
This paper is included in the Proceedings of the 
18th USENIX Symposium on Operating Systems 

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the 
18th USENIX Symposium on Operating 
Systems Design and Implementation 

is sponsored by

Ransom Access Memories: Achieving Practical 
Ransomware Protection in Cloud with DeftPunk

Zhongyu Wang, Yaheng Song, Erci Xu, Haonan Wu, Guangxun Tong, 
Shizhuo Sun, Haoran Li, Jincheng Liu, Lijun Ding, Rong Liu, Jiaji Zhu, 

and Jiesheng Wu, Alibaba Group
https://www.usenix.org/conference/osdi24/presentation/wang-zhongyu



Ransom Access Memories:
Achieving Practical Ransomware Protection in Cloud with DeftPunk

Zhongyu Wang*, Yaheng Song*, Erci Xu†, Haonan Wu, Guangxun Tong, Shizhuo Sun,
Haoran Li, Jincheng Liu, Lijun Ding, Rong Liu, Jiaji Zhu, and Jiesheng Wu

Alibaba Group

Abstract
In this paper, we focus on building a ransomware detec-

tion and recovery system for cloud block stores. We start by
discussing the possibility of directly using existing methods
or porting one to our scenario with modifications. These
attempts, though failed, led us to identify the unique IO
characteristics of ransomware, and further drove us to build
DeftPunk, a block-level ransomware detection and recov-
ery system. DeftPunk uses a two-layer classifier for fast
and accurate detection, creates pre-/post-attack snapshots to
avoid data loss, and leverages log-structured support for low
overhead recovery. Our large-scale benchmark shows that
DeftPunk can achieve nearly 100% recall across 13 types of
ransomware and low runtime overhead.

1 Introduction
Ransomware has become increasingly prevalent in recent
years, posing a major threat to data security. Recent reports
show that ransomware attacks have caused billions of dollars
in losses to individuals and organizations [27, 29]. Typically,
attackers exploit system vulnerabilities to access and encrypt
users’ data for ransom.

Cloud services are also facing increasingly aggressive ran-
somware threats. In ALIBABA cloud, our cloud block store
(a.k.a., Elastic Block Storage, or EBS) has been under con-
stant attacks. In Q3 of 2022 alone, we have received nearly
one thousand reports from our EBS Virtual Disk (VD) users,
yielding a 118% increase over the entire year of 2021.

To combat ransomware, practitioners have proposed vari-
ous detection and recovery methods. At the application layer,
users can use antivirus software and firewalls [21, 24, 31] to
identify suspicious behaviors by monitoring file access and
checking malware signatures. At the OS layer, recent works
have demonstrated their ability to detect ransomware activ-
ities via behavioral analysis [33, 41, 45, 57]. Third, at the
hardware layer, prior works have shown that, with hardware-
assistance from customizable devices, the log-structured de-
sign of SSDs can be leveraged to detect and roll back ran-
somware activities [34, 35, 43].

Unfortunately, these traditional methods cannot be directly
applied for our EBS. First, the application/OS layer methods

*Equal contributions.
†Corresponding author.

require strong user cooperation. As a cloud vendor, we are
unable to enforce our users to use specific software and/or OS.
In addition, field statistics suggest that tenants may not always
keep the software up to date, leaving potential vulnerabilities.
Second, cloud providers usually use commodity hardware for
cost efficiency and portability. Thus, it is impractical for us
to build protection that only works on specialized devices.
Third, certain vendors, including us, have already provided
(periodical) VD snapshot for data recovery. Simply relying
on such mechanisms may not be favorable for users, as they
may lose the data between two snapshots due the hour-level
interval and high CapEx led by the extra storage space

Existing solutions, while failing to work directly, inspire
us to use the IO characteristics of ransomware (e.g., exces-
sive Write-After-Read access) for detection, and leverage the
garbage collection (GC) of log-structured design for recovery.
This is because the block store service, by default, can moni-
tor and analyze the block-level IO traffic. Moreover, our EBS
is built on an append-only distributed file system (DFS), and
thus supports similar mechanism to roll back data that have
not been reclaimed by GC (such as SSD). The benefits of such
design are two-fold. First, it does not rely on certain software
or hardware support. Second, it can be easily deployed with
little extra overhead imposed.

Therefore, we started exploring the possibility of building
this solution. However, real world data show that such a pre-
liminary attempt fails to deliver satisfactory accuracy in detec-
tion. We assume the main reason is that the existing detection
algorithms—bounded by their prerequisites (e.g., need to use
SSD’s weak SoC) and lack of real-world access/analysis—
can not effectively and efficiently distinguish ransomware
traffic from normal IOs. Additionally, we find that the exist-
ing recovery methods can not always guarantee lossless data
recovery due to the limited time of multi-version support.

In this paper, we propose DeftPunk, a block-level ran-
somware detection and recovery system for the cloud. Based
on extensive comparisons between ransomware and normal
workloads, DeftPunk constructs a rich set of features and
uses a two-layer classifier for fast and accurate ransomware
detection. To avoid data loss, DeftPunk creates pre- and post-
attack snapshots to “lock in” the effects of the attack, and
persists all modifications in between. For recovery, DeftPunk
follows a “undo-redo” strategy to roll back the data to the
pre-attack state and only redo the users’ writes.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    687



Specifically, we first assemble a large-scale ransomware
dataset by collecting more than 140 hours of block-level IO
traces from 13 mainstream ransomware (e.g., Wannacry [30]
and Mallox [18]) and 16 types of real-world workloads from
our EBS. The comprehensive comparison shows that, apart
from the well-known Write-After-Read (WAR) pattern, ran-
somware also exhibits other characteristics, such as read to
write ratio, access offset distribution and frequent access on
the system disk. These observations help us to extend the fea-
ture set of DeftPunk by including IO statistics, dependency,
working set size, offset and certain LBA spatial access.

The above extended features help DeftPunk to achieve
higher accuracy. But, for deployment efficiency under the
sheer volume of VDs and their IOs, we also need to consider
the runtime overhead. Therefore, DeftPunk adopts a two-
layer model. The first layer, focusing on eliminating false
positives (i.e., filtering normal IOs), uses a straightforward
decision tree algorithm with simple features (only requiring
O(1) computation). The positive cases classified by the first
layer will be further sent to the second layer for a double
check. The second layer emphasizes on exposing all ran-
somware cases, and thus uses a more sophisticated algorithm
(i.e., XGBoost [38]) with the complete set of features.

Based on the output of the two-layer model, DeftPunk
can create a pair of snapshots right before and after the at-
tack. Moreover, with multi-version support by the EBS log-
structured design and GC pausing, DeftPunk can persist all
data modifications during the attack. For recovery, DeftPunk
follows a “undo-redo” strategy to roll back the data to the
pre-attack state, and, based on a rule-based model, only redo
the writes made by the users.

Based on our assembled dataset, we benchmark DeftPunk

with a set of state-of-the-art ransomware detection methods.
The results show that DeftPunk can always achieve nearly
100% recall with 95.8% precision, outperforming all other
peers. Moreover, DeftPunk only uses 7 vCPU cores for
processing 1 million IOPS for detection and can recover valid
data at 4.62 GB per second. We have deployed DeftPunk in
our EBS service for a few invited users, and it has successfully
prevented 2 attacks with data fully recovered.

The contributions of this paper are summarized as follows:
• We assemble and release a large-scale ransomware bench-

mark with real-world traces1.
• We build DeftPunk, a practical ransomware detection and

recovery system for the cloud EBS.
• We extensively evaluate DeftPunk and the results show that
DeftPunk outperforms peers by up to 95.77% in precision
and nearly 100% in recall.
The rest of the paper is organized as follows. §2 gives a

brief overview of our EBS and background of ransomware. §3
discusses the existing solutions and related work. §4 identifies
the goals and challenges. §5 presents the design of DeftPunk

1The dataset is at: https://tianchi.aliyun.com/dataset/177511?lang=en-us

Compute Server

guestOS
VM#1

VD#0

Hypervisor

···

Block Proxy

Append-only File System

VM#2
guestOS

VD#1 VD#2 VD#3

Block Proxy
GC
Worker

GC
Worker

Snapshot
Worker

Snapshot
Worker

LSBD LSBD

…/VD#1/DataFile…/VD#0/DataFile ···

Compute
Layer

Block
Layer

Persistence
Layer

··· ···

Figure 1: Overview of EBS Architecture. VD: Virtual Disk; LSBD:
Log-Structured Block Device. GC: Garbage Collection.

and §6 shows the evaluation of DeftPunk in depth. We end
this paper with a discussion on DeftPunk’s limitations in §7
and a short conclusion in §8.

2 Background

2.1 EBS in ALIBABA Cloud

Elastic Block Storage (EBS) serves as a cornerstone in to-
day’s cloud. To provide virtual block devices to users with
high flexibility and availability, our EBS, similar to other
vendors’ architecture [9–11,17], follows a “compute-to-store”
philosophy. With this setup, the storage clusters are physically
disaggregated—interconnected by data center network—from
the compute servers (and subsequently the virtual machines
running on them).

Figure 1 illustrates an overview of the EBS architecture.
On the compute end, each server can host multiple Virtual
Disks (VDs) and also embeds a client within the hypervisor
to forward VD’s requests to backend storage clusters. Once
the Block Proxies receive the VDs’ requests, they will then
persist/fetch the data to/from the corresponding file in the
distributed file system (DFS).

Like Google [49], Azure [37], and Alibaba Cloud [48],
we too adopt a log-structured distributed file system (DFS)
as the storage backend. The Block Proxy employs a Log-
Structured Block Device (LSBD) to transform VDs’ IO to
an appending-only DataFile provided by the underlying DFS.
One key functionality is to register the mapping (i.e., from VD
LBA to location in DataFile) in a per-VD IndexMap to track
latest location of data in the DataFile. Also, this requires a
garbage collection (GC) for reclaiming space from stale data.
In addition, we also set up a Snapshot Worker to allow users
to create snapshots of their VDs and store them as binaries.

