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Abstract
Multi-version concurrency control can avoid most read-write
conflicts in OLTP workloads. However, multi-versioned sys-
tems often have higher complexity and overheads compared
to single-versioned systems due to the need for allocating,
searching and garbage collecting versions. Consequently,
single-versioned systems can often dramatically outperform
multi-versioned systems.

We introduce Epic, the first multi-versioned GPU-based
deterministic OLTP database. Epic utilizes a batched execu-
tion scheme, performing concurrency control initialization for
a batch of transactions before executing the transactions de-
terministically. By leveraging the predetermined ordering of
transactions, Epic eliminates version search entirely and sig-
nificantly reduces version allocation and garbage collection
overheads. Our approach utilizes the computational power
of the GPU architecture to accelerate Epic’s concurrency
control initialization and efficiently parallelize batched trans-
action execution, while ensuring low latency. Our evaluation
demonstrates that Epic achieves comparable performance un-
der low contention and consistently higher performance under
medium to high contention versus state-of-the-art single and
multi-versioned systems.

1 Introduction

There has been a growing need for high-throughput online
transaction processing (OLTP) systems capable of execut-
ing tens of thousands of transactions per second. In-memory
database systems, specifically designed for workloads with
datasets that fit entirely in DRAM memory and provide dura-
bility and high availability via logging and replication, have
been developed to address this demand. Although these sys-
tems offer considerable performance advantages over tradi-
tional disk-based systems, they suffer under contention, lead-
ing to low performance and limited scalability across cores.

Multi-versioning offers a promising solution for contended
and read-heavy workloads. Multi-version systems maintain
recent past versions of each record, enabling concurrent reads
and writes to the same record; reads do not block writes
because writes can safely create new versions while reads
are accessing the old versions. Consequently, transactions
can be serialized in ways unattainable in single-version de-
signs, thereby enabling greater parallelism. Previous work
has shown that multi-version systems can outperform single-
version systems under high contention [17].

However, current multi-version designs have several draw-
backs, including increased overheads during transaction pro-
cessing, data storage, allocation and garbage collection. These
designs store record versions in linked lists, introducing an
additional layer of indirection and necessitating list traver-
sal to locate the appropriate version. Accessing the versions
results in a larger working set, leading to higher cache miss
rates and performance degradation. Multiple versions also
lead to higher memory requirements. To reduce the memory
footprint, versions are frequently garbage collected, which
incurs additional overheads. As a result, a previous study
that compared carefully tuned, state-of-the-art multi-version
and single-version systems demonstrated that under low con-
tention, a multi-version system has roughly half the through-
put of single-version systems [14].

Current multi-version designs allocate versions dynami-
cally because transactions may write and thus create versions
at any time. Thus, versions are stored in linked lists, reads re-
quire searching for versions, and garbage collecting versions
has poor locality and requires expensive synchronization.

Our key insight is that deterministic databases employing
transaction batching and known transaction read-write sets
can avoid most of these multi-versioning costs, thus enabling
good performance for all workloads. The transaction batching
and known read-write sets requirements are commonly met
by most deterministic databases [11, 12, 18, 19, 26, 28, 31, 35].

We introduce Epic, the first multi-versioned, GPU-based
deterministic transaction-processing database. Epic batches
transactions into epochs and establishes a serial ordering of
transactions within a batch before transaction execution, simi-
lar to other deterministic databases.

Transaction batching enables splitting an epoch into an
initialization phase during which concurrency control oper-
ations are initialized using the read-write sets, followed by
an execution phase during which transactions are executed
concurrently and synchronized to ensure the deterministic
ordering. During the initialization phase, Epic allocates ver-
sions based on the write set. These allocation operations are
performed efficiently because they do not interfere with trans-
action execution. In addition, Epic calculates the version lo-
cation of each read/write operation based on the ordering of
transactions and the known read-write sets. This approach
enables transactions to access versions directly during the
execution phase, without requiring any version search.

Epic’s epoch-based design enables efficient garbage collec-
tion as well. Since transactions in the next epoch are serialized
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after all transactions in the current epoch, only the final write
to a record is visible to the transactions in the next epoch.
Thus all versions except the last one become obsolete when
an epoch ends. Epic stores all intermediate record versions
separately from the last version and reclaims them efficiently
at the end of an epoch.

The challenge is that Epic’s initialization phase is ex-
pensive, requiring both significant computation and memory
bandwidth. Fortunately, Epic’s initialization phase is highly
parallelizable. With the rapid commoditization of general-
purpose GPU computing, Epic harnesses the thread paral-
lelism offered by modern GPU architectures to significantly
accelerate the initialization phase.

Modern GPUs are well suited for Epic’s execution phase as
well because they offer high-bandwidth memory for memory-
bound workloads. In addition, they perform zero-overhead
context switching between thread contexts, which allows hid-
ing memory access latency. These advantages help to counter
the increased memory footprint and lower cache utilization
commonly associated with multi-version systems. Conse-
quently, Epic achieves high throughput and ensures low trans-
action latency even with its epoch-based execution scheme.

While GPU transaction execution performs well, it is lim-
ited by datasets that fit in GPU memory. Thus, Epic also sup-
ports larger datasets with a CPU execution model in which
the initialization phase runs on the GPU while the execution
phase runs on the CPU.

To demonstrate the effectiveness of Epic’s design, we con-
duct extensive evaluation using the TPC-C and YCSB bench-
marks and show that Epic significantly outperforms recent
single- and multi-version systems on most workloads.

2 Background

This work builds on a rich body of research on multi-
version concurrency control, deterministic databases, and
GPU-accelerated computation, as discussed below.

2.1 Multi-versioned Concurrency Control

Multi-version concurrency control (MVCC) has a long his-
tory [29, 30], with early work evaluating its performance [8],
ensuring snapshot isolation [5], providing serializable snap-
shot isolation [7], using dynamic timestamp assignment [20]
and enabling efficient indexing [32], for disk-based databases.

With the advent of machines equipped with high core
counts and terabytes of DRAM memory, much work has fo-
cused on in-memory database designs, and several MVCC
schemes optimized for them have been proposed [15, 16, 22].
MVCC schemes are popular because they provide robust
performance under a wide range of workloads. As a re-
sult, many commercial in-memory databases implement
MVCC [10, 24, 25, 34].

Wu et al. conduct a detailed study of the costs associated
with concurrency control, version storage, garbage collec-
tion, and index management in various in-memory MVCC
schemes [37]. Cicada [17] outperforms previous MVCC
schemes with several optimizations, including optimistic
multi-versioning, contention regulation, version inlining, and
rapid garbage collection. However, a study comparing state-
of-the art multi-version and single-version systems showed
that while MVCC outperforms OCC under high contention,
its throughput is significantly lower under low contention [14].
Epic aims to minimize multi-versioning costs associated with
version storage, lookup and garbage collection.

2.2 Deterministic Database Systems

Deterministic databases have gained increasing attention in
recent years, driven by the need for efficient replication and
improved scalability for distributed transactions [35]. These
systems execute transactions deterministically by ensuring
that the serial ordering of operations remains consistent
across different runs. Determinism enables efficient repli-
cation [27, 31, 33] and live migration [18, 19] since all repli-
cas execute transactions independently without coordination.
Furthermore, deterministic systems reduce the need for two-
phase commit, helping scale the performance of distributed
transactions [35]. They can also effectively handle skewed
and contended accesses, e.g., orders for popular items [28].

