
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Harvesting Memory-bound CPU Stall Cycles
in Software with MSH

Zhihong Luo, Sam Son, and Sylvia Ratnasamy, UC Berkeley;
Scott Shenker, UC Berkeley & ICSI

https://www.usenix.org/conference/osdi24/presentation/luo

Harvesting Memory-bound CPU Stall Cycles in Software with MSH

Zhihong Luo
UC Berkeley

Sam Son
UC Berkeley

Sylvia Ratnasamy
UC Berkeley

Scott Shenker
UC Berkeley & ICSI

Abstract
Memory-bound stalls account for a significant portion of CPU
cycles in datacenter workloads, which makes harvesting them
to execute other useful work highly valuable. However, main-
stream implementations of the hardware harvesting mecha-
nism, simultaneous multithreading (SMT), are unsatisfactory.
They incur high latency overhead and do not offer fine-grained
configurability of the trade-off between latency and harvesting
throughput, which hinders wide adoption for latency-critical
services; and they support only limited degrees of concur-
rency, which prevents full harvesting of memory stall cycles.

We present MSH, the first system that transparently and effi-
ciently harvests memory-bound stall cycles in software. MSH
makes full use of stall cycles with concurrency scaling, while
incurring minimal and configurable latency overhead. MSH
achieves these with a novel co-design of profiling, program
analysis, binary instrumentation and runtime scheduling. Our
evaluation shows that MSH achieves up to 72% harvesting
throughput of SMT for latency SLOs under which SMT has
to be disabled, and that strategically combining MSH with
SMT leads to higher throughput than SMT due to MSH’s
capability to fully harvest memory-bound stall cycles.

1 Introduction
CPU cores are valuable resources in datacenter infrastructure.
To meet the ever-growing computation demand, there have
been extensive software efforts in harvesting idle CPU cycles
and keeping cores fully utilized [7, 43, 52, 88, 94]. While dif-
fering in mechanisms, these works share a similar harvesting
scheme: “scavenger” instances (e.g., spot VMs, batch jobs)
temporarily run on cores that primary instances are not ac-
tively using. Their common performance goal is to have scav-
enger instances fully utilize the idle cycles without slowing
down primary instances. Minimizing negative performance
impacts is particularly important for latency-critical services
as their increased latencies directly affect user experience.

Unlike prior efforts that harvest cores that are idle for a
relatively long period of time, e.g., allocated but unused cores
of the primary VM, we focus on memory-bound CPU stall
cycles. These are cycles that cores transiently stall while
waiting for memory accesses to finish. Although each lasts

only a few hundred nanoseconds, memory-bound stalls can
happen frequently and account for a significant portion of
CPU cycles [10, 23, 45, 78]: more than 60% for some widely-
used modern applications, which implies substantial benefits
harvesting these stall cycles. However, the current hard-
ware harvesting mechanism, simultaneous multithreading
(SMT), is unsatisfactory. First, SMT is known to likely
lead to significantly increased latencies, as it focuses solely
on multiplexing instruction streams to best utilize core re-
sources [37, 74, 83, 84]. Moreover, SMT does not allow
fine-grained control over the tradeoff between primary la-
tency and scavenger throughput, which is needed to maxi-
mize CPU utilization under a latency SLO. As a result, for
latency-critical services, a common compromise is thus to
avoid using SMT for better performance, at the cost of wast-
ing stall cycles [18, 19, 55, 69]. Lastly, there are cases where
SMT can not fully harvest memory-bound stall cycles: mod-
ern CPUs often support only limited degrees of concurrency
(e.g., 2 threads per physical core in the case of Intel’s Hyper-
threading), which are insufficient when concurrent threads
frequently incur cache misses [44, 45, 72].

In view of the significance of memory-bound CPU stalls
and the drawbacks of SMT as the hardware harvesting mech-
anism, our goal is to design a system that harvests these stall
cycles in software. This system should meet several require-
ments. First, it should be transparent to applications and
require no additional rewriting efforts from developers. As a
result, it will resemble SMT in terms of being conveniently
applicable to any code, including legacy code. The other
requirements then demand improving upon the drawbacks of
SMT. Specifically, it should efficiently and fully harvest the
memory-bound stall cycles, and it should do so while intro-
ducing minimal latency overhead to the primary instance.

A recent proposal [57] discusses the possibility of transpar-
ently hiding the latency of cache misses in software with the
combination of light-weight coroutines [25, 28, 64, 79] and
sample-based profiling [17, 47, 82]. The former allows inter-
leaving of primary and scavenger coroutines with a switching
overhead much smaller than traditional threads of executions
like processes and kernel threads; whereas the latter makes
it possible to do it transparently, as we could identify likely

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 57

locations of cache misses via profiling. This is a key real-
ization that our work builds upon. However, there remains
to be a set of challenges toward building a software system
that harvests memory-bound CPU stall cycles and meets the
aforementioned requirements. First, to improve harvesting
efficiency, we have to minimize the amount of register savings
and restorations for each yield, while ensuring the correctness
of program executions. Second, to introduce minimal latency
overhead, scavengers need to yield back the core soon after
they have consumed enough stall cycles, which is challeng-
ing given that programs have complex and dynamic control
flows. Third, to fully harvest stall cycles, we need to detect
when a higher degree of concurrency is needed and properly
interleave the executions of multiple scavengers. Lastly, it is
challenging to transparently interleave scavenger executions
with a primary binary that has an internal threading structure.

To overcome these challenges, we present Memory Stall
Software Harvester (MSH), the first system that transparently
and efficiently harvests memory-bound CPU stall cycles in
software. MSH makes full use of stall cycles while incurring
only minimal latency overhead. MSH fulfills all the require-
ments with a novel co-design of profiling, program analysis,
binary instrumentation and runtime scheduling. To use MSH,
users simply provide unmodified primary binaries and a pool
of scavenger threads, and MSH takes care of running scav-
enger threads with stall cycles of the primary binaries.

Internally, MSH operates in two logical steps. First, after
profiling the primary and scavenger code, MSH statically in-
struments them at the binary level, by leveraging information
obtained via profiling and program analysis. Specifically, for
both primaries and scavengers, MSH inserts a prefetch instruc-
tion followed by yielding to either a primary or a scavenger
coroutine (configured in runtime, discussed below), before
selected load instructions that frequently incur cache misses
according to profiled data. In addition, MSH places additional
yields in scavengers to ensure that they timely relinquish their
core. The first two of the aforementioned challenges are re-
solved in this step. For the primary binaries, MSH carries out
various optimizations to reduce the amount of register savings
and restorations for each yield by analyzing register usage
and program structures. For the scavenger, MSH conducts a
forward data flow analysis that also takes in profiled data to
decide additional yield points, so that the distance between
consecutive yields is bounded to a configurable threshold.

In the second logical step, when executing a primary binary,
MSH sets up and dynamically assigns scavengers to active
primary threads. The last two challenges regarding scavenger
scheduling and concurrency scaling are tackled in this step.
MSH intercepts function calls that change the status of pri-
mary threads and efficiently adjusts the scavenger assignment.
This allows MSH to transparently schedule scavengers on top
of the primary’s threading structure. To support on-demand
concurrency scaling, MSH performs two operations: assign-
ing multiple scavengers to a primary thread and configuring

scavengers so that they yield to the right target. For the former,
MSH decides the number of scavengers assigned to a primary
thread by estimating and bounding the likelihood of not full
harvesting stall cycles. For the latter, MSH instruments yields
in scavengers that are close to each other to yield to the next
scavenger instead of the primary thread. MSH’s runtime then
takes care of correctly setting up the targets of these yields.

We implement MSH’s offline parts on top of Bolt [67], an
open-source binary optimizer built on the LLVM framework,
and MSH’s runtime as a user-level library1. We evaluate MSH
with unmodified syntactic and real applications and show that
MSH is general enough to harvest stall cycles from all of
them. Compared with SMT, MSH offers superior harvest-
ing performance in three aspects: first, MSH incurs minimal
latency overhead and achieves up to 72% harvesting through-
put of SMT, for latency SLOs under which SMT has to be
disabled. Second, as a configurable software solution, MSH
enables users to have fine-grained control over the tradeoff
between primary latency and scavenger throughput. Third,
MSH can fully harvest memory-bound stall cycles via concur-
rency scaling, achieving up to 2x higher throughput than SMT
when scavengers frequently stall. Moreover, we show that by
strategically combining MSH with SMT, one could achieve
higher throughput than SMT due to MSH’s ability to fully
harvest memory-bound stall cycles. Lastly, we extensively
evaluate MSH’s main components and show that they play a
vital role in achieving MSH’s superior performance.

In summary, the contributions of this paper are: (i) a trans-
parent and efficient approach to harvest memory-bound CPU
stall cycles in software; (ii) the detailed design and imple-
mentation of a system (MSH) based on this approach, which
involves a co-design of profiling, program analysis, binary
instrumentation, and runtime scheduling; (iii) an evaluation
with real applications showing that compared with SMT, MSH
can deliver high scavenger throughput under stringent primary
latency SLOs and fully harvest memory-bound stall cycles. In
addition to presenting the design, implementation, and evalu-
ation of MSH, we extensively discuss other related aspects in
§8. These include isolation mechanisms that can be integrated
with MSH to ensure memory safety, hardware support that
can enhance MSH’s performance and so on. Our hope here is
to motivate greater efforts in delivering these critical aspects.

2 Background and Motivation
Memory-bound stalls: Memory-bound stalls, where cores
stall and wait for memory accesses to finish, were reported to
be a dominant source of CPU overhead for datacenter work-
loads. To see this, we perform a top-down analysis [90] on
two latency-critical applications. This analysis classifies CPU
pipeline slots into four categories: retiring, frontend-bound,
bad speculation and backend-bound. The last three corre-
spond to different overhead, and backend-bound stalls can be
further divided into core-bound or memory-bound stalls. Our

1MSH is publicly available at https://github.com/sosson97/msh.

58 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sosson97/msh

Figure 1: Top-down analysis of Sphinx and Masstree; mem-
ory stalls account for 25% and 31% of cycles respectively.

