
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

SquirrelFS: using the Rust compiler to check
file-system crash consistency

Hayley LeBlanc, Nathan Taylor, James Bornholt, and Vijay Chidambaram,
University of Texas at Austin

https://www.usenix.org/conference/osdi24/presentation/leblanc

SquirrelFS: using the Rust compiler to check file-system crash consistency

Hayley LeBlanc
University of Texas at Austin

Nathan Taylor
University of Texas at Austin

James Bornholt
University of Texas at Austin

Vijay Chidambaram
University of Texas at Austin

Abstract
This work introduces a new approach to building crash-safe
file systems for persistent memory. We exploit the fact that
Rust’s typestate pattern allows compile-time enforcement of
a specific order of operations. We introduce a novel crash-
consistency mechanism, Synchronous Soft Updates, that boils
down crash safety to enforcing ordering among updates to file-
system metadata. We employ this approach to build SQUIR-
RELFS, a new file system with crash-consistency guarantees
that are checked at compile time. SQUIRRELFS avoids the
need for separate proofs, instead incorporating correctness
guarantees into the typestate itself. Compiling SQUIRRELFS
only takes tens of seconds; successful compilation indicates
crash consistency, while an error provides a starting point for
fixing the bug. We evaluate SQUIRRELFS against state of
the art file systems such as NOVA and WineFS, and find that
SQUIRRELFS achieves similar or better performance on a
wide range of benchmarks and applications.

1 Introduction

One of the most important properties for file systems is to
preserve their integrity and user data in the face of a crash
or a power loss [16, 20, 28, 31, 42, 43, 51]. Unfortunately,
building crash-consistent file systems is challenging; checking
or ensuring crash consistency is even more so [17, 40].

There are two main approaches to building file systems
today, as summarized in Table 1. First, we build file systems
using low-level languages like C, and we use runtime test-
ing to gain some confidence in the correctness of the sys-
tems [36, 37, 41, 46, 47, 59]. Note that this approach is nec-
essarily incomplete; testing can only reveal bugs, not prove
their absence. However, this approach allows rapid develop-
ment, and entire testing ecosystems have sprung up around
this basic approach, like the widely-used xfstests [10] and
Linux Test Project [5].

A different approach to building file systems is to verify
them: we write a high-level specification of correct behavior
(including crash behavior) and then prove that the imple-
mentation matches the specification [17–19, 29, 53]. This

Approach Complete Dev effort Time to check

Testing No Low Medium
Verification Yes High High
This work Yes Medium Low

Table 1: Comparison of different approaches to ensuring crash
consistency in file systems.

approach can prove that the implementation does not have
certain classes of bugs; however, it comes at a high cost. For
each line of code in the implementation, we may need to write
7–13 lines of proof. Writing and maintaining proofs is time-
consuming and requires specialized expertise, constraining
rapid development.

In this work, we seek to find a middle ground between
these two approaches. We would like to verify some aspects
of file systems, but without the burden of having to write and
maintain proofs. In particular, we are interested in crash con-
sistency, a correctness property that is especially difficult to
test for. In order to be crash consistent, systems must ensure
that updates become persistent on storage media in the cor-
rect order; however, hardware or caching layers may reorder
updates to improve performance in unanticipated ways. Ex-
posing crash-consistency bugs thus requires one to find and
reproduce these low-level orderings, which requires special-
ized testing software [36, 37, 41, 46, 47, 59]. Our goal is to
develop lightweight approaches to statically check for crash-
consistency bugs without the overhead of full verification.

We exploit two recent developments to achieve this goal
(§2). First, the Rust programming language has a strong type
system that supports powerful compile-time safety checks.
Our work takes inspiration from Corundum [32], a Rust crate
(library) that uses Rust’s type system to check low-level PM
safety properties. In this work, we observe that Rust’s type
system can also statically enforce that certain operations are
carried out in a given order [27, 38]. Since the root of crash
consistency is ordering updates to storage, if we can encode
those ordering-based invariants in the type system, the com-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 387

Figure 1: For a soft updates file system to be crash-consistent, directory entries should only point to fully-initialized, durable
inodes. In existing file systems, all persistent inodes have the same type, regardless of whether they are durable or have been
initialized. With typestate, durability and the inode’s contents are reflected in its type.

piler can ensure the invariants hold at compile time.
However, to do so, crash consistency must be derived purely

from ordering-based invariants; some mechanisms such as
journaling use writes to a log to obtain atomicity, which is
harder to encode in the type system. Soft updates achieves
crash consistency purely via ordering [43], but the traditional
soft updates scheme is complex and hard to implement [13,
25].

We observe that the low latency of persistent memory [56,
59] allows file-system operations to be synchronous; all up-
dates to storage media are durable by the time each operation
returns [24, 34, 35, 39, 57]. We take advantage of persistent
memory’s synchronous updates and byte addressability to
develop a new mechanism for crash consistency we term
Synchronous Soft Updates.

Synchronous Soft Updates builds on the classical soft up-
dates mechanism [43], but avoids most of the complexity that
prevented the widespread adoption of soft updates [13]. Two
of the most complicated aspects of soft updates, dependency
structures and cyclic dependency management, arise due to
the need to track ordering requirements between block-sized
updates across asynchronous operations. Synchronous Soft
Updates eliminates these challenges entirely by using fast,
fine-grained storage to back synchronous operations.

We ensure that the ordering invariants of Synchronous Soft
Updates hold by using the Rust compiler. We take advantage
of Rust’s support for the typestate pattern, an API design pat-
tern where an object’s type reflects the operations that have
been performed on it [54]. The legal order of operations is
encoded in function signatures and enforced by Rust’s type-
checker. For example, an uninitialized inode has a different
type than an initialized one; attempting to use one where the
other is expected will result in a compile-time error. Figure 1
illustrates the approach.

We implement Synchronous Soft Updates in a new file
system for PM called SQUIRRELFS and use the typestate pat-
tern in Rust to check that update orderings are implemented

correctly. SQUIRRELFS provides crash-atomic metadata sys-
tem calls, including rename; on the original soft updates, a
crash during rename could result in both the source and des-
tination existing. SQUIRRELFS compiles and typechecks in
seconds, whereas running verification on existing storage sys-
tems takes minutes or hours. Building SQUIRRELFS required
no modifications to the Rust language.

We evaluate SQUIRRELFS by comparing to a number of
file systems meant for persistent memory, such as NOVA [57]
and WineFS [34] (§5). We use Intel’s Optane DC Persistent
Memory Module for our comparison, and find that SQUIR-
RELFS offers comparable or better performance to other PM
file systems across a broad range of workloads. The current
SQUIRRELFS prototype prioritizes simplicity of update order-
ing rules over performance in some areas, leading to relatively
high mount times and memory utilization; however, these are
not fundamental limitations of the design. We also model
the design of SQUIRRELFS using the Alloy model-checking
language [33] to gain confidence in the correctness of its
Synchronous Soft Updates mechanism.

We note that SQUIRRELFS is not fully verified, and thus
does not obtain the strong correctness guarantees of verified
storage systems like FSCQ [19]. Crash-consistency bugs may
still occur in SQUIRRELFS if their root causes are unrelated
to ordering, if the ordering rules enforced by the compiler are
incorrect, or if trusted code in SQUIRRELFS’s implementation
or the Rust compiler are buggy. For example, SQUIRRELFS’s
ordering rules guarantee that inodes are always initialized
before they are linked into the file system tree, but they do not
guarantee that the contents of the inode are correct. SQUIR-
RELFS’s static checks are also limited by the capabilities of
the Rust compiler. For instance, the Rust compiler cannot
check properties about variable-sized sets of data structures,
as checking such properties is undecidable in general.

SQUIRRELFS offers a useful new point in the spectrum
of approaches to building robust storage systems; it provides
weaker guarantees than verified systems, but comes at a lower

388 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cost. As such, we hope that it proves useful for developers of
storage systems that require strong guarantees, good perfor-
mance, and rapid development.

In summary, this work makes the following contributions:

• Statically-checked crash consistency, an approach where
high-level properties are encoded into the type system
and checked at compile time (§3)

• The Synchronous Soft Updates crash-consistency mech-
anism for persistent-memory file systems (§3.1)

• The SQUIRRELFS prototype, along with a discussion of
lessons learned during its development (§4).

SQUIRRELFS and its Alloy model are publicly available at
https://github.com/utsaslab/squirrelfs.

2 Background and Motivation

2.1 Crash Consistency
A file system is crash consistent if it can recover to a consis-
tent state after a power loss or a crash [16,20,51]. A consistent
file system is one where all the metadata is in sync; for exam-
ple, two files cannot (mistakenly) claim the same data block.
Files present before the crash must exist post-crash, and the
data in files must remain valid.

