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Abstract
We present a technique, called CFAR, that developers can

use to reason precisely about how their code, as well as third-
party code, uses the CPU cache. Given a piece of systems
code P, CFAR employs program analysis and binary instru-
mentation to automatically “distill” how P accesses memory,
and uses “projectors” on top of the extracted distillates to an-
swer specific questions about P’s cache usage. CFAR comes
with three example projectors that report (1) how P’s cache
footprint scales across unseen inputs; (2) the cache hits and
misses incurred by P for each class of inputs; and (3) poten-
tial vulnerabilities in cryptographic code caused by secret-
dependent cache-access patterns.

We implemented CFAR in an eponymous tool with which
we analyze a performance-critical subset of four TCP stacks—
two versions of the Linux stack, a stack used by the IX kernel-
bypass OS, and the lwIP TCP stack for embedded systems—
as well as 7 algorithm implementations from the OpenSSL
cryptographic library, all 51 system calls of the Hyperkernel,
and 2 hash-table implementations. We show how CFAR en-
ables developers to not only identify performance bugs and
security vulnerabilities in their own code but also understand
the performance impact of incorporating third-party code into
their systems without doing elaborate benchmarking.

CFAR is open-source and freely available at [58].

1 Introduction
System performance is important yet often poorly understood.
Hence the recently proposed notion of a performance inter-
face [30, 31, 47], defined by analogy to semantic interfaces
(e.g., abstract classes, specifications, documentation) that have
been used for many decades to succinctly describe a pro-
gram’s functionality. A performance interface describes a sys-
tem’s performance behavior in a manner that is simultane-
ously succinct, precise, and human-readable. The goal of per-
formance interfaces is to help developers efficiently reason
about the performance behavior of both their own and third-
party code without having to delve into the code’s implemen-
tation details—just like semantic interfaces help developers
reason about functionality today.

Low-level systems code (e.g., operating system kernels,
device drivers, network stacks, hypervisors) is special, be-
cause performance often critically depends on how the code
interacts with the underlying micro-architecture. As a result,
system developers spend a lot of time trying to understand

this interaction, e.g., trying to understand whether the code’s
memory-access patterns are cache-friendly [2, 12–14, 50, 70]
or whether the code’s working set fits in cache [19, 23, 45, 67,
68, 77]. Not understanding this interaction can lead to per-
formance bugs that are hard to diagnose, and can also result
in unexpected performance behavior when using third-party
code. For instance, a recent patch showed how the fast path of
the Linux TCP stack had been experiencing a bloated cache
footprint for over a decade, incurring slowdowns of up to
45% [42]; prior work has shown that applications may run up
to 4× slower after calling into third-party code (e.g., a syscall)
due to the callee’s micro-architectural footprint [66, 74].

The goal of this work is to help system developers answer
key questions about how their code and third-party code in-
teracts with the underlying micro-architecture. We focus on
interactions with the CPU caches (both data and instruction
caches), since these often play a critical role in the perfor-
mance of systems code [12–14, 19, 23, 38, 45, 57, 67, 68, 70,
77, 78]. We seek to answer frequently-asked questions about
cache usage such as: “How does the code’s cache usage scale
as a function of the workload?” [6, 19, 23, 67, 68] and “Which
workloads make the code’s working set exceed the cache
size?” [38, 57] without requiring developers to delve into the
code’s details or run elaborate, time-consuming benchmarks.

Answering the above questions requires visibility into how
the code processes an abstract workload, so we look for ab-
stractions that capture (in a succinct, precise, and human-
readable manner) how the code interacts with the caches as a
function of the workload. Our approach is in contrast to exist-
ing performance-analysis tools like profilers [10, 43, 59, 69]
and cycle-accurate simulators [7, 9]: such tools can only pro-
vide insights into cache usage for the concrete workloads with
which the code is profiled or simulated; they cannot provide
visibility into how the code would behave for arbitrary, previ-
ously unseen workloads. As a result, when using these tools,
developers are forced to manually reverse-engineer the an-
swer to their questions. This process is both time-consuming
and error-prone [29], particularly for code that the developers
did not write themselves.

We present Cache Footprint AnalyzeR (CFAR), a technique
for processing a piece of systems code into answers to devel-
opers’ questions about how that code uses the cache. This pro-
cessing consists of two phases: In the first phase, CFAR takes
as input the target code and extracts from it an abstract repre-
sentation (a “distillate”) of how the code accesses memory. In
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the second phase, CFAR uses simple programs (“projectors”)
to transform the distillate into answers to specific questions
about the code’s cache usage. Since the distillate is a precise
abstraction of the code’s memory usage (i.e., it contains all
the information relevant to how the code accesses memory),
developers can use projectors to answer diverse questions
about the code’s cache usage. The eponymous tool that imple-
ments the CFAR technique relies on a combination of static
analysis, symbolic execution, and binary instrumentation to
automatically extract distillates. We chose these particular
program-analysis techniques because, despite their scalability
limitations (discussed in §4.3), they enable precisely the level
of visibility a developer seeks, enabling her to reason about
how the code processes an abstract workload.

The current CFAR prototype comes with three projectors
that answer frequently-asked questions about cache usage:
(1) Pscale computes how the amount of data the code brings
into the cache (in bytes) varies as a function of the workload;
(2) Ph/m computes, as a function of workload, whether mem-
ory accesses will hit or miss in the cache; and (3) Pcrypt flags
cryptographic code that branches on, or accesses memory in
a way that depends on secret inputs, thereby flagging poten-
tial security vulnerabilities or proving their absence. Pcrypt is
an example that demonstrates the flexibility of CFAR’s two-
phased process: since the distillate contains all information
relevant to how the code accesses memory, developers can
write projectors to analyze more than just standard perfor-
mance properties. We envision developers contributing more
such projectors to the CFAR tool, making it more useful over
time. In stable state, developers will likely just use whatever
ships with CFAR, extending it only when they cannot get the
answers they seek.

We use CFAR to analyze a performance-critical subset of
the transport layer of 4 TCP stacks—2 versions of Linux’s
stack (i.e., before and after the recent reorganization for cache
efficiency [42]), a TCP stack used by the IX kernel-bypass
OS [6], and the lwIP TCP stack for embedded systems [20]—
as well as 2 hash-table implementations [60, 73], all 51 of the
Hyperkernel’s system calls [51], and 7 algorithm implemen-
tations from the OpenSSL cryptographic library [54]. We use
the results to demonstrate how distillates and projectors en-
able developers to understand the cache usage of both their
own and others’ code, for unseen workloads, without run-
ning elaborate benchmark suites. As part of the evaluation,
we also uncover a cache-inefficient data layout in the kernel-
bypass TCP stack, an error path in the Hyperkernel mmap()
system call (which, despite looking innocuous, inadvertently
pollutes 40% of the L1 d-cache), and a constant-time viola-
tion in OpenSSL 3.0’s implementation of AES. For all the
above code, CFAR’s analysis completes in minutes, which
means that extraction and analysis of distillates can be feasi-
bly integrated into a real-world software-development cycle.

The rest of this paper is organized as follows: We first
motivate CFAR using examples of cache-usage questions that

existing tools cannot answer (§2), then provide an overview
of the CFAR approach (§3) and detail its design (§4). We then
evaluate the CFAR prototype experimentally (§5), discuss
related work (§6), and conclude (§7).

2 Motivation
In this section, we give an example of the kind of ques-
tions that system developers ask about their code’s cache us-
age (§2.1), and then describe why existing tools cannot an-
swer such questions (§2.2).

2.1 Example
Consider a developer, Alice, who is building an in-memory
key-value store that has to be fast. The key-value store uses a
hash table to store the key-value pairs and runs atop a user-
space, kernel-bypass transport stack. Alice has modified an
existing hash-table implementation to suit her needs, and thus
understands that part of the code well. However, she is using
an off-the-shelf transport stack [20, 34, 75], of which she un-
derstands little beyond the semantic interface it exposes.

In such a system, throughput is often bottlenecked by the
number of last-level cache (LLC) misses per request [41, 67,
79]; hence, to optimize throughput, Alice needs to know how
the different parts of her code use the cache and how they
affect the LLC misses as a function of the workload. For
example, if her system fails to reach the expected throughput
due to persistent LLC misses, what is the predominant cause?
Is it that the hash table code touches too many cache lines
per put() or get() request? Or is it that the transport stack’s
buffer-management code touches too many cache lines per
connection [6]? In the former case, Alice should spend her
time optimizing the memory layout of the hash table [12–14],
whereas, in the latter, she should port her code to alternative
stacks with smaller memory footprints [20, 67]. Finally, if
both codebases were already highly optimized, she should
avoid wasting time on code optimizations and replicate her
key-value store across multiple machines [4].

