
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Microkernel Goes General:
Performance and Compatibility

in the HongMeng Production Microkernel
Haibo Chen, Huawei Central Software Institute and Shanghai Jiao Tong University;
Xie Miao, Ning Jia, Nan Wang, Yu Li, Nian Liu, Yutao Liu, Fei Wang, Qiang Huang,

Kun Li, Hongyang Yang, Hui Wang, Jie Yin, Yu Peng, and Fengwei Xu,
Huawei Central Software Institute

https://www.usenix.org/conference/osdi24/presentation/chen-haibo

Microkernel Goes General: Performance and Compatibility in the HongMeng
Production Microkernel

Haibo Chen1,2, Xie Miao1, Ning Jia1, Nan Wang1, Yu Li1, Nian Liu1, Yutao Liu1, Fei Wang1, Qiang
Huang1, Kun Li1, Hongyang Yang1, Hui Wang1, Jie Yin1, Yu Peng1, and Fengwei Xu1

1Huawei Central Software Institute, 2Shanghai Jiao Tong University

Abstract
The virtues of security, reliability, and extensibility have
made state-of-the-art microkernels prevalent in embedded
and safety-critical scenarios. However, they face performance
and compatibility issues when targeting more general scenar-
ios, such as smartphones and smart vehicles.

This paper presents the design and implementation of Hong-
Meng kernel (HM), a commercialized general-purpose mi-
crokernel that preserves most of the virtues of microkernels
while addressing the above challenges. For the sake of com-
mercial practicality, we design HM to be compatible with the
Linux API and ABI to reuse its rich applications and driver
ecosystems. To make it performant despite the constraints
of compatibility and being general-purpose, we re-examine
the traditional microkernel wisdom, including IPC, capability-
based access control, and userspace paging, and retrofit them
accordingly. Specifically, we argue that per-invocation IPC
is not the only concern for performance, but IPC frequency,
state double bookkeeping among OS services, and capabilities
that hide kernel objects contribute to significant performance
degradation. We mitigate them accordingly with a set of tech-
niques, including differentiated isolation classes, flexible com-
position, policy-free kernel paging, and address-token-based
access control.

HM consists of a minimal core kernel and a set of least-
privileged OS services, and it can run complex frameworks
like AOSP and OpenHarmony. HM has been deployed in
production on tens of millions of devices in emerging scenar-
ios, including smart routers, smart vehicles and smartphones,
typically with improved performance and security over their
Linux counterparts.

1 Introduction

Microkernels minimize functionality in the kernel and move
components, such as file systems and device drivers, into well-
isolated and least-privileged OS services, achieving better
reliability, security, and extensibility than monolithic kernels

such as Linux. Thanks to these virtues, state-of-the-art (SOTA)
microkernels have been widely deployed in embedded and
safety-critical scenarios [30, 52, 54].

On the other hand, while monolithic kernels like Linux
dominate in general-purpose scenarios such as servers and
the cloud, there are increasingly emerging scenarios such as
smart vehicles and smartphones that require better security,
reliability, and extensibility in addition to good performance,
where Linux is less suitable. While being general, Linux
evolves more towards servers and the cloud, making other
scenarios less beneficial. For example, it took over 10 years
for the preemptive-RT patch [1] to be partially merged, and its
evolution is still out of the mainstream, let alone other domain-
specific strategies [20, 21]. Moreover, it has been doomed to
be difficult (if possible) for Linux to satisfy high-level industry
certifications required for such scenarios [98, 113].

However, although microkernels have been extensively
studied for decades [16, 28, 30, 46, 49, 52, 52–54, 64, 67, 73,
75, 76, 86], SOTA microkernels mainly target some specific
domains, e.g., embedded and safety-critical ones. They usu-
ally use static resource partitioning and allocation, and lack
general OS functionalities to run commercial off-the-shelf
applications. Below, we summarize the major challenges in
retrofitting a microkernel as a general OS kernel for such
emerging scenarios.

Compatibility: POSIX subset-compliant is not enough. Re-
building the entire software ecosystem is impractical. There-
fore, SOTA microkernels, such as seL4 [67] and Zircon [46],
achieve minimal POSIX subset compliance by providing cus-
tom libraries, e.g., musl-libc [47], that generate inter-process
calls (IPC) to OS services. However, they face deployment
issues [6, 116], e.g., not being binary compatible, and im-
plementation challenges, e.g., fork and poll, in emerging
scenarios. Moreover, they can hardly reuse device drivers
with affordable engineering effort and uncompromised per-
formance, which are crucial for production deployment.

Performance: IPC is not the only concern. Performance is
the top priority in emerging scenarios, directly determining
user experiences. While SOTA microkernels like seL4 [67]

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 465

and recent architectural support [28, 49, 86] have achieved
record-high IPC performance, we observe that they still cause
non-trivial performance overhead because IPC frequency is
significantly increased when microkernels go general (70x
higher in smartphones than routers). Further, we observe
equally severe performance issues caused by state double
bookkeeping due to the multi-server design, which introduces
additional performance overhead (2x slower than Linux) and
memory footprint (35%). Moreover, capability-based access
control, which hides frequently updated kernel objects behind
capabilities, can cause significant overhead due to frequent
invocations. For example, it causes page fault handling to be
3.4x slower than Linux.

We started the HongMeng kernel (HM) project over 7 years
ago to re-examine and retrofit the microkernel into a general
OS kernel for emerging scenarios. To be practical for produc-
tion deployment, HM achieves full Linux API/ABI compat-
ibility and is capable of reusing the Linux applications and
driver ecosystems such that it can run complex frameworks
like AOSP [42] and OpenHarmony [35] with rich peripherals.
Despite the compatibility goal that may constrain its perfor-
mance, HM still puts performance as its primary emphasis.
Therefore, HM respects the design principles of microkernels
but not to the extreme with careful compromises. Specifically,
HM makes the following key design decisions.

Minimal microkernel with least-privileged and well-
isolated OS services. HM retains the minimality principle
by keeping only the necessary functionality in the core kernel,
including thread scheduler, serial/timer drivers, and access
control, and leaving all other components as isolated OS ser-
vices (multi-server) outside the core kernel. In addition, HM
adopts fine-grained access control to preserve the principle of
least privilege for better security. As a result, HM inherits the
security and reliability benefits of microkernels.

Maximizing compatibility by achieving Linux API/ABI-
compliant and performant driver reuse. HM integrates ex-
isting software ecosystems by achieving full Linux API/ABI
compatibility through ABI-compliant shim that identifies and
redirects Linux syscalls to IPCs. Moreover, HM reuses un-
modified Linux drivers via a driver container that provides
Linux runtime atop HM with minor engineering effort, and
eliminates critical path performance degradation by separat-
ing the control plane and the data plane with twin drivers.

Performance first by structural supports. HM prioritizes
performance without violating the architectural principles of
microkernels. Specifically, HM achieves flexible composition
for hierarchically relaxing the isolation between trusted ser-
vices to minimize IPC overhead, and coalesces tightly coupled
services to minimize IPC frequency and eliminate state dou-
ble bookkeeping in performance-demanding scenarios, while
maintaining the ability to separate them in security-critical
scenarios. HM also supplements capabilities with performant
address token-based access control, facilitating efficient co-
operation like policy-free kernel paging.

We have deployed HM on tens of millions of devices, in-
cluding smart routers, smart vehicles, and smartphones, which
provides not only better security and reliability but also bet-
ter performance than their Linux counterparts. The critical
components of HM are semi-formally verified [55] by for-
mally specifying the design and using automated verification
and verification-guided testing to validate the crucial security
properties, such as free of integer and buffer overflow. HM
has been certified with ASIL-D [61] (for safety) and CC EAL
6+ [62] (for security). In routers, HM allows 30% more client
connections by reducing 30% system memory footprint. In
vehicles, HM achieves a 60% faster boot time and a 60%
lower cross-domain latency. In smartphones, HM achieves
17% shorter app startup time and 10% less frame drops.

2 The Case for a General Microkernel

2.1 Microkernel Review
A major hallmark of microkernels is the minimality princi-
ple [73, 76], which minimizes functionality in the core kernel
and moves other functions to userspace services. SOTA mi-
crokernels also adopt capability-based fine-grained access
control [46,52,67,74] to preserve the least privilege principle.
As a result, microkernels are inherently more secure, reliable,
and extensible than monolithic kernels [12, 79].

However, although microkernels have been extensively
studied for decades [16, 30, 52–54, 64, 67, 73, 75, 76, 122],
SOTA microkernels primarily target specific domains, such as
embedded and safety-critical systems. Examples include L4-
embedded in Qualcomm cellular modem chips [30], QNX1

in cars and embedded systems [54], and Zircon (kernel of
Fuchsia) in smart speakers [46]. There has been little study on
how microkernels could be extended as general OS kernels
for emerging scenarios like smart vehicles and smartphones.

The industry adopted hybrid kernels such as Windows
NT [88] and Apple XNU [4], which combine a core microker-
nel, e.g., Mach in XNU, with all other services (as a whole)
in the kernel space, e.g., Executive in NT and BSD in XNU.
Although hybrid kernels also minimize functionality in the
core kernel, they do not inherit many advantages of microker-
nels. For example, OS services in hybrid kernels are not least
privileged and not well isolated. Thus, any compromised or
buggy OS services can corrupt the system [88], potentially
causing severe consequences, such as corrupting user data.

2.2 Demand for a General Microkernel
Emerging scenarios like smart vehicles and smartphones de-
mand rich peripherals and applications. For example, the in-
dustry standard of vehicles has evolved to require richer OS

1While QNX once supported tablets/phones [14] and ran AOSP apps via
virtual machine, QNX discontinued this due to limited compatibility and
performance [15, 110] and has fully transitioned to embedded markets [13].

466 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

functionalities [7]. Meanwhile, emerging scenarios also em-
phasize security and safety. For instance, vehicles require
high reliability for passenger safety, and smartphones require
enhanced security to protect sensitive data. We list the major
differences from domain-specific scenarios below.

Software ecosystem. In domain-specific scenarios, applica-
tions are mostly customized and source-available. Thus, being
POSIX-compliant is believed to be sufficient for application
transplanting (not even true based on our deployment expe-
riences). However, in emerging scenarios like smartphones,
apps and libraries are typically distributed in binary form, and
frameworks require more than POSIX compliance [6], which
mandates Linux ABI compatibility.

Resource management. In domain-specific scenarios,
there are only a few pre-determined applications, and the hard-
ware resources are limited. Therefore, applications mostly
manage resources themselves, and the kernel is primarily re-
sponsible for reserving resources. In emerging scenarios, how-
ever, competing applications require coordinated resource
management. The kernel requires more fledged functionali-
ties such as efficient resource management and fair allocation.

Performance. In domain-specific scenarios, microkernels
prioritize security and strict resource (e.g., timing) isolation
for mostly static applications, where performance is not a pri-
mary concern. In emerging scenarios, however, performance
is also a top priority, which directly determines the user expe-
rience and, thereby, the widespread deployment of the kernel.

The call for integrating both rich software ecosystems and
functionalities, as well as security and reliability, makes it
difficult for existing OS to satisfy them simultaneously. One
approach would be customizing a stock OS such as Linux
for such scenarios, which is unfortunately very expensive to
evolve with upstream (section 2.3). Previous work also pro-
poses various architectures, including unikernel [65, 81, 102],
multikernel [9], exokernel [31], and splitkernel [109]. How-
ever, they primarily target server scenarios with clear resource
separation while lacking support for efficient and coordinated
resource management required in emerging scenarios. More-
over, the synchronization overhead and complexity introduced
by split states make it challenging to achieve compatibility.

Therefore, we believe it is worthwhile to explore another
avenue of evolving the microkernel into a general OS kernel.

2.3 Issues with Linux
Linux has dominated the server and cloud markets and is in-
creasingly penetrating other domains such as PC and embed-
ded. However, it comes at the cost of compromised security,
reliability, and performance, especially in emerging scenarios.

Security and Reliability. Linux modules such as file sys-
tem (FS) and device drivers cover about 80% of its 30 million
line code base. They contribute to the majority of defects and
vulnerabilities (90% of the total 1000 CVE [23] in the last 4
years) and significantly reduce reliability and security [19].

Additionally, about 80% of these CVEs are data leaks that can
be avoided with proper isolation. Therefore, a long line of re-
search [18,25,38,48,56,83,90–92,100,105,106,112,120,123]
aims at isolating the kernel from the modules in a com-
partmentalized manner. However, the inherent tight cou-
pling requires significant engineering effort and even rewrit-
ing [56, 90, 91]. Moreover, the instability of kernel module
APIs and security patches force frequent upgrades, making
them less practical for real-world deployments.

Generality vs. Specialization. While Linux targets general
scenarios, recent patches and features witness that innovations
are primarily driven by servers and the cloud, which even ham-
per the performance of other scenarios [89, 103]. Moreover,
the growing diversity of devices with rich peripherals and
varied scenarios call for specialized strategies to exploit the
performance and energy efficiency headroom, such as allo-
cating resources according to the quality of service [20, 21]
or minimizing space usage [119]. However, such strategies
require significant engineering effort to customize the kernel
due to the inherent tight coupling of kernel modules. While
there is much effort [58, 66, 78, 84, 93] to improve customiz-
ability, it is hard to integrate them into the mainstream kernel.

Customization vs. Evolution. Another issue is evolving
the custom code. Synchronizing with upstream requires sig-
nificant effort to reapply the changes, while not synchronizing
may expose the system to security vulnerabilities. Years of
production experience suggest that it is expensive due to the
frequent changes in kernel internal APIs, and performance
regressions require substantial effort to locate and even re-
design the entire patches. This severely limits customizability
in real-world deployments. Hence, a massive amount of prod-
ucts on the market are still running Linux 2.6 [50, 51, 117],
which reached End-of-Life (EOL) 7 years ago [114] and has
many known security vulnerabilities [24, 117].