688    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Layer Mechanism Schemes

App. Anti-virus
real-time scan

Fortinet [24], Kaspersky [21],
Windows defender [31]

OS File system
behavioral analysis

CM&CB [33], UNVEIL [45],
WaybackVisor [41], Towards. [57]

HyperV. Scheduled snapshot AWS [3], HUAWEI [4]

HW. Detection with
real-time rollback

FlashGuard [43], SSD-insider [34],
SSD-insider++ [35], RSSD [53]

Table 1: Common protections against ransomware. App.: Applica-
tion; HyperV.: Hypervisor; HW.: Hardware.

2.2 Ransomware
Ransomware, such as WannaCry [30], has been rampantly
spreading across the globe, leading to billions of dollars fi-
nancial losses. The typical procedure of a ransomware at-
tack has three steps: (1) the attacker infects the victim’s
machine via weak password and/or system vulnerabilities;
(2) the ransomware encrypts the victim’s data; (3) the vic-
tim is instructed to pay a certain amount of ransom (e.g.,
cryptocurrency) for decryption.

Both industry and academia have been working on ran-
somware detection and protection. In Table 1, we summa-
rize the commonly used methods by layers. First, at the
Application layer, users can install antivirus software and
firewalls [21,24,31] to monitor the suspicious behaviors (e.g.,
frequent access to unauthorized files and encryption) or match
the signatures in the viruses database. Second, by intercepting
system calls and file access patterns within the OS, recent
studies have also proposed to detect ransomware activities
via behavioral analysis [33, 41, 45, 57]. Third, users or ven-
dors could ask the hypervisor to take snapshots of the whole
runtime to directly recover the data. This method is widely
available by major cloud service providers [3, 4]. Finally,
many prior works have shown that the log-structured design
of SSDs can be leveraged to detect and rollback ransomware
activities [34, 35, 43]. The key idea is that valid data which
are overwritten and encrypted by the ransomware will be
marked as stale. But, the Flash Translation Layer (FTL) usu-
ally would not immediately reclaim their space, providing an
opportunity to recover users’ data before garbage collection.

3 Motivation and Related Work
The cloud is no stranger to ransomware attacks, especially
when an increasing number of users are migrating their sen-
sitive data to the public cloud [5–7, 13, 14, 26–29]. A recent
report by Zscaler cloud [7] states that ransom attacks have
increased by 38% from April 2022 to April 2023, and they
predict that attackers are likely to develop new types of ran-
somware and campaigns optimized for targeting cloud ser-
vices and workflows. Sophos report [27] also indicates that
the average ransom has increased from $812,380 in 2022 to
$1,542,333 in 2023, not to mention the cost of the data recov-
ery process and the losses due to downtime. In our cloud, we
have also been witnessing a growing number of ransomware

attacks on users. In just one quarter (2022 Q3), our cloud has
recorded nearly one thousand ransom incidents, leading to an
increase of 118% compared to the previous year.

One might wonder, with all the protection approaches avail-
able (see Table 1) and vendors’ high emphasis on data security,
why ransomware attacks are still so prevalent in the cloud.
Here, we summarize the key reasons and challenges based on
our observations and statistics from the field.

Human mistakes. User awareness is the first, and often the
weakest, line of defense against ransomware attacks. To be
human is to err, so it is not uncommon for users to fall vic-
tims to phishing or malicious emails and other malware. A
recent survey by Fortinet [28] reports that phishing remains
the top ransom tactic (56%). Other ransomware reports, such
as those from Sophos [27] and SpyCloud [29], have likewise
emphasized the vulnerability of humans in ransomware de-
fense. Similarly, in our cloud, we discover that nearly all
ransomware attacks start with a negligence being exploited
(e.g., outdated software and weak password).

Lack of protection in VM. Normally, with antivirus software
properly installed and security patches regularly updated, VM
should be able to operate safely even under the threats of
ransomware. However, in the cloud, VMs, can often run in
an under-protected environment due to the following reasons.

First, only a small fraction of VMs are under sufficient
antivirus software protection. For instance, Zscaler [2] re-
ports that 17% of organizations are running workloads on
unprotected virtual machines which is consistent with our
observations from the field. Even for ones who have, they
can still be at risks of latest attacks as 28% of VMs attacked
by ransomware are running with vulnerable outdated OS and
software. Third, while we provide OS images with built-in
security support and automatic updates, only 19.4% of users
opt in. One main reason, after discussion with multiple users,
is that they tend to reuse their own OS images for consistency
and compatibility after migrating to cloud.

Snapshot protection is expensive and coarse-grained. Our
EBS allows users to persist the Virtual Disk (VD) as a snap-
shot and later use it to restore to a certain point in time. By
taking periodical snapshots, users can conveniently recover
from a ransomware attack by simply restoring the VD to the
most recent checkpoint before the attack. However, in prac-
tice, this is not the case. First, the snapshot-based protection
can be expensive. Even with our latest incremental snapshot
service, the cost incurred from snapshots can easily 2.5 times
more than the monthly rental of the VD, assuming VD is
under normal traffic and snapshots are taken on hourly basis.
Moreover, even if users are willing to pay the price, recovery
by periodical checkpoint is still coarse-grained in the cloud
EBS. For example, the highest specification VD in our cloud
can achieve a throughput of 4000 MB/s and 100M IOPS. In
this case, even if we use minute-level periodic snapshots, it
would still result in a significant amount of data loss.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    689



Hardware-based protection is impractical. Academia
have proposed multiple approaches for defending against
ransomware attacks via hardware assistance [34, 35, 43, 53].
However, these attempts would fall short for large-scale cloud
deployment, such as EBS. First, previous works are based on
specialized and/or prototype hardware, such as Open-Channel
SSDs [34] or FPGAs, yielding a small chance for large-scale
deployment. In addition, even if manufacturers manage to
produce such hardware, it is still impractical as ransomware
evolves rapidly. At the same time, frequently updating the
firmware or providing backward compatibility for legacy de-
vices would be a huge challenge.

4 Goals, Opportunities and Challenges
To this end, we have shown that the existing ransomware pro-
tection mechanisms can not be shoehorned to cloud services
such as EBS. In this section, we first list the design goals of
an ideal ransomware protection mechanism for EBS. Then,
we discuss the potential opportunities for a practical detection
approach based on intrinsic properties of EBS and the ran-
somware attack patterns. Finally, we present the insights we
gained and challenges we faced from building and exploring
this preliminary design.

4.1 Design Goals
The role of a cloud vendor profoundly limits our ability and
choices in applying existing techniques. Therefore, to de-
velop a practical ransomware detection for EBS, we start by
identifying the key requirements.
• No data lost/tainted after recovery. The most fundamental

requirement for ransomware protection is to ensure that,
once detected, no ransomed data is lost during recovery. In
other words, all user issued IOs—before, during and after
the attack—should be preserved and no tainted data left.
On top of that, we need recover data in a timely manner
with minimal effort from users.

• Transparent to users. The monitoring and detection should
not rely on users’ awareness or cooperation with the ven-
dor, such as installing certain softwares, using specific OS,
or updating patches under certain schedules. In addition,
to obey privacy and security protocols, we also cannot di-
rectly control the VMs and/or insert (kernel) modules to
proactively defend ransomware attacks.

• Hardware independent to vendors. As a cloud vendor, our
solution should be based on commodity products, instead
of depending on features only provided by specialized hard-
ware (e.g., customizable Open-Channel SSDs) or prototype
devices (e.g., FPGAs). Moreover, even for the commodity
products, the ideal solution should provide backward com-
patibility, meaning that it can support legacy devices such
as early models of SSDs or even HDDs.

• Low runtime overhead. The proposed solution should run
with low resource consumption (e.g., CPU, memory, space,
and network bandwidth). This is because, given the destruc-

tive impacts and the increasing prevalence of ransomware,
the occurrence—compared to the massive volumes of VDs—
is still rare in the wild. For example, on average, less
than 0.001% of the VDs in our cloud are subjected to ran-
somware attacks on a daily basis. Hence, the high CapEx
led by high resource consumption would not be acceptable
to vendors or tenants.

4.2 Opportunities
While previous ransomware prevention techniques fail to
work directly in EBS, we discover that the log-structured
block device (LSBD) design bears great similarities with
SSD internals. This motivates us to explore the possibility of
borrowing ideas from the existing hardware-based methods.
Next, we discuss the two similar opportunities our EBS shares
with the hardware-based ransomware protection.

0
1e5
2e5
3e5
4e5

LBA

Ac
ce

ss
 F

re
q.

read write

(a) Mallox [18]

0
2e5
4e5
6e5
8e5

LBA

Ac
ce

ss
 F

re
q.

read write

(b) MsSQL

0
1e4
2e4
3e4
4e4

LBA

Ac
ce

ss
 F

re
q.

read write

(c) BeijingCrypt [19]

0
1e6
2e6
3e6
4e6

LBA

Ac
ce

ss
 F

re
q.

read write

(d) Prometheus.

0
2e4
4e4
6e4
8e4

LBA

Ac
ce

ss
 F

re
q.

read write

(e) Phobos [8]

0
1e5
2e5
3e5
4e5

LBA

Ac
ce

ss
 F

re
q.

read write

(f) WebApp

Figure 2: Comparation of LBA access frequency between ran-
somware and regular applications

Block-level ransomware access pattern. Ransomware usu-
ally follows a read-encrypt-write procedure on users’ data.
For example, a recent survey indicates that up to 76% of
ransomware employed encryption-based attack mode [27].
Previous studies have shown that this access pattern holds
across different ransomware families and can be caught at
file system level (e.g., directory traversal, file type change, ac-
cess frequency, etc [46, 54]) and device (i.e., SSD) level (e.g.,
statistics of erasure IO in [34, 35]). As Block Proxies handle
VD requests in the format of Logical Block Address (LBA),
we further explore the possibility of detecting ransomware
attacks at the block level.

We start with the spatial and temporal patterns of typical
ransomware. For the spatial pattern, Figure 2 (a)(c)(e) and

690    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0
25
50
75

100

0 250 500 750 1000 1250 1500
Time(s)

W
AR

 ra
tio

 (%
) System Movie Txt Office Software

(a) BeijingCrypt [19].

