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Abstract
Minimizing monetary cost and maximizing the goodput of
inference serving systems are increasingly important with the
ever-increasing popularity of deep learning models. While it is
desirable to spatially multiplex GPU resources to improve uti-
lization, existing techniques suffer from inter-model interfer-
ence, which prevents them from achieving both high compu-
tation and memory utilizations. We present USHER, a system
that maximizes resource utilization in a holistic fashion while
being interference-aware. USHER consists of three key com-
ponents: 1) a cost-efficient and fast GPU kernel-based model
resource requirement estimator, 2) a lightweight heuristic-
based interference-aware resource utilization-maximizing
scheduler that decides the batch size, model replication degree,
and model placement to minimize monetary cost while satis-
fying latency SLOs or maximize the goodput, and 3) a novel
operator graph merger to merge multiple models to minimize
interference in GPU cache. Large-scale experiments using
production workloads show that USHER achieves up to 2.6×
higher goodput and 3.5× better cost-efficiency compared to
existing methods, while scaling to thousands of GPUs.

1 INTRODUCTION

Driven by the breakthroughs achieved by Deep Learning (DL)
models in a wide variety of domains [1–3], machine learn-
ing (ML) inference has emerged as the dominant workload
that underpins many real-world applications. Our quest for
improving the capability and accuracy of DL models has led
to models growing in size rapidly [4]. While the success of
DL models has been celebrated, it has come with a significant
monetary cost: the increase in model sizes and popularity of
ML model-based applications demand the use of expensive
and power-hungry GPUs, leading to ML inference accounting
for more than 90% of production costs [5]. Forecasts paint
a gloomy picture: annual data center infrastructure and op-
erating costs are projected to increase to over $76 billion by
2028 due to the rapid increase of the number of GPUs in the
data centers, which is more than twice the estimated annual
operating cost of Amazon AWS [6].

The exorbitant operating cost requirement has led to several
systems innovations; state-of-the-art ML inference systems

incorporate several optimizations that increase the utilization
of GPUs. The fundamental technique to improve the utiliza-
tion of a GPU is to use batching, where multiple inputs are
combined and passed together through the model. Batching
inputs together results in an increase in the compute require-
ments and thus improves the utilization of the GPU, albeit
at the expense of increased latency. Unfortunately, batching
is insufficient to optimally utilize a GPU because it is a sin-
gle knob that influences two GPU resources: memory and
compute, and thus is unable to saturate both resources at the
same time. Moreover, since real-world batch sizes are not
continuous in nature, there is no fine-grained control over the
resources—while one batch size may severely underutilize
the GPU in terms of memory or compute, the next possible
batch size may not fit in the given resources or violate the
strict latency Service-Level-Objective (SLO) (§2.1). When
combined with the fact that request rates vary over time [3],
real-world deployments have reported low GPU utilization
averaging between 25% to below 50%, which has become
a thorny pain point in reducing the total operational cost of
large GPU clusters [7–10].

A natural solution to this problem is to place and simul-
taneously execute multiple models in a GPU. Unfortunately,
previous research works have shown that this could result
in interference between models due to resource contention
which could introduce significant increase in inference la-
tency, thus leading to SLO violation [11, 12]. An alternative
is to leverage virtualization technologies that can divide the
GPU resources; sadly GPU virtualization technologies avail-
able today are rudimentary and inflexible at best. NVIDIA
Multi-Process Service (MPS) [13] facilitates simultaneous
execution of multiple spatially multiplexed models by logi-
cally partitioning the computation space of the GPU among
the models. Several scheduling systems [4, 14] have been
proposed that leverage MPS and decide how much GPU com-
putation space to allocate to each model to satisfy the latency
SLO of the model requests based on offline profiling and
place the models to the GPUs in such a manner that maxi-
mizes the utilization of the computation space of the GPUs.
However, these works solely focus on compute utilization
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and largely overlook the maximization of memory space uti-
lization. NVIDIA multi-instance GPU (MIG) addresses the
problem of inter-model interference by physically partition-
ing the computation and memory spaces of the GPU [15].
However, MIG only provides rigid partitioning, leading to
GPU overprovisioning, and hence underutilization, and is
only available in the latest generation of GPUs.

In this paper, we propose USHER, an end-to-end inference
serving system that optimizes both GPU computation and
memory utilizations by spatially multiplexing its resources in
an interference-aware fashion. We design USHER from first-
principles, based on a systematic analysis of performance and
interference characteristics of the state-of-the-art solutions on
real-world data traces (§2). Our analysis reveals several key
observations. First, we may need to divide the workload of a
model into multiple GPUs even when one GPU is enough to
complete the workload within the latency SLO. Also, we need
to perform this workload division holistically for all models.
Second, not only the model parameter size, but also the intri-
cate relationship between batch size, batch size-dependent re-
source requirements, and SLO contributes to making a model
computation-heavy or memory-heavy. USHER leverages such
observations in designing its three key components.

To accurately estimate the computation and memory re-
quirements of a new model without incurring the prohibitive
cost of offline profiling, USHER proposes a novel low-level
GPU kernel analysis-based approach that first estimates which
GPU kernels of the model will be executed concurrently and
then sums up the resource requirements of those kernels. Fi-
nally, it takes the maximum sum across all sets of concurrent
kernels as the highest resource requirement of the model
(§3.2).

Based on the estimation, USHER needs to decide on the
placement of each model that maximizes resource utiliza-
tion without interference in both computation and memory
spaces. Towards this, USHER incorporates a novel variant
of a multi-dimensional bin packing scheduler [16–20]. To
address the exponential complexity of holistic workload di-
vision, the scheduler first creates moderate-sized groups of
models to maximize the probability of spatially multiplex-
ing computation-heavy models with memory-heavy models
within a group. Then, the scheduler decides the optimal work-
load division, batch size, and GPU placement decisions holis-
tically for all models within a group by a heuristic algorithm
(§3.3).

Finally, to minimize the cache interference among multi-
ple spatially multiplexed models, USHER proposes a novel
method that merges the computation graphs of multiple DL
models to maximize the usage of GPU cache contents. Ex-
isting works [21–23] on computation graph merging reduce
memory requirements by sharing weights across multiple
models, which cannot maximize GPU cache usage. To this
end, USHER merges the graphs in a manner that when the
weight submatrix that is similar across different models is

present in the GPU cache, the matrix multiplications of the
different models associated with the submatrix are performed
at the same time (§3.4).

We implemented USHER on Tensorflow (§4) and evalu-
ated it on a wide variety of models and workloads using
both real testbed and simulations. Our evaluation shows that
USHER achieves up to 2.6× higher goodput and 3.5× bet-
ter cost-efficiency against Shepherd [3], GPUlet [14], and
AlpaServe [4], three representative state-of-the-art baselines
(§5).

Overall, we make the following contributions in this paper:

1. We systematically analyze the underutilization of resources
and inter-model interference in the state-of-the-art infer-
ence serving systems.

2. We propose USHER, a system that spatially multiplexes the
inference serving of multiple DL models in an interference-
aware and resource utilization-maximizing manner.

