17th USENIX Symposium on Operating Systems Design and

23 Implementation
JULY 10-12, 2023

BOSTON, MA, USA

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

SEPH: Scalable, Efficient, and Predictable Hashing
on Persistent Memory

Chao Wang, Junliang Hu, Tsun-Yu Yang, Yuhong Liang, and Ming-Chang Yang
The Chinese University of Hong Kong

Why Persistent Memory (PM)?

Capacity o ! @ Speed

. 4
]
1000x ﬁ A 10x

Vo "t NN

o HUGE GAP EXISTS!? 1000

TB
- Secondary Storage @
PB

What is Persistent Memory (PM)?

* PM is a collective term:

Ferroelectric RAM Magnetic RAM Phase-Change RAM Resistive RAM
(FERAM) (MRAM) (PCRAM) (ReRAM)
e corzine [iATEES

* The first PM product is commercially available in 2019.

Storage-like Capacity _ Intel® Optane ™! DCPMM Memory-like Speed
- 128, 256, 512 GB - DRAM-level latency
- Native persistence - DRAM-level bandwidth

e ¢ - Direct load/store access

vvvvvvv

3D XPoint 3

Differences exist between DRAM & PM!

350 3x 120
m H DRAM EPM H DRAM EPM
L 300 fv 100
- 250 BT — 30
2 200 2X 'E 9
(3 M eo
e 150 © T) 1/3
Q 100 C & 40
g - mE BR ¢ - Bo
- :

Write Sequential Read Random Read Write Read

 Indexes/algorithms need to be “re-tailored” for PM!

— Tree: NV-tree [asti15, wB+-Tree vor1s;, WORT [Fast1e), BzTree vios1g;,
FAST&FAlR[FAST18], LB+ Trees vior20, and ROART [rast21;, etc.

Existing PM Hashing Schemes: Two Series

= ® Expand > key —> Hash (key) 11 0
New A N R A N '
f;’jel 0124N34N4N1 Directory | 00 [01 | 10 11
- -2 - ~~
oo key »/_/ / \0>< ------- 4
N | HI(key)) H2 (key) Bucket Seq. 0 Seq. 1 Seq. 2 Seq. 3
\, e, « S0t 0 1 1 “E;ll E
Top Slot 1 B”g"et 88 g 81 g -+(1)F——=g--5i freeoi
Level Slot 2 b i
01 nN2 a1 QSRS Bucket |00 1110101 1{/100 1|#1100 1!
i L— 1 |oQ. . I[lo1 1 1|ftro Tfill 0 1
Bottom @ slof - B 2=
Level Rehash -~ -Rehash---
0 N-1
* Level-based PM Hashing EH-based PM Hashing
(Level Hashing[OSDI'18], Clevel Hashing[ATC’20]) (CCEH [FAST’19], Dash [VLDB’20])
— Sharing-based two-level structure — Inherited from Extendible Hashing
— Cost-efficient resizing to mitigate — Cacheline-conscious designs for

the performance degradation high throughput

 Observation 1: Existing PM hashing schemes face the
dilemma between the performance efficiency and predictability.
Efficiency

Real-time Throughput (ops)

Motivation (1/2)

20

10

% 10°

0 25

(a) (Level-based) Level Hashing

50
Time (s)

75

20

10

20

10

(High Average Throughput)

—— Real-time Throughput

— Num. of Rehashed KV Items

% 10° % 10°

i 420

i 46710
l0 4 1 3 li 0
0 20 40

Time (s)

(b) (Level-based) Clevel Hashing

20

10

x 108

39)

{9

0

10
Time (s)

(c) (EH-based) CCEH

Predictability

20

(Low Resizing Overhead)

20

10

20

10

0 O

%108

Time (s)
(d) (EH-based) Dash-EH

Num. of Rehashed KV ltems

Motivation (2/2)

* Observation 2: Performance scalability is limited due
excessive writes in handling concurrency control.

Z1level # RClevel & HCCEH # 1Dash ====- Expﬁc‘tted
A . x10° .
815 T2
= = 100
2 g
- =
210 =
E i —& | & 50
I— ' —
o @
o A | —
© 3
o OH : 2 0
I 40

Num. of Threads
(a) Average Throughput S50% 150% (b) Total Bytes Written to PM

to

Our Goal
Limited scalability?

Semi Lock-Free Concurrency Control

Scalability

SEPH
Efficiency Predictability
(e.g., EH-based) (e.g., Level-based)

Dilemma between efficiency and predictability?
Level Segment Structure & Low-Overhead Split

SEPH: Level Segment based Hash Table

* Level segment (LS), a novel structure proposed to combine
the respective strengths of the two series of PM hashing.

Hash (key) = 01010...

