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Abstract
The rapid advancement of computer system components has
necessitated a comprehensive profiling approach for both
on-CPU and off-CPU events simultaneously. However, the
conventional approach lacks profiling both on- and off-CPU
events, so they fall short of accurately assessing the overhead
of each bottleneck in modern applications.

In this paper, we propose a sampling-based profiling tech-
nique called blocked samples that is designed to capture
all types of off-CPU events, such as I/O waiting, blocking
synchronization, and waiting in CPU runqueue. Using the
blocked samples technique, this paper proposes two profilers,
bperf and BCOZ. Leveraging blocked samples, bperf profiles
applications by providing symbol-level profile information
when a thread is either on the CPU or off the CPU, awaiting
scheduling or I/O requests. Using the information, BCOZ per-
forms causality analysis of collected on- and off-CPU events
to precisely identify performance bottlenecks and the poten-
tial impact of optimizations. The profiling capability of BCOZ
is verified using real applications. From our profiling results
followed by actual optimization, BCOZ identifies bottlenecks
with off-CPU events precisely, and their optimization results
are aligned with the predicted performance improvement by
BCOZ’s causality analysis.

1 Introduction

Application profiling encompasses the analysis of two types
of events: on-CPU events and off-CPU events. Profiling
on-CPU events aims to analyze instructions executed on a
CPU [1,4,7,15,17,19–21,33,45,53,54]. In contrast, profiling
off-CPU events aims to analyze waiting events within an ap-
plication such as waiting for blocking I/O completion, locks,
scheduling, etc [27, 35, 38, 39, 55, 58].

In the past, applications were clearly characterized as either
CPU-boud or I/O-bound due to the use of slow I/O devices
such as HDD or SATA SSD. Therefore, existing profiling tools
have applied bottleneck analysis techniques separately for on-
CPU events or off-CPU events. However, with the recent

advancements in fast storage and many-core CPUs, modern
applications often exhibit complex behaviors. Especially, their
performance bottleneck is combined by on-CPU events and
off-CPU events, necessitating the need for comprehensive pro-
filing of both on-CPU and off-CPU events simultaneously and
capturing their interactions. For example, with the emergence
of NVMe SSDs and ultra-low latency SSDs, the critical path
of I/O-intensive applications often shifts from I/O to CPU
events [23, 30–32]. Consequently, studies have focused on
optimizing on-CPU events rather than I/O events to enhance
the performance of I/O-intensive applications [23, 30–32].

However, existing profilers focus on analyzing only on-
CPU [17, 20, 33] or off-CPU events [3, 38], so they cannot
analyze the complicated behaviors of modern applications.
COZ [15], a state-of-the-art causal profiler, estimates per-
formance gain through its virtual speedup approach. COZ
intentionally delays competing threads to estimate the perfor-
mance impact by optimizing certain code lines without actu-
ally optimizing them. However, COZ applies virtual speedup
profiling exclusively to on-CPU events as it lacks the capabil-
ity to incorporate execution information from off-CPU events.
wPerf [58], a state-of-the-art off-CPU analysis profiler, traces
waiting events between threads during the execution and re-
ports the result in the form of a graph (called a wait-for graph).
While wPerf can analyze interactions between on-CPU and
off-CPU events, it falls short in assessing the actual impact
of bottlenecks on application performance. Furthermore, al-
though wPerf identifies off-CPU bottlenecks, it lacks detailed
information about the application contexts related to these
bottlenecks. These limitations require programmers to at-
tempt optimizations for various bottlenecks to achieve actual
performance improvements and demand additional effort to
pinpoint the application code to be optimized (Section 2.2).

This paper introduces a new profiling technique called
blocked samples, which is designed to capture off-CPU events.
Drawing inspiration from the event-based sampling (e.g.,
Linux perf subsystem [17]), our approach employs sampling-
based profiling of off-CPU events. Similar to Linux perf, the
blocked samples technique periodically captures snapshots of
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events with designated information, such as the instruction
pointer (IP) and the call stack of each thread. However, unlike
Linux perf, which disables profiling while the target thread is
blocked, the blocked samples technique overcomes this limita-
tion by allowing sampling of off-CPU events while the target
thread is blocked. Leveraging the information provided by
blocked samples, we aim to devise profiling techniques that
consider both on-CPU and off-CPU events simultaneously,
identify bottlenecks and estimate their performance impact if
optimized.

To demonstrate our idea, we devise two profilers, bperf
and BCOZ. bperf is an easy-to-use sampling-based profiler,
following the interfaces of the familiar Linux perf tool. bperf
incorporates the blocked samples technique. By considering
the sampling results that include blocked samples, bperf ac-
curately calculates the overhead of each event. This enables
bperf to provide precise overhead information for both on-
CPU and off-CPU events. Additionally, bperf reports detailed
information about the sampled off-CPU events such as call
stacks, kernel stacks, and blocking types (e.g., I/O, synchro-
nization, scheduling, etc.), assisting users in gaining a deeper
understanding of overheads.

BCOZ is a causal profiler that leverages the concept of
virtual speedup [15] for off-CPU events obtained by blocked
samples. BCOZ provides estimated performance improve-
ment not only of a single off-CPU event but also of a function
involving multiple on-/off-CPU events. Additionally, BCOZ
supports a per-subclass virtual speedup technique, which esti-
mates the potential speedup if off-CPU events of a particular
type are optimized, such as using faster I/O devices or elimi-
nating CPU scheduling delays. This feature allows users to
consider various optimization alternatives, such as upgrading
I/O devices or assigning additional CPU cores.

Our evaluation results demonstrate that BCOZ successfully
identifies bottlenecks of real applications including both on-
and off-CPU events. Specifically, BCOZ identifies various
bottlenecks of the RocksDB key-value store [50] with read-
intensive and write-intensive workloads. We observe that with
various memory configurations and workload patterns, diverse
parts of the program exhibit distinct performance bottlenecks.
BCOZ precisely identifies such bottlenecks and provides an
estimated speedup of the optimization of each bottleneck. We
verify that the reported virtual speedup results are also aligned
with the actual speedup when various optimization techniques
are applied. These results prove the effectiveness of BCOZ
by profiling on- and off-CPU events simultaneously.

Our contributions are summarized as follows:
• We demonstrate the need for integrated profiling of both

on-CPU and off-CPU events to overcome the limitations of
conventional profilers (Section 2).

• We propose a new sampling technique called blocked sam-
ples, designed for capturing off-CPU events. By incorporat-
ing blocked samples with on-CPU samples, we enable the
identification of application bottlenecks related to both on-

Figure 1: Motivational example of mixed on-/off-CPU events.

and off-CPU events (Section 3.1).
• We introduce two profilers, bperf and BCOZ, that utilize

the blocked samples technique. These profilers provide
insights into the overhead of off-CPU events and uncover
potential performance improvement opportunities that were
previously unrecognized (Section 3.2 and 3.3).

• We present practical use cases of our profilers, bperf and
BCOZ. Through profiling, we identify off-CPU bottlenecks
in applications. Then, we validate the identified bottlenecks
through simple optimizations or comparison with previous
optimization studies (Section 4).

2 Background

2.1 Sampling-based Profiling
Sampling-based profiling (e.g., task-clock in Linux perf [17])
is a widely used and efficient method for profiling the ap-
plication execution with low overhead [17, 20, 33]. It peri-
odically captures (or samples) the execution information of
programs on the CPU such as the instruction pointer (IP)
and the callchain of each thread (or CPU). With the sam-
pling results, profilers can report statistical overhead [17, 33],
perform causal analysis [15], and visualize callchains of cap-
tured events [21]. However, identifying the exact bottleneck
in sampling-based profiling remains challenging due to the ab-
sence of off-CPU events, such as I/O waiting, synchronization,
and CPU scheduling.

