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Abstract
Meta’s private cloud uses millions of servers to host tens of
thousands of services that power multiple products for billions
of users. This complex environment has various optimization
problems involving resource allocation, including hardware
placement, server allocation, ML training & inference place-
ment, traffic routing, database & container migration for load
balancing, grouping serverless functions for locality, etc.

The main challenges for a reusable resource-allocation
framework are its usability and scalability. Usability is im-
peded by practitioners struggling to translate real-life poli-
cies into precise mathematical formulas required by formal
optimization methods, while scalability is hampered by NP-
hard problems that cannot be solved efficiently by commer-
cial solvers.

These challenges are addressed by Rebalancer, Meta’s
resource-allocation framework. It has been applied to dozens
of large-scale use cases over the past seven years, demonstrat-
ing its usability, scalability, and generality. At the core of Re-
balancer is an expression graph that enables its optimization
algorithm to run more efficiently than past algorithms. More-
over, Rebalancer offers a high-level specification language to
lower the barrier for adoption by systems practitioners.

1 Introduction
In Meta’s private cloud, millions of servers are deployed to
host tens of thousands of services, powering dozens of prod-
ucts that serve billions of users. In such a complex environ-
ment, we routinely encounter a wide variety of resource allo-
cation problems. The following are some real examples:

• Hardware placement [30]: Decide when and where to add or
remove server racks in a datacenter while balancing compet-
ing goals such as staff work schedule, power budget, spread
across fault domains, and colocation for proximity, e.g., ML
training servers requiring high-bandwidth network.

• Service placement [32]: Decide on the allocation of servers
to services while spreading each service across fault do-
mains and optimizing the matching between services and

server generations, as different services exhibit varying per-
formance across server generations.

• Service sharding [25]: For sharded services like databases,
determine how to migrate data shards both within and across
datacenter regions in response to real-time load changes,
while ensuring spread across fault domains and preventing
too many concurrent changes that could destabilize the
system.

• Traffic routing [5]: Route traffic from billions of users to ge-
ographically distributed datacenters while optimizing net-
work latency and datacenter load.

• Locality groups [35]: Intelligently partition serverless func-
tions into groups, with each server executing functions ex-
clusively within its designated group. The objective is to
enhance locality, maximize hits in the JIT code cache, and
balance CPU and memory usage across servers.

All these problems have a common pattern where we want to
assign a set of objects to a set of bins in a way that optimizes
specific objectives while meeting certain constraints.

Mixed-Integer Programming (MIP) is a well-known tech-
nique that can be used to solve such assignment problems. In
this approach, assignment variables, denoted as vi j, take the
value of 1 if object i is assigned to bin j, and 0 otherwise. A
MIP solver determines optimal values for these variables, op-
timizing the specified objectives while adhering to the given
constraints.

While MIP is conceptually straightforward and has been
explored in systems research [11, 21, 41], reports of its usage
in large-scale production systems are limited. For instance, in
the context of load balancing for sharded services, Google’s
Slicer [2] relies on hand-crafted heuristics, and Azure Service
Fabric [21] unsuccessfully experimented with MIP before
eventually adopting simulated annealing. Meta’s own shard-
ing system, Shard Manager [25], initially used hand-crafted
heuristics for several years, but it became too complex to add
new features. Eventually, it adopted the framework described
in this paper.

The limited adoption of MIP in solving large-scale systems
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problems is primarily due to its two major limitations: usabil-
ity and scalability.

Usability. Despite MIP’s conceptual simplicity, most systems
practitioners lack the training to translate real systems’ com-
plex, and sometimes ad hoc, policies into MIP’s precise math-
ematical formulas. To address this usability gap, DCM [38]
enables developers to express constraints using familiar SQL
statements, while Wrasse [34] employs a domain-specific lan-
guage for the same purpose. However, industry adoption of
these approaches is yet to be reported, and thus, their gener-
ality remains unverified. Moreover, they do not sufficiently
address the scalability challenge described below.

Scalability. Recall that assignment variables vi j represent
whether object i is assigned to bin j. Therefore, an assign-
ment problem has |O|× |B| variables. Here, O is the set of
objects, B is the set of bins, and |O| and |B| are their sizes.
Although one can define assignment variables differently to
reduce their number, the overall input size of a MIP problem
formulation is still O(|O|× |B|); we omit the details here. In
our large-scale private cloud, assignment problems involve up
to several million objects and 100,000 bins. However, even
approximate MIP solvers would struggle with O(1011) as-
signment variables, not to mention that most assignment prob-
lems are NP-hard.

1.1 Overview of Rebalancer
To address the usability and scalability challenges, we have
developed Rebalancer, a generic assignment problem solver.
Over the past seven years, it has been applied to dozens of
diverse use cases, demonstrating usability, scalability, and
generality.

There are three core issues in designing a solver: model
specification, model representation, and model solving. To
address the scalability challenge, Rebalancer represents the
model as a directed acyclic graph (DAG), reducing the model
size from O(|O|× |B|) to O(|O|+ |B|). Moreover, the graph
representation is a fundamental reason why Rebalancer’s op-
timized local search can solve the model more efficiently than
past local search algorithms [1]. To address the usability chal-
lenge, Rebalancer supports declarative model specification
through intuitive APIs, automatically translating high-level
specifications into the graph representation for efficient pro-
cessing. We discuss each of these topics below.

Model specification. To address the usability challenge, Re-
balancer employs a three-step approach to incrementally ele-
vate the level of abstraction for ease of use. First, it introduces
essential modeling constructs, such as dimensions (represent-
ing objects and bins’ attributes like CPU and memory) and
bin scopes (representing server, rack, datacenter, etc). Next, it
provides an expression API to expose commonly used expres-
sions (e.g., Max and Sum) for transformations on these con-
structs, as well as recursively on other expressions. Finally,
leveraging these expressions, it exposes a high-level spec API

implementing dozens of common objectives and constraints.
The high-level spec API enables developers to effortlessly

construct assignment problems (see Figure 1). For example,
CapacitySpec allows developers to specify constraints such
as memory usage on a server with 64GB memory, and Group-
CountSpec can be used to specify that each server rack can
host at most one replica of a database shard, ensuring spread
across fault domains.

If no existing high-level spec meets a developer’s needs,
they can always utilize the expression API to define a new
spec, which can then be exposed for other developers to reuse
in the future. In practice, across dozens of use cases supported
by Rebalancer, 85% of their constraints and objectives are im-
plemented by directly reusing existing specs, without resort-
ing to the expression API. Moreover, we demonstrate that it is
relatively easy to define a new spec using the expression API.

Model representation. After a developer leverages the specs
to define an assignment problem, Rebalancer translates it
into an expression graph G . Each node in G represents an
expression constructed from its child expressions. Due to
careful choices in model constructs and common expressions,
the size of G is scalable, O(|objects|+ |bins|), as opposed to
O(|objects|× |bins|) in the MIP problem formulation.

Model solving. Since the class of assignment problems are
in general NP-hard, our goal is to find a high-quality solution
within a reasonable amount of time. For small problems, Re-
balancer translates the expression graph into a MIP model
and solves it with commercial solvers. However, large prob-
lems at Meta are either too large for commercial solvers or
have tight deadlines, e.g., due to real-time load balancing re-
quirements. To address these limitations, Rebalancer imple-
ments an optimized local search algorithm. The graph rep-
resentation is the fundamental reason why this algorithm is
more efficient than past local search algorithms [1, 29, 33, 34].

Contributions. This paper makes the following contributions.

• First of a kind. To our knowledge, Rebalancer is the first
framework that solves a wide range of assignment problems
and has been extensively validated through production us-
age in hyperscale infrastructure.

• Model specification. Seven years of hands-on experience
with dozens of use cases has allowed us to iteratively im-
prove and arrive at the current modeling constructs and high-
level specification API. Although other usability-enhancing
abstractions have been proposed before, their generality has
not been validated through widespread production usage.

• Model representation. Due to careful choices in model
constructs and expressions, the size of the expression
graph is scalable, O(|objects| + |bins|), as opposed to
O(|objects|× |bins|) in the MIP problem formulation.

• Model solving. The expression graph is also an important
distinction that enables us to design a highly scalable algo-
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rithm for model solving, utilizing optimized local search on
top of the graph.

In subsequent sections, we will describe model specification,
model representation, and model solving, in that order.

2 Model Specification
Rebalancer allows developers to easily specify an assignment
problem as a composition of a predefined set of high-level
specs. Figure 1 shows such an example.

2.1 Modeling Constructs
To ensure reusability of the specs, Rebalancer defines a set of
modeling constructs that can flexibly represent user require-
ments:

• Dimensions. A dimension is a mapping of each object and
bin to a number. For example, the memory dimension of a
server (a bin) specifies the server’s memory capacity, while
the memory dimension of a task (an object) specifies the
amount of memory needed to run the task. Dimensions can
also represent complex relationships. For example, we can
define a prohibitedObjects dimension, where an object takes
a value of 1 or 0, depending on its assignability to a bin.

• Bin hierarchy. Rebalancer uses scopes to represent the hi-
erarchical structure of bins. For example, the datacenter
and rack scopes represent servers in a datacenter or rack. A
scope divides bins into sets called scope items. For exam-
ple, under the rack scope, the scope items rack1 and rack2
represent the set of servers in those specific racks.

• Object hierarchy. Similar to scopes and scope items for
bins, an object partition is an aggregation of objects, which
may not be necessarily disjoint. Each set in the partition is
referred to as a group. For example, in the context of cluster
management, all tasks are partitioned into jobs and a job is
a group of tasks that run the same executable.

As a concrete example of using these constructs, Figure 1
defines two dimensions, CPU and storage, to model resources;
a rack scope as a fault domain; and a job partition where each
group comprises tasks that run the same executable.

2.2 Definition of Utilization
Next, we describe an important concept called utilization of
bins or scope items. It encompasses, but is more general than
the intuitive concept of a server’s CPU or memory utiliza-
tion. Formally, given an object-to-bin assignment and a di-
mension D, the utilization of a bin b j with respect to D, de-
noted util(b j,D), is defined as the sum of dimension values of
all objects assigned to the bin. That is,

util(b j,D) = ∑
oi∈O

D(oi) · vi j, (1)

where D(oi) is the dimension value of object oi, and vi j takes
value 1 if oi is assigned to b j and 0 otherwise.

/ / Do n o t exceed CPU and s t o r a g e c a p a c i t y .
addConstraint ( CapacitySpec (

scope=" s e r v e r " , dimension="CPU" ) )
addConstraint ( CapacitySpec (

scope=" s e r v e r " , dimension=" s t o r a g e " ) )

/ / A r a c k h o s t s no more t h a n one t a s k p e r j o b .
addConstraint ( GroupCountSpec (

scope=" r a c k " , dimension=" Objec tCoun t " ,
partition=" j o b " , limit = 1 ) )

/ / Ba l ance CPU and s t o r a g e usage a c r o s s s e r v e r s .
addObjective ( BalanceSpec (

scope=" s e r v e r " , dimension="CPU" ) )
addObjective ( BalanceSpec (

scope=" s e r v e r " , dimension=" s t o r a g e " ) )

Figure 1: Using Rebalancer’s high-level specs to specify the
objectives and constraints for assigning tasks (objects) to
servers (bins).

For example, a bin’s utilization with respect to the Ob-
jectCount dimension is simply the number of objects as-
signed to it. Note that utilization can also be defined for a
scope item with respect to a group of objects. For exam-
ple, util(rackr, job j,ObjectCount) counts the number of job j’s
tasks deployed on servers in rackr.

