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Abstract
Obtaining high-performance tensor programs with high ef-

ficiency continues to be a substantial challenge. Approaches
that favor efficiency typically limit their exploration space
through heuristic constraints, which often lack generalizabil-
ity. Conversely, approaches targeting high performance tend
to create an expansive exploration space but employ ineffec-
tive exploration strategies.

We propose a tensor program generation framework for
deep learning applications. Its core idea involves maintaining
an expansive space to ensure high performance while perform-
ing powerful exploration with the help of language models to
generate tensor programs efficiently. We thus transform the
tensor program exploration task into a language model gener-
ation task. To facilitate this, we explicitly design the language
model-friendly tensor language that records decision infor-
mation to represent tensor programs. During the compilation
of target workloads, the tensor language model (TLM) com-
bines knowledge from offline learning and previously made
decisions to probabilistically sample the best decision in the
current decision space. This approach allows more informed
space exploration than random sampling commonly used in
previously proposed approaches.

Experimental results indicate that TLM excels in deliv-
ering both efficiency and performance. Compared to fully
tuned Ansor/MetaSchedule, TLM matches their performance
with a compilation speedup of 61×. Furthermore, when
evaluated against Roller, with the same compilation time,
TLM improves the performance by 2.25×. Code available at
https://github.com/zhaiyi000/tlm.

1 Introduction

As deep learning rapidly grows in both scale and complexity,
the gap between the computational needs of deep learning
workloads and the capabilities of existing computing plat-
forms is widening. This gap underscores the imperative for
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Figure 1: The left shows the architecture of common tensor
compilers, while the right illustrates the structure incorporat-
ing our tensor program generation framework.

low-latency execution of deep learning workloads. Solutions
for low-latency execution primarily include kernel libraries
provided by vendors (e.g., cuDNN [1], oneDNN [2]) and
search-based tensor compilers (e.g., TVM [3], Halide [4],
Tensor comprehensions [5], Flextensor [6], NeoCPU [7]). Ex-
isting deep learning frameworks (e.g., TensorFlow [8], Py-
Torch [9], and MXNet [10]) map the operators (e.g., con-
volution, matrix multiplication) in deep learning workloads
to vendor-provided kernel libraries to optimize performance.
Given the high development costs of vendor-provided ker-
nel libraries, developers are increasingly turning to tensor
compilers to auto-explore for tensor programs, i.e., optimized,
low-level implementations of operators.

The left of Figure 1 shows that a tensor compiler can be
divided into three parts: a graph processor (e.g., Relay [11],
HLO), a tensor program exploration framework (e.g., Au-
toTVM [12], Ansor [13], MetaSchedule [14], AKG [15]), and
a code generator (e.g., LLVM [16], NVCC [17]). The graph
processor is responsible for converting various deep learning
workloads of different formats (e.g., ONNX [18], TensorFlow
PB) into a unified graph representation, performing graph op-
timizations, and splitting the workloads into subgraphs. Then,
the tensor program exploration framework takes subgraphs
as inputs, which, after scheduling, are lowered into tensor
programs. Finally, a code generator is invoked to produce
executables explicitly tailored for the target hardware.

The tensor program exploration framework, in lowering
subgraphs to tensor programs, is tasked with making a se-
ries of critical decisions. These include determining the tiling
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sizes of loop axes, setting unroll steps, choosing computa-
tion locations for operators, strategizing on parallelization
and vectorization, and, particularly on GPUs, deciding thread
bindings. The options for each decision create a decision
space, and all decision combinations form the exploration
space. The primary objective of this exploration framework is
to find a decision combination that minimizes the execution
latency of the resulting tensor program.

Previous work either introduces heuristic constraints to
define or prune the exploration space, resulting in limited
performance or constructs an expansive exploration space but
employs less effective exploration strategies – for instance, the
random sampling used by Ansor [13] and MetaSchedule [14].
For a detailed literature review, please refer to section §2.1.

