
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Chop Chop: Byzantine Atomic Broadcast
to the Network Limit

Martina Camaioni, Rachid Guerraoui, Matteo Monti, Pierre-Louis Roman,
Manuel Vidigueira, and Gauthier Voron, EPFL

https://www.usenix.org/conference/osdi24/presentation/camaioni

Chop Chop: Byzantine Atomic Broadcast to the Network Limit

Martina Camaioni Rachid Guerraoui Matteo Monti
Pierre-Louis Roman Manuel Vidigueira Gauthier Voron

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Abstract
At the heart of state machine replication, the celebrated tech-
nique enabling decentralized and secure universal computa-
tion, lies Atomic Broadcast, a fundamental communication
primitive that orders, authenticates, and deduplicates mes-
sages. This paper presents Chop Chop, a Byzantine Atomic
Broadcast system that uses a novel authenticated memory pool
to amortize the cost of ordering, authenticating and dedupli-
cating messages, achieving “line rate” (i.e., closely matching
the complexity of a protocol that does not ensure any ordering,
authentication or Byzantine resilience) even when process-
ing messages as small as 8 bytes. Chop Chop attains this
performance by means of a new form of batching we call
distillation. A distilled batch is a set of messages that are
fast to authenticate, deduplicate, and order. Batches are dis-
tilled using a novel interactive protocol involving brokers, an
untrusted layer of facilitating processes between clients and
servers. In a geo-distributed deployment of 64 medium-sized
servers, Chop Chop processes 43,600,000 messages per sec-
ond with an average latency of 3.6 seconds. Under the same
conditions, state-of-the-art alternatives offer two orders of
magnitude less throughput for the same latency. We showcase
three simple Chop Chop applications: a Payment system, an
Auction house and a “Pixel war” game, respectively achieving
32, 2.3 and 35 million operations per second.

1 Introduction
Is an Internet computer feasible? A computer that is highly-
available, decentralized, secure, universal and shared by all?
Theory says yes: state machine replication (SMR) [28, 66]
enables decentralized universal computation in the face of
arbitrary failures [50, 68]. In practice, however, SMR’s ineffi-
ciency still makes for limited throughput. At the heart of SMR
lies Atomic Broadcast [24], a powerful consensus-equivalent
primitive that comes with fundamental bounds [29] and con-
straints [32], hindering its real-world performance despite
decades of extensive research [5,9,14,18,20,47,53,62,79,80,
82] and attention from industry, where SMR powers a myriad
of blockchains and ledgers [4,35,46,48,52,58,72–74,77,78].

100 101 102 103 104 105 106 107 108

Throughput [event/s, log scale]

Chop Chop
WhatsApp messages

Google searches
Credit card payments

Youtube video watches
Tweets

Figure 1: Throughput of Internet-scale services.

When deployed globally, seminal Atomic Broadcast imple-
mentations, such as BFT-SMaRt [9] and HotStuff [80], can
deliver a few thousand messages per second, three orders of
magnitude short of the millions of requests per second collec-
tively handled by the Internet’s largest, centralized services
(Fig. 1). Pushing Atomic Broadcast’s throughput into the
tens of millions of messages per second seems a necessary
stepping stone towards achieving an Internet-scale computer.

Towards line rate. While slow and expensive, ordering
messages in Atomic Broadcast is amenable to batching [18]:
order once, deliver in bulk. This observation motivated the de-
velopment of memory pool (mempool) protocols [26, 34, 69],
as initiated by Narwhal [26], designed to amortize ordering.
This strategy proved effective, e.g., Bullshark [69] delivers in
the order of 380,000 messages per second when accelerated
by Narwhal. Despite this improvement, however, state-of-
the-art batching still falls short of achieving line rate, i.e.,
matching the communication complexity of a protocol that
does not ensure any ordering, authentication, or Byzantine
resilience. In such a simplified setting, a server could simply
deliver a sequence of application messages as it receives them
from the network: b bits received, b bits delivered. Mod-
ern connections have enough bandwidth to receive tens of
millions of application messages per second:1 2.5 orders of
magnitude of gap still exist between Atomic Broadcast and
unordered, unauthenticated dissemination. It is natural to ask

1Payloads as small as 12 bytes can have real-world applications (see §2.1).
A 5 Gbit/s link can receive 52 millions such payloads per second.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 269

if such a large gap is inherent to atomicity’s unavoidable cost
of ordering, authenticating and deduplicating messages. This
paper answers in the negative, accelerating Atomic Broadcast
by a further two orders of magnitude with a system that per-
forms close to optimal efficiency, i.e., within 8% of line-rate,
even when handling 40 million requests per second.

Chop Chop. We present Chop Chop, a Byzantine Atomic
Broadcast system using a novel authenticated mempool.
Mempools amortize the cost of ordering by having an un-
derlying instance of Atomic Broadcast order batches. Classic
methods of batching, however, fail to also amortize authenti-
cation and deduplication: each payload in a batch still carries
an individual public key, signature and sequence number.

Chop Chop addresses this shortcoming with a new form of
batches: distilled batches. Unlike a classic batch, a distilled
batch contains condensed information that allows to authenti-
cate and deduplicate its messages in bulk, much faster than in
existing schemes. Distilled batches leverage the strong order-
ing of Atomic Broadcast to minimize redundant information.

Trustless brokers. Chop Chop produces distilled batches
using a novel interactive protocol involving brokers, a layer
of facilitating processes between clients and servers. Distilled
batches are faster for servers to receive and process, but ex-
pensive for brokers to produce: distillation is interactive and
relies on expensive cryptographic operations for brokers.

Importantly, however, incorrectly distilled batches are vis-
ibly malformed. As such, brokers can be untrusted: good
brokers take load off the servers; bad ones cannot compromise
the system’s safety. Servers are exposed to every message in
the system, bottleneck easily, and only a threshold of them
can be compromised before the system loses safety. Brokers,
instead, can be spun up by anyone, outside of Chop Chop’s
security perimeter, to meet the load produced by clients.

Evaluation. We evaluate Chop Chop in a cross-cloud, geo-
distributed environment including 320 medium-sized AWS
EC2 machines and 64 OVH machines. We simulate up to 257
million clients and consider 12 experimental environments.
Setting up each environment requires the installation of 13 TB
of synthetic workload. A naive installation using scp from
a single machine would take 68 hours. We designed silk, a
one-to-many peer-to-peer file transfer tool optimized for high
latency connections, to install the files in 30 minutes instead.

We compare Chop Chop’s throughput and end-to-end la-
tency against its baselines in multiple real-world scenarios
including server failures, adverse network conditions, and
applications running. In all scenarios, Chop Chop’s through-
put outperforms its closest competitor by up to two orders
of magnitude, with no penalty in terms of latency. When
put under stress, Chop Chop orders, authenticates and dedu-
plicates upwards of 43,600,000 messages per second with a
mean latency of 3.6 seconds. Except under the most adverse
network conditions and proportions of faulty clients, Chop
Chop still achieves millions of operations per second.

Applications. Unlike most Atomic Broadcast implementa-
tions [9, 26, 69, 80], Chop Chop does not offload authentica-
tion and deduplication to the application. This allows Chop
Chop-based applications to focus entirely on their core logic
without ever engaging in expensive, and easy to get wrong,
cryptography. To showcase this, we implement three simple
applications to evaluate on top of Chop Chop: a Payment
system, an Auction house and an instance of the game “Pixel
war”. These three simple applications (300 lines of logic)
work effectively with messages as small as 8 bytes, further
underlying the communication overhead represented by pub-
lic keys, signatures and sequence numbers in non-distilled
systems. Both Payments and Pixel war inherit Chop Chop’s
throughput, respectively processing over 32 and 35 million
operations per second. Even the Auction house, which is
single-threaded, achieves 2.3 million operations per second.
(These applications are meant as examples, and further opti-
mization is beyond the scope of this paper.)

Contributions. We identify authentication and deduplica-
tion as the main bottlenecks of batched Atomic Broadcast;
we introduce distilled batches to extend the amortizing prop-
erties of batching to authentication and deduplication; we
present distillation, an interactive protocol to produce distilled
batches, and identify the opportunity to offload it to an un-
trusted set of brokers; we implement Chop Chop, a Byzantine
Atomic Broadcast system that takes advantage of distillation
through an authenticated mempool; we thoroughly evalu-
ate Chop Chop, improving state-of-the-art Atomic Broadcast
throughput by two orders of magnitude, maintaining near line-
rate performance up to 40 million requests per second; we
showcase Chop Chop through a Payment system, an Auction
house and an instance of the “Pixel war” game, respectively
achieving 32, 2.3 and 35 million operations per second.

Roadmap. §2 introduces Atomic Broadcast, discusses clas-
sic batching mechanisms and highlights the cost of authenti-
cating and deduplicating messages in the resulting batches. §3
presents distilled batches and introduces a simplified failure-
free version of Chop Chop’s protocol. §4 describes Chop
Chop’s fault-tolerant protocol in detail. §5 discusses Chop
Chop’s implementation. §6 discusses Chop Chop’s empirical
evaluation, highlighting the challenges of such large scale
experiments. We summarize related work in §7 and future
work in §8. Appendix A describes Chop Chop’s artifact. The
full correctness proof of Chop Chop is available online [15].

2 Atomic Broadcast
In an Atomic Broadcast system [19], clients broadcast mes-
sages that are delivered by servers.

Properties [13]. Correct servers deliver the same messages
in the same order (agreement). Messages from correct clients
are eventually delivered (validity). Spurious messages cannot
be attributed to correct clients (integrity). No message is
delivered more than once (no duplication).

270 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2.1 Cost of Atomic Broadcast
Informally, Atomic Broadcast’s most distinctive property,
agreement, is also the most challenging to satisfy. Correct
servers must coordinate to order messages without compro-
mising liveness. A great deal of research effort has been
put in developing ordering techniques, optimizing for la-
tency [47, 56] or communication complexity [55, 63].

Integrity and no duplication, instead, allow for simple so-
lutions. Clients can ensure integrity by authenticating their
messages using digital signatures: servers simply ignore incor-
rectly authenticated messages. For no duplication, clients can
tag each message with a strictly increasing sequence number:
after ordering, servers discard old messages as replays.

Both techniques—we call them classic authentication and
classic sequencing—are non-interactive, easy to implement,
and agnostic of the protocol employed to order messages.
Arguably due to the simplicity and effectiveness of classic
authentication and sequencing, most Atomic Broadcast im-
plementations overlook integrity and no duplication entirely:
they offload authentication and sequencing to the application,
focusing on the more challenging task of ordering.

Batching for ordering. Lacking an efficient technique to
minimize its complexity, ordering could be Atomic Broad-
cast’s main bottleneck.2 The well-known strategy of batching,
however, is both general and effective at amortizing the agree-
ment cost of an Atomic Broadcast implementation [18, 68].