Figure 2: (a) P95 latency of Masstree when running by itself
vs. co-locating with a Scan scavenger; (b) SMT is unable to
harvest stall cycles under low latency SLOs.

analysis confirms the dominance of memory-bound stalls, as
they account for 25% and 31% of total cycles for Masstree
and Sphinx respectively (Figure 1). While there have been
extensive efforts on reducing memory stalls, it is generally
infeasible to eliminate them (§7). In this work, we focus
on the alternative approach of harvesting these stall cycles
to execute useful work, where simultaneous multithreading
(SMT) is the representative hardware mechanism.
Drawbacks of SMT: However, SMT, as a harvesting mecha-
nism, suffers from three main drawbacks2 that we next show:

• Latency overhead: SMT focuses solely on multiplexing
instruction streams to best utilize CPU cores. As a result, it
significantly increases the primary latency if the scavenger
creates notable contention on core resources. This is prob-
lematic as it is common to co-locate latency-critical tasks
that have stringent latency SLOs, with best-effort tasks
that are resource-hungry. To see the latency overhead of
SMT, we measure the latency of Masstree while running a
synthetic Scan scavenger on its sibling cores. Scan is a rep-
resentative of contending scavengers: by iterating a 4MB
array and computing the sum, it consumes L1/L2 caches
and core resources like ALU. As shown in Figure 2-(a),
compared with running on dedicated cores, harvesting stall
cycles via SMT leads to 92x higher latency of Masstree
at 40% load. Such a behavior is widely observed in prior
studies, thus it is common to avoid using SMT for latency-
critical services at the cost of wasting cycles.

• Lack of Configurability: Related to the large latency over-
head, another drawback of SMT that hinders its uses for

2These drawbacks apply to SMT of most modern processors (e.g., Intel’s
and AMD’s), with IBM Power as an exception, discussed further in §7.

latency-critical services is the lack of fine-grained config-
urability. Given a latency SLO, what is needed to maxi-
mize CPU utilization is a knob that controls the extent of
resource sharing and hence the tradeoff between primary
latency and scavenger throughput. However, with SMT,
one can only decide whether to turn it on or off, which is
too coarse-grained to be useful. To see this, we compute
the maximum achievable Scan scavenger throughput under
different Masstree latency SLOs for the experiment above.
Here we set the SLO to be the latency under 30% load. An
ideal mechanism should gracefully harvest cycles propor-
tional to the latency budget given. In contrast, as shown
in Figure 2-(b), with SMT, one has to turn off SMT and
effectively achieve zero scavenger throughput when the
latency SLO is lower than SMT latency. Even after SMT
is on, it can not harvest more cycles when looser latency
SLOs are given. Neither of these two ends is desirable.

• Incomplete harvesting: Lastly, SMT often can not fully
harvest memory-bound stall cycles, especially when con-
current threads frequently incur cache misses. This is be-
cause the mainstream 2-wide SMT does not have sufficient
degrees of concurrency to harvest the bulk of memory stalls.
Note that while increasing the width of SMT helps with this
issue, it requires dedicating more hardware resources and
worsens the already problematic latency overhead issue.
We aim to design a software system that harvests memory-

bound stall cycles, is as generally applicable and convenient
to use as SMT, and improves upon the drawbacks of SMT.
Software opportunities: There are two capabilities a soft-
ware mechanism needs for harvesting memory stall cycles:
(i) transparently detecting the presence of memory stalls and
(ii) efficiently interleaving the executions of primaries and
scavengers. The former is challenging, because cache misses
are not exposed to software, and manually identifying stalls is
burdensome and error-prone. The latter requires much smaller
switching overhead than traditional threads of execution like
kernel threads. A recent proposal [57] discusses the opportu-
nity of enabling these two capabilities via a combination of
light-weight coroutines and sample-based profiling:
• Sample-based profiling: By using hardware performance

counters in modern CPUs, such as Intel’s PEBS [3] and
LBR [47], one could profile binaries with no special build
and negligible run time overhead. Thanks to these merits,
sample-based profiling has been widely used in production
for profile-guided optimizations (PGO) [17, 30, 66–68].

• Light-weight coroutines: Context switches of coroutines
are orders of magnitudes cheaper than traditional threads
of execution. This is because as a user-space mechanism
within a single process, coroutine context switch requires
no system calls nor changes to virtual memory mappings.
Building on these two techniques, MSH is the first software

system that transparently and efficiently harvests memory-
bound stall cycles. Next, we present an overview of MSH.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 59

3 MSH Overview
In this section, we discuss MSH’s overarching goals, deploy-
ment scenarios, high-level approach as well as overall flow.
Goal: Our goal is to transparently harvest memory-bound
stall cycles from any application, while overcoming SMT’s
performance limitations. We thus distill four requirements
that MSH as a software harvesting system should meet:
• Transparent: The system should be transparent to applica-

tions. It thus requires no rewriting effort from developers
and is applicable to any code, including legacy code.

• Efficient: The system should efficiently utilize the stall
cycles for scavenger executions, which demands extremely
low overhead from the harvesting machinery.

• Latency-aware: The system should incur minimal latency
overhead and allow fine-grained control over the trade-off
between primary latency and scavenger throughput.

• Full-harvesting: The system should fully harvest stall
cycles by interleaving sufficient scavenger executions, es-
pecially when scavengers also incur frequent cache misses.

Deployment scenario: System operators can use MSH to
harvest stall cycles of any application written in compiled
languages. MSH handles scavenger’s offline instrumentations
and runtime executions. MSH assumes that it is safe to run
these scavengers alongside the primaries [92], e.g., they are
crash-free and access memory safely. Ensuring safety prop-
erties with techniques like verification and information flow
control [14, 35, 62] is left to future work. MSH can be seam-
lessly integrated with existing profiling systems deployed for
PGO [17,30,68]. MSH is well suited for when latency-critical
and best-efforts tasks are co-located in the same machine, a
common arrangement in production [27, 55, 61, 93]. In this
case, latency-critical tasks serve as the primary, whose stall
cycles are harvested for the best-effort tasks.
Approach: MSH uses a novel co-design of binary instrumen-
tation, profiling, program analysis, and runtime scheduling,
each of which plays a role in meeting the requirements above:
• Binary instrumentation: MSH instruments primaries and

scavengers so that they are amenable to stall cycle harvest-
ing. Operating at the binary level provides visibility of
low-level information, e.g., register usage and basic block
control flows, which is needed by MSH’s program analysis.

• Profiling: With sample-based profiling, MSH decides loca-
tions to harvest stall cycles without requiring efforts from
developers. Profiling also allows MSH to use dynamic
information, e.g., basic block latency and branching proba-
bility, to achieve high accuracy in its program analysis.

• Program analysis: MSH leverages program analysis to
achieve efficiency, full-harvesting and latency-awareness.
For efficiency, MSH minimizes the amount of register sav-
ings and restorations for yields. For full-harvesting, MSH

directs yields in scavengers that are close to each other to
another scavenger. For latency-awareness, MSH bounds
the latency between adjacent yields in scavengers.

• Runtime scheduling: MSH’s runtime schedules scavenger
executions on top of the primary’s internal threading struc-
ture. It enables MSH to fully harvest stall cycles with
available scavengers, by assigning multiple scavengers to
a primary thread to scale up concurrency and migrating
scavengers from blocked primary threads to active ones.

Overall Flow: MSH performs both offline and run-time op-
erations (Figure 3). In the offline phase, MSH transforms
the primary and scavenger binaries so that they are amenable
to stall cycle harvesting. Specifically, MSH first profiles the
binaries and obtains information needed by program analysis
and later binary instrumentation: load instructions that in-
cur cache misses, indicating where CPU stalls happen; basic
block latencies and execution counts as well as branching
probability, which are used by the primary and scavenger in-
strumentations. After profiling, MSH analyzes the binaries
and extracts information that later guides the instrumentations.
For each yield site, where a yield is inserted to harvest stall
cycles of a delinquent load, MSH identifies a minimal amount
of register savings and restorations that still ensures program
correctness, by analyzing register usage and program struc-
tures. For scavengers, MSH conducts a data flow analysis to
decide the locations of additional yields, so that the expected
inter-yield latency is bounded. Most of the analysis is de-
signed to be intra-procedural, the complexity of which thus
scales only sublinearly with program sizes. Lastly, based on
the analysis results, MSH instruments the binaries.

The instrumented primary binaries contain so-called “pri-
mary” yields to expose CPU stalls: each primary yield is
inserted before a selected load instruction and prefetches the
cache line before yielding to a scavenger. As for instrumented
scavengers, they also contain primary yields before selected
load instructions, with default yield targets being a primary
thread. The special case is when primary yields are close
to each other: the target of these “special” primary yields is
set to another scavenger to scale up concurrency. Scavengers
also contain so-called “scavenger” yields, which are placed
to ensure that scavengers relinquish their cores in a timely
manner. We present the design of primary and scavenger
instrumentations in §4.1 and §4.2.

At runtime, MSH interleaves the executions of instru-
mented primaries and scavengers by dynamically assigning
scavengers to active primary threads, which means that MSH
does not require pre-determined or static pairings of primaries
and scavengers. To do that, MSH tracks the status of primary
threads by intercepting relevant function calls and adjusts
scavenger assignment accordingly. When a new thread is
created, MSH either steals the scavengers of a blocked thread
or fetches scavengers from the scavenger pool. If a thread
is blocked or ended, MSH marks its scavengers as stealable.

60 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

!Scavenger yieldPrimary yield Special Primary yield
Primary thread Scavenger

Stall cycles

Program
analysisProfiling

Binary
Instrumentation

! !

Bounded
distances

S2

S3

S4

S1

!

S1

Re-assign

S1

!! !

!!

Re-assign

S1 S2 ! ! S3 ! S4

Scavenger pool

Fetch

Offline Runtime

Figure 3: MSH system overview. Offline: MSH profiles and analyzes primaries and scavengers. It then instruments the primaries
to yield control to scavengers at likely memory stall sites, with scavengers returning control to primaries within a bounded time.
Runtime: MSH sets up a scavenger pool and dynamically assigns scavengers to each active primary thread.

When a thread later resumes, it will first attempt to reuse its
previously assigned scavengers, before falling back to get-
ting new scavengers like the thread creation case. Multiple
scavengers could be assigned to a primary thread to scale up
concurrency. MSH’s runtime performs all these operations
efficiently, and its design is later presented in §4.3.

4 Design
MSH consists of three components: primary instrumentation
(§4.1), scavenger instrumentation (§4.2) and a runtime (§4.3).

