
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Validating the eBPF Verifier via State Embedding
Hao Sun and Zhendong Su, ETH Zurich

https://www.usenix.org/conference/osdi24/presentation/sun-hao

Validating the eBPF Verifier via State Embedding

Hao Sun
ETH Zurich

Zhendong Su
ETH Zurich

Abstract
This paper introduces state embedding, a novel and highly
effective technique for validating the correctness of the eBPF
verifier, a critical component for Linux kernel security. To
check whether a program is safe to execute, the verifier must
track over-approximated program states along each poten-
tial control-flow path; any concrete state not contained in the
tracked approximation may invalidate the verifier’s conclu-
sion. Our key insight is that one can effectively detect logic
bugs in the verifier by embedding a program with certain
approximation-correctness checks expected to be validated
by the verifier. Indeed, for a program deemed safe by the veri-
fier, our approach embeds concrete states via eBPF program
constructs as correctness checks. By construction, the result-
ing state-embedded program allows the verifier to validate
whether the embedded concrete states are correctly approxi-
mated by itself; any validation failure therefore reveals a logic
bug in the verifier. We realize state embedding as a practical
tool and apply it to test the eBPF verifier. Our evaluation re-
sults highlight its effectiveness. Despite the extensive scrutiny
and testing undertaken on the eBPF verifier, our approach,
within one month, uncovered 15 previously unknown logic
bugs, 10 of which have already been fixed. Many of the de-
tected bugs are severe, e.g., two are exploitable and can lead
to local privilege escalation.

1 Introduction

The Extended Berkeley Package Filter (eBPF) [32, 37] al-
lows untrusted user space extensions to be executed in kernel
space. This mechanism has been broadly adopted by mod-
ern operating system kernels to flexibly implement various
specialized tasks, including filtering [43], profiling [28], and
security monitoring [15], among others [23, 54]. To ensure
the safety of the untrusted extensions, a static checker [8]
(verifier) is utilized to rigorously validate their integrity. In
this work, our primary focus is on the eBPF verifier in the
Linux kernel, which is mature and has successfully been ap-
plied in various contexts. The eBPF verifier employs abstract

interpretation [20], a process where it traverses the program
and gathers approximations across different abstract domains
to identify potentially invalid behaviors. Due to its intricate
checking mechanism, the verifier has evolved into one of the
most complex components within the eBPF subsystem.

The correctness of the eBPF verifier is of utmost signifi-
cance. The eBPF subsystem provides extensibility by grant-
ing restricted kernel space code execution capability to user
space, which is enforced by the verifier. These restrictions
are crucial as they limit memory access and control flow in
programs, thereby preventing the kernel from being impacted
by potentially harmful extensions. However, logic bugs in the
verifier can compromise these restrictions, leading to unsafe
programs being loaded. Indeed, the verifier’s vulnerabilities
are attractive to attackers as these bugs have a higher like-
lihood of being exploited to inject malicious programs into
the kernel [1–3]. We will demonstrate, in Section 2.2, the
exploitation of one such bug we found, a simple incorrect
type cast in the verifier, to achieve local privilege escalation.
Therefore, detecting and rectifying logic bugs in the eBPF
verifier is critical to the overall kernel security.

Given its importance, existing work applies formal veri-
fication to several components of the verifier. For example,
Agni [45] generates verification conditions for the range anal-
ysis of the verifier, and other work [44, 52] aims to verify the
tnum domain [35]. These efforts have provided strong guaran-
tees for the correctly verified components. Nevertheless, given
its complexity, obtaining specifications, either manually or
automatically, is intrinsically challenging even for a portion of
the verifier [18]. Consequently, these checked specifications
may be incomplete [9] or diverge from the implementation [4],
e.g., we still uncovered logic bugs in the verified range analy-
sis. Moreover, these components are relatively small, and the
verifier is constantly evolving with new algorithmic enhance-
ments and features. Previous work has also applied automatic
testing on eBPF [25, 26, 42]. For instance, Syzkaller [47] has
been incorporated into the eBPF upstream and has identified
many memory errors in the eBPF system call. Yet, they en-
counter challenges in detecting logic bugs due to the lack of

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 615

effective test oracles [24], namely methods to automatically
determine whether a program should be accepted or rejected
by the verifier.

Observation. In essence, the verifier checks eBPF programs
by tracking states at different locations along each possible ex-
ecution path within its abstract domains, i.e., the verifier state
(approximation). The checking procedure on each execution
path can be modeled as verifier state transitions:

A0→ A1→ ...→ An−1→ An

The verifier state transition corresponds to a set of concrete
state transitions on the corresponding execution path:

S0→ S1→ ...→ Sn−1→ Sn

Each concrete state Si must be contained in the corresponding
approximation Ai; otherwise, it is a verifier bug since attackers
can manipulate such a concrete state, thereby breaking the
verifier’s conclusion. The key observation is that, to ensure
the conclusion is correct, the verifier must over-approximate
all possible concrete states at each program point. In other
words, any concrete state not contained in the approximation
can invalidate the conclusion. The property is fundamental
and can be harnessed as an effective test oracle to validate
the correctness of the verifier without requiring specifications.
The ensuing challenge is how to determine whether or not
concrete states are contained in the approximation.

State Embedding. This paper introduces state embedding,
a novel and effective mechanism for validating the eBPF
verifier. Our key insight is: one can effectively detect logic
bugs by embedding a program with the aforementioned
approximation-correctness checks that are expected to be val-
idated by the verifier itself. State embedding contrasts pairs
of programs, P and P′. Initially, a program P, accepted by the
verifier, is executed to profile its concrete states. Next, P′ is
crafted by embedding sinks that contradict these observed
states into P, challenging the verifier to validate it. A correct
verifier should reject P′ since a valid approximation must in-
clude the observed concrete states, thus accepting P′ reveals a
logic bug. More concretely, given an accepted program P and
a profiled concrete state S. Corresponding to S is a variable
A representing the verifier’s approximation. P′ is constructed
by embedding the following program construct:

if S ∈ A then verifier_sink()

The condition directs the verifier to check if the concrete
state S is indeed contained within its approximation A, and
verifier_sink() refers to any incorrect operation; encountering
this during validation signals an error, indicating that S is cor-
rectly contained in A. One can easily realize the construct by
utilizing the if-condition statement with equality comparison;
we defer to Section 3.1 for concrete examples. Thus, P′ can be
applied to validate the verifier V: P →{safe,unsafe}, where

marking P′ as unsafe due to the triggered sink confirms the
inclusion of S in A; conversely, deeming P′ safe indicates a
failure in capturing S within A, i.e., a verifier’s logic bug.

Realization. We realized state embedding as a practical tool,
which we call SEV, and applied it in validating the eBPF
verifier. First, for an eBPF program accepted by the verifier,
SEV executes and profiles the program to gather its register
states at each basic block. Second, to efficiently embed each
state, we utilize the following optimization (which will be
further elaborated in Section 3.1). At each basic block, a fold-
ing function is generated to fold the corresponding concrete
register states into a global variable. A state-embedded pro-
gram is synthesized by inserting the folding functions and
embedding the concrete values of the global variables. Fi-
nally, the resulting program is used to validate the verifier;
indeed, any failure to detect the sink indicates a logic bug in
the verifier. Our evaluation results show that state embedding
is highly effective. Within one month, we discovered 15 logic
bugs exclusively in the verifier. This is a significant result
considering that the verifier is primarily around 20,000 lines
of code and, as aforementioned, has been partially verified.
In addition, the verifier has gone through extensive security
scrutiny and testing [7,46]. Moreover, most of the bugs found
are critical. For instance, two bugs are exploitable, where one
allows users with CAP_BPF [41] to obtain root privilege and
has existed for four years, and the other enables users with
CAP_PERFMON [19] to obtain root privilege, both affecting
kernel v5.10.33 and later.

State embedding significantly complements existing work.
In comparison, our approach has several distinct advantages:
(1) SEV treats the verifier as a grey-box rather than a black-
box by inspecting the verifier states, which allows fine-grained
detection of logic bugs; (2) by transforming and taking the
state-embedded programs as input, the verifier automatically
checks if the concrete states are contained, thus the approach
requires little domain knowledge and is practical; (3) in gen-
eral, one can easily embed rich concrete states, yet to detect all
the sinks, the verifier must correctly collect approximations
encompassing all the embedded states, thus being effective;
and (4) state embedding can detect diverse logic bugs that lead
to discrepancies between concrete states and approximations,
e.g., the bugs we found are located in various components
including range analysis, stack access validation, etc. The key
contributions of our work are:

• We propose state embedding, a novel and highly effective
mechanism for detecting logic bugs in the eBPF verifier.