Broadly speaking, batching is orchestrated by a broker
as follows [26].3 Over a small window of time, the broker
collects multiple client-issued messages in a batch, which
it disseminates to the servers; the broker then submits to an
underlying instance of Atomic Broadcast a cryptographic
hash of the batch it collected; upon delivering the hash of a
batch from Atomic Broadcast, a server retrieves the batch,
and delivers to the application all the messages it contains.
Because the size of a hash is constant, the cost of ordering a
batch does not depend on its size: as batches become larger,
the cost of ordering each message goes to zero. In practice,
batching can effectively eliminate the cost of ordering in any
real-world implementation of Atomic Broadcast.

Cost of integrity and no duplication. Batching does not
efficiently uphold integrity and no duplication. Regardless of
how many messages are batched together, the cost of classic
authentication and sequencing stays constant: one public key,
one signature and one sequence number for each message.

In practice, these costs dominate the computation and com-
munication budget of a batched Atomic Broadcast system (see
§3.2). On the one hand, signatures are among the most CPU-
intensive items in the standard cryptographic toolbox, dwarf-

2Byzantine Atomic Broadcast among n participants cannot be achieved
with a bit complexity smaller than Θ(n2) [29].

3In the literature, servers usually play the role of brokers. As we discuss
in §4, however, Chop Chop minimizes its load on the servers by offloading
brokerage to a separate, trustless set of processes.

ing in particular symmetric primitives such as hashes and
ciphers. On the other, public keys, signatures and sequence
numbers can easily account for the majority of a batch’s size.

To illustrate these costs, consider the example of a payment
system. A payment operation requires three fields: sender,
recipient, and amount. Sender and recipient fit in 4 B each
if the system serves less than 4 billion users. Amount needs
4 B for payments between 1 cent and 40 millions. Hence, a
payment can be encoded in just 12 B. Using public keys to
identify sender and recipient (2×32 B using Ed25519 [8, 40])
and attaching a signature (64 B) and a sequence number (8 B)
to each message inflates payloads to 140 B. For payments,
91% of the bandwidth is spent on integrity and no duplication.

2.2 Existing Mitigations
Chop Chop integrates the two following techniques to reduce
the bandwidth and CPU cost of authentication.

Short identifiers. Repeated public keys consume a signifi-
cant slice of a server’s communication budget. A workaround
is to have servers store public keys in an indexed directory [2].
Upon first joining the system, a client announces its public key
via Atomic Broadcast to sign up. Upon delivering a sign-up
message, a server appends the new public key to its directory.
The same public key appears at the same position in the di-
rectory of all correct servers thanks to Atomic Broadcast’s
agreement. Having signed up, a client uses its position in the
directory as identifier instead of its public key.

In the previous example of a payment system, using such
identifiers reduces a payment size by 40%, from 140 B to 84 B.
However, a signature per payment must still be transmitted.

Pooled signature verification. Authenticating a batch by
verifying its signatures is a computationally intensive task
for a server [18, 71]. However, Red Belly [23] and Mir [71]
showed that not all servers need to authenticate all batches.
Indeed, assuming at most f faulty servers, a broker optimisti-
cally asks only f + 1 servers to authenticate a batch to be
certain to reach at least one correct server. If f + 1 servers
do not reply by a timeout, the broker extends its request to f
additional servers, thus reaching at least f +1 correct servers.

A correct server that authenticates a batch sends back to the
broker a witness shard, i.e., a signed statement that the batch
is correctly signed. The broker aggregates f + 1 identical
shards into a witness, which it sends to the other 2 f servers.
Because every witness contains at least one correct shard, the
servers can trust the witness instead of verifying the batch.

Assuming 3 f +1 servers, this technique shaves up to two-
thirds off the system’s authentication complexity.

3 Distilled Batches
Chop Chop’s main contribution is distillation, a set of
techniques aimed at extending the amortizing properties of
batches to authentication and sequencing.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 271

...

...
...

...

Figure 2: Full distillation in action. With classic authentica-
tion and sequencing, each payload qi contains a public key
pki, a sequence number sni, a message msgi and a signature
sigi. In the fully distilled case, each qi reduces to just idi and
msgi: one header H, composed of one aggregate sequence
number SN and one aggregate signature SIG, is sufficient
for the entire batch. Bars are to scale if small messages are
broadcast using Ed25519 for signatures and BLS12-381 for
uncompressed multi-signatures: sni and SN are 8 B, msgi is
8 B, pki is 32 B, sigi is 64 B, SIG is 192 B.

Background: multi-signatures. Chop Chop makes use of
multi-signature schemes [39] to authenticate batches. Secret
keys produce signatures that can be verified against the corre-
sponding public keys. Public keys and signatures, however,
can be aggregated. Let (p1,r1), . . . ,(pn,rn) be distinct key
pairs, and s1, . . . ,sn be signatures produced by r1, . . . ,rn on
the same message m: p1, . . . , pn (resp., s1, . . . ,sn) can be ag-
gregated into a constant-sized aggregate public key p (resp.,
aggregate signature s).

Remarkably, s can be verified in constant time against p
and m [10, 57]. Chop Chop uses BLS multi-signatures [10]
which can be aggregated cheaply and non-interactively: even
a non-signing process can compute p (resp., s) once provided
with p1, . . . , pn (resp., s1, . . . ,sn) by computing a single multi-
plication over an elliptic curve.

3.1 Distillation at a Glance
In brief, distillation aims to produce distilled batches. A dis-
tilled batch has some of its signatures (resp., sequence num-
bers) replaced by an aggregate signature (resp., aggregate
sequence number). When maximally successful, distillation
produces a fully distilled batch, where all signatures (resp.,
sequence numbers) have been replaced by a single aggregate
signature (resp., sequence number). As we discuss below,
distilled batches are vastly cheaper for servers to receive and
process. Fig. 2 depicts the effect of distillation on a batch.

Full distillation (failure-free). For pedagogical purposes,
we introduce distillation under the assumption that all pro-
cesses are correct. We detail Chop Chop’s fault-tolerant distil-
lation techniques in §4.2, optimized and adapted to the Byzan-

tine setting. As in the classic batching case, a set χ1, . . . ,χb of
clients submit their messages m1, . . . ,mb to a broker β. Each
χi selects for its message mi a sequence number ki (greater
than any sequence number it previously used), then sends
(ki,mi) to β. Upon receiving all (ki,mi)-s, β computes the
aggregate sequence number

k = max
i

ki

then builds the batch proposal

B = [(x1,k,m1) , . . . ,(xb,k,mb)]

where xi is χi’s numerical identifier in the system (see §2.2). β

then sends B back to every χi. Upon receiving B, χi produces
a multi-signature si for the hash H(B) of B, which it sends
back to β. Having collected all multi-signatures, β computes
the aggregate signature

s = ∏
i

si

In doing so, β obtains the fully distilled batch

B̃ = [s,k,((x1,m1) , . . . ,(xb,mb))]

Upon receiving B̃, any server now can: compute B by inserting
k between each (xi,mi); compute H(B); use each xi to retrieve
χi’s public key pi from its directory; compute the aggregate
public key

p = ∏
i

pi

and finally verify s against p and H(B).

Distillation outcome. Having engaged with β to distill the
batch, every χi multi-signs the same message H(B) and up-
dates its sequence number to the same k. This allows β to
authenticate and sequence all of B̃ using s and k only.

Distillation safety. The proposed distillation protocol has
no safety drawback. First, because (xi,k,mi) appears in B, χi
still gets to authenticate mi. Intuitively, χi’s multi-signature
on H(B) publicly authenticates whatever message in B is
attributed to χi, mi in this case. Second, because k ≥ ki, k
is still a valid sequence number for mi. Sequence number
distillation might cause χi to skip some sequence numbers
whenever any χ j issues some k j > ki. Contiguity of sequence
numbers, however, is not a requirement for deduplication. As
with classic sequencing, χi produces—and servers deliver—
messages with strictly increasing sequence numbers; servers
disregard all other messages as replays.

3.2 Distillation Microbenchmark
Having discussed how distilled batches are produced, we now
estimate the significance of their effect by means of a back-
of-the-envelope calculation and a simple microbenchmark on
AWS. Consider a setting where 100 million clients broadcast
8-byte messages, e.g., to issue payments (see § 2.1). We
compare classic authentication and sequencing, where clients
are identified by their public keys, messages are individually
signed and sequenced, against fully distilled batches where

272 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

pks sigssns msgs

msgsids

7 MB

736 KB

Figure 3: Full distillation of a batch of 65,536 payloads
(sizes to scale). The aggregate signature and aggregate se-
quence number do not appear as a result of their small size.

clients are identified by a numerical identifier and each batch
contains only one aggregated signature and sequence number.
We use Ed25519 [40] for signatures (32 B public keys, 64 B
signatures) and BLS12-381 [12] for multi-signatures (192 B
uncompressed signatures). We use uncompressed BLS multi-
signatures to save computation time at the cost of storage
space (96 B compressed vs. 192 B uncompressed).

Communication complexity. Payloads are 112 B per mes-
sage in the classic case (32 B of public key, 8 B of sequence
number, 8 B of message, 64 B of signature) vs. 11.5 B in
the fully distilled case (28 bits = 3.5 B of identifier to repre-
sent 257M clients, 8 B of message). Assuming batches of
65,536 messages (Fig. 3), classic batches are exactly 7 MB
long, while fully distilled batches are 736 KB long including
aggregate signature and sequence number.

Computation complexity. Running at maximum load, an
Amazon EC2 c6i.8xlarge instance authenticates 16.2± 0.4
classic batches per second using Ed25519’s batch verifica-
tion for 65,536 signatures. The same machine authenticates
457.1±0.3 fully distilled batches per second: each authenti-
cation requires the aggregation of 65,536 BLS12-381 public
keys and the verification of one BLS12-381 multi-signature.

Summary. By the order-of-magnitude calculations above,
fully distilled batches hold the promise to reduce the costs
of authentication and sequencing by a factor 9.7 for network
bandwidth, and 28.2 for CPU. Chop Chop aims to deliver on
that promise for a real-world fault-tolerant system.

4 Chop Chop
This section overviews Chop Chop’s architecture, Chop
Chop’s protocol, and provides arguments for its correctness.

Overview. Chop Chop involves three types of processes
(Fig. 4): broadcasting clients, delivering servers and a layer
of broadcast-facilitating brokers between them. Servers run
an Atomic Broadcast instance among themselves, to which
brokers submit messages. Chop Chop is agnostic to the imple-
mentation of Atomic Broadcast used by the servers. On top of
the provided broker-to-server Atomic Broadcast, Chop Chop
implements a much faster client-to-server Atomic Broadcast:
clients submit messages to the servers, aided by brokers.