B ——

Directory 0 1
Nl A
Level Segment 0 (LS 0) Ej Level Segment 1 (LS 1)
000[O0IJOI0[0II[I00JTOTI[IOI[IIT O00JOO0I[OI0JOII[I00J1I0IJI0I[IIT
LZ§31 _| Physical Segment1 (PS1) | __| Physical Segment2 (PS52) |
...... - T
000[00T[0I0[0II[TO0[I0I[T01]111 Slot 1
Level 0 Physical Segment 0 (PS 0) X
(LO) Slot S-1

* Physical Segment = cacheline-conscious designs (for efficiency)
* Level Segment = cost-efficient resizing (for predictability) 9

SEPH: Low-Overhead Split (1/2)

* One-third Split
— Splits one LS into two, but only rehashes “1/3” of the KV items

Directory 00 01 10 11
O Allocate two new PSs _-----"~ LS50 ee-e IS
LS 2 (New) _{, ©® Modify directory entries \\‘v. LS 3 (New)
ST T T T T TTT T T T T T T 7 @ Rehash
o T 1A S N 1 level
L2/ _ Lo L RS3MNew) | L _ vy l_L__L_BS4MNew) | I __ ower-leve

buckets

— P ——

L1

L0 @ Rehash lower-level buckets PS 0

LSO LS1
O Deallocate the lower-level buckets

10

SEPH: Low-Overhead Split (2/2)

« Common Practice: Variable-length key = store KV pointers

» Potential Problem: @Rehashing requires petter-aererererees
to calculate Hash(key) < PM random read

* Dereference-Free Rehashing
— Only two bits of Hash(key) are needed for ®@ Rehashing.
— We stores these bits in advance, as a foreseer of KV's future position.

MSB S H Stale Flag LSB ...
0 1516171819 63 MSB S: Stale Flag LSB
Slot ||Foreseer (16b)||S|M|D| Pointer to KV (45b) 0 >lel71819 63
Slot | Foreseer (1l6b) |S|M|D| Pointer to KV (45b)
?::;) 0010101010101101[10100010 .. Hash @ Update in the background
0 8 16 24 63 (key) 001010L101010110110100010
O Foresee the sliding bucket index for dereference-free rehashing 0 8 LAS 24 63

11

SEPH: Semi Lock-Free Concurrency Control

« Scalability @ < excessive PM writes for concurrency control

Lock-based Designs Lock-free Designs
(e.g. Level Hashing, CCEH, Dash) (e.g. Clevel Hashing)
PM writes are to Manage Locks Guarantee Correctness

 SEPH solves it by

{ Frequent Operations J { Infrequent operatoins J

(e.g. insert, search, update, delete) (e.g. split)
Be Lock-free Be Lock-based
(to save PM writes) (to ease correctness guarantee)

* Thus, SEPH achieves nearly minimal PM writes and scales well.
12

Evaluation Setup

* The following hashing schemes are compared with SEPH:
- DRAM-converted: PCLHT [sosP’19]

- Level-based: Level Hashing [osDr18), Clevel Hashing [ATc20],
- EH-based: CCEH/CCEH-C [FasT19], Dash [vLDB20]

 All experiments are conducted on
— Intel Xeon Platinum 8260 CPU
— Six 128 GB Intel® Optane™ DCPMM 100 series in App Direct mode.

13

Evaluation Results (1/3): Efficiency & Predictability

x10° %108 x 10° x10° x10° x10° x10° x10°
20+ —140 20} 4140 20 |- -140 20} -403

.. [e)
% 10F 420 10} 420 10} 120 10 20 2
g 1.99 1.27 237 M £
ot = - - — e — - - -r'q’—-ﬁ'-\w-s--‘-n-
c 0 50 100 0 50 100 150 0 25 50 75 0 20 40 F
3 Time (s) Time (s) Time (s) Time (s) “E’
E (a) PCLHT (b) (Level-based) Level Hashing (c) (Level-based) Clevel Hashing (d) (EH-based) CCEH =
o x10° x 108 x 108 %108 108 x 108 3
£ - o
3
a - Real-time Throughput

- Real-time Rehashing

20

Time (s) Time (s)
(e) (EH-based) CCEH-C (Lock-Free) (f) (EH-based) Dash-EH

o FEfficiency. 2.12X better average throughput.

e Predictability: best worst-case throughput
even > peak throughput of other designs .

Evaluation Results (2/3): Scalability

Average Throughput (ops)

wil=PCLHT =fle=|cve| =ll=Cleve| —@=CCEH =—#@=CCEH-C —#

x10° x10°
20
10
L1 OF L 1 1 I
8 1624 48 8 1624 48

(a) Insertion

(b) Update

20

10

0

% 10°

8 1624 48

(c) Deletion

% 10°

8 1624
Num. of Threads Num. of Threads Num. of Threads Num. of Threads

(d) Search

- 20fF
- 15f

10

48

‘Dash =#=SEPH

%1010

16

0

12

18

optimal:

19

20

15

N\

/]

N

Total Bytes Written to PM (B)

15

Evaluation Results (3/3): Performance Breakdown

SEPH Semi One-Third | Dereference-Free
Variants Lock-Free Splitting Rehashing
SEPH-Base X X X
SEPH-S Vv X X
SEPH-SO v v X
SEPH-SOD v v v
_ x10° %1010
© ~ 20 300F
‘@201 241
£7| 68.71% t 15— 4
é _6_1 -640/0 200 __ 040/
- ., 10k .04%
5101 55.85% _él? A - 8
-g o 5 1 : . . 1 00 -
£ I 171.46% U/ \h(509
0 | | | | 0 | \ ..~O | l |

~—

Base S SO SOD © Base S SO SOD Base S SO SOD

(a) Throughput Profile (b) Reason: PM Writes (c) Reason: Resizing Time

Summary

 SEPH: scalable, efficient, and predictable hashing for PM
— Efficiency vs. Predictability
* | evel segment structure & low-overhead split algorithm.
* To combine the strengths of two series of PM hashing.
— Scalability
« Semi lock-free concurrency control
* To minimizing the PM writes for concurrency control

« SEPH is rigorously validated on Intel Optane and
demonstrates its potential value to the time-sensitive
applications.

17

