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Abstract
In this paper, we make a case for providing job completion
time estimates to GPU cluster users, similar to providing the
delivery date of a package or arrival time of a booked ride.
Our analysis reveals that providing predictability can come
at the expense of performance and fairness. Existing GPU
schedulers optimize for extreme points in the trade-off space,
making them either extremely unpredictable or impractical.

To address this challenge, we present PCS, a new schedul-
ing framework that aims to provide predictability while bal-
ancing other traditional objectives. The key idea behind PCS
is to use Weighted-Fair-Queueing (WFQ) and find a suit-
able configuration of different WFQ parameters (e.g., queue
weights) that meets specific goals for predictability. It uses a
simulation-aided search strategy to efficiently discover WFQ
configurations that lie around the Pareto front of the trade-off
space between these objectives. We implement and evalu-
ate PCS in the context of scheduling ML training workloads
on GPUs. Our evaluation, on a small-scale GPU testbed and
larger-scale simulations, shows that PCS can provide accurate
completion time estimates while marginally compromising
on performance and fairness.

1 Introduction

Humans desire predictability in their daily lives [66]: from
knowing how long their home-to-office commute will be to
the arrival time of an Amazon package [80] or an Uber ride [7].
Fortunately, most real world systems (e.g., transportation, e-
commerce, etc) meet this need by providing their users with a
(reliable) prediction (e.g., estimated delivery date). As more
and more of our lives move to the cloud (e.g., Metaverse [39,
73]), it begs the question of whether the cloud can offer similar
predictability. More concretely, when a user submits a “job”
(e.g., train a Machine Learning (ML) model) to the cloud, can
the cloud provide a reliable job completion time prediction?

Such feedback can ensure a seamless experience and ease
user frustration; perhaps more emphatically than simply mak-
ing the cloud faster or fairer, according to studies in human

psychology [22, 43] and systems usage [50]. It can also em-
power users to decide between different cloud platforms and
services within a cloud based on the provided estimate, or
be integrated with emerging inter-cloud brokers (e.g., SkyPi-
lot [97]). In light of this, we advocate for the need to provide
reliable job completion time predictions as a core primitive
in today’s cloud, akin to real world systems we interact with.

Several aspects of the user-cloud ecosystem can impact
the (lack of) predictability of a job’s completion time (e.g.,
failures [49], shared vs. dedicated resources [50], knowledge
of individual job sizes [27, 58], workload characteristics etc.).
The focus of this paper is on understanding the unpredictabil-
ity stemming from the scheduling mechanism used by the
cloud (sub)systems (e.g., FIFO vs. Fair Sharing vs. other poli-
cies). We situate our work in the context of ML workloads run-
ning on multi-tenant GPU clusters (e.g., PAI [89], Philly [49],
etc). This is an important scenario as scheduling delays matter
and can be highly variable due to the ever growing demand
for GPUs by emerging AI applications such as those pow-
ered by Large Language Models (LLMs) [4], while other
sources of unpredictability are minimal (e.g., workloads are
predictable [49, 54, 62, 76]). It is also a challenging scenario
because unlike the public cloud setting where users pay for
dedicated (and hence predictable) GPU resources, these clus-
ters are best-effort and heavily rely on intelligent scheduling
mechanisms to determine how the underlying GPU resources
are to be shared between ML applications or tenants (cluster
users).

Our key observation is that a scheduling policy’s use of
unbounded preemption results in its inability to provide reli-
able Job Completion Time Predictions (JCTpred). Preemption
is a key enabler for existing GPU scheduling proposals that
optimize for metrics like minimizing average and/or tail job
completion times (JCT) (e.g., Tiresias) [37, 76], fairness and
resource efficiency (e.g., Themis) [14,44,62,79,93,105], and
meeting deadlines (e.g., Chronus) [30, 36, 59]. While crucial
for achieving their respective objectives, the extensive use of
preemption leads to unpredictability (i.e., prediction error) in
a job’s completion time due to (repeated) preemptions from
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future jobs. On the other hand, non-preemptive scheduling
policies, such as First-In-First-Out (FIFO), are predictable
(as future arrivals do not impact current jobs) but can result
in extremely poor performance and a lack of fairness due to
Head-Of-Line (HOL) blocking [26, 28, 37, 70].

This observation highlights an inherent trade-off between
offering predictability and optimizing for other metrics, such
as minimizing JCTs. Existing scheduling solutions typically
occupy extreme points on this trade-off spectrum. They are ei-
ther highly unpredictable due to the use of unbounded preemp-
tion or impractical because they do not employ preemption at
all.

In light of these limitations, an important question arises:
Are there intermediate points on this trade-off spectrum that
can provide a balance between predictability and practicality?
Specifically, can these intermediate solutions be achieved by
controlling the extent of preemption used? Furthermore, the
cluster operator may desire to operate at potentially any one
of these intermediate trade-offs depending on their relative
preferences. The trade-off space can be vast, and some points
may be inherently less desirable than others. In such scenarios,
how can we enable operators to express their preferences and
efficiently explore the trade-off space?

To address these questions, we propose a novel scheduling
framework called Predictability-Centric Scheduling (PCS)
that aims to provide reliable JCTpred (predictability) while
balancing other practical goals (flexibility) such as perfor-
mance and fairness. PCS exposes a high level bi-directional
preference interface which allows cloud operators to express
the objectives they are interested in (e.g., avg JCTs vs. avg
prediction error). To facilitate cloud operators in making an
informed choice based on their relative preferences, PCS
provides a set of Pareto-optimal trade-offs. Each Pareto-
optimal trade-off improves one objective (e.g., predictabil-
ity) while marginally sacrificing on other objectives (e.g.,
performance and/or fairness). This is unlike other tunable
schedulers [52, 64, 71] which typically return a single solu-
tion.

At its core, PCS leverages Weighted-Fair-Queuing (WFQ)
as a basic building block [23]. Our use of WFQ is motivated
by the fact that it uses bounded preemption and offers di-
rect control over the extent of preemption used. WFQ maps
incoming jobs to a fixed number of queues, uses FIFO to
schedule jobs within a queue and assigns a guaranteed re-
source share (weights) to each queue. These properties bound
the preemptions and reordering experienced by jobs. Further-
more, the number of queues and their assigned weights are
tunable parameters of the WFQ policy. This allows direct con-
trol over i) predictability (e.g., by creating limited number of
queues), ii) performance (e.g., by assigning a higher weight to
queues with smaller jobs), and iii) fairness (e.g., by assigning
equal weights), motivating its flexibility and ability to achieve
Pareto-optimal trade-offs.

Finding Pareto-optimal WFQ configurations is challeng-

ing because the space of possible configurations is large,
with some trade-offs not feasible (e.g., optimal performance
and maximum predictability) or beneficial (e.g., more unpre-
dictable and unfairer than existing schemes). To address this
challenge, PCS uses a highly-parallel simulation-based search
strategy with an intelligent parameterization of WFQ using
heuristics, to efficiently find suitable and feasible (Pareto-
optimal) WFQ configurations. For example, we use the vari-
ation in job-sizes to determine the number of queues and
thresholds as opposed to trying out arbitrary combinations.
We show that Pareto-optimal trade-offs can be discovered for
realistic workloads in a timely manner (§5.4).

A key benefit of PCS is that it is a generic scheduling
framework, which can accommodate various types of jobs
(e.g., network flows, DNN training jobs), allowing it to be
realized in various multi-tenant scheduling scenarios. It only
requires knowledge of a job’s demand function, which can
either be provided by the user or reliably estimated by the sys-
tem [13, 50, 62]. This requirement is typically satisfiable for
ML workloads and we later discuss the broader applicability
of PCS to other scheduling scenarios in §6. PCS uses these
demand functions to generate a completion time prediction as
well as balance considerations for performance and fairness
(e.g., when dealing with sub-linear scaling jobs) to be com-
petitive with efficiency based schedulers (e.g., AFS [44]), as
we show in §5.