Deterministic systems typically batch transactions into
epochs to perform deterministic concurrency control before
execution [11, 12, 28, 35]. Thus these system require the read
and write sets of transactions to be known before execution.
When they are not fully known, they can be determined us-
ing reconnaissance queries [35]. Calvin [35] and PWV [12]
are single versioned, while Bohm [11] and Caracal [28] uti-
lize MVCC. Calvin uses a centralized lock manager, while
PWV employs a more-scalable per-core dependency analysis
for concurrency control. Bohm and Caracal allocate versions
scalably during the concurrency control initialization phase,
but Bohm performs partitioned initialization, while Caracal
performs shared memory initialization. Bohm partitions the
records in a table across cores. During the initialization phase,
all partitions analyze each transaction’s write set and insert
placeholder versions in a linked list for the records they own.
During execution, a read operation traverses the list to find
the correct version based on its total order ID. Then, it syn-
chronizes with a write operation that fills the corresponding
placeholder version. Caracal uses shared-memory initializa-
tion, which enables better handling of skewed workloads. It
scales version allocation for contended records by batching
the allocations. It stores versions as sorted arrays and uses
binary search to reduce version lookup costs during execu-
tion. Epic performs shared-memory initialization similar to
Caracal. However, Epic avoids any version lookup costs and
minimizes version storage and garbage collection overheads.
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2.3 GPU Accelerated OLTP Databases

General-Purpose computing on Graphics Processing Units
(GPGPU) has become popular with the rapid commoditization
of GPUs, the advent of user-friendly programming models
and frameworks like CUDA and OpenCL, and the growing
demand for high-performance computing on large datasets.
Modern GPUs contain an array of streaming multiproces-
sors (SMs), each of which contains many CUDA cores or
stream processors, allowing execution of thousands of active
threads concurrently. GPUs uses the Single Program, Multiple
Data (SPMD) parallel programming model in which multiple
threads execute the same program on different data elements.

GPU-based databases are an active area of research, but
most work has focused on accelerating Online Analytical
Processing (OLAP) workloads since typical OLAP operators,
such as join and sort, are a good fit for parallelization using
the GPU’s SPMD execution model.

GPU-based transaction processing is relatively unexplored
because transactional workloads comprise short-lived trans-
actions with random accesses, and atomicity and isolation re-
quire significant synchronization. These requirements makes
it hard to exploit the parallelism available in GPUs.

Previously, two GPU-based transaction processing systems,
GPUTx [13] and GaccO [6], have been proposed. Similar to
Epic, both batch transactions and use epoch-based concur-
rency control initialization and execution. GPUTx, an early
attempt at executing OLTP workloads on GPUs, uses de-
pendency tracking to group transactions into sets; transac-
tions within each set are conflict-free and can execute with-
out synchronization. However, we found that their efficient
dependency tracking algorithm, K-Set, does not ensure that
transactions in a set are conflict-free, thereby failing to guar-
antee correctness. GaccO is a deterministic database that uses
single-version, deterministic locking, similar to Calvin. We
describe Gacco in detail and compare it with Epic in Section 5.

3 Design

Epic is a GPU-accelerated, in-memory deterministic database
that employs a novel multi-versioned concurrency control
protocol. Epic assumes that transactions are one-shot and
use stored procedures, similar to other high-performance in-
memory databases [36].

Figure 1 shows the Epic architecture. Epic batches transac-
tions into epochs and splits each epoch into indexing, initial-
ization and execution phases. The transaction inputs, consist-
ing of read-set and write-set keys and other transaction data,
are batched on the CPU and then transferred to the GPU for
indexing (shown as “txn param” in Figure 1). During index-
ing, the keys are used to retrieve and store the corresponding
record IDs in a per-transaction data structure (shown as “in-
dexed txn” in Figure 1). These record IDs are used during
initialization and used as indices for accessing the record ta-

index initialization execution

batch

indexed txn exec plan

txn param
CPU
GPU

(a) GPU Execution Model

index initialization

executionbatch

indexed txn exec plan

txn param
CPU
GPU

(b) CPU Execution Model

Figure 1: Epic Architecture

bles during transaction execution. The initialization phase
performs multi-versioned concurrency control and generates
a per-transaction execution plan, which consists of the loca-
tions of the record versions that a transaction then directly
accesses during execution.

While indexing and initialization are always run on the
GPU, Epic can execute transactions on the GPU (Figure 1a)
or the CPU (Figure 1b). CPU execution is used to support
databases larger than GPU memory. In this case, the GPU
serves as an accelerator for indexing and initialization.

Sometimes a transaction’s read and write sets are not fully
known before the indexing phase. For example the TPC-C
order-status transaction requires a secondary index to locate a
customer’s latest order. For these transactions, Epic runs an
optional read-write set identification phase on the GPU before
the indexing phase. The transaction inputs to the identification
phase only contain the read-write keys that are known at
transaction generation time. This phase runs reconnaissance
queries [35] that use these partial transaction inputs to identify
the remaining read-write keys.

The following sections describe Epic’s storage scheme and
then Epic’s initialization and execution phases.

3.1 Epic storage scheme
Epic’s storage scheme separates temporary versions created
within an epoch from versions that exist across epochs. All
writes to a record within an epoch, except the last one, are
only read by other transactions within the epoch. This is
because transactions from a later epoch are serialized after
all transactions in the current epoch and thus can only read
the last version of each record. We call the versions that are
read by transactions within an epoch temporary versions. The
final write to a record within an epoch may be read in later
epochs and so this last version is saved across epochs.

Figure 2 shows an example of Epic’s storage scheme with
transactions T1 to T8 reading and writing Record 1 at Epoch
3. Epic places all temporary versions in a scratchpad area.
During an epoch, the write transactions on a record, except
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Figure 2: Epic Storage Scheme

the last one, fill these versions, and reads synchronize with the
writes to ensure RAW dependencies are satisfied. At the end
of an epoch, when all the reads for the temporary versions are
done, the scratchpad is reclaimed and used in the next epoch,
completely eliminating per-version garbage collection.

The final versions of each record are placed in a dense table
area and do not require garbage collection. The last write in
an epoch to each record updates the value in the table directly,
leading to potential race conditions when transactions in the
current epoch need to read data from the previous epoch.
Epic addresses this problem by storing two versions for each
record in the table: the previous version (prevVer) and the
current version (currVer), as shown in Figure 2. In each epoch,
prevVer holds the data from the previous epoch (original
version). The last write (Txn 7) within an epoch updates
currVer to avoid overwriting the original version. This write
is performed directly on the table, so all temporary versions
can be easily collected after an epoch. Reads after the last
write to a record (Txn 8) read from currVer.

The locations of prevVer and currVer in each record depend
on transaction history, as their positions only change when a
record is written during an epoch. Therefore, Epic stores an
epoch ID in each version, which helps distinguish the version
from previous epochs (prevVer) from the version that should
be updated in the current epoch (currVer). Algorithm 1 is used
by transactions to distinguish between prevVer and currVer.
In an epoch, before any write has happened to currVer, Epic
ensures that the version with a larger epoch ID contains the
more up-to-date value and should be used as prevVer (Lines
9–12). During the last write, the writer will update the epoch
ID of currVer to the current epoch’s ID (current_eid ), after
which currVer will have a larger epoch ID, but it is still dis-
tinguishable since its epoch ID matches the current epoch ID
(Lines 4–7). The epoch ID is also used for synchronization
between reads and writes, as discussed later in Section 3.3.