• We present SEV, a practical realization of state embed-
ding, and apply it to stress test the eBPF verifier.

• We demonstrate state embedding’s effectiveness by un-
covering 15 previously unknown logic bugs in the eBPF
verifier with 10 already fixed and many being critical.

616 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0: *(u64*) (r10 -40) = -1

1: r1 = *(u64*)(r10 -40)

2: r2 = 1

3: if r1 < 0 goto +1

4: r2 = 0

5: exit

Accepted Program

R1 = -1 R2 = 1

Register States

0: fp-40 = 0xffffffff

1: r1 = 0xffffffff

2: r1 = 0

3: r1 = 0

4: r1 = 1

5: r1 = -8

6: fp-8 = ptr

…

7: fp-8 = ptr

8: r2 = ptr

Verifier States
0: fp-40 = 0xffffffffffffffff

1: r1 = 0xffffffffffffffff

2: r1 = 0xffffffff

3: r1 = 1

4: r1 = 2

5: r1 = -16

6: fp-8 = ptr

…

7: fp-8 = malicious_ptr

8: r2 = malicious_ptr

Runtime States

0: *(u64*) (r10 -40) = -1

1: r1 = *(u64*)(r10 -40)

2: r1 >>= 32

3: r1 &= 1

4: r1 += 1

5: r1 *= -8

6: *(u64*)(r10 - 8) = ptr

; use r1 control offset

7: call load_bytes

8: r2 = *(u64*)(r10-8)

POC
0: r9 = 0

1: *(u64*) (r10 -40) = -1

2: r1 = *(u64*)(r10 -40)

3: r2 = 1

4: if r1 < 0 goto+1

5: r2 = 0

6: r9 += r1

7: r9 *= r2

8: if r9 != -1 goto+1

9: verifier_sink()

10: exit

State-embedded Program

Figure 1: SEV performs state embedding by (1) profiling the concrete states of registers at each basic block, e.g., R1 and R2; (2)
folding R1 and R2 to R9 (#6 and #7); (3) embedding the concrete state of R9 (#8) and the verifier sink (#9). The instructions #8
and #9 implement the program construct and are the approximation-correctness check. The verifier interprets the if-condition #8
by validating if the runtime value -1 is within the approximation of R9, i.e., determining if R9 could be -1, in which case the sink
would be reported; otherwise, the verifier jumps from #8 to #10 and skips the sink. During validating the state-embedded program,
the verifier skips the sink due to the logic bug. The root cause is sign information loss at #1. The POC program manipulates the
state of R1 (#2 and #3), making the verifier believe R1 equals zero, whereas at runtime, it equals one. Consequently, the program
overwrites the valid pointer stored on the stack with a malicious pointer (#6 and #7), thereby achieving arbitrary access.

2 Background and Illustrative Example

2.1 eBPF

eBPF is a register-based virtual machine that enables user
space to extend the kernel dynamically. The user space first
writes programs consisting of a sequence of eBPF instructions
and loads the program with the bpf() system call. Programs
operate on 11 registers (R0 to R10) and a fixed-size stack with
four major types of instructions, namely load, store, arithmetic,
and branch. An example program is presented in Figure 1.
eBPF is adopted across different privilege levels, from unpriv-
ileged users [13] to those with certain capabilities [19, 41],
and to fully privileged users. For instance, the CAP_BPF ca-
pability allows using eBPF with minimal privilege, widely
applied in container scenarios. Consequently, the extensions
are untrusted and a verifier is employed to validate their safety.

In a nutshell, the verifier traverses each execution path,
interpreting every instruction in its abstract domains. Pro-
grams exhibiting any form of invalid behaviors, such as infi-
nite loops and out-of-bounds access, are rejected. To strive
for both soundness and precision, the verifier employs so-
phisticated algorithms to track program states. For instance,
it gathers pointer types, register liveness, scalar ranges, etc.
Scalar ranges are tracked using five abstract domains: four
interval domains for different signs and bit-sizes, and the
tristate number (tnum) domain [35] to model bit-wise oper-
ations. Scalar ranges are derived by combining information
across these domains. The verifier models pointers based on
region types and offsets, categorizing the former into more

than twenty types, while tracking the latter using a variable.
Furthermore, the verifier undergoes continuous updates by
maintainers with new features and algorithms. The above fea-
tures make the verifier the most complex component within
the eBPF subsystem.

2.2 Illustrative Example

The key idea of our approach is to embed concrete states
in programs such that when taking the state-embedded pro-
grams as input, we leverage the verifier to check whether the
concrete states are contained in the approximation, thereby
detecting logic bugs. In this section, we use an example to
showcase how state embedding enables the detection of a
subtle logic bug caused by a simple incorrect type cast. We
also demonstrate the exploitation of the bug to highlight the
significance of the verifier’s correctness.

The Bug. The left segment of Figure 1 shows a valid eBPF
program accepted by the verifier. Without effective test or-
acles, existing approaches would simply drop the case and
proceed to the next iteration, since the program does not con-
tain invalid behaviors. In comparison, SEV further utilizes
state embedding to validate the verifier’s approximation of
the program, thereby uncovering this bug. Figure 2 shows the
root cause and the patch proposed by us to fix the bug.

eBPF programs can spill registers or immediate values to
the stack, and the verifier tracks the state of the stack accord-
ingly. For the instruction *(u64*)(r10-40)=-1 shown in the
accepted program, the verifier marks the state of the accessed

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 617

diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 857d76694517..44af69ce1301 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -4674,7 +4674,7 @@ static int check_stack_write_fixed_off(…)
 insn->imm != 0 && env->bpf_capable) {
 struct bpf_reg_state fake_reg = {};

- __mark_reg_known(&fake_reg, (u32)insn->imm);
+ __mark_reg_known(&fake_reg, insn->imm);
 fake_reg.type = SCALAR_VALUE;
 save_register_state(state, spi, &fake_reg, size);
 } else if (reg && is_spillable_regtype(reg->type)) {

Figure 2: A logic bug detected by SEV. During spilling im-
mediate values on the stack, the verifier incorrectly casts
the i32 immediate value to u32 type, thus losing sign in-
formation. We proposed this patch to drop the cast, since
__mark_reg_known() accepts u64 type, the compiler would
correctly promote integer type and propagate sign information.
The patch has been accepted in the upstream and back-ported
to the stable kernels.

stack slot as a known scalar value. However, during this pro-
cess, the verifier incorrectly casts the immediate value from
i32 to u32 and then sets the state of the stack slot, which is
u64, to the casted value, causing lost sign information and
the state of the stack slot being updated to an incorrect value.
As depicted in Figure 1, when storing -1 to the stack, the
verifier incorrectly marks the corresponding stack slot as a
value whose higher 32 bits are all zero, i.e., losing sign infor-
mation. Subsequently, when loading the same stack slot back,
the verifier state of the destination register does not match the
original register, i.e., the concrete value -1 is not contained in
the approximation. Figure 2 demonstrates the patch to fix the
bug, which has been merged to the upstream and back-ported
to the stable kernels, given its security impact.

In general, detecting logic bugs in the verifier poses signifi-
cant challenges due to the following characteristics:

• Hard to notice: The abstract domains utilized by the
verifier are complex and challenging to comprehend thor-
oughly, and the cyclomatic complexity of its tracking
logic is high. To pinpoint logic bugs, one needs to pre-
cisely understand the verifier states and inspect them
following the tracking logic. Conducting such a process
is difficult, e.g., the aforementioned incorrect type cast
is likely to be overlooked.

• Hard to detect: Existing work treats the program under
testing as a black-box, yet logic bugs of the verifier are
likely to be silent errors. For instance, the behavior of the
program demonstrated is correct, which simply accesses
the stack within bounds and operates the registers, and
in this sense, the verifier’s conclusion seems justified.
However, as shown by our approach, the verifier’s ap-
proximation contains a subtle flaw, which is challenging
for existing approaches to detect.

State Embedding. To enforce the safety of the program, the
verifier must track the over-approximation of program states
on each execution path, yet a concrete state not contained
in the approximation can invalidate the conclusion. Based
on the observation, our approach systematically transforms
the program to embed concrete states within certain program
constructs and utilizes the verifier to validate whether the
aforementioned property holds during the checking process.