3 Revisiting Microkernel for Going General

3.1 Microkernel at Scale
Deploying a microkernel in emerging scenarios poses chal-
lenges in both performance and compatibility. Figure 1
presents the observed characteristics of emerging scenarios
from deploying HM in productions. For routers, we collected
data directly from the production environment. For vehicles
and phones, we replayed a typical usage (lasting 24 hours) de-
rived from recorded massive amount of real-world executions
at scale (anonymous and with user consent).

Observation 1: IPC frequency increases rapidly in
emerging scenarios. Figure 1a shows the IPC frequency
CDF in HM when configuring all OS services to be isolated
in userspace. Smartphones (avg. 41k/s) and vehicles (7k/s)
have a much higher IPC frequency than routers (0.6k/s, more
similar to domain-specific scenarios). Figure 1b, 1e, and 1f
illustrate it by showing the minor (i.e., not from disk/device)

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 467

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

P
ro

p
o
rt

io
n

IPC Frequency 1k/s

Router
Vehicle

Smartphone

(a) IPC freq. CDF. All services in userspace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Page Fault Frequency 1k/s

Anonymous
Mapped File

(b) Page fault freq. in phone.

 0

 10

 20

 30

 40

 50

re
cv

fro
m

na
no

sl
ee

p

ep
ol
l_
pw

ai
t

se
nd

to

se
tit
im

er

rt_
si
ga

ct
io
n

rt_
si
gr

et
ur

n

w
rit

ev

cl
oc

k_
ge

tti
m

e

ps
el
ec

t6

S
y
s
c
a
ll

(1
0
0
/s

)

(c) Syscall dist. and freq. in routers.

 0

 10

 20

 30

 40

 50

io
ct
l

m
ad

vi
se

re
ad

pp
ol
l

w
rit

e

 e
po

ll_
pw

ai
t

se
nd

m
sg

ne
w
fs
ta

ta
t

re
cv

m
sg

w
rit

ev

(d) Syscall dist. and freq. in vehicles.

 0

 50

 100

 150

w
rit

e
re

ad
fu

te
x

io
ct
l

cl
os

e

w
rit

ev

ge
tu

id

ep
ol
l_
pw

ai
t

ls
ee

k

re
cv

fro
m

pp
ol
l

m
m

ap

op
en

at

ne
w
fs
ta

ta
t

fa
cc

es
sa

t

S
y
s
c
a
ll

(1
0
0
/s

)

(e) Syscall dist. and freq. in smartphones.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Syscall Freq 1k/s

Router
Vehicle

Phone

(f) Syscall freq. CDF.

Figure 1: Characteristics of emerging scenarios obtained from
the deployment of HM in tens of millions of devices. All OS
services in HM are configured to be well-isolated in userspace.

page faults’ frequency and the distribution and frequency of
syscalls in phones. As shown in the figures, the high IPC
frequency is not only caused by the higher syscall frequency
(61k/s, 13x higher than routers), but also by invoking massive
amounts of file operations (IPC to the FS), and triggering
numerous page faults on memory-mapped files (5k/s), which
requires an additional IPC roundtrip between the memory
manager and the FS. Hence, we should not only optimize IPC
performance but also minimize the IPC frequency.

Observation 2: Distributed multi-server causes state
double bookkeeping. The minimality principle determines
that there is no centralized repository for shared objects, such
as the file descriptor (fd) and page caches, and distributes them
in multiple places. However, as shown in Figure 1c-1e, ap-
plications in emerging scenarios frequently invoke functions
like poll that rely on the centralized management of such
states. Figure 2 further presents the CPU flame graph of appli-
cation startup, which relies heavily on the performance of file
mapping and is crucial to the user experience [45]. As marked
in the figure, 16% of the time is spent on handling page cache
misses, which introduces an additional IPC roundtrip and is
2x slower than Linux. Moreover, the double bookkeeping of
page caches consumes an additional 50MB of memory on top
of the 120MB base (FS+mem) in smartphones.

Observation 3: Capabilities inhibit efficient coopera-
tion. Capabilities, which hide the kernel objects behind them,
introduce significant performance overhead due to the fre-
quent updating of some kernel objects (e.g., the page table)

Capability
Anonymous

Page Fault 4%

State Double
Bookkeeping

Memory Manager File System

Synchronization
+ IPC 16%

Figure 2: CPU flame graph of smartphone app startup in HM.
Services coalescing and kernel paging are disabled.

managed outside the kernel and inhibit efficient cooperation
between them. For example, this may cause the handling of
anonymous page faults 3.4x slower than Linux, which fre-
quently occurs in smartphones (avg. 27k/s, 80% of minor
page faults in Figure 1b) and adds a non-trivial overhead to
the app startup time (4% in Figure 2).

Observation 4: Eco-compatibility requires more than
POSIX compliance. Many SOTA microkernels achieve a
minimal subset of POSIX compliance by providing custom
runtime libraries [47] that link directly to applications and gen-
erate IPC to OS services. However, it faces deployment issues
of being not binary compatible and requiring a customized
building environment. Moreover, since Linux uses file as a
unified interface, which no longer exists in the microkernel, it
is also challenging to implement efficient fd multiplexing like
poll and vectored syscalls like ioctl, which are frequently
used in emerging scenarios as shown in Figure 1c-1e.

Observation 5: Deployment in emerging scenarios re-
quires efficient driver reuse. When deploying HM on smart-
phones, we observe a massive increase in the number of
drivers required to function correctly. For routers, fewer than
20 drivers are required (primarily maintained in-house), which
increases to more than 700 for vehicles and phones. Our esti-
mates indicate that it would take more than 5,000 person-years
to rewrite those drivers, and it takes time to get mature and
keep evolving. Thus, reusing device drivers is a more reason-
able option. However, previous work, including transplanting
the runtime environment of drivers [3, 17, 32, 41, 118] and
using virtual machines [72], faces compatibility, engineering
effort, and performance challenges (discussed in section 5.2).

3.2 Overview of HongMeng

HM respects the core design principles of microkernels but
not to the extreme, with careful compromises to address the
performance and compatibility challenges in emerging sce-
narios. We summarize HM’s design decisions in Table 1 and
list design principles below. Figure 3 shows HM’s overview.

Principle 1: Retain minimality. The security, reliability,
and extensibility of microkernels derive from three fundamen-
tal architectural design principles, including separating policy
and mechanism, decoupling and isolating OS services, and
enforcing fine-grained access control. Hybrid kernels also en-
force minimality through code decoupling but without proper
isolation. Thus, it fails to inherit the major benefits of mi-

468 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Design decisions of HongMeng.

SOTA Microkernels Hybrid Kernels HongMeng’s Design

Minimality Minimal Kernel Code Decoupling Retained: Minimal microkernel with isolated, least-privileged OS services.
IPC IPC w/ Fastpath Function Call Enhanced: Synchronous RPC addresses resource alloc./exhaustion/acct. issues.
Isolation Userspace Services Coalesce w/ Kernel Flexibilized: Differentiated isolation classes for tailored isolation and performance.
Composition Static Multi-server Static Single Server Flexibilized: Flexible composition to accommodate diverse scenarios.
Access Control Capability-based Object Manager Extended: Address tokens enable efficient kernel objects co-management.
Memory Paging in Userspace Paging in Kernel Enhanced: Centralized management in a service with policy-free paging in kernel.
App Interfaces POSIX-compliant POSIX+BSD/Win Extended: Linux API/ABI compatible via an ABI-compliant shim.
Device Driver Transplanting/VM Native Driver Enhanced: Reusing Linux drivers efficiently via driver container with twin drivers.

Core Kernel

File
System

Mem
Mgr.

Coalesce Services

Proc.
Mgr.

Co-managed
Kernel Object

Page Table

Hardware

Data Plane

Linux Driver Container

Control PlaneGate

Linux
Syscall

Core Kernel

Hardware

Page
Table

Mem
Mgr.

Context
Switch

Application 1

(a) Smartphone (b) Smart Router

Resource
Management

Application 2

File
System

Network
Stack

Memory PoolCustom
LibC

(POSIX API)

Isolation Class 0
Core TCB

Isolation Class 1
Mechanism-enforced Isolation

Isolation Class 2
Address Space Isolation

Synchronized
RPC-like IPC

AOSP/OpenHarmony

1

EL0/Ring3

EL1/Ring0

2

DC-Base

Linux Runtime
Linux Drivers

Twin Driver

Native
Driver
Cont.

AOSP/OpenHarmony App
Binary Compatible

Custom LibC

Native
Driver Cont.

2

3

4

5

5

ABI-compliant Shim

Figure 3: HongMeng overview. (a) and (b) show its composi-
tion in smartphones and routers. Different colors imply different
isolation classes. ❶ coalesces coupled services. Address tokens
enable kernel objects co-management ❷. ABI-compliant shim ❸
enables binary compatibility. Driver container ❹ reuses Linux
drivers efficiently via data/control plane separation ❺.

crokernels. Therefore, while emphasizing compatibility and
performance, HM respects the architectural design principles
of microkernels.

HM keeps only minimal and necessary functionality in
the core kernel, including thread scheduler, serial and timer
drivers, and access control. All other functionality is imple-
mented in isolated OS services, such as process/memory man-
ager, drivers, and FS. Moreover, HM adopts fine-grained ac-
cess control to preserve the least privilege principle. Services
can only access strictly restricted resources (kernel objects)
necessary for functionality. As such, HM inherits the security,
reliability, and extensibility of microkernels.

Retained: Minimal microkernel with well-isolated and least-
privileged OS services.

Principle 2: Prioritize performance. The promising bene-
fits of microkernels are compromised by architecture-inherent
performance issues in emerging scenarios. Therefore, instead
of enforcing uniform but overly strong isolation, HM provides
structural support for assembling the system to satisfy both
the performance and the security requirements. In particular,
besides adopting an RPC-like fastpath that addresses the re-
source allocation/exhaustion/accounting issues (section 4.1),
HM proposes differentiated isolation classes to reduce IPC

overhead by relaxing the isolation between trusted OS ser-
vices (section 4.2). HM also coalesces tightly coupled OS
services (❶ in Figure 3) to minimize the IPC frequency in
performance-demanding scenarios (section 4.3). Moreover,
HM enables efficient kernel objects co-management (❷) by
supplementing capabilities with address tokens (section 4.4),
which facilitates policy-free in-kernel paging of anonymous
memory (section 4.5).

Flexibilized: Prioritize performance by providing structural
supports for flexible assembly to adapt to diverse scenarios.

Principle 3: Maximizing eco-compatibility. HM inte-
grates with existing software ecosystems by achieving Linux
ABI compliance through a shim (❸) that redirects all Linux
syscalls to appropriate OS services and serves as a central
repository to store and translate Linux abstractions (e.g., fd)
to efficiently support functions like poll (section 5.1). More-
over, HM reuses unmodified Linux device drivers via driver
container (❹), which provides the necessary runtime derived
directly from the mainline Linux with minor engineering ef-
fort (section 5.2). HM further improves drivers’ performance
by exploiting control and data plane separation (❺).

Enhanced: Maximize compatibility by achieving Linux
API/ABI-compliant and performant driver reuse.

HM’s Threat Model. HM retains the architectural design
principles of microkernels, thus maintaining a similar threat
model to SOTA microkernels, which prevents malicious appli-
cations and OS services from accessing other’s memory and
ensures the confidentiality, integrity, and availability (CIA)
properties of data, with the following differences.

First, since applications in emerging scenarios require cen-
tralized memory management for compatibility reasons (sec-
tion 4.5), the memory manager (the only exception), including
its coalesced services (only FS in phones on deployment), can
inevitably access applications’ address spaces. Besides, in
safety-critical scenarios where memory is self-managed, HM
does not create such a centralized memory manager.

Moreover, for the sake of performance, there are compro-
mises on additional attack surfaces (section 4.2), different
partitioning of failure domains (section 4.3), and additional
data leakage possibilities on carefully selected objects (will
not corrupt the kernel, section 4.4). The detailed security de-
sign will be discussed in the corresponding section.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 469

4 Performance Design of HongMeng

4.1 Synchronous RPC-like IPC Fastpath

Microkernels use IPC to invoke OS services. A long line of
research has proposed numerous optimizations to minimize
IPC overhead. However, when applying them to emerging
scenarios, we encountered several severe issues, either pre-
viously neglected or caused by changed assumptions. HM
carefully addresses these issues, as summarized in Table 2.

Table 2: Comparison of IPC in HM.

IPC Fastpath Migration HongMeng IPC
Bypass Scheduling Yes Yes Yes
Reduced Switches N/A Registers Reg./Address Space/Priv.
Resource Allocation Pre-alloc Pre-alloc Pre-bind & Adaptive
Resource Exhaustion Blocked Blocked Reserved for Reclaiming
Resource Accounting Temporal Temporal Temp./Energy/Memory

Synchronous RPC or Asynchronous IPC. IPC typically
assumes symmetric endpoints with the same execution model.
Therefore, previous work suggests that asynchronous IPC
can avoid serialization on multicore [30], allowing both end-
points to continue execution without blocking. However, in
emerging scenarios, we observe that most IPCs are procedure
calls, where the caller and callee can be clearly identified.
Furthermore, OS services are mostly invoked passively rather
than working continuously, and most subsequent operations
of the application depend on the results of the procedure call.
Therefore, synchronous Remote Procedure Call (RPC) is a
more appropriate abstraction for service invocations.

