
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

InfiniGen: Efficient Generative Inference
of Large Language Models with Dynamic

KV Cache Management
Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim,

Seoul National University
https://www.usenix.org/conference/osdi24/presentation/lee

InfiniGen: Efficient Generative Inference of Large Language Models with
Dynamic KV Cache Management

Wonbeom Lee† Jungi Lee† Junghwan Seo Jaewoong Sim
Seoul National University

Abstract
Transformer-based large language models (LLMs) demon-
strate impressive performance across various natural language
processing tasks. Serving LLM inference for generating long
contents, however, poses a challenge due to the enormous
memory footprint of the transient state, known as the key-
value (KV) cache, which scales with the sequence length and
batch size. In this paper, we present InfiniGen, a novel KV
cache management framework tailored for long-text gener-
ation, which synergistically works with modern offloading-
based inference systems. InfiniGen leverages the key insight
that a few important tokens that are essential for comput-
ing the subsequent attention layer in the Transformer can be
speculated by performing a minimal rehearsal with the in-
puts of the current layer and part of the query weight and key
cache of the subsequent layer. This allows us to prefetch only
the essential KV cache entries (without fetching them all),
thereby mitigating the fetch overhead from the host memory
in offloading-based LLM serving systems. Our evaluation on
several representative LLMs shows that InfiniGen improves
the overall performance of a modern offloading-based system
by up to 3.00× compared to prior KV cache management
methods while offering substantially better model accuracy.

1 Introduction

Large language models (LLMs) have opened a new era
across a wide range of real-world applications such as chat-
bots [40, 76], coding assistants [11, 43], language transla-
tions [1, 68], and document summarization [64, 74]. The re-
markable success of LLMs can largely be attributed to the
enormous model size, which enables effective processing and
generation of long contents. For instance, while the maximum
sequence length of the first version of GPT was restricted to
512 tokens [51], the latest version, GPT-4, can handle up to
32K tokens, which is equivalent to approximately 50 pages
of text [3]. Some recently announced models such as Claude

†Equal contribution

3 [6] and Gemini 1.5 [53] can even process up to 1 million
tokens, significantly expanding the context window by several
orders of magnitude.

In addition to the well-studied challenge of the model size,
deploying LLMs now encounters a new challenge due to the
substantial footprint of the transient state, referred to as the
key-value (KV) cache, during long context processing and gen-
eration. For generative LLM inference, the keys and values of
all preceding tokens are stored in memory to avoid redundant
and repeated computation. Unlike the model weights, how-
ever, the KV cache scales with the output sequence length,
often consuming even more memory capacity than the model
weights. As the demand for longer sequence lengths (along
with larger batch sizes) continues to grow, the issue of the KV
cache size will become more pronounced in the future.

Meanwhile, modern LLM serving systems support offload-
ing data to the CPU memory to efficiently serve LLMs within
the hardware budget [5,57]. These offloading-based inference
systems begin to support even offloading the KV cache to
the CPU memory, thereby allowing users to generate much
longer contexts beyond the GPU memory capacity. However,
transferring the massive size of the KV cache from the CPU
memory to the GPU becomes a new performance bottleneck
in LLM inference.

In this work, we propose InfiniGen, a KV cache manage-
ment framework designed to synergistically work with mod-
ern offloading-based inference systems. InfiniGen builds on
two key design principles. First, it speculates and chooses
the KV cache entries that are critical to produce the next
output token, dropping the non-critical ones, by conducting
a minimal rehearsal of attention computation for Layer i at
Layer i−1. Second, it leverages the CPU memory capacity
and maintains the KV cache pool on the CPU, rather than on
the GPU, to ensure that the critical KV cache values can be
identified for all outputs and layers with a large window size
while alleviating the concerns about limited GPU memory
capacity for long content generation.

In particular, InfiniGen manipulates the model weights of-
fline to make the speculation far more efficient and precise, by

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 155

skewing the Transformer architecture query and key matrices
to emphasize certain important columns. During the prefill
stage, while the prompt and input of an inference request are
initially processed, InfiniGen generates partial weights for
use in the subsequent decoding (i.e., output generation) stage.
At Layer i−1 of the decoding stage, InfiniGen speculates on
the attention pattern of the next layer (Layer i) using the atten-
tion input of Layer i−1, a partial query weight, and a partial
key cache of Layer i. Based on the speculated attention pat-
tern, InfiniGen prefetches the essential KV cache entries from
the CPU memory for attention computation at Layer i. By
dynamically adjusting the number of KV entries to prefetch,
InfiniGen brings only the necessary amount of the KV cache
to the GPU, thereby greatly reducing the overhead of the
KV cache transfer. In addition, InfiniGen manages the KV
cache pool by dynamically removing the KV cache entries of
infrequently used tokens.

We implement InfiniGen on a modern offloading-based
inference system [57] and evaluate it on two representative
LLMs with varying model sizes, batch sizes, and sequence
lengths. Our evaluation shows that InfiniGen achieves up to
a 3.00× speedup over the existing KV cache management
methods while offering up to a 32.6 percentage point increase
in accuracy. In addition, InfiniGen consistently provides per-
formance improvements with larger models, longer sequence
lengths, and larger batch sizes, while prior compression-based
methods lead to saturating speedups.

In summary, this paper makes the following contributions:

• We present InfiniGen, a dynamic KV cache manage-
ment framework that synergistically works with modern
offloading-based LLM serving systems by intelligently
managing the KV cache in the CPU memory.

• We propose a novel KV cache prefetching technique with
ephemeral pruning, which speculates on the attention
pattern of the subsequent attention layer and brings only
the essential portion of the KV cache to the GPU while
retaining the rest in the CPU memory.

• We implement InfiniGen on a modern offloading-based
inference system and demonstrate that it greatly out-
performs the existing KV cache management methods,
achieving up to 3.00× faster performance while also
providing better model accuracy.

2 Background

This section briefly explains the operational flow and the
KV caching technique of large language models and intro-
duces the singular value decomposition (SVD) as a method of
skewing matrices for a better understanding of our proposed
framework, which we discuss in Section 4.

2.1 Large Language Models

Large language models (LLMs) are composed of a stack of
Transformer blocks, each of which contains an attention layer
followed by a feed-forward layer [61]. The input tensor (X)
of the Transformer block has a dimension of N ×D, where N
is the number of query tokens, and D is the model dimension.
This input tensor (X) is first layer-normalized (LayerNorm),
and the layer-normalized tensor (Xa) is fed into the attention
layer as input. The attention input (Xa) is multiplied by three
different weight matrices (WQ, WK , WV) to generate Query
(Q), Key (K), and Value (V) matrices. Each weight matrix has
a dimension of D×D. Thus, Query, Key, and Value have a
dimension of N ×D. These matrices are reshaped to have a
dimension of H ×N ×d, where H is the number of attention
heads and d is the head dimension; note that D = H ×d.

Each head individually performs attention computation,
which can be formulated as follows: softmax(QKT)V .1 The
attention output, after a residual add (adding to the input tensor
X) and layer normalization, is fed into the feed-forward layer.
The feed-forward network (FFN) consists of two consecutive
linear projections and a non-linear activation operation be-
tween them. The output of FFN after a residual add becomes
the output of a Transformer block, which has the same dimen-
sionality as the input of the Transformer block (i.e., N ×D).
This allows us to easily scale LLMs by adjusting the number
of Transformer blocks.

2.2 Generative Inference and KV Caching

Generative LLM inference normally involves two key stages:
the prefill stage and the decoding stage. In the prefill stage,
LLMs summarize the context of the input sequence (i.e., input
prompt) and produce a new token that serves as the initial
input for the decoding stage. Subsequently, using this new
token, LLMs run the decoding stage to generate the next token.
The newly generated token is then fed back into the decoding
stage as input, creating an autoregressive process for token
generation. In this work, we refer to each token generation in
the decoding stage as an iteration.

To generate a new token that aligns well with the context,
LLMs need to compute the relationship between the last token
and all the previous ones, including the tokens from the input
sequence, in the attention layer. A naïve approach to this is
to recompute the keys and values of all the previous tokens
at every iteration. However, this incurs a significant overhead
due to redundant and repeated computation. Furthermore, the
computation overhead linearly grows with the number of the
previous tokens; i.e., the overhead becomes larger for longer
sequences.

To avoid such overhead, the keys (K) and values (V) of
all the previous tokens are typically memoized in memory,

1In this work, we refer to the results of QKT and softmax(QKT) as atten-
tion scores and attention weights, respectively.

156 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Σ 𝐔𝜎!

𝜎"

𝑣"
𝑣! 𝑞"

𝑞!

Σ 𝐔𝜎!

𝜎"

(b) Q% = 𝐔Σ(𝐕#𝐴)

𝒆𝟏
𝒆𝟐 𝒒/𝟏𝒒/𝟐

(a) Q = 𝐔Σ𝐕#

Figure 1: Transformation from matrix VT to matrix Q in terms of
SVD. The orthogonal matrix A maximizes the difference in magni-
tude between the column vectors of Q.

which is known as the KV cache. The KV cache then keeps
updated with the key and value of the generated token at each
iteration. As such, the dimension of the KV cache at the i-
th iteration can be expressed as H × (N + i)×d. If batched
inference is employed, the size of the KV cache also grows
linearly to the batch size. By employing the KV cache, we can
avoid repeated computation and produce the key and value
of only one token at each iteration. Note that in the decoding
stage, the input to the Transformer block (X) has a dimension
of 1×D, and the dimension of the attention score matrix
becomes H ×1× (N + i) at the i-th iteration.

