
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Data-flow Availability: Achieving Timing Assurance
in Autonomous Systems

Ao Li and Ning Zhang, Washington University in St. Louis
https://www.usenix.org/conference/osdi24/presentation/li

Data-flow Availability: Achieving Timing Assurance on Autonomous Systems

Ao Li Ning Zhang
Washington University in St. Louis

Abstract
Due to the continuous interaction with the physical world,
autonomous cyber-physical systems (CPS) require both func-
tional and temporal correctness. Despite recent advances in
the theoretical foundation of real-time computing, leveraging
these results efficiently in modern CPS platforms often re-
quires domain expertise, and presents non-trivial challenges
to many developers.

To understand the practical challenges in building real-time
software, we conducted a survey of 189 software issues from
7 representative CPS open-source projects. Through this exer-
cise, we found that most bugs are due to misalignment in time
between cyber and physical states. This inspires us to abstract
three key temporal properties: freshness, consistency, and
stability. Using a newly developed concept, Data-flow Avail-
ability (DFA), which aims to capture temporal/availability
expectation of data flow, we show how these essential prop-
erties can be represented as timing constraints on data flows.
To realize the timing assurance from DFA, we designed and
implemented Kairos, which automatically detects and miti-
gates timing constraint violations. To detect violations, Kairos
translates the policy definition from the API-based annota-
tions into run-time program instrumentation. To mitigate the
violations, it provides an infrastructure to bridge semantic
gaps between schedulers at different abstraction layers to al-
low for coordinated efforts. End-to-end evaluation on three
real-world CPS platforms shows that Kairos improves timing
predictability and safety while introducing a minimal 2.8%
run-time overhead.

1 Introduction

Recent advances in artificial intelligence and robotics have
promoted the integration of various autonomous cyber-
physical systems into society, including self-driving cars [94],
drones [31], and home-service robots [32]. Unlike conven-
tional systems, CPS has to sense the physical world, compute
for the appropriate control actions, and actuate on the phys-
ical world in a timely manner. Therefore, the assurance of

temporal properties in autonomous CPS is fundamental to the
correctness of the system.

System Challenges in Real-time Cyber-physical Systems.
Recognizing its importance, the real-time systems commu-
nity has devoted significant effort to ensuring the timeliness
of computation. However, despite the rich literature on the
theoretical foundation of real-time computing, such as schedu-
lability analysis [70], mixed-criticality scheduling [43], and
compositional scheduling [51, 83], leveraging these results in
the development of CPS software remains quite challenging
for non-experts. Furthermore, recent advances in multi-core
execution and multi-modal sensing also make the problem
challenging even for experts, with plenty of open research
questions that are actively being investigated [66, 70]. A re-
cent industrial survey [29] (Question 23) also indicates that
only a small fraction (9.38%) of systems are designed with
commercial schedulability analysis tools.

Understanding Timing Problems in Real-world CPS. To
gain a better understanding of system challenges in CPS,
we draw inspiration from the recent survey on concurrency
bugs [64,67], and conducted a systematic study of the 189 tim-
ing bugs in 7 mainstream open-source CPS software projects.
Our goal is to understand the categories of timing bugs in
CPS applications, the root causes of each bug category, as
well as the challenges developers face in preventing them.
We found that most of the timing bugs are caused by mis-
alignment in time between cyber states and physical states.
Therefore, building on top of the cyber-physical control loop
abstraction, we extracted three most essential temporal prop-
erties: freshness, consistency, and stability. Furthermore, we
found that many existing mitigations implemented manual
checks for data timestamps, inspiring us to model the problem
from a data-flow perspective.

Our solution - Data-flow Availability. Motivated by the
findings from the timing bug study, we propose Data-flow
Availability, a new concept that achieves timing assurance in
autonomous systems. Building on the observation that data
flow drives cyber-physical control loops in modern CPS, we

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 445

I/O Layer

Hardware

Application Layer

Kernel Layer

Da
ta

-fl
ow

 A
va

ila
bi

lit
y

Middleware Layer

Specifying timing constraints

Enforcing timing constraints across layers

User-level tasks

Worker tasks

CPU tasks

I/O packets

Figure 1: Data-flow Availability in the system stack.

augment data flow with a new temporal dimension, result-
ing in Timed Data-flow Graph (TDFG). Conceptually, each
variable (that captures cyber or physical state) would have a
time attribute (tag), and information flow among them has to
respect the expectation of the software. Therefore, temporal
policy is encoded as timing constraints on the edges of the
graph.

To realize the concept of data-flow availability in system,
we design and develop Kairos, a programming model to en-
able the automatic detection and mitigation of timing con-
straint violations. Kairos consists of a DFA-embedding tool
for detection of timing constraint violation at run-time and a
cross-layer scheduling system for mitigation (as shown in Fig-
ure 1). Using the DFA-embedding tool, developers can either
manually annotate the source code with APIs provided by
Kairos or use the provided dynamic profiler to specify the ex-
pected temporal properties. A compiler extension then takes
the temporal expectation, expressed as data-flow constraints,
and automatically instruments the software to detect timing
constraint violations at run-time. However, detection alone
does not provide timing assurance. Upon timing constraint
violations, actions have to be taken to recover the system. To
do so, Kairos builds on the concept of schedulable entity path
to construct an association of schedulable entities in different
abstraction layers of the operating system for a cyber-physical
data flow. This bridges the semantic gap between the abstrac-
tion layers, and allows for more effective coordination of
schedulers in the system for violation mitigation.

Prototype and Evaluation. To understand the effectiveness
of DFA in mitigating the timing bugs, we analytically studied
how existing bug fixes can be implemented using Kairos, and
found that among the 189 bugs, 111 of them can be mitigated
by Kairos. To understand the performance characteristics of
Kairos, we built a prototype of Kairos, and evaluated it on
three real-world robotic platforms: Autoware [36], Jackal
UGV [59], and Turtlebot3 [89], each with distinct workloads
and computing power requirements. On these three platforms,
we show how TDFG can be constructed and used in Kairos to

mitigate the existing timing issues. At runtime, Kairos intro-
duces an average overhead of 2.8% and shows manageable
performance under scalability analysis. Under high system
overload, Kairos shows a faster and more stable response time
in reacting to timing violations compared to other state-of-
the-art systems – ROS [80], ERDOS [55], and ghOSt [57].
Furthermore, the end-to-end evaluation shows that Kairos can
improve safety under high system overload.

Contributions. We make the following contributions 1:

• Formulation of Data-flow Availability, a new concept for
achieving timing assurance from a data-flow perspective.

• Design and implementation of Kairos, a proof-of-
concept realization of DFA. Kairos detects timing viola-
tions by embedding a temporal property monitor within
the application and mitigates these violations through a
cross-layer scheduling infrastructure.

• Evaluation of DFA and Kairos across three real-world
robotic platforms, each with distinct workloads and op-
erational domains.

2 Background

Real-time Cyber-physical Systems. A unique characteristic
of autonomous cyber-physical systems is their tight connec-
tion to physical world processes. Cyber-physical systems soft-
ware often builds on top of the abstraction of a cyber-physical
control loop, which continuously senses the physical world,
calculates the appropriate control actions, and then actuates
on the system to reach the desired state. The implementation
of this control loop is often realized using multiple tasks (pro-
cesses), where each is modeled as either periodic or sporadic
tasks in the real-time models.

Timeliness Abstraction in Cyber-physical Systems. Due
to their cyber-physical nature, the correctness of autonomous
systems depends on both functional correctness and temporal
correctness. To achieve this, real-time schedulability analy-
sis [77] is conducted on each system based on the real-time
task models. Meeting deadlines is often considered the most
important requirement in real-time systems. Using the task
parameters from the schedulability analysis, the scheduler
of the system enforces temporal isolation among the tasks,
ensuring no task misses its deadline. Based on the ability to
tolerate deadline misses, systems can be hard, firm, or soft
real-time. Due to various practical challenges, such as diffi-
culty in determining a real-time task model, the efficiency
of the processor to achieve system guarantees, and accurate
estimation of worst case execution time, many deployed real-
time systems are soft real-time systems, according to a recent

1The source code, as well as the extended version of this work
with additional analysis and experiments is available at https://
dataflow-availability.github.io/.

446 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dataflow-availability.github.io/
https://dataflow-availability.github.io/

industry survey [29]. Furthermore, timing constraints can
manifest in properties other than deadline misses, including
but not limited to task response time, execution time, release
jitter, and response jitter.

Timeliness Implementation in Cyber-physical Systems.
Modern autonomous systems generally involve multiple ab-
straction layers, as shown in Figure 1. Besides the typical
userspace and kernel-space layers, modern CPS software also
utilizes middleware, such as the robotic operating system
(ROS) [68, 80] to ease programming. Some CPS software
even implements their own userspace scheduler within the
application, resulting in time management across multiple
layers of abstractions. This presents unique challenges for de-
velopers in achieving alignment of cyber events with physical
world events. Furthermore, there is often a combination of
time-driven [33] or event-driven [80] tasks.

3 Real-world Timing Bug Study

Motivation. Real-time theory suggests modeling individual
computations as individual tasks. However, developing a real-
time task model for modern complex data-driven CPS can
be quite challenging for non-experts. Further, the formula-
tion of highly efficient task models often requires deep do-
main expertise in real-time scheduling. A recent industrial
survey [29] (Question 23) also indicates that only a small
fraction (9.38%) of systems are designed with commercial
schedulability analysis tools. Inspired by existing studies on
concurrency bugs [64, 67] that had offered key insights to the
community, we conducted a systematic study of timing bugs
in 7 open-source robotic software. The goal is to gain a better
understanding of the underlying practical challenge faced by
developers. As such, the focus of the study is on timing bugs,
where the bug is caused by non-deterministic timing of data
flow within the cyber-physical system.

Methodology. The seven selected open-source GitHub
robotic software projects are Autoware [53], MoveIt [2],
Google Cartographer [56], Baidu Apollo [37], ORB-
SLAM2/3 [3,4], ROS Navigation [5], and ROS2 rcl [7]. These
projects were selected because they represent important sub-
systems in modern cyber-physical control loops, including
perception, localization, planning, and control. Furthermore,
they have also been widely adopted [1, 35, 52, 75]. To collect
the bugs, a set of keywords (e.g., ‘timing’, ‘sched’, ‘times-
tamp’, ‘temporal’, etc.) was used to filter the issues, resulting
in a list of 189 bugs.

Summary of Systemization. As shown in Table 1, we find
that two categories of root causes account for the majority
(169 out of 189) of the collected timing bugs: insufficient
specification and enforcement of timing constraints. The rest
are design flaws and hardware problems.