HM adopts an RPC-like thread migration [33, 94] as the
IPC fastpath for service invocations. When sending an IPC,
the core kernel performs a direct switch (bypassing schedul-
ing, similar to prior work [10, 30, 49, 67, 70]) and switches
only the stack/instruction pointer (avoids switching other reg-
isters) as well as the protection domain. Specifically, HM
requires OS services to register a handler function as the
entry point and to prepare an execution stack pool. When
an application invokes a service, the core kernel records the
caller’s stack/instruction pointer in an invocation stack and
switches to the handler function with the prepared execution
stack. On return, HM pops an entry from the invocation stack
and switches to the caller. The IPC arguments are primarily
passed through registers, with additional arguments passed
through shared memory.

Performance gap. Although HM bypasses scheduling and
avoids switching registers, it still faces non-trivial perfor-
mance degradation due to privilege level/address space switch-
ing and cache/TLB pollution [9, 30, 49, 86] (accounts for 50%
of total IPC cost). We further bridge this performance gap
using differentiated isolation classes in section 4.2.

Resource Allocation. The memory footprint of IPC has
been largely neglected by previous work. However, due to the
extremely high IPC frequency and massive number of connec-
tions (>1k threads simultaneously) in emerging scenarios like
smartphones, we find it essential to consider IPC’s memory

footprint in production, as it can cause severe problems such
as out-of-memory (OOM) and even system hangs. Although
each IPC connection in HM requires only an individual exe-
cution stack (rather than a full-fledged thread with all related
data structures), its memory footprint is still non-trivial, given
the massive amount of IPCs.

Previous work pre-allocates a thread/stack pool of a fixed
size and binds it to connections. However, its size is hard
to decide due to the diversity and dynamism of workloads,
including the number of running threads and requirements for
different OS services. A large pool would quickly drain the
memory, while dynamic allocation on connection introduces
runtime overhead on the critical path of IPC. We initially tried
to prepare and bind stacks in each OS service for each thread
on creation. However, we quickly realized that the problem
still exists because some services are barely used by some
threads (wasted), and there exist many IPC chains (to another
OS service) that need another stack.

Therefore, HM strikes a sweet spot by pre-binding stacks
in frequently-used OS services (e.g., process/memory man-
ager and FS) for each thread while still maintaining a stack
pool whose size is adjusted adaptively at runtime. When the
remaining stacks fall below a threshold, the OS service will
allocate more to reduce synchronous allocation. HM further
reduces its memory footprint by reusing the same stack when
calling the same service (e.g., ABA-like call) in an IPC chain.

Resource Exhaustion. IPC can fail due to resource exhaus-
tion. Specifically, when the stack pool runs out while OOM
occurs, OS services cannot allocate a new stack to process the
IPC request. However, apps cannot handle such an error (not
existing in a monolithic kernel). Therefore, such requests are
queued (blocked) in SOTA microkernels, which may cause
severe issues like circular wait and even system hangs.

An intuitive approach is to send another IPC to the memory
manager to reclaim some memory synchronously. However,
we find that under such a scenario (already OOM), the IPC
to the memory manager is likely to fail again. Such a failure
is likely to occur in emerging scenarios where workloads
are non-deterministic and heavy loads occur frequently (e.g.,
opening multiple apps simultaneously).

HM mitigates this by reserving an individual stack pool.
Once OOM occurs, the kernel will synchronously IPC to
the memory manager using the pool for memory reclaim
(repeatedly) until the user’s IPC succeeds. Thus, applications’
IPCs are guaranteed to be handled correctly.

Resource Accounting. IPC assumes a different execution
entity when handling requests, thus attributing the consumed
resource to OS services. However, since competing applica-
tions in emerging scenarios require a clear accounting of re-
sources, the consumed resource should be precisely accounted
to the caller app. Previous work achieves temporal isolation
by inheriting the caller’s scheduling context [70, 80]. How-
ever, emerging scenarios also require an accounting of both
energy and memory consumption. Therefore, HM records the

470 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

IC0IC0 IC1IC0 IC2IC0 IC1IC1 IC2IC1 seL4 IC2IC2 Fiasco

C
y
c
le

s

1
8 2

7
2 5
0

2 7
5

2 1
0

2
0 1
3

7
6

1
4

3
9

2
8

8
3

Figure 4: Round-trip IPC latency between ICx & ICy (ICxICy) in
Raspberry Pi 4b. IC0 includes the core kernel. IC2 includes user
apps. Zircon cannot run on Pi4b and is several times slower [49].

identity of the user app (root caller in the IPC chain), and
attributes the consumed resources to it when handling IPC.

Decision: Supplement async./sync. IPC with an RPC-like
fastpath for invoking OS services while carefully addressing
the resource allocation/exhaustion/accounting issues.

4.2 Differentiated Isolation Classes
Isolation of OS Services. Placing all OS services in userspace
may improve security, but it fails to meet performance require-
ments in emerging scenarios. We observe that not all services
require the same class of isolation. In particular, mature, veri-
fied, and performance-critical OS services can be subjected to
weaker isolation for optimal performance in practical deploy-
ments. Moreover, rapidly evolving services may frequently
introduce bugs and vulnerabilities, thus requiring more robust
isolation to prevent kernel corruption. OS services with large
codebases and cumbersome features, such as drivers, require
isolation to reduce the trusted computing base (TCB).

Therefore, HM adopts differentiated isolation classes (IC)
to provide tailored isolation and performance for different
OS services. Specifically, isolation classes classify services
and define the isolation between them. Figure 4 shows the
round-trip IPC latency between services at different isolation
classes, compared to seL4 [67] and Fiasco.OC [69].

Isolation Class 0: Core TCB. IC0 applies to carefully
verified, extremely performance-critical, trusted OS services,
such as the ABI-compliant shim (the only IC0 service in
deployment). No isolation is enforced between these services
and the kernel. Therefore, IPCs are all indirect function calls.

IC0 Threat Model: IC0 is part of the core TCB, and any
compromised IC0 services can arbitrarily read and modify
others’ memory. Therefore, placing services at IC0 should be
carefully validated to avoid core kernel corruption.

Isolation Class 1: Mechanism-enforced Isolation. IC1
applies to performance-critical and validated OS services. In-
spired by previous intra-kernel isolation approaches [11, 49,
59,71,112,120], HM places these services in the kernel space
and uses mechanisms to enforce isolation between services.
Specifically, HM carefully divides the kernel address space
into distinct domains and assigns each service a unique do-
main (IC0/core kernel also resides in a unique domain). HM
uses ARM watchpoint [63] and Intel PKS [60] to prevent
cross-domain memory access. Moreover, since IC1 services
run in kernel space, they can execute privileged instructions.
To prevent this, HM adopts binary-scanning and lightweight

control-flow integrity (CFI, leveraging ARM pointer authen-
tication (PA) [77]) to ensure services cannot execute illegal
control flows that contain privileged instructions, and uses a
secure monitor [49, 108] to guard the page table against code
injection, which also traps any privileged instruction through
VM Exits as a complement to CFI.

IPC between IC1 services (or to IC0) will enter a gate in the
core kernel that performs a minimal context switch (switch in-
struction and stack pointers, w/o address space switching and
scheduling) and configures the hardware to switch domains
(take only a few cycles). Such a gate cannot be bypassed since
domain switches require privileged instructions. Therefore,
the IPC overhead is significantly reduced. As shown in Fig-
ure 4, it reduces the IPC latency between IC1 services by 50%
compared to userspace services (IC2IC2).

IC1 Threat Model: IC1’s threat model differs from other
multi-server microkernels by assuming the correctness, sound-
ness, and security of the applied isolation mechanism, which
does expose some additional attack surfaces. For example,
there are new attacks on ARM PA emerged recently [22].
Besides that, IC1 shares the same threat model, which pro-
hibits any compromised service from reading/writing the core
kernel’s memory (and other OS services’) and executing priv-
ileged instructions.

Isolation Class 2: Address Space Isolation. IC2 applies
to non-performance-critical services or those containing third-
party code (e.g., Linux drivers), enforced by address space and
privilege isolation. IPC between IC2 services in HM (IC2IC2)
is slightly slower than in seL4, mainly due to fine-grained
locking, which is essential for scaling to multi-core processes
under real-world loads.

IC2 Threat Model: IC2 shares exactly the same threat
model as other multi-server microkernels.

Although IC1 significantly reduces the IPC overhead, it
also introduces additional attack surfaces and has resource
limitations (e.g., 16 domains in Intel PKS, 4 domains in ARM
Watchpoint). Therefore, only performance-critical and val-
idated OS services are placed at IC1. In addition, HM can
quickly move all services back to IC2 if new attacks emerge.
We further discuss deployment experiences on configuring
isolation classes in section 4.3. Moreover, IC0/1 does not
imply coupling to the kernel. The isolation classes allow for
configurable isolation decisions during deployment rather
than an isolation assumption during development. Different
scenarios use different configurations, as shown in Figure 3.

Decision: Not all OS services require the same class of
isolation. Adopt differentiated isolation classes to relax iso-
lation between trusted services for improved performance.

4.3 Flexible Composition
Partitioning of OS Services. Although intuitively, OS ser-
vices should be well-decoupled, e.g., FS and memory man-
ager, we observe that OS services are asymmetric since some

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 471

functionalities require close cooperation between specific
services. For example, the FS is not the only entrance to ac-
cessing a file. POSIX supports file mapping that reads files
through the memory manager, and it frequently appears on
the critical path and significantly affects the user experience.

The isolation classes enforce the same isolation between
same-class OS services. Therefore, without further structural
support, HM still faces performance degradation compared to
the monolithic kernel. First, the frequently invoked IPCs be-
tween tightly coupled services still cause noticeable overhead
(20% in page fault handling for memory-mapped files) even in
IC1 (kernel space). Moreover, double bookkeeping of shared
states, such as page caches, introduces significant memory
footprint and synchronization overhead. Finally, there is no
global view of page caches to guide resource recycling (e.g.,
Least Recently Used, LRU).

To bridge the performance gap, HM adopts a configurable
approach that allows coalescing tightly coupled OS services
in performance-demanding scenarios, trading off isolation
for better performance, while retaining the ability to separate
them in safety-critical scenarios. When coalesced, no isolation
is enforced, and IPCs between two services become function
calls, while others remain as they are (well-isolated).

Coalescing also enables efficient co-management of page
caches. Instead of maintaining them in both the FS and the
memory manager, they can be co-managed when coalesced. It
eliminates double bookkeeping and synchronization overhead
and provides a global view for efficient recycling. To retain
the ability to separate them, we provide a mechanism to auto-
matically convert accesses of shared page caches into IPCs
when separated. However, it will introduce non-trivial over-
head. Therefore, in deployment, we implement both versions
(sep./shr.) manually and enable them accordingly.

Performance. As shown in Table 3, when coalescing the
FS with the memory manager, replacing the IPC reduces
the latency of handling page faults caused by page cache
misses by 20% (Sep. Cache). It can be further reduced by 30%
(Shr. Cache) and achieves similar performance with Linux
(5.10, detailed in section 6.2) by co-managing the shared page
caches. Coalescing also speeds up the write throughput of
tmpfs by 40%. Moreover, the memory footprint of coalesced
services is reduced by 37% (FS+memory) in smartphones.

Security. The coalesced services are in a single failure do-
main, whose threat model (as a whole) remains the same as
the isolation class in which it resides. Therefore, any failed
or compromised service can only corrupt its coalesced ser-
vices, which is also the primary compromise for performance.
Hence, service coalescing should be carefully evaluated. In
practice, due to the extremely high frequency of file opera-
tions in smartphones (Figure 1e), their performance targets
can only be achieved by coalescing the FS with the memory
manager. However, the security is still improved (isolated
from other services) compared with monolithic kernels.

Deployment Experiences. Together with the differentiated

Table 3: Performance improved by coalescing the FS service and
the memory manager in the big core of Kirin9000 [57].

Separated Coalesced Linux

Page Fault (Cycles) 7092
5290 (Sep. Cache)
3785 (Shr. Cache) 3432

Tmpfs Write (MB/s) 1492 2067 2133
Memory Footprint (MB) 190 120 N/A

Table 4: Address tokens support most operations of capabilities
and allow direct access, except restricting fine-grained operation
and chain revocation.

Capabilities Address Tokens

Token CSlot id Mapped Address
Access Delegate to Kernel Direct(RW)/writev(RO)
Ownership Caps in CNode Mapped Pages
Grant Move to CNode Map Page to VSpace
Revoke Remove from CNode Unmap Page
Chain Revoke Support No support
Security Monitor all operations Restrictions on mapped Obj.

isolation classes, HM enables flexible composition, allowing
the key components to be assembled flexibly (user-space or
kernel-space, separated or coalesced), enabling exploration
of tradeoffs between isolation and performance according to
scenarios’ requirements, and the ability to scale from routers
to smartphones with the same code base. The evolution of
HM witnesses such explorations. Initially, all services were
isolated at IC2. To meet the performance goal, we carefully
assemble the system to retain most security properties by
preserving the following rules.

First, due to the additional attack surfaces, IC1 services
cannot contain any third-party code. Thus, although some
drivers are also performance-critical, we kept them at IC2
and sped up via control/data plane separation (section 5.2).
Second, service coalescing, especially with the memory man-
ager, undeniably weakens isolation and security (though still
improved compared with monolithic kernels). Therefore, we
leave it configurable and only enable it on phones. More-
over, IC0 not only increases the core TCB but also has strict
memory limitations and non-blocking requirements. Thus, in
practice, HM only places the ABI shim (which can be opted
out) in IC0. Section 6.1 details the configurations.

Decision: OS services are asymmetric. Coalesce tightly
coupled OS services and flexibly assemble the system to
meet diverse requirements in various scenarios.

4.4 Address Token-based Access Control
SOTA microkernels make all kernel objects explicit and sub-
ject to capability-based access control [30] to preserve the
principle of least privileged, which is primarily implemented
in a partitioned fashion that keeps a token (typically a slot ID)
in userspace representing the permission to access a kernel
object. However, we encountered severe performance issues
when deploying it in emerging scenarios.