We implement and evaluate PCS for realistic ML training
workloads on a small-scale GPU cluster as well as large scale
simulations. Our evaluation shows that PCS can successfully
discover Pareto-optimal WFQ configurations to meet varying
trade-offs. For example, PCS can reduce the prediction error
by 50-800% while being within 1.1-3.5×of performance and
fairness optimal schemes (§5).

Overall, we make the following contributions:

• We show that state-of-the-art GPU scheduling policies
which optimize for performance and fairness [37, 44, 62]
result in unpredictability. Our analysis shows that these
policies typically lie on extreme points of predictability-
performance or predictability-fairness trade-offs (§2).

• We design PCS, a generic job scheduler, which uses WFQ
in a unique and novel way to achieve predictability and
flexibility (§3.1).

• We provide a simple but expressive bi-directional interface
to be used by cloud operators, enabling them to specify
different high level objectives and giving them the ability to
choose between trade-offs — a property existing scheduling
systems fail to provide (§3.2).

• We implement a prototype of PCS in Ray [67] and evaluate
it on a testbed and in simulations for realistic ML training
workloads (§4 §5).
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PCS is a step in providing predictability in today’s cloud
systems. It opens up important questions which we dis-
cuss in §6. Finally, we build upon and benefit from a
large body of prior work in scheduling systems, which we
discuss in §7. The code for PCS is made available at
https://github.com/TuftsNATLab/PCS.

2 A Case for Predictable Scheduling

In this section we motivate the need for predictable schedul-
ing to be a core primitive in today’s cloud, and show how it is
different from deadline-based scheduling. We provide several
use-cases of predictable scheduling in the context of multi-
tenant GPU clusters and draw analogies between real-world
systems and the cloud. While this discussion has broader
applicability in various scenarios (e.g., CPU scheduling, net-
work bandwidth scheduling), we situate it in the context of
multi-tenant GPU clusters and discuss the opportunities and
challenges in supporting predictable scheduling in that con-
text.

2.1 Why provide JCT predictions (JCTpred)?
A scheduling system that provides JCTpred can have two
broad benefits: (1) Alleviating User frustration. Several stud-
ies on real-world systems (e.g., online retail [78], airlines [11])
show that providing a timeline to users can help ease frustra-
tion in the face of long and variable waiting times [43,45,99].
JCTpred can offer a similar role in the context of multi-tenant
GPU clusters where users can suffer from large and unpre-
dictable delays, inevitably leading to a poor and frustrating
experience [22, 42]. Measurements on Microsoft’s GPU clus-
ter (Philly) show that ML training jobs can face up to 100
hours of queuing and preemption related delays [49], hinting
that organizational GPU clusters are heavily oversubscribed.
Research shows that users are often trying to guess when their
training jobs will complete and that user-driven predictions
can be off by more than 100%, with some users finding it
impossible to make any meaningful predictions [30]. With
the paradigm of AutoML, jobs that spawn hundreds of DNN
trials [57, 62], and LLMs (e.g., GPT4 [4]) becoming main-
stream, these issues will only exacerbate [9]. Additionally,
predictability expectations are higher for users submitting
repetitive jobs [50] and according to one study, 60% of train-
ing jobs exhibit DNN architecture similarity [54], emphasiz-
ing the need to provide JCTpred in such scenarios.

(2) Enabling decision making. In real-world systems, if the
predicted timeline is long, customers may elect to perform
other tasks or seek alternatives [63]. For example, estimated
delivery dates can help shoppers decide between e-commerce
platforms (e.g., Amazon [2] vs Temu [6]) and even between
sellers within a platform. Today’s cloud users have similar
choices to make and JCTpred can enable them to make these
choices in a more informed way. For example, it can help

users decide between different cloud systems to run their
ML workloads on, each option potentially offering a different
cost-JCTpred trade-off. As a forward looking avenue, JCT-
pred can facilitate the growing eco-system around inter-cloud
brokers which orchestrate seamless access to multiple clouds
with low user effort (e.g., SkyPilot [19, 46, 84, 97]). Within a
cloud, JCTpred can facilitate users in selecting between dif-
ferent model variants/pipelines to train, based on the expected
accuracy-JCTpred trade-off [12, 20, 95, 101].

Why are Deadlines not the answer? One may wonder how
the predictability metric is different from deadlines (and the
large body of work on deadline-based scheduling for GPUs
and beyond [16, 17, 30, 56]) where a user provides a deadline
along with their job and the system tries to satisfy it. The
fundamental difference is that in the deadline-based context,
the burden lies on the user to provide a timeline to the system,
with the system deciding the user’s fate. We posit that it should
instead be the system that provides the user with a timeline
(i.e., a JCTpred), empowering them to decide whether it is
acceptable or not. Our approach is analogous to real-world
systems like ride-sharing where most users request a ride,
wanting it ASAP (i.e., no deadline) while the system comes
up with the expected arrival time of the ride.

Even if we try to shoehorn predictability into deadlines, it
will be challenging for two reasons. First, coming up with a
reasonable deadline is hard because the slowdown of a job
is highly dependent on: i) cluster load (which can be highly
variable and bursty at short timescales) and ii) underlying
job-to-resource mapping which is (dynamically) determined
at run time [50] and can result in significant variation due to
heterogeneity in the underlying resources (e.g., low vs. high
end GPUs [14,71,89], RDMA vs. TCP [31,77], etc.,). Second,
unless there is an inherent difference in user requirements (and
hence deadlines), users have the incentive to specify a small
deadline (i.e., to act greedy), which limits any prioritization
the system can enable. In both the above cases, the lack of
reasonable deadlines will render the system ineffective.

Feasibility of providing JCTpred. Computing JCTpred
requires the knowledge of a job’s size and its demand
function (i.e., how its execution time will change based
on the allocated GPUs). Fortunately, several attributes
of ML workloads allow us to (approximately) estimate
these. (1) Intra-job predictability. DNN training and infer-
ence jobs [37, 49, 62] exhibit intra-job predictability; the time
it takes to run an inference job [38] or train a DNN for a
specified number of epochs is fairly deterministic [62]. By
profiling [44, 71, 74, 79] or modelling [31, 62, 76, 96, 105]
the job’s throughput and combining it with the provided job
information (e.g., total number of epochs, convergence crite-
ria, budget), its size and demand function can be estimated.
(2) Recurring jobs. ML workloads are known to contain re-
curring jobs [24, 54, 90]. This can make history [75] and
sampling [47] based strategies highly effective in estimating
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job sizes.

2.2 Limitations of Existing Schedulers
Reliably predicting the completion time of a user’s job re-
quires the underlying scheduling system to be predictable [30].
In this section, we highlight and analyze why existing sched-
ulers used by GPU clusters today are either not amenable to
reliable completion time predictions or are not practical.

Unbounded Preemption: the Price of Fairness and Per-
formance. Performance and fairness-oriented schedulers fre-
quently utilize unbounded preemption to prioritize and dis-
tribute resources among jobs. Preemption collectively refers
to when some or all of the resources assigned to a job are
reallocated or when its position in the queue is altered because
of another (future) job. Although preemption is essential for
achieving the goals of these schedulers, it can lead to unpre-
dictability in a job’s completion time [50]. Under preemptive
scheduling policies, the arrival of future jobs can affect the
completion times of current jobs by preempting the resources
(e.g., GPUs) they are using.