Step 1: The first step of state embedding is to profile con-
crete states, as illustrated in Figure 1. For a program accepted
by the verifier, we execute and profile concrete states at each
basic block of the execution path. Since the if-condition at #3
holds at runtime, the program jumps to #5, where we collect
the concrete states of registers. The concrete states of R1 and
R2 must be contained in the verifier’s approximation.

Step 2: The second step performs state embedding. In prac-
tice, the collected state information is rich, and directly em-
bedding each state makes the verifier fork and explore paths
multiple times, potentially leading to redundant checks. We
adopt folding to efficiently conduct state embedding. First,
we initialize R9 (#0), a reserved register that holds the folded
concrete state. Then, we generate a folding function at each
basic block, which consists of arithmetic instructions that fold
the collected states into the single register R9. The folding
function in Figure 1 has two instructions #6 and #7, which
fold R1 and R2 into R9. The value of R9 is calculated dur-
ing the generation by evaluating those arithmetic instructions
with the concrete states, which, in the example, equals -1.
Finally, the instruction #8 and #9 implement the program
construct, which embeds the folded concrete state with the if-
condition instruction that compares R9 with its value -1 and
the verifier sink. The condition makes the verifier compare the
folded state with its approximation of R9. The sink would be
detected if the verifier deems -1 is within the approximation.

Step 3: Subsequently, we can take the state-embedded pro-
gram as input to the verifier to detect the logic bug. During the
checking process, the verifier initially collects the program
states from #0 to #4, where it incorrectly tracks the approxi-
mation of R1 (#1 and #2). Such an issue would be captured
as the concrete state of R1 is folded into R9. Since the verifier
determines r1<0 not hold, it proceeds from #4 to #5. At #6
and #7, the verifier folds R1 and R2 into R9, where it erro-
neously concludes that the only concrete value within the
approximation of R9 is zero. Therefore, the folded concrete
state -1 would not be contained in the approximation of R9,
causing the verifier to skip the sink at #9. Consequently, we
have found the logic bug in the verifier.

Our approach embeds concrete states within certain pro-
gram constructs and utilizes the verifier to validate the approx-
imations. State embedding provides two distinct advantages:

• Fine-grained: State embedding views the verifier as a
grey-box rather than a black-box since it performs fine-
grained validation on the verifier states. For the afore-

618 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

mentioned example, which is overlooked by the existing
approaches and even by the experienced maintainers, our
approach further validates the approximations with the
profiled concrete states.

• Practical: Our approach validates if the aforementioned
property holds by embedding concrete states and uti-
lizing the verifier to compare the states against the ap-
proximations. Therefore, state embedding requires little
domain knowledge and is more practical.

The Exploit. The right segment of Figure 1 depicts a proof-of-
concept (POC) that exploits the bug to obtain root privilege.
In essence, the POC uses the bug to manipulate the verifier’s
knowledge about the program. Since the verifier incorrectly
believes that the higher 32 bits of R1 are zero, which are
in fact all one at runtime, the POC first constructs an evil
register by right-shift and logic AND operations (#2 and #3).
These operations make the verifier conclude R1 equals zero,
while at runtime it equals one. Then, the POC stores a valid
pointer on the stack and invokes a helper function that allows
eBPF programs to load user space data to their stack. By
using the evil register as the length parameter, the POC makes
the verifier think that only 8 bytes are stored on the stack,
while in fact it stores 16 bytes, thus overwriting the pointer
with the user-controlled pointer. Finally, the POC achieves
arbitrary access with the malicious pointer, while the verifier
erroneously believes the program is operating the original
valid pointer.

Since eBPF programs are executed in kernel space, the POC
can perform various malicious operations, e.g., overwriting
credentials of the current task struct for privilege escalation.
Our full POC enables users with CAP_BPF to achieve root
access, and kernels v5.10.33 and later are affected. After we
submitted the patches that fix the bug, we also received posi-
tive feedback from the maintainers of the eBPF subsystem:

“...I owe you a big thanks as well since this helps
with our internal process. So thank you in ad-
vance!”

It is important to highlight that the aforementioned exploit
accomplishes all the malicious operations through the subtle
bug, a simple incorrect type cast in one line of the verifier’s
code. In addition to the presented bug, we also found another
exploitable bug allowing users with CAP_PERFMON to obtain
root privilege, arising from incorrect tracking of memory ac-
cesses with variable offsets. The capability mechanism in
Linux grants users the minimum privileges for specialized
tasks, yet these bugs undermine this rule, posing significant
security concerns. Notably, in the POC programs for both
bugs, the number of instructions used to manipulate the ver-
ifier’s knowledge is less than ten, further demonstrating the
severity of the bugs found. This illustrates that our approach
can detect critical logic bugs by leveraging the verifier to
perform fine-grained validations on its approximations.

A0

A2

A1 A′ 0

A′ 1 . . .
Approximations

∈

∈

∈

S0

S2

S1

Execution

Figure 3: The verifier tracks program states on each possible
path as shown in the right part, and the runtime execution
corresponds to one of the paths. Each concrete state Si must
be contained in the approximation Ai; otherwise, operations
on the non-contained states could be unsafe, i.e., a logic bug.

Concrete
States

Program
Construct

State-embedded
Program

VerifierIn Approximation?

Figure 4: Our approach validates whether concrete states are
contained in the approximation for logic bug detection by
(1) embedding the concrete states in the program with the
construct; (2) taking the state-embedded program as input
to the verifier; and (3) leveraging the verifier to validate the
states against the approximation.

3 State Embedding and SEV

In this section, we introduce state embedding, a folded variant,
and describe our implementation of SEV.

3.1 State Embedding
State embedding is based on one fundamental observation:
the concrete states must be contained in the corresponding
approximations of the verifier, as shown in Figure 3. The
goal of state embedding is to validate if this property holds
during validation. As depicted in Figure 4, to achieve this,
the approach executes and profiles an accepted program P,
lacking inputs and external interactions, to collect concrete
states, which remain consistent across multiple executions.
Since those states are profiled from a real execution, they
establish the ground truth that the corresponding approxima-
tions must properly contain them. Next, P is transformed to
P′ by embedding sinks that contradict those observed states.
When taking P′ as input, the verifier, following the same path
as the real execution, compares the embedded concrete states
against the approximations, thereby automatically validating
its own correctness.

At the conceptual level, given a program P, a concrete state
S, and the variable A holding the state (the approximation
from the verifier’s perspective), a state-embedded program P′

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 619

is synthesized by embedding the following program construct
at the corresponding program location:

if S ∈ A then verifier_sink()

The ∈ in the program construct is an abstraction of the opera-
tors in the program, for which the verifier interprets to check
whether the concrete state S is contained in the approxima-
tion A or not. The verifier_sink() represents the operations,
where the verifier reports errors. By embedding the program
construct and taking P′ as input, the verifier interprets the
construct to check if the embedded state S is within A prop-
erly. The verifier sink in the construct is an indicator for the
containment of the concrete state S.

Proposition 3.1 State embedding does not introduce any in-
valid operations except for the sink.

The aforementioned program construct does not introduce in-
correct operations to the original accepted program except for
the verifier sink. When interpreting the embedded construct,
the verifier state Ai would be split into two states A j and Ak,
where the former follows the branch-taking path of the if-
condition thus detecting the sink, and the latter continues the
original execution path. Since the original program is consid-
ered safe under the approximation of Ai and Ai = A j∪Ak, i.e.,
Ai is a superset of both A j and Ak, the program is also con-
sidered safe with Ak. Therefore, the sink is the only expected
error for a state-embedded program.

Corollary 3.1 Failure to detect the sink indicates a logic bug
in the verifier.

More concretely, for a verifier V: P →{safe,unsafe}, since
the original program P is considered safe by the verifier,
V(P′) = unsafe with the sink being reported implies that the
verifier correctly deems S is within the approximation A; on
the contrary, V(P′) = safe, i.e., failure to detect the sink, indi-
cates the concrete state S being missed from the approxima-
tion A, i.e., a verifier logic bug.

Here we demonstrate the semantics of each part in the
program construct with an example. In general, the verifier
interprets concrete operators in the program in its abstract
domain. Many concrete operators are available to implement
the abstraction ∈. For instance, as shown in Listing 1, one
can utilize the if-statement with an == comparison to real-
ize the construct; other comparisons, such as greater-equal
(>=) or less-equal (<=), are also feasible, as per the imple-
mentation. The instruction writing to the read-only register
R10 is an instance of the verifier sink in eBPF programs, and
assertion failure can be used in other scenarios. After embed-
ding, the verifier interprets the if-statement by validating if S
is within the approximation of A to determine if the branch
should be taken, in which case the sink would be reported.

