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Abstract
The increasing demand for improving deep learning model
performance has led to a paradigm shift in supporting low-
precision computation to harness the robustness of deep learn-
ing to errors. Despite the emergence of new low-precision
data types and optimization approaches, existing hardware
and software have insufficient and inefficient support for those
evolving data types, making it challenging to achieve real per-
formance gains through low-precision computing.

This paper introduces LADDER, a novel compiler designed
to bridge the gap between evolving custom data types and
the fixed precision formats supported by current hardware.
Leveraging a general type system, tType, and an extended
tensor expression, LADDER transforms deep neural network
(DNN) computations into optimized computing pipelines with
custom data types as the first-class citizen, exposing an opti-
mization space for efficiently handling data storage, accesses,
and type conversions. LADDER employs a new set of tensor
scheduling primitives and a hardware-aware optimization pol-
icy to navigate the complex transformation space, ensuring op-
timal performance across different memory layers and DNN
operators. Our evaluation demonstrates LADDER’s capability
to systematically support a wide array of low-bit precision
custom data types, significantly enhancing the performance
of DNN computations on modern accelerators without neces-
sitating hardware modifications. This innovation empowers
model designers with the ability to explore data type opti-
mizations and offers hardware vendors a flexible solution to
expand their support for diverse precision formats.

1 Introduction

Building on the recent advancements in scaling up deep learn-
ing models [11, 17, 26], there’s a growing demand for more
powerful computing performance in hardware accelerators
like GPUs. The inherent robustness of deep learning to errors
enables the use of lower precision arithmetic, setting it apart

∗Work is done during the internship at Microsoft Research.

from traditional workload like scientific computing, which
necessitate high precision like float64. In line with this trend,
cutting-edge accelerators are increasingly integrating more
low-precision computational units, such as 32-bit, 16-bit, and
even 8-bit floating-point operations, into their new genera-
tions. At the same time, model developers are vigorously in-
vestigating various custom low-precision data types, such as
mixed precision formats, to strike an optimal balance between
model accuracy and training efficiency. Moreover, during the
model deployment phase, computations can be converted to
even more compact data representations to achieve extreme
efficiency, such as 2 bits fixed-point precision in LLM [12]
or group-based types where multiple values share the same
scaling factor [41].

However, hardware accelerators are challenging in keep-
ing pace with the diverse and rapidly evolving requirements
for supporting various data precision formats, i.e., custom
data types. This difficulty arises because each accelerator can
only integrate a few types of computing units for standard
data types, given the limited chip area and high hardware
cost. Even for those recently supported low-precision data
types, such as those under 16 bits in width, existing software
is generally inefficient due to the complexity of aligning fine-
grained low-bit data access with the coarse-grained memory
system. For instance, NVIDIA GPU’s shared memory bank
size is 4 bytes in width, and simply loading or storing 8-bit
data elements can easily lead to bandwidth waste. This of-
ten necessitates non-trivial optimizations, such as packing
multiple data values together to align with the features of dif-
ferent memory hierarchies. Consequently, optimizing kernel
libraries for all these new data types, combined with differ-
ent operators and shapes, becomes a challenging task. For
instance, the highly-optimized cutlass library for NVIDIA
GPUs only achieves 422 tflops (68% utilization) on INT8
matrix multiplication. The inadequacy and inefficiency in sup-
porting these new custom data types significantly hinder the
innovation for both models and accelerators.

To address these challenges, we make the following obser-
vations: First, despite hardware accelerators lacking comput-
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ing instructions for those custom data types, their memory
system can be utilized to store arbitrary data types by cast-
ing them into an opaque data chunk with a fixed bit width.
Second, most custom data type can be losslessly converted to
a wider-bits standard data type supported by the computing
units in existing hardware. For example, NF4 tensors can be
computed with an FP16 or FP32 operation by converting their
data types. These observations inspire us a general approach
to support all custom data types by separating data storage
and computation. That is, store and transmit tensors in cus-
tom data types and compute in standard data types through
type conversion. Given that modern DNN models tend to be
memory-intensive and the latest hardware faces the memory
wall issue [43], such an approach is increasingly critical as it
can effectively exploit the performance benefits of low-bits
data types by saving memory traffic and footprint.

However, efficiently supporting such computing pipeline
for general custom data types on existing accelerators is non-
trivial. A typical tensor computation pipeline involves load-
ing data from multiple layers of memory hierarchy, such as
DRAM, L2 cache, shared memory, register, etc. First, con-
verting tensor data types in different layers could significantly
impact the performance factors like memory footprint, data ac-
cess traffic, hardware cost, etc., which is complex to optimize.
For example, converting a low-bit data chunk to a higher-bit
type in a register could lead to register spill, causing a dra-
matic performance drop. Second, pipelines involving different
data types usually require different data layout optimization to
align with memory system, e.g., align with memory bank, to
maximize the data access throughput. Existing optimizations
like swizzling memory accesses [6] are mostly designed for a
few specific data types, which is hard to be generalized.

To address these challenges, we present LADDER, a com-
piler for efficient deep learning computation on general cus-
tom data types. To facilitate the implementation of quickly-
evolving custom data types, such as block-wise data types
like MXFP, LADDER first introduces a general type system
called tType. tType is inherently a tile-wise data type, which
can define all common custom types by explicitly specifying
type width, element shape, and the type-converting functions.
Based on tType, LADDER extends the existing tensor expres-
sion, used to express a DNN operator, to natively support
annotating tType for each tensor. This way, LADDER can sys-
tematically translate a DNN computation with custom data
types into a standard computation pipeline.

To optimize the computation pipeline involving custom
data storage, access, and type conversions, we observe that
tensor storage and access in a pipeline can be transformed into
various logically equivalent formats, each with dramatically
different performance impacts. For instance, a sub-tensor can
be stored in row-major, column-major, block-wise, or even
custom-defined layouts, padded to a certain shape to match
computing instructions, and accessed in different granulari-
ties (e.g., different tile shapes) by the upper-layer memory.

All these factors significantly affect overall performance. To
facilitate such transformations, LADDER introduces a set of
tensor scheduling primitives, including slice, map, pad, and
convert, that can be used to transform a default computing
pipeline into optimized ones.

Deriving optimal tensor transformations for a specific
computing pipeline requires holistic consideration of inter-
memory layer and inter-operator optimizations. For example,
a specific data layout can be propagated to adjacent opera-
tors to avoid explicit layout conversation costs. Moreover,
the data layout in a specific memory layer needs to consider
both the memory feature and upper-layer access pattern. Both
cross-layer or cross-operator optimizations form a vast op-
timization space. LADDER optimizes such transformation
space through a layer-wise hardware-aware optimization pol-
icy: a lower-layer memory provides the preferred data access
granularity as a hint, and the upper layer decides the opti-
mal compute granularity by aligning with the data access
granularity. Thus, LADDER first models a DNN computation
into a tile-level data flow graph and then optimizes the trans-
formation scheduling using a granularity-aware scheduling
policy.

LADDER is implemented on top of TVM [13], Roller [57]
and Welder [43]. We have open-sourced LADDER 1. Further-
more, the DNN operation compilation in LADDER has also
been released as BitBLAS 2, a library that can be integrated
into existing DNN and LLM frameworks to empower efficient
low-precision computing in existing deep learning ecosystem.
Our evaluation of DNN inference on NVIDIA A100, NVIDIA
V100, NVIDIA RTX A6000 and AMD Instinct MI250 GPUs
shows that LADDER outperforms state-of-the-art DNN com-
pilers on native-supported data types, while efficiently sup-
ports custom data types that GPUs do not support with up to
14.6× speedup. As a result, LADDER is the first system to
systematically support general low-bit precision represented
by custom data types for DNN computation on modern hard-
ware accelerators. It opens the door for both model designers
to explore more flexible data type optimization with real per-
formance feedback and hardware vendors to support a large
range of types without hardware modification.

2 Background and Motivation

2.1 Precision Requirements in Deep Learning
The increasing demand to scale deep learning models to larger
sizes, such as Large Language Models (LLM), enhances the
requirement of computing in lower bits and mixed precision
to increase computation efficiency and save memory. This
section introduces some new data type requirements in deep
learning.