Flavors of utilization. The basic definition of utilization in
Eqn 1 is inadequate for certain intricate scenarios. For in-
stance, in the process of migrating a data shard from a source
server to a destination server, it may be necessary to first load
the shard on the destination, ensuring its healthy operation,
before removing it from the source. Throughout this transi-
tion period, which might be prolonged when involving sub-
stantial data copying, the shard consumes resources on both
the source and destination servers. Another scenario involves
modeling system stability requirements, such as restricting
the number of objects moved in and out of a bin.

To accommodate these complexities, we introduce addi-
tional utilization variants. Utilization of bin b j is the sum of
contributions from a set of objects. In Eqn 1, this set consists
of objects currently assigned to bin b j, referred to as AFTER.
Additionally, we define sets like INITIAL, representing the ob-
jects initially assigned to b j, and STAYED= INITIAL∩AFTER,
denoting the initial objects that remained in bin b j. Extending
the notation to include the temporal set of objects contribut-
ing to utilization as util(b j,D,TIME), we refer to it as TIMEutil,
where TIME can be AFTER, STAYED, or INITIAL. Concretely,
expressions like INITIALutil, AFTERutil, and STAYEDutil capture
the utilization by the sets of INITIAL, AFTER, and STAYED
objects, respectively.

Through set operations on these base definitions of util, we
can create derived definitions such as:
• NEWutil = AFTERutil−STAYEDutil which captures the uti-

lization of new objects that moved into bin b j.

• OLDutil = INITIALutil−STAYEDutil which captures the uti-
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lization of old objects that moved out of bin b j.

• ANYutil = INITIALutil + AFTERutil − STAYEDutil which cap-
tures the utilization of objects that were in bin b j at any
point in time. Note that subtracting the STAYED term avoids
double counting for objects that stayed in b j.

These utilization variants help capture complex scenarios. For
instance, ANYutil can model double occupancy, while NEWutil

and OLDutil can model system stability.
Internally, Rebalancer translates these utilization variants

into their mathematical forms. AFTERutil is simply Eqn 1
using vi j determined by the current assignment. INITIALutil

is a constant value that can be pre-computed from Eqn 1
using the initial assignment. To implement STAYEDutil =
util(b j,D,STAYED), a new dimension named Dinit

j is intro-
duced for each bin b j. This dimension takes the value D(oi)
for all objects initially assigned to b j and zero otherwise. We
can again use Eqn 1 with the fact that util(b j,D,STAYED) =
util(b j,Dinit

j ,AFTER).

2.3 Common Specs
Over the past seven years, through the process of supporting
dozens of large-scale use cases, we have iteratively developed
the common specs shown in Table 1. On average, an assign-
ment problem uses seven specs, with a maximum of 14.

Table 1 highlights the reuse of many specs, with six used
only once, suggesting they are developed when needed ini-
tially. The high-level spec API prioritizes ease of use, while
the low-level expression API offers extensibility for new spec
development. It provides different flavors of util expressions,
mathematical operators (Max, Sum) for aggregation, and trans-
formation operators (Step, Ceil, Log, and Power). Besides be-
ing user-friendly, this API enables modeling of non-linear
properties, providing a more convenient alternative to craft-
ing a MIP problem formulation from scratch. Overall, the ex-
pression API facilitates the implementation of simple specs
in dozens of lines of code, and even the most complex specs
can be implemented in a few hundred lines of code.

Consider, for example, the introduction of UtilIncreaseC-
ostSpec to prioritize moves to servers with CPU utiliza-
tion less than a specified threshold T0. When all servers
have CPU utilization over T0, it favors the one with the
least utilization. Using the expressions API, this is modeled
in just 65 lines of code by adding the penalty expression
Power(excessUtili, 2) to the objective for every server i. Here,
excessUtili = Max(0, util(serveri,CPU,AFTER)−T0).

3 Case Studies of Model Specification
In this section, we describe how to model several real world
assignment problems using Rebalancer’s spec language.

3.1 Hardware placement
To provide context, we first outline our infrastructure hierar-
chy: datacenter region�datacenter�suite�main switch board

(MSB)�server row�server rack�server. Globally, there are
tens of datacenter regions and each region has multiple data-
centers within a few miles’ radius. Each datacenter consists
of four large rooms called suites. Each suite has three MSBs,
each supplying power to 10K to 20K servers laid out as rows
of server racks. Each rack hosts tens of servers.

A datacenter undergoes continuous evolution with the addi-
tion of new server racks and the removal of existing racks for
maintenance or decommissioning. The hardware-placement
problem involves computing an optimized weekly schedule
for these operations, considering the staff’s work schedule,
ensuring hardware spread across fault domains, and adhering
to capacity constraints on power, network, etc.

We model racks as objects and (week, position) pairs as
bins, where a position is a physical location in the datacenter.
We introduce scopes, such as MSB and week, where each
scope item is a collection of bins associated with the same
MSB and week respectively. Similarly, an object partition of
racks can be defined, where each group consists of racks of
the same type. In the following, we outline a small subset of
objectives and constraints for hardware placement.

• New racks. Initially, all new racks belong to a special bin
called unassigned. Applying ToFreeSpec on that bin en-
sures that new racks are assigned to certain (week, position).

• Power and network constraints. This is achieved by us-
ing CapacitySpec at different scopes of the infrastructure
hierarchy such as position, MSB, and suite.

• AI Zone. AI server racks must be placed in an AI zone,
which is a special section of the datacenter connected by a
high-bandwidth network. To enforce the placement of AI
racks in the AI zone, we introduce a new dimension AiRack,
which takes the value 1 for AI racks and 0 otherwise. Simi-
larly, this dimension has a limit of 1 for AI zone positions
and 0 otherwise. We then apply CapacitySpec with the
AiRack dimension over the position scope.

• Place certain racks in the same week. This is achieved
by putting those racks into a group and applying Colocate-
GroupSpec to the group over the week scope.

Overall, as rack changes occur incrementally over time and
we compute a solution for each datacenter region separately,
the hardware-placement problem is relatively small in size,
involving hundreds of objects and thousands of bins. For these
small problems, Rebalancer translates the expression graph
into a MIP problem formulation and employs a MIP solver,
instead of a local-search solver, to ensure high-quality results.

3.2 Service Placement
Hardware capacity in datacenters are allocated to teams re-
sponsible for different products in the form of quotas called
reservations. Whole servers or fractions of a server’s re-
sources are assigned to reservations while adhering to all
kinds of constraints. While reservations can be either global
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Spec name Description Usage
count

Lines
of code

CapacitySpec Enforce that the utilization of a scope item is within specified limits. 19 340

GroupCountSpec Restrict utilization by objects of a group placed in the same scope item, commonly used to enforce
the spread of objects across scope items. For instance, a job can have at most one task in a rack. 17 480

AvoidMovingSpec Do not move any of the specified list of objects. 16 120
BalanceSpec Balance utilization across scope items. 12 250

MinimizeMovementSpec Minimize the number of objects that move into or out of a scope item. 12 90
MovesInProgressSpec Objects specified as moving from one bin to another by the previous solver run must finish the move. 10 65

NonAcceptingSpec Specify scope items that are not accepting incoming objects. 9 100
MinimizeBinsSpec Minimize the number of bins utilized. 8 105

AssignmentAffinitiesSpec Indicate that specific objects prefer specific bins. 6 90
ToFreeSpec Free up certain bins. For example, move services out of servers that will be decommissioned. 5 70

ColocateGroupsSpec Place objects of the same group in the same scope item, e.g., placing a job’s tasks in the same rack. 5 100
GroupMoveLimitSpec Limit how many objects of the same group (e.g., a database’s replicas) can move concurrently. 4 95

AvoidAssignmentsSpec Prevent assignments of certain objects to scope items. For example, in hardware placement, an AI
zone in a datacenter only accepts AI server racks. 4 60

GroupDiversitySpec Every scope item must get objects from at least (or at most) K different groups. 4 80

SingleGroupFailureBufferSpec Provide additional buffer objects when a group of objects fails together. Used in service placement
to ensure that services have enough servers even when a fraction of a datacenter fails. 2 145

DrainCapacitySpec Allow draining objects from a faulty bin to other bins while respecting capacity constraints. 1 80
MoveGroupSpec Move objects in the same group together across bins. 1 75

MinimizeNthLargestUtilization Minimizes the utilization of scope items with the n-th largest utilization 1 85
MaximizeAllocationSpec Maximize utilization on a set of scope items 1 65

UtilIncreaseCostSpec Prefer moving objects to underutilized scope items. 1 65
Logical Or/And Specs Perform a logical OR/AND of certain specs. 1 55

Table 1: List of 21 most frequently used specs out of a total of 28 specs currently supported by Rebalancer. Remaining specs are
specific to their respective usecases and their descriptions involve defining concepts beyond the scope of this paper.

or regional, our discussion focuses on regional ones for sim-
plicity. A regional reservation can comprise servers from any
datacenter within the same region but not across regions. Our
cluster management system treats each reservation as a dy-
namic virtual cluster and deploys the owner team’s jobs on it.

In this service-placement problem [32], we model servers
as objects and reservations as bins. Moreover, we group
servers by MSB, rack, and hardware type, which become ob-
ject partitions. Below, we describe some used objectives and
constraints.

• Capacity sufficiency. If a reservation specifies a demand
of X units for a server type Y , we fulfill it by utilizing Ca-
pacitySpec with the count dimension for each server type.
The variability in performance among services on various
server types can be represented as a dimension. Thus, we
can optimize for assigning servers of a specific type to ser-
vices that can extract optimal performance from them.

• Spread. GroupCountSpec ensures that servers allocated to
a reservation are spread across MSB and rack partitions.

• Stability. As new reservation requests emerge or existing
ones are updated, we run the solver to update both old and
new reservations. Recomputing solutions for old reserva-
tions is necessary, as it enables the relocation of servers
from old reservations to new ones, facilitating global op-
timization. However, moving many servers out of an old

reservation, even if those servers are replaced with new ones,
would cause churns to services running on those servers.
We use MinimizeMovementSpec to minimize churns.

• Fault tolerance. For each reservation, we allocate addi-
tional buffer capacity to ensure that in case any single
MSB in a datacenter region goes offline due to failure or
maintenance, there is still sufficient capacity in the reserva-
tion. This requirement is modeled using SingleGroupFail-
ureBufferSpec.

A large service-placement problem involves up to 700K
servers (objects) in a datacenter region and 6K reservations
(bins). We solve one such problem per region every hour. The
solve frequency and associated downstream actions necessi-
tate that Rebalancer must finish solving the problem within
10 minutes. Initially, Rebalancer converted the expression
graph to a MIP problem and solved it with a MIP solver. How-
ever, recently we switched to using the faster local-search
solver due to both the growing problem size and the desire to
reduce the solve time to fulfill capacity change requests faster.
This experience demonstrates one advantage of Rebalancer—
it can take the same problem specification and flexibly decide
which solver to use based on the problem size and time limit.

3.3 Service Sharding
Sharded services, such as databases, are prevalent at Meta
and account for 68% of the total RPC traffic [25, 36]. They
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often host about 100 shards per Linux process for improved
efficiency, and shards are dynamically migrated across these
Linux processes to balance the load. For simplicity, we refer to
each such Linux process as a “server”, assuming one process
per server. To ensure redundancy, each shard has multiple
replicas, which are grouped together using object partitions.
This problem assigns shards (objects) to servers (bins) while
meeting various requirements, some of which are described
below.
• Capacity limit. We use CapacitySpec to ensure that servers

are not overloaded. Given that cross-server shard moves
are not instantaneous, we use ANYutil to account for double
occupancy (§2.2).

• Limit churns. To cap the number of moves per server or
per shard, we use CapacitySpec with ObjectCount as the
dimension and NEWutil and OLDutil as the utilization (§2.2).

• Region preference. Certain shards prefer servers in specific
datacenter regions because the users accessing those shards
are close to those regions. This preference is modeled using
AssignmentAffinitiesSpec with the region scope.