Table 1: Timing Bugs in Real-world Applications

Projects

#
bu

gs Timing Constraint Specification Timing Constraint Enforcement

O
th

er
s

Missing
Constraint

False Specification Missing
Constraint

False
EnforcementExpressibility Parameter

Cartographer [47] 34 14 12 1 1 4 2
Apollo [37] 49 11 23 2 3 0 10
MoveIt [2] 23 4 7 2 2 5 3
ORB-SLAM [4] 6 1 1 0 1 2 1
Autoware [53] 16 6 5 0 1 0 4
Navigation [5] 15 3 3 1 2 4 2
ROS rcl [7] 46 3 3 1 3 35 1
Total 189 42 54 7 13 50 23

Scope of This Work ✓ ✓ ✓ ✓

3.1 Timing Specification Bugs

The most common cause of timing assurance failure is incor-
rect specification of timing constraints (103/189 bugs). As
discussed earlier, though real-time theory provides a sound
foundation for assuring timing behavior, there remains a gap
in transitioning the theory into practice for developers without
expertise in real-time computing. Without the formal guaran-
tees provided by real-time theory tools (such as schedulability
analysis), current practice adopted by developers to mitigate
this involves developers tagging data with timestamps when
data is created or transferred, and then using these times-
tamps to check the data’s validity (e.g., freshness) when it is
used. This data-centric approach to timestamp checking for
specifying timing constraints is ubiquitous in the codebases
we investigated. For example, Autoware and Google Cartog-
rapher use timestamp checks in over 340 and 110 places,
respectively, to determine the execution logic. Additionally,
state-of-the-art middleware such as ROS [80], ROS2 [68],
and ERDOS [55] also incorporate built-in timestamps on data
transferred between tasks.

3.1.1 Missing Time Constraints (What to Check)

Figuring out where and how to add the timestamp checks
manually is quite challenging due to the complex dependency
among data from different tasks [8,12,14,17,19–21,23,50,54].
Naively, one can simply add timing checks on all instructions.
However, that will introduce prohibitive overhead to the sys-
tem, leading to adverse physical outcomes.

Implication - It is essential to understand not only which
program statements need to be checked but also which aspects
of temporal properties should be verified, in order to minimize
the performance impact of the protection.

To further dive into the root cause of the problem in a
principled approach, we went back to the basic abstraction
of a cyber-physical control loop to ask the question of what
properties are these timing bugs violating. Through the lens
of physical world impact, three key properties arise during
the analysis of the timing violations.

Freshness - describes the latency between the occurrence of
a physical phenomenon and the consumption of its cyber rep-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 447

resentation. While data should be as fresh as possible, there
will always be some delay due to sensing and computation.

The key is to ensure that the freshness of the particular data is
acceptable by the control implementation. Figure 2 shows an
example from Cartographer-Pull-153. Cartographer [47] uses
a queue to manage and process sensor data streams from mul-
tiple sources in a coordinated, time-ordered manner. It then
uses the data to construct a robot’s trajectory for localization.
The code snippet checks if the incoming data is older than the
start time of the current trajectory and discards the outdated
data if it is.
 void OrderedMultiQueue::Dispatch() {
 // We take a peek at the time after next data. If it
 // is not beyond 'common_start_time' we drop it
 std::unique_ptr<Data> next_data = next_q->queue.Pop();
 if (next_q->queue.Peek()->time > common_start_time) {
 last_dispatched_time_ = next_data->time;
 next->callback(std::move(next_data));
 }
 // else: drop the data

1
2
3
3
4
5
6
7
8

Figure 2: Freshness check where outdated data is dropped.
Simplified code snippet from Cartographer-Pull-153.

Consistency - describes the temporal alignment of the phys-
ical world observations in the data flows converging at a
specific statement of the program. Ideally, the physical events
captured by these cyber states should be as synchronized as
possible.

Figure 3 shows an example from ROS Navigation [5]
(Navigation-Pull-1121), where the control task retrieves the
robot pose using the tf_ buffer, which maintains historical
poses. In the original code (highlighted in red in line 1), it
directly uses the latest pose. However, since the tf_ buffer
is dynamically updated by other tasks, the timestamp of the
current map used by the control task (time) might be older
than the latest pose in tf_. This could result in using a pose
that is ahead of the current map in time, causing motion
planning to produce incorrect paths. To fix this, the code
highlighted in green (in line 3) adopts a timestamp-based
check that compares the timestamp of tf_ with the control
task’s timestamp. If time is not newer than the latest in tf_,
the lookupTransform() function is called to interpolate the
pose that temporally aligns with the current map.

 tf_.transform(robot_pose, global_pose, global_frame);
 // check if curr_time is less than latest update time of tf_
 if (tf_.canTransform(global_frame, robot_base_frame, curr_time)) {
 // if so, transfomr at the time point of curr_time
 transform = tf_.lookupTransform(global_frame,
 robot_base_frame,
 current_time);
 tf2::doTransform(robot_pose, global_pose, transform);
 } else {
 // use the latest otherwise
 tf_.transform(robot_pose, global_pose, global_frame_);
 }

1
2
3
4
5
6
7
8
9

10
11
12

Figure 3: Consistency check detecting temporal alignment
between the data from two tasks (Navigation-Pull-1121).

Stability - describes the variation in freshness. This is similar
to the concept of jitter in the real-time and control domains,
and ideally jitter should be minimized.

Many control algorithms and systems are designed to have
an implicit assumption of not only the boundary of the fresh-
ness but also its variation (often relatively small) from loop
to loop. In essence, it is about the consistency of data flow
in the temporal dimension, as compared to the spatial dimen-
sion (consistency as discussed above). Figure 4 shows a code
snippet from AutowareAuto-Pull-980, where a timer is added
to ensure the stability of control output. The timer checks the
elapsed time in a polling loop to trigger the control output
function at expected intervals.

 NERaptorInterface::NERaptorInterface(. . .){
 /* Use a ROS timer to ensure the stability */
 m_timer = node.create_wall_timer(m_pub_period,
 std::bind(&cmdCallback, this));
 }

 /* In implementation of ROS timer */
 while (rclcpp::ok()) {
 // Use elasped time to check if timer is ready via a polling loop
 rcl_timer_get_time_until_next_call(m_timer, &time_until_next_call);
 if (time_until_next_call <= 0) m_timer->call();
 }

1
2
3
4
5
6
7
8
9

10
11
12

Figure 4: Stability check using a ROS timer to minimize
control jitters (AutowareAuto-Pull-980).

Summary - These three key properties present a unique oppor-
tunity to address a large number of bugs with a small amount
of temporal property checks.

3.1.2 Inadequate Timing Constraints (How to Check)

Even after solving the challenge of what to check, developers
also have to tackle the challenge of how to check. There are 61
bugs caused by inadequate specification of timing constraints;
among these, we found two common causes. The first cat-
egory is that some of the hard-coded time constraints may
not be appropriate for the deployment. This often happens
due to insufficient testing or changing software/hardware [11]
or operating environment [55] of the system. The second
category is less straightforward. In real-time cyber-physical
systems, there are other essential timing dimensions beyond
latency (maps to freshness discussed earlier), such as align-
ment (maps to consistency discussed earlier) and jitter (maps
to stability discussed earlier). For examples, issues can arise
on arrival jitter [10], detection of data loss [24], processing
data time ratios [13, 27], and requests of development of tim-
ing utilities [9, 16]. Figure 5 shows a simplified bug example
from Google Cartographer [47] (Cartographer-Issue-242) that
spans multiple patches before being finally fixed. The code
snippet estimates the robot’s velocity by dividing the differ-
ence in positions between two adjacent frames by the time
interval. In this case, the freshness of data is a problem be-
cause if the incoming LiDAR frame is older than the latest one
(i.e., out-of-order), it causes the time difference (delta_t)
to be negative. The freshness check was added in patch [79]
(highlighted in yellow on line 3 of the figure). However, an-
other problem beyond data freshness persists even if delta_t
is positive. The irregular timing may result in two LiDAR
frames being too close in time, causing delta_t to be too

448 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/cartographer-project/cartographer/pull/153/files
https://github.com/cartographer-project/cartographer/pull/153/files
https://github.com/ros-planning/navigation/pull/1121/files
https://github.com/ros-planning/navigation/pull/1121/files
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/merge_requests/980/diffs
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/merge_requests/980/diffs
https://github.com/cartographer-project/cartographer/issues/242

short. In such cases, the position difference is divided by a
very small delta_t value, which can significantly magnify
any estimation errors, potentially causing the velocity to be-
come infinitely large. This issue is finally fixed by inserting a
check (on line 8) that the frames with intervals less than 1 ms
are dropped.

 // Estimate the velocity estimate.
 if (time > common::Time::min()
 && time > last_scan_match_time) {

 // Prevent out-of-order data
 double delta_t = common::ToSeconds(time - last_scan_match_time);

 if (delta_t < 1e-6) return;
 // Prevent too short intervals
 velocity_estimate_ += (pose_estimate_.translation() -
 model_prediction.translation()) /
 delta_t;
 }

1
2
3
4
5
6
7
8
9

10
11
12
13

Figure 5: Timestamp checking is incomplete in semantic.

Implication - Given the dynamic range of timing expectations
in different platforms and physical environments, it is impor-
tant to develop a mechanism that simplifies the configuration
of these ranges for developers. Ideally, this mechanism should
also enable the automatic discovery of the necessary ranges
to maintain system safety.

3.2 Timing Enforcement Bugs
There are 62 bugs stemming from inadequate enforcement
of timing constraints. Most of these (50/62) are due to con-
ventional software bugs, such as memory corruption in the
enforcement infrastructure with schedulers and timers. An-
other 13 of these bugs are caused by timing constraints not
being delivered to the enforcement mechanisms. These are pri-
marily caused by the fact that the specified timing constraints
are limited to userspace applications and are not propagated
to other scheduling layers. Figure 1 schematically illustrates
the scheduling layers involved in designing and deploying au-
tonomous systems. Due to the inadequate support for deliver-
ing scheduling contexts across schedulers, timing constraints
(or scheduling decisions) specified at one scheduler fail to
propagate to others. This type of problem can be observed in
issues where priorities are inverted across layers [22], leading
to critical tasks not being reliably triggered [26], executing
at varying periods [25], or executing out of order [15]. As a
result, mitigation methods to maintain relative priority at the
user level or middleware alone are often quite challenging if
not impossible.

 void SchedulerChoreography::CreateProcessor() {
 proc->BindContext(ctx);
 /* Reserve a set of CPU cores for the tasks */
 SetSchedAffinity(proc->Thread(), pool_cpuset_, pool_affinity_, i);
 SetSchedPolicy(proc->Thread(), pool_processor_policy_,
 pool_processor_prio_, proc->Tid());
 }

1
2
3
3
4
5
6

Figure 6: Mitigating disconnection across scheduling layers.

Figure 6 is the mechanism adopted to handle Apollo-Issue-

9433. It introduces a new scheduling strategy that reserves
a set of CPU cores for middleware tasks, allowing them to
be directly scheduled on these cores and avoiding disconnec-
tion between layers. However, implementing this scheduling
strategy necessitates a thorough understanding of the tasks,
including their dependencies and execution times.

Implication - Assurance of timing expectations is more effec-
tive when scheduling contexts are visible across all layers of
abstraction.

3.3 Summary

Table 1 shows the timing bugs we studied, and the scope of the
proposed mechanism DFA. Based on the study, we summarize
the opportunities and insights that inform the design of DFA:

• Timing expectations are often added by programmers by
checking the age of data, hinting at the potential to use
information(data)-flow as a mechanism to capture the
programmer’s intention.

• There are three types of key temporal properties we
systematized based on the cyber-physical control loop
abstraction, freshness, consistency, and stability.

• Timing enforcement would often benefit from visibility
across different layers of abstractions in the OS.

4 Data-flow Availability

Motivated by the challenges in Section 3, this paper introduces
Data-Flow Availability (DFA), which approaches the policy
definition of temporal property from a data-flow perspective.