To address this challenge, we propose an approach to main-
tain an expansive exploration space while conducting more
powerful exploration – i.e., enabling language models to assist
in generating high-performance tensor programs. Specifically,
we present a generation-based tensor program exploration
framework, i.e., a tensor program generation framework, for
deep learning applications. The proposed framework consists
of two components, a space builder and a generator, as shown
in the right of Figure 1. The space builder is dedicated to
building an expansive tensor program exploration space, en-
suring high performance; meanwhile, the generator focuses
on efficiently generating high-performance tensor programs,
regardless of the exploration space’s magnitude. They func-
tion independently without mutual constraints, each focusing
solely on ensuring high performance and high efficiency.

Generating tensor program source code with language mod-
els naturally presents challenges. The length of tensor pro-
gram source codes often exceeds ten thousand tokens, and
these programs must adhere to strict syntactic rules. Crafting
such lengthy and syntactically valid tensor program source
codes is nearly unfeasible. Therefore, instead of aiming for
direct end-to-end generation source code, we utilize tensor
compilers for constructing tensor programs and leverage lan-
guage models to assist in decision-making. To facilitate this,
we explicitly design the language model-friendly tensor lan-
guage to represent tensor programs. A tensor language sen-
tence (abbreviated as tensor sentence) uniquely corresponds
to a tensor program by recording the input subgraph, hard-
ware specifications, and decision information of the tensor
program. Compared to tensor program source code, a tensor
sentence conveys the same semantics (i.e., both represent a
tensor program) but in a far more concise manner, capped at
no more than 1024 tokens. Building on the tensor language,
we draw on the training methods of ChatGPT [19] to develop
a language model, the tensor language model (TLM). We
utilize millions of tensor sentences and a select few demon-
stration sentences (corresponding to high-performance tensor
programs) to pre-train and fine-tune TLM in a supervised
manner. After that, during the compilation of target work-
loads, TLM combines knowledge from offline learning and

previous decisions to make probabilistic predictions for the
current decision space, resulting in more effective exploration
than random sampling.

It is noteworthy that, in contrast to methods like An-
sor/MetaSchedule that depend exclusively on online data,
TLM requires about 300K pieces of offline labeled data (i.e.,
tensor programs with measured execution latency) to select
demonstration sentences, requiring tens of hours to collect.
However, the labeled data for TLM is still significantly less
than that for TenSet [20] or TLP [21], which amounts to 8.6
million and requires several weeks to collect.

In this paper, we also refer to our proposed tensor program
generation framework as the TLM framework. The primary in-
novations of the TLM framework focus on the tensor language
and tensor language model. The supported decision spaces
are adapted from previous frameworks, which is largely an
engineering effort. The space builder currently supports deci-
sion spaces adapted from several previous search frameworks,
including Ansor, MetaSchedule, AKG, and AKG-MLIR.

We conducted extensive experiments to validate the high
efficiency and performance of the TLM framework, examin-
ing scenarios with various exploration budget points. Under
a limited budget, TLM’s performance matches that of An-
sor/MetaSchedule yet compiles 61× faster. While its com-
pilation time aligns with Roller, its performance is 2.25×
better. In ample exploration times, TLM’s compilation dura-
tion is consistent with Ansor and MetaSchedule, delivering a
performance boost of 1.08× and 1.04×, respectively.

In summary, this paper makes the following contributions:

• We design the language model-friendly tensor language
to represent tensor programs, bridging the gap between
tensor programs and language models.

• We develop a tensor language model that combines
knowledge from offline learning and previously made
decisions to probabilistically sample the best decision
in the current decision space, enabling more effective
space exploration.

• Experimental results show that TLM excels in delivering
both high efficiency and performance.

2 Background

2.1 Tensor Program Exploration Framework
In the development of tensor program exploration frame-
works, previous studies mainly employ search algorithms
to locate optimal tensor programs automatically. As a result,
the search-based tensor program exploration framework often
gets dubbed as the tensor program search framework, with its
exploration space used as the search space.

Earlier, the Halide auto-scheduler [4] aggressively prunes
the search space by evaluating incomplete programs; Au-
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toTVM and FlexTensor [6] employ predefined, manually writ-
ten templates to define their search space. These methodolo-
gies introduce constraints that limit the search space, thereby
missing out on many potent decision combinations and lead-
ing to suboptimal performance.