3. We evaluate USHER against the state-of-the-art baselines
and show that it significantly outperforms them.

Table 1: DL models used in experiments.
Task

& Domain Model Name Number of
Parameters

Latency
SLO Dataset

Object detection
(CNN-based

vision models)

YOLO-v3 [24] 8.8M 197ms
COCO [25]R-CNN [26] 42M 284ms

MobileNetSSD-v2 [27] 15M 93ms

Object recognition
(CNN-based

vision models)

ResNet-50 [28] 24M 108ms

ImageNet [29]

ResNet-101 [28] 44M 198ms

ResNeXt-50 [30] 25M 116ms

ResNeXt-101 [30] 89M 407ms

SqueezeNet [31] 0.42M 14ms

ShuffleNet-v2 [32] 2M 40ms

MobileNet-v2 [33] 3.4M 64ms

DenseNet-121 [34] 7.6M 202ms

DenseNet-201 [34] 14.1M 405ms

Inception-ResNet-v2 [35] 56M 439ms

Inception-v3 [36] 25M 116ms

Inception-v4 [35] 43M 204ms

EfficientNet-B7 [37] 66M 217ms

Language translation
(Transformer-based

language model)

GNMT
[38] 278M 66ms

WMT
2019 [39]

Text classification
(Transformer-based

language model)

BERT
[40] 110M 35ms

IMDB
Movie

Review [41]

Text generation
(Transformer-based
language models)

GPT-2 [42] 1.5B 140ms WikiText [43]
Llama-2 [44]
(Large model) 13B 834ms

2 EXPERIMENTAL ANALYSIS

We use Cuti and Muti to denote GPU computation and mem-
ory utilization, respectively, and use Creq and Mreq to denote
their requirement from a model. Creq (or Mreq) of a model
is the highest percentage of the total computation (or mem-
ory) space of a GPU consumed by the model at any point
during its execution. We further use Rreq to denote the sum
of Mreq and Creq. We use C-heavy and M-heavy to denote
computation-heavy and memory-heavy, respectively. We use
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Figure 1: Performance of existing systems.
GPU# to denote the total number of GPUs required to satisfy
the SLOs, and use model# to denote the number of models in
a GPU. We use C-space and M-space to denote the available
capacity of a GPU in computation and memory, respectively.

As [3, 14], we conducted analytical experiments using a
mix of convolutional neural network (CNN) and Transformer
models, which are typically the most widely used DL models
in production deployments [3]. The 20 models used in our
experiments are shown in Table 1. We got the trained models
from HuggingFace repository [45]. The inference requests
are also taken from the datasets. As [4, 14], the SLO of a
model is taken as double the average inference latency of a
single request in a Nvidia V100 GPU. As [3], the experiments
were conducted on a GPU cluster formed by 12 Amazon
EC2 servers of type p3.2xlarge. Each server has one Nvidia
V100 GPU with 5760 computation cores, 16 GB GPU mem-
ory, one 2.3 GHz processor with 8 CPU cores, and 61 GB
host memory. For the large model Llama-2, we utilized the
DeepSpeed library [46] to partition the model into multiple
partitions, allowing each partition to be loaded onto a GPU.
Throughout the remainder of the paper, when referring to a
model, it denotes the entire model for small models and a
model partition for large models. Also, multiplexing refers to
spatial multiplexing. As [3, 4], we used the Microsoft Azure
Function trace 2019 [47] for the inference request rates and
assigned the 46,000 function streams from the trace to the 20
models in a round-robin manner.

2.1 Performance of Existing Systems
We used Shepherd [3] to represent systems that do not allow
spatial multiplexing and use GPUlet [14] and AlpaServe [4] to
represent systems that allow spatial multiplexing. They aim to
maximize GPU computation utilization and goodput. Good-
put is defined as the number of inference requests completed
within their latency SLOs per unit time.

Fig. 1 shows the average Cuti and Muti of each GPU. Shep-
herd achieves 41%-97% and 51%-97% Cuti and Muti, respec-
tively. Though Shepherd uses batching to increase utilization
(Ruti), it also increases the inference latency and memory
requirement, which may become a bottleneck and limit the
Cuti. GPUlet and AlpaServe increase the Cuti and Muti to
55%-97% and 54%-99%, respectively, due to their spatial mul-
tiplexing. However, there is still room for improvement. Also,

Shepherd, GPUlet, and AlpaServe produce 14.2%-52%, 7%-
40.1%, and 5.3%-44.9% |Cuti−Muti| values, respectively.
This is because the Creq and Mreq of a model are not necessar-
ily correlated and hence, maximizing Cuti does not necessarily
maximize Muti. Next, to study interference among models,
we measured the goodput of each model with and without mul-
tiplexing in GPUlet and AlpaServe, and calculated their ratios.

Figure 2: Impact of inter-model
interference on goodput.

Fig. 2 shows the CDF
of models versus the ra-
tio. We see that 87%
and 100% of the mod-
els have a ratio ≤
0.55 in GPUlet and
AlpaServe, respectively,
meaning their goodputs
are decreased by almost
half due to the interfer-
ence. GPUlet tries not to place the models in one GPU if their
interference estimated by a regressor is high. However, it does
not capture the interference among three or more models, and
also does not address the cache interference problem.

Observation 1. The existing inference serving systems
cannot maximize Cuti or Muti, and their model multi-
plexing significantly reduces the goodput due to model
interference. In addition, maximizing Cuti does not
necessarily maximize Muti.

2.2 Opportunity of Workload Division
By equally dividing the workload (i.e., number of incoming
requests per unit time) of a model into multiple GPUs, we
essentially replicate the whole model in those GPUs. We use
replication degree (RD) to denote the number of replicas of a
model. In the example in Fig. 3a, models M1, M2, and M3
have 70%, 65%, and 40% Mreq (with 10%, 5%, and 10% for
parameters, and the rest for intermediate data), respectively, to
meet their SLOs with BS (batch size) = 8. Hence, the average
Muti equals 70%+65%+40%

3 = 58.33%. Though the three GPUs
have 30%, 35%, and 60% of the GPU memory unused, they
are not enough to host any other model. Now, due to the strict
latency SLO requirement, it is not possible to increase the BS
of any model any further to increase the memory utilization
since increasing the BS also increases the per-batch inference
latency. Reducing the BS of M1 by half essentially conducts a
workload division and lowers the intermediate data amount by
half in each GPU where M1 is hosted, resulting in 40% Mreq
in such a GPU. Fig. 3b shows a multiplexing schedule. The
total number of GPUs (GPU#) is still 3 with 61.66% average
Muti. Fig. 3c shows another multiplexing schedule, which
performs workload division also for M2 and M3, and results in
2 GPU# and 100% Muti. This example shows that to increase
Ruti in multiplexing, we may need to divide the workload
to more GPUs than the minimum required and we need to
decide the optimal workload division schedule holistically
(instead of independently) for all models.
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Figure 3: Performing workload division holistically for all mod-
els increases resource utilization.

(a) Resource utilization of each
GPU by workload divison.

(b) Number of spatially multi-
plexed models in each GPU using
workload division.

Figure 4: Effectiveness of holistic workload division.

We then experimented to test the impact of workload di-
vision. We first used Shepherd to decide the BS (bs

i ) and the
minimum RD (rd

i ) of each model i to complete its workload
within the SLO. Then, for each model i independently, we
created 2rd

i replicas of each model with BS= bs
i

2 and placed
them to randomly selected GPUs with enough available C-
spaces and M-spaces to host the model replicas. In our next
experiment, to perform holistic workload division, we created
all possible configurations, i.e., {(BS, RD) for each model
i within range [bs

i ,
bs

i
2 ] and [rd

i ,2rd
i ]}. Then, for each config-

uration, we placed the model replicas to randomly selected
GPUs having enough resources. Finally, we chose the best
configuration that resulted in the lowest GPU#. Fig. 4 shows
the average Cuti and Muti, and model# in each GPU for both
experiments. Independent workload division increases the
average Cuti and Muti by 3.5% and 3.8%, respectively, com-
pared to Shepherd shown in Fig. 1 and the GPU# is decreased
from 12 to 11. The holistic workload division further increases
the average Cuti and Muti by 4.7% and 5.1%, respectively,
leading to another decrease of GPU# by 1, even with a simple
strategy of random GPU placement.

Observation 2. In spatial multiplexing-based infer-
ence serving, unlike existing systems, we may need to
divide the workload of a model even when one GPU is
enough to complete the workload within SLO in order
to increase the overall resource utilization.