We illustrate the limitations of profiling without off-CPU
events using a simple example program. Figure 1 presents
an example of an application involving both on-/off-CPU
events. In this example, two threads are executed concurrently
and are synchronized through a barrier that is implemented
using a mutex and condition variable. Thread 1 executes
compute_light, which is a small on-CPU computation (iter-
ative integer increment), one 4-KB disk write (pwrite), and
eight 512-byte disk reads (pread). The two types of off-CPU
events, hence disk write and reads, are the majority of the
execution of Thread 1. Thread 2 executes compute_heavy
only, which performs a large on-CPU computation. We adjust
the computation load of Thread 2 to make two distinct cases:
Case 1 where Thread 2 is on the critical path and Case 2
where Thread 1 is on the critical path, as shown in the right
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Figure 2: Sampling-based profiling result of Case 2.

part of the figure. In Case 1, the bottleneck is compute_heavy.
In Case 2, the bottlenecks are compute_light and the I/O
events, and their optimization leads to performance improve-
ment. However, in both cases, the optimization of one thread
does not improve the performance indefinitely due to the bar-
rier synchronization between the two threads; the critical path
changes from one to the other. Hence each optimization has
limited global impact on the performance [15, 58].
Limitation of On-CPU Analysis with Sampling. Consider
Case 2 where the actual bottleneck is the off-CPU events
(i.e., pread/pwrite), the on-CPU analysis only cannot iden-
tify the correct bottleneck. Figure 2 shows the profiling re-
sults of Case 2 with the Linux perf tool [17], a popular on-
CPU sampling-based profiler. In the figure, each line repre-
sents the overhead portion, command name, shared object
name, and event symbol; [.] and [k] indicate user-level and
kernel-level symbols, respectively. Due to the tool’s inabil-
ity to capture off-CPU events caused by the blocking I/O
events, it only reports the overhead of on-CPU events such
as compute_heavy, compute_light and Linux kernel in-
ternal events. The C library function related to pread (i.e.,
__libc_pread64) is captured, but it includes only the on-
CPU parts, indicating only 0.10% of the overhead. Conse-
quently, the user may examine the results shown in the figure,
identify the compute_heavy event as the significant over-
head among on-CPU events, and focus on optimizing it even
though the computation of Thread 2 is not on the critical path.
This limitation necessitates off-CPU analysis and causality
analysis to precisely identify the performance bottleneck.

2.2 Off-CPU Analysis

Basic Utilities. Basic utilities, such as top or iostat, can
provide information of the overall I/O usage. However, these
utilities are primitive and ineffective for detailed analysis of
I/O events and correlating those to application contexts, such
as IP and callchain.
Off-CPU Tools. Various off-CPU profiling tools [27, 35, 38,
39, 55, 58] exist to support profiling of off-CPU events. How-
ever, these profilers are limited in terms of (1) focusing on
a specific type of off-CPU events (e.g., syncperf [35]) or (2)
providing unsorted information (e.g., off-CPU time distribu-
tion [14], call-chains of off-CPU events [40]), which requires

(a) Case 1 in Figure 1. (b) Case 2 in Figure 1.

Figure 3: wait-for graph results of Figure 1. For Case 1, the
knot includes both I/O and synchronization (barrier), while
the knot in Case 2 includes only I/O.

a programmer’s additional efforts to identify important bot-
tlenecks and their impact on the program performance. For
example, off-CPU flamegraph [39] provides and visualizes
the overhead of off-CPU events and their callchains. However,
the tool does not provide the performance impact of each off-
CPU event; an off-CPU event with the largest overhead does
not necessarily mean its optimization results in performance
improvement to the same extent [15, 58].
wPerf. wPerf [58] is a state-of-the-art profiler that traces all
types of waiting events including off-CPU events and reports
their relationship in the form of a wait-for graph. Moreover,
wPerf identifies bottlenecks by analyzing the global impact of
waiting events on other threads. Hence, wPerf reports the per-
formance bottleneck by identifying waiting events for which
all the worker threads are waiting to progress; these waiting
events are called a knot. Each knot contains a bottleneck.

However, we observe two important limitations when iden-
tifying bottlenecks using wPerf. Let us explain the limitations
using the example program in Figure 1.
Profiling Result. Figure 3 shows the profiling result of Case 1
and Case 2 in Figure 1 using wPerf. In this figure, the vertices
labeled T1 and T2 correspond to Thread 1 and Thread 2,
respectively, and sda represents the disk, hence an I/O device.
sda← T1 indicates that Thread 1 is waiting for completion
of disk I/O requests (i.e., pread and pwrite), and sda 99K
T1 represents the I/O device is waiting for I/O requests from
Thread 1 (i.e., compute_light) [58]. Moreover, T1 99K T2
(Case 1), and T1 L99 T2 (Case 2) indicate the waiting period
caused by the synchronization (barrier). The numbers on
the edges are the global impact of each edge reported by the
wPerf which can be interpreted as waiting time.

Firstly, wPerf does not precisely identify bottlenecks and
their actual impact on the program performance. In Figure 3a,
the red box denotes the knot of Case 1. Hence, Thread 1/2
and sda are the bottlenecks. In addition, sda, hence the disk,
has the largest global impact; the edge has the weight of 54.37
which is an order of magnitude larger than the weight of the
other edges. Hence, the profiling result mislead to optimizing
I/O events associated with sda. However, as shown in Case
1 in Figure 1, optimizing pread or pwrite does not improve
the performance since the real bottleneck is Thread 2 (i.e.,
compute_heavy). Consequently, wPerf’s bottleneck identifi-
cation can be imprecise and can yield a waste of ineffective
optimization efforts.

Secondly, wPerf can identify bottlenecks approximately
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but detailed information or context can be missing, which
necessitates programmers’ additional efforts to figure out
bottleneck points in program codes. In Figure 3b, the knot in-
cludes T1 and sda. Both are in Thread 1, which are the correct
bottlenecks of Case 2 in Figure 1. However, Thread 1 runs
three different events, compute_light, pread and pwrite,
each of which is on the critical path. As shown in Figure 1,
the eight disk reads have the most significant impact on the
program performance in Case 2. However, the profiling re-
sult of wPerf demonstrates only sda has the biggest impact
and blurs the precise bottleneck identification among the two
off-CPU events. For instance, the programmer may try to op-
timize pwrite but may fail to improve the write performance
while the code compute_light has a latent performance im-
provement since the code is implemented inefficiently. Con-
sequently, wPerf’s analysis result is less informative and re-
quires additional efforts before targeting events to optimize.

2.3 Causal Profiling
Optimization of bottlenecks identified through conventional
profiling does not always guarantee performance improve-
ment [15, 58]. This is especially true for multi-threaded ap-
plications since events with significant overhead may not be
on the critical path (e.g., compute_heavy in Case 2 of Fig-
ure 1). Causal profiling [15] is a profiling methodology that
estimates the actual impact of optimization on the program
performance.
Virtual Speedup. Virtual speedup is a core technique for
performing the causality analysis. It offers an estimation of
potential performance improvement by virtually speeding
up a particular event (e.g., a program code line) [1, 15, 26,
45, 46]. The virtual speedup technique does not require the
actual optimization of a particular code line but can assess
the causality of the performance optimization. This can be
achieved by delaying concurrently running events (or threads).
Hence, if a particular event is sped up by a certain amount, it
can be simulated by delaying other concurrent events by that
amount but not the target event itself.

