
This paper is included in the Proceedings of the 
18th USENIX Symposium on Operating Systems 

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the 
18th USENIX Symposium on Operating 
Systems Design and Implementation 

is sponsored by

nnScaler: Constraint-Guided Parallelization 
Plan Generation for Deep Learning Training

Zhiqi Lin, University of Science and Technology of China; Youshan Miao, 
Quanlu Zhang, Fan Yang, and Yi Zhu, Microsoft Research; Cheng Li, 

University of Science and Technology of China; Saeed Maleki, xAI; Xu Cao, 
Ning Shang, Yilei Yang, Weijiang Xu, and Mao Yang, Microsoft Research; 

Lintao Zhang, BaseBit Technologies; Lidong Zhou, Microsoft Research
https://www.usenix.org/conference/osdi24/presentation/lin-zhiqi



nnScaler: Constraint-Guided Parallelization Plan Generation for
Deep Learning Training

Zhiqi Lin†∗, Youshan Miao‡, Quanlu Zhang‡, Fan Yang‡, Yi Zhu‡, Cheng Li†, Saeed Maleki♢∗,
Xu Cao‡, Ning Shang‡, Yilei Yang‡, Weijiang Xu‡, Mao Yang‡, Lintao Zhang△∗, Lidong Zhou‡

†University of Science and Technology of China,
‡Microsoft Research, ♢xAI, △BaseBit Technologies

Abstract
With the growing model size of deep neural networks (DNN),
deep learning training is increasingly relying on handcrafted
search spaces to find efficient parallelization execution plans.
However, our study shows that existing search spaces exclude
plans that significantly impact the training performance of
well-known DNN models (e.g., AlphaFold2) under important
settings, such as when handling large embedding tables in
large language models.

To address this problem, we propose nnScaler, a frame-
work that generates efficient parallelization plans for deep
learning training. Instead of relying on the existing search
space, nnScaler advocates a more general approach that
empowers domain experts to construct their own search
space through three primitives, op-trans, op-assign, and
op-order, which capture model transformation and the
temporal-spatial scheduling of the transformed model of any
parallelization plans. To avoid space explosion, nnScaler al-
lows the application of constraints to those primitives during
space construction. With the proposed primitives and con-
straints, nnScaler can compose existing search spaces as well
as new ones. Experiments show that nnScaler can find new
parallelization plans in new search spaces that achieve up
to 3.5× speedup compared to solutions such as DeepSpeed,
Megatron-LM, and Alpa for popular DNN models like Swin-
Transformer and AlphaFold2.

1 Introduction

Deep neural networks (DNN) have shown remarkable suc-
cess [2, 27, 35]. However, training a large DNN model today
requires resources far exceeding the capacity of a single com-
puting device, such as a GPU. Therefore, a common practice
has been to partition a large model, schedule the partitioned
model to a large number of GPUs, and then construct a well-
coordinated execution plan across the GPUs (i.e., a paral-
lelization plan) for deep learning training [24, 26, 39].

∗This work was done when the authors were with Microsoft Research.

It is challenging to find an efficient parallelization plan
for DNN model training. A DNN model is often represented
as a data flow graph (DFG) that can consist of thousands of
nodes [56], with each node representing a DNN operator, e.g.,
matrix multiplication. A parallelization plan requires deciding
on a partitioning choice for each operator, which can have
many different partition choices [26]. Additionally, each par-
titioning choice for all operators in the DFG further requires
the selection of a spatial-temporal scheduling scheme from
many scheduling options designed for thousands of GPUs.
This creates a vast search space with prohibitive combina-
torial complexity for identifying an effective parallelization
plan that dictates model partitioning and scheduling.

Due to the immense search space, model training often de-
pends on carefully designed parallelization plans. For exam-
ple, Megatron-LM [50] incorporates the well-known, param-
eterized parallelization plans known as data/tensor/pipeline
parallelism to support GPT-like models (§2). This approach
essentially constructs a few well-studied classes of paral-
lelization plans within the large search space. More recently,
Alpa [65] organized parallelization plan choices into a two-
level hierarchical space, where the system first searches a
parallelization plan on pipeline (inter-operator) parallelism
and then on tensor (intra-operator) parallelism within each
pipeline stage. This approach offers a larger search space and
so often results in better parallelization plans. However, exist-
ing search spaces exclude several configurations in the paral-
lelization plans (§2, §4.2). Our study shows that this limitation
significantly impacts training performance on well-known
models such as Swin-Transformer [35] and AlphaFold2 [27]
(§8).

While existing work studies specific parallelization plans
or searches within a carefully-crafted search space, we argue
that domain experts should be empowered with the capability
to compose their own search space. Given the wide variety
of model architectures and the expansive domain knowledge
of an expert, this approach could expose more paralleliza-
tion opportunities. To this end, we propose three primitives,
op-trans, op-assign, and op-order, that enable the com-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    347



position of search space with arbitrary model partitioning
(op-trans), as well as spatial (op-assign) and/or temporal
scheduling (op-order) of the partitioned model. We show
that existing parallelization plans or search spaces can be ele-
gantly expressed by the three primitives with constraints on
model partitioning and spatial-temporal scheduling. More im-
portantly, with the new constraints, searching within the space
composed by the three primitives can lead to new paralleliza-
tion plans that significantly outperform those found in existing
search spaces or specific parallelization plans. Essentially, the
three primitives, along with the necessary constraints, repre-
sent a more general abstraction to characterize parallelization
plans.

Based on the above insight, we built nnScaler, a framework
that facilitates the search, generation, and optimization of par-
allelization plans for deep learning training. Domain experts
first use nnScaler to construct the desired search space for
parallelization plans through the three primitives (§3). Specifi-
cally, given a model, op-trans designates how each operator
can be partitioned; op-assign denotes the placement of each
partitioned operator on GPUs; and op-order specifies the
preferred temporal order across multiple operators when they
are assigned to the same GPU.

nnScaler also allows the application of constraints to
the primitives (§4). An example of a constraint applied to
op-trans is one that only evenly splits an operator into 2, 4,
8, and 16 partitions. The use of constraints, especially those
leveraging the characteristics of DNN models (e.g., the large
embedding table in §4.2), greatly reduces the search space.
As a result, with proper search policies applied to such a
constrained search space (§5), nnScaler can discover uncon-
ventional parallelization plans that significantly outperform
existing ones.

Given the sophisticated model partitioning and spatial-
temporal scheduling enabled by nnScaler, a parallelization
plan may deviate significantly from the original dataflow
graph representing the DNN model. To ensure the correct-
ness of a generated plan, nnScaler introduces vTensor-pTensor
(§6), a tensor abstraction that tracks the “lineage” across op-
erators before and after partitioning. This allows nnScaler to
maintain correct data dependency during graph partitioning
and detect cycles in the graph that could lead to deadlocks,
thereby excluding invalid plans. Moreover, vTensor-pTensor
also enables automatic communication adaptation when an
operator is split and assigned across multiple devices. Finally,
nnScaler lowers the discovered parallelization plan into exe-
cutable code, enabling parallel deep learning training on each
device.

Implemented based on PyTorch [43], nnScaler demon-
strates great power and flexibility, facilitating the discovery
of new parallelization plans (§4.2, §8) that achieve up to
3.5× speedup over existing parallel training systems, such
as DeepSpeed [47], Megatron-LM [39], and Alpa [65], for
popular deep learning models in computer vision (Swin-

Transformer [34]), language translation (T5 [45]), and bi-
ological analysis (AlphaFold2 [27]). nnScaler has been used
to develop, train, and finetune next generation deep learning
models across Microsoft. The code is available in [5].