0
25
50
75

100

0 250 500 750 1000 1250 1500
Time(s)

W
AR

 ra
tio

 (%
) System Movie Txt Office Software

(b) Globeimposter [16].

0
25
50
75

100

0 250 500 750 1000 1250 1500
Time(s)

W
AR

 ra
tio

 (%
) System Movie Txt Office Software

(c) Babuk [12].

Figure 3: Write-After-Read IO ratio by time on ransom attack

(b)(d)(f) respectively illustrate the LBA access patterns of a
VD under ransom attacks and normal workloads. The x-axis
represents the normalized LBA, and the y-axis shows the
frequency of access within 10 minutes. By comparing the
two, we can see an outstanding difference. The ransomware
tends to have a similar amount of reads and writes to the
same LBA. This is consistent with observations from previous
studies [34, 35]. Namely, the "read, encrypt, and write back"
pattern of ransomware is manifested as erasure IO (i.e., EIO)
or Write-After-Read IO (i.e., WAR IO) at the block-level.

We then examine the temporal pattern of ransomware at-
tack. Figure 3 shows the variations in the WAR ratio (i.e.,
the ratio of WAR IO to the total write requests) of three VMs
(each with five VDs) under various ransomware attack. In
each VM, the five VDs consist of one system drive and four
data drives loaded with different types of data.

For example, Figure 3(a) illustrates the variations in the
WAR ratio of the VM when it is under a BeijingCrypt attack.
The WAR ratio of the system drive rapidly rises from 0 to
100% around 60s and maintains a relative high level until the
attack ceases at 1370s, at which point the WAR ratio falls
back to 0 rapidly. A similar pattern of “climb-maintain-drop”
in the WAR ratio can be observed on other data drives, albeit
with variations in the start or end time. Figure 3 (b) and (c)
illustrate the WAR ratio dynamics for the VM during attacks
by Globeimposter and Babuk, respectively, revealing patterns
similar to those depicted in Figure 3(a). Hence, we can con-
clude that cloud-based ransomware also exhibit a distinct
pattern of WAR IO at the block level, which is consistent with
insights from ransomware detection on hardware level.

To sum up, we can conclude that ransomware attacks at the
block level exhibit distinct patterns that can be detected by
analyzing the LBA access records.

Method Precision Recall F1-score
SSD-insider++ 63.05% 87.53% 73.26%

RanSAP 84.83% 94.37% 89.23%
WaybackVisor 71.36% 93.06% 80.66%

Combine Model 90.74% 92.10% 91.42%

Table 2: Comparison of four ransomware detection algorithms.

Multi-version nature of LSBD. Recall that one key feature
of EBS is adopting the log-structured block device (LSBD)
in the Block Proxy (See §2.1). In this setup, all writes from
the front-end VDs are appended to the end of the log, and the
Block Proxy maintains a mapping table—called IndexMap—
to track the latest metadata of data. Periodically, Block Proxy
reclaims the space with garbage collection (GC).

This design is similar to the SSD’s append-only internal
architecture, which serves as one of the prerequisites for
hardware-based ransomware protection. The knack here is
that, in both EBS and SSD, the stale data are usually not
immediately reclaimed by GC and overwritten with new data.
Instead, it can survive for a certain period of time which
essentially enables multiple versions of data to co-exist. As
a result, in the face of ransomware attacks, we can leverage
this multi-version nature to conveniently roll back to early
versions by altering the IndexMap.

4.3 A Preliminary Exploration
Based on the above two opportunities, a potential design
for ransomware protection in EBS arises. In short, we can
actively monitor all incoming IO from each VD and check
whether the LBA access matches the ransomware patterns. If
detected, we can conveniently roll back the data to a previous
clean version. The benefits of this design are that: (1) it only
relies on block-level IO records, thereby being transparent
to users and hardware independent; (2) it can leverage the
multi-version nature of LSBD, hence no extra storage space
is required.

In this prototype, there are mainly three components. (1)
IO Trace Collector: Collect the block-level IO records from
Block Proxy including the operation code (read, write or trim),
LBA, and length; (2) Ransomware Monitor: Periodically
analyzing the IO records of all VDs to determine if any are
targeted by ransomware attacks. The monitor essentially
functions as a feature extractor combined with a classifier.
The former extracts handcrafted features from IO records,
while the latter is a machine learning-based classifier; (3)
Data Recovery: Upon detection of an attack, the data recovery
mechanism is activated, restoring the data to a pre-attack state
by changing the IndexMap.

To validate the effectiveness, we test this prototype on
our benchmark, which includes around 150 hours of Block
IO traces from 13 common ransomware and 16 types of
real-world workloads (see §6.1). In addition, we have im-
plemented four variations by adopting three state-of-the-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    691



art detection methods from previous work including SSD-
insider++ [35], RanSAP [40] and WayBackVisor [42], and
a combined one (i.e., all features included). Table 2 demon-
strates the precision, recall, and F1-score results of the four
methods. From the results, we can observe that all four left
room for improvement and combining features certainly help
(i.e., highest F1-score).

Such solutions still do not meet our goals as they incur data
loss or leave tainted data unhandled. First, false negatives is
unacceptable as the valid copies of data may be lost during
later GC. Second, having a less satisfied precision (i.e., identi-
fying normal activity as ransomware) is also consequential as
users’ normal IO can be wrongly interrupted and rolled back.

4.4 Challenges

!! !" !# !$ !% !& !' !( !)

Pre-attack During-attack Post-attack
Detected End User-aware

…

Rollback

Figure 4: A typical process of ransomware attack, detection, and
recovery.

Insufficient features. The straightforward design is based on
the SSD and thus bounded by its limited on-chip resources
(e.g., computational power and memory space). As a result,
the feature extraction and classification algorithms become
inherently straightforward (e.g., simple statistics of erasure
IO in [35]), thereby yielding low accuracy. This also applies
to the solutions based on kernel modules as they, too, need to
be lightweight to avoid interfering with normal IO activities.

In EBS, the Block Proxies can have much more resources
at hand. In addition, we can also set a standalone machine
to run the detection module. Therefore, it is possible for
our solution to include more features and adopt complex
models for improvement. However, introducing features is
helpful only when they reflect the unique characteristics of
ransomware attacks, which requires careful analysis on the
traces. Moreover, though EBS may have more computational
power, spending too many resources on ransomware detection
is still not economically acceptable due to the relatively low
occurrence rate of ransomware attacks. In summary, we
need to strike a balance between accuracy and overhead by
identifying the unique characteristics and including them for
feature construction.

Impermanent multi-version support vs. data loss. Even
if we can achieve a high-accuracy model through the above
endeavors, it is unlikely such a solution can always detect
the exact timing of the ransomware attacks with no false
positives/negatives. Hence, we may still run into data loss
when rolling back is wrongly invoked.

Here, we use Figure 4 to illustrate a rundown on typical
cases that might lead to data loss. In the figure, each rectangle
represents a sample, and the background color indicates the
three phases of the attack: pre-, during-, and post-attack.
Assume that ransomware initiates an attack at the t4 window
(as indicated by the dashed line) and continues until t7 window
(also indicated by the dashed line). The detection model
identifies the attack at t5 and rolls back the data to t4.

First, if the proposed solution fails to detect the attack at t5
(i.e., false negatives), the user’s data may become irretrievable
if garbage collection (GC) has already kicked in. Note that
data recovery can only issued by users but users may not be
aware of the attack in time. Second, if the detection model
wrongly labels normal IO as ransomware attack (i.e., false
positives), it might cause user panic and even lead to incorrect
data rollback. Third, even if the ransomware attack is alarmed,
the user fails to stop normal IO until tn which might be several
hours after attack, the rollback-based recovery would result
in greater data loss that all the user’s normal IO during- and
post-attack would be reverted.

To solve above issues, the easiest way is to provide the
multi-version support for all data modifications permanently.
However, this is not feasible as it would quickly deplete the
user’s purchased disk space within months or even days due
to the constant accumulation of data. The same reason also
applies to vendors. Therefore, we need to find a solution
that can efficiently persist all IO records from right before a
ransomware attack until the end of it.

5 DeftPunk Design
We now introduce the design of DeftPunk, a practical ran-
somware detection and data recovery framework for cloud
EBS. DeftPunk does not require users’ cooperation, des-
ignated software support or customization on hardware in
detection, and can guarantee no data loss during the recovery.
The key to DeftPunk success is employing a two-layer ma-
chine learning model to efficiently detect attacks and create
snapshots. Then, DeftPunk can notify the user and perform
the subsequent data recovery. In this section, §5.1 presents an
overview of the framework and workflow of DeftPunk, fol-
lowed by a detailed discussion on the three main components:
the feature engineering (§5.2), two-layer classifier (§5.3) and
data recovery (§5.4).

5.1 Overview

Data preprocessing. Figure 5 demonstrates the high-
level procedures and interactions between components in
DeftPunk. First, the IO Tracer, embedded in the Block Prox-
ies (BP), constantly monitors all incoming IO record (i.e., for-
matted as <timestamp, offset, length, operation>)
and group them as IO records by VDs. Then, IO tracer gen-
erates samples with a sliding window of 10 seconds. For
example, assume a BP that serves three VDs. For a minute

692    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Sliding Windows

① IO Tracer

R
W
W
R
···

Ts Off Len OP
1
2
3
4
···

40
25
100
2
···

4
4
128
64
···

Benign

Benign

Attack

IO record

② Detector

Attack Start & End

3-Step Resolving
Step 1. Check
Step 2. Undo
Step 3. Redo

③ Resolver

Layer-1 Layer-2

In-situ Protection
Pre-Snapshot
Post-Snapshot
Write Log

Samples

···

Fast
Filtering

Double-
Check

Figure 5: Overview of DeftPunk.

of monitoring, IO Tracer would generate 6 samples of IO
records for each VD.