2.3 Outliers in Large Language Models
Large language models have outliers in the Transformer block
input tensors. The outliers refer to the elements with substan-
tially larger magnitudes than the other elements. The outliers
in LLMs appear in a few fixed channels (i.e., columns in a
2D matrix) across the layers. Prior work has shown that out-
liers are due to the intrinsic property of the model (e.g., large
magnitudes in a few fixed channels of layer normalization
weights) [19, 65].

2.4 Singular Value Decomposition
We observe that skewing the query and key matrices to make
a small number of channels much larger than others and using
only those channels to compute the attention score matrix can
effectively predict which tokens are important. In essence, we
multiply the Q and K matrices with an orthogonal matrix A to
make it align with the direction that Q stretches the most, to
produce the respective skewed matrices Q̃ and K̃. We explain
in detail why we use an orthogonal matrix in Section 4.2.

To find such an orthogonal matrix A, we employ the sin-
gular value decomposition (SVD), which is a widely used
matrix factorization technique in linear algebra. For a real
matrix Q of size m×n, its SVD factorization can be expressed
as follows:

Q = UΣVT ,

0

50

100

150

200

250

2 4 8 16 32 64

Si
ze

 (G
B)

(b) Batch Size

0

50

100

150

200

250

256 512 1024 2048 4096 8192

Si
ze

 (G
B)

(a) Sequence Length

Figure 2: Total size of the KV cache and model weights of OPT-30B
for different sequence lengths and batch sizes. The batch size of
(a) is 16, and the sequence length of (b) is 2048. The dotted line
represents the size of the model weights.

where U and V are orthogonal matrices of size m×m and
n× n, respectively.2 Σ is an m× n diagonal matrix, which
has nonzero values (σ1,σ2, ...,σk) on the diagonal, where
k = min(m,n). In terms of linear transformation, it is well
known that a transformation of a vector v∈Rn by a real matrix
B (i.e., the product of B and v) is a rotation and/or reflection
in Rn if the B matrix is orthogonal. If B is an m×n diagonal
matrix, each dimension of v is stretched by the corresponding
diagonal entry of B and is projected to Rm.

For example, Figure 1 shows how the column vectors v1
and v2 of VT would transform to column vectors q1 and q2
of Q, when m and n are 2. In Figure 1(a), the orthogonal unit
vectors v1 and v2 are first stretched to the points on an ellipse
whose semi-axis lengths correspond to the diagonal entries in
Σ. The vectors are then rotated and/or reflected to q1 and q2
by matrix U. On the other hand, Figure 1(b) shows how or-
thogonal matrix A performs rotation to make the resulting q̃1
much larger than q̃2. Specifically, A rotates vectors v1 and v2
to e1 and e2, which map to the semi-axes of the ellipse. In this
way, the vectors are stretched to the maximum and minimum
by the matrix Σ. This process emphasizes the magnitude of
q̃1 over q̃2, which allows us to effectively predict the attention
score using only q̃1 while omitting q̃2.

3 Motivation

In this section, we first explain that the KV cache size becomes
a critical issue for long-text generation in LLM inference,
and it becomes more problematic when deploying modern
offloading-based inference systems (Section 3.1). We then
discuss why the existing KV cache management methods
cannot fundamentally address the problem in the offloading-
based inference system (Section 3.2).

3.1 KV Cache in LLM Inference Systems
As discussed in Section 2.2, today’s LLM serving systems ex-
ploit KV caching to avoid redundant computation of key and

2Note that this V, typeset with a different font, is one of the resulting matri-
ces of SVD and is distinct from the V of the Value matrix in the Transformer
attention layer.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 157

(a) Full GPU

(b) KV cache on CPU

(c) Prefetch KV cache

Load Cache

FFNAttention

Per-block Latency

Attention FFN
time

Attention FFN

Load Cache

Attention FFN
time

Attention FFN

Load Cache

Attention FFN
time

Attention FFN

(d) Prefetch critical KV

Load Cache

Attn FFN
time

Maximum Reduction

Figure 3: Comparison between different execution styles of Trans-
former blocks.

value projections during the decoding stage. While this is an
effective solution for short sequence generation with a single
client request, the KV cache quickly becomes a key mem-
ory consumer when we generate long sequences or employ
modern request batching techniques [57, 71].

Figure 2 shows the combined size of LLM weights and the
KV cache across different sequence lengths and batch sizes.
As depicted in the figure, the model size remains constant
regardless of sequence lengths or batch sizes, whereas the KV
cache size linearly scales with them. Note that modern LLM
serving systems, such as NVIDIA Triton Inference Server [45]
and TensorFlow Serving [47], already support batched infer-
ence for better compute utilization and higher throughput in
serving client requests. When individual requests are batched,
each request retains its own KV cache, thereby increasing
the overall KV cache size for the inference. Even for a single
client request, beam search [59] and parallel sampling [20]
are widely used to generate better outputs or to offer clients a
selection of candidates [11, 24]. The techniques also increase
the size of the KV cache like batched inference as multiple se-
quences are processed together. Consequently, the KV cache
size can easily exceed the model size for many real-world use
cases, as also observed in prior work [37,49,57,78]. This can
put substantial pressure on GPU memory capacity, which is
relatively scarce and expensive.
LLM Inference Systems with Offloading. Modern LLM
serving systems such as DeepSpeed [5] and FlexGen [57] al-
ready support offloading the model weights or the KV cache
to the CPU memory. When it comes to offloading-based infer-
ence systems, the KV cache size becomes more problematic
due to the low PCIe bandwidth between the CPU and GPU,
which becomes a new and critical bottleneck.

Figure 3 depicts a high-level timing diagram between dif-
ferent execution styles of Transformer blocks. Figure 3(a)
represents the case when the KV cache entirely resides in
the GPU memory (Full GPU). In this case, the load latency
of the KV cache (Load Cache) involves a simple read oper-
ation from the GPU memory, which is negligible due to the

0.4

0.6

0.8

1.0

1.2

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

C
os

in
e

Si
m

ila
rit

y

Token ID

(a) H2O (b) Optimal

Layer 0 Layer 12 Layer 24 Layer 30

0.4

0.6

0.8

1.0

1.2

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

C
os

in
e

Si
m

ila
rit

y

Token ID

Figure 4: Cosine similarity between the attention weights of the base
model with full cache and (a) H2O or (b) Optimal. H2O and Optimal
use 200 tokens for attention computation. We use OPT-6.7B and a
random sentence with 2000 tokens from the PG-19 dataset [52].

high bandwidth of GPU memory. However, the maximum
batch size or sequence length is limited by the GPU memory
capacity, which is relatively smaller than the CPU memory.

To enable a larger batch size or a longer sequence length,
we can offload the KV cache to CPU memory (KV cache
on CPU), as shown in Figure 3(b). While offloading-based
inference systems alleviate the limitation on the batch size
and sequence length, transferring hundreds of gigabytes of the
KV cache to the GPU for attention computation significantly
increases the overall execution time of Transformer blocks
due to the limited PCIe bandwidth.

Even when we apply a conventional prefetching technique
(Prefetch KV cache), as shown in Figure 3(c), only part of
the load latency can be hidden by the computation of the
preceding Transformer block. Note that although compressing
the KV cache via quantization could potentially reduce the
data transfer overhead in offloading-based systems [57], it
does not serve as a fundamental solution as quantization does
not address the root cause of the KV cache problem, which is
the linear scaling of KV entries with the sequence length. This
necessitates intelligent KV cache management to mitigate the
performance overhead while preserving its benefits.

3.2 Challenges in KV Cache Management

The fundamental approach to mitigating the transfer overhead
of the KV cache from the CPU to GPU is to reduce the vol-
ume of the KV cache to load by identifying the critical keys
and values for computing attention scores, as shown in Fig-
ure 3(d). It is widely recognized that the keys and values of
certain tokens are more important than others in attention
computation [9, 10, 14, 33, 63]. As explained in Section 2.1,
after computing the attention score, the softmax operation
is applied, which emphasizes a few large values of tokens.
Therefore, skipping attention computation for some less criti-
cal tokens does not significantly degrade the model accuracy,
provided the token selection is appropriate.

In this context, several recent works propose to reduce

158 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the KV cache size through key/value evictions at runtime
within a constrained KV cache budget [37, 78]. However, all
the prior works assume the persistence of attention patterns
across iterations; that is, if a token is deemed unimportant in
the current iteration (i.e., having a low attention weight), it
is likely to remain unimportant in the generation of future
tokens. Under the assumption, they evict the tokens with a
low attention weight from the KV cache at each iteration
when the KV cache size exceeds its budget. The keys and
values of the evicted tokens are permanently excluded from
the subsequent iterations while being removed from the mem-
ory. Although the recent works on managing the KV cache
can be applied to offloading-based inference systems, we ob-
serve that they do not effectively address the challenges in KV
cache management below and thus have subpar performance
with offloading-based inference systems.
C1: Dynamic nature of attention patterns across iterations.
Figure 4 shows the cosine similarity between the attention
weights of the baseline model, which uses the KV cache of all
prior tokens for computing attention weights (i.e., a maximum
of 2000 tokens in the experiment), and two different KV cache
management methods (H2O and Optimal) with a KV cache
budget of 200 tokens.3 H2O [78] is a state-of-the-art technique
that retains only a small percentage of important tokens in
the KV cache to reduce its size. It assesses the importance of
each token in every iteration and removes unimportant ones
before the next iteration to keep the KV cache size in check
(i.e., using a narrow assessment window). In contrast, Optimal
represents the scenario where we choose the same number
of tokens as H2O from the KV cache at each iteration but
retain all prior keys and values (i.e., using a wider assessment
window). In other words, Optimal selects 200 tokens out of
the entire sequence of previous tokens at each iteration.