...original program

The verifier checks if S is within A, when

interpreting the following if-statement.

if (S == A)
verifier_sink();

...

Listing 1: Example of the program construct.

Folded Variant. A straightforward realization of state embed-
ding is by profiling the program to collect concrete states and
subsequently embedding the states with the corresponding
program construct multiple times. However, directly embed-
ding each state encounters two challenges: (1) the verifier
may halt early at the first detected sink, leaving other sinks
unchecked; and (2) the inserted sinks make the verifier fork
exploring paths, introducing redundant checks. We propose
a folded variant to embed the states in conjunction with one
sink efficiently. For each concrete state in an execution:

S0→ S1→ ...→ Sn−1→ Sn

we do not directly embed each Si into the program. Instead, we
generate a folding function fi for each of them, which consists
of simple computation operations, e.g., ALU operations in
eBPF programs, and hold the folded concrete state Ŝ in a
global variable Â:

Ŝ1 = f1(Ŝ0, S1)→ ...→ Ŝn = fn(Ŝn−1, Sn)

Finally, we embed the folded state Ŝn once with the following
program construct:

if Ŝn ∈ Â then verifier_sink()

Since only the folded state is embedded, the verifier forks
once. The bug-detecting capability of this variant is equivalent
to the original form since incorrect approximations are likely
to be propagated to the approximation of the global variable
during the continuous testing campaign. The variant provides
further benefits, e.g., to detect the sink, the verifier needs to
not only correctly track states for the original program, but
also properly simulate the folding functions.

3.2 The SEV Implementation
We applied state embedding to detect logic bugs in the eBPF
verifier. Algorithm 1 illustrates the major workflow. In each
testing iteration, SEV first utilizes the program generator that
we developed to obtain eBPF programs accepted by the ver-
ifier (lines 4-6), and then executes and profiles the program
to collect the register states at each basic block (line 7). We
follow established compiler testing methodologies [31] by
utilizing deterministic, closed eBPF programs that require
only a single round of profiling and the profiled states are
consistent across executions. Based on the concrete states,

620 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Workflow of SEV

1 Procedure Validate():
2 LogicBugs← /0

3 while not terminate do
4 P← NextProg()
5 if Verify(P) = reject then
6 continue

// Profile states at basic block
7 S← Profile(P)

// Embed the concrete states
8 P′← StateEmbedding(P, S)

// Validate the eBPF verifier
9 if Verify(P′) = accept then

10 LogicBugs← LogicBugs∪P′

SEV transforms the program to inject folding functions at
each basic block and embed the folded concrete state (line 8).
Finally, the state-embedded program is used as input to the
verifier (line 9), and a logic bug is detected if the program is
accepted (lines 10-11), i.e., the verifier is incapable of detect-
ing the sink. The aforementioned loop continuously tests the
verifier with state-embedded programs.

SEV first needs to obtain eBPF programs that can pass
the verifier. We devise a program generator to facilitate state
embedding, adhering to the established program generation
approaches [50]. First, we ensure the instruction encoding and
the control flow of a generated program are valid by following
the instruction specification [6] and representing a program
as a structured graph, thereby avoiding being rejected early.
Next, we synthesize the program by combining several basic
structures, e.g., if-else block and back-edge, and leveraging
lightweight global state information, such as register and stack
slot states, to generate instructions reflecting realistic usage
patterns. We categorize a register state into several types, in-
cluding uninitialized, scalar value, and pointer, and synthesize
operations accordingly, e.g., generating pointer accesses or
offset operations if a register stores a pointer. The generator
continuously provides programs for the testing campaign.

We implemented a tracer based on the existing kernel in-
frastructures to profile programs. The tracer intercepts the
execution of programs at each basic block and captures the
instruction index and the register states, which are appended
into an internal state buffer. The tracer interface is exposed
via a virtual device so that the user space can utilize the func-
tionality flexibly and access the buffer via mmap() for shared
memory. For each accepted program, SEV executes it with
the tracer enabled and decodes the buffer in user space.

Algorithm 2 presents SEV’s implementation of state em-
bedding. The inputs are the accepted program and the con-
crete states at each basic block collected with the tracer. We
first initialize the folded state (line 2), and R9 is reserved to

Algorithm 2: State Embedding

1 Function StateEmbedding(Program P, States S):
2 FoldedState← Initialize()

// Basic block to folding function map
3 FoldingFns← /0

4 foreach BB, Regs ∈ S do
5 F ← FoldingFns[BB]
6 if F not exists then

// Generate folding function
7 foreach Reg ∈ Regs do
8 F ← GenALU(F, Reg)

// Update Folded State
9 FoldedState← F(Regs, FoldedState)

// Insert the folding functions
10 P′← InsertFoldingFns(P, FoldingFns)

// Embed the folded state
11 P′← EmbedFoldedState(P′, FoldedState)
12 return P′

ensure its availability for storing this value. The algorithm
maintains a map associating each basic block with its folding
function (line 3). The collected states are essentially a basic
block trace in conjunction with the states, where the basic
block could appear multiple times due to loops. By using the
map, the algorithm ensures the folding function is generated
once for each basic block. The folding function is generated
by synthesizing various eBPF arithmetic instructions for each
collected register (lines 6-8). We consider all the ALU instruc-
tions the verifier can accurately track, excluding the division
and all unary operations. Folding functions are generated by
randomly selecting those operations applied to non-zero reg-
isters, preventing the state from being easily reduced to zero.
The folded state is updated by calculating the folding function
with the concrete states (line 9). Finally, the state-embedded
program is generated by inserting each folding function in
the corresponding basic block and embedding the folded state
with the instructions (lines 10-11), as shown in Listing 2.

if r9 != FoldedState goto+1
r10 = 0

Listing 2: The instructions used for embedding the folded
state and the verifier sink in eBPF programs.

The first instruction in Listing 2 makes the verifier validate
whether the folded state is contained in the approximation
of R9. The second instruction is the verifier sink, an illegal
operation where the verifier reports a "writing to the read-only
register R10" error. The sink is skipped if the folded state is
not contained, indicating a logic bug. The state-embedded
program can thus be used for validating the verifier.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 621

4 Evaluation

In this section, we evaluate the effectiveness of state embed-
ding by applying SEV to detect logic bugs in the eBPF verifier.
Highlights of our results are as follows:

• Considerable bugs: We have found 15 previously un-
known logic bugs solely in the eBPF verifier.

• Diverse bug types: The root causes of the bugs are vari-
ous and located in different components of the verifier.

• Critical severity: Most of the bugs found by SEV are
critical, posing various security implications.

We believe that the quantity and quality of the bugs found by
our prototype SEV have demonstrated the effectiveness of
state embedding in uncovering logic bugs in the verifier.

4.1 Evaluation Setup
Environment. All the bug-finding experiments were con-
ducted on a Linux server with a 64-core AMD Ryzen Thread-
ripper 3990X Processor, where each core has two threads,
and the memory size of the server is 256 GiB. The version
of the host Linux kernel is v5.15. To ensure that these ex-
periments did not affect the host system, we conducted our
testing within multiple virtual machine instances. These in-
stances were created using QEMU version 6.2.0, with KVM
employed to provide acceleration. The guest environment in
each instance consisted of a minimal Debian distribution disk
image, and the system was booted using the compiled kernels.
In addition to incorporating common kernel configurations,
we also enabled the eBPF subsystem-related options [5].

Kernel Version. We chose the eBPF upstream repository
for testing, and the reasons are as follows: (1) the uncovered
logic bugs in the upstream are likely to be previously known,
and thus should be fixed immediately; (2) testing upstream
enables the detection of bugs that may impact various past
stable versions; and (3) testing the upstream kernel prevents
newly introduced bugs being merged into subsequent releases.
In addition to the built configuration previously mentioned,
we also patched the kernel and enabled related options since
we modified the eBPF interpreter bpf/core.c to intercept
the execution of eBPF programs for state tracing.

Testing Process. SEV is designed to automatically execute
the entire testing process. Initially, after configuring the disk
image and the kernel for testing, SEV determines the appro-
priate QEMU command line and subsequently initiates the
virtual machine using the specified kernel. Upon successful
booting of the virtual machine, SEV proceeds to the testing
phase. This involves the generation of eBPF programs and
the validation of the verifier using state-embedded programs.
A shared directory is established to transfer the testing results

between the host and the guest. Subsequently, SEV checks
the liveness of the virtual machine and restarts the whole cam-
paign if it detects the system is not alive. We utilized SEV
to test the eBPF upstream with the aforementioned testing
process for one month.