1https://github.com/microsoft/BitBLAS/tree/osdi24_
ladder_artifact

2https://github.com/microsoft/BitBLAS
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Figure 1: Diverse narrow-precision data types in deep learning
training and inference.

Lower-bit numeric precision. FP32 (32-bit float) has been
the go-to choice for data representation in deep learning mod-
els. However, recent practices suggest that the high preci-
sion of FP32 isn’t always necessary. Lower precision can
deliver the same level of effectiveness while simultaneously
reducing costs. A pivotal example of this precision shift is
the FP16/BF16 computation in Automatic Mixed Precision
(AMP) training [36]. More aggressively, systems like Trans-
former Engine [37] and MS-AMP [39] have begun to employ
FP8 for weight, gradient, and even optimizer tensors, pushing
the boundaries of precision reduction in deep learning. Dur-
ing inference, models are frequently quantized to significantly
lower precision, typically down to 8 or 4 bits [14,22,48]. Con-
temporary cutting-edge research is challenging these limits
further, aiming to decrease weight quantization to a remark-
able 2 or even 1 bit [12, 46]. This is primarily due to the
redundancy inherent in pretrained weights and the fact that
computations are mostly forward passes. Figure 1 highlights
various data formats used in deep learning models, marking
the notable shift from high-precision formats to low-bit alter-
natives.

Group-wise precision scaling. To improve the accuracy and
robustness of low-precision deep learning models, a common
approach is to use a scaling factor to rescale the values for
a more accurate representation of the data distribution. Tra-
ditional methods typically employ a tensor-wise or channel-
wise scaling factor. However, group-wise scaling, by virtue
of its finer granularity, can better capture the distribution of
sub-tensors or groups, leading to improved performance. For
instance, in Post-training Quantization (PTQ) [22], group
sizes of 128 and 64 are typically preferred, with each group
scaled using FP16. In OCP-MXFP [41], an 8-bit shared scale
is applied to a group of 32 elements.

Mixed-precision operations. Mixed-precision operations
emerge in data quantization due to the varying sensitivity
of different tensors to lower bit quantization. For example,
mixed-precision training employs a combination of higher and

Data Type WFP16AFP16 WINT 8AINT 8 WFP8AFP8 WNF4AFP16
GPU V100 A100 MI250 V100 A100 MI250 V100/A100/MI250
cuBLAS 78% 87% X X 68% X X X
rocBLAS X X 46% X X 75% X X
AMOS 64% 38% X X 45% X X X
TensorIR 67% 56% 22% X X X X X
Roller 50% 70% 29% X X X X X

Table 1: MatMul [M,N]=[M,K]x[N,K] where M,N,K=16384.
"X" indicates not supported in tensor core or matrix core.

lower bit tensors, such as FP32, FP16, and FP8. This strate-
gic utilization of precision levels strikes a balance between
computational efficiency and precision, thereby optimizing
performance. Similarly, in Large Language Model (LLM)
quantization, weights that are more receptive to quantization
can be represented using lower bits. On the other hand, acti-
vations, which pose more substantial quantization challenges,
require higher bit representations. This divergence leads to
mixed-precision operations, including W4A16 (i.e., weight
values are represented in 4-bit data types, and activations
are represented in 16-bit data types), W2A16, W1A8, and
others [12, 22, 46].

2.2 Insufficient Precision Supports in GPUs
Hardware accelerators like GPUs are constantly adapting to
the evolving data type requirements in deep learning. Early
generations of GPUs, such as NVIDIA’s Fermi, supported
standard data types like FP32 and FP64. As deep learning
workloads gained relevance, lower precision formats like
FP16 were introduced in the Pascal architecture. The Turing
architecture further expanded support by introducing INT4
and INT8 for inference workloads. The Ampere architec-
ture later introduced BF16, striking a balance between per-
formance benefits and numerical range for machine learning
applications. The latest architecture, NVIDIA’s Hopper, ex-
tends this trend by supporting FP8, showcasing the ongoing
pursuit of efficiency by adjusting the precision-performance
trade-off. This evolution highlights the increasing versatility
of GPUs in handling diverse computing workloads.

However, hardware typically lags behind the requirements
of algorithms or models. When encountering unsupported
data types, we must convert or simulate them in higher-
precision supported data types. This could lead to significant
performance issues and inefficiencies.

2.3 Inefficiency of Low-precision Computing
Low-precision computing is particularly challenging to op-
timize due to the fine-grained data access granularity and
special hardware units, such as TensorCore. We tested the
performance of a standard matrix multiplication benchmark
with different precisions, using the latest software libraries
and compilers on three of the latest GPUs: NVIDIA V100 and
A100, and AMD MI250, as shown in Table 1. We make the
following observations. First, the hardware utilization of low-
precision computing is generally low, i.e., less than 60% on
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Figure 2: MatMul: CFP16[2,2]=AFP16[2,4]×BINT 8[2,4]

average. Even for the most dominant precision in today’s deep
learning workload, like FP16, the average utilization is around
60%. Second, some hardware-supported precisions are not
well supported by the software. For example, while INT8 is
supported in both A100 and MI250, most existing deep learn-
ing compilers do not support INT8 computing on these GPUs.
Third, meeting new precision requirements is challenging for
hardware to support in a timely manner. For instance, FP8 is
only available in the next generation of NVIDIA Hopper ar-
chitectures. Mixed precision computing, such as F16 × NF4,
is not supported by all the latest GPUs.

2.4 Our Insights
We use mixed-precision matrix multiplication, specifically
FP16×INT8, as an example to illustrate our key insights, as
shown in Figure 2. A DNN operation is often implemented
as a computing pipeline, which continuously loads small data
tiles from input tensors across multiple layers of memory
hierarchy to compute in the top-level cores. Each memory
layer usually has its preferred minimum access granularity,
such as an 8-byte transaction length in the L1 layer. Some
of the latest GPUs even introduce built-in instructions for
highly efficient data loading, which load a two-dimensional
data tile at a time—for instance, the ldmatrix.2x2.f16 loads a
2x2 tile. Given that a data tile is typically stored in a strided
memory space, data access often becomes unaligned with the
transaction length or instruction shape, potentially leading to
low bandwidth utilization. For example, the left figure illus-
trates that each memory access from L1 only achieves half
utilization for both tensors. Furthermore, due to the absence of
computing instructions for FP16×INT8, the operation cannot
be supported, even if we manage to load the corresponding
data into the register.

To address these issues, we observe that the alignment issue
can be circumvented by transforming the tensor layout into
a well-optimized one based on the data type width, memory
transaction length, and instruction shape. For instance, in the
right figure, we store each 2x2 tile in contiguous memory
space in the L1 layer so that the load instructions at the upper
layer can fully utilize the bandwidth. Moreover, given that
the computing instruction only supports the FP16 data format,
we can convert the second tensor from INT8 to FP16 during

Core

L0/Reg

L1/Shared

L2/Global Memory

AddMatMul

tTile-Graph

tTile-Device

tTile Scheduling

Add

NF4

FP16

MatMul

FP16

FP16

FP16

Compute

Figure 3: The system overview of LADDER

the data loading from the L2 to the L1 memory layer. Conse-
quently, the data loading from L2 to L1 efficiently leverages
the low traffic due to the low-bit data type, the data loading
from L1 to L0 fully utilizes the memory bandwidth through
transaction alignment, and the computation is ultimately ac-
celerated in the hardware computing unit by type conver-
sion. This example demonstrates that a DNN computation
on a custom data type not supported by hardware can still
be scheduled and optimized through a well-designed tensor
transformation on its layout and data types.

3 LADDER Design

The observations in §2 motivate LADDER, a DNN compiler
that treats data type as a first-class citizen and introduces
tensor transformations to support efficient DNN computation
on custom data types. Figure 3 shows the system architecture.