Figure 4 illustrates an example of the virtual speedup tech-
nique by showing the timeline of a two-threaded application.
Figure 4a shows the original timeline and Figure 4b shows the
actual speedup case when the execution time of function B is
optimized from 3 to 2, and as a result the total execution time
is reduced by 1. Figure 4c shows the virtual speedup case.
The virtual speedup technique speeds up a particular function
(B in this case) virtually by delaying co-running threads on
every invocation of the target function. This has an effect
of which the target function is sped up since other than the
function is delayed by the same amount. Hence, in this exam-
ple, whenever B is called, the other thread is injected a delay
of the amount to speed up. The virtual speedup technique
measures the speedup by identifying the difference between
the actual runtime, 16 in this case, and the expected execution

(a) Original application (b) Actual speedup

(c) Virtual speedup

Figure 4: Illustration of virtual speedup when speeding up B.
X(n) means function X runs for n time units.

time if function B is not sped up. The expected execution time
without speedup is 17, which is obtained by that whenever
B is invoked, all the threads are delayed by 1. Hence, the
application’s virtual speedup is 1 (17 minus 16).

COZ. COZ [15] is an implementation of the causal profiler
employing the virtual speedup method. It reports to a user
with information about the application’s bottlenecks and pro-
vides an estimation of performance improvement for each
optimization point. To apply the virtual speedup technique,
COZ employs sampling-based profiling using the Linux perf
subsystem. Periodically, COZ reads sampling results, IPs and
callchains of each thread. Then, when the target code line to
speed up is being executed, COZ applies the virtual speedup
technique by delaying the execution of other threads, hence
forcing sleep of co-running threads.

COZ carefully handles dependencies between threads and
injects delays between threads with dependency in order to
avoid incorrect estimation of virtual speedup. For example,
if thread A is woken up by thread B, any injected delays to
thread B while thread A is sleeping are considered the in-
jected delays to thread A as well. This is because thread A
is woken up after thread B has consumed its injected delays.
In other words, if thread A is delayed by the same amount
of injected delay after its wakeup, thread A experiences dou-
ble delays from one source of delay injection. Accordingly,
COZ manages dependencies arising from thread synchroniza-
tion primitives (e.g., mutex, condition variable), and exempts
delays during thread wakeups.

COZ employs two optimization methods to enhance its
profiling performance. First, COZ processes multiple sam-
ples in batches. Second, it tries to skip consuming delays
whenever all the threads need to consume the same amount
of delay. This helps reduce the profiling time since otherwise,
all the injected delays may increase the application’s runtime
significantly.

Profiling Result. While causal profiling is effective and infor-
mative in specifying bottlenecks and providing the estimated
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(a) Case 1

(b) Case 2

Figure 5: Virtual speedup result of Figure 1.

outcome of bottleneck optimization, it lacks the capability
of considering off-CPU events for profiling, often leading to
incorrect profiling results. Figure 5 shows the profiling result
of the example program in Figure 1 using COZ. In this figure,
the x-axis represents the reduction in the execution time of a
particular line, while the y-axis indicates the predicted overall
runtime reduction of the program if that specific line speeds
up by x%. For instance, a 0% program speedup indicates no
performance improvement, whereas a 75% program speedup
implies the runtime is reduced by 75%.

In Case 1, the actual bottleneck is compute_heavy but
COZ fails to identify its potential performance improvement
if it is optimized. Actually, COZ identifies marginal virtual
speedup of all the four events in Case 1 as shown in Figure 5a.
A similar phenomenon happens in Case 2 of the same example
program as shown in Figure 5b. These results stem from the
fact that COZ does not consider off-CPU events.

The causal profiling is an essential technique considering
the ever-increasing complexity of applications on modern
computer systems. However, the inability to profile off-CPU
events is a critical limitation of existing causal profiling. The
CPU performance improvement has stopped due to the end of
Moore’s law and Dennard scaling, and domain-specific accel-
erators, such as GPUs, FPGAs, and Smart SSDs, are gaining
significant attention [25]. These heterogeneous computing
environments make the behavior of applications more compli-
cated with various off-CPU events for offloading computation
to such accelerators. In addition, various low-latency I/O de-
vices, such as CXL memory expander [16], RDMA-capable
several-hundred gigabit network interface cards [49], flash-
based or persistent memory-based solid-state drives [41, 59],
are making application behavior increasingly complex. Tradi-
tional I/O-boundness or CPU-boundness is no longer a proper

Figure 6: Blocked samples and conventional samples.

application classifier. The mixture of both I/O- and CPU-
bound applications require sophisticated performance profil-
ing methodology. Among these, profiling on-CPU and off-
CPU events together is especially important for optimizing
application performance.

3 Design and Implementation

In this section, we present our methodology to profile on-
CPU and off-CPU events simultaneously. Our methodology
begins with proposing a new method of sampling off-CPU
events, called blocked samples (Section 3.1). Then, we present
two profilers for accommodating blocked samples: bperf, an
easy-to-use sampling-based profiler (Section 3.2) and BCOZ,
a causal profiler that profiles both on- and off-CPU events
simultaneously and estimates potential speedup of optimiza-
tions (Section 3.3).

3.1 Blocked Samples
Blocked samples captures information of blocking events
of threads, such as waiting for I/O completion, waiting for
synchronization (e.g., mutex, condition variable), waiting for
CPU scheduling, etc. The conventional on-CPU event sam-
pling is thread-oriented (e.g., task-clock of the Linux perf sub-
system [17]). When a thread executes its instructions on the
CPU, the event-based sampling periodically collects a sample,
hence snapshot, of thread context (e.g., IP and callchain) as
shown in Figure 6. When a thread is blocked, the sampling is
paused until the thread is woken up and resumes its execution.
Different from the conventional on-CPU sampling, blocked
samples augments the missing samples while threads are
blocked, providing the execution context of blocking periods
(shaded boxes in Figure 6).

Each blocked sample contains four attributes for tracking an
off-CPU event: IP, callchain, weight, and type. The IP is the
address of the last instruction before a thread is blocked. This
is actually the return address of invoking a CPU scheduler
(e.g., schedule or io_schedule in Linux). The callchain is
the call stack of functions from the main function of a thread
to the current instruction before being blocked.

The length of a blocking event can be varied (e.g., a few
microseconds for CPU time-sharing or hundreds of millisec-
onds for disk I/O). Hence, one blocking event can contain
multiple blocked samples of the same properties (i.e., identi-
cal IP, callchain, etc.). We encode the number of repeats to the
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weight field, saving space and time when handling blocked
samples.

The type field is used to categorize blocked samples into
the following subclasses:
• I/O: The I/O subclass corresponds to an off-CPU event that

occurs when a thread requests and waits for an I/O event.
Specifically, when a current thread submits a synchronous
I/ O request and is blocked by invoking a CPU scheduler
(e.g., a task_struct with in_iowait set in Linux), this
blocking event is categorized as the I/O subclass.

• Synchronization: The synchronization subclass refers to
an off-CPU event where a thread is waiting for a lock
or condition variable. To identify synchronization sub-
classes, we slightly modified a process control block (e.g.,
task_struct in Linux) to include a field (in_lockwait)
that identifies lock waiting. The field is set/cleared when
a thread sleeps/wakes using the kernel-supported synchro-
nization primitives (e.g., futex of Linux).

• Scheduling: The scheduling subclass refers to the off-CPU
event that occurs when a thread is runnable but not sched-
uled on a CPU.

• Others: This subclass refers to off-CPU events that does
not correspond to the above subclasses. Typically, off-CPU
events related to sleeping (e.g., usleep) are in this category.

Implementation. Blocked samples are collected by extend-
ing the task-clock event in the Linux kernel’s perf subsystem.
The original sampling using task-clock collects samples by
using a periodic timer (e.g., high-resolution timer). While a
task is running on the CPU, the timer allows periodic sam-
ple collection. Meanwhile, when a task is off-CPU, hence
blocked, the timer is paused until the task resumes execution.