Chop Chop’s protocol unfolds in two phases: distillation

Clients
(untrusted)

Clients
(untrusted)

Clients
(untrusted)

Broker
(untrusted)

Server
(3f + 1)

Server
(3f + 1)

Server
(3f + 1)

D
is

til
la

tio
n

Su
bm

is
si

on

C
ho

p
C

ho
p

At
om

ic
 B

ro
ad

ca
st

Broker
(untrusted)

Clients
(untrusted)

Figure 4: Chop Chop architecture.

(§4.2) and submission (§4.3). In the distillation phase, clients
interact with a broker to gather their messages in a distilled
batch (see §3). In the submission phase, the broker dissemi-
nates the distilled batch to the servers and submits the batch’s
hash to the server-run instance of Atomic Broadcast. Upon de-
livering its hash from Atomic Broadcast, servers retrieve the
batch and deliver its messages. Chop Chop’s contributions
mainly focus on the distillation phase. Chop Chop’s sub-
mission strategy closely resembles prior batch-based Atomic
Broadcast implementations [26, 34, 69].

4.1 Architecture and Model
Chop Chop augments the architecture of a classic Atomic
Broadcast, as described in §2, with novel brokers.

Clients and servers. Clients broadcast messages to a (dis-
tinct) set of servers. We assume that less than one third of
servers can be faulty and behave in an arbitrary manner, i.e.,
be Byzantine [50], while all clients can be faulty. For sim-
plicity, servers form a fixed set that is known by all correct
processes at system startup. Chop Chop can be extended for
reconfiguration thanks to its modular use of Atomic Broad-
cast [9,49] (Fig. 4). Clients issue messages after broadcasting
their public keys to the system (see §2.2).

Brokers. We discussed in §3 how both classic and distilled
batches are assembled by a broker. The role of brokers is
traditionally taken by servers. Given the additional strain put
on brokers by Chop Chop’s interactive distillation protocol,
however, having servers be brokers would result in a waste of
scarce, trusted resources. Importantly, however, distillation is
trustless. On the one hand, agreement rests entirely on Chop
Chop’s underlying Atomic Broadcast instance, for which bro-
kers are only clients. On the other hand, as we argue in §§4.2
and 4.4.1, a faulty broker cannot compromise integrity or no
duplication: distilled batches are publicly authenticated, and
correct clients cannot be tricked into using stale sequence
numbers. Hence, brokers need no trust: a broker either does
its job correctly or produces distilled batches that are visibly
malformed, and easily discarded by all correct servers.

This observation is of paramount importance to the per-
formance of Chop Chop: because distillation is heavy but
trustless, brokers should be distinct from servers. Along with

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 273

clients and servers, we thus assume a third, independent set
of brokers, sitting between clients and servers, to accelerate
Atomic Broadcast by assembling client messages in distilled
batches. We assume that at least one broker is correct; the
system loses liveness but not safety if all brokers are faulty.

Network. Chop Chop guarantees that the batches collected
and submitted to servers by correct brokers are well-formed
even in asynchrony, but achieves full distillation when the
network is synchronous (see §4.2). Chop Chop inherits the
network requirements of its underlying Atomic Broadcast.

4.2 Distillation Phase
We introduced in §3 a simplified, failure-free distillation pro-
tocol. This section describes how Chop Chop renders distilla-
tion tolerant to arbitrary failures and improves its performance
via a sequence of improvements, each addressing a shortcom-
ing of the simplified protocol. The complete fault-tolerant
protocol of Chop Chop is depicted in Fig. 5.

In the failure-free distillation protocol: clients χ1, . . . ,χb
send their messages m1, . . . ,mb, with sequence numbers
k1, . . . ,kb (#2) to a broker β (Fig. 5, #1); β identifies the
maximum submitted sequence number k and builds a batch
proposal B = [(x1,k,m1), . . . ,(xb,k,mb)] (#3); β disseminates
B to χ1, . . . ,χb (#4); each χi produces a multi-signature si
on H(B) (#5), which it sends to back β (#6); β aggregates
s1, . . . ,sn into an aggregate s, thus producing a fully distilled
batch B̃ = [s,k,((x1,m1), . . . ,(xb,mb))] (#7).

Background: Merkle trees. Chop Chop uses Merkle
trees [59] to hash batches. An l-element vector z1, . . . ,zl
is hashed into a root r, used as commitment. For each i, zi’s
value can be proved by means of a proof of inclusion pi, ver-
ifiable against r and zi. Proofs of inclusions are O(log l) in
size and are verified in O(log l) time.

What if a broker forges messages? A faulty β could try to
falsely attribute to some χi a message m′

i ̸= mi. β could do so
by replacing mi with m′

i in B, then having χi sign H(B), thus
implicitly authenticating m′

i. This is easily fixed by having χi
check that mi correctly appears in B before signing H(B).

Can a broker avoid sending the entire batch? A clear
inefficiency of the simplified protocol is that β has to convey
all of B back to each χi. This is fixed using Merkle trees. Upon
assembling B, β computes the Merkle root r of B, along with
the Merkle proof pi for each (xi,k,mi) in B. Instead of sending
B to all clients, β just sends r, k and pi to each χi. Upon
receiving r, k and pi, χi checks pi against r and (xi,k,mi),
producing si on r only if the check succeeds. If χi signs r,
then (xi,k,mi) is necessarily an element of B. Importantly,
however, β could inject (xi,k,m′

i ̸= mi) somewhere else in
B, while still providing χi only with the proof for (xi,k,mi).
This is solved by having servers ignore every distilled batch
where two or more messages are attributed to the same client.
This way, if χi signs r, then either mi is the only message in B

attributed to χi, or B̃ is rejected by all servers as malformed:
either way, integrity is upheld.

What if a client does not multi-sign? Under the assump-
tion that χ1, . . . ,χb are correct, β can safely wait until it col-
lects all s1, . . . ,sb. This policy is clearly flawed in the Byzan-
tine setting: a single crashed client can prevent β from ever
aggregating s. Furthermore, lacking an assumption of syn-
chrony, β cannot exclude from B̃ those clients that do not sign
r by some timeout: consistently slow clients would always be
excluded, and validity would be lost. This issue is fixed by
the fallback mechanism introduced in the following.

Fault-tolerant distillation. Upon first sending (ki,mi) to β

(#2), χi also sends an individual, non-aggregable signature
ti for (xi,ki,mi), which β stores. β then waits for si-s on r
until either all si-s are collected, or a timeout expires. For
every si that ends up missing, due to χi being crashed or de-
layed, β attaches (ki, ti) to B̃. Upon receiving B̃, a server first
checks each individual signature ti against the corresponding
(xi,ki,mi). The server then checks s against the public keys of
the clients for which an individual signature ti was not given,
i.e., the public keys of all clients that signed r in time.

In summary: fast, correct clients who successfully produce
their si-s in time authenticate their message by multi-signing
r; slow or crashed clients still get their messages through,
individually authenticated by the ti-s that they originally pro-
duced. Full distillation is achieved whenever the network is
synchronous and all clients are correct, which we argue is the
case in practice for the majority of a system’s lifetime. When
the network is asynchronous, however, a fraction of clients
might fail to produce their si in time, resulting in a partially
distilled batch. At the limit where all clients fail to sign r in
time, B̃ reduces to a classic batch, degrading server-side per-
formance to pre-distillation levels. We underline that safety
and liveness are preserved regardless of synchrony.

What if a broker replays messages? A problem introduced
by the last fix is that χi authenticates both ki and k as sequence
numbers for mi, allowing a faulty β to play mi twice, hence
breaking Atomic Broadcast’s no duplication. This is fixed
by having each client engage in the broadcast of only one
message at a time. This way, while β can indeed replay mi,
it can only do so consecutively: all sequence numbers χi
authenticates for mi belong to a range that does not contain
sequence numbers for any other message mi′ ̸=i issued by χi.

This observation is key to the following fix: along with the
last sequence number k̄χ each client χ used, a correct server
σ stores the last message m̄χ that χ broadcast; upon ordering
a message m with sequence number k from χ, σ delivers m
if and only if k > k̄χ and m ̸= m̄χ. In doing so, σ discards all
consecutive replays of m̄χ, thus preventing replays in general.

What if a client broadcasts too frequently? The last fix
relies on clients broadcasting one message at a time. Depend-
ing on latency, a client broadcasting too frequently might

274 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

16
17
18

19

2
3
4

5

6

8

1

9

10
11

Response

12

Atomic
Broadcast

Distillation Witness

7

Delivery

13

14

15

Submission

Figure 5: Overview of the Chop Chop protocol between two clients (χ1, χ2), a broker (β) and four servers (σ1–σ4). The
protocol is comprised of 19 steps (#1–#19) and of an underlying instance of Atomic Broadcast such as BFT-SMaRt or HotStuff.

accrue an ever-growing queue of pending messages. This
issue is fixed by flushing application messages in bursts, akin
to Nagle’s buffering algorithm for TCP.

What if a client uses the largest possible sequence number?
Assuming that a finite number of bits (e.g., 64) are allocated
to representing sequence numbers, a faulty client χm could
set its km to the largest possible sequence number kmax (e.g.,
264 −1). In doing so, χm would force all other χi-s to update
their sequence number to kmax. Since correct clients only
use strictly increasing sequence numbers, no χi could ever
broadcast again: sequence numbers would run out. Proving
the legitimacy of sequence numbers fixes this issue.

Legitimate sequence numbers. By the rule that we estab-
lished, no more than one message from the same client can
appear in the same batch. Moreover, correct clients always
tag their messages with the smallest sequence number they
have not yet used, i.e., the largest they have used plus one. By
induction, we then have that unless some client misbehaves,
no client ever needs to use a sequence number larger than the
number of batches ever delivered by the servers: the largest
sequence number any client submits to the very first batch is
0, therefore no client submits a sequence number larger than
1 to the second batch, and so on. This observation allows us
to define as legitimate any sequence number smaller than the
number of batches servers have delivered at any given time.

Legitimacy proofs. This definition of legitimacy allows
for the generation of legitimacy proofs: upon delivering the
n-th batch, a server publicly states so with a signature. By
collecting f +1 server signatures stating that the n-th batch
was delivered into a certificate ln, any process can publicly
prove that any sequence number smaller than n is legitimate.

Upon initially submitting ki (#2), χi also sends to β a cer-
tificate ln, for any n > ki; β ignores client submissions that
lack such certificate, except when ki = 0 since no certificate
is needed. Upon sending k back to all χi-s (#4), β attaches
the highest ln̂ it collected: ln̂ proves that k is legitimate since
n̂ > k. χi signs r (#5) only if k is proved legitimate by ln̂.

This technique ensures correct clients always use legitimate

sequence numbers. Since legitimate sequence numbers grow
only with the number of delivered batches, no correct client is
forced to skip too far ahead, compromising its own liveness.

What if a broker crashes? If β fails to engage in the pro-
tocol, each χi can submit its message to any other broker.