The core of LADDER is the TypedTile (tTile) abstraction,
which augments the tile-based tensor abstraction with data
type (i.e., tType, §3.1). Specifically, the algorithm designer
can use commonly-used data type (e.g., FP16) or define a
custom data type (e.g., MXFP8, NF4) as a tType, and define
the DNN computation at this data type. Then, LADDER takes
the DNN model as input and converts it into a tTile-based
data-flow graph (i.e., tTile-graph) where operators are defined
as tTile-based computing tasks (i.e., tTile-operator) (§3.1).

Besides, LADDER abstracts a hardware accelerator as a
multi-layer hierarchy where the requirement of each layer is
represented as a tTile (tTile-device, §3.1). tTile-device explic-
itly describes the requirements of each layer, e.g., supported
data type, transaction size, etc. By aligning tTiles in the tTile-
graph with the tTile-device, the tTile-graph represented DNN
computation can be executed on the hardware accelerator.

Given the initial tTile-graph and the hardware specifica-
tions, LADDER will compile the DNN model into an efficient
execution plan on the accelerator. To schedule the tTile-graph
on the tTile-device and satisfy the requirements of the hard-
ware hierarchy, LADDER separates the scheduling mechanism
from its policy. On the mechanism side, LADDER proposes
four tTile transformation primitives: slice, map, pad, and con-
vert, enabling the transformation from a tTile to an equivalent
tTile (§3.2).

Then, the scheduler will schedule the initial tTile-graph
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class tType {
TileShape shape;
size_t nElemBits;
struct metadata;
map<TileType, c_func> c_tTypes;
};

(a)

class tTile {
TileShape shape;
tType type;

struct metadata;
};

(b)
class tTile-Operator {
TensorExpr expr;
TileShape shape;
vector<tTile> get_input_tTiles();
vector<tTile> get_output_tTiles();
void compute();
};

(c)
Figure 4: The definition of tType, tTile and tTile-operator

into a tTile-graph of fine-grained control over tTile configura-
tions, transformations and tTile placement on the hardware
hierarchy. The tTile abstraction enlarges the scheduling space
for DNN computation and opens a new trade-off between
memory footprint efficiency and latency efficiency. On the
policy side, LADDER plays heuristics based on observations
and provides a hardware-aware layer-wise policy optimizing
for latency efficiency (§3.3).

Finally, the compiled plan represented as a tTile-graph is
then generated as an executable code for the given hardware
accelerator.

3.1 The tTile Abstraction

tType According to the observations in §2, data types in
DNN computation are usually defined at either element-wise
granularity or block-wise granularity. To express these data
types, LADDER introduces the concept of tType (Figure 4(a)).
Specifically, the tType represents a data type that consists of a
group of homogeneous elements. The layout of these elements
is a n-dimensional array shape. Each element shares the same
type with nElemBits bits to store an element. This group of
elements also share the same metadata. As described in
§2, data types usually can be losslessly represented by some
higher-bit data types. The c_tTypes represents a tType can
be losslessly converted to another tType with the c_func
function.

Both existing commonly-used data types and new cus-
tomized data types can be represented with tType. For exam-
ple, the FP16 type can be expressed as a tType of shape=[1]
with nElemBits=16. The element-wise granulated NF4 type
can be expressed as a tType of shape=[1] with nElemBits=4
and the shared value map in metadata. The NF4 type can
be losslessly represented as FP16, and therefore there could
be a <FP16, NF4_to_FP16_func> entry in c_tTypes. The
block-wise granulated OCP-MXFP8 type can be expressed
as a tType of shape=[32] with nElemBits=8 and the shared
scaling factor in metadata.
tTile Based on the tType that represents a data type, LADDER

proposes tTile to represent a tensor of a specific data type at
the fine-grained tiles. Specifically, as shown in Figure 4(b),
a tTile is defined as a group of homogeneous elements with
the same data type dtype and a layout of a n-dimensional
array shape. Elements in a tTile share a metadata. Besides,
elements in a tTile are stored as row-major.
tTile-Operator A DNN operator (e.g., MatMul) are com-
monly implemented as a group of independent and homo-
geneous tasks, where each task processes a tile of the in-
put tensor and outputs a tile of the output tensor. With the
tTile abstraction, a tensor of a specific data type is repre-
sented at the fine-grained tile granularity. Therefore, LADDER
can leverage tTile to representent a DNN operator of custom
data types as a group of independent and homogeneous fine-
grained tasks, i.e., tTile-operator. Specifically, as Figure 4(c)
shown, a tTile-operator explicitly represents the tensor com-
putation task over elements of shape. get_input_tTiles()
and get_output_tTiles() return the input and output tTiles
of this computation task. compute() executes the computa-
tion defined in the tensor expression expr for the input and
output tTiles.

The computation of a tTile-operator is defined as an index-
based lambda expression expr [13, 40, 57]. However, the ten-
sor expression in existing tensor compilers [13, 21, 52, 56, 57]
focuses on describing the index and the shape and cannot
flexibly indicate the data type during computation. For exam-
ple, it cannot express a tensor in FP16 multiples a tensor in
FP16 with FP32 as the accumulation. To support expressing
computation over mix-ed data types, it requires the expression
of data types during computation. Therefore, LADDER intro-
duces the tType annotation in tensor expression to explicitly
indicate the data type during computation, including inputs,
outputs and intermediate data, to represent computation over
mix-ed data types. For example, a tensor A[M,K] of FP16
type multiplies a tensor B[N,K] of NF4 type with FP32 as
the accumulation and outputs a tensor C[M,N] of FP16 type
can be expressed as Figure 5(a). With the tType-annotated
tensor expression, given the shape, LADDER can infer the
corresponding input and output tTiles.

With the tTile-based fine-grained representation for DNN
operators, a DNN model can be represented as a fine-grained
tTile-graph, where each node is a tTile-operator and each
edge represents the dependency of two tTile-operators.
tTile-based Hardware Abstraction Modern hardware accel-
erators usually have a hardware hierarchy, including memory
layers (e.g., DRAM, register) and computing units. Each layer
in the hardware hierarchy has its preference for data access-
ing. Specifically, a memory layer usually requires accesses
via transactions where a transaction is a sequential or a shape
of data at a granularity. For example, the shared memory of
NVIDIA GPUs requires a transaction of 32 4-byte banks.
A compute unit also usually requires processing a shape of
data at a granularity. For example, the hfma2 instruction in
NVIDIA GPUs processes at the granularity of two FP16 value.
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C=compute((M,N), lambda i,j:(sum((A[i,k]@FP16*B[j,k]@NF4)@FP32)@FP32)@FP16), M=32, N=32, K=63

Core

L0
[16,2]

@16B

L1 
[32]@4B

L2

[32]@1B
B0,0-31 B0,32-62

… …
B31,0-31 B31,32-62

C0,0-3 C0,4-7

… …
C15,0-3 C15,4-7

B0,0-7 B0,8-15

… …
B15,0-7 B15,8-15

B0,0-7 B0,8-15 B1,0-7 B1,8-15

… … … …
B2,0-7 B2,8-15 B3,0-7 B3,8-15

… … … …
B12,0-7 B12,8-15 B13,0-7 B13,8-15 B14,0-7 B14,8-15 B15,0-7 B15,8-15tTile TransformLoad_L1B(tTile):

    t0= slice(tTile,0,[16,63],[16,63]);
    t1=pad(t0,[0,0,0,1],0);
    t2=convert(t1, FP16);
    ret=map(t2, map_func);
    return ret;

… … … … … … … …
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tTile TransformLoad_L0B(tTile):
    // slice with ldmatrix.m8n8.x4
    ret=slice(tTile,0,[4,64],[16,16]);
    return ret;

tTile Compute(tTile_A, tTile_B):
    ret=mma.f16.f32(tTile_A, tTile_B);
    return ret;

for L1_iter in L2_tTile.split(L1_tTile):
    //Load A and B from L2 to L1
    L1_A = TransformLoad_L1A(L1_iter.L2_A);
    L1_B = TransformLoad_L1B(L1_iter.L2_B);
    for L0_iter in L1_tTile.split(L0_tTile):
        //Load A and B from L1 to L0 with ldmatrix
        L0_A = TransformLoad_L0A(L0_iter.L1_A);
        L0_B = TransformLoad_L0B(L0_iter.L1_B);
        //Compute with mma instruction
        L0_C = Compute(L0_A, L0_B);
        //Store C to L2
        TransformStore_L0C(L0_C, L2_C);

(a)

(b)
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Figure 5: MatMul of FP16 tensor A and NF4 tensor B: (a) tType-annotated tensor expression, (b) tTile-device for NVIDIA A100,
(c) Pseudo code of computing pipeline, (d) Tramsform-Load with tTile transformation primitives, (e) Tensor B transformations

These requirements can be described as tTiles.
Therefore, LADDER abstracts a hardware accelerator as

a hierarchy of multiple layers described as tTiles, i.e., tTile-
device. Each layer is a memory layer or the compute unit,
whose requirement represented as a shape on a granularity is
described as a tTile and the granularity is described as tType.