• Load balancing. To ensure that the load is balanced across
servers, we use BalanceSpec with the bin and region scopes
for regional and global load balancing, respectively.

• Fault Tolerance. To ensure that a shard’s replicas are spread
across various fault domains, such as rack and MSB, we
use GroupCountSpec with replica as the partition and rack
or MSB as the scope.

The largest sharding problems involve 1.8M objects and 27K
bins and have a solve time limit of five minutes. Rebalancer’s
local search algorithm has scaled well to produce high-quality
solutions for such large problems.

3.4 Message Queue Placement
Many people use Meta’s messaging products. On the server
side, a message queue is created for each user to store mes-
sages intended for delivery. Placing the message queue in a
datacenter region close to the user reduces latency. This prob-
lem is to assign user queues (objects) to datacenter regions
(bins). However, treating each user as an individual object
is inefficient, so we aggregate users objects with common
properties into a bundle and treat each bundle as an object.
The bundles are computed offline based on properties such
as proximity and connectivity of users within a bundle. The
following are some supported requirements:
• Minimize latency. Every user bundle has a numerical affin-

ity to each datacenter region. The affinity is equal to the
negative of the average network latency to a region for users
in the bundle. Utilizing AssignmentAffinitiesSpec as an ob-
jective with these affinities minimizes the total latency.

• Colocate related user bundles. If two bundles’ users fre-
quently communicate with each other, colocating them in
the same region would reduce both latency and cross-region

traffic. ColocateGroupSpec achieves this purpose, where
each group is a set of related bundles.

• Buffer capacity for disaster recovery. One service level
objective is that any single datacenter region can go offline
without causing disruption to users. For this purpose, a traf-
fic matrix with elements ti j specifies that in the event of re-
gion i failure, a fraction ti j of region i’s traffic will be re-
distributed to region j. Rebalancer must ensure that each
region has enough spare capacity to absorb the incoming
redistributed traffic. This is achieved by using DrainCapaci-
tySpec to enforce that the peak utilization of a bin with the
worst case spillover traffic must be within its capacity limit.

The message-queue problem typically involves tens of thou-
sands of objects and tens of bins, and is solved only once a
week. Because of the small scale and lenient solving dead-
line, Rebalancer translates it into a MIP problem. The traffic-
routing problem described in §1 shares some commonality
with this problem, but it needs to update the global edge-to-
datacenter traffic matrix every few minutes. Hence, it utilizes
local search to achieve a low average runtime of 5 seconds.

3.5 Kubernetes Scheduler
When evaluating the flexibility of Rebalancer’s specs using
the use-case examples above, a question naturally arises: do
the specs inherently cover these examples because they are
designed to support them? To showcase Rebalancer’s flexibil-
ity, we implement Kubernetes’ scheduling policies using Re-
balancer’s existing specs. While Rebalancer handles load bal-
ancing of containers across machines in production, it does
not handle the Kubernetes-like initial container placement in
our fleet. This function was implemented in Meta’s cluster
manager using heuristics similar to those in Kubernetes years
before introducing Rebalancer and is still in active use.

Specifically, to prepare for a direct comparison with
DCM [38] in performance evaluation (§6), we implemented
Kubernetes’ scheduling policies listed in Figure 2 of the DCM
paper. To improve usability, DCM uses SQL statements to ex-
press allocation policies and internally translates these SQL
statements into a constraint satisfaction problem, which is
then solved using the Google OR-tools CP-SAT solver.

In Kubernetes, container pods are scheduled on nodes (ma-
chines). We represent pods as objects and nodes as bins. Sim-
ilar to DCM, our implementation schedules a batch of pods
together. All unscheduled pods of the current batch are placed
in a special unassigned bin, and we impose a ToFreeSpec con-
straint on that bin, forcing Rebalancer to place them on cer-
tain nodes. Resource limits, such as CPU and memory, are en-
forced using CapacitySpec. Affinity of pods for specific nodes
is specified using CapacitySpec with a custom dimension rep-
resenting affinity. Inter-pod anti-affinity for replica groups
is modeled using GroupCountSpec. Fixing certain pods to
nodes is achieved with AvoidMovingSpec, and so forth.

Overall, we are able to model Kubernetes’ scheduling con-
straints using Rebalancer’s existing specs in about 500 lines
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of code, which is comparable to 550 lines of SQL-based spec-
ification in DCM. This demonstrates that Rebalancer is flexi-
ble and its usability is comparable to DCM. We will compare
the performance of DCM and Rebalancer in §6.

3.6 Other Use Cases
In addition to the examples described above, Rebalancer sup-
ports dozens of use cases at Meta, including Linux container
rebalancing across servers [39]; routing traffic from globally
distributed edge datacenters to main datacenters [5]; group-
ing serverless functions to improve locality [35]; balancing
online ML training workloads across regions while consid-
ering the priority of ML workloads; minimizing the number
of replicas for ML inference models or databases deployed
across geo-distributed datacenters, while adhering to latency
SLO and meeting varying user request rates; various shard-
ing systems that have requirements different from the one in
§3.3; assigning work tickets to engineers; and so forth.

4 Model Representation
Once an optimization problem is specified using specs, Re-
balancer materializes them into an expression graph. Recall
that Rebalancer’s expression API supports operators such as
Max and Sum for aggregation, and Step, Ceil, Log, and Power
for transformation. For example, Step(x) evaluates to 1 if x is
positive and 0 otherwise. We translate the specs into a recur-
sive composition of expressions that reuses common expres-
sions to obtain a compact expression graph.

4.1 Translating Specs into Expressions
We use several examples to illustrate how to translate specs
into expressions. CapacitySpec enforces that the utilization
of a resource is within specified limits. For instance, with
a CapacitySpec applied to the scope server and dimension
CPU, Rebalancer creates |B| constraints (one per server) in
the form of util(serveri,CPU,AFTER) ≤ Li, where Li repre-
sents the CPU limit of serveri. To model double occupancy,
CapacitySpec would use ANY instead of AFTER.

MinimizeMovementSpec minimizes the movement of ob-
jects into or out of a scope item. Rebalancer adds the expres-
sion util(Sout,count,NEW)+∑ j util(S j,count,NEW) to the ob-
jective, where Sout represents the set of bins that do not belong
to any scope items, such as the unassigned bin in the hardware-
placement example (§3.1). Note that each moving object is
only counted once. Specifically, the first term captures the ob-
jects that move out of all the scope items, while the second
term captures objects that move within the scope items.

GroupDiversitySpec ensures diversity in the set of objects
assigned to a bin. For example, the servers (objects) assigned
to a service’s global reservation (bin) must come from at least
k datacenter regions so that in the event of a region failure,
there is at least some capacity available for the service. In this
case, assuming objects are partitioned into groups Gi based on
their region, Rebalancer adds |B| constraints (one per service)

in the form of ∑i Step(util(b j,Gi,count)) ≥ k. Note that the
inner Step expression evaluates to 1 if bin b j contains objects
from group Gi and 0 otherwise.

4.2 Reducing Model Size
In the previous section, we discussed how to translate specs
into mathematical formulas using expressions such as util.
However, the direct representation of util as shown in Equa-
tion 1 is inefficient as it would lead to a problem represen-
tation size of Θ(|O|× |B|). To address this scalability chal-
lenge, Rebalancer implements several efficient custom ex-
pressions that help reduce the problem’s model representa-
tion to Θ(|O|+ |B|). Below, we describe one such expression
called Lookup, which is used to efficiently implement util.

Object Lookup. The insight behind Lookup is that, in most
cases, an object’s dimension value remains unaffected by the
bin to which it is assigned. For instance, a task consumes the
same amount of memory irrespective of the server on which it
runs. This allows representations of utilizations for different
bins and scope items to share and reuse these dimension
values, reducing the problem input size by a factor of Θ(|B|),
resulting in an overall input size of Θ(|O|+ |B|).

Specifically, for each such static dimension D, we establish
an object-vector, denoted as VD, representing a mapping from
objects to their dimension values. Given an object-vector VD
and a scope item Si, a Lookup represents an efficient aggrega-
tion operation over the (object, bin) pairs for bins in Si. For ex-
ample, util(Si,D) = Lookup(Si,VD) simply aggregates the uti-
lization across all bins in Si with respect to D through lookup.
Note that the memory usage of Lookup itself is of constant
size since it only keeps references to Si and VD, while the rep-
resentations of Si and VD, with sizes O(|B|) and O(|O|), re-
spectively, are shared and reused across all expressions. This
leads to an overall problem size of Θ(|O|+ |B|).

Expression graph. Since constraints in Rebalancer are in-
equalities in the form of f (·)≤ 0, they can be combined using
the Max expression. For example, although a CapacitySpec
results in |B| constraints (one per bin), it can be simplified
into a single constraint by rewriting it as

Maxi(Lookup(bi,VD)−Li)≤ 0.

As each constraint and objective can be written as a recur-
sive composition of expressions, we can encapsulate an as-
signment problem’s all constraints and objectives in a DAG G .
The nodes of G correspond to expressions, and each objective
or constraint in the problem is a subgraph of G ; see Figure 2
for an example. For a node v ∈ G , we use children(v) to de-
note the set of all nodes w such that v � w is an outgoing edge
from v. The type(v) of a node (e.g., Max) is its mathematical
operator, and children(v) represent its inputs. The DAG G is
obtained from a recursive composition of these operators.
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Figure 2: This expression graph represents a simplified ver-
sion of the task-allocation problem shown in Figure 1. It aims
to balance the CPU utilization across two servers, server1
and server2. It uses BalanceSpec on the CPU dimension as
the objective (subgraph Tb) and CapacitySpec on the CPU di-
mension as the constraint (tree Tc). Nodes in the intersection
of Tb and Tc namely Lookup1 and Lookup2 are reused. Con-
stant nodes are shown in dashed circles. Li is the CPU limit
of serveri, Lookupi represents the lookup for the CPU dimen-
sion on serveri, meaning serveri’s CPU utilization. Sum+ is
a shorthand for max(0,Sum)

5 Model Solving
After representing an assignment problem as an expression
graph G , the next step is to solve the problem. For small prob-
lems, Rebalancer translates it into a MIP problem and solves
it with a MIP solver. For large problems, Rebalancer imple-
ments its own optimized local search. The existence of the
expression graph is a fundamental reason why Rebalancer’s
local search is more efficient than existing local search algo-
rithms.

5.1 Using MIP Solver
To translate an expression graph into a MIP problem, each ex-
pression implements a recursive mipTranslate operation. This
operation, based on the expression’s type, converts it into a lin-
ear combination of binary assignment variables vi j that indi-
cates whether object i is assigned to bin j. Invoking mipTrans-
late on the root nodes of an expression graph yields a MIP
model, which can subsequently be solved using a commercial
solver. Note that the MIP model’s input size is O(|O|× |B|),
which is not scalable. Therefore, we only use the MIP solver
for relatively small problems.

5.2 Graph-Assisted Local Search
In contrast to the MIP solver’s all-or-nothing approach to
finding the optimal solution, local search [1] incrementally
generates a set of object moves that improve upon the initial
assignment but without guaranteeing optimality. Each move

Algorithm 1 Local search using expression graph G
1: while exit-conditions are not met do
2: L ← generate_candidate_moves(G)
3: for local change δ in L do
4: objδ← evaluate_moves(G ,δ)
5: if objδ > 0 then
6: discard δ ▷ violates constraint or worsens objective
7: end if
8: end for
9: δ∗←min δ∈L objδ ▷ best local change

10: apply_moves(G ,δ∗)
11: end while

(oi,bs,bd) corresponds to reassigning object oi from its source
bin bs to its destination bin bd .

Although local search has been applied to assignment prob-
lems before [19, 33], the uniqueness of our approach, as high-
lighted in Algorithm 1, lies in its exploration of the expression
graph for all its main steps: (1) generating candidate moves,
(2) evaluating them, and (3) applying the best moves. In the
rest of this section, we describe the main ideas that enable our
algorithm to scale to millions of objects and bins.