Ransomware detection. Upon receiving the IO record sam-
ples, DeftPunk first uses the Layer-1 Classifier, based on
simple features (e.g., IO count) and a decision tree, to per-
form fast scanning with an emphasis on high recall and low
computational cost. If the sample fails to pass the first layer
(i.e., suspicious of a ransom attack), it will be further checked
by the Layer-2 Classifier. The second model uses a superset
of Layer-1’s features by including more complex ones, (e.g.,
statistics of entropy, Working Set Size, and IO offset), and
employs a more sophisticated model (i.e., XGBoost), aiming
at high precision. If the sample is again labeled as positive,
DeftPunk would trigger snapshot generations.

Creating snapshots. When a positive sample arrives, the
snapshot worker would first create a Pre-attack Snapshot and
a Post-attack Snapshot at the beginning and the end of it,
respectively. As a ransom attack may span across multiple
10-second samples, the snapshot worker continues to create
new Post-attack Snapshot to replace the previous one until
the incoming sample becomes negative. Meanwhile, during
the attack, DeftPunk would also pause the EBS garbage
collection for this VD to prevent the accidental deletion of
the valid data until the post-attack snapshot is finalized.

Data recovery. When the user has been notified of the at-
tack (e.g., via our alert message or discovering certain data
become inaccessible), one needs to issue a recovery request.
DeftPunk would follow a three-step recovery process. (i)
checking: DeftPunk first checks and lists all tainted LBAs
(i.e., 4KB long each) during the attack. If a LBA is further
modified (by the user) after the post-attack snapshot, then data
in that LBA would not be recovered. (ii) undo: DeftPunk

would revert all data in tainted LBAs to the version of the
pre-attack snapshot. redo: DeftPunk would run another rule-

based model to identify IOs made by the users and redo them.

5.2 Feature Engineering
In §4.4, we mentioned that one key reason for suboptimal
performance of existing solutions is the insufficient feature
engineering. To construct features for DeftPunk, we first
conduct an extensive study on real-world VDs’ IO traces to
identify the fundamental differences between ransomware
and normal user behaviors (§5.2.1). Based on the insights,
we then devise the extended features for the two-layer model.

5.2.1 Characterizing IO Behavior

0.00
0.25
0.50
0.75
1.00

0 5 10 15
Entropy

PD
F

Rsw BigData Storage

(a) Offset entropy

0.00
0.25
0.50
0.75
1.00

1 100 100k
#WAR IO

PD
F

Rsw BigData Redis

(b) WAR IO count

Figure 6: Opportunities of detecting ransomware at block-level.

We first reason why typical features used in existing works,
such as offset entropy in [40,42] and WAR IO count in [34,35],
can be ineffective. In Figure 6(a), we present the probability
density function (PDF) of the offset entropy for samples in
our dataset. “Rsw” indicates the PDF of all ransomware sam-
ples. “BigData” and “Storage” represent two different types
of common workloads. We can observe a distinct difference
in the PDF of offset entropy between Rsw and Storage, while
there exists large PDF overlap between BigData and Rsw.
Figure 6 (b) exhibits a similar pattern on Bigdata and Rsw.

This comparison clearly shows that normal workloads can
be easily mislabeled (or the other way around) if we solely
rely on a selected few simple features. We believe that one ma-
jor root cause is that previous work mostly focus on positive
samples (i.e., ransom attack IOs) without noticing or studying
the similarities they share with normal traffic. Hence, we
study both the patterns of ransomware and normal I/O behav-
iors and propose three patterns for better feature engineering.

• Pattern 1. Ransomware typically exhibits nearly equal
amounts of read and write in bytes, whereas the read-to-
write ratio of normal IOs is often skewed. Figure 7(a)
presents the cumulative probability density (CDF) of the
read-ratio (i.e., the proportion of read requests to total re-
quests). We can see a notable gap between the CDF of
normal workloads (Norm.) and ransomware (Rsw), with
the average value for Norm. being X and the average value
for Rsw being Y.

• Pattern 2. The IO offsets of ransomware are distributed
more broadly across the LBA space, and each offset is typi-
cally accessed only once. In contrast, the IO offsets under

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    693



0.00
0.25
0.50
0.75
1.00

0 25 50 75 100
Read ratio (%)

C
D

F

Rsw Norm.

(a) Pattern 1.

0.00
0.25
0.50
0.75
1.00

1 10 100 1k 10k
WSS (MB)

C
D

F

Rsw Norm.

(b) Pattern 2.

0.00
0.25
0.50
0.75
1.00

1 10 100 1000 10000
IOPS

C
D
F

100M 1G Rsw Norm.

(c) Pattern 3.

Figure 7: Three unique patterns that can distinguish between ran-
somware and normal workloads.

normal workloads tend to be concentrated. Figure 7(b)
shows the CDF of the working set size (WSS) for the two
categories of samples, and we can similarly observe a sig-
nificant difference between Norm. and Rsw.

• Pattern 3. Ransomware displays obvious WAR on the sys-
tem disk, particularly in the Master Boot Record (MBR)
region at the beginning of the LBA, whereas such opera-
tions are rarely performed by normal users. Figure 7(c)
displays the IOPS (Input/Output Operations Per Second)
for the two categories of samples within the first 100MB
and the first 1GB of the LBA.

5.2.2 DeftPunk Feature Engineering
Based on the findings above, we construct the following as
DeftPunk’s enhanced feature engineering for ransomware
detection. Table 3 presents the 43 features we employed along
with their corresponding meanings. For ease of understanding,
we categorize these features into 5 classes, which include:
• IO Dependency. This set of features characterizes the

behavior of adjacent I/O operations in a temporal context.
In addition to including Write-After-Read (WAR), which
has been adopted by other works [34, 35], we also incor-
porate three other types of read-write sequences, such as
Read-After-Write (RAW), Read-After-Read (RAW), and
Write-After-Write (WAW).

• IO Statistics. This part constitutes the basic statistics of
VD IO, including the IO count, total bytes, and IO size.
Here, features are made separately for read (R), write (W),
and the sum of read and write (RW). The design of this
feature set is inspired by Pattern 1.

• Working Set Size (WSS). Inspired by Pattern 2, we track
the working set size (WSS) for 6 types of I/O. Here, WSS
refers to the proportion of the LBA space that is accessed
by a specific type of IO.

• Offset Statistics. Compared to WSS, this category of fea-

tures characterizes the distribution of I/O across the LBA
at a finer spatial granularity, such as the mean, variance,
standard deviation, coefficient of variation (CoV) [32], and
entropy [56] of the IO offset. The design of this type of
feature is also inspired by Pattern 2.

• Access on LBA Head Region. As mentioned in Pattern 3,
ransomware may tamper with data in the head region of the
LBA. Bearing this in mind, we conduct statistics on IO that
fall within the first 100MB and 1GB of the LBA, including
the I/O count and total bytes.
In Table 3, we also list the computational complexity (in

Big O notation) for each class. Note that the traditional defi-
nition of Write-After-Read (WAR) is to check whether there
are sequential read and write requests accessing the same
LBA offset. However, we extend the definition of WAR by
relying on both the offset and the length to decide whether the
LBA accessed by the sequential read and write requests are
overlapped. Therefore, our check for WAR requires a time
complexity of O(logn) rather than O(1). The reason to do this
is that we find that ransomware can read a large volume of
data and then writes it in smaller chunks, exhibiting the be-
havior of “read-write-...-write”. According to the traditional
definition of WAR, this behavior would be characterized as 1
WAR and 2 WAWs, which can be similar to normal user IO.
However, our definition of WAR would describe this behavior
as 3 WARs and 2 WAWs, thereby distinguishing it from the
I/O behavior of normal users.

5.3 Two-layer Model
The enhanced feature engineering can improve the preci-
sion/recall of the detection. However, simply building a
classifier based on the entire set of features would not be
practical for production deployment. This is because certain
features such as IO dependency, offset entropy, and WSS
would have high computational complexity and thus yield a
high overhead in detection. For example, given a VD with 1
million IO records, the processing time for IO dependency
can be 14 seconds for one thread. In this case, blindly ap-
plying the entire set of features would consume nearly 56
virtual CPU cores for 1 million IOPS online only for feature
calculation.

Therefore we propose a two-layer model to balance the
trade-off between overhead and detection accuracy. First,
we use a simple feature set in the first-layer model for fast
filtering the majority of non-ransom activities. We apply the
complex feature set with second classifier to scrutinize the
suspected cases labeled by the first model. Specifically, the
two-layer classifier is implemented as follows.
Layer-1: Fast and Broad Filtering. This layer aims to
achieve a high recall and rapid initial scanning of ransomware
using features with O(1) complexity. Hence, we evaluate the
detection performance of three commonly-used simple clas-
sifiers, including k-Nearest Neighbors (kNN) [39], Logistic
Regression (LR) [50], and Decision Trees (DT) [51], with

694    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Type Description Complexity #Features
IO Dependency on Block IO count / Bytes of (RAW / WAR / RAR / WAW) IO O(logn) 8

IO Statistics IO count / Bytes / Size / Bps of (R / W / RW) IO O(1) 11
Working Set Size (WSS) WSS of (R / W / RAW / WAR / RAR / WAW) IO O(logn) 6

IO Offset Statistics Var / CoV of (RW) IO O(1) 2
Entropy of (R / W / RAW / WAR / RAR / WAW) IO O(logn) 6

Access on LBA Head Region IO count / Bytes on first (100M / 1G) of (R / W) IO O(1) 8

Table 3: Feature engineering of DeftPunk. In the second column “Description”, the bold text separated by slashes (“/”) represents different
metrics, while the parts within parentheses separated by slashes represent different IO types. For example, the meaning of the first row is to
calculate the IO count and Bytes for each of the four IO types: RAW (Read-After-Write), WAR, RAR, and WAW. Therefore, there are a total of
2⇥4 = 8 features. R, W and RW IO refers to read, write, and read-write, respectively.. Var: variance; WSS: working set size; CoV: coefficient
of variance.