The record tables and the scratchpad memory are stored
in GPU memory for the GPU execution model and in CPU
memory for the CPU execution model.

Algorithm 1: Determining the prevVer and currVer
// Takes the two table versions of a record

1 Function GetTableVersions (V[2]):
2 eid0← atomicRead(V[0].eid)
3 eid1← atomicRead(V[1].eid)

// current_eid is the current epoch’s ID
4 if eid0 = current_eid then
5 prevVer← V[1]; currVer← V[0]
6 else if eid1 = current_eid then
7 prevVer← V[0]; currVer← V[1]
8 else
9 if eid0 > eid1 then

10 prevVer← V[0]; currVer← V[1]
11 else
12 prevVer← V[1]; currVer← V[0]

13 return {prevVer,currVer}

3.2 Multi-Version Initialization

During the initialization phase, Epic uses the ordering of trans-
actions and the knowledge of their read-write sets to allocate
versions for all writes performed in the epoch. To avoid the
expensive version search required in previous multi-versioned
systems, Epic calculates the read-write version locations for
each transaction in the epoch before any transactions exe-
cute. These operations are parallelizable because they are
performed in a phase separate from transaction execution.

As shown in Algorithm 2, Epic employs a parallel GPU-
based algorithm to perform concurrency control initializa-
tion efficiently. Figure 3 provides an example of this algo-
rithm. The initialization phase starts by collecting all the read
and write operations within the epoch (Step 1). Each entry
in the all_ops operations array contains the record_id and
the txn_id associated with the operation, the operation’s in-
dex within the transaction (op_id), and the operation type
(read/write). This operation is parallelizable because the or-
der of operations does not matter for the next step, which sorts
the operations array by record_id and txn_id (Step 2).

Then, Epic counts the number of write operations to each
record that occur before and after each operation. Since the
operations are already grouped by record_id, these operations
use parallel prefix and postfix sum by key (Steps 3–4). Next,
GetOpType in Algorithm 3 calculates the read-write location
type for each operation (Step 5). A write operation writes
to currVer for the last write to the record or else to tempVer.
A read operation will read from the version written by the
previous write as follows: prevVer if there is no preceding
write preceding, currVer if there is no succeeding write, and
tempVer otherwise.

The number of tempVer variables created in an epoch is
equal to the number of tempVer writes. Thus, Epic places
the tempVer variables in the scratchpad area in the same
order as the tempVer write operations in the sorted opera-
tions array. To calculate the tempVer locations, Epic performs
a parallel prefix sum over all operations, counting tempVer
writes before each operation (Step 6). With this information,
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Algorithm 2: Multi-Version Initialization Phase
1 Function Initialize (txns[NUM_TXN]):
2 all_ops // all read-write operations in the epoch,

// contains tuples: {record_id, txn_id,op_id, read_write}
// All local variables are arrays of size equal to all_ops size

// Step 1: submit operations
3 parallel foreach txn ∈ txns do
4 op_id = 0
5 foreach record_id ∈ txn.read_record_ids do
6 op_id++
7 all_ops.pushback({record_id, txn.id, op_id, Read})
8 foreach record_id ∈ txn.write_record_ids do
9 op_id++

10 all_ops.pushback({record_id, txn.id, op_id, Write})

// Step 2: sort first by record_id then by txn_id
11 sorted_ops = Sort(all_ops, key = {record_id, txn_id})

// Steps 3-4: count writes before/after each op on same record
12 writes_before = PrefixSumByKey(sorted_ops,
13 key = record_id,
14 value = Write ? 1 : 0)
15 writes_after = PostfixSumByKey(sorted_ops, key = record_id,
16 value = Write ? 1 : 0)

// Step 5: get operation type, can be:
// prevVer read, currVer read/write, tempVer read/write

17 op_types = GetOpType(sorted_ops, writes_before,
18 writes_after)

// Step 6: count tempVer writes before each op in the epoch
19 tw_before = PrefixSum(op_types, value=tempVerWrite?1 : 0)

// Step 7: get read/write location for all ops
20 rw_loc = GetRWLocation(op_types, tw_before)

// Step 8: scatter rw_loc back to transactions
21 parallel for i = 0 to sorted_ops.size do
22 txn_id = sorted_ops[i].txn_id
23 op_id = sorted_ops[i].op_id
24 txns[txn_id].locations[op_id] = rw_loc[i]

GetRWLocation in Algorithm 4 calculates the read-write lo-
cations for all operations (Step 7). The ith tempVer write
updates the ith tempVer in the scratchpad area. A read from
tempVer reads the previous write in the sorted operations
array. Finally, the read-write locations are scattered back to
each transaction to be used in the execution phase (Step 8).

3.3 Transaction Execution

Epic’s execution phase is considerably simpler than the initial-
ization phase. A transaction accesses versions directly using
the locations calculated during initialization, eliminating any
version lookup during execution. Due to multi-versioning,
write-after-read (WAR) and write-after-write (WAW) depen-
dencies do not require explicit coordination. Epic uses the
epoch ID associated with each version to synchronize read-
after-write (RAW) dependencies between transactions.

Algorithm 5 shows Epic’s transaction execution phase. The
transactions in an epoch are scheduled in their predetermined
serial order as thread resources become available, as explained
further in Section 4.4. The RunTxn function shows an ex-
ample of a transaction. The transaction accesses the versions
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Figure 3: Example of Epic’s Initialization Phase

directly using the location information calculated in the ini-
tialization phase (lines 11–25 for reads and lines 26–34 for
writes). A transaction read waits for a version to be written
by an earlier transaction by spinning on the epoch ID of the
version until it matches the current epoch ID (lines 21–22).
However, reads from prevVer do not need any synchroniza-
tion since this version was updated in a previous epoch. A
transaction writes to the data of the version before updating
the version’s epoch ID (lines 32–34). The GPU weak memory
consistency model requires a memory fence between the data
write and the epoch ID update to ensure that the data is visible
to other threads before the updated version.

CPU-side Execution Epic can also execute transactions
on the CPU, which is particularly useful when the database
size exceeds GPU memory capacity. In this case, Epic trans-
fers the output of indexing (read and write record IDs) and
the initialization phase (read-write locations) to the CPU, as
shown in Figure 1. CPU-side execution utilizes the same
synchronization mechanism as GPU execution.

Handling Inserts and Deletes Epic treats record insertions
and deletions the same way as updates. Both insert and delete
operations are considered write operations, so they create
a new version of the record, similar to an update. For each
version, Epic uses a valid flag to mark whether it contains
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Algorithm 3: Calculate Read/Write Type
1 Function GetOpType (sorted_ops, writes_before, writes_after):
2 op_types[sorted_ops.size] // type of operations
3 parallel for i = 0 to sorted_ops.size do
4 if sorted_ops[i].read_write == Write then
5 if writes_after[i] == 0 then
6 op_types[i] = currVerWrite
7 else
8 op_types[i] = tempVerWrite

9 else // read operation
10 if writes_before[i] == 0 then
11 op_types[i] = prevVerRead
12 else if writes_after[i] == 0 then
13 op_types[i] = currVerRead
14 else
15 op_types[i] = tempVerRead

16 return op_types

Algorithm 4: Calculate Read/Write Locations
1 Function GetRWLocation (op_types, tw_before):
2 rw_loc[op_types.size] // locations of read/write operations
3 parallel for i = 0 to sorted_ops.size do
4 if op_types[i] ∈ {currVerRead,currVerWrite} then
5 rw_loc[i] = currVer
6 else if op_types[i] == prevVerRead then
7 rw_loc[i] = prevVer
8 else // tempVer read/write, return tempVer index
9 if op_types[i] == tempVerRead then

// index is zero-based
10 rw_loc[i] = {tempVer, index=tw_before[i]−1}
11 else
12 rw_loc[i] = {tempVer, index=tw_before[i]}

13 return rw_loc

valid (V) data, as shown in Figure 2. An update or insert sets
and a delete unsets the valid flag of the corresponding version.
Read operations use the valid flag to determine if the record
exists at the timestamp of the read, preventing transactions
from reading invalid data (Algorithm 5, lines 23–24).