Observation 3. Optimal workload division should not
be decided independently for each model. Instead, a
holistic approach that considers all models simultane-
ously is essential.

2.3 Study on C-heavy and M-heavy Models

In this experiment, we did the same holistic workload divi-
sion experiment described above, except that, for each con-
figuration, we first ordered the models in descending order
of Creq+Mreq and followed this order of models to place the
model replicas to randomly selected GPUs with enough spare
resources. Fig. 5 shows the results. The average Cuti and
Muti increase by 5.3% and 4.9%, respectively, compared to
the holistic approach in Fig. 4a, leading to a further decrease
of GPU# by 1. Also, the average model# in a GPU increases
by 0.24 compared to the holistic approach in Fig. 4b. Due
to the ordering of the models, less spare resources remain in
the GPUs after the model placement, leading to less resource
fragmentation and better utilization.

(a) Resource utilization of each
GPU by sorting the models accord-
ing to total resource requirements.

(b) Number of spatially multi-
plexed models in each GPU using
the sorting approach.

Figure 5: Considering a model’s total resource requirement in
model replica placement.

The general notion assumes large models have high Creq
and Mreq, while small models have low Creq and Mreq. How-
ever, this distinction overlooks the impact of BS in inference
serving. Increasing BS may boost resource use but risks la-
tency violations and memory overflow. This highlights the
delicate balance of Cuti and Muti in workload scheduling.

For example, when we executed LlaMA-2 (with 13 bil-
lion parameters) with BS=4 in a Nvidia H100 GPU, it takes
up almost all GPU memory, but has 45% Cuti unused. In-
creasing BS any further overflows the memory. Hence, it is
M-heavy instead of C-heavy, despite being a large model. On
the other hand, MobileNetV2 (only 3.4 million parameters)
with BS=128 reaches up to 93% Cuti but has 30% Muti. In-
creasing BS any further violates its 64ms SLO. Hence, it is a
C-heavy model instead of M-heavy model.

Fig. 6a shows the CDF of models versus the ratio
Creq/Mreq of a model. We see that 22% of the models
have ratios ≤0.75, indicating they are M-heavy. Also, 28% of
the models have ratios in (1.35,1.65], indicating they are C-
heavy. Llama-2 is an M-heavy model (i.e., Mreq/Creq≥1.2).
Among the other small models, 39% are M-heavy, 2% have
comparable Creq and Mreq, and the rest are C-heavy (i.e.,
Creq/Mreq≥1.2).
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(a) CDF of models vs. Creq/Mreq. (b) Resource utilization by multiplexing C-
heavy and M-heavy models.

(c) Model# by multiplexing C-heavy and
M-heavy models.

Figure 6: Computation-heavy and memory-heavy models.

Figure 7: Spatially multiplexing a computation-heavy model
with a memory-heavy model increases resource utilization.

Observation 4. Unlike common belief, model param-
eter size alone cannot dictate whether a model is C-
heavy or M-heavy. Even a small model can surpass a
larger one in Creq, driven by the intricate relationship
between BS, BS-dependent resource needs, and SLO.

We next investigate whether multiplexing a C-heavy model
with an M-heavy model improves Ruti. Let us consider 4
models M1, M2, M3, and M4 in Fig. 7 with BS=32. Their
Creq are 50%, 20%, 40%, and 40%, and their Mreq are 20%,
20%, 60%, and 60% respectively. Hence, M1 and M2 are
C-heavy and M3 and M4 are M-heavy. First, we multiplex
M1 and M2 in the same GPU as shown in Fig. 7a, which
results in 100% Cuti but 40% Muti. M3 and M4 cannot be
multiplexed due to lack of memory, resulting in 3 GPU#, 60%
average Cuti and 53.33% average Muti. Alternatively, if we
multiplex M1 with M3 and M2 with M4 as shown in Fig. 7b,
it results in 2 GPU#, 90% average Cuti and 80% average Muti.
Hence, multiplexing a C-heavy model with a M-heavy model
maximizes resource utilization.

To experimentally validate this, we did the same experi-
ment described in §2.3, except that we interleave C-heavy
models with M-heavy models in the ordered list. Figs. 6b
and 6c show the results. The average Cuti and Muti increase
by 12.1% and 11.8%, respectively, compared to the holistic

(a) Weight similarity across CNN
models.

(b) Weight similarity across Trans-
former models.

Figure 8: Weight similarity across models.

approach in Fig. 4a, Also, the average model# increases by
0.6 compared to the holistic approach in Fig. 4b, and hence,
GPU# is decreased by 2.

Observation 5. Multiplexing C-heavy model with an
M-heavy model increases both Cuti and Muti of a GPU.

2.4 Models’ Weight Overlapping
Previous studies [48, 49] have indicated that CNN models
have significant weight overlapping (i.e., similar parameter
values) in earlier layers because the first few convolutional lay-
ers function as feature-extractors [48] and are task-agnostic.
Also, to reduce training cost, the task-specific transformer
models are typically trained not from scratch, but from pre-
trained task-agnostic foundation models using transfer learn-
ing. Additionally, for both models, people generally customize
a task-specific pretrained model for their own datasets by fine-
tuning only the last few layers. These indicate the potential
for weight similarity across models. Motivated by these, we
evaluated the weight similarity across models. Specifically,
for each pair of CNN models and Transformer models, we
measured the weight similarity between the two models in
the pair.

Given CNN models A and B, we first find the weight sim-
ilarity between every possible pair of convolutional layers
across the two models. Then, we take the average weight sim-
ilarity of all pairs of layers as the weight similarity between
the two models. To find the weight similarity between layer
i ∈ LA and layer j ∈ LB, where Lx denotes the set of all con-

volutional layers in model x, we calculated 2×|max(W i
A∩W j

B)|
|W i

A|+|W
j

B |
,

where max(W i
A∩W j

B) denotes the longest common submatrix
between weight matrices W i

A and W j
B . We consider two weight

values as the same if their absolute difference is very low (i.e.,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    951



≤ 10−7). We did the same experiment for the attention layers
of the Transformer models.

Fig. 8 shows the results for randomly chosen 1k CNN
and 1k Transformer models from HuggingFace trained model
repository [45]. For the CNN models, 52% model pairs
have weight similarity within (45%,65%]. For the Trans-
former models, 70% model pairs have weight similarity within
(55%,70%] in between themselves.

Observation 6. There are significant weight overlap-
pings between different CNN models, and also between
different Transformer models.

Figure 9: System overview of USHER.

3 SYSTEM DESIGN OF USHER

3.1 Overview
Observation(O)1 motivates us to propose a new system to
maximize both computation and memory utilizations of GPUs
in an interference-aware manner to minimize the inference
serving cost. We design USHER based on O2-O6.

Given models with request rates and a cluster of GPUs
(that may be heterogeneous), USHER decides the schedule
that includes the configuration (BS,RD), GPU allocation, and
placement of the model replicas of each model. We consider
two scenarios with different goals in this paper: (i) non-fixed
cluster, where USHER aims to minimize the monetary cost
while satisfying the SLOs of all models [12, 14, 50], and (ii)
fixed-cluster, where USHER aims to maximize goodput [3, 4].

USHER has following major methods as shown in Fig. 9.

(1) GPU Kernel based Resource Requirement Estimator
(GK-Estimator)(§3.2). The estimator quickly and cor-
rectly calculates the Creq and Mreq of a model in a GPU
type based on a given configuration.

(2) Interference-Aware Resource-Utilization-Maximizing
Scheduler (IR-Scheduler)(§3.3). Instead of solving an
optimization problem, which has high complexity, USHER
provides a lightweight heuristic to quickly derive the sched-
ule. It first groups the models in a manner that maximizes
the opportunity of multiplexing C-heavy and M-heavy mod-
els within a group. Then, within each group, it chooses the
configuration that results in the placement with the best per-
formance regarding the specific goal (by leveraging O2-5).
The IR-Scheduler ensures each model replica gets its Creq
and Mreq in the GPU where it is placed, thus ensuring there
is no inter-model interference in C-space and M-space.