Layer Model Precsion Recall F1-score

Layer-1
KNN 73.1 82.5 77.5
LR 32.7 91.1 48.1
DT 87.5 95.9 91.5

Layer-2

RF 96.2 97.6 96.9
lightGBM 95.1 97.1 96.1
CatBoost 95.4 98.5 96.9
XGBoost 95.8 98.6 97.1

Table 4: Two-tier model selection. KNN: k-nearest neighbors; LR:
logistic regression; DT: decision tree; RF: random forest.

the results depicted in Table 4. We choose the Decision Tree
(DT) as the classifier for layer-1 as it achieves the highest
recall (95.9%).

Layer-2: Accurate Double Check. Suspected cases from
layer-1 are passed to the layer-2, which employs computation-
ally expensive features that can better distinguish between
ransomware and normal behavior. Here, we add all the fea-
tures mentioned in Table 3 to the model, and similar to layer-1,
we test the performance of four commonly-used complex clas-
sifiers, including Random Forest (RF) [36], LightGBM [44],
CatBoost [52], and XGBoost [38], with the results presented
in Table 4. The results indicate that XGBoost achieves the
highest F1-score (97.1%) and thus is chosen as our layer-2
classifier. Our further experiments in §6.6 demonstrate that
the two-layer model maintains the same detection perfor-
mance as single-layer model but with much less computation
needed.

5.4 Creating Snapshots
Once an attack is detected, DeftPunk generates a pair of
snapshots, called pre-/post-attack snapshots. The goal is to
“lock in” the effects of the ransomware to make sure all data
modification during the period are recorded and recoverable.
Then, inspired by the “undo-redo” mechanism in database,
DeftPunk reverts all the LBAs modified by the ransomware.
We also employ another rule-based model to identify the
LBAs modified by the user and redo them.

Creating pre-attack snapshot. Once notified by the two-

Pre-
Snapshot

!! !" !# !$ !% !& !' !( !)

Pre-attack During-attack Post-attack

Detected End User-aware

…

User-issued
Recovery

Post-
Snapshot

① ② ③

Figure 8: DeftPunk’s timeline for lossless data recovery.

layer classifier, the snapshot worker checkpoints the In-
dexMap and data of the VD at the time of beginning of the
labeled batch window. This is enabled by the multi-version
nature of LSBD, which allows the snapshot worker work back-
wards as long as the previous changes have not been garbage
collected. This is guaranteed by setting up the length of a
sample to be 1 minute and configuring the GC to only collect
stale data that are at least older than 30 minutes. Meanwhile,
we also pause the GC on this VD.

Creating post-attack snapshot. Generating the post-attack
snapshot is different. As a ransomware attack might be longer
than a single sample, DeftPunk waits until the two-layer clas-
sifier labels an incoming as negative. Then, the snapshot
worker creates a post-attack snapshot at the end of last la-
beled sample and resume GC. In addition, we also record all
the writes, including data and LBA, between two snapshots
as a write log. Note that the writes between pre-snapshot
and detection time can be obtained due to the multi-version
support. Plus, the modifications after the detection time can
be recorded as we have paused the GC. Finally, we compare
the IndexMaps between the two snapshots to only keep data
pre-snapshot that are modified during the attack and drop
others for space efficiency.

5.5 Data Recovery
To this end, we have acquired three pieces of data, including
a pre-attack snapshot (i.e., data, LBA and versions at t3 in
Figure 8), a post-attack snapshot (i.e., LBA and versions at
t8), and a write log (i.e., data and LBA between t1 and t5).
Now, DeftPunk follows three steps to recover the data.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    695



!! "" !# !$ "% !&!' ···

LBA-1
LBA-2
LBA-3
LBA-4

Ransomware-Write User-Write

LBA-5

Figure 9: Five cases of LBA data recovery by DeftPunk.

Identifying the tainted LBAs. Once the user has been no-
tified of the ransomware attack, they can initiate the request
for data recovery. DeftPunk would first check if the LBAs
listed in the post-attack snapshot are modified by the users
after the attack. DeftPunk would not try to recover data from
such LBAs as they are deemed valid by the users (i.e., LBA-1
and LBA-5 in Figure 9).

Undo. Executing undo is straightforward. DeftPunk would
revert all involved LBAs (i.e., only modified during the attack
but not after) to the version of the pre-attack snapshot.

Redo. Ransomware usually skips files that are already opened
(e.g., LBA-2) for writes or kills the user’s writing process
(e.g., LBA-1) to ensure data integrity of the encrypted files.
Still, it is possible that the user’s IO exists in the tainted LBAs
such as LBA-3 (i.e., user overwrites encrypted LBA block)
and LBA-4 (i.e., user’s writing is not immediately stopped).

To avoid data loss, DeftPunk needs to redo these users’
IOs. First, DeftPunk employs a rule-based model, which
checks the in-place write-after-read (WAR) patterns, to deter-
mine whether an IO is indeed modified by the ransomware.
Note that, in this case, simply checking the WAR pattern can
effectively single out the ransomware IOs because these LBAs
have already been filtered by the two-layer model. In other
words, the chance of a user’s IO coincidentally matching the
ransomware’s IO pattern is extremely low. We further discuss
how to handle such a corner case in §5.6. Then, DeftPunk
would drop the tainted IOs and apply the normal ones in order.

5.6 Corner cases.

Missing the start/end. The ransomware might start or end
right around the 10-second sliding window splitting. Hence,
a few IOs made by the ransomware might evade the two-layer
model checking and taint the users data. In this case, we
further include IOs from one more sample before and after
the labeled sample to the write log to avoid data loss.

Mislabeled writes. During the attack, the users might co-
incidentally write to the LBAs with the similar pattern as
the ransomware, e.g., encrypting or rewrite the files. Con-
sequently, the rule-based model may incorrectly mark the
behaviors as ransomware and revert them. Note that experi-
encing this type of mislabeling is rather unlikely in practice.

This is because all known ransomware would choose to ter-
minate the user’s writing process targeting the same LBAs or
simply avoid these addresses (i.e., files) to ensure the integrity
of ransomed data. So far, we have not observed any such
cases in the field.

Nevertheless, we employ a manual checking process if the
user is unsatisfied with the automatic undo and redo. We
provide the users with a tool to associate files to LBAs. Then,
for the files (and their corresponding LBAs) that are mistak-
enly reverted, the users can choose to drop/apply the writes
on an individual basis. Note that simply using this tool and
asking the users to manually check all the LBAs would be
impractical given the sheer volume of IOs during runtime.
Data inconsistency. DeftPunk is a block-level solution and
hence does not provide file/application-level consistency guar-
antees. It is possible that recovery process can lead to data
inconsistency. For example, applying a user’s overwrites on
the encrypted data may result in a corrupted file (i.e., LBA-3).
To resolve this, restoring to the pre-attack snapshot guaran-
tees a clean start. In addition, users can again use our manual
checking tool for a finer control of what IOs to apply or drop
on tainted LBAs.
Multiple attacks. As the data recovery is only triggered by
the user after the notification, it is rare but still possible that
the same LBAs have been attacked multiple times. Now, we
further discuss the case of two consecutive attacks. The anal-
ysis and solution shall apply to the case of multiple attacks
(e.g., three or more). Depending on the distance between the
two attacks, we can have the following cases:
• One pair of snapshots. When the the second attack closely

follows the first one (i.e., within 2 samples), DeftPunk
would treat the two as a single attack as the post-attack
snapshot would include an extra sample (see corner case 1).
Then, DeftPunk performs data recovery as usual. If there
is a user’s IO between the two attacks, DeftPunk can use
the rule-base model to check and only redo user’s IOs.

• Two pairs of snapshots. If the two attacks are far apart (e.g.,
one day away), DeftPunk creates a pair of snapshots for
each attack. Then, DeftPunk performs data recovery on
each attack separately in time order. In this case, the user’s
IOs between the two attacks would not be affected as the
two are treated as independent attacks.

5.7 Runtime Modes
To avoid mislabeling, DeftPunk runs in a per-batch mode
in the field. Specifically, a batch is 10-minute long and thus
includes 60 10-second records. DeftPunk labels a batch as
positive as long as one sample has been flagged.

Further, users can enable/disable Deftpunk on a Viritual
Disk (VD) basis. For example, if a user has mounted multiple
VDs, the user can choose to only protect important VDs
(e.g., data drives) with Deftpunk but not ones for caching.
In addition, we initially allowed system administrators to
use only a part of the feature set or just Layer-1 of the two-

696    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



App. #Batch #IO(1e5) App. #Batch #IO(1e5)
Prometheus 980 893.5 MongoDB 128 197.2

Storage 938 277.6 Postgress 100 48.4
MsSQL 921 459.2 Oracle 77 112.7
MySQL 900 949.6 RabbitMQ 55 82.1
WebAPP 739 159.5 ElasticSearch 40 32.2

Redis 435 70.1 etcd 29 7.4
MessageBus 370 90.6 influxDB 6 0.9

BigData 220 749.0 Kafka 5 18.1

Table 5: Negative samples in DeftPunk benchmark.

Config Content #Types

Ransom
family

loki [22], BeijingCrypt [19], makop [20]
Sodinokibi [25], babuk [12], VoidCrypt [15]
phobos [8], GlobeImposter [16]
wannacry [30], mallox [18]

13

OS
version

WinServer 64-bit 2016, 2019,
2022 (w/ and w/o container), CentOS 6

App. Copying, Massive Write, Massive Read,
ZIP CRYPT, MySQL 5

Table 6: Configurations of simulated ransomware attack.

layer model to achieve lightweight detection. However, we
later found that such a trade-off is not efficient as it leads
to a significant drop in detection performance with minor
reduction in overhead. We present an experiment on this in
§6.6. We recommend that users enable the full feature set and
adopt the complete two-layer model.

