25 50 75 0 20 40 F
3 Time (s) Time (s) Time (s) Time (s) “E’
E (a) PCLHT (b) (Level-based) Level Hashing (c) (Level-based) Clevel Hashing (d) (EH-based) CCEH =
o x10° x 108 x 108 %108 108 x 108 3
£ - o
3
a - Real-time Throughput

- Real-time Rehashing

20

Time (s) Time (s)
(e) (EH-based) CCEH-C (Lock-Free) (f) (EH-based) Dash-EH

o FEfficiency. 2.12X better average throughput.

e Predictability: best worst-case throughput
even > peak throughput of other designs .




Evaluation Results (2/3): Scalability

Average Throughput (ops)

wil=PCLHT =fle=|cve| =ll=Cleve| —@=CCEH =—#@=CCEH-C —#

x10° x10°
20
10
L1 OF L 1 1 I
8 1624 48 8 1624 48

(a) Insertion

(b) Update

20

10

0

% 10°

8 1624 48

(c) Deletion

% 10°

8 1624
Num. of Threads Num. of Threads Num. of Threads Num. of Threads

(d) Search

- 20fF
- 15f

10

48

‘Dash =#=SEPH

%1010

16

0

12

18

optimal:

19

20

15

N\

/]

N

Total Bytes Written to PM (B)

15



Evaluation Results (3/3): Performance Breakdown

SEPH Semi One-Third | Dereference-Free
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Summary

 SEPH: scalable, efficient, and predictable hashing for PM
— Efficiency vs. Predictability
* | evel segment structure & low-overhead split algorithm.
* To combine the strengths of two series of PM hashing.
— Scalability
« Semi lock-free concurrency control
* To minimizing the PM writes for concurrency control

« SEPH is rigorously validated on Intel Optane and
demonstrates its potential value to the time-sensitive
applications.
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