(3) Operator Graph Merger (OG-Merger)(§3.4). After
deciding the placement, OG-Merger merges as many op-
erator graphs of the models assigned to a GPU as possible
to minimize inter-model interference in the GPU cache.
After the merging, the merged graph is allocated the sum
of the resources allocated to the models (decided by the
IR-Scheduler) whose graphs have been merged. Note that
the IR-Scheduler does not satisfy the cache requirements of
the models, which we found to be almost 100% in the setup
in §2. Hence, satisfying the cache requirement results in un-
derutilization of C-space and M-space. That is why USHER
addresses cache interference separately in OG-Merger.

In USHER, the input to the IR-Scheduler includes the
request rate (i.e., workload) of each model and the types
of GPUs in the system ( 1 ). During decision making, IR-
Scheduler uses GK-Estimator ( 2 ) to estimate Creq and Mreq
given a configuration ( 3 ), and finally outputs the optimal
schedule ( 4 ). Then, OG-Merger merges the models placed
to the same GPU ( 5 ). Then, the system starts serving the
inference requests. As [14, 50], when a model’s workload
changes significantly, i.e., by 0.5k requests/second, (which
may happen after 45s-300s as shown in §5.4), USHER is used
again to adapt to the new workload pattern.

3.2 Kernel-based Resource Requirement Estimator
Offline profiling is a common approach for estimating the
Creq and Mreq of each new model [3,4,12,14,50]. However,
it is costly and time-consuming. To address this challenge, we
propose the GK-Estimator that estimates the resource require-
ment of each model independently by analyzing its low-level
GPU kernels without actually running the model in a GPU.
We use Mreq as an example to explain how GK-Estimator
works. Every model can be treated as a computational graph,
in which a node is an operator and an edge is a tensor (i.e,
multi-dimensional matrix) denoting model input or intermedi-
ate data generated by a model layer. Internally, each operator
execution involves sequentially calling one or more GPU ker-
nel APIs defined in the GPU programming framework (e.g.,
CUDA for Nvidia GPUs, ROCm for AMD GPUs). For each
operator defined in ONNX [51], we found which GPU kernels
are called by an ML framework during the execution of the
operator by using Nvidia Profiling tool [52]. We noticed that
1, 2, 3, and 4 GPU kernels are called for 2%, 8%, 56%, and
34% of the operators, respectively.

The operators of a new model are usually from a pre-known
set of operators [53, 54]. Therefore, GK-Estimator uses a
regression model that quickly computes the memory required
by the intermediate data generated by an operator based on
the sizes of the input tensors and mathematical operations of
the operator. Then, for a sequential DL model, its Mreq is
the sum of the model parameter size and the highest memory
required by an operator. The memory requirement for a model
with parallel branches (e.g., Inception model, illustrated in
Fig. 10a), the Mreq of the intermediate data is the sum of
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(a) Operator-level
computation graph

(b) Kernel-level computation graph

Figure 10: Conversion of an operator-level computation graph
for a CNN to its kernel-level computation graph.

Mreqs of the intermediate data from kernels that are executed
concurrently. Then, as shown in Fig. 10, first, GK-Estimator
converts the operator-level computation graph to a kernel-
level computation graph by replacing each operator with the
sequence of GPU kernels it calls. This sequence is found
offline for each operator in ONNX. Then, it finds each set of
kernels that will be executed concurrently. Next, for each set,
it estimates the Mreq of the intermediate data generated by
each kernel of the set by a regression model (called Mreq-
Regressor) and then sums up the Mreqs of all the kernels in
the set. Finally, it takes the sum of the model parameter size
and the maximum memory requirement from all sets as the
Mreq of the model.

The start time of the first kernel of the model (i.e., the kernel
that directly gets the model input) is 0thms. To identify which
kernels will be executed concurrently, GK-Estimator first finds
the start time of each kernel. It uses another regression model
to estimate the execution time duration of each kernel (called
Time-Regressor). The kernels with a start time difference
of no more than τms (e.g., 0.001ms) are considered to be
potentially running concurrently.

To build Mreq-Regressor and Time-Regressor, we use a
stacked model (a combination of lasso regression, kernel ridge
regression, gradient boost regression, and XGBoost regres-
sion models) for higher accuracy [55]. The inputs to both
the regressors include the following features that impact the
resource requirement and execution time duration of a kernel:
batch size, sizes of the kernel’s parameter weight tensor and
its input intermediate data tensor, the number of floating-point
operations of the kernel, and GPU type. Note that none of
the features depend on the kernels of the other models that
the IR-Scheduler may potentially place to the same GPU.
We trained the regression models offline using all the GPU
kernels for all the operators defined in ONNX. The training
takes 1.3hr in a V100 GPU. We conducted an experiment
and found that this kernel analysis approach achieves 99.98%

accuracy in estimating the Creq and Mreq of the models in
Table 1 with BS 2. We also measured the accuracy of each of
the constituting regression models in the stacked model and
found that they provide 23%-40% less accuracy compared to
the stacked model.

3.3 Interference-aware and Resource Utilization-
maximizing Scheduler

USHER first groups the models such that the models inside a
group are highly probable to be multiplexed in an interference-
aware and resource utilization-maximizing manner. Then,
inside each group, based on O3, USHER decides the GPU
allocation and placement decisions holistically for all models
of the group. Below, we first describe the grouping process
(§3.3.1) and then the scheduling process (§3.3.2).

3.3.1 Model Grouping
Based on O4 and O5, multiplexing a C-heavy model with an
M-heavy model maximizes Ruti. Such multiplexing makes
the Cuti and Muti of a GPU comparable. If a GPU’s C-space
is much lower than its M-space or vice versa, it may not be
able to host an additional model. Based on this, we follow one
principle during multiplexing models. That is, the sum of the
Creqs of the models is nearly equal to the sum of the Mreqs of
the models in the GPU (i.e., ∑i Creqi ≈ ∑i Mreqi). Based on
this, USHER groups the models such that ∑i Creqi ≈∑i Mreqi
for the models in each group.

Before conducting the grouping, USHER first finds the
Creq and Mreq of each model. USHER calculates the average
Rreq across all possible BS and GPU type combinations
using GK-Estiamtor (described in §3.2). For a GPU type,
USHER stops at the BS for which the Creq or Mreq exceeds
the maximum C-space or M-space of the type, respectively.

Next, USHER performs the grouping using a variant of
k-means clustering [56]. The algorithm clusters a set of ele-
ments into nearly equal-sized groups so that the sum of the
distances between elements within each group is minimized,
while the sum of the distances between groups is maximized.

At the beginning, each group consists of a single model.
USHER calculates the distance between every two models as
D = |∑i Creqi−∑i Mreqi|. Then, it uses the k-means algo-
rithm to group the models into several groups, where each
group consists of two models such that D is minimized, i.e.,
∑i Creqi ≈ ∑i Mreqi for each group. Next, considering each
group as an element, USHER executes another pass of the
algorithm. This process merges two groups created by the
previous pass to one and increases the number of models in
each group by two times. As a result, if we decide to have at
most 2p (i.e., 4) models in each group, we need to perform
p passes of the algorithm. Finally, the models are grouped
into several groups and the set of the groups is denoted by
G = {G1,G2, ...,Gn}.
3.3.2 Scheduling: Deciding Configuration and Placement
After grouping the models, for every model in each model
group Gi, IR-Scheduler decides the schedule. Below, we use
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Algorithm 1 Interference-aware and resource utilization-
maximizing scheduler for G.
1: for each Gi ∈G do
2: Generate all possible configurations={(BS, RD) for each

model M ∈ Gi}.
3: for each configuration do:
4: cost, total_goodput = PLACEMENT(configuration)

5: Schedule as per the configuration for which all of the requests are
completed within their latency SLOs, i.e., total_goodput =
total_workload and the cost is minimum.

the non-fixed cluster as an example to present the method
and then extend it for the fixed cluster. Based on O2, work-
load division (i.e., RD>1) may increase the utilization even
when one model replica is enough to complete all of the infer-
ence requests within the latency SLO. During the scheduling,
first, USHER takes all possible configurations, i.e., {(BS, RD)
for each model in the group Gi} (Algorithm 1). For each
configuration, it finds the placement to minimize the cost (Al-
gorithm 2). Finally, USHER chooses the configuration and
placement that result in the minimum cost.