The figure indicates that despite H2O-like approaches as-
suming that the attention pattern does not change across it-
erations, this is not the case in practice. The tokens deemed
unimportant in the current iteration could become important in
subsequent iterations. Consequently, H2O exhibits high simi-
larity until around 200 iterations (i.e., within the KV cache
budget), but as the sequence length extends beyond the KV
cache budget, it starts to struggle with the dynamic nature of
the attention pattern, resulting in lower cosine similarity than
the Optimal case. Note that while we only show the scenario
of a KV cache budget of 200 out of a total sequence length
of 2000 tokens for brevity, this issue would become more
pronounced as the sequence length surpasses it.
C2: Adjusting the number of KV entries across layers. Fig-
ure 4 also illustrates that the impact of the KV cache eviction
varies across the layers in LLMs. For Layer 0, both H2O and
Optimal show a significant drop in cosine similarity as the

3The cosine similarity measures how much each row of the attention
weight is similar to the case of the full KV cache. If they are similar, the
generated tokens will also be similar. Thus, a low cosine similarity indicates
low accuracy far from the baseline model with the full KV cache.

0

300

600

900

1200

16 512 1008 1504 2000

Q

ue
ry

 T
ok

en
s

Key Tokens

0

5000

10000

15000

20000

16 512 1008 1504 2000

Q

ue
ry

 T
ok

en
s

Key Tokens

(a) Layer 0 (b) Layer 18

Figure 5: Histogram that shows the number of key tokens needed
to achieve 0.9 out of 1.0 total attention weight for (a) Layer 0 and
(b) Layer 18 of the OPT-6.7B model. The bin width is set to 16. We
observe that the distribution dynamically changes across the layers.

token ID increases. This implies that Layer 0 has a broader
attending pattern than other layers; i.e., the attention weights
are relatively similar between key tokens. Thus, the selected
200 tokens with the large attention weight do not adequately
represent the attention pattern of the baseline model for this
layer, as they are likely only slightly larger than the others, not
strongly so. In such cases, it becomes necessary to compute
the attention weight with a larger number of tokens.

To estimate how many keys/values from the KV cache need
to be retained, we sort the attention weight for each query
token in descending order and sum the key tokens until the
cumulative weight reaches 0.9. Figure 5 presents a histogram
of the number of query tokens (y-axis) requiring the number
of key tokens (x-axis) needed to reach a weight of 0.9 (out of
the total attention weight of 1.0) in two different layers: Layer
0 and Layer 18. Layer 0 shows a broad distribution, indicating
a significant variation in the number of key tokens required
to achieve a weight of 0.9 for each query token. In contrast,
Layer 18 exhibits a highly skewed distribution, suggesting
that the majority of the query tokens in this layer require
only a few key tokens to reach a weight of 0.9. This implies
that we need to dynamically adjust the number of key tokens
participating in attention computation across different layers
to make efficient use of the KV cache budget.

C3: Adjusting the number of KV entries across queries. H2O
sets the number of key/value tokens to retain as a fixed per-
centage of the input sequence length. The KV cache budget
remains constant regardless of how many tokens have been
generated. By analyzing the data from Figure 5 on Layer 18,
we observe that this fixed KV cache budget has some limi-
tations. For instance, with an input sequence length of 200
and a 20% KV cache budget, H2O maintains 40 key/value
tokens throughout token generations. However, most of the
subsequent query tokens require more than 40 tokens to effec-
tively represent the attention weight of the baseline model; for
example, the 500th, 1000th, 1500th, and 2000th tokens need
80, 146, 160, and 164 key tokens, respectively, to reach a
cumulative attention weight of 0.9. This implies an inade-
quate amount of the key/value tokens to properly represent
the attention weight of the baseline model. Furthermore, the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 159

number of key tokens required to reach 0.9 varies even for the
adjacent query tokens; for instance, the 998th, 999th, 1000th,
1001st, and 1002nd tokens need 172, 164, 146, 154, and 140
key tokens, respectively. Fixing the KV cache budget without
accounting for the variance between query tokens inevitably
results in ineffective KV cache management. Therefore, we
need to dynamically adjust the amount of the key/value to-
kens loaded and computed for each query token to efficiently
manage the KV cache.
Summary. Prior works aiming to reduce the KV cache
size through token eviction inherently have some challenges.
Given the dynamic attention pattern across iterations, perma-
nently excluding evicted tokens from future token generation
can result in a non-negligible drop in accuracy. Instead, we
need to dynamically select critical tokens from the KV cache
while avoiding the outright eviction of less important ones.
Furthermore, the fixed size of the KV cache budget in prior
works leads to inefficient KV cache management. The number
of key/value tokens required for each layer differs, and each
query token demands a varying number of key/value tokens
to effectively represent the attention pattern of the baseline
model. Failing to account for these variations may result in
ineffective KV cache management. Thus, we need to dynam-
ically adjust the number of key/value tokens to select from
the KV cache while considering the variances between layers
and query tokens.

4 InfiniGen Design

In this section, we present InfiniGen, a KV cache manage-
ment framework for offloading-based inference systems. We
first show the high-level overview of our proposed KV cache
management solution (Section 4.1) and discuss the opportuni-
ties of KV cache prefetching that we observe (Section 4.2).
We then explain our prefetching module (Section 4.3), which
builds on the offloading-based inference systems, and dis-
cuss how InfiniGen manages the KV cache on CPU memory
regarding the memory pressure (Section 4.4).

4.1 Overview

Figure 6 shows an overview of our KV cache management
framework, InfiniGen, which enables offloading the KV cache
with low data transfer overhead. The key design principle
behind InfiniGen is to exploit the abundant CPU memory
capacity to increase the window size when identifying the
important tokens in the KV cache. As such, the majority of the
tokens for the KV cache are kept in the CPU memory as we
generate new tokens, not completely discarding them unlike
prior works [37, 78]. However, we do not bring the entire
KV cache to the GPU for attention computation, but load and
compute with only the keys and values of a few important
tokens, dropping other unimportant ones dynamically. To do

InfiniGen System
GPU

Memory

CPU Memory

Modified
QK

Weights

Other
Model

Weights

Partial
Weight

and
Cache

Partial Weight
Index Generation

PWIGen
Controller

Data Plane Control Plane

KVSel
Controller

Inference
Controller

Skewing
Controller

KV Selection

LLM Inference

Skewing

KV Cache Pool

> (𝑚𝑎𝑥 − 𝛼)Partial Attn

Attention FFN

SVD MatMul

Launch
Selected
Indices

Selected
Tokens

Selected
KV Cache

Pool
Manager

Figure 6: Overview of InfiniGen design.

so, we maintain the KV cache pool in the CPU memory and
selectively and speculatively load a few of tokens.

In detail, we use the attention input of the previous Trans-
former layer to speculate and prefetch the keys and values of
the important tokens for the current layer. The speculation is
done by performing a minimal rehearsal of attention computa-
tion of the current layer in the preceding layer. This allows for
reducing the waste of PCIe bandwidth by only transferring the
keys and values critical for attention computation while pre-
serving model accuracy. In addition, although the KV cache is
offloaded to CPU memory, which is much cheaper and larger
than GPU memory, we manage the KV cache pool size so as
not to put too much pressure on CPU memory.

As shown in Figure 6, there are two major components in
the InfiniGen runtime. The first includes the Partial Weight
Index Generation Controller, KV Selection Controller, and
Inference Controller. These controllers cooperate to specu-
late and prefetch the critical KV cache entries while serving
LLM inference. Additionally, to aid in prefetching, the Skew-
ing Controller performs offline modifications on the model
weights. We explain each operation in Section 4.3. The sec-
ond component is the Pool Manager. It manages the KV cache
pool on CPU memory under CPU memory pressure, which
we discuss in Section 4.4.

4.2 Prefetching Opportunities

In the following, we first explain why using the attention input
of the previous layer for speculation makes sense. We then
show how we modify the query and key weight matrices to
make our speculation far more effective.
Attention Input Similarity. Our prefetching module builds
on the key observation that the attention inputs of consecutive
attention layers are highly similar in LLMs. There are two
major reasons behind this. The first is the existence of outliers
in LLMs, as discussed in Section 2.3, and the second is due
to layer normalization (LayerNorm).

160 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(b) Query

Channel Dimension

To

ke
ns

8

-8

0

(a) Input Similarity

: 𝐹𝐹𝑁_𝑜𝑢𝑡!"#

x-axis
(Outlier Dimension)

y-
ax

is
(N

or
m

al
 D

im
en

si
on

)

: 𝑇𝑏𝑙𝑜𝑐𝑘_𝑖𝑛!"#
: 𝐴𝑡𝑡𝑛_𝑜𝑢𝑡!"#

: 𝑇𝑏𝑙𝑜𝑐𝑘_𝑖𝑛!

Figure 7: (a) Visualization of input similarity between consecutive
Transformer blocks. (b) Query matrix of Layer 18 of the OPT-13B
model. We only show channels from 3000 to 4000 for a clearer view
of column-wise patterns.