Blocked samples augment the original task-clock-based
sampling by including the blocking state of a thread. As
the blocking state of a thread remains unchanged until the
thread resumes its execution, our scheme captures the block-
ing state at the moment a thread resumes, rather than relying
on the periodic timer. This is achieved by incorporating three
task scheduling-related operations: schedule-out, wake-up and
schedule-in functions.

First, when a thread is scheduled out, our scheme records
the subclass of the thread’s blocking, along with a timestamp
marking the start of the off-CPU interval. Then, when the
thread is woken up, our scheme records a timestamp to mark
the end of the off-CPU interval. When the thread is eventu-
ally scheduled in, we record a timestamp and calculate the
blocking interval (Tblocked) and the waiting interval for CPU
scheduling (Tsched) as shown in Figure 6. For threads that are
runnable but remain in the runqueue due to CPU contention,
the off-CPU interval has no wake-up timestamp and hence be-
longs to the scheduling subclass of blocked samples. Finally,
in the schedule-in function, if the blocking interval overlaps
with one or more sampling points in time, a new sample is cre-
ated. This sample contains the IP, callchain, weight and type
attributes. For example in Figure 6, the two off-CPU events,

Figure 7: bperf sampling results of Case 1 in Figure 1.

Tblocked and Tsched contain two sampling points. Hence, two
blocked samples, one for blocking and the other for schedul-
ing, are collected. If an off-CPU interval does not overlap
with any sampling points, no blocked samples are collected.
This approach minimizes the overhead of the collection of
blocked samples, even with frequent off-CPU events, as the
three hook points only perform timestamping.

A single blocking event can encompass multiple sampling
points. This means that the blocking event can generate mul-
tiple blocked samples. However, since these samples share
identical attributes, our scheme avoids replicating them. In-
stead, it encodes the repetition using the weight field of a
blocked sample. This approach reduces both the space and
time overhead associated with handling blocked samples.

3.2 bperf

bperf is an online profiling tool that profiles applications
using sampling-based profiling and provides statistics of sam-
pling results. bperf is an extension of the Linux perf tool [17]
to support blocked samples. Similar to perf, bperf can be an
online or offline tool as its sampling-based profiling can be
attached and detached at any time while a program is run-
ning and its profiling overhead is generally low (1.6%), as
demonstrated in Section 4.4.

Basically, treating blocked samples has no significant differ-
ence from handling conventional on-CPU samples. Samples
are classified using their IP and callchain. Using the infor-
mation, their statistics are reported such as overhead portion,
function symbol, and the object file as shown in Figure 7.

We extend the Linux perf tool to (1) interpret the weight
field of blocked samples and (2) annotate a subclass to blocked
samples. Firstly, when bperf processes blocked samples, the
weight field denotes the number of repetitions of the same
event. Therefore, this repetition is taken into account when
calculating the statistics. Secondly, bperf examines the sub-
class of blocked samples and annotates their subclass type
in the reported result. Currently, bperf uses the following
annotations, I for the I/O subclass, L for synchronization, S
for scheduling and B for the rest. This information enables
the user to identify and analyze the performance impact of
blocked samples distinguished by each subclass.
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Figure 7 shows the profling result of the example program
in Figure 1 using bperf. As compared to the results of the
original perf sampling (Figure 2), bperf provides on-CPU
and off-CPU events together, thereby allowing developers
to understand the overhead of various events more precisely.
In Thread 1, pread incurs the largest overhead, followed by
pwrite, and pthread_cond_wait ranks third. In Thread 2,
compute_heavy dominates the thread’s execution time.

The advantages of using bperf are two-fold. First, bperf
can allow in-depth analysis of blocking events and their in-
teractions inside the operating system kernel. For example,
fsync is a complex operation that accompanies many types
of disk writes. Without bperf, only a tiny amount of user-
level and kernel-level codes are collected as on-CPU sam-
ples. With bperf, various off-CPU samples are collected to
allow in-depth understanding of the fsync operation, such as
write-back of data blocks, waking up and waiting for jbd2
file system journaling thread, write-back of journal blocks
and commit blocks. Consequently, bperf allows profiling of
the interaction between kernel services (e.g., fsync call) and
accompanying off-CPU events (e.g., data-block writes, syn-
chronization with jbd2) with the detailed information of their
callchains.

Second, the profiling results using bperf can provide the
following performance optimization guidelines.
• When profiling results show a substantial overhead at-

tributed to I/O subclasses, this suggests that the application
spends a significant portion of time waiting for I/O opera-
tions, such as synchronous I/O. To enhance performance un-
der these conditions, upgrading to faster I/O devices could
be considered. Alternatively, adopting asynchronous I/O
interfaces could help minimize the blocking time associated
with I/O operations [43, 58].

• When profiling results attribute a large overhead of schedul-
ing subclasses, the result indicates the application threads
are spending a large fraction of time in CPU runqueues
waiting for scheduling. An optimization guideline can be
(1) adjusting the number of threads [58], (2) allocating
more CPU resources to an application [47, 58], (3) pinning
threads to cores to avoid the performance noise caused by
CPU load balancers [36, 37], etc.

• When the overhead of the synchronization subclass is no-
table, performance improvement can be attained by optimiz-
ing the events executed within the critical section through
application analysis [35].

3.3 BCOZ

This section introduces BCOZ, a causal profiler designed to
identify performance bottlenecks. BCOZ is an offline tool
that is designed to help programmers identify performance
bottlenecks and improve the performance of their programs.
At its core, BCOZ profiles on- and off-CPU events collected
by blocked samples and estimates performance improvement

through virtual speedup. BCOZ precisely identifies interac-
tions between on- and off-CPU events with symbol-level
information obtained from blocked samples. This section
explores the challenges of accurately estimating the virtual
speedup of off-CPU events and discusses various features that
are useful for analyzing applications with off-CPU events to
optimize performance.
Sampling Kernel Codes. Off-CPU events are tightly coupled
with the operation of the operating system kernel codes. Such
events occur through the use of operating system services,
such as blocking system calls, synchronization primitives, and
multi-tasking. In particular, applications with a high number
of blocked samples tend to include frequent interactions with
kernel [8,9]. Hence, not only the period during which a thread
is blocked but also the kernel operations for such kernel ser-
vices are important for analyzing and estimating the speedup
of their optimization. Accordingly, it is necessary to capture
samples for kernel operations and support virtual speedup on
those. The original COZ captures only user-space samples
for its virtual speedup. However, BCOZ captures samples
from not only user space but also kernel space to identify
the target of virtual speedup. The target of virtual speedup is
basically selected as a part of user-space code. Then, every
sample includes their callchain. If the sample includes the
instruction pointer of the kernel space, the callchain contains
both user-space and kernel-space ones because bperf collects
both of them. BCOZ considers them as a unified callchain
and identifies the target of virtual speedup by traversing the
callchain from the kernel space to the user space.
Virtual Speedup of Blocked Samples. Estimating the vir-
tual speedup of blocked samples is the core of the causality
analysis of off-CPU events. BCOZ needs special care when
processing blocked samples in order to produce correct vir-
tual speedup estimation. Recall that blocked samples are cap-
tured when a thread is scheduled in. Such blocked samples
are queued to the perf subsystem and are reported to BCOZ.
BCOZ handles blocked samples in batches similar to what
COZ does. Processing blocked samples indicates that if a
blocked sample is the target of virtual speedup, a proper delay
is injected to other co-running threads as in COZ [15]. A
blocked sample contains a callchain from the kernel space
to the user space. Hence, if the user-space callstack contains
target code lines to speed up, the blocked sample becomes the
target of virtual speedup. For example, if pread is the target
of virtual speedup, not only on-CPU samples such as library
codes or kernel I/O stack but also off-CPU samples for disk
I/Os issued by these code lines are the target of the virtual
speedup. This is because such on-/off-CPU samples have a
callchain whose user-space part contains pread.