2.2 Existing Tools Are Insufficient
Existing tools like profilers [10,43,59,69] and cycle-accurate
simulators [7, 9] are fundamentally ill-suited to answering
Alice’s questions. This is because profilers and simulators are
designed to reason about what the code does to the micro-
architecture for a given workload, whereas answering Alice’s
questions requires reasoning about what the code does to
the micro-architecture as a function of workload. So, while
profilers and simulators can provide visibility into the code’s
cache usage for a given workload, they do not have predictive
power, and thus cannot provide Alice with visibility into cache
usage for workloads beyond the ones that she herself provided
to the tools.

As a result, developers like Alice are forced to guess the an-
swers to their questions based on (incomplete) information de-
rived from profiling. Between cycle-accurate simulators and
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profilers, performance engineers typically prefer profilers be-
cause they are orders of magnitude faster, even if less precise.
So, Alice would typically profile her system with many work-
loads to measure micro-architectural events and then guess the
predominant cause of LLC misses. In particular, she would try
to identify the properties of workloads that led to low through-
put: were they those that led to a large number of put() or
get() accesses per request? Or those that led to a large number
of concurrent connections? This is similar to what developers
in industry do to answer such questions: they run their code
for multiple workloads, use profilers to count the total num-
ber of unique cache lines touched, and then manually extrapo-
late how workload affects their code’s cache footprint [5, 42].

Reasoning about cache usage in such a manner is not only
time consuming but also error prone, particularly for third-
party code. For instance, Alice (who knows little about the im-
plementation of the transport stack) may not even think about
running workloads that lead to different numbers of concur-
rent connections. In general, performance profiling suffers
from the “large input problem” [48, 53]: unexpected perfor-
mance behavior often manifests only when input size (e.g.,
the number of concurrent connections) exceeds some thresh-
old that may seem arbitrary to those who are not intimately fa-
miliar with the code. So, designing a test suite that completely
“covers” a system’s performance behaviors is hard, and de-
velopers do not even have metrics for performance coverage.
While line coverage is used as a proxy for what fraction of the
code’s semantic behaviors is covered by tests, performance
profiling does not have even such an imperfect metric.

As a result, developers like Alice often fail to identify work-
load properties that significantly impact cache usage, causing
performance cliffs to manifest in production. For instance,
developers from Google recently showed that the fast path
of the Linux TCP stack had been accessing 50% more cache
lines than it needed to, for over a decade, which was leading
to performance degradation of up to 45% [42]. Similarly, ini-
tial work on predicting the working set of network functions
ignored the impact of different packet sizes [19], and a study
of Linux’s system-call performance showed how a newly in-
troduced configuration parameter can destroy spatial locality
and lead to increased LLC misses [62]. In practice, develop-
ers like Alice often use incomplete performance profiling to
guesstimate their system’s cache usage, and then they over-
provision resources for their system, to mitigate unexpected
performance degradation [24]. This leads to lower system ef-
ficiency and inflated costs, and is not always effective.

Summary. Existing tools like profilers and cycle-accurate
simulators are ill-suited to answering frequently-asked ques-
tions about cache usage, because they do not have predictive
power across the space of possible workloads. As a result, de-
velopers are forced to estimate the answers to their questions
using incomplete information obtained via profiling. This pro-
cess is not only time consuming but also error prone, particu-
larly when applied to third-party code.

PdistP

Pproj

Pproj

…

Pa

Pb

…

Projection phaseDistillation phase

CFAR

Automated 
analysis

a

b

Figure 1: The CFAR workflow. P denotes a unit of systems code,
Pdist denotes the corresponding distillate, Pi denotes the different
projectors, and Pi

proj denotes the corresponding projections that pro-
vide answers to developers’ questions about P’s cache usage.

3 CFAR Overview
Answering questions about cache usage requires reasoning
about the code. We therefore look for abstractions that pre-
cisely capture what the code does to memory (and thus the
cache) as a function of its input (workload).

With this in mind, we propose two abstractions: distillates
and projections. Let P be any well-defined part of a system
that can be invoked individually, such as a system call in an
OS kernel or a function in a library, or even a standalone
program. A distillate Pdist is a program that specifies precisely
and completely how P accesses memory. A projection P π

proj
is a much simpler program that answers a specific question π

about P’s cache usage. For any given P, there exists a unique
distillate Pdist, but there can be as many projections as there
are questions about P’s cache usage.

We represent distillates and projections as programs—
as opposed to denser, more mathematical representa-
tions (e.g., [22])—for two reasons. First, programs provide
developers with a representation that they are familiar with,
allowing them to quickly read and understand the answers to
questions about cache usage. Second, programs can be exe-
cuted, which makes it possible for tools to leverage distillates
and projections for automated performance analysis; in §4 we
show how CFAR executes a distillate against a cache model
to reason about cache hits and misses.

Fig. 1 illustrates CFAR’s workflow, which consists of two
phases: The first phase takes as input a module P of a sys-
tem’s code and automatically extracts P’s distillate. The sec-
ond phase relies on simple programs (“projectors”) that trans-
form the distillate into projections that answer specific ques-
tions about P’s cache usage, such as “How many unique cache
lines does P touch as a function of the workload?” and “How
does P’s cache hit/miss profile vary as a function of the work-
load?” CFAR currently provides three such projectors, and
we envision developers contributing more over time.

The two-phased workflow provides CFAR with the flexi-
bility needed to answer diverse questions about cache usage.
Since the distillate captures all information relevant to how
the code accesses memory, it can always be transformed—
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1 int sys_create(int fd, fn_t fn, uint64
ftype , uint64 value , uint64 omode) {

2
3 if (ftype == FD_NONE)
4 return -EINVAL;
5 if (! is_fd_valid(fd))
6 return -EBADF;
7 if (& proc_tbl[pid]->ofile[fd] != 0)
8 return -EINVAL;
9 if (! is_fn_valid(fn))

10 return -EINVAL;
11
12 struct file = get_file(fn);
13 if (file ->refcnt != 0)
14 return -EINVAL;
15 file ->type = ftype;
16 file ->value = value;
17 file ->omode = omode;
18 file ->refcnt = file ->offset = 0;
19 set_fd(pid , fd, fn);
20 return 0;
21 }

1 def sys_create_dcache(fd, fn, ftype , value , omode):
2 # State: pid , proc_tbl , file_tbl
3
4 if ftype == FD_NONE: #6 accesses
5 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,rsp -8)]
6
7 if not(fd >=0 and fd < NOFILE): #6 accesses
8 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,rsp -8)]
9

10 if [proc_tbl +256* pid +64+8* fd]: #7 accesses
11 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd) ,..,(r,rsp -8)]
12
13 if not(fn >=0 and fn < NOFILE): #7 accesses
14 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd) ,..,(r,rsp -8)]
15
16 if [file_tbl +40*fn+8]: #9 accesses
17 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd)..,(r,file_tbl +40*

fn+8) ,..,(r,rsp -8)]
18
19 # Succesful create. 17 accesses
20 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd) ,..,(r,file_tbl +40*fn

+8) ,(w,file_tbl +40*fn),(w,file_tbl +40*fn+16) ,..,(w,proc_tbl +256* pid +64+8* fd)
,..,(r,rsp -8)]

Figure 2: Example program on left (Hyperkernel sys_create system call that creates a new file) and the corresponding data-accesses distillate.

1 def sys_create_icache(fd, fn, ftype , value , omode):
2 # State: pid , proc_tbl , file_tbl
3 # sys_create abbreviated as s
4
5 if ftype == FD_NONE: # 10 instructions
6 return [(r,s) ,..,(r,s+168) ,..,(r,s+176)]
7
8 # Error paths elided for presentation clarity
9 ......

10
11 # Succesful create. 45 instructions
12 return [(r,s),(r,s+8) ,..,(r,s+160) ,(r,s+168) ,(r,s+176)]

Figure 3: Instruction-accesses distillate for sys_create.

using a suitable projector—into a projection that answers a
specific question about the code’s cache usage. We demon-
strate this flexibility by building a projector (Pcrypt) that goes
beyond standard performance analysis and uses the distillate
to identify potential cache-based security vulnerabilities.

CFAR does not make any assumptions about the kind of
code that it takes as input. That said, in this work, we focus on
systems code (e.g., operating systems, device drivers, network
stacks, hypervisors), since it is code for which cache usage
has a significant impact on performance.

We now define the three key components of CFAR, namely
distillates (§3.1), projectors (§3.2), and projections (§3.3).
Table 1 summarizes these definitions.

Notation Description

P
A unit of code that can be invoked individually (e.g., system call, library
function, standalone program). It takes as input I and has initial state S0.

Ω An ordered sequence of memory accesses (to symbolic addresses).
Pπ A projector. It is a program that defines a function/property π(Ω) related

to cache usage.