Crash-consistency mechanisms. Crash consistency is gener-
ally achieved using mechanisms such as journaling [28, 48],
copy-on-write [1, 31, 42], or soft updates [43]. The root of
crash consistency is correctly ordering writes to storage [20];
for example, a data block must be initialized before a file
points to it. Soft updates achieves crash consistency by care-
fully ordering in-place updates to storage such that all possible
crash states are consistent [43]. To enforce ordering, soft up-
dates must track updates across asynchronous operations and
resolve cyclic dependencies when they arise. Though soft up-
dates is used in FreeBSD [44], it has not been widely adopted
due to its high complexity.

Ensuring crash consistency. Ensuring that a given file sys-
tem achieves crash consistency is challenging. There are two
main approaches. The first approach is testing, in which pos-
sible crash states of a file system are explored and checked
for consistency. Obtaining these crash states requires support
from tools like eXplode [59], CrashMonkey [46], Hydra [37],
Chipmunk [41], or Vinter [36]. While such testing tools can
find many bugs, they cannot prove overall correctness or the
absence of crash-consistency bugs.

The second approach is to build verified file systems. A
developer writes a high-level specification of correctness and
a lower-level implementation, and proves that the implementa-
tion satisfies the specification. This approach is stronger than
testing in that it can prove strong correctness properties and
verify that there are no bugs. However, it comes at a high cost:
the developer has to write 7–13 lines of proof for every line of

code. For example, BilbyFS [12] required 13k lines of proof
for 1k lines of implementation code; VeriBetrKV [29] used
45K lines of proof for 6k lines of implementation. Another
verified file system, FSCQ [19], has interleaved proof and
implementation code that is 10× the size of the most similar
unverified system.

This heavy proof burden constrains development in a num-
ber of ways. First, building a verified system requires proof-
writing expertise, which restricts the set of developers who
can work on it. Second, proofs must be written in tandem
with the code that they verify, which extends development
time. Finally, making changes to the system requires corre-
sponding changes to the proofs, making maintenance slow
and preventing rapid updates.

Corundum [32] is a Rust crate for PM systems that, like
SQUIRRELFS, uses the Rust type system to enforce certain
low-level PM safety properties at compile time. For example,
Corundum ensures that every update to PM occurs in a logged
transaction, and prevents the storage of pointers to volatile
memory in durable structures. SQUIRRELFS was inspired by
Corundum and aims to enforce higher-level properties like
file-system crash consistency with Rust.

2.2 The opportunity: Rust and PM

We observe an opportunity to ensure file-system crash consis-
tency in a cheap manner.

First, we note that the Rust programming language can
statically enforce a specific order on operations via its
support for the typestate pattern [9, 27]. Briefly, the typestate
pattern enables an object’s runtime state to be encoded in
its type [54]. This state can be checked at compile time via
typechecking, ensuring that a given operation can only occur
on a specific type. Typestate information is stored in zero-
sized types that incur no runtime overhead.

For example, one consistency rule enforced by soft updates
is that a directory entry should never point to an uninitial-
ized inode. Listing 1 shows how typestate is used to enforce
this rule. To create a new file, we first obtain a free directory
entry and inode. Initially, both objects have typestate Free.
Then, we initialize the directory entry, transitioning its type to
Dentry<Init>. The listing then has a bug in which the direc-
tory entry’s inode number is set by commit_dentry() before
the inode is initialized, breaking the consistency rule. The
Rust compiler catches this bug because the inode’s current
typestate Free does not match the typestate Init expected
by the function.

Since soft updates is entirely built on ordering updates to
file-system objects, we can translate the required partial order
into a set of types and use Rust’s type checking to enforce the
order. Thus, the invariants we want to maintain are translated
into something the type system and compiler can enforce.
We note that we are able to do this with an unmodified Rust
compiler; the new types introduced are no different to the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 389

https://github.com/utsaslab/squirrelfs

1 fn new_file() {
2 // Dentry<Free>
3 let d = Dentry::get_free_dentry();
4 // Inode<Free>
5 let i = Inode::get_free_inode();
6 // Dentry<Init>
7 let d = d.set_name("foo");
8 let d = d.commit_dentry(i);
9 ^ expected ‘Inode<Init>‘,

10 found ‘Inode<Free>‘
11 }

Listing 1: The listing shows the typecheck process throwing
an error when an uninitialized inode is passed to a function
that expects an initialized inode.

compiler from existing types in the codebase.
However, implementing soft updates correctly remains

challenging even with typestate support. With soft updates,
file-system updates are applied to the page cache in DRAM,
and then later written to storage in the right order. Determin-
ing the right order requires tracking complex dependencies
across asynchronous operations. When a single file-system
metadata object (such as an inode or a bitmap) is updated
multiple times, it can lead to cyclic dependencies.

This leads to our second observation: persistent memory
(PM) file systems support synchronous operations thanks to
the low latency of the storage media [56, 58]. These file sys-
tems write updates directly to storage without first caching
them in DRAM [24, 34, 35, 39, 57]. A synchronous imple-
mentation of soft updates for persistent memory eliminates
the complexities of asynchronous dependency management,
greatly simplifying the mechanism and allowing the relevant
invariants to be encoded in Rust’s type system.

3 SquirrelFS

We now present the design and implementation of SQUIR-
RELFS, a novel file system that uses the unmodified Rust
compiler to check its crash consistency. If the compilation
is successful, it indicates that the ordering-based invariants
hold throughout the file system: in other words, the checking
is complete. If compilation fails, the error reported by Rust
is useful in figuring out which operations are out of order.
Compilation takes only seconds, offering quick feedback to
developers.

SQUIRRELFS is built on two key ideas:

• A novel crash-consistency mechanism, Synchronous
Soft Updates, that achieves crash consistency purely via
ordering file-system operations (§3.1)

• Using the Rust typestate pattern to encode ordering in-
variants into the Rust type system (§3.2)

It is important to note that we are not modifying the Rust
compiler in any way. To the Rust compiler, it is no different
from type-checking any other code base; we are merely using
the type checking to ensure that crash consistency holds in
the file system.

We now describe the key ideas in more detail.

3.1 Synchronous Soft Updates

We develop Synchronous Soft Updates (SSU), a novel crash-
consistency mechanism. SSU is based on the traditional soft
updates approach, but differs in two key aspects. First, soft
updates was designed for asynchronous settings, but all op-
erations are synchronous in SSU. Second, soft updates does
not provide atomic rename; a crash during a rename of src to
dst can result in both being present after a crash. SSU fixes
this flaw; renames are atomic, and a crash during rename will
result in either src or dst after recovery.

We now discuss why we developed SSU, its key aspects,
and how renames are atomic in SSU.

Why a new mechanism? To go with our overall approach
of encoding ordering-based invariants into the Rust type sys-
tem, we needed a mechanism that achieves crash consistency
purely via ordering file-system updates. This rules out mecha-
nisms such as journaling and copy-on-write that use writes to
a log or an extra copy to obtain atomicity. Soft updates [43]
obtains crash consistency by enforcing ordering on in-place
persistent updates to file-system objects; thus, it was a good
match. However, traditional soft updates suffered from two
problems that we needed to tackle. The first challenge was
that soft updates had significant complexity arising from need-
ing to track dependencies between asynchronous file-system
operations; the presence of cyclic dependencies also requires
complex roll-back and roll-forward logic. The second chal-
lenge is that soft updates does not provide atomic operations,
particularly rename; atomic rename is a crucial primitive for a
number of POSIX applications [50]. Thus, we need to modify
soft updates to tackle both its high complexity and lack of
atomic operations.

Synchronous operations. We observe that the root of com-
plexity in soft updates (such as cyclic dependencies and
structures for tracking dependencies) is asynchrony. A syn-
chronous implementation of soft updates neatly avoids these
complexities. All updates would be made durable by the end
of each system call, which would eliminate the need to track
cross-operation dependencies. Cyclic dependencies would no
longer arise because there are no pending updates that can
conflict with each other. The SoupFS [23] soft updates file
system for persistent memory eliminated cyclic dependencies
using fine-grained updates, but still required asynchronous
dependency tracking. A synchronous implementation is nec-
essary to overcome both sources of complexity.

A synchronous version of soft updates was not feasible

390 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

until now, as running this on magnetic hard drives or even
solid state drives would be prohibitively slow. However, syn-
chronous soft updates is a good match for persistent memory
(PM) due to its low latency; system calls in many existing
PM file systems are already synchronous [24, 34, 35, 57].

Similar to traditional soft updates, SSU maintains crash con-
sistency by enforcing ordering among updates to file-system
objects. SSU implements the original soft updates rules [26]:

1. Never point to a structure before it has been initialized;

2. Never re-use a resource before nullifying all previous
pointers to it;

3. Never reset the old pointer to a live resource before the
new pointer has been set.

These rules are significantly easier to enforce in a synchronous
setting, as there is no need to track dependencies across asyn-
chronous operations. Like soft updates, SSU focuses on the
integrity of file system metadata and cannot guarantee that
operations on file data are atomic. SSU could be combined
with journaling or copy-on-write to obtain stronger data guar-
antees.