Clear relationship but slow access. Although capabilities
are effective in describing the external relationships of kernel
objects, i.e., the authorization chain, accessing their internal

472 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

contents requires sending the token with the operations to
the core kernel, which introduces non-trivial performance
overhead due to privilege switches and accesses to multiple
metadata tables. Kernel objects are hidden behind the capa-
bilities and are only accessible by the core kernel. However,
due to the minimality principle, the content of some kernel
objects (e.g., page tables) should be frequently updated by
OS services outside the core kernel, for which partitioned
capabilities are no longer efficient.

Some microkernels speed up access by mapping specific
objects to userspace. However, they can only be applied to
few limited objects (e.g., memory objects [30, 67], part of the
thread control block [3, 9, 76], and kernel interface page [76])
for security and lack the ability to synchronize data correctly,
which inhibits the cooperation between the kernel and OS
services. To address these issues, HM proposes a generalized
address token-based approach that can be applied to a broader
range of objects, enabling efficient co-management.

Specifically, as shown in Figure 5, each kernel object is
placed on a unique physical page in HM. Granting a kernel
object to an OS service requires mapping such a page to its
address space (❶). Thus, the mapped address serves as the
token to access the kernel object directly from the hardware
without involving the kernel (unwillingly). Kernel objects can
be granted (mapped) as read-only (RO) or read-write (RW).
OS services can read RO kernel objects without kernel in-
volvement. To update them, a new syscall, writev, should
be used, passing the target address with the updated value,
and the core kernel will verify permissions by referring to the
kernel object’s metadata (❷). For RW kernel objects, once
granted, can be updated by OS services without kernel in-
volvement (❸). Moreover, for objects smaller than a page
with the same property (permission) and a similar life cycle,
HM batches these objects into a single page upon allocation,
allowing them to be granted and revoked collectively.

Functionality. Address tokens support most operations of
capabilities, as shown in Table 4 (compared to seL4 [107],
Zircon has similar functionality [37]), with two exceptions.
First, address tokens cannot restrict fine-grained operations
once granted, which weakens security and exposes additional
attack surfaces. Besides, capabilities store the detailed rela-
tionship, allowing chain revocation, which address tokens do
not support due to implicit ownership. Nevertheless, address
tokens are only used by selected co-managed kernel objects.
The attack surfaces are carefully mitigated (discuss below).
Moreover, due to the centralized resource management, kernel
objects have specific owners (will not be granted to others).
Thus, chain revocation is rarely used.

Security. Once an address token is granted to an OS service,
the kernel cannot monitor the subsequent operations. HM mit-
igates this by restricting the objects mapped to userspace (en-
forced by static analysis). Only kernel objects that exclusively
contain the values of certain variables in kernel-preserved
structures (pointers are not allowed to prevent the time-to-

OS
Services

Core
Kernel

KO Addr

Kernel Object Manager

Map to Grant
(RW/RO)

Writev syscall

RO

V
e
ri

fy

KO Addr

Tokens

1

2

3

Metadata

New Value

New Value

Co-managed
Kernel
Object

RW

Metadata

Co-managed
Kernel
Object

Figure 5: Address token-based access control in HM. ❶ Map
kernel object’s page to grant. ❷ Direct access to RW objects. ❸
Use writev to update RO objects, verified by the kernel.

 0

 400

 800

 1200

Addr-rd Addr-wr seL4 ROAddr-wr Fiasco.OC HM-Cap

C
y
c
le

s

6 1
0

5
2
6

8
1
5

8
2
0

8
6
6

Figure 6: Latency of accessing kernel objects on Raspberry Pi
4b. Addr-rd/wr represent address tokens in HM. ROAddr-wr
represents writing to read-only objects in HM.

check to time-to-use attack) are mapped RW (e.g., PCache
in section 4.5), ensuring they will not corrupt the kernel with
incorrect or inconsistent data. The rest of the kernel’s inter-
nal states (e.g., pointers and reference counters) can only be
mapped RO or not granted at all to prevent it from being
corrupted. HM further applies a sanity check when reading
from RW objects. It does introduce some attack surfaces by
leaking kernel-internal information, which can be mitigated
by hardware encryption like ARM PA.

Synchronization. There are two approaches to sharing data
between OS services and the kernel leveraging address to-
kens. First, OS services and the kernel can exchange messages
asynchronously (message-passing). For example, PCache in
section 4.5 sends pre-allocated pages to the kernel for future
kernel paging. HM uses a lock-free ring buffer to synchronize
the data correctly. Besides, OS services can apply in-place up-
dates to the objects (e.g., VSpace in section 4.5, which stores
the memory layout) that the kernel may read concurrently.
HM adopts fine-grained locking to ensure correctness. How-
ever, it may block the kernel when the service is preempted
while executing critical sections. Therefore, the kernel can
only use the trylock operation on RW-mapped objects. If it
fails, HM will redirect to the OS services (slow path) to finish
the procedure (e.g., paging in section 4.5).

Performance. Figure 6 compares the latency of accessing
kernel objects after applying address tokens. The reading and
writing (to RW) latencies are significantly reduced compared
with capability-based approaches. However, the latency of
writing RO objects is slower than seL4 on RPi4b, mainly
due to the use of AT instruction on ARM to translate the
address and check the permissions, which is slow on RPi4b
(yet optimized in the advanced smartphone chips).

Usage Scenario. For security concerns (see above), ad-
dress tokens are OS-internal abstractions that supplement the
capabilities for efficient co-management with OS services.
Specifically, besides enabling direct updates to kernel objects
managed by services, it allows them to read internal states
(e.g., poll list in section 5.1) without kernel involvement, sim-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 473

Core
Kernel

Virtual Memory
Management

P
o

li
cy

Physical Memory
Management

M
e
ch

a
n

is
m

Check VA1
Get free

page
2

Page
Table

VSpace

Update
page table

3

Memory
Manager

OPLog

Update
OPLog

4

Asynchronized
lazy update

PCache

Figure 7: Policy-free kernel paging in HM. On page fault, the
kernel checks the address ❶ and, if anonymous, ❷/❸ maps a
pre-allocated page, and ❹ records an OPLog.

ilar to virtual dynamic shared objects (vDSO) in Linux [82].
It also allows handling performance-critical events (e.g., page
faults in section 4.5) entirely in the kernel without violating
the minimality principle by making policy-driven decisions
in advance (by services) and communicating with the core
kernel through co-managed objects.

Decision: Capabilities that hide kernel objects behind in-
terpose kernel (unwillingly) on the data plane. Supplement
with address tokens for efficient co-management.

4.5 Policy-free Kernel Paging
Centralized Management vs. Distributed Pager. Some
SOTA microkernels (e.g., seL4) delegate memory manage-
ment to applications with individual custom pagers. However,
since competing applications in emerging scenarios require
coordinated and centralized management, we found it difficult
to implement certain features efficiently that require a global
view of memory with decentralized pagers, such as the control
group (cgroup) and memory recycling. Therefore, HM man-
ages the memory through a centralized memory manager. For
minimality, the memory manager is outside the core kernel,
which manages the physical and virtual memory and handles
page faults for all applications and OS services.

Slow userspace paging. We observe a significant perfor-
mance degradation in performance-critical scenarios (e.g., app
startup in Figure 2) due to the slow paging procedure of anony-
mous memory (e.g., stack/heap), which occurs frequently in
smartphones, as shown in Figure 1b. The degradation is pri-
marily due to the extra round-trip from the kernel to the pager.
Specifically, after throwing a page fault exception, the kernel
issues an IPC to the pager, which checks the address and as-
signs a new page, then returns to the kernel to update the page
table before finally returning to the application. Such a round-
trip is inevitable because page fault handling involves a policy
of deciding whether and which physical page to map, which
should be kept out of the kernel [27], while the exceptions are
handled inside the kernel, and the page table is hidden behind
a capability in the kernel.

To improve the performance of handling page faults of
anonymous memory, HM makes policy-driven decisions in
advance, and leaves a policy-free page fault handling mech-
anism in the core kernel. Thus, it eliminates the extra IPC
round-trip on the critical path. Specifically, the memory man-
ager provides the address range of anonymous memory along

 0

 1000

 2000

 3000

Pi4b Read Pi4b Write Kirin Read Kirin Write

N
a

n
o

s
e

c
o

n
d

s

Fiasco.OC

1
4
6
9

1
5
2
2

w/o KPF

8
4
8

1
1
6
2

1
8
5
1

4
1
5
6

HM

2
4
4

7
7
2

4
5
6

1
8
1
6

Linux

3
9
5 6
5
6

5
5
1

1
9
2
1

Figure 8: Page fault latency of private anonymous memory. Read
is optimized with zero page. seL4 is not included since it does
not support demand paging by default.

with several pre-allocated physical pages. As shown in Fig-
ure 7, if the page fault is triggered within the range (❶), the
core kernel can map it directly to a pre-allocated physical page
(❷ and ❸), and record an operation log (OPLog, ❹), which
the memory manager will use to asynchronously update its
internal states (e.g., the counter of the mapped anonymous
pages). Otherwise, if the address is outside the specified range
(not performance-critical) or the pre-allocated pages are ex-
hausted, the core kernel will make an IPC to the memory
manager. The involved kernel objects are co-managed by the
memory manager via address tokens, including the page table,
the operation log, the VSpace, which records the layout of
virtual memory space for identifying anonymous memory,
and the PCache, which stores the pre-allocated pages.

Compromises. By making policy-driven decisions in ad-
vance, the policies (whether/which to map) are still kept out-
side the core kernel. The only compromised ability is to
change the policy after being pre-allocated to the PCache,
which reduces flexibility. PCache also introduces some ad-
ditional memory footprints. However, since PCache can be
periodically replenished (off the critical path), its size remains
relatively small, making these tradeoffs acceptable.

Performance. Figure 8 shows the reduced latency of ker-
nel paging (KPF) in HM. HM reduces read/write latency by
72%/33% on Pi4b and 75%/55% on Kirin9000 (little core),
making it even slightly shorter than Linux (6.1 on Pi4b and
5.10 on Kirin9000). seL4 is not included since it requires a
custom pager and does not support demand paging by default.
The round-trip (to the pager) of fault handling takes about
140ns on Pi4b (measured using sel4bench), which makes it
significantly slower than Linux.

Decision: Enable policy-free kernel paging by preempting
policy-driven decisions.

5 Compatibility Design of HongMeng

5.1 Linux ABI Compatibility
Deploying in emerging scenarios requires Linux ABI com-
patibility, which poses challenges in multi-server microker-
nels. K42 [68] achieves Linux ABI compatibility through
trap reflection, which redirects syscalls back to the k42 li-
brary loaded into the application’s address space. However, it
introduces significant performance overhead due to the addi-
tional roundtrip to the kernel [2] and also faces implementa-

474 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

tion challenges [29, 111] due to keeping states in userspace.
FreeBSD [36] and Windows (WSL1 [87]) also achieve partial
Linux ABI compatibility through syscall emulation. How-
ever, since all their OS services reside in kernel space, the
emulation layer can map abstractions like fd directly to their
internal states and efficiently support functions like fork and
poll, which is challenging in multi-server microkernels.

Syscall Redirection. HM achieves Linux ABI compatibil-
ity by placing an ABI-compliant shim in IC0 (kernel space),
which redirects Linux syscalls into IPCs towards appropri-
ate OS services (identified by syscall number, with native
syscalls bypassing the shim), as illustrated in Figure 3a. In
addition, the shim is optional. In scenarios where applica-
tions are predominantly custom, HM replaces the shim with
POSIX-compliant libraries, as shown in Figure 3b.

Centralized States. Apart from binary compatibility, mi-
crokernels no longer have a central repository for global states,
such as the file descriptor (fd) table, making functions like
fd multiplexing (i.e., polling) and syscalls like fork2 chal-
lenging to implement. Specifically, the fd table is usually kept
in the application’s address space (only contains credentials
verified by OS services). Thus, fd multiplexing requires map-
ping all waiting fd to a notification primitive and sending it
to all related services. Moreover, syscalls like fork have to
correctly assemble such distributed states in the userspace. It
introduces significant complexity and performance overhead,
primarily due to passing states from parent to child and the
additional page faults caused by updating these copy-on-write
states [8, 29]. Therefore, SOTA microkernels, including seL4,
Fiasco, and Zircon, do not support fork, while fork in K42
is known to have severe performance issues [29, 111].

Therefore, the ABI-compliant shim in HM also serves as a
central repository for global states like the fd table, enabling
efficient implementation of both fd multiplexing like poll
and syscalls like fork. Specifically, the shim maintains the
fd table, which maps fd to credentials (used by OS services
to identify the user). Therefore, implementing poll only re-
quires maintaining a poll list within the shim, co-managed
with OS services via address tokens. It also avoids copying
the fd table in userspace when executing fork.

Vectored Syscalls. Although most of the syscall transla-
tions are achieved solely in the ABI-compliant shim, there are
vectored syscalls [116] (e.g., ioctl/fcntl) that extend sys-
tem APIs and allow custom extensions (for drivers/modules)
via the file abstraction. HM redirects and handles them in the
FS service (e.g., invoking driver containers in section 5.2).

Deployment Experiences. HM passes all the tests in the
AOSP compatibility and vendor test suite (CTS/VTS [43,44]),
which examines both the kernel functionalities and driver
behavior. Although most binaries can run out of the box, we
observe that some apps rely on unstable/undocumented Linux
behavior and fail to run on HM. For example, an application

2While there have been arguments that fork should be deprecated [8],
popular frameworks like AOSP/OpenHarmony still use fork.

that depends on a specific epoll return order [95] fails to run
on HM (it also fails with different Linux versions).

Decision: Achieve Linux binary compatibility through ABI-
compliant shim.