To begin with, the input to the Transformer block i
(Tblock_ini) can be formulated as follows:

Attn_outi−1 = Attn(LN(T block_ini−1))

FFN_outi−1 = FFN(LN(T block_ini−1 +Attn_outi−1))

T block_ini = T block_ini−1 +Attn_outi−1 +FFN_outi−1,

(1)

where Tblock_ini−1 is an input for Layer i− 1, which is
first layer-normalized (LN) and is fed into the attention
layer in the Transformer block. After performing atten-
tion, we obtain the output (Attn_outi−1), which is added
to Tblock_ini−1 because of the residual connection. Then,
the sum of Tblock_ini−1 and Attn_outi−1 is again layer-
normalized and is fed into the FFN layer. Afterward, we ob-
tain the FFN output (FFN_outi−1), which is added to the sum
of Tblock_ini−1 and Attn_outi−1 again due to the residual
connection. Finally, the sum of Tblock_ini−1, FFN_outi−1,
and Attn_outi−1 is used as input to the next Transformer
block (Tblock_ini).

Now, we show why the attention input of Layer i is similar
to the one of Layer i−1 with the example in Figure 7(a). In
the figure, there are four vectors, each of which corresponds to
a term in Equation 1. The x-axis represents an outlier channel
among the model dimension, while the y-axis represents a
normal channel (i.e., other than the outlier channel). In prac-
tice, there exist more normal channels and only a few outlier
channels in the input tensors, but we only present one channel
each for both outlier and normal channels for clarity.
Tblock_ini−1 is highly skewed along the outlier chan-

nel (x-axis) due to a few outlier channels containing signifi-
cantly large values compared to those in the normal chan-
nels. In contrast, Attn_outi−1 and FFN_outi−1 have rela-
tively small values for both outlier and normal channels (i.e.,
short vectors). This is because the attention and FFN inputs
are layer-normalized, reducing the magnitude of each value.
The small magnitude of the attention and FFN inputs nat-
urally results in their output values being relatively small
compared to Tblock_ini−1. Consequently, Tblock_ini is
highly influenced by Tblock_ini−1, rather than Attn_outi−1
or FFN_outi−1. Highly similar inputs between consecutive
Transformer blocks lead to similar inputs across the attention
layers, as the attention input is a layer-normalized one of the

Table 1: Average cosine similarity between the Transformer
block input of Layer i (Tblock_ini) and the other three tensors
(Tblock_ini−1, Attn_outi−1, FFN_outi−1) across the layers. We
use a random sentence with 2000 tokens from the PG-19 dataset [52].

Tensors OPT-6.7B OPT-13B OPT-30B Llama-2-7B Llama-2-13B

Tblock_ini−1 0.95 0.96 0.97 0.89 0.91
Attn_outi−1 0.29 0.28 0.36 0.31 0.27
FFN_outi−1 0.34 0.28 0.35 0.37 0.34

Transformer block input.
Table 1 shows the cosine similarity between Tblock_ini

and the other three tensors (Tblock_ini−1, Attn_outi−1,
FFN_outi−1). As shown in the table, Tblock_ini is highly
dependent on the Tblock_ini−1 rather than others. InfiniGen
leverages this key observation to speculate on the attention
pattern of Layer i using the attention input of Layer i− 1.
Note that Tblock_in gradually changes across the layers; the
inputs to distant layers are distinct.
Skewed Partial Weight. We observe that the attention score
highly depends on a few columns in the query and key matri-
ces. Figure 7(b) shows the values in a query matrix of Layer
18 of the OPT-13B model, where the column-wise patterns
indicate that there exist certain columns with large magni-
tudes in the matrix; we observe the same patterns in the key
and query matrices across different layers and models. The
large magnitude columns have a great impact on the attention
pattern because the dot product between the query and key is
highly affected by these few columns. The column-wise pat-
tern in the attention input indicates that there is little variance
between each row in the outlier channels. Thus, the dot prod-
uct between any row of the attention input and a column of the
weight matrix could have a similarly large magnitude, which
induces the outlier channels in the query and key matrices.

Going one step further, if we make a few columns in the
query and key matrices have much larger magnitude than oth-
ers, a much smaller number of columns significantly affects
the attention pattern. We can do this by multiplying the query
and key weight matrices with the same orthogonal matrix A.
Since the transpose of the orthogonal matrix is the inverse of
itself, the proposed operation does not change the final result,
as shown in Equation 2 (i.e., this is mathematically equivalent
to QKT , not an approximation):

Q̃ = Xa ×WQ ×A, K̃ = Xa ×WK ×A

Q̃× K̃T = Xa ×WQ ×A× (Xa ×WK ×A)T

= Xa ×WQ ×A×AT ×W T
K ×XT

a

= Xa ×WQ ×W T
K ×XT

a

= Xa ×WQ × (Xa ×WK)
T

= Q×KT ,

(2)

where Q̃ and K̃ are skewed query and key matrices, while WQ
and WK are query and key weight matrices. Xa denotes the at-
tention input. We set the orthogonal matrix A whose direction

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 161

Partial
Weight Idx
Generation AttentionKV

Sel. FFN

Offline

Decoding

···

Prefetching
Prefetching ···

GPU

CPU
time

Layer (𝒊 − 𝟏)

Light
Attention FFNKV

Sel.

Layer 𝒊
Prefill

Skewing

Selected
Token IDs

Selected
Keys/Values

Figure 8: Operation flow of the prefetching module of InfiniGen.

aligns with the direction that the query matrix stretches the
most. Specifically, we first decompose the query matrix using
SVD and obtain U, Σ, and V. We then set A to orthogonal
matrix V to align the column vectors with the standard unit
vectors as VT A = VT V = I, where I is an identity matrix. We
formulate the skewed query matrix as follows:

Q̃ = Q×A = UΣVT ×A = UΣVT ×V (3)

In this way, we can make a few columns with large mag-
nitudes in Q̃ without altering the result of computation, as
discussed in Section 2.4.

4.3 Efficiently Prefetching KV Cache

Prefetching Scheme. Figure 8 shows the operation flow of the
prefetching module in InfiniGen. In the offline phase, Infini-
Gen modifies the weight matrices to generate skewed query
and key matrices. To achieve this, InfiniGen first runs the for-
ward pass of the model once with a sample input. During this
process, InfiniGen gathers the query matrix from each layer
and performs singular value decomposition (SVD) of each
query matrix. The skewing matrix (Ai) of each layer is ob-
tained using the decomposed matrices of the query matrix, as
shown in Equation 3. This matrix is then multiplied with each
of the query and key weight matrices in the corresponding
layer. Importantly, after the multiplication, the dimensions of
the weight matrices remain unchanged. Note that the skewing
is a one-time offline process and does not incur any runtime
overhead because we modify the weight matrices that are
invariant at runtime. As we exploit the column-wise pattern,
which stems from the intrinsic property of the model rather
than the input, whenever we compute the query and key for
different inputs after the skewing, the values exhibit a high
degree of skewness, thereby improving the effectiveness of
our prefetching module. Note that skewing does not alter the
original functionality. Even with the skewing, the attention
layer produces identical computation results.
Prefill Stage. In the prefill stage, InfiniGen selects several
important columns from the query weight matrix and the key
cache to speculate on the attention pattern, and generates par-
tial query weight and key cache matrices used in the decoding
stage. Figure 9 shows how InfiniGen creates these partial ma-
trices. Because we multiply each column in the query matrix
with the corresponding row in the transposed key matrix, it

Absolute Sum of
Skewed Query and Key

Selected
Partial

Weights

1. Column Sum

2. Top-K
Selected Idx

: 3, 6, 7

Partial Weight Index
Generation 3 6 7

Figure 9: Partial weight generation in the prefill stage.

KV Selection

× =
Attention

Input Partial
Query Weight

Partial
Query

≈×

=

Partial Key Cache
(Transposed)

Speculated
Attention Score

𝑎𝑙𝑝ℎ𝑎
𝑚𝑎𝑥	

Partial Query Projection Attention
Speculation KV Selection

: Selected
: Excluded

×

=

Figure 10: Attention score speculation in the decoding stage.

is essential to select the same column indices in the query
weight matrix and the key cache to obtain a proper approxima-
tion of the attention score. However, the indices of the outlier
columns of the skewed query (Q̃) and key (K̃) matrices may
not align exactly. To obtain partial matrices that capture the
outliers, we first take the element-wise absolute values of the
skewed query and key matrices, then add these two matrices
together. This helps us calculate the sum of each column and
perform top-k operation only once while accommodating the
outlier columns of both query and key matrices. We then sum
the elements in each column and select the top-k columns in
the matrix; we choose 30% of the columns in our work. Using
the sum of column values captures the global trend of each
column while minimizing the effect of variance in each row.
The selected columns better approximate the attention pattern
because of the use of skewed query and key matrices.
Decoding Stage. In the decoding stage, InfiniGen speculates
on the attention pattern of the next layer and determines the
critical keys and values to prefetch. Figure 10 shows how
InfiniGen computes the speculated attention score. At Layer
i−1, we use the partial query weight matrix and key cache
of Layer i, which are identified in the prefill stage, along with
the attention input of Layer i−1. After multiplying the partial
query and partial key cache, InfiniGen selects tokens with
high attention scores.

We set the threshold considering the maximum value of
the speculated attention score. We select only the tokens with
an attention score greater than the maximum score subtracted
by alpha. It is noted that subtraction from the attention score
results in division after softmax. For example, assume that
the attention score of the 3rd token is the maximum attention
score minus 5. Once we apply softmax to the attention scores,
the attention weight of the 3rd token is the maximum attention
weight divided by e5 ≈ 148.4. Even though we do not use this

162 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

token, it does not noticeably hurt the accuracy of the model
since it accounts for less than 1% of importance (≈ 1/148.4)
after softmax. Thus, InfiniGen only prefetches the keys and
values of the tokens with an attention score larger than the
highest attention score minus alpha. As multiple attention
heads are computed in parallel, we ensure that each head in the
same layer fetches the same number of tokens by averaging
the number of tokens between the maximum score and the
threshold across the heads.