The placement algorithm tries to assign one group of mod-
els Gi to the same GPU set to maximize Cuti and Muti. There-
fore, to assign the models in Gi, the algorithm prioritizes the
GPUs that are already assigned with the models in Gi, and
initializes a new GPU only when no used GPU can host a
model. To avoid resource fragmentation and increase Ruti, it
prioritizes the models Gi that have high Creq and Mreq and
aims to place it to a GPU that leaves the lowest C-space and
M-space after hosting it. Additionally, based on O5, USHER
takes placement decisions alternatively between C-heavy and
M-heavy models. The scheduling algorithm is shown in Al-

Algorithm 2 Placement algorithm for model group Gi.
1: procedure PLACEMENT (configuration)
2: GiGPU ← GPU group for Gi, initially empty
3: for each M ∈ Gi do
4: Calculate its Creq and Mreq in each type of GPU
5: if Creq > maxC or Mreq > maxM (highest-capacity GPU) then
6: return Infeasible_configuration

7: Group the models into C-heavy and M-heavy models
8: Sort two groups in descending order of Creq+Mreq:

{M1,M2, . . . ,Mn} and {M′1,M′2, . . . ,M′m}
9: final_model_list←{(M1,M′1),(M2,M′2), . . . ,(Mn,M′m)}

10: for each M ∈ final_model_list do
11: MODEL_REPLICA_PLACEMENT_WITHIN_GiGPU()
12: MODEL_REPLICA_PLACEMENT_OUTSIDE_GiGPU()
13: for each model replica of M do
14: NEW_LOWEST_COST_GPU_INITIALIZATION()
15: Assign the new GPU to GiGPU .
16: for each M ∈ Gi do
17: goodputM = min (achieved_goodputM , workloadM)
18: total_goodput = ∑MgoodputM
19: return additional costs for initializing new GPUs and

total_goodput for the taken placement decision.

gorithm 1. The algorithm finds the best placement decision
for each possible configuration by calling the PLACEMENT()

algorithm (Lines 1-4). The set of possible values of BS of a
model is: {4, 8, 16, 32, 64, 128}, and the set of possible val-
ues of RD of a model is: {m · cl

M}, m = 1,2, ...,6, where cl
M

is the minimum possible value of RD of model M to satisfy
its SLO. It is calculated as the minimum number of GPUs of
the highest GPU type required to complete all of the model
M’s requests within the SLO considering the highest possible
BS in each GPU. The highest possible BS is taken as the
minimum value between 128 and the BS beyond which its
Mreq exceeds the memory capacity (maxM) of the highest
capacity GPU type. This way, as the maximum possible value
of RD of a model can be as much as 6 times the minimum
possible value, the scheduling algorithm conducts workload
division based on O2.

The placement algorithm is shown in Algorithm 2. USHER
first calculates the Creq and Mreq for each model in each GPU
type according to the configuration given as input using GK-
Estimator (Lines 3-4). Then it further groups the models in
the model group Gi into C-heavy and M-heavy models (Line
7). A model is C-heavy if its average C-req/M-req ≥ 1.2, and
is M-heavy if M-req/C-req ≥ 1.2. Next, USHER sorts each of
the two sub-groups in the descending order of the Creq+Mreq
(Line 8). After that, USHER pairs up each two models from
the two sub-groups to create final_model_list (Line 9).
Finally, USHER inserts the models that are neither C-heavy
nor M-heavy into the list while maintaining the descending
order of Creq+Mreq.

Then, USHER picks up a pair or a model one by one from
the list to be assigned to a GPU. Specifically, USHER calls the
MODEL_REPLICA_PLACEMENT_WITHIN_GiGPU function (Line
11). The function places as many model replicas of M as pos-
sible to the mode’s GPU group (denoted by GiGPU ). The GPU
group of a model group is defined as the group of GPUs that
hosts most of the model replicas of the model group. Basically,
when USHER initializes a new GPU for any model replica
of model group Gi, the new GPU is added to the GPU group
GiGPU . This way, USHER tries to place the model replicas in
the same model group to the GPUs of the same GPU group.
If multiple GPUs are available for a model or a pair, USHER
chooses the one that leaves the lowest C-space+M-space after
hosting it to avoid resource fragmentation.

After that, USHER calls MODEL_REPLICA_PLACEMENT_
OUTSIDE_GiGPU that places as many remaining model
replicas of M as possible to the GPUs of the other
GPU groups (Line 12). Finally, for each model replica
that is not placed to any GPU yet, USHER calls
NEW_LOWEST_COST_GPU_INITIALIZATION that initializes a
new GPU of the GPU type that can host the model or pair with
the minimum cost and assigns the GPU to GiGPU (Lines 13-
15). At last, the placement algorithm returns to the scheduling
algorithm the additional costs for initializing the new GPUs
and the total goodput across all the models (Line 19). As [14],
goodput of a model is taken as the ratio between the batch
size and the expected time (including in-queue wait time) to
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complete a batch. The execution time of a batch is calculated
using the Time-Regressor in §3.2.

For the fixed cluster setup, the modifications are as fol-
lows. First, the maximum value of model replication degree
is capped by the total number of GPUs in the cluster. Second,
in Algorithm 1, USHER schedules as per the configuration for
which the total_goodput is maximum.

3.4 Operator Graph Merging to Minimize Cache Inter-
ference

To minimize interference in GPU cache, among the mod-
els assigned to one GPU, USHER merges as many operator
graphs of the models as possible into a single graph. To per-
form maximal operator graph merging, USHER first groups
the models to sub-groups based on their architectural similar-
ity (i.e., the structure and the constituting operators) (§3.4.1).
Then, for each sub-group, motivated by O6, USHER decides
which operators across multiple graphs to merge based on
their weight similarity (§3.4.2). Finally, during the merging
process, USHER extracts away the largest common weight
submatrix between the operators that need to be merged and
ensures that the matrix multiplications associated with the
submatrix for different inputs of different models are pro-
cessed at the same time, while the submatrix is in the GPU
cache (§3.4.3).

Figure 11: Operator merging in G1 and G2 to maximize GPU
cache usage. Attn-Q refers to the Attention Query operator.

(a) Executing on
W s at the same
time.

(b) Executing the remaining operations us-
ing separate operators.

Figure 12: Creating a new operator GEMM.

3.4.1 Grouping Architectural-Similar Operator Graphs
The models with architectural-similar operator graphs are
more likely to have high similarity in their weights [54]. Based
on this, USHER uses DBSCAN algorithm [57] to group the

models assigned to a GPU based on architectural similar-
ity. Given a set of elements, DBSCAN algorithm can cluster
the elements with very little distance (i.e., 10−7) between
themselves within the same group, without requiring any pre-
determined number of groups or number of elements within
a group. Inside DBSCAN algorithm, USHER uses graph edit
distance [58] to calculate the distance to measure the architec-
tural similarity between two operator graphs. Basically, the
edit distance algorithm finds how many addition/deletion/re-
placement of operators need to be performed to make the two
operator graphs identical. A shorter distance means higher
architectural similarity.