2 Background and Motivation

Search space for parallelization plans. A parallelization
plan refers to a training execution plan that specifies the model
partitioning and corresponding spatial-temporal scheduling
scheme on a given set of GPUs. Training a large model
with hundreds of billions of parameters requires thousands of
GPUs [9]. A large model may consist of approximately 100
layers, each representing a sub-neural architecture (e.g., atten-
tion [58]) with tens of operators handling tensors with tens of
thousands of dimension size (e.g., the hidden dimension). The
vast partitioning choices (for a large model) and the enormous
spatial-temporal scheduling choices (on a large number of
GPUs) combine to create a prohibitively large, combinatorial
search space for parallelization plans.

Existing approaches rely on well-studied, handcrafted par-
allelization plans or search space to address this problem. For
example, data parallelism, a special parallelization plan, par-
titions an operator along the batch dimension of its associated
tensors. These partitioned operators are then replicated across
multiple devices (GPUs) and shared with the same model
parameters (weights) to enable concurrent model training.

Tensor parallelism is a class of more general plans that
permit the partitioning on dimensions not limited to the batch
dimension [26, 50, 59]. This approach allows the partitioned
operators to be distributed across different devices, accommo-
dating models too large to fit into a single device.

As a large DNN model typically consists of multiple layers,
it is also possible to partition a model into multiple stages,
with each stage containing one or several layers. The stages
are placed on different devices and executed in a pipeline,
hence the name pipeline parallelism. To improve pipeline
efficiency, a batch of training samples is further divided into
micro-batches, and are then executed following a carefully
designed temporal order [18, 24, 30].

The aforementioned parallelism schemes can be combined
into a new scheme, known as 3D parallelism, to further im-
prove training efficiency. Megatron-LM [39] incorporates 3D
parallelism, which integrates data, tensor, and pipeline paral-
lelism in a parameterized manner to support GPT-like models.
Given N devices, Megatron-LM partitions a model into K
stages, with each stage divided into M partitions. The model
is executed using K-stage pipeline parallelism and M-way
tensor parallelism. For a sufficiently large N, Megatron-LM
can also employ ( N

M∗K )-way data parallelism to achieve fur-
ther improvement in training performance. 3D parallelism
represents a few well-studied classes of parallelization plans
within the large search space.
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Alpa [65] further generalizes these parallelism schemes
to handcraft a two-level hierarchical search space. This hier-
archy enables the use of efficient searching techniques like
dynamic programming. Alpa has been shown to produce supe-
rior parallelization plans due to its larger search space, i.e., a
combination of SPMD [61] (a generalized tensor-parallelism
space) and pipeline parallelism.

Limitations of existing search space. Although existing
handcrafted parallelization search space is shown effective for
mainstream models with similar model architectures, it relies
on assumptions that simplify the search and construction of
parallelization plans. These simplifications, however, may
exclude promising plans from considerations (§4.2).

In tensor parallelism, it is assumed that partitioned opera-
tors and their corresponding split tensors are distributed across
disjoint devices. For example, to train a vision model with
high fidelity images (e.g., [34]), tensor parallelism splits the
large tensors associated with the large image and distributes
the divided tensors among disjoint devices. This excludes
cases where the split operators are placed on fewer devices,
meaning multiple operators share one device and compute in a
streamlined manner to reduce memory consumption and inter-
device communication costs simultaneously [11] (detailed in
§4.2 and §8).

Pipeline parallelism assumes that the training involves one
forward pass and one backward pass. However, models like
AlphaFold2 [17, 27] require three forward passes coupled
with a single backward pass. This unconventional training
approach renders existing pipeline parallelism [24, 38, 39]
inapplicable.

Pipeline parallelism also assumes that different pipeline
stages are spread across disjoint devices and prohibit any two
stages from sharing the same set of devices through temporal
multiplexing. For example, multi-lingual LLMs [45, 62, 64]
often employ a large embedding table in the early compu-
tational stage in the model. This results in significant GPU
memory consumption (>40%) but small computation utiliza-
tion (<5%). Given the disjoint device assignments in pipeline
parallelism (and also in tensor parallelism), the imbalance in
hardware utilization is unavoidable.

The later handcrafted search spaces (e.g., [61, 65]) that
combine tensor and pipeline parallelism (and others), inherit
these assumptions and, therefore, suffer from the same limi-
tations. This motivated us to design a more flexible method
for space construction that can enable domain experts to find
more effective training plans for their models (§3, §4, §5).

New challenges due to flexibility. Introducing a more
flexible way to construct parallelization plan space brings
new challenges. While existing frameworks like Megatron-
LM [50], Alpa [65], and DeepSpeed [47] only implement
a few well-studied partitioning, scheduling, and communi-
cations schemes that support parallelization plans in well-

Primitives Usage
op-trans(op,algo,n) algo ∈ op.algos()

n ∈ N, natural numbers
op-assign(op,d) d ∈ D, a set of devices
op-order(op1,op2) op1 executes before op2

Table 1: Primitives for parallelization space construction.

understood parallelization spaces, the new space could un-
cover new ways of operator partitioning, new operator schedul-
ing with unconventional communication patterns. Further-
more, more flexible parallelization plans are less studied and
hence could be error-prone. To address the above challenges,
we designed a compiling process to detect and prevent poten-
tial errors in parallelization plans (e.g., cycles in a transformed
DFG), and to generate the runtime code with efficient com-
munication operations for the discovered parallelization plan
(§6).

3 Parallelization Search Space Construction

A parallelization plan can be naturally expressed by the model
partitioning and the spatial-temporal scheduling of the parti-
tioned model. Correspondingly, nnScaler proposes three prim-
itives, op-trans, op-assign, and op-order (summarized in
Table 1), to capture the three aspects of a parallelization plan.
Combined, the primitives can be used to compose any search
space for a parallelization plan given arbitrary models and
accelerator devices.
op-trans. op-trans(op,algo,n) transforms an oper-
ator op into n sub-operators according to a transformation
algorithm algo, selected from the algorithm set correspond-
ing to the type of op. For example, matmul(Ai,k,Bk, j), the
matrix multiplication operator, can be partitioned into two
matmul operators along dimension i of tensor A while repli-
cating tensor B. In fact, most operators can be partitioned
along a certain dimension (e.g., i or k in A or B) of the associ-
ated tensors and the computation of partitioned (sub) opera-
tors would remain the same as that of the original operators.
Based on this observation, nnScaler implements the partition-
ing algorithms for the major operators in most DNN models.
Domain experts can then reuse the desired algorithm via the
algos() interface. nnScaler can also integrate custom trans-
formation algorithms, such as those developed by domain
experts, for any given operator. Note that the transformation
algorithm can be more than just operator partitioning. For
instance, an operator can be augmented by an additional re-
computing operator or a memory-swapping operator to save
memory [11, 23, 28, 41, 53]. In this paper, we use the term
“transformation" and “partitioning" interchangeably.
op-assign. Given a set of devices D and an operator op,
op-assign(op,d) denotes that op will be executed on the
d-th device in D.
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op-order. When non-dependent operators, e.g., op1 and
op2, are assigned to the same device, op-order(op1,op2)
ensures that op1 must execute before op2. Execution order for
non-dependent operators can play a vital role in training per-
formance. For example, in pipeline parallelism, an operator in
a pipeline stage can be partitioned into multiple micro-batches
along the batch dimension. We denote these (sub)operators as
op.mb1, op.mb2, etc., where mbi designates the correspond-
ing microbatch ID. The operators op.mbi can be executed in
an arbitrary order with regard to op.mb j (i̸= j). Nonetheless,
various research shows that once these operators are being
orchestrated carefully in temporal dimension, it is possible
to minimize the pipeline “bubble” [24, 54] to significantly
improve training efficiency.