4.3 Submission Phase
The submission phase ensures that all servers efficiently de-
liver a distilled batch, and that all broadcasting clients receive
a proof that their messages were delivered.

Witness. Having gathered a distilled batch B̃ (#7), β moves
on to have f +1 servers signs a witness shard for B̃. In signing
a witness shard for B̃, a server σ simultaneously makes two
statements. First, B̃ is well-formed: σ successfully verified
B̃’s signatures and found all messages in B̃ to have a different
sender. Second, B̃ is retrievable: σ stores B̃ and makes it
available for retrieval, should any other server need it. We
call a witness for B̃ the aggregation of f +1 witness shards
for B̃. Because any set of f +1 processes includes a correct
process, when presented with a witness for B̃ any server can
trust B̃ to be well-formed and retrievable.

As discussed in §2.2, witnesses optimize server-side com-
putation. Only f +1 servers need to engage in the expensive
checks required to safely witness B̃. All other servers can
trust B̃’s witness, saving trusted CPU resources.

In order to collect a witness for B̃, β sends B̃ to all servers
(#8). Optimistically, β asks only f + 1 servers to sign a
witness shard for B̃, progressively extending its request to
2 f + 1 servers upon expiration of suitable timeouts. Upon
receiving B̃ (#9), a correct server σ stores B̃. If asked to
witness B̃, σ checks that B̃ is well-formed and sends back to β

its witness shard for B̃ (#10). β collects and aggregates f +1
shards into a witness for B̃ (#11), then submits B̃’s hash and
witness to the server-run Atomic Broadcast (#12).

Delivery. Upon delivering B̃’s hash and witness from
Atomic Broadcast (#13), a correct server σ retrieves B̃, ei-
ther from its local storage (if it directly received B̃ from β at
#8) or from another server (#14). Because B̃ is retrievable, σ

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 275

is guaranteed to eventually find a server to pull B̃ from. Hav-
ing retrieved B̃ (#15), σ delivers all non-duplicate messages
in B̃ (see §4.2 for how σ detects duplicates).

Response. Finally, σ signs a delivery certificate, listing the
messages in B̃ that σ delivered. σ sends its signature back
to β (#16). By agreement of Atomic Broadcast, all correct
servers deliver the same subset of messages in B̃. As such,
β is guaranteed to eventually collect f +1 signatures on the
same delivery certificate (#17). Upon doing so, β distributes
a copy of B̃’s delivery certificate to χ1, . . . ,χb (#18). Armed
with B̃’s delivery certificate, a correct χi can publicly prove
the delivery of mi (#19) and safely broadcast its next message.

4.4 Correctness
This section summarizes Chop Chop’s correctness analysis.
We prove Chop Chop’s correctness to the fullest extent of
formal detail in an extended document available online [15].

4.4.1 Safety

The safety of Chop Chop is given by its agreement, integrity
and no duplication properties (see §2).

Agreement. Chop Chop inherits agreement from its under-
lying, server-run instance of Atomic Broadcast. A correct
server delivers messages only upon delivering the hash of a
batch from the server-run Atomic Broadcast. Upon doing so,
a correct server retrieves the full batch, checks its hash, and
delivers all its messages in order of appearance. All correct
servers deliver the same messages in the same order assuming
cryptographic hashes are collision-resistant.

Integrity. A correct server only delivers messages included
in a batch witnessed by f + 1 servers, i.e., by at least one
correct server. A correct server witnesses a batch only if: no
more than one message in the batch is attributed to the same
client; every client in the batch authenticates its message with
a signature or the root of the batch’s Merkle tree with a multi-
signature. A correct client multi-signs the root of a batch’s
Merkle tree only upon receiving a proof of the inclusion of its
message in the batch. As such, if a correct client multi-signs
the root of a batch’s Merkle tree, either the batch contains
only the client’s intended message or it is not witnessed. In
summary, a correct server delivers a message m from a correct
client χ only if χ broadcast m.

No duplication. A correct client only broadcasts one mes-
sage at a time. As such, while the client might attach multiple
sequence numbers to the same message (different brokers
may propose different aggregate sequence numbers for the
client to authenticate) the sequence numbers the client at-
taches to each message belong to distinct ranges. A correct
server delivers client messages only in increasing order of se-
quence number, and ignores repeated messages. This means
that a correct server delivers at most one message from each
sequence number range. In summary, no server delivers a
correct client’s message more than once.

4.4.2 Liveness

The liveness of Chop Chop is given by its validity property.

Validity. If a correct client submits its message to a correct
broker, the message is guaranteed to eventually be delivered
by all correct servers: even if the client fails to engage in
distillation in a timely manner, its message is still included in
a batch which gets disseminated, witnessed and delivered by
all correct servers. Faulty brokers can clearly refuse to service
(specific) clients. Upon expiration of a suitable timeout, how-
ever, a correct client submits its message to a different broker.
As we assume that at least one broker is correct, all correct
clients are eventually guaranteed to find a correct broker and
get their messages delivered by all correct servers.

4.4.3 Other Attacks

As we outlined in §§4.4.1 and 4.4.2, Chop Chop satisfies
all properties of Atomic Broadcast. In this section, we con-
sider other attacks an adversary might deal to impair Atomic
Broadcast’s performance and fairness [43] in Chop Chop.

Denial of service. A faulty broker may refuse to service
clients, thus forcing them to fall back on other brokers, in-
creasing latency. A faulty broker may also submit deliberately
non-distilled batches to servers to force them to waste trusted
resources to receive and verify individual signatures. While
handling DoS is beyond the scope of this paper, Chop Chop is
amenable to accountability mechanisms [36]. Brokers could
be asked to stake resource to join the system. Correct, high-
performance brokers could be rewarded, akin to gas fees in
Ethereum [78]. Brokers that accrue a reputation of misbehav-
ior or slowness could be banned and lose their initial stake.

Front-running. A faulty broker might impact fairness by
front-running messages of interest [25, 83]. While front-
running resistance is beyond the scope of this paper, Chop
Chop is compatible as-is with existing mechanisms to mit-
igate or prevent front-running, most notably schemes that
have clients submit encrypted messages whose content is re-
vealed only after delivery [60,81]. Importantly, these encrypt-
order-reveal schemes could be selectively employed only for
those messages that are vulnerable to front-runs, e.g., mes-
sages used for stock trading [65]. Maintaining Chop Chop’s
throughput while providing quorum-enforced fairness for ev-
ery message [82] opens a valuable future avenue of research.

5 Implementation Details
A straightforward implementation of the protocol we pre-
sented in §4 would not achieve the throughput and latency we
observe in §6. In this section, we discuss some of the tech-
niques and optimizations required on the way to practically
achieving Chop Chop’s full potential. (Many optimizations
are however left out due to space constraints).

Code. Chop Chop is implemented in Rust, totaling 8,900
lines of code. The main libraries Chop Chop depends on

276 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

are: tokio 1.12 for an asynchronous, event-based runtime;
rayon 1.5 for worker-based parallel computation; serde 1.0
for serialization and deserialization; blake3 1.0 for crypto-
graphic hashes; ed25519-dalek 1.2 for EdDSA signatures
on Curve25519 [40]; blst 0.3.5 for multi-signatures on the
BLS12-381 curve [12]. Chop Chop also depends on in-house
libraries: talk (9,800 lines of code) for basic distributed com-
puting and high-level networking and cryptography; zebra
(7,100 lines of code) for Merkle-tree based data structures.

5.1 Broker
The goal of a Chop Chop broker is to produce batches as
distilled as possible (to minimize server load), as large as
possible (to amortize ordering), and as quickly as possible
(to minimize latency). Our target is for a broker to assemble
one fully distilled batch of 65,536 messages (∼ 736 KB, see
Fig. 3) per second, with a 1 second distillation timeout.

Reliable UDP. Short-lived TCP connections between bro-
ker and clients are easier to work with, but unfeasible for the
broker to handle. Assuming an end-to-end broadcast time of
up to 10 seconds, the broker would need to maintain upwards
of 600,000 simultaneous TCP connections, which prelimi-
nary tests immediately proved unfeasible on the hardware we
have access to. This makes UDP the only option for client-
broker communication. However, UDP lacks the reliability
properties of TCP, and tests showed non-negligible packet
loss even within the same AWS EC2 availability zone. As
we discussed in §4.2, message loss immediately translates
to partial distillation. We address this issue by means of an
in-house, ACK-based, message retransmission protocol based
on UDP that also smoothens the rate of outgoing packets.

EdDSA batch verification. To avoid spoofing, all client
messages are authenticated with signatures. At the target
rate, however, individually verifying each signature is unfea-
sible for a broker. Luckily, ed25519-dalek allows for more
efficient batched verification. A broker buffers the client mes-
sages it receives and authenticates them in batches.

Tree-search invalid multi-signatures. Clients contributing
to the same batch produce matching multi-signatures for the
batch’s root. At the target rate the broker cannot indepen-
dently verify each multi-signature. We tackle this problem by
gathering multiple matching multi-signatures on the leaves
of a binary tree: internal nodes aggregate their children. For
each tree, the broker verifies the root multi-signature, recur-
ring only on the children of an invalid parent. This allows
to identify invalid multi-signatures in logarithmic time while
enabling batched verification in the good case.

Caching legitimacy proofs. Clients justify their sequence
numbers with legitimacy proofs. Again, the broker cannot
verify each proof in time. We address this problem by having
the broker verify a legitimacy proof only if higher than the
highest it previously observed. As a result, a faulty client

might get away with submitting an invalid legitimacy proof
but, importantly, not an illegitimate sequence number.

5.2 Server
The goal of a Chop Chop server is to process distilled batches
as quickly as possible without overflowing its memory.

Batch garbage collection. Servers update each other on
which batches they delivered. A server garbage-collects a
batch, both messages and metadata, as soon as it is delivered
by all other servers. We underline that, even if a single server
fails to deliver a batch, the others cannot garbage-collect it as
the slow server might be correct. This is an inherent limitation
of Atomic Broadcast: agreement without synchrony can be
ensured only in the infinite-memory model.

Identifier-sorted batching. No two messages from the
same client must appear in the same batch. To simplify pro-
cessing, brokers sort the messages in a batch by client identi-
fier. Servers reject batches whose identifiers are not strictly
increasing, thus verifying that all identifiers are distinct in
constant size and in linear time. Sorting messages by identi-
fier also enables parallel deduplication: messages are split by
identifier range, chunks are deduplicated independently.

6 Evaluation
We evaluate Chop Chop focusing on the following research
questions (RQs): What workload can Chop Chop sustain
(§6.3)? What are the benefits of Chop Chop’s distillation
(§6.4)? How does Chop Chop scale to different numbers of
servers (§6.5)? How efficiently does Chop Chop use resources
overall (§6.6)? How does Chop Chop perform under adverse
conditions, such as server failures (§6.7)? What performance
can applications achieve using Chop Chop (§6.8)?