Atomic rename in SSU. SSU ensures renames are atomic
by cleaning up file-system state after a crash. In traditional
soft updates, if there is a rename from src to dst, it is im-
possible to tell after a crash whether src or dst should be
removed. To resolve this, SSU adds an extra field, called the
rename pointer, to directory entries in order to persistently
save enough information to complete the rename operation
after a crash. The rename pointer in the destination directory
entry points to the physical location of the source directory
entry. The rename pointer allows the file system to follow
soft updates rule 3 (never reset the old pointer before the new
one has been set) while also retaining the ability to distinguish
between src and dst after a crash.

Note that this is similar to what journaling-based file sys-
tems do; they write a log entry specifying src and dst so
that the right clean-up action can be performed. In SSU, the
information in this log entry is distributed over the source
and destination inodes; taken together, they provide enough
information to the file system.

Figure 2 illustrates the process. Step 1 shows an exam-
ple system state prior to the rename operation. In 2 , dst’s
rename pointer (dotted line) is set to src. dst is invalid, and
src is still valid. In 3 , we make dst valid; this also logically
invalidates src. This is an atomic point; after this step, the file
system will always complete the rename operation. If the file
system crashes prior to this step, the rename pointer is cleared
on recovery. In 4 , we physically mark src as invalid. In 5 ,
the rename pointer is cleared, and in 6 src is fully deallo-
cated. Each step either modifies metadata that is invisible to
the user (e.g., deallocating an orphaned directory entry) or

Figure 2: The figure shows the steps in atomic soft updates
rename. The dotted lines represent rename pointers and the
solid lines represent inode pointers. src and dst are directory
entries. The labels "v" and "i" indicate whether a directory
entry is valid or invalid.

atomically modifies a single 8-byte value. All modifications
must be durable before proceeding to the next step.

A question that arises is how the file system finds src and
dst. This is an example of how SSU is tailored for PM file
systems. In PM file systems, it is common for the file system
to scan persistent objects to construct indexes in DRAM;
we add the rename-recovery procedure into this scan. Thus,
when building volatile indexes after a crash, the file system
also looks for and completes any partially completed rename
operations.

3.2 Using Rust to enforce ordering
Rust’s typestate pattern can be used to ensure that a set of

functions are always called in certain partial order. A total or-
der is not necessary, as many operations involve independent
updates that can be safely reordered. As we discussed previ-
ously (§2), an object’s typestate is encoded in generic type
parameters in its definition, and the partial order is encoded
in the function signatures of its associated functions.

We encode two states (as different type parameters) in the
types of persistent objects:

• Persistence typestate is a representation of whether an
object’s most recent update(s) have been made durable.
We use three persistence typestates: Dirty, InFlight,
and Clean.

• Operational typestate represents the operations that have
been performed on an object and is used to determine
what operations can happen next.

Persistence and operational typestate are separate to capture
the fact that most storage devices do not synchronously flush
updates. For example, in persistent memory, updates go to

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 391

1 impl Inode<Clean, Free> {
2 fn init_inode(self, ino: u64, ...)
3 -> Inode<Dirty, Init> {...}
4 }
5 impl Dentry<Clean, Alloc> {
6 fn commit_dentry(
7 self,
8 inode: Inode<Clean, Init>
9) -> Dentry<Dirty, Committed> {...}

10 }
11 impl<S> Inode<Dirty, S> {
12 fn flush(self) ->
13 Inode<InFlight, S> {...}
14 }
15 impl<S> Inode<InFlight, S> {
16 fn fence(self) ->
17 Inode<Clean, S> {...}
18 }

Listing 2: Pseudocode implementations of file system ob-
jects with persistence and operational typestate. Typestate
arguments are shown in bold.

the CPU caches first, and must be explicitly flushed to the
persistent media.

Listing 2 shows implementations of several methods of
persistent Inode and Dentry types with persistence and op-
erational typestate as generic type parameters. The methods
flush and fence invoke a cache line write back and store
fence respectively and are generic with respect to operational
typestate. These methods must be used to ensure updates are
persistent before continuing; for example, commit_dentry()
requires an Inode<Clean, Init> to ensure the inode’s ini-
tialization cannot be transparently reordered with the directory
entry updates.

This formulation of persistence typestate has several perfor-
mance benefits. First, because the flush and fence methods
can only be called on an object whose typestate indicates it is
not yet persistent, typechecking will prevent redundant persis-
tence operations (thereby improving performance). Second,
developers can wait to flush updates until it is strictly neces-
sary and can write additional transitions to enable multiple
updates to share a single fence.

Why Rust? In order to obtain useful compiler-checked guar-
antees from the typestate pattern, each object must have ex-
actly one typestate [54]. Thus, languages with unrestricted
aliasing (e.g., C) cannot support the typestate pattern, as dif-
ferent aliases for the same value can have different types. Rust
supports the pattern via its ownership type system, which en-
sures that each value has exactly one owner (and thus exactly
one type).

Figure 3: The figure shows the persistent updates and corre-
sponding dependencies made during mkdir. Inodes are dark
gray and directory entries are white. Each object is labeled
with its operational typestate and its outline indicates whether
it is clean (solid) or dirty (dotted).

3.3 Example: mkdir
We use mkdir to illustrate the typestates and dependency rules
used in SSU. To be crash consistent, an SSU implementation
of mkdir must ensure (1) that a structure never points to an
uninitialized resource, and (2) that each inode’s link count is
greater than or equal to its actual number of links. Both rules
prevent dangling links in the event of a crash.

Figure 3 illustrates the dependencies in a mkdir opera-
tion. During mkdir, three file-system objects are modified:
an inode for the new directory, a directory entry for the new
directory, and the inode of the parent directory. Note that all
three can be modified at the same time in a concurrent fash-
ion, and can share a single store fence at the end (not shown).
SQUIRRELFS uses volatile allocation structures, so they are
not persisted during mkdir.

The system first finds the parent inode and obtains a free
directory entry in one of the parent’s pages as well as a free
inode. The inode is then initialized (i.e., setting its inode
number, link count, timestamps), the directory entry’s name
is set, and the parent inode’s link count is incremented.

Next, we commit the directory entry by setting its inode
number. This makes the directory entry valid and connects
the inode to the file system tree. Directory entry commit
is dependent on inode and directory entry initialization and
parent link increment. Committing the directory entry before
initializing the inode can result in a directory entry pointing to
a garbage inode; committing before incrementing the parent’s
link count can lead to dangling links.

3.4 Implementation
We implemented SQUIRRELFS in Rust with 7500 LOC. It
uses bindings from the Rust for Linux project [8] to con-

392 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: The figure shows the main components of SQUIR-
RELFS. Each CPU has its own pool of pages and private page
allocator. The inode allocator is shared between all CPUs.
Volatile indexes are stored in VFS data structures.

nect to the Linux Virtual File System (VFS) layer. Figure 4
shows SQUIRRELFS’s architecture. We also built a model of
SQUIRRELFS in the model-checking language Alloy [33] to
check its design for crash consistency issues. We describe our
experience developing SQUIRRELFS in §4.

Overview. The design of SQUIRRELFS combines aspects of
FreeBSD’s FFS [44] and PM file systems such as NOVA [57]
and WineFS [35]. Like FFS, it has a simple on-storage layout,
and uses soft updates. Like other PM file systems, SQUIR-
RELFS uses volatile index structures that are built when the
file system is mounted.

SQUIRRELFS’s design was primarily influenced by two
factors. First, we wanted to keep dependencies as simple as
possible and avoid nested persistent structures that are diffi-
cult to represent in typestate. Second, we assume the x86 PM
persistence model in which only aligned updates of 8 bytes (or
smaller) are crash atomic [24]. Under the x86 model, persis-
tent addresses can be accessed via regular memory stores, but
the corresponding cache line must be flushed before updates
become persistent; a memory barrier like a store fence must
also be invoked to correctly order stores [52]. Durable struc-
tures may also be updated via cache-bypassing non-temporal
store instructions, which still require a store fence for per-
sistence ordering. This programming model influences the
structure of persistent objects and restricts the set of legal
orderings.

All system calls in SQUIRRELFS are synchronous, mean-
ing that updates to durable structures made by each system
call are durable by the time the system call returns. As such,
fsync is a no-op in SQUIRRELFS. Metadata-related opera-
tions are also crash-atomic. Data-related operations are not
atomic in the current SQUIRRELFS prototype, which matches
the default behavior of other PM file systems like NOVA [57].
These operations could be made atomic by using copy-on-
write to update file contents.