Subsequently, Ansor [13] and MetaSchedule [14] utilize
derivation rules to build an expansive search space, pushing
performance to state-of-the-art levels. However, this came
with a notably vexing issue — excessive compilation time.
In our experience, using Ansor to bring a BERT-base work-
load to convergence takes 21.6 hours on the NVIDIA V100
GPU; on the Intel i7-10510U CPU, it requires 13.1 hours.
The reason behind this is that Ansor/MetaSchedule utilizes a
strategy of random sampling followed by evaluation using a
learnable cost model. Until completing the random sampling
of all decision spaces, Ansor/MetaSchedule lowers subgraphs
to tensor programs and then extracts statistical features, in-
cluding computation, memory access, and arithmetic strength
for performance evaluation with the learnable cost model.
However, this strategy has three main issues:
• Random sampling represents a form of inefficient explo-

ration, with equal probabilities of sampling optimal or sub-
optimal decisions.

• The evaluation demonstrates hysteresis. Decisions made
during the initial sampling might lead to poor performance
but can only be ascertained when evaluating.

• The inadequacy of training data and the small parameter
size of the cost model weaken the model’s learning ability,
limiting its effectiveness in guiding the search algorithm.
Ansor/MetaSchedule relies exclusively on minimal online
data to train cost models. Moreover, their models are pri-
marily based on low-parameter machine learning or deep
learning models (e.g., XGBoost [22], MLP, LSTM).
More recent studies, Roller [23], TenSet [20], and TLP [21],

were proposed to address the issue of slow compilation. Roller
speeds up the compilation by aligning tensor shapes with the
properties of the hardware. However, in doing so, Roller ex-
periences a declining performance (§6.4.2), still due to the
generalizability of the heuristic constraint. TenSet and TLP
collect offline datasets before compiling the target workloads
to build a stronger cost model. While these approaches expe-
dite compilation, they exhibit two key shortcomings. Firstly,
they adopt the Ansor/MetaSchedule strategy of conducting
random sampling followed by evaluating with a cost model.
Moreover, they rely on 8.6 million pieces of labeled data.

An example. We illustrate an example to analyze the dif-
ferences between heuristic compilers, exemplified by Roller,
search-based frameworks like Ansor/MetaSchedule, and our
generation-based TLM framework from a probabilistic per-
spective. Consider a decision space, Di, with four valid deci-
sions. The optimal decision is d3, as depicted in Figure 2.

Heuristic compilers use heuristic constraints to eliminate
d1, d2, and d4. After this pruning, d3 has a 100% chance of
being sampled, reducing the search space and speeding up the

Figure 2: Example of probability distributions in a decision
space for several different methods.

compilation. However, such heuristics aren’t always accurate
and can sometimes degrade performance. In contrast, search-
based frameworks keep all decision options and sample one
decision randomly. Here, d3 has a 25% sampling probability.
Until all decision spaces are sampled, a learnable cost model
evaluates the results. After sufficient searching, search-based
frameworks can always approximate the optimal solution,
making them performance-oriented but inefficient methods.
Unlike search-based frameworks, TLM combines the knowl-
edge learned offline with the decisions already made to make
probabilistic predictions about the best decision in the current
decision space.

2.2 Language Model

Deep learning language models mainly fall into two cate-
gories: the Masked Language Model (MLM) and the Causal
Language Model (CLM), with CLM also known as the Au-
toregressive Language Model. Notable examples of CLM
include the GPT series, such as GPT-2 [24] and GPT-3 [25].
CLMs, recognized for their natural text generation method,
often excel in tasks that need coherent text creation, like writ-
ing or chatbot conversations. In this paper, a language model
refers specifically to a CLM.

Before training a language model, a vocabulary is created
through tokenization. Tokenization typically refers to frag-
menting an input sentence into its constituent tokens for sub-
sequent language analysis or as input to a model, with all such
tokens collectively forming a vocabulary. The steps ①② and
⑦⑧ in Figure 3 represent the processes of tokenizing a sen-
tence into tokens and converting tokens back into a sentence,
respectively. For simplicity in description, here we tokenize
by words (in practice, the process is more complex). The only
thing language models perform is to combine the learned
knowledge with the given input to predict the probability dis-
tribution of the next token being a specific one from the vocab-
ulary. The initial input is referred to as a prompt. During the
training of a language model, natural language sentences are
utilized as input. Through the backpropagation algorithm [26],
the language model’s parameters are iteratively updated to
maximize the probability that the next token generated aligns
with the corresponding token within the natural language.