5.2.1 Generating Candidate Moves
Because each object can potentially be moved from its current
bin to any other bin, there are a total of |O|× (|B|−1) candi-
date moves to consider. Obviously, it would be too expensive
to evaluate all of them. There are two natural ways to reduce
the candidate set: (1) restricting the search space to one bin
at a time and finding the best moves involving that bin, or (2)
restricting the search space to one object at a time and finding
the best moves for that object. Rebalancer takes approach (1)
because the number of bins is usually much smaller than the
number of objects. With this settled, we still need to decide in
which order to evaluate bins and, given a bin, how to propose
candidate moves. We discuss these topics below.

Bin selection. Our insight here is to first evaluate hot bins
that potentially can have the biggest impact on the overall
objectives by moving objects into or out of these bins. The
structure of the expression graph already captures what ob-
jectives are affected by which bins and by what amount. In-
tuitively, for example, if there is a directed path from a node
v to a Lookup on bins b1 and b2, moving objects in and out
of these bins will improve node v’s value. The idea is to pro-
cess the leaf nodes of G (such as Lookup) in a greedy order of
their contribution to the objective. This ordering of leaf nodes
gives us a sequence of sets of bins Sv,Sw, . . . ,Sz and we can
use these sets to infer the hottest bin.

Move strategies. After identifying a hot bin, Rebalancer ex-
plores different move strategies to move objects into and out
of it. For example, the SINGLE move strategy considers mov-
ing every object in bs to every other bin bd exhaustively and
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accepts the best move. There are also variants of SINGLE,
such as SINGLE_GREEDY, which accepts the first improving
move, and SINGLE_RANDOM, where bd belongs to a small
sample of randomly chosen bins. A commonly used effective
strategy is to first use SINGLE_RANDOM for some period of
time when opportunities for improvement are abundant and
later switch to using SINGLE_GREEDY when opportunities
for improvement become scarce.

In addition to variants of the SINGLE strategy, Rebalancer
also supports more complex strategies such as swapping ob-
jects between two bins, and using the Kernighan–Lin algo-
rithm to identify the move-destination bin; see details in the
Appendix. Finally, Rebalancer also supports custom strate-
gies that exploit domain knowledge. For example, Shard Man-
ager [25] uses Rebalancer to move shards (objects) across
servers (bins) to balance the load. If a hot server has many
small shards and a few large shards, going through the shards
sequentially may spend most of the time evaluating moving
small shards that have little impact on the objective. Instead,
Rebalancer evaluates large shards earlier, which not only ac-
celerates the search but also reduces the number of shard
moves.

5.2.2 Evaluating and Applying Moves
The remaining components of Rebalancer’s algorithm are
evaluating and applying moves. When given a candidate
move (oi,bs,bd), a naive way to evaluate its impact is to ap-
ply the move to the initial assignment to obtain the new as-
signment. Then, we compute the new assignment’s objectives
from scratch through a full graph traversal. However, since
we already have the value of every graph node under the ini-
tial assignment, few nodes might be affected by applying the
candidate move. We can significantly speed up the computa-
tion by only recomputing the values for these affected nodes.

Bottom-up change propagation. To only recompute the
changed nodes, we preprocess the leaf nodes in the expression
graph to build a map from objects to the leaf nodes that ref-
erence them. Similarly, we build a map from bins to the leaf
nodes that they affect. Given a move candidate, we use the
two maps to identify a set of leaves affected by the change. We
then traverse from those leaves to the roots, and the reached
nodes along the way are the set of nodes whose values need
to be recomputed.

Minimal computation during a node update. When recom-
puting the value of a changed node, iterating over all its child
nodes is often unnecessary, as only a small fraction of them
likely have changed. Depending on the type of the node, we
can store additional information to speed up the recomputa-
tion. Below, we provide an example for the Max node, while
similar optimizations exist for other node types.

For the Max node, we separately compute the maximum
value of its changed child nodes (denoted as z1) and the maxi-
mum value of its unchanged child nodes (denoted as z2). Then,
the new value of the node is simply max(z1,z2). To compute

z2 efficiently, we maintain a sorted list of child nodes ordered
by their decreasing node value. We iterate over this list and
stop at the first child node that is unchanged. This child node’s
value is z2. Note that the runtime of this algorithm is propor-
tional to the number of changed child nodes c instead of the
total number ℓ of child nodes. This algorithm incurs the over-
head of O(c logℓ) to update the sorted child list, but it only
occurs when a move is accepted and applied. In practice, the
number of evaluated but rejected candidate moves often dom-
inates.

Parallelizing Move Evaluations Since move evaluations do
not affect the current state, we can use multiple threads to
evaluate candidate moves in parallel before we pick the best
candidate to apply. This improves the number of evaluations
per second (evals/s) by an order of magnitude enabling lo-
cal search to make faster progress. Although the exact num-
ber depends upon the problem instance, we are able to obtain
roughly 150k evals/s for most large instances. For example,
for a large sharding problem, parallel move evaluations re-
sulted in 170k evals/s and 12k applied moves within the time
limit of 300s. In contrast, sequential move evaluations result
in 25k evals/s and 2k applied moves in the same time limit.
In this case, local search was able to progress six times faster
due to parallelization of move evaluations.

5.3 Identifying Equivalent Objects
In addition to focusing on hot bins to reduce the search space,
for certain commonly used objectives and constraints, we
can identify objects that are equivalent from a modeling per-
spective, thereby effectively reducing the number of objects.
This optimization can be applied to both local search and
MIP solvers. For example, in the problem of placing tasks on
servers, all tasks that belong to the same job are equivalent
since they all affect the constraints and objectives in the same
way. For a set of equivalent objects, we only need to explore
moves with at most one of those equivalent objects, which
reduces the search space. In Rebalancer, we employ a recur-
sive algorithm that exploits the expression graph to compute
sets of equivalent objects. Various additional details about our
solver algorithm can be found in the Appendix.

6 Evaluation
In this section, we evaluate Rebalancer’s scalability and so-
lution quality, and compare it with alternative approaches,
such as DCM [38] and MIP partitioning techniques similar to
POP [31]. Additionally, we assess the efficacy of local search
techniques such as hot bin ordering.

Figure 3 shows the statistics of the problems solved by
Rebalancer in production during a typical week. These tens
of millions of solves span diverse use cases outlined in §3.
The largest cases involve service sharding (1.8M shards, 27k
servers) and service placement (700k servers, 6k reservations).
We will use these application scenarios in evaluation.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    515



102 104 106

Object Count

101

102

103

104

105

B
in

 C
ou

nt

101

102

103

N
um

be
r o

f I
ns

ta
nc

es
Figure 3: Samples of production problems solved by Rebal-
ancer. The P99 (99th percentile) solve time is 16s with a prob-
lem size of 65k objects and 5k bins.

6.1 Comparison with DCM
In the context of cluster management, DCM [38] uses SQL to
express policies for placing pods on nodes. It translates these
SQL statements into a constraint satisfaction problem, which
is then solved using the Google OR-tools CP-SAT solver.
DCM’s scalability bottleneck is the CP-SAT solver, which
has computational intractability similar to MIP solvers.

We replicated DCM’s implementation of Kubernetes sched-
uler in Rebalancer (§3.5). To stress-test our implementation,
we impose inter-pod anti-affinities for all replica groups, a
condition known to increase scheduling difficulty. Similar to
evaluations in the DCM paper, we use the Azure dataset [27].
All experiments are conducted on a machine with 40 CPU
cores and 256 GB of RAM.

We will quote numbers from the DCM paper instead of con-
ducting measurements on our machines because DCM’s open
source code cannot run on our production machines due to
the security setup of those machines. We also cannot run Re-
balancer on third-party machines due to its dependencies on
tools only available in our production environment. Despite
the inability to directly compare their absolute performance
on the same machine, their scalability trends are evident from
their respective evaluations using the same dataset and imple-
menting the same Kubernetes scheduling algorithm.

We also compare local search’s SINGLE_GREEDY move
type, which evaluates placing an unscheduled pod on every
node, with the SINGLE_RANDOM move type, which ran-
domly selects a fraction f of nodes as targets. If unsuccessful,
it repeats the process with the remaining unexplored nodes.

Scalability. We evaluate Rebalancer under two scales: the
DCM-scale, scheduling 50 pods per batch on clusters with 1k,
5k, and 10k nodes (similar to that in the DCM paper); and the
hyperscale, scheduling 500 to 5k pods per batch on clusters
with 10k, 50k, and 100k nodes. Using larger pod batches in the

hyperscale setup is motivated by the fact that the arrival rate
of pods typically increases with the cluster size. As shown in
Figure 4, the P99 (99th percentile) per-pod scheduling latency
of SINGLE_GREEDY is less than 35 ms for instances up to
10k nodes. However, beyond 10k nodes, SINGLE_GREEDY
becomes progressively slower, while SINGLE_RANDOM con-
tinues to scale well. We have found a sample size of f = 10%
(capped at 1k bins) to offer a good trade-off between solution
quality and runtime.

Overall, Figure 4 demonstrates Rebalancer’s significant
scalability advantage over DCM. Due to inherent scalability
limitations in DCM’s CP-SAT solver, the largest problem
tackled in the DCM paper involved scheduling 50 pods in a
10k node cluster, with close to 30 ms scheduling latency per
pod. In contrast, even with a cluster size of 100k nodes (10
times that of the DCM experiment) and a batch size of 5k
pods (100 times that of the DCM experiment), Rebalancer
with SINGLE_RANDOM achieves a per-pod latency of 14ms.

Solution quality. We compare Rebalancer’s local search with
an optimal MIP solver in an experiment that places 10k pods
from the Azure dataset on 500 nodes, with the objective of
maximizing the number of placed pods. As shown in Table 2,
neither MIP nor local search can place all pods due to their
aggregate resource demand surpassing the capacity of 500
nodes. While SINGLE_RANDOM places 1.4% fewer pods
than MIP when nodes are full, its runtime is 5.2 times faster.

Test case Optimal MIP
solver

SINGLE
GREEDY

SINGLE
RANDOM

Azure dataset 94.6% (31ms) 92.8% (8ms) 93.2% (6ms)
Pathological N=10 100% (209ms) 97.1% (0.6ms) 97.8% (0.9ms)

Pathological N=100
N/A (timed out

after 600s) 97.4% (26.5ms) 97.7% (22.4ms)

Table 2: Percentage of placed pods and the scheduling latency.

To evaluate local search in a scenario where it is unlikely to
perform well, we design a pathological case parameterized by
N, with 31N pods and 50N nodes, each with 32GB memory.
Pod memory requirements follow an exponential distribution
over 5 groups: the first 16N pods with 2GB memory, the next
8N with 4GB, the next 4N with 8GB, the next 2N with 16GB,
and the last N pods with 32GB. The only way to schedule all
pods is when the total used memory on every node is precisely
32GB. Due to the nature of local search, finding this uniquely
optimal solution is unlikely. As shown in Table 2, local search
can place more than 97% of the pods, while being over 200
times faster than MIP. Additionally, as depicted in Figure 5,
Rebalancer finds a solution where the memory usage across
nodes is well balanced.

6.2 Comparison with Partitioned MIP
POP [31] improves scalability by partitioning a large MIP
problem into smaller ones and solving them independently,
coordinating solutions as needed. We have implemented a
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Figure 4: Per-pod scheduling latency of our Kubernetes implementation.
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Figure 5: Memory usage across 50 nodes for
the pathological case.

POP-like partitioned-MIP solver in Rebalancer in addition to
its existing local-search and MIP solvers.