Persistent layout. SQUIRRELFS uses a simple layout to re-
duce the complexity of update dependencies. SQUIRRELFS
splits the storage device into four sections: the superblock,
the inode table, the page descriptor table, and the data pages.
The inode table is an array of all of the inodes in the system.
SQUIRRELFS reserves enough space for approximately one
inode for every 16KB of data (four pages), the same ratio
used by the Linux Ext4 file system.

The page descriptor array contains page metadata. Rather
than having inodes point to the pages they own, each page
descriptor contains a backpointer to its owner (similar to
NoFS [21]) and stores its own metadata (e.g., its offset in the
file). This approach simplifies dependency rules for updates
involving page allocation and deallocation. All remaining
space after the page descriptor table is used for data and/or
directory pages.

Volatile structures. SQUIRRELFS’s persistent layout sim-
plifies typestate and update dependency rules, but it is not
amenable to fast lookups. Therefore, SQUIRRELFS uses in-
dexes in DRAM to speed up lookup and read operations. Each
inode in the VFS inode cache has a private index for the re-
sources it owns; index data for uncached nodes is stored in
the VFS superblock.

Like many other PM file systems, SQUIRRELFS uses
volatile allocators: allocation information is not stored in a
persistent manner, but rather rebuilt each time the file system
is mounted. It uses a per-CPU page allocator and a single
shared inode allocator (which could be converted to a per-
CPU allocator to improve scalability). The allocators use free
lists backed by kernel RB-trees.

SQUIRRELFS’s indexes and allocators are rebuilt by scan-
ning the file system when SQUIRRELFS is mounted. An
inode, directory entry, or page descriptor is considered allo-
cated if any of its bytes are non-zero. Directory entries and
page descriptors are only valid if their inode numbers are
set; inodes are valid only if they are reachable from the root.
Thus, updates that allocate new structures and set non-inode
metadata fields need not be crash-atomic.

Synchronous Soft Updates. SQUIRRELFS uses an imple-
mentation of SSU for crash consistency. As shown in Fig-
ure 3, operations that involve creation of new objects must
first durably allocate and initialize resources before linking
them into the file system (setting the directory entry’s inode
in the example) to enforce rule 1 (never point to a structure be-
fore it has been initialized). Deallocation proceeds in reverse;
links are first cleared, then the object itself is deallocated by
zeroing all of its bytes. SQUIRRELFS enforces rule 2 of soft
updates (never re-use a resource before nullifying all previous
pointers to it) by treating durable objects that are not com-
pletely zeroed out as allocated and by ensuring via typestate
that pointers to the object are cleared before the object can be
zeroed.

Typestate transition functions. SQUIRRELFS updates the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 393

typestate of objects via typestate transition functions. These
functions take ownership of the original object, modify it, and
return it to the caller with the new typestate. These functions
are defined only on certain typestates to ensure they are called
in a safe order. For example, the typestate transition function
commit_dentry(), shown in Listing 2, is only defined for di-
rectory entries with type Dentry<Clean, Alloc>, and also
takes ownership of an inode of type Inode<Clean, Init>.
Calling commit_dentry() out of order – e.g., on a directory
entry that has not yet been persistently allocated – is a poten-
tial crash-consistency bug and results in a compiler error.

Concurrency. SQUIRRELFS supports concurrent file-system
operations. It relies on VFS-level locking on durable resources
like inodes. This locking, together with Rust’s type system,
ensures that each resource has only one owner – and only one
type – at any time, enabling strong typestate-based compile-
time checking. SQUIRRELFS uses internal locks to protect its
allocators and indexes.

Building a model with Alloy. While the typestate pattern
can enforce a given operation order, it cannot verify that
this order is crash consistent. To gain more confidence that
SQUIRRELFS’s design is crash consistent, we built a model
of SQUIRRELFS in the Alloy model checking language [33].

Alloy provides a language for specifying transition systems
and a model checker to explore possible sequences of states
(traces) of these systems. Alloy’s implementation is based
on a logic of relations; each system is composed of a set of
constraints that define a set of structures and the relations
between them, and the model checker uses constraint solving
to find traces.

In SQUIRRELFS, there is roughly a one-to-one mapping
between typestate transitions in the Rust implementation and
the next-state predicates in the Alloy model. Each next-state
predicate specifies the states in which the transition may occur
and the changes it makes to the model’s state.

The model includes next-state predicates for typestate tran-
sitions and persistent updates. It also includes transitions
that model crashes and recovery, which let us check SQUIR-
RELFS’s design for crash-consistency bugs.

Each persistent structure in SQUIRRELFS is represented
by a corresponding structure, also called a signature, in Alloy.
The model also includes a Volatile signature that is used to
model volatile aspects of the file system like its indexes. Each
typestate is represented by a signature, and instances of per-
sistent structures are mapped to their current typestate. Each
file system operation is also represented by a signature, and
relations map system calls to instances of persistent objects
they are operating on as well as other volatile state (e.g., the
locks held by that operation). We use this to model concurrent
file-system operations.

3.5 Limitations of the approach

It is important to note that the typestate-based approach used
in SQUIRRELFS is not as powerful as full verification. Fully-
verified systems, such as the FSCQ file system [19], use theo-
rem provers that can prove a wide variety of complex proper-
ties. For example, a developer could prove, if required, that
the system only uses even-numbered inodes for files.

In contrast, our typestate-based approach can only check
ordering-based invariants. Our approach could be used to
verify that functions are called in a specific order; for example,
our approach can ensure that a file is not linked into the file-
system tree before it is allocated. However, it does not verify
the implementation of each function that is called.

Thus, full verification is significantly more powerful and
general, but it pays a cost in terms of complexity and develop-
ment time. Our approach is more targeted and ordering-based,
but allows quick feedback and incremental development.

We believe this approach is a valuable addition to the reper-
toire of tools we have for building correct file systems. This
approach should be used alongside runtime testing and model-
checking approaches.

3.6 Relevance beyond PM

While we have designed SQUIRRELFS for persistent memory,
SQUIRRELFS would be relevant for any storage technology
with byte-addressability and low latency. The Compute Ex-
press Link [2] standard will support attached memory devices,
including PM, via the Type 3 (CXL.mem) protocol. These
CXL-attached PM devices will have the same interface and
persistence semantics as current NVDIMMs, though perfor-
mance will be lower [14].

SQUIRRELFS, and SSU file systems in general, could be
used on CXL-attached memory. As SQUIRRELFS’s mount
performance and memory footprint are tied to the size of the
device, they may worsen with significantly larger-capacity
devices. Further work will be required to optimize file systems
based on our approach for such devices.

4 Experience developing SQUIRRELFS

We now describe our experience with designing, developing,
and testing SQUIRRELFS. We also discuss the challenges we
faced during this process.

4.1 Development process

Designing SQUIRRELFS. Our initial design closely followed
that of BSD FFS [43], but most aspects eventually diverged
due to differences between storage hardware and typestate
considerations. We found that some data structures and crash-
consistency properties were better suited for use with the

394 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

typestate pattern than others. For example, we chose SQUIR-
RELFS’s backpointer-based page management approach be-
cause it simplifies update dependency rules when allocating
or deallocating pages. With backpointers, these operations
involve a constant number of persistent updates and involve
no additional durable structures. In contrast, tree or log-based
approaches need extra persistent metadata and may require
additional updates to balance the tree or free log space, both of
which complicate dependencies and typestate management.

An important design decision we had to make was how
granular typestate would be. One option was to use specific
typestates to represent each fine-grained operation; e.g., have
one typestate for initializing an inode’s link count, another for
setting its flags, etc. Another was to make each typestate more
general, with transition functions potentially performing mul-
tiple persistent updates. More general typestates may sacrifice
some bug-finding power, but they make the system easier to
understand and develop. In SQUIRRELFS, we aimed to strike
a balance by representing only operations that require a spe-
cific ordering with typestate. For example, when initializing
an inode in SQUIRRELFS, the order in which the values of
most fields are set is not relevant to crash consistency, as the
contents of the inode are not visible until it is linked into the
file system tree. Therefore, SQUIRRELFS uses only a single
typestate (Init) to represent inode initialization, and another
(Committed) to indicate when it has been added to the tree.

Parallel model and system implementation. We developed
the Alloy model alongside SQUIRRELFS. This created a use-
ful feedback loop in which the model supported the Rust im-
plementation, and questions or changes to the implementation
could be quickly reflected and checked in the model. We used
an incremental development process, incorporating feedback
from the Rust compiler and the model immediately as we
implemented the system. Many transitions in the model could
be translated directly into Rust typestate transitions, making
the model a valuable guide for implementing file system op-
erations. When we made mistakes translating the model into
Rust, typestate checking quickly caught these issues.