4.1 Primary Instrumentation
Primary instrumentation allows MSH to prefetch and yield

before load instructions that incur cache misses to expose stall
cycles. This should be transparent – requiring no assistance
from developers, and efficient – leaving most stall cycles for
scavengers. MSH achieves transparency by selecting yield
sites based on profiled data, and efficiency by minimizing reg-
ister savings/restorations for each yield via program analysis.
Profile-guided yield instrumentation: MSH selects loca-
tions that both account for a significant portion of memory-
bound stalls and have a high likelihood of L3 cache misses:
the former indicates substantial stall cycles, and the latter
allows less impact to the primary’s latency. To support this,
MSH obtains two pieces of information via profiling: load
instructions with L2/L3 cache misses and execution counts
of basic blocks.. MSH then adopts a two-step selection logic.
First, MSH sorts load instructions whose cache miss rates
are higher than a threshold by their frequencies. Second,
MSH estimates the latency overhead for each load instruction
by multiplying its frequency with its cache hit rate and the
memory access latency. MSH then goes down the sorted
list, includes a load instruction if the aggregate overhead falls
below a provided bound, and skips otherwise. This selec-
tion logic maximizes harvesting opportunities by prioritizing
frequent load instructions, while limiting the overall latency
overhead. Both the cache miss threshold and overhead bound
are configurable parameters that affect the tradeoff between
primary latency and scavenger throughput (§6.4).

For each selected load instructions, MSH instruments a
prefetch instruction for the same address, followed by a yield
that consists of two parts: register savings/restorations and

control passing. The former accounts for most of the yielding
overhead, and as we will describe next, MSH minimizes it
while ensuring correctness of program executions. For control
passing, MSH instruments the primary to swap its instruction
and stack pointer with the ones of an assigned scavenger that
the primary reads from a per-thread data structure (§4.3). The
instrumented code also reads a flag that indicates whether to
bypass the yield and directly resumes. This allows the runtime
to turn off stall cycle harvesting for instrumented primaries
and avoid the latency overhead of scavenger executions.
Yield cost minimization: Minimizing the yield cost is impor-
tant for two reasons. First, it improves harvesting efficiency:
the less cycles spent on the yielding machinery, the more
cycles available for executing scavengers while the primary
stalls. Moreover, it reduces the latency impacts to the primary,
especially when an instrumented load instruction results in a
cache hit and only stalls for a short amount of time.

Register savings and restorations are the dominant cost for
yields. MSH thus performs various optimizations to reduce
them while ensuring correctness of the program executions.
To avoid preserving every register, MSH first leverages reg-
ister liveness analysis [71], a form of data-flow analysis that
determines for each program point the set of “live” registers
whose values will likely be used later. Given that register live-
ness is conservative, meaning that a register will be identified
as live as long as there is any potential program path that may
read its current value, by preserving live registers at the yield
site, we are guaranteed to not violate the program correctness.

While saving only live registers reduces the yielding over-
head, the cost saving is small for functions with non-trivial
control flows, where most registers are considered live. To
further reduce the cost, MSH builds on an observation: be-
sides what registers to preserve, where these register savings
and restorations take place also plays an important role in
the yielding overhead. In particular, the naive approach of
placing register savings and restorations at yield sites leads to
unnecessary overhead. This is because there can be multiple
yields between a definition of a register and its correspond-
ing uses that repeatedly save and restore the register’s value
as the register is indeed live. To fix this, the key insight is
to align register savings/restorations with register definition-
s/uses. Intuitively, if we were to save/restore the register at

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 61

Figure 4: Loop optimization in primary instrumentation.

its definition/use sites, we can remove the redundancy due
to having multiple yields in between the definition-use pairs,
while still correctly preserving program semantics.

However, placing register savings/restorations at its def-
inition/use sites for arbitrary program structures is highly
complicated and potentially undesirable. Specifically, for cor-
rectness, one needs to identify all the definition sites, whose
definitions are likely to reach the yielding point, as well as all
the use sites that likely read these definitions. Instrumenting
at all these scattered locations requires a substantial amount
of work. Moreover, it is inevitable that some definition-use
pairs have paths that do not go through the yield point. This
means that there is register saving/restoring overhead even
when the function does not yield, which could lead to overall
increased overhead, if these cases happen frequently.

Instead of handling arbitrary program structures, MSH fo-
cuses on loops: it is often the case that a large portion of yields
reside in loops, which make them valuable targets for opti-
mizations. More importantly, the unique structure of loops
allows MSH to perform per-loop register savings or restora-
tions. As shown in Figure 4, most loops can be restructured
to have a preheader and some dedicated exits: the former
dominates the loop body whereas the latter post-dominate
it. As a result, any paths traversing the loop will enter the
preheader and leave one of the exits. MSH can thus simply
place register savings and restorations at the preheader and
exits, respectively, to ensure correctness for yields within
the loop. Moreover, as long as more than one loop iteration
goes through the yielding point, such a placement leads to
strictly fewer register savings and restorations than the yield-
site placement. In practice, this improvement is significant
as the operation now happens once per loop instead of once
per iteration. For registers that only have either uses or defi-
nitions within the loop body (R2 and R3 in Figure 4), MSH
adopts a hybrid approach that places either saving or storing
at the preheader/exit and the other at the yield site. To enable
such loop optimizations, besides register liveness analysis,
MSH performs reaching definition analysis to track the rel-
evant definitions and uses for live registers, as well as loop

simplification to transform feasible loops.
Besides when there are yields directly within a loop, MSH

optimizes for another common case, where a function called
within loops contains a single yield point. In particular, for
a function that has unused callee-saved registers, we need to
preserve values of these registers at the function boundary to
abide by the calling convention. However, when such func-
tions are called in loops, they incur redundant overhead due
to per-iteration saving and restoration. To address this issue,
MSH performs an optimization that we call “pseudo-inlining”:
MSH effectively inlines the target function by creating a copy
of the function, for which the values of unused callee-saved
registers are not preserved, and redirecting calls in loops to-
wards this copy. MSH then leverages its loop optimization
technique to save and restore the values of these unused callee-
saved registers at the loop granularity as much as possible.
MSH ensures that the original copy complies with the calling
convention, so that other calls to the function take place cor-
rectly. Pseudo-inlining thus enables loop optimizations as if
the function were inlined, while being easy to implement and
creating minimal code expansion since the copy is shared.

In summary, MSH is strategic about what registers to pre-
serve and where operations take place. It achieves the former
by identifying live registers and the latter by exploiting per-
loop operations. This reduced yield cost then leads to lower
primary latency and higher harvesting efficiency (§6.4).

4.2 Scavenger Instrumentation
Scavenger instrumentation allows full stall cycle harvesting,

while incurring minimal latency overheads. To minimize
latency overhead, MSH places scavenger yields to bound
inter-yield distances. To fully harvest stall cycles, primary
yields that are too close to each other are directed to another
scavenger. Next, we describe the mechanism in detail.
Primary yields: MSH instruments yields for stalling load
instructions within scavengers in the same way as primary in-
strumentation: identifying yield sites via profiling and adopt-
ing optimizations to reduce yield costs. By default, these
primary yields relinquish the core back to the primary. The
special case is when some yields are too close to each other
to fully harvest stall cycles (e.g., yields within tight loops).
These special primary yields will continue to the next scav-
enger. To support this, the per-thread data structure managed
by runtime contains two targets (i.e., primary thread and next
scavenger) for each scavenger (§4.3). Normal and special
primary yields are thus instructed to read different targets.
Scavenger yields: With only primary yields, it could take ar-
bitrarily long for scavengers to yield back. MSH thus bounds
inter-yield distances via a data-flow analysis that (i) calcu-
lates the average distances between a basic block and the
current set of scavenger yields and (ii) inserts yields if some
distance is over the bound. Note that the accuracy of bound-
ing inter-yield distances affects the latency overhead, but not
the correctness of the primary’s execution. We next describe

62 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the state, transfer function and join operation of the analysis:
• State: The state of our analysis is a list of yields and their

average uninstrumented distances (in terms of time/cycles)
to the current program point. If the scavenger were to yield
here, these are the expected amount of time the scavenger
has consumed before relinquishing the core since the pre-
vious yield points. Note that only yields with paths to the
current program point that do not contain any other yield
are included in the list. Input and output states of a basic
block thus represent the uninstrumented distances before
and after the basic block execution. MSH focuses on these
states as they directly allow bounding inter-yield distances.

• Transfer function: This determines how the output state
of a basic block is calculated based on its input state. If
no new yields are added, the output state is simply the in-
put incremented by the average latency of the basic block.
This average latency can be computed with latency samples
from profiling, or estimated as the product of the number
of instructions and the scavenger’s CPI. If any of the incre-
mented distance is larger than the bound, MSH looks for a
subset of its incoming edges to instrument yields. As de-
scribed below, this will change the input (and consequently
output) state of the basic block to contain new yield points
and hopefully keep all the distances in the output within
bound. If no such subset can be found, MSH inserts a yield
at the end of the basic block and sets the output state to
have only this yield point with zero distance.

• Join operation: This determines how the input state of
a basic block is calculated based on the output states of
its predecessors. For predecessors whose incoming edges
are not instrumented, yields in their output states are all
included in the basic block’s input state, with distances
being weighted averages of the corresponding distances in
predecessors’ output states. The weights are proportional
to hotness of incoming edges, obtained via profiling. For
instrumented incoming edges, the predecessor’s output
state will not propagate, instead the inserted yield is added
to the basic block’s input state with zero distance.
For the analysis, MSH ignores back edges (loops are han-

dled later) and sorts basic blocks topologically, so that output
states of predecessors are available before a basic block’s
turn. MSH sets the input state of the entry basic block to
be a pseudo-yield named “function-start” with zero distance.
MSH then iteratively computes all the states with the transfer
function and join operation. Here, there are two aspects that
require careful treatments – loops and function calls:
• Loops: For each loop, MSH computes the expected unin-

strumented distance as a weighted average of the distances
of all uninstrumented paths from the header basic block
to the latch basic block, where weights correspond to path
hotness. If the distance is zero (i.e., all paths have yields),
no loop instrumentation is needed. Otherwise, MSH instru-
ments the back edge so that it yields every bound divided

by distance iterations. To do this, MSH uses an induction
register if available; otherwise MSH maintains a counter
with unused registers or in per-thread data structures.