Preemption manifests in today’s cloud systems in the fol-
lowing ways: (1) Prioritization. When a higher priority job
arrives and needs to be scheduled, running jobs are paused
or waiting jobs are pushed further back in the queue. Sev-
eral schedulers use prioritization to minimize JCTs and meet
deadlines [8, 17, 30, 37, 56, 59, 76]. (2) Elastic Sharing. Jobs
may need to be multiplexed together to achieve fairness and
efficiency [14, 32, 44, 62, 93]. As new jobs arrive, the GPU
share of existing jobs is reduced, stretching their completion
times [50] or the scheduler takes away GPUs from existing
less-efficient jobs and assigns them to new jobs that can utilize
them more efficiently [13, 44].

Takeaway: Unbounded preemption results in unpre-
dictability, making it challenging to provide a reliable JCT-
pred. A scheduler which utilizes bounded preemption will be
more predictable.

Fixed Trade-offs. The other option is to use non-preemptive
schedulers such as First-In-First-Out (FIFO) [86] and reserva-
tion based schemes [49] which are highly predictable as they
guarantee resource allocation throughout the lifetime of a job
— future job arrivals do not impact current jobs in the system.
However, such schemes suffer from well known performance
issues such as Head-Of-Line (HOL) blocking in the case of
FIFO [26, 28, 37, 44, 70] and poor utilization for reservation
based schemes [49, 89, 94]. There is no clear way to tune
these schedulers that lie on extreme ends, to offer different
trade-offs between predictability and other objectives. This
is an issue because different cluster operators may want to
settle for different (intermediate) trade-offs rather than switch
between these two extremes.

Takeaway: Existing schedulers offer a fixed trade-off: pre-
dictable but high/unfair JCTs (non-preemptive) or low/fair but

unreliable JCTs (unbounded preemptive). A scheduler which
offers different trade-offs between these competing objectives
is more practical.

Motivating Example. We use a simple toy example (Fig. 1a)
with four jobs (J1-J4) to demonstrate these limitations. We
analyze the performance of three schedulers — FIFO, Tire-
sias, and Themis — on reducing JCTs, unfairness, and unpre-
dictability. FIFO is the default scheduler used in YARN [86].
Tiresias [37] prioritizes DNN training jobs with smaller re-
maining service times, while Themis [62] strives to mini-
mize peak unfairness.1 Tiresias and Themis are representative
of a large space of policies which either use size based or
fair scheduling, respectively. Unpredictability is captured as
Prederr =

JCTtrue−JCTpred
JCTpred

%, while unfairness is captured as the
additional time it takes for a job to complete compared to its
Fair Finish-Time (FFT) [15,62] in percentage terms. JCTpred
is computed at the time of a job’s submission and is defined
as the time it takes for a submitted job to complete given
a scheduling policy and the current cluster state (i.e., GPU
allocations to existing jobs). We provide a practical way to
compute it for all scheduling policies in §4.

As new jobs arrive (moving left to right in Fig. 1a), both
Tiresias and Themis result in a change in completion times
of previous jobs. For instance, in Tiresias (top row), when J2
and J4 arrive in the system (second and fourth column), there
is an eight time unit increase in J1’s predicted JCT each time.
While Tiresias achieves the minimum average JCT, it results
in the highest average prediction error — 46% Prederr in our
example. Similarly, in Themis (middle row), the scheduler’s
multiplexing of J1 and J2 causes J1’s predicted completion
time to increase by eight time units (second column). While
Themis ensures all jobs finish before their FFT (unfairness of
0) and also avoids HOL blocking, it has an avg Prederr of 24%.
The FIFO scheduler (bottom row) achieves a prediction error
of 0 as it is non-preemptive, but is the most unfair strategy
and has the highest average JCT. Figure 1b summarizes these
outcomes.

We now discuss PCS, a generic resource scheduler that at-
tempts to offer predictability while being flexible in balancing
performance and fairness related objectives.

3 Predictability-Centric Scheduling (PCS)

Requirements. Our analysis in the previous section reveals
that a scheduling policy with no preemption (i.e., FIFO) re-
sults in maximum predictability. However, this comes at a
high cost in terms of performance (i.e., JCTs) and fairness,
which makes it an impractical option. On the other extreme,
there are scheduling policies that have unbounded preemption
(e.g., Fair-Share, Shortest Job First, etc.). In these policies, an
influx of future arrivals can arbitrarily stretch the completion

1We use a lease duration of 1 time unit for Themis and assume job size
information is known for all schedulers

490    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Time 0 J1 Size: 10 Time 0 J2 Size: 8 Time 1 J3 Size: 1 Time 10 J4 Size: 8

   
   

   
 T

ire
sia

s J1 10 J2 8 J1 18
+8

J3 2 J1 19
+1

J2 9
+1

J4 18 J1 27
+8

J2 9 J3 2

   
   

   
 T

he
m

is J1 10 J2 15 J1 18
+8

J3 3 J1 19
+1

J2 16
+1

J4 27 J1 19 J2 16 J3 3

0 9 18 27

   
   

   
 F

IF
O J1 10

0 9 18 27

J2 18 J1 10

0 9 18 27

J3 19 J1 10 J2 18

0 9 18 27

J4 27 J1 10 J2 18 J3 19

(a) Impact of future arrivals on scheduling
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Figure 1: Toy example with 1 GPU, demonstrating the limitation of existing strategies. (a) shows how the scheduling order changes as jobs
arrive over time under the Tiresias [37], Themis [62], and FIFO [86] schedulers. Time moves from left to right with a new job arriving in
each column. The expected finish times for the current jobs are displayed above the current schedule. Jobs that are finished are grayed out. (b)
summarizes the results for performance, fairness, and predictability for these policies.

time of an existing job, making them unsuitable for providing
predictability.

This insight distills into the following two requirements
that a scheduling policy must satisfy in order to provide pre-
dictability while being practical:

R1 Predictability Requirement: a scheduling policy must
have bounded preemption. This is essential in order to
provide reliable JCT predictions.

R2 Flexibility Requirement: it should be able to approxi-
mate maximum predictability, optimal performance, and
maximum fairness. Most importantly, it should be able
to achieve Pareto-optimal trade-offs between these. This
is essential for practicality.

PCS Overview. Our solution to this end is PCS, a generic
scheduling framework (Fig.2), which captures these require-
ments using a high level preference interface (§3.2), and
meets them by using the well-known Weighted-Fair-Queuing
(WFQ) [23] policy in a novel way. The inherent properties of
WFQ, careful selection of various WFQ parameters (number
of queues, weights, etc) along with how each job is mapped
to a queue and processed within it, allow us to meet our ob-
jectives (§3.1). Specifically, WFQ creates a fixed number of
queues, assigns each of them a guaranteed share of the re-
source capacity (weights) and schedules jobs within a queue
in FIFO order – this allows WFQ to satisfy our predictability
requirement (R1). Similarly, the number of queues, weights,
and how jobs are mapped to each queue are tunable, allowing
it to offer the desired flexibility (R2).

A key component of PCS that enables the above func-
tionality is the preference solver (§3.3), which translates the
specified high level objectives into a set of Pareto-optimal
WFQ configurations using a simulation-based search strategy.

Preference 
selection

<Avg Prederror,
 Avg JCT>

Policy

JCTpred

Operator

User

Sim 1

Resources

Preference
Interface

Preference
 Solver

Sim 1Sim 1Sim N

Job, Demand 
Function 

4

1

23

Figure 2: Key components of PCS: The preference framework can
be used by operators to specify high level objectives. The preference
solver uses a simulation-based search strategy to find Pareto-optimal
WFQ configurations that are then shared with the operator. On the
critical path, users submit their jobs along with the job’s demand
function and are given a JCTpred.