Alloy also includes a graphical user interface for visual-
izing traces of operations on the model. This was useful for
both investigating invariant violations and seeing the set of
transitions that occur in a given file system operation, which
could be translated directly into system call handler imple-
mentations. It also demonstrated locations where multiple
updates could safely share a single store fence, which helped
us avoid redundant fences.

4.2 Finding bugs

While developing SQUIRRELFS, we used a combination of
typestate checking, model checking in Alloy, and dynamic
testing to find bugs.

Typestate checking. Typestate checking in the implementa-

tion was successful at quickly catching both missing persis-
tence primitives and higher-level ordering bugs; we provide
an example of each.

• Missing persistence primitives. Our initial implementa-
tion of write was missing flush and fence calls after
setting the backpointer of a newly-allocated page. This
bug was immediately highlighted as an error by the com-
piler. Had this bug made it into the implementation, a
crash could cause a file to have a size larger than the
number of pages associated with it, causing errors when
trying to read the file.

• Incorrect ordering. Our initial rename implementation
mistakenly decremented an inode’s link count before
clearing the corresponding directory entry. A crash could
result in a link count that is lower than the true number
of links, leading to a dangling link if the inode is subse-
quently deleted.

Although we did not specifically check execution paths
without crashes, the crash-consistency invariants encoded in
typestate were general enough to detect some bugs in this
code. For example, the compiler caught a bug where pages
were not fully deallocated during unlink, which did not re-
quire a crash to manifest. Typestate-related compiler errors
were relatively uncommon overall, since using the model as a
guide for implementation helped us get ordering right early.
However, it provided a crucial safety net to prevent subtle
bugs when we did make mistakes.

Model checking with Alloy. The Alloy model found several
high-level issues in SQUIRRELFS’s design that would have
otherwise been difficult to detect and time-consuming to fix,
including the following examples.

• We initially believed that crash recovery would not be
needed other than to fix space leaks. Alloy found an
instance of the model where a crash during rename fol-
lowed by deallocation of the destination directory entry
could cause an invalid directory entry to reappear. Fixing
this required the addition of recovery transitions.

• Early designs for SQUIRRELFS stored . and .. direc-
tory entries durably. We discovered via model checking
that our original dependency rules for handling these
directory entries during more complicated operations
like rename were not correct. Ultimately, we decided to
not store these entries, since they can be constructed at
runtime using indexed information.

Testing. Neither the typestate pattern nor the Alloy model
eliminated the need to test SQUIRRELFS. Our primary goal
was to check crash-consistency, and we did not check any
invariants that only impact regular, non-crash execution. We
used handwritten tests and the xfstests suite [10] to test these
unchecked parts of the code.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 395

All bugs found through testing were in parts of SQUIR-
RELFS that were not checked by typestate or directly modeled
in Alloy. Most bugs were related to updating volatile indexes
or VFS inodes, e.g., failing to remove a deallocated object
from an index or setting the wrong value in the VFS inode.
There were also bugs in the implementations of typestate tran-
sitions, which are not themselves verified; for example, the
transition that wrote new file data to a page did not always
calculate the offset for non-aligned writes correctly. Imple-
menting bug fixes was quick since we did not need to modify
the typestate-restricted interface to objects and there were no
proofs to update.

4.3 Challenges encountered

Challenges with typestate. It is easier to write typestate-
checked code than it is to write verified code, but this comes at
the cost of less powerful compile-time checking. For example,
checking universally-quantified formulas (e.g., all pages in
a file are allocated) is undecidable, and unlike verification-
aware languages, the Rust compiler has no heuristics to at-
tempt to solve them. As a result, we cannot ensure invariants
such as “all objects in a set are in a certain typestate”; specifi-
cally, we can’t encode this in typestate because the number
of objects in the set is not known at compile time.

This became a problem when implementing file-system
operations like unlink, where we would like to e.g., check
that the backpointers of all pages belonging to the file are
cleared before deallocating the inode. Such a check ensures
that the system always follows soft updates rule 2 (never re-
use a resource before nullifying all previous pointers to it);
by clearing all of the page backpointers before deleting the
inode, we ensure that none remain when the inode is eventu-
ally reused. However, it is impossible to check this property
on arbitrary sets of pages if each page has its own typestate.
We experimented with several workarounds, including forc-
ing write operations to update no more than one page at
a time (which was prohibitively slow and did not solve the
problem for unlink), and storing typestate in page structures
at runtime and manually adding assertions (which also im-
pacted performance and lost the benefit of static checking).
Ultimately, we decided to use a single piece of typestate to
represent ranges of pages (e.g., all of the pages in a file or a
contiguous subsection). Each typestate operation on such a
range performs the operation on all pages in the range. This
moved some logic into the typestate transitions, making the
transition functions themselves more complicated but mak-
ing page-management logic more centralized and easier to
manually audit.

Challenges with Alloy. As SQUIRRELFS grew in complex-
ity, it became harder to maintain the model and get useful
feedback quickly. The model checker uses a SAT solver to
check invariants, and the formulas representing a large model

can take days or weeks to solve. We checked that traces with
multiple concurrent operations were crash consistent, which
increased the size of the problem further. To get faster feed-
back, we built a custom utility to run multiple independent
instances of the model checker in parallel and split larger
predicates into smaller, more concrete sub-checks.

It could also be difficult to determine whether a reported
failure was a false positive. A particular challenge was dealing
with frame conditions, predicates that specify what should
not change in a given transition. Alloy is free to arbitrarily
change any state that the current transition does not explic-
itly mention, so frame conditions are crucial to constrain the
model to real traces. This behavior helps Alloy find corner-
case bugs, but it also leads to false positives. To overcome
this challenge, we built a syntax-based checker that parses
the model using Alloy’s API and checks that each transition
explicitly mentions all mutable structures in the model. The
current version of the checker cannot detect all issues, but it
detected many missing conditions that would have otherwise
taken hours to catch via model checking.

4.4 Typestate beyond SQUIRRELFS

Costs and benefits of typestate. We do not have equivalent
verified or unverified systems to compare with SQUIRRELFS
in terms of development and debugging effort; however, in
the authors’ experience, designing and implementing SQUIR-
RELFS required more effort than a typical unverified system,
but far less effort than a verified storage system.1 We believe
that debugging SQUIRRELFS was faster and easier than de-
bugging an equivalent unverified system, as following the
typestate-enforced ordering rules made it easier to implement
the system correctly in the first place and reduced the number
of bugs overall.

Using the typestate pattern for crash consistency represents
a useful new point in the tradeoff space between runtime
testing and full verification. While it comes at the cost of
additional development effort compared to unverified systems
to determine correct ordering rules and does not gain the same
correctness guarantees as verified systems, it does eliminate
an entire class of crash consistency bugs that are otherwise
difficult to find and fix [37,41,46]. Furthermore, as the pattern
builds ordering rules directly into a system’s implementation,
the rules will stay up to date and continue to prevent crash-
consistency bugs as the system is developed further [30, 49].

Broader applicablity. As the typestate pattern is a general
approach for statically checking the order of updates to data
structures, it is useful in a broad variety of contexts, several
of which are described below.

1For example, author LeBlanc recently worked on a durable log imple-
mented in a verification-aware programming language, which took about 3
months of full-time work.

396 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

• Volatile data structures: SQUIRRELFS does not use type-
state to manage updates to volatile data structures, but
prior work on typestate verification has focused entirely
on such use cases [11, 54].

• Other types of storage systems: The typestate pattern
could be used to enforce ordering invariants on durable
updates in other types of storage systems (e.g., key-value
stores) with different crash-consistency mechanisms. We
note that crash-consistency mechanisms like journaling
and copy-on-write do not achieve consistency entirely
through ordering and would require auxiliary techniques
to check properties like atomicity.

• Durable layout: SQUIRRELFS’s on-storage layout is tai-
lored to reduce the number of durable updates per file-
system operation and to simplify ordering rules. Other
layouts could also be used in typestate-checked storage
systems, although the complexity of the ordering rules
would increase.

• Asynchrony: The typestate pattern is compatible with
asynchronous systems, although the ordering rules to
enforce are much more complicated in such systems, as
updates from different operations may be interleaved.

5 Evaluation

We seek to answer the following questions in our evaluation
of SQUIRRELFS:

1. What is the latency of different file-system operations
on SQUIRRELFS? (§5.2)

2. How does SQUIRRELFS perform on macrobenchmarks?
(§5.3)

3. How does SQUIRRELFS perform on real applications?
(§5.4)

4. How long does SQUIRRELFS take to mount and recover
from crashes? (§5.5)

5. What compilation, memory, and CPU overheads does
SQUIRRELFS incur? (§5.6)

6. Is SQUIRRELFS correct? (§5.7)

5.1 Experimental setup
We evaluate SQUIRRELFS on a two-socket, 32 core machine
with 128GB of memory and one 128GB Intel Optane DC
Persistent Memory Module. The evaluation machine runs
Debian Bookworm and Linux 6.3.