With the three primitives mentioned above, domain experts
can write Python codes to compose arbitrary search spaces for
parallelization plans given any DNN model. These codes are
not necessarily tied to specific DNN models. Consequently,
nnScaler separates the model codes from the codes related to
search space and search policy. Note that to ease programming
efforts, op in the primitives can represent a sub-graph, where
the primitive applies to each of the operators in the sub-graph.

Due to the flexibility of the primitives and the scale of
large DNN models, the constructed parallelization search
space often contains hundreds and thousands of operators
with combinatorial search complexity. To address this issue,
nnScaler allows domain experts to impose constraints when
applying those primitives. These constraints can significantly
reduce the search space (§4), thereby enabling effective search
methods (§5).

4 Applying Constraints in the Search Space

In nnScaler, constraints are expressed as parameterized argu-
ments to the primitives in Table 1. When all arguments be-
come specific values, the whole space is reduced to a concrete
parallelization plan. Below, we illustrate how well-studied
parallelization plans like data, tensor, and pipeline parallelism
can be expressed by using the three primitives and constraints
(§4.1). Several new constraints that lead to novel paralleliza-
tion plans are discussed in §4.2.

4.1 Constraints for Existing Search Spaces
Constraints for data and tensor parallelism. Table 2 shows
the primitives and the associated constraints for data and ten-
sor parallelism. Both data parallelism and tensor parallelism
partition an operator evenly into n partitions. The partition
is performed along a certain dimension, depicted by algo,
where each partitioned sub-operator is assigned to a distinct
device for concurrent execution, i.e., constraints 2 and 3
in Table 2. Note that data parallelism always partitions along
the batch dimension, hence the selection of algo is more
restricted compared to tensor parallelism.

Primitives Constraints
1 sub-ops = op-trans(op,algo,n) n =| D |
2 op-assign(sub-opi,di) di,d j ∈ D,

di ̸= d j3 op-assign(sub-opj,dj)

Table 2: Constraints for data and tensor parallelisms.

Constraints for pipeline parallelism. Given a device set
D, pipeline parallelism divides a model G in to sub-graphs
Gi (0≤ i <| D |), where i denotes the i-th pipeline stage. And
those sub-graphs will be assigned in disjoint devices, shown
in Table 3.

To minimize the bubble, pipeline parallelism divides a
batch of samples into micro-batches. A sub-graph, denoted
as (Gi,n), operates on the the n-th micro-batch. We further
denote a forward pass subgraph as fGi and a backward pass
subgraph as bGi, the constraints to schedule the well-known
1F1B [24] pipeline parallelism can be summarized in Table 4.

Primitives Constraints
1 op-assign(Gi, di) di,d j ∈ D,

di ̸= d j2 op-assign(Gj, dj)

Table 3: Constraints for dividing a model G into |D| stages.

Primitives Constraints
1 op-order((fGi,m),(fGi,n)) m < n
2 op-order((bGi,m),(bGi,n))

3 op-order((fGi,m+ofst),(bGi,m)) ofst=|D|− i,
m≥ 04 op-order((bGi,m),(fGi,m+ofst+1))

Table 4: Constraints for 1F1B schedule.

As illustrated in Figure 1, Constraints 1 and 2 in Table 4
ensure that: in stage i, the execution order of micro-batches
must be the same for both forward and backward passes. That
is, given any two micro-batches m and n, where m < n, f Gm
should be executed before f Gn ( 1 ). The same applies to
bGm and bGn in the backward pass ( 2 ).

Constraints 3 and 4 in Table 4 specify the subtle schedul-
ing order of 1F1B. They define o f st, the offset with respect
to the current stage. The earlier the stage in the pipeline, the
larger the offset. Therefore, given Gi, the backward pass of
the earlier microbatch should be executed later w.r.t. the for-
ward pass ( 3 ). And the forward pass of the later micro-batch
should be executed in adjacency to the backward pass of the
earlier micro-batch ( 4 ).

The hierarchical combination of tensor parallelism and
pipeline parallelism forms the space of Alpa [65], where ten-
sor parallelism is nested within each stage of pipeline paral-
lelism. This can be constructed by replacing di in the pipeline
constraints in Table 3 with a set of devices Di for each stage.
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Figure 1: The constraints from Table 4 for 1F1B pipeline.

The stage is then applied with the constraints of tensor paral-
lelism within Di. For ease of exposition, the construction of
this handcrafted parallelization space for certain sub-operators
of a model, along with the constraints, is collectively defined
in a general interface named staged_spmd(ops, devices),
to be used later.

4.2 New Constraints

In addition to existing search spaces, domain experts can
apply new constraints to construct customized search spaces
to search for new, more performant parallelization plans for
various models, as we will elaborate next.
Constraints for Swin-Transformer. To enhance capability
in vision tasks, there has been a growing trend to adopt higher
resolution images to train large vision models such as Swin
Transformer [34]. The use of larger images results in larger in-
termediate tensors during training, especially in the attention
(Attn) and feedforward (FF) operators (for transformer-based
models). It requires larger memory that a single GPU cannot
accommodate.

Tensor parallelism is the standard practice used to address
this issue. Given a pipeline, operators in Attn and FF are split
and assigned to |Mi| devices, where Mi denotes the set of
devices accommodating operators in the i-th stage. Operators
split by tensor parallelism are placed disjointedly, and so each
device holds only one split operator. However, we observe
that sometimes multiple split operators can share a single de-
vice and compute in a streamlined manner, resulting in fewer
devices required for each pipeline stage and less memory con-
sumption. Although the streamlined computing of multiple
split operators may slow down the computing process, the
reduced communications across fewer devices can lower cost
and speed up the overall process.

Given any operator op from Attn and FF in stage i, let
sub_op to be any transformed sub-operator of op. Suppose we
allow C of such sub_ops to share one device, leading to a set
of devices Di assigned to stage i operators, where |Di|< |Mi|.
The constraints are as specified in Table 5. The rest operators
can be described by the existing search space, namely the one
defined in [65]. Note that C is a hyper-parameter where the
value can be searched by the policy in §5.
Constraints for T5. Multi-lingual models such as T5 [45]
often employ a large embedding table, say E, which contains

Operators Primitives Constraints

op ∈
{Attn ∪ FF}

sub_ops =
op-trans(op,algo,n)

n =C· | Di |

op-assign(sub_opji,di)
0≤ j < |C|

di ∈ Di

Table 5: Constraints for Swin-Transformer.

vocabulary embeddings from multiple languages [64]. The
table E, required only in the first and last layers of an LLM,
incurs significant memory consumption but requires little
computation cost. Pipeline parallelism would prioritize the
device assignment to accommodate E, leaving the remaining
devices for the other operators. This arrangement results in
imbalanced hardware utilization, with devices containing E
exhibiting low GPU cycle usage but high memory usage.

Thanks to nnScaler’s three primitives and constraints, we
can split E across the entire device set D. All other operators
across all pipeline stages can then share the remaining re-
source left in D by constructing a search space following the
conventional search space. These constraints, highlighted in
Table 6, breaks the conventional assumption that operators in
different pipeline stages cannot share the same set of devices.
Similar solutions are also applicable to the training of graph
neural networks [19].

Operators Primitives Constraints

op ∈ E
sub_ops =

op-trans(op,algo,n)
n = |D|
di ∈ D

op-assign(sub_opi,di) 0≤ i < |D|
ops /∈ E staged_spmd(ops, D)

Table 6: Constraints for T5.

Constraints for AlphaFold2. In AlphaFold2 [27], training
each micro-batch requires three forward passes and one back-
ward pass, i.e., 3F1B. Traditional 1F1B pipeline parallelism
cannot support this type of pattern. As shown on the left side
of Figure 2, a naive approach of training one micro-batch after
another is inefficient due to pipeline bubbles and the accumu-
lation of many unnecessary intermediate results. Therefore,
we decided to interleave the forward and backward passes
across different micro-batches while maintaining constraints
on temporal orders. Let fpGi denote the forward sub-graph
f Gi at the i-th pipeline stage in the p-th forward pass, and
let ofst be S− i, where S denotes the total number of pipeline
stages. Table 7 highlights the constraints for 3F1B.