Pdist
The unique distillate of P. It is a program that takes as input I and computes
Ω as a function of I and S0, where Ω is P’s memory-access sequence.

P π
proj

A projection of P. It is a program that takes as input I and computes π(Ω)
as a function of I and S0, where Ω is P’s memory-access sequence and
π(Ω) is defined by a projector Pπ.

Table 1: Glossary.

3.1 Distillates
Consider a program (or function, or method) P, with input(s)
I, and state S0 at the time of invocation. S0 consists of the
values of P’s objects in the heap and the stack up to %rsp.

P’s distillate Pdist is another (typically simpler) program

that takes the same input(s) I, and computes P’s sequence of
memory accesses Ω as a function of I and S0. Since accessing
data vs. instructions exhibits distinct patterns, we distinguish
between a data-accesses distillate Pdata

dist and an instruction-
accesses distillate Pinstr

dist . The former computes the sequence
of data-memory accesses that would be observed if executing
P with input I starting from state S0, while Pinstr

dist computes
the corresponding instruction-memory accesses.

We illustrate what a distillate looks like with the exam-
ple of the sys_create system call (Fig. 2, left) in the Hy-
perkernel [51]. First, each memory access in Ω is a tuple
<type,addr >, where type can be read (r), write (w) or read-
modify-write (rmw), and addr is a memory address. In a data-
accesses distillate (Fig. 2, right), each memory address is a
function of standard state components (e.g., the stack pointer
%rsp), as well as components that are specific to P. For ex-
ample, line 11 in the distillate describes accesses that are a
function of proc_tbl, pid, and fd, which arise from executing
line 7 in sys_create. If a memory address is independent of I
and S0 (e.g., the address of a struct allocated by P in the heap
and then freed before returning), it is represented as a named
constant (e.g., mallocRetVal@file.c:342). In an instruction-
accesses distillate (Fig. 3), each memory address is repre-
sented as an aligned offset relative to the address of the first in-
struction in P. In our particular example, the compiler inlines
all helper functions, hence there is only one base address s.

The distillate Pdist is a precise and complete representation
of P’s memory usage. It is precise because it provides the
exact sequence of memory accesses for any execution of P.
The symbolic expressions for data- and instruction-memory
accesses as a function of I and S0 are precise by construction,
and therefore correct for any concrete instantiation of I and
S0. The distillate is complete in that it contains all information
on P’s memory accesses that can be found in P. No matter
what the concrete values of I and S0, how the address space is
randomized [1], or where in memory the code is loaded, Pdist
will always be able to produce the exact sequence of memory
accesses that P makes when executing from S0 with input I.

584    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



3.2 Projectors

A projector Pπ is a program that defines a function π(Ω, ...)
related to cache usage. For example, a projector may define
π(Ω) = |Ω|, i.e., the number of memory accesses in Ω, while
another projector may define π(Ω) = |{λ(r) = br/64c : r ∈
Ω}|, i.e., the number of unique 64-byte cache lines accessed
by Ω.

We think of a function π as a question about cache usage
(e.g., “How many memory accesses does this piece of code
perform?” or “How many unique cache lines does the code
access?”). CFAR enables developers to write their own pro-
jectors, such that they can formulate their own questions.

A key property of projectors is that they are code-agnostic:
A function π(Ω, ...) defined by projector Pπ is independent
of the semantics of the code that produced Ω (or any of the
other arguments). This code-agnostic nature makes projectors
easy to express; for example, a developer can write the simple
projector that defines π(Ω) = |Ω| (mentioned above) to query
the number of memory accesses performed by any P, without
having to understand P’s details.

The function π may take inputs beyond just Ω. For example,
it may take as additional input a cache model, and compute the
number of hits and misses incurred by Ω in the L1 data cache
given that particular cache model. Since Ω is independent of
where and how the code that produced it was executed, such a
generalized function π can precisely characterize the impact
of running a piece of code on different micro-architectures
and/or with different OS configurations (e.g., for different
memory-page sizes that P may use).

3.3 Projections

A projection P π
proj of P is another (typically simpler) program

that takes the same input(s) I as P, and computes the value of
function π for P, as a function of I and S0. Said differently, if
we think of π as a specific question about cache usage, then
P π

proj is a program that provides the answer to that question for
P. Fig. 4 shows a projection of sys_create that computes the
number of data memory accesses performed by the system
call as a function of its input and the OS state. CFAR produces
P π

proj by applying the projector Pπ to P’s distillate Pdist.

1 def sys_create_dcache_num_accesses(fd, fn, ftype , value , omode):
2 # State: pid , proc_tbl , file_tbl
3
4 if ftype == FD_NONE:
5 return 6
6
7 if not(fd >=0 and fd < NOFILE):
8 return 6
9

10 if [proc_tbl +256* pid +64+8* fd]:
11 return 7
12
13 if not(fn >=0 and fn < NOFILE):
14 return 7
15
16 if [file_tbl +40*fn+8]:
17 return 9
18
19 # Succesful create.
20 return 17

Figure 4: Projection of sys_create that describes the number of
data memory accesses.

Summary. CFAR provides abstractions to reason about
what a program does to the memory hierarchy. If a program
is a function P: < I,So>→ semantic outputs, we say that the
distillate is a function Pdist: < I,So>→Ω that abstracts away
everything that has to do with program semantics and pre-
serves information about memory accesses. The projection
is a function P π

proj: < I,So>→ π(Ω) that computes an answer
and abstracts away all unrelated information. This is a pro-
gression of abstraction steps, starting from the original pro-
gram and arriving at the final projection. Each step takes the
same arguments < I,So>, but returns a result that is increas-
ingly more focused on the cache-usage question at hand.

4 CFAR Design
We now provide more details on the two phases of CFAR:
distillation (§4.1) and projection (§4.2).

4.1 Phase #1: Distillation
CFAR automatically distills an input program P into its cor-
responding distillate Pdist using a four-step process, shown
in Fig. 5: it 1© enumerates all feasible executions paths in P
using automated program analysis; then 2© obtains a binary
execution trace for each such path; then 3© based on the re-
sults of these two steps, prepares an execution tree for the dis-
tillate; and lastly 4© optimizes this tree and produces Pdist.

Source 
code DistillatePath 

enumeration

Binary 
replay

Exec tree
synthesis

path constraints, 
symbolic addresses

concrete
input

  exec
trace

Binary

Code 
synthesis

 Distillation

              

       

 1

 2

 3         4

Figure 5: The four steps in CFAR’s distillation process.

Our use of context-sensitive program analysis and binary
replay ensures that CFAR can extract a precise distillate with-
out requiring any effort on the part of the developer, but this
also imposes limitations. Most notably, CFAR is subject to
the scalability limitations of such program analysis and is thus
not ideal for reasoning about multi-threaded code or about
code with loops whose bounds cannot be statically computed.
Additionally, CFAR is also limited by the proprietary nature
of modern hardware. For instance, since the exact algorithms
used to schedule instructions in an out-of-order processor are
not publicly available, CFAR cannot reason about specula-
tive memory accesses. We describe CFAR’s limitations in de-
tail in §4.3, but we note here that, despite these limitations,
CFAR is able to provide valuable information about cache us-
age that is otherwise unavailable, and do so for a wide variety
of systems code (§5).

4.1.1 Step 1©: Path enumeration

To enumerate all the paths in P, CFAR uses exhaustive sym-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    585



bolic execution [11, 26, 36, 65]. This is a context-sensitive
program-analysis technique that automatically traverses the
feasible execution paths of a body of code, enabling a com-
prehensive analysis of its control flow. The technique is pow-
erful but also faces challenges related to loops and pointers,
which we discuss in §4.3. We use an exhaustive form of this
technique, which yields all feasible paths in P.

For each enumerated path α, CFAR saves four key pieces of
information: (1) the precise path constraint Cα that uniquely
defines this path, i.e., the conjunction of the predicates of each
conditional along α; (2) a concrete input Iα that exercises this
path, obtained by asking an SMT constraint solver [18] for a
satisfying assignment to the free variables in Cα; (3) the sym-
bolic expression corresponding to the address of each data/in-
struction memory location accessed along the path, expressed
as a function of P’s inputs and/or state; and (4) a correspond-
ing file:linenum identifier for each memory operation, to be
used later. The sequence of these symbolic expressions is ωα.

Our CFAR prototype uses KLEE [11] to perform the sym-
bolic execution. KLEE, like many other symbolic-execution
engines, analyzes the code at the IR level, which in KLEE’s
case is LLVM [16]. CFAR can therefore handle any code
that is compiled to LLVM and can be handled by KLEE. Our
KLEE modifications and additions total ∼1,500 lines of C++.