We compare SQUIRRELFS against ext4-DAX [3], NOVA
[57], and WineFS [34]. We configure all three systems to pro-
vide metadata consistency but not data consistency to match
SQUIRRELFS’s guarantees. We cannot compare SQUIR-
RELFS to SoupFS [23], the only other soft updates PM file

system, as it is not open source. Due to time constraints, we
were unable to compare against the recent ArckFS [60] file
system. We hope to do so in the future. All reported results are
the average of multiple trials. The red errors bars in Figure 5
indicate the minimum and maximum values recorded over all
trials.

5.2 Microbenchmarks
We compare each system’s latency by testing several file
system operations: appending and reading 1KB and 16KB to
a file, file creation, directory creation, renaming a directory,
and unlinking a 16KB file. None of the tests call fsync.

The average latency over 10 trials of the tested operations
are shown in Figure 5(a). The lowest latency file system in
each test is either WineFS or SQUIRRELFS. Ext4-DAX has
the highest latency on many operations because it interacts
with the Linux kernel block layer for tasks like block alloca-
tion, which incurs additional software overhead. It achieves
similar performance to the other systems on operations that
do not go through the block layer (e.g., unlink). NOVA has
higher latency on mkdir and rename than WineFS and Squir-
relFS because operations that update multiple inodes require
journaling in NOVA.

5.3 Macrobenchmarks
We evaluate SQUIRRELFS on the Filebench [4] storage bench-
mark suite. We run four workloads from the suite – fileserver,
varmail, webserver, and webproxy – in their default configu-
rations. Fileserver performs mostly writes with some whole
file reads; varmail is half appends and half reads; webproxy
appends to each file and reads from it several times; and
webserver reads and occasionally appends to a log file. Fig-
ure 5(b) shows the average throughput in kops/sec for each
file system on each workload. SQUIRRELFS achieves slightly
better throughput than the next fastest system on fileserver
and varmail (8% and 13% better, respectively) and within
10% of the fastest system on both webserver and webproxy.
Fileserver and varmail perform many small appends, which
SQUIRRELFS performs well on due to its lack of journal-
ing. Webserver and webproxy are more read-heavy, which all
systems perform roughly equally on. Ext4-DAX does not go
through the block layer on reads and it benefits from data con-
tiguity awareness, making its performance similar or better
than the other systems on these workloads.

5.4 Applications

YCSB on RocksDB. We evaluate the four systems on
RocksDB [7] using YCSB workloads [22]. We run all work-
loads on a 25GB database with 25M records, 25M operations,
and 8 threads. All workloads are run using standard workload
configurations and the default settings of YCSB, which uses

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 397

1K
append

16K
append

1K
read

16K
read

creat mkdir rename unlink

(a) System call latency

0

5

10

15

La
te

nc
y

(u
s)

fileserver varmail webproxy webserver
(b) Filebench

0.0

0.5

1.0

1.5

2.0

ko
ps

/s
 (r

el
at

iv
e)

25 20
8

47
1

91
7

Load A Run A Run B Run C Run D Load E Run E Run F
(c) YCSB workloads on RocksDB

0

1

2

3

ko
ps

/s
 (r

el
at

iv
e)

44 45 14
1

19
1

28
8

43 29 56

fillseqbatch fillrandbatch fillrandom
(d) LMDB

0.6

0.8

1.0

1.2

ko
ps

/s
 (r

el
at

iv
e)

80
0

35
7

35
5

Ext4-DAX NOVA WineFS SquirrelFS

Figure 5: This figure shows the performance of the evaluated file systems on different benchmarks and applications. (a) shows
absolute latency of different file system operations; (b), (c), and (d) show the relative throughput in kops/s of each system relative
to Ext4-DAX on filebench, YCSB on RocksDB, and LMDB respectively.

system calls for all operations. Figure 5(c) shows throughput
in kops/second relative to Ext4-DAX on each tested workload.

SQUIRRELFS outperforms the other systems on Loads
A and E, which are 100% small inserts. As seen on the
other benchmarks, SQUIRRELFS performs particularly well
on small appends due to its lack of journaling or logging.
Writes that require page allocation are particularly expensive
in the other systems, as journaling/logging the new metadata
incurs an additional 2-3us in NOVA and WineFS and 3-4us
in Ext4-DAX. Ext4-DAX and NOVA both also journal or log
metadata on every append, spending roughly 30% of each
non-allocating call (approx 1-1.5us) managing journals/logs.

All file systems are within 10% of Ext4-DAX’s throughput
on Runs B, C, and D. All of these workloads are at least 95%
small (4KB) reads, which all four systems achieve similar
performance on.

SQUIRRELFS achieves the best throughput on Runs A
and F, which are 50% reads and 50% updates (Run A) or
read-modify-write operations (Run F). Ext4-DAX, NOVA,
and WineFS all incur logging/journaling on these workloads;
Ext4-DAX outperforms NOVA and WineFS because it has
less journaling overhead for in-place updates and is more

aware of data contiguity on reads.
Ext4-DAX achieves the best performance on Run E, which

is 95% range scans and 5% inserts. Ext4-DAX’s contiguity-
awareness and better fragmentation-prevention mechanisms
help it outperform the other systems on larger read operations.

LMDB. We also run LMDB [6], a memory-mapped database,
using db_bench’s fillseqbatch, fillrandbatch, and
fillrand workloads. Each experiment uses 100M keys on
an empty file system. Figure 5(d) shows the throughput in
kops/sec for each file system on each workload. Each file
system has throughput with 12% of the other systems. Most
updates are done to memory-mapped files, so differences in
the performance of system calls and metadata management
designs have a reduced impact.

Git. We also evaluate the performance of SQUIRRELFS by
performing git checkout of major Linux kernel versions.
The time to check out a given version in each file system is
within 8% of the other systems.

5.5 Mount time
SQUIRRELFS takes longer to mount than other PM file sys-

398 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

System state Mount time (s)

Normal
mount

mkfs 5.80
Empty 5.51
Full 30.50

Recovery
mount

Empty 5.76
Full 55.50

Table 2: Time in seconds to mount SQUIRRELFS file system
images in differrent states. Times in the recovery mount col-
umn come from mounting a cleanly-unmounted file system
that runs a recovery scan in addition to normal rebuild scans.

tems because it must rebuild volatile indices for the entire file
system. Table 2 shows how long it takes to mount SQUIR-
RELFS on a 128GB PM device with different contents. The
≈ 5.5 seconds it takes to initialize or mount an empty system
is the overhead of zeroing or scanning the metadata tables
and creating volatile allocators. We also measure the time to
mount a system with 100% data and inode utilization. Most
of this time is spent allocating space for and managing the
volatile indexes and allocators.

If SQUIRRELFS detects that it was not unmounted cleanly,
it constructs additional structures to keep track of orphaned
objects and the true link count of each inode. It fills in these
structures during the regular rebuild scan and uses them to free
orphans and correct link counts at the end of the mount pro-
cess. SQUIRRELFS also checks each directory entry for non-
null rename pointers and either rolls back or completes any
interrupted renames. Table 2 reports the time it takes SQUIR-
RELFS to perform recovery scans on a cleanly-unmounted
device. Mounting with recovery takes longer than a standard
mount because the file system must construct orphan-tracking
structures and do an extra iteration over all directories to
check for rename pointers in addition to building the volatile
indices and allocators.

SQUIRRELFS’s mount time could be improved by paral-
lelizing some of its rebuild and recovery logic. For example,
the inode and page descriptor table scans are completely in-
dependent and could be done in parallel. The file system tree
rebuild logic could also be distributed across multiple threads.

5.6 Resource usage

Compilation. SQUIRRELFS takes approximately 10 seconds
to compile on our test machine, including typestate checking.
This compares well to fully-verified systems; FSCQ [19] takes
about 11 hours to verify, and VeriBetrKV [29] takes 1.8 hours
(10 minutes when parallelized).

SQUIRRELFS also compiles faster than the other tested
systems on the test machine. Table 3 shows the size of each
system in lines of code and how long it takes to compile.
SQUIRRELFS’s more complicated typechecking does not no-

System LOC Compile time (s)

Ext4 45K 38
NOVA 16K 20
WineFS 9K 13
SQUIRRELFS 7.5K 10

Table 3: Time to compile different PM file systems as loadable
kernel modules. Ext4’s line count includes interleaved DAX
and non-DAX code.

ticeably impact its compilation time.

Memory. SQUIRRELFS maintains indexes for fast lookups
of files and directory entries. Each regular file has an index
mapping its inode number (8 bytes) to each of its pages and
their offsets (16 bytes total). Thus, the index entries for a
1MB file use about 4KB of memory. Each directory has a
similar inode to page index (without offsets), plus a mapping
from directory entry names to metadata like their location on
PM and inode number. The current maximum name length
is 110 bytes (which makes directory entries 128 bytes) and
SQUIRRELFS does not currently hash or compress names.
Therefore, each directory entry takes up approximately 250
bytes in the index.