Constraints 1 and 2 in Table 7 interleave the three for-
ward passes of consecutive micro-batches in decreasing order.
Constraint 3 specifies that the smallest micro-batch in the
last executed forward pass should be executed before the cor-
responding backward pass sub-graph on a micro-batch ID
with an offset (ofst) relative to the current stage, where ofst is
defined similarly to that in Figure 1 of §4.1.
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Figure 2: 3F1B schedule for AlphaFold2.

Primitives Constraints
1 op-order((f1Gi,m+2),(f2Gi,m+1)) m≥ 0
2 op-order((f2Gi,m+1),(f3Gi,m)) m > 0
3 op-order((f3Gi,m),(bGi,m-ofst)) m > o f st

Table 7: Constraints for AlphaFold2.

In addition to Table 7, the search space for 3F1B also reuses
the primitives and constraints in Tables 2 and 3. As shown
on the right side of Figure 2, these constraints together form
a space comprising unconventional parallelization plans that
exhibit improved training performance (§8).

4.3 Discussion

Constraints are a powerful abstraction for customizing vari-
ous parallelization plans and defining the search space for the
plans. To design effective constraints, nnScaler assumes its
users, usually domain experts, are knowledgeable on model
architecture and parallel training. With such knowledge, it
becomes intuitive to construct a search space using the three
primitives. Based on our own experiences, effective con-
straints can be derived by identifying performance bottlenecks
in the training, e.g., excessive GPU memory usage, computa-
tion/communication imbalance. The constraints can then be
defined to alleviate the bottlenecks. And constraints can be
refined iteratively along with the changing bottlenecks after
the adjustment in constraints [33]. Through the refinement of
constraints, nnScaler makes the generation of parallelization
plans significantly easier than previous approaches.

5 Plan Search Policy

With the new user-defined search space, nnScaler incorporates
a general policy framework to search for an efficient paral-
lelization plan. As illustrated in Algorithm 1, the policy takes
model graph G and a user-specified search space as inputs.
We denote a space as Ctrans, Cassign, Corder, corresponding to
the three primitives op-trans, op-assign and op-order,
along with augments associated with the constraints. The pol-
icy gradually shrinks the space with increasingly stringent
constraints, ultimately reducing the space to a unique paral-
lelization plan, denoted as C f inal

trans , C f inal
assign, C f inal

order. A key feature
of this policy framework is that it allows developers to “carve
out" a sub-space from the new search space, where existing

Algorithm 1: The policy framework of plan search.
Input: G, Model graph; Ctrans, Cassign, Corder, the space

defined by the primitives with constraints.
Output: C f inal

trans , C f inal
assign, C f inal

order, that determine a concrete
parallelization plan.

/* Operator partitioning & placement search */
/* Subgraph search with existing search algo */

1 Gsub, Csub
trans, Csub

assign ← GetSubSpace(G, Ctrans, Cassign);
2 Cnew

trans, Cnew
assign ← Alpa(Gsub, Csub

trans, Csub
assign);

/* Search in the rest option space */
3 Ctrans, Cassign ← ShrinkSpace(Ctrans,Cnew

trans, Cassign, Cnew
assign);

4 C f inal
trans C f inal

assign ← ILP(G, Ctrans, Cassign, objective=eq.1);
/* Temporal ordering search */

5 C f inal
order ← Tessel(G, C f inal

trans , C f inal
assign, Corder);

6 return C f inal
trans , C f inal

assign, C f inal
order; /* a concrete plan */

search polices are applicable. Specifically, the search process
consists of two phases: operator partitioning and placement
search, and temporal ordering search.
Operator Partitioning and Placement Search. The goal of
this phase is to evenly distribute computations across devices
while minimizing communication costs. Various partitioning
options for an operator yield different communication costs.
For instance, partitioning the batch dimension involves an
allreduce on parameters, while partitioning parameters leads
to replicating input activation tensors across devices. Different
placement options for operators also result in varying execu-
tion times for each device. Therefore, the execution time on
a device d is the sum of its assigned operators’ computation
time Compd and the associated communication time Commd .
Overall runtime is dictated by the slowest device [54, 65],
which is formulated as:

minimize max
d∈D
{Compd +Commd}. (1)

By representing partitioning and placement options as inte-
gers, this optimization problem can be viewed as an integer
linear programming problem, which is NP-hard.

With the application of constraints, the space in Equation 1
can be greatly reduced, thus enabling a faster search process
(§8). nnScaler searches within a gradually reduced space by
leveraging multiple policies. It firstly inspects the constructed
search space and extracts a subspace (e.g., staged_spmd) that
can leverage existing search policies like Alpa [65] through
GetSubSpace (line 1 in Algorithm 1), an interface that re-
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duces the search space through the input constraints. The
extracted subspace may only consist of a subset of operators,
leaving the rest operators undetermined. Once the transforma-
tion and placement decisions are made for the operator sub-
set, the search space can be further reduced. Then, nnScaler
fetches the reduced search space through ShrinkSpace (line
3 in Algorithm 1) and proceeds to use other policies (e.g.,
ILP solvers) within it, until finding the transformation and
placement decisions for every operator.

For example, Table 5 reduces the operator assignment space
to C operators per device; and Table 7 mainly specifies tem-
poral order. The remaining subspace of these two cases can
be organized like the space defined by staged_spmd. Addi-
tionally, Table 6 evenly pre-allocates the embedding table E
to all devices evenly, with the remaining space corresponding
exactly to staged_spmd. Consequently, the framework can
apply the search policy in Alpa [65] to these sub-spaces to
find a specific partitioning and assignment scheme for the
involved operators (possibly a subset), i.e., Cnew

trans and Cnew
assign

(line 2). These two new constraints, combined with their orig-
inal versions, produce a smaller search space (line 3), where
the framework can apply an ILP solver to find the final parti-
tioning and assignment solution for the entire model, denoted
as C f inal

trans and C f inal
assign (line 4). Note that as a general framework,

users can replace the policies in Algorithm 1 by other search
policies such as FlexFlow [26] or Tofu [59].
Temporal Ordering Search. After operator transformation
and assignment, the temporal order of some operators is al-
ready specified by the data dependency in the transformed
graph. However, it is possible for two operators on the same
device to have no direct dependency, which means they can
be executed in arbitrary orders. Moreover, for pipeline paral-
lelism, the order of the same operator computed on different
micro-batches within one batch is unspecified. nnScaler lever-
ages Tessel [32], a state-of-the-art search policy, to determine
the execution orders for these operators. Tessel groups opera-
tors within a micro-batch on each device into sub-graphs and
formulates their execution order as an ILP problem. The opti-
mization goal is to minimize the end-to-end execution latency
of a mini-batch. Each sub-graph is assigned to an integer
time slot, and the search, powered by Z3 Solver, enumerates
possible order options without violating data dependencies.
User-specified constraints on op-order, acting as Z3 con-
straints, play a crucial role in effectively reducing the search
cost (line 5 in Algorithm 1).

Note that nnScaler does not claim contributions on indi-
vidual search policies discussed in this section. It is the ab-
straction of primitives and constraints that makes the efficient
search of parallelization plans possible.