5.2 Driver Container

Linux undeniably has the richest device driver ecosystem.
Further, some drivers are not source-available, which makes
porting challenging. Therefore, reusing Linux drivers is es-
sential for widespread deployment.

Challenging practical and performant driver reuse. Pre-
vious work, including both transplantation [3, 17, 32, 41, 118]
and VM-based methods [72], face challenges in achieving
high compatibility, reasonable engineering effort, and uncom-
promised performance simultaneously. In particular, trans-
planting the runtime environment requires re-implementing
all kernel APIs (KAPIs) used by drivers. Since some drivers
use a large number of KAPIs, some of which are even con-
stantly evolving, this approach faces challenges of compati-
bility and affordable engineering effort. In addition, reused
drivers (with large untrusted code base) should be enforced
with strict address space isolation for better security and to
avoid license contamination [34], which also degrades per-
formance. Reusing drivers through a virtual machine can
achieve better compatibility with less human effort. How-
ever, it introduces issues including memory double manage-
ment that causes extra memory footprint (crucial in memory-
constrained scenarios like smartphones) and thread double
scheduling that degrades performance due to the frequent use
of asynchronous notifications in drivers.

HM reuses Linux drivers (Figure 9) through a driver con-
tainer, which strikes to find a sweet spot between compatibil-
ity, engineering effort, and critical-path performance.

Compatibility. Inspired by LKL [101], UML [26], and
SawMill [39], the Linux Driver Container (LDC) provides
all necessary Linux KAPIs by reusing the Linux code base
as a userspace runtime, allowing existing Linux drivers
to run without modification. The main difference with
LKL/UML/SawMill is that LDC reuses the driver rather than
components like the file system and network stack. Thus,
drivers should be able to access the hardware devices directly
rather than redirecting to host drivers. Further, the runtime
relies on HM for resource management. Therefore, all related
functionalities, like the thread scheduler, are removed.

HM creates another device manager that manages both
the Linux and the native driver containers (where the native
drivers reside). Besides initializing driver containers, it regis-
ters entries (❶ in Figure 9) in the virtual file system (VFS) so
that driver invocations through VFS (e.g., ioctl ❷) can be
correctly redirected to the appropriate driver container (❸).

Using the LDC, HM has successfully reused over 700 de-
vice drivers from Linux, including all the needed ones for

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 475

smartphones and vehicles to function correctly, such as cam-
era, display, audio, NPU/GPU, and storage. Though most
drivers can directly run out of the box, several exceptions
exist. Since the LDC runs in userspace (IC2), drivers that use
privileged instructions (e.g., smc) will trigger faults. They re-
quire binary rewrites or manual porting (for those frequently
using privileged instructions, e.g., GIC) in the core kernel.

Engineering Effort. The Linux runtime in the LDC is
derived directly from mainline Linux, with minor modifica-
tions to redirect several functionalities to the driver container
base (DC-base in Figure 9) for proper execution. Therefore,
the required engineering effort is minor. Specifically, we pro-
vide a virtual architecture and redirect the kthread/memory
interfaces to HM. To make the drivers work correctly, DC-
base creates a virtual timer and a virtual IRQ chip to provide
the interrupt request and reserves a linear mapped space for
functions like virt_to_phys. Compared to the VM-based
method, which introduces double memory management and
double thread scheduling, the driver container avoids these
issues by redirecting and managing them in HM.

In practice, supporting long-term support (LTS) kernel dis-
tributions is sufficient for reusing most drivers (currently, HM
supports 4.4, 4.19, and 5.10). In addition, since the Linux
interfaces associated with the DC-base are relatively stable,
only minor modifications are required to upgrade the Linux
runtime. Upgrading from 4.19 to 5.10 requires less than 100
changes to the DC-base, most of which are minor modifica-
tions to the procedure names, arguments, and structures.

Critical Path Performance. The LDC is placed in IC2
(userspace) to preserve security (drivers have large untrusted
code bases) and avoid license contamination. However, it
introduces non-trivial overhead in driver-critical scenarios,
such as app startup and camera. Therefore, HM applies control
plane and data plane separation by creating a twin driver
in the native driver container that handles I/O IRQs on the
performance critical path (❹ in Figure 9). The twin driver
rewrites the data handling procedure and can thus be enforced
with weaker isolation (placed at IC1 in kernel space), resulting
in significantly better performance. The control planes, which
contain cumbersome procedures like init/suspend/resume,
remain in the LDC (❺).

The twinned drivers synchronize the states (usually a vari-
able) via IPC. Since the control plane is handled entirely in
the LDC, the twin driver does not modify the states (I/O er-
rors are redirected to the LDC). On initialization, the LDC
passes device information to the native one to create the twin
driver. When handling non-I/O IRQs and errors, the LDC syn-
chronizes the updated states back to the twin driver. Unlike
the transparent integration solely in LDC, which results in
poor performance, the twin driver requires additional engi-
neering effort to split and redirect interrupts and synchronize
states. Therefore, the twin driver is used only for performance-
critical drivers like the Universal Flash Storage (UFS) driver
(others are integrated transparently w/o modification).

Native
Driver

Container

Core
Kernel

Linux Runtime
Linux Driver

DC-Base

IO IRQ

Slow Path

init/wake

Twin Driver

Fast PathHardware

Apps

ioctl(fd,…)

/dev/a

Virtual
File System

Linux
Driver

Container

Device
Manager

2 3 IPC1 4

5

Registration
Procedure

Figure 9: Drivers in HM. The device manager creates file nodes
in the VFS ❶. VFS redirects invocations ❷ to drivers ❸. HM
improves performance by separating the control ❹/data ❺ plane.

 0

 4

 8

 12

 16

 20

4 8 16 32 64 128 256 512

T
h

ro
u

g
h

p
u

t
(1

0
0

 M
B

/s
)

Page Size (K)

DC-solo
DC-twin

Linux

(a) BIO read.

 0

 4

 8

 12

 16

4 8 16 32 64 128 256 512

T
h

ro
u

g
h

p
u

t
(1

0
0

 M
B

/s
)

Page Size (K)

DC-solo
DC-twin

Linux

(b) BIO write.
Figure 10: Block I/O throughput on Kirin9000. DC-twin applies
data and control plane separation, while DC-solo does not.

Figure 10 shows the improved throughput in the UFS Block
I/O benchmark. In the experiment, I/O requests are issued
directly from the driver. DC-twin (applied data/control plane
separation) achieves a similar throughput to Linux 5.10 and
outperforms DC-solo (w/o separation) by 140% at 4K size.

Security. The LDC is almost a normal userspace (IC2) OS
service in HM, with an additional ability to create a linear
mapped space whose range is strictly restricted to its allo-
cated memory (by only setting the present bit on the allocated
pages). Thus, it shares the same threat model as IC2 OS ser-
vices and userspace drivers in other microkernels. In addition,
HM uses SMMU [5] to prevent DMA attacks, with its driver
residing in an isolated native driver container.

Decision: Reuse Linux device drivers efficiently through
driver containers with control/data plane separation.

6 HongMeng in the Wild

6.1 Implementation and Deployment
The core kernel of HM is implemented primarily in a confined
subset of C, consisting of 90k lines of code (LoC), which
includes the basic functionalities. All other OS services are
decoupled and can be deployed individually, totaling over 1
million LoC. The HM’s build system can assemble the OS
services based on detailed configurations specified for various
scenarios, such as placing OS services in different isolation
classes or coalescing some OS services.

HM has been deployed in tens of millions of devices in
various emerging scenarios, which share the same code base
but with different configurations. In safety-critical scenar-
ios, such as smart vehicles (dashboard and entertainment sys-
tem) and the trusted execution environment (TEE) of smart-
phones, security and strict isolation are prioritized over per-
formance. In addition, applications are mostly customized

476 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 5: LMbench results.
Benchmark Commands1 Unit Linux HM Norm.2

lat_unix -P 1 µs 10.23 10.39 0.98
lat_tcp -m 16 µs 21.22 17.19 1.23
lat_tcp -m 16K µs 24.54 18.9 1.29
lat_tcp -m 1K (Same Core) µs 21.21 17.19 1.23
lat_tcp -m 1K (Cross core) µs 37.96 25.66 1.47
lat_udp -m 16 µs 17.83 19.48 0.92
lat_udp -m 16K µs 23.63 22.02 1.07
lat_udp -m 1K (Same Core) µs 18.04 19.55 0.92
lat_udp -m 1K (Cross core) µs 34.17 26.84 1.27
bw_tcp -m 10M MB/s 1812 3109 1.71
bw_unix MB/s 7124 8478 1.19
bw_mem 256m bcopy MB/s 17696 17202 1.02
bw_mem 512m frd MB/s 14514 14593 0.99
bw_mem 256m fcp MB/s 17492 15867 0.91
bw_mem 512m fwr MB/s 34771 35318 1.01
bw_file_rd 512M io_only MB/s 8976 9396 1.04
bw_mmap_rd 512M mmap_only MB/s 26073 27520 1.05
lat_mmap 512m µs 3315 3628 0.91
lat_pagefault µs 0.83 0.78 1.06
lat_ctx -s 16 8 µs 4.53 3.41 1.32
bw_pipe MB/s 3808 4127 1.08
lat_pipe µs 9.00 7.88 1.14
lat_proc exec µs 336 1305 0.26
lat_proc fork µs 323 1280 0.25
lat_proc shell µs 2269 4778 0.47
lat_clone (create thread) µs 28.6 54.3 0.52
1 Argument "-P 1" is omitted.
2 Norm. shows the normalized performance. For throughput, use

HM/Linux, for latency, use Linux/HM. The more the better.

and source-available. Therefore, HM places all OS services in
IC2 (userspace) and exposes the POSIX API to applications
through libraries. Moreover, HM achieves fault tolerance by
introducing a driver micro-reboot in the TEE. Drivers in the
TEE can be considered stateless since only re-initialization is
required to recover a corrupted driver. With micro-reboot, the
TEE can recover from driver corruption within hundreds of
milliseconds, whereas a complete system reboot is required
with a monolithic kernel. Fault tolerance for a broader range
of scenarios (e.g., stateful OS services in rich-OS) requires
additional efforts to store states and preserve their consistency,
which we leave for future work.

In performance-demanding scenarios like smartphones,
HM places the performance-critical OS services in IC1 (ker-
nel space), including the process manager, memory manager,
FS, and native driver container, and coalesces FS with the
memory manager. The Linux driver container and other non-
performance-critical OS services, such as CPU frequency
governor and power manager, remain in IC2 (userspace).

6.2 Performance
We present the end-to-end performance comparison between
HM and Linux in emerging scenarios, including smartphones
(using Kirin9000 SoC [57]), smart vehicles, and smart routers,
which existing microkernels fail to support. The compared
Linux 5.10 counterparts are already highly optimized (used
in prior products) rather than vanilla versions.

LMbench. We evaluate the basic OS functionalities using
LMbench [85] on Kirin9000. Table 5 shows the results related
to OS architecture. Compared to Linux (5.10), the context
switching lat_ctx (32%) and networking (avg. 21%) are
faster on HM, mainly due to the simplified handling proce-
dure compared to Linux [89,96]. Memory operations perform

similarly to Linux. Although fork still performs worse than
Linux in the microbenchmark, we observe that the major
overhead of fork in the real-world load comes from copying
virtual memory areas (VMAs). It can be accelerated through
parallelism, which reduces its overhead from 150ms to 60ms
(in typical apps, close to 30ms in Linux). Clone (creating
thread) is also 1x slower than Linux, mainly due to the ad-
ditional IPCs between multiple OS services (especially the
driver container in IC2) and the core kernel.

Geekbench. Figure 11c presents the normalized single-
core results of the CPU-intensive Geekbench 5.3.2 [99]. By
assembling the system to prioritize performance, HM achieves
similar performance with Linux, with minor differences due
to the different CPU frequency altering strategies.

Application Cold Startup Time. App startup time is crit-
ical to the user experience, stressing multiple OS services
(e.g., reading from flash memory and creating threads) with
extensive IPCs. Figure 11a shows the startup time of the top
30 AOSP apps on HM. The framework/app versions are the
same on Linux and HM. As analyzed in section 3.1, the major
overhead of microkernel in such scenarios comes from state
double bookkeeping and slow paging, which HM eliminates.
Therefore, the startup time is even 17% shorter (geometric
mean) than Linux, mainly due to the lighter loads (see below)
and the custom scheduling strategies.

Application Loads. Figure 11b presents the loads in a
period in different scenarios. The loads (number of executed
instructions) are collected using perf, which includes the
executed instructions in OS services (or in Linux kernel).
The load on HM is 19% lighter (geometric mean) than on
Linux. The proposed techniques in HM significantly reduce
the overhead of minimality and fine-grained access control.
Lighter loads also enable HM to achieve better performance
and energy efficiency than Linux.

We further present improvements using custom strategies
in HM, which are challenging to apply in Linux (section 2.3).

Frame Drops. Figure 11d shows the frame drop times
(crucial for user experience) in 20 rounds of running the typi-
cal usage model in section 3.1. Due to the lighter load and a
custom QoS-guided scheduling in HM, frame drops are 10%
less and 20% stabler than Linux.

Interrupt Latencies. Figure 11e and 11f show the latency
CDF of the related interrupts when playing video and audio,
which are essential for user experience. HM reduces their
latencies by 10% (video) and 65% (audio) by using a custom
experience-first strategy that executes all the handling proce-
dures at once, which is handled in another additional interrupt
(due to lazy disable of ARM GIC [40]) in Linux.