4.1 Timed Data-flow Graph

A Timed Data-flow Graph (TDFG) is a representation of a
DFA-enabled program, extended from the program’s data-
flow graph.

Graph Definition. TDFG is a directed graph G= (V,E,T,C)
constructed from program’s intermediate representation:

• Vertex: Each vertex 𝑣 in the set V corresponds to a statement
in the intermediate representation.

• Edge: Edges E ⊆ V×V represent data dependencies be-
tween vertices. An edge is added if the corresponding state-
ments have a data dependency.

• Timing Tag: A timestamp 𝑡𝑝ℎ𝑦 ⊆ T is generated with def of
memory SSA (Static Single Assignment) in the graph and
propagated along edges at runtime. It includes two types
of timing, either the physical world sensor reading or the
range of a derived value from the timed sensor values.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 449

https://github.com/ApolloAuto/apollo/issues/9433
https://github.com/ApolloAuto/apollo/issues/9433

t1

Input

Phy

t1

(a) Sequential propagation.

1

t1Phy

Input

3

ftPhy

2

t2

Input

4

(b) Merge from different inputs.

Figure 7: Two cases of timing propagation in data flows.

 void EvaluatorManager::DumpCurrentFrameEnv() {
 FrameEnv curr_frame;
 auto obstacles = ContainerManager()->Get(PERCEPTION_OBSTACLES);
 curr_frame.set_timestamp(obstacles->timestamp());
 }

1
2
3
4
5

(a) The timestamp propagates on a single data flow (Apollo-Pull-8503).

 bool Fusion::GenerateMsg(Obstacles* obstacles) {
 common::Header * header;
 header->set_lidar_stamp(lidar_timestamp * 1e9);
 header->set_camera_stamp(camera_timestamp * 1e9);
 header->set_radar_stamp(radar_timestamp * 1e9);
 /* Processing */

1
2
3
4
5
6

(b) The timestamps of multiple data flows merge (Apollo-Pull-5459).

Figure 8: Code examples for timing propagation in data flows.

• Timing Constraints: The edges can be assigned timing con-
straints 𝐶 ∈ C. These constraints define the temporal prop-
erties that the edge is expected to meet within specified
tolerance thresholds. The constraints are evaluated upon
information flow. These temporal properties are defined
by DFA’s metrics, which are detailed in Section 4.2. Note
that some of the temporal properties require analyzing the
statistics of data flows into a vertex over time/iterations.

Timing Information Propagation. Timing tags can be propa-
gated along edges 𝐸 at runtime. There are two forms of timing
tag propagation patterns (shown in Figure 7) that are common
in a cyber-physical system:

• Propagation of Timing Tag in Single Data Flow. The timing
information is propagated along a single data flow (Fig-
ure 7(a)), where edges inherit the timing tag from the prede-
cessor edge, unless the data flow comes from a new sensor
reading. Since the timing tag represents the time when the
physical world observation is made, the data flow within
cyber space does not change the tag. This is the most com-
mon case. In practice, developers programmatically add
the timestamps to the variables according to data received
from the predecessor tasks. Figure 8(a) shows an example
from the Baidu Apollo self-driving car project (Apollo-
Pull-8503). The prediction task inherits the timestamp of
obstacles from the object detection task. The timestamp is
then used to calculate the data age of the currently perceived
environment upon which the prediction is based.

• Merging Timing Tag from Multiple Data Flows. This cate-

gory (Figure 7(b)) involves merging multiple data flows at a
vertex. This is typically required for tasks that fuse informa-
tion from different sensors. In this case, the resulting mem-
ory SSA from the statement inherits the timestamps from
its incoming edges, and maintains 𝑡𝑝ℎ𝑦 = 𝑓𝑣(𝑡1

𝑝ℎ𝑦
, ..., 𝑡𝑛

𝑝ℎ𝑦
),

where 𝑓𝑣 is the merging function for the vertex 𝑣. While the
figure shows only two data flows, there could be more than
two. Note that there is a one-size-fits-all solution in how
timing tags can be merged, since it is effectively merging
observations on the physical world from different time in-
stances. One common approach is to keep the range of the
time tags. The code snippet in Figure 8(b) depicts a fusion
task in Apollo, added in Apollo-Pull-5459. Since this task
fuses detection results from LiDAR, cameras, and radar, it
also incorporates their timestamps to check the temporal
alignment later.

4.2 Timing Constraints in TDFG
Based on the timing bug study, three essential temporal proper-
ties were formulated based on the cyber-physical control loop
abstraction: freshness, consistency, and stability. In the fol-
lowing, we will show how they can be captured using TDFG
in the form of Timing Correctness.

Freshness focuses on the difference between the time when
a physical observation is made and the time when this observa-
tion is used by the control system. In cyber-physical systems,
this difference often has to be bounded, as any latency in-
creases the temporal gap between the cyber and the physical
world, as previously discussed in Section 3. As a result, given
an edge 𝑒 with a maximum tolerable timing threshold 𝜃 𝑓 , its
freshness is calculated by:

𝐶 𝑓 = 𝜃 𝑓 −(𝑡−− 𝑡phy)) (1)

where 𝑡− is the current time.
Consistency concerns the time differences between the

timing tags from different data flows into a vertex, which intu-
itively indicates the differences in the physical world status at
different times. Generally, the smaller it is, the closer the time
stamps are, and the more consistent the physical world obser-
vations should be. Consider 𝑛 edges that have the same egress
vertex: 𝑇def = ⟨𝑡1

def , . . . , 𝑡
𝑛
def⟩. Their temporal consistency can

be checked by:

𝐶𝑐 = 𝜃𝑐 −max
𝑖 , 𝑗≤𝑛

(𝑡 𝑖phy − 𝑡
𝑗

phy) (2)

where 𝜃𝑐 is the tolerable threshold (or range).
Stability captures differences in timing characteristics of

data flows into/out of a vertex temporally. Many tasks in real-
time systems are implemented as periodic workloads and thus
some underlying algorithms/models are designed with the
assumption of periodicity, which necessitates periodicity in
data usage, such as input (e.g., sensor input) or output data
(e.g., actuation command) [71]. For 𝑤 edges belonging to a

450 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ApolloAuto/apollo/pull/8503/files
https://github.com/ApolloAuto/apollo/pull/5459/files
https://github.com/ApolloAuto/apollo/pull/8503/files
https://github.com/ApolloAuto/apollo/pull/8503/files
https://github.com/ApolloAuto/apollo/pull/5459/files

I/O Scheduling

Source
Code

Timing Constraint
Annotation

Timed Data-flow
Graph Construction

Program
Instrumentation

DFA-enabled
Executable

Middleware

CPU Scheduling

User

Kernel

Execution
States

Kairos
Component

Compile-Time Run-Time

1

2

3

4

5

5

6

6

6

Decision Hook

Hook

Hook

Figure 9: Workflow of Kairos.

set of data flows from sequential loops via the same program
point, they have 𝑇 = ⟨𝑡1

phy , . . . , 𝑡
𝑤
phy⟩. One typical way to check

stability is by measuring jitters:

𝐶𝑠 = 𝜃𝑠− max
𝑖 , 𝑗≤𝑤−1

|𝐷𝑖−𝐷𝑗 |,𝐷𝑖 =Δ𝑖− 𝐼 ,Δ𝑖 = 𝑡 𝑖+1
phy − 𝑡 𝑖phy. (3)

where Δ represents the interval between two iterations and 𝐼 is
the expected interval. In practice, the form of stability can vary
based on the design of the target systems, with alternatives
potentially being variations of freshness.

An edge 𝑒 is evaluated upon the program’s execution reach-
ing its egress vertex, and it is considered compliant with tim-
ing correctness if all its added metrics meet 𝐶 > 0, namely
(𝐶 𝑓 > 0∧𝐶𝑐 > 0∧𝐶𝑠 > 0).

5 Design and Implementation of Kairos

Kairos is a proof-of-concept realization of Data-flow Avail-
ability. There are two main components, the temporal policy
definition using TDFG and the mitigation of policy violation.
Kairos is composed of a compiler extension and a run-time
system. Figure 9 outlines its key components and workflow.
At compile-time, Kairos leverages program analysis and user
annotation/automatic annotation 1 from profiling to con-
struct the TDFG of the target application 2 ; Utilizing the
TDFG, it instruments code to perform timing information
propagation 3 ; At run-time, tasks update timing information
and evaluate timing correctness 4 ; Upon timing constraint
violation, the task triggers a handler to execute the pre-defined
policy 5 ; The scheduling decisions from handling policy are
then shared with schedulers across different layers 6 .

5.1 DFA-enabled Application
As shown in Figure 10, there are two main steps in the con-
struction of DFA-enabled application, the construction of
TDFG, which defines the temporal properties the applica-
tion has to follow and the instrumentation of the application
to enable detection and mitigation of the property violation.

void proc(sensor* x) {
 freshness(x, 0.5, Abort);
 y = buf.pop();
 consistency(x, y, 1, Abort);
 process();
 log(x, y);
}

1
2
3
4
5
6
7

Annotated Program

Graph Construction

Instrumentation

llvm-ir

llvm-ir

...
%y = call pop
%1 = call i32 @consist_check(-)
...
call void @abort_job()

Property check

Timing info propagation

DFA-Enabled Executable

Kairos

get annotations

Figure 10: Pipeline of DFA-enabled application construction.

TDFG Construction. TDFG captures the expected temporal
properties of the developers. Upon extraction of value-flow
graph [49, 86], the timing constraints in TDFG are expressed
either manually via developer annotations or automatically
via dynamic profiling.

Table 2: Kairos API

Function
Name

Arguments Description
Targets Tolerance Window Handling

Policy
freshness var

threshold
- abort

prioritize
skip-next

Checks the expected properties.
If violated, triggers the
handling policy function.

consistency var, ... -
stability var size

To facilitate manual annotation, three APIs are provided
for annotating the source code to express timing constraints
over the three key properties (freshness, consistency, and sta-
bility) that were previously discussed in Section 3. As shown
in Table 2, the functions take four types of arguments: target
variables, tolerance threshold, window size (for stability only),
and handling policy. The threshold and window size param-
eters enable the check of timing correctness. The handling
policy argument specifies the function to be invoked if timing
correctness checks fail.

However, manual annotation often requires strong domain
knowledge not only of the physical system but also of the com-
puting stack, which may not always be available. To tackle
this, Kairos also provides an option to extract the timing con-
straint using performance profiles from dynamic analysis. To
do so, Kairos needs two key components: first, an oracle (crite-
ria) to determine if the timing behavior of the software needs
to be corrected or not; second, inputs to instrument the sys-
tem such that all potential behaviors can be observed. For the
oracle, Kairos borrows existing practice in CPS evaluation,
where safety (often measured as control state deviation) is
used as the metric. When physical safety (such as vehicles
crashing into pedestrian or drones falling from the sky) is
compromised by the violation of a specific temporal property,
Kairos considers this temporal property to be essential and
has to be monitored and checked at runtime. Inputs to the
system, i.e., the physical scenarios, to test the system is an
open challenge in CPS testing [72]. In Kairos, in addition

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 451

to relying on the user to supply scenarios that might reveal
temporal property violations, we use the performance inter-
ference tool [65] to probe the system with different potential
timing impacts. To minimize the impact on the timing be-
havior of the software due to the profiling system, hardware
performance monitors and debug functions are used. Among
all flows that cause the same property violation, Kairos only
adds the check on the first occurrence. It is important to note
that dynamic profiling is much more effective in finding the
acceptable range of the constraints rather than finding where
to add the constraint (which has a much larger search space).