6 Parallelization Plan Compilation

nnScaler compiles a model and the generated parallelization

Parallelization 
plan

Graph IR 
(vTensor-pTensor)

Deep learning 
model

Constraints
(customized space)

Parallelization 
plan in graph IR

Executable 
(PyTorch) code

Apply 
primitives

Plan search 
policy

Constraints programming and 
plan search

Plan compilation

Plan
materialization

Figure 3: System overview of nnScaler.

plan into executable codes, following the end-to-end process
illustrated in Figure 3. The system first converts a deep learn-
ing model into a data flow graph, known as Graph IR. With
the search space defined by the primitives and the associated
constraints, nnScaler leverages a search policy to generate a
parallelization plan. The plan compilation then applies the
primitives and the constraints defined in the plan to the Graph
IR. Data dependency tracking is performed during this step
with the vTensor-pTensor abstraction. The resulting Graph
IR, describing the new data dependency and the additional
communication operations incurred due to operator distribu-
tion across devices, will be further materialized into parallel
executable code.
Tensor Abstraction vTensor and pTensor are introduced
to track changing data dependencies during the application
of the three primitives. As depicted in Figure 4, a pTensor
represents a tensor in the original logical model; vTensors
are the resulting tensors after applying the three primitives
to the pTensor. A vTensor links to a pTensor and maintains a
mask indicating the accessed portion of the pTensor that this
vTensor represents. A pTensor can be associated with multiple
operators. At the top of Figure 4, the output of operator A
serves as the input for operator B. Both operators are linked
to the same pTensor through their respective vTensors.

With vTensor, each operator can be transformed, assigned,
and ordered independently. When applying an op-trans,
nnScaler partitions vTensors through the “mask”, leaving
pTensors unchanged. For instance, in Figure 4, operator A
only splits itself and its output vTensor, while the vTensor
of operator B remains unaffected. For other type of primi-
tives, vTensor’s mask remains unchanged. Therefore, given a
producer vTensor (e.g., in A) and a consumer vTensor (e.g.,
in B) that are linked to the same pTensor, nnScaler can de-
tect whether they have data dependency by intersecting their
masks. With a dataflow graph, each operator in the graph
consumes and produces vTensors according to underlying
pTensors, thus facilitating the fine-grained data dependency
tracking. During runtime execution, only vTensors will be
instantiated to real GPU tensor instances.

With the data dependency tracking enabled by vTensor-
pTensor abstraction during data flow graph transformation,
nnScaler can detect cycles in the new graph that leads to
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deadlock, thus excluding invalid parallelization plans.
Data Dependency Materialization After applying primi-
tives and constraints, nnScaler materializes the new data de-
pendencies described by vTensor-pTensor into concrete data
operations and communications. For a consumer vTensor
(e.g., B1 in Figure 4), nnScaler identifies dependent producer
vTensors (e.g., A1 and A2) and inserts tensor manipulation op-
erations, such as torch.split or torch.chunk, to extract
the corresponding tensor fragments. When producers and
consumers reside on different devices (due to op-assign),
peer-to-peer send-recv communication operators [44] will be
inserted during materialization.

To improve communication efficiency, certain communi-
cation patterns across vTensors within the same pTensor can
be implemented using collective communication primitives,
such as allgather, allreduce, or alltoall [44]. For instance, in
Figure 4, communications between vTensors 3, 4 of A and
vTensors 5, 6 of B can be materialized using the more efficient
alltoall primitive. nnScaler employs simple pattern matching
to identify appropriate collective primitives for each pTensor
and its associated vTensors.

7 Implementation and Experiences

We implemented nnScaler based on PyTorch [43] with 24K
lines of Python code. nnScaler takes a PyTorch model devel-
oped for a single device, and converts it into an intermedi-
ate graph representation (IR). After the transformation, the
spatial-temporal scheduling, and the insertion of communica-
tions and tensor manipulation operations specified in a par-
allelization plan, each device will receive a sub-graph repre-
sented by the IR. nnScaler then converts the sub-graph back
to a PyTorch code file. And PyTorch runs the code files (i.e.,
using torchrun) in parallel for distributed training.

To support a wide range of PyTorch models, nnScaler
implements an augmented graph converter based on
TorchFX [55], comprising 2,243 lines of Python code. This

converter combines TorchFX’s symbolic execution with value
tracing of torch.jit.trace to handle control flow, which is
a typical barrier when converting PyTorch models to TorchFX.
By default, PyTorch models usually contain only the forward
pass. nnScaler automatically completes the backward pass
using autograd functionality with the chain rule [40]. So
far, nnScaler has successfully converted 26319 out of 31301
(84.1%) PyTorch models from HuggingFace [25] Natural Lan-
guage Processing tasks. The conversion failures are mainly
due to unsupported operators, e.g., the custom operators de-
signed for specific models. We are actively exploring way
to support more operators, along with their corresponding
transformation algorithms.

7.1 Experiences
nnScaler has been used by multiple projects across differ-
ent teams in Microsoft to support the pretraining and fine-
tuning of next generation DNN models on several genera-
tions of NVIDIA and AMD GPUs. This includes RetNet [51],
YOCO [52], LongRoPE [16], Phi-3 series [7]1, and a large sci-
ence foundation model consisted of a transform-based model
combined with a graph neural network. The model size ranges
from 3 billion to 92 billion parameters.

The decision to use nnScaler is based on two key factors.
First, incorporating new models into existing distributed train-
ing frameworks presents intricate engineering challenges.
This involves tasks such as the parallelization of the new
modules, identifying suitable partition options, and ensuring
the end-to-end training correctness, which includes tasks like
data loading, gradient normalization (gnorm) [12], and opti-
mizer. This process typically takes two experienced engineers
about two months to complete. Compounding to the problem,
existing parallelization plans often do not works well on new
models, resulting in unsatisfactory Model FLOPs Utilization
(MFU). Second, the research on new models often requires
changes to model architectures, configurations, and training
settings. This, in turn, may necessitate further adjustments
to be made to the parallelization plan for efficient training,
a daunting task for machine learning researchers. nnScaler
precisely targets these pain points. Since nnScaler separates
codes for the logical model from codes for the parallelization
plan, it enables a separation of concerns: model developers
can focus on model architecture innovations while system
developers can study better parallelization plans. Moreover,
our collaboration with these teams have yielded a number of
insights, which will be discussed next.
Debugging nnScaler. nnScaler offers great flexibility in
model training, but the new primitives and constraints also
contribute to increased system complexity, rendering certain
parallelization plans error-prone. nnScaler enables a modu-
lar approach to debugging system problems, where a new,

1nnScaler is used in some post training steps for the long context version
of Phi-3, not for the model pretraining.
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less-studied sub-graph generated by a new constraint can be
replaced with a well-tested constraint. For instance, nnScaler
can selectively apply data parallelism, which is less likely to
have bugs, to a portion of the model while maintaining the ex-
isting parallelization plan for the rest of the model unchanged.
This adjustment does not require model code modification; it
simply configures the pre-build parallelization plan. By itera-
tively changing the suspected modules in the plan, it facilitates
the identification of the problematic module.
Model accuracy. Achieving high model accuracy is the
ultimate goal of model training. However, oftentimes, even
a small bug in the training framework or model code can
result in a degraded accuracy. Further complicating matters
is that while the situation may appear normal in the early
training stage, the loss curve tends to deteriorate over an ex-
tended training period (e.g., thousands of steps for a 7B LLM)
and may eventually diverge. Directly comparing the loss and
gradient values with well-tested training plans like data paral-
lelism is impractical. For example, as the reduce operations
(e.g., matmul or allreduce) in more complicated plans intro-
duce drifts in floating-point values due to different orders of
summation [20], which is an expected behavior. This makes
it difficult to discern if it is an expected numeric deviation
or a semantic bug. With respect to this issue, nnScaler firstly
evaluates the correctness of a large-scale parallelization plan
for a model by reducing the model’s hidden dimension to
fit the training in a single device. This makes debugging the
correctness a much easier task. The model change is easily
achievable by slight changes in the model code, thanks to the
clean separation between the model code and training code.
Subsequently we applied the searched parallelization plan to
the reduced model and then assessed the overlap of the loss
and gnorm curves with their counterparts in the well-tested
data parallelism training. We observed that the gnorm curve
is a good indicator, amplifying divergence at earlier stages
and signaling potential bugs in the system.
In-place operators. To improve training performance, in-
place operators like Tensor.add_ update tensors in-place.
However, partitioning in-place operators could become prob-
lematic. For example, if the partitioning of the in-place op-
erator leads to the cloning of a tensor that originally imple-
ments in-place updates, the resulting non-inplace sub-operator
would not preserve the original effect of the in-place oper-
ator’s effect. This is due to a violation of the Static Single
Assignment (SSA) form [14] when mixing in-place and non-
inplace operators. To avoid this problem, nnScaler follows
SSA during graph transformation, then replaces some of the
non-inplace operators with their original in-place versions in
the later optimization phase.