4.1.2 Step 2©: Binary replay

What actually executes on the hardware is not the source code
or the IR. Compiler optimizations, such as link-time optimiza-
tion, cause the executing machine code to not directly corre-
spond to what is in the IR. Furthermore, many IRs are Static
Single Assignment (SSA), in which each variable is assigned
exactly once. This makes the data flow and dependencies
among variables more explicit and easier for the compiler to
analyze, but also implies an infinite register file. Processors do
not have infinite register files so, during an actual execution,
register values often need to be spilled to the stack. Since these
pushes and pops to/from the stack are not present in an SSA
IR, and thus not captured when analyzing P in its IR form,
the corresponding memory accesses will not appear in ωα.

Therefore, CFAR replays an instrumented version of the P
binary for each Iα, to obtain a corresponding execution trace
Xα for each path α in P. For each machine instruction exe-
cuted in Xα, CFAR saves the program counter, the instruction
opcode (e.g., mov, push, pop), the concrete memory addresses
accessed, and the corresponding file:linenum debug infor-
mation inserted into the binary by the instrumentation.

We deliberately split the CFAR analysis into a source-based
and a binary-based step. On the one hand, it is easier to extract
symbolic expressions for memory operations by analyzing the
source code or the IR. On the other hand, analyzing the binary
enables CFAR to be fully precise with respect to compiler
optimizations and which instructions lead to memory accesses
and do not merely manipulate CPU registers. In theory, these
two steps could be combined into a single one by directly

executing the binary symbolically (e.g., with S2E [15]). To
answer with certainty whether this is possible, one would need
to assess how CFAR is affected by the loss of type information
when going from source code to binaries.

The CFAR prototype uses Intel PIN [46] to instrument
binaries. Our Pintool consists of ∼350 lines of C++.

4.1.3 Step 3©: Execution tree synthesis for Pdist

In this step, CFAR combines the information extracted in the
previous two steps. For each path α in P, it combines the sym-
bolic memory trace ωα with the corresponding binary execu-
tion trace Xα. To produce a data-access trace, CFAR takes the
sequence of concrete addresses from Xα and replaces (using
debug information) all input- and state-dependent accesses
with the corresponding symbolic expressions from ωα, result-
ing in Ωdata

α . To produce an instruction-access trace, CFAR
uses the program-counter values and the call stack in Xα to
compute the symbolic offset of each instruction from the start
of P (e.g., from its entry point, if P is a function or a system
call) to produce Ωinstr

α . The call stack gives CFAR informa-
tion on which function the instruction belongs to, so that it
can compute the function-specific offset.

Next, CFAR assembles an execution tree using the path
constraints Cα. It arranges all the paths into a tree based on
their common prefixes; for every path α there exists a path
from root to leaf in the tree, and vice-versa. Each internal node
of the tree contains the predicate corresponding to the original
branch in P. The conjunction of the predicates for all internal
nodes along a root-to-leaf path forms the corresponding path
constraint Cα.

4.1.4 Step 4©: Synthesis of the Pdist distillate

The final step in CFAR’s distillation process consists of sum-
marizing loop-related memory access patterns, along with
other improvements for human readability of Pdist. Symbolic
execution, by default, unrolls loops and thus produces a sep-
arate execution path for each loop iteration. This leads to
bloated distillates that are hard to read and contain redundant
information, particularly if the code’s memory-access pattern
does not change meaningfully across loop iterations.

Summarizing a loop entails representing the effects of that
loop without representing all its iterations explicitly. Concep-
tually, the goal of this step is to eliminate from the execution
tree the subtrees induced by loop unrolling. This step does
not elide or lose any information contained in the distillate—
it only optimizes the distillate’s control flow for human read-
ability. By definition, any projection derived from Pdist will
retain P’s control flow, as reflected in the distillate.

While automatically summarizing loops in general is un-
decidable [25], studies have shown that there exist four com-
mon categories of loops that relate to data locality issues in
systems code [35]. Therefore, CFAR contains loop-summary
templates for these four categories of loops—two that tra-
verse array-like data structures, and two that traverse pointer-
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chasing data structures (e.g., linked lists, trees). All four cat-
egories require the loop body to not branch on the specific
value of the iteration counter, and require the loop to have a
maximum of two termination predicates, one in the loop defi-
nition and at most one break in the body. Each loop template
has a corresponding loop summary.

For loops that do not match a template, the distillate
presents them in unrolled form—still correct, just less human-
readable. We thus call this “best-effort” loop summarization.

After loop summarization and a few other optimizations for
readability, CFAR transforms the tree into a program that rep-
resents Pdist. This program takes the same input as P. Every
internal tree node generates an if statement in the program,
branching on the predicate contained in that node. Each path
through the program ends with a return of the corresponding
Ωα. Depending on the memory-type of the distillate, the re-
turned symbolic memory-access trace is either Ωinstr

α or Ωdata
α .

Fig. 6 shows a snippet for the Pdata
dist distillate of the memcmp

function in the C standard library. Our CFAR prototype uses
Python to represent distillates, because it is one of the most
widely used languages [52] and has an easy-to-understand
syntax. The example illustrates CFAR’s loop summarization
for a loop that belongs to the first category of loops mentioned
above. CFAR uses first-order logic to summarize loops with
primitives from Z3’s Python API [72]. The predicate that
starts on line 3 identifies the smallest index i (bounded by
len) at which the two strings differ. The distillate shows that
the memory accessed by memcmp corresponds to every element
of the two arrays up to i.

1 def memcmp_dcache(s1,s2,len):
2
3 if Exists(i,And(0<=i<len ,[s1+i]!=[s2+i],
4 ForAll(j, Implies (0<=j<i),[s1+j]==[s2+j]))):
5
6 return ForAll(k, Implies (0<=k<=i) ,[(r,s1+k),(r,s2+k)])
7 return ForAll(k, Implies (0<=k<=len) ,[(r,s1+k),(r,s2+k)])

Figure 6: Pdata
dist for memcmp showing CFAR’s loop summarization.

4.2 Phase #2: Projection
The distillate produced by the previous phase contains all the
information on P’s memory-access behavior. The answer to
a developers’ cache-usage question can therefore be found
in the distillate, but it is buried among details that may not
be relevant to that question. The projection phase turns distil-
lates into focused, actionable answers that are not clouded by
details irrelevant to the question being asked.

4.2.1 General overview

Developers write projectors in the form of programs that
take as input a tuple < Ω,C >, along with possibly other
projector-specific parameters, such as the cache model men-
tioned in §3.2. Ω is a symbolic memory-access trace, and C
is a constraint on the variables that appear in the symbolic ad-
dresses of Ω, in the form of a first-order logic expression.

We expect most projectors to ignore C and implement a
function of just Ω, like π(Ω) = |{λ(r) = br/64c : r ∈Ω}|. We
therefore did not mention the C parameter in §3.2, for clar-
ity of presentation, but, to answer all cache-usage questions,
the more general function π(Ω,C) is sometimes needed. For
example, determining if all memory accesses are cache-line-
aligned requires, in the general case, both Ω and C. The ori-
gin of this constraint C is the path constraint that causes the
original program to execute the memory accesses in Ω. The
branch predicates in distillates are such constraints. The con-
straint can be simple, like 0≤idx<128, or more sophisticated,
stating for example that the value stored at a particular mem-
ory location is non-zero: [file_tbl+40*fn+8] 6=0. In our pro-
totype, Ω and C are Python lists of Z3 expressions [72].

To produce a projection, CFAR takes a projector program
Pπ and a distillate Pdist, and synthesizes a new program P π

proj.
For each branch in Pdist, the P π

proj program has the same branch
as Pdist but, instead of returning Ω (as the distillate does), it
returns the value of invoking Pπ (Ω,C, ...). In other words, the
projection P π

proj has the same control flow as the distillate but,
instead of calculating a memory-access trace, it calculates a
specific cache-usage property of that trace.

4.2.2 Example projectors: Pscale, Ph/m, and Pcrypt

Our CFAR prototype comes with three example projectors:
(1) Pscale computes how the cache footprint (in bytes) varies
across an entire range of previously unseen inputs (e.g., how
it scales with the number of active network connections);
(2) Ph/m computes the cache hit and miss profiles per class
of inputs, as opposed to per specific, concrete input; and
(3) Pcrypt flags cryptographic code that accesses the cache in a
way that depends on secret inputs. This projector can be used
to find potential security vulnerabilities or prove their absence.

While the questions answered by these projectors are non-
trivial, the projectors themselves are straightforward to write.
For example, we express the functionality of both Pscale and
Pcrypt in less than 100 lines of Python. While Ph/m requires
∼800 lines, almost 600 of those are a Python translation of
the cache model from the gem5 cycle-accurate simulator [7].
In §5.2, we show how a simple 5-line projector helped us
identify a performance bug in a TCP stack used by IX [6].