Experiences in smart routers and smart vehicles. In
smart routers, HM reduces OS memory footprint by 30%,
allowing 30% more client connections. In smart vehicles, HM
reduces system cold boot time from 1.5s (Linux) to 0.6s (crit-
ical for user experience, e.g., enabling 360-degree surround
view) and reduces cross-domain (dashboard and entertain-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 477

 0

 0.5

 1

 1.5

 2

Sho
rtV

id
eo

Vid
eo

N
ew

s

In
st
an

t M
sg

W
al
le
t

eM
ar

ke
t

M
ap

eM
ar

ke
t

Sho
rt

Vid
eo

Blo
g

eM
ar

ke
t

Vid
eo

In
st
an

t M
sg

eM
ar

ke
t

Blo
g

Vid
eo

Bro
w
se

r

Tra
ve

l

N
ew

s

W
ea

th
er

eM
ar

ke
t

Bro
w
se

r
M

ap

eM
ar

ke
t

eM
ar

ke
t

M
us

ic

Tra
ve

l

R
ad

io

N
ew

s

M
us

ic

Geomean 0.83

Linux HM

6
8

2

7
9

2

6
6

1

3
0

8

3
1

7

3
9

5

7
3

4

3
8

2

7
4

7

3
3

6

9
8

0

6
8

0

7
2

7

8
6

0

5
7

4

6
0

0

4
5

7

3
1

3

4
2

6

5
1

8

2
1

5
5

6
5

9

3
8

8

5
6

0

5
3

4

4
2

2

5
4

0

4
2

5

6
8

0

7
1

6

(a) Normalized startup time of top30 apps. The less the better.

 0

 0.5

 1

 1.5

 2

Lo
ck

Scr
n.

D
es

kt
op

Vid
eo

 R
ec

or
d

Tak
e

Pho
to

Pho
to

 L
ib

Spo
rt

Vid
eo

M
es

sa
ge

Bro
w
se

r

N
ot

es

N
ew

s

Sho
rt

Vid
eo

eM
ar

ke
t

Soc
ai
l N

et

In
st
an

t M
sg

Sho
rt

Vid
eo

Geomean 0.81

Linux HM

4
m

1
9

0
m

4
7

8
m

2
7

.3
b

5
1

4
m

1
9

6
m

2
9

.2
b

1
3

3
m

1
.5

b

4
9

6
m

3
4

m

1
.4

b

4
.2

b

1
.3

b

4
8

0
m

1
8

.6
b

(b) Load of typical scenarios. The less the better.

 0.6

 0.8

 1

 1.2

 1.4

AES-X
TS

Tex
t C

om
p.

Im
ag

e
C
om

p.

N
av

ig
at

io
n

H
TM

L5

SQ
Li
te

PD
F R

en
d.

Tex
t R

en
d.

C
la
ng

C
am

er
a

N
-B

od
y.

R
ig
id
.

G
au

ss
ia
n.

Fac
e.

H
or

iz
on

.

Im
ag

e.

H
D
R

R
Tra

ci
ng

M
ot

io
n

Spe
ec

h. M
L

Geomean 1.04

Linux HM

(c) Geekbench (single core). The more the better.

 0

 50

 100

 150

 200

GEOMEAN STD DEV

D
ro

p
 T

im
e
s
 (

c
n
t/
rn

d
)

Linux HM

(d) Frame drops. The less the better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

P
ro

p
o
rt

io
n

Latency µs

Linux HM

(e) Video int. latency CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

P
ro

p
o
rt

io
n

Latency µs

Linux HM

(f) Audio int. latency CDF.

Figure 11: Performance of HM compared with optimized Linux 5.10 on Kirin9000. (a), (b) and (c) normalized the result for comparison.
Labels in (a) show the startup time in milliseconds on HM. Labels in (b) show the executed instructions on HM.

ment) communication latency from 250µs to 100µs.

7 Lessons and Experiences

Compatible first, then nativize gradually. Compatibility is a
crucial first step for commercial deployment. First, a product
typically prefers a unified code base for various platforms
for cost-efficiency. Second, some third-party apps/drivers are
distributed in binaries. Moreover, even aiming to rebuild a
new software ecosystem, many essential libraries still require
Linux compatibility. Therefore, only by being compatible at
first can a new OS be widely deployed and have a chance to
evolve towards native interfaces for improved performance.
Specification alone is insufficient. Examine compatibility
via large-scale testing. Achieving full compatibility is diffi-
cult (if possible), primarily due to Hyrum’s Law [121], which
reveals that all observable system behaviors will be depended
on. Therefore, rather than satisfying certain specifications, we
examine compatibility through large-scale testing, which is
necessary to uncover hidden compatibility issues.
Deploy first, then optimize continuously. A microkernel is
hard to satisfy all performance goals initially and requires
full-system optimizations (e.g., framework, even hardware).
Without deployment, promoting cooperation among multiple
teams for such optimizations is difficult. Moreover, produc-
tion deployments require time to test reliability. Therefore, de-
ployments should commence early, starting on a small scale.
Use automated verification as much as possible. We found
that complete formal verification (using interactive theorem
proving) is unsustainable due to the rapid growth in code size
and functionalities. Hence, we resort to semi-formal verifi-
cation of critical components and use automated verification
and verification-guided testing to enhance the code quality.
Amplification of hardware failures/bugs due to the scale ef-
fects. We found that some low-probability hardware faults or
bugs are relatively likely to occur when deployed at scale, sig-
nificantly affecting user experience and potentially becoming

fatal in safety-critical scenarios. HM mitigates these issues by
isolating critical drivers in different LDCs, restarting stateless
drivers in TEE, and creating watchdogs for monitoring. HM,
as a microkernel, also provides opportunities to address these
issues through architectural design in future work.
Big kernel lock is not scalable in emerging scenarios. While
it is argued that a big kernel lock is sufficiently scalable
for a microkernel [97], mainly due to the short duration of
most syscalls, we found that it still faces scalability issues on
phones. First, phones have a high syscall frequency (61k/s,
Figure 1f), causing significant contentions. Moreover, emerg-
ing scenarios demand some complex functionality with long
durations. Examples include poll, which requires synchro-
nizing a large number of states within the shim (IC0), and
energy-aware scheduling [115], which involves frequent and
costly calculations of power consumption for each scheduling
decision due to the short-running nature of threads on phones.

8 Conclusion and Future Work

HongMeng is a commercialized general-purpose microkernel
that retains microkernel principles while providing structural
supports to address compatibility and performance challenges
in emerging scenarios. It also facilitates future exploration
of microkernels’ benefits in production. For instance, its flex-
ibility offers opportunities to accommodate the increasing
hardware heterogeneity that Linux fails to address [104], and
to achieve fault tolerance for improving availability.

Acknowledgements

We thank our shepherd, Timothy Roscoe, and the anonymous
reviewers for the insightful comments. We also thank col-
leagues in the Huawei OS Kernel Lab and Shanghai Jiao
Tong University for their helpful work and support. Haibo
Chen is also partly supported by National Natural Science
Foundation of China (No. 61925206 and 62132014).

478 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Real time Linux. https://wiki.linuxfoundation
.org/realtime/start. Accessed 16 April 2024.

[2] J. Appavoo, M. Auslander, M. Butrico, D. M. da Silva,
O. Krieger, M. F. Mergen, M. Ostrowski, B. Rosenburg,
R. W. Wisniewski, and J. Xenidis. Experience with
K42, an Open-Source, Linux-Compatible, Scalable
Operating-System Kernel. IBM Syst. J., 44(2):427–440,
jan 2005.

[3] Jonathan Appavoo, Marc Auslander, Dilma DaSilva,
David Edelsohn, Orran Krieger, Michal Ostrowski,
Bryan Rosenburg, R Wisniewski, and Jimi Xenidis.
Utilizing Linux kernel components in K42. Technical
report, Technical report, IBM Watson Research, 2002.

[4] Apple. XNU Project. https://github.com/apple
-oss-distributions/xnu. Accessed 16 April 2024.

[5] ARM. System MMU Support. https://developer.
arm.com/Architectures/System%20MMU%20Suppo
rt. Accessed 16 April 2024.

[6] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu,
Dimitris Mitropoulos, and Jason Nieh. POSIX Abstrac-
tions in Modern Operating Systems: The Old, the New,
and the Missing. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems, EuroSys ’16,
New York, NY, USA, 2016. Association for Computing
Machinery.

[7] AUTOSAR. Adaptive Platform. https://www.au
tosar.org/standards/adaptive-platform. Ac-
cessed 16 April 2024.

[8] Andrew Baumann, Jonathan Appavoo, Orran Krieger,
and Timothy Roscoe. A Fork() in the Road. In Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’19, page 14–22, New York, NY, USA,
2019. Association for Computing Machinery.

[9] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The Multikernel: A New OS Architecture for Scal-
able Multicore Systems. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Prin-
ciples, SOSP ’09, page 29–44, New York, NY, USA,
2009. Association for Computing Machinery.

[10] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.
Lightweight remote procedure call. In Proceedings
of the Twelfth ACM Symposium on Operating Systems
Principles, SOSP ’89, page 102–113, New York, NY,
USA, 1989. Association for Computing Machinery.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility Safety and Performance in the SPIN Oper-
ating System. SIGOPS Oper. Syst. Rev., 29(5):267–283,
dec 1995.

[12] Simon Biggs, Damon Lee, and Gernot Heiser. The Jury
Is In: Monolithic OS Design Is Flawed: Microkernel-
based Designs Improve Security. In Proceedings of
the 9th Asia-Pacific Workshop on Systems, APSys ’18,
New York, NY, USA, 2018. Association for Computing
Machinery.

[13] BlackBerry. BlackBerry QNX: Real-Time OS and
Software for Embedded Systems. https://blackb
erry.qnx.com/en. Accessed 16 April 2024.

[14] BlackBerry. Meet the Power Behind the BlackBerry
Tablet OS. https://www.qnx.com/company/an
nouncements/blackberry_tablet_os.html. Ac-
cessed 16 April 2024.

[15] BlackBerry. BlackBerry OS End of Life. https:
//www.blackberry.com/us/en/support/devices
/end-of-life, 2020.

[16] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an Experiment in Operating System
Structure and State Management. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6,
2020, pages 1–19. USENIX Association, 2020.

[17] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
Mendel Rosenblum. Disco: Running commodity op-
erating systems on scalable multiprocessors. ACM
Transactions on Computer Systems (TOCS), 15(4):412–
447, 1997.

[18] Anton Burtsev, Vikram Narayanan, Yongzhe Huang,
Kaiming Huang, Gang Tan, and Trent Jaeger. Evolv-
ing Operating System Kernels Towards Secure Kernel-
Driver Interfaces. In Malte Schwarzkopf, Andrew Bau-
mann, and Natacha Crooks, editors, Proceedings of the
19th Workshop on Hot Topics in Operating Systems,
HOTOS 2023, Providence, RI, USA, June 22-24, 2023,
pages 166–173. ACM, 2023.

[19] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. Linux
kernel vulnerabilities: state-of-the-art defenses and
open problems. In Haibo Chen, Zheng Zhang, Sue
Moon, and Yuanyuan Zhou, editors, APSys ’11 Asia
Pacific Workshop on Systems, Shanghai, China, July
11-12, 2011, page 5. ACM, 2011.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 479

https://wiki.linuxfoundation.org/ realtime/start
https://wiki.linuxfoundation.org/ realtime/start
https://github.com/apple-oss-distributions/xnu
https://github.com/apple-oss-distributions/xnu
https://developer.arm.com/Architectures/System%20MMU%20Support
https://developer.arm.com/Architectures/System%20MMU%20Support
https://developer.arm.com/Architectures/System%20MMU%20Support
https://www.autosar.org/standards/adaptive-platform
https://www.autosar.org/standards/adaptive-platform
https://blackberry.qnx.com/en
https://blackberry.qnx.com/en
https://www.qnx.com/company/announcements/blackberry_tablet_os.html
https://www.qnx.com/company/announcements/blackberry_tablet_os.html
https://www.blackberry.com/us/en/support/devices/end-of-life
https://www.blackberry.com/us/en/support/devices/end-of-life
https://www.blackberry.com/us/en/support/devices/end-of-life

[20] Yonghun Choi, Seonghoon Park, and Hojung Cha.
Graphics-Aware Power Governing for Mobile Devices.
In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,
MobiSys ’19, page 469–481, New York, NY, USA,
2019. Association for Computing Machinery.

[21] Yonghun Choi, Seonghoon Park, Seunghyeok Jeon,
Rhan Ha, and Hojung Cha. Optimizing Energy Con-
sumption of Mobile Games. IEEE Transactions on
Mobile Computing, 21(10):3744–3756, 2022.

[22] CVE. CVE-2021-30769. https://nvd.nist.gov/v
uln/detail/CVE-2021-30769. Accessed 16 April
2024.

[23] CVE. CVE Records. https://cve.mitre.org/.
Accessed 16 April 2024.

[24] CVEdetails. Linux Kernel 2.6 Security Vulnerabilities.
https://www.cvedetails.com/vulnerability
-list/vendor_id-33/product_id-47/versio
n_id-410986/Linux-Linux-Kernel-2.6.html.
Accessed 16 April 2024.

[25] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-
etz, John Criswell, and Vikram Adve. Nested Kernel:
An Operating System Architecture for Intra-Kernel
Privilege Separation. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’15, page 191–206, New York, NY, USA, 2015.
Association for Computing Machinery.

[26] Jeff Dike. User-mode Linux. In 5th Annual Linux
Showcase & Conference (ALS 01), Oakland, CA,
November 2001. USENIX Association.

[27] Björn Döbel. Memory, IPC, and L4Re. https://os
.inf.tu-dresden.de/~doebel/downloads/02-M
emoryAndIPC.pdf, 2012.

[28] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. XPC: architectural support for secure
and efficient cross process call. In Srilatha Bobbie
Manne, Hillery C. Hunter, and Erik R. Altman, editors,
Proceedings of the 46th International Symposium on
Computer Architecture, ISCA 2019, Phoenix, AZ, USA,
June 22-26, 2019, pages 671–684. ACM, 2019.