6.1 Baselines
We compare Chop Chop against four baselines:

• HotStuff [80]: an Atomic Broadcast protocol designed
for high-throughput (written in C++);

• BFT-SMaRt [9]: an Atomic Broadcast protocol, similar
to PBFT [18], designed for low-latency (written in Java);

• Narwhal-Bullshark: the DAG-based Atomic Broadcast
protocol Bullshark [69] with the state-of-the-art high-
throughput mempool Narwhal [26] (written in Rust);

• Narwhal-Bullshark-sig: akin to Narwhal-Bullshark but
with Narwhal modified to authenticate messages, thus
matching Chop Chop’s guarantees.

We deploy Chop Chop with two distinct underlying Atomic
Broadcast protocols (Fig. 5): HotStuff and BFT-SMaRt.

HotStuff and BFT-SMaRt. Evaluating HotStuff and BFT-
SMaRt allows us to assess the base performance of an
Atomic Broadcast protocol and determine how much accel-
eration Chop Chop provides. We evaluate Chop Chop on
top of the same implementations of HotStuff [22] and BFT-
SMaRt [21] we benchmark against. These implementations

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 277

NAm SAm EU
SAf Aus Asia

AWS OVH

Load
brokers

ServersBrokers

Clients

Load
clients

continent

region

Figure 6: Cross-cloud deployment summary.

are production-ready and do not use state-of-the-art mempool
protocols, only some basic form of batching. When evaluated
stand-alone, each message in these systems includes 80 B
of header composed of a client identifier (8 B), a sequence
number (8 B), and a signature (64 B) verified by the servers.
Both systems use batches of 400 messages, i.e., of 34.4 KB.

Narwhal-Bullshark. As a state-of-the-art mempool, Nar-
whal is a close point of comparison for Chop Chop. Servers
in Narwhal scale out following a primary-workers model:
each server is paired with one or several workers into a server
group. Similarly to Chop Chop, Narwhal greatly accelerates
its underlying Atomic Broadcast (here, Bullshark). Unlike
Chop Chop, however, Narwhal leaves the responsibility of
authenticating and deduplicating messages to the application.

Narwhal-Bullshark-sig. For a better comparison, we
also benchmark Narwhal-Bullshark-sig: Narwhal-Bullshark
where messages are authenticated by Narwhal in a state-of-
the-art way, i.e., using batched, multi-core Ed25519 signature
verification. Each message includes an 80 B header as for
HotStuff and BFT-SMaRt. As for Narwhal-Bullshark, the re-
maining parameters are the default ones, e.g., 500 KB batches.

6.2 Setup
Unless otherwise specified—in §§ 6.5 and 6.6—the Chop
Chop benchmarks involve 64 c6i.8xlarge AWS servers, of 32
Intel vCPUs each, geo-distributed across 14 regions. Brokers
assemble, and servers process, batches of 65,536 messages.
Each message is 8 B in length, resulting in 736 KB batches
(Fig. 3). Baselines always use the same set of server ma-
chines as their Chop Chop counterpart. All experiments run
with maximum resilience, e.g., the system survives 21 faulty
servers out of 64. Fig. 6 overviews the used deployment.

Matching trusted and total resources. Unlike its baselines,
Chop Chop leverages untrusted resources, brokers, to boost
its performance. Lacking a well-defined conversion between
trusted and untrusted resources, two extremes can be taken to

compare Chop Chop with its baselines: we can either match
trusted resources, e.g., same number of Chop Chop servers as
Narwhal workers, or match total resources, e.g., same number
of servers and brokers in Chop Chop as workers in Narwhal.

Intuitively, the first approach considers untrusted resources
to be free while the second considers untrusted resources to
be as costly as trusted resources. We use the first approach in
§§6.3 to 6.5, 6.7 and 6.8 to stress Chop Chop, provisioning
the system with enough brokers to bottleneck servers. We use
the second approach in §6.6 to assess how efficiently Chop
Chop uses its hardware resources, trusted or not.

Load clients and load brokers. We show in §6.3 that Chop
Chop servers handle up to 43.6 million operations per second
with an average latency of 3.6 seconds. To produce this level
of workload, a real-world deployment would require over 700
brokers, each handling around 200,000 clients broadcasting
back-to-back thus totaling hundreds of millions of machines.
As we cannot experiment at such a scale, we introduce two
new actors: load clients and load brokers. (In the rest of this
section, “brokers” and “clients” denote real brokers and real
clients; the term “load” is always used explicitly.)

Load clients connect to brokers and simulate thousands of
concurrent client requests. Most system evaluation typically
use this approach to stress the system and measure latency.
However, we explicitly separate clients from load clients in
this evaluation. Clients run on very small machines—less
powerful than most smartphones—to provide more accurate
end-to-end latency measurements. We similarly split clients
from load clients in all baseline runs.

Load brokers are unique to Chop Chop. Even using load
clients, we could not deploy enough brokers to bottleneck
Chop Chop’s servers. Load brokers work around this limita-
tion, submitting batches of pre-generated messages directly
to the servers. Free from interactions with clients and expen-
sive cryptography, a load broker puts on the servers a load
equivalent to that of tens of brokers working at full capacity.

Using load clients and load brokers, we manage to show
that brokers can quickly generate large batches of messages,
and servers can process large numbers of batches.

Cross-cloud deployment. All servers are deployed on
AWS, balanced across 14 regions: Cape Town, São Paulo,
Bahrain, Canada, Frankfurt, Northern Virginia, Northern Cal-
ifornia, Stockholm, Ohio, Milan, Oregon, Ireland, London,
and Paris. For system sizes of 8 in §6.5, we distribute servers
across the first 8 regions from the list, which constitute the
most adversarial setup with the highest pairwise latency.

Load brokers are placed in a separate cloud provider, OVH,
for two purposes. First, it provides a better representation of
Internet load than a single-cloud deployment. AWS operates
under its own AS so any AS peering bottlenecks would be
bypassed by an AWS-only deployment. Second, OVH is one
of the few cloud providers with enough peering with AWS
to stress Chop Chop without charging for egress bandwidth,

278 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

saving us from using AWS’ costly bandwidth. The final cost
amounted to 25,000 USD in AWS credits. Using OVH saved
us more than 70,000 USD since each of Chop Chop’s data
point on a figure would have cost 1,700 USD in AWS egress
bandwidth—21 TB at 0.08 USD per GB ≈ 1,700 USD.

For all experiments, we deploy one broker in each conti-
nent (Cape Town, São Paulo, Tokyo, Sydney, Frankfurt, and
Northern Virginia) and one client in each of the 14 regions
above, plus Tokyo and Sydney. Clients connect to their near-
est broker. We configure the network for geo-distribution and
high load, e.g., TCP buffer sizes [37] and UDP parameters.

All baselines run on the same parameters. For Narwhal-
Bullshark, we collocate each server with one of the workers in
its server group. We reproduced Narwhal-Bullshark’s original
experiments [69] and matched the results.

Hardware. All servers, brokers and load clients run on
c6i.8xlarge machines with an Intel Xeon Platinum 8375C (32
virtual CPUs, 16 physical cores, 2.9 GHz baseline, 3.5 GHz
turbo), 64 GB of memory and 12.5 Gb/s of bandwidth. We
selected these machines since they provide good performance
and are in the same “commodity” price range as those chosen
initially for Chop Chop’s main baseline: Narwhal-Bullshark.
Clients run on t3.small machines: 2 vCPUs, 1 physical core,
2 GB of memory, and up to 5 Gb/s bandwidth—of which
they use less than 1 KB/s. All machines run Linux Ubuntu
20.04 LTS on the AWS patched version of the Linux kernel
5.15.0, except for the load brokers on OVH which run on
Linux kernel 5.4.0—the same kernel was not available.

Challenges. The most significant evaluation challenges
arose from the scale of the targeted deployment. The setup
and orchestration alone required simultaneous handling of up
to 320 machines across two different cloud providers and 25
regions, as well as transferring 13TB of files—mostly public
keys and pre-generated batches—for each of the 12 setups.
To handle this, we developed a new command-line tool to
efficiently deploy distributed systems: silk. Among other
things, we use silk for peer-to-peer-style file transfer over
aggregated TCP connections, as well as for grouped process
control. With silk, transferring all files from a single ma-
chine takes around 30 minutes, compared to 68 hours with
scp. The code for silk can be found at [anonymized].

Additional challenges came from the real-world nature of
the targeted deployment. First, the connection between OVH
and AWS’s Asia and Pacific regions was particularly unstable
at certain times of day especially when close to saturation.
For example, Tokyo’s connection was frequently degraded be-
tween 3pm and 5pm UTC. Second, the performance of some
machines sometimes deviated from their specifications. As an
example, in a setup size of 64, we observed around 2 machines
operating with a 10% lower CPU turbo clock rate than speci-
fied. Considering these variations, we increased the number
of servers a broker initially asks for witness shards (see §4.3)
by a margin, e.g., f +5 instead of f +1. This improves sys-

tem stability—i.e., lower latency variability—while slightly
reducing maximum throughput. Unless otherwise specified,
we set the margin to 4 in all experiments, i.e., f +5.

Plots. Every data point is the mean of 5 runs of 2 minutes
each (after excluding warmup and cooldown, the relevant
cross-section is at least 1 minute). All plots further depict one
standard deviation from the mean using either colored shaded
areas or black error bars (which may be too small to notice).
Experimental data can be found at [anonymized].

6.3 RQ1 – Load Handling
Fig. 7 shows the latency and throughput of Chop Chop and
all its baselines for various input rates of 8 B messages. The
variability is represented using shaded areas.

Baselines. Both BFT-SMaRt and HotStuff showcase sta-
ble performances under low loads, respectively achieving
around 1,400 and 1,600 operations per second. BFT-SMaRt’s
latency is consistently better than HotStuff’s up to its inflec-
tion point (0.45–0.53 s vs. 1.2–1.6 s). We measure up to
3.8M op/s for Narwhal-Bullshark and up to 382k op/s for
Narwhal-Bullshark-sig. The difference in respective through-
puts highlights the cost of authentication for servers: verifying
signatures reduces the throughput of Narwhal-Bullshark by
one order of magnitude. We observe a latency of around 3.6 s
for both Narwhal-Bullshark and Narwhal-Bullshark-sig.

Chop Chop. Chop Chop achieves close to 44M op/s while
running on top of both HotStuff and BFT-SMaRt. Chop
Chop’s latency range is 3.0–3.6 s with BFT-SMaRt and 5.8–
6.5 s with HotStuff. Notably, the latency of Chop Chop-
HotStuff decreases under high load. This is due to the internal
batching mechanism of the HotStuff implementation: buffers
fill faster under higher load, thus avoiding timeouts. This has
an immediate impact on Chop Chop, which feeds HotStuff
at a low rate: HotStuff alone accounts for over 60% of Chop
Chop-HotStuff’s overall latency. BFT-SMaRt makes a better
fit for Chop Chop, as its throughput is sufficient for Chop
Chop’s needs, and its latency is lower than HotStuff’s.