By reducing the amount of KV cache to load and compute,
InfiniGen effectively reduces the loading latency (i.e., data
transfer from CPU to GPU) while maintaining an output qual-
ity similar to that of the original model with a full KV cache.
Moreover, as InfiniGen does not require a fixed number of to-
kens to load from CPU memory, it utilizes only the necessary
PCI interconnect bandwidth. InfiniGen initiates speculation
and prefetching from Layer 1 because the outliers, which are
essential for exploiting input similarity, emerge during the
computation in Layer 0.

4.4 KV Cache Pool Management

We manage the KV cache as a pool, offloading to the CPU
memory and prefetching only the essential amount to the
GPU. While CPU memory is more affordable and larger than
GPU memory, it still has limited capacity. Hence, for certain
deployment scenarios, it might be crucial to confine the size of
the KV cache pool and remove less important KV entries that
are infrequently selected by query tokens. We extend the de-
sign to incorporate a user-defined memory size limit. During
runtime, when the size of the CPU memory reaches a user-
defined limit, the KV cache pool manager selects a victim
KV entry for eviction. Subsequently, the manager overwrites
the selected victim with the newly generated key and value,
along with updating the corresponding partial key cache re-
siding in the GPU. It is noted that the order of KV entries can
be arbitrary, as long as the key and value of the same token
maintain the same relative location in the KV cache pool.

The policy of selecting a victim is important since it directly
impacts model accuracy. We consider a counter-based policy
along with two widely used software cache eviction policies:
FIFO [7, 69, 70] and Least-Recently-Used (LRU) [2]. The
FIFO-based policy is easy to implement with low overhead
but results in a relatively large accuracy drop since it simply
evicts the oldest residing token. The LRU-based policy gener-
ally exhibits a smaller decrease in accuracy but often entails a
higher runtime overhead. In general, LRU-based policy uses
a doubly linked list with locks to promote accessed objects to
the head, which requires atomic memory updates for accessed
KV entries. In the case of the counter-based policy, the pool
manager increments a counter for each prefetched KV entry
and selects a victim with the smallest count in the KV cache
pool. If any counter becomes saturated, all the counter values
are reduced by half. We observe that the counter-based policy

and the LRU-based one show comparable model accuracy,
which we discuss in Section 5.2. We opt for a counter-based
approach due to its simpler design and to avoid atomic mem-
ory updates for better parallelism.

5 Evaluation

5.1 Experimental Setup
Model and System Configuration. We use Open Pre-trained
Transformer (OPT) models [77] with 6.7B, 13B, and 30B
parameters for evaluation. The 7B and 13B models of Llama-
2 [60] are also used to demonstrate that InfiniGen works
effectively across different model architectures. We run the
experiments on a system equipped with an NVIDIA RTX
A6000 GPU [44] with 48GB of memory and an Intel Xeon
Gold 6136 processor with 96GB of DDR4-2666 memory.
PCIe 3.0 ×16 interconnects the CPU and GPU.
Workload. We evaluate using few-shot downstream tasks and
language modeling datasets. We use five few-shot tasks from
the lm-evaluation-harness benchmark [23]: COPA [54], Open-
BookQA [42], WinoGrande [55], PIQA [8], and RTE [62].
The language modeling datasets used are WikiText-2 [41] and
Penn Treebank (PTB) [38]. Additionally, randomly sampled
sentences from the PG-19 dataset [52] are used to measure
the speedup with long sequence lengths.
Baseline. We use two inference environments that support KV
cache offloading: CUDA Unified Virtual Memory (UVM) [4]
and FlexGen [57]. On UVM, all data movements between the
CPU and GPU are implicitly managed by the UVM device
driver, thereby enabling offloading without requiring interven-
tion from the programmer. In contrast, FlexGen uses explicit
data transfers between the CPU and GPU. For the FlexGen
baseline, unless otherwise specified, we explicitly locate all
the KV cache in the CPU memory. The model parameters
are stored in the GPU memory as much as possible, with
the remainder in the CPU memory. We compare InfiniGen
with two different KV cache management methods: H2O [78]
and Quantization [57]. H2O, a recent method in KV cache
management, maintains the KV cache of the important or
recent tokens by assessing the importance of each token and
discarding others. Quantization-based compression applies
group-wise asymmetric quantization to the KV cache.
Key Metric. We evaluate accuracy (%) to assess the impact
of approximation when InfiniGen, H2O, and Quantization are
used. For the language modeling tasks with WikiText-2 and
PTB, we use perplexity as a metric; lower perplexity means
better accuracy. To present performance improvements, we
measure the wall clock time during inference with varying
batch sizes and sequence lengths. The partial weight ratio is
set to 0.3. We set alpha to 4 for OPT and 5 for Llama-2, result-
ing in using less than 10% of the KV cache on average across
the layers. For each layer, we allow sending up to 20% of
the total KV cache to the GPU if it contains more candidates.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 163

50

61

72

83

94

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

50

61

72

83

94

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

50

61

72

83

94

015304560

20

28

36

44

52

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

20

28

36

44

52

015304560

45

55

65

75

85

015304560

20

28

36

44

52

015304560

Full Cache
Quantization
H2O
InfiniGen

45

55

65

75

85

015304560

20

28

36

44

52

015304560

50

61

72

83

94

015304560

20

28

36

44

52

015304560

45

55

65

75

85

015304560

45

55

65

75

85

015304560

50

61

72

83

94

015304560

45

55

65

75

85

015304560

OPT-6.7B

PI
Q
A

OPT-13B OPT-30B Llama-2-7B Llama-2-13B

O
pe
nB
oo
kQ
A

W
in
oG
ra
nd
e

R
TE

C
O
PA

Ac
cu

ra
cy

 (%
)

Relative KV Cache Size (%)

H2O

Figure 11: Accuracy of LLMs on 5-shot tasks in lm-evaluation-harness.

3

5

7

9

1 4 7 10 13 16

Pe
rp

le
xi

ty

Full Cache
H2O
InfiniGen

6

12

18

24

1 2 3 4 5 6 7 8

Pe
rp

le
xi

ty

Full Cache
H2O
InfiniGen

(b) Llama-2-13B(a) OPT-13B

H2O

Decoding Chunk ID Decoding Chunk ID

H2O

Figure 12: Perplexity of OPT-13B and Llama-2-13B for WikiText-2
dataset. Lower is better. Perplexity is computed for each decoding
chunk that contains 256 tokens.

The partial weight ratio and alpha are determined based on
a sensitivity study for each model to balance accuracy and
inference latency, which we discuss in Section 6.1.

5.2 Language Modeling
Accuracy on lm-evaluation-harness. Figure 11 shows the
accuracy of the baselines and InfiniGen across different mod-
els with 5-shot tasks. The relative KV cache size indicates
the size of the KV cache involved in the attention computa-
tion compared to the full-cache baseline (e.g., a 10% relative
KV cache size means that 10% of the full KV cache size is

used). InfiniGen consistently shows better accuracy across the
models and tasks when the relative KV cache size is less than
10%, whereas the others exhibit a noticeable accuracy drop
due to insufficient bit widths (Quantization) or permanent KV
cache elimination (H2O). This implies that our proposed so-
lution can effectively reduce the KV cache transfer overhead
while preserving model accuracy. For relative KV cache sizes
larger than 10%, the accuracy with InfiniGen closely matches
that of the full-cache baseline. In some cases, InfiniGen even
shows slightly better accuracy than the full-cache baseline.
This is likely because reducing the amount of the KV cache
participating in the attention computation can help the model
focus more on critical tokens.

Sequence Length. Figure 12 shows the perplexity of two
different models with InfiniGen and the baselines, as the se-
quence length increases. In this experiment, H2O is config-
ured to use the same amount of KV cache as InfiniGen. The
sequence lengths are 2048 and 4096 for OPT-13B and Llama-
2-13B, respectively. For a clearer view, we evaluate perplexity
with consecutive 256 tokens as a group, which is referred
to as a decoding chunk in the figure. The results show that
even though the sequence length becomes longer (i.e., the
decoding chunk ID increases), the perplexity of InfiniGen
remains consistently comparable to the full-cache baseline,

164 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: Perplexity on WikiText-2 and PTB with 2048 sequence
length with or without KV cache memory limits. Lower is better.