Pscale computes cache footprint based on the symbolic Ω

for a given input class. Pscale first determines which addresses
in Ω change if the value of the input changes. It then uses an
SMT solver to check the alignment of these addresses and de-
termine the number of unique bytes touched by the accesses to
those addresses, and produces the result as a human-readable
formula. For instance, applying Pscale to the sys_create distil-
late in Fig. 2, for the input class that corresponds to successful
creation (line 20), yields the formula 8*fd + 32*fn. This for-
mula says that, in a sequence of successful sys_create calls,
the cache footprint will increase by 8 bytes for each distinct
fd argument value and by 32 bytes per distinct fn argument
value. This is how fd and fn influence the cache footprint,
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and this is exactly the information that Alice wanted to know
for keys and network connections in §2. Pscale can be used,
for instance, to quickly determine when the code’s working
set will overflow the cache.

Ph/m is more sophisticated and takes four projector-specific
parameters: a workload size W , an input set cardinality N, a
probability mass function PMF, and a cache model. Its goal
is to compute the number of hits and misses experienced by
a workload of W inputs that can take on any of N distinct
types, distributed within the workload according to the PMF,
when using a cache that works according to the model. In the
scenario we will explore in §5 for a TCP network stack, W
would be the number of packets in a trace, and N the number
of unique connections—what distinguishes packet types is
which connection they belong to. The PMF would be the
relative distribution of packets among the N connections.

Ph/m first produces a workload of W symbolic inputs satis-
fying the PMF. For example, if W=5 and N=2 and the PMF
is < 0.4,0.6 >, the workload would be < λ1,λ2,λ1,λ2,λ2 > or
some other variant that satisfies the PMF. Then, for each sym-
bolic input in the workload, Ph/m iterates through Ω and sends
each memory access to the cache model; the access may be a
function of the λi symbolic input, or independent of it. Ph/m
records, for each access, whether it is a hit or a miss.

Since there are multiple workload variants that satisfy the
PMF, the process above repeats, with alternate variants, until
the resulting hits/misses counts are statistically significant.

Ph/m can be thought of as a symbolic, trace-based cache
simulator. A major challenge is, when dealing with symbolic
addresses, Ph/m cannot compute set-associativity conflicts
precisely. Instead, Ph/m approximates them by allocating an
unconstrained, symbolic memory address (typically the base
of a data structure) randomly to a set in the cache, and then
mapping all relative addresses as offsets from that base. For
example, if the address γ is randomly mapped to set µ, then
the address γ+64 would be deterministically mapped to set
(µ+1) mod # of sets in the cache. In §5 we will see that this
approximation works well when compared to real hardware.

By default, Ph/m provides a 3-level inclusive cache with
a next-line prefetcher whose size and set associativity at
each level is configurable. The default PMF is uniform, and
W=100N. Ph/m assumes that the memory trace Ω does not
update initial program state S0 that influences addresses in Ω.

Pcrypt is an example of a projector that also takes the path
constraint C into account. Its goal is to answer the question of
whether there are any data accesses to secret-dependent mem-
ory addresses or secret-dependent branches, both of which
are known sources of side channels [3]. Pcrypt takes, as a
projector-specific input, a list of program inputs that consti-
tute secrets. It then uses an SMT solver to determine which (if
any) of the memory addresses in Ω are influenced by secrets.
It then checks whether any of the secrets appear in the path
constraint C. If it finds any, then Pcrypt returns file:linenum

debug information for the corresponding branch or memory
access, as well as the path constraint that leads to it. If none
found, then Pcrypt states that the code does not have secret-
dependent branch instructions or data accesses.

Pcrypt cannot check for all types of cache-based leakage.
For example, leakages due to speculatively executed instruc-
tions [44] are out of scope for Pcrypt.

4.3 Limitations and Assumptions
Scalability limitations of symbolic execution: CFAR’s re-
liance on symbolic execution (SE) makes it subject to SE’s
own limitations. Depending on which SE engine is used, cer-
tain kinds of loops, or symbolic pointers, or multi-threading
could prevent CFAR from obtaining all execution paths [8].
However, there is active research on this topic, and recent SE
engines have brought various enhancements that overcome
these challenges, such as state merging [39], loop-extended
symbolic execution [64], loop summaries [27, 71], loop in-
variants [33], and symbolic abstract transformers [37].

Any CFAR prototype will ultimately inherit the power
of its underlying SE engine. Since our prototype relies on
KLEE [11], code whose loops do not have statically com-
putable bounds, or that is multi-threaded, or that has arbitrary
symbolic pointers is not an ideal match, because path explo-
ration may take too long. This makes our current prototype
a poor fit for analyzing entire systems, like the Memcached
or Redis key-value stores. Nevertheless, we show in §5 that
CFAR extracts useful distillates for key components of com-
plex systems code (e.g., for data structures whose cache foot-
print is a common source of performance problems).

Using CFAR for code that is not amenable to exhaustive
symbolic execution: CFAR’s reliance on exhaustive sym-
bolic execution means that automatically extracting complete
distillates is not always feasible. We now discuss how devel-
opers can obtain useful results with CFAR even in such cases.

A simple approach is to constrain the input space, e.g., con-
strain CFAR to inputs that trigger the “fast path” through the
code, since that is a common target of performance analysis.
For instance, if the code of interest is an IP-packet forwarding
function, it is reasonable to constrain the distillate to pack-
ets without IP options. This dramatically reduces both the
size of the distillate and the time required to obtain it (since it
eliminates the part of the code that loops through the variable-
length IP options), while still yielding practically useful re-
sults (since performance-sensitive traffic typically does not
carry IP options). Focusing on the cache usage of the fast
path is common practice today; for instance, the recent re-
organization of the Linux TCP stack was based entirely on
the requirements of the TCP fast path [42].

For constraining the input space, CFAR provides an inter-
face similar to KLEE’s [11], with which developers can pro-
vide constraints on arbitrary program variables. In our evalua-
tion, we use this approach to analyze code that is not amenable
to exhaustive symbolic execution (e.g., the Linux TCP stack),
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and the results are compelling despite the constrained input
space. Constraining the input space requires the developer to
have some knowledge of, for instance, what typical/fast-path
inputs look like. However, it does not require knowledge of
the code’s internal details, because these are explored auto-
matically by CFAR.

An alternate approach is to run CFAR with a specified time
budget. When the time limit is reached, CFAR outputs a par-
tial distillate that returns the exact sequence of symbolic mem-
ory accesses performed by the code along the explored exe-
cution paths. While this approach does not require developer
knowledge, the downside is that CFAR may not explore all
meaningful execution paths in the given time budget. The
CFAR prototype offers this time-budget feature, but we did
not use it in any of the experiments in our evaluation.

Prototype cannot aggregate across input classes: In the
current projection model (§4.2), a projector instance gets to
see only the Ω corresponding to one input class. Our CFAR
prototype does not yet support sharing state across different
instances of projectors, and thus does not support aggregating
measures across multiple input classes. This support is simple
to add, we just have not encountered the need for it yet.

Cannot account for inter-process interactions: Projectors
cannot answer questions that span multiple processes. Also,
we assume that P is small enough to not have its execution
interrupted by preemption. The distillate Pdist is always cor-
rect with respect to P, but the predictions made based on this
distillate alone will miss cache accesses performed by code
other than P during a preemption. In other words, if the pe-
riod of interest includes a preemption, when a projector looks
at Ω, it does not get the full picture, because P is not the only
code that interacts with the micro-architecture.

Limitations due to proprietary hardware details: CFAR
employs binary instrumentation to obtain an execution trace.
Such instrumentation can only reveal instructions that the pro-
cessor retires (i.e., finishes executing); it does not reveal in-
structions that were executed as a result of incorrect specula-
tion, such as a mispredicted branch. Speculated instructions
nevertheless could impact the cache, even if their semantic
effects are undone. Since CFAR does not see those accesses,
the answers computed by projectors may not be fully accu-
rate. We are not aware of any tool that can precisely report
such mis-speculated instructions during an execution, since
the scheduling algorithms used in the out-of-order pipelines
of commercial processors are proprietary.

5 Evaluation
In this section, we evaluate the CFAR prototype by answering
two main questions:

• Does CFAR work? We show that CFAR extracts 100%-
accurate data- and instruction-accesses distillates, and
that this extraction completes in minutes for various
kinds of systems code (§5.1).

• Is CFAR useful to system developers? We describe four
use cases that demonstrate how CFAR provides develop-
ers with visibility into cache usage in a way that profil-
ers and simulators cannot (§5.2).