• Function calls: One aspect omitted so far is the treatment
of function calls. For calls whose callee are unknown or
external, MSH treats them as normal instructions. For
uninstrumented external library calls that are known to be
expensive, we adopt the standard practice of instrument-
ing right before and after the calls [13, 58]. Instead, for
calls to local functions, MSH considers whether there are
uninstrumented paths (i.e., from entry to exits) in the callee
– if yes, distances in the basic block’s output state are in-
cremented by the average uninstrumented latency of the
callee; otherwise, since previous yields will be terminated
in this call, MSH resets the output state to have only a
pseudo-yield for the call with zero distance. The uninstru-
mented latency of a callee is computed with the distances
for the function-start entry in the output states of its exit
basic blocks. To use callee’s analysis results, MSH builds
a function call graph, ignores some calls to break loops,
and analyzes functions in a topological order.
In summary, MSH can scale up concurrency to fully harvest

stall cycles (§6.2) and manage latency impacts by enforcing
inter-yield distance bounds via data-flow analysis (§6.4).

4.3 MSH Runtime
MSH intercepts function calls and assigns scavengers to

active primary threads with minimal runtime overhead using
tailored data structures. Next, we present the runtime design.
Function interception: MSH intercepts three types of func-
tions: (i) functions starting a thread: e.g., pthread_create, (ii)
functions (likely) blocking a thread, e.g., pthread_mutex_lock,
and (iii) functions terminating a thread, e.g., returning from
the thread’s start routine. Note that if there are unintercepted
function calls that alter thread status, MSH’s correctness is un-
affected: e.g., if a thread gets blocked silently (from the view
of MSH), its scavengers will stay with the blocked thread, and
harvestings will continue normally once the thread resumes.
Runtime operations: MSH performs different operations
before/after intercepted calls to adjust scavenger assignment:
• Scavenger initialization: MSH initializes a new scavenger

before assigning it to a primary thread, which includes
loading the scavenger code, allocating its stack space and
setting the return address for MSH to track when it finishes.

• Scavenger assignment: MSH assigns scavengers to a pri-
mary thread by configuring yield targets. The target for pri-
mary threads is a scavenger, and the target for scavengers
is a primary thread by default, or another scavenger for spe-
cial yields. MSH assigns more scavengers to a thread until
the product of special yield ratios for scavengers is below
a threshold or the scavenger number reaches a maximum.

• Scavenger stealing: When a primary thread needs scav-
engers, MSH first attempts to “steal” existing scavengers.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 63

1 bool steal_scavengers(per_thread_ctx *t) {
2 for (per_thread_ctx *it: thread_list) {
3 if (CAS(it->stealable, true, false)) {
4 it->stolen = migrate_scavengers(t, it);
5 it->stealable = true;
6 if(!need_more_scavengers(t))
7 return true;
8 }
9 }

10 return false;
11 }
12 void get_scavengers(per_thread_ctx *t) {
13 if(!steal_scavengers(t)) {
14 fetch_scavengers_from_pool(t);
15 }
16 }
17 void enter_blockable_call(per_thread_ctx *t) {
18 t->stealable = true;
19 }
20 void exit_blockable_call(per_thread_ctx *t) {
21 while (!CAS(t->stealable, true, false)) {}
22 if (t->stolen) {
23 get_scavengers(t);
24 update_yield_targets(t->yield_contexts);
25 t->stolen = false;
26 }
27 }

Listing 1: Pseudocode for key functions of MSH’s runtime.

MSH ensures that each scavenger is assigned to at most
one active thread at any time, by marking the scavengers
of a thread as stealable before the thread gets blocked or
terminated and only re-assigning stealable scavengers.

• Scavenger fetching: When there are no stealable scav-
engers, MSH fetches new scavengers from a pool. These
scavengers should be initialized before getting assigned.

For functions starting a thread, MSH obtains scavengers
via stealing or fetching and initializes them if necessary be-
fore assigning them to the thread. For functions (potentially)
blocking a thread, MSH marks the thread’s scavengers as
stealable before the function call. After the call, MSH first
attempts to reuse the scavengers previously assigned to this
thread. If some scavengers were stolen, MSH obtains new
scavengers with the same logic as the one for thread creation
functions. Having “sticky scavengers” is good for cache lo-
cality, as scavengers mostly remain in the same core unless
the primary thread gets migrated by the kernel. Lastly, for
functions terminating a thread, before the thread destruction,
MSH marks its scavengers as stealable.
Data structures: MSH tailors its data structures to prioritize
critical events that are short but take place frequently, as over-
head added to them likely leads to performance degradation.
We identify two critical events: (i) primary and scavenger
yielding and (ii) primary threads quickly resuming after block-
ing calls. (i) requires primaries and scavengers to quickly
check their yield targets. (ii) occurs because a likely blocking
function may not block after all (e.g., synchronization calls).

MSH’s data structures are shown in Figure 5. For event

Figure 5: Data structures managed by MSH runtime. Some
fields are omitted due to space constraints.

(i), the goal is allowing primaries and scavengers to quickly
check their yield targets. A naive design is to have a per-
application data structure that stores the context for each
primary thread and scavenger. Such a context includes its
stack and instruction pointers, and a runtime allocated stack
in the case of a scavenger. Each primary thread has a per-
thread data structure that stores pointers to contexts. Such a
design, while intuitive, adds indirection overhead for yields:
each primary thread or scavenger first reads its pointer in the
per-thread data structure, in order to read its target’s stack
and instruction pointers (in a different cache line) from the
per-application structure. Given the high frequency and small
time budgets of yields, such a design is undesirable.

In contrast, MSH adopts a design that effectively removes
the indirection overhead for yields. MSH divides a scavenger
context into two parts: a “yield context”, containing informa-
tion needed for yielding to the scavenger, i.e., its stack and
instruction pointers; and a “coroutine context”, containing
other relevant information, e.g., the scavenger stack and a
pointer to the yield context. The coroutine context of each
scavenger is stored in a per-application data structure, as it is
in the naive design. As for the yield context, it is augmented
with indexes of its targets (so effectively pointers), and the
augmented yield contexts of the primary thread and its scav-
engers are stored contiguously on the primary’s per-thread
data structure. With this arrangement, each primary thread or
scavenger yields by reading two yield contexts, one of itself
and the other of its target. MSH minimizes the size of yield
contexts, so that these two yield contexts often reside in the
same cache line, resulting in little overhead. Moreover, since
scavenger stacks reside in the shared data structure, MSH
can easily migrate scavengers by setting up the targets in the
per-thread data structures, without having to copy their stacks.

For event (ii), MSH strives to minimize the overhead for
when a primary thread quickly resumes with no blocking and
no scavengers stolen. A naive design is to maintain the status
of each scavenger, whether it is stealable or has been stolen,
in a per-application data structure. This makes scavenger
stealing simple by just looking for stealable scavengers and

64 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

changing their status to stolen. However, such a design com-
plicates the operations that a primary thread needs to perform
before and after a (likely) blocking call, which includes read-
ing and setting the status of all the assigned scavengers. This
process is unnecessarily expensive when there is no blocking.

In contrast, MSH optimizes for this case by leveraging
two per-thread flags: a “stealable” flag indicating whether
this thread is blocked, and a “stolen” flag indicating whether
some scavengers were stolen. As shown in Listing 1, before
a primary thread enters a blocking function, it simply sets the
stealable flag to be true. If it does not get blocked, it (i) waits
for the stealable flag to become true (explained later), which
will be immediate in this case, and (ii) resumes its execution
if the stolen flag is false. As a result, a primary thread that
quickly resumes at a blocking function only performs a read,
a write, and a CAS operation on a single cache line, which is
significantly less work than the baseline design.

To steal scavengers, a new thread attempts to compare-and-
swap the stealable flags of other threads from true to false. If
succeeded, this means that (i) that thread is blocked and (ii) no
other thread is stealing from this thread. The new thread then
steals the blocked thread’s scavengers by looking at their yield
contexts – if a scavenger’s yield context is valid, it copies the
yield context to its own per-thread structure before invalidat-
ing the context. The new thread ends its stealing by setting
both the stolen and stealable flags of the blocked thread as
true. Once the blocked thread resumes, it finds out that some
of its scavengers get stolen via the stolen flag, which triggers
the slow path of replacing its stolen scavengers with new ones.
In essence, by using per-thread flags, MSH expedites the
cases where the per-thread flags are untouched due to short
or no blocking. The cost of more complex scavenger stealing
is acceptable given that stealings happen infrequently.

To sum up, MSH is capable of dynamically assigning scav-
engers to primary threads for unmodified multi-threaded ap-
plications (§6.2) and does so with minimal overhead (§6.4).

5 Implementation
We prototype MSH’s offline parts on top of Bolt [67], a binary
optimizer, as well as perf [24], a sample-based profiler; and
MSH’s runtime as a user-level library. Next, we describe how
the four main components are implemented:
Offline profiling: MSH adopts the same set of profiling prac-
tices as prior sample-based profiling works [17,30,31,41,66–
68]: sampled inputs are used for profiling, and in the case of
input changes leading to notable performance degradations,
different profiling runs happen in the background. In practice,
MSH’s performance is observed to be consistent across dif-
ferent inputs. This is because programs often have a fixed set
of delinquent load instructions that trigger cache misses, an
insight that has been observed and exploited in cache prefetch-
ing works [11, 41, 54]. MSH parallelizes profile processing
across multiple cores to speed up the process.
Primary instrumentation: There are three phases: a profil-

 PtrChase

 Sphinx

 Masstree

Primary Mechanism Scavenger

Scan

DFS

CoCo

PtrChase

SMT

MSH

MSH+KS

MSH+SMT/KS

Hardware
Software
Software + Hardware

1
2
3

1

2

2

3

Idle time
Memory stall
Non-Memory stall

1
2
3

1 2 3

1 2

1 2 3

High contention
Frequent stall
Mixed

1
2
3

1

2

3

3

Synthetic RealType:

Figure 6: Primaries, scavengers and mechanisms evaluated.

ing phase, where we profile load instructions causing cache
misses via PEBS and basic block execution counts via LBR,
and parse profiled data; an analysis phase, where program
analysis results (e.g., what registers to save) are annotated in
relevant program points (e.g., load instructions, loops); and an
instrumentation phase, where binaries are finally altered. We
reuse register liveness and reaching definition analysis from
Bolt, and implement loop optimizations and pseudo-inlining.
Scavenger instrumentation: This takes place in the same
three phases. In the profiling phase, we obtain the basic block
latency via LBR. Given that LBR reports the latency between
different branching instructions, which does not always cor-
respond to a basic block’s latency, we implement a script to
map LBR samples to basic blocks. In the analysis phase, we
construct call graphs and implement the data-flow analysis.
MSH Runtime: We use the LD_PRELOAD dynamic linker
feature [73] to override pthread functions, and implement in a
shared library MSH’s runtime operations before/after calling
the original pthread functions. For per-thread data structures,
the runtime sets their base addresses in the GS segment reg-
ister upon thread creations, so that they can be accessed by
primaries and scavengers via GS-based addressing [53].