Scheme
OPT-6.7B OPT-13B OPT-30B Llama-2-7B Llama-2-13B

Wiki PTB Wiki PTB Wiki PTB Wiki PTB Wiki PTB

100% 11.68 13.86 10.55 12.78 10.14 12.31 5.69 22.53 5.25 31.94

80-FIFO% 19.64 16.82 30.99 33.84 30.66 35.45 22.26 61.88 21.41 32.34

80-LRU% 11.68 13.85 10.55 12.78 10.14 12.31 5.69 22.53 5.25 31.94

80-Counter% 11.68 13.86 10.55 12.78 10.14 12.31 5.69 22.53 5.25 31.94

0

20

40

60

80

100

COPA OpenBookQA WinoGrande PIQA RTE

Ac
cu

ra
cy

 (%
) Full Cache w/o Skewing w/ Skewing

Figure 13: Accuracy on the lm-evaluation-harness benchmark with
or without skewing on OPT-6.7B.

while H2O shows an increasing divergence from the baseline.
H2O suffers from permanent KV cache elimination and may
not retain a sufficient amount of KV cache in certain layers
due to its fixed budget. In contrast, InfiniGen dynamically
computes attention using only the essential amount of KV
cache for each layer. The difference is likely to widen as the
models become capable of handling much longer sequences.
Effect of Skewing. Figure 13 shows the accuracy with or
without key/query skewing on the OPT-6.7B model. For the
experiment, we use a fixed KV cache budget of 20%, in-
stead of using a dynamic approach, to clearly show the effect
of skewing. We observe that several language models (e.g.,
Llama-2) show a small drop in accuracy without skewing. For
some models such as OPT-6.7B, however, we see a large ac-
curacy drop if we do not apply the skewing method as shown
in Figure 13. This indicates that in the case of OPT-6.7B, the
partial weight does not adequately represent the original ma-
trix without skewing. After applying our skewing method, we
achieve accuracy similar to the full-cache baseline. Our skew-
ing method effectively skews key and query matrices such
that a few columns can better represent the original matrices.
KV Cache Pool Management. Table 2 shows the perplexity
of five different models with or without limiting the memory
capacity for WikiText-2 and PTB. We compare FIFO-based,
LRU-based, and Counter-based victim selection policies in
Section 4.4 under the 80% memory limit of a full KV cache.
We also present the perplexity results with no memory limit
(100%). The FIFO-based approach shows the worst model
performance because it simply deletes the oldest KV entry
regardless of its importance. The LRU and Counter-based
approaches show perplexity that is almost similar to that with
no memory limit. We choose a Counter-based victim selection
policy instead of an LRU-based approach because the LRU-
based approach typically needs to maintain a doubly linked
list queue with locks for atomic memory updates.

0

200

400

600

UVM UVM FlexGen FlexGen FlexGen InfiniGen

La
te

nc
y

(s
)

Prefill Decode

2007.4

+ H2O+ H2O + INT4

Figure 14: Inference latency on OPT-13B with a sequence length of
2048 (1920 input and 128 output tokens) and a batch size of 20.

0

200

400

600

4 8 12 16 20

La
te

nc
y

(s
)

UVM UVM + H2O
FlexGen FlexGen + INT4
FlexGen + H2O InfiniGen

2007.41737.4
H2O

H2O

Batch Size

Figure 15: Inference latency for 5 different batch sizes on OPT-13B
with a sequence length of 2048 (1920 input and 128 output tokens).

5.3 Performance
In this section, we refer to H2O (with a KV cache budget of
20%) and 4-bit quantization implemented on top of FlexGen
as H2O and INT4.
Inference Latency. Figure 14 shows the inference latency
including the prefill and decoding stages. We use the OPT-
13B model with 1920 input tokens, 128 output tokens, and a
batch size of 20. InfiniGen achieves 1.63×-32.93× speedups
over the baselines. The performance benefit mainly comes
from the significantly reduced amount of KV cache to load
from the CPU memory due to our dynamic approach.

UVM shows an extremely long latency because the work-
ing set size (i.e., the size of the model parameters and KV
cache) is larger than the GPU memory capacity, thereby lead-
ing to frequent page faults and data transfers between the CPU
and GPU. The prefill stage of UVM + H2O also shows a long
latency due to the page faults and data transfers. However,
because all required data are migrated to the GPU memory
after the prefill stage, UVM + H2O shows a substantially
shorter decoding latency. FlexGen loads the full KV cache
with high precision (i.e., FP16) from the CPU memory for
every attention computation. On the other hand, INT4 and
H2O load relatively small amounts of the data from the CPU
because of the low-bit data format (INT4) or a smaller size of
the KV cache (H2O). However, they still load larger amounts
of data than InfiniGen; even with low precision, INT4 loads
the KV cache of all the previous tokens; H2O always loads the
same amount of data no matter how many tokens are actually
important in each layer. As a result, InfiniGen achieves better
performance than both of them.
Batch Size. Figure 15 shows the inference latency across
different batch sizes. The results show that InfiniGen achieves

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 165

0

2

4

6

512 1024 1536 2048

Sp
ee

du
p

INT4 H2O InfiniGen

0

2

4

6

6.7B 13B 30B

Sp
ee

du
p

INT4 H2O InfiniGen

(b) Model Size(a) Sequence Length

H2O H2O

Figure 16: Speedup over the FlexGen baseline across (a) sequence
lengths and (b) model sizes.

lower latency than others across the batch sizes (1.28×-
34.64×). As the batch size increases, the performance gap be-
tween InfiniGen and others becomes larger. UVM and UVM
+ H2O show increasing latency mainly due to frequent page
faults in the prefill stage. For UVM, the latency also rapidly
increases at a batch size of 16 because the working set size
exceeds the GPU memory capacity for both prefill and decod-
ing stages. As the batch size keeps increasing, UVM + H2O
will face the same problem as well.

The latency of FlexGen almost linearly increases with the
batch size because the KV cache transfer occupies the ma-
jority of the inference latency. As we increase the batch size
from 4 to 20, the throughput (tokens per second) of InfiniGen
increases from 27.36 to 41.99, while INT4 and H2O offer a
small increase in throughput (from 12.22 to 14.02 and from
21.31 to 25.70 each). By dynamically adjusting the amount
of the KV cache to load, InfiniGen achieves scalable perfor-
mance across the batch sizes.
Sequence Length. Figure 16(a) shows the speedup of INT4,
H2O, and InfiniGen over FlexGen on OPT-13B across dif-
ferent sequence lengths. With a batch size of 8, we use four
different input/output configurations. Each configuration com-
prises 128 output tokens and 384, 896, 1408, 1920 input to-
kens (i.e., a total number of tokens ranging from 512 to 2048).
The speedup of InfiniGen continues to increase across the
sequence lengths (up to 5.28×), whereas INT4 and H2O show
saturating speedups (up to 1.92× and 3.40×). This suggests
that neither INT4 nor H2O provides a scalable solution for
KV cache management. INT4 shows a negligible increase
in speedup due to the inherent growth in the size of the KV
cache. Similarly, H2O lacks scalability due to its fixed ratio of
the KV cache budget; as the sequence length increases, H2O
stores and loads more KV cache.

Even though the sequence length increases, the number of
tokens that each token attends to does not increase linearly.
For instance, in the OPT-13B model, we count the number
of important tokens with attention scores larger than (max−
4) and identify that, on average, 37, 60, 66, and 73 tokens
are assessed as important for sequence lengths of 512, 1024,
1536, and 2048, respectively. H2O, which employs 20% of
a fixed KV cache budget, loads 409 tokens for the sequence
length of 2048, while only 73 tokens are relatively important.
In contrast, InfiniGen naturally captures this trend (i.e., a
non-linear increase in the number of important tokens) by

0

20

40

60

40

50

60

70

0.1 0.3 0.5 0.7 0.9

La
te

nc
y

(s
)

Ac
cu

ra
cy

 (%
)

Accuracy Latency

(b) Partial Weight Ratio

0

20

40

60

40

50

60

70

1 3 5 7 9

La
te

nc
y

(s
)

Ac
cu

ra
cy

 (%
)

Accuracy Latency

(a) Alpha Value

Figure 17: Accuracy and inference latency across (a) alpha values
and (b) partial weight ratios.

dynamically observing the speculated attention score.
Model Size. Figure 16(b) shows the speedup of INT4, H2O,
and InfiniGen over FlexGen on three different model sizes.
We use 1920 input tokens and 128 output tokens with a batch
size of 4 for the experiment. The results show that InfiniGen
outperforms others across the model sizes. As the model size
increases from 6.7B to 13B, the speedup of InfiniGen also
increases by 1.17×, while others do not lead to a noticeable
increase in speedup. For most of the layers, InfiniGen loads a
smaller amount of KV cache than H2O because a relatively
small number of tokens are needed. Thus, InfiniGen performs
better than H2O as the model size becomes larger due to the
increased number of Transformer blocks. For the 30B model,
the model parameters do not fit in the GPU memory. As such,
we offload 30% of the model parameters to the CPU. In this
case, the size of the offloaded parameters is 1.7× larger than
the KV cache size. Even so, InfiniGen shows a 1.34× speedup
over FlexGen, while others achieve 1.18× and 1.28× each.

6 Analysis and Discussion

6.1 Sensitivity Study

We use the OPT-6.7B model with 1920 input tokens, 128
output tokens, and a batch size of 8. The accuracy is evaluated
with the WinoGrande task in lm-evaluation-harness.
Threshold and Alpha. As discussed in Section 4.3, we load
the KV cache of the tokens with a speculated attention score
greater than the threshold (i.e., the maximum attention score
minus alpha). Increasing alpha results in fetching more KV
entries to the GPU, thus increasing inference latency but also
improving accuracy. Figure 17(a) shows such trade-offs be-
tween accuracy and inference latency for nine different alpha
values with a partial weight ratio of 0.3. The results show that
more KV entries are fetched and involved in attention compu-
tation as alpha increases, thereby leading to better accuracy.
For the alpha values beyond 4, however, since most important
tokens are already included, the accuracy does not further
increase, while the cost for KV transfers and attention com-
putation keeps increasing. This trend is similarly observed in
other models, and we thus opt for an alpha value of 4 or 5 to
strike a balance between inference latency and accuracy.
Partial Weight Ratio. Figure 17(b) shows the accuracy and

166 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

5

10

15

FlexGen INT4 H2O InfiniGen Ideal

La
te

nc
y

(m
s)

Attention FFN
Data Transfer Prediction

28.0

H2O

Figure 18: Latency breakdown of a Transformer block for OPT-13B
with a sequence length of 2048 and a batch size of 8.

inference latency across different partial weight ratios with an
alpha value of 4. As shown in the figure, the amount of partial
weights has a negligible impact on inference latency because
the cost for computing the speculated attention score is rela-
tively small. Note that the amount of KV cache to transfer is
not related to the partial weight ratio. However, increasing the
partial weight ratio results in higher memory consumption for
partial weights and key cache (e.g., doubling the ratio doubles
the memory consumption overhead). The accuracy also does
not noticeably differ beyond a ratio of 0.3. In our work, we
opt for a partial weight ratio of 0.3 to achieve better accuracy
while considering memory consumption overhead.

