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Abstract
Data centers increasingly host mutually distrustful users on
shared infrastructure. A powerful tool to safeguard such users
are digital signatures. Digital signatures have revolutionized
Internet-scale applications, but current signatures are too slow
for the growing genre of microsecond-scale systems in mod-
ern data centers. We propose DSig, the first digital signature
system to achieve single-digit microsecond latency to sign,
transmit, and verify signatures in data center systems. DSig
is based on the observation that, in many data center applica-
tions, the signer of a message knows most of the time who
will verify its signature. We introduce a new hybrid signature
scheme that combines cheap single-use hash-based signa-
tures verified in the foreground with traditional signatures
pre-verified in the background. Compared to prior state-of-
the-art signatures, DSig reduces signing time from 18.9 to
0.7 µs and verification time from 35.6 to 5.1 µs, while keeping
signature transmission time below 2.5 µs. Moreover, DSig
achieves 2.5× higher signing throughput and 6.9× higher
verification throughput than the state of the art. We use DSig
to (a) bring auditability to two key-value stores (HERD and
Redis) and a financial trading system (based on Liquibook)
for 86% lower added latency than the state of the art, and
(b) replace signatures in BFT broadcast and BFT replication,
reducing their latency by 73% and 69%, respectively.

1 Introduction

Digital signatures are used in many distributed protocols that
have revolutionized the Internet through many use cases, such
as enabling digital certificates [83], bootstrapping authen-
tication protocols [30, 89], securing and auditing transac-
tions [22,71], tolerating Byzantine failures [4,6,18], and veri-
fying software authenticity [28,57]. Signatures are irrefutable
proofs that someone produced a message, and these proofs
can be verified by third parties. This property distinguishes
signatures from message authentication codes (MACs) and
authenticated symmetric encryption (e.g., SSL/TLS) [54]. To-
day’s signatures are however too expensive for the growing
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Figure 1: Median latency breakdown of an auditable key-
value store (based on HERD [51], §6), a BFT broadcast prim-
itive (CTB [3], §6), and a BFT replication system (uBFT [3],
§6) when processing small requests using either EdDSA [50]
(state of the art) or DSig. DSig reduces the cryptographic
overhead by 86%, 82%, and 87%, respectively, and reduces
the overall latency by 83%, 73%, and 69%, respectively.

genre of microsecond-scale systems in data centers. Even
the fastest signature scheme, EdDSA [17, 50], accounts for
79–95.6% of the latency of applications such as auditable key-
value stores, BFT broadcast, and BFT replication (Figure 1).

We propose DSig, the first digital signature system to
achieve single-digit microsecond performance for data cen-
ters. A key insight underlying the design of DSig is that, in
many data center applications, signatures are issued and veri-
fied by parties known a priori in the common case, so signers
and verifiers can exchange useful information beforehand and
do part of the computation before knowing the messages to
be signed, thereby reducing the latency of subsequent signa-
ture generation and verification. We use this observation to
introduce a new hybrid online-offline signature system [37].
Hybrid schemes combine a traditional signature scheme that
is slow but can sign many messages, with a hash-based sig-
nature scheme (HBSS) that is fast but can sign only one or a
few messages. The traditional signature is used to validate a
batch of HBSS key pairs, each of which signs one or a few
messages. Hybrid signatures have been studied extensively
in theory, but practical work has focused only on improving
throughput for low-compute devices with limited bandwidth,
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Table 1: Comparison of EdDSA and DSig in terms of latency
to sign, transmit (tx) and verify; per-core sign and verify
throughput; signature size; and background network traffic
per signature with a single verifier.

Latency (µs) Tput (Kops) Sig size Bg Net
Sign Tx Verify Sign Verify (B) (B/Sig)

EdDSA 18.9 1.1 35.6 53 28 64 0
DSig 0.7 2.0 5.1 131 193 1,584 33

on low-security signatures, or on tiny messages (§9).
Using hybrid signatures to achieve low latency and high

throughput in data centers poses a number of challenges. First,
the traditional part of hybrid signatures is compute-heavy
and can impact latency. Second, hybrid signatures involve
frequent key pair generation, which can exhaust compute re-
sources and impact throughput. Third, the actual performance
of hybrid signatures deviates from their theoretical models, as
real performance requires careful consideration of microarchi-
tectural effects (e.g., caching, prefetching) rather than simply
the amount of computation. Fourth, to perform well, hybrid
signatures need to be configured with an appropriate HBSS
whose thousands of parameter combinations provide complex
trade-offs between number of hash computations, signature
size, and frequency of key pair generation; most parameter
choices exceed our performance goals, the available network
bandwidth, the computational resources, or all of the above.

We address these challenges as follows. First, we use hints
about who will verify a message in the common case to pre-
process the compute-heavy traditional signatures. Second,
we use traditional signatures to sign and verify batches of
HBSS public keys, thus amortizing the cost of their authenti-
cation, while hiding the latency introduced by batching from
the critical path. Third, we study the real performance of
HBSSs to determine the best schemes to use, and we discover
non-intuitive cases where fewer hash computations actually
harm performance. Fourth, we identify two promising HBSSs
to use in DSig, W-OTS+ [46] and HORS [84], and we ex-
plore their parameters in depth to understand how they affect
latency, throughput, and resource usage; we give a recom-
mended configuration of DSig that strikes a good trade-off.

We integrate DSig with five applications: two key-value
stores (HERD [51] and Redis [87]), a financial trading sys-
tem (based on Liquibook [73]), a BFT broadcast primitive
(CTB [3]), and a BFT replication system (uBFT [3]). We use
DSig to provide auditability through a signed security log in
HERD, Redis, and Liquibook; and to replace the signatures
used in CTB and uBFT to thwart Byzantine behavior.

We evaluate DSig and its applications. We find that DSig
can sign, transmit, and verify a signature in 7.7 µs total, which
is 7.2× faster than EdDSA [50], the fastest traditional signa-
ture scheme [17] (Table 1). DSig achieves 2.5× and 6.9×
higher throughput than EdDSA for signing and verifying.

DSig benefits applications significantly. In HERD, Redis, and
Liquibook, DSig brings auditability with an added latency of
less than 8 µs per operation, a reduction of 86% in overhead
compared to EdDSA. In CTB, DSig reduces the broadcast
latency by 73%, from 123 µs to 34 µs. In uBFT, DSig reduces
the replication latency by 69%, from 221 µs to 69 µs.

The price for using DSig is as follows. First, to get the best
performance, DSig needs a priori knowledge of where and
when signatures are verified (DSig still works without such
knowledge, but it is slower). Second, DSig requires extra
bandwidth and space to transmit and store its larger ≈1.5 KiB
signatures. This is a small cost in data-center systems, which
have low-latency high-bandwidth networks and abundant stor-
age, but DSig could be ill-suited for other settings, such as
some wide-area systems.

In summary, our contributions are the following:
• We propose DSig, a new digital signature system tar-

geted at microsecond-scale applications in data centers.
DSig combines hash-based signatures, traditional sig-
natures, and novel techniques to reduce latency in the
critical path while achieving high throughput.

• We analyze and evaluate DSig’s large parameter space
for low latency at high throughput, and identify a config-
uration that best fits most scenarios.

• We implement DSig and integrate it into several applica-
tions: two key-value stores, a financial trading system,
BFT broadcast, and a BFT replication system.

• We evaluate DSig and its applications. DSig significantly
improves signature performance compared to EdDSA,
the state of the art. These enhancements directly benefit
the applications by providing better end-to-end latency
and throughput, and by bringing auditability to the mi-
crosecond scale.