6 Evaluation
In this section, we present our evaluation setup (§6.1) and
investigate three key questions regarding MSH: (i) how well
does MSH perform compared to SMT? (§6.2), (ii) how does
MSH change the landscape of cycle harvesting? (§6.3) and
(iii) how do different components of MSH contribute to its
performance? (§6.4). We answer (i) and (ii) by evaluating
different mechanisms with both synthetic workloads and real
applications, (iii) by carefully testing the specific component.

6.1 Evaluation Setup
As shown in Figure 6, we carefully select primaries, scav-

engers and mechanisms to allow a comprehensive understand-
ing of MSH’s behaviors and the cycle harvesting landscape.
Harvestable cycles: To set up evaluations, it is important to
realize that there are three main classes of harvestable cycles.
The first class is idle time, which occurs at low loads when an
application does not have enough work for its cores. Software
mechanisms like kernel scheduling (KS) focus on harvesting
these cycles. As the load increases, idle time reduces and
CPU stalls become the main harvestable cycles. CPU stalls

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 65

Figure 7: Maximum scavenger throughput vs. P95 Latency budget at 80% load. The red line denotes the standalone latency.

can be divided into either memory stalls, which often account
for a significant portion of cycles (§2) and can be efficiently
harvested by MSH, or non-memory stalls (e.g., core-bound or
frontend stalls), which remain to be private territory of SMT.
Primaries: For primaries, we include a synthetic pointer-
chasing workload (PtrChase), which has most of its active cy-
cles bounded by memory. It thus allows us to study how well
MSH harvests memory stalls in comparison to SMT. We also
have two real latency-critical applications: Masstree [59], an
in-memory key-value store, and Sphinx [87], a speech recog-
nition system. With these workloads, we evaluate harvesting
mechanisms on realistic mixes of memory and non-memory
stalls. Masstree and Sphinx are configured to use the same
dataset as Tailbench [46] with 6 and 24 threads respectively.
PtrChase has 8 threads, each iterating over its own 16MB
array via random pointer chasing upon new requests.
Mechanisms: SMT harvests all three classes of harvestable
cycles, but suffers from high latency overhead, lack of con-
figurability, and incomplete harvesting (§2). MSH harvests
memory-bound stalls and overcomes the drawbacks of SMT.
Building on MSH’s superior performance, we complement it
with KS and SMT to also harvest idle time and non-memory
stalls: KS adds little overhead to MSH but allows idle time
harvesting; MSH+SMT/KS enables SMT with MSH if the
primary latency meets the SLO, disables SMT and runs KS
otherwise. This allows exploiting SMT’s ability to harvest
non-memory stalls, while managing its latency impacts.

SMT3 runs scavengers on the sibling cores of the primary.
MSH interleaves scavenger executions within the primary.

3We focus on Intel’s SMT implementation (i.e., Hyper-threading) in our
evaluation. As we will discuss in §7, drawbacks of SMT stem from the lack of
(software-controllable) prioritizations and the limited degrees of concurrency,
which are common among most commercial SMT implementations. We thus
expect our results to be representative of common SMT behaviors.

MSH+KS schedules scavengers to run on the primary’s log-
ical cores with lower real-time priority, so that these scav-
engers run when the primary is idle. MSH+SMT/KS runs
other scavengers on sibling cores when SMT is enabled.
Scavengers: SMT performs poorly for scavengers that con-
tend for core resources or frequently stall, causing large la-
tency overhead and incomplete harvesting respectively. We
thus include synthetic workloads with such behaviors: Scan
– creating contention by scanning a 4MB array and comput-
ing the sum; PtrChase – frequently stalling due to iterating
through a 16MB array in random order via pointer chasing,
to evaluate whether MSH can handle such challenging cases.
We also include two graph analysis workloads: DFS and Con-
nected Component (CoCo), from the CRONO benchmark [1]
as representatives of scavengers with mixed behaviors.
Testbed and Metrics: We conduct experiments using a dual-
socket server with 56-core Intel Xeon Platinum 8176 CPUs
operating at 2.1 GHz4. We measure at different loads the 95
percentile primary latency as well the scavenger throughput
in terms of the number of scavengers finished per second.

6.2 MSH performance
Summary: We extensively evaluate MSH and show that it
provides three main performance benefits over SMT:

• MSH can harvest up to 72% scavenger throughput of SMT,
for latency SLOs under which SMT has to be disabled.

• MSH can further trade off primary latency for higher scav-
enger throughput if looser latency SLOs are given.

4Applications use memory from the local node in our evaluation. Under a
NUMA setup, MSH can be configured to efficiently harvest the longer stalls
caused by remote accesses, e.g., by using larger inter-yield distances (§6.2).

66 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 8: Time to completion for a fixed number of pointer-
chasing jobs with different degrees of concurrency.

• Unlike SMT, MSH can fully harvest memory stalls when
scavengers stall and achieve up to 2x higher throughput.

MSH provides these benefits with its capabilities like fine-
grained configurability and concurrency scaling, which we
will elaborate further on §6.4. Here we focus on presenting
MSH’s performance characteristics in comparison to SMT.
The whole picture: As shown in Figure 7, for each of the
primary and scavenger combinations, we report the maximum
achievable scavenger throughputs under different primary la-
tency SLOs, which is defined as the latency budget at 80%
loads. Note that, the comparisons among harvesting mech-
anisms remain unchanged for different latency metrics (e.g.
average, 99 percentile) at other loads (other than 80%). As
discussed below, MSH can be flexibly configured to achieve
different scavenger throughputs depending on the primary
latency budgets. These results thus allow us to have a holistic
understanding of MSH’s performance in comparison to SMT.
Here one could make several key observations:

First, MSH harvests substantial stall cycles for latency
SLOs under which SMT effectively achieves zero scavenger
throughput (i.e., disabled). This is especially valuable when
contentious scavengers cause significant slowdown for SMT:
e.g., for Sphinx with Scan, MSH achieves up to 72% of SMT
scavenger throughput with lower than SMT primary latency.
Such behaviors exist for Sphinx and Masstree with all the eval-
uated scavengers, indicating the general usefulness of MSH
as a harvesting mechanism under stringent latency SLOs.

Second, unlike SMT, which achieves the same scavenger
throughput regardless of the latency SLO given, MSH can
trade off primary latency for higher scavenger throughput.
This capability, together with the aforementioned ability to
harvest stall cycles under stringent latency SLOs, makes MSH
a highly elastic harvesting mechanism that can be combined
with other mechanisms, as we will describe in §6.3.

Lastly, MSH can fully harvest memory stalls even when
scavengers frequently stall. Specifically, for the PtrChase
scavenger, with both Sphinx and PtrChase primaries, MSH
manages to achieve higher scavenger throughput than SMT
without incurring much latency overhead. Given that SMT
harvests both idle time and non-memory stalls, which MSH
does not handle, this indicates that MSH can better harvest
memory stalls with higher degrees of concurrency.

Figure 9: SMT, MSH and MSH+KS for Sphinx+Scan.

Full harvesting: To verify this, we conduct an experiment
with a fixed number of jobs, where each job traverses a 128
MB array via random pointer chasing and thus frequently
incurs memory stalls. We then measure the total completion
time of these jobs with a single physical core. For SMT, we
either run one job at a time or co-locate two concurrent jobs.
For MSH, we interleave these jobs with various degrees of
concurrency. The normalized completion times are shown in
Figure 8. In the ideal case, the completion time is one over the
concurrency degree. Although SMT-2 is close to ideal thanks
to hardware efficiency, it does not have enough concurrency to
further harvest memory stalls. In contrast, while having larger
interleaving overhead, MSH reduces SMT’s completion time
by roughly a half (i.e., 2x throughput) with a concurrency de-
gree of eight. This shows that compared with SMT, MSH can
harvest more memory stalls via concurrency scaling. When
the degree of concurrency goes beyond eight, the completion
time of MSH increases due to the aggregate yielding overhead
outweighing the benefits of additional multiplexings.

6.3 Cycle Harvesting Landscape
With various desirable properties, MSH can be efficiently

combined with other harvesting mechanisms to re-shape the
CPU cycle harvesting landscape. To see this, we evaluate two
compound mechanisms that leverage MSH for memory stalls:
MSH+KS and MSH+SMT/KS, and compare that with SMT.
• MSH+KS: KS complements MSH with idle time har-

vesting. MSH+KS thus achieves much higher scavenger
throughput than MSH at low loads, while adding small
latency overhead (Figure 9). As the load increases, idle
time reduces, and MSH+KS behaviors converge to MSH’s.
Note that MSH in this figure is only one configuration.

• MSH+SMT/KS: MSH+SMT/KS strives to utilize SMT’s
ability to harvest non-memory stalls, and falls back to KS
if SMT incurs excessive latency overhead. As shown in
Figure 7, MSH+SMT/KS delivers superior performance,
with higher scavenger throughput than SMT under almost
all latency SLOs. The reason is that: (i) for scavengers that
frequently stall, SMT can be safely enabled with minimal
latency overhead, the combination of SMT and MSH can
harvest idle time, non-memory and memory stalls to the
full extent; (ii) for contentious scavengers, the combination

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 67

of KS and MSH then efficiently harvests both idle time and
memory stalls for latency SLOs where SMT is disabled.

6.4 Performance Breakdown
Summary: We test MSH’s configurability and performance
of its components, the results of which are outlined below:
• Configurability: MSH offers fine-grained control over

the latency-throughput trade-off via (i) yield site selections
in primary instrumentation, (ii) inter-yield distances in
scavenger instrumentation and (iii) concurrency degrees
in runtime. Since the effects of concurrency scaling have
been studied in Figure 8, we focus on the other two knobs.
We measure the primary latency and scavenger throughput
for Sphinx and Scan with different configurations, with
results shown in Figure 10. For the primary, MSH esti-
mates the overhead of each load instruction with its cache
miss rate and bounds the aggregate overhead when select-
ing yield sites (§4.1). We increase this overhead bound
from 5% to 15% and observe a clear latency-throughput
trade-off as more yields are instrumented. For the scav-
enger, increasing the target inter-yield distance also leads
to higher scavenger throughput at the cost of larger pri-
mary overhead. Besides the latency-throughput trade-off,
such configurability allows MSH to mitigate some inher-
ent issues of instruction interleaving, such as increased
memory contention and effectively partitioned caches, by
controlling the extent and locations of interleaving.