TDFG Embedding. Before constructing the TDFG, Kairos
analyzes the source code to identify statements that receive
sensor inputs, and automatically instrument them to extract
timestamps 𝑡𝑝ℎ𝑦 from the sensing or input payloads. To begin
the construction of TDFG, Kairos builds on top of the value-
flow analysis in the SVF [86] tool with LLVM-IR [63], then
uses a set of python scripts to add the timing constraints and
annotation. Additionally, a set of LLVM compiler passes is
also developed to instrument the necessary code for timing
information propagation and checking. Kairos also leverages
several heuristics to reduce the performance overhead. First,
to avoid instrumenting every instruction for timing metadata
propagation, Kairos automatically bypasses the timed data
flows with the same time tag 𝑡𝑝ℎ𝑦 (sensor timestamps). With-
out loss of generality, a vertex is selected to be in the TDFG
based on three criteria: (i) it is either a physical input or phys-
ical output vertex, (ii) it merges multiple data flows, or (iii) it
is annotated with timing constraints as a vertex of interest.

5.2 Timing Constraint Violation Mitigation

Timing Constraint Violation Handler Policies. Mitigation
of timing constraint violations often requires consideration
of the physical components, and there is no one-size-fits-all
solution. Drawing inspiration from our bug study, prior works
in real-time computing [39, 46, 69, 91] and current industrial
practices [29], Kairos offers three policies: abort, prioritize,
and skip-next. More specifically, abort discards the task in-
stances with timing constraint violations. prioritize switches
the system into a different set of task models, often involving
raising the priority of the task. Lastly, skip-next allows the
delayed task to continue but skips its next instance to recover.

It is important to note that individually, these policies may
give rise to further timing constraint violations in a cascading
effect. For example, prioritizing a task that has missed its
deadline might prevent other tasks from making progress,
resulting in subsequent deadline misses. However, if correctly
composed, these policies support existing adaptive real-time
scheduling paradigms, e.g., elastic scheduling [46] and mixed-
criticality scheduling [90].

Under elastic scheduling, task utilizations are decreased
(typically by increasing the periods at which they are invoked)

Kernel-level Task Scheduler

Network Packet Scheduler

Middleware-level Task Scheduler

New Packet

Timing
Vertex

Inconsistency

Thread Pool #2

. . .

B
C

A

A
Abort

Prioritize
Tk

Tk

Tk+1

Tk Tk+1

Tk Tk+1

Handler

Prioritize Abort

De
ci

si
on

De
ci

si
on

DecisionPrioritize Abort

Prioritize

Task
Instance

Thread
Pool #1

Figure 11: An illustrative case of Path across layers.

to avoid deadline misses. Though originally proposed in [46]
as a mechanism to adapt to system overload, elastic schedul-
ing has since evolved as a means by which systems can adapt
to unexpectedly long task execution times [45] or interference
from other tasks [85]. In response to a violation of timing
constraints, Kairos can use the algorithm from [84] to quickly
recompute task periods, then enforce this with multiple pri-
oritize policies to change task priorities or SCHED_DEADLINE
attributes accordingly.

In mixed criticality systems, non-critical task instances may
be dropped in response to timing anomalies in critical tasks.
Earliest-deadline first (EDF) scheduling with virtual dead-
lines (EDF-VD) is an optimal scheduling algorithm for non-
clairvoyant mixed-criticality systems (i.e., those for which
timing anomalies can’t be predicted a priori, but are only iden-
tified when they occur) [39]. Under EDF-VD, each critical
task is prioritized according to its virtual deadline, which is
assigned as a constant parameter. When a critical task over-
runs its expected execution time, instances of non-critical
tasks are dropped to maintain guarantees to critical tasks,
and critical tasks are re-prioritized according to their absolute
deadlines [39]. Kairos’s handler supports this mode switch via
a combination of its abort and prioritize policies (applied to
the non-critical and critical tasks, respectively). While devel-
oping more sophisticated policies presents intriguing research
opportunities, it is left for future exploration.

Implementation. Handlers can be implemented in individual
layers or across multiple layers. In our prototype, we imple-
ment it as a modification to the kernel schedule where the
mitigation mechanism is invoked before the built-in scheduler
for proof-of-concept. For task abort, our prototype instru-
ments code to enable early return. However, it is important to
note that resource deallocation and inconsistent state removal
often require sophisticated management [82]. The skip-next
is demonstrated in the middleware by dropping the next task
invocation message at ROS.

452 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Cross Layer Scheduling Association. While the handling
policies for timing constraint violation are relatively well un-
derstood under the real-time task problem formulation at the
task level. Existing software ecosystems come with schedu-
lable entities at different layers of architectural abstractions
from I/O layer (such as network packet) and operating sys-
tem (real-time process) to middleware (ROS component) to
application (application-specific schedulers). This presents
non-trivial system challenges in realizing consistency in the
handler policy due to missing semantics across the abstraction
layers.

This problem can be observed in 13 bugs [18, 38] from our
earlier bug study. For example, the handling of a consistency
violation often needs to adjust threads on sensor processing
rather than the fusion process, necessitating the correlation of
a subgraph of TDFG to the corresponding schedulable entities
such that the timing constraint violation handler knows which
one to intervene on [41]. Another example that commonly
occurs in time-sensitive networking is the need to prioritize
specific items in the network queue due to reprioritization of
tasks [95], which can be part of the handling process.

To mitigate this, we propose to bridge the semantic gap by
associating schedulable entities to data flows in TDFG. This
not only allows the handler to know the schedulable entity
to operate on, but also allows the other abstraction layers to
respond to a handling mechanism much more effectively. To
ensure the association is complete, Kairos draws inspiration
from the Path concept from Scout system [73], where Path is
used to track the components a packet travels through (e.g.,
network devices or protocol layers) on network appliance
systems. In Kairos, upon dispatching, Path is updated to reflect
the chain of schedulable entities that leads to execution of the
application along a particular path, as shown in Figure 11.

Implementation. Our prototype modifies the data structure
of native scheduling entities to store the Path to which they
belong. This information is updated in a shared buffer acces-
sible to four layers, i.e. user space, kernel, middleware, and
network stack. The method of incrementing Path varies: in
the kernel and network stack, it occurs where new tasks or
packets are created; while in ROS middleware, it happens as
threads are dispatched to execute callback functions.

6 Evaluation

This section seeks to answer the following questions: (i) What
is the capability of DFA in addressing real-world timing bugs?
– Section 6.1; (ii) What is the cost and efficacy of Kairos? –
Section 6.2; (iii) How do DFA and Kairos improve perfor-
mance/safety in abnormal timing situations? – Section 6.3.

Experimental Setup. The evaluations were performed on
synthetic workloads and the workloads of three real-world au-
tonomous systems: (1) Autoware.Auto [36] – an open-source
full-stack autonomous driving project, which presents a high-

Table 3: Evaluation Platforms

Platforms Software Stack Computing Cores RAM Kernel

Autoware
Autoware.Auto
[36, 61]

AMD 9 3900X
RTX 3070 Ti 12 128GB Linux 5.11

Jackal
Cartographer [47]
& Navigation [5] Intel Nuc 8 4 16GB Linux 5.11

Turtlebot3 Navigation [5] RPi 4B 4 4GB RPi 5.15

Microbenchmark ORB-SLAM3 [4] Intel i9-12900K 12 128GB Linux 5.11

Table 4: Root Cause Analysis of Bug Fix Capability

Category Description Number

Non refactoring Inadequate timing information/constraints/propagation 104
Remove built-in conflict logics 5Fixable Refactoring Adapt with software semantic 7

Hardware-related timing faults 6
Algorithm-related timing bugs 8Out-of-Scope
Infrastructure bugs (e.g., scheduler crash) 41

Concurrency bugs 12

Unfixable

Limited Performance issue 6

end real-time autonomous system. (2) Jackal UGV – an un-
guided ground vehicle that represents mid-end autonomous
system. It uses Google cartographer [47] for vehicle localiza-
tion and ROS navigation [6] for path planning and control.
(3) Turtlebot3 – a low-end indoor robot that relies on ROS
navigation [6] for localization, planning, and control. Given
that the software stacks of each system require distinct com-
puting power, we used three different computing units that
align with (or are similar to) the official recommendations to
better emulate abnormal timing situations. The experimental
hardware settings are listed in Table 3. Autoware and Jackal
UGV were evaluated using hardware-in-the-loop simulations,
while Turtlebot3 was also evaluated using a real robot.

6.1 DFA in Solving Real-world Bugs

A key question to answer in evaluating the efficacy of Kairos
is its ability to address the timing problems. To do so, our
evaluation leverages the collection from the bug study and
analyzes if Kairos can detect the timing problems (through
temporal policy defined in TDFG) and mitigate the timing
problems (using the cross-layer temporal policy violation han-
dler). Due to the need to use physical system or emulation
to exercise the system, most of the results from this evalua-

54

2834

Stability

Consistency

Freshness

Performance Issues

Concurrency Bugs

Infrastructure Bugs

Algorithm-related Bugs

Hardware-related Bugs

Li
m

ite
d

Not Fixable

Fixable

6
8

41

12
6

N/AOut-of-S
co

pe

Default Handler

Customized

Figure 12: Statistics on bug fixability and root causes.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 453

tion item are acquired through manual inspection by three
cyber-physical system developers with 6, 10, and 17 years
of experience respectively. A bug is considered fixable if all
three developers agree that the mitigation can be expressed us-
ing primitives in Kairos. Furthermore, we’ve also conducted
two case studies to demonstrate that Kairos can be used to
detect and mitigate violations of the key temporal properties.

The results of the manual inspection are shown in Figure 12.
From our earlier case study, there are 189 timing bugs. 116
of them can be detected by DFA, and 23 are not detectable,
because they are caused by underlying infrastructure bugs,
design flaws, or hardware issues (beyond the scope of Kairos).
76 bugs can be mitigated directly using default mitigation
handling policies, while 35 bugs can only be mitigated us-
ing customized temporal violation handlers. 5 bugs cannot
be mitigated even with customized handlers, because they
require adaptation in the underlying design model or algo-
rithms, necessitating a complete software redesign. Table 4
summarizes the reasons on all the bugs that Kairos cannot
address. To further understand how Kairos can be used to
address real-world bugs, we reproduce two bugs violating
stability and consistency respectively, since freshness is often
easier to handle.