Figure 5(b) shows the tTile-device for the NVIDIA A100
GPU with the FP16 tensor cores. The FP16 tensor core MMA
instruction 3 requires processing at a granularity of [16,16]
and [8, 16] for two inputs, respectively. This can be expressed
as a tTile of shape[16,16] with the dtype=FP16. The FP16
tensor core data loading instruction 4 requires loading [16,2]
data at a granularity of half8 (i.e., 8 FP16 value), and can
be expressed as a tTile of shape[16,2] with the dtype=16B.
Besides, the requirement of fully utilizing the shared memory
can be expressed as a tTile of shape[32] with the dtype=4B.
The 32-byte transaction requirement of the global memory
can be expresses as a tTile of shape[32] with the dtype=1B.

3.2 tTile Transformation
tTile explicitly describes the fine-grained tensor storage
and the requirements of the hardware hierarchy. The tTile-
represented DNN computation in the tTile-graph should align
with the tTile-device for efficient execution. Fortunately, ac-
cording to our observations in §2, the tensor storage and ac-
cess in a pipeline can be transformed into logically equivalent
formats, where each has different performance impacts in the
hardware hierarchy. Therefore, LADDER proposes tTile trans-
formation mechanism to enable transforming the layout or
the tType of a tTile to an equivalent tTile. Specifically, LAD-
DER augments the computation pipeline of a tTile-operator as
three stages on the hardware hierarchy: Transform-Load,
Compute, and Transform-Store. Transform-Load loads
the tTiles from the lower memory layer to a higher mem-
ory layer with tTile transformations. Compute executes the

3mma.sync.aligned.m16n8k16.row.col.f16.f16.f32.f32
4ldmatrix.sync.aligned.m8n8.x4.shared.b16

tTile slice(tTile_input, index, shape, out_shape);
tTile map(tTile_input, map_func);
tTile pad(tTile_input, pad_shape, pad_value);
tTile convert(tTile_input, new_tType);

Figure 6: tTile transformation primitives

computation task of the tTile-operator on the compute units.
Transform-Store stores the tTiles from the higher memory
layer to a lower memory layer with tTile transformations.

LADDER provides four primitives to transform a tTile to
an equivalent tTile, as shown in Figure 6.

Slice The slice primitive slices a group elements of shape
from the address index of the tTile_input and returns them
as a new tTile of out_shape. The slice primitive is usually
used to represent the data tiling.

Map The map primitive modifies the layout of the elements
in a tTile. Given the map_func, the map primitive maps the
address of each element to the expected address. For example,
in Figure 5(d), the TransformLoad_L1B from the L2 memory
layer to the L1 memory layer leverages the map primitive to
modify the elements’ addresses with the map_func.

Pad The pad primitive pads the tTile_input with the
pad_value on each border given in pad_shape. The length
of the pad_shape is 2 times of that of the tTile_input’s
shape, and describes the left and the right borders of each
dimension, respectively.

Convert The convert primitive converts the tType of
the tTile_input to the given new_tType. The given
new_tType should be in the c_tTypes of the tTile_input’s
tType. convert will call the corresponding c_func of the
given new_tType on each element in the tTile_input, and
return the expected tTile of new_tType. For example, in Fig-
ure 5(d), the TransformLoad_L1B converts the tType from
NF4 to FP16 with the convert primitive to satisfy the cores’
FP16 tType requirement.

With the above four primitives, a tTile can be transformed
to another equivalent tTile by changing the shape with slice
and pad, modifying the elements’ layout with map, or con-
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verting the tType with convert. This enables transforming
the tTiles of a tTile-operator to align with the tTile-device, so
that these tTiles can be efficiently processed in the hardware
hierarchy.

Figure 5 shows an example that a FP16 tensor A[32,63]
multiplies a NF4 tensor B[32,63] with FP32 as the accumu-
lation and outputs a FP16 tensor C[32,32] (Figure 5(a)) on a
four-layered tTile-device (i.e., from L2 to core, Figure 5(b)).
Specifically, Figure 5(c) shows the pseudo code of the exe-
cution. tTiles of A and B are transformed and loaded from
L2 to L1 as FP16 type. Then, the tTiles are loaded to L0
with ldmatrix and processed by the mma instruction which
accumulates intermediates as FP32 in L0. Finally, the tTiles
of C in L0 are transformed and stored to L2 as FP16. Fig-
ure 5(d)(e) shows the detailed transformations of the NF4 ten-
sor B to align with the tTile-device, while the transformations
of tensor A are similar. Specifically, the mma and ldmatrix
instructions require the FP16 data type in L1. Each layer
also has its transaction requirement shown as Figure 5(b).
Therefore, TransformLoad_L1B slices [16,63] and pads it
to [16,64], which aligns with the L2’s transaction requirement.
Then, TransformLoad_L1B converts it to FP16 and maps it
to another elements layout to align with the transaction re-
quirements of L1 and L0. We get the FP16 L1_B[16,64] in
L1. Then, TransformLoad_L0B leverages the ldmatrix to
slice the L1_B and gets the FP16 L0_B[16,16] on L0, which
aligns with the requirements of L1, L0 and the mma core.

3.3 Hardware-Aware tTile-Graph Scheduling

Given the DNN computation represented as a tTile-graph, to
schedule it to a tTile-device, we can map each tTile-operator’s
computation pipeline for tTiles (i.e., Transform-Load,
Compute, and Transform-Store) to the tTile-device. Specif-
ically, we can partition each tTile-operator into multiple tTiles
to fit the capacity of each memory layer, schedule tTile trans-
formations to align the tTiles with the requirements of hard-
ware layers, and coordinate inter-operator tTile configurations
and transformations for holistic optimizations. Finally, the
entire tTile-graph is scheduled as a data pipeline where tTiles
of a tTile-operator node move up and down on the hardware
hierarchy and are passed cross the edge to the successor tTile-
operator node.

The scheduling space of the tTile-graph becomes much
larger because tTile opens another dimension (i.e., tensor
transformation) in DNN computation scheduling. Further-
more, the tTile transformations introduce a new trade-off
between memory footprint efficiency and latency efficiency,
which brings more complexities and challenges in schedul-
ing. Take the MatMul of a FP16 tensor and a NF4 tensor on
NVIDIA GPU as an example, it requires to convert the NF4
type to FP16 due to the hardware support limitation. This
conversion should be finished before the Transform-Load
from L1 to L0, and therefore can be scheduled to either L2

Algorithm 1: Hint-based layer-wise scheduling
Data: g: tTile-graph; D: tTile-device
Result: gret : scheduled tTile-graph

1 Function GetDeviceHint(g, D):
2 D = SelectDeviceConfig(g, D);
3 HintShape = None, HintGranularity = None;
4 for layer ∈ D.layers do
5 HintGranularity = LCM(HintGranularity, layer.tTile.type);
6 for layer ∈ D.layers do
7 layer.tTile = convert(layer.tTile, HintGranularity);
8 HintShape = LCM(HintShape, layer.tTile.shape);
9 for layer ∈ D.layers do