In Table 3, we compare local search with partitioned MIP
on the service placement problem (§3.2) using our production
data. Here, local search uses a combination of move types,
including SINGLE_RANDOM, SINGLE_GREEDY, and SWAP.
Local search is up to four times faster, meeting all the service-
level requirements such as spread and capacity sufficiency,
while its solution quality is less than 0.6% worse than that of
partitioned MIP. Due to local search’s scalability, even though
we used partitioned MIP in production for a period of time,
we eventually switched to local search (§7).

Problem Size
(objects × bins) Local Search Partitioned MIP Relative Gap

700k × 5.7k 184s 376s 0.43%
710k × 4.8k 214s 350s 0.56%
568k × 4.7k 151s 455s 0.21%
645k × 4.5k 146s 557s 0.11%

Table 3: Problem sizes and runtimes of service placement.
The “relative gap” denotes the difference in objective values
between local search and partitioned MIP.

6.3 Local Search’s Individual Techniques
Next, we evaluate local search’s individual techniques.

Expression graph G scales linearly. We validate this using
three production instances of the service sharding problem,
with 71k, 152k, 289k objects each and roughly 1.5-2k bins.
The expression graph’s memory usage grows almost linearly
from 1.7GB to 3.2GB and 6.2GB.

Move evaluations are fast. As can be seen from the pod
scheduling example (Figure 4), evaluating all possible 50k
moves for a pod takes only 100ms. This indicates that Rebal-
ancer can evaluate up to 500k moves per second. The tech-
niques detailed in §5, such as bottom-up traversal of changed
nodes, help achieve this speed; without them, move evalua-
tions would be an order of magnitude slower.

Hot bin ordering is effective. A hot bin is one that con-
tributes the most to the objective, and Rebalancer processes
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Figure 6: Comparing hot bin selection and random bin selec-
tion using service placement and service sharding.

bins in the order of their hotness. As shown in Figure 6, pro-
cessing bins in the order of their hotness reduces the objec-
tive value more quickly. This results in higher solution quality
when the search time is capped for large problems.

7 Experiences and Limitations
In this section, we share some learnings from using Rebal-
ancer and discuss its limitations.

7.1 Alternative Approaches for Optimization
We summarize three categories of approaches to solving opti-
mization problems and make our recommendations.

Approach 1: ad hoc heuristics. This approach directly im-
plements heuristics to support resource-allocation policies
as code. It is the most widely used approach as it is easy to
start with. However, as policies grow in complexity over time,
adding new ones becomes increasingly difficult, and the so-
lution quality tends to decrease due to the intricate balance
required between different policies.

Approach 2: formal problem specification solved by a formal
solver. Systems utilizing MIP, such as Flux [10], belong to
this category, but there are other formal methods as well, such
as network flow optimization. Rebalancer with a MIP solver
in the backend also fits into this category. To address the chal-
lenge that most systems practitioners are unfamiliar with for-
mal problem specification, a higher level of abstractions can
be introduced, for example, DCM [38] using SQL and Rebal-
ancer using a high-level specification language. However, a
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formal method’s solver often lacks scalability, posing a hard
barrier to its application at hyperscale.

Approach 3: formal problem specification solved by a
systematic-heuristics solver. This category includes systems
that formulate problems using MIP but solve them using sim-
ulated annealing or local search. Rebalancer using a local-
search solver in the backend falls under this category. The
usability issue can be solved by raising the level of abstrac-
tion, similar to that for Approach 2. While good scalability
is a strength of this method, its weakness lies in producing
suboptimal solutions compared to formal solvers.

Recommendation: Based on our experiences, we make rec-
ommendations as follows. First, systems requiring short and
predictable latency in resource allocation decisions should
use ad hoc heuristics, even though they are hard to maintain
and evolve. Schedulers for high-throughput, short-lived batch
jobs fall under this category. Second, systems needing high-
quality solutions for small to medium-sized problems should
leverage formal solvers for their optimal solutions. Lastly,
for hyperscale systems not requiring real-time decisions, we
recommend approach 3 over approach 1, because it is much
easier to add or evolve resource-allocation policies with ap-
proach 3. One advantage of Rebalancer is its ability to sup-
port both Approaches 2 and 3 using the same high-level spec-
ification, and seamlessly switch the backend solver as needed,
depending on the problem scale and solve time constraint.

7.2 Experiences with Alternative Approaches
Among the three alternatives described in the previous sec-
tion, our choice for service placement (3.2) evolved from Ap-
proach 2 to Approach 3, while our choice for service sharding
(3.3) evolved from Approach 1 to Approach 3. We discuss
these experiences below.

Service placement. The service-placement problem [32] was
initially modeled using Rebalancer’s high-level specification
language and solved with a MIP solver. This is because ini-
tially the problem size was still manageable for MIP, the 20-
minute solve time service-level objective (SLO) was suffi-
cient, and we were (overly) worried about the solution quality.

However, as more services and machines were added to
the fleet, MIP’s solve time became problematic. Meanwhile,
the solve time SLO was reduced from 20 minutes to 10 min-
utes due to the need for faster reactions to capacity change
requests. We continued optimizing the MIP solver, for exam-
ple, by grouping equivalent objects to reduce the number of
decision variables. These incremental optimizations bought
us some time, but MIP still constantly fell behind on scala-
bility. Other issues included the MIP solver having not only
unpredictable execution times but also occasionally running
into infeasibility due to numerical precision issues. Debug-
ging and fixing these elusive problems in production under
time pressure were recurring pain points for engineers.

To scale MIP, we implemented a POP-like [31] partitioned

MIP solver (§6.2). Initially, it performed well in both solve
time and reliability. Managing hundreds of smaller subprob-
lems meant that a few failing MIP solves would not have a
fleet-wide impact. However, new requirements, such as stack-
ing more services on bigger machines, increased the problem
scale by an order of magnitude. At this point, building a parti-
tioned MIP model, which in the worst case uses |objects|×
|bins| assignment variables, was no longer practical.

This finally forced us to explore local search. With some
tuning, the local search solver achieved both good solution
quality and fast solve times. As shown in Table 3, the solution-
quality difference between local search and partitioned MIP
is less than 0.6%. The lesson for us is that, despite having
the local search technology, our unwavering faith in MIP’s
optimality led us on a lengthy detour to reach our current state.

Service sharding. While service placement started with Ap-
proach 2 and converged to Approach 3, the service sharding
system Shard Manager, went through the opposite direction,
switching from Approach 1 to Approach 3.

When Shard Manager started with ad hoc heuristics more
than a decade ago, Rebalancer did not exist at that time. As
Shard Manager became widely adopted by many applications,
its load-balancing algorithm became overly complicated. For
example, it supported multiple-dimension balancing across
CPU, memory, and storage, enforced rate limiting, and con-
sidered regional and global locality. Unsurprisingly, this com-
plexity led to frequent issues where some servers were over-
loaded while others were underutilized. Shard Manager strug-
gled to balance the load because the heuristics implementing
sometimes conflicting policy requirements were not robust.

The team started rewriting Shard Manager with yet another
heuristic implementation. It represented the topology (region,
datacenter, power domain, rack, server) as a tree and enforced
resource constraints across all levels of the topology. How-
ever, achieving good load balancing proved challenging even
with a clean implementation. Iterative tuning of the heuristics
required constant code changes that might not lead to positive
outcomes and often became dead code later.

Eventually, the heuristic-based new prototype was aban-
doned, and the team switched to exploring Rebalancer with
local search. The usability benefits were immediate, as it was
much easier to experiment with different load-balancing algo-
rithms by changing a few lines of high-level specification in
Rebalancer. The main challenges were solution quality and
scalability when solving problems with millions of objects
and tens of thousands of bins within the five-minute solve
time SLO. These requirements are well met, and in produc-
tion, 90% of the solves actually finish within 10 seconds.

7.3 Experiments with Simulated Annealing
Recall that Rebalancer’s internal architecture decouples prob-
lem representation from problem solving. There is a common
abstraction all solvers (e.g. local search, MIP) inherit from
which can be extended to support experimentation with new
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kinds of solvers. In the past, we experimented with a solver
based on the simulated annealing algorithm. One common
problem faced by local search is finding a locally optimal so-
lution that does not lead to a globally optimal solution. This
happens when there is no sequence of moves which strictly
improve the objective at each step. In order to get out of a lo-
cal optimum, the sequence of moves would have to temporar-
ily decrease the objective quality. This is not contemplated in
local search, but is one of the features of simulated annealing.

However, we found our implementation of simulated an-
nealing to not be practical at all for production-scale prob-
lems. It did not beat the performance of local search in any
experiments, neither in terms of quality nor run time. At our
scale, the number of possible object moves at any point is
large (e.g. O(1011) combinations for a problem with several
million objects and 100k bins), and the vast majority of these
moves are not helpful. We found that it is important to exploit
the structure of the objective function and aggressively pri-
oritize which moves to evaluate. This is primarily done by
the hot bins optimization in local search. Our implementa-
tion of simulated annealing did not exploit this structure, and
blindly evaluated moves with equal probability, regardless of
the shape of the objective. For this reason, we believe that fur-
ther research into heuristics to reduce the search space would
be needed to make simulated annealing practical. This is chal-
lenging because the heuristic would not only have to select
good moves, but also the right bad moves which decrease the
quality but are likely to lead to an improved quality later on.

Recall that to ensure allocation stability, it is often desired
to limit or minimize the number of object moves needed to
improve the assignment. We found this challenging to enforce
in an algorithm such as simulated annealing, which greedily
makes moves that barely improve or even decrease the quality
of the objective. In contrast, local search is able to maximize
the objective improvement at each individual step, finding a
shorter and more optimized sequence of moves.

7.4 Evolution of Rebalancer as a Library
Originally, Rebalancer was designed as a standalone exe-
cutable that took an input file describing the model in a cus-
tom format. This initial design quickly became hard to main-
tain as it required the service invoking Rebalancer to carefully
craft the input. At that point, we decided to create a strongly
typed API for programmatically defining models. As a result,
with the help of the compiler and runtime sanity checks, the
interface-related maintenance overhead drastically reduced.
The implementation of this interface was an inflection point
for the adoption of the project, as it became intuitive enough
to be used by many teams at Meta.

There still remained a question of whether to make Rebal-
ancer a service or a library. We decided to make Rebalancer
a library for two main reasons. First, services invoking Re-
balancer need to collect and feed Rebalancer with potentially
a large amount of input data, which can be done more effi-

ciently via a library API. Second, providing a multi-tenant ser-
vice is difficult, as different Rebalancer use cases can heavily
contend with each other due to their high memory and CPU
usage. Currently, if a particular use case still prefers to oper-
ate Rebalancer as a single-tenant service, they could do so by
wrapping the library with an RPC interface, but we have not
seen that in practice.

Therefore, today Rebalancer is implemented as a library
that gets compiled into each project that depends on it. The
resulting binary has predictable behavior, which does not
change unless it is recompiled with a newer version of the
code. Different usecases have their custom logic to collect the
input and setup an assignment problem using Rebalancer’s
specification language (See Figure 1 for an example). The
usecases then specify the choice of solver (MIP or Local
Search) and invoke the core solver which builds the expression
graph, solves the problem and returns a solution.

7.5 Handling Multiple Objectives
Each objective specifies a weight and a priority. Rebal-
ancer combines all objectives with the same priority using a
weighted sum. Finding appropriate weights for competing ob-
jectives (e.g., objA, objB) is done by first normalizing them so
that their values are comparable and then selecting multiplica-
tive weights based on their relative importance in the problem
domain. Some use cases provide strict priorities for objectives,
and Rebalancer ensures that it does not regress on higher-
priority objectives when solving for lower-priority objectives.

Recall that local search only makes moves that strictly
improve the objective value and is generally more stable.
However, when using MIP, if there are two solutions with
exactly the same objective value, Rebalancer may choose one
of them arbitrarily, causing instability across multiple solves.
In such cases, we typically add a MinimizeMovement goal
that disincentivizes moves which do not strictly improve the
objective.