Employing the language model for inference, take a real-
life instance as an example: we ask a language model, "What
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What is a language model? A language model...

LM

["What", "is", "a", "language", "model", "?"] "A"

[..., "is", "a", "languange", "model", "?", "A"] "language"

[..., "languange", "model", "?", "A", "language"] "model"
⋮

[..., "model", "?", "A", "language", "model" ...,] "</s>"

["What", "is", "a", "language", "model", "?", "A", "language", "model" …, "</s>"]

⑤

③

④

⑥

⑦

⑧

Input Next token

Prompt + Response

What is language model? A language model is a type of artificial intelligence that is trained to understand, generate, and respond to human language.

What is a language model?

["What", "is", "a", "language", "model", "?"] ②

①

Prompt

Figure 3: Employing a language model to generate a natural
language sentence.

is a language model?" and it responds, "A language model is
a type of artificial intelligence that is trained to understand,
generate, and respond to human language...". The generation
process is illustrated in Figure 3. In step ③, the language
model uses the prompt as input to predict a probability for
each token in the vocabulary. This probability signifies the
likelihood of each token logically following the input. The
next token is then sampled based on these probabilities. Step
④ involves using the prompt and the token generated in step ③
as input to sample the next token probabilistically, continuing
this process until the "</s>" token is generated. The ending
"</s>" signifies the end of a sentence.

2.3 ChatGPT/InstructGPT

ChatGPT [19] and InstructGPT [27] employ a similar training
methodology that encompasses: pre-training, SFT, and RLHF
(RM + RL). TLM partially adopts these training approaches.
The training process for InstructGPT includes:
Pre-training GPT-3. InstructGPT is based on GPT-3, which
boasts 175 billion parameters, leverages approximately 45TB
of Internet text for training, and necessitates a significant
amount of hardware resources throughout its training process,
with the aim of enabling GPT-3 to learn the fundamental struc-
tures and semantics of language.
Supervised fine-tuning (SFT). Training a supervised pol-
icy by collecting demonstration data (around 14K entries) to
fine-tune GPT-3 through supervised learning, with the demon-
stration data provided by humans representing the desired
output behavior corresponding to a prompt.
Reward modeling (RM). Training a reward model by col-
lecting comparison data (around 51K entries), wherein the
comparison data, also provided by humans, offers a ranking
of model outputs from best to worst.
Reinforcement learning (RL). Optimizing a policy against
the reward model using the PPO [28] reinforcement learning
algorithm, with rewards determined by the preceding reward
model, this step will be iterated multiple times.

Space building

Large-scale sampling

Exploration

space $

Subgraphs

Offline dataset

Tensor
language

Pre-training

Supervised 

fine-tuning

Tensor program

generation

Iterative 
optimization
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Figure 4: System overview of the TLM framework.

3 System Overview

The TLM framework is a tensor program generation frame-
work designed to generate high-performance tensor programs
efficiently. Maintaining a large exploration space can ensure
that high-performance tensor programs are not eliminated by
heuristic constraints. However, this requires stronger explo-
ration capabilities. Utilizing deep learning models to glean
knowledge from offline data for aiding online tensor program
exploration presents a promising strategy. Given the current
learning capabilities, language models are the most powerful
method available. Hence, we propose to leverage the language
model to assist in generating high-performance tensor pro-
grams, transforming the tensor program exploration task into
a language model generation task.

Figure 4 shows the system overview and marks the cor-
responding subsections that detail each system component.
Section 4 centers on collecting a large-scale offline dataset
necessary for the pre-training of TLM. Section 4.1 details
the exploration space for data sampling and its build process,
providing a theoretical foundation for tensor language de-
sign through formalization of the exploration space. Section
4.2 discusses tensor language design, emphasizing its role
in preserving tensor programs sampled from the exploration
space in a format more amenable to language models. Fol-
lowing the discussion of the sampling space and preservation
methods, Section 4.3 introduces large-scale sampling, where
extensive random sampling achieves an unbiased estimation
of the exploration space.