DSig is open source, available at https://github.com/
LPD-EPFL/dsig.

2 Setting and Goals

Setting. We target microsecond-scale applications [2, 3, 11,
19, 31, 41, 76, 80–82] with a few tens of servers within the
same data center—a scale that addresses the computing needs
of many enterprises. These systems have a network with low
latency (≈1 µs) and high bandwidth (100s of Gbps or even
Tbps [74]).

Goals. Our goal is to achieve faster digital signatures to
broaden their usability. We do not seek general-purpose sig-
natures for all settings (wide area networks, mobile networks,
embedded systems), but rather seek schemes that provide the
right trade-offs in modern data centers. We seek signatures
that provide the industry-standard level of security (128 bits).

Digital signatures are important because they are trans-
ferable: if Alice signs a message to Bob, Bob can prove to
Carol that Alice indeed signed it (§3). This property makes
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signatures more powerful than mechanisms such as SSL/TLS
or MACs, which provide only symmetric authenticated chan-
nels between Alice and Bob [54], which do not suffice for
the applications we consider (§6). Signatures help tackle dis-
trustful parties in distributed protocols for a wide variety of
use cases: securing transactions, enabling digital certificates,
bootstrapping authentication of users and services [30, 89],
verifying software authenticity [28, 57], providing integrity
of audit logs [22, 71], tolerating Byzantine failures [4, 6, 18],
etc. Many of these use cases apply to microsecond-scale
applications, as such systems increasingly bring together mu-
tually distrustful users on shared infrastructure [48, 88]. For
example, microservices can benefit from Byzantine fault tol-
erance [3]; signed transactions can provide auditability in
high-frequency trading systems; and signed logs can provide
a legal trail in high-stakes settings.

Threat model. Our threat model is standard for digital sig-
natures [54]. Malicious entities can intercept, store, inject,
delay, and alter messages. We assume the security of stan-
dard cryptography building blocks: traditional digital signa-
ture schemes (Ed25519 [50]), hash-based signature schemes
(W-OTS+ [46] and HORS [84]), and cryptographic hashes
(SHA256 [77], Haraka (v2) [55], and BLAKE3 [75]).

3 Background

3.1 Digital Signature Schemes

A digital signature scheme (DSS) has a key pair consisting
of a public key PK and a secret key SK. A signer s uses SK
to sign a message m, producing a signature σ for m. The
signature σ allows a party who knows PK (and knows that
PK belongs to s) to verify that m was signed by s.

DSSs provide authenticity, integrity, public verifiability
and non-repudiation of messages [54]. Authenticity means
that a party with a message and its signature can verify the
identity of the message’s signer. Integrity means that the party
can verify that the message matches the message that was
signed. Public verifiability means that only m, σ, and PK are
needed to verify the authenticity and integrity of m. Signatures
are transferable: a party can use σ and m to convince anyone
who knows PK that m is authentic (and typically PK is pub-
lished, so everyone knows PK). This property differentiates
digital signatures from other mechanisms, such as message
authentication codes (MACs), vectors of MACs, authenti-
cated channels (e.g., SSL/TLS), and symmetric encryption
(e.g., AES). Non-repudiation means that s cannot deny the
signing of m once its signature σ is known. Non-repudiation
implies that signatures are non-forgeable: without knowing
SK, it is computationally infeasible to produce a signature σ

which passes verification with PK.

3.2 The Cryptographic Barrier

After DSSs were proposed [33], many schemes followed:
RSA [85], ECDSA [49], EdDSA [50], etc. These schemes
rely on the hardness of certain problems (factoring, discrete
logarithms) under sophisticated arithmetic (e.g., modular on
elliptic curves). They seek to provide strong security and
small time to sign and verify. For example, the state-of-the-
art 128-bit-secure EdDSA takes 19 µs to sign and 36 µs to
verify a small message on modern CPUs (Table 1).

State-of-the-art DSSs are too slow for modern data centers:
even the fastest schemes are an order of magnitude slower
than network latencies [17] due to the use of sophisticated
arithmetic, which consumes CPU and cannot be parallelized.
This slowness makes traditional DSSs prohibitive for dis-
tributed protocols, microservices, and applications that run at
the microsecond scale, which need to check the signatures of
messages before acting upon them. For example, signature-
based BFT protocols must check signatures before taking
safety-critical steps such as computing a quorum intersection,
voting, vouching for a message, deciding on a majority value,
etc; similarly, auditable applications must check signatures
before executing requests to provide auditability (§6).

Signing or verifying messages in batches can improve the
throughput of DSSs, but batching further increases latency
and is thus ill-suited for latency-critical applications.

3.3 Hash-Based and Hybrid Signatures

Hash-based signature schemes (HBSSs) were proposed by
Lamport [59]. They are DSSs that avoid advanced arithmetic
by using only cryptographic hashes. Hashes are advantageous
because they can be computed quickly: modern algorithms
(e.g., Haraka [55] and BLAKE3 [75]) can hash a small mes-
sage in less than 100 ns on modern CPUs. In some HBSSs
(e.g., HORS [84], W-OTS+ [46]), signature generation and
verification execute at the microsecond scale, as they require
few hash computations.

To explain HBSSs, we overview the HORS scheme (Fig-
ure 2), which, whilst simple, illustrates the key ideas of HB-
SSs. The secret key SK for signing is an array of t random
secrets (t is a parameter), while the public key PK for verify-
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Figure 2: The HORS hash-based signature scheme. Solid
lines convey the path taken to sign a message, while dashed
lines convey the path to verify a signature. Hollow arrows
indicate cryptographic hashes.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    669



ing is the concatenation of the hash of each secret in SK. To
sign a message, the signer hashes it with a salt into a string
m, splits m into k substrings (k is a parameter), treats each
substring as an index into SK, and concatenates the indexed
secrets to obtain the signature σ. A verifier hashes the mes-
sage with the salt and uses the substrings to index into PK.
Then, the verifier hashes each secret in σ and checks that they
match the indexed elements of PK. This scheme is secure
because it is hard to (1) find messages that index the same
secrets or (2) reveal secrets without being the signer. Other
fast HBSSs, such as W-OTS+ [46], are similar to HORS in
that they sign by revealing a subset of the private key; as a
result, they are limited to signing one or a few messages.

To overcome this limitation and sign an unlimited number
of messages, hybrid signature schemes [37] combine HBSSs
with traditional schemes. To sign a message m, a hybrid
scheme concatenates an HBSS signature on m with the HBSS
public key signed using a traditional signature. To verify a
signature, the scheme verifies the HBSS signature of m and
the traditional signature of the HBSS public key.

3.4 Challenges
Hybrid signatures were studied extensively in theory, but
their application focused either on improving throughput in
low-compute low-bandwidth devices, or on low-security sig-
natures, or on tiny messages with only a few bits (§9). To
use them in a high-performance data center setting, we must
tackle several challenges.

Efficient signature verification. To verify a hybrid signature,
we must check both its HBSS signature and its traditional sig-
nature. Traditional signatures, however, have high verification
latency. We need new mechanisms to avoid the traditional
signature verification in the critical path.

Frequent key generation. Because an HBSS key pair can
be used only once or a few times, hybrid schemes need to
frequently generate and sign new HBSS key pairs. This can
become a bottleneck as it impairs signature throughput and,
ultimately, its latency. We need new techniques to improve
throughput while minimizing latency on the critical path.