Bug Triage. We triage and deduplicate all the bugs found
based on their root causes. In principle, any failure to detect
the sink in the state-embedded programs indicates a logic bug
in the verifier. When SEV reports such a case, we further in-
spect it to locate the root cause. During the testing campaign,
SEV retains the original program, the captured runtime states,
and the corresponding state-embedded program when a logic
bug is identified. We inspect the programs to pinpoint the in-
struction where the approximation of the verifier mismatches
the runtime states, and then analyze the preceding instructions
to collect related operations that produce the operands for the
culprit instruction. The culprit instruction in conjunction with
related operations enables us to locate the incorrect verifier
logic. Finally, one can look into those parts of the verifier and
analyze the root cause.

4.2 Quantitative Results

Bug Number. We applied SEV to test the eBPF verifier for
one month and triaged the discovered bugs based on their
root causes as mentioned in Section 4.1. Note that we only
reported unique bugs to the eBPF mailing list, and only bugs
with different root causes are counted in our evaluation. As
a result, we have found 15 unique logic bugs in the eBPF
verifier within one month, of which 10 have been fixed at the
time of paper submission. The number of found bugs is sig-
nificant considering: (1) the codebase of the eBPF verifier is
relatively small compared to other subsystems, e.g., it mainly
contains 20,000 lines of code; (2) the verifier has undergone
thorough security scrutiny by the community and is one of
the most extensively tested components in the kernel, e.g.,
eBPF self-tests [7] contain a large set of programs covering
different corner cases to test the verifier; and (3) previous
research efforts have applied verification on parts of the eBPF
verifier [44, 45, 52]. The aforementioned results demonstrate
that our approach is highly effective in uncovering logic bugs.

Furthermore, compared to manual testing, which requires
substantial effort to keep up with the development of eBPF,
our approach can continuously test the eBPF verifier along
with its frequent updates and modifications. Existing testing
tools like Syzkaller can uncover memory issues in the eBPF
subsystem, yet they encounter difficulties in logic bug detec-
tion due to the lack of effective test oracles. While formal
verification provides a strong guarantee, synthesizing specifi-
cations for the verifier is inherently complex, whereas SEV
utilizes state embedding to automatically uncover logic bugs
in the verifier without requiring specifications. Therefore,
state embedding uniquely complements existing approaches.

622 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Number of bugs found by SEV in different locations.

Bug
Location

Range
Analysis

Memory
Access

State
Prune

CFG
Check Other

6 3 2 2 2

Bug Types. In general, logic bugs in the verifier can be clas-
sified into two categories: (1) incorrectly accepting unsafe
programs, i.e., soundness bugs, and (2) incorrectly rejecting
safe, correct programs, i.e., completeness bugs. The former
introduces potential security issues, e.g., allowing malicious
programs to be loaded, while the latter forces developers to
heavily refactor their programs to mitigate the verifier’s im-
precision. Overall, we have found 12 soundness bugs and
three completeness bugs. Table 1 shows the bug details.

Our approach can detect various soundness bugs in the
verifier for the following reasons. eBPF supports four major
types of instructions, including load, store, ALU, and jump
operations. For ALU and jump, the eBPF verifier mainly per-
forms range analysis and pointer arithmetic checks. Since
these operations are conducted on the registers, logic bugs
in those components mainly result in incorrect approxima-
tion of register states. SEV can directly detect those logic
bugs because our approach validates if the concrete states are
contained in the approximation. For example, six of the bugs
found are related to range analysis. For logic bugs in load
and store checks, although we do not profile all the memory
accessible to eBPF programs, SEV can still detect bugs in
these areas because incorrect tracking on those states can be
propagated to the approximation of registers. For instance,
three of the bugs found are related to memory access valida-
tion, including the incorrect stack spill checking illustrated in
Figure 1. Furthermore, we also uncovered logic bugs in other
components, e.g., the state pruning procedure.

SEV can also uncover completeness bugs as an additional
design benefit. As detailed in Section 3, state embedding does
not introduce any incorrect operations except for the sink. If
the verifier rejects state-embedded programs for reasons other
than the sink, it indicates the presence of a completeness bug.
More broadly, the idea of state embedding can be specifi-
cally tailored for completeness bug detection. For example,
replacing the sink with valid operations in the transformed
programs would ensure their correctness, thereby highlighting
any inaccuracies in the verifier’s rejection of these programs.
Completeness bugs not only interfere with development but
also reflect potential implementation issues in the verifier.
SEV uncovered three such bugs, where two are related to con-
trol flow graph checking, and the other is inconsistent stack
access validation. While these bugs may not directly pose se-
curity issues, they significantly impact the usability of eBPF.
For instance, one bug we discovered causes the verifier to
erroneously reject a set of programs due to a specific control

flow pattern, despite these programs being correct.
These results underscore the effectiveness of state embed-

ding in identifying a diverse array of logic bugs, and generally,
state embedding can detect logic bugs that result in a diver-
gence between the approximations and the concrete states.

Bug Impact. Logic bugs within the eBPF verifier hold critical
implications. All of the 15 bugs found by SEV are located
within the verifier, specifically in verifier.c, and most of
them are critical. We have demonstrated that two of the found
bugs are exploitable, and each can be exploited to achieve
local privilege escalation. Beyond these, other uncovered bugs
have diverse implications. For example, some bugs in the
range analysis can circumvent the verifier’s enforcement that
the return values of certain programs must be within specified
ranges, thereby potentially affecting the caller. The bugs in
the state pruning procedure can be used to load programs
containing infinite loops, leading to system hangs.

4.3 Assorted Bug Samples Found by SEV
To further demonstrate the characteristics of the uncovered
bugs, we highlight several examples in this section.

Figure 5a: The range analysis is an important component
of the verifier since it is the foundation for various safety
checks, e.g., memory access check and control flow validation.
Figure 5a shows a logic bug found by SEV in the range
analysis, where the verifier incorrectly tracks registers’ states
after simulating the fall-through path of the branch condition.
The root cause is the verifier’s inability to correctly handle
the JSLE instruction when comparing a range with a non-
overlapping constant. More concretely, R9 is initialized at
first and updated subsequently, and the range of R8 and the
value of R4 are non-overlap at #6, after which the verifier
incorrectly marks R8 and R9 as constant values. After the
arithmetic operations (#7 and #8), the runtime value of R9 is
one at #9, which differs from the verifier’s approximation, a
constant zero. The bug can break the verifier’s restriction. For
instance, the verifier enforces that the return value of certain
program types can only be zero to not modify the caller states,
yet the bug leads to programs with arbitrary return values
being loaded. After we reported the bug, the maintainers also
enhanced the return value-checking logic in the verifier.

Figure 5b: The verifier allows privileged users to load pro-
grams with back-edges and detects and rejects infinite loops
during checking. SEV uncovered a logic bug in the verifier
that incorrectly rejects programs with well-defined structures.
For the program shown in Figure 5b, the verifier rejects it,
reporting an incorrect back-edge from #3 to #4. However,
such an error is not accurate, since #3 to #4 is not a back-edge.
Furthermore, the behavior of the program is correct as the
loop in the program is bounded. The root cause is that the
control flow-checking procedure of the verifier is incapable
of handling the structure pattern of the program. The bug

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 623

0: (b7) r9 = -2 ; R9=-2
1: (37) r9 /= 1 ; R9=scalar()
2: (bf) r8 = r9 ; R9=scalar(id=1) R8_w=scalar(id=1)
3: (56) if w8 != 0xfffffffe goto pc+4 ; R8=scalar(var_off=(0xfffffffe;
 0xffffffff00000000))
4: (65) if r8 s> 0xd goto pc+3 ; R8=scalar(smax=13)
5: (b7) r4 = 2 ; R4=2
6: (dd) if r8 s<= r4 goto pc+1 ; R4=2 R8_w=0xfffffffe
7: (cc) w8 s>>= w9 ; R9=0xfffffffe R8=scalar()
8: (77) r9 >>= 32 ; R9=0
9: (57) r9 &= 1 ; R9=0
10: (95) exit

(a) A bug in the verifier’s range analysis.