6 Evaluation
Our evaluations intend to answer the following questions:
• What is the composition of the benchmark? (§6.1)
• How does DeftPunk perform against other methods on a

per-sample basis? (§6.2)
• How does DeftPunk perform in zero-shot scenario? (§6.3)
• How does DeftPunk perform in per-batch setup? (§6.4)
• Does the feature engineering work? (§6.5)
• What is DeftPunk’s runtime overhead? (§6.6)
• How is DeftPunk in deployment? (§6.7)

6.1 Ransomware Benchmark
The dataset is composed of two parts:

Negative samples (normal IO). Benign samples consist of
I/O records from EBS virtual disks (VDs) running real-world
workloads from the field. Table 5 shows the types of work-
loads, the number of batches, and the volume of IO records.
Note that each batch refers a group of IO records of a VD
within a 10-minute span. Each IO record is quadruple, format-
ted as <timestamp, offset, length, operation>. To
generate negative samples, we reuse the sliding window
mechanism. Therefore, a 10-minute batch can generate 55
1-minute long negative samples. In total, we have gathered

nearly 2 million samples.

Postive samples (ransomed IO). We generate positive sam-
ples by simulating ransomware attacks atop the normal IOs.
Specifically, we follow a “ransomware-OS-application” con-
figuration to generate batches. For each configuration, as
shown in Table 6 we mix and match the ransomware families
(1 in 13), operating systems (1 in 6), and background appli-
cations (1 in 5). Each generated batch is around 10 minutes
long and we use the same sliding window methodology to
generate positive samples. Note that a ransomware attack
can be shorter than 10 minutes. Therefore, we also discard
samples that do not have any ransom activities (i.e., samples
before/after the ransomware in the generated batch). In total,
we have 52 thousands positive samples.

Metric. Ransomware detection is a typical binary classifier,
determining whether a sample is positive (i.e., ransomed)
or not. Therefore, we use precision (i.e., the proportion of
positive identifications that are actually correct), recall (i.e.,
the proportion of actual positives that are correctly identified),
and the F1-score (i.e., the harmonic mean of precision and
recall) for measurement.

6.2 Per-Sample Test

40
60
80

100

DeftPunk RanSAP SSD−insider++ WayBackVisor

Va
lu

e 
(%

)

Precision Recall F1−score

Figure 10: Overall performance of DeftPunk.

We compare DeftPunk with three other ransomware de-
tection methods including SSD-insider++ [35], WaybackVi-
sor [42] and RanSAP [40]. We split the dataset as 90% for
training and 10% for testing. We use 10-fold cross-validation
which means we train and test the models 10 times and each
time with a different 10% as test set.

We calculate the average recall, precision, and F1-score of
each candidate from the 10 tests. In Figure 10, we can observe
that DeftPunk clearly outperforms all others with a 98.6%
in recall, 95.8% in precision, and 97.1% in F1-score. This
validates the effectiveness of DeftPunk’s feature engineering
and two-layer model.

We further analyze the false positive/negative cases. First,
it is possible DeftPunk incorrectly flags normal IOs as ran-
somware activities (i.e., precision is not 100%). Normally
this is because users’ IOs exhibit the same write-after-read
patterns as ransomware activities, such as data encryption,
in-place compression, and format conversion (e.g., changing
a mp4 video file to a mkv one). DeftPunk alleviates this issue
by leveraging multiple patterns instead of just write-and-read
for detection. Still such coincidences may occur and lead
to the mislabeling. Note that having a few false positives

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    697



is acceptable. Recall that DeftPunk follows a detect-notify-
rollback process. Therefore, if DeftPunk mislabels normal
activities, the notified users can just ignore the alerts, and
inform us to delete these snapshots. No rollback would be
executed unless the users confirm an attack has occurred.

Second, it is possible DeftPunk misses some ransomware
activities (i.e., recall is not 100%). In the per-sample test,
the main reason is that the ransomware attack, which usually
lasts several minutes, can span multiple samples. Certain
samples (e.g., the very first or last one) may not contain
enough ransomware activities to be successfully identified,
thereby lowering the recall. Note that, in practice, DeftPunk
is deployed in a per-batch manner (i.e., 10-minute window),
where the recall is near 100% (see §6.4).

6.3 Zero-shot Detection Performance

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13
Ransomeware

Va
lu

e 
(%

)

Precision Recall F1−score

Figure 11: Zero-shot performance of DeftPunk.

Given that ransomware can be fast evolving, we further
measure DeftPunk’s detection performance on “unseen” ran-
somware. Each time, we remove one type of the 13 ran-
somware families from the training dataset but still keep
samples from that family in the testing set (i.e., zero-shot).

Figure 11 displays the results where each group of three
bars show the performance of a specific ransomware fam-
ily were removed from the training set. We can see that
DeftPunk is capable of effectively detecting most unseen
ransomware, maintaining at least 95% recall and 90% preci-
sion. This indicates that our feature engineering captures the
common characteristics of ransomware.

The only exception is Wannacry. Further analysis suggests
that Wannacry is intentionally slowing down its operation
(e.g., CPU utilization is below 25%, and disk throughput is
below 10%) to evade detection. Similar to the aforementioned
discussion on false negatives, the lower recall is caused by
the scant amount of ransomware activities in some samples
due to the intentionally diluted IOs. Note that such an evasion
strategy—while useful in the per-sample test—is not effective
in our deployment scenario (i.e., per-batch experiment, see
§6.4) for more details.

6.4 Per-Batch Experiment
Note that in the previous two experiments we calculate the
performance on a per-sample basis. While they validate the
overall designs of DeftPunk in a microbenchmark fashion,
DeftPunk in practice is deployed on a per-batch checking

40
60
80

100

DeftPunk RanSAP SSD−insider++ WayBackVisor

Va
lu

e 
(%

)

Precision Recall F1−score

(a) Overall performance

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13
Ransomeware

Va
lu

e 
(%

)

Precision Recall F1−score

(b) Zero-shot performance

Figure 12: Per-batch performance of DeftPunk.

basis (see §5.4). In other words, as long as one sample within
a 10-minute batch is marked as positive, the entire batch is
marked as positive. Note that per-batch testing is closer to
real-world setup due to the streaming of IOs.

In Figure 12, we rerun the experiments in §6.2 and §6.3
but with a per-batch basis. We can see that DeftPunk can
always achieve near 100% recall across all situations with a
minor (around 2% on average) decrease in precision. Surpris-
ingly, with per-batch detection, DeftPunk can even success-
fully identify Wannacry ransomware in zero-shot experiment
which intentionally dilutes its IO for evasion. On stark con-
trast, other methods while also have an increasing recall, can
experience considerable precision loss, yielding low practi-
cality (i.e., frequently issuing false alarms).

Obviously, compared to experiments in §6.2 and §6.3, the
precision and recall in per-batch experiments are much higher.
This is because the per-batch test reduces the chances of misla-
beling by taking multiple samples (i.e., 1 batch = 55 samples)
into consideration. Nevertheless, DeftPunk may still fail to
identify certain ransomware activities. One representative
case is the Babuk ransomware (i.e., the 12th in Figure 12(b)
being undetected in a VD with mostly text files. Further anal-
ysis reveals that Babuk is designed to not encrypt text files,
thus being latent (i.e., not encrypting files) and avoiding the
detection.)

6.5 Effectiveness of Features
Now, we measure the effectiveness of DeftPunk’s feature
engineering. Specifically, from only one type of features,
we add on another set of features and evaluate the overall
performance of DeftPunk on both per-sample and per-batch
basis. In Figure 13, we can see that DeftPunk’s performance
steadily increases with the addition of more features. This
validates the effectiveness of DeftPunk’s feature engineering.

6.6 Runtime Overhead
Monitoring and preprocessing in DeftPunk incur negligible
overhead as the IO Tracer only checks and packs the quadru-

698    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



70

80

90

100

Only Type 1 Add Type 2 Add Type 3 Add Type 4 Full
Added Features

Va
lu

e 
(%

)

Precision Recall F1−score

(a) Per-sample performance.

70

80

90

100

Only Type 1 Add Type 2 Add Type 3 Add Type 4 Full
Added Features

Va
lu

e 
(%

)

Precision Recall F1−score

(b) Per-batch performance.

Figure 13: Ablation study of DeftPunk’s feature engineering. In
the figure, the Type 1 features corresponds to all features associated
with the 1st row (IO Dependency on Block) in Table 3, with Type 2
through Type 4 following in a similar fashion.

Model Precision Recall F1-score Time (s)
Layer-1 Only 87.3% 95.9% 91.5% 3.72
Layer-2 Only 94.9% 98.6% 96.7% 56

DeftPunk 95.8% 98.6% 97.1% 4.85

Table 7: Comparison of DeftPunk v.s. Layer-1/2 only.

ple metadata in an asynchronous fashion (i.e., non-blocking).
For detection, we evaluate the speedup made by the two-

layer model by comparing it against the Layer-2 only model.
Table 7 shows that, on processing 1 million IOs with one
thread, the two-layer model only takes 4.85 seconds, yielding
a 11.5⇥ speedup over the Layer-2 only model. Including
the overhead for detection, as well as data processing and
transfer, we are able to process data at 140,000 IOPS using
a 2.7GHz vCPU, which means that on processing 1 million
IOs per second we need around 7 vCPUs.

We can enforce DeftPunk to run with only Layer-1 enabled
for lower overhead. In Table 7, we can see that, with only
first layer, DeftPunk can speed up 24.3% (i.e., from 4.85 to
3.72 seconds). However, both precision and recall decrease
significantly (e.g., from 95.8% to 87.3% in precision). By
weighing the trade-off between performance and speedup, we
believe the two-layer model is the best choice for DeftPunk.

For recovery, DeftPunk introduces additional storage
space because of the snapshots and write logs. For a typ-
ical 100GB VD under ransom attack, our experiments show
that the storage overhead is around 150MB on average, much
less than the periodical snapshots.

6.7 Deployment
Currently, we have deployed DeftPunk in our EBS service
for limited internal users. For each internal EBS cluster (host-
ing more than 30K VDs), we deploy one machine (8 vir-

tual CPU(2.7 GHz), 32 GiB Memory) to run DeftPunk’s
detection and recovery components. DeftPunk has already
successfully prevented two attacks with data fully recovered
within 240 minutes after internal users issued reports. We ex-
pect to release DeftPunk for public review in the near future.