3.4.2 Graph Matching in an Architectural-Similar Group
Among the models in an architectural-similar group. USHER
first randomly takes two models. Then, it generates a bipartite
graph B containing the operators of both models. An edge e
exists between two vertices from the two graphs if and only if
all of the following conditions are satisfied: (i) same type (i.e.,
either convolutional operator or attention operator), (ii) same
starting time (explained in §3.2), (iii) the weight similarity
between the operators (described in §2.4) is no less than ω

(e.g., 40%). It is assigned as the edge weight.
After generating B , USHER finds the maximal weighted

matching using Hungarian algorithm [59] in B , which chooses
a set of independent edges (i.e., that do not share any common
vertex) such that the sum of weights is maximized. The two
endpoint operators of each of the chosen edges are matched
and will be merged (explained in §3.4.2). Then, USHER ran-
domly takes another model from the remaining models and
generates a new bipartite graph B ′ using B and the other
model by repeating the same procedure. This process repeats
until no more models in the group can be merged.

3.4.3 Operator Merging Process
As an example of operator merging, we describe the pro-
cess for two Query operators in the attention layers of two
Transformer models. It is a matrix multiplication operation:
I′1 =W1I1, where I1 is the input and W1 is the Query weight
matrix. Now, we explain how USHER modifies this operation
for operator merging. If I1 and I2, as well as W1 and W2, do
not have the same size, we apply zero padding to make them
the same size.

Fig. 11 shows the overall process of merging two Query
operators of two graphs. USHER creates a Super-Operator to
merge operators, which consists of several individual opera-
tors, each of which performs a specific task as described below.
First, it extracts out the largest common submatrix between
W1 and W2, denoted by AW1,W2 using template matching [60].
It creates a matrix W s, which contains AW1,W2 at the same po-
sition as W1 (or W2), and zeros in other entries. It also creates
another matrix W R

1 , which is the same as W1, except that the
entries associated with AW1,W2 are all zero, and creates ma-
trix W R

2 from W2 similarly. Second, as illustrated in Fig. 12a,
USHER concatenates the inputs I1 and I2 into a matrix as
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Ic = [I1, I2] and creates a new general matrix multiplication
(GEMM) operator that performs W sIc = [W sI1,W sI2]. This
way, the new GEMM operator executes the matrix operations
of the original two operators corresponding to AW1,W2 at the
same time, while W s is still loaded in the GPU cache, thus
maximizing its usage.

Also, as illustrated in Fig. 12b, for each of the original
operators, USHER creates a Query operator to perform the
remaining matrix multiplication operations that are not asso-
ciated with W s: W R

1 I1 and W R
2 I2. Third, I′1 can be calculated

simply as I′1 = W sI1 +W R
1 I1. However, the entries in W sI2

need to be repositioned. This is because AW1,W2 is positioned
in W s according to its position in W1. This repositioned W sI2
would be generated if AW1,W2 were positioned in W s accord-
ing to its position in W2. Finally, after the repositioning, I′2 is
calculated as I′2 =W sI2 +W R

2 I2.
While merging a Super-Operator with another Query op-

erator Oq, USHER merges each Query operator inside the
Super-Operator with Oq.

4 IMPLEMENTATION DETAILS

We developed USHER using Python and the implementation
is available at [61]. We used Tensorflow for the inference
executions of the models, but note that our techniques are
general and can be incorporated on other serving platforms.
After the XLA operator graph optimization [62] is performed
on the operator graph in TensorFlow, we converted it into
the framework-independent ONNX format to ensure USHER
works for other ML frameworks (e.g., PyTorch, MXNet) as
well. We found the GPU kernels called by an ML framework
during the execution of an operator by profiling the oper-
ator using Nvidia Nsight [52] with the print-gpu-trace
option turned on. We used achieved_occupancy and
dram_utilization options in Nsight to measure the Creq
and Mreq of a kernel, respectively. In each GPU, we used
Nvidia MPS [13] to divide the GPU computation resource
among the models based on their requirements. After merg-
ing the operator graphs in ONNX format, we applied the
TVM optimization [63] from Nvidia TensorRT [64] to further
optimize the merged graph and executed the merged graph
as a single CUDA Context in MPS, which was allocated the
sum of CUDA_MPS_ACTIVE_THREAD_PERCENTAGEs assigned
to the models whose operator graphs were merged.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup
Unless otherwise specified, the experiment settings are the
same as those in §2. In addition to the models described
in Table 1, we also used two multi-model applications that
include multiple DL models [2, 50]: video surveillance (SLO:
500ms) [2] and social media (SLO: 750ms) [65]. In addition
to the Microsoft Azure Function trace 2019 (MAF1) with
steady and dense request arrival rates, we also experimented
with MAF trace 2021 (MAF2) with bursty arrival rates [66].

(a) MAF1 (b) MAF2
Figure 13: Goodput comparison of different methods in real
testbed for a fixed cluster.

(a) MAF1 (b) MAF2
Figure 14: GPU computation and memory utilization compari-
son of different methods in real testbed for a fixed cluster.

Testbed. We conducted both real testbed and simulation ex-
periments. The real testbed is a cluster with 6 AWS EC2
p3.8xlarge servers, each of which consists of 4 V100 Nvidia
GPUs and the GPUs are inter-connected via NVLinks. In the
simulation, we increased the number of GPUs up to 6000
to simulate a large enterprise-grade GPU cluster [67]. As
it is prohibitively expensive to actually execute the models
using these many GPUs, we report the result directly from the
scheduler decision, without actually running the models. In
simulation, we experimented with tremendously large work-
loads reaching up to 15M requests/second to simulate the
large workloads in enterprise-grade clusters. We tested for
both fixed and non-fixed cluster setups. We compared USHER
with Shepherd [3], GPUlet [14], and AlpaServe [4].

5.2 Comparison Results
Our key results include: USHER (i) achieves up to 2.6× higher
goodput in a fixed cluster and (ii) requires up to 3.5× lower
cost in a non-fixed cluster.
5.2.1 Fixed Cluster
Fig. 13 shows the average goodput in the real testbed with
varying average workloads (averaged across the total dura-
tion of 2 weeks for a trace). Fig. 14 shows the average Cuti
and Muti per GPU. USHER achieves 1×-2.6× higher good-
put, 22%-24.2% higher Cuti and 38.9%-40.1% higher Muti
compared to Shepherd. This is because USHER performs

(a) MAF1 (b) MAF2
Figure 15: Goodput comparison of different methods in simula-
tion for a fixed cluster.
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(a) MAF1 (b) MAF2
Figure 16: Number of used GPUs in real testbed for a homoge-
neous non-fixed cluster. The maximum number of GPUs was 24.

model multiplexing in each GPU in an interference-aware
manner, whereas Shepherd allows only one model in each
GPU. We observed that the models in each of the following
sets were multiplexed in USHER for at least half the total dura-
tion of the experiment: {YOLO-v3, ResNeXt-101, Inception-
v4, GNMT, BERT}, {ResNet-101, EfficientNet-B7, BERT,
GPT-2}, {SqueezeNet, Llama-2}, and {R-CNN, ShuffleNet-
v2, GNMT, GPT-2}.

USHER achieves 1×-2.2× higher goodput, 19%-23%
higher Cuti and 25.1%-32.2% higher Muti compared to
GPUlet and AlpaServe. GPUlet and AlpaServe only try to
optimize the GPU computation use, while USHER addresses
the interference between models not only in the computation
space but also in the memory and cache spaces. Also, USHER
has several strategies in its IR-scheduler such as multiplexing
C-heavy models with M-heavy models and holistic workload
division to maximize the utilizations of both computation
and memory spaces. USHER performs consistently for both
traces, indicating its resilience to different request arrival pat-
terns. The minimal rescheduling overhead of USHER (i.e.,
0.51s from Table 2) enables it to quickly adapt to the bursty
workload of MAF2. Nonetheless, if the workload exhibits
very frequent burstiness, then the benefits of USHER may be
reduced. However, such extreme workloads are uncommon in
real-world settings [3, 4] (e.g., the production workload illus-
trated in §5.4, where burstiness occurs after every 45s-300s)
and thus the rescheduling overhead of USHER is reasonable
enough to not have any adverse impact on its performance.