0: (b7) r4 = 0x35

1: (b7) r8 = r4

2: (05) goto+2

3: (1f) r9 -= r4

4: (1f) r9 -= r8

5: (0f) r8 += r4

6: (a6) if r8 < 0x64 goto-4

7: (bf) r0 = r9

8: (95) exit

(b) A bug in the CFG checking.
0: (bf) r0 = r10 ; R0=fp0

3: (18) r5 = 0x1d00000025 ; R5= 0x1d00000025

2: (bc) w9 = w0 ; R9=scalar(var_off=(0x0; 0xffffffff)

3: (47) r9 |= -12 ; R9=scalar(var_off=(…; 0xb))

4: (0f) r9 += r0 ; R9=fp(off=0, u32_min=-12)

5: (76) if w5 s>= 0xfffffff6 goto pc+16 ; R5=0x1d00000025

6: (72) *(u8 *)(r9 -221) = -19 ; stack_depth=221

7: (95) exit

(c) A bug in the stack depth tacking.

0: (18) r4 = map_ptr

1: (18) r1 = 0x1d

2: (55) if r4 != 0x0 goto pc+4

3: (1c) w1 -= w1

4: (18) r9 = 0x32

 (00) reserved_code

5: (56) if w9 != 0xfffffff4 goto pc-2

6: (95) exit

(d) A bug in the jump target checking.
Figure 5: Assorted eBPF programs that trigger logic bugs. The left part of each sub-figure shows the eBPF instructions and the
content after each semicolon presents the verifier’s approximations, illustrating the bug cause. scalar() and fp() show that the
tracked value is a scalar and stack pointer, var_off() is the tnum domain, and stack_depth is the tracked depth of used stack.

causes all the correct programs with this structure pattern to
be rejected, thus requiring heavy code refactoring to mitigate
the verifier’s bug. The inserted folding functions triggered the
bug, demonstrating the additional advantages of the folded
variant of state embedding. The bug has been fixed and the
patch was back-ported to the stable kernels.

Figure 5c: The verifier tracks the stack depth of the program
and uses this information to subsequently allocate the stack
area before execution, thus the correctness of the calculated
stack depth is important. However, SEV uncovered that the
verifier incorrectly overlooks the variable offset in stack ac-
cesses, leading to the collected stack depth being smaller than
the size that the program may access at runtime. As illustrated
in Figure 5c, at first, R9 is a scalar with a minimum value of
-12, and the tracked range information is correct. The instruc-
tion #4 adds the stack pointer to R9, thereby making R9 a
stack pointer with a variable offset. The verifier incorrectly
marks the stack depth of the program as 221 at the stack writ-
ing instruction #6 without considering the variable offset of
R9, i.e., its possible minimum value. The bug has existed for
four years and is exploitable for privilege escalation.

Figure 5d: Most instructions of eBPF adopt basic encoding
with an eight-byte length, while a special kind of load in-
struction uses the wide instruction encoding and appends a
second eight-byte immediate, the code of the second part is
the reserved code. The target of jump instructions in eBPF
programs must be within bounds and be a valid instruction.
However, SEV detected a logic bug in the verifier that reports
programs containing invalid jump targets with an incorrect

0: (18) r9 = 0x00000018 ; R9= 0x18
1: (85) call get_cgroup_id#123 ; R0=scalar()
2: (5c) w9 &= w0 ; R9=var_off(…;0x18)
3: (b5) if r0 <= 0xfffffffb goto pc+3

 ; R0=var_off(…;0x3)
4: (5d) if r9 != r0 goto pc+2 ; R0=-4 R9=-4
5: (c7) r9 s>>= 23 ; R9=-1
6: (95) exit

Figure 6: A logic bug in the verifier.

reason. As depicted in the figure, the instruction #4 is a spe-
cial load that uses the wide instruction encoding and its sec-
ond part contains the reserved code. The program incorrectly
jumps from #5 to the second part of #4, i.e., jumping into
the reserved code, yet the verifier incorrectly reports that the
program contains an invalid load instruction. The root cause
of the bug is that the verifier overlooks the special case while
checking the jump target.

Figure 6: SEV also uncovered that the range analysis of the
verifier is incapable of correctly handling equality comparison
when the ranges of two operands do not overlap. This issue is
exemplified in Figure 6. At #2 the mask of R9 is 0x18, and
the verifier determines all the bits of R9 are known to be zero
except for the fourth, and the fifth bit (unknown). The mask of
R3 is 0x3, where only the lower two bits are unknown and all
the other bits are one, and thus the range of R9 and R3 are non-
overlap. However, the verifier erroneously assigns both R0
and R9 as -4 after the if-condition with equality comparison
at #4, where the runtime value of R9 consistently remains
0x18, i.e., a logic bug in the verifier.

624 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.4 Throughput Impact
SEV synthesizes state-embedded programs by profiling run-
time states using the tracer mentioned in Section 3 and subse-
quently integrating the generated folding functions and em-
bedding the folded concrete state. In this section, we evaluate
the performance impact of SEV on three key aspects: the
influence of profiling on program execution speed, the effect
of state embedding on the verification time, and the overall
impact on testing throughput.

The evaluation procedure is as follows. First, SEV is uti-
lized to continuously generate programs. For accepted pro-
grams, we execute them both with and without the tracer and
compare the execution times in both scenarios to determine
the impact of the profiling. Subsequently, we embed the con-
crete states and measure the difference in verification time
between the state-embedded program and the original pro-
gram. To account for any nondeterministic factors, the above
process is repeated multiple times for each program. Finally,
to ascertain the impact on testing throughput, we run SEV
with and without the profiling and state embedding. All the
comparisons are carried out over a 24-hour period, and the
average results are compiled and reported.

The evaluation results show that the average impact of pro-
filing on program execution is 5.3%. This relatively minor
impact is primarily due to the profiling being performed at
the basic block level, where the tracer efficiently appends the
states to a shared buffer. In terms of the verification time, the
impact of state embedding results in an average increase of
17.2%. The minimal complexity added to the original program
by state embedding, which involves arithmetic operations and
a single embedding of the sink, contributes to this increase.
Notably, the overall impact on testing throughput is only 1.6%.
This lower impact, compared to program execution and veri-
fication time, is because state embedding is conducted only
after programs are accepted, an infrequent event. In addition,
the embedding constitutes a small part of the entire testing
campaign, which also includes the generation, test case per-
sistence, etc. In summary, we conclude that state embedding
imposes a reasonable overhead and the impact is well within
expectations, given its ability to uncover logic bugs.

4.5 Discussion
Coverage Impact. Coverage in our context involves two
aspects: (1) in the generated programs (raw coverage), and
(2) in the verifier (induced coverage), where the former may
affect the profiling stage and the latter is related to the testing
sufficiency. To ensure a stable raw coverage, we adopt closed
eBPF programs as mentioned in Section 3.2 that require only
a single round of profiling. For the induced coverage, we cover
the verifier’s functionality with the program generator, and
optimizing the induced coverage is orthogonal to this work.

False Positives/False Negatives. As illustrated in Section 3,

in principle, state embedding does not introduce any invalid
operations to the original program except for the embedded
sink. In practice, our approach has not resulted in any false
positives, e.g., the found bugs pose certain security implica-
tions. Being a testing technique, our approach can suffer from
false negatives. The major reason is that state embedding
requires programs accepted by the verifier, yet the genera-
tor may not be able to explore a diverse, thorough search
space. Our main goal in this work is to detect a wide range
of logic bugs with the principled idea, i.e., concrete states
being contained in the approximation. In addition, the in-
serted arithmetic instructions may hinder some non-contained
states, albeit with a low likelihood. SEV operates within a
continuous testing loop, which therefore inherently enhances
the detection of such anomalies over time, even if a specific
combination of state values momentarily evades detection.

Verifier Changes. The eBPF subsystem is undergoing con-
tinuous updates, incorporating new features as it develops.
Despite these changes, state embedding remains widely ap-
plicable and is not limited to specific static checkers. Our
implementation, importantly, does not depend on the internal
workings of the verifier. This is because SEV mainly trans-
forms the accepted programs to embed concrete states, after
which the program is delivered to the verifier for validation.
Changes within the verifier, such as new abstract domains,
primarily affect how the state-embedded program is validated,
while the transformation remains unaffected.

State Pruning. The state pruning procedure [12] in the veri-
fier evaluates the current state against the known safe states to
determine redundancy, thereby pruning explored paths. How-
ever, this technique cannot be applied to eliminate extra paths
for direct embedding. When comparing states, the verifier
performs a detailed analysis of registers marked as precise.
The registers of inserted sinks are marked precise, yet their
value ranges vary between the branch-taken and fall-through
paths, making them unprunable. Folding addresses this by
embedding the folded state once at the end of the program.