Deletion of records can happen at any point within an
epoch, and a later write operation to a deleted record will re-
insert it. Consequently, the record should be freed only when
the last write operation to a record in an epoch is a delete.
Epic tracks records that are deleted in an epoch by setting a
per-record deleted flag when deletions occur to currVer. At
the end of the epoch, these flags are scanned to generate a list
of deleted records that are subsequently freed, as described
later in Section 4.2. A full scan after each epoch is acceptable
because the flag is one bit per record and parallel scans are
efficient on GPUs.

Handling Aborts Epic eliminates concurrency-control re-
lated aborts because transactions are serialized in a predeter-
mined order, similar to other deterministic databases. Epic
allows application-level aborts (e.g., constraint violations) be-
fore any writes are performed to the database. Transactions

Algorithm 5: Transaction Execution Phase
1 Function Execute (txns[NUM_TXN]):
2 parallel for i = 0 to txns.size do
3 RunTxn(txns[i])

4 Function RunTxn (txn):
5 value1 = ReadFromTable(txn.record_id1, txn.read_loc1)
6 value2 = ReadFromTable(txn.record_id2, txn.read_loc2)

// perform transaction logic
7 if value1 is None or value2 is None then
8 abort()

9 result = SomeOperation(value1,value2)
// no aborts can happen beyond this point

10 WriteToTable(txn.result_record_id, txn.write_loc, result)

11 Function ReadFromTable (rec_id, read_loc):
12 if rec_id = INVALID_RECORD then
13 return None

14 prevVer,currVer = GetTableVersions(table[rec_id])
15 if read_loc == prevVer then
16 read_ver = prevVer
17 else if read_loc == currVer then
18 read_ver = currVer
19 else // tempVer read
20 read_ver = tempVers[read_loc.index]

21 while read_loc ̸= prevVer and
atomicRead(read_ver.eid) ̸= current_eid do

22 Spin() // Wait until version is ready

23 if not read_ver.is_valid then
24 return None

25 return read_ver.data

26 Function writeToTable (rec_id, write_loc, data):
27 prevVer,currVer = GetTableVersions(table[rec_id])
28 if write_loc == currVer then
29 write_ver = currVer
30 else // tempVer write
31 write_ver = tempVers[write_loc.index]

32 PerformWrite(write_ver.data, data)
33 __threadfence()
34 atomicWrite(write_ver.eid, current_eid)

are expected to perform their reads, buffer writes and issue
aborts before any database writes. Since aborts do not occur
after the first write, the writes of a transaction are made visible
immediately [12].

In previous multi-versioned systems, a sentinel value is
used to indicate an aborted version. Subsequent reads skip
such versions and read the previous non-aborted version. This
approach is not suitable for Epic since there is no version
search. Instead, the aborted write operations must copy the
previous version to the current version. Thus, for transactions
that may abort, Epic also calculates the read location (i.e., of
the previous version) for write operations during initialization.

3.4 Field Splitting

Database records often consist of multiple fields. Since Epic
eliminates version search, each version of a record must con-
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tain a full copy of all of its fields. This approach adds copying
overhead when a transaction updates only a few fields of a
record since all of its fields must be copied from the previous
version. In addition, it introduces unnecessary dependencies
because every field update becomes a read-modify-write op-
eration for the record.

Epic implements a field splitting optimization by storing
different fields of a record separately. Each version now com-
prises only a single field. As a result, a write to a field does
not require copying other fields and introduces no additional
dependencies. However, the field splitting optimization adds
overhead for full record operations, which need to be split
into multiple per-field operations, leading to increased initial-
ization and synchronization costs.

3.5 Recovery
Currently, Epic does not support recovery and replica-
tion. However, it can provide durability and high availabil-
ity by using techniques similar to previous deterministic
databases [35]. In each epoch, transaction inputs can be
logged to storage on the CPU side concurrently with transac-
tion execution. Once all inputs are logged, transaction results
can be made externally visible to applications. Currently, Epic
returns these results conservatively at the end of the epoch,
which enables handling certain problematic transaction logic,
such as infinite loops, by aborting the relevant transaction and
its dependent transactions [12].

For recovery, the transaction inputs are used to replay all
transactions deterministically until the last logged epoch. The
replay uses the same mechanism as normal transaction pro-
cessing. To reduce recovery time, Epic’s two-version tables
allow checkpoints to be created efficiently. The checkpointing
process can run in parallel with an epoch and create a consis-
tent database snapshot by copying the prevVer of each record
to a different memory area (e.g., CPU memory). However, the
next epoch must start after the checkpointing completes or
else the resulting snapshot may be inconsistent. After creating
a copy of the tables, they can be transferred to persistent stor-
age in the background. The index and allocation information
also needs to be checkpointed or rebuilt during recovery.

4 Implementation

This section describes Epic’s GPU-based implementation of
indexing, initialization and transaction execution phases.

4.1 Transaction Batching and Ordering
Currently, Epic batches transactions when they are generated
and serially orders them by assigning a transaction ID to each
transaction. In practice, the batching and ordering process
can be performed without contention by batching transac-
tions separately on each core and ordering them using a local

counter. Before an epoch starts, transactions from all cores
can be serialized based on the core ID and the local counter
value. This method is similar to Calvin [35].

4.2 Indexing and Allocation
Epic is capable of executing tens of millions of transactions
per second. Its index needs to handle hundreds of millions of
operations per second, and so we use GPU-based indexing.
Epic uses a hash table index to map keys to record IDs. When
needed, range queries are performed in the read-write set
identification phase using a range index to obtain all the keys
for the read and write sets. The keys are then used to look
up the record IDs in the hash table index. Epic implements
indexing using CuCollection [23], a GPU-based concurrent
hash table. Epic uses a modified version of a GPU B-tree [2,4]
for the range index.

Since Epic’s indexing operates in parallel, we ensure that
read operations see all previously inserted records by perform-
ing insert operations before any indexing operations, which
also prevents phantom reads. Epic does not distinguish be-
tween insert and write operations, and so it first indexes all
write operations in an epoch to find the keys to be inserted
(keys that are in the write set but are not found in the hash
table). To allocate a record for each to-be-inserted key, Epic
maintains a ring buffer of free record IDs on the GPU. To
ease allocation, these keys are uniquified. Then, Epic allo-
cates record IDs for them by removing the same number of
record IDs from the ring buffer. The key-record ID mappings
are then inserted in the hash table. Next, Epic indexes all
read and write operations. For read operations, if a key is not
found, Epic marks the read as invalid by returning a sentinel
invalid_read value for the record ID. This value is treated
as any other record ID during initialization, and then reads
detect it during execution (Algorithm 5, lines 12–13). Since
Epic performs inserts before read operations, a read of a non-
existing record may see an index entry from a later write. A
read operation detects this version as invalid during execution
(see Section 3.3).