Additionally, special care is required in handling depen-
dencies during the virtual speedup of blocked samples. As
blocked samples are processed after a blocking event, hence
an I/O event, is finished, the processing of blocked samples
can incorrectly inject delays to threads which have depen-
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Figure 8: Illustration of virtual speedup when the target in-
cludes the off-CPU event while another thread waits for the
completion of the target.

dency on the blocking event. For instance, as illustrated in
Figure 8, thread A indirectly wait on I/O issued by thread
B, and hence after thread B finishes its synchronous I/O, it
wakes up thread A. The problem happens if the synchronous
I/O becomes the target of speedup. When the blocked sam-
ples associated with the I/O are processed sometime after
the wake-up operation, the delay injected to thread A, which
is for the virtual speedup of the I/O event, makes thread A
experience unnecessary delay. In other words, if thread A is
injected with the delay, the situation is like the I/O is not sped
up. This is because if the I/O event is sped up, the execution of
threads waiting for the I/O event directly or indirectly should
be boosted as the I/O waiting time is reduced. With the virtual
speedup technique, such threads should not be delayed.

To this end, BCOZ processes blocked samples for vir-
tual speedup before conducting the thread wakeup opera-
tions in synchronization primitives (e.g., mutex_unlock and
cond_signal). In the example, the blocked samples of the
I/O event are processed before waking up thread A. By do-
ing so, once blocked samples contain the target for virtual
speedup, the delays for the virtual speedup are not injected to
thread A as thread A is not running. Therefore, the delays are
exempted in thread A.
Subclass-Level Virtual Speedup. Optimizing off-CPU
events sometimes requires different types of optimization at-
tempts compared to optimizing code. For instance, enhancing
the execution environment can often achieve greater perfor-
mance gains than optimizing the application’s code, such as
upgrading from HDDs to flash-based SSDs in database appli-
cations [51]. Conversely, some applications may exhibit no or
marginal performance improvement even when faster hard-
ware devices are employed [23,30,32] due to application-side
bottleneck. Similarly, the scheduling subclass off-CPU events
have no particular code lines to attempt to optimize. These
off-CPU events are challenging to optimize and may require
prior knowledge of the optimization effects.

BCOZ provides a subclass virtual speedup technique de-
signed to predict the performance gains from optimizing a
specific type of off-CPU events. Hence, the target for virtual
speedup is not selected from the application code but from the
class of off-CPU events. Applying virtual speedup at subclass

(a) BCOZ results of Case 1 in Figure 1

(b) BCOZ results of Case 2 in Figure 1

Figure 9: Profiling results of Figure 1 using BCOZ.

granularity is straightforward. During the sample processing,
instead of checking whether the sample’s callchain includes
the target code, it checks whether the type field of blocked
samples (Section 3.1) matches the target subclass.

Please note that the synchronization subclass does not
support this subclass-level virtual speedup. From an actual
optimization perspective, it is not possible to speed up the
lock waiting period itself. Instead, the optimization focuses
on speeding up the operations in the critical section. Hence
speeding up the lock waiting period is invalid but speeding
up the critical section is valid. In other words, the virtual
speedup of critical sections can be done when the critical
section is selected as the target of speedup. Therefore, we
exclude the synchronization subclass from the subclass-level
virtual speedup technique.
Selecting Virtual Speedup Targets. BCOZ supports both
automated virtual speedup target selection and explicit target
designation, similar to COZ. The automated target selection
conducts virtual speedup for multiple targets in a single run by
monitoring frequently sampled code lines during execution
and dynamically changing the targets [15]. Where BCOZ
differs from COZ is that conducting virtual speedup is not
limited to on-CPU events executed by the target code line, but
also includes virtual speedup for off-CPU events of the target.
Additionally, BCOZ can designate an off-CPU subclass rather
than a code line as a target for subclass-level virtual speedup.
If a particular off-CPU subclass dominates in the sampling
result, users can designate such subclass as a virtual speedup
target to assess whether optimizing for that off-CPU event
can yield performance improvements.
Profiling Results using BCOZ. Figure 9 provides a sum-
mary of the virtual speedup results of the example program
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depicted in Figure 1. This result illustrates that the actual
performance improvements can be achieved by optimizing
compute_heavy in Case 1 and I/O operations (especially
pread) in Case 2. Furthermore, the virtual speedup results
indicate the actual performance gains are bounded by the
point at which the critical path moves. Consequently, by fil-
tering out the false bottlenecks, we can prevent unnecessary
optimization efforts for users.

4 Evaluation

In this section, we illustrate the experience of application
profiling with bperf and BCOZ. The goal of our evaluation is
to answer the following questions: (1) Do bperf and BCOZ
identify bottlenecks precisely? (2) Does the estimated virtual
speedup align with the actual speedup? (3) As compared to
other state-of-the-art profilers (i.e., COZ and wPerf), are bperf
and BCOZ more useful?

4.1 Experimental Setup
All experiments were conducted on a machine equipped
with two Intel Xeon Gold 5218 CPUs (2.30 GHz, 16 phys-
ical cores), 375 GB DDR4 DRAM, and a flash-based SSD
(PM983), which can deliver performance of up to 540 K I/O
operations per second (IOPS). We modified the perf subsys-
tem of the Linux kernel 5.3.7 to support blocked samples,
which requires to modification of 295 lines of code. Further-
more, bperf was developed based on the perf tool of the Linux
kernel. Finally, BCOZ is implemented based on the existing
COZ code [13].

The application codes are complied to include frame point-
ers to correctly trace callchain. Hence, we disabled frame
pointer omitting using -fno-omit-frame-pointer option.
This is necessary for BCOZ (and COZ [15]).

We present virtual speedup results obtained through either
the automated target selection mode or the subclass-level
virtual speedup method, as explained in Section 3.3. In the
automated target selection mode, the profiler produces virtual
speedup graphs for frequently executed lines of code, from
which we select the top-N results that demonstrate a positive
speedup value. In the subclass-level virtual speedup method, a
dominant off-CPU event is manually selected for conducting
the virtual speedup profiling.

We measured performance using throughput, defined as the
number of processed queries per second, where any perfor-
mance enhancement reflects as an improvement in throughput.
This is based on the assumption that reducing query process-
ing time will naturally lead to increased query throughput,
especially in environments where clients continuously submit
queries, as in RocksDB. However, as the program speedup
in the virtual speedup graphs indicates the percentage of the
reduction in execution time, a simple conversion is necessary
to translate it to the throughput improvement. A program

(a) Causality analysis using BCOZ

(b) Optimization results

Figure 10: Results of (a) causality analysis, and (b) actual
optimization in Prefix Dist.

speedup of y% means that the time it takes to process the
same number of queries is now reduced to (100− y)% of the
original, indicating that the throughput has increased by 100

100−y
times. For instance, 75% program speedup is translated as 4x
throughput improvement.

4.2 Case Study: RocksDB
In this section, we provide our experience of profiling
RocksDB, a widely used log-structured merge (LSM) tree-
based key-value store. By profiling RocksDB in various sys-
tem configurations, we aim to identify off-CPU event bot-
tlenecks that were previously difficult to pinpoint. We also
validate these bottlenecks by attempting actual optimizations
or comparing them with findings from previous studies on
RocksDB optimization.
Optimization 1: Block Cache Contention. As a first op-
timization, we identify and address the bottleneck of block
cache operations in a read-intensive workload. Figure 10
shows the profiling results for read-only execution of Prefix
Dist [10], an open-sourced real-world workload by Facebook.
In this experiment, the key-value size is 91 bytes (48 bytes
key and 43 bytes value), the block cache size is 10 GB, the
workload runs eight worker threads, and the dataset is set to 1-
billion key-value pairs. The workload performs using a single
shard to reproduce the well-known lock contention problem
of RocksDB’s LRU-based block cache [6].