The simulation based search strategy is not on the critical path
of a submitted job; it operates at coarser timescales, aligned
with changes in workloads. Since ML workloads are fairly
stable, expending the time to search for Pareto-optimal WFQ
configurations is feasible. While the space of possible con-
figurations is large, we use an intelligent parameterization of
WFQ (e.g., coefficient of variation of job sizes within a queue)
to navigate it in a feasible manner. Once a particular WFQ
configuration is selected, it can be used to schedule submitted
jobs as they arrive.

An important benefit of PCS is that it is a generic schedul-
ing policy – it operates on the notion of a job which could be a
network flow or a DNN training job etc. To deal with the vary-
ing needs of these different scenarios, in PCS, a job is defined
using a demand function. The demand function is a mapping
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between the job’s execution time and the resources allocated
to it i.e., demand(n) 7→ Texec and has a minimum (demandmin)
and maximum (demandmax) resource allocation bound, denot-
ing the execution time under the lowest and highest possible
allocation. For ML workloads, in particular DNN training,
the demand function is sophisticated, as different models can
have different speedups based on the GPU type and affinity
and is estimated on the users behalf, as discussed in §4. For
scenarios like network (co)flow scheduling [18, 26, 28], the
demand function is simpler, as we discuss in §6.

Finally, the user submits their job, optionally including
its demand function. PCS then computes and returns the
predicted completion time (JCTpred).

We now explain in detail, our choice of using WFQ as
a building block (§3.1), followed by preference solver and
interface.

3.1 WFQ under PCS

We begin by motivating why WFQ is a useful starting point
and then share PCS’s careful usage of WFQ in meeting our
objectives. Our observation is that a lack of preemption, as in
FIFO, and a non-zero guaranteed resource share for jobs is
crucial for predictability. WFQ uses FIFO scheduling within
each queue and across queues the resources are shared ac-
cording to, strictly positive, queue weights, helping us satisfy
the predictability requirement. To highlight the flexibility of
WFQ, we show how it can be configured to optimize for ex-
treme points in the trade-off space of maximum predictability,
performance and fairness.

• Maximum Predictability: WFQ with a single queue is
exactly FIFO scheduling which achieves a prediction error
of 0

• Near-optimal Performance: Shortest Job First (SJF) is
near-optimal in minimizing avg JCT for a single bottle-
neck [83]. WFQ can map each job to its own queue and
give a higher weight to queues with smaller jobs, approxi-
mating SJF as shown by prior work [18, 88].

• Max-Min Fairness: If each job is mapped to its own queue
and each queue gets an equal weight, WFQ can emulate
Max-Min fair allocation which minimizes unfairness for a
single bottleneck [33].

As our analysis in §2 reveals, a combination of these objec-
tives is more practical. WFQ offers the necessary baseline
flexibility in the queue creation, job mapping and weight
assignment strategy. This motivates that we can achieve a
combination of these objectives as well, which leads to PCS’s
preference interface §3.2.

Beyond vanilla WFQ. Our core idea is the novel use of WFQ
to meet our objectives. First, PCS intelligently chooses the
number of queues, weights and the job-to-queue mapping

strategy to find various Pareto-optimal configurations, includ-
ing extreme points, such as FIFO, SJF and Max-Min Fair
Share. In PCS, jobs are mapped to different queues based on
their size and a set of thresholds (t ′i s), while strictly positive
weights (wi’s) dictate the guaranteed resource share for each
queue. For example, jobs with size > tk and ≤ tk+1 will be
mapped to the kth queue.

Second, within a queue, PCS deviates slightly from a strict
FIFO schedule in favor of improving performance and fair-
ness. In PCS, a job’s demand function is used to cap the
resources allocated to it. For example, a job at the head of
its queue may not be assigned all of the guaranteed resource
share of its queue (as in strict FIFO); instead, some of the
resources may be allocated to the jobs behind it. This allows
PCS to handle jobs that exhibits diminishing speedup w.r.t.
increase in allocated resources, such as ML training jobs (§4).

Finally, to ensure work-conservation, any residual alloca-
tion is then redistributed first within a queue in FIFO order
by incrementally relaxing the cap on each job’s demand func-
tion and then across queues proportional to their weights. We
expose the weights, thresholds and the demand capping cri-
teria to the preference solver which searches over the space
of possible choices of these parameters in order to discover
Pareto-optimal configurations (§3.3).

Prederr in PCS. Since PCS is work-conserving, a job may get
a higher resource share compared to its guaranteed share. For
example, if a job arrives when no other job is present, it will
be allocated all the available resources (up to demandmax).
This can lead to prediction errors (Prederr) if in the future,
other jobs arrive and occupy different queues.

In PCS, we bound these errors in a few ways. Firstly, a job’s
worst-case completion time is strictly bounded, irrespective of
the number of future arrivals in other queues or its own queue.
This is possible because each queue is assigned a strictly
positive weight and uses FIFO scheduling (both properties
of WFQ). By bounding the worst-case completion time of a
job, the number of preemption events a job will experience
during its lifetime is bounded, resulting in bounded Prederr.
Second, we exploit the fact that cloud systems are typically
highly loaded [37], and by limiting the queues created we can
reduce the likelihood of sudden and drastic changes in queue
occupancy due to future arrivals. Furthermore, the exact load
of a queue is controlled by the thresholds and weight assign-
ment strategy. These observations guide us in discovering
Pareto-optimal WFQ configurations.

3.2 Preference Interface

PCS exposes a simple yet expressive bi-directional interface
that allows operators to specify high level objectives and
present Pareto-optimal trade-offs (WFQ configurations) to
choose from. This is unlike other tunable systems [52, 64, 71]
which assume operators are aware of the trade-offs involved
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Figure 3: Pareto front of the trade-off between Prederr and nor-
malized average JCT for workload-2 (§5). Better indicates WFQ
configurations that achieve a tight bound on average/tail Prederr
while incurring the smallest possible increase in average JCT.

i.e., PCS actively tries to help the operator in making an in-
formed choice. Our decision to use Pareto-optimal choices,
as a way to support informed decision making, is grounded
in fundamental literature on multi-objective decision mak-
ing [34, 72], which maps neatly to the problem PCS is trying
to address: predictability while being practical.

The preference interface itself, is general enough to be used
in scenarios beyond predictability as well. For example it can
be used to strike a balance between fairness and performance
(e.g., Carbyne [35]) and between minimizing average and tail
JCTs [26, 28, 35, 70]. The preference interface exposes the
following API:

void SetPreference(
Obj1 <Metric , Measure >,
...,
ObjN <Metric , Measure >

);
List <WFQConfig > UpdateParetoFront ();
void SetWFQConfig(WFQConfig config );

The current PCS API supports three Metrics: Performance
(JCT), Fairness (unfairness), and Predictability (Prederr). The
SetPreference() method is used to specify the list of ob-
jectives; repeated entries are allowed to support exploring
trade-offs across different measures of the same metric. For
each objective, avg(.) or a particular percentile(p) needs
to be specified as a Measure.

We envision the following API usage life cycle
from an operators perspective: (1) Upon cluster deploy-
ment or drastic workload changes, the operator uses the
UpdateParetoFront() method to kick-start the preference
solver (§3.3). (2) The preference solver uses the updated work-
load information and preferences to discover the set of Pareto-
optimal WFQ configurations. (3) Once complete, the operator
can choose a specific WFQ configuration (WFQConfig) to be
used by invoking the SetWFQConfig() method.
UpdateParetoFront() requires PCS to passively collect

job size information and maintain a workload history. When
bootstrapping, PCS starts with a default WFQ configuration,

which can be any one of the extreme points in the trade-
off space (e.g., FIFO) described in §3.1. When sufficient
workload information is gathered, the preference solver is
initiated.

We now show how the API is used to target scenarios
covered in our evaluation.