8 Evaluation

The evaluation of nnScaler covers the expressiveness of par-
allelization primitives and the search efficiency of paralleliza-

tion plan with constraints. More importantly, we evaluated
the performance of the newly searched parallelization plans
on real-word models to demonstrate the effectiveness of the
entire system in achieving efficient parallelization of new
models and settings. In summary, the evaluation results show
that:

• The parallelization primitives in nnScaler can construct
various parallelization plans, including both existing hand-
crafted ones (§8.1) and newly innovated ones, as introduced
in this paper(§8.2).

• End-to-end evaluation of the three novel parallelization
plans on SwinTransformer, T5, and AlphaFold2 shows up
to 3.5×, 2.5×, 1.4× speedup, respectively, compared to the
baselines of Megatron-LM [39], Alpa [65], DeepSpeed [47],
and DAP [13]. (§8.3)

• Parallelization space with constraints helps nnScaler
quickly discover efficient plans, resulting in an 11.7×
search speedup compared to the searches without con-
straints.

8.1 Expressiveness of Plan Construction
We evaluated the expressiveness of the three primitives for
plan construction by implementing popular handcrafted par-
allelization plans listed in Table 8. These plans can be decom-
posed into operator transformation, placement and ordering,
which is well aligned with the three primitives in Table 1. 14
out of 17 parallelization plans can be successfully supported
by nnScaler. The parallelization plans under SPMD are im-
plemented through op-trans. Data and flexible tensor paral-
lelism can be easily supported. Transformer Parallelism and
DAP are handcrafted tensor parallelisms for Transformer and
AlphaFold2, respectively. Sequence Parallelism and ZeRO
stage-3 are special tensor parallelisms, that decouple the par-
titioning of the operator and its input tensor to optimize mem-
ory usage. nnScaler supports them by inserting an identity
operator between the input tensor and its operator through
op-trans, facilitating easy decoupling.

The parallelization plans under MPMD are different types
of handcrafted pipeline parallelism. They can be supported
using op-order without implementing a new execution en-
gine. Notably, nnScaler does not support PipeDream due to
its asynchronous training method, as nnScaler respects the
original training semantics of a model. For TeraPipe, nnScaler
currently lacks access to concrete values in tensors, prevent-
ing it from determining data dependency at the token level
(i.e., tensor masks), a requirement for TeraPipe. In the future,
nnScaler can implement TeraPipe through instrumentation
tools for deep learning models like [21].

Beyond parallelisms, nnScaler also accommodates mem-
ory optimization techniques (e.g., recompute, swap) and the
overlapping of computations and communications. Its sup-
port of recompute relies on a customized algo of op-trans
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Categories Mechanisms Support

SPMD
Parallelism

Data Parallelism [1] ✓
Flexible Tensor Parallel [26, 59, 61] ✓

Transformer Parallelism [50] ✓
DAP [13] ✓

Sequence Parallelism [29] ✓
ZeRO [47] ✓

MPMD
Parallelism

1F1B [18, 50] ✓
GPipe [24] ✓

Chimera [30] ✓
PipeDream (Async) [38] ×

TeraPipe [31] ×

Memory
Optimizations

Gradient Accumulation [60] ✓
Recompute [11] ✓

Chain-recompute [28] ✓
Swap [23] ✓

Overlapping
ByteScheduler [42] ×

All-reduce Overlap [49] ✓∗

Table 8: Supported parallelization plans. ‘*’ requires addi-
tional co-scheduling of computation and communication at
runtime.
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Figure 5: Coshard plan found by nnScaler.

to transform an operator to its recompute version, similar to
torch.utils.checkpoint in PyTorch [6], while deferring
the materialization to the compilation phase. nnScaler does
not support ByteScheduler [42], which overlaps two consecu-
tive mini-batches. This is because the boundary of transforma-
tion and scheduling in nnScaler is a single mini-batch, though
it could potentially be extended to multiple mini-batches.

8.2 Plan Search Results

With the new constraints described in §4.2, nnScaler searches
within each constructed space and discovers three novel par-
allelization plans that show superior training performance.
Coshard. Figure 5 illustrates Coshard, which is used for
models with large tensors like SwinTransformer. It can co-
exist with tensor parallelism to reduce peak memory of acti-
vation tensors. For example, A1 is partitioned into two, placed
on the same device, and executed sequentially. After apply-
ing recompute of A1, the peak activation size of A1 is halved.
Due to the reduced peak memory, tensor parallelism can now
span fewer devices (e.g., from 8-way to 4-way), reducing
communication cost.

Interlaced pipeline. Figure 6 shows the pipeline schedule
searched under the constraints specified in Table 6. The em-
bedding layer is partitioned across four devices using tensor
parallelism. The remaining components (i.e., non-embedding
layers) are separated to distinct device groups following
staged_spmd. During the ordering search, all the layers com-
pose into a schedule that resembles executing embedding
layers and an 1F1B-like schedule following a time-sharing
pattern. There are two columns with 0-th embedding because
the embedding layer is used twice, one at the beginning of
the model and the other at the end. Thanks to the scheduling
search, the pipeline can reach a stable phase with zero bubbles
as shown on the right of the figure.
3F1B pipeline. Figure 2 displays the timeline for the 3F1B
pipeline which has been described in §4.2. The constraints
outlined in Table 7 define how forward and backward passes
interleave in the stable state of the pipeline. The schedule
for the warm-up and cool-down phases remains unspecified.
These phases are tailored through the search process.

8.3 End-to-End Performance

We evaluate the three new parallelization plans on Swin-
Transformer, T5, and AlphaFold2, respectively, with different
model configurations and on varying number of GPUs.

8.3.1 Experimental Setup

Machine configurations. Our evaluation is performed on
DGX-2 clusters with 32 NVIDIA Tesla V100 (32GB) GPUs.
Each server is equipped with 16 GPUs that are connected
via NVLink [4]. Servers are interconnected with 8 Infini-
Band 100 Gbps network adapters. All the servers are in-
stalled with NCCL 2.14 [3] and PyTorch v2.0.1 [43]. As 8 ×
100 Gbps InfiniBand is a high-end hardware configuration,
we also demonstrate the training performance on commodity
hardware that is prevalent in many organizations [8]. Specifi-
cally, we conducted experiments on DGX-1 clusters with 32
NVIDIA Tesla V100 (32GB) GPUs, each equipped with 1
InfiniBand 100 Gbps network adapter in §8.3.5.
Model configurations. Table 9 summarizes the configura-
tions of SwinTransformer, T5, and AlphaFold2, each of which
has four different model configurations ranging from small
models to large ones. For each configuration, we list its num-
ber of parameters, number of layers, hidden dimensions, and
number of heads. For example, <1.8B, 32 layers, hidden size
512, 16 heads> is a configuration for SwinTransformer. The
four small to large configurations for each model run on 4, 8,
16, and 32 GPUs respectively.
Baseline systems. We compared nnScaler with three popular
distributed training systems: 1) Megatron-LM [39] is designed
to train transformer-based models, which hierarchically com-
bines pipeline parallelism with data and tensor parallelism.
For pipeline parallelism, it evenly partitions model layers into
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Figure 6: Interlaced pipeline plan found by nnScaler.