Figure 10a illustrates the virtual speedup results us-
ing by BCOZ (solid line) and COZ (dotted line). In
the results, two operations, GetDataBlockFromCache and
ReadBlockContents are identified as bottlenecks. The
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Figure 11: The wait-for graph and identified knots using wPerf

worker threads of RocksDB handles get operations by (1)
looking up desired blocks (e.g., filter, index and data block)
from the block cache (GetDataBlockFromCache) and (2) is-
suing block I/O requests to underlying disks upon a cache
miss from the block cache (ReadBlockContents). The cache
lookup operation is the real bottleneck since all the workers
are contending on the lock of the block cache. As shown in
Figure 10a, BCOZ shows up to 60% speedup when the cache
lookup operation is optimized and up to 20% speedup when
the block read I/O operation is optimized. Although the two
operations accompany off-CPU events, COZ does not show
any virtual speedup result for the two operations because it
cannot take off-CPU events into account for profiling.

In order to verify the virtual speedup results, we conducted
optimization of the two operations. First, we replaced the
flash-based SSD with a faster one [44] which delivers perfor-
mance of up to 1,500 K IOPS; this optimization is denoted
as SSD+. We expect the speedup of ReadBlockContents.
Figure 10b, however, shows no performance gain with SSD+
since the lock contention is the major bottleneck. Our second
optimization is to apply sharding. The block cache is parti-
tioned to multiple shards, which is denoted as Shard-N where
N is the number of shards. As shown in the figure, Shard-N
shows improved performance. The more shards there exist,
the less lock contention occurs thereby showing more im-
proved throughput. This tendency is shown in the virtual
speedup analysis of BCOZ in Figure 10a.

To compare profiling capability of wPerf, we use wPerf
to analyze the application again. Figure 11 shows the profil-
ing results of wPerf, the initial knot (left) and the knot after
trimming edges with a small global impact [58] (right). After
trimming the low-weight edges (right), the wait-for graph
identifies only the I/O (HARDIRQ) as the bottleneck. This pro-
filing result requires a programmer’s additional efforts to
identify which user-level functions incur such bottlenecks. In
addition, improving the I/O performance (SSD+) does not
lead to actual performance improvement, which may increase
the user’s burden of profiling. The wait-for graph before trim-
ming (left) is too complex but provides two bottleneck points:
(1) worker --> HARDIRQ edge indicates the I/O waiting of
worker threads and (2) worker <--> worker edge indicates
lock waiting between worker threads. Therefore, the strategy
that the user can try is to optimize the I/O event of the worker
thread or to solve the lock contention. However, wPerf does

(a) Causality results

(b) Optimization result (c) Knots in wait-for graph

Figure 12: Results of (a) causality analysis, (b) actual opti-
mization, and (c) wPerf in all random.

not provide the potential speedup when the bottlenecks are
optimized. One lucky programmer may attempt to optimize
the lock contention and success to improve the performance.
Meanwhile, one unlucky programmer may attempt to opti-
mize the block read I/O operations and may not be able to
improve the performance. Therefore, the missing causality
analysis of wPerf can increase the burdens of users.

Optimization 2: Block Read Operation. After resolving
the block cache contention by sharding, we profiled RocksDB
again with the all random workload in order to identify and op-
timize off-CPU events. The configurations of the workload re-
main unchanged, except that the block cache size is reduced to
128 MB to incur a large amount of off-CPU events, hence disk
read I/Os. Figure 12 shows the profiling result of the work-
load using BCOZ and wPerf. The profiling results of BCOZ
demonstrate the three bottleneck points, IndexBlockIter,
GetFilterPartitionBlock, DataBlockIter, which han-
dle index blocks, filter blocks and data blocks, respectively.
All the operations are off-CPU-intensive operations. In addi-
tion, the I/O subclass-level virtual speedup is applied and de-
picted as I/O subclass. As shown in the figure, each of the
three operations shows from 15% to 40% of speedup and their
aggregated speedup is more than 70% (I/O subclass). Among
the three operations, GetFilterPartitionBlock shows the
largest expected speedup. An LSM tree has multiple lev-
els and a key-value entry can exist in any of the levels. In
each level, a key-existence test is done using a bloom filter.
Therefore, GetFilterPartitionBlock performs the key ex-
istence testing using the filter blocks that need to be fetched
from the disk. Since a single get operation traverses multiple
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(a) Knots in the wait-for graph of wPerf. (b) Compaction thread. (c) Worker thread.

Figure 13: Results of (a) wPerf, (b) compaction thread, and (c) worker thread in fillrandom.

levels of the LSM tree, optimizing the filter read I/O operation
is expected to show the largest performance gain.

Our optimization strategy is to apply asynchronous I/O to
fetch filter blocks of the next levels of the LSM tree. Hence,
for a get operation, our optimization performs a read of the
filter blocks speculatively through the LSM tree. Hence, while
the first level is processing the key existence test, the filter
blocks of successive levels are speculatively fetched thereby
reducing the read I/O waiting time. Our experimental results
show that our optimization results in 77.3% of performance
gain as shown in Figure 12b.

We compared the profiling result of BCOZ with wPerf. The
wait-for graph of wPerf is shown in Figure 12c. As shown in
the figure, the knot is HARDIRQ, which denotes the disk. How-
ever, wPerf provides no more information on the bottleneck.
Hence, the user’s additional effort is necessary to specify
the bottleneck. In addition, the lack of the causality analysis
causes users to hesitate about which of the I/O operations to
speed up. However, BCOZ provides the causality analysis to
off-CPU events and illustrates that the filter I/O operations
have the largest potential speedup. This analysis is followed
by successful optimization of the filter I/O operations by par-
allelizing filter I/O operations by using asynchronous I/O.
Optimization 3: Write-intensive Workload. Our next opti-
mization attempt is the write-intensive workload, fillrandom
against RocksDB. For this experiment, we utilized a key-value
size of 1 KB, with 16 worker threads concurrently writing
a total of 10 million records. Figure 13 shows the profiling
result using BCOZ and wPerf. First, wPerf identifies two po-
tential bottlenecks: the COMPACTION thread and the HARDIRQ
I/O thread. The initial wait-for graph was too complex and we
applied the merging similar threads technique [58] to obtain
the wait-for graph of the figure. From the wait-for graph, we
can identify two bottlenecks: (1) the compaction operation of
the LSM tree and (2) the write I/O operations of the worker
threads (W*, the merged worker threads). Since the worker
threads perform write-ahead-logging (WAL), WAL write I/Os
can be the bottleneck. For the compaction, wPerf does not
specify among the operations of compaction the significant
overhead. In addition, wPerf reports that HARDIRQ shows a
bigger global impact than COMPACTION.

Meanwhile, BCOZ provides more informative analysis

Figure 14: Results of actual optimizations in fillrandom.

results. First, BCOZ identifies the compression operation
(CompressBlock), which is on-CPU, as the significant bot-
tleneck as shown in Figure 13b. Although BCOZ can es-
timate the potential speedup of I/O operations (pread and
pwrite), their speedup is expected to be marginal. Second,
BCOZ expects marginal speedup for the WAL operations as
shown in Figure 13c. Third, BCOZ analyzes that the con-
tention between the worker threads (JoinBatchGroup) is the
bottleneck and its optimization can potentially improve the
performance. Finally, BCOZ identifies the write throttling
(DelayWrite) of the RocksDB’s memtable write policy as
the bottleneck.