Average JCTs vs. Average Prederr: Minimizing average
JCTs is a popular performance objective and has been a focus
of several scheduling policies [37, 76]. To explore the trade-
off between performance and predictability, one can specify
it as SetPreference(<JCT, avg>, <Prederr, avg>). We
use this for evaluating PCS for workload-1 and workload-2
in §5.

Average JCTs vs. Tail Prederr: Prediction error can be tightly
bound by specifying the tail Prederr (e.g., p99) as a measure
of predictability. In such a case, the objectives would stay
the same as in the above example, however, the measure for
Prederr would change from avg(.) to percentile(99). PCS
uses this specification for workload-3 where low p99 Prederr
is challenging to achieve with other policies.

Pareto Fronts. Figure 3 shows the set of Pareto-optimal
WFQ configurations generated by PCS for two realistic DNN
training workloads.

3.3 Preference Solver
The preference solver is responsible for finding Pareto-
optimal WFQ configurations for the objectives specified. It
uses a multi-objective search algorithm to navigate the space
of possible WFQ configurations. The optimization parame-
ters consist of the (1) number of queues, (2) queue weights,
(3) queue thresholds, and (3) resource allocation cap. These
parameters are deemed relevant as they directly control the
different trade-offs involved between the objectives consid-
ered by PCS. For example, the number of queues influence
the degree of preemption and hence predictability, while the
resource allocation cap influences the overall efficiency and
hence performance. Other common scheduling dimensions,
such as explicit priorities or deadlines, are not considered as
they relate to objectives beyond performance, fairness and
predictability. For example, some systems may want to pri-
oritize a longer running job. This conflicts with the goal of
minimizing JCT; which is rather achieved by assigning a low
priority to such jobs. Catering to such scenarios is beyond the
scope of PCS.

Finding Pareto-optimal configurations is challenging due
to the combinatorial nature of the configuration space. The
solver intelligently parameterizes each configuration to make
the search process feasible. It uses a simulation-based ap-
proach to evaluate the performance, predictability and fair-
ness of a particular WFQ configuration. These are fed to the
search algorithm, which decides the configurations to keep,
try out next, and discard.
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Intelligent Parameterization. To reduce the number of opti-
mization parameters we use the following heuristics:

• Creating Queues and Thresholds: Large variation in job-
sizes within a queue can lead to HOL blocking but creating
too many queues increases preemption events and deteri-
orates predictability. In PCS, queues are created based on
the squared coefficient of variation (C2) in the job-sizes,
as done by prior work [28]. We use a tunable parameter
0 < T <C2

max to ensure that queues are created such that
C2 of job-sizes within each queue is ≤ T , where C2

max is
the C2 of the entire job size distribution. A larger (smaller)
T results in fewer (more) queues created.

• Systematic Weight selection: Higher weights given to
queues with smaller jobs improves performance for most
workloads. On the other hand, a balanced weight assign-
ment strategy may improve fairness instead. Based on this,
we constrain the weight for the ith queue to be wi = e−i×W .
W is a tunable parameter which controls the relative
weights for each queue. A higher (lower) value of W
leads to a greater (lesser) disparity in weights among the
queues. For heterogeneous deployments, containing sev-
eral resource types (e.g., k different GPU types) we use
W1 . . .Wk.

• Finding Demand caps: The resource efficiency of a job
is used to decide its allocation cap and it is computed as
ζ(n) = demandmin

n×demand(n) , where demandmin is a job’s execution
time under its minimum possible allocation (e.g., 1GPU)
and it is a non-increasing function of the allocated resources.
For linear scaling jobs, ζ = 1, while for jobs that scale sub-
linearly, 0 < ζ ≤ 1. Instead of a fine-grained efficiency com-
parison between all jobs, we introduce a tunable threshold
ζmin to be used for all jobs, to reduce the search parameters.
Using this, a job’s resource allocation is capped at k such
that ζ(k) ≥ ζmin. Intuitively, a low (high) ζmin means the
scheduler is more (less) tolerant towards inefficient jobs.
Our evaluation in §5 shows that this heuristic is competitive
compared to the approach taken by other efficiency based
schedulers (e.g., AFS [44], Themis [62]).

Using these heuristics, WFQ(T ,W ,ζmin) becomes the suc-
cinct parameterization of each configuration. Different values
for these parameters results in different trade-offs between
the objectives specified by the operator. For example, setting
(T =C2

max,ζmin = 0) achieves maximum predictability (i.e.,
strict FIFO) as only one queue is created and no allocation
cap is enforced.

Simulation-based Search. We use a simulation based ap-
proach to discover Pareto-optimal WFQ configurations. Our
methodology utilizes a simulator, which accepts a WFQ con-
figuration (denoted by (T ,W ,ζmin)) as input. The simulator
evaluates the provided configuration under a random sample
(≈ 1000 job arrivals) of the collected workload (i.e., size dis-
tribution and average arrival rate) and outputs the resulting

JCT, FFT and JCTpred metrics. The results are then fed to
the search algorithm.

The search algorithm samples the search space of possi-
ble WFQ configurations and interacts with the simulator to
converge to Pareto-optimal solutions. We use SPEA2 as our
choice of the search algorithm. It is based on evolutionary
search and supports optimizing over multiple objectives [106].
Other multi-objective optimization algorithms can also be
used as an alternate, in a plug-and-play fashion. To improve
the robustness of each discovered WFQ configuration, it un-
dergoes multiple evaluations under different random samples
of the workload to increase its likelihood of being Pareto-
optimal.

While we don’t have any theoretical basis for the conver-
gence and optimality properties of our approach, it works well
in practice and can timely (≈ 1hr) discover the Pareto front
for a reasonably sized GPU cluster. Our evaluation confirms
that Pareto-optimal configurations found using simulations
follow the same trade-offs on the testbed experiment (§5.2).
We micro-benchmark the feasibility of the simulation-based
search strategy in §5.4.

4 PCS for GPU Scheduling

We now describe the realization of PCS for DNN scheduling
on GPU clusters, highlighting important differences and how
our abstraction of a job and demand function handles these
differences.

DNN Jobs. A job is either a single DNN training job or
a collection of DNN trials being run as part of a hyper-
parameter tuning task (i.e., AutoML). The demand function
for such workloads can be complicated. Modern DNNs re-
quire distributed training (e.g., data parallelism) on multiple
GPUs. They are known to have sublinear speedup w.r.t to the
(1) number, (2) type and (3) locality of GPUs allocated to
them [44, 62, 71, 79]. PCS relies on existing techniques, such
as throughput modelling and profiling, to estimate a job’s
demand function. As described in §3, the demand function
describes how the job’s execution time changes with different
resource allocations. Since allocations have three dimensions:
locality, GPU type and number of allocated GPUs, the demand
function takes as input different combinations and returns the
corresponding execution time. This is akin to the notion of
bids in Themis [62] and throughput in Gavel [71].

Role of Demand Functions. PCS uses demandmin as a job’s
size to map it to its respective queue. The demand function
is also used to cap the maximum GPU allocation for DNNs
that exhibit sub-linear speedup. Allocating GPUs up to the
maximum demand (demandmax) for such jobs can result in
poor performance. We evaluate this approach and show that
it works for DNN workloads consisting of jobs that scale
sub-linearly (§5.3). As described in §3.3, the allocation cap
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is a tunable parameter for the preference solver and can be
adjusted for different trade-offs and workloads.

Implementation. We implement PCS as a central coordi-
nator in Python and use the Ray cluster manager [67] for
GPU allocation enforcement as well as for general cluster
management tasks such as fault tolerance. Each job is either
a single trial or consists of multiple trials as part of a hyper-
parameter tuning algorithm provided by RayTune [60]. We
use a custom ray_trial_executor to control starting, stop-
ping and preempting individual trials based on the allocations
computed by PCS. To determine the remaining service re-
quirements of running jobs, we use various callbacks (e.g.,
on_step_start) exposed by RayTune to get the exact num-
ber of iterations completed by each job and multiply it with
the profiled time per iteration.