Case-1: Abnormal timing of LiDAR Pointcloud in Cartogra-
pher. This case study demonstrates the effectiveness of Kairos
in identifying and mitigating violations of stability timing con-
straint. Specifically, we evaluate Kairos on issue Cartographer-
Issue-242 (code snippet shown in Figure 5) in Cartogra-
pher [56], a widely used localization package. According
to the original issue report, the LiDAR pointcloud data, which
is assumed to arrive at periodic intervals, sometimes arrives
more closely than expected, violating the system’s stability
timing constraints. To reproduce the same impact of the issue,
we modified the driver code to induce the same abnormal
timing patterns, specifically manipulating the time between
two pointclouds to be below 1 ms. Such timing patterns cause
the vehicle to deviate from the baseline at most 10.3 m, as
shown in Figure 13(a). To solve this issue, the patch in the
codebase checks the timestamp of each point and removes
abnormal ones with intervals of less than 1 ms. With this
removal, the produced localization results are comparable to
the baseline (deviation at 0.20 m). With Kairos, we specify
stability timing constraint on ScanMatch() statement which
consumes variable msg in task HandleLaserScanMessage that
receives the point cloud with the annotation API stability().
The tolerance threshold argument in the API, which is set
between 22 and 33 ms, is obtained through dynamic profiling
of the ranges of intervals that do not incur adverse control
outcomes. This process takes 18.3 minutes. We use abort
as the default policy to mitigate the violation. The produced
localization result aligns with the baseline at 0.19 m, which
is comparable to the official patch as shown in Figure 13(a).

Case-2: Latency in Updating Location. This case study show-

−30 −25 −20 −15 −10
x [m]

0

10

20

30

40

y
[m

]

baseline
w/o Fix
with Fix
DFA

20 40 60 80
Time [s]

0

5

De
vi

at
io

n
[m

]

(a) Jackal case study.

−74 −72 −70 −68 −66
x [m]

−47

−46

−45

−44

−43

−42

y
[m

]

baseline
w/o Fix
with Fix
DFA

0 20 40 60 80
Time [s]

0

1

De
vi

at
io

n
[m

]

(b) Autoware case study

Figure 13: Case studies on fixing timing bugs using DFA.

cases the effectiveness of Kairos in detecting and mitigating
violation of consistency timing constraints. Specifically, we
evaluated Kairos on the issue Autoware-Issue-458 in Auto-
ware (code snippet shown in 14). According to the original
issue report, the timestamps of the generated LiDAR data and
odometer data used by the optimization procedure (line 31),
which aims to perform the localization, should be within a
threshold but are sometimes misaligned, violating the sys-
tem consistency timing constraint. Since the mechanism to
trigger the bug was not discussed in the original issue submis-
sion, we inject an intermittent CPU overload at 60 % level
using stress-ng [62] on the cores running localization-related
tasks to introduce inconsistency between LiDAR and odome-
ter data. Such inconsistency causes the vehicle to produce a
trajectory that deviates from the ground truth by 1.88 m, as
indicated in Figure 13(b). To solve this issue, the patch in the
codebase tags the LiDAR and odometry data with timestamps.
It then compares these timestamps. If the difference between
them is more than 1 second, the results are discarded. With
this removal, the produced localization results align with the
baseline at 0.12 m. To solve this problem with Kairos, we
use annotation API consistency() (line 31 in Figure 14) to
specify the consistency timing constraint on transform_tree
and msg_ptr. The tolerance threshold argument in the API,
which is set between 1.2 s, is obtained through dynamic pro-
filing of the difference between timestamps of two variable
generations that do not incur adverse control outcomes. This
process takes 8.5 minutes. We use prioritize as the default pol-
icy to mitigate the timing constraint violation. The produced
localization result aligns with the baseline at 0.091 m, which
is comparable to the official patch.

A Programming Example. We use case-2 (Autoware-Issue-
458) as an example to showcase how Kairos reduces the
effort in programming timing constraints. Figure 14 shows
simplified code snippets from Autoware’s localization compo-
nent. In this component, incoming LiDAR pointclouds, HD
maps, and the transformation tree (extrapolated pose based on
past information) are used jointly, so their timestamps should

454 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/cartographer-project/cartographer/issues/242
https://github.com/cartographer-project/cartographer/issues/242
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/458
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/458
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/458

01 void observation_callback(typename ObservationMsgT::ConstSharedPtr msg_ptr){
02 // Get the timestamp of new coming LiDAR message
03 const auto observation_time = get_stamp(*msg_ptr);
04 // Get global variable transformation tree
05 const auto & transform_tree = xxx;
06 // Get global variable map
07 const auto & map = xxx;
08a const auto &initial_guess = m_pose_initializer.guess(

- 09 initial_guess.header.stamp = transform_tree.stamp;
10 if (m_external_pose_available){
11 initial_guess = m_external_pose;

- 12 initial_guess.header.stamp = get_stamp(*msg_ptr);}
13 // Assign timestamp

- 14 const auto message_time = msg.header.stamp;
15 // Validate timestamp (Map shouldn't be newer than a measurement)

- 16 if (message_time < map.timestamp()){
- 18 return ERROR;}

20 // Assign timestamp
- 21 const auto guess_scan_diff = initial_guess.header.stamp - message_time;
- 22 const auto stamp_tol = m_config.guess_time_tolerance();

24 // Validate timestamp (Backwards extrapolation is not supported)
- 25 if (initial_guess.header.stamp < message_time){
- 26 return ERROR;}

28 // Validate timestamp
- 29 if (guess_scan_diff.count() > std::abs(stamp_tol.count())){
- 30 return ERROR;}

33 NDT_optimizer.solve(initial_guess, msg, map);...}

08b transform_tree, observation_time);

+ 32 CONSISTENCY(map, msg_ptr, THRESHOLD, ABORT);
+ 31 CONSISTENCY(guess, transform_tree, THRESHOLD, PRIORITIZE);

Figure 14: Simplified code for temporal consistency checks in
Autoware. ‘-’ (red) represent built-in checks, while ‘+’ (green)
are checks via Kairos’s API.

be checked as aligned. The standard checking mechanism
(red lines marked by ’-’) requires developers to identify data
provenance, label timestamps, and verify them before use.
This often involves frequent jumps to other functions in differ-
ent contexts, necessitating a deep understanding of data-flow
relationships, which is both time-consuming and error-prone.
In contrast, by using Kairos’s APIs, users can omit all times-
tamp assignments and checks and simply add two statements
before using the LiDAR point cloud and map (marked by two
green lines with ‘+’ in the figure).

Overall, Kairos eases programming with timing constraints
in three ways. First, it removes the requirement of program-
matically assigning timestamps to variables. Second, it avoids
unnecessary or repeated timestamp checks. Third, it does not
require developers to thoroughly understand the temporal
relationships between different data flows in the source code.

6.2 Cost and Efficacy of Kairos

Runtime Overhead on Real-world Applications. The run-
time overhead of Kairos stems from three aspects: timing
information propagation, timing correctness checking, and
the added logic in schedulers. We separately measured the
overhead for each aspect on five representative tasks (or func-
tions) per platform, averaging execution times over 100 runs.
The results, shown in Figure 15, include original times and
proportional increases.

The largest overheads observed in these tasks are MOTUp-

date in Autoware (4.77%), UpdateVelsPoses in Jackal UGV
(4.69%), and getOdomPose in Turtlebot3 (2.74%). Overall,
the increased percentage of execution time is highly related
to the number of edges in the task dependency graph (TDFG).
Typically, tasks that involve more sensor inputs will introduce
more edges. For example, the MOTUpdate task has a high
overhead percentage because it is the multiple object track-
ing task in Autoware that fuses multiple pointcloud inputs.
Furthermore, the tasks that maintain more historical timing
states will also have a higher overhead. An example is the task
AddImuData in Jackal UGV, which stores hundreds of inertial
data frames in a queue, inducing a 4.21% overhead. Breaking
it down, most of the overhead comes from propagating timing
information along edges which can reach up to 4.39%. We
found that Kairos’s add-on logic on schedulers introduces neg-
ligible overhead, where the largest overhead is 0.84% from
task AddImuData. Besides the individual execution times, we
also measure the end-to-end latency from sensor input read-
ing to actuation output. The overhead on end-to-end latencies
for Autoware, Jackal UGV, and TurtleBot3 are 3.24%, 2.44%,
and 2.75%, respectively.

Scalability Analysis. The sensor reading rate, the number
of edges in TDFG, and the number of timing tags in tim-
ing constraint checking affect the scalability of Kairos. Thus,
we evaluate the scalability of Kairos by measuring the run-
time overhead with respect to these three factors. We create
synthesized workloads with varying scalability impact fac-
tors by modifying the original workload of ORB-SLAM3.
Specifically, (1) to emulate varying sensor reading rates, we
change the replay speed of the recorded sensor data from the
original ORB-SLAM3 workload. (2) To adjust the number
of edges, we duplicate tasks and annotate timing constraints
on their shared data flows. (3) Since only stability performs
timing constraint checks over multiple timestamps, we adjust
its window size to assess the impacts of timing tag size.

Sensor Reading Rate. The sensor reading rate impacts run-
time overhead. Figure 16(c) shows a linear increase in exe-
cution times for updating and checking timing tags as input
frequency rises. The execution time for a single vertex in-
creases from 37.537 𝜇𝑠 at a frequency of 20 to 4087.95 𝜇𝑠
at a frequency of 500Hz, primarily due to timing checks. A
higher sensor reading rate also significantly increases lock
wait times, increasing 100 times from 10 Hz to 500 Hz. Yet,
CPU usage on a single core remains at just 0.23% even under
high input frequency.

Number of Edges in Timing Propagation. We use the number
of Paths created per second as a proxy for the size of TDFG.
Figure 16(b) presents the runtime and memory overheads. The
duplicated tasks are callback workers in the ROS middleware,
thus increasing the number of tasks in the middleware but
not significantly affecting the kernel scheduler. We observe
that middleware scheduling time increases with the number
of tasks. CPU usage on a single core peaks at 0.42% with

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 455

80 85 90 95 100
Portion of Run Time (%)MOTU

pd
ate

LiD
AR_ca

llba
ck

cal
cul

ate
MPC

set
Re

fTr
aje

cto
ry

fus
e_p

c_m
sgs

0.084 ms

1.007 ms

11.002 ms

1.142 ms

0.154 ms

Original
Propagating
Checking
Scheduling

(a) Autoware

80 85 90 95 100
Portion of Run Time (%)Sca

nM
atc

h

Upd
ate

Ve
lsP

ose
s

Ad
dR

an
ge

Data

Com
pC

on
str

ain
tsAd

dIm
uD

ata

614 us

 0.095 us

11 us

651 us

1.283 us

(b) Jackal UGV

80 85 90 95 100
Portion of Run Time (%)make

Pla
n

com
pu

teV
elC

mds
ge

tOdo
mPos

e

map
Upd

ate
Loo

p
las

erR
ece

ive
d

11.34 ms

10.492 ms

97.231 ms

0.051 ms

10.025 ms

(c) Turtlebot3

Figure 15: Run-time overhead breakdown. The execution time of the original task, the time spent logging timing information,
online checking of timing correctness, and extra scheduling are shown.

0.0

2.5

5.0

7.5

Ru
nt

im
e

(u
s) Runtime Overhead

Memory Overhead

10 20 50 100 200 500
Timing Tag Size

0.00

0.02

Lo
ck

 W
ai

t (
%

) 0

2

4

M
em

or
y

(B
ty

es
)

(a) Timing tag Size.

100 200 500 1000 2000 5000
Num. of Paths

10−3

10−2

10−1

CP
U

Us
ag

e
(%

)

Memory
Creation
Middleware
Kernel

0

20

40

60

80

100

M
em

or
y

(K
Bt

ye
s)

(b) Number of Paths.

0.0

0.2

0.4

CP
U

us
ag

e
(%

) Propagating
Checking
Memory

10 20 50 100 200 500
Input Frequency (Hz)

0.00
0.25

Lo
ck

 W
ai

t (
%

) 0.0

0.2

0.4

M
em

or
y

(B
ty

es
)

(c) Input frequency.