• Primary instrumentation: MSH reduces the yield cost by
minimizing the amount of register savings and restorations
per yield. To measure how this affects its harvesting perfor-
mance, we conduct an experiment with Sphinx and Scan,
where we measure Sphinx’s latency for different inter-yield
distances of Scan, with and without our optimizations. As
shown in Figure 11, reduced yield costs do lead to up to
23% lower primary latency. Note that the improvement
first increases with scavenger inter-yield distances before
dropping, because (i) the larger yield cost (without opti-
mizations) does not affect the primary latency until the
duration of the interleaved scavenger execution (i.e., inter-
yield distance plus yield cost) exceeds the cache hit latency,
and (ii) as the inter-yield distance further increases, yield
cost plays a smaller part in the overall overhead.

• Scavenger instrumentation: MSH accurately enforces
target inter-yield distances via its data-flow analysis (Fig-
ure 12-(a)). As for overhead, a unique source of overhead
for scavengers is the loop instrumentation overhead – using
an in-memory iteration counter is expensive for tight loops.
MSH thus attempts to reuse induction registers or maintain
a counter with unused registers before spilling to memory.
This optimization reduces the overhead by 130% and 15%
for CoCo and DFS respectively (Figure 12-(b)).

• MSH runtime: MSH harvests stall cycles via dynamic
scavenger assignment. It does so with low overhead: 10 ns

for thread resuming with unstolen scavengers, which does
not cause noticeable impacts on our evaluated applications.

• Profiling overhead: Even with sample-based profiling
using hardware performance counters, sampling events at
high frequencies can still slow down the primary applica-
tion. In MSH, we confirm that accurately capturing delin-
quent load instructions incurs minimal profiling overhead.
Specifically, for Masstree, using the default sampling fre-
quency and following the yield site selection logic (§4.1),
MSH selects the same set of load instructions as if it were
to sample 100x more frequently. As a result, while using a
100x higher sampling rate would slow down the application
by 25%, the slowdown from MSH’s profiling is negligible.

• Analysis complexity: MSH instruments only selective
loads and performs mostly intra-procedural analysis, which
finishes less than a minute for all the evaluated workloads.

7 Related Work
Reducing memory stalls: Orthogonal to harvesting efforts
like MSH, there has been extensive research on reducing
memory stalls. Beyond out-of-order executions, there are two
lines of techniques based on load slices, i.e., instructions that
generate the address of a load instruction. One technique is
prefetching [2, 4, 8, 12, 22, 39, 42, 56], where the cache line is
prefetched after the end of its load slice; and the other tech-
nique is criticality-aware instruction scheduling [5, 6, 16, 77],
where the processor prioritizes the executions of load slices,
which requires hardware changes. For both techniques, there
is a trade-off between capability and deployability. Simple
techniques like stream prefetchers [39, 75] and prefetch in-
sertion via static analysis [4, 20] have limited capability (e.g.,
unable to handle complex access patterns); whereas advanced
proposals like runahead prefetchers [26, 33] often have re-
quirements that hinder wide adoptions (e.g., excessive hard-
ware complexity, source code modification). Moreover, a
key requirement for both techniques to reduce stalls is that
load slices end sufficiently ahead of the load instruction. As a
result, for cases where load slices are close to the load instruc-
tion, neither technique can help. In contrast, MSH is easily
deployable, requiring no hardware changes nor rewriting ef-
forts, and harvests stall cycles for any access pattern.
SMT: For the three drawbacks of SMT (i.e., latency overhead,
lack of configurability and incomplete harvesting), the first
two stem from the lack of prioritizations, whereas the last
one is due to limited degrees of concurrency. Most modern
processors from Intel and AMD have these two issues, which
leads to unsatisfactory harvesting performance (§6.2). An ex-
ception is IBM Power processors [50, 63], as they (i) support
assigning hardware threads with priorities that determine the
ratio of physical core decode slots allotted to them, and (ii)
have wider SMT with up to eight threads per core, at the cost
of more complex and resource-consuming SMT design.

Given this context, the value of MSH is two fold. First,

68 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: The effects of the aggregate yield overhead bound (left) and the scavenger inter-yield distance (right) on the primary
latency and the scavenger throughput in Sphinx+Scan.

Figure 11: Latency improvement made by the yield cost opti-
mizations in the primary instrumentation on Sphinx+Scan.

Figure 12: (a) Inter-yield distance of scavenger instrumenta-
tion; (b) overhead of loop instrumentation: opt uses induction
registers and unused registers, no ind. uses only unused regis-
ters, and all-mem uses in-memory iteration counters.

for most modern processors, MSH allows harvesting memory
stall cycles in software without the drawbacks of their SMT
mechanisms. Second, for processors like IBM Power and
Cray Threadstorm [48, 49] that support massive multithread-
ing and fine-grained parallelism, MSH raises the question of
whether certain functionality should be implemented in hard-
ware or software, e.g., concurrency scaling in MSH happens
on-demand, without requiring dedicated thus likely wasted
resources, such as die area and power.
Software efforts: Some work focuses on utilizing SMT with
latency-critical services, by disabling it when high latency or
resource interference is detected [29, 60, 70, 89]. However,
they do not address SMT’s high latency overhead and lack
of configurability, and are thus unable to harvest stall cycles
when SMT violates latency SLOs. As for software harvesting
efforts, prior work shows that if done correctly, prefetching
and yielding before load instructions can lead to increased
throughput for memory-intensive workloads [21, 34, 44, 72].
However, they either require manual identification of yield

sites and source code modification, or instrument every load
instruction at the cost of high latency. Moreover, none of
them can enforce low latency overhead and full harvesting
from diverse scavengers, which MSH provides with scavenger
instrumentation and runtime operations. In short, MSH is the
first software system that enables transparent and general
memory stall harvesting with competitive performance.

8 Discussion
Isolation mechanism: In MSH, the primary and its scav-
engers reside in the same process to benefit from fast yielding,
which necessitates mechanisms other than hardware isolation
to ensure memory safety under this setup. This turns out
to be an extensively studied problem, with solutions falling
into two main categories: (i) software-based fault isolation
(SFI) [76, 81, 86], which establishes logical protection do-
mains by inserting dynamic checks at the binary level; and
(ii) language-based isolation, where a program is accepted in
the form of a safe language (e.g., WebAssembly [32, 36, 85],
Rust [15, 51, 65, 92]) and validated by the type checker and
compiler. Operating at the binary level, MSH easily coexists
with either isolation mechanism: SFI can be a better fit as it
is applicable to code written in different languages, including
legacy code, which is a merit that MSH shares. Moreover,
a recent work [91] shows lower runtime overhead with a
lightweight SFI implementation than existing language-based
solutions. Integrating MSH with some isolation mechanism
and evaluating the resulting system is left for future work.
Further evaluation: In §6, we demonstrated and dissected
the desirability of MSH as a harvesting mechanism. Next, we
discuss directions for more thorough evaluation of MSH.
• Additional workloads: We focus on evaluating a set

of representative workloads with distinct characteristics,
e.g., scavengers that either create large contentions, or fre-
quently stall, or exhibit mixed behaviors. This appraoch
allows us to interpret the performance differences caused
by (i) the distinct characteristics of the primary-scavenger
pairs and (ii) the differences in harvesting mechanisms.
One could extend with more real workloads

• Cache prefetching: As discussed in §7, MSH can harvest
memory stalls that are not hidden by cache prefetching, and
prefetching techniques that are easy to deploy usually have
limited capability. It will thus be interesting to evaluate the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 69

effectiveness of MSH with software prefetching techniques
used in production [40]. That being said, most delinquent
loads in our evaluated workloads exhibit pointer-chasing
behaviors, which are inherently challenging to prefetch.

• Datacenter efficiency: The effect of MSH on the overall
CPU efficiency of a datacenter is hard to estimate, as it
depends on various factors such as workload character-
istics, colocation arrangements, and SLO policies. This
necessitates large-scale evaluation and profiling [45].

Efficacy of profiling: In terms of profiling overhead, we have
shown that MSH can capture delinquent load instructions
with a low sampling rate (§6.4). The other natural question
is whether profiling is consistently effective for the purpose
of harvesting stall cycles in MSH. Similar to prior works that
leverage profiling for cache prefetching [40, 41, 95], we show
positive results with our evaluated workloads (§6.2). One
conjecture is that, while whether a particular load invocation
will trigger a cache miss is highly random, the two pieces of
information MSH needs from profiling – namely, (i) the set
of load instructions that account for a significant portion of
memory stalls and (ii) their likelihoods of cache misses, are
often stable across runs and inputs. Evaluating a wider range
of applications can help further validate this conjecture.
Hardware support for MSH: We identify two aspects that
MSH can benefit from hardware support. First, an overhead
that MSH inevitably incurs is when an instrumented load
causes cache hits. MSH mitigates this with the selection logic
in primary instrumentation, which enforces a lower bound on
cache miss rate and an upper bound on aggregate overhead
(§4.1). To do better, what is needed is dynamic visibility of
cache misses, e.g., indicating if a cache line is in L2 cache.
This allows yields to be conditional on whether cache misses
actually happen. We expect conditional checking overhead
to be on the scale of L2 cache latency, much faster than
scavenger executions configured to harvest memory stalls.

Another aspect that hardware can offer support is reduc-
ing yield overhead. MSH minimizes the amount of register
savings and restorations for each yield, which leads to lower
latency overhead (§6.4). One useful hardware feature here
is to save/restore multiple registers to/from memory with a
single instruction for lower instruction fetch costs, which is
already provided in ARM with LDM/STM instructions [9].
Prior works also propose hardware support for fast saving and
restoration of process state during context switches [38, 80].

9 Conclusion
We presented MSH, a software system that transparently and
efficiently harvests memory stall cycles. With a co-design
of profiling, program analysis, binary instrumentation and
runtime scheduling, MSH fully harvests stall cycles, while
incurring minimal latency overhead and offering fine-grained
control of the latency-throughput tradeoff. MSH is thus a
preferable solution for harvesting memory stalls and brings
valuable changes to the CPU cycle harvesting landscape.

References

[1] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and
Omer Khan. Crono: A benchmark suite for multi-
threaded graph algorithms executing on futuristic mul-
ticores. In 2015 IEEE International Symposium on
Workload Characterization, pages 44–55. IEEE, 2015.