[29] David Edelsohn. Providing a Linux API on the Scal-
able K42 Kernel. In 2003 USENIX Annual Technical
Conference (USENIX ATC 03), San Antonio, TX, June
2003. USENIX Association.

[30] Kevin Elphinstone and Gernot Heiser. From L3 to seL4
what have we learnt in 20 years of L4 microkernels?
In Michael Kaminsky and Mike Dahlin, editors, ACM

SIGOPS 24th Symposium on Operating Systems Prin-
ciples, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 133–150. ACM, 2013.

[31] Dawson R. Engler, M. Frans Kaashoek, and James
W. O’Toole Jr. Exokernel: An Operating System
Architecture for Application-Level Resource Man-
agement. In Michael B. Jones, editor, Proceedings
of the Fifteenth ACM Symposium on Operating Sys-
tem Principles, SOSP 1995, Copper Mountain Resort,
Colorado, USA, December 3-6, 1995, pages 251–266.
ACM, 1995.

[32] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The Flux OSKit: A sub-
strate for kernel and language research. In Proceedings
of the sixteenth ACM symposium on Operating systems
principles, pages 38–51, 1997.

[33] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to
A Migrating Thread Model. In USENIX Winter 1994
Technical Conference (USENIX Winter 1994 Techni-
cal Conference), San Francisco, CA, January 1994.
USENIX Association.

[34] Free Software Foundation. Frequently Asked Ques-
tions about the GNU Licenses. https://www.gnu.
org/licenses/gpl-faq.en.html#MereAggrega
tion. Accessed 16 April 2024.

[35] OpenAtom Foundation. OpenHarmony Project. ht
tps://gitee.com/openharmony/docs/blob/mast
er/en/OpenHarmony-Overview.md. Accessed 16
April 2024.

[36] FreeBSD. Linux emulation in FreeBSD. https:
//docs.freebsd.org/en/articles/linux-emula
tion/. Accessed 16 April 2024.

[37] Google Fuchsia. Zircon Handles. https://fuchsi
a.dev/fuchsia-src/concepts/kernel/handles.
Accessed 16 April 2024.

[38] Vinod Ganapathy, Matthew J. Renzelmann, Arini Bal-
akrishnan, Michael M. Swift, and Somesh Jha. The
design and implementation of microdrivers. In Su-
san J. Eggers and James R. Larus, editors, Proceedings
of the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5,
2008, pages 168–178. ACM, 2008.

[39] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin J. Elphinstone, Volkmar Uhlig,
Jonathon E. Tidswell, Luke Deller, and Lars Reuther.
The SawMill multiserver approach. In Proceedings
of the 9th Workshop on ACM SIGOPS European

480 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://nvd.nist.gov/vuln/detail/CVE-2021-30769
https://nvd.nist.gov/vuln/detail/CVE-2021-30769
https://cve.mitre.org/
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/version_id-410986/Linux-Linux-Kernel-2.6.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/version_id-410986/Linux-Linux-Kernel-2.6.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/version_id-410986/Linux-Linux-Kernel-2.6.html
https://os.inf.tu-dresden.de/~doebel/downloads/02-MemoryAndIPC.pdf
https://os.inf.tu-dresden.de/~doebel/downloads/02-MemoryAndIPC.pdf
https://os.inf.tu-dresden.de/~doebel/downloads/02-MemoryAndIPC.pdf
https://www.gnu.org/licenses/gpl-faq.en.html#MereAggregation
https://www.gnu.org/licenses/gpl-faq.en.html#MereAggregation
https://www.gnu.org/licenses/gpl-faq.en.html#MereAggregation
https://gitee.com/openharmony/docs/blob/master/en/OpenHarmony-Overview.md
https://gitee.com/openharmony/docs/blob/master/en/OpenHarmony-Overview.md
https://gitee.com/openharmony/docs/blob/master/en/OpenHarmony-Overview.md
https://docs.freebsd.org/en/articles/linux-emulation/
https://docs.freebsd.org/en/articles/linux-emulation/
https://docs.freebsd.org/en/articles/linux-emulation/
https://fuchsia.dev/fuchsia-src/concepts/kernel/handles
https://fuchsia.dev/fuchsia-src/concepts/kernel/handles

Workshop: Beyond the PC: New Challenges for
the Operating System, EW 9, page 109–114, New
York, NY, USA, 2000. Association for Computing
Machinery.

[40] Thomas Gleixner and Ingo Molnar. Linux generic IRQ
handling. https://www.kernel.org/doc/html/v4
.18/core-api/genericirq.html, 2010.

[41] Shantanu Goel and Dan Duchamp. Linux Device
Driver Emulation in Mach. In USENIX Annual Techni-
cal Conference, pages 65–74, 1996.

[42] Google. Android Open Source Project. https://so
urce.android.com/. Accessed 16 April 2024.

[43] Google. AOSP Compatibility Test Suite. https://
source.android.com/docs/compatibility/cts.
Accessed 16 April 2024.

[44] Google. AOSP Vendor Test Suite (VTS) and infras-
tructure. https://source.android.com/docs/co
re/tests/vts. Accessed 16 April 2024.

[45] Google. App startup time. https://developer.an
droid.com/topic/performance/vitals/launc
h-time. Accessed 16 April 2024.

[46] Google. Fuchsia Zircon Kernel. https://fuchsi
a.dev/fuchsia-src/concepts/kernel?hl=en.
Accessed 16 April 2024.

[47] Google. Fuchsia’s libc. https://fuchsia.dev/fu
chsia-src/development/languages/c-cpp/lib
c?hl=en. Accessed 16 April 2024.

[48] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L. Scott. Fast Intra-Kernel Iso-
lation and Security with IskiOS. In Proceedings of the
24th International Symposium on Research in Attacks,
Intrusions and Defenses, RAID ’21, page 119–134,
New York, NY, USA, 2021. Association for Comput-
ing Machinery.

[49] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi,
Yubin Xia, and Haibo Chen. Harmonizing Perfor-
mance and Isolation in Microkernels with Efficient
Intra-kernel Isolation and Communication. In Ada
Gavrilovska and Erez Zadok, editors, 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July
15-17, 2020, pages 401–417. USENIX Association,
2020.

[50] Nikolai Hampton. The working dead: The security
risks of outdated Linux kernels. https://www2.com
puterworld.com.au/article/615338/working
-dead-security-risk-dated-linux-kernels/,
2017.

[51] Nikolai Hampton and Patryk Szewczyk. A survey and
method for analysing soho router firmware currency.
2015.

[52] Gernot Heiser and Ben Leslie. The OKL4 microvisor:
convergence point of microkernels and hypervisors.
In Chandramohan A. Thekkath, Ramakrishna Kotla,
and Lidong Zhou, editors, Proceedings of the 1st ACM
SIGCOMM Asia-Pacific Workshop on Systems, ApSys
2010, New Delhi, India, August 30, 2010, pages 19–24.
ACM, 2010.

[53] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Hom-
burg, and Andrew S. Tanenbaum. MINIX 3: A Highly
Reliable, Self-Repairing Operating System. SIGOPS
Oper. Syst. Rev., 40(3):80–89, jul 2006.

[54] Dan Hildebrand. An Architectural Overview of QNX.
In USENIX Workshop on Microkernels and Other Ker-
nel Architectures, pages 113–126, 1992.

[55] Hans J Holberg and Udo Brockmeyer. ISO 26262
compliant verification of functional requirements in the
model-based software development process. In White
paper. Embedded World Exhibition and Conference,
2011.

[56] Yongzhe Huang, Vikram Narayanan, David Detweiler,
Kaiming Huang, Gang Tan, Trent Jaeger, and Anton
Burtsev. KSplit: Automating Device Driver Isolation.
In Marcos K. Aguilera and Hakim Weatherspoon, edi-
tors, 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, pages 613–631. USENIX As-
sociation, 2022.

[57] Huawei. Kirin9000. https://www.hisilicon.com/
en/products/Kirin/Kirin-flagship-chips/K
irin-9000. Accessed 16 April 2024.

[58] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo,
Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
ghOSt: Fast & Flexible User-Space Delegation of
Linux Scheduling. In Robbert van Renesse and Nicko-
lai Zeldovich, editors, SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages
588–604. ACM, 2021.

[59] Galen C. Hunt and James R. Larus. Singularity: Re-
thinking the Software Stack. SIGOPS Oper. Syst. Rev.,
41(2):37–49, apr 2007.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 481

https://www.kernel.org/doc/html/v4.18/core-api/genericirq.html
https://www.kernel.org/doc/html/v4.18/core-api/genericirq.html
https://source.android.com/
https://source.android.com/
https://source.android.com/docs/compatibility/cts
https://source.android.com/docs/compatibility/cts
https://source.android.com/docs/core/tests/vts
https://source.android.com/docs/core/tests/vts
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://fuchsia.dev/fuchsia-src/concepts/kernel?hl=en
https://fuchsia.dev/fuchsia-src/concepts/kernel?hl=en
https://fuchsia.dev/fuchsia-src/development/languages/c-cpp/libc?hl=en
https://fuchsia.dev/fuchsia-src/development/languages/c-cpp/libc?hl=en
https://fuchsia.dev/fuchsia-src/development/languages/c-cpp/libc?hl=en
https://www2.computerworld.com.au/article/615338/working-dead-security-risk-dated-linux-kernels/
https://www2.computerworld.com.au/article/615338/working-dead-security-risk-dated-linux-kernels/
https://www2.computerworld.com.au/article/615338/working-dead-security-risk-dated-linux-kernels/
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000

[60] R Intel. Architecture instruction set extensions and
future features programming reference. https://www.
intel.com/content/dam/develop/external/us/
en/documents/architecture-instruction-set
-extensions-programming-reference.pdf, 2021.

[61] ISO. Road vehicles Functional safety. https://www.
iso.org/obp/ui/#iso:std:iso:26262:-3:ed-1:
v1:en. Accessed 16 April 2024.

[62] ISO. ISO/IEC 15408-1:2022: Information security, cy-
bersecurity and privacy protection - Evaluation criteria
for IT security. https://ccsp.alukos.com/standa
rds/iso-iec-15408-1-2022/, 2022.

[63] Jinsoo Jang and Brent ByungHoon Kang. In-process
Memory Isolation Using Hardware Watchpoint. In
Proceedings of the 56th Annual Design Automation
Conference 2019, DAC 2019, Las Vegas, NV, USA, June
02-06, 2019, page 32. ACM, 2019.

[64] Robert Kaiser and Stephan Wagner. Evolution of the
PikeOS microkernel. In First International Workshop
on Microkernels for Embedded Systems, volume 50,
2007.

[65] Antti Kantee et al. Flexible operating system internals:
the design and implementation of the anykernel and
rump kernels. 2012.

[66] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery.

[67] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David A. Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. seL4: formal verification of an OS kernel. In
Jeanna Neefe Matthews and Thomas E. Anderson, ed-
itors, Proceedings of the 22nd ACM Symposium on
Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009, pages 207–
220. ACM, 2009.

[68] Orran Krieger, Marc Auslander, Bryan Rosenburg,
Robert W Wisniewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, et al. K42: building a complete operat-
ing system. ACM SIGOPS Operating Systems Review,
40(4):133–145, 2006.

[69] l4re. L4Re Operating System Framework. https:
//l4re.org/. Accessed 16 April 2024.

[70] Adam Lackorzyński, Alexander Warg, Marcus Völp,
and Hermann Härtig. Flattening hierarchical schedul-
ing. In Proceedings of the Tenth ACM International
Conference on Embedded Software, EMSOFT ’12,
page 93–102, New York, NY, USA, 2012. Association
for Computing Machinery.

[71] Hugo Lefeuvre, Vlad-Andrei Badoiu, Alexander Jung,
Stefan Lucian Teodorescu, Sebastian Rauch, Felipe
Huici, Costin Raiciu, and Pierre Olivier. FlexOS: to-
wards flexible OS isolation. In Babak Falsafi, Michael
Ferdman, Shan Lu, and Thomas F. Wenisch, editors,
ASPLOS ’22: 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 Febru-
ary 2022 - 4 March 2022, pages 467–482. ACM, 2022.

[72] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Ste-
fan Götz. Unmodified Device Driver Reuse and Im-
proved System Dependability via Virtual Machines. In
OSDI, pages 17–30, 2004.

[73] Roy Levin, Ellis S. Cohen, William M. Corwin, Fred J.
Pollack, and William A. Wulf. Policy/Mechanism Sep-
aration in HYDRA. In James C. Browne and Juan
Rodriguez-Rosell, editors, Proceedings of the Fifth
Symposium on Operating System Principles, SOSP
1975, The University of Texas at Austin, Austin, Texas,
USA, November 19-21, 1975, pages 132–140. ACM,
1975.

[74] Henry M Levy. Capability-based computer systems.
Digital Press, 2014.

[75] Jochen Liedtke. Improving IPC by Kernel Design. In
Andrew P. Black and Barbara Liskov, editors, Proceed-
ings of the Fourteenth ACM Symposium on Operating
System Principles, SOSP 1993, The Grove Park Inn and
Country Club, Asheville, North Carolina, USA, Decem-
ber 5-8, 1993, pages 175–188. ACM, 1993.

[76] Jochen Liedtke. On micro-Kernel Construction. In
Michael B. Jones, editor, Proceedings of the Fifteenth
ACM Symposium on Operating System Principles,
SOSP 1995, Copper Mountain Resort, Colorado, USA,
December 3-6, 1995, pages 237–250. ACM, 1995.

[77] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, Jan-Erik Ekberg, and N. Asokan.
PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 177–194, Santa
Clara, CA, August 2019. USENIX Association.