CPU. SQUIRRELFS does not start new threads in any of its
operations. We leave the use of more threads for operations
like freeing pages, running crash recovery, etc. to future work.

5.7 Correctness

Model checking. We check that a correctness invariant al-
ways holds in all traces of our Alloy model. We bound traces
to include two operations (which may be concurrent), 10 per-
sistent objects, and up to 30 steps. The invariant includes both
sanity checks on the model as well as file system consistency
checks. The sanity checks ensure, for example, that objects
will never end up with conflicting typestates. The consistency
checks ensure that 1) objects always have a legal link count, 2)
there are no pointers to uninitialized objects, 3) freed objects
do not contain pointers to other objects, and 4) there are no
cycles of rename pointers and directory entries are pointed to
by at most one rename pointer.

Testing. We test SQUIRRELFS using a set of handwritten
tests and the xfstests [10] test suite. SQUIRRELFS currently
passes all supported tests (67) from xfstests’ generic test
suite. The rest of the tests use system calls or arguments that
are currently not supported by SQUIRRELFS.

Crash consistency. We used Chipmunk [41] to test SQUIR-
RELFS for crash-consistency bugs. We modified Chipmunk’s
test generators to remove several system calls that SQUIR-
RELFS does not currently support but otherwise ran its full
suite of systematically-generated tests and fuzzed the sys-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 399

tem for approximately 24 hours. Chipmunk did not find any
ordering-related crash-consistency bugs in SQUIRRELFS, pro-
viding evidence that typestate-checked SSU is an effective
mechanism for preventing such bugs. Chipmunk did find four
crash consistency bugs in unchecked parts of SQUIRRELFS
code, three in its rebuilding of volatile data structures and one
in the body of typestate transitions in which a cache line flush
was issued to the wrong address. As these are not caused by
incorrect update ordering, the typestate pattern did not catch
them at compile time. We found that using the typestate pat-
tern in SQUIRRELFS made locating and fixing these bugs
faster and easier, as we could focus on the specific regions
of code that are unchecked and are thus more likely to have
bugs.

5.8 Summary
SQUIRRELFS provides comparable performance to other PM
file systems, while providing strong guarantees about its crash
consistency. Due to the innovative use of typestate checking,
we were able to implement SSU and gain confidence in its
correctness. SQUIRRELFS gains an advantage over other file
systems in write-dominated workloads, since soft updates
avoids writing to a log or to a second copy of the data. The
design of SQUIRRELFS trades off good common-case per-
formance for slightly longer mount times compared to other
file systems; we believe this is acceptable since crashes are
rare. SQUIRRELFS compiles at the same rate as other PM file
systems, despite the strong type checking.

6 Related work

Rust for PM. SQUIRRELFS was inspired by Corundum [32].
Corundum builds data structures whose low-level properties
are checked using Rust’s type system. For example, Corun-
dum ensures that there are no pointers to volatile memory
stored in persistent memory, and that persistent state is only
updated in transactions. It focuses on lower-level persistent
memory programming errors and cannot prevent higher-level
logical bugs. Corundum also requires all updates to PM to be
in transactions, which is overly restrictive for many systems.
In contrast to Corundum, SQUIRRELFS checks high-level
file-system crash-consistency properties using type-checking
without placing constraints on how the file system is used.

Soft updates for PM. Two PM file systems use soft updates
for crash consistency: SoupFS [23] and ArckFS [60]. Unlike
SQUIRRELFS, SoupFS is asynchronous and uses background
threads to flush updates. It uses byte-addressable updates to
eliminate cyclic dependencies. ArckFS is a user-space PM file
system built on the Trio architecture that uses synchronous,
soft-updates-esque updates for simple operations (e.g., cre-
ating a file) and undo journaling in more complicated cases.
Unlike ArckFS, SQUIRRELFS uses only synchronous soft

updates for its crash consistency; the novel way in which
SQUIRRELFS implements atomic rename (without journaling
or copy-on-write) further differentiates it from ArckFS. Both
SoupFS and ArckFS are written in C, and do not use Rust’s
type system to check their crash consistency.

Storage systems in Rust. Bento [45] is a framework for
building in-kernel file systems in Rust. The corresponding
file system from the Bento project, BentoFS, was designed
for block devices. Bento does not utilize the type system of
Rust to check file-system properties.

ShardStore [15] is a Rust key-value store used in Ama-
zon S3 that uses an asynchronous soft-updates-inspired crash-
consistency mechanism. The rules for when something should
be written to storage in ShardStore were checked with Dep-
Synth [55], a tool for synthesizing soft updates dependency
rules. Unlike ShardStore, SQUIRRELFS uses a synchronous
version of soft updates, and provides higher-level primitives
like atomic rename; ShardStore does not utilize the type sys-
tem to perform higher-level checks.

7 Conclusion

This paper presents a new methodology for crash-consistent
file system development. We propose the use of the type-
state pattern in Rust to statically check crash-consistency
invariants with low proof burden. We also introduce a novel
crash-consistency mechanism, synchronous soft updates, that
is well-suited to enforcement with the typestate pattern and
that eliminates many challenges associated with the original
soft updates technique. We develop SQUIRRELFS, a new file
system for persistent memory that uses statically-checked syn-
chronous soft updates for crash consistency. SQUIRRELFS
achieves comparable or better performance than other PM
file systems and required no language modifications or ver-
ification expertise to build. SQUIRRELFS, its Alloy model,
and our Alloy utilities are available at https://github.com/
utsaslab/squirrelfs.

Acknowledgments

We thank our anonymous shepherd, OSDI reviewers, and the
members of SaSLab and LASR at UT Austin for their in-
sightful comments and feedback. This work was supported
by NSF CAREER #1751277, NSF CCF #2124044, and dona-
tions from Amazon, Toyota, and VMware.

References

[1] BTRFS documentation. https://
btrfs.readthedocs.io/en/latest/.

400 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/utsaslab/squirrelfs
https://github.com/utsaslab/squirrelfs
https://btrfs.readthedocs.io/en/latest/
https://btrfs.readthedocs.io/en/latest/

[2] Compute Express Link (CXL) specification.
https://www.computeexpresslink.org/download-
the-specification.

[3] Direct Access for files. https://www.kernel.org/
doc/Documentation/filesystems/dax.txt.

[4] Filebench. https://sourceforge.net/projects/
filebench/.

[5] Linux test project. https://linux-test-
project.github.io/.

[6] LMDB. http://www.lmdb.tech.

[7] Rocksdb. https://rocksdb.org/.

[8] Rust for linux. https://rust-for-linux.com/.

[9] Typestate programming. https://docs.rust-
embedded.org/book/static-guarantees/
typestate-programming.html.

[10] xfstests. https://github.com/kdave/xfstests.

[11] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and
Zachary Sparks. Typestate-oriented programming.
In Proceedings of the 24th ACM SIGPLAN Confer-
ence Companion on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’09, page
1015–1022, New York, NY, USA, 2009. Association for
Computing Machinery.

[12] Sidney Amani, Alex Hixon, Zilin Chen, Christine
Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren,
Yutaka Nagashima, Japheth Lim, Thomas Sewell,
Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin
Klein, and Gernot Heiser. Cogent: Verifying high-
assurance file system implementations. In Proceedings
of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’16, page 175–188, New York,
NY, USA, 2016. Association for Computing Machinery.

[13] Valerie Aurora. Soft updates, hard problems. https:
//lwn.net/Articles/339337/, July 2009.

[14] Piotr Balcer. Exploring the Software Ecosys-
tem for Compute Express Link (CXL) Memory.
https://pmem.io/blog/2023/05/exploring-the-
software-ecosystem-for-compute-express-
link-cxl-memory/, May 2023.

[15] James Bornholt, Rajeev Joshi, Vytautas Astrauskas,
Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri,
Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van
Geffen, and Andrew Warfield. Using lightweight formal
methods to validate a key-value storage node in Amazon
S3. In ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles (SOSP), pages 836–850, October 2021.

[16] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specifying
and checking file system crash-consistency models. In
Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, pages 83–98,
Atlanta, GA, USA, April 2016.

[17] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying the
DaisyNFS concurrent and crash-safe file system with
sequential reasoning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 447–463, Carlsbad, CA, July 2022. USENIX
Association.

[18] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 270–286, New York, NY,
USA, 2017. Association for Computing Machinery.

[19] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Using
crash hoare logic for certifying the fscq file system. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, SOSP ’15, page 18–37, New York, NY,
USA, 2015. Association for Computing Machinery.