10 layer.tTile.shape = HintShape;
11 return D;
12 Function ScheduleTransform(op,D,lid ):
13 tTileh = op.tTile[lid -1];
14 tTilel = op.tTile[lid ];
15 ScheduleSlice(tTilel , tTileh);
16 if LCM(tTilel .shape, tTileh.shape) ̸= tTilel .shape then
17 SchedulePad(tTilel , tTileh, D);
18 if tTilel .type ̸= tTileh.type then
19 ScheduleConvert(tTilel , tTileh, D);
20 if nBits(tTileh.shape[-1]) ̸= nBits(D.layers[lid].shape[-1]) then
21 ScheduleMap(tTilel , tTileh, D);
22 return op.transform[lid -1];
23 Function ScheduleConnectedGraph(g, D):
24 D = GetDeviceHint(g, D);
25 for lid in length(D.layers) do
26 for op ∈ g[lid] do
27 op.tTile[lid ] = ScheduleTiling(op,D,lid );
28 if lid > 0 then
29 op.transform[lid ] = ScheduleTransform(op,D,lid );
30 g = ProfileAndSelect(g);
31 return g;
32 Function Schedule(g,D):
33 g = ExtractConnectedGraph(g, D);
34 for gconn ∈ g do
35 gconn = ScheduleConnectedGraph(gconn, D);
36 return g;

or L1. When the conversion is on L2, it will take more mem-
ory on L2 and L1, but it will not occupy the compute unit
in later tTile movement from L2 to L1 and to L0. When the
conversion is on L1, it will save memory on L2 and save the
memory bandwidth of L2, but it will occupy the compute
unit for the type conversion. When the operator is bounded
by the compute unit, the previous option can achieve lower
latency but more memory footprint. When the operator is
bounded by the memory IO, the latter one can achieve better
performance on both latency and memory footprint. Addition-
ally, as the convert is only required to be finished before the
Transform-Load from L1 to L0, this convert can be fused
into the previous operator for execution to achieve better end-
to-end performance.

Given such a large scheduling space, LADDER provides
a latency-oriented policy that targets at minimizing the end-
to-end latency. Specifically, LADDER proposes a layer-wise
scheduling policy based on hardware-awareness: a lower-
layer memory provides the preferred data access granularity
as a hint represented as a tTile, and the upper layer decides
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the optimal compute granularity by aligning with this tTile
represented granularity with transformations. To reduce the
large scheduling space and schedule a proper plan within
reasonable time, LADDER plays heuristics based on our ob-
servations.
Scheduling policy. Algorithm 1 describes the hint-based
layer-wise scheduling policy. It takes a DNN model g repre-
sented as a tTile-graph and the hardware specifications rep-
resented as a tTile-device D, and returns the scheduled tTile-
graph gret . Initially, this policy schedules the graph into sub-
graphs (line 33). Each sub-graph represents as a computation
pipeline that loads tTiles from the lowest memory layer to the
core and then stores the results to the lowest memory layer.
A sub-graph could be a tTile-operator or a group of tTile-
operators that can be fused. The ExtractConnectedGraph
can leverage existing DNN compiler work [13, 43].

Given a sub-graph, it first infers the hints from the hard-
ware. Specifically, it first selects the proper hardware con-
figurations (e.g., the compute cores) (line 2), which prefers
the bit-nearest tType supported by the hardware. Because
numeric types of more bits usually require more transistors to
implement the hardware instructions [] and usually result in
lower performance. For example, in NVIDIA A100 GPU, the
NF4 type can be converted to FP16 or FP32 for processing,
and LADDER will select the FP16 core (312 TFlops) rather
than FP32 (19.5 TFlops). Then it finds the aligned granu-
larity and shape for each hardware layer by bit-alignment,
and configures the hints (line 1-11). Take the NVIDIA A100
as an example (Figure 5(b)), the HintGranularity is 16B
required by ldmatrix and the HintShape is [4,8], where the
inner dimension is 128B and aligns with the 32B transaction
of global memory and the 128B transaction of shared mem-
ory. Then, the policy schedules this sub-graph from the top
layer (i.e., core) to the bottom layer (i.e., DRAM) layer by
layer (line 25-29). In each layer, the policy first schedules the
tTile-operator tiling via ScheduleTiling with hint (line 27),
and then schedules the tTile transformation (line 29). If the
ScheduleTiling (line 27) schedules the operator tiling as
multiple of [4,8] with 16B, the later ScheduleTransform
can align this scheduling with the tTile-device. Additionally,
the ScheduleTiling can leverage existing tensor compil-
ers [13,52,57]. In ScheduleTransform, the policy will check
the alignment of both shape and type with the tTile-device,
and schedule corresponding transformations to align tTiles
(line 12-22). There may be some candidates after the schedul-
ing, which will be profiled and returned the best (line 30).
ScheduleMap. The map_func in scheduling the map trans-
formation is non-trivial. LADDER proposes a method to infer
the map_func, i.e., mapping the elements in the tTile to the re-
quired transaction size in row-major order. Figure 5(e) shows
an example: at the granularity of 16B, to map the shape[16,2]
in L0 to the required shape[8] in L1, elements are flatten in
row-major order, resulting in shape[4,8]. map can also support
other map_funcs.

This scheduling policy is not guaranteed as optimal. How-
ever, as shown in §5, this scheduling policy can already out-
perform state-of-the-arts and enable efficient low-precision
DNN computing on GPUs. We also hope that this optimiza-
tion space from the proposed scheduling mechanism could
be further explored by future research on more advanced
scheduling policies.

4 Implementation

LADDER is implemented by about 5K lines of code, includ-
ing Python and C++, based on open-source DNN compilers:
TVM [13], Welder [43], and Roller [57]. LADDER modifies
TVM for implementing kernel schedules and generating ker-
nel code, while Roller is leveraged to infer efficient tTile
configurations. Welder is the state-of-the-art DNN compiler
that can holistically optimize DNN models, and is leveraged
for end-to-end graph optimizations.

The input of LADDER is a PyTorch program. For PyTorch
built-in data types, LADDER does not require any modifica-
tions on the DNN model program. Additionally, for new data
types that PyTorch does not support, LADDER extends the Py-
Torch with custom operators for expressing tensor expressions
on the user-defined data types. Given the PyTorch program,
LADDER exports it to an ONNX graph. LADDER also ex-
tends ONNX to represent computation on new data types,
where the tType-annotated tensor expression is saved in the
attribute of an ONNX graph node. With the exported ONNX
graph and the tTile-based specification file of the targeted
hardware accelerator, LADDER automatically converts the
ONNX graph into the tTile-graph and performs the schedul-
ing. Then, LADDER generates the device code for the targeted
hardware accelerator.

We implemented LADDER for NVIDIA GPUs and AMD
GPUs, recognizing their widespread use as the most popular
accelerators for DNNs. In the rest of this section, we describe
the LADDER implementation on NVIDIA GPUs in detail and
briefly describe the implementation on AMD GPUs. Addi-
tionally, LADDER can be ported to new hardware instructions
(e.g., FP8 tensor cores in the latest Hopper GPUs) and other
hardware accelerators (e.g., Graphcore IPU) if they align with
the tTile-based hardware abstraction and provide program-
ming interfaces of loading and storing data on the hardware
hierarchy.

4.1 LADDER on NVIDIA CUDA GPUs
4.1.1 tType and tTile

LADDER has implemented the tTypes for common data types,
e.g., FP32, FP16, INT8, FP8, MXFP, INT4, NF4, INT1.

A GPU is a single instruction multiple threads (SIMT) ar-
chitecture, and it prefers a group of threads process the same
instruction on different data. Therefore, LADDER separately
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Figure 7: The storage of a MXFP8 tTile of shape[32, 32]
on NVIDIA GPU. E: elements. S: shared scaling in metadata.

stores the elements and each of the metadata in the tTile. Fig-
ure 7 shows the storage of a MXFP8 tTile of shape[32,32]
on NVIDIA GPU. The elements are stored in an array, while
the shared scaling factors are stored in another array. To ac-
cess a tTile, consecutive threads process consecutive elements,
resulting in coalesced accesses.