Practical performance. We evaluate the performance of hy-
brid schemes and find that it does not match their theoretical
analysis. The latter is based on simple metrics, namely the
size of signatures and the number of hash calculations in the
critical path. However, due to microarchitectural effects (e.g.,
CPU cache size, prefetching), optimal configurations in the-
ory perform suboptimally in practice, and optimizations that
target solely the theoretical metrics sometimes do not work.

Large parameter space. Hybrid signature schemes have
many configuration options: the choice of the traditional
scheme, choice of the HBSS, and their respective parameters.
As a result, we are faced with thousands of options that pro-
vide different trade-offs in network bandwidth, computational
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Figure 3: Architecture of DSig.

resources, throughput, and latency characteristics.

4 Design of DSig

We present the architecture of DSig (short for “Data center
Signatures”), highlighting its extended interface and comput-
ing planes (§4.1). We then describe DSig’s hybrid signature
scheme (§4.2), its security (§4.3), and throughput optimiza-
tions (§4.4).

4.1 Architecture
Figure 3 depicts the architecture of DSig. Each process has
a public-private key pair of a traditional signature scheme,
where the public key is made available to other parties via a
public key infrastructure (PKI). For the traditional signature
scheme, we choose EdDSA [50] because it is the fastest such
scheme [17]. The PKI can be as simple as an administrator
pre-installing the keys, or it can be a full-fledged system.

DSig augments the interface of digital signatures (sign and
verify functions) in two ways. First, sign takes a hint with
the set of processes that will likely verify the signature. The
hint is optional: if omitted, it defaults to all known processes.
The hint does not restrict who can verify a signature—parties
not indicated in the hint can still verify the signature, albeit at
a lower performance. Second, a new canVerifyFast function
returns whether verification of a given signature will be fast.
This function can mitigate denial-of-service attacks by letting
applications prioritize the handling of fast signatures (§6).

Internally, DSig has two planes: foreground and back-
ground. The foreground plane provides the user library with a
synchronous API to sign and verify messages, while the back-
ground plane asynchronously pre-generates and propagates
new HBSS keys to be used by the foreground plane. DSig’s
general design can be used with a wide range of HBSSs (e.g.,
Lamport’s [59], HORS [84], W-OTS [34], W-OTS+ [46]).
We provide a specific recommendation based on an extensive
performance study (§5).
Foreground plane. To sign a message, the signer uses a fresh
HBSS key pair and returns to the application a DSig signa-
ture, which includes the resulting HBSS signature and the
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Algorithm 1: Signers’ Pseudocode
1 # Signer’s setup
2 verifier_groups = { ... } # Provided
3 for group in verifier_groups:
4 signed_keypairs[group] = Queue()

6 # Signer’s background plane
7 whenever ∃ group | signed_keypairs[group].size < S:
8 sk, pk = hbss.generate_keypair()
9 pkσ = {pk: pk, sig: eddsa.sign(pk)}

10 multicast <HBSS_PUBKEY, pkσ> to group
11 signed_keypairs[group].push((sk, pkσ))

13 # Signer’s foreground plane
14 def sign(msg, hint):
15 group = smallest group containing hint
16 sk, pkσ = signed_keypairs[group].pop()
17 hbss_sig = hbss.sign(msg, sk)
18 return <SIG, hbss_sig, pkσ>

corresponding HBSS public key signed with EdDSA. Signing
with EdDSA is slow, so the HBSS public key is pre-signed in
the background plane. On the other side, the verifier checks
the authenticity of the message using the HBSS signature and
the included HBSS public key. The authenticity of the HBSS
public key is checked by the background plane.

Background plane. The signer generates HBSS key pairs and
EdDSA-signs them before forwarding them to the foreground
plane. It also sends the EdDSA-signed HBSS public keys to
the background plane of the likely verifiers. The latter verifies
the authenticity of the HBSS public keys.

The background plane hides the latency of two slow steps:
(1) HBSS key pair generation, and (2) EdDSA-signing and
EdDSA-verifying the HBSS public keys.

Note that DSig preserves the transferability of signatures ir-
respective of the background plane. Because DSig hybrid sig-
natures are self-standing (as they include the EdDSA-signed
HBSS public key), the only requirement for signature verifi-
cation is knowledge of the signer’s EdDSA public key. The
background plane merely boosts performance when a hint is
correct, by letting a verifier pre-check an HBSS public key
before it receives a signature that includes it.

4.2 Signing and Verifying in DSig
The logic of a DSig signer is shown in Algorithm 1. Each

signer is configured with a list of verifier groups—groups of
processes that are likely to verify the same signatures on their
critical path (line 2). This list has a default group that contains
all the processes in the system, but is otherwise application-
dependent. In the applications we examined (§6), the list
was small and obvious (e.g., individual groups containing
one process each). Each verifier group is associated with a
key-pair queue (lines 3–4).

In the background plane, whenever a group’s queue size
is below a threshold S (line 7), the signer generates a new

Algorithm 2: Verifiers’ Pseudocode
19 # Verifier’s setup
20 verified_pks = Cache()

22 # Verifier’s background plane
23 upon deliver <HBSS_PUBKEY, pkσ> from process p:
24 if eddsa.verify(pkσ, eddsa_pk_of(p)):
25 verified_pks.add((pkσ, p))

27 # Verifier’s foreground plane
28 def verify(msg, <SIG, hbss_sig, pkσ>, p):
29 if (pkσ, p) not in verified_pks:
30 if not eddsa.verify(pkσ, eddsa_pk_of(p)): # Slow
31 return false
32 return hbss.verify(msg, hbss_sig, pkσ.pk)

34 def canVerifyFast(<SIG, _, pkσ>, p):
35 return (pkσ, p) in verified_pks

HBSS key pair (line 8), and signs the public key using EdDSA
(line 9). Empirically, we found that S=512 works well while
consuming only 3 MiB of memory per group. Then, the signer
multicasts the signed public key to the processes in the group
(line 10). The signer next appends the private key with the
EdDSA-signed public key to the queue for consumption in
the foreground plane (line 11).

To sign a message, the signer chooses the verifier group
that matches the hint; if no group matches the hint, the signer
picks the smallest group containing the hint (line 15). Then,
it gets a new HBSS key pair from this group’s queue (line 16).
Next, the signer computes an HBSS signature of the message
using the private key obtained from the queue (line 17). The
DSig signature comprises the HBSS signature of the message
together with its EdDSA-signed HBSS public key (line 18).

The logic of a DSig verifier is shown in Algorithm 2. In
the background plane, the verifier receives EdDSA-signed
HBSS public keys (line 23), which it verifies (line 24) and
stores in a cache (line 25). In our applications, we found that
having the cache store the latest 2×S=1024 HBSS public
keys from each signer worked well while consuming only
100 KiB of memory per signer. In the foreground plane, the
verifier first consults its cache to see if it has a verified entry
for the HBSS public key (line 29). If so, the verifier proceeds
with checking the HBSS signature using the HBSS public key.
In this code path, the verifier checks signatures as fast as the
underlying HBSS verify (line 32), which is fast. Otherwise,
the verifier also checks the EdDSA signature of the HBSS
public key (line 30), so the verifier can operate even without
the background plane. The verifier’s canVerifyFast function
(§4.1) simply checks whether a signed HBSS public key has
already been verified (lines 34–35).