[20] Vijay Chidambaram. Orderless and Eventually Durable
File Systems. PhD thesis, University of Wisconsin, Madi-
son, Aug 2015.

[21] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
Without Ordering. In Proceedings of the 10th Con-
ference on File and Storage Technologies (FAST ’12),
pages 101–116, San Jose, California, February 2012.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[23] Mingkai Dong and Haibo Chen. Soft updates made sim-
ple and fast on non-volatile memory. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
719–731, Santa Clara, CA, July 2017. USENIX Associ-
ation.

[24] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 401

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://sourceforge.net/projects/filebench/
https://sourceforge.net/projects/filebench/
https://linux-test-project.github.io/
https://linux-test-project.github.io/
http://www.lmdb.tech
https://rocksdb.org/
https://rust-for-linux.com/
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
https://github.com/kdave/xfstests
https://lwn.net/Articles/339337/
https://lwn.net/Articles/339337/
https://pmem.io/blog/2023/05/exploring-the-software-ecosystem-for-compute-express-link-cxl-memory/
https://pmem.io/blog/2023/05/exploring-the-software-ecosystem-for-compute-express-link-cxl-memory/
https://pmem.io/blog/2023/05/exploring-the-software-ecosystem-for-compute-express-link-cxl-memory/

and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Confer-
ence on Computer Systems, EuroSys ’14, New York,
NY, USA, 2014. Association for Computing Machinery.

[25] Christopher Frost, Mike Mammarella, Eddie Kohler, An-
drew de los Reyes, Shant Hovsepian, Andrew Matsuoka,
and Lei Zhang. Generalized file system dependencies.
In Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07, page
307–320, New York, NY, USA, 2007. Association for
Computing Machinery.

[26] Gregory R. Ganger and Yale N. Patt. Metadata update
performance in file systems. In First Symposium on Op-
erating Systems Design and Implementation (OSDI 94),
Monterey, CA, November 1994. USENIX Association.

[27] Jon Gjenset. Rust for Rustaceans. No Starch Press,
2022.

[28] Robert B. Hagmann. Reimplementing the cedar file
system using logging and group commit. In Les Belady,
editor, Proceedings of the Eleventh ACM Symposium
on Operating System Principles, SOSP 1987, Stouffer
Austin Hotel, Austin, Texas, USA, November 8-11, 1987,
pages 155–162. ACM, 1987.

[29] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage sys-
tems are distributed systems (so verify them that way!).
In Proceedings of the 14th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’20,
USA, 2020. USENIX Association.

[30] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jay
Lorch, Bryan Parno, Justine Stephenson, Srinath Setty,
and Brian Zill. Ironfleet: Proving practical distributed
systems correct. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP). ACM -
Association for Computing Machinery, October 2015.

[31] Dave Hitz, James Lau, and Michael A. Malcolm. File
system design for an NFS file server appliance. In
USENIX Winter 1994 Technical Conference, San Fran-
cisco, California, USA, January 17-21, 1994, Confer-
ence Proceedings, pages 235–246. USENIX Associa-
tion, 1994.

[32] Morteza Hoseinzadeh and Steven Swanson. Corundum:
Statically-enforced persistent memory safety. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 429–442, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[33] Daniel Jackson. Software Abstractions. The MIT Press,
2016.

[34] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Pon-
napalli, Harshad Shirwadkar, Gregory R. Ganger,
Aasheesh Kolli, and Vijay Chidambaram. Winefs:
A hugepage-aware file system for persistent memory
that ages gracefully. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 804–818, New York, NY, USA,
2021. Association for Computing Machinery.

[35] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 494–508, New York, NY, USA, 2019. Association
for Computing Machinery.

[36] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa.
Vinter: Automatic Non-Volatile memory crash consis-
tency testing for full systems. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 933–
950, Carlsbad, CA, July 2022. USENIX Association.

[37] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. Finding semantic bugs
in file systems with an extensible fuzzing framework. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 147–161, New York,
NY, USA, 2019. Association for Computing Machinery.

[38] Steve Klabnik and Carol Nichols. The Rust Program-
ming Language. No Starch Press, USA, 2018.

[39] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 460–477, New York, NY, USA, 2017. Association
for Computing Machinery.

[40] Ubuntu Bugs LaunchPad. Bug #317781: Ext4
Data Loss. https://bugs.launchpad.net/ubuntu/
+source/linux/+bug/317781?comments=all.

[41] Hayley LeBlanc, Shankara Pailoor, Om Saran K R E,
Isil Dillig, James Bornholt, and Vijay Chidambaram.
Chipmunk: Investigating crash-consistency in persistent-
memory file systems. In Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys
’23, page 718–733, New York, NY, USA, 2023. Associ-
ation for Computing Machinery.

[42] R. Lorie. Physical Integrity in a Large Segmented
Database. ACM Transactions on Databases, 2(1):91–
104, 1977.

402 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all

[43] Marshall Kirk McKusick and Gregory R. Ganger. Soft
updates: A technique for eliminating most synchronous
writes in the fast filesystem. In 1999 USENIX Annual
Technical Conference (USENIX ATC 99), Monterey, CA,
June 1999. USENIX Association.

[44] Marshall Kirk McKusick, George Neville-Neil, and
Robert N.M. Watson. The Design and Implementa-
tion of the FreeBSD Operating System. Addison-Wesley
Professional, 2nd edition, 2014.

[45] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan
Jennings, Ang Chen, Danyang Zhuo, and Thomas An-
derson. High velocity kernel file systems with bento.
In 19th USENIX Conference on File and Storage Tech-
nologies (FAST 21), pages 65–79. USENIX Association,
February 2021.

[46] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Crash-
Monkey and ACE: Systematically testing file-system
crash consistency. ACM Trans. Storage, 15(2), apr 2019.

[47] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci. AG-
AMOTTO: How persistent is your persistent memory
application? In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
1047–1064. USENIX Association, November 2020.

[48] Roger M. Needham, David K. Gifford, and Mike
Schroeder. The cedar file system. Communications
of the ACM, March 1988.

[49] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. How
amazon web services uses formal methods. Communi-
cations of the ACM, 2015.

[50] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All file systems are not created equal: On
the complexity of crafting crash-consistent applications.
In Jason Flinn and Hank Levy, editors, 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’14, Broomfield, CO, USA, October
6-8, 2014, pages 433–448. USENIX Association, 2014.

[51] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Crash consistency. Commun. ACM, 58(10):46–
51, 2015.

[52] Andy Rudoff. Persistent memory programming. ;login:,
(42):34–40, 2017.

[53] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-Button verification of file sys-
tems via crash refinement. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 1–16, Savannah, GA, November 2016.
USENIX Association.

[54] Robert E. Strom and Shaula Yemini. Typestate: A pro-
gramming language concept for enhancing software re-
liability. IEEE Transactions on Software Engineering,
SE-12(1):157–171, 1986.

[55] Jacob Van Geffen, Xi Wang, Emina Torlak, and James
Bornholt. Synthesis-Aided Crash Consistency for Stor-
age Systems. In Karim Ali and Guido Salvaneschi,
editors, 37th European Conference on Object-Oriented
Programming (ECOOP 2023), volume 263 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages
35:1–35:26, Dagstuhl, Germany, 2023. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[56] Jian Xu, Juno Kim, Amir Saman Memaripour, and
Steven Swanson. Finding and fixing performance
pathologies in persistent memory software stacks. In Iris
Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R.
Lebeck, editors, Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, pages
427–439. ACM, 2019.

[57] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid Volatile/Non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[58] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In Sam H. Noh and Brent Welch, editors, 18th USENIX
Conference on File and Storage Technologies, FAST
2020, Santa Clara, CA, USA, February 24-27, 2020,
pages 169–182. USENIX Association, 2020.

[59] Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using model checking to find serious file
system errors. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, OSDI
’04, page 273–287, USA, 2004. USENIX Association.

[60] Diyu Zhou, Vojtech Aschenbrenner, Tao Lyu, Jian
Zhang, Sudarsun Kannan, and Sanidhya Kashyap. En-
abling high-performance and secure userspace nvm file
systems with the trio architecture. In Proceedings of
the 29th Symposium on Operating Systems Principles,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 403

SOSP ’23, page 150–165, New York, NY, USA, 2023.
Association for Computing Machinery.

404 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Crash Consistency
	The opportunity: Rust and PM

	SquirrelFS
	Synchronous Soft Updates
	Using Rust to enforce ordering
	Example: mkdir
	Implementation
	Limitations of the approach
	Relevance beyond PM

	Experience developing SquirrelFS
	Development process
	Finding bugs
	Challenges encountered
	Typestate beyond SquirrelFS

	Evaluation
	Experimental setup
	Microbenchmarks
	Macrobenchmarks
	Applications
	Mount time
	Resource usage
	Correctness
	Summary

	Related work
	Conclusion