6.2 Overhead
Prefetching Overhead. Figure 18 shows the latency break-
down of executing a single Transformer block for the OPT-
13B model; FFN is not shown in the figure for schemes other
than Ideal because it is fully overlapped with data transfer
time. Ideal is a scenario where all the computations (i.e., at-
tention and FFN) are performed on the GPU without any data
transfer between the CPU and GPU. As shown in the results,
the key performance bottleneck of FlexGen and H2O is the
data transfer overhead, which occupies 96.9% and 91.8% of
the execution time, respectively. For INT4, due to the quan-
tization and dequantization overhead, attention computation
also occupies a large portion of the execution time in addition
to the data transfer. InfiniGen, on the other hand, considerably
improves the inference speed over FlexGen by reducing the
amount of data transfer with our dynamic KV cache prefetch-
ing. Furthermore, InfiniGen is only 1.52× slower than Ideal,
while others show 3.90×-18.55× slowdowns.
Memory Consumption. InfiniGen uses the partial query
weight and key cache for speculation. For a ratio of 0.3, the
sizes of the partial query weight and key cache are only 2.5%
and 15% of the total model parameters and total KV cache,
respectively. While we simply store them in the GPU dur-
ing our experiments, we can manage the storage overhead
in various optimized ways if needed. For example, we can
store only the column indices of the partial query weight and
retrieve the column vectors from the full query weight ma-
trix (which already resides in the GPU) as needed for partial
query projection. Additionally, we can place the partial key
cache in the CPU and perform speculation on the CPU after

(b) Sequence Length(a) Relative KV Cache Size (%)

4

8

12

2048 4096 8192 16384 32768

Pe
rp

le
xi

ty

Full Cache

InfiniGen
H2O

4

8

12

0102030

Pe
rp

le
xi

ty

Full Cache
Quantization

InfiniGen
H2O

Figure 19: Perplexity of Llama-2-7B-32K across (a) relative KV
cache sizes with a sequence length of 32768 and (b) sequence lengths
while retaining 64 tokens. Lower is better. Llama-2-7B-32K is a fine-
tuned version capable of processing up to 32K tokens using position
interpolation [12]. Quantization is omitted in (b) since the KV cache
cannot be compressed below 6.25% (i.e., 1 bit).

fetching the partial query from the GPU. Even a naïve method
of lowering the partial ratio would likely still provide better
accuracy compared to other methods while reducing storage
overhead. In summary, by minimally sacrificing inference
performance, we can greatly reduce the storage overhead on
the GPU if necessary.

6.3 Long Context Window

Figure 19 shows the perplexity of the Llama-2-7B-32K model,
which can process up to 32K tokens, across the relative cache
sizes and sequence lengths. We use the WikiText-2 dataset
for the experiment. As the context window size increases for
future LLMs, the relative portion of the KV cache that the
GPU can retain would decrease due to the limited capacity of
GPU memory.

Figure 19(a) shows that InfiniGen maintains perplexity lev-
els close to the full-cache baseline even as the relative KV
cache size decreases, without leading to a noticeable increase
in perplexity even with much smaller cache sizes. In contrast,
other methods increase perplexity compared to the full-cache
baseline and significantly diverge at certain sizes due to in-
sufficient bit widths for preserving adequate information on
all keys and values (Quantization) or the permanent removal
of KV cache entries (H2O). As shown in Figure 19(b), the
perplexity gap between InfiniGen and H2O widens for longer
sequence lengths, which is likely to increase further for se-
quence lengths beyond 32K. This implies that InfiniGen can
scale to longer sequences and better preserve model accuracy
compared to others.

We further speculate on how InfiniGen would benefit in an
era of million-token context windows by analyzing a model
capable of handling 1 million tokens. Figure 20(a) shows that
the percentage of query tokens that attend to less than 1% of
key tokens increases as the sequence length becomes longer.
InfiniGen can adapt to this changing trend by dynamically
adjusting the amount of the KV cache to load, whereas prior
fixed-budget/pruning approaches would not easily adjust the
effective KV cache size. Figure 20(b) further shows that the
attention weights of key tokens can change across iterations;

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 167

0

20

40

60

80

100

2K 16K 128K 1M

Pe
rc

en
ta

ge
 (%

)

Layer 0
Layer 12
Layer 24
Layer 30

(a) Sequence Length

Layer 18, Head 30

At
te

nt
io

n
W

ei
gh

t

0 8K 16K4K 12K

(b) Iteration

Layer 30, Head 30

0.0

0.8

0.0

0.2

Layer 30, Head 18

0.0

0.2

Figure 20: Analysis of 1 million tokens using Llama-3-8B-1048K.
(a) Percentage of query tokens that attend to less than 1% of the
key tokens across the sequence lengths. (b) Attention weight of
sampled key tokens from different layers and heads across the last
16K iterations out of 1 million tokens.

the sampled key tokens show sudden spikes after thousands
of iterations with significantly low attention weights (e.g., the
7425th iteration out of the last 16K iterations in Layer 18,
Head 30). We observe that the prior approaches that perma-
nently eliminate tokens while they are unimportant could lose
the critical contexts if they become important again at later
iterations. In contrast, InfiniGen can preserve model perfor-
mance by keeping the temporarily unimportant KV entries
for potential future use.

7 Related Work

DNN Serving Systems. A systematic approach to enabling
an efficient and fast model serving system is an important
topic that has been widely studied by both academia and in-
dustry. Some prior works focus on distributed systems with
predictable latency for service-level objectives (SLOs) [15,
16, 25, 56]. Other works improve parallelism and through-
put of the system through preemption [28, 75], fine-grained
batching [17, 21, 71], or memory optimizations [18, 35, 58].

Several other works aim at achieving high throughput exe-
cution with limited GPU memory by offloading parameters
to secondary storage (e.g., CPU memory and disk). Some of
them build on CUDA Unified Memory [46] with prefetch-
ing [31, 39], while others explicitly move tensors in and out
as needed for computation [29, 30, 48, 72, 73]. FlexGen [57]
is a recent LLM serving system that enables high-throughput
inference on a single GPU by offloading weights and KV
cache to CPU memory and disk. InfiniGen is orthogonal to
FlexGen and can work in conjunction with it to efficiently
offload and prefetch the KV cache.
KV Cache Management. vLLM [35] mitigates the KV
cache memory waste from fragmentation and duplication.
StreamingLLM [67] enables LLMs to generate longer se-
quence lengths than the trained ones. However, since neither
vLLM nor StreamingLLM reduces the size of the KV cache,
data transfers still incur a significant overhead in offloading-
based inference systems. InfiniGen complements the KV
cache management to reduce the data transfer overhead, which
is a major bottleneck in offloading-based systems.
Efficient LLM Inference. There are lines of research that ex-

ploit quantization or sparsity to make LLMs efficient through
algorithmic methods [13, 19, 22, 34, 66] or hardware-software
co-design [26,27,36,50]. Regarding sparsity, most algorithm-
based works focus on reducing the model size by exploiting
the sparsity of weights. Alternatively, H2O and Sparse Trans-
former [13] leverage the row-wise (i.e., token-level) sparsity
in the KV cache by permanently removing certain KV entries.
On the other hand, most hardware-software co-design studies
focus on relaxing the quadratic computational complexity in
the prefill stage by skipping non-essential key tokens with the
aid of specialized hardware. However, they often do not re-
duce memory access as they identify the important key tokens
only after scanning all the elements of the key tensors.

Kernel fusion [18,32] is another approach to mitigating the
quadratic memory overhead of attention in the prefill stage.
InfiniGen can be implemented with kernel fusion techniques
to alleviate the overhead of KV cache access in the decoding
stage. To our knowledge, this is the first work to enable effi-
cient LLM inference by prefetching only essential KV entries
in offloading-based inference systems.

8 Conclusion

The size of the KV cache poses a scalability issue in high-
throughput offloading-based inference systems, even surpass-
ing the model parameter size. Existing KV cache eviction
policies show a large accuracy drop and do not efficiently
use the interconnect bandwidth when they are employed in
offloading-based LLM systems. We propose InfiniGen, an
offloading-based dynamic KV cache management framework
that efficiently executes inference of large language models.
InfiniGen exploits the attention input of the previous layer to
speculatively prefetch the KV cache of important tokens. We
manipulate the query and key weights to make the speculation
more efficient. InfiniGen shows substantially shortened infer-
ence latency while preserving language model performance.
It also shows much better scalability regarding the batch size,
sequence length, and model size compared to prior solutions.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd Petros Maniatis for their valuable feedback. This
work was supported in part by a research grant from Samsung
Advanced Institute of Technology (SAIT) and by the artificial
intelligence semiconductor support program to nurture the
best talents (No. RS-2023-00256081) supervised by Institute
for Information & Communications Technology Planning &
Evaluation (IITP). The Institute of Engineering Research at
Seoul National University provided research facilities for this
work. Jaewoong Sim is the corresponding author.

168 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] DeepL. https://www.deepl.com/translator.

[2] Memcached. https://memcached.org.

[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[4] Tyler Allen and Rong Ge. In-depth analyses of unified
virtual memory system for gpu accelerated computing.
In International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2021.