Mempools’ trade-off. In comparison to BFT-SMaRt and
HotStuff, Chop Chop trades latency in favor of throughput.
This trade-off is mostly explained by batching and distilla-
tion. When assembling a batch, a broker has to wait twice:
once to collect enough messages to fill a batch, and once
to collect all multi-signatures from clients engaging in dis-
tillation. We set both waits’ timeout to 1 second. Notably,
Narwhal-Bullshark seems to incur a similar latency cost, as
Chop Chop’s latency approximately matches that of Narwhal-
Bullshark, even though Chop Chop needs an extra round trip
between clients and broker (Fig. 5, #4–#6).

6.4 RQ2 – Distillation Benefits
We showcase the benefits of distillation by: evaluating
throughput with and without distillation, evaluating distilla-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 279

800 1200 1600
Throughput [op/s]

0
2
4
6
8

10

La
te

nc
y

[s
]

100k 200k 300k 400k 1M 2M 3M 4M 10M 20M 30M 40M 50M

HotStuff
BFT-SMaRt
NW-Bullshark-sig
NW-Bullshark
CC-HotStuff
CC-BFT-SMaRt

Figure 7: Throughput-latency of Chop Chop and of notable Atomic Broadcast systems under various input rates.

0% 100%
100k

1M

10M

100M

Th
ro

ug
hp

ut
[o

p/
s,

lo
g]

CC-HotStuff CC-BFT-SMaRt NW-Bullshark-sig

8 32 128 512

(a) Distillation ratio (b) Message sizes [B]

Figure 8: Throughput of Chop Chop and authenticated
Narwhal with Bullshark (log scale) when (a) Chop Chop
has no distillation and with (b) varying message size.

tion for messages of different sizes, and observing the impact
of distillation on network bandwidth to achieve line rate.

Distillation vs. mitigations. Along with distillation, Chop
Chop makes use of two techniques available in the literature
to mitigate the cost of Atomic Broadcast’s authentication:
short identifiers and pooled signature verification (see §2.2).

Fig. 8a breaks down Chop Chop’s throughput, measur-
ing how significantly distillation alone contributes to Chop
Chop’s performance. When no message is distilled, Chop
Chop’s servers bottleneck at 1.5M op/s, 3.9× higher than
Narwhal-Bullshark-sig. This result is in line with both sys-
tems bottlenecking on server CPU, as the technique employed
by Chop Chop to mitigate authentication complexity has only
one third of the servers verify each client signature. (We
conjecture that the additional 1.3 factor may be owed to engi-
neering differences.) When batches are fully distilled, Chop
Chop’s throughput grows to 44M op/s, accounting for the
additional 29-fold boost to Chop Chop’s performance.

Distillation for larger messages. Fig. 8b illustrates Chop
Chop’s maximum throughput for message sizes of 8 B to
512 B which may be relevant to applications that cannot
work around smaller message sizes, e.g., many smart con-
tracts. Chop Chop’s throughput is similar with BFT-SMaRt
and HotStuff, decreasing at an approximately 1-to-1 ratio as
the message size increases: 44.3M op/s for 8 B, 17.6M op/s
for 32 B, 3.5M op/s for 128 B and 890k op/s for 512 B.

This is in line with expectations. As we discuss in §3.2, a
server should receive ∼ b bytes in order to deliver a b-bytes
message in a large, fully distilled batch, as full distillation
amortizes to zero the communication cost of authenticating

0 200k 400k 600k 800k
Input rate [op/s]

0.1

1

10

100

Ra
te

 [M
B/

s]

NW-Bullshark-sig

0 20M 40M 60M
0

200
400
600
800

CC-BFT-SMaRt
Input rate Network rate Output rate

Figure 9: Throughput efficiency of authenticated Narwhal
with Bullshark (left, log scale) and Chop Chop with BFT-
SMaRt (right, linear scale) with various input rates.

and sequencing each message. For 8 B messages, servers
encounter a CPU bottleneck slightly before the link between
load brokers and servers is saturated. This explains why
the throughput decreases only 2.52× when messages grow to
32 B: all remaining server-bound bandwidth is used to convey
messages (as messages are larger) while the load on server
CPUs is reduced (as less messages are delivered overall).
The system remains communication-bottlenecked as the size
of the messages increases, and throughput starts decreasing
linearly with message size, e.g., Chop Chop’s throughput for
512 B messages is 4.00× smaller than for 128 B.

By contrast, Narwhal-Bullshark-sig bottlenecks on server
CPUs longer, due to signature verification, maintaining a sta-
ble throughput until 512 B messages finally fill server links.
Overall, Narwhal-Bullshark-sig’s throughput only decreases
from 382k op/s for 8 B messages to 142k op/s for 512 B mes-
sages, which matches their non-authenticated evaluation with
512 B messages. The gap between Chop Chop and Narwhal-
Bullshark-sig at 512 B messages can be mostly attributed to
Chop Chop’s more efficient use of server bandwidth: unlike
Narwhal, Chop Chop offloads the dissemination of batches
to external brokers. Narwhal’s use of worker-to-worker com-
munication in its common path also makes it more prone to
be affected by AWS’s various upload limitations, e.g., AWS
upload bandwidth is half the stated download bandwidth, and
there are network credit limits for “burst” uploading.

Line rate. Fig. 9 illustrates Chop Chop’s near line-rate net-
work use by depicting its input, network and output rates:

• Input rate measures the total bytes of useful information—
i.e., client identifiers and messages—that clients, load

280 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

clients and load brokers all broadcast per time unit;
• Network rate measures the ingress bandwidth of servers

at their network interface, i.e., useful information cap-
tured by the input rate as well as the Atomic Broadcast’s
overhead for ordering, authentication and deduplication;

• Output rate, or “goodput”, measures the total bytes of
useful information that each server delivers per time unit.

A system with perfect line rate would match all three rates:
input rate would match output rate as messages can be deliv-
ered in a timely fashion with no backlogging, and output rate
would match network rate as a server would only receive use-
ful information, with no overhead due to Atomic Broadcast.
The gray-shaded areas in Fig. 9 highlight this overhead, i.e.,
the difference between network and input rates. Network and
output rates are averaged over all servers.

In this experiment, each of the 257M simulated clients
broadcast 8 B messages. This results in 11.5 B of useful
information per broadcast as 28 bits = 3.5 B are sufficient
to represent every identifier. This conversion is captured
by the dotted line which converts the input rate from op/s,
represented on the x-axis, to B/s, represented on the y-axis.

For authenticated Narwhal-Bullshark, the output rate
closely matches the input rate until signature verification be-
comes the bottleneck at 378k op/s, shown by the plateauing
output rate. The gap between Narwhal-Bullshark-sig’s net-
work and input rates is evident, differing by one order of mag-
nitude (notably in line with our back-of-the-envelope calcula-
tion in §3.2). In contrast, thanks to distillation, Chop Chop
practically achieves line-rate up to its maximum through-
put. Before its inflection point at 40M op/s, the overhead of
Chop Chop is less than 8%. The drop in output and network
rates at 60M op/s is due to servers surpassing their computa-
tional capacity: broadcasts stall, server witness verification
gets backlogged and brokers, suspecting server faults, ask for
more batch witnesses, further stressing servers’ CPUs.

6.5 RQ3 – Number of Servers
Fig. 10a illustrates the maximum throughput for systems of 8
(f = 2), 16 (f = 5), 32 (f = 10) and 64 (f = 21) servers. For
Chop Chop, we adjust the witnessing margin as the system
grows by 0, 1, 2, and 4 for 8, 16, 32 and 64 servers respectively
(see § 6.2). Both Chop Chop and authenticated Narwhal-
Bullshark scale well to 64 servers. Note that, unless trust
assumptions are modified, Narwhal-Bullshark-sig only scales
vertically: if a Narwhal server or any of its workers are faulty,
the entire server group is compromised. Chop Chop, instead,
scales horizontally with the number of brokers.

6.6 RQ4 – Overall Efficiency
The center cluster of bars in Fig. 10b compares Chop Chop’s
throughput with that of authenticated Narwhal-Bullshark
when overall hardware resources are matched. In this set-
ting, both systems have 128 machines at their disposal. Chop
Chop is provided with 64 servers, 64 brokers and 0 load bro-

8 16 32 64
100k

1M

10M

100M

Th
ro

ug
hp

ut
[o

p/
s,

lo
g]

CC-HotStuff CC-BFT-SMaRt NW-Bullshark-sig

64 s
∞ m

64 s
128 m

64 s
 64 m

(a) System sizes (b) Matching resources

Figure 10: Throughput of Chop Chop and authenticated
Narwhal with Bullshark (log scale) when (a) varying sys-
tem size, and when (b) varying the number of overall
machines (“m”) with 64 servers (“s”). Load brokers in
Chop Chop simulate tens of brokers, hence are noted “∞ m”.

0 1 threshold
100k

1M

10M

100M

Th
ro

ug
hp

ut
[o

p/
s,

lo
g]

CC-HotStuff CC-BFT-SMaRt

Auction Payment Pixel war

(a) Server failures (b) Applications

Figure 11: Throughput of Chop Chop (log scale) with (a)
various server failures and for (b) different applications.

kers. Since a load broker uses pre-generated synthetic data
to simulate tens of brokers (see §6.2), involving load brokers
in this experiment would give an unfair advantage to Chop
Chop. Narwhal-Bullshark-sig is provided with 128 workers,
to match Chop Chop’s total machines, balanced across 64
server groups, to match Chop Chop’s servers. The left and
right clusters of bars depict Chop Chop using load brokers
and Narwhal-Bullshark-sig with 64 server groups containing
1 worker each, respectively, as in the other experiments.

We observe 4.6M op/s for Chop Chop, with servers re-
porting around 5% CPU usage. We observe 679k op/s for
Narwhal-Bullshark-sig. Chop Chop’s higher throughput is in
line with expectations. In Narwhal-Bullshark-sig, workers are
trusted, and as such a worker can only contribute to its own
server group. Instead, since Chop Chop brokers are untrusted,
a broker’s work is useful to all servers.

6.7 RQ5 – Chop Chop Under Failures
Fig. 11a depicts Chop Chop’s throughput when some servers
crash 30 seconds into the run. Performance drops marginally
(from 44M op/s to 43M op/s) with one crash and by 66%
(down to 15M op/s) when one-third of the servers crash, re-
sulting in less CPU globally available to witness batches.

Fig. 8a captures Chop Chop’s performance hit when clients
fail to engage in distillation. This could be caused by clients
being slow or crashed, or brokers being malicious. Under the

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 281

most extreme conditions, where no client engages in distilla-
tion, the throughput drops from 44M op/s to 1.5M op/s.