7.6 Debugging Solver Behavior
The majority of engineering time in setting up a model goes
into debugging the behavior of the solver, which includes
ranking the objectives by their importance, identifying con-
flicting constraints, etc. Without proper tools, this process
requires a deep understanding of the internals of the solver,
which only engineers working on the core of Rebalancer have.
Over time we identified the common questions that helped
modelers understand the solver’s behavior and we built a spe-
cialized UI tool for answering them: Rebalancer-explorer. At
a high level, Rebalancer-explorer can be compared to debug-
ging tools such as Whyline [24] for post-facto analysis.

Under the hood, Rebalancer-explorer loads the expression
graph representation in memory and reuses many of the algo-
rithms mentioned earlier making it extremely fast to evaluate
formulas on demand. At a high level, the UI consists of:
• Table view to inspect objects, bins, their dimensions and
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their membership in partitions and scopes.

• Tree view to inspect the underlying expression (sub)-graph
corresponding to various user provided specs.

• Solution comparison view to inspect the goal and constraint
values for different solutions. By default, it shows a com-
parison of initial and final solutions.

• Timeline navigation view to inspect the sequence of moves
performed by local search at each step and the associated
objective improvements.

One example scenario is to answer questions such as why did
solver not move an object to/from a given bin. We can use
the solution comparison view to compare the goal/constraint
values between the solver-generated solution, and an ad hoc
solution where a specific object is moved to/from the given
bin. In this case, the UI gives real-time feedback of why that
move is not good – perhaps it breaks a constraint, or makes
the goal value worse.

7.7 Limitations of Rebalancer
Some problems can be modeled with MIP but cannot be mod-
eled with Rebalancer because they do not fit the abstraction
of assigning objects to bins. One such example is to assign
network traffic flow to links, where Rebalancer cannot model
a sequence of dependencies in the link topology. However,
Rebalancer ’s low-level expression API and expression graph
are generic enough to support these problems while providing
a significant boost for usability. Consequently, we extended
the expression API and expression graph to create a more
flexible framework, enabling the modeling of MIP problems
beyond assignment problems.

8 Related work
There is a rich body of work in the systems research commu-
nity that uses optimization problem formulations for different
resource allocation settings (e.g. [2–9,11,13,14,16–18,20,22,
25, 28, 32, 34, 37–42]). Among these, Rebalancer shares de-
sign goals with Wrasse [34] and DCM [38] domain-specific
language (DSLs) for resource allocation problems.

Comparison with existing DSLs. Wrasse [34] also uses an
object-bin abstraction but their specification language is lim-
ited to a small set of properties such as resource capacity but
for example does not support many other important proper-
ties listed in Table 1 such as spread, balance, affinities etc.
Moreover, their GPU-based solver is tightly coupled with
these properties making it hard to extend. On the other hand,
DCM [38] allows a user to specify constraints and goals using
SQL-like queries which are then fed into off-the-shelf solvers.
As discussed before, DCM’s ability to scale is limited by the
intractability of underlying constraint solvers.

Other relevant systems. These systems fall in one of two
categories. They either use some hand-crafted heuristics or
use a commercial MIP solver. Examples which use heuris-

tics include cluster management [4, 7, 43], application shard-
ing [2, 25], and container reallocation [33]. The paper [33]
uses variation of local search to move containers across phys-
ical machines but its scalability is limited by the fact that it
uses |O|× |B| decision variables. Examples where commer-
cial MIP solvers are used include capacity reservation [32]
and in cluster managers [11,41]. Rebalancer, through its spec-
ification language and its ability to translate to MIP models
can help set up and solve (using Xpress and Gurobi) a version
of many of the above problems at a comparable scale.

There also has been some recent progress on solving hyper-
scale allocation problems using MIP models. POP [31] pre-
sented a technique to decompose large scale assignment prob-
lems into small ones and combine their solutions to solve the
bigger problem. However, POP requires that resources (ob-
jects) are fungible and clients (bins) should not prefer one ob-
ject over others by a large amount. These do not always hold
for assignments problems we encounter, for instance, in the
case of service placement, it is common for services to request
specific server types. This is the reason why our POP-like par-
titioned MIP solver required some additional techniques.

Work on the machine reassignment problem. A set of rele-
vant work are the papers [12, 19, 26] from the 2012 ROAD-
EF/EURO Challenge [29]. This challenge was designed to
solve a machine reassignment problem, which is about reas-
signing processes to machines to satisfy some goals and con-
straints such as load balancing (see [29] for details). These
papers design heuristics to solve such problems and there are
some broad similarities with the ideas used in Rebalancer’s
local search. However, it is unclear if their techniques gener-
alize beyond the relatively small scale and type of problems
that were used in the contest.

9 Conclusion
In this paper, we discuss the design and implementation of
Rebalancer, a generic framework that solves a diverse set of
hyperscale assignment problems. Rebalancer decouples prob-
lem specification from optimization by defining a compact
graph representation, simplifies problem specification with a
high-level language, and designs a scalable optimization algo-
rithm. Finally, we shared our experiences and lessons learned
from evolving solutions for service placement and service
sharding.
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Demirović. Variable neighborhood search for google
machine reassignment problem. Electronic Notes in
Discrete Mathematics, 39:209–216, 2012.

[13] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
Choosy: Max-min fair sharing for datacenter jobs with
constraints. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 365–378, 2013.

[14] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review, 44(4):455–
466, 2014.

[15] Gurobi. Gurobi Optimizer [online]. 2023.
URL: https://www.gurobi.com/resources/
chapter-2-resource-assignment-problem.

[16] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, et al. Protean: Vm
allocation service at scale. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and
Implementation, pages 845–861, 2020.

[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[18] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 261–276, 2009.

[19] W Jaśkowski, Marcin Szubert, and Piotr Gawron. A
hybrid mip-based large neighborhood search heuristic
for solving the machine reassignment problem. Annals
of Operations Research, 242:33–62, 2016.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    521

https://www.gurobi.com/resources/chapter-2-resource-assignment-problem
https://www.gurobi.com/resources/chapter-2-resource-assignment-problem


[20] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. Morpheus: To-
wards automated slos for enterprise clusters. In OSDI,
pages 117–134, 2016.

[21] Gopal Kakivaya, Lu Xun, Richard Hasha,
Shegufta Bakht Ahsan, Todd Pfleiger, Rishi Sinha,
Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi,
Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan
Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,
Randy Wang, Abhishek Ram, Sumukh Shivaprakash,
Rajeet Nair, Alan Warwick, Bharat S. Narasimman,
Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre,
Preetha Subbarayalu, Mert Coskun, and Indranil Gupta.
Service fabric: A distributed platform for building
microservices in the cloud. In Proceedings of the Thir-
teenth EuroSys Conference, EuroSys ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

[22] Karthik Kambatla, Vamsee Yarlagadda, Ínigo Goiri, and
Ananth Grama. Ubis: Utilization-aware cluster schedul-
ing. In 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 358–
367. IEEE, 2018.

[23] Brian W Kernighan and Shen Lin. An efficient heuris-
tic procedure for partitioning graphs. The Bell system
technical journal, 49(2):291–307, 1970.

[24] Amy J. Ko and Brad A. Myers. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, page
151–158, 2004.

[25] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,
Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun
Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-
araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,
and Chunqiang Tang. Shard Manager: A generic shard
management framework for geo-distributed applications.
In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles(SOSP’21), pages 553–
569, 2021.

[26] Deepak Mehta, Barry O’Sullivan, and Helmut Simonis.
Comparing solution methods for the machine reassign-
ment problem. In Principles and Practice of Constraint
Programming: 18th International Conference, CP 2012,
Québec City, QC, Canada, October 8-12, 2012. Proceed-
ings, pages 782–797. Springer, 2012.

[27] Microsoft. Azure public dataset.
https://github.com/Azure/AzurePublicDataset, 2017.

[28] Pulkit A Misra, Íñigo Goiri, Jason Kace, and Ricardo
Bianchini. Scaling distributed file systems in resource-
harvesting datacenters. In USENIX Annual Technical
Conference, pages 799–811, 2017.

[29] H Murat Afsar, Christian Artigues, Eric Bourreau, and
Safia Kedad-Sidhoum. Machine reassignment problem:
the roadef/euro challenge 2012, 2016.

[30] Aravind Narayanan, Elisa Shibley, and Mayank Pundir.
https://engineering.fb.com/2020/09/08/data-center-
engineering/fault-tolerance-through-optimal-workload-
placement/, 2020.

[31] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid,
Peter Kraft, Akshay Agrawal, Srikanth Kandula,
Stephen Boyd, and Matei Zaharia. Solving large-scale
granular resource allocation problems efficiently with
pop. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 521–537,
2021.

[32] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan,
Pavan Kumar, Maxim Khutornenko, Mayank Pundir,
Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le,
et al. RAS: continuously optimized region-wide data-
center resource allocation. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples (SOSP’21), pages 505–520, 2021.

[33] Bo Qiao, Fangkai Yang, Chuan Luo, Yanan Wang,
Johnny Li, Qingwei Lin, Hongyu Zhang, Mohit Datta,
Andrew Zhou, Thomas Moscibroda, et al. Intelligent
container reallocation at microsoft 365. In Proceedings
of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering (FSE’21), pages 1438–
1443, 2021.

[34] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. Gen-
eralized resource allocation for the cloud. In proceed-
ings of the Third ACM Symposium on Cloud Computing,
pages 1–12, 2012.

[35] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol,
Haoran Zhang, Abhigna Nagaraja, Neeraj Pathak, Girish
Joshi, Carla Souza, Bo Huang, Wyatt Cook, Andrii
Golovei, Pradeep Venkat, Andrew McFague, Dimitrios
Skarlatos, Vipul Patel, Ravinder Thind, Ernesto Gonza-
lez, Yun Jin, and Chunqiang Tang. Xfaas: Hyperscale
and low cost serverless functions at meta. In Proceed-
ings of the 29th Symposium on Operating Systems Prin-
ciples, pages 231–246, 2023.

[36] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max
Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios

522    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Skarlatos, Hitesh Khandelwal, and Chunqiang Tang. Ser-
viceRouter: Hyperscale and Minimal Cost Service Mesh
at Meta. In Proceedings of the 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 969–985, 2023.

[37] Bikash Sharma, Victor Chudnovsky, Joseph L Heller-
stein, Rasekh Rifaat, and Chita R Das. Modeling and
synthesizing task placement constraints in google com-
pute clusters. In Proceedings of the 2nd ACM Sympo-
sium on Cloud Computing, pages 1–14, 2011.

[38] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu
Jyothi, Nina Narodytska, Leonid Ryzhyk, Sahan Gam-
age, Brian Oki, Pranshu Jain, and Michael Gasch. Build-
ing scalable and flexible cluster managers using declara-
tive programming. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Imple-
mentation, pages 827–844, 2020.

[39] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matt Clark, Kabir Gogia, Long
Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-
nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-
navi Venkatesan, and Peter Zhang. Twine: A unified
cluster management system for shared infrastructure. In
Proceedings of the 14th USENIX Conference on Oper-
ating Systems Design and Implementation, pages 787–
803, 2020.

[40] Alexey Tumanov, James Cipar, Gregory R Ganger, and
Michael A Kozuch. alsched: Algebraic scheduling of
mixed workloads in heterogeneous clouds. In Proceed-
ings of the third ACM Symposium on Cloud Computing,
pages 1–7, 2012.

[41] Alexey Tumanov, Timothy Zhu, Jun Woo Park,
Michael A Kozuch, Mor Harchol-Balter, and Gregory R
Ganger. TetriSched: global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Pro-
ceedings of the Eleventh European Conference on Com-
puter Systems, pages 1–16, 2016.