Evaluation targets. We used CFAR to analyze the fast path
of the transport layer of 4 TCP stacks: 2 versions of Linux’s
stack (before and after the recent reorganization for cache
efficiency [42]), a TCP stack used by the IX kernel-bypass
OS [6], and the lwIP TCP stack for embedded systems [20].
We also analyzed 2 hash-table implementations [60, 73], all
51 system calls in the Hyperkernel [51], and 7 algorithm im-
plementations in OpenSSL 3.0.0 [54]. For the Linux TCP
stack, we analyzed the stable versions before and after the re-
organization (v6.5 and v6.8). For all other code, we analyzed
the latest stable version. IX uses the lwIP stack as a starting
point, but heavily modifies the internal data structures and
timer management [6].

We demonstrate that CFAR provides actionable cache-
usage information for a broad spectrum of systems code. At
one end of the spectrum are the Hyperkernel and OpenSSL,
both of which are amenable to automated program analysis.
The hash-table implementations occupy the middle, since
they are both amenable to manual (but not automated) pro-
gram analysis. At the other end of the spectrum are the four
transport-layer implementations, which were not written to
be amenable to any form of program analysis.

Setup. All experiments ran on an Intel Xeon E5-2690 v2
CPU at 3.30GHz with 25.6MB of LLC and 252GB of DRAM,
with Ubuntu 22.04 and Linux kernel v5.4. The CFAR proto-
type incorporates a modified version of KLEE 2.1.

5.1 Does CFAR Work?

There are two key aspects to this question: does CFAR obtain
an accurate abstract representation of performance from the
code (§5.1.1), and does it do so in reasonable time (§5.1.2).

5.1.1 Accuracy of distillates

To measure the accuracy of our prototype’s distillates, we
randomly picked half the execution paths of each target, con-
structed inputs that exercised each path, counted the number
of instructions and memory accesses executed while running
with each concrete input, and then compared this number to
the one predicted by the target’s distillates.

The error was always zero, across all programs and inputs.
That is, the number of instructions counted during real exe-
cution always equaled the number of memory accesses pre-
dicted by the instruction-accesses distillate for the given input,
and the number of memory accesses counted during real exe-
cution always equaled the number of memory accesses pre-
dicted by the data-accesses distillate for that input. Addition-
ally, CFAR’s distillates correctly predicted every instruction-
memory and data-memory address accessed by the code.
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5.1.2 Time to extract distillates

Table 2 shows how long CFAR takes to extract distillates: for
all programs, the analysis completes in less than 30 min. The
longest times are for the Vigor hash table and the echde key-
generation algorithm in OpenSSL; they are the only ones that
take more than 15 min. This is because, for these programs,
symbolic execution needs to unroll long loops that iterate over
the hash map and that compute co-prime numbers, respec-
tively. For all programs, the binary replay, execution-tree syn-
thesis, and code synthesis take approximately 2-3 min in total.
The dominant component of CFAR’s analysis time—and the
one that varies across programs—is symbolic execution.

Program Pdist extraction time

Linux TCP ingress 11 min
Linux TCP egress 14 min
IX TCP ingress 5 min
IX TCP egress 7 min
lwIP TCP ingress 4 min
lwIP TCP egress 5 min
Hyperkernel syscalls (51 total) Avg: 4 min / Max: 7 min
OpenSSL primitives (7 total) Avg: 9 min / Max: 22 min
Vigor hash table 28 min
Klint hash table 12 min

Table 2: Time taken by CFAR to extract distillates.

5.2 Is CFAR Useful for System Developers?
We demonstrate CFAR’s usefulness by presenting four cases
of CFAR answering important questions that developer Alice
cannot readily answer with the state of the art: How does my
code’s working set vary with the workload (§5.2.1)? I want to
use a third-party data-structure library, but how does it interact
with my cache (§5.2.2)? Does my code lead to inefficient
memory-access patterns (§5.2.3)? Can I prove/disprove the
absence of secret-dependent memory accesses (§5.2.4)?

5.2.1 How does the working set vary with workload?

We used the Pscale and Ph/m projectors to analyze the cache
usage of the fast path of the transport layer of the four TCP
stacks. Recall that this is the question that Alice wanted to
answer in §2, but could not.

We constrain the input space as discussed in §4.3: focus the
analysis solely on packets processed in the TCP fast path, i.e.,
packets that belong to an established TCP connection, are re-
ceived in order, and do not suffer hash collisions with packets
from other connections. We pick this particular class of pack-
ets because it represents a large fraction of packets processed
by the TCP stack, on the path for which performance matters
the most. The recent re-organization of the Linux TCP stack
was focused entirely on this fast path [42].

First, we used Pscale to figure out the number of unique
cache lines touched by the TCP fast path, for symbolic packet
contents. The answer was 4, 5, 8, and 12 unique cache lines

for the lwIP, kernel-bypass, Linux stack v6.8 and v6.5, respec-
tively. Pscale provides this information automatically, whereas
benchmarking or code inspection would have a hard time pro-
ducing it, because it cannot be gleaned merely by observing
the size of the connection-specific struct. For example, in
Linux, the struct tcp_sock occupies 42 cache lines in total,
but only a fraction of them are accessed on the fast path.

We then passed this information to Ph/m and used it to pre-
dict when incoming packets were likely to suffer consistent
cache misses due to the working set overflowing the LLC. The
answer was that this would occur at approximately 91K, 76K,
47K, and 28K concurrent connections for the lwIP, kernel-
bypass, Linux stack v6.8 and v6.5, respectively. The small
differences between these predictions and simple capacity-
based calculations (e.g., 25.6M LLC / (64*4) = 100K con-
nections for lwIP) are due to Ph/m being able to account for
conflict misses in addition to capacity misses.

To verify these predictions, we ran a set of experiments
where the transport layer receives and sends packets from/to a
fixed set of established connections, and we varied the number
of connections. To isolate just the transport layer (which is the
code we analyzed), we wrote simple shims for the application
and IP layers ourselves. In each experiment, we measured the
average latency incurred by packets within the transport layer.

Fig. 7 plots packet-processing latency as a function of the
number of connections. For each of the four stacks, there is
a clear shift around the number of connections predicted by
Ph/m. For instance, the latency for the Linux stack v6.5 in-
creases by only 64ns from 1K to 26K connections, but in-
creases by 211ns from 26K to 52K connections. Likewise, al-
though less visible in the graph due to Linux’s higher latency,
the latency for the lwIP stack increases by only 13ns from
1K to 86K connections, and it increases by 50ns from 86K to
125K connections. The shift does not occur exactly at the pre-
dicted number of connections, but very close to it: compared
to the predicted values of 28K, 47K, 76K, and 91K, we ob-
served the shifts at 26K, 44K, 72K, and 86K, respectively. This
difference is expected, because of Ph/m’s set-associativity con-
flict approximation (§4.2.2) and because cache-mapping poli-
cies are proprietary, so Ph/m’s cache model is imprecise.
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Figure 7: Measured latency for TCP packet processing as a func-
tion of the number of connections. CFAR predicted consistent LLC
misses to start occurring at 28K, 47K, 76K and 91K connections
for the Linux TCP stack v6.5, Linux TCP stack v6.8, the kernel-
bypass (KB) stack and the lwIP stack, respectively.

590    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Conclusion. Based on these results, we conclude that CFAR’s
Pscale and Ph/m projectors enable developers to accurately
identify how the working set of third-party code or their own
code changes as a function of the workload, without requir-
ing them to run elaborate benchmarks. Given that CFAR can
extract distillates in under 30 minutes, such extraction and
analysis of distillates can become part of the regular devel-
opment cycle (e.g., be made part of a continuous-integration
pipeline), enabling developers to identify surprising perfor-
mance behavior early and with relatively little effort.

5.2.2 How does third-party data-structure library code
interact with my cache?

System developers often want to use third-party data-structure
implementations, but are anxious about how that code will
interfere with their own usage of the cache. We used the
Pscale and Ph/m projectors to show how one can get cache-
usage information for the hash-table implementations from
Vigor [73] and Klint [60]. The analysis we show here can
drive the choice between using one library vs. the other. We
did not write the two libraries, but we read their code and
thought we understood it fairly well.

For the CFAR analysis, we constrained the input space by
fixing the maximum capacity of the hash tables to 64K en-
tries. The resulting distillates had a different branch for each
possible number of hash collisions, which is bound by the
maximum capacity (thus, 64K cases). The conclusion of the
CFAR analysis is therefore formally correct only for this max-
imum capacity. However, both hash-table implementations
take the capacity as a configurable parameter, and the result-
ing memory-access pattern is independent of table capacity.
We validated this through code inspection, we just cannot
prove it formally using symbolic execution. Thus, like a de-
veloper, we proceeded to use Pscale and Ph/m assuming that
the distillates for the two hash tables provide valid predictions
for any capacity, as long as the number of collisions does not
exceed 64K. (The experiments validated this assumption.)