The actual optimizations of the identified bottlenecks are
performed as follows. First, the WAL operation is optimized
by (1) using a RamDisk as the WAL storage and (2) disabling
WAL (no-WAL). Second, the compaction operation is opti-
mized by (1) disabling compression (Compress+) and (2) al-
locating many compaction threads (Comp+). Figure 14 shows
the performance of the RocksDB fillrandom workload when
the optimizations are applied. Third, the writeback stall is re-
lieved by increasing the number of maximum memtables from
2 to 16 (Stall). As shown in the figure, WAL-related optimiza-
tions show marginal performance gain. This result indicates
that BCOZ estimates the potential speedup correctly. In ad-
dition, Compress+ and Comp+ show improved performance,
which is also predicted by BCOZ. Also, Stall shows the
largest performance gain, which is estimated by BCOZ in Fig-
ure 13c. In the meantime, wPerf only identifies COMPACTION
and HARDIRQ as the potential bottleneck points. HARDIRQ has
shown marginal performance since worker threads are re-
ported to wait for the I/O thread but accelerating WAL opera-
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(a) Line-level virtual speedup (b) Subclass-level virtual speedup (c) Virtual speedup vs. actual speedup

Figure 15: Virtual speedup results of NPB-is under the CPU contention.

tions show no performance gain. From these results, BCOZ
is effective in specifying performance bottlenecks.

Profiling Accuracy. Although BCOZ is proven to effec-
tively identify performance bottlenecks, predicting the po-
tential speedup accurately is sometimes difficult and intri-
cate. For example, BCOZ predicts that optimizing the block
cache lock contention can lead to 50% of program speedup
(or doubling the throughput) as shown in Figure 10a. How-
ever, after relieving the block cache contention by applying
sharding, the performance has been improved by four times,
which is more than two times higher than the expected im-
provement. This is because sharding not only relieves the
lock contention of cache lookup (GetDataBlockFromCache)
but also reduces the contention of other operations (e.g.,
PutDataBlockToCache). Furthermore, certain optimizations
may speed up a target code line but increase the amount of
other events. For example, BCOZ predicts that optimizing
CompressBlock will result in a 32% program speedup (or
1.47x throughput improvement) in Figure 13b, but the actual
throughput improvement is 1.26x. This is because, by dis-
abling compression, CompressBlock is no longer invoked,
but this optimization has the side effect of increasing the total
amount of disk I/Os.

Therefore, virtual speedup results can under- or over-
estimate actual speedup. However, the strength of BCOZ (and
COZ) lies in their ability to precisely identify specific lines
that could potentially lead to actual speedup when optimized.
Our evaluation results have shown that optimizing these pre-
dicted lines can indeed lead to actual speed improvements.

Takeaway. During the profiling of RocksDB, we have iden-
tified bottlenecks that align with those mentioned in existing
RocksDB optimization studies. Firstly, we examined the over-
head and virtual speedup results of the compaction, which
involved a mix of off-CPU events (I/O subclass) and on-
CPU events. The potential for performance improvement
through compaction optimization, as indicated in numerous
studies [2,12,28,42,48], was validated using bperf and BCOZ.
The significance of the proposed profiling techniques has be-
come evident as the existing Linux perf tool or COZ could not
easily or accurately predict the bottlenecks in the absence of
blocked samples. Furthermore, the necessity to optimize oper-

ations related write stalls and batched group writing was also
identified by BCOZ. These operations have been also identi-
fied as bottlenecks in previous studies [11,18,24,29,34,52,56].
Finally, we have examined the bottleneck caused by I/O sub-
class off-CPU events during the execution of RocksDB and
validated the performance improvement.

4.3 Case Study: NAS Parallel Benchmark
In this section, we evaluate the effectiveness of the scheduling
subclass and subclass-level virtual speedup. For this experi-
ment, we use a compute-intensive workload, is (integer sort)
from the NAS parallel benchmark [5].

As discussed in Section 3.3, virtual speedup of application
code lines can be ineffective if application threads are con-
tending on the CPU cores. To demonstrate this situation, we
intentionally controlled the number of CPU cores assigned to
the NPB-is workload. The workload is configured to run 32
threads and the number of cores is varied from 1 to 32 cores.
Figure 15a illustrates the profiling result of the main compu-
tation code lines using COZ and BCOZ when the number of
cores is limited to one. As shown in the figure, COZ has esti-
mated marginal performance improvement. On the contrary,
BCOZ has predicted potential performance improvement if
these code lines are optimized. Under high CPU contention
(32 threads vs. 1 core), off-CPU events are frequent as the
threads are frequently scheduled out due to the high CPU con-
tention. In this case, BCOZ is able to estimates the optimiza-
tion opportunity that when such scheduling subclass off-CPU
events are removed, the performance can be improved.

Figure 15b presents the profiling results for the schedul-
ing subclass-level virtual speedup as the number of cores
increases from 1 to 32. With the highest CPU contention
(using only one core), the estimated program speedup is at
its peak. As the number of cores increases, thereby reducing
CPU contention, the estimated program speedup decreases.
Since the number of assigned CPU cores is fewer than the
program’s 32 threads, these profiling results seems valid.

To validate the virtual speedup profiling results, we mea-
sure the program performance with varying the number of
cores. This approach reflects the optimization strategy of allo-
cating additional CPU cores to mitigate CPU contention. Fig-
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(a) Performance overhead

(b) CPU cycle overhead
Figure 16: Overhead analysis results of bperf.

ure 15c shows both the virtual and actual program speedups
as the number of cores changes from X to 32 (X->32), transi-
tioning from high CPU contention to no CPU contention. As
shown in the figure, the actual speedup generally corresponds
with the speedup predicted by BCOZ. These results confirms
that it is important to correctly profile off-CPU events in
highly parallel workload, and BCOZ leverages blocked sam-
ples to provide valuable profiling results to users.

4.4 Profiling Overhead

bperf. We compare the overhead of bperf with existing pro-
filing techniques, (1) tracing which profiles only off-CPU
events (sched_switch and sched_wakeup) using Linux
perf’s tracing mode [17, 38, 58], and (2) sampling which sam-
ples only on-CPU events using Linux perf’s sampling mode
(task_clock) [17]. All these tools have the same goal of
profiling statistical overheads of target programs, but their
profiling coverage are different: tracing focuses on off-CPU
events, sampling focuses on on-CPU events, and bperf covers
both on- and off-CPU events. For the sampling methods, the
sampling period is set to 1 ms, which is identical in all the
experiments in the evaluation section.

Figure 16 shows the overhead of the three profilers with
the workloads used in the experiments as well as additional
workloads, NPB-ep [5] and hackbench [22] to cover on-CPU-
intensive and off-CPU-intensive cases, respectively. Among
the workloads, RocksDB-X indicates the RocksDB workload
used in Optimization-X in Section 4.2. We measured two
types of overhead. First, the performance overhead refers
to the performance drop of profiled applications (runtime
increase for hackbench and throughput decrease for the rest of

Figure 17: Overhead breakdown results of BCOZ.

applications) as compared to the baseline, which runs without
any profilers (Figure 16a). Second, the extra CPU overhead
refers to the additional CPU cycles consumed by using the
profilers as compared to the baseline (Figure 16b). The values
shown in the figures are the average of 10 runs.

Overall, the three profilers show acceptable performance
drops, no more than 4% on average. Tracing, sampling and
bperf have shown the average performance drop by 3.6%,
0.9% and 1.6%, respectively. Specifically, tracing shows no-
table performance drops with the workloads showing frequent
off-CPU events (i.e., RocksDB-1, 2 and hackbench). Tracing
records profiling information (i.e., IP and callchain) on every
thread state transitions, leading to high overhead when off-
CPU events are frequent. In contrast, bperf hooks into all the
state transitions like tracing but only records timestamps for
each transition. Profiling information is recorded only if an
off-CPU interval overlaps with sampling points, resulting in
low profiling overhead.