0% 20% 40% 60% 80%
CPU overload (%)

0

10

20

30

Co
llis

io
n

#

Mission Time
Collision #

200

250

300

350

400

450

500

M
iss

io
n

Ti
m

e
(S

)

(d) Different CPU overloads.

Figure 16: Scalability analysis (16(a), 16(b), and 16(c)) and
control impact of CPU overload 16(d).

5000 Paths, while memory overhead reaches 75 KB, which is
relatively low given that the target platform typically has over
ten GB of RAM.

Number of Timing Tags. Figure 16(a) shows the runtime and
memory overhead induced by a single edge with different
numbers of timing tags used during timing constraint checks.
We can observe that the checking time increases proportion-
ally with the number of timing tags. With a tag size of 100,
the average overhead is 2.945 𝜇𝑠 of runtime and 896 bytes
of memory; increasing to 500, it reaches 9.4 𝜇𝑠 and 4096
bytes, respectively. Given that the number of edges typically
remains below a few hundred, the total overhead is low. The
figure also shows that as the number of timing tags increases,
lock wait time slightly rises but remains below 0.05% of CPU
usage on one core.

Invocation Latency in Delivering Execution Decision. In
this experiment, we compared Kairos’s efficacy to ROS [80],

0.05
0.35
0.65
0.95

ROS
ghOSt

ERDOS
Kairos

0% 20% 40% 60% 80%
CPU Overload (%)

0.00
0.01
0.02
0.03

In
vo

ca
tio

n
De

la
y

(m
s)

Figure 17: Invocation delays of handlers in different systems.

ghOSt [57] and ERDOS [55] in delivering scheduling deci-
sions. ROS features the actionLib library [28], which supports
preemptible tasks. ghOSt [57] is a userspace-informed ker-
nel scheduling system that allows scheduling decisions to be
made from userspace. EDROS is a robotic middleware that
provides programming interfaces to deploy deadline miss han-
dlers. We measure the delay from when the decision is made
to the targeted task being executed. The experiments are con-
ducted under different CPU overloads. We use stress-ng [62]
tool to inject overloads, from 0% to 80%, then compare the
increases and variations of latencies in Figure 17.

Under 80% overload, the response times for ROS, ghOSt,
ERDOS, and Kairos are 0.186 ms, 0.72 ms, 0.14 ms, and 0.027
ms, respectively. Kairos has the fastest response time in fulfill-
ing an execution decision, at least 2.16× faster than the others
under high system overload. To be fair, these systems do not
aim to achieve performance under high overload. Kairos has
the cooperation in prioritizing the target task across schedul-
ing layers. In contrast, ROS and ERDOS enforce scheduling
decisions only at the middleware layers. Similarly, ghOSt
enforces them solely through its own scheduler, which is a
sub-scheduler with a lower priority than Linux’s CFS sched-
uler. All four systems have stable invocation times while
CPUs are idle, with variations of 0.095 ms, 0.094 ms, 0.18
ms, and 0.004 ms, respectively. However, we observe that
the invocation latency and variations on ghOSt and ERDOS
increase significantly (up to 0.81 ms under 80 % CPU over-
load) as the system overhead increases. This is because they

456 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 5: DFA on Different Platforms

Platforms Loc #
Inputs

#
Tasks

#
Vertices

Deviation (m) # Collisions

Native DFA Native DFA

Autoware 92 k 8 16 14 0.67 0.13 45 16

Jackal 68 k 4 6 6 0.27 0.09 12 4

Turtlebot3 34 k 3 4 3 0.87 0.21 35 13

are highly affected by Linux’s underlying native scheduler
(CFS). We conclude that Kairos takes faster and more stable
countermeasures when mitigating a timing violation.

6.3 Effectiveness in Improving Safety
This section evaluates the capability of DFA model and Kairos
in improving performance/safety in abnormal timing situa-
tions. We performed dynamic profiling on three platforms to
identify which code regions required annotated timing con-
straints and to determine the expected temporal properties.
Regarding handling policies, they also require understand-
ing the task model and semantics of the target program. To
mitigate the impact of this subjectivity, we employed an auto-
matic strategy to apply three default policies for these timing
constraints accordingly. Specifically, we model the target ap-
plication’s tasks as a directed graph. We adopted the prioritize
policy for tasks on the critical path since aborting them will
significantly increase end-to-end response time. For the tasks
on the non-critical path, we apply the edges with freshness
constraints and the abort policy for the remaining tasks. This
is because violations of consistency and stability often lead
to erroneous computation results, which should be prevented
from propagating to downstream tasks. Table 5 shows the
number of inputs and tasks on the three platforms as well
as the number of edges annotated with timing constraints in
TDFG. In generating the timing thresholds for those timing
constraints, we observed an average variation of 8.82 ms.

We generated 100 trajectories in each scenario (Autoware
in Parking Lot [34], Jackal UGV in Office [48] and Turtlebot3
in House [81] scenarios.)) for the vehicles to follow. During
navigation, we injected CPU overload using the stress-ng
tool [62] to emulate abnormal timings. We selected a 60%
overload, as this condition typically triggers notable degrada-
tion in control performance. Figure 16(d) shows the number
of collisions of Jackal UGV in 100 runs under overloads. We
observed a significant increase in collisions at 60 %. Addi-
tionally, mission time increased with CPU overload because
higher overload often triggered fail-safe, stopping the vehi-
cle during the mission. At 80 % overload, vehicles typically
halted, requiring manual intervention to continue.

Control Performance Improvements. The control perfor-
mance is quantified by metrics (1) the distance vehicles devi-
ate from the reference mission trajectories and (2) the number
of collisions. The results are shown in Table 5. We observe

that Kairos can considerably reduce control deviations across
all three platforms. The lowest improvement of deviation is
2.97× on the Jackal UGV. As to collisions, Kairos reduces the
collision by 64.4%, 83.3%, and 62.9% on Autoware, Jackal
UGV, and Turtlebot3 respectively. Upon further investigation,
the improvement is mainly due to proactively aborting false
computational results to prevent the vehicle from outputting
erroneous actuation commands. However, this approach will
slow down the vehicle, which increases the mission time.

0 100 200 300 400 500
Time (s)

10
−2

10
−1

10
0

10
1

De
vi

at
io

n
(m

)

Original
DFA
Baseline

Figure 18: Comparison of control performance on Jackal
UGV, with the deviation averaged over a window of 10.

Figure 18 plots the localization errors over time of one test
run on Jackal UGV. We see that Kairos’s abnormal timing de-
tection and handling mechanism can significantly reduce the
magnitude of intermittent computational errors, from ∼ 1m
level to ∼ 10cm level. In this case, nearly one-third of the
frames are dropped under high system overload, preventing
the software from using data with abnormal timings and avoid-
ing erroneous computational results. Aborting or skipping
data also slows the robot’s movement, reducing collision risks
but increasing mission time by 56.8%. This policy may not
suit hard real-time systems with strict deadline requirements.
However, it effectively reduces adverse control outcomes in
soft real-time systems.

7 Discussion and Limitation

Expressing Real-time Computing Constructs using DFA.
DFA approaches timing assurance from a data-flow perspec-
tive, providing a more intuitive mechanism to express, de-
tect, and mitigate timing constraint violations. However, to
leverage this system coherently with existing constructions of
real-time systems, DFA has to be able to express traditional
real-time primitives. This will allow developers to build on
top of the extensive advancements in real-time theory from
the past several decades using the DFA-expressed real-time
primitives. There are two categories of real-time computing
primitives. The first category is execution time constraints,
which specify the bounds of the execution period between two
statements in the program. With Kairos, developers can use
the statements freshness(var, delay, abort) and freshness(var,
delay, policy) as firm and soft deadline specifications, where
var is the task’s output and delay is the deadline. The second

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 457

category is synchronization primitives, which specify the or-
der of shared data accesses among multiple real-time threads.
This can be expressed by strictly ordering the timing of two
data flows using statements such as consistency(write_var,
read_var, 0, policy), where read_var and write_var are SSA
variables in read and written by different concurrent threads.
This annotation will ensure that the write operation occurs
before the read operation.
Manual Efforts. While Kairos provides tools for profiling
through dynamic analysis, the search space for where and
what temporal constraints to include is often prohibitively
large. As a result, the automated tool may take a long time to
identify the appropriate temporal policy. Developer guidance
with some manual annotations can quickly narrow down this
search space. Furthermore, once a policy is found, deploying
it in a safety-critical system may require re-validation or even
re-certification of the target system.
Multiple System Components in Violation Handling.
Kairos requires seamless collaboration between the software
instrumentation and multiple components across different
scheduling layers for effective violation mitigation. This inter-
dependency poses two limitations. First one is on reliability,
as failures in one part can affect the entire system. Second
one is maintainability, as migrating to different platforms may
require substantial engineering efforts. However, the modular-
ized design of detection and mitigation of temporal violations
allows Kairos to integrate with other existing detection or
mitigation techniques. Additionally, the infrastructure that
bridges the semantic gap between different abstraction layers
also reduces the engineering effort needed to build cross-layer
timing mitigation.
Generality of DFA. While DFA is designed for cyber-
physical systems, the concept of imposing temporal expecta-
tion on data flow generally applies to broader classes of com-
puting, including conventional cyber-only environments such
as data centers. For example, DFA’s timing constraints on
data usage can be adapted to systems with non-determinism
to ensure logical correctness, such as the order of input events
in distributed systems [74]. It is also possible to leverage DFA
to track computation progress through the lens of data flow in
distributed workloads.

8 Related Work

Timing Semantics in Programming Model. In data stream-
ing systems, there have been efforts that incorporate timing
information into the programming model to represent logical
points, such as logic timestamps or watermarks [30,74,88,92].
This facilitates the coordination of computation among dis-
tributed nodes. Such extension of timing information on data-
flow graphs inspired our design. However, these systems are
designed for massive parallel data processing, rather than the
cyber-physical timing alignment.

In real-time computing, several programming models have
been proposed to react to timing violations [42,44,55,76,87].
In particular, Timed C [76] is a dialect of C that allows the
specification of soft and firm real-time constraints. However,
compared to these works, DFA introduces a design approach
that focuses on the temporal policy on data flows, which
builds on top of the cyber-physical control loop abstraction,
allowing the detection and mitigation of cyber-physical state
(data) misalignment.

Cross-layer Scheduling. There is a large body of work that
focuses on cross-layer scheduling. However, existing works
often target specific hardware [40, 58, 78, 95], such as NICs.
Furthermore, many target server platforms have abundant
computation power, thus these solutions may not translate
well to resource-constrained embedded systems. Notably, sim-
ilar to Kairos, Syrup [60] offers programmable abstractions
and interfaces for custom scheduling policies. However, it
focuses on the rapid deployment of customized schedulers,
rather than on enabling cross-layer scheduling actions.

Cross-layer scheduling has also been studied in the real-
time community in the context of compositional schedul-
ing [51, 83, 93]. However, deployment of these techniques
often requires the target system to be rigorously modeled and
deployed as real-time tasks, which may not always fit some
of the existing software architectures for CPS.