5 Related Work

eBPF Verification. Existing work [16] applies formal verifica-
tion to several components of the eBPF verifier, significantly
advancing the verifier’s correctness. For instance, recent ef-
forts [52] have proved the soundness of the implementation
of the tristate number in the verifier, and we did not detect
any bugs in the corresponding location, i.e., tnum.c in the
kernel. However, tnum is a small component of the verifier,
which mainly contains 200 lines of code. Agni [45] is more
ambitious, aiming to verify the range analysis of the verifier,
which consists of 2,100 lines of code. The tool automatically
converts the C source code to SMT formulas and utilizes SMT
solvers to detect discrepancies between the specification and
the implementation. The work concludes that the tool proved

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 625

the soundness of range analysis in Linux v5.19, the latest
version when the work was conducted. Beyond reasoning
about the correctness of the verifier, Jitterbug [34] applies
automated verification on the eBPF JIT compiler.

Nevertheless, devising specifications for the eBPF verifier
automatically or manually is challenging and requires deep do-
main knowledge. Consequently, the synthesized specifications
can be incomplete or inconsistent with the implementation.
For example, while Agni aims to perform verification on the
verifier’s range analysis, the generated verification conditions
are incomplete [4, 9, 10, 14]. Indeed, we identified logic bugs
in this component within the same kernel version. In compar-
ison, state embedding has the following unique advantages:
(1) our approach does not require predefined specifications,
but utilizes state embedding to perform fine-grained checks
for logic bug detection; (2) state embedding is capable of test-
ing various components not just the range analysis, e.g., SEV
also uncovered bugs in the memory access validation; and (3)
since we leverage the verifier to check whether the concrete
states are contained in the approximation, our approach is
agnostic to the verifier’s internal and can be applied along
with its fast changes. Therefore, our approach significantly
complements the existing work.

Static Analyzer Testing. Some work [27, 53] proposes to
detect bugs in static analyzers by collecting the information
of both analyzers and programs and directly comparing them.
For example, Wu et al. [49] propose to profile pointer alias at
runtime and compare the information directly with the knowl-
edge from the alias analysis algorithm. Similarly, Buzzer [26]
extracts the verifier log, conducts an offline comparison be-
tween the log information and the collected map value, and
uncovered one logic bug. However, this direct comparison
approach requires: (1) collecting and parsing both the runtime
information and the analyzers’ states, and (2) correctly con-
ducting the comparison, which requires substantial domain
knowledge to interpret the verifier states and is coupled with
concrete implementations. In comparison, SEV only profiles
program states at each basic block and utilizes state-embedded
programs to enable the verifier to conduct the validation, thus
being efficient and agnostic to verifiers. In addition, Bugariu
et al. [17] propose to test abstract domains by interactively
invoking operations and using the mathematical properties
of the domains as test oracles. However, applying this ap-
proach in the eBPF verifier is challenging: (1) the verifier is
integrated into the kernel and does not support interactively
invoking its internal operations, and (2) the eBPF verifier
does not provide a specification and mixes up the abstract
operators in one domain with the refining operations [45],
thus the mathematical properties summarized are not directly
applicable in this context.

Differential Testing. α-Diff [29] conducts differential test-
ing between several static analyzers to identify logic bugs in
them. However, this approach hinges on the precondition that

the precision of static checkers is comparably high and that
reference implementations are well-established. Except for
the verifier in Linux, Gershuni et al. [22] propose a potential
reference verifier. Yet, it lacks support for some important
features, e.g., various modes of basic ALU instructions, and
experiences precision issues [11]. Therefore, using the tool
for differential testing would be ineffective in detecting logic
bugs in the kernel verifier. Furthermore, our approach dif-
fers significantly from differential testing methods and is an
instance of metamorphic testing. α-Diff relies on multiple
checkers and does not provide ground truth for each variant it
produces. In contrast, state-embedded programs contain the
ground truth by construction, eliminating the need for other
reference verifiers.

Assertion Generation. Existing work aims to automatically
generate assert statements to detect logic bugs [48, 51], es-
tablishing input-output relationships using program analysis
or deep learning. In contrast, our approach does not aim to
assert input-output relations, which is nontrivial for the veri-
fier’s logic bug detection, but to validate a core property: the
concrete states must align with the verifier’s approximations.
It embeds concrete states into the program, leveraging the
verifier to conduct the containment checks. Therefore, state
embedding fundamentally differs from assertion generation,
in terms of both intent and methodology.

Kernel Fuzzing. Fuzz testing [21, 30, 38] is an effective ap-
proach and has been applied in kernel scenarios. For instance,
Syzkaller [47] is capable of testing the eBPF subsystem by
invoking the bpf() system call with random arguments. It has
been integrated into upstream testing and has uncovered many
memory errors [46]. Similarly, another work by iovisor [25]
employs libfuzzer [36] to generate random byte sequences for
testing the verifier. BVF [42] captures memory errors in eBPF
programs with sanitation to indirectly detect correctness bugs.
Nevertheless, existing fuzzers [33] highly rely on sanitizers
to capture bugs [39, 40], and they experience difficulties in
the verifier’s logic bug detection. Therefore, our approach
complements the existing fuzzing work and state embedding
can be utilized for direct logic bug detection.

6 Conclusion

In this paper, we have introduced state embedding, a novel
and effective technique for logic bug detection in the eBPF
verifier. Our approach systematically transforms the program
to embed concrete states. The state-embedded program can
subsequently be used to test the verifier by validating whether
or not concrete states are contained in the approximation of
the verifier. By applying state embedding in testing the eBPF
verifier, our prototype SEV has successfully uncovered 15
logic bugs—many are critical, and two are exploitable for
local privilege escalation—demonstrating the effectiveness
of our approach.

626 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Acknowledgments

We thank the anonymous OSDI reviewers and our shepherd,
Ken Birman, for their valuable feedback on the earlier ver-
sions of this paper. Furthermore, we are grateful for the com-
ments and suggestions from our colleagues at ETH Zurich.

References

[1] CVE-2021-3490. https://nvd.nist.gov/vuln/
detail/CVE-2021-3490.

[2] CVE-2021-4159. https://nvd.nist.gov/vuln/
detail/CVE-2021-4159.

[3] CVE-2022-23222. https://nvd.nist.gov/vuln/
detail/CVE-2022-23222.

[4] Divergence between Specification and Implementa-
tion in Agni. https://github.com/bpfverif/agni/
issues/12. Accessed: Nov 20, 2023.

[5] eBPF Build Config. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/
tree/tools/testing/selftests/bpf/config?id=
0dd3ee311255.

[6] eBPF Instruction Set. https://www.kernel.org/
doc/html/next/bpf/instruction-set.html.

[7] eBPF Selftests. https://git.kernel.org/pub/
scm/linux/kernel/git/bpf/bpf-next.git/tree/
tools/testing/selftests/bpf.

[8] eBPF Verifier. https://docs.kernel.org/bpf/
verifier.html.

[9] False Negatives and Incomplete Specifications in Agni.
https://github.com/bpfverif/agni/issues/15.
Accessed: Nov 20, 2023.

[10] Incapable of Generating Formulas for Various Kernel
Versions in Agni. https://github.com/bpfverif/
agni/issues/10. Accessed: Nov 20, 2023.

[11] PREVAIL Issues. https://github.com/vbpf/
ebpf-verifier/issues. Accessed: Nov 20, 2023.

[12] State pruning in the eBPF verifier. https://docs.
kernel.org/bpf/verifier.html#pruning.

[13] Unprivileged bpf(). https://lwn.net/Articles/
660331/.

[14] Verification Not Reach Completion after Prolonged
Time in Agni. https://github.com/bpfverif/
agni/issues/13. Accessed: Nov 20, 2023.

[15] Andrea Arcangeli. Seccomp BPF (SECure COMPuting
with filters). https://www.kernel.org/doc/html/
latest/userspace-api/seccomp_filter.html.

[16] Sanjit Bhat and Hovav Shacham. Formal Verification
of the Linux Kernel eBPF Verifier Range Analysis.
https://sanjit-bhat.github.io/assets/pdf/
ebpf-verifier-range-analysis22.pdf, 2022.

[17] Alexandra Bugariu, Valentin Wüstholz, Maria Chris-
takis, and Peter Müller. Automatically Testing Imple-
mentations of Numerical Abstract Domains. In Proceed-
ings of ASE ’18, page 768–778, 2018.

[18] Paul Chaignon. Cyclomatic Complexity of the eBPF
Verifier. https://pchaigno.github.io/ebpf/
2019/07/02/bpf-verifier-complexity.html,
2023.

[19] Jonathan Corbet. CAP_PERFMON. https://lwn.
net/Articles/812719, 2020.