As with other signature schemes, DSig can support key
revocation through revocation lists that applications check
prior to signing or verifying messages [54].
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4.3 Security
For preciseness of argument, we show the security of our
recommended DSig configuration, which uses W-OTS+ [46]
as its underlying HBSS (§5). Specifically, we show that
this configuration of DSig is Existentially Unforgeable under
Chosen-Message Attacks (EUF-CMA) [39] and that it pro-
vides 128-bit security, which is safe by today’s standards [7].
EUF-CMA security. We consider Chosen-Message Attacks
(CMA) in which the attacker can query the target to sign
arbitrary messages. More precisely, we consider adaptive
CMA in which the attacker can query the target based on
public key(s) and previously obtained signatures. We consider
Existential Unforgeability (EUF), which means it should be
computationally infeasible for an attacker to forge a signature
on any message, except for messages that have already been
signed by the target.
DSig is as secure as its parts. To forge a signature in DSig, an
attacker must find a combination of message (not previously
signed), W-OTS+ public key, EdDSA signature, and W-OTS+

signature that passes the verify function (Algorithm 2). We
assume that EdDSA provides EUF-CMA security, as proved
by Brendel et al. [20], and show how DSig’s security reduces
to the security of W-OTS+:

1. The verifier’s background plane caches only correctly
EdDSA-signed public keys (Alg. 2 lines 23–25). From
the EUF-CMA security of EdDSA, and since a correct
signer EdDSA-signs only its own public keys, (Alg. 1
lines 8–9), for any correct signer s, the verifier caches
only the W-OTS+ public keys s generates.

2. If a public key is not cached, the verifier EdDSA-verifies
it on the critical path (Alg. 2 lines 29–31). As in (1) above,
for any correct signer s, this verification only succeeds
for public keys s generates. Thus, for any correct signer
s, verify cannot return true for public keys s does not
generate.

3. Since, for any correct signer s, an attacker can only use
a W-OTS+ public key generated by s, forging a DSig
signature reduces to forging a W-OTS+ signature.

W-OTS+ with Haraka and BLAKE3. Hülsing proved that
W-OTS+ is EUF-CMA-secure when using a hash-function
family that is second-preimage resistant, undetectable, and
one-way [46]. Like SPHINCS+ [16], we pick the Haraka [55]
hash-function family which satisfies those properties and re-
lies on the battle-tested AES round function. Similarly to
SPHINCS+, we reduce the signed messages to 128-bit di-
gests by hashing them salted with the W-OTS+ public key
and a random nonce. We do so using the well-established
BLAKE3 [75] hashes. Finally, we tune W-OTS+’s parame-
ters to provide 128 bits of security when signing said 128-bit
digests. More precisely, we set the size of secrets and public

key elements to 144 bits, which, together with a W-OTS+

depth of 4 (§5), provides a security level of 133.9 bits [46].

DSig’s security level. Breaking DSig can be reduced to break-
ing either EdDSA, W-OTS+, Haraka, or BLAKE3. The Ed-
DSA signature scheme Ed25519 provides 128-bit security
under practical attacks [14], and our configuration of W-OTS+

provides 133-bit security. The security of both Haraka and
BLAKE3 relies on well-studied components [7, 55] and to
date, no attack has compromised their security.

4.4 Optimizing Throughput
DSig has a few throughput optimizations that do not signifi-
cantly impact latency.

Speeding up key pair generation. Generating an HBSS key
pair requires producing hundreds to thousands of secrets for
the private key, and then hashing each secret for the public key.
To produce secrets quickly, DSig collects entropy from the
hardware at startup to get a truly random 256-bit seed, which
DSig then salts with the key index and hashes using BLAKE3
to generate a digest with the size of the private key. To produce
the public key quickly, DSig hashes the secrets using Haraka,
which has a high-throughput implementation that optimizes
instruction pipelining to compute multiple hashes efficiently.

Amortizing the cost of EdDSA signatures. EdDSA-signing
every HBSS public key is slow and becomes a throughput
bottleneck as each EdDSA sign-verify computation takes
≈55 µs [17]. DSig EdDSA-signs batches of HBSS public
keys [86]. However, batching naively would increase the size
of signatures, since the entire batch of HBSS public keys
should be included in every DSig signature to make their
EdDSA signature self-standing. DSig addresses this issue
by arranging the batch of HBSS public keys into a Merkle
tree [67] and EdDSA-signing its root. As a result, a DSig
signature is composed of an HBSS signature, an HBSS public
key, a Merkle inclusion proof, and the EdDSA signature of
the Merkle root. The Merkle proof is a space-efficient way
of proving that the included HBSS public key is part of the
EdDSA-signed batch. As Merkle proofs require collision-
resistant hashes, we use (the efficient) BLAKE3. The space
efficiency of Merkle proofs comes at the computational cost
of generating and verifying them. DSig moves most of this
cost to the background plane of both signers and verifiers,
which precompute and cache the full Merkle tree associated
with a batch. Then, on the critical path, signing a key merely
requires copying the subset of the tree that constitutes the
Merkle proof, while verifying the Merkle proof consists of
simple string comparisons. The efficiency of this scheme
depends on the batch size, which we determine in §8.7.

Speeding up bulk verification. Verifying many signatures
with no assistance from the background plane (e.g., when
checking an audit log) requires checking the same EdDSA
signatures many times. To speed up this process, EdDSA
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signatures verified in the foreground plane are cached. A
cache entry takes only ≈33 bytes, a tiny overhead, but saves
≈36 µs of computation on our hardware (Table 3).

Reducing background bandwidth. Sending signed public
keys both ahead of time and within signatures consumes sig-
nificant networking bandwidth. To nearly halve the bandwidth
usage, DSig batches, EdDSA-signs, and sends only BLAKE3
digests of the public keys in the background plane. This op-
timization requires computing the public key digest during
signature verification, which adds only ≈1.3 µs of latency.

5 Choice of HBSS

DSig can be used with many HBSSs, but its performance
heavily depends on the actual HBSS used and how this HBSS
is configured. In this section, we explain which HBSS we
choose for DSig and how we configure it.

5.1 HBSS Requirements
Our choice of HBSS is guided by the following requirements.

Security. To provide 128-bit security, DSig needs an HBSS
with the same or stronger security.

Low sign and verify latency. DSig executes HBSS sign and
verify operations on the critical path. These operations must
have microsecond-scale latency. This latency depends on the
choice of the hash function, on the number of hashes they
involve, and on microarchitectural effects.

Short signatures. At the microsecond scale, signatures can-
not exceed a few KiB in length, as larger signatures incur
significant transmission latency: we experimentally find that
when sending small messages each extra KiB takes approxi-
mately an extra microsecond on a 100 Gbps network. Further-
more, large signatures significantly increase the bandwidth
consumption when applications send small messages.

Compressible public keys. Recall that DSig signatures must
include an HBSS public key in order to be self-standing (§4.2).
However, the combination of an HBSS signature and its pub-
lic key can be in the KiB range, which is undesirable. We thus
seek HBSSs for which this combination can be compressed,
leading to smaller DSig signatures.

Lightweight key generation. HBSS key generation mainly
involves hash computations, the number of which depends on
the HBSS and can bottleneck DSig’s throughput. HBSS that
use few hashes for key generation are thus desirable.

5.2 Analysis
HBSSs can be grouped in two classes: HBSSs with keys that
can sign only one or a few messages [34, 46, 59, 84], and
HBSSs with keys that can sign many messages [9, 15, 16, 21,
47, 58]. Only the first class provides low latency (the second

focuses on quantum resistance). Within that class, we focus
on the fastest HBSSs: HORS [84] and W-OTS+ [46].