Note that, there may be some data types that the nElemBits
is not 2n, e.g., 3-bit [22]. To support these data types, LADDER
stores at the granularity of 4B due to the GPU specifications,
e.g., 10 3-bit value can be stored in a 4B (32-bit) granularity.

4.1.2 Optimizing Code Generation with PTX Instruction

NVIDIA does not provides the assembly instructions for pro-
gramming. Instead, NVIDIA introduces the Parallel-Thread-
Execution (PTX) as a low-level virtual machine for NVIDIA
GPUs, where the ISA (Instruction Set Architecture) on the
PTX virtual machine can be considered as the instruction-
level APIs for NVIDIA GPUs [8]. CUDA C++ code is first
compiled to the PTX code and then compiled to the machine
code for execution. CUDA provides both the C++ APIs and
the PTX APIs for some units. For example, the tensor cores
provides both the WMMA C++ APIs and the MMA PTX
APIs, where a WMMA API is compiled as a group of MMA
instructions by the nvcc compiler. The MMA PTX APIs have
more flexibility and better performance than the WMMA
C++ APIs. LADDER uses the MMA PTX APIs for codegen
on tensor cores, and uses cp.async instructions for the new
asynchronous memory copy feature on Ampere GPUs [3].
Additionally, we observed converting low-bit integers (e.g.,
INT4) to floats (e.g., FP16) may introduce significant over-
heads. LADDER implements the conversion of integers of
lower than 4 bits with the LOP3 instruction [8]. We modi-
fied the code generation module in TVM to implement these
optimizations.

4.2 LADDER on AMD ROCm GPUs
AMD GPUs are similar to NVIDIA GPUs, which also have
a hardware hierarchy of global memory shared by all CUs,
local data store in each CU (similar to the shared memory),
registers, and cores. Therefore, similar to NVIDIA GPUs,
an AMD GPU can be abstracted as a four-layer tTile-device
with different tTile configurations. ROCm provides the HIP
programming model [1] for AMD GPUs, which is similar to
CUDA’s functionality and supports most CUDA statements.
We implemented a new code generation backend for HIP in
TVM to support AMD ROCm GPUs. Additionally, we use the

MFMA (Matrix Fused-Multiply Add) ISA-level APIs to utilize
the matrix core (the equivalent of the NVIDIA tensor core).

5 Evaluation
5.1 Evaluation Setup
Hardware platforms. We evaluate LADDER on a diverse
range of GPUs from both NVIDIA and AMD to ensure
a comprehensive assessment of performance across differ-
ent hardware ecosystems. Our evaluation comprises three
high-performance NVIDIA GPUs: Tesla V100 (16GB), A100
(80GB), and RTX A6000 (48GB), utilizing the CUDA toolkit
version 12.1 for optimal performance. We extend to the AMD
ecosystem with the inclusion of the AMD Instinct MI250
GPU (128GB), utilizing the ROCm toolkit version 5.7.0. The
operating systems remain consistent, utilizing Ubuntu 20.04.
DNN models. We evaluate the effectiveness of LADDER by
benchmarking the inference on a suite of state-of-the-art DNN
models that span various domains and architectures. These
models encompass large language models, such as LLAMA-
70B [45] and BLOOM-176B [47], computer vision mod-
els, including ResNet-50 [24], ShuffleNet-V2 [34], and ViT-
Base [19], as well as audio models like transducer Conformer-
l [23]. The data type configurations used in these models
are all from state-of-the-art research literature and have been
evaluated by the deep learning community. LADDER follows
these configurations and does not introduce additional model
quality loss. The data type configurations, representing both
weights and activations and denoted as WtypeAtype, for the
evaluated models are detailed below:

• LLAMA-70B and BLOOM-176B: Evaluated with
data type configurations of WFP16AFP16 [45, 47],
WINT4AFP16 [22, 31], WNF4AFP16 [15], WFP8AFP8 [37],
WMXFP8AMXFP8 [41], and WINT1AINT8 [46].

• ResNet-50: Evaluated with data type configurations of
WFP16AFP16 [24], WFP8AFP8 [37], WMXFP8AMXFP8 [41],
and WINT1AINT4 [25].

• ShuffleNet-V2: Evaluated with data type configurations
of WFP16AFP16 [34] and WFP8AFP8 [42].

• ViT-Base: Evaluated with data type configurations of
WFP16AFP16 [19], WFP8AFP8 [27], and WINT4AINT4 [29].

• Conformer-L: Evaluated with data type configu-
rations of WFP16AFP16 [23], WINT8AINT4 [18], and
WINT4AINT4 [18].

We configure various batch size (BS) and sequence length
(SEQ) settings to cover diverse deployment scenarios. For
large language models such as LLAMA-70B and BLOOM-
176B, we conduct tests with (BS, SEQ) settings of (1, 1), (32,
1), and (1, 4096) to comprehensively represent online and
offline inference scenarios, as well as pre-fill and decoding
stages. Additionally, models like ResNet-50, ShuffleNet-V2,
ViT-Base, and Conformer-L are evaluated with batch sizes
of both 1 and 128 to assess performance across online and
offline inference scenarios.
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Figure 8: End-to-end performance on the NVIDIA A100 GPU.
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Figure 9: End-to-end performance on the NVIDIA V100 GPU.

Baselines. We compare LADDER against various well-
established compilers and frameworks across different GPU
platforms. For NVIDIA GPUs, we include comparisons with
Welder [43], PyTorch-Inductor [38], ONNXRuntime [7], Ten-
sorRT [9], AMOS [56], TensorIR [21], vLLM [28], vLLM-
WINT4AFP16 (the 4-bit quantized model support in vLLM) [28].
On AMD GPUs, we compare LADDER with Welder [43],
PyTorch-Inductor [38], ONNXRuntime [7] and TensorIR [21].
To harness the MatrixCore capabilities on ROCm devices,
we have integrated MIOpen and rocBLAS into Welder, and
we have also enhanced TensorIR with rocWMMA Auto
Tensorize support. For operator benchmarks, LADDER is
evaluated against cuBLAS [4], CUTLASS [6], vLLM [28],
cuDNN [5], AMOS [56] and TensorIR [21].

5.2 Evaluation on NVIDIA GPUs

5.2.1 End-to-End Performance

Inference latency. Our inference latency evaluation targets
the previously detailed DNN models, executed on the Tesla
A100, V100, and RTX A6000 GPUs. For large language mod-
els, such as LLAMA-70B and BLOOM-176B, due to GPU
memory constraints, we evaluate the inference latency using
one decoder layer of these models, which serves as a proxy
for the full model’s performance because each layer is the
same and the latency is linear with the number of layers.

Figure 8 summarizes the inference latency results on the
A100 GPU. In the data type configuration of WFP16AFP16,
LADDER achieves notable performance enhancements. Com-
pared to Welder, we report an average speedups of 1.0×, 1.2×,
2.0×, 1.2×, 1.1×, and 1.4× for LLAMA, BLOOM, ResNet,
ShuffleNet, Conformer, and ViT, respectively. The reason is
because Welder leverages Roller [57], cuBLAS [4] and CUT-
LASS [6] for kernel generations and suffers from kernel per-
formance issues like shared memory bank conflicts, especially
in ResNet where Conv2D operations introduce more irregular
shapes. LADDER can achieve higher efficiency by resolving
these kernel performance issues with tensor transformation
scheduling, e.g., 1.1 ms and 7.6 ms latency on BS1 and BS128
of ResNet. In the data type configuration of WINT4AFP16 which
is widely used in LLMs, LADDER achieves a remarkable 2.3×
speedup on average over vLLM. Moreover, LADDER exhibits
robust versatility by supporting custom data types not tra-
ditionally accommodated by other systems. For instance, in
the case of WINT1AINT8 configuration, LADDER achieves an
impressive speedup of up to 10× relative to Welder on one
layer of BLOOM-176B-BS1SEQ1 with 0.32 ms latency.