The projections proved our expectations about the perfor-
mance of the two hash tables wrong. The two hash tables or-
ganize keys, values, and 4 metadata fields in slightly differ-
ent ways: Vigor stores them as 6 distinct arrays, while Klint
packs all 6 fields into a single 64B struct and maintains a
single array with elements of this struct type. At first glance,
it appears that the latter always leads to better locality and
thus improved performance. However, it turned out that this
is not always true.

Applying Pscale and Ph/m to the put(), get(), and delete()

operations of the two implementations predicts the following:
For a put() or get(), both implementations bring 64B of data
into the cache, but Klint does so in 1 cache line, while Vigor
does so across 6 cache lines. When the table does not fit in
the LLC, Klint suffers 1 LLC miss, while Vigor suffers 6.
On the other hand, for a delete() call, both implementations
touch the same 32B. However, Klint packs them together

with other fields into a cache-line-aligned 64B struct, so it
must bring the full 64B into the LLC, then update the 32B
for invalidating the entry; the remaining 32B belonging to the
deleted entry will never be reused. For Vigor, even though it
brings a full 64B into the LLC, the other 32B belong to a still-
valid entry and are likely to be reused, and thus the cost is
amortized. As a result, for a range of table occupancies, Klint
overflows the LLC and suffers 1 miss, while Vigor fits in the
LLC and suffers none. Ph/m predicts that this range begins at
approximately 400K keys and ends at approximately 800K
keys, at which point both implementations overflow the LLC.

To verify these predictions, we measured the latency and
LLC misses incurred by the put() and delete() calls of the
two implementations. We configured a capacity of 2M entries
for both hash tables. Fig. 8 plots Vigor’s latency overhead rel-
ative to Klint, as a function of table occupancy. As predicted,
Klint put() is consistently faster, due to better locality. Yet,
for occupancies of 400K-800K keys, Klint delete() has 30%
worse latency than Vigor. As predicted, Vigor incurs no misses
in this range, while Klint incurs 1 per delete() call. There was
one discrepancy between Ph/m predictions and the outcome of
our experiments: for occupancies above 860K, Ph/m predicted
3 misses per delete() for Vigor, whereas we measured only 1
per call. We believe this to be due to Intel’s stride prefetcher,
which our current cache model does not take into account.

300K 600K 800K 1.5M
Hash table occupancy

-30%

-15%

0%

15%

30%

Relative latency of Vigor's hash table w.r.t Klint's for put()
Relative latency of Vigor's hash table w.r.t Klint's for delete()

Figure 8: Relative latency (measured) of the Vigor hash table as
compared to Klint’s, for put() and delete() calls. Positive num-
bers indicate that the Vigor table is slower, and vice-versa.

Conclusion. Data-structure libraries often tailor their mem-
ory layout to different workloads [12–14]. Those who use the
data structures need to understand these choices and the differ-
ences between different implementations. Using benchmarks
can be tedious (e.g., in the present example, measuring the
performance of put() and delete() for hash-table sizes up
to 2M). Instead, CFAR projectors can quickly reveal the dif-
ferences between how the implementations affect the cache
across the entire range of inputs, allowing developers to pick
the implementation best suited for their expected workload.

5.2.3 Does my code lead to inefficient access patterns?

We now describe how CFAR’s projections helped us uncover
two inefficient cache access patterns in the kernel-bypass TCP
stack and the Hyperkernel’s mmap() system call.
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Kernel-bypass (KB) TCP stack: Motivated by the recent
re-organization of the Linux TCP stack for cache efficiency—
in particular, the struct that stores connection-specific data—
we decided to check if CFAR’s projections could help us
improve the performance of the kernel-bypass stack as well.
To understand how the fast path of the kernel-bypass stack was
accessing different fields of the connection-specific struct

(named struct pcb in this stack), we wrote a simple projector
that returned the offset (in cache lines) of each access within
the struct pcb from the base address of the struct (Fig. 9).

1 def pcb_offset(seq):
2 pcb = sympy.Symbol(’pcb’)
3 # if address is an offset from only the pcb
4 # return (address -pcb)/64
5 return [(x-pcb)//64 for x in seq
6 if sympy.is_constant(x-pcb)]

Figure 9: Projector to compute the offset within the pcb structure.

Applying this projector to the fast path’s rcv() and snd()

calls revealed that there was only a single access to the 5th

cache line in the struct pcb. Fig. 10 shows the list of cache-
line accesses returned for rcv() and snd(), respectively.

# Receive fast path: KB stack
# Only one access to 5th cache line
[1,1,0,0,2,2,3,4,1,2,2,3]
# Send fast path: KB stack
# No access to 5th cache line
[2,3,3,1,1,3,3,3,3,1,2,3,2,2,1,1,1,1,0,0,2,1,2,2,1,0,2]

Figure 10: Cache-line accesses for rcv() and snd() on fast path.

Using the file:linenum information that CFAR logs during
symbolic execution (§4.1.1), we realized that the field being
accessed was keep_cnt_sent, which was being updated on
the rcv() path to indicate that the connection was still live.
To optimize this, we re-organized the struct pcb by moving
keep_cnt_sent into the first 4 cache lines and moved some
of the timer fields (primarily used during retransmissions) to
the 5th line. Fig. 11 shows the list returned by the pcb-offset
projector after this change, which confirmed that the fast path
only accessed the first 4 cache lines.

# Receive fast path: KB stack
# No access to 5th cache line
[0,0,0,0,1,1,2,1,0,1,1,2]
# Send fast path: KB stack (updated)
# No access to 5th cache line
[1,2,2,0,0,2,2,2,2,0,1,2,1,1,3,3,3,3,3,3,1,3,1,1,0,0,1]

Figure 11: Cache-line accesses after our pcb optimization.

We evaluated the impact of this change by running the same
experiment we ran in §5.2.1, where we measured the latency
of the fast path as a function of the number of connections.
Fig. 12 shows the results. Our optimization has a significant
impact on the fast path’s connection scalability: touching
one less cache line enables the TCP stack to support 88K

concurrent connections (instead of only 72K) before suffering
from a latency increase due to LLC misses.
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Figure 12: Before-and-after optimization: Latency as a function of
the number of connections, for the kernel-bypass (KB) TCP stack.

Hyperkernel mmap(): CFAR enabled us to uncover and fix
a subtle performance issue in Hyperkernel’s mmap() imple-
mentation: The mmap() code performs a four-level page walk,
checking for permissions only before it allocates the final
page. So, if it is called with invalid permissions, it performs
significant unnecessary work (allocates and zeroes out up to
3 new page-table pages, depending on where the walk stops),
even if it does not exhibit incorrect behavior (i.e., does not al-
locate the final page). This brings up to 12KB of data into the
L1 cache, which is more than 37% of the 32KB L1 cache in a
modern server, so doing this unnecessarily pollutes the cache.

Fig. 13 shows part of the projection for mmap() resulting
from a π(Ω) = |{λ(r) = br/64c : r ∈ Ω}| projector. Line 6
corresponds to the scenario where the permissions are invalid,
and the walk fails at level 1 (i.e., no page-table page is allo-
cated at that level for the target address). Line 12 corresponds
to the scenario where the permissions are valid, and the walk
fails at level 2. In the former case, the code touches 201 cache
lines, whereas in the latter it touches 202. So, even though the
code need not allocate any pages in the former case, it touches
almost identical numbers of cache lines in both cases.

1 def mmap_dcache_num_cache_lines(va,perm):
2 #State: pid , proc_tbl , pages
3
4 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>39) &511)]:
5 if not (perm & PTE_PERM_MASK):
6 return 201
7 return 265
8
9 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>30) &511)]:

10 if not (perm & PTE_PERM_MASK):
11 return 138
12 return 202
13 ....

Figure 13: Unique data cache lines accessed by mmap().

We fixed the code and ran CFAR again. Fig. 14 shows the
new projection: in the invalid-permissions scenario (line 4),
the code now touches 3 (instead of >200) cache lines.

Conclusion. The results show that the CFAR distillate, cou-
pled with simple projectors, enables developers to efficiently
(i.e., without benchmarking) inspect systems code and iden-
tify performance bugs that are otherwise hard to diagnose.
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1 def mmap_optimized_dcache_num_cache_lines(va,perm):
2 #State: pid , proc_tbl , pages
3
4 if not (perm & PTE_PERM_MASK):
5 return 3
6 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>39) &511)]:
7 return 265
8 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>30) &511)]:
9 return 202

10 ...

Figure 14: mmap projection after fix.

5.2.4 Can I prove/disprove the absence of side channels
caused by secret-dependent memory accesses?

Finally, we used CFAR’s Pcrypt projector to analyze the 8
OpenSSL algorithms listed in Table 3. The first 7 are the ones
mentioned in the beginning of §5, while the last one is from a
previous version of OpenSSL (v1.1). We included the latter
because it is known to exhibit cache-based leakage (CVE-
2018-0737 [55]), and we wanted to test CFAR’s ability to
identify this behavior (none of the algorithms we analyzed in
the latest version of OpenSSL exhibit it). The Pcrypt projector
indeed confirmed the cache-based leakage in OpenSSL v1.1.