HORS. Recall that a HORS signature reveals a subset of its
private key secrets determined by the message being signed
(§3.3). Verifying a signature requires hashing the revealed
secrets, checking that they match the public key, and checking
that all the secrets mandated by the signed message were
revealed. HORS has two parameters: the number k of secrets
revealed in a signature and the number of times r that a key
pair can be used. The size of HORS keys is proportional to r,
so picking r≥2 presents no benefits and we set r=1. Smaller
values of k, however, lead to fewer hash computations, and
thus to lower latency in theory, but they require larger HORS
public keys for the same security level. Large HORS public
keys require compression to fit our signature size budget. We
thus devise two compression techniques, described next.

The first technique shortens the embedded HORS public
key by removing the elements that can be deduced from the
HORS signature (top of Figure 4). We analyze this approach
in the first part of Table 2, which shows that configurations
with few hashes (k<32) have large signatures (tens of KiB)
that exceed our budget.

To use HORS signatures with small k while staying within
our signature size budget, we devise another compression
technique inspired by SPHINCS [15]. This technique is based
on the observation that verifying a HORS signature merely re-
quires checking that the few revealed secrets match the public
key; knowledge of the full public key is unnecessary. We en-
able such checks using Merkle inclusion proofs: we arrange
all public key elements in a Merkle forest, and EdDSA-sign
its roots. Such DSig signatures replace their HORS public

Table 2: Analytical comparison of a DSig signature using
either HORS or W-OTS+ as its HBSS for various configura-
tions with EdDSA batches of 128 public keys.

Conf # Critical Signature # BG BG Traffic
Hashes Size (B) Hashes (B/Verifier)

Using HORS with factorized PKs
k=8 8 8Mi 512Ki 33
k=16 16 64Ki 4Ki 33
k=32 32 8,552 512 33
k=64 64 4,456 256 33

Using HORS with merklified PKs
k=8 8 4,712 1Mi 8Mi
k=16 16 4,968 8Ki 64Ki
k=32 32 5,480 1Ki 8Ki
k=64 64 6,504 510 4Ki

Using W-OTS+

d=2 ≈68 2,808 136 33
d=4 ≈102 1,584 204 33
d=8 ≈161 1,188 322 33
d=16 ≈263 990 525 33
d=32 ≈434 864 868 33
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WOTS+ signature Batch inclusion 
proof + EdDSA sig.

DSig signature 
with WOTS+ 

Figure 5: Layout of DSig signatures when using W-OTS+.

key with the forest roots and the inclusion proofs of the re-
vealed secrets (bottom of Figure 4). To avoid the overhead
of checking Merkle proofs (i.e., computing around a hundred
BLAKE3 hashes) on the critical path, we use a latency-hiding
technique similar to the one in §4.4: signers send their com-
plete public keys ahead of time to verifiers (by disabling back-
ground bandwidth reduction (§4.4)); verifiers precompute
Merkle forests in their background plane, so Merkle proof
verification on the critical path becomes mere string compar-
isons. We analyze this approach in the second part of Table 2,
which shows that configurations with very few hashes (k≤16)
have tractable signature sizes, but come at the expense of
significant background traffic and many background hashes.

W-OTS+. W-OTS+ differs from HORS in two main ways.
First, W-OTS+ secrets are hashed d−1 times to obtain the
public key, where d is a depth parameter. Second, to sign,
each secret is hashed a different number of times, as deter-
mined by the message to be signed, before being included in
the signature. We lower sign latency by caching these hashes
upon computation of the public key so that signing reduces to
string copying. To verify a signature, we hash each element
the required number of times to get to depth d, as determined
by the signed message, and verify that the obtained results
match the public key. Note that W-OTS+ does not require
embedding the public key in the DSig signature (Figure 5). A
downside of W-OTS+ versus HORS is that W-OTS+ needs
many more hashes on the critical path.

We analyze W-OTS+ within DSig in the last part of Ta-
ble 2, which shows that W-OTS+ configurations with small
d satisfy our requirements regarding signature size, back-
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ground processing, and bandwidth consumption. Moreover,
although they all require more hashes than HORS on the criti-
cal path, their signatures are smaller than the smallest HORS
ones. Note that as d gets bigger, the gain in signature size is
outweighed by the drastic increase in hash computations.

Conclusion. Our analysis points to three general configura-
tions for further experimental evaluation: (1) HORS with
factorized PK and k close to 64, (2) HORS with merklified
PK and k close to 16, and (3) W-OTS+ with d close to 4.

5.3 Evaluation
We measure the latency of signing an 8 B message, transmit-
ting it along with its DSig signature, and verifying the signa-
ture for the sensible HBSS configurations presented in §5.2.
Our experimental setup is detailed in §8. We consider three
hash functions: SHA256 [77] (the slowest), BLAKE3 [75],
and Haraka [55] (the fastest). Figure 6 shows the results for
SHA256 and Haraka (BLAKE3 stands in between).

When using Haraka (bottom of Figure 6), HORS with
factorized public keys (denoted HORS F) achieves its best
end-to-end latency for k=64. For k<64, its latency increases
in spite of having fewer hashes on the critical path due to the
transmission time of larger signatures.

Surprisingly, HORS with merklified public keys (HORS
M) signs and verifies only marginally faster despite its far
lower number of hashes. This disappointing performance is
a microarchitectural effect of the size of the Merkle forests.
Indeed, for the assembly and verification of precomputed
Merkle proofs to be fast, the relevant elements of their associ-
ated Merkle forest should be present in local cache (L1/L2).
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However, CPU prefetching is inefficient due to the inherent
randomness of Merkle proofs.

To demonstrate the benefit of having the Merkle proofs
in the local cache, we modify DSig to prefetch public and
private keys into the processor cache right before signing and
verifying. The modified system (HORS M+) achieves an end-
to-end latency of as little as 5.6 µs (signing in 0.9 µs, verifying
in 1.5 µs and transmitting in 3.3 µs) for k=16. For smaller
k, the keys do not entirely fit in the local cache, hence the
performance degradation.

W-OTS+ achieves its best latency of 7.7 µs for d=4 (sign-
ing in 0.7 µs, verifying in 5.1 µs and transmitting in 2.0 µs)
where it strikes a good balance between few hashes (low d)
and short signatures (high d). We omit prefetching W-OTS+

keys, as it has negligible latency benefit (not shown).
When using SHA256 (a slower hash function, top of Fig-

ure 6), HORS with factorized public keys (HORS F) sees
its verification time vastly increase for large k, while small
k still has long transmission time. HORS with merklified
public keys (HORS M) has better latency for smaller k, which
differs from HORS M with Haraka. Indeed, it is preferable
to have fewer SHA256 computations (small k) than smaller
Merkle forests (large k) since SHA256 is considerably more
expensive than cache misses, which is not the case of Haraka.
Finally, the large number of hashes (68 in expectation) of
W-OTS+ makes it perform worse than the best configuration
of each presented HORS variant.

5.4 Recommended Configuration
From our analytical (§5.2) and experimental (§5.3) studies,
we recommend using W-OTS+ with d=4 and Haraka. This
configuration offers single-digit sign-transmit-verify latency,
tractable 1,584 B signatures, and requires little background
computation and networking. Although HORS with merkli-
fied keys can achieve lower latency, it is too costly (in com-
pute, bandwidth, and CPU cache pollution) and its superior
performance requires modifying applications to prefetch keys
into the processor cache, which can be impractical. Note,
however, that the choice of HBSS depends on the relative
performance of hardware and software: in the future, if cache
misses become cheaper and hashing becomes relatively more
expensive, low-k HORS configurations could be appealing.