9 Conclusion

In this paper, we presented data-flow availability, a concept
that aims to define temporal policy for data-flow in real-time
safety-critical cyber-physical systems. Through a bug study
of 189 issues over 7 representative CPS software, three key
temporal properties were extracted concerning the alignment
of cyber states and physical states in time. To allow for the
concrete expression of temporal expectation, we augment
data-flow with timing constraints, captured by TDFG. To
realize the concept in system, we design and develop Kairos
that detects temporal violations by embedding the policy as
checks in the application and mitigates them via a cross-layer
scheduling infrastructure. Lastly, the system is evaluated on
three CPS platforms for feasibility.

Acknowledgment

We express our gratitude to the anonymous reviewers and
shepherd for their insightful feedback. We also thank Sanjoy
Baruah and Ron Cytron for their valuable discussions. This
work was partially supported by the NSF (CNS-2238635) and
Intel.

458 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Google cartographer ros for the toyota hsr. https://
google-cartographer-ros-for-the-toyota-hsr.
readthedocs.io/en/latest/. Accessed: 2024-04-
18.

[2] Moveit. https://github.com/ros-planning/
moveit. Accessed: 2023-04-15.

[3] Orb-slam2. https://github.com/raulmur/ORB_
SLAM2. Accessed: 2023-04-15.

[4] Orb-slam3 github. https://github.com/
UZ-SLAMLab/ORB_SLAM3. Accessed: 2023-04-15.

[5] Ros navigation. https://github.com/
ros-planning/navigation. Accessed: 2023-04-15.

[6] Ros navigation stack. https://github.com/
ros-planning/navigation. Accessed: 2023-10-04.

[7] Ros rcl. https://github.com/ros2/rcl. Accessed:
2023-04-15.

[8] Cartographer #153 compute the common start
time per trajectory. https://github.com/
cartographer-project/cartographer/pull/153,
2016. Accessed: 2023-5-13.

[9] Cartographer #8 adds rate timer. https://github.
com/cartographer-project/cartographer/pull/
8, 2016. Accessed: 2023-05-22.

[10] Cartographer #242 improve 2d velocity esti-
mation to be less fragile to poor data timing.
https://github.com/cartographer-project/
cartographer/issues/242, 2017. Accessed:
2023-05-24.

[11] Apollo #4492 timestamp correction in conti_radar.
https://github.com/ApolloAuto/apollo/
issues/4492, 2018. Accessed: 2024-05-20.

[12] Cartographer #1033 store timestamp of the latest
range data in submap*d. https://github.com/
cartographer-project/cartographer/pull/
1033, 2018. Accessed: 2023-05-22.

[13] Cartographer #1275 add metrics: real time ra-
tio and cpu time ratio. https://github.com/
cartographer-project/cartographer/pull/
1275, 2018. Accessed: 2023-05-13.

[14] Cartographer #1495 add serialization for times-
tampedtransform. https://github.com/
cartographer-project/cartographer/pull/
1495, 2019. Accessed: 2023-05-13.

[15] Moveit #1299 preempt trajectory execution if one con-
troller aborts. https://github.com/ros-planning/
moveit/issues/1299, 2019. Accessed: 2023-05-22.

[16] Ros 2 rclcpp #694 fixup time. https://github.com/
ros2/rclcpp/pull/694, 2019. Accessed: 2023-11-
22.

[17] Autoware.auto #1002 add predict/update func-
tions receiving timestamp to kalman filter.
https://gitlab.com/autowarefoundation/
autoware.auto/AutowareAuto/-/issues/1002,
2020. Accessed: 2023-05-22.

[18] Autoware.auto #65 ros 2 and real-time.
https://gitlab.com/autowarefoundation/
autoware.auto/AutowareAuto/-/issues/65, 2020.
Accessed: 2023-05-22.

[19] Moveit #232 fix race conditions when updating plan-
ningscene. https://github.com/ros-planning/
moveit/pull/232, 2020. Accessed: 2023-05-22.

[20] Moveit #2395 fix pose tracking race condition. https:
//github.com/ros-planning/moveit/pull/2395,
2020. Accessed: 2023-05-22.

[21] Orb-slam2 #946 time stamps are not used in mo-
tion model part of tracking. https://github.com/
raulmur/ORB_SLAM2/issues/946, 2020. Accessed:
2023-05-22.

[22] Ros 2 rclcpp #1121 lock-order-inversion (potential dead-
lock). https://github.com/ros2/rclcpp/issues/
1121, 2020. Accessed: 2023-05-23.

[23] Autoware.auto #605 record replay_planner
does not continuously update the trajectory.
https://gitlab.com/autowarefoundation/
autoware.auto/AutowareAuto/-/issues/605,
2021. Accessed: 2023-05-22.

[24] Autoware.auto #821 detect when nodes’ in-
coming messages are skipped. https:
//gitlab.com/autowarefoundation/autoware.
auto/AutowareAuto/-/issues/821, 2021. Ac-
cessed: 2023-05-22.

[25] Autoware.auto #980 updated ne raptor interface to
send messages periodically. https://gitlab.
com/autowarefoundation/autoware.auto/
AutowareAuto/-/merge_requests/980/diffs,
2021. Accessed: 2023-05-22.

[26] Ros 2 rclcpp #1679 action client feedback callback
does not reliably trigger. https://github.com/ros2/
rclcpp/issues/1679, 2021. Accessed: 2023-05-22.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 459

https://google-cartographer-ros-for-the-toyota-hsr.readthedocs.io/en/latest/
https://google-cartographer-ros-for-the-toyota-hsr.readthedocs.io/en/latest/
https://google-cartographer-ros-for-the-toyota-hsr.readthedocs.io/en/latest/
https://github.com/ros-planning/moveit
https://github.com/ros-planning/moveit
https://github.com/raulmur/ORB_SLAM2
https://github.com/raulmur/ORB_SLAM2
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/ros-planning/navigation
https://github.com/ros-planning/navigation
https://github.com/ros-planning/navigation
https://github.com/ros-planning/navigation
https://github.com/ros2/rcl
https://github.com/cartographer-project/cartographer/pull/153
https://github.com/cartographer-project/cartographer/pull/153
https://github.com/cartographer-project/cartographer/pull/8
https://github.com/cartographer-project/cartographer/pull/8
https://github.com/cartographer-project/cartographer/pull/8
https://github.com/cartographer-project/cartographer/issues/242
https://github.com/cartographer-project/cartographer/issues/242
https://github.com/ApolloAuto/apollo/issues/4492
https://github.com/ApolloAuto/apollo/issues/4492
https://github.com/cartographer-project/cartographer/pull/1033
https://github.com/cartographer-project/cartographer/pull/1033
https://github.com/cartographer-project/cartographer/pull/1033
https://github.com/cartographer-project/cartographer/pull/1275
https://github.com/cartographer-project/cartographer/pull/1275
https://github.com/cartographer-project/cartographer/pull/1275
https://github.com/cartographer-project/cartographer/pull/1495
https://github.com/cartographer-project/cartographer/pull/1495
https://github.com/cartographer-project/cartographer/pull/1495
https://github.com/ros-planning/moveit/issues/1299
https://github.com/ros-planning/moveit/issues/1299
https://github.com/ros2/rclcpp/pull/694
https://github.com/ros2/rclcpp/pull/694
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/1002
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/1002
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/65
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/65
https://github.com/ros-planning/moveit/pull/232
https://github.com/ros-planning/moveit/pull/232
https://github.com/ros-planning/moveit/pull/2395
https://github.com/ros-planning/moveit/pull/2395
https://github.com/raulmur/ORB_SLAM2/issues/946
https://github.com/raulmur/ORB_SLAM2/issues/946
https://github.com/ros2/rclcpp/issues/1121
https://github.com/ros2/rclcpp/issues/1121
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/605
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/605
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/821
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/821
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/issues/821
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/merge_requests/980/diffs
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/merge_requests/980/diffs
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto/-/merge_requests/980/diffs
https://github.com/ros2/rclcpp/issues/1679
https://github.com/ros2/rclcpp/issues/1679

[27] Ros 2 rcl #967 problems with arguments
in rcl_timer_exchange_period api. https:
//github.com/ros2/rcl/issues/967, 2022.
Accessed: 2023-05-22.

[28] Ros actionlib. http://wiki.ros.org/actionlib.
Accessed: 2022-10-10.

[29] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebas-
tian Altmeyer, and Robert I Davis. An empirical survey-
based study into industry practice in real-time systems.
In 2020 IEEE Real-Time Systems Symposium (RTSS),
pages 3–11. IEEE, 2020.

[30] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Rafael J Fernández-Moctezuma, Reuven
Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, et al. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. 2015.

[31] Amazon airprime. https://www.
aboutamazon.com/news/transportation/
amazon-prime-air-drone-delivery-mk30-photos.
Accessed: 2023-11-30.

[32] Amazon astro. https://www.
aboutamazon.com/news/devices/
meet-astro-a-home-robot-unlike-any-other.
Accessed: 2022-01-10.

[33] Björn Andersson, Sanjoy Baruah, and Jan Jonsson.
Static-priority scheduling on multiprocessors. In Pro-
ceedings 22nd IEEE Real-Time Systems Symposium
(RTSS 2001)(Cat. No. 01PR1420), pages 193–202.
IEEE, 2001.

[34] Autoware Foundation. Autonomous valet parking
demonstration. https://autowarefoundation.
gitlab.io/autoware.auto/AutowareAuto/
avpdemo.html, 2020. Accessed: 2023-12-05.

[35] Autoware Foundation. Past, present, and the
future of autoware. https://autoware.org/
past-present-and-the-future-of-autoware/,
2023. Accessed: 2024-04-18.

[36] Autoware.auto project. https://
autowarefoundation.gitlab.io/autoware.auto/
AutowareAuto/. Accessed: 2022-08-15.

[37] Baidu. Apollo self-driving project. https://github.
com/ApolloAuto/apollo. Accessed: 2022-08-15.

[38] Baidu. Apollo #9433: Cyberrt, coroutine to thread map-
ping, 2019. Accessed: 2023-05-22.

[39] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie. The pre-
emptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In 2012 24th
Euromicro Conference on Real-Time Systems, pages
145–154, 2012.

[40] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
{IX}: a protected dataplane operating system for high
throughput and low latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, 2014.

[41] Tobias Blass, Arne Hamann, Ralph Lange, Dirk Ziegen-
bein, and Björn B Brandenburg. Automatic latency
management for ros 2: Benefits, challenges, and open
problems. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages
264–277. IEEE, 2021.

[42] Gregory Bollella and James Gosling. The real-time
specification for java. Computer, 33(6):47–54, 2000.

[43] Alan Burns. Mixed criticality systems-a review.

[44] Alan Burns and Andrew J Wellings. Real-time systems
and programming languages: Ada 95, real-time Java,
and real-time POSIX. Pearson Education, 2001.

[45] Giorgio Buttazzo and Luca Abeni. Adaptive workload
management through elastic scheduling. Real-Time Sys-
tems, 23:7–24, 2002.

[46] Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni.
Elastic Task Model for Adaptive Rate Control. In IEEE
Real-Time Systems Symposium, 1998.

[47] Google cartographer. https://github.com/
cartographer-project/cartographer. Accessed:
2022-11-21.

[48] Clearpath Robotics. Additional simulation worlds.
Jackal Tutorials 0.6.0 Documentation, 2020. Accessed:
2023-12-05.

[49] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N
Wegman, and F Kenneth Zadeck. Efficiently computing
static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 13(4):451–490, 1991.