Section 5 focuses on the development of a tensor language
model. Initially, Section 5.1 addresses the model architecture,
training methods, and the training process of TLM, encom-
passing both pre-training and supervised fine-tuning. Upon
completing pre-training, TLM should be able to generate
any valid tensor program within the exploration space. Sec-
tion 5.2 then details how the TLM framework generates ten-
sor programs with decision-making support from TLM. For
generating high-performance tensor programs, we employ
demonstration data (corresponding to high-performance ten-
sor programs) to fine-tune TLM through supervised learning,
aligning the tensor sentences it generates with our anticipated
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Figure 5: Two intermediate representations of common tensor
compilers.

demonstration sentences. Section 5.3 discusses obtaining this
demonstration data via iterative algorithms.

4 Space Builder

The function of a space builder is to create a large exploration
space to ensure high performance. This exploration space
consists of all possible tensor programs. Regarding the idea
that a large exploration space can guarantee high performance,
two aspects need to be discussed. First, a larger space implies
that, in comparison to a smaller one, it is constructed with
fewer constraints, thus enabling the generation of more tensor
programs. To some extent, it can be said that the large space in-
cludes the smaller space. Second, ensuring high performance
means maintaining the potential for high-performance tensor
programs to exist within the exploration space. The larger the
space, the less likely it is to be pruned by constraints, but this
also demands greater exploration capabilities.

4.1 Exploration Space

In this section, we introduce two primary topics. The first is
about building the exploration space. The second involves
formalizing the tensor program generation process, providing
a theoretical basis for designing the tensor language.

Tensor compilers customarily extract two intermediate rep-
resentations (IRs) for optimization purposes, i.e., the graph
layer and the tensor layer, which are specifically tailored
for hardware-independent and hardware-dependent enhance-
ments, respectively. As depicted in Figure 5, the graph layer
ingests a workload, optimizing with several passes and em-
ploying algorithms for operator fusion and partitioning. Then,
it produces subgraphs, each consisting of one or more op-
erators. A subgraph describes the expected computational
results, whereas the tensor program exploration framework
transforms this subgraph into a tensor program, providing a
detailed computational implementation. The collective of all
possible tensor programs forms the exploration space S of the
tensor layer. Previous exploration frameworks utilize expert
knowledge, including templates (AutoTVM), the polyhedral
model (AKG), and derivation rules (Ansor, MetaSchedule), to
map subgraphs into tensor programs. For areas where expert

knowledge falls short, these frameworks use tunable parame-
ters (AutoTVM, AKG), annotations (Ansor), or random vari-
ables (MetaSchedule) to create a decision space Di and then
employ search algorithms, such as simulated annealing [29]
and genetic algorithm [30], to locate the optimal solution.

The decision spaces chiefly involve determining tiling sizes
for loop axes, setting unroll steps, selecting computation loca-
tions for operators, strategizing parallelization and vectoriza-
tion, and on GPUs, specifically determining thread bindings.

From the analysis above, tensor programs result from op-
timizing input subgraphs through a series of decisions. We
formalize the tensor layer’s exploration space as follows:

S =

{
s(n)

∣∣∣∣∣ s(i) = apply
(

s(i−1),di

)
,

∀di ∈ Di, 1 ≤ i ≤ n

}

where s(0) denotes the initial program of the input subgraph,
and di represents a random sample from the set Di. Thus,
the size of the exploration space aligns with the number of
decision combinations. We have:

|S|= |D1| × |D2| × . . . × |Dn|.

This work discusses only the exploration space of the tensor
layer. On a CPU, the exploration space size corresponding to
a subgraph is roughly 106; on a GPU, it approximates 109.

We reuse the decision space from previous work (e.g., An-
sor, MetaSchedule), as we think that this space is already
sufficiently large to yield high-performance tensor programs.
Expanding the exploration space of tensor layers to larger is a
considerable challenge. In future endeavors, we advocate ex-
ploring larger spaces mainly by integrating the decision space
of the graph layer. Certainly, the TLM framework supports
exploration spaces of varying sizes since they all integrate
with TLM in the same manner.

4.2 Tensor Language
In this section, we focus on how to store tensor programs
sampled from the exploration space.

Recall that our objective is to teach language models of
these tensor programs, enabling them to aid in generating
high-performance tensor programs during target workload
compilation. Tensor program source codes often exceed ten
thousand tokens, posing a challenge for language models