7 Potential Limitations
7.1 EBS-specific Solution
The success to DeftPunk is based on two properties of AL-
IBABA EBS, the log-structured design and block-level IO
support. However, this does not mean DeftPunk can only
be applied to ALIBABA EBS. First, the log-structured de-
sign is widely adopted in many cloud storage systems (e.g.,
HDFS [55]) and file systems (e.g., F2FS [47]). Practitioners
can also leverage the multi-version support, snapshots and
GC pausing to secure a full-copy of data modifications dur-
ing attack. Second, block-level IO monitoring and analysis
can be achievable for cloud vendors and system administra-
tors. Moreover, with our open dataset and users’ own traces,
they can also train their own models to detect ransomware
activities following our feature engineering practice.

7.2 Effectiveness on Unknown Ransomware
In this paper, DeftPunk shows its effectiveness on 13 types
of well-known ransomware. There can be others that are not
covered or even still under development. However, we believe
this does not pose a great threat to DeftPunk’s validity. First,
the zero-shot experiments show that the features of DeftPunk
can generalize well to unseen types of ransomware. Second,
DeftPunk can be quickly adapted to new ransomware by
introducing new features and deployed to production systems
as it is a pure software solution.

7.3 Threats of Mimicry Attacks
The features of DeftPunk arise from the three ransomware IO
characteristics (i.e., Pattern 1-3 in §5.2.1). First, to encrypt,
ransomware exhibit unique in-place write-after-read LBA
patterns. Second, to quickly attack multiple files, ransomware
would touch many files and encrypt a small proportion in each
of them, yielding a wide range of sporadic LBA accessing.
Third, to increase the impacts, ransomware would especially
favor important areas (e.g., head region).

It is possible that future attackers may choose to evade
DeftPunk detection by avoiding the above behaviors in their
ransomware. However, we believe such efforts can be in-
effective or even against the interests of ransomware (i.e.,
becoming less stealthy or unprofitable). First, using different
access patterns (e.g., Wannacry slowdown) can still be caught
by DeftPunk even under zero-shot setup (see §6.4). More-
over, further slowing down the IOs can backfire as it takes
much longer time to finish file encryptions and can easily
alert the users. Additionally, countermeasures for this slow-
down attack in DeftPunk is straightforward—condensing the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    699



workloads (e.g., include a set of features to treat 10-minute
workloads as 1-minute ones).

Second, we have seen "pseudo-ransomware" (e.g., wiper-
ware [1]) choose not to encrypt but to directly destroy data
(e.g., filling zeroes), thereby not showing write-after-read pat-
terns (only writes, no read). But, they are no longer active as
few victims would pay the ransom and current ransomware
usually allows victims to decrypt a small proportion of data to
show validity. In addition, we notice certain early ransomware
(e.g., Gpcode.ak) do not follow in-place write-after-read but
to delete original files and create new ones with encryption.
However, they, too, soon have died out due to showing un-
usual patterns (i.e., frequent file deletion) and excessive IO
traffic (creating a mass amount of files), which can be easily
singled out and restored (e.g., PhotoRec for Gpcode.ak [23]).

Third, we can see that even if ransomware avoid Pattern
2 and 3 (i.e., "Only Type 1" in Figure 13), DeftPunk still
shows high recall (98.8%). But, by doing this, ransomware
would impact less files and/or target less important ones, thus
being unattractive to the attackers.

In other words, Patterns 1-3 persist across all 13 families
of ransomware are as a result of such patterns reflecting the
fundamental nature of ransomware, especially after gener-
ations of evolutions. Admittedly, future attacks may evade
detection in a different fashion or combine multiple strategies
together. For example, ransomware can encrypt a selected set
of important files with a more “diluted” pattern to minimize
footprint.

To sum up, two lessons we have drawn from the above
analysis are: (1) Closely monitoring the latest development.
Propagation of new ransomware, while fast, still takes time
to spread, which renders a window for us to analyze. (2)
Building adaptive solutions. The security "arms race" is often
inevitable and never-ending. One important advantage of
DeftPunk is software-based and thus offers high flexibility,
which further enables us to quickly adapt to emerging threats.

8 Conclusion
In this paper, we revisit a pressing problem in data secu-
rity: defending against ransomware attacks. With a large-
scale study on the IO characteristics of ransomware, we iden-
tify a rich set of features and leverages the log-structured
multi-version properties to build DeftPunk, a block-level
ransomware detection and recovery system. Our extensive
evaluation shows that DeftPunk can achieve nearly 100%
recall with 95.8% precision with minor overhead.

Acknowledgments
The authors would like to thank our shepherd Prof. George
Amvrosiadis and anonymous reviewers for their meticulous
reviews. We are also grateful for the support from the EBS
team, and feedbacks by Amber Bi, Keely Xu, and Qingke X.F.
on early drafts of this paper. This research was partly sup-
ported by Alibaba ARF/AIR program and NSFC(62102424).

References
[1] NotPetya Technical Analysis by LogRhythm

Labs. https://gallery.logrhythm.com/

threat-intelligence-reports/notpetya-

technical-analysis-logrhythm-labs-threat-

intelligence-report.pdf, 2017.
[2] 2022 Cloud (In)Security Report. https://www.

zscaler.com/blogs/security-research/2022-

cloud-security-report, 2022.
[3] AWS Backup Anomaly Detection for Amazon EBS

Volumes. https://aws.amazon.com/cn/blogs/

storage/aws-backup-anomaly-detection-for-

amazon-ebs-volumes/, 2022.
[4] Storage Anti-Ransom Solution. https:

//e.huawei.com/cn/solutions/storage/

oceanprotect/ransomware, 2022.
[5] 2023 Ransomware Trends Report. https://www.

veeam.com/ransomware-trends-report-2023,
2023.

[6] 2023 State of the Cloud Report. https:

//info.flexera.com/CM-REPORT-State-of-

the-Cloud?lead_source=Website%20Visitor&

id=Flexera.com-PR, 2023.
[7] 2023 ThreatLabz State of Ransomware. https://info.

zscaler.com/resources-industry-reports-

2023-threatlabz-ransomware-report-old, 2023.
[8] A deep dive into Phobos ransomware. https:

//www.malwarebytes.com/blog/news/2019/07/a-

deep-dive-into-phobos-ransomware, 2023.
[9] AliCloud - Elastic Block Storage. https://www.

alibabacloud.com/zh/product/disk, 2023.
[10] Amazon Elastic Block Store. https://aws.amazon.

com/cn/ebs, 2023.
[11] Azure Disk Storage. https://azure.microsoft.

com/zh-cn/products/storage/disks, 2023.
[12] Babuk Ransomware: In-Depth Analysis, Detection, Mit-

igation, and Removal. https://www.sentinelone.

com/anthology/babuk/, 2023.
[13] Batched, Fileless, Highly Adversarial | Annual Report

on Cloud Ransomware Attacks in 2022. https://

developer.aliyun.com/article/1150967, 2023.
[14] Cloud Ransomware | Understanding And

Combating This Evolving Threat. https:

//www.sentinelone.com/cybersecurity-

101/cloud-ransomware-understanding-and-

combating-this-evolving-threat, 2023.
[15] Dark - VoidCrypt (.dark) ransomware virus

removal and decryption options. https:

//www.pcrisk.com/removal-guides/24606-

dark-voidcrypt-ransomware, 2023.

700    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://www.zscaler.com/blogs/security-research/2022-cloud-security-report
https://www.zscaler.com/blogs/security-research/2022-cloud-security-report
https://www.zscaler.com/blogs/security-research/2022-cloud-security-report
https://aws.amazon.com/cn/blogs/storage/aws-backup-anomaly-detection-for-amazon-ebs-volumes/
https://aws.amazon.com/cn/blogs/storage/aws-backup-anomaly-detection-for-amazon-ebs-volumes/
https://aws.amazon.com/cn/blogs/storage/aws-backup-anomaly-detection-for-amazon-ebs-volumes/
https://e.huawei.com/cn/solutions/storage/oceanprotect/ransomware
https://e.huawei.com/cn/solutions/storage/oceanprotect/ransomware
https://e.huawei.com/cn/solutions/storage/oceanprotect/ransomware
https://www.veeam.com/ransomware-trends-report-2023
https://www.veeam.com/ransomware-trends-report-2023
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Flexera.com-PR
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Flexera.com-PR
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Flexera.com-PR
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Website%20Visitor&id=Flexera.com-PR
https://info.zscaler.com/resources-industry-reports-2023-threatlabz-ransomware-report-old
https://info.zscaler.com/resources-industry-reports-2023-threatlabz-ransomware-report-old
https://info.zscaler.com/resources-industry-reports-2023-threatlabz-ransomware-report-old
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://www.alibabacloud.com/zh/product/disk
https://www.alibabacloud.com/zh/product/disk
https://aws.amazon.com/cn/ebs
https://aws.amazon.com/cn/ebs
https://azure.microsoft.com/zh-cn/products/storage/disks
https://azure.microsoft.com/zh-cn/products/storage/disks
https://www.sentinelone.com/anthology/babuk/
https://www.sentinelone.com/anthology/babuk/
https://developer.aliyun.com/article/1150967
https://developer.aliyun.com/article/1150967
https://www.sentinelone.com/cybersecurity-101/cloud-ransomware-understanding-and-combating-this-evolving-threat
https://www.sentinelone.com/cybersecurity-101/cloud-ransomware-understanding-and-combating-this-evolving-threat
https://www.sentinelone.com/cybersecurity-101/cloud-ransomware-understanding-and-combating-this-evolving-threat
https://www.sentinelone.com/cybersecurity-101/cloud-ransomware-understanding-and-combating-this-evolving-threat
https://www.pcrisk.com/removal-guides/24606-dark-voidcrypt-ransomware
https://www.pcrisk.com/removal-guides/24606-dark-voidcrypt-ransomware
https://www.pcrisk.com/removal-guides/24606-dark-voidcrypt-ransomware


[16] GlobeImposter. https://malpedia.caad.fkie.

fraunhofer.de/details/win.globeimposter,
2023.

[17] Google Cloud - Persistent Disk. https://cloud.

google.com/persistent-disk?hl=zh-CN, 2023.