Our inference latency evaluation extends to the Tesla V100
and RTX A6000 GPUs, with results shown in Figures 9 and
Figure 10. The results on these platforms align closely with
those observed on the A100. It is important to note that the
V100, equipped with 16GB of memory, encounters limitations
when handling even a single decoder layer of the BLOOM
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Figure 10: End-to-end performance on the NVIDIA RTX A6000 GPU.
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Figure 11: Memory usage of LLM inference on the NVIDIA
A100 GPU across varying data type configurations.

model, resulting in out-of-memory errors. In terms of per-
formance gains, with the WFP16AFP16 configuration, LADDER
delivers an average speedup of 1.1× on the V100 and 1.2×
on the A6000, compared to Welder on both platforms. With
the WINT4AFP16 configuration, LADDER achieves an average
speedup of 2.0× compared to vLLM on the A6000 GPUs, and
also enables effective WINT4AFP16 inference on V100 GPUs.
In scenarios utilizing the WINT1AINT8 configuration, LADDER
reaches up to 13.3× speedup on the V100 and 14.6× speedup
on the A6000, compared to Welder.

Memory usage. Employing reduced-precision data types is a
critical strategy for alleviating the substantial memory require-
ments of large language models (LLMs). To quantify the ben-
efits of this approach, we conduct a thorough investigation of
memory usage across various data type configurations during
LLM inference on the A100 GPU. The results are shown in
Figure 11, which illustrates a near-linear decrease in memory
usage corresponding to the reduction in bit width. This trend
is particularly pronounced during the decoding phase with a
sequence length of 1, highlighting the advantages of precision
scaling in the memory-intensive decoding stage of inference.
In the most extreme scenario, employing a weight precision
of 1-bit and activation precision of 8-bit (WINT1AINT8), we
observe substantial memory savings. Specifically, when com-
pared to the full precision (WFP16AFP16) configuration, the
memory footprint for LLAMA model inference is reduced
by 74%, 74%, and 24% across three different batch size and
sequence length combinations, respectively. For the BLOOM

Model (BS) AMOS TensorIR Welder LADDER

ResNet (1) 3852 156 11 31
ResNet (128) 2191 836 18 44
ShuffleNet (1) 3328 128 13 17

ShuffleNet (128) 3121 400 12 29

Table 2: Compilation time (in minutes) comparison of end-to-
end models on NVIDIA A100 GPU.

model, the memory footprint is reduced by 85%, 85%, and
6% for the corresponding settings.
Compilation time. To assess the efficiency of our system,
we present a comparative analysis of compilation times in
Table 2. Our evaluation compares LADDER against other
prominent systems: AMOS, TensorIR, and Welder. The com-
pilation times are measured for the end-to-end compilation of
two representative neural network models, ResNet and Shuf-
fleNet, with different batch sizes (1 and 128) on an NVIDIA
A100 GPU. The results highlight that on average, LADDER
demonstrates a significant reduction in compilation time com-
pared to both AMOS and TensorIR. Notably, LADDER is an
order of magnitude faster than TensorIR, and two orders of
magnitude faster than AMOS. As LADDER enables support-
ing low precision arithmetic through tensor transformation
and thus, inherently, a broader schedule space. While it al-
lows LADDER to capitalize on the performance benefits of
low-precision arithmetic, it also imposes additional overhead
during the compilation process. Consequently, LADDER ex-
hibits slightly higher compilation times compared to Welder.

5.2.2 Operator Benchmark
To assess kernel performance within LADDER, we con-
structed an operator benchmark incorporating commonly uti-
lized operators from the LLAMA and ResNet models. The
benchmark is composed of six matrix multiplication (Mat-
Mul) operators, labeled M0-M5, and eight 2D convolution
(Conv2d) operators, labeled C0-C7. We tested each opera-
tor under a variety of data type configurations, including
WFP16AFP16,WINT4AFP16,WNF4AFP16,WFP8AFP16,WINT1AINT8,
WMXFP8AMXFP8, and WINT4AINT4. All experiments were exe-
cuted on an NVIDIA A100 GPU to ensure consistency and
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Figure 12: Operator benchmark on NVIDIA A100 GPU.
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Figure 13: Operator benchmark on NVIDIA RTX 4090 GPU.

reliability in performance evaluation. As depicted in Fig-
ure 12, LADDER demonstrates optimal performance with
the WFP16AFP16 configuration. Transitioning to WINT4AFP16,
LADDER achieves an average speedup of 1.8×, while the
WINT1AINT8 configuration enables an even further average
speedup of 4.5×.

The Ada Lovelace, Hopper and Blackwell GPUs support
WFP8AFP8 tensor core. We also conducted the operator bench-
mark on a NVIDIA RTX 4090 GPU with CUDA 12.4 to
evaluate the hardware-supported WFP8AFP8 performance. Fig-
ure 13 shows the results. For WFP8_E4M3AFP8_E4M3, LAD-
DER outperforms cuBLAS and achieves comparable perfor-
mance over CUTLASS. For WFP8_E5M2AFP8_E5M2, LADDER
achieves comparable performance over CUTLASS, while
cuBLAS does not support this case. RTX 4090 only enables
the WFP8AFP8 with FP32 accumulation which has the same
theoretical performance as WFP16AFP16. Therefore, cuBLAS,
CUTLASS and LADDER of WFP8AFP8 is similar to that of
WFP16AFP16 on large matrices like M2 and M5. Although
WFP8AFP8 with FP16 accumulation has double theoretical
performance, it is not exposed by NVIDIA currently. LAD-
DER achieves higher speedup on data types like WNF4AFP16
and WINT 1AINT 8 than those on A100, because RTX 4090 has
more powerful cores for transforming data types.

5.2.3 Optimization Breakdown

Figure 14 illustrates the step-by-step optimizations LADDER
applied to the LLAMA-70B model’s kernels for both sin-
gle (BS1 SEQ1) and large batch sequences (BS1 SEQ4096)
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Figure 14: Optimization breakdown
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Figure 15: Scaling the bit width of weight and activation.

across different data formats. Tile-aware kernel transforma-
tion led to smoother data handling and a 2.0× speed boost
over the Roller baseline, also enabling support for various data
types. PTX-level optimizations reduced GPU memory load,
and with advanced control over tensor operations and layout,
LADDER achieved a further up to 1.7× speedup. A compre-
hensive scheduling strategy yielded a up to 2.5× speedup,
especially benefiting memory-constrained types like MXFP8,
by optimizing transformations. Overall, LADDER’s optimiza-
tions enhance computational efficiency and adaptability, deliv-
ering marked performance gains across multiple operations.

5.2.4 Scaling Bit Width

Leveraging the versatile capabilities of LADDER, we are able
to support a wide range of data types with arbitrary bit widths
for both weights and activations. To thoroughly evaluate the
performance implications of precision scaling, we conducted
experiments across data type settings that progressively de-
crease bit widths. Our evaluation encompasses end-to-end per-
formance as well as individual operator performance across
two distinct batch size and sequence length configurations.
The experimental outcomes are detailed in Figure 15. As we
scale down the bit widths of W and A, we observe a cor-
responding escalation in speedup, reflecting the efficiency
gains of lower precision arithmetic. In decoding scenarios
with sequence length of 1, which are memory-bound, our
experiments show a clear speedup increase with reduced W
bit width (from WINT4AINT4 to WINT2AINT4, to WINT1AINT4).
However, during encoding at sequence length of 4096, which
is compute-bound, speedup remains unchanged across these
configurations due to the reliance on higher-precision compu-
tations in mixed-precision operations.
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5.2.5 Efficiency and Accuracy of Low-Precision LLMs

Low-precision computing focuses on both model quality and
model efficiency, thus there is usually an efficiency-accuracy
trade-off in designing low-precision models. We take
LLMs (i.e., LLAMA2-3B, LLAMA2-7B, LLAMA2-13B and
LLAMA2-70B) as the example to evaluate both the efficiency
and the accuracy of state-of-the-art low-precision methods.
Specifically, we evaluated PTQ for WFP8_E4M3AFP8_E4M3 [2,
37], GPTQ for WINT 4AFP16 [22], PTQ for WNF4AFP16 [16],
BitDistiller for WINT 2AFP16 [20], OneBit for WINT 1AFP16 [49],
and BitNet-b1.58 for WINT 2AINT 8 [35]. Both PTQ and GPTQ
are post-training quantization methods, which does not in-
clude model training. BitDistiller and OneBit are quantization-
aware training methods, leveraging distillation to achieve 2-bit
and 1-bit weight quantization. BitNet-b1.58 trains LLMs from
scratch to achieve ternary weights represented in WINT 2AINT 8.