In addition to the central coordinator, PCS consists of an
agent, which uses information about running jobs to provide
a prediction interface. This interface returns a JCTpred in
real time to the user whenever they submit their jobs. The
agent computes JCTpred by “virtually” playing out (i.e., in a
simulated setting) the current snapshot of the cluster state (e.g.,
running jobs, available GPUs etc.), accounting for preemption
overhead and demand functions of other jobs, to determine
the time at which the job will end. This approach is inspired
by prior work [29, 82], which use a simulator to compute a
job’s duration under different resource allocation strategies.

5 Evaluation

We evaluate PCS on a 16 GPU cluster with a realistic Au-
toML style workload to validate our observations. We also
cover additional workloads at a larger scale using an event-
based simulator. Our evaluation covers different application
workloads (e.g., heavy-tailed vs. light-tailed, AutoML apps
vs single DNNs), different scheduling schemes (e.g., Tire-
sias [37], Themis [62]) and different metrics (e.g, avg, p99).

Our evaluation attempts to answer the following key ques-
tions:

• How does PCS perform in terms of Prederr compared
to other schemes? Our testbed results reveal that PCS
configurations achieve significantly lower Prederr (20%)
while being within 10% of high performing schemes on the
performance side.

• Does PCS work well across different workload types?
The flexibility and predictability provided by PCS holds
across different workloads and across preference specifi-
cations. PCS can discover configurations that bound the
tail Prederr to be within 100% compared to AFS [44] and
Tiresias [37] which suffer from ≥ 300% error at the tail.

• Are PCS configurations fair? PCS configurations that are
optimized for the performance vs Prederr trade-off do not

Testbed (16 GPUs) Simulations (64 GPUs)

Workload Workload-1 Workload-2 Workload-3
Job Type AutoML DNN DNN
DNN/job 1-20 1 1

GPUs/DNN 1 1-52 1-8

Table 1: Summary of the settings used to evaluate PCS

necessarily suffer from unfairness because each queue is
guaranteed a GPU share which helps in avoiding starvation.

• Is the search process feasible? Our micro-benchmark re-
veals that the search process can complete within O(hr),
making it practical to use, and PCS configurations discov-
ered using the simulation based search-strategy observe the
same trade-off trends on the testbed.

5.1 Experimental Setup

Testbed. Our testbed cluster consists of 16 1-GPU c240g5 ma-
chines in the Wisconsin Cloudlab cluster [3]. Each machine
has one NVIDIA P100 GPU with 12GB GPU memory.

Simulation. We use an event-based simulator to cover work-
loads that contain jobs requiring O(100) GPUs on a homo-
geneous 64 GPU cluster. We have verified the fidelity of
our simulator with trace results from Microsoft [49] and our
testbed results with the difference being within 5%.

Pareto Search. The Pareto-optimal configurations for our
workloads are discovered by the preference solver §3.3 run-
ning on a cluster of 10 c220g5 machines in the Wisconsin
Cloudlab cluster [3]. It is important to note that these config-
urations are discovered and evaluated on different sampled
subsets of the workload i.e., there exists a notion of training
set vs testing set.

Workloads. Table 1 summarizes the characteristics of our
candidate workloads. We now discuss these workloads in
detail.

• Workload-1: We borrow this workload from Themis [62]
(referred in their work as Workload-1). For our testbed eval-
uation we scale down the maximum number of trials per
app to 20 and the maximum service time to 2 GPU-hours.
The maximum number of GPUs per trial is set to 1. Each
trial tunes a different hyper-parameter (learning rate and
momentum) of popular vision models from the VGG fam-
ily [81].

• Workload-2: We use traces from 6 virtual clusters from
Philly [5] containing the largest number of jobs. In contrast
to other workloads, jobs in these traces exhibit sub-linear
scaling. We use the scaling data shared by Hwang et al.
on Github [1]. More details are in the attached artifact
appendix A.
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• Workload-3: This is borrowed from Gavel [71] (referred
in their work as continuous-multiple). It is a heavy-tailed
workload, with a large number of very small jobs and few
long running jobs. We run this workload at a job arrival rate
of 4 jobs/hr.

A common characteristic of these workloads is that the mini-
mum requirement of any job is 1 GPU i.e., as long as there
is at-least one GPU available, a job can start. This also holds
true for RayTune apps which we use in our testbed evaluation.

Scheduling Policies. We compare PCS against FIFO and
recently proposed GPU scheduling systems (Themis [62],
Tiresias [37], AFS [44]). All scheduling policies considered
in our evaluation are “work-conserving” and elastic i.e., they
redistribute unused GPUs amongst other jobs according to
the policy. For example for FIFO if a job only needs k GPUs
and n are available, where n > k, then n− k are attempted to
be allocated to the next-in-line jobs.

We now describe our implementation of Themis, AFS, and
Tiresias that we use in our evaluation.

• Themis [62]. On every resource change event and lease
duration expiry, in-progress jobs report their fair-finish-time
and we allocate GPUs to jobs in descending order of the
reported number. We do not consider the scenario where
jobs could lie and thus do not require the partial allocation
mechanism. The lease duration is set to 10 minutes as per
the recommendations of the authors.

• Tiresias [37]. Since we assume complete knowledge about
job sizes, here Tiresias emulates the Shortest-Remaining-
Service-First (SRSF) policy.2 As such, GPUs are first allo-
cated to jobs with the lowest remaining service times on
every resource change event.

• AFS [44]. This scheduler tries to minimize avg and tail
JCTs while maximizing resource efficiency. On every re-
source change event we compute each job’s allocation using
the AFS-L algorithm.

PCS Configurations. We use three configurations for PCS:
(1) PCS-pred, (2) PCS-JCT, and (3) PCS-balanced. Each
configuration makes a different trade-off. PCS-pred has the
highest JCT but the lowest Prederr amongst the three. For each
workload and objective the set of WFQ configurations are dif-
ferent and are discovered using the preference specifications
described in §3.2.

Comparison Criteria. We evaluate the merit of PCS on three
fronts:

1. Job Completion Times (JCTs): A commonly used metric
to evaluate the performance of scheduling policies.

2Referred to as Tiresias-G in their paper
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Figure 4: [TESTBED] Distribution of Prederr showcasing three con-
figurations of PCS discovered by PCS — performance oriented,
predictability oriented and balanced compared to other schemes.
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Figure 5: [TESTBED] Zooming into the trade-off between perfor-
mance and predictability. PCS is within 1.1× AFS at p90 JCT, with
significant improvement to predictability.
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Figure 6: [TESTBED] (a) shows the CDF of unfairness showcasing
that PCS does not significantly compromise on fairness compared
to a policy that optimizes for it. (b) highlights the Pareto-optimal
configurations discovered in a simulated environment observe the
same trend on the testbed evaluation.

2. Unpredictability (Prederr): A proxy to capture the error in
JCTpred.

3. Unfairness: It captures the extra time taken by a job to
complete, compared to its fair-finish-time (FFT) and is 0
for jobs that complete before their FFT.

We consider all important statistics such as the average and
tail (e.g., p99 Prederr, avg JCTs) for all objectives. For each
objective, a lower value is better.3

3The testbed result is an average across 3 seeds while simulation results
are an average across 5 seeds
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5.2 Testbed Experiment
For our main experiment we compare three PCS configu-
rations, discovered by the preference solver for workload-1,
against other schemes.