Model SwinTransformer [34]
Param# (B) 1.8 5.0 10 27

Layer# 32 40 48 56
Hidden 512 768 1K 1.5K
Head# 16 24 32 32
Model T5 [45, 62]

Param# (B) 3.9 11 21 47
Layer# 48 64 64 64
Hidden 2K 3K 4K 6K
Head# 32 48 64 96
Model AlphaFold2 [27]

Param# (B) 0.087 0.93 2.4 3.2
Layer# 48 64 96 128
Hidden 256 512 1K 1K
Head# 8 16 32 32

Table 9: Model architecture with the increasing number of
GPUs. K: thousand. B: billion.

pipeline stages, and each stage can be further applied with
data and tensor parallelism. 2) Alpa [65] is an automatic par-
allelization system for deep learning models under the 3D
parallelization space. Its search algorithm and training system
are currently based on TensorFlow. To conduct a side-by-side
comparison, we implemented the Alpa’s search algorithm
as a policy in nnScaler. 3) DeepSpeed [47] is a distributed
training system similar to Megatron-LM. It supports pipeline,
data, and tensor parallelism, Additionally, it incorporates tech-
niques including ZeRO [46] and ZeRO-Offload [48] to opti-
mize GPU memory usage. ZeRO mainly optimizes memory
usage of optimizer states by keeping a single copy in data
parallelism. ZeRO-Offload offloads weights to CPU memory
to reduce the memory pressure of GPU and retrieves them
after they are used. It does not support offloading activation
tensors.

Neither Megatron-LM nor DeepSpeed features automatic
search for parallelization plans in their supported paralleliza-
tion space. Therefore, we manually found the best-performing
plans for them by separately traversing the degrees of pipeline,
tensor, and data parallelism respectively. In all the following
experiments, we applied layer-wise recompute [11] to reduce
the memory consumption of activation tensors. Following the
common practice [29, 65], we used the aggregated effective
TFLOPS as our performance metric.
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Figure 7: End-to-end training throughput of SwinTransformer.
“×” denotes failure due to out of memory.

8.3.2 Results of SwinTransformer

Figure 7 illustrates the end-to-end training throughput of
SwinTransformer on four systems. Both Megatron-LM and
Alpa use pure tensor parallelism for all model configurations
due to the substantial size of activation tensors is huge (e.g.
21GB for the first transformer layer for a 5.0B model), even
with recompute applied. DeepSpeed employs ZeRO-Offload
and ZeRO stage3 to optimize memory usage. Therefore, Deep-
Speed is able to apply 2-way tensor parallelism for the 4
GPUs setting and 4-way tensor parallelism for the remaining
three settings. Data parallelism is further applied to scale out
across all the available GPUs. nnScaler applies Coshard on
the first four layers (Attention+MLP) of SwinTransformer,
because these layers occupy a large proportion of memory
due to activation tensors. nnScaler applies 2-way, 2-way, 4-
way, and 8-way tensor parallelism to the four configurations,
respectively, combined with 2-way, 4-way, 4-way, and 4-way
pipeline parallelism, respectively. Coshard has 6 partitions
sequentially executed on each GPU for the 8 GPUs setting
and 4 partitions for the remaining three settings. As shown
in Figure 7, nnScaler is 1.2×, 1.5×, and 1.5× faster than
DeepSpeed on 8, 16, and 32 GPUs, respectively. Although
with ZeRO stage3 to reduce the degree of tensor parallelism
to control the communication overheads, ZeRO stage3 still
introduces heavy communication costs for weights on the
critical path of forward and backward passes, especially when
it is applied on 32 GPUs, which involves cross-node com-
munication. In contrast, nnScaler applies Coshard to reduce
peak memory, making it possible to use a less degree of tensor
parallelism, which reduces communication costs.

Coshard is also used in the long-context post training of the
Phi-3 series models to reduce the excessive memory usage
due to the long context window [16].
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Figure 8: End-to-end training throughput of T5.

8.3.3 Results of T5

Figure 8 illustrates the end-to-end training throughput of
T5. Megatron-LM uses 2-way tensor parallelism with 2-way
pipeline parallelism for 4 GPUs, and uses pure tensor par-
allelism for 8, 16, 32 GPUs. For 4 GPUs, Alpa uses 3-way
pipeline parallelism with the middle stage applying 2-way
tensor parallelism. It must use pure tensor parallelism for 8,
16, and 32 GPUs due to large memory consumption. As T5 of
3.9B parameters is relatively small, DeepSpeed can use data
parallelism with ZeRO stage3 for 4 GPUs. It applies 4-way
tensor parallelism for 8, 16, and 32 GPUs, with ZeRO-Offload
and ZeRO stage3 applied. Additionally, data parallelism is
further applied to scale out to all the available GPUs. nnScaler
applies the interlaced pipeline. The large embedding layer
uses tensor parallelism on all the available GPUs. The remain-
ing layers apply 4-way pipeline parallelism, with each stage
applied 1-way, 2-way, 4-way, and 8-way tensor parallelism
for 4, 8, 16, and 32 GPUs, respectively.

nnScaler performs 1.5×, 1.6×, and 2.5× better than Deep-
Speed for 8, 16, and 32 GPUs respectively. Megatron-LM and
Alpa have a low performance because the high degrees (e.g.,
32) of tensor parallelism introduces high communication over-
heads, especially when the tensor parallelism spans more than
one node. This is why Megatron-LM performs much worse
with 32 GPUs. As Alpa searches for suitable partition options
for tensor parallelism, many operators (e.g., dropout or layer-
norm) are replicated across nodes to reduce communication
costs, and so it performs better than Megatron-LM. Although
DeepSpeed has a lower degree of tensor parallelism, its per-
formance is only comparable to Alpa because DeepSpeed
uses ZeRO-Offload and ZeRO stage3 to make lower degrees
of tensor parallelism feasible. ZeRO-Offload introduces high
overheads due to the offloading of large embedding weight
(e.g., 12GB in the 21B model). ZeRO stage3 also introduces
high communication costs, such as the online gathering of
(embedding) weights on the critical path. This shows the effec-
tiveness of the proposed interlaced pipeline on models like T5,
compared to conventional approaches like tensor parallelism,
ZeRO-Offload, and ZeRO stage3. Note that to highlight the
advantage of interlaced pipeline, nnScaler tentatively disables
ZeRO in the experiments in Figure 8. And nnScaler still out-
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Figure 9: End-to-end training throughput of AlphaFold2.
“×” denotes failure due to out of memory.

performs others in most cases except for the 4-GPU case
when T5 is small enough to fit-in memory after applying data
parallelism with ZeRO (i.e., DeepSpeed’s plan).

8.3.4 Results of AlphaFold2

Figure 9 shows the end-to-end training throughput of Al-
phaFold2. In this experiment, we compared nnScaler with
two baselines. One is DAP [13], which is a handcrafted ten-
sor parallelism specifically designed for AlphaFold2. We
also applied data parallelism to scale out DAP, referred to
as DAP+DP. For 4 and 8 GPUs, DAP+DP uses pure data
parallelism since the models are small. It uses 4-way tensor
parallelism with 4-way data parallelism for 16 GPUs. The
other baseline is DeepSpeed. As the model sizes are much
smaller than those of SwinTransformer and T5, the applica-
tion of ZeRO-Offload is not necessary. DeepSpeed uses pure
data parallelism for 4, 8, and 16 GPUs with ZeRO stage3, and
uses 2-way tensor parallelism with 16-way data parallelism
for 32 GPUs. nnScaler also uses pure data parallelism for 4
and 8 GPUs. It applies the 3F1B pipeline for 16 and 32 GPUs.
For 16 GPUs, nnScaler uses 4-way pipeline parallelism with
4-way data parallelism, while for 32 GPUs it uses 2-way ten-
sor parallelism with 2-way pipeline parallelism and 8-way
data parallelism.

nnScaler performs 1.5× better than DAP+DP on 16 GPUs
and 1.1× better than DeepSpeed on 32 GPUs. DeepSpeed
performs better than DAP+DP on 16 GPUs, because the ac-
tivation tensors in AlphaFold2 are large, and the communi-
cation of activation tensors using 2-way tensor parallelism
is more efficient than that using 4-way tensor parallelism.
nnScaler performs better than DeepSpeed because the cus-
tomized 3F1B pipeline reduces communication costs. The
training conducted on multiple nodes, which is common for
large model training, amplifies the advantage of pipeline par-
allelism.