[42] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[43] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[44] Juan Pablo Vielma. Mixed integer linear programming
formulation techniques. SIAM Review, 57(1):3–57, 2015.
doi:10.1137/130915303.

[45] FICO Xpress. Xpress Optimizer [online]. 2023. URL:
https://examples.xpress.fico.com/example.
pl?id=assignmentgr.

Appendix A Additional Details on Rebal-
ancer’s Local Search

The input to the local search algorithm that powers Rebal-
ancer is an initial assignment A0 and the compact representa-
tion of goals and constraints as the expression graph G . Fur-
thermore, in the rest of this section, we assume that the fol-
lowing preprocessing steps have been done on G .
• Compute and store current values of each node: This can

be done by a simple recursive algorithm on all the roots
ri ∈ G , where the value of a node Zv is computed using the
values of its children.

• Compute and store the current upper and lower bounds for
each node: This can again be done by a simple recursive
algorithm. For a node v, we use Zub

v and Zlb
v to denote its

upper and lower bounds, respectively.

• Compute and store the potential of each node: The potential
of a node v is the difference between its current value and
its lower bound (i.e., Zv−Zlb

v ). Additionally, for each node
v ∈ G , we maintain a sorted order of its children(v), sorted
by their potentials. We say that a subgraph rooted at v is
optimal if v’s potential is zero.

• Compute and store the affected bins of each node: Recall
that a leaf node ℓ ∈G (such as ObjectLookup) is parameter-
ized by a set of bins Sℓ and changes to contents of Sℓ will
potentially change the value at node ℓ. We refer to the set Sℓ
as affected bins which can be recursively computed for all
v ∈G as Sv = {

⋃
Sw | w ∈ children(v)}. (See also Figure 2).

A.1 Restricting the search space
One important step in any local search algorithm is to gen-
erate a neighboring set of candidate solutions. To get to a
candidate solution, Rebalancer employs the notion of a local
change, denoted δ, which is a set of ordered tuples (oi,bs,bd)
and where each tuple denotes the change in some oi’s assign-
ment from some bs to some other bd (or alternatively, the
“movement" of oi from bs to bd). We refer to each tuple in δ

as a move. So, δ is simply a set of moves. We will use the
term applying the local change to describe the process of up-
dating A with the moves in δ and denote it as A⊕δ.

It is easy to see that given any two assignments A and
A ′, there exists a set of moves δ such that A ′ = A ⊕ δ. So,
now, the question remains as to how we can systematically
generate candidate sets of moves. First, observe that even
if we restrict ourselves to single moves—i.e., local changes
where we explore moving a single object from some source
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to some destination bin—there are O(|O|× |B|) choices. As
discussed before, this is unacceptable for large problems, and
so we must find another way to restrict the search space.

There are two natural ways to do this, i) restrict the search
space to one bin at a time and find the best moves involving
that bin, ii) restrict the search space to one object at a time
and find the best moves for that object. Note that in both these
cases the order in which we explore the bins (resp. objects)
is extremely important or we may spend too much time ex-
ploring moves that yield little improvement. In Rebalancer,
we restrict the search space at the bin scope. This decision
is primarily motivated by the fact that the number of bins is
usually much smaller than the number of objects, so restrict-
ing the search by bins makes faster local progress. Now, even
with the choice of exploring one bin at a time, there still re-
mains two main questions: i) What is the order of bins to con-
sider, ii) Given a choice of bin, how to generate the set of lo-
cal changes. We will answer the second question below and
return to the first one in the next section.

A.1.1 Move Types
Given a bin bs, we can generate local changes that move ob-
jects to and from bs. To methodically generate them, we use
the notion of a move type that describes the semantics of these
changes. For example, a SINGLE move type considers mov-
ing every object in bs to every other bin bd . There can be
other variants of SINGLE such as SINGLE_GREEDY which ac-
cepts the first improving single move, and SINGLE_RANDOM
where bd belongs to a small sample of randomly chosen bins.
Although in our experience just using single move types often
suffices, it is worth noting that the notion of a move type is
highly customizable and can exploit problem-specific domain
knowledge. In the following, we describe this in a greater de-
tail.

Overall, each move type generates a set of local changes L ,
evaluates each of the resulting candidate solutions (i.e., for
each δ ∈ L , evaluates A ′ = A⊕δ), and if it exists, returns the
δ that improves the objective the most. The logic to generate
L varies based on the move type and the following are some
commonly used ones.

• SINGLE: Given a source bin bs, it tries moving every ob-
ject in bs to every other bin bd . That is, L is the set of all
δi,d , where δi,d = {(oi,bs,bd)} is a move set with exactly
one move.

• SINGLE_GREEDY: Similar to SINGLE, but instead of
evaluating moving every object in bs to every other bd , it
considers the objects in some order and only considers the
moves with the subsequent object if no improving move
was found with the previous one.

• SWAP: For a source bin bs and all other destination bins bd ,
it tries swapping every object in bs with every object in bd .

• KL_SEARCH: inspired by Kernighan–Lin algorithm [23].
Given a source bin bs, and for every possible destination

bin bd , construct the KL-move set δk iteratively as follows.
Let δ0 = /0 be an initially empty move set. The move sets
at the end of i-th ieration δi is best of δi−1∪mi where mi is
a single move from bs to bd or from bd to bs. The iteration
stops once moves involving all objects in bs and bd have
been tried. The KL-move set δk is the best of all δi.

In fact, there are more complex move types in Rebalancer,
but we do not go into its details here due to space constraints.

A.1.2 Identifying equivalent objects
In addition to restricting the search space to explorations
from a bin, depending on the set of objectives and constraints,
it might be possible to identify objects that are equivalent
from a modeling perspective. For example, in the TASKS-ON-
SERVERS example, all tasks that belong to the same job are
equivalent, since they all affect the constraints and objectives
in the same way. Observe that if we identify the sets of equiv-
alent objects, then we can cut down the search space even fur-
ther by only exploring moves with at most one object from an
equivalence class. In Rebalancer, we employ a recursive al-
gorithm that exploits the expression graph G to compute sets
of equivalent objects.

Consider again the TASKS-ON-SERVERS example. There
we would ideally want a solver to automatically identify that
all tasks that belong to the same job are equivalent, since
they all affect the objectives and constraints identically. In
fact, such a feature can be quite powerful in further reducing
the search space, since it allows us to discard moves that are
equivalent while exploration (two moves are equivalent if they
both move equivalent objects from a source bin to destination
bin).

In Rebalancer, the intuition described above is formal-
ized using the notion of equivalent objects. Formally, let
A be any feasible solution of the given problem, and for
two objects oi and o j, let A ′ be the assignment obtained by
swapping their bins, i.e., A ′=A \{(oi,A(oi)),(o j,A(o j))}∪
{(oi,A(o j)),(o j,A(oi))}. Then, oi and o j are deemed equiv-
alent if all constraints and objective expressions evaluate to
the same value for both A and A ′. Alternatively, one can also,
slightly informally, think of oi and o j as equivalent if, for ev-
ery bin b and for a problem expressed in native form (i.e., us-
ing assignment variables), the modified problem that results
from replacing every variable of the form vi,c with variable
v j,c is mathematically equivalent to the original problem.

Ideally, we want compute an optimal set of equivalent ob-
jects (i.e., a set P = {I1, · · · , Ik} of minimum size and where
each object is part of one of the I js and each I j is a set of equiv-
alent objects), however this is computationally hard. Hence,
we use a greedy recursive algorithm which once again ex-
ploits the expression graph G . The main component in our
algorithm is for every node in G to maintain some informa-
tion about what sets of objects are equivalent with respect to
it. For example, in the case of ObjectLookup, two objects are
equivalent w.r.t. it if they have the same value in the corre-
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Algorithm 2 Finding sets of equivalent objects
1: P←{O} ▷ initially, all objects are considered equivalent
2: repeat for each node v ∈ G
3: if children(v) is empty then,
4: return set of equivalent objects w.r.t. v
5: end if ▷ every leaf stores sets of objects eq. w.r.t. it
6: for each child w ∈ children(v) do
7: Pw← set of equivalent objects w.r.t. Gw
8: for each set I ∈ Pw, where I /∈ P do
9: E1, . . . ,Ek← sets in P that intersect I

10: Create 2k sets O1, . . . ,Ok and N1, . . . ,Nk,
where Oi = Ei \ I and Ni = Ei∩ I

11: P←{O1, . . . ,Ok,N1, . . . ,Nk,Ek+1, . . . ,E|P|}
12: end for
13: end for
14: until all nodes in G are explored
15: return P

sponding V . Once we have this information for every node in
G , we can then have an algorithm that starts by initially con-
sidering all objects as equivalent, and then recursively splits
this set while ensuring that no two objects that are deemed
non-equivalent by a node is part of the same set. Algorithm 2
describes how to do this. While it is possible to prove that
this algorithm does produce a set of equivalent sets (although
not necessarily of minimum size), a formal proof is beyond
the scope of this paper.

A.2 Computing the hottest bin
While move types help in generating local changes, the more
important question is: what order of bins should one look for
moves from? To answer this, we introduce the notion of hottest
bin. A bin is considered hottest when, given an objective and a
current assignment, moving objects to or from this bin reduces
the objective value the most. At a high-level, during each iter-
ation we find the hottest (a.k.a. most broken) bin and attempt
to fix it by making local changes as dictated by the move types,
and continue the search until no progress can be made. Algo-
rithm 3 describes the high-level local search algorithm used in
Rebalancer. (Timeout handling has been omitted for simplic-
ity.) Observe that there are three performance sensitive com-
ponents in our algorithm, i) finding the hottest bin (line 7), ii)
given a local change, evaluating the objective value (line 12),
and iii) applying a local change (line 17). In the rest of this
section, we describe each of these components in more detail.

Intuitively, the hottest bin is one that can potentially im-
prove the most from local moves, but it is not obvious how to
find such a bin. Prior work explored the concept of bin poten-
tial which, for a bin b, is the difference in the current objective
value and the value of the objective after removing all objects
in b [19]. Although a reasonable metric, it only works for ob-
jectives that can be improved by moving objects out of a bin,
but not when objects need to be moved in, such as what is re-

Algorithm 3 Local Search Algorithm

Input: Objects O, bins B, expression graph G , initial
assignment A0

1: A ← A0 ▷ set current assignment
2: anyProgress← true
3: while anyProgress do
4: anyProgress← false
5: explored← /0

6: while explored ̸= B do
7: bhot← find_hottest_bin(G) ̸∈ explored
8: currProgress← false
9: for moveType in MoveTypes do

10: L ← local changes using bhot and moveType
11: for local change δ ∈ L do
12: objδ← evaluate_changes(G ,δ)
13: remove δ from L if it violates any con-

straint or worsens objective, i.e., objδ > 0
14: end for
15: if L is not empty then
16: δ∗←minδ∈L objδ ▷ best local change
17: apply_changes(G ,δ∗)
18: A ← A⊕δ∗ ▷ update assignment
19: currProgress← true
20: anyProgress← true
21: break
22: end if
23: end for
24: if currProgress is false, then add bhot to ex-

plored
25: end while
26: end while

quired when enforcing minimum capacity. Moreover, finding
a candidate bin can be expensive as it requires computing the
contribution of every bin and taking the maximum.

The bin ranking algorithm used in Rebalancer exploits the
expression graph G and works regardless of whether the ob-
jectives improve by moving objects in or out of them. More-
over, it does not need to compute the contribution of every
bin and terminates as soon as the hottest bin has been estab-
lished. Recall that each node v ∈ G directly (leaf nodes such
as Lookup) or indirectly (internal nodes such as Max) affects
a set Sv of bins. The idea is to process the leaf nodes of G
in a greedy order of their contribution to the objective. This
ordering of leaf nodes gives us a sequence of sets of bins
Sv,Sw, . . . ,Sz and we can use these sets to infer the hottest bin.
Indeed, if each leaf node affected exactly one bin, the hottest
bin would be the one corresponding to the first leaf in this or-
dering. However, leaf nodes such as ObjectLookup may affect
many bins, so we need a way to break ties.