At the end of an epoch, Epic’s execution phase returns the
deleted record IDs (see Section 3.3). Epic garbage collects
these records by appending them to the ring buffer. To free
the index entries for these records, Epic also keeps a back-link
array that maps record IDs to keys. The hash table and the
back-link are stored in GPU memory and are only accessed
by the GPU during indexing.

4.3 Multi-Version Initialization
Epic’s multi-version concurrency control initialization is im-
plemented using the CUB and Thrust parallel algorithms li-
brary. As shown in Algorithm 2, all operations, such as sort-
ing and prefix sum, are highly parallelizable. Epic performs
initialization for each table separately for ease of implementa-
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tion. Each operation’s record ID, transaction ID, operation ID
and read-write type are stored in a 64 bit integer for efficient
sorting. It is possible to prefix the record ID with a table ID
and perform initialization for all tables together.

We implemented an optimized CPU-based initialization
phase using Intel’s TBB library but its performance was at
least an order of magnitude slower than the GPU implemen-
tation, motivating our GPU-based approach.

4.4 Transaction Execution

After the concurrency control initialization phase, Epic ex-
ecutes the entire batch of transactions concurrently on the
GPU using warp-cooperative execution, an approach moti-
vated by previous work on GPU-based concurrent data struc-
tures [1, 3, 39]. Next, we provide some background on GPUs
to motivate our execution approach.

GPUs provide an array of multi-threaded Streaming Mul-
tiprocessors (SMs), with each SM containing simple cores
(typically 64–128 per SM). The GPU executes instructions
from a group of threads, called a warp, in a Single Instruction,
Multiple Threads (SIMT) lockstep manner on the cores of an
SM, with threads executing the same instruction on different
data elements. A warp typically consists of a fixed number of
threads, such as 32 threads in Nvidia GPUs.

The warp-based execution model makes branch divergence
an important aspect of GPU algorithm design. Branch diver-
gence occurs when thread execution diverges due to control
flow statements, such as branches, for threads within a warp.
In this case, the GPU serializes the execution of the divergent
paths, causing longer execution times per warp.

Instead of running a different transaction on each thread of
a warp, Epic’s warp-cooperative execution model uses all the
threads in a warp to cooperatively execute a single transaction,
which avoids branch divergence altogether. The threads in a
warp read and write versions by accessing consecutive loca-
tions of a record. The GPU can coalesce (or combine) these
contiguous memory accesses into a single request, which
improves memory bandwidth utilization and is especially ben-
eficial when transactions access large records. For example,
32 threads in a warp running the same instruction can access
128 contiguous bytes in parallel from global memory.

Although warp-cooperative execution can lead to reduced
concurrency, the amount of parallelism available on modern
GPUs is more than sufficient for Epic’s transaction process-
ing requirements. For example, Nvidia’s A6000 GPU has 84
SMs, each capable of scheduling 1536 threads (48 warps) at
a time. With the warp-cooperative execution scheme, Epic
can execute 84× 48 = 4032 transactions concurrently. We
believe that transaction execution will not benefit from higher
concurrency due to dependencies between transactions. There-
fore, the benefits of avoiding branch divergence and coalesced
memory access outweigh the reduced concurrency.

GPU Transaction Scheduling The GPU hardware sched-
uler dispatches threads on an SM at the granularity of a group
of threads called a thread block. While the GPU does not
provide control over the scheduling order of thread blocks
(or threads within a thread block), it guarantees that an active
thread runs to completion without being preempted.

Since Epic assigns a serial order to each transaction be-
fore execution, transactions must be scheduled based on their
serial order. Otherwise, a later transaction may depend on
an earlier transaction, which never gets to run because the
later transaction holds the hardware resources. Epic sched-
ules transactions in serial order by dynamically assigning
transactions to threads when they become active. To do so,
it uses a next-transaction global counter, that it increments
once per block to allocate transactions for all warps within a
block. Threads within the block then distribute the allocated
transactions using a local counter.

4.5 Other Optimizations
Epic exploits parallelism within a transaction by splitting
transactions, when possible, into multiple independent pieces.
Due to its deterministic nature, these pieces can be executed
concurrently while still ensuring isolation [12, 28].

Epic aims to overlap data transfer and computation on the
GPU whenever possible by launching asynchronous tasks on
different non-blocking CUDA streams. This approach effec-
tively hides the latency associated with transferring transac-
tion parameters and data. As shown in Figure 1, Epic transfers
transaction parameters to the GPU. This transfer is overlapped
with the execution of the previous batch of transactions. With
CPU-side execution, Epic overlaps the transfer of the indexed
transactions to the CPU with the initialization phase.

It is possible to pipeline Epic’s CPU-side execution with
GPU indexing and initialization. However, this approach com-
plicates the index garbage collection mechanism. If a record
is deleted in epoch N, its index information cannot be garbage
collected until epoch N + 2 because the indexing in epoch
N +1 runs concurrently with the execution of epoch N. How-
ever, the same key may be re-inserted in epoch N +1. In this
case, the index information for the record deleted in epoch N
cannot be garbage collected. This issue can be resolved by
tracking the epoch ID in an index entry when it is created.
Epic currently does not implement this pipelined execution.

5 Evaluation

We compare the overall performance of Epic with several
state-of-the-art in-memory transaction processing databases
using the TPC-C, TPC-C NP and the YCSB benchmarks.
Then, we provide a more detailed analysis of Epic’s design.

All experiments are run on cloud server with a 32-core
Epyc CPU and 512GB of memory. For all the CPU-based
databases except Aria, we use 1 thread per core for a total of
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32 threads. For Aria, we use the default 12 worker threads
because this configuration achieves the highest throughput.
We use the Nvidia A6000 GPU with 10752 CUDA cores
and 48GB GDDR6 memory. The operating system is Ubuntu
22.04. All experiments are compiled with NVCC 12.0 with
CUDA run time version 12.0.

5.1 Database Systems Comparison

We compare Epic against four state-of-the-art in-memory
databases: STOv2 [14], Caracal [28], GaccO [6] and Aria [21].
We use the publicly available implementations of Caracal,
STOv2 and Aria. Since GaccO’s implementation is not pub-
licly available, we implemented GaccO’s GPU-side transac-
tion execution based on the description in their paper. We
use the default epoch sizes of 500 for Aria, 100K for Cara-
cal, and 32768 for GaccO as specified in their papers for all
experiments except for the latency experiment in Section 5.7.
We use an epoch size of 100K transactions for Epic because
throughput improvements become smaller beyond this epoch
size, which balances throughput and latency.

STOv2 is a state-of-art in-memory CPU database. STOv2
implements and compares three concurrency control mecha-
nisms: OCC-based Silo [36], timestamp-based TicToc [38],
and a variant of MVCC-based Cicada [17]. These mechanisms
are called OSTO, TSTO, and MSTO respectively. STOv2’s
implementations of TicToc and Cicada perform well thanks to
careful attention to implementation choices. We enable both
the timestamp splitting and deferred updates optimizations
in STOv2. Timestamp splitting behaves similar to our field
splitting optimization.

Caracal is a multi-versioned, deterministic CPU in-
memory database. Similar to Epic, Caracal batches transac-
tions and splits each epoch into an initialization phase and an
execution phase. Caracal uses a version array to implement
multi-version concurrency control (MVCC). Each record con-
tains an array of versions that are created during the initial-
ization phase and read during the execution phase. Caracal
performs well under contention due to transaction batching
and MVCC. However, Caracal’s concurrency control mecha-
nism keeps the version array sorted by the version ID, which
imposes overhead during the initialization phase, and read
operations need to perform a binary search through the ver-
sion arrays. Additionally, the version array requires expensive
garbage collection.