Program Results

OpenSSL 3.0 AES Identified previously unknown branch-based leak

OpenSSL 3.0 ChaCha Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 ECDHE Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 MD5 Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 MD4 Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 Poly1305 Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 SHA-256 Proved absence of secret-dependent branches/mem accesses

OpenSSL 1.1 RSA Reproduced known cache-based leak (CVE-2018-0737)

Table 3: OpenSSL programs analyzed using CFAR’s Pcrypt.

We also uncovered a previously-unknown branch-based
side channel in OpenSSL v3.0.0. The Pcrypt projection re-
vealed that the cipher-block unpadding function used by AES
had secret input in the path constraint. To further investigate,
we wrote another projector that counts the number of exe-
cuted instructions. This revealed (Fig. 15) that the number of
instructions executed by the function in question depends on
the length of the input buffer’s padding, making the code vul-
nerable to padding oracles.

1 def ossl_cipher_unpadblock_num_insns(buf , buf_len , block_size):
2
3 if buf.padding_len == 0:
4 return 44
5 if buf.padding_len > block_size:
6 return 48
7 return 57 + 19*buf.padding_len

Figure 15: Instruction-count projection reveals that the number of
instructions executed by AES’s cipher unpadding is influenced by
buffer.padding_length, which is a secret input.

We reported this to the maintainers, who confirmed it [56].
We submitted a fix, which has undergone multiple rounds of
review and is now in the final stages of getting merged.

The instruction-count projection after the fix shows that the
number of instructions is now independent of input (Fig. 15),

thus proving that it achieves constant-time execution [3].

1 def ossl_cipher_unpadblock_num_insns(buf , buf_len , block_size):
2 return 2985

Figure 16: AES instruction count after our fix.

Our experience with OpenSSL suggests that incorporating
CFAR and its projectors into the development cycle would be
beneficial. As it turns out, the side channel we found had been
latent in OpenSSL since v1.1.1, which was released in 2019.
It persisted despite the thorough code reviews that OpenSSL
undergoes. Yet, a quick glance at the projection before the
fix would have immediately revealed the problem. Perhaps,
if distillates and projections were extracted regularly, e.g., as
part of continuous integration, more side channels could be
detected before making their way into production.
Conclusion. Since the distillate captures all information rel-
evant to how a piece of code accesses memory, CFAR can
help developers efficiently reason about more than just perfor-
mance properties. Pcrypt helps identify both branch- and cache-
based leakage in cryptographic code (or prove their absence).

Evaluation summary. CFAR-extracted distillates are 100%
accurate. They are useful to system developers because, to-
gether with projectors, they give visibility into cache usage
in a way that profilers and simulators cannot. Our evaluation
shows four concrete instances of such visibility and shows
how CFAR enables developers to (1) reason precisely about
the cache usage of code they or others wrote, without hav-
ing to run elaborate benchmarks; (2) quickly identify cache-
inefficient access patterns that are otherwise hard to diagnose;
and (3) analyze code not only for performance bugs but also
for cache-based security vulnerabilities.

6 Related Work
Performance interfaces. CFAR is part of an ongoing ef-
fort to augment systems with performance interfaces [30–
32, 47]; these are meant to enable developers to efficiently
reason about performance, just like semantic interfaces (ab-
stract classes, specifications, documentation) enable reasoning
about functionality. Some of this work [30, 31] provides visi-
bility into the latency of software network functions, assum-
ing a simple cache model that is appropriate for that particu-
lar domain. By providing visibility into the usage of shared
micro-architectural structures (namely, the data and instruc-
tion caches), CFAR goes a step further: it enables developers
to reason about the performance of a broader class of systems
code, but also about the performance side-effects that a callee
can have on a caller due to shared micro-architecture.

CFAR leverages two key ideas from prior work on perfor-
mance interfaces, particularly PIX [30]. First, just like PIX
(and Freud [63]), CFAR represents performance properties as
programs that are both human-readable and executable. Sec-
ond, CFAR’s two-phased approach is similar to the separation
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between the PIX front- and back-end, which separates the per-
formance properties of the code from the environment it runs
in. PIX’s two-phased approach has also been used by other
recent work: ltc [47] uses it to provide visibility into the per-
formance of hardware accelerators, while Performal [76] uses
a similar approach to verify the performance of distributed
systems. That said, CFAR’s key technical contributions are
the abstractions of the distillates and projections, which are
specific to CFAR’s focus on cache usage.

Using automated program analysis to reason about per-
formance properties of systems code. Given the recent ad-
vances in automated program analysis techniques [27, 33, 37,
39,64,71], there is work that leverages such analysis to reason
about various performance-related properties of systems code.
Violet [28] uses it to find configuration bugs in large cloud ap-
plications, Bolt [31] and Castan [57] use it to analyze the la-
tency of software network functions, and Clara [61] proposes
using it to analyze the performance impact of offloading pro-
grams onto SmartNICs. However, in each of these cases, sym-
bolic execution is coupled with an analysis framework that is
specific to the property of interest. In CFAR, we use symbolic
execution to extract all the information about how a piece of
code uses memory, and we enable developers to write projec-
tors that transform this information into the answers that the
developers need.

Understanding the cache usage of systems code. Given the
ever growing gap between processor and memory speeds,
understanding how systems code uses the cache has been
extensively studied. However, we are not aware of any tool
that, like CFAR, possesses predictive power across unseen
workloads. All prior tools we know of are limited to providing
insights about the specific workloads that the tool was run on.

We drew significant inspiration from work in the 90s on
abstract execution [40] and memory tracing [21]. Both these
efforts aimed to replay the memory trace of a piece of systems
code (just like CFAR’s distillates), but only for concrete inputs.
This is because their goal was to avoid having to store large
memory traces required for computer architecture simulations,
so they sought to generate this trace on the fly instead. CFAR’s
distillate thus represents a generalized version of their work,
and builds on advances in automated program analysis.

More recent work has focused on building better profil-
ers [10,17,35,43,49,59,69] to help developers fix performance
issues that are caused by poor cache utilization. Such systems
involve a fundamental trade-off between ease of use, perfor-
mance overhead, and the level of detail at which they can an-
alyze the execution of the given input workload. The most de-
tailed memory profiler we know of is Memspy [49]: It uses a
system simulator to execute an application, which allows it to
interpose on all memory accesses and build a complete map
of the cache. Thus, it can account for and explain every sin-
gle cache miss and—using a processor-accurate model—can
approximate memory-access latencies. However, Memspy re-

quires porting applications to its simulator, which can be a
painstaking task. Additionally, its high performance overhead
restricts it to profiling a limited number of input workloads.
At the other end of the spectrum are profilers like DMon [35]:
These work off-the-shelf for almost any systems code, and
have low enough overhead to run continuously in production.
Their downside is that they can only be used to monitor a spe-
cific subset of events and cannot provide the visibility that
MemSpy does.

We see profilers as complementary to CFAR. Distillates
and projectors allow developers to quickly understand which
workloads might be of interest and cause unexpected cache
behavior. Once they narrow this search space, they can use
state-of-the-art profilers to study these workloads in greater
detail for specific, concrete inputs.

7 Conclusion
Developers need better abstractions to reason precisely about
the expected performance behavior of their systems. Develop-
ers today are forced to manually inspect or profile the system
implementation directly, which is both time-consuming and
error-prone, since most systems today rely on a lot of third-
party code. This is in contrast to how developers reason about
functionality, where abstractions such as specifications, inter-
faces and documentation have been widely used for decades.

In this work, we focused on helping developers reason pre-
cisely about how systems code interacts with the underly-
ing micro-architecture, specifically the CPU cache. We pre-
sented CFAR, a technique that introduces an abstraction that
precisely captures what a piece of code does to the micro-
architecture as a function of its inputs (the distillate) and pro-
vides a simple means of “querying” this abstraction, to help
developers efficiently answer diverse questions about cache
usage of their own, as well as third-party code, without having
to delve into the code’s details or run time-consuming bench-
marks. We see CFAR as a key step towards augmenting sys-
tems with performance interfaces that describe the system’s
performance behavior in a manner that is simultaneously suc-
cinct, precise, and human-readable, just like semantic inter-
faces describe functionality.

We used CFAR to analyze different types of systems code
and demonstrated that it can help developers identify perfor-
mance bugs and security vulnerabilities, as well as understand
the performance impact of using third-party code in their sys-
tems. CFAR’s analysis completes in minutes, making it feasi-
ble to integrate CFAR into the software development cycle.

CFAR is publicly available as open-source software at [58].
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