8.3.5 Experiments on Less Powerful Hardware

To demonstrate the effectiveness of the new parallelization
plans and understand how different hardware affects training
performance, we evaluate SwinTransformer and AlphaFold2
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in the DGX-1 cluster. As shown in Figure 10a, nnScaler is
1.9× and 3.5× faster than DeepSpeed on 16 and 32 GPUs,
respectively. Compared with data shown in Figure 7, for 32
GPUs, the performance of nnScaler is degraded by 6%, while
that of DeepSpeed, Alpa, and Megatron-LM is degraded by
60%, 82% and 82%, respectively. The degradation of nnScaler
is smaller because the parallelization plan (i.e., Coshard) used
by nnScaler optimizes the communication cost, and thereby
it tolerates the changes in communication bandwidth. Fig-
ure 10b shows the results of AlphaFold2 on DGX-1. The rel-
ative performance gain of nnScaler is also improved to 1.1×
and 1.4× over DeepSpeed on 16 and 32 GPUs, respectively.
The lower bandwidth cross nodes in DGX-1 further amplifies
the advantage of pipeline parallelism, rendering the 3F1B
pipeline much faster than tensor parallelism in DAP+DP and
DeepSpeed. These experiments indicate that with the flexi-
ble customization of parallelization plans and automatic plan
search, nnScaler can adapt more flexibly to changes in hard-
ware.
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Figure 10: End-to-end training throughput on DGX-1.
“×” denotes the failure of training due to out-of-memory.

8.4 Search Efficiency with Constraints

Algorithm 1 suggests that the parallelization plan search cost
in nnScaler consists of: (1) operator transformation and place-
ment cost (i.e., line 1-4 in Algorithm 1), and (2) operator
temporal ordering cost (i.e., line 5 in Algorithm 1). Figure 11
illustrates the end-to-end search cost, as well as the break-
down time of the three customized spaces defined in §4.2 for
different model configurations using the policy illustrated in
§5. The search on SwinTransformer’s space takes less than
150s. The search time increases with the increase of model
size as the number of operators increases. The ordering search
for T5 takes around 150s due to an absence of constraints on
the ordering in T5’s space. There is almost no search cost
of the ordering in SwinTransformer and AlphaFold2. For
SwinTransformer, the order is largely determined by data
dependencies, and for AlphaFold2, the ordering constraints
greatly reduces the space.

Figure 12 further shows the temporal ordering search time
of the 3F1B schedule with and without constraints. The left
figure shows that the search time increases exponentially with
the increase of stage number. However, with constraints ap-
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Figure 11: End-to-end search cost of each model.
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Figure 12: Search time of the 3F1B schedule with and without
constraints. “×” denotes a search time exceeding one hour.

plied, the search time is kept within 60s, resulting in 11.7×
speedup in finding the efficient temporal ordering for 4 stages.
This is attributed to the temporal ordering constraints in Ta-
ble 7, where the ordering constraints of independent forward
and backward operators from different micro-batches are ex-
plicitly specified, leading to a significantly reduced search
space exposed to the search algorithm (i.e., Tessel). For the
case of 4 stages, the right figure further shows the search time
as each ordering constraints from Table 7 is applied one by
one. The first constraint reduces the search time by 100s. The
second constraint further reduces it by 50% of search time.
This demonstrates the importance of constraints.

9 Related Work

Existing parallelization search spaces. Recently, data, ten-
sor, and pipeline parallelisms [1, 18, 24, 30, 46] have been
widely used in distributed DNN training. Various memory op-
timizations [11,23,28] have also been adopted to exploit large-
scale model training under GPU memory constraints. Systems
such as Megatron-LM [29,39,50], DeepSpeed [47], Piper [54],
Unity [57], and Alpa [65], combine multiple parallelisms and
memory optimizations to accelerate distributed DNN training.
However, these solutions fall short in because they rely on em-
pirical parallelism configurations and have limited execution
scheduling choices. Thus, despite their successful applica-
tions on existing training workloads, they still fail to fully
utilize hardware capabilities. In contrast, nnScaler provides a
different approach to parallelization, supporting the expres-
sion of parallelization sub-spaces with fine-grained transfor-
mation and scheduling primitives. Consequently, nnScaler is
compatible with them as all these solutions can be achieved
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using particular constraints. In additional, nnScaler is able to
support more flexible and efficient parallelization plans that
extend beyond the aforementioned parallelization sub-spaces,
which is considerably crucial for continuously evolving DNN
models.
Explorations on specific parallelization plans. Paralleliza-
tion strategies tailored for specific scenarios play a crucial role
in optimizing the performance of parallel computing frame-
works. For instance, Transformer Parallelism [50], DAP [13],
and Sequence Parallelism [29] are designed for specific model
architectures, showcasing a nuanced approach to paralleliza-
tion. To address the need for optimized pipeline orchestra-
tion, innovative scheduling strategies have been proposed by
GPipe [24], 1F1B [18, 50], and Chimera [30]. Furthermore,
optimizations such as Gradient Accumulation [60], Recom-
pute [11], Chain-recompute [28], Swap [23], and All-reduce
Overlap [49] specifically target improvements in memory or
communication efficiency. These strategies can be seamlessly
incorporated into nnScaler’s plan with appropriate constraints,
eliminating the need for a comprehensive system overhaul
and demonstrating the platform’s adaptability.
Parallelization plan search and others. To improve train-
ing performance with combined parallelisms, DNN sys-
tems [22, 26, 37, 54, 59, 63, 65] use different searching tech-
niques to find efficient parallelism configurations. Most re-
cently, Alpa [65] leverages both integer programming and
dynamic programming solvers, and Tessel [32] enables the
exploration of schedule search in pipeline parallelism, signif-
icantly harnessing performance potential beyond manually
crafted pipeline schedules. nnScaler, as a parallelization plan
engine that emphasizes customizing the parallelization space
through constraints, is complementary to the above algorithms
and can leverage them to speedup the search within a cus-
tomized space.
Kernel fusion and tuning optimizations. Besides efficient
parallelization plans, kernel fusion and tuning [10, 15, 36, 66]
can also improve execution efficiency on a device by fusing
multiple consecutive operators into a single more performant
GPU kernel. For instance, Flash-Attention [15] fuses multiple
operations within the attention layer into a single kernel to
improve performance with reduced I/O. These techniques
are complementary to nnScaler as they can be applied after
nnScaler partitions computation across devices, to further
enhance the local computation efficiency on each device.

10 Conclusions

nnScaler is a framework that enables domain experts
to leverages three primitives, op-trans, op-assign, and
op-order, along with constraints to construct arbitrary search
spaces for parallelization plans given any DNN model. This
approach represents a more general abstraction to describe
both existing parallelization search spaces and new spaces. Ex-
periments show that nnScaler is able to construct new spaces

that lead to the discovery of new parallelization plans for deep
learning training on emerging DNN models as well as main-
stream models, significantly outperforming existing plans.
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