GaccO is a single-version, deterministic GPU database that
uses lock-based concurrency control [6]. To support databases
larger than GPU memory, GaccO proposes running transac-
tions on both the GPU and the CPU. This CPU-GPU co-
execution model requires keeping copies of CPU memory
tables in GPU memory when the tables are accessed by GPU-
side transactions, synchronizing updates to the tables at epoch
boundaries, and delaying CPU-side transactions that conflict
with GPU-side transactions.

We only compare with GaccO’s GPU-based execution,
so no synchronization with the CPU is needed. Similar to
Epic, GaccO requires transactions’ read-write sets in advance.
GaccO initializes an epoch by creating a per-record lock ta-
ble. For each record, all operations are sorted based on the
serial ID of the transactions. The corresponding serial IDs
are stored in the lock table, representing the order of lock
acquisition. During the execution phase, transactions acquire
locks on records deterministically by checking the lock table
and waiting until the lock value matches the transaction’s ID.
Upon release, the lock value is advanced to match the next
transaction that accesses the record. However, this lock-based
concurrency control does not permit readers to share locks.

GaccO executes a transaction per thread and batches trans-
actions by type (e.g., NewOrder in TPC-C) within an epoch
to minimize warp divergence (see Section 4.4). This batching
also enables GaccO to use a commutative optimization when
highly-contended items are accessed commutatively. If an
operation updates a data item commutatively then the order
of performing such updates is flexible, provided the data item
is not otherwise observed by its transaction and there are no
other conflicting operations on the item. For instance, a trans-
action that increments a counter in the database row but never
reads the value of the counter can implement the update using
atomic instructions, without using the deterministic locking
protocol. Since GaccO batches transactions by type, conflicts
do not occur with other types of transactions.

However, due to this batching of transactions by type, we
do not implement the full TPC-C benchmark for GaccO. For
the OrderStatus and StockLevel transactions, batching by type
would cause these transactions to execute on a snapshot of
the database and return the same results within an epoch.
Therefore, we only evaluate GaccO on the TPC-C NP and
YCSB benchmarks.1

Aria is a deterministic database that does not require ad-
vance knowledge of read-write sets [21]. It achieves deter-
minism by executing all transactions in a batch against a
database snapshot from the previous epoch, while buffering
writes and delaying commit until the end of the epoch. After
all transactions have executed, Aria deterministically aborts
transactions that conflict with an earlier transaction based on
transaction ID ordering, and it uses a deterministic reordering
optimization to reorder transactions in a batch to reduce the
number of aborts. Aria assumes that the read-write sets of
transactions are known after the execution phase, and uses
Calvin’s deterministic locking as a fallback strategy to rerun
the aborted transactions after the execution phase.

Aria only implements TPC-C NP. We evaluate the vari-
ant with the fallback strategy since their paper reports that it
performs better than without the fallback strategy under all
contention levels on TPC-C NP.

1The GaccO paper also evaluates TPC-C NP on the GPU.
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5.2 TPC-C

We use the TPC-C OLTP benchmark to evaluate Epic. The
TPC-C benchmark simulates an OLTP workload for a ware-
house management system. It consists of five transactions:
NewOrder, Payment, OrderStatus, Delivery, and StockLevel.

The NewOrder transaction creates a new order for a cus-
tomer by incrementing the nextOrderID field in the District
table to obtain the order ID. This makes the write-set of
NewOrder dependent on the execution-time value of the order
ID. OrderStatus retrieves the status of the last order placed
by a customer; StockLevel checks the stock level of items
ordered in the last 20 transactions in a district; and Delivery
processes the oldest undelivered order in a district.

To identify the read-set and write-set keys of these transac-
tions, Epic runs the read-write set identification phase before
the indexing phase. Initially, the order ID used by NewOrder
is calculated using a per-district counter, which also helps
determine the latest order ID for OrderStatus and StockLevel.
Then, for each NewOrder transaction, the order information
is inserted into a secondary index. The secondary index uses
a range index keyed by the customer ID and the order ID.
The secondary index also stores the items ordered in each
order. OrderStatus performs a backward range scan using
the customer ID and the latest order ID in the district as the
key to find the last order ID for a customer. StockLevel uses
the latest order ID to lookup the ordered item information to
check for stock levels. Lastly, Delivery uses a per-warehouse
counter to find the oldest undelivered order.

During execution, transactions can validate the read-write
sets determined by the identification phase and abort trans-
actions if they do not match the keys that would be accessed
during the execution phase [35]. However, since Epic does not
cause any concurrency-control related aborts, the read-write
sets always match in TPC-C and so no aborts occur [11].

Furthermore, the Payment and OrderStatus transactions in
the original TPC-C benchmark can be provided with a cus-
tomer ID or the customer’s last name. In the latter case, the
customer ID is retrieved by scanning a read-only index of
customers. Since existing GPU range indexes do not support
variable length keys needed for scanning the last name, we
simplified Payment and OrderStatus to only use the customer
ID for all the databases. Other than this change, the behavior
and contention level of Epic’s TPC-C implementation con-
forms to the TPC-C specification.

TPC-C has low contention when each warehouse is as-
signed a separate CPU core. We vary the number of ware-
houses to evaluate performance under different contention
levels. With a single warehouse, TPC-C becomes highly con-
tended due to the per-warehouse Warehouse, District, and
Stock tables.

STOv2 and Caracal implement the TPC-C benchmark and
we compare Epic against them. Figure 4 shows the throughput
of the systems. Epic outperforms the other systems under all

contention levels. Under low contention, Epic benefits from
the high memory bandwidth and parallelism offered by the
GPU, enabling it to outperform all other systems. The two
multi-versioned CPU systems, MSTO and Caracal, perform
poorly under low contention due to the high overhead of
MVCC. However, they perform better under high contention
compared to the single version systems. As expected, Epic’s
performance degrades under high contention. However, due
to the deterministic ordering of transactions and its efficient
multi-versioning implementation, Epic outperforms the other
systems under high contention as well.

5.3 TPC-C NP

The TPC-C NP benchmark is a subset of the TPC-C bench-
mark that consists of 50% NewOrder and 50% Payment trans-
actions. We use this benchmark to compare with GaccO and
Aria as well. The left graph in Figure 5 shows the throughput
of the GPU and then the CPU systems for TPC-C NP.

The Epic, STOv2 and Caracal TPC-C NP results are quali-
tatively similar to TPC-C results. These databases have higher
throughput on TPC-C NP under low contention because TPC-
C NP has shorter transactions than TPC-C. However, they
have lower throughput on TPC-C NP under high contention
because TPC-C NP has higher contention than TPC-C. Cara-
cal and Aria have lower throughput than other CPU based
databases, but they also support distributed operation.

GaccO performs poorly under all contention levels because
it batches transactions by type. For the Payment transaction,
updates on the warehouse table require GaccO to serialize
all transactions. Also, GaccO cannot run NewOrder transac-
tions concurrently with Payment transactions, resulting in the
GPU being underutilized. Additionally, GaccO’s lock-based
concurrency control has high overhead under contention.