[18] How to eliminate the Mallox ransomware from a
computer? https://www.malwarebytes.com/

blog/news/2019/07/a-deep-dive-into-phobos-

ransomware, 2023.

[19] How to remove Beijing ransomware. https:

//www.pcrisk.com/removal-guides/19222-

beijing-ransomware, 2023.

[20] How to remove Makop ransomware and prevent fur-
ther file encryption? https://www.pcrisk.com/

removal-guides/16848-makop-ransomware, 2023.

[21] Kaspersky Anti-Ransomware Tool. https://www.

kaspersky.com.cn/, 2023.

[22] Loki Locker (.Loki or .Rainman) ransomware
virus - removal and decryption options. https:

//www.pcrisk.com/removal-guides/21572-loki-

locker-ransomware, 2023.

[23] PhotoRec. https://www.cgsecurity.org/wiki/

PhotoRec, 2023.

[24] Ransomware Protection Solutions. https:

//www.fortinet.com/solutions/enterprise-

midsize-business/ransomware-protection,
2023.

[25] REvil / Sodinokibi: The Crown Prince of Ransomware.
https://www.cybereason.com/blog/research/

the-sodinokibi-ransomware-attack, 2023.

[26] Securing Your Amazon Web Services Cloud Environ-
ment Against Ransomware. https://aws.amazon.

com/cn/campaigns/disaster-recovery-form/,
2023.

[27] The state of ransomware 2023. https://www.sophos.
com/en-us/content/state-of-ransomware, 2023.

[28] The 2023 Global Ransomware Report. https:

//www.fortinet.com/content/dam/fortinet/

assets/reports/report-2023-ransomware-

global-research.pdf, 2023.

[29] The 2023 SpyCloud Ransomware Defense Re-
port. https://spycloud.com/resource/2023-

ransomware-defense-report/, 2023.

[30] WannaCry ransomware attack. https://en.

wikipedia.org/wiki/WannaCry_ransomware_

attack, 2023.

[31] Windows Defender. https://www.microsoft.com/

en-us/windows/comprehensive-security, 2023.

[32] H. Abdi. Coefficient of variation. Encyclopedia of
research design, 1(5), 2010.

[33] M. M. Ahmadian, H. R. Shahriari, and S. M. Ghaffarian.
Connection-monitor & connection-breaker: A novel
approach for prevention and detection of high survivable
ransomwares. In 2015 12th International iranian society
of cryptology conference on information security and
cryptology (ISCISC), pages 79–84. IEEE, 2015.

[34] S. Baek, Y. Jung, A. Mohaisen, S. Lee, and D. Nyang.
SSD-insider: Internal defense of solid-state drive against
ransomware with perfect data recovery. In 2018
IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 875–884, 2018.

[35] S. Baek, Y. Jung, D. Mohaisen, S. Lee, and D. Nyang.
SSD-assisted ransomware detection and data recovery
techniques. IEEE Transactions on Computers (ToC),
70(10):1762–1776, 2020.

[36] M. Belgiu and L. Drăguţ. Random forest in remote
sensing: A review of applications and future directions.
ISPRS journal of photogrammetry and remote sensing,
114:24–31, 2016.

[37] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, et al. Windows Azure Storage: A Highly
Available Cloud Storage Service with Strong Con-
sistency. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP),
pages 143–157, 2011.

[38] T. Chen and C. Guestrin. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and
data mining (KDD), pages 785–794, 2016.

[39] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer. Knn
model-based approach in classification. In On The
Move to Meaningful Internet Systems (CoopIS), pages
986–996, 2003.

[40] M. Hirano, R. Hodota, and R. Kobayashi. RanSAP:
An open dataset of ransomware storage access patterns
for training machine learning models. Forensic Science
International: Digital Investigation, 40:301314, 2022.

[41] M. Hirano and R. Kobayashi. Machine learning based
ransomware detection using storage access patterns ob-
tained from live-forensic hypervisor. In 2019 sixth
international conference on internet of things: Systems,
Management and security (IOTSMS), pages 1–6. IEEE,
2019.

[42] M. Hirano, T. Tsuzuki, S. Ikeda, N. Taka, K. Fujiwara,
and R. Kobayashi. WaybackVisor: Hypervisor-based
scalable live forensic architecture for timeline analysis.
In Security, Privacy, and Anonymity in Computation,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    701

https://malpedia.caad.fkie.fraunhofer.de/details/win.globeimposter
https://malpedia.caad.fkie.fraunhofer.de/details/win.globeimposter
https://cloud.google.com/persistent-disk?hl=zh-CN
https://cloud.google.com/persistent-disk?hl=zh-CN
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://www.pcrisk.com/removal-guides/19222-beijing-ransomware
https://www.pcrisk.com/removal-guides/19222-beijing-ransomware
https://www.pcrisk.com/removal-guides/19222-beijing-ransomware
https://www.pcrisk.com/removal-guides/16848-makop-ransomware
https://www.pcrisk.com/removal-guides/16848-makop-ransomware
https://www.kaspersky.com.cn/
https://www.kaspersky.com.cn/
https://www.pcrisk.com/removal-guides/21572-loki-locker-ransomware
https://www.pcrisk.com/removal-guides/21572-loki-locker-ransomware
https://www.pcrisk.com/removal-guides/21572-loki-locker-ransomware
https://www.cgsecurity.org/wiki/PhotoRec
https://www.cgsecurity.org/wiki/PhotoRec
https://www.fortinet.com/solutions/enterprise-midsize-business/ransomware-protection
https://www.fortinet.com/solutions/enterprise-midsize-business/ransomware-protection
https://www.fortinet.com/solutions/enterprise-midsize-business/ransomware-protection
https://www.cybereason.com/blog/research/the-sodinokibi-ransomware-attack
https://www.cybereason.com/blog/research/the-sodinokibi-ransomware-attack
https://aws.amazon.com/cn/campaigns/disaster-recovery-form/
https://aws.amazon.com/cn/campaigns/disaster-recovery-form/
https://www.sophos.com/en-us/content/state-of-ransomware
https://www.sophos.com/en-us/content/state-of-ransomware
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-global-research.pdf
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-global-research.pdf
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-global-research.pdf
https://www.fortinet.com/content/dam/fortinet/assets/reports/report-2023-ransomware-global-research.pdf
https://spycloud.com/resource/2023-ransomware-defense-report/
https://spycloud.com/resource/2023-ransomware-defense-report/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://www.microsoft.com/en-us/windows/comprehensive-security
https://www.microsoft.com/en-us/windows/comprehensive-security


Communication, and Storage (SpaCCS), pages 219–
230, 2017.

[43] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi.
FlashGuard: Leveraging intrinsic flash properties to de-
fend against encryption ransomware. In Proceedings
of the 2017 ACM SIGSAC conference on computer
and communications security (CCS), pages 2231–2244,
2017.

[44] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural
information processing systems (NIPS), 30, 2017.

[45] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and
E. Kirda. UNVEIL: A Large-Scale, Automated Ap-
proach to Detecting Ransomware. In 25th USENIX
security symposium (USENIX Security), pages 757–
772, 2016.

[46] A. Kharraz and E. Kirda. Redemption: Real-time pro-
tection against ransomware at end-hosts. In Research in
Attacks, Intrusions, and Defenses (RAID 2017), pages
98–119, 2017.

[47] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new file
system for flash storage. In 13th USENIX Conference
on File and Storage Technologies (FAST), pages 273–
286, 2015.

[48] Q. Li, Q. Xiang, Y. Wang, H. Song, R. Wen, W. Yao,
Y. Dong, S. Zhao, S. Huang, Z. Zhu, et al. More Than
Capacity: Performance-oriented Evolution of Pangu
in Alibaba. In 21st USENIX Conference on File and
Storage Technologies (FAST), pages 331–346, 2023.

[49] M. K. McKusick and S. Quinlan. GFS: Evolution on
Fast-forward: A discussion between Kirk McKusick
and Sean Quinlan about the origin and evolution of the
Google File System. Queue, 7(7):10–20, 2009.

[50] S. Menard. Applied logistic regression analysis. Num-
ber 106. Sage, 2002.

[51] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody,
and S. D. Brown. An introduction to decision tree
modeling. Journal of Chemometrics: A Journal of the
Chemometrics Society, 18(6):275–285, 2004.

[52] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Doro-
gush, and A. Gulin. CatBoost: unbiased boosting with
categorical features. Advances in neural information
processing systems (NIPS), 31, 2018.

[53] B. Reidys, P. Liu, and J. Huang. RSSD: Defend against
ransomware with hardware-isolated network-storage
codesign and post-attack analysis. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 726–739, 2022.

[54] N. Scaife, H. Carter, P. Traynor, and K. R. Butler. Cryp-
tolock (and drop it): stopping ransomware attacks on
user data. In 2016 IEEE 36th international conference
on distributed computing systems (ICDCS), pages 303–
312, 2016.

[55] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In 2010 IEEE 26th
symposium on mass storage systems and technologies
(MSST), pages 1–10, 2010.

[56] A. Wehrl. General properties of entropy. Reviews of
Modern Physics, 50(2):221, 1978.

[57] C.-Y. Yang and R. Sahita. Towards a Resilient Machine
Learning Classifier–a Case Study of Ransomware De-
tection. arXiv preprint arXiv:2003.06428, 2020.

702    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association


	Introduction
	Background
	EBS in Alibaba Cloud
	Ransomware

	Motivation and Related Work
	Goals, Opportunities and Challenges
	Design Goals
	Opportunities
	A Preliminary Exploration
	Challenges

	DeftPunk Design
	Overview
	Feature Engineering
	Characterizing IO Behavior
	DeftPunk Feature Engineering

	Two-layer Model
	Creating Snapshots
	Data Recovery
	Corner cases.
	Runtime Modes

	Evaluation
	Ransomware Benchmark
	Per-Sample Test
	Zero-shot Detection Performance
	Per-Batch Experiment
	Effectiveness of Features
	Runtime Overhead
	Deployment

	Potential Limitations
	EBS-specific Solution
	Effectiveness on Unknown Ransomware
	Threats of Mimicry Attacks

	Conclusion