6 Applications

We apply DSig to key-value stores, a financial trading system,
BFT broadcast, and BFT replication.
Key-value stores (HERD [51] and Redis [87]). State-of-the-
art key-value stores provide microsecond-level performance
and form the backbone of many data center applications, mi-
croservices, and cloud services. Key-value stores are used
to keep security-sensitive information such as service con-
figuration, session management data, cached queries, access

control data, chat sessions, etc. Yet, most key-value stores
lack auditability—the ability for a third-party to check a log
of all operations (reads and writes) executed on the key-value
store. More precisely, in an auditable key-value store, the
server keeps a log of executed operation such that, for any
operation op in the log, the server can prove to a third party
that op’s client requested its execution. For example, the third
party may be a forensics specialist or a prosecutor, who wants
proof that a client requested access or modification to some
data. The threat model is that clients may wish to bypass the
audit (i.e., execute an operation undetected), while the server
is honest. The proofs provided by the server are operations
signed by clients and the key-value store must ensure that (a)
if an operation signed by client C is in the audit log, then it
was executed by the key-value store for client C, and (b) if an
operation is executed by the key-value store for client C, then
it appears in the audit log as an operation signed by C.

To provide auditability, a key-value store requires all re-
quests to be signed by clients and logged by the server. The
server must check the client signature before executing a re-
quest (otherwise a client could send a request with a bogus
signature, which the server would execute without later being
able to prove it), so traditional digital signatures significantly
increase the latency of microsecond-scale key-value stores.

We use DSig to add auditability to two key-value stores:
HERD and Redis. HERD is highly optimized for the RDMA
networks present in data centers, while Redis is popular
among web application developers. HERD provides sim-
ple GET and PUT operations on key-value pairs, while Redis
also provides higher-level operations on common data struc-
tures, such as lists, maps, sets, etc. We modify both systems
so that clients use DSig to sign all operations, and servers
log and verify the signed operations before executing them.
This logging requires 1.5 KiB of storage per operation due to
DSig’s signatures. Key-value stores have predictable signing
and verifying processes: clients simply set their signatures
hints to the server process. Logs can be persisted at the mi-
crosecond scale using persistent memory. This is not currently
implemented due to lack of hardware, but data from Yang et
al. [91] indicate that persistence would take less than 4 µs,
and this latency can be masked by storing in parallel with
signature verification. Vanilla HERD takes ≈2.5 µs to GET or
PUT a key-value pair, while vanilla Redis takes ≈12 µs.
Financial trading system (Liquibook [73]). Liquibook pro-
vides an order-matching engine for financial trading—it
matches buy and sell limit orders from clients. We consider
a trading system built using Liquibook and RDMA for fast
client-server communication. We use DSig to enhance the
system and provide auditability, as we did for key-value stores.
Signature hints are identical to key-value stores. Without au-
ditability, the trading system takes ≈3.6 µs to process orders,
of which ≈2 µs are spent on communication.
BFT broadcast (CTB [3]). Byzantine Fault Tolerance (BFT)
is becoming more relevant in data centers, due to the need
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Table 3: Configuration details of machines.

CPU 2× 8c/16t Intel Xeon Gold 6244 @ 3.60GHz
NIC/Switch Mlnx CX-6 MT28908 / MSB7700 EDR 100 Gbps

Software Linux 5.4.0-167-generic / Mlnx OFED 5.3-1.0.0.1

to tolerate failures beyond simple crashes [42, 44, 45, 69, 70].
Consistent broadcast is a core BFT primitive that prevents
equivocation [23] and has many uses, as in money trans-
fer [27, 40], consensus [1, 13, 25], multi-party computa-
tion [10] and decentralized learning [35, 38] protocols. We
consider uBFT’s state-of-the-art implementation of Consis-
tent Tail Broadcast (CTB) and replace its signatures with
DSig’s to improve performance. Signing hints are simple, as
each signature is verified by all processes running the proto-
col.

BFT replication (uBFT [3]). State machine replication
(SMR) is the standard approach for fault-tolerance [2, 18, 66].
We consider uBFT, a microsecond-scale BFT SMR system
for data centers. BFT SMR protocols, including uBFT, often
employ signed messages to guard against Byzantine repli-
cas. uBFT recognizes the high cost of digital signatures and
follows a fast/slow path approach. The fast path avoids signa-
tures and has a latency of 5 µs. The slow path uses signatures,
with a latency of ≈220 µs. The slow path is triggered even
without Byzantine behavior (e.g., due to process slowness),
leading to latency fluctuations between its two modes of oper-
ation. We use DSig to replace the digital signatures in uBFT
and improve its performance. Signing hints are simple, as
each signature is verified by all processes running the proto-
col. Moreover, we use DSig’s DoS-mitigation mechanism
(§4) to prevent a malicious attack from triggering superfluous
EdDSA verifications. More precisely, because uBFT is a
quorum system, it can make progress with n− f responses (n
is the number of replicas, f is the maximum number that can
be Byzantine). We make a small modification to uBFT to use
the canVerifyFast function to prioritize handling of messages
that do not incur the EdDSA signature check. As a process
gets at least n− f messages from non-Byzantine processes, it
ignores the slow-to-check messages from Byzantine players.

7 Implementation

Our implementation of DSig has 3,019 lines of C++17
(CLOC [32]). We use our own implementation of
HORS [84] and W-OTS+ [46], the official implementations of
BLAKE3 [75] and Haraka [55], and Dalek’s implementation
of EdDSA (Ed25519 [65]). BLAKE3 and Dalek’s EdDSA use
AVX2 for high performance. We use uBFT’s framework [3],
which provides fast point-to-point communication.
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Figure 7: End-to-end latency of different applications using
Sodium, Dalek or DSig for signatures. Printed values show
the median latency; whiskers show the 10th and 90th %-iles.

8 Evaluation

We evaluate the performance of DSig and verify its suitability
as a microsecond-scale signature system. We aim to answer
the following:

• How do microsecond-scale applications that use signa-
tures benefit from DSig’s low latency (§8.1)?

• How does DSig’s signing and verification latency com-
pare to traditional signatures (§8.2, §8.3)?

• What is the throughput of DSig (§8.4)?
• How do DSig’s higher bandwidth requirements impact

its scalability (§8.5, §8.6)?
• How do we set DSig’s EdDSA batch size (§8.7)?

Testbed. Our testbed is a cluster with 4 servers configured as
shown in Table 3. The dual-socket machines have an RDMA
NIC attached to the first socket. Our experiments execute on
cores of the first socket using local NUMA memory. We accu-
rately measure time using the TSC [43] via clock_gettime

with the CLOCK_MONOTONIC parameter.

DSig configuration. We configure DSig per §5: in all ex-
periments, we use W-OTS+ with a depth d=4 as its HBSS.
We dedicate a single core to DSig’s background plane, which
provides a high-enough throughput for our applications (§8.4).
Unless specified otherwise, we use an EdDSA batch size of
128 (§8.7) and provide correct verifier hints when signing.

Baselines. We compare DSig against two well-known signa-
ture libraries: Sodium [8] (written in C) and Dalek [65] (writ-
ten in Rust). Both implement the EdDSA signature scheme
Ed25519—the fastest traditional scheme to date [17].

8.1 Application Latency
We configure applications with different signature schemes
(Sodium, Dalek, DSig) and measure their latency. For the
key-value stores, we use 16 B keys and 32 B values, 20% of
PUT requests and 80% of GETs, where 90% of GETs return a
value. For Liquibook, 50% of the requests are SELLs and 50%
are BUYs. For CTB, we broadcast 8 B messages. Finally, for
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uBFT, we consider SMR operations of 8 B. We issue 10,000
requests one at a time to each application, measure the end-to-
end latency, and report the 10th-, 50th-, and 90th-percentiles.