[20] Patrick Cousot and Radhia Cousot. Abstract Interpreta-
tion: A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fixpoints.
In Proceedings of POPL, page 238–252, 1977.

[21] Google developers. OSS-fuzz: Continuous Fuzzing
of Open Source Software. https://github.com/
google/oss-fuzz, 2017. Accessed: Nov 20, 2023.

[22] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and Precise Static
Analysis of Untrusted Linux Kernel Extensions. In Pro-
ceedings of PLDI, page 1069–1084, 2019.

[23] Tejun Heo. sched: Implement BPF Extensible Scheduler
Class. https://lwn.net/Articles/916290/.

[24] William E. Howden. Theoretical and Empirical Stud-
ies of Program Testing. In Proceedings of ICSE, page
305–311, 1978.

[25] iovisor. bpf-fuzzer: Fuzzing Framework Based on lib-
fuzzer and Clang Sanitizer. https://github.com/
iovisor/bpf-fuzzer.

[26] Juan José López Jaimez and Meador Inge. Buzzer.
https://github.com/google/buzzer.

[27] Timotej Kapus and Cristian Cadar. Automatic Testing
of Symbolic Execution Engines via Program Generation
and Differential Testing. In Proceedings of ASE, page
590–600, 2017.

[28] Jim Keniston. Linux Kprobe. https://www.kernel.
org/doc/html/latest/trace/kprobes.html.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 627

https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://nvd.nist.gov/vuln/detail/CVE-2021-4159
https://nvd.nist.gov/vuln/detail/CVE-2021-4159
https://nvd.nist.gov/vuln/detail/CVE-2022-23222
https://nvd.nist.gov/vuln/detail/CVE-2022-23222
https://github.com/bpfverif/agni/issues/12
https://github.com/bpfverif/agni/issues/12
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/config?id=0dd3ee311255
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/config?id=0dd3ee311255
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/config?id=0dd3ee311255
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/config?id=0dd3ee311255
https://www.kernel.org/doc/html/next/bpf/instruction-set.html
https://www.kernel.org/doc/html/next/bpf/instruction-set.html
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/tools/testing/selftests/bpf
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/bpf/verifier.html
https://github.com/bpfverif/agni/issues/15
https://github.com/bpfverif/agni/issues/10
https://github.com/bpfverif/agni/issues/10
https://github.com/vbpf/ebpf-verifier/issues
https://github.com/vbpf/ebpf-verifier/issues
https://docs.kernel.org/bpf/verifier.html#pruning
https://docs.kernel.org/bpf/verifier.html#pruning
https://lwn.net/Articles/660331/
https://lwn.net/Articles/660331/
https://github.com/bpfverif/agni/issues/13
https://github.com/bpfverif/agni/issues/13
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://pchaigno.github.io/ebpf/2019/07/02/bpf-verifier-complexity.html
https://pchaigno.github.io/ebpf/2019/07/02/bpf-verifier-complexity.html
https://lwn.net/Articles/812719
https://lwn.net/Articles/812719
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://lwn.net/Articles/916290/
https://github.com/iovisor/bpf-fuzzer
https://github.com/iovisor/bpf-fuzzer
https://github.com/google/buzzer
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html

[29] Christian Klinger, Maria Christakis, and Valentin
Wüstholz. Differentially Testing Soundness and Pre-
cision of Program Analyzers. In Proceedings of ISSTA
2019, page 239–250, 2019.

[30] lcamtuf. American Fuzzy Lop. https://lcamtuf.
coredump.cx/afl/, 2013.

[31] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler
Validation via Equivalence Modulo Inputs. In Proceed-
ings of PLDI, page 216–226, New York, NY, USA, 2014.
Association for Computing Machinery.

[32] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-Level Packet Cap-
ture. In Proceedings of USENIX’93, page 2, 1993.

[33] Mohamed Husain Noor Mohamed, Xiaoguang Wang,
and Binoy Ravindran. Understanding the Security of
Linux EBPF Subsystem. In Proceedings of APSys, page
87–92, 2023.

[34] Luke Nelson, Jacob Van Geffen, Emina Torlak, and
Xi Wang. Specification and Verification in the Field: Ap-
plying Formal Methods to BPF Just-in-Time Compilers
in the Linux Kernel. In Proceedings of OSDI, 2020.

[35] Jan Onderka and Stefan Ratschan. Fast Three-Valued
Abstract Bit-Vector Arithmetic. page 242–262, 2022.

[36] LLVM Project. libFuzzer: a Library for Coverage-
guided Fuzz Testing. https://llvm.org/docs/
LibFuzzer.html.

[37] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov.
Linux eBPF. https://ebpf.io.

[38] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security, pages 167–182, August 2017.

[39] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer:
A Fast Address Sanity Checker. In Proceedings of
USENIX ATC, page 28, 2012.

[40] Konstantin Serebryany and Timur Iskhodzhanov.
ThreadSanitizer: Data Race Detection in Practice. In
Proceedings of the Workshop on Binary Instrumentation
and Applications, page 62–71, 2009.

[41] Alexei Starovoitov. CAP_BPF. https://lwn.net/
Articles/820560, 2020.

[42] Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan
Guan, and Yu Jiang. Finding Correctness Bugs in eBPF
Verifier with Structured and Sanitized Program. In Pro-
ceedings of EuroSys, page 689–703, 2024.

[43] Marcos A. M. Vieira, Matheus S. Castanho, Racyus
D. G. Pacífico, Elerson R. S. Santos, Eduardo P. M. Câ-
mara Júnior, and Luiz F. M. Vieira. Fast Packet Process-
ing with eBPF and XDP: Concepts, Code, Challenges,
and Applications. ACM Comput. Surv., 53(1), feb 2020.

[44] Harishankar Vishwanathan, Matan Shachnai, Srinivas
Narayana, and Santosh Nagarakatte. Sound, Precise, and
Fast Abstract Interpretation with Tristate Numbers. In
Proceedings of CGO, page 254–265. IEEE Press, 2022.

[45] Harishankar Vishwanathan, Matan Shachnai, Srinivas
Narayana, and Santosh Nagarakatte. Verifying the Veri-
fier: eBPF Range Analysis Verification. In Constantin
Enea and Akash Lal, editors, CAV, pages 226–251, 2023.

[46] Dmitry Vyukov and Andrey Konovalov. Syzbot
Dashboard. https://syzkaller.appspot.com/
upstream, 2015.

[47] Dmitry Vyukov and Andrey Konovalov. Syzkaller: an
Unsupervised Coverage-guided Kernel Fuzzer. https:
//github.com/google/syzkaller, 2015.

[48] Cody Watson, Michele Tufano, Kevin Moran, Gabriele
Bavota, and Denys Poshyvanyk. On learning meaningful
assert statements for unit test cases. In Proceedings of
ICSE, page 1398–1409, New York, NY, USA, 2020.

[49] Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang.
Effective Dynamic Detection of Alias Analysis Errors.
In Proceedings of ESEC/FSE, page 279–289, 2013.

[50] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In
Proceedings of PLDI, page 283–294, 2011.

[51] Hao Yu, Yiling Lou, Ke Sun, Dezhi Ran, Tao Xie, Dan
Hao, Ying Li, Ge Li, and Qianxiang Wang. Automated
assertion generation via information retrieval and its
integration with deep learning. In Proceedings of ICSE,
page 163–174, New York, NY, USA, 2022.

[52] Shung-Hsi Yu. Model Checking
(a very small part) of BPF Verifer.
https://gist.github.com/shunghsiyu/
a63e08e6231553d1abdece4aef29f70e. Accessed:
Nov 20, 2023.

[53] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang,
Geguang Pu, and Zhendong Su. Finding and Under-
standing Bugs in Software Model Checkers. In Proceed-
ings of ESEC/FSE, page 763–773, 2019.

[54] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP:
In-Kernel Storage Functions with eBPF. In OSDI, pages
375–393, July 2022.

628 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://ebpf.io
https://lwn.net/Articles/820560
https://lwn.net/Articles/820560
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://gist.github.com/shunghsiyu/a63e08e6231553d1abdece4aef29f70e
https://gist.github.com/shunghsiyu/a63e08e6231553d1abdece4aef29f70e

	Introduction
	Background and Illustrative Example
	eBPF
	Illustrative Example

	State Embedding and SEV
	State Embedding
	The SEV Implementation

	Evaluation
	Evaluation Setup
	Quantitative Results
	Assorted Bug Samples Found by SEV
	Throughput Impact
	Discussion

	Related Work
	Conclusion