[5] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2022.

[6] Anthropic. The claude 3 model family: Opus, sonnet,
haiku. 2024. https://www.anthropic.com/claude.

[7] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory R. Ganger. The CacheLib caching engine:
Design and experiences at scale. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[8] Yonatan Bisk, Rowan Zellers, Ronan bras, Jianfeng
Gao, and Choi Yejin. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI),
2020.

[9] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri
Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[10] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu,
Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali
Shrivastava, and Christopher Re. Mongoose: A learn-
able lsh framework for efficient neural network train-
ing. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[12] Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. Extending context window of large
language models via positional interpolation. arXiv
preprint arXiv:2306.15595, 2023.

[13] Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

[14] Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohi-
uddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J
Colwell, and Adrian Weller. Rethinking attention with
performers. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2021.

[15] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: latency-aware provisioning and scal-
ing for prediction serving pipelines. In Proceedings
of the ACM Symposium on Cloud Computing (SoCC),
2020.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[17] Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui
Li, Deze Zeng, Chao Li, and Minyi Guo. Dvabatch:
Diversity-aware multi-entry multi-exit batching for effi-
cient processing of dnn services on gpus. In Proceedings
of the USENIX Annual Technical Conference (USENIX
ATC), 2022.

[18] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Advances
in Neural Information Processing Systems (NeurIPS),
2022.

[19] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Gpt3.int8(): 8-bit matrix multiplication for
transformers at scale. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022.

[20] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchi-
cal neural story generation. In Annual Meeting of the
Association for Computational Linguistics (ACL), 2018.

[21] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the Symposium
on Principles and Practice of Parallel Programming
(PPoPP), 2021.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 169

https://www.deepl.com/translator
https://memcached.org
https://www.anthropic.com/claude

[22] Elias Frantar and Dan Alistarh. Sparsegpt: Massive
language models can be accurately pruned in one-shot.
In Proceedings of the International Conference on Ma-
chine Learning (ICML), 2023.

[23] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding, Jef-
frey Hsu, Kyle McDonell, Niklas Muennighoff, et al.
A framework for few-shot language model evaluation,
2021.

[24] GitHub. Copilot. https://github.com/features/
copilot.

[25] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving dnns like clockwork: Performance pre-
dictability from the bottom up. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[26] Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng,
Chen Zhang, Fan Yang, Yunxin Liu, Minyi Guo, and
Yuhao Zhu. Olive: Accelerating large language models
via hardware-friendly outlier-victim pair quantization.
In Proceedings of the International Symposium on Com-
puter Architecture (ISCA), 2023.

[27] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung
Kim, Hyunji Choi, Sung Jun Jung, and Jae W Lee. Elsa:
Hardware-software co-design for efficient, lightweight
self-attention mechanism in neural networks. In Pro-
ceedings of the International Symposium on Computer
Architecture (ISCA), 2021.

[28] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
gpu-accelerated dnn inferences. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2022.

[29] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason
Lowe-Power, and Venkatesh Akella. Autotm: Automatic
tensor movement in heterogeneous memory systems
using integer linear programming. In Proceedings of
the International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2020.

[30] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvi-
sor: Pushing deep learning beyond the gpu memory limit
via smart swapping. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[31] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. Deepum:
Tensor migration and prefetching in unified memory.

In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), 2023.

[32] Sheng-Chun Kao, Suvinay Subramanian, Gaurav
Agrawal, Amir Yazdanbakhsh, and Tushar Krishna.
Flat: An optimized dataflow for mitigating attention
bottlenecks. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2023.

[33] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2020.

[34] Woosuk Kwon, Sehoon Kim, Michael W Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami. A
fast post-training pruning framework for transformers.
In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[35] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory manage-
ment for large language model serving with pagedatten-
tion. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), 2023.

[36] Jungi Lee, Wonbeom Lee, and Jaewoong Sim. Tender:
Accelerating large language models via tensor decom-
position and runtime requantization. In Proceedings of
the International Symposium on Computer Architecture
(ISCA), 2024.

[37] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting
the persistence of importance hypothesis for llm kv
cache compression at test time. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

[38] Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. The penn treebank: Anno-
tating predicate argument structure. In Proceedings of
the Workshop on Human Language Technology, 1994.

[39] Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jef-
frey S. Vetter, and Satoshi Matsuoka. Dragon: Breaking
gpu memory capacity limits with direct nvm access. In
International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2018.

[40] Pierre-Emmanuel Mazare, Samuel Humeau, Martin Rai-
son, and Antoine Bordes. Training millions of person-
alized dialogue agents. In Conference on Empirical

170 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/features/copilot
https://github.com/features/copilot

Methods in Natural Language Processing (EMNLP),
2018.

[41] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2017.

[42] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2018.

[43] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and Caim-
ing Xiong. Codegen: An open large language model
for code with multi-turn program synthesis. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2023.

[44] NVIDIA. NVIDIA RTX A6000 Graphics
Card. https://www.nvidia.com/en-us/
design-visualization/rtx-a6000/.

[45] NVIDIA. Triton inference server.
https://developer.nvidia.com/
triton-inference-server.

[46] Nvidia. Unified memory program-
ming. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#
um-unified-memory-programming-hd.

[47] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[48] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Capuchin:
Tensor-based gpu memory management for deep learn-
ing. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[49] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. In Proceedings of the Ma-
chine Learning and Systems (MLSys), 2023.

[50] Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei
Ding, and Yuan Xie. Dota: detect and omit weak atten-
tions for scalable transformer acceleration. In Proceed-
ings of the International Conference on Architectural

Support for Programming Languages and Operating
Systems (ASPLOS), 2022.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[52] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
Chloe Hillier, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), 2020.

[53] Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024.

[54] Melissa Roemmele, Cosmin Bejan, and Andrew Gordon.
Choice of plausible alternatives: An evaluation of com-
monsense causal reasoning. In AAAI Spring Symposium
Series, 2011.

[55] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications
of the ACM, 2021.

[56] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceed-
ings of the Symposium on Operating Systems Principles
(SOSP), 2019.

[57] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Re, Ion Stoica, and Ce Zhang. FlexGen: High-
throughput generative inference of large language mod-
els with a single gpu. In Proceedings of International
Conference on Machine Learning (ICML), 2023.

[58] Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing
Xia, Ziming Miao, Yuxiao Guo, Fan Yang, and Lidong
Zhou. Welder: Scheduling deep learning memory access
via tile-graph. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2023.

[59] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances
in Neural Information Processing Systems (NeurIPS),
2014.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 171

https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

[60] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[62] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Glue: A multi-
task benchmark and analysis platform for natural lan-
guage understanding. In EMNLP Workshop Black-
boxNLP, 2018.

[63] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. Linformer: Self-attention with linear com-
plexity. arXiv preprint arXiv:2006.04768, 2020.

[64] Yiming Wang, Zhuosheng Zhang, and Rui Wang.
Element-aware summarization with large language mod-
els: Expert-aligned evaluation and chain-of-thought
method. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2023.

[65] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao
Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and
Xianglong Liu. Outlier suppression: Pushing the limit
of low-bit transformer language models. In Advances
in Neural Information Processing Systems (NeurIPS),
2022.

[66] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. Smoothquant: Accu-
rate and efficient post-training quantization for large
language models. In International Conference on Ma-
chine Learning (ICML), 2023.

[67] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR), 2024.

[68] Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. A paradigm shift in machine transla-
tion: Boosting translation performance of large language
models. In Proceedings of the International Conference
on Learning Representations (ICLR), 2024.

[69] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,
and Rashmi Vinayak. Fifo queues are all you need for

cache eviction. In Proceedings of the Symposium on
Operating Systems Principles (SOSP), 2023.

[70] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. CacheSack: Admission
optimization for google datacenter flash caches. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX ATC), 2022.

[71] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-Based generative mod-
els. In Proceedings of the USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2022.

[72] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo,
Mike Burrows, Andy Davis, Jeff Dean, Sanjay Ghe-
mawat, Tim Harley, Peter Hawkins, et al. Dynamic
control flow in large-scale machine learning. In Proceed-
ings of the Thirteenth EuroSys Conference (EuroSys),
2018.

[73] Haoyang Zhang, Yirui Eric Zhou, Yu Xue, Yiqi Liu, and
Jian Huang. G10: Enabling an efficient unified gpu
memory and storage architecture with smart tensor mi-
grations. In Proceedings of the International Symposium
on Microarchitecture (MICRO), 2023.

[74] Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
Pretraining-based natural language generation for text
summarization. In Conference on Computational Natu-
ral Language Learning (CoNLL), 2019.

[75] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. Shepherd: Serving dnns in the wild. In
Proceedings of the Symposium on Networked Systems
Design and Implementation (NSDI), 2023.

[76] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. Personalizing
dialogue agents: I have a dog, do you have pets too? In
Annual Meeting of the Association for Computational
Linguistics (ACL), 2018.

[77] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[78] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H2O: Heavy-
hitter oracle for efficient generative inference of large
language models. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

172 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Background
	Large Language Models
	Generative Inference and KV Caching
	Outliers in Large Language Models
	Singular Value Decomposition

	Motivation
	KV Cache in LLM Inference Systems
	Challenges in KV Cache Management

	InfiniGen Design
	Overview
	Prefetching Opportunities
	Efficiently Prefetching KV Cache
	KV Cache Pool Management

	Evaluation
	Experimental Setup
	Language Modeling
	Performance

	Analysis and Discussion
	Sensitivity Study
	Overhead
	Long Context Window

	Related Work
	Conclusion