Figure 7 shows the results. For the three applications on the
left, DSig provides auditability for a small cost: an increase
of less than 7.9 µs in end-to-end latency. Sodium and Dalek
add ≈79 µs and ≈55 µs, respectively, which is 10× and 7.0×
DSig’s overhead. In CTB, replacing Sodium (resp. Dalek)
with DSig reduces the median cryptographic overhead by
87% (resp. 82%), and reduces the median end-to-end latency
by 80% (resp. 73%). In uBFT, DSig reduces the median
cryptographic overhead by 91% (resp. 87%), and reduces the
median end-to-end latency by 78% (resp. 69%) compared to
Sodium (resp. Dalek). DSig provides similar latency gains
at the 90th percentile. In summary, across the tested appli-
cations, DSig significantly reduces cryptographic overheads
and improves latency over the state of the art.

8.2 Latency of DSig

We study the latency to sign a message, transmit a signa-
ture, and verify a signature using DSig. We also consider
the latency of incorrectly hinted DSig signatures for which
EdDSA signatures are verified on the critical path. This rep-
resents the worst-case scenario for DSig. In each experiment,
a process signs an 8 B message and transmits the signed mes-
sage to a second process, which verifies the signature. We
run each experiment 10,000 times for each signature scheme.
The signature transmission latency is the incremental cost
of adding the signature to a message, computed as the dif-
ference between transmitting a message with and without a
signature. We estimate message transmission time as half of
the round-trip time for ping-ponging the message.

Figure 8 shows the results. All signature schemes have
stable latency up to the 99.9th percentile. Sodium and Dalek
have similar signing median latency of 20.6 µs and 18.9 µs,
respectively. While Sodium verifies in 58.3 µs, Dalek verifies

8 32 128 512 2 Ki 8 Ki
Message size (bytes, log)

0

40

80

120

La
te

nc
y 

(µ
s) 

  

S D DS
8 KiB messages

0
40
80

120
160

La
te

nc
y 

(µ
s) 

  

61.0

78.5

139.5

61.4

56.8

118.3

14.3

Sodium (S)
Dalek (D)

DSig (DS)
Sign
Transmit
Verify
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signature of various-size messages using Sodium, Dalek and
DSig with correct hints. (Right) Median latency breakdown
for 8 KiB messages. Transmission overhead is invisible.

in only 35.6 µs (39% faster) thanks to the use of AVX2 instruc-
tions. The (incremental) network latency is less than 100 ns
for both since their signatures are merely 64 B. With correct
hints, DSig takes 0.7 µs to sign and 5.1 µs to verify. This is
27× and 7.0× faster than Dalek, respectively. Interestingly,
even though DSig’s larger signatures lead to a 1.0 µs transmis-
sion overhead (more than 10× Dalek’s), it has limited impact
on its latency which is dominated by verification. Overall,
DSig is 8.2× faster than Dalek. With incorrect hints, DSig’s
signature verification requires verifying both HBSS and Ed-
DSA signatures, so verification latency increases to 39.9 µs
(4.3 µs more than Dalek’s). Signature generation, however,
is not impacted as signers still benefit from background Ed-
DSA precomputation and the total latency, although rising to
41.5 µs, is still 24% lower than Dalek’s. Even with incorrect
hints, DSig has much lower combined sign-transmit-verify
latency than the state of the art.

8.3 Effect of Message Size on Latency

We study the effect of message size on the latency of DSig by
running the experiments of §8.2 with varying message sizes.

Figure 9 (left) shows the results. With larger messages,
DSig’s total latency increases gradually but remains below
15 µs. Sodium’s and Dalek’s latencies are much higher. They
also increase faster because they use a slower hash function
than DSig (SHA256).1 Figure 9 (right) shows the latency
breakdown for the largest size (the breakdown for the smallest
size is in §8.2). In all schemes, the split is about half-half to
sign and verify, with negligible transmission time.

8.4 Throughput

We study DSig’s throughput. In an experiment, a process
signs small 8 B messages repeatedly with either a constant or

1Most signature schemes hash the input to operate on a fixed-size string.
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Figure 10: Latency-throughput graphs for Sodium, Dalek
and DSig. Signatures are issued at constant or exponentially
distributed intervals. All three use two cores on both sides;
DSig dedicates one of them to its background plane.

an exponentially distributed random interval between signa-
tures. The signer transmits the signature over the network to
the verifier, which verifies it. We measure the total latency
(sign plus transmit plus verify) and throughput of DSig, and
compare it against Sodium’s and Dalek’s. In all experiments,
the signer and the verifier use two cores each. DSig dedicates
one core to each of its planes so that background events mini-
mally impact foreground operations, while Sodium and Dalek
use all cores to handle multiple messages in parallel.

Figure 10 shows the results as latency-throughput graphs
with median latency and average throughput. With constant
signature interval, all three systems exhibit stable latency until
reaching maximum throughput. Sodium maintains a latency
of ≈80 µs up to a throughput of 34 kSig/s where it is bottle-
necked by verification time (58 µs). Dalek maintains a latency
of ≈56 µs up to a throughput of 56 kSig/s where it is also
bottlenecked by verification time (36 µs). DSig maintains a
latency of ≈7.8 µs up to a throughput of 137 kSig/s where it
is bottlenecked by the signer’s background plane, which takes
7.4 µs to generate a new public key. We separately measured
the verifier’s background plane; it achieves a throughput of
3.6 MSig/s, so it is not a bottleneck. With a random signing in-
terval, queuing occurs gradually, so the respective bottlenecks
are less abrupt, causing a smoother latency degradation.

We run another experiment to measure the per-core through-
put of DSig by running both of its planes on one core, and
compare it to the per-core throughput of Dalek. While Dalek
achieves 53 kSig/s signature generations (resp. 28 kSig/s veri-
fications) per core, DSig achieves 131 kSig/s signature gener-
ations (resp. 193 kSig/s verifications) per core.

In summary, DSig sustains significantly higher throughput
at much lower latency than EdDSA-based systems.

8.5 One-to-Many, Many-to-One Performance
We now study DSig’s scalability and bottlenecks in one-to-
many and many-to-one scenarios. In one-to-many, one signer
signs a message and sends the signature to many verifiers; this
pattern is common in distributed protocols. In many-to-one,
many signers sign different messages and send them to the
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Figure 11: (Left) DSig’s throughput with a signer sending the
same signature to multiple verifiers. (Right) DSig’s through-
put with a verifier receiving different signatures from multiple
signers. The NICs’ bandwidth is limited to 10 Gbps.

same verifier; this pattern is common in client-server applica-
tions. We run experiments where the signer(s) and verifier(s)
use one foreground and one background core to work as fast as
possible. We measure the aggregate verification throughput,
and report the average. We consider a scenario where most
of the network bandwidth (≈90%) is consumed by other ac-
tivities, by limiting our NICs’ bandwidth to 10 Gbps. This of
course makes it harder for DSig to operate since it consumes
more network bandwidth than other schemes. We compare
the scalability of DSig to a two-core system based on Dalek.

Figure 11 shows the results. In one-to-many (left of figure),
DSig’s throughput increases until 577 kSig/s with 5 verifiers;
at this point, the signer saturates its link to the verifiers, with
the 1,584 B signatures and their 33 B background data ac-
counting for ≈7 Gbps. Dalek scales more slowly than DSig
with the number of verifiers, but it is not affected by band-
width, as it continues to scale beyond 11 verifiers, at which
point it surpasses DSig’s throughput with 603 kSig/s using
merely ≈300 Mbps to transmit 64 B signatures.