We do this by maintaining an initially empty list of hottest
candidates in a data structure H called incremental priority
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Algorithm 4 find_hottest_bin
1: Incremental priority queue H← /0

2: iter← objective root
3: if valid cache exists, then restore H and iter from cache
4: while iter ̸= end do
5: v← node at iter
6: if H has a unique best element then
7: return top(H) as the hottest bin
8: end if
9: if v is a leaf or does not need expansion then

10: Sv← affected bins at v
11: update(H,Sv) ▷ update queue H

12: end if
13: advance iter to the next node in pre-order
14: end while
15: return top(H) breaking ties at random

queue. The items in H are bins whose priority is defined
using a series of sets of descending priority. Given two bins
b,b′ ∈ H and the series of sets associated with each, b has
a higher priority than b′ if it appears in a set before b′ does.
If both b,b′ appear for the first time in the same set, then
the second set breaks the tie, and if the second is also the
same, then the third is used, and so on. The series of sets
can be fed into the data structure one set S at a time with
update(H,S). One implementation of this data structure is to
maintain a map of bins with the indices of the sets in which
they appear. This map is sorted by a custom compare function
which orders the bins in the right way. For example, if we
had three sets {1: {bp,bq},2: {bp,bq,br},3: {bp,br}}, the
sorted map will be bp : {1,2,3},bq : {1,2},br : {2,3}. In this
case, once all the sets have been processed, bp will be the
hottest bin.

Algorithm 4 describes how we compute the hottest bin by
traversing the expression graph G in pre-order. We start with
the objective root and process children recursively in the or-
der of decreasing potentials and exit as soon as the hottest bin
is found (line 7). We also perform some natural optimizations
to reduce the number of nodes traversed. For example, we do
not recursively expand nodes that have achieved their bound
values, and also do not expand if every node in the subgraph
rooted at it affects the same set of bins (line 9). Observe that
the algorithm saves the progress each time and if possible re-
sumes from a valid cached state. If we invalidate the cache
after applying each local progress, then the ordering of hot
bins is dynamic, otherwise it is static. Indeed dynamic order-
ing often leads to a better solution quality (at the cost of re-
computing the ordering every time), but there are cases when
a static ordering is sufficient.

A.3 Evaluating and applying candidate solu-
tions

The remaining two important components of our local search
algorithm are evaluating and applying a set of moves δ. A
naive way of evaluating or applying a change δ would be
to just recompute the modified assignment A ′ = A ⊕ δ and
recompute the value of all nodes by a full recursive traversal.
Indeed this is quite inefficient as it requires traversing and
recomputing values for all nodes of the graph G when the
number of nodes affected by the change δ is likely quite small.
Since every node of the graph already stores its value w.r.t.
to the current assignment, if we can find a way to identify
the child nodes whose values need to be recomputed and
combine them with values that were not modified, we can
significantly speed up evaluate and apply operations. Observe
that applying of moves updates the internal state of graph G
(namely node values, bounds, ordering of children by their
potential), whereas evaluating moves does not modify the
graph. This distinction is important as it allows us to achieve
even faster running times for evaluate operations. Below, we
describe some ideas that make this possible.

Bottom-up propagation of changes.
Once the expression graph G is built, we can also preprocess
the leaf nodes to build a map Mo from objects to the leaf
nodes that reference them. Similarly, we build a map Mb from
bins to the leaf nodes that they affect. Recall that each local
change δ is a set of moves (o,bs,bd) that denotes moving
object o from bs to bd . Given this, we can iterate over the set
of moves in δ, and use the maps Mo,Mb to compute a set of
leaves L affected by the change δ. Starting from the leaves in
L, we traverse the graph bottom-up (from leaves to the roots)
using the incoming edges at every node. The set of nodes
reachable in this way is precisely the minimal set of nodes
whose values need to be recomputed. (See also Figure 2.)

Minimal computation at a node v.
While recomputing value of a changed node v, iterating over
all the nodes in children(v) can be unnecessarily expensive
especially when only a small number of child nodes may have
been updated. Depending on the type of the expression node,
we can store some additional information that makes these
updates significantly faster. Here we give an example for the
Max node; similar optimizations exist for other node types.
For a Max node, we maintain a sorted list of children by their
value. We first iterate over all the updated child nodes and take
the maximum of their new values; suppose that this value is
z1. Next, we iterate over the list of sorted children nodes and
stop at the first node that was not updated. Let the value of that
node be z2. Now, it is not hard to establish that the updated
value of this Max node is max(z1,z2). Observe that as a result
of this process, updating the value of this node took O(|Z|)
time, where Z ⊆ children is the set of updated children, as
opposed to O(|children(v)|). However, this comes at the cost
of a more expensive apply operation where we will need to
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update the list of sorted children. This trade-off is acceptable
because the number of evaluations is typically several orders
of magnitude larger than the number of apply operations.

A.4 Local search exit conditions
Recall that our local search algorithm terminates when it can
no longer make any progress. In some cases, depending on
the values of the objectives, it might be possible to determine
if any future moves can result in an improvement, and if not
end the search early. Below, we briefly describe the notions
of global and local optimality that are used for this purpose.

Global Optimality
Recall that we had recursively computed the lower bounds
for each node in G . If the current value of the objective root
note has reached its estimated lower bound, we say that the
current assignment is globally optimal and we can terminate
our local search algorithm.

Local Optimailty
Observe that in Algorithm 3, we maintain a list of explored
bins, which are the set of bins for which no improving move
was found. We leverage this information to compute a new
constrained lower bound for each expression. To do this, as-
sume that all the bins in explored are frozen (can neither move
objects in or out) and compute the new value of each expres-
sion. For example, consider a Lookup node v such that all its
affected bins Sv are explored. Since future moves cannot im-
prove the value of this node, we can establish that its con-
strained lower bound is its current value. Once the bound of
all leaf nodes are updated, we can recursively compute the
updated constrained bounds of all the expressions. If we es-
tablish that the value of the objective root node is the same as
its constrained lower bound, then we say that the current as-
signment is locally optimal, and if this happens, then we can
terminate the inner loop of our local search algorithm (lines
6-25 of Algorithm 3).

A.5 Numerical stability of incremental apply
Please refer to the discussion in the main text around incre-
mental application of small changes in local search. Observe
that another challenge that we need to tackle is numerical sta-
bility of apply operations. This is more important for nodes
of the graph G such as Sum that can accumulate numerical er-
rors by performing arithmetic operations on values of children
nodes. For example, let ε be the numerical tolerance for satis-
fying a constraint. That is, two values are considered equal
if they are within ε of each other. Now suppose applying ev-
ery change incurred an error of say ε′ = 10−3ε, we would
accumulate an error of Kε′ after applying K moves. Say if
K = 104, would incur an error of 10ε which is enough to in-
validate a valid constraint. Although some amount of preci-
sion loss is unavoidable, apply operation for expressions in
Rebalancer are designed to minimize precision loss as much
as possible. In some cases, as shown below, there is a trade

off between running time and precision loss and we need to
use a slightly advanced data structure to achieve both.

For example, consider the Sum, where we have two alter-
natives for recomputing its value for a given change δ. Note
that any floating point arithmetic often results in some loss of
precision.
• Case 1 : Slow with small precision loss and numerical sta-

bility. Compute the value dynamically after every change
by summing the values of children. This takes O(|children|)
time. Even though there is some precision loss in this pro-
cess, the resulting value is the same as the values are added
in the same order.

• Case 2: Fast with high precision loss and numerical in-
stability. Let z0 be the current value of the total sum, and
zp,zn respectively be the sum of prior and new values of the
changed children. Then the updated value of this node af-
ter applying the change is z0 + zn− zp. Note that this takes
O(|δ|) time but we would likely accumulate some addi-
tional precision loss by subtracting two approximate num-
bers zn and zp. Moreover, this problem is encountered per
update, and it adds up across many incremental updates. Fi-
nally, this also results in numerical instability because the
result depends on the order of applying updates.
We can address this problem by building and maintaining

segment tree structure over the children values that supports
computing sum of values in a given range as well as value
updates in logarithmic time. Therefore applying the change
δ takes O(|δ| log |children|) time but incurs smaller precision
loss and better numerical stability.

Appendix B Additional Details on Rebal-
ancer’s MIP Based Solver

In the previous section, we described a local search based al-
gorithm for solving assignment problems. However, for prob-
lems that are not too big or where the solution quality is ex-
tremely important, we can use commercial Mixed Integer Pro-
gramming (MIP) solvers such as Gurobi [15] and Xpress [45].
As we will soon describe, here again we use the flexibility
of the expression graph G to translate all or part of the prob-
lem to a MIP model, which in turn enables us to combine the
strengths of MIP solvers with our local search algorithm for
applications that need them.

B.1 On-the-fly translation to a MIP model
Recall that the standard MIP model for an assignment problem
consists of binary assignment variables vi j for every object bin
pair (oi,b j). In Rebalancer, we reuse the notion of equivalent
objects briefly described in Section A.1 to succinctly combine
assignment variables of objects that belong to the same equiva-
lence class. To see how, first, let Od be the collection of equiv-
alent sets of objects; each element Oi

d ∈Od is a set of equiva-
lent objects. Next, we introduce the notion of dynamic bins,
denoted Bd . A bin is dynamic if objects can move in or out of
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it. Note that depending on the constraints, some bins may not
be able to do either (i.e., they are frozen). Given this, the as-
signment variables in our MIP model are defined as follows.
1. For each eq. object set Oi

d and dynamic bin b j ∈Bd , create
an integer variable vi j that represents the number of objects
of type i that are assigned to b j. Set the lower bound of vi j
as 0 and upper bound as |Oi

d |.
2. For each Oi

d , add an object integrality constraint: ∑ j vi j =

|Oi
d | which ensures that all the equivalent objects in a set

are assigned.
Note how the above reduces the number of variables from
O(|O| · |B|) to O(|Od | · |Bd |). In our experience, this opti-
mization can sometimes be the difference between being able
to solve the problem using a MIP solver and otherwise.

Given the assignment variables above, similar to evalu-
ate, and apply operations, every Rebalancer expression im-
plements a mipTranslate operation, which knows how to cor-
rectly translate the expression based on its type into a linear
combination of assignment variables. Below we show a cou-
ple of examples (see [44] for details on translating many other
expressions including some non-linear types).
• For a leaf node v of type Lookup, we can implement the

mipTranslate similar to the native representation of util de-
fined in Equation 1.

• For a node v of type Max, we can use standard techniques
of translating a max function to MIP model. For simplicity,
consider the easy case when v is minimized by some ob-
jective. In that case, we add a new variable z to the model,
for all w∈ children(v), add constraints z≥mipTranslate(w),
and return the expression z.

With mipTranslate operation of each node in place, we can
build the MIP model M for the entire problem by recursively
calling mipTranslate on the objective root objr and all the
constraint roots, ctri

r. Once we have the MIP translation, the
objective in the MIP model is to minimize mipTranslate(obj0)
and the constraints are mipTranslate(ctri

r)≤ 0 for all ctri
r and

the ones that are added during the mipTranslate calls on a
node (like in the case of Max node described above).

B.2 Solving the model
We can use the aforementioned translation algorithm param-
eterized by dynamic bin set Bd to generate the MIP model
and solve using commercial solvers. If the problem is small
enough, we can solve the full problem with Bd = B. Other-
wise, we can use the hottest bin ranking from Algorithm 4 to
select an appropriately sized subset Bd ⊂ B of dynamic bins
and solve only part of the problem. This technique can in turn
be useful if we want to combine our local search algorithm
with MIP solvers.
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