Figure 16 shows the perplexity (PPL) on WikiText-2
and the latency of decoding single token on A100. Note
that the lower PPL indicates the better model quality. The
PPL of WINT 4AFP16, WNF4AFP16 is reported by AFPQ [51].
The PPL of WINT 1AFP16 is reported by OneBit [49]. The
PPL of WFP16AFP16 on LLAMA2-3B is reported by BitNet-
b1.58 [35]. The PPL of other models are evaluated with
open-sourced model checkpoints and open-sourced implemen-
tations. WFP8_E4M3AFP8_E4M3, WNF4AFP16 and WINT 4AFP16
show little affects on PPL, while achieve 1.6×, 1.7×, 2.5× on
average, respectively. Quantizing LLMs to 2-bit weights with
PTQ and GPTQ will result in NaN PPL [20,49], while BitDis-
tiller and OneBit leverage distillation to achieve stable results
in 2-bit and 1-bit quantization. However, the group-wise scal-
ing introduces extra computation cost to WINT 2AFP16-G64,
resulting in similar speedup as WINT 4AFP16.

It is noticeable that BitNet-b1.58 achieves even better
PPL with 1.8× speedup on the LLAMA2-3B configuration,
when compared to the WFP16AFP16 model trained on the
same dataset with same tokens [35]. This speedup does not
achieve the theoretical speedup because the LLAMA2-3B is
too small to saturate the GPU. We further evaluated BitNet-
b1.58’s WINT 2AINT 8 on the LLAMA2-70B configuration and

achieved 4.6× speedup over WFP16AFP16, thus BitNet-b1.58
shows a good potential on both accuracy and efficiency.

When comparing across different model configurations,
the model size has significant impact on both accuracy
and efficiency. It is noticeable that LLAMA2-13B with
WINT 4AFP16 achieved better performance than LLAMA2-7B
with WFP16AFP16 on both accuracy and efficiency, and the
quantized LLAMA2-7B models also outperform LLAMA2-
3B with WFP16AFP16 on both accuracy and efficiency. This
shows the power of low-precision computing.

The community is actively exploring low-precision com-
puting, and we hope LADDER can help researchers to explore
this direction by providing feedback on efficiency.

5.3 Evaluation on AMD GPUs
We evaluate the efficient LADDER on AMD Instinct MI250
GPU by comparing it with Welder, PyTorch-Inductor and
ONNXRuntime. Figure 17 shows the end-to-end perfor-
mance of 6 models. In the data type of WFP16AFP16, LADDER
achieves an average 2.1×, 2.35×, 1.5×, 10.5×, 1.6×, and
1.5× speedup over Welder for LLAMA, BLOOM, ResNet,
ShuffleNet, Conformer, and ViT, respectively. Welder does not
perform well on ShuffleNet because it leverages rocBLAS and
MIOpen for matrix core and thus breaks fusion opportunities.
LADDER not only generates efficient computing kernel for
matrix core but also enables more fusion opportunities, result-
ing in 14.1× speedup over Welder on ShuffleNet-BS1 with
0.43 ms latency. In the data type configuration of WINT4AFP16
for LLMs, LADDER achieves up to 3.8× speedup on LLAMA
with 0.73 ms latency on BS1SEQ1 and 4.5× speedup on
BLOOM with 1.75 ms latency on BS1SEQ1 over Welder.

6 Discussion

LADDER’s current implementation mainly focuses on model
inference. We discuss some LADDER’s limitations and future
work in this section.
Multi-GPU serving. Multiple GPUs are required to de-
ploying some large-scale models like BLOOM-176B and
LLAMA2-70B, becuase these models cannot fit into a single
GPU. Multi-GPU support is complementary with LADDER.
LADDER focuses on supporting low-precision computing on a
hardware accelerator. Multi-GPU frameworks [28, 30, 32, 53]
focus on partitioning model and scheduling parallel com-
putation across multiple GPUs. LADDER can collaborate
with multi-GPU frameworks to enable parallel computation
for low-precision models on multiple GPUs that multi-GPU
frameworks partition a model and schedule the partitioned
computation to LADDER on a device for execution. We leave
integrating LADDER with multi-GPU frameworks to our fu-
ture work.
Low-precision training. LADDER’s design is not limited
to inference. Both training and inference of low-precision
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Figure 17: End-to-end performance on AMD Instinct MI250 GPU.

models require low-precision support of system and hard-
ware. And the backward computation in training is similar to
the forward computation. Low-precision model training can
achieve gains from: 1) leveraging more efficient low-precision
computation units, e.g., WINT 8AINT 8 tensor core supported
on A100 has 2× throughput than that of WFP16AFP16, while
WINT 4AINT 4 tensor core has 4×; and 2) less memory foot-
print from low-precision model representation enabling larger
batch sizes which may improve the hardware utilization. We
leave low-precision training to our future work.

7 Related Work

Deep learning compilers and frameworks. Most existing
deep learning compilers, such as [10, 13, 33, 38, 43, 50, 52,
54, 57], focus on operator or model computation optimiza-
tions for mainstream data types, e.g., FP16 or FP32, with little
emphasis on low-precision data types. However, many opti-
mizations are complementary with low-precision computing,
for example, Roller [57] is leveraged to infer efficient tTile
configurations, and Welder [43] is leveraged for end-to-end
graph optimization in LADDER. SparTA [55] treats model
pruning and quantization as model sparsity to holistically
optimize sparse model inference and training, and LADDER
can provide efficient low-precision kernels to further improve
the performance. AMOS [56] has optimized for TensorCore
computation, covering FP16 and INT8 types, but it is specific
to NVIDIA GPUs. In comparison, LADDER is the first com-
piler to optimize for general low-precision computations that
support general custom data types on different GPUs. Deep
learning libraries or frameworks like ONNXRuntime [7] and
TensorRT [9] support some low-bit operators for inference
scenarios, but their coverage is still limited due to the signifi-
cant effort required to implement those combinatorial cases.
Some recent compilers like Triton [44] and TensorIR [21]
allow users to directly write the computation pipeline of a
DNN operator, providing flexibility in specifying scheduling
in each stage. However, these compilers mostly focus on com-
putation scheduling and have little support in data scheduling

for custom data types, which is the primary focus of LADDER.
Model-specific low-precision optimization. Given the lack-
ing efficient support of low-precision in existing compil-
ers and frameworks, many works have conducted workload-
specific low-precision optimizations. For example, some quan-
tization and model training on low-precision types are opti-
mized for Large Language Models (LLMs) [22, 28, 31, 35, 41,
45–47]. Previous work like [23–25, 34, 42] optimizes other
models like ShuffleNet, Conformer, etc., into FP8 or FP16
precision. In comparison, LADDER provides a mechanism to
allow one to more easily implement custom data types and
optimization policies. Thus, these optimization approaches
are complementary to LADDER, as they can be implemented
or automatically optimized in LADDER.

8 Conclusion

In conclusion, this paper introduces LADDER, the first deep
learning compiler designed to optimize general low-precision
computation on accelerators like GPUs. LADDER exposes a
general type system (tType) and an extended tensor expres-
sion, enabling users to easily implement and express new
data types in deep learning. It introduces a set of new tensor
scheduling primitives to facilitate optimizations like tensor
storage, access, and type conversions in a computing pipeline.
The layer-wise hardware-aware optimization policy of LAD-
DER navigates the complex transformation space, showcasing
its capability to systematically support a wide array of low-bit
precision custom data types. This enhances DNN computa-
tion performance on modern accelerators without requiring
hardware modifications. This innovation empowers model
designers to explore data type optimizations and offers hard-
ware vendors a flexible solution to expand support for diverse
precision formats.
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