[2] Sam Ainsworth and Timothy M Jones. An event-
triggered programmable prefetcher for irregular work-
loads. ACM Sigplan Notices, 53(2):578–592, 2018.

[3] Soramichi Akiyama and Takahiro Hirofuchi. Quantita-
tive evaluation of intel pebs overhead for online system-
noise analysis. In Proceedings of the 7th International
Workshop on Runtime and Operating Systems for Super-
computers ROSS 2017, pages 1–8, 2017.

[4] Hassan Al-Sukhni, Ian Bratt, and Daniel A Connors.
Compiler-directed content-aware prefetching for dy-
namic data structures. In 2003 12th International Con-
ference on Parallel Architectures and Compilation Tech-
niques, pages 91–100. IEEE, 2003.

[5] Mehdi Alipour, Stefanos Kaxiras, David Black-Schaffer,
and Rakesh Kumar. Delay and bypass: Ready and
criticality aware instruction scheduling in out-of-order
processors. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 424–434. IEEE, 2020.

[6] Mehdi Alipour, Rakesh Kumar, Stefanos Kaxiras, and
David Black-Schaffer. Fiforder microarchitecture:
Ready-aware instruction scheduling for ooo processors.
In 2019 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 716–721. IEEE, 2019.

[7] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, et al. Provid-
ing {SLOs} for {Resource-Harvesting}{VMs} in cloud
platforms. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
735–751, 2020.

[8] Murali Annavaram, Jignesh M Patel, and Edward S
Davidson. Data prefetching by dependence graph pre-
computation. ACM SIGARCH Computer Architecture
News, 29(2):52–61, 2001.

[9] ARM. Arm developer suite assembler guide.
https://developer.arm.com/documentation/
dui0068/b/Writing-ARM-and-Thumb-Assembly-
Language/Load-and-store-multiple-register-
instructions/ARM-LDM-and-STM-instructions,
2023.

70 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://developer.arm.com/documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/Load-and-store-multiple-register-instructions/ARM-LDM-and-STM-instructions
https://developer.arm.com/documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/Load-and-store-multiple-register-instructions/ARM-LDM-and-STM-instructions
https://developer.arm.com/documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/Load-and-store-multiple-register-instructions/ARM-LDM-and-STM-instructions
https://developer.arm.com/documentation/dui0068/b/Writing-ARM-and-Thumb-Assembly-Language/Load-and-store-multiple-register-instructions/ARM-LDM-and-STM-instructions

[10] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and
Parthasarathy Ranganathan. Memory hierarchy for
web search. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 643–656. IEEE, 2018.

[11] Grant Ayers, Heiner Litz, Christos Kozyrakis, and
Parthasarathy Ranganathan. Classifying memory access
patterns for prefetching. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 513–526, 2020.

[12] Mohammad Bakhshalipour, Mehran Shakerinava, Pej-
man Lotfi-Kamran, and Hamid Sarbazi-Azad. Bingo
spatial data prefetcher. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 399–411. IEEE, 2019.

[13] Nilanjana Basu, Claudio Montanari, and Jakob Eriksson.
Frequent background polling on a shared thread, using
light-weight compiler interrupts. In Proceedings of
the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation,
pages 1249–1263, 2021.

[14] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Ru-
pak Majumdar. Checking memory safety with blast. In
International Conference on Fundamental Approaches
to Software Engineering, pages 2–18. Springer, 2005.

[15] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an experiment in operating system
structure and state management. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 1–19, 2020.

[16] Trevor E Carlson, Wim Heirman, Osman Allam, Ste-
fanos Kaxiras, and Lieven Eeckhout. The load slice
core microarchitecture. In Proceedings of the 42Nd
Annual International Symposium on Computer Architec-
ture, pages 272–284, 2015.

[17] Dehao Chen, David Xinliang Li, and Tipp Moseley.
Autofdo: Automatic feedback-directed optimization for
warehouse-scale applications. In Proceedings of the
2016 International Symposium on Code Generation and
Optimization, pages 12–23, 2016.

[18] Ruobing Chen, Haosen Shi, Yusen Li, Xiaoguang Liu,
and Gang Wang. Olpart: Online learning based resource
partitioning for colocating multiple latency-critical jobs
on commodity computers. In Proceedings of the
Eighteenth European Conference on Computer Systems,
pages 347–364, 2023.

[19] Shuang Chen, Christina Delimitrou, and José F
Martínez. Parties: Qos-aware resource partitioning
for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 107–120, 2019.

[20] William Y Chen, Scott A Mahlke, Pohua P Chang,
and Wen-mei W Hwu. Data access microarchitectures
for superscalar processors with compiler-assisted data
prefetching. In Proceedings of the 24th annual interna-
tional symposium on Microarchitecture, pages 69–73,
1991.

[21] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit,
Michael Ferdman, and Nima Honarmand. Taming the
killer microsecond. In 2018 51st Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pages 627–640. IEEE, 2018.

[22] Jamison D Collins, Hong Wang, Dean M Tullsen,
Christopher Hughes, Yong-Fong Lee, Dan Lavery, and
John P Shen. Speculative precomputation: Long-range
prefetching of delinquent loads. ACM SIGARCH Com-
puter Architecture News, 29(2):14–25, 2001.

[23] Charlie Curtsinger and Emery D Berger. Coz: Finding
code that counts with causal profiling. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 184–197, 2015.

[24] Arnaldo Carvalho De Melo. The new linux’perf’tools.
In Slides from Linux Kongress, volume 18, pages 1–42,
2010.

[25] Stephen Dolan, Servesh Muralidharan, and David Gregg.
Compiler support for lightweight context switching.
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 9(4):1–25, 2013.

[26] James Dundas and Trevor Mudge. Improving data
cache performance by pre-executing instructions under
a cache miss. In Proceedings of the 11th international
conference on Supercomputing, pages 68–75, 1997.

[27] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Ra-
jwar, David Culler, Zhiyi Xu, Jianing Fan, Christopher
Kennelly, Bill McCloskey, Danijela Mijailovic, et al.
Towards an adaptable systems architecture for mem-
ory tiering at warehouse-scale. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 727–741, 2023.

[28] Roman Elizarov, Mikhail Belyaev, Marat Akhin, and
Ilmir Usmanov. Kotlin coroutines: design and imple-
mentation. In Proceedings of the 2021 ACM SIGPLAN

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 71

International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages
68–84, 2021.

[29] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 281–297, 2020.

[30] Google. Propeller: Profile guided optimizing large scale
llvmbased relinker. https://github.com/google/
llvm-propeller, 2020.

[31] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A
program-behavior-guided far memory system. In Pro-
ceedings of the 29th Symposium on Operating Systems
Principles, pages 692–708, 2023.

[32] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with webassembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 185–200,
2017.

[33] Milad Hashemi, Onur Mutlu, and Yale N Patt. Con-
tinuous runahead: Transparent hardware acceleration
for memory intensive workloads. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 1–12. IEEE, 2016.

[34] Yongjun He, Jiacheng Lu, and Tianzheng Wang.
Corobase: coroutine-oriented main-memory database
engine. Proceedings of the VLDB Endowment,
14(3):431–444, 2020.

[35] Daniel Hedin and Andrei Sabelfeld. A perspective
on information-flow control. In Software safety and
security, pages 319–347. IOS Press, 2012.

[36] Pat Hickey. How fastly and the developer commu-
nity are investing in the webassembly ecosystem.
https://www.fastly.com/blog/how-fastly-and-
developer-community-invest-in-webassembly-
ecosystem/, 2020.

[37] Joel Hruska. Maximized performance: Compar-
ing the effects of hyper-threading, software up-
dates. https://www.extremetech.com/computing/
133121-maximized-performance-comparing-the-
effects-of-hyper-threading-software-updates,
2012.

[38] Jack Tigar Humphries, Kostis Kaffes, David Mazières,
and Christos Kozyrakis. A case against (most) context
switches. In Proceedings of the Workshop on Hot Topics
in Operating Systems, pages 17–25, 2021.

[39] Ibrahim Hur and Calvin Lin. Memory prefetching us-
ing adaptive stream detection. In 2006 39th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO’06), pages 397–408. IEEE, 2006.

[40] Akanksha Jain, Hannah Lin, Carlos Villavieja,
Baris Kasikci, Chris Kennelly, Milad Hashemi, and
Parthasarathy Ranganathan. Limoncello: Prefetchers
for scale. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages
577–590, 2024.

[41] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris
Kasikci, and Heiner Litz. Apt-get: Profile-guided timely
software prefetching. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 747–
764, 2022.

[42] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris
Kasikci, and Heiner Litz. Apt-get: Profile-guided timely
software prefetching. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 747–
764, 2022.

[43] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muham-
mad Wajahat, and Anshul Gandhi. Scavenger: A black-
box batch workload resource manager for improving
utilization in cloud environments. In Proceedings of the
ACM symposium on cloud computing, pages 272–285,
2019.

[44] Christopher Jonathan, Umar Farooq Minhas, James
Hunter, Justin Levandoski, and Gor Nishanov. Exploit-
ing coroutines to attack the" killer nanoseconds". Pro-
ceedings of the VLDB Endowment, 11(11):1702–1714,
2018.

[45] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture, pages
158–169, 2015.

[46] Harshad Kasture and Daniel Sanchez. Tailbench:
a benchmark suite and evaluation methodology for
latency-critical applications. In 2016 IEEE Inter-
national Symposium on Workload Characterization
(IISWC), pages 1–10. IEEE, 2016.

[47] Andi Kleen. An introduction to last branch records.
https://lwn.net/Articles/680985/, 2016.

[48] Petr Konecny. Introducing the cray xmt. In Proc. Cray
User Group meeting (CUG 2007). Seattle, WA: CUG
Proceedings, 2007.

72 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/google/llvm-propeller
https://github.com/google/llvm-propeller
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem/
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem/
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem/
https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates
https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates
https://www.extremetech.com/computing/133121-maximized-performance-comparing-the-effects-of-hyper-threading-software-updates
https://lwn.net/Articles/680985/

[49] Andrew Kopser and Dennis Vollrath. Overview of
the next generation cray xmt. In Cray User Group
Proceedings, pages 1–10, 2011.

[50] Hung Q Le, JA Van Norstrand, Brian W Thompto,
José E Moreira, Dung Q Nguyen, David Hrusecky,
MJ Genden, and Michael Kroener. Ibm power9 proces-
sor core. IBM Journal of Research and Development,
62(4/5):2–1, 2018.