Goodput of USHER becomes stable at around 47k reqs/s,
whereas Shepherd, GPUlet, AlpaServe become stable at much
less goodput values. At this point, the method has used up
all the GPU resources in the fixed cluster. Fig. 14 establishes
that merely increasing the workload cannot saturate the GPUs.
This is because it is the batch size that mainly determines the
resource consumption of a model and a system cannot choose
a larger batch size that leads to a latency exceeding the SLO.
To cope up with the increased workload, a system scales out,
i.e., increases the number of used GPUs.

Fig. 15 shows the goodput in simulation with varying num-
ber of V100 GPUs. USHER achieves 1.5×-1.9× higher good-
put compared to the comparison methods due to the same
reasons described above. With the increase in the number of
GPUs, the goodput of USHER increases 1.6×-2.1× faster than
other methods, indicating the higher scalability of USHER.

(a) MAF1 (b) MAF2
Figure 17: GPU computation and memory utilization of different
methods in real testbed for a homogeneous non-fixed cluster.

(a) MAF1 (b) MAF2
Figure 18: Number of used GPUs of different methods in simu-
lation for a homogeneous non-fixed cluster.

5.2.2 Non-fixed Cluster
For the non-fixed cluster, we first considered homogeneous
V100 GPUs. Then, the cost is proportional to the number of
used GPUs. We report the average number of GPUs required
by a method at a second. Next, we considered heterogeneous
GPUs: K80, V100, A100, and H100. The GPU types have
varying costs following AWS on-demand pricing [68].
Homogeneous GPUs. Fig. 16 shows the number of used
GPUs in a homogeneous real testbed to complete all infer-
ence requests within their SLOs. Fig. 17 shows the average
Cuti and Muti per GPU. USHER requires 2.5×-3× fewer
GPUs, and achieves 19.3%-24.4% and 24.9%-40% higher
Cuti and Muti, respectively, compared to Shepherd, GPUlet,
and AlpaServe. As the comparison methods either do not
employ multiplexing or suffer from increased latency due to
inter-model interference, they require more GPUs.

Fig. 18 shows the number of used GPUs in simulation.
USHER uses 1.7×-2.1× fewer GPUs due to the same reasons
explained above. In both real testbed and simulation, with
the increase of the workloads, the increase rate in the number
of GPUs of USHER is slower than other methods especially
when the workload is very high. These results show the cost-
effectiveness of USHER even for large workloads.

(a) MAF1 (b) MAF2
Figure 19: Cost comparison in real testbed for a heterogeneous
non-fixed cluster. The maximum cost/hr was 105$.

Heterogeneous GPUs. Fig. 19 shows the cost per hour with
varying workloads in a heterogeneous real testbed. Fig. 20
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(a) MAF1 (b) MAF2
Figure 20: GPU computation and memory utilization compari-
son in real testbed for a heterogeneous non-fixed cluster.

(a) MAF1 (b) MAF2
Figure 21: Cost comparison of different methods in simulation
for a heterogeneous non-fixed cluster.
shows the average Cuti and Muti per GPU. USHER requires
2.8×-3.5× lower cost, and achieves 19%-24.1% and 25.2%-
40.3% higher Cuti and Muti, respectively, due to the same
reasons explained above. USHER performs slightly better for
heterogeneous GPUs compared to homogeneous GPUs as
USHER can choose the optimal GPUs from varying GPU
types depending on their cost-performance trade-offs.

(a) MAF1 (b) MAF2
Figure 22: Goodput comparison with varying SLO values in real
testbed for a fixed cluster. S denotes the default SLO (Table 1).

Fig. 21 shows the cost per hour in simulation. USHER
incurs 1.9×-2.2× lower cost for the same reasons described
above. With the increase in workload, its cost increases
slower than other methods, especially when the workload is
very high.
Overheads. Table 2 presents the average time overhead and
average impact on accuracy of different methods. USHER’s
grouping of models takes only 0.1s and it needs to be up-
dated only when there is addition or deletion of models in
the system. The decision-making times of the scheduling in
different methods are comparable. This is because all the
methods employ time-efficient heuristics to accelerate the
scheduling process in order to excel in autoscalability when
workload changes (§5.4). USHER’s operator graph merging
takes slightly more time than its scheduling. Hence, after the
scheduling, the requests are executed using individual model
graphs. After the graphs are merged, the requests are then
executed on the merged graph. For the models whose GPU

(a) MAF1 (b) MAF2
Figure 23: Number of used GPUs with varying SLO values in
real testbed for a homogeneous non-fixed cluster. The maximum
number of GPUs was 24. S denotes the default SLO (Table 1).

Table 2: Overheads of the methods.
Methods Grouping

of models
Scheduling algorithm Operator

graph merging based
on weight similarity

Impact on model
accuracy due to operator

graph merging
Decision
making

Model
loading

USHER 0.1s 0.51s 0.63s 2.3s -0.0003%

Shepherd 0 0.5s 0.62s 0 0

GPUlet 0 0.46s 0.64s 0 0

AlpaServe 0 0.63s 0.65s 0 0

placement has changed during scheduling, each method takes
0.69s-0.72s to load the models from host memory to GPU
memory. Table 3 presents the average model loading time of
USHER for each model shown in Table 1. Rescheduling does
not happen so frequently [3,4], e.g., after every 45s-300s from
Fig. 24. As a result, considering the scheduling time required
in USHER, there is enough time left before another schedul-
ing occurs to realize the benefits of USHER. The accuracy
loss is only 0.0003% per request batch of a model due to the
operator graph merging. This is because, while finding the
longest common submatrix in the merging process, USHER
takes two weight values as the same only when their absolute
difference is very low (i.e., ≤ 10−7) (§2.4). Table 3 shows
the average accuracy loss per request batch for each model in
USHER.

5.3 Performance on Varying SLOs
5.3.1 Fixed Cluster
Fig. 22 shows the goodput with varying SLO values in the
same real testbed setup of Fig. 13 with workload=256k re-
qs/sec. In the figure, S denotes the default SLO of each model
as defined in §2, and m f S denotes that the SLO is multiplied
by m f ∈ {0.4,0.6,0.8,1,1.2,1.4}. USHER achieves 2.2×-
2.7× higher goodput than the comparison methods for the
same reason described in §5.2.1. As SLO decreases, goodput
also decreases for each method. This is because, in the fixed
GPU resources of the cluster, more requests miss their SLO
deadlines as the SLO becomes stricter. The result shows that
USHER retains its higher goodput compared to the existing
methods even when the SLO is ultra-low.

5.3.2 Non-fixed Cluster
Fig. 23 shows the number of used GPUs with varying SLO
values in the same real testbed setup of Fig. 16 to complete
all inference requests within their SLOs with workload=8k
reqs/sec. The result shows that USHER achieves 3.2×-4.3×
fewer GPUs than the comparison methods for the same reason

958    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Table 3: Model loading and accuracy overheads in USHER.