A tight bound on Prederr. Figure 4 shows the CDFs of
Prederr achieved by different scheduling schemes and the
three PCS configurations. We observe that all PCS configura-
tions are able to achieve significantly lower Prederr. At p90,
the difference is an 80% lower error achieved by all config-
urations compared to other schemes. At higher percentiles,
PCS-pred provides the lowest worst-case Prederr of 150%
while other schemes have a long tail. PCS-JCT still has a
lower Prederr up until p95.

Negligible performance sacrifice for high predictability.
Figure 5 zooms into the performance versus predictability
trade-off achieved by PCS-JCT compared to AFS and Tiresias
which aim to minimize JCTs. We see that PCS-JCT achieves
equivalent performance to AFS and Tiresias for the average
JCTs. It is within 1.1× of AFS at p90, however this trade-
off results in significant improvement on the predictability
front, where Tiresias and AFS suffer. Prederr under PCS-JCT
is within 20% for average and p90 Prederr while AFS and
Tiresias have ≥ 40%(≥ 100%) prediction error at the aver-
age (p90). This signifies that PCS-JCT trades off negligible
performance to significantly improve predictability. Another
source of improvement we observe is that since PCS makes
limited use of preemption, overheads associated with preempt-
ing running jobs are reduced compared to other schedulers.
This is the reason behind PCS outperforming performance
oriented schedulers (i.e., AFS and Tiresias).

Unfairness. Figure 6a compares the unfairness for PCS-JCT
compared to AFS, which optimizes for average JCT, and
Themis, which minimizes unfairness. PCS achieves lowest
unfairness till p95 and has the worst-case unfairness ≤ 100%
compared to AFS which has a worst-case unfairness > 200%.
Not surprisingly, Themis offers the tightest bound on the
worst-case unfairness of less than 50%.

Pareto-optimality. Finally, figure 6b shows different PCS
configurations that achieve different trade-off points in the
space of avg JCT vs avg Prederr. As expected, PCS-JCT
has the lowest avg JCT, while PCS-pred achieves the lowest
average Prederr.

5.3 Simulation Experiments
We now consider different workloads at a larger scale in sim-
ulations and show the trade-offs achieved by suitable PCS
configurations compared to performance and fairness optimal
schedulers.

Workload-2. Figure 7 compares the performance and pre-
dictability of PCS with other schedulers for workload-2. For
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Figure 7: [SIM]: PCS for workload-2. a) Most PCS configurations
are within 1.5-4×of the performance optimal policies while b) shows
that they drastically reduce the average and tail Prederr. In b), the bar
height (line) represents average (p99) Prederr and the y-axis follows
a logscale.
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Figure 8: [SIM]: Showing that schemes that optimize for average
JCTs for workload-3 also have a small average error. For such work-
loads, the tail Prederr becomes an important metric.

such workloads, AFS achieves the lowest possible avg JCT
by giving more GPUs to jobs with higher efficiency. Despite
its conservative approach in dealing with sub-linear scaling
jobs, PCS remains within 1.5 to 4× of the optimal scheme
for minimizing avg JCT, while drastically reducing the avg
and tail Prederr. For example, PCS-JCT reduces the average
Prederr from 80% to 1% for Trace #2 and PCS-pred reduces
the p99 Prederr from 900% to 10% for Trace #3.

Workload-3. Figure 8 compares the different schedulers for
workload-3. For this workload, we observe that schedulers
optimized for performance, including PCS-JCT achieve rea-
sonably low average Prederr. This is because for workload-3,
majority of the jobs are small and similar in size. For such
workloads, tail Prederr, becomes important owing to some
jobs being starved under priority schedulers. With the appro-
priate preference specification, PCS discovers configurations
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Figure 9: Feasibility of the simulation-based search strategy. (a)
captures the time to run a single simulation, (b) shows the time it
takes to discover the entire Pareto-front. (c) highlights that intelligent
parameterization helps in discovering more Pareto optimal points
for a given evaluation budget.
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Figure 10: Shows the effects of error in job size and load estimation.
a) compares the average Prederr using PCS and FIFO [86] with
varying job size estimation error. b) compares the avg JCT of PCS
and AFS [44] under the same error. c) shows sensitivity of WFQ
configs to load changes.

that can drastically reduce the p99 Prederr. For example, PCS-
JCT reduces the Prederr from ≥ 300% to ≈ 100% while being
within 1.1× of performance optimal schemes (Fig. 8b).

5.4 Micro-benchmarks

Feasibility of the Search Strategy. Figure 9a shows that PCS
takes O(minutes) to run a single simulation for a given load
(number of jobs) and cluster size (number of GPUs). PCS
extensively leverages the underlying parallelism to discover
the Pareto-front – requires running ≈ 1000 simulations– in
approximately 60 minutes (Fig. 9b). Figure 9c shows that
PCS benefits from the heuristics (discussed in §3.3) to speed
up the search and improve the quality of the Pareto-front
by discovering new points faster than searching on the un-
parameterized search space.

Error in Job Size Estimation. Figure 10 shows the impact
of estimation error in job-sizes on the predictability and per-
formance of PCS. As job-size estimation gets poorer, the
impact on avg Prederr follows the same trend as the Prederr
under FIFO (Fig. 10a). Figure 10b, compares the avg JCTs of
AFS with no error in job-size estimation to PCS with varying
estimation error. PCS is still within 1.05× of AFS. This is
because as long as the job is mapped to the correct queue, the
error in estimating its size has limited impact on performance.

Sensitivity of Pareto-optimal configurations. To evaluate

the sensitivity of Pareto-optimal configurations, we evaluate
configurations discovered for workload-1 assuming 60% load
on a system actually running at 80% load. Figure 10c shows
that while the exact trends do not hold when the estimated
workload is a mismatch, 75% of the configurations are within
10% of the closest Pareto-optimal point.

6 Discussion

Generalizability of PCS. In this paper, we realized PCS
for ML workloads, however, it is designed as a generic job
scheduling framework and the core insights (e.g., utilizing
WFQ to realize multiple trade-off points, bounded preemp-
tion to provide predictability, etc) still hold across differ-
ent scheduling scenarios. We tease apart different aspects
of PCS’s current realization and discuss their broader appli-
cability. (1) Providing JCTpred. JCTpred can be computed
if a job’s demand function or simply put, its size is either
known or can be estimated. There are several scheduling
scenarios, beyond ML, where this requirement holds. Prior
work has looked at estimating job sizes for requests in mi-
croservice deployments [51, 102], network flows [27, 58],
compute tasks in data processing clusters [13, 21, 50] and I/O
requests in storage clusters [40, 41]. In some scenarios, like
network (co)flow scheduling, the demand function is simple:
estimated (co)flow size

allocated bandwidth , while in other scenarios it may be more
complicated and costly to determine. (2) Search process. The
current simulation-aided search process is meant to be trig-
gered on coarser timescales, assuming workloads are stable
and predictable on shorter timescales. This is true for ML
workloads as highlighted in §2 but also for some workloads
beyond ML [48,50]. If workload changes are highly dynamic,
the search process may not be able to keep-up. This opens up
an interesting avenue for future research to tailor the search
process for such workloads.

Resource Heterogeneity. To handle resource heterogeneity
(e.g., different GPU types), PCS can reuse an existing so-
lution: Gavel [71], which makes a GPU scheduling policy
heterogeneity-aware. It supports hierarchical policies with
weighted-fairness across entities and FIFO scheduling within
an entity. The different parameters of WFQ (e.g., number of
queues, weights etc.) map elegantly to these primitives. Once
an operator chooses a WFQ configuration, PCS can convert
it into an optimization problem that Gavel can solve for.