As compared to sampling, bperf enables profiling of off-
CPU events at a low cost. bperf shows the additional perfor-
mance overhead by only 0.7% (1.6% for bperf – 0.9% for
perf) and extra CPU cycles by 1.4% (3.7% for bperf – 2.3%
for perf). Considering that the profiling capability of bperf is
greater than perf, we believe these overheads are acceptable.

As the mechanism of bperf inherits from perf, it can be
attached and detached at any time while the profiling target
application is running. As the overhead of bperf is low, we
believe it can be an online tool for collecting statistical over-
heads of applications in production.
BCOZ. Figure 17 illustrates the overhead of profiling appli-
cations with BCOZ. The BCOZ overhead is categorized into
three parts: startup, sampling, and delays. Startup represents
the overhead of collecting debug information, which is the
duration between BCOZ’s bootstrapping and the application’s
main function (i.e., libc_start_main()), on average 1.4%.
Sampling encompasses the overhead incurred when there’s
no virtual speedup delay (i.e., 0% line speedup) consisting of
the bperf’s sampling overhead and BCOZ’s intervention to
read samples and verify whether they include speedup targets,
on average 12.6%. Finally, delays entail additional overhead
when BCOZ is fully enabled, averaging 13.6%. The delays
overhead does not refer to the amount of delays injected for
virtual speedup, but the increase in the end-to-end execution
time of the application.

The overhead of BCOZ is not light considering its end-to-
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end overhead of 27.6% on average and up to 64.7%. However,
such profilers show similar performance overheads. For exam-
ple, COZ has demonstrated its overhead of 17.5% on average
and up to 65% [15]. As these profilers insert additional delays
while the application is running, the end-to-end execution
time can be increased. These overheads can be reduced when
the inserted delays are limited, cooling-off times are inserted
between virtual speedup experiments, etc [15]. Such remedies
can be effective in reducing the profiling overhead, but it re-
mains uncertain whether the results provided are sufficient to
identify bottlenecks and their potential for performance gain.

5 Related Work
On-CPU Event Profilers. Conventional profilers [17, 19–
21, 33] that rely on existing on-CPU events (such as CPU
usage and execution time) face challenges when identify-
ing bottlenecks in modern applications. This is primarily
because the event with the longest execution time in a multi-
threaded application does not necessarily represent the criti-
cal performance path, and they do not account for off-CPU
events. In the context of multi-threaded applications, there
are causal profiling studies aimed at analyzing the impact
of optimizing each individual event on overall application
performance [1, 4, 7, 15, 45, 53, 54]. COZ [15], for instance,
provides performance improvement predictions by applying
virtual speedup to each event using the sampling results from
the Linux perf subsystem. However, COZ’s virtual speedup is
limited to on-CPU events sampled by the Linux perf subsys-
tem. It is not capable of estimating virtual speedup of events
that include off-CPU events.
Off-CPU Event Profilers. Existing studies have focused on
analyzing off-CPU event bottlenecks [27,35,38,39,55,57,58].
Some studies analyze application bottlenecks by measuring
the duration of off-CPU events [27,39,55]. However, in multi-
threaded applications, the longest event may not always repre-
sent the critical path of the application [15, 58]. Furthermore,
nested off-CPU events can have varying performance impact
on event duration and overall application performance [58].
Therefore, analyzing performance using the duration of off-
CPU events leads to incorrect conclusions.

Other studies identify application bottlenecks by specifi-
cally targeting off-CPU events related to synchronization [35,
57]. However, as mentioned earlier, the off-CPU bottlenecks
in modern applications are diverse and encompass various
aspects, including device I/O. Therefore, relying on profil-
ing specific off-CPU events has limitation of supporting the
various applications.

wPerf [58] is a state-of-the-art study focused on analyz-
ing off-CPU bottlenecks in applications, wait-for graphs are
constructed to identify off-CPU events that act as bottlenecks.
However, as discussed in Section 2.2, wPerf has several lim-
itations. wPerf does not precisely pinpoint the performance
bottleneck of applications. Also, wPerf lacks the capability of

causality analysis, so it could not analyze the actual impact
on application performance when optimizing a performance
bottleneck. Finally, wPerf identifies bottlenecks but misses
detailed information, requiring additional efforts from devel-
opers to understand the exact performance bottleneck.

6 Conclusion
Existing profilers face limitations when it comes to identify-
ing modern application bottlenecks that involve a mix of on-
and off-CPU events. These profilers treat on- and off-CPU
events as separate dimensions, making it difficult to perform
comprehensive profiling and interpret the results. Moreover,
even if the bottleneck of an application is identified, it remains
uncertain whether optimizing the bottleneck will result in ac-
tual performance improvements. To address this problem,
this paper introduces a sampling technique called blocked
samples, which enables the identification of application bot-
tlenecks by integrating on- and off-CPU events within the
same dimension. We present bperf, a Linux perf tool that
utilizes the proposed blocked samples technique to identify
application bottlenecks based on event execution time, and
BCOZ, a causal profiler that offers a virtual speedup for off-
CPU events. By profiling the RocksDB application using
these two profilers, we are able to uncover previously uniden-
tified bottlenecks related to I/O and synchronization tasks.
Furthermore, by virtually speeding up these tasks, we identify
optimization possibilities that were overlooked in existing
RocksDB optimization studies.

We plan to extend blocked samples to include richer infor-
mation for profiling. The current blocked samples consider
the operations inside an I/O device as a black box. However,
I/O devices may have their internal operations, which can be
the hint of performance optimization opportunities for appli-
cations. For example, disk-internal events, such as garbage
collection, and valid page copying, are important events for
storage applications to establish their optimization strategies.
In this regard, we plan to augment blocked samples with I/O
device-internal operations thereby allowing applications to
employ expanded optimization strategies.
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A Artifact Appendix

A.1 Abstract
Blocked samples is a profiling technique based on sampling,
that encompasses both on- and off-CPU events simultaneously.
Based on blocked samples, we present two profilers: bperf, an
easy to-use sampling-based profiler and BCOZ, a causal pro-
filer that profiles both on- and off-CPU events simultaneously
and estimates potential speedup of optimizations.

A.2 Scope
Our artifact can be used to identify bottlenecks across various
applications and pinpoint code lines in need of optimization.
Particularly, our approach is an efficient profiling technique
for applications where both on- and off-CPU events are mixed.

A.3 Contents
Our artifact consists of three subdirectories:
blocked_samples (source code of Linux kernel with
bperf), bcoz (source code of BCOZ), and osdi24_ae
(OSDI’24 artifacts evaluation). Descriptions of each
subdirectory are as follows.
blocked_samples. This directory includes an extended
Linux perf subsystem for blocked samples. Blocked sam-
ples is a profiling technique based on sampling, that encom-
passes both on- and off-CPU events simultaneously. Further-

more, the original Linux perf tool is replaced with our bperf
(blocked_samples/tools/perf).
bcoz. This directory includes source code of BCOZ. BCOZ is
a causal profiler that leverages the concept of virtual speedup
for both on-CPU and off-CPU events using blocked samples.
At its core, BCOZ profiles on-/off-CPU events (i.e., blocked
samples) collected by our extended Linux perf subsystem and
estimates performance improvement through virtual speedup.
BCOZ is extended from COZ [15], a causal profiler for only
on-CPU events.
osdi24_ae. This directory is for the OSDI ’24 artifacts evalua-
tion. It includes instructions for reproducing the experimental
results in the paper.

The instructions in the Getting Started with Blocked Sam-
ples section of README.md in the root directory help verify
whether blocked samples functions correctly.

A.4 Hosting
The GitHub repository for the artifacts is available on
https://github.com/s3yonsei/blocked_samples.

A.5 Requirements
The Linux kernel version for blocked samples is 5.3.7 and we
have verified that blocked samples operates correctly on the
Ubuntu 20.04 LTS server. We will soon release the support
for blocked samples on the latest Linux kernel version in the
repository.
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