[51] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 234–251, 2017.

[52] Heshan Lin, Xiaosong Ma, Jeremy Archuleta, Wu-chun
Feng, Mark Gardner, and Zhe Zhang. Moon: Mapre-
duce on opportunistic environments. In Proceedings of
the 19th ACM International Symposium on High Perfor-
mance Distributed Computing, pages 95–106, 2010.

[53] Linux. Using fs and gs segments in user space appli-
cations. https://www.kernel.org/doc/html/next/
x86/x86_64/fsgs.html, 2023.

[54] Heiner Litz, Grant Ayers, and Parthasarathy Ran-
ganathan. Crisp: critical slice prefetching. In Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 300–313, 2022.

[55] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving resource efficiency at scale.
In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 450–462,
2015.

[56] Chi-Keung Luk and Todd C Mowry. Compiler-based
prefetching for recursive data structures. In Proceedings
of the seventh international conference on Architectural
support for programming languages and operating sys-
tems, pages 222–233, 1996.

[57] Zhihong Luo, Silvery Fu, Emmanuel Amaro, Amy
Ousterhout, Sylvia Ratnasamy, and Scott Shenker. Out
of hand for hardware? within reach for software! In
Proceedings of the 19th Workshop on Hot Topics in Op-
erating Systems, pages 30–37, 2023.

[58] Zhihong Luo, Sam Son, Dev Bali, Emmanuel Amaro,
Amy Ousterhout, Sylvia Ratnasamy, and Scott Shenker.
Efficient microsecond-scale blind scheduling with tiny
quanta. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages
305–319, 2024.

[59] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[60] Artemiy Margaritov, Siddharth Gupta, Rekai Gonzalez-
Alberquilla, and Boris Grot. Stretch: Balancing qos
and throughput for colocated server workloads on smt
cores. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 15–
27. IEEE, 2019.

[61] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
and Mary Lou Soffa. Bubble-up: Increasing utilization
in modern warehouse scale computers via sensible co-
locations. In Proceedings of the 44th annual IEEE/ACM
International Symposium on Microarchitecture, pages
248–259, 2011.

[62] Nicholas D Matsakis and Felix S Klock. The rust
language. ACM SIGAda Ada Letters, 34(3):103–104,
2014.

[63] Alessandro Morari, Carlos Boneti, Francisco J Cazorla,
Roberto Gioiosa, Chen-Yong Cher, Alper Buyukto-
sunoglu, Pradip Bose, and Mateo Valero. Smt mal-
leability in ibm power5 and power6 processors. IEEE
Transactions on Computers, 62(4):813–826, 2012.

[64] Ana Lúcia De Moura and Roberto Ierusalimschy. Revis-
iting coroutines. ACM Transactions on Programming
Languages and Systems (TOPLAS), 31(2):1–31, 2009.

[65] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. {RedLeaf}: isolation and communication in a
safe operating system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 21–39, 2020.

[66] Guilherme Ottoni and Bertrand Maher. Optimizing
function placement for large-scale data-center applica-
tions. In 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages
233–244. IEEE, 2017.

[67] Maksim Panchenko, Rafael Auler, Bill Nell, and Guil-
herme Ottoni. Bolt: a practical binary optimizer for
data centers and beyond. In 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 2–14. IEEE, 2019.

[68] Maksim Panchenko, Rafael Auler, Laith Sakka, and
Guilherme Ottoni. Lightning bolt: powerful, fast, and
scalable binary optimization. In Proceedings of the 30th
ACM SIGPLAN International Conference on Compiler
Construction, pages 119–130, 2021.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 73

https://www.kernel.org/doc/html/next/x86/x86_64/fsgs.html
https://www.kernel.org/doc/html/next/x86/x86_64/fsgs.html

[69] Tirthak Patel and Devesh Tiwari. Clite: Efficient and
qos-aware co-location of multiple latency-critical jobs
for warehouse scale computers. In 2020 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 193–206. IEEE, 2020.

[70] Aidi Pi, Xiaobo Zhou, and Chengzhong Xu. Holmes:
Smt interference diagnosis and cpu scheduling for job
co-location. In Proceedings of the 31st International
Symposium on High-Performance Parallel and Dis-
tributed Computing, pages 110–121, 2022.

[71] Mark Probst, Andreas Krall, and Bernhard Scholz. Reg-
ister liveness analysis for optimizing dynamic binary
translation. In Ninth Working Conference on Reverse
Engineering, 2002. Proceedings., pages 35–44. IEEE,
2002.

[72] Georgios Psaropoulos, Thomas Legler, Norman May,
and Anastasia Ailamaki. Interleaving with coroutines:
a practical approach for robust index joins. Proceedings
of the VLDB Endowment, 11(CONF):230–242, 2017.

[73] Kevin Pulo. Fun with ld_preload. In linux. conf. au,
volume 153, page 103, 2009.

[74] Steven E Raasch and Steven K Reinhardt. Applications
of thread prioritization in smt processors. In Proc. of the
Workshop on Multithreaded Execution And Compilation.
Citeseer, 1999.

[75] Suleyman Sair, Timothy Sherwood, and Brad Calder. A
decoupled predictor-directed stream prefetching archi-
tecture. IEEE Transactions on Computers, 52(3):260–
276, 2003.

[76] David Sehr, Robert Muth, Cliff Biffle, Victor Khi-
menko, Egor Pasko, Karl Schimpf, Bennet Yee, and
Brad Chen. Adapting software fault isolation to contem-
porary {CPU} architectures. In 19th USENIX Security
Symposium (USENIX Security 10), 2010.

[77] Andreas Sembrant, Trevor Carlson, Erik Hagersten,
David Black-Shaffer, Arthur Perais, André Seznec, and
Pierre Michaud. Long term parking (ltp) criticality-
aware resource allocation in ooo processors. In Pro-
ceedings of the 48th International Symposium on Mi-
croarchitecture, pages 334–346, 2015.

[78] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F
Wenisch. Softsku: Optimizing server architectures for
microservice diversity@ scale. In Proceedings of the
46th International Symposium on Computer Architec-
ture, pages 513–526, 2019.

[79] Lukas Stadler, Thomas Würthinger, and Christian Wim-
mer. Efficient coroutines for the java platform. In
Proceedings of the 8th International Conference on the

Principles and Practice of Programming in Java, pages
20–28, 2010.

[80] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and
Josep Torrellas. µmanycore: A cloud-native cpu for
tail at scale. In Proceedings of the 50th Annual Inter-
national Symposium on Computer Architecture, pages
1–15, 2023.

[81] Gang Tan et al. Principles and implementation tech-
niques of software-based fault isolation. Foundations
and Trends® in Privacy and Security, 1(3):137–198,
2017.

[82] Dan Terpstra, Heike Jagode, Haihang You, and Jack
Dongarra. Collecting performance data with papi-c. In
Tools for High Performance Computing 2009: Proceed-
ings of the 3rd International Workshop on Parallel Tools
for High Performance Computing, September 2009, ZIH,
Dresden, pages 157–173. Springer, 2010.

[83] Dean M Tullsen and Jeffery A Brown. Handling long-
latency loads in a simultaneous multithreading processor.
In Proceedings. 34th ACM/IEEE International Sympo-
sium on Microarchitecture. MICRO-34, pages 318–327.
IEEE, 2001.

[84] Antonio Valles, Matt Gillespie, and Garrett Drys-
dale. Performance insights to intel® hyper-
threading technology. Source:< https://software. in-
tel. com/enus/articles/performance-insights-to-intel-
hyper-threadingtechnology, 2009.

[85] Kenton Varda. Webassembly on cloudflare work-
ers. https://blog.cloudflare.com/webassembly-
on-cloudflare-workers/, 2018.

[86] Robert Wahbe, Steven Lucco, Thomas E Anderson, and
Susan L Graham. Efficient software-based fault isola-
tion. In Proceedings of the fourteenth ACM symposium
on Operating systems principles, pages 203–216, 1993.

[87] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha
Raj, Rita Singh, Evandro Gouvea, Peter Wolf, and Joe
Woelfel. Sphinx-4: A flexible open source framework
for speech recognition, 2004.

[88] Yawen Wang, Kapil Arya, Marios Kogias, Manohar
Vanga, Aditya Bhandari, Neeraja J Yadwadkar, Sid-
dhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. Smartharvest: Harvesting idle cpus
safely and efficiently in the cloud. In Proceedings of the
Sixteenth European Conference on Computer Systems,
pages 1–16, 2021.

74 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https: //blog.cloudflare.com/webassembly-on-cloudflare-workers/
https: //blog.cloudflare.com/webassembly-on-cloudflare-workers/

[89] Xi Yang, Stephen M Blackburn, and Kathryn S McKin-
ley. Elfen scheduling:{Fine-Grain} principled borrow-
ing from {Latency-Critical} workloads using simultane-
ous multithreading. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 309–322, 2016.

[90] Ahmad Yasin. A top-down method for performance
analysis and counters architecture. In 2014 IEEE In-
ternational Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 35–44. IEEE, 2014.

[91] Zachary Yedidia. Lightweight fault isolation: Practical,
efficient, and secure software sandboxing. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 2, pages 649–665, 2024.

[92] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The demikernel datapath os architecture
for microsecond-scale datacenter systems. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 195–211, 2021.

[93] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. Cpi2: Cpu per-
formance isolation for shared compute clusters. In
Proceedings of the 8th ACM European Conference on
Computer Systems, pages 379–391, 2013.

[94] Yunqi Zhang, George Prekas, Giovanni Matteo Fu-
marola, Marcus Fontoura, Inigo Goiri, and Ricardo
Bianchini. {History-Based} harvesting of spare cy-
cles and storage in {Large-Scale} datacenters. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 755–770, 2016.

[95] Yuxuan Zhang, Nathan Sobotka, Soyoon Park, Saba
Jamilan, Tanvir Ahmed Khan, Baris Kasikci, Gilles A
Pokam, Heiner Litz, and Joseph Devietti. Rpg2: Robust
profile-guided runtime prefetch generation. In Pro-
ceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 999–1013, 2024.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 75

	Introduction
	Background and Motivation
	MSH Overview
	Design
	Primary Instrumentation
	Scavenger Instrumentation
	MSH Runtime

	Implementation
	Evaluation
	Evaluation Setup
	MSH performance
	Cycle Harvesting Landscape
	Performance Breakdown

	Related Work
	Discussion
	Conclusion