6.8 RQ6 – Application Use Cases
Fig. 11b depicts the maximal stable throughput for various
application use cases. In the Auction app, a client can bid an
amount on a token it does not own, or take the highest offer it
received for an item it owns. The highest amount bid on each
token is locked and cannot be used to bid elsewhere. Money
bid is transferred when the owner of the token takes the offer,
or refunded when the bid is raised by another client. The
Auction app is single-threaded and many clients bid on the
same token to approximate a real auction. In the Payments
app, clients choose a recipient and an amount to transfer. In
Pixel war, clients choose a pixel and an RGB color to paint on
a 2,048 by 2,048 board. Operations are generated at random.

We observe 2.3M op/s for the Auction, 32M op/s for Pay-
ments and 35M op/s for Pixel war. The bottleneck is the
application in all cases, thus Chop Chop has sufficient capac-
ity for high, single-application throughput. Chop Chop can
also support many separate high-throughput applications si-
multaneously, making it a fitting Atomic Broadcast candidate
to power a universal SMR system, i.e., an Internet computer.

7 Related Work
We overview below the state-of-the-art most relevant to
Chop Chop, namely Atomic Broadcast systems with high-
throughput and efficient signature aggregation schemes.

High-throughput Atomic Broadcast. Narwhal [26] is a
mempool protocol that separates the reliable distribution of
payloads from the communication-expensive ordering in or-
der to accelerate DAG-based Atomic Broadcast [33, 42, 69].
Narwhal utilizes trusted workers to increase throughput while
Chop Chop relies on trustless brokers, for the same effect, and
scales out more efficiently. To circumvent the bottleneck as-
sociated with the broadcast leader, approaches using multiple
leaders have been developed—both for crash [31,61] and arbi-
trary [3,6,70,71] faults—to scale the broadcast throughput lin-
early with the number of leaders. Dissemination trees [44,63]
have also been employed to reduce communication cost and
maximize network bandwidth utility, while sharded [46, 76]
and federated [54] approaches reduce communication cost
by promoting local communication in geo-distributed setups.
In comparison, Chop Chop shows that an optimal distillation
mechanism for batches achieves better performances without
adding complexity to the Atomic Broadcast protocol itself.

Other approaches have shown that the underlying hardware
of servers can also be exploited for higher throughput, such
as FPGA [38, 41] and Intel SGX enclaves [7]. In compari-
son, Chop Chop uniquely boosts throughput by exploiting
trustless hardware via brokers. Atomic Broadcast can also
be accelerated in data centers by using the topology of the
network [51, 64] or even by running within the network itself
using P4-programmable switches [27, 45]. In such low la-

tency environments, the processing overhead incurred by the
operating system kernel can be bypassed to further increase
the throughput of Atomic Broadcast [1, 45, 75].

Signature aggregation. Aggregate signatures were first
proposed to save space by compacting a large number of
signatures into just one [11, 67]. Up until recently, aggre-
gation could also save verification time but only in certain
cases: either when the signatures are generated by the same
signer [17, §5.1], or when the signatures are on the same mes-
sage, i.e., multi-signatures [39]. In the latter case, aggregation
mechanisms have been proposed to achieve constant-time
verification of aggregated multi-signatures for both BLS [10]
and Schnorr [57] signature schemes. In particular, multi-
signatures are used in cryptocurrencies to have many servers
sign the same batch of payloads [30, 44]. Servers in Chop
Chop use rapidly-verifiable BLS multi-signatures [10] for that
very purpose. In addition to aggregating server signatures on
batches, Chop Chop’s distillation mechanism also aggregates
all client signatures in a batch in a way that provides constant-
time verification. The theoretical scheme Draft [16] proposed
signature aggregation with similar verification performances
but is tailored to Reliable Broadcast. It is however unclear how
Draft could be implemented as a real-world system without
compromising liveness. Indeed, Draft assumes infinite mem-
ory to prevent message replay attacks which would rapidly
exhaust servers’ memory if deployed to match Chop Chop’s
maximum throughput (see §6.2). Chop Chop also aggregates
client sequence numbers to significantly reduce bandwidth
consumption when small messages are broadcast (Fig. 2).
Chop Chop aggregates sequence numbers thanks to the order-
ing of and thanks to novel legitimacy proofs (see §4.2).

8 Concluding Remarks
Chop Chop’s performance comes with two limitations. First,
Chop Chop’s high throughput makes memory management
a challenge: servers fill their memory quickly if unable to
garbage-collect under heavy load. Second, all servers in Chop
Chop are known at startup and it is unclear if its performance
would be maintained when deployed on thousands of servers.
Interesting avenues of future research include sharding to
achieve even higher throughput by running multiple, inde-
pendent, coordinated instances of Chop Chop, and offloading
more tasks to the brokers, such as public key aggregation.

Acknowledgments
We thank the OSDI ’23 reviewers for their continuous in-
volvement in the revision process. We further thank Vasileios
Trigonakis for his early feedback. This work has been sup-
ported in part by AWS Cloud Credit for Research, the Hasler
Foundation (#21084), and Innosuisse (46752.1 IP-ICT).

282 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-

raoui, Antoine Murat, Athanasios Xygkis, and Igor
Zablotchi. uBFT: Microsecond-scale BFT using Dis-
aggregated Memory. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2023.

[2] Marcos K. Aguilera, Idit Keidar, Dahlia Malkhi, Jean-
Philippe Martin, and Alexander Shraer. Reconfiguring
Replicated Atomic Storage: A Tutorial. Bulletin of the
EATCS, 102, 2010.

[3] Salem Alqahtani and Murat Demirbas. BigBFT: A
Multileader Byzantine Fault Tolerance Protocol for High
Throughput. In 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC),
2021.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolić, Sharon Weed Cocco, and Jason Yellick.
Hyperledger Fabric: A Distributed Operating System
for Permissioned Blockchains. In Proceedings of the
Thirteenth EuroSys Conference (EuroSys), 2018.

[5] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The Next
700 BFT Protocols. ACM Transactions on Computer
Systems (TOCS), 32(4), 2015.

[6] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, Lau-
rent Vanbever, Roger Wattenhofer, and Patrick Winter-
meyer. FnF-BFT: A BFT Protocol with Provable Perfor-
mance Under Attack. In 30th International Colloquium
on Structural Information and Communication Com-
plexity (SIROCCO), 2023.

[7] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. Hy-
brids on Steroids: SGX-Based High Performance BFT.
In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys), 2017.

[8] Daniel J. Bernstein. Curve25519: New Diffie-Hellman
Speed Records. In Public Key Cryptography (PKC),
volume 3958. 2006.

[9] Alysson Bessani, Joao Sousa, and Eduardo E.P. Alchieri.
State Machine Replication for the Masses with BFT-
SMaRt. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), 2014.

[10] Dan Boneh, Manu Drijvers, and Gregory Neven. Com-
pact Multi-signatures for Smaller Blockchains. In Ad-
vances in Cryptology – ASIACRYPT, 2018.

[11] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and Verifiably Encrypted Sig-
natures from Bilinear Maps. In Advances in Cryptology
— EUROCRYPT, 2003.

[12] Dan Boneh, Sergey Gorbunov, Riad S. Wahby,
Hoeteck Wee, and Zhenfei Zhang. BLS Signa-
tures. https://datatracker.ietf.org/doc/html/
draft-irtf-cfrg-bls-signature-05, 2022. Work
in Progress.

[13] Christian Cachin, Rachid Guerraoui, and Luís Ro-
drigues. Introduction to Reliable and Secure Distributed
Programming. Springer Science, 2011.

[14] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random Oracles in Constantinople: Practical Asyn-
chronous Byzantine Agreement Using Cryptography.
Journal of Cryptology (JCrypt), 18(3), July 2005.

[15] Martina Camaioni, Rachid Guerraoui, Matteo Monti,
Pierre-Louis Roman, Manuel Vidigueira, and Gauthier
Voron. Chop Chop: Byzantine Atomic Broadcast to the
Network Limit, 2024.

[16] Martina Camaioni, Rachid Guerraoui, Matteo Monti,
and Manuel Vidigueira. Oracular Byzantine Reliable
Broadcast. In 36th International Symposium on Dis-
tributed Computing (DISC), 2022.

[17] Jan Camenisch, Susan Hohenberger, and Michael Øster-
gaard Pedersen. Batch Verification of Short Signatures.
Journal of Cryptology (JCrypt), 25(4), 2012.

[18] Miguel Castro and Barbara Liskov. Practical Byzantine
Fault Tolerance. In Proceedings of the Third Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 1999.

[19] Tushar Deepak Chandra and Sam Toueg. Unreli-
able Failure Detectors for Reliable Distributed Systems.
Journal of the ACM (JACM), 43(2), 1996.

[20] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang
Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.
Upright Cluster Services. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples (SOSP), 2009.

[21] Authors’ implementation of BFT-SMaRt in Java.
https://github.com/bft-smart/library.

[22] Authors’ implementation of HotStuff in C++. https:
//github.com/hot-stuff/libhotstuff.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 283

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-05
https://github.com/bft-smart/library
https://github.com/hot-stuff/libhotstuff
https://github.com/hot-stuff/libhotstuff

[23] Tyler Crain, Christopher Natoli, and Vincent Gramoli.
Red Belly: A Secure, Fair and Scalable Open
Blockchain. In 2021 IEEE Symposium on Security
and Privacy (SP), 2021.

[24] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny
Dolev. Atomic Broadcast: From Simple Message Dif-
fusion to Byzantine Agreement. Information and Com-
putation (IC), 118(1), 1995.

[25] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash Boys 2.0: Frontrunning in Decentral-
ized Exchanges, Miner Extractable Value, and Consen-
sus Instability. In 2020 IEEE Symposium on Security
and Privacy (SP), 2020.

[26] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and Tusk: A
DAG-Based Mempool and Efficient BFT Consensus. In
Proceedings of the Seventeenth European Conference
on Computer Systems (EuroSys), 2022.

[27] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh
Lee, Noa Zilberman, Hakim Weatherspoon, Marco
Canini, Fernando Pedone, and Robert Soulé. P4xos:
Consensus as a Network Service. IEEE/ACM Transac-
tions on Networking (ToN), 28(4), 2020.

[28] Xavier Défago, André Schiper, and Péter Urbán. Total
order broadcast and multicast algorithms: Taxonomy
and survey. ACM Computing Surveys (CSUR), 36(4),
2004.

[29] Danny Dolev and Rüdiger Reischuk. Bounds on Infor-
mation Exchange for Byzantine Agreement. Journal of
the ACM (JACM), 32(1), 1985.

[30] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and
Hoeteck Wee. Pixel: Multi-signatures for Consensus.
In 29th USENIX Security Symposium (SEC), 2020.

[31] Vitor Enes, Carlos Baquero, Alexey Gotsman, and
Pierre Sutra. Efficient Replication via Timestamp Sta-
bility. In Proceedings of the Sixteenth European Con-
ference on Computer Systems (EuroSys), 2021.