Epic’s performance under low contention for TPC-C NP is
much higher than for TPC-C for two reasons. First, TPC-C
NP does not require scanning for the latest order of a cus-
tomer and lookup for ordered items and so the overhead of
read-write identification is significantly lower. Second, and
more importantly, TPC-C NP has short transactions that can
be scheduled on GPU thread blocks (see Section 4.4) more
efficiently. With TPC-C’s mix of short and long transactions,
a block needs to wait for the longest transaction to complete.
We plan to explore scheduling strategies that co-locate long
read-only transactions within blocks.

To implement GaccO’s commutative optimization for TPC-
C NP, we changed the NewOrder transaction to use atomic
CAS instructions to update the District and Stock tables, and
we changed the Payment transaction to use atomicAdd to
increment the balances of the warehouse, district, and cus-
tomers tables. Since the updated values are not used after the
update or read by other transactions, the order of updates is
flexible. The right graph in Figure 5 shows that GaccO with
this optimization outperforms all systems. The throughput
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Figure 5: TPC-C NP Throughput

drops slightly with more warehouses due to decreased cache
locality. This optimization eliminates concurrency control in
TPC-C NP since both the NewOrder and the Payment trans-
actions do not hold any locks. However, this optimization is
not general-purpose, e.g., it doesn’t allow reading the District
table to validate the order ID in the NewOrder transaction.

5.4 YCSB

Next, we conduct experiments using the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [9]. For the experimental setup, we
use a single table consisting of 1,000,000 records. We used
the standard record size in YCSB, where each record is 1000
bytes and consists of ten 100 byte fields. We performed ex-
periments using four YCSB workloads, as shown in Figure 6.
In all workloads, a read operation reads the entire record. An
update operation replaces the value of one randomly chosen
field. A read-modify-write (RMW) operation reads a record
and updates a randomly chosen field. For our evaluation, we
group 10 operations to form a transaction. We vary the Zipfian
skew factor θ from 0 to 0.99 to vary contention levels.

Figure 7 shows the throughput of the six databases for the
four YCSB workloads with increasing contention levels. Epic
outperforms all other databases for all workloads. In YCSB-A,
Epic’s performance drops significantly under high contention.
Epic performs a read-modify-write operation for each update
operation. Even when an update only writes to a part of the

Workload Description Operations

YCSB-A Update heavy Read: 50%, Update: 50%
YCSB-B Read heavy Read: 95%, Update: 5%
YCSB-C Read only Read: 100%
YCSB-F Read-modify-write Read: 50%, RMW: 50%

Figure 6: YCSB Workload Configurations

record, the entire record needs to be copied from the previous
version. As a result, the read-modify-write operations form
long dependency chains under high contention. In the YCSB-
B benchmark, where the write ratio is low, Epic’s performance
drops more gently under high contention. In the read-only
YCSB-C benchmark, Epic achieves high throughput due to
the high memory bandwidth of GPUs. Finally, in the YCSB-F
benchmark, Epic shows a similar trend as YCSB-A, where
performance drops significantly under high contention be-
cause Epic performs the same read-modify-write operations
for both YCSB-A and YCSB-F. In some workloads, Epic’s
throughput increases slightly from low to medium contention
level (skew factor 0.0 to 0.5) due to better cache locality that
improves GPU indexing performance. The execution phase
in Epic also benefits from this better cache locality, especially
for read-only YCSB-C.

We also evaluate the performance of Epic with field split-
ting, as described in Section 3.4. In this case, each record is
divided into ten fields, and each field is treated as a separate
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data item from the perspective of concurrency control. As a
result, each full-record read operation needs to perform 10
field reads, each requiring separate synchronization. As a re-
sult, the number of read operations in the initialization phase
increases by 10x, and read performance decreases. On the
other hand, since each field is treated separately, an update
operation on a single field does not require copying the rest
of the fields from the previous versions, improving update
performance. As shown in Figure 7, Epic with field splitting
performs better than default Epic under YCSB-A with high
contention. However, Epic’s performance is lower in YCSB-
B, YCSB-C, and YCSB-F, where the read ratio is higher.

GaccO shows similar trends under all workloads, perform-
ing well under low contention, but its performance drops
significantly under high contention due to its lock-based con-
currency control. GaccO’s initialization phase is simpler and
faster than Epic’s MVCC initialization but its lock-based con-
currency control does not allow readers to share locks, causing
its performance to drop significantly under contention, even
under a read-only workload. GaccO’s assigns each transaction
to a single GPU thread, which causes non-coalesced memory
accesses that reduce memory bandwidth utilization. As a re-
sult, GaccO’s performance decreases when the ratio of read
operations increases (YCSB-A and YCSB-B) because read
operations retrieve the entire record. GaccO’s commutative
operation optimization cannot be applied to YCSB workloads
(except YCSB-C) because other transactions read the values
of the data items updated. Therefore, we did not implement
this optimization for the YCSB workloads.

Both multi-versioned systems (MSTO and Caracal) suffer
from the same extra dependency as Epic in YCSB-A. There-
fore, they exhibit similar trends for YCSB-A and YCSB-F.
OSTO and TSTO perform well under low contention, but
their performance drops significantly under high contention
with write-heavy workloads (YCSB-A and YCSB-F). This is
due to increased aborts resulting from a high conflict rate. In

read-heavy workloads (YCSB-B and YCSB-C), OSTO and
TSTO outperform MSTO and Caracal due to their lightweight
concurrency control mechanisms. However, Caracal achieves
higher throughput than OSTO and TSTO in YCSB-A and
YCSB-F under high contention because its MVCC-based con-
currency control allows readers to run in parallel with writers.

5.5 CPU-side Execution

Next, we evaluate the performance of Epic’s CPU-side exe-
cution using the same setup for the TPC-C, TPC-C NP and
YCSB benchmarks. As mentioned in Section 3.3, the GPU
performs indexing and initialization for the epoch and then
transfers the execution plan to the CPU. This data transfer
takes roughly 4 ms for the TPC-C NP and YCSB benchmarks
and 6 ms for TPC-C, which contains long running queries
with more operations. The transactions are then executed on
the CPU. The throughput reported in Figure 8 includes the
time for indexing, initialization, data transfer and execution
because Epic currently does not implement pipelining.

With TPC-C and TPC-C NP, CPU-side execution achieves
higher throughput than GPU-side execution with a single
warehouse. We believe that the contended Payment transac-
tion limits Epic from utilizing the parallelism of the GPU ef-
fectively. On the CPU, Epic’s execution time synchronization
is more efficient as the atomic flags can be directly commu-
nicated through the CPU cache. However, with more ware-
houses, GPU-side execution achieves higher throughput due
to the higher parallelism and memory bandwidth of the GPU.

With CPU-side execution, Epic achieves lower throughput
in TPC-C than TPC-C NP under low contention due to the
longer data transfer time. However, Epic performs better for
TPC-C with a single warehouse because TPC-C has lower
contention than TPC-C NP.

With YCSB, each transaction reads several records, and so
CPU-side execution is limited by memory bandwidth and la-
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Figure 8: Throughput with CPU-side Execution

tency. For read-only YCSB-C, CPU-side execution has much
lower throughput than GPU-side execution. Throughput in-
creases slightly under contention due to cache locality. For
YCSB-F, CPU-side execution throughput is bottlenecked by
memory bandwidth at low contention and achieves similar
throughput as GPU-side execution under high contention.
YCSB-A and YCSB-B show similar trends so we omit them.