In many-to-one (right of figure), two signers are enough to
achieve DSig’s maximum throughput of 190 kSig/s as they
saturate the verifier’s foreground plane, which we set to run
on a single core. As signing with Dalek is faster than veri-
fying, Dalek does not scale beyond 1 verifier and achieves a
maximum throughput of 53 kSig/s.

Overall, DSig’s main scalability bottleneck compared to
Dalek is its larger signatures.

8.6 Effect of Larger Signatures

We study how DSig’s larger signatures affect application per-
formance. In each experiment, we run a synthetic application
where a server receives signed requests of a given size, checks
their signature, spends some given processing time, and sends
a 16 B unsigned reply. Similarly to §8.5, we limit the NICs’
bandwidth to 10 Gbps, and compare the same application
when using DSig or EdDSA. For fairness, EdDSA uses Dalek
and pre-hashes messages with BLAKE3. In addition, we run
an experiment with signatures disabled. The application runs
with 4 cores: DSig uses 1 core for the background plane and
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Figure 12: Request throughput of an application using signa-
tures when NICs’ bandwidth is constrained to 10 Gbps, for
different request sizes and request processing times.

3 cores to handle requests, while the others use 4 cores to
handle requests. We run enough clients to saturate the server.
We consider 7 request sizes (32 B, 128 B, 512 B, 2 KiB, 8 KiB,
32 KiB and 128 KiB) and 2 processing times (1 µs and 15 µs).

Figure 12 shows the results. For both processing times,
DSig outperforms EdDSA up to 8 KiB, after which it performs
similarly to EdDSA. For small messages (32 B–512 B), the
limited bandwidth has no impact on either scheme, so DSig
significantly outperforms EdDSA thanks to its lower compu-
tational cost. With 2 KiB messages and 1 µs processing time,
bandwidth impacts DSig while EdDSA is almost unaffected.
Relative to 512 B messages, DSig’s throughput decreases by
22%, while EdDSA’s decreases by only 1.9%. Higher pro-
cessing time offsets DSig’s bandwidth bottleneck closer to
8 KiB messages. Beyond these points, the throughput of both
DSig and EdDSA converges to that of the application that
does not use signatures, as network bandwidth bottlenecks all
three systems, making the overhead of signatures negligible.

In summary, DSig’s higher per-core throughput lets appli-
cations reach higher throughput than with EdDSA even with
limited network bandwidth, up to moderate-size messages.

8.7 EdDSA Batch Size
To set the size of EdDSA-signed key batches (§4.4), we run
the same experiment as in §8.2 for different batch sizes, and
we measure the latency and the per-core throughput. To take
into account the impact of larger batches on low-end networks,
we limit our NICs’ bandwidth to 10 Gbps, as in §8.5 and §8.6.

Figure 13 shows the results, where a batch size of 1 means
no batching. We see that batch sizes do not affect latency
much (left of figure).2 Throughput is different (right of fig-
ure): initially, batching improves throughput a lot for both
signing and verifying. The gain dwindles when the amortized
EdDSA cost per signature becomes a diminishing fraction of
the overall computation as batches get larger. The best sign-
ing throughput is 135 kSig/s for batches of 32 keys, while the
best verifying throughput is 206 kSig/s for batches of 4,096
keys. We pick a batch size of 128 as a balance.

2The transmission latency differs from §8.2 due to the 10 Gbps NIC limit.
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Figure 13: (Left) Median latency to sign, transmit, and verify
a signature on an 8 B message with DSig for different EdDSA
batch sizes. (Right) Single-core throughput of signing and
verifying for different EdDSA batch sizes.

9 Related Work

HBSSs. HBSSs are well studied and prior work has proposed
different implementations of them, many of which are vari-
ants of HORS [60,63,72,90]. Li et al. [63] proposed a variant
targeted at smart grids with limited storage that reduces key
and signature size but increases computation costs. Wang
et al. [90] proposed a scheme with small signatures and mi-
crosecond performance, but it is limited to providing low
≈ 50-bit security. HORSE [72] reduces the cost of few-time
signatures by repeatedly hashing the private key secrets, cre-
ating a matrix whose last row is the public key; however,
it restricts the order in which applications can reveal public
keys. W-OTS+ [46] was proposed by Hülsing as a variant of
W-OTS [34] with reduced signature and key sizes.
Online/offline signature schemes. The concept of online/of-
fline digital signatures, in which heavy computation is done
prior to knowing the message to sign, was first introduced
by Even et al. [37]. So far, practical applications of the the-
oretical concept (including hybrid signature schemes) have
targeted low-compute devices and/or wide area networks,
with a focus on improving signature throughput or reducing
bandwidth [53, 62, 64, 78, 92, 93]. Recently, Esiner et al. [36]
also recognized the importance of low-latency signatures, yet
their solution is tailored for industrial control systems with
tiny messages (25 bits), and does not provide self-standing
signatures. No prior work addresses hybrid signatures in data
centers with microsecond-scale performance.
Merkle-based signatures. Prior work proposes schemes that
rely exclusively on HBSSs to sign (virtually) infinitely many
messages, with the goal of attaining quantum resistance. Most
of this work is based on XMSS [21], such as SPHINCS [15]
and variants [16,47,58]. Instead of distributing keys regularly,
these schemes efficiently pack an infinitude of one-time public
keys using Merkle inclusion proofs [68]. These proofs need
to be checked during signature verification, thus making the
performance of such schemes be in the milliseconds.
Signature-like schemes. The cost of signatures has fueled
alternatives for different scenarios. Message authentication
codes (MACs) provide authentication and integrity of mes-
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sages, but lack transferability, as parties use a shared se-
cret to communicate. While MACs are widely used in net-
worked systems to provide authenticated channels between
two parties, they are not substitutes for signatures, as they
provide weaker properties, they are harder to use, and they
are more susceptible to protocol mistakes. In particular, us-
ing MAC-based mechanisms in BFT protocols has several
drawbacks: (1) These mechanisms are ad-hoc and highly
dependent on the protocol: some require MAC vectors [24]
others require MAC matrices [5]; others explicitly prefer or
mandate signatures over MACs for critical messages [3,4,26].
(2) These mechanisms add complexity to the BFT protocols,
e.g., by requiring a fast-slow path approach where the fast
path avoids signatures but the slow path (or view change) still
uses them [3,4,24,26,29,56]; this added complexity increases
their attack surface [26]. (3) These mechanisms often add
messages and roundtrips to the protocols [5, 29, 79], and/or
lower their resilience to failures [5, 79].

Some systems make extra assumptions to provide MAC
with some form of transferability. TESLA [79] assumes clock
synchrony and has time windows during which MACs are
generated and transmitted; afterward, the MAC secrets are
revealed to check previously seen MACs. This idea provides
only a limited form of transferability and increases the latency
of verification. Using trusted hardware [12, 52, 61], such
as trusted execution environments (TEEs), one can provide
MACs with transferability by hiding the secret and computing
the MACs in the TEE so that every TEE owner can verify the
MACs but only a designated TEE can create them.

10 Conclusion

DSig is the first digital signature system for microsecond-
scale applications. DSig achieves single-digit microsecond
latency for signing and verifying messages—27× and 7×
faster than the prior state of the art—while achieving higher
throughput. To achieve that, DSig introduces a new hybrid
signature scheme that uses knowledge of where signatures are
issued and verified in the common case. DSig can bring au-
ditability to latency-critical applications with a small latency
overhead, or replace other signature schemes in applications
that use them. Ultimately, we believe that DSig makes digital
signatures fast enough to broaden their use in data centers as
a powerful security building block.
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