[50] davetcoleman. Moveit #294 isvalidvelocitymove() for
checking maximum velocity between two robot states.
https://github.com/ros-planning/moveit/
pull/294, 2016. Accessed: 2023-11-22.

460 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/ros2/rcl/issues/967
https://github.com/ros2/rcl/issues/967
http://wiki.ros.org/actionlib
https://www.aboutamazon.com/news/transportation/amazon-prime-air-drone-delivery-mk30-photos
https://www.aboutamazon.com/news/transportation/amazon-prime-air-drone-delivery-mk30-photos
https://www.aboutamazon.com/news/transportation/amazon-prime-air-drone-delivery-mk30-photos
https://www.aboutamazon.com/news/devices/meet-astro-a-home-robot-unlike-any-other
https://www.aboutamazon.com/news/devices/meet-astro-a-home-robot-unlike-any-other
https://www.aboutamazon.com/news/devices/meet-astro-a-home-robot-unlike-any-other
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/avpdemo.html
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/avpdemo.html
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/avpdemo.html
https://autoware.org/past-present-and-the-future-of-autoware/
https://autoware.org/past-present-and-the-future-of-autoware/
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://github.com/cartographer-project/cartographer
https://github.com/cartographer-project/cartographer
https://github.com/ros-planning/moveit/pull/294
https://github.com/ros-planning/moveit/pull/294

[51] Arvind Easwaran, Madhukar Anand, and Insup Lee.
Compositional analysis framework using edp resource
models. In 28th IEEE International Real-Time Systems
Symposium (RTSS 2007), pages 129–138. IEEE, 2007.

[52] Facebook Engineering. Slam: Bringing art to
life through technology. https://engineering.
fb.com/2017/09/21/virtual-reality/
slam-bringing-art-to-life-through-technology/,
September 2017. Accessed: 2024-04-18.

[53] Autoware Foundation. Autoware.auto. Accessed: 2023-
04-15.

[54] Gaschler. Cartographer #936 gracefully handle
time-overlapping point clouds. https://github.com/
cartographer-project/cartographer/pull/936,
2018. Accessed: 2023-11-22.

[55] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E
Gonzalez, and Ion Stoica. D3: a dynamic deadline-
driven approach for building autonomous vehicles. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 453–471, 2022.

[56] Google. Cartographer. https://github.com/
googlecartographer/cartographer. Accessed:
2023-04-15.

[57] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. ghost:
Fast & flexible user-space delegation of linux schedul-
ing. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 588–604,
2021.

[58] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanopu: A nanosecond net-
work stack for datacenters. In 15th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 21), pages 239–256, 2021.

[59] Jackal ugv. https://clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/. Ac-
cessed: 2021-07-30.

[60] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-defined scheduling
across the stack. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
605–620, 2021.

[61] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya
Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham
Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya

Azumi. Autoware on board: Enabling autonomous vehi-
cles with embedded systems. In 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems
(ICCPS), pages 287–296. IEEE, 2018.

[62] Colin King. stress-ng. https://wiki.ubuntu.com/
Kernel/Reference/stress-ng. Accessed: May 20,
2022.

[63] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transfor-
mation. In International Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[64] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan
Lu, and Haryadi S Gunawi. Taxdc: A taxonomy of non-
deterministic concurrency bugs in datacenter distributed
systems. In Proceedings of the twenty-first international
conference on architectural support for programming
languages and operating systems, pages 517–530, 2016.

[65] Ao Li, Marion Sudvarg, Han Liu, Zhiyuan Yu, Chris
Gill, and Ning Zhang. Polyrhythm: Adaptive tuning of
a multi-channel attack template for timing interference.
In 2022 IEEE Real-Time Systems Symposium (RTSS),
pages 225–239. IEEE, 2022.

[66] Ao Li, Jinwen Wang, Sanjoy Baruah, Bruno Sinopoli,
and Ning Zhang. An empirical study of performance
interference: Timing violation patterns and impacts. In
2024 Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE, 2024.

[67] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In Proceedings
of the 13th international conference on Architectural
support for programming languages and operating sys-
tems, pages 329–339, 2008.

[68] Steven Macenski, Tully Foote, Brian Gerkey, Chris
Lalancette, and William Woodall. Robot operating sys-
tem 2: Design, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074, 2022.

[69] Martina Maggio, Arne Hamann, Eckart Mayer-John, and
Dirk Ziegenbein. Control-system stability under con-
secutive deadline misses constraints. In 32nd euromicro
conference on real-time systems (ECRTS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[70] Claire Maiza, Hamza Rihani, Juan M Rivas, Joël
Goossens, Sebastian Altmeyer, and Robert I Davis. A
survey of timing verification techniques for multi-core
real-time systems. ACM Computing Surveys (CSUR),
52(3):1–38, 2019.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 461

https://engineering.fb.com/2017/09/21/virtual-reality/slam-bringing-art-to-life-through-technology/
https://engineering.fb.com/2017/09/21/virtual-reality/slam-bringing-art-to-life-through-technology/
https://engineering.fb.com/2017/09/21/virtual-reality/slam-bringing-art-to-life-through-technology/
https://github.com/cartographer-project/cartographer/pull/936
https://github.com/cartographer-project/cartographer/pull/936
https://github.com/googlecartographer/cartographer
https://github.com/googlecartographer/cartographer
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

[71] Pau Marti, Josep M Fuertes, Gerhard Fohler, and Krithi
Ramamritham. Jitter compensation for real-time control
systems. In Proceedings 22nd IEEE Real-Time Systems
Symposium (RTSS 2001)(Cat. No. 01PR1420), pages
39–48. IEEE, 2001.

[72] Till Menzel, Gerrit Bagschik, and Markus Maurer. Sce-
narios for development, test and validation of automated
vehicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1821–1827. IEEE, 2018.

[73] David Mosberger and Larry L Peterson. Making paths
explicit in the scout operating system. In OSDI, vol-
ume 96, pages 153–167, 1996.

[74] Derek G Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455, 2013.

[75] Picknik robotics wins space force, nasa con-
tracts. https://www.therobotreport.com/
picknik-robotics-wins-space-force-nasa-contracts/.
Accessed: 2024-04-18.

[76] Saranya Natarajan and David Broman. Timed c: An
extension to the c programming language for real-time
systems. In 2018 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 227–
239. IEEE, 2018.

[77] José Carlos Palencia and M González Harbour. Schedu-
lability analysis for tasks with static and dynamic offsets.
In Proceedings 19th IEEE Real-Time Systems Sympo-
sium (Cat. No. 98CB36279), pages 26–37. IEEE, 1998.

[78] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[79] Cartographer Project. Fix division
by velocity. https://github.com/
cartographer-project/cartographer/commit/
b4b83405ce4009ea0c1ac22c7ab9edeeb9d48a42,
2017. Commit b4b834.

[80] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, Andrew Y Ng,
et al. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3,
page 5. Kobe, Japan, 2009.

[81] ROBOTIS. Turtlebot3 simulation. https:
//emanual.robotis.com/docs/en/platform/
turtlebot3/simulation/#gazebo-simulation.
Accessed: 2024-05-20.

[82] Utsav Sethi, Haochen Pan, Shan Lu, Madanlal Musu-
vathi, and Suman Nath. Cancellation in systems: An
empirical study of task cancellation patterns and failures.
In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 127–141,
2022.

[83] Insik Shin and Insup Lee. Compositional real-time
scheduling framework. In 25th IEEE International Real-
Time Systems Symposium, pages 57–67. IEEE, 2004.

[84] Marion Sudvarg, Chris Gill, and Sanjoy Baruah. Linear-
time admission control for elastic scheduling. Real-Time
Systems, 57(4):485–490, 10 2021.

[85] Marion Sudvarg, Ao Li, Daisy Wang, Sanjoy Baruah,
Jeremy Buhler, Chris Gill, Ning Zhang, and Pontus Ek-
berg. Elastic Scheduling for Harmonic Task Systems.
In 2024 Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS). IEEE, 2024.

[86] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the
25th international conference on compiler construction,
pages 265–266, 2016.

[87] Milijana Surbatovich, Limin Jia, and Brandon Lucia.
Automatically enforcing fresh and consistent inputs in
intermittent systems. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation, pages 851–866,
2021.

[88] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas
Fegaras. Exploiting punctuation semantics in continu-
ous data streams. IEEE Transactions on Knowledge and
Data Engineering, 15(3):555–568, 2003.

[89] Turtlebot3. https://emanual.robotis.com/docs/
en/platform/turtlebot3/overview/. Accessed:
2022-09-10.

[90] Steve Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time assur-
ance. In 28th IEEE international real-time systems
symposium (RTSS 2007), pages 239–243. IEEE, 2007.

[91] Nils Vreman, Anton Cervin, and Martina Maggio. Sta-
bility and performance analysis of control systems sub-
ject to bursts of deadline misses. In 33rd Euromicro Con-
ference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[92] Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason
Gustafson, Boyang Chen, Matthias J Sax, John Roesler,
Sophie Blee-Goldman, Bruno Cadonna, Apurva Mehta,

462 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.therobotreport.com/picknik-robotics-wins-space-force-nasa-contracts/
https://www.therobotreport.com/picknik-robotics-wins-space-force-nasa-contracts/
https://github.com/cartographer-project/cartographer/commit/b4b83405ce4009ea0c1ac22c7ab9edeeb9d48a42
https://github.com/cartographer-project/cartographer/commit/b4b83405ce4009ea0c1ac22c7ab9edeeb9d48a42
https://github.com/cartographer-project/cartographer/commit/b4b83405ce4009ea0c1ac22c7ab9edeeb9d48a42
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

et al. Consistency and completeness: Rethinking dis-
tributed stream processing in apache kafka. In Proceed-
ings of the 2021 International Conference on Manage-
ment of Data, pages 2602–2613, 2021.

[93] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and
Ning Zhang. Rt-tee: Real-time system availability for
cyber-physical systems using arm trustzone. In 2022
IEEE Symposium on Security and Privacy (SP), pages
352–369. IEEE, 2022.

[94] Waymo driveless service in phoenix.
https://blog.waymo.com/2020/10/
waymo-is-opening-its-fully-driverless.html.
Accessed: 2022-01-10.

[95] Chuanyu Xue, Tianyu Zhang, Yuanbin Zhou, Mark
Nixon, Andrew Loveless, and Song Han. Real-time
scheduling for 802.1qbv time-sensitive networking (tsn):
A systematic review and experimental study. In 2024
IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE, 2022.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 463

https://blog.waymo.com/2020/10/waymo-is-opening-its-fully-driverless.html
https://blog.waymo.com/2020/10/waymo-is-opening-its-fully-driverless.html

	Introduction
	Background
	Real-world Timing Bug Study
	Timing Specification Bugs
	Missing Time Constraints (What to Check)
	Inadequate Timing Constraints (How to Check)

	Timing Enforcement Bugs
	Summary

	Data-flow Availability
	Timed Data-flow Graph
	Timing Constraints in TDFG

	Design and Implementation of Kairos
	DFA-enabled Application
	Timing Constraint Violation Mitigation

	Evaluation
	DFA in Solving Real-world Bugs
	Cost and Efficacy of Kairos
	Effectiveness in Improving Safety

	Discussion and Limitation
	Related Work
	Conclusion