[32] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of Distributed Consensus with
One Faulty Process. Journal of the ACM (JACM), 32(2),
1985.

[33] Adam Gagol, Damian Leundefinedniak, Damian
Straszak, and Michal Swietek. Aleph: Efficient Atomic
Broadcast in Asynchronous Networks with Byzantine
Nodes. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies (AFT), 2019.

[34] Fangyu Gai, Jianyu Niu, Ivan Beschastnikh, Chen Feng,
and Sheng Wang. Scaling Blockchain Consensus via a
Robust Shared Mempool. In 39th IEEE International
Conference on Data Engineering (ICDE), 2023.

[35] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scaling
Byzantine Agreements for Cryptocurrencies. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[36] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-
uschel. PeerReview: Practical Accountability for Dis-
tributed Systems. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), 2007.

[37] IBM. TCP Tuning guide. https://www.
ibm.com/docs/en/linux-on-systems?topic=
recommendations-network-performance-tuning.

[38] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordi-
nation in Hardware. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2016.

[39] Kazuharu Itakura and Katsuhiro Nakamura. A public-
key cryptosystem suitable for digital multisignatures.
NEC Research & Development, 1983.

[40] Simon Josefsson and Ilari Liusvaara. Edwards-Curve
Digital Signature Algorithm (EdDSA). RFC 8032
https://rfc-editor.org/rfc/rfc8032, 2017.

[41] Rüdiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Sten-
gel. CheapBFT: Resource-Efficient Byzantine Fault
Tolerance. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys), 2012.

[42] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All You Need is DAG. In
Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing (PODC), 2021.

[43] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-Fairness for Byzantine Consensus. In
Advances in Cryptology – CRYPTO, 2020.

[44] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford. En-
hancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In 25th USENIX
Security Symposium (SEC), 2016.

284 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.ibm.com/docs/en/linux-on-systems?topic=recommendations-network-performance-tuning
https://www.ibm.com/docs/en/linux-on-systems?topic=recommendations-network-performance-tuning
https://www.ibm.com/docs/en/linux-on-systems?topic=recommendations-network-performance-tuning
https://rfc-editor.org/rfc/rfc8032

[45] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving Scalability and Fault-Tolerance for
Microsecond-Scale Datacenter Services. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems (EuroSys), 2020.

[46] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding. In 2018 IEEE Symposium on Security and
Privacy (SP), 2018.

[47] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), 2007.

[48] Aptos Labs. The Aptos Blockchain: Safe, Scal-
able, and Upgradeable Web3 Infrastructure, 2022.
https://github.com/aptos-labs/aptos-core/
blob/main/developer-docs-site/static/
papers/whitepaper.pdf.

[49] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Re-
configuring a State Machine. SIGACT News, 41(1),
2010.

[50] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems (TOPLAS),
4(3), 1982.

[51] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[52] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter Pietzuch. Teechain: A Se-
cure Payment Network with Asynchronous Blockchain
Access. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[53] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien
Quema, and Marko Vukolic. XFT: Practical Fault Tol-
erance beyond Crashes. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

[54] Marta Lokhava, Giuliano Losa, David Mazières, Gray-
don Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove,
Rafał Malinowsky, and Jed McCaleb. Fast and Secure
Global Payments with Stellar. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

[55] Dahlia Malkhi, Michael K Reiter, Avishai Wool, and
Rebecca N Wright. Probabilistic Quorum Systems.
Information and Computation, 170(2), 2001.

[56] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzan-
tine consensus. In 2005 International Conference on
Dependable Systems and Networks (DSN), 2005.

[57] Gregory Maxwell, Andrew Poelstra, Yannick Seurin,
and Pieter Wuille. Simple Schnorr Multi-Signatures
with Applications to Bitcoin. Designs, Codes and Cryp-
tography (DCC), 87(9), 2019.

[58] David Mazieres. The Stellar Consensus Pro-
tocol: A Federated Model for Internet-level Con-
sensus, 2016. https://stellar.org/papers/
stellar-consensus-protocol.

[59] Ralph C. Merkle. A Digital Signature Based on a
Conventional Encryption Function. In Advances in
Cryptology — CRYPTO, 1987.

[60] Peyman Momeni, Sergey Gorbunov, and Bohan Zhang.
FairBlock: Preventing Blockchain Front-Running with
Minimal Overheads. In Security and Privacy in Com-
munication Networks (SecureComm), 2023.

[61] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (SOSP), 2013.

[62] Achour Mostefaoui, Hamouma Moumen, and Michel
Raynal. Signature-free Asynchronous Byzantine Con-
sensus with T <N/3 and O(N2) Messages. In Pro-
ceedings of the 2014 ACM Symposium on Principles of
Distributed Computing (PODC), 2014.

[63] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable BFT Consensus with Pipelined Tree-
Based Dissemination and Aggregation. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP), 2021.

[64] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr.
Sharma, and Arvind Krishnamurthy. Designing Dis-
tributed Systems Using Approximate Synchrony in Data
Center Networks. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2015.

[65] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quanti-
fying Blockchain Extractable Value: How dark is the
forest? In 2022 IEEE Symposium on Security and Pri-
vacy (SP), 2022.

[66] Fred B. Schneider. Implementing Fault-Tolerant Ser-
vices Using the State Machine Approach: A Tutorial.
ACM Computing Surveys (CSUR), 22(4), 1990.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 285

https://github.com/aptos-labs/aptos-core/blob/main/developer-docs-site/static/papers/whitepaper.pdf
https://github.com/aptos-labs/aptos-core/blob/main/developer-docs-site/static/papers/whitepaper.pdf
https://github.com/aptos-labs/aptos-core/blob/main/developer-docs-site/static/papers/whitepaper.pdf
https://stellar.org/papers/stellar-consensus-protocol
https://stellar.org/papers/stellar-consensus-protocol

[67] Claus P. Schnorr. Efficient Signature Generation by
Smart Cards. Journal of Cryptology (JCrypt), 4(3),
1991.

[68] Atul Singh, Tathagata Das, Petros Maniatis, Peter Dr-
uschel, and Timothy Roscoe. BFT Protocols under
Fire. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2008.

[69] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: DAG
BFT Protocols Made Practical. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2022.

[70] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko
Vukolić. State Machine Replication Scalability Made
Simple. In Proceedings of the Seventeenth European
Conference on Computer Systems (EuroSys), 2022.

[71] Chrysoula Stathakopoulou, David Tudor, Matej
Pavlovic, and Marko Vukolić. [Solution] Mir-BFT:
Scalable and Robust BFT for Decentralized Networks.
Journal of Systems Research (JSys), 2(1), 2022.

[72] The DFINITY Team. The Internet Computer for Geeks,
2022. https://eprint.iacr.org/2022/087.

[73] The Diem Team. DiemBFT v4: State Ma-
chine Replication in the Diem Blockchain,
2021. https://developers.diem.com/papers/
diem-consensus-state-machine-replication-in-the-diem-blockchain/
2021-08-17.pdf.

[74] The MystenLabs Team. The Sui Smart Contracts
Platform, 2022. https://github.com/MystenLabs/
sui/blob/main/doc/paper/sui.pdf.

[75] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. APUS: Fast and Scalable Paxos on
RDMA. In Proceedings of the 2017 Symposium on
Cloud Computing (SoCC), 2017.

[76] Jiaping Wang and Hao Wang. Monoxide: Scale out
Blockchain with Asynchronous Consensus Zones. In
Proceedings of the 16th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI),
2019.

[77] Roger Wattenhofer. Blockchain Science: Distributed
Ledger Technology. Inverted Forest Publishing, 2019.

[78] Gavin Wood. Ethereum: A Secure Decentralised Gener-
alised Transaction Ledger, 2014. https://ethereum.
github.io/yellowpaper/paper.pdf.

[79] Jian Yin, Jean-Philippe Martin, Arun Venkataramani,
Lorenzo Alvisi, and Mike Dahlin. Separating Agree-
ment from Execution for Byzantine Fault Tolerant Ser-
vices. In Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles (SOSP), 2003.

[80] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. HotStuff: BFT
Consensus with Linearity and Responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of
Distributed Computing (PODC), 2019.

[81] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-
Galiñanes, and Bryan Ford. Flash Freezing Flash Boys:
Countering Blockchain Front-Running. In 2022 IEEE
42nd International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW), 2022.

[82] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine Ordered Consensus
without Byzantine Oligarchy. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2020.

[83] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V
Le, and Arthur Gervais. High-Frequency Trading on
Decentralized On-Chain Exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

286 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://eprint.iacr.org/2022/087
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://github.com/MystenLabs/sui/blob/main/doc/paper/sui.pdf
https://github.com/MystenLabs/sui/blob/main/doc/paper/sui.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

A Artifact Appendix
Abstract
This artifact is a full implementation of Chop Chop, an end-to-
end client-server Byzantine Atomic Broadcast system lever-
aging a third-party—brokers—to optimize network usage and
vastly reduce the computational load of authenticating client
requests on the server-side while preserving safety.

Scope
This artifact can be used to validate the following claims
(provided the setup is the same):

• End-to-end performance (Figs. 7 and 10).

• Distillation benefits (Fig. 8) and throughput efficiency
(Fig. 9).

• Performance under faults (Fig. 11).

Note that reproducing the same plots (including error
bands) can be prohibitively costly given the scale of the eval-
uation (number and hourly price of machines, see §6.2).

Contents
The artifact contains all the source code used to implement
Chop Chop. We provide a docker file to set up experi-
ments. We also provide automated scripts to extract and
interpret the data as well as generate plots. Please refer to the
README.md file in the repository for more details.

Hosting
The repository can be accessed through GitHub4 (see the
instructions on the README.md file).

Requirements
There are no special hardware or software requirements be-
yond a recent enough version of Rust (§5) and the desired
network layout to evaluate. If you wish to reproduce our
results exactly, please see §6.2 for the setup used.

4https://github.com/Distributed-EPFL/chop-chop-osdi24

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 287

https://github.com/Distributed-EPFL/chop-chop-osdi24

	Introduction
	Atomic Broadcast
	Cost of Atomic Broadcast
	Existing Mitigations

	Distilled Batches
	Distillation at a Glance
	Distillation Microbenchmark

	Chop Chop
	Architecture and Model
	Distillation Phase
	Submission Phase
	Correctness
	Safety
	Liveness
	Other Attacks

	Implementation Details
	Broker
	Server

	Evaluation
	Baselines
	Setup
	RQ1 – Load Handling
	RQ2 – Distillation Benefits
	RQ3 – Number of Servers
	RQ4 – Overall Efficiency
	RQ5 – Chop Chop Under Failures
	RQ6 – Application Use Cases

	Related Work
	Concluding Remarks
	Artifact Appendix