482 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.iso.org/obp/ui/#iso:std:iso:26262:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-3:ed-1:v1:en
https://ccsp.alukos.com/standards/iso-iec-15408-1-2022/
https://ccsp.alukos.com/standards/iso-iec-15408-1-2022/
https://l4re.org/
https://l4re.org/

[78] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Scale and Performance
in a Filesystem Semi-Microkernel. In Robbert van
Renesse and Nickolai Zeldovich, editors, SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021, pages 819–835. ACM, 2021.

[79] Elton Lum. Study Confirms That Microkernel Is Inher-
ently More Secure. https://blogs.blackberry.c
om/en/2020/09/study-confirms-that-microke
rnel-is-inherently-more-secure, 2020.

[80] Anna Lyons, Kent McLeod, Hesham Almatary, and
Gernot Heiser. Scheduling-context capabilities: a prin-
cipled, light-weight operating-system mechanism for
managing time. In Proceedings of the Thirteenth Eu-
roSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[81] Anil Madhavapeddy, Richard Mortier, Charalampos
Rotsos, David J. Scott, Balraj Singh, Thomas Gazag-
naire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: library operating systems for the cloud.
In Vivek Sarkar and Rastislav Bodík, editors, Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2013, Houston, TX, USA, March
16-20, 2013, pages 461–472. ACM, 2013.

[82] Linux manual page. VDSO: Virtual Dynamic Shared
Object. https://man7.org/linux/man-pages/m
an7/vdso.7.html. Accessed 16 April 2024.

[83] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Software
fault isolation with API integrity and multi-principal
modules. In Ted Wobber and Peter Druschel, editors,
Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011, pages 115–128. ACM,
2011.

[84] Michael Marty, Marc de Kruijf, Jacob Adriaens,
Christopher Alfeld, Sean Bauer, Carlo Contavalli, Mike
Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Ku-
mar, Carl Mauer, Emily Musick, Lena Olson, Mike
Ryan, Erik Rubow, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. Snap:
a Microkernel Approach to Host Networking. In In
ACM SIGOPS 27th Symposium on Operating Systems
Principles, New York, NY, USA, 2019.

[85] Larry W. McVoy and Carl Staelin. lmbench: Portable
Tools for Performance Analysis. In Proceedings of

the USENIX Annual Technical Conference, San Diego,
California, USA, January 22-26, 1996, pages 279–294.
USENIX Association, 1996.

[86] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. SkyBridge: Fast and Secure Inter-Process
Communication for Microkernels. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
New York, NY, USA, 2019. Association for Computing
Machinery.

[87] Microsoft. Windows Subsystem for Linux Documen-
tation. https://learn.microsoft.com/en-us/wi
ndows/wsl/. Accessed 16 April 2024.

[88] Microsoft. MS Windows NT Kernel-mode User and
GDI White Paper. https://learn.microsoft.co
m/en-us/previous-versions/cc750820(v=tech
net.10), 2014.

[89] Till Miemietz, Maksym Planeta, and Viktor Laurin
Reusch. New Mechanism for Fast System Calls. arXiv
preprint arXiv:2112.10106, 2021.

[90] Vikram Narayanan, Abhiram Balasubramanian, Char-
lie Jacobsen, Sarah Spall, Scotty Bauer, Michael
Quigley, Aftab Hussain, Abdullah Younis, Junjie Shen,
Moinak Bhattacharyya, and Anton Burtsev. LXDs:
Towards Isolation of Kernel Subsystems. In Dahlia
Malkhi and Dan Tsafrir, editors, 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019, pages 269–284. USENIX As-
sociation, 2019.

[91] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight kernel isola-
tion with virtualization and VM functions. In Santosh
Nagarakatte, Andrew Baumann, and Baris Kasikci, ed-
itors, VEE ’20: 16th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments,
virtual event [Lausanne, Switzerland], March 17, 2020,
pages 157–171. ACM, 2020.

[92] Ruslan Nikolaev and Godmar Back. VirtuOS: an op-
erating system with kernel virtualization. In Michael
Kaminsky and Mike Dahlin, editors, ACM SIGOPS
24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6, 2013,
pages 116–132. ACM, 2013.

[93] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango:
Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 19), pages 361–378, Boston, MA, February
2019. USENIX Association.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 483

https://blogs.blackberry.com/en/2020/09/study-confirms-that-microkernel-is-inherently-more-secure
https://blogs.blackberry.com/en/2020/09/study-confirms-that-microkernel-is-inherently-more-secure
https://blogs.blackberry.com/en/2020/09/study-confirms-that-microkernel-is-inherently-more-secure
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/previous-versions/cc750820(v=technet.10)
https://learn.microsoft.com/en-us/previous-versions/cc750820(v=technet.10)
https://learn.microsoft.com/en-us/previous-versions/cc750820(v=technet.10)

[94] Gabriel Parmer. The case for thread migration: Pre-
dictable ipc in a customizable and reliable os. In Pro-
ceedings of the Workshop on Operating Systems Plat-
forms for Embedded Real-Time applications (OSPERT
2010), page 91, 2010.

[95] Roman Penyaev. epoll: make sure all elements in ready
list are in FIFO order. https://patchwork.kernel
.org/project/linux-fsdevel/patch/2018121
2110357.25656-2-rpenyaev@suse.de, 2018.

[96] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Ander-
son, and Timothy Roscoe. Arrakis: The Operating
System Is the Control Plane. ACM Trans. Comput.
Syst., 33(4), nov 2015.

[97] Sean Peters, Adrian Danis, Kevin Elphinstone, and Ger-
not Heiser. For a microkernel, a big lock is fine. In Pro-
ceedings of the 6th Asia-Pacific Workshop on Systems,
APSys ’15, New York, NY, USA, 2015. Association
for Computing Machinery.

[98] Mark Pitchford. Using Linux with critical applications:
Like mixing oil and water? https://www.embedded
.com/using-linux-with-critical-applicati
ons-like-mixing-oil-and-water/, 2021.

[99] Primate Labs Inc. Geekbench 5 CPU Workloads. ht
tps://www.geekbench.com/doc/geekbench5-c
pu-workloads.pdf, 2019.

[100] Sergej Proskurin, Marius Momeu, Seyedhamed
Ghavamnia, Vasileios P. Kemerlis, and Michalis
Polychronakis. xMP: Selective Memory Protection
for Kernel and User Space. In 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020, pages 563–577. IEEE, 2020.

[101] Octavian Purdila, Lucian Adrian Grijincu, and Nicolae
Tapus. LKL: The Linux kernel library. In 9th RoE-
duNet IEEE International Conference, pages 328–333.
IEEE, 2010.

[102] Ali Raza, Thomas Unger, Matthew Boyd, Eric B
Munson, Parul Sohal, Ulrich Drepper, Richard Jones,
Daniel Bristot De Oliveira, Larry Woodman, Re-
nato Mancuso, Jonathan Appavoo, and Orran Krieger.
Unikernel Linux (UKL). In Proceedings of the Eigh-
teenth European Conference on Computer Systems, Eu-
roSys ’23, page 590–605, New York, NY, USA, 2023.
Association for Computing Machinery.

[103] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An
Analysis of Performance Evolution of Linux’s Core

Operations. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, SOSP ’19, page
554–569, New York, NY, USA, 2019. Association for
Computing Machinery.

[104] Timothy Roscoe. It’s Time for Operating Systems
to Rediscover Hardware. USENIX Association, July
2021.

[105] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot
Heiser. Dingo: taming device drivers. In Wolfgang
Schröder-Preikschat, John Wilkes, and Rebecca Isaacs,
editors, Proceedings of the 2009 EuroSys Conference,
Nuremberg, Germany, April 1-3, 2009, pages 275–288.
ACM, 2009.

[106] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le
Sueur, and Gernot Heiser. Automatic device driver
synthesis with termite. In Jeanna Neefe Matthews
and Thomas E. Anderson, editors, Proceedings of the
22nd ACM Symposium on Operating Systems Princi-
ples 2009, SOSP 2009, Big Sky, Montana, USA, Octo-
ber 11-14, 2009, pages 73–86. ACM, 2009.

[107] seL4. seL4 capabilities. https://docs.sel4.syst
ems/Tutorials/capabilities.html. Accessed 16
April 2024.

[108] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Per-
rig. SecVisor: a tiny hypervisor to provide lifetime ker-
nel code integrity for commodity OSes. In Thomas C.
Bressoud and M. Frans Kaashoek, editors, Proceed-
ings of the 21st ACM Symposium on Operating Sys-
tems Principles 2007, SOSP 2007, Stevenson, Washing-
ton, USA, October 14-17, 2007, pages 335–350. ACM,
2007.

[109] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[110] Anand Lal Shimpi. The BlackBerry PlayBook Review.
https://www.anandtech.com/show/4266/blackb
erry-playbook-review/14, 2011.

[111] Dilma Da Silva, Orran Krieger, Robert W. Wisniewski,
Amos Waterland, David Tam, and Andrew Baumann.
K42: An Infrastructure for Operating System Research.
SIGOPS Oper. Syst. Rev., 40(2):34–42, apr 2006.

[112] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the Reliability of Commodity Operat-
ing Systems. SIGOPS Oper. Syst. Rev., 37(5):207–222,
oct 2003.

484 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://patchwork.kernel.org/project/linux-fsdevel/patch/20181212110357.25656-2-rpenyaev@suse.de
https://patchwork.kernel.org/project/linux-fsdevel/patch/20181212110357.25656-2-rpenyaev@suse.de
https://patchwork.kernel.org/project/linux-fsdevel/patch/20181212110357.25656-2-rpenyaev@suse.de
https://www.embedded.com/using-linux-with-critical-applications-like-mixing-oil-and-water/
https://www.embedded.com/using-linux-with-critical-applications-like-mixing-oil-and-water/
https://www.embedded.com/using-linux-with-critical-applications-like-mixing-oil-and-water/
https://www.geekbench.com/doc/geekbench5-cpu-workloads.pdf
https://www.geekbench.com/doc/geekbench5-cpu-workloads.pdf
https://www.geekbench.com/doc/geekbench5-cpu-workloads.pdf
https://docs.sel4.systems/Tutorials/capabilities.html
https://docs.sel4.systems/Tutorials/capabilities.html
https://www.anandtech.com/show/4266/blackberry-playbook-review/14
https://www.anandtech.com/show/4266/blackberry-playbook-review/14

[113] Sysgo. Open Source and ASIL D Certification – possi-
ble? https://www.sysgo.com/blog/article/ope
n-source-and-asil-d-certification-possibl
e, 2018.

[114] Willy Tarreau. Linux 2.6.32.71 (EOL). https://lwn.
net/Articles/679874/, 2016.

[115] The Linux Kernel documentation. Energy Aware
Scheduling. https://docs.kernel.org/sche
duler/sched-energy.html, 2019.

[116] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul,
and Donald E. Porter. A study of modern Linux API
usage and compatibility: what to support when you’re
supporting. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys ’16, New
York, NY, USA, 2016. Association for Computing Ma-
chinery.

[117] Johannes vom Dorp and René Helmke. Home Router
Security Report 2022. https://www.fkie.fraun
hofer.de/content/dam/fkie/de/documents/202
2-11-28_HRSR_2022.pdf, 2022.

[118] Hannes Weisbach, Björn Döbel, and Adam Lackorzyn-
ski. Generic user-level PCI drivers. In Proceedings of
the 13th Real-Time Linux Workshop., 2011.

[119] Embedded Linux Wiki. Embedded Linux System Size.
https://elinux.org/System_Size. Accessed 16
April 2024.

[120] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory Isolation for Linux Using Mondri-
aan Memory Protection. In Proceedings of the Twenti-
eth ACM Symposium on Operating Systems Principles,
SOSP ’05, page 31–44, New York, NY, USA, 2005.
Association for Computing Machinery.

[121] Hyrum Wright. Hyrum’s Law. https://www.hyru
mslaw.com/, 2012.

[122] Fangnuo Wu, Mingkai Dong, Gequan Mo, and Haibo
Chen. TreeSLS: A Whole-System Persistent Microker-
nel with Tree-Structured State Checkpoint on NVM. In
Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, page 1–16, New York, NY,
USA, 2023. Association for Computing Machinery.

[123] Feng Zhou, Jeremy Condit, Zachary R. Anderson, Ilya
Bagrak, Robert Ennals, Matthew Harren, George C.
Necula, and Eric A. Brewer. SafeDrive: Safe and
Recoverable Extensions Using Language-Based Tech-
niques. In Brian N. Bershad and Jeffrey C. Mogul,
editors, 7th Symposium on Operating Systems Design
and Implementation OSDI’06, November 6-8, Seattle,
WA, USA, pages 45–60. USENIX Association, 2006.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 485

https://www.sysgo.com/blog/article/open-source-and-asil-d-certification-possible
https://www.sysgo.com/blog/article/open-source-and-asil-d-certification-possible
https://www.sysgo.com/blog/article/open-source-and-asil-d-certification-possible
https://lwn.net/Articles/679874/
https://lwn.net/Articles/679874/
 https://docs.kernel.org/scheduler/sched-energy.html
 https://docs.kernel.org/scheduler/sched-energy.html
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/2022-11-28_HRSR_2022.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/2022-11-28_HRSR_2022.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/2022-11-28_HRSR_2022.pdf
https://elinux.org/System_Size
https://www.hyrumslaw.com/
https://www.hyrumslaw.com/

	Introduction
	The Case for a General Microkernel
	Microkernel Review
	Demand for a General Microkernel
	Issues with Linux

	Revisiting Microkernel for Going General
	Microkernel at Scale
	Overview of HongMeng

	Performance Design of HongMeng
	Synchronous RPC-like IPC Fastpath
	Differentiated Isolation Classes
	Flexible Composition
	Address Token-based Access Control
	Policy-free Kernel Paging

	Compatibility Design of HongMeng
	Linux ABI Compatibility
	Driver Container

	HongMeng in the Wild
	Implementation and Deployment
	Performance

	Lessons and Experiences
	Conclusion and Future Work