Sophisticated prediction techniques. Using more compli-
cated prediction techniques is orthogonal work. We posit that
future arrivals, the main source of unpredictability, may be
difficult to take into account in the prediction decision given
that various attributes about them are unknown. For instance,
a future job’s demand function and its arrival time cannot be
determined before it actually arrives. Our emphasis is on mak-
ing scheduling predictable and rely on a simple prediction
strategy instead.
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Other use-cases of JCTpred. In addition to the use-cases dis-
cussed in §2, JCTpred can be used to co-design AutoML app
schedulers (e.g., Hyperband [57]) with the underlying system;
based on the predicted completion time, the app scheduler can
decide to prioritize certain DNNs/trials over another. This can
be framed as a bi-level optimization problem where the end
goal is to find the most promising DNN hyper-parameters in
the quickest time. This will require widening the prediction
interface to allow users the option of cancelling and making
shadow reservations. Beyond ML workloads, JCTpred can fa-
cilitate user applications in i) replica selection strategies (e.g.,
MittOS [40]), and ii) optimizing the right parallelism and
placement for network-bound data processing tasks [29, 69].

Deciding between Pareto-optimal choices. Exposing trade-
offs as Pareto-optimal choices can help operators to make
informed choices by narrowing down the possibilities. We
still, however, rely on the operator’s ability to decide between
them. One potential strategy is to elicit user preferences via
surveys and averaging them to come up with a cluster wide
trade-off point. Allowing individual users to pick different
preferences on a per job basis, however, can result in cross-
user conflicts which may be difficult to resolve. We leave
picking preferences on a per-job basis as future work.

7 Related work

Scheduling Systems. A large body of work emphasizes
on intelligent GPU scheduling for DNN workloads, consid-
ering metrics such as minimizing average job completion
times [37,44,55,87,98], maximizing fairness [14,62,93], clus-
ter efficiency [44,55,94] and average DNN accuracy [76,100].
They use preemption based techniques to achieve their objec-
tives; we show in this paper that preemption is detrimental to
predictability.

PCS can benefit from system-level techniques, such as
elastic scaling [44,74], efficient GPU preemption [85,92–94],
DNN throughput profiling [61, 79], job/AutoML app size
estimation [62, 76], and sharing-safety [103] used in these
systems. However, in contrast to them, PCS focuses on pre-
dictability by limited use of preemption and offering flex-
ibility to cluster operators in choosing various trade-off
points between predictability and other traditional objectives.
Gavel [71] also translates different scheduling policies to opti-
mization objectives but does not cover predictability and only
finds a point solution for each objective while PCS allows
operators to choose from a range of Pareto-optimal choices.

Multi-queue Scheduling. A broad category of schedulers
use the idea of queue-based scheduling [10, 18, 25, 26, 28, 37,
68, 70] in different contexts to achieve performance related
goals. We borrow ideas from these techniques. For example,
like 2D [28], we also create queues based job size variation
within a queue. Similarly, our limited use of multiplexing

is inspired by the FIFO-LM scheduler [26]. However, these
techniques opt for a fixed strategy in creating queues, mapping
jobs to queues and assigning weights (e.g., Baraat [26] and
Tiresias [37] only use 2 queues) and will be limited to offering
a fixed trade-off between objectives.

Adaptive Schedulers. There are multiple recent examples of
empirical, adaptive cluster management. For example, Self-
Tune [52] applies reinforcement learning techniques to au-
tomatically update the cluster management policy based on
periodic cluster status updates. Decima [65] uses simulations
to learn optimal scheduling algorithms for data processing.
SWP [104] uses a simulation guided approach to find op-
timal bandwidth scheduling decisions. These works show
the efficacy of using simulated environments to learn system
decisions. Our strategy is inspired by them.

Predictable Scheduling. Predictable scheduling and delay
guarantees has been studied in broader contexts. Weirman
et al [91] classify different scheduling policies based on the
variation in the slowdown experienced by jobs. Other stud-
ies [22, 43] look at the benefits of providing delay informa-
tion to users and understand how much delay is tolerable.
CFQ [15] defines predictability as a job’s FFT, similar to
Themis. However, FFT is prone to variation itself as new jobs
arrive [50].

8 Conclusion

In this paper, we called for providing predictability as a first or-
der consideration in GPU scheduling systems. Our inspiration
comes from real-world systems that provide their users with
predictions (e.g., estimated delivery dates). Our solution, PCS,
provides predictability while balancing other considerations
like performance and fairness. It comprises of a bi-directional
preference interface to empower cloud operators in making
informed trade-offs between multiple objectives. To realize
these trade-offs, PCS uses WFQ in unique way coupled with
a simulation-based strategy to discover Pareto-optimal WFQ
configurations. Our results show the flexibility of PCS in
achieving a wide range of operator objectives, offering a first
step towards predictable scheduling in a practical way.
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A Artifact Appendix

Abstract
We have open sourced our implementation of PCS
at https://github.com/TuftsNATLab/PCS/tree/osdi24-artifact.
The repository contains jupyter notebooks to recreate figures
from the paper as well as scripts to simulate schedulers used
in the paper including PCS, FIFO, Tiresias, Themis, and AFS.
There are also instructions for running the testbed on Cloud-
lab.

Artifact Checklist
• Algorithms: Both the simulator and testbed implement

PCS as well as FIFO, Tiresias, Themis, and AFS.

• Hardware: Experiments on a physical cluster require
16 type c240g5 nodes on CloudLab. The nodes should
be running Ubuntu 22.04.

• Setup Instructions: Setup instructions are available in
TESTBED.md and the system prerequisites and setup
sections of README.md. TESTBED.md provides in-
structions on setting up PCS on a CloudLab cluster as
noted above as well as setting it up locally, provided the
system has CUDA compatible GPUs.

• Runtime The testbed experiments take approximately
a day (multiple hours per configuration) and the simula-
tions take < 1 hr.

Description
Hardware Dependencies

We ran experiments on 16 c240g5 type nodes on CloudLab.
We tested our system on Ubuntu 22.04 with Python 3.10.12
that should be accessilbe with python3. For more details,
see TESTBED.md and the system prerequisites section of
README.md.

Software Dependencies and Hardware Configuration

Software dependencies and hardware configuration can be
installed using a script provided in the artifact. For details,
see TESTBED.md.

Datasets

Experiments use either job workloads to generate traces, or
directly use traces. Workloads consist of a distribution of
arrival times, service times, min/max GPUs, and number of
jobs per application. These are in the workloads and traces
folders respectively. Traces from 6 virtual clusters (vc id’s:
0e4a51, b436b2, 6214e9, 6c71a0, 2869ce, and ee9e8c) from

Philly [49] are used in some simulator experiments. PCS
configurations (PCS-JCT, PCS-bal, PCS-pred) used for each
experiment can be found in the PCS_configs folder.

The testbed experiment train a VGG16 model using the
CIFAR-10 dataset [53] which is automatically downloaded
when the testbed experiment is started.

Experiment workflow
There are two kinds of experiments in the repo - simulation
and testbed. For each of these experiments there are additional
jupyter notebooks for plotting the results and creating the
graphs used in this paper. The data needed to generate graphs
used in the paper can be created with shell scripts described
in the README of the respository.

Simulation experiments are run from a workload that is
generated by a known distribution of job characteristics. We
sample from these distributions and generate a workload that
matches the provided cluster load, number of GPUs, and num-
ber of apps. The workload is then run through the simulator
using a selected scheduling strategy.

The testbed is run on CloudLab using a ray cluster that has
been modified to implement PCS.

Running Additional Simulations
We provide in the artifact the ability to choose and evalu-
ate different PCS configurations, beyond the ones covered
in the paper, for a set of workloads and traces. The user can
also modify different experiment parameters (e.g., number
of GPUs, number of apps, load). For more details, see repro-
duce.py and sim.py.
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