Model name Model
loading

Impact on model
accuracy due to operator

graph merging

YOLO-v3 0.44s -0.0002%

R-CNN 0.57s -0.0003%

MobileNetSSD-v2 0.495s -0.0003%

ResNet-50 0.51s -0.0002%

ResNet-101 0.586s -0.0004%

ResNeXt-50 0.531s -0.0004%

ResNeXt-101 0.7s -0.0003%

SqueezeNet 0.31s -0.0001%

ShuffleNet-v2 0.39s -0.0002%

MobileNet-v2 0.395s -0.0002%

DenseNet-121 0.4s -0.0002%

DenseNet-201 0.49s -0.0002%

Inception-ResNet-v2 0.6s -0.0002%

Inception-v3 0.53s -0.0003%

Inception-v4 0.58s -0.0003%

EfficientNet-B7 0.64s -0.0004%

GNMT 0.89s -0.0002%

BERT 0.78s -0.0004%

GPT-2 1.18s -0.0004%

Llama-2 1.59s -0.0003%

described in §5.2.2. As SLO decreases, the number of used
GPUs increases for each method. This is because each method
needs to create more replicas of a model to execute more
requests in parallel as the SLO becomes stricter. Otherwise,
the requests would have to wait longer for the required GPU
resource, leading to SLO violation. The result shows that
USHER retains its superior cost-efficiency compared to the
existing methods even when the SLO is very strict.

5.4 Microanalysis on Autoscalability
To better evaluate the system autoscalability during reschedul-
ing, we measured the number of used GPUs and the in-queue
wait time of a request at each second during a randomly cho-
sen window of 1000 seconds. We used the MAF2 trace in the

Figure 24: Microanalysis on autoscalability.

homogeneous non-fixed cluster real testbed. Fig. 24 shows the

Table 4: Performance of USHER’s GK-Estimator.

Methods Accuracy of computation
requirement calculation

Accuracy of memory
requirement calculation Cost Time

USHER’s
GK-Estimator 99.98% 99.98% 0 31.6ms

Profiling 100% 100% 42.7$ 4.8hr

(a) Goodput (b) GPU utilization
Figure 25: Performance of different variants of USHER.

results. Each method increases the number of GPUs when the
workload surges up and decreases it when the workload surges
down. USHER requires 1.6×-3.9× fewer GPUs compared to
the comparison methods, due to its interference-minimizing
and resource utilization-maximizing design. The in-queue
wait time is almost the same for all the methods and also
varies by only 0.8ms-1.4ms as the workload surges up or
down. This means that all the methods excel in autoscalabil-
ity, but USHER requires much fewer GPUs.

5.5 Ablation Study
In this section, we evaluate the effectiveness of each proposed
strategy of USHER. We first evaluated the cost- and time-
efficiency of USHER’s GK-Estimator compared to the existing
profiling approaches in estimating the resource requirements
of a new model. Table 4 shows the results averaged across
the models in Table 1. The GK-Estimator takes 100% less
cost and time with comparable accuracy. This is because the
profiling approach needs to actually execute the model in the
GPUs for different BSs and GPU types, whereas USHER’s
GK-Estimator only needs to analyze the kernel-level compu-
tation graph.

To measure the effectiveness of the other methods in
USHER, we created several variants of USHER as follows. 1)
USHER/CM skips the step to classify the models in a group
to C-heavy and M-heavy. 2) USHER/WD does not conduct
workload division between multiple GPUs if one GPU can
support the workload to satisfy the SLO. 3) USHER/S does
not sort the models based on their computation and memory
requirements. 4) USHER/M does not have the OG-Merge.

Fig. 25 shows the goodput and GPU utilization perfor-
mance of USHER and its different variants in the same setup
as Fig. 13a with workload=256k reqs/s. The results show that
USHER achieves 24.3%-51.6% higher goodput than USH-
ER/CM, USHER/WD, and USHER/S. This is because, by
skipping a method in each of these variants, the Cuti and
Muti decrease by 24%-41.4% and 42%-59.6%, respectively,
resulting in much lower goodput. USHER achieves 55.7%
higher goodput than USHER/M because OG-Merge reduces
the interference in GPU cache, resulting in lower latency.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    959



(a) Impact of τ (b) Impact of ω

Figure 26: Sensitivity of USHER on its parameters.

5.6 Sensitivity on Parameters
We did the following experiments in the fixed cluster real
testbed setup using MAF1 trace with 256k reqs/s workload.
Impact of τ (in §3.2). Fig. 26a shows the accuracy and time
for resource estimation of a model with varying values of τ.
All τ values lead to the same time for resource estimation.
However, we chose τ = 0.001ms as it leads to the highest
accuracy of resource estimation since it can correctly capture
which GPU kernels will be executed concurrently.
Impact of ω (in §3.4.2) Fig. 26b shows the goodput of
USHER for different values of ω. We chose ω = 40% as it
provides the highest goodput. When ω > 40%, the number
of operators that can be merged is reduced, leading to higher
cache interference. When ω < 40%, more operators can be
merged. However, the overhead of additional operations in
Fig. 11 outweighs the benefit.

6 LIMITATIONS AND DISCUSSION

Precision Quantization. The current version of USHER im-
plements FP16 quantization of weights. In the future, we will
explore the impact of various precision quantizations (e.g.,
FP8, FP32) on various factors such as accuracy, interference,
and resource utilization and extend USHER to adaptively se-
lect the most suitable precision quantization for each model
based on the above factors.
Model Parallelism. USHER supports model parallelism out of
the box for large models. We assume that model parallelism
is enabled by the underlying framework (e.g., DeepSpeed
decides how to do model parallelism on Llama-2 in our ex-
periments (§2)), and USHER simply uses it. An interesting
future work would be to jointly optimize the model paral-
lelism and placement strategies of USHER to further enhance
the resource utilization.

7 RELATED WORK

Inference Serving Systems without Spatial Multiplexing.
Many of the systems avoid spatial multiplexing of models
within a GPU to prevent inter-model interference [3, 7, 11, 65,
69–81]. Shepherd [3] aggregates request streams into similar-
sized groups for high computation utilization and schedules
placement to maximize goodput within each group. Several
methods [7, 65, 71–76] rely on profiling to find the optimal
request batch size for each model, aiming for high GPU
utilization and goodput. However, these methods suffer from
low resource utilization due to lack of spatial multiplexing

(§2.1). Additionally, offline profiling to calculate the resource
requirements of a model is time-consuming and costly.
Inference Serving Systems with Spatial Multiplexing. A
set of systems adopt spatial multiplexing to enhance GPU
utilization while maximizing goodput [1, 2, 4, 12, 14, 21, 23,
50,82–85]. GPUlet [14] proposes a heuristic for placing mod-
els in GPUs to maximize computation space utilization. Al-
paServe [4] explores the best placement scheduling by lever-
aging model parallelism. However, due to inter-model inter-
ference in spatial multiplexing, these systems may suffer from
longer inference latency (§2.1). Additionally, these systems
fail to maximize both GPU computation and memory uti-
lizations (§2.1). Orion [86] is a recent work that maximizes
resource utilization by spatially multiplexing the best-effort
jobs (e.g., training), while avoiding multiplexing the high-
priority jobs (e.g., inference) so that they are not impacted by
inter-model interference. However, in our scenario where all
the jobs are high-priority inference, Orion will fail to maxi-
mize utilization due to the lack of multiplexing. A group of
methods [21–23] propose merging layers and sharing param-
eter weights across multiple models to reduce the memory
requirement. However, the merging processes cannot solve
the interference in GPU cache as they do not maximize the
usage of cache contents.

8 CONCLUSION

Spatial multiplexing has the potential to increase resource
utilization of the GPUs to design a cost-efficient inference
serving system. However, it requires careful system design to
address the challenges of spatial multiplexing, i.e., maximiz-
ing the utilizations of both computation and memory spaces,
while minimizing inter-model interference. To this end, we
propose USHER. USHER has a lightweight interference-aware
scheduler that schedules the models to jointly maximize GPU
computation and memory utilizations. During the scheduling,
USHER uses a novel lightweight GPU kernel-based estima-
tor to compute the resource requirement of each model. Fi-
nally, USHER has a novel operator graph merging approach
to minimize interference in GPU cache. Experimental results
on both real testbed and large-scale simulations show that
USHER achieves up to 2.6× higher goodput and 3.5× better
cost-efficiency compared to existing systems.
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