For all the three benchmarks, Epic’s CPU-side execution
achieves comparable throughput to OSTO and TSTO un-
der low contention because Epic’s GPU initialization is ef-
ficient. Under high contention, Epic outperforms OSTO by
6.2x and TSTO by 7.9x for TPC-C single warehouse and
both by 3.2x for YCSB-F with a 0.99 skew factor due to its
multi-versioning. Epic-CPU outperforms both multi-version
systems, MSTO and Caracal, under all workloads because
Epic’s MVCC initialization is efficient and, unlike MSTO and
Caracal, Epic’s CPU-side execution runs without performing
expensive version search.

5.6 Run Time Breakdown

Figure 9 shows the breakdown of per-epoch run time for Epic
running TPC-C with the CPU- and GPU-execution model.
The figure shows that the initialization time is similar for both
low and high contention levels because Epic’s initialization
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Figure 9: Epic Run Time Breakdown

phase is unaffected by the contention level. The GPU execu-
tion time is significantly longer under high contention because
transaction dependencies reduce GPU utilization.

For CPU execution, the indexed transactions and the trans-
action execution plans need to be transferred from the GPU
to the CPU. Depending on the complexity of the transaction,
the data transfer time can vary but is a significant portion of
the total run time. Pipelining the GPU and CPU phases will
help reduce the epoch run time.

5.7 Latency

In this experiment, we evaluate Epic’s throughput and latency
for different epoch sizes by comparing against the GaccO,
Caracal, and Aria deterministic databases. We show TPC-
C NP results because our GaccO implementation and Aria
implement TPC-C NP. We also show YCSB-F results (but not
for Aria, which doesn’t implement it). For both workloads,
we show results under low and high contention. Epic’s results
for TPC-C are not shown but they are similar to TPC-C NP.

We vary the epoch size from 500 to 200K transac-
tions/epoch. Epic batches transactions during the previous
epoch and the benchmarks do not cause aborts, so Epic’s
average transaction latency is 1.5× the epoch run time.

Figure 10 shows the throughput and average latency of the
four systems. Each point on a line represents an epoch size.
The lines start at 5000 for Caracal (which crashes at lower
epoch sizes) and 500 for all other systems. The lines also show
some key epoch sizes, e.g., at maximum throughput and at
the knee of the curve. In all workloads, Epic achieves higher
throughput with increasing epoch size. Intuitively, a larger
epoch enables higher parallelism and amortizes overheads at
the cost of transaction latency. Similarly, Caracal’s throughput
increases with larger epoch sizes.
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GaccO’s throughput increases with larger epoch sizes ini-
tially but then decreases. We believe that GaccO’s lock-based
scheduling performance degrades with increasing number of
concurrent transactions. We plan to investigate this issue.

Aria’s throughput decreases with larger epoch sizes under
low contention because more transactions are deterministi-
cally aborted. However, Aria benefits from a larger epoch
size under high contention. In this case, Aria’s deterministic
scheduling mechanism aborts a majority of transactions. The
aborted transactions are rerun using the deterministic locking
fallback strategy, which is more efficient at larger epoch sizes.

Overall, Epic achieves comparable latency to other systems
at small epoch sizes. Epic has higher latency than GaccO
at small epoch sizes because its multi-version initialization
phase is slower and the small epoch size does not allow it to
amortize this overhead. However, beyond roughly 2 ms aver-
age transaction latency, Epic outperforms all other systems.

5.8 Impact of Aborts

To evaluate the impact of aborts on Epic’s performance, we
run a micro-benchmark where each transaction reads and up-
dates 10 records. The keys are generated using a Zipfian dis-
tribution with θ = 0.8 for medium contention. Transactions
abort when the read-set or the write-set is predicted incor-
rectly, and aborted transactions are rerun in the next epoch.
We vary the abort rate for the experiments. We assume that the
read-set and write-set are known after a transaction executes,
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Figure 11: Impact of Abort Rate

and so an aborted transaction will not abort again when rerun,
similar to Aria’s assumption for its fallback strategy [21].

Figure 11 shows Epic’s throughput and average latency.
As the abort rate increases, Epic’s throughput decreases and
latency increases roughly linearly. Aborted transactions are
rerun in the next epoch, which increases their latency and
requires additional work.

6 Conclusions

Multi-versioning schemes for transaction processing sys-
tems have traditionally been popular because they provide
good performance for a range of workloads, including for
long-running transactions and contended workloads. With
in-memory databases increasingly being used for applica-
tions requiring high-throughput transaction processing, sev-
eral multi-version schemes have been proposed for in-memory
databases. However, these schemes have significant costs as-
sociated with version search and storage, garbage collection,
index management.

This work proposes a novel design for multi-versioning
that takes advantage of the predetermined ordering of trans-
actions and known read-write sets in deterministic databases
to eliminate version search by efficiently pre-calculating the
version location of each read/write operation. Our batching
design helps reduce version allocation, garbage collection and
indexing overheads as well. Our design is parallelizable and
so we explore accelerating transaction processing on GPUs.
Our evaluation shows that our multi-versioned, GPU database
performs well under both low and high contention workloads
and significantly outperforms state-of-the-art systems.
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A Artifact Appendix

Abstract
We implement Epic, the first multi-versioned GPU-based de-
terministic OLTP database. Epic batches transactions into
epochs and establishes a serial ordering of transactions within
a batch before transaction execution. Epic performs concur-
rency control initialization for a batch of transactions before
execution, avoiding version search and reducing version al-
location and garbage collection overheads. Epic runs on the
GPU to accelerate concurrency control initialization and par-
allelize batched transaction execution. In addition, Epic sup-
ports larger datasets with a CPU execution model. We evaluate
Epic using the TPC-C and YCSB benchmarks and compare
it with state-of-the-art systems: STOv2, Caracal, Gacco, and
Aria.

Scope
The artifact allows reproduction of the results of the paper, in-
cluding the performance evaluation of Epic using the TPC-C
and YCSB benchmarks, the latency and throughput compar-
ison, and the performance evaluation of Epic with varying
abort rates.

All the experiments except the runtime breakdown in Fig-
ure 9 can be reproduced using the artifact. The runtime break-
down is created by retrieving the runtime information manu-
ally, and we do not have a script to automate this process.

Additionally, the artifact cannot perform the performance
evaluation for Aria due to the conflict of dependencies. There-
fore, the Aria results in Figure 5 and Figure 7 are not repro-
ducible using the artifact.

Contents
The artifact repository contains the source code of Epic,
STOv2, and Caracal as separate submodules. We used our
best-effort implementation of Gacco, and the source code is in-
cluded in the Epic submodule. The repository contains scripts
to run the experiments and generate the figures in the paper.
The repository also contains scripts to install the necessary
dependencies and set up the experiment environment. The
README file in the repository provides detailed instructions
on how to run the artifact.

Hosting
Our artifact repository is hosted on GitHub at https:
//github.com/ShujianQian/epic-artifact/commit/
9303f4d2b1fa8368de0dbdc24bcd798585ceb920.

More details on how to set up the experiment environment,
run the experiments, and reproduce the results are provided
in the README file in the repository.

Requirements
Our experiments require running on servers equipped with
GPUs. We used FluidStack to host on-demand virtual GPU
servers. Our artifact repository contains instructions on how
to set up the virtual servers and run the experiments.

Alternatively, the experiments can be run on machines with
NVIDIA GPUs. The artifact repository is tested for machines
with more than 32 CPU cores, 128GB of RAM, and NVIDIA
GPUs of compute capability 8.6 and GPU memory of 48GB.
The artifact repository contains scripts to install the necessary
dependencies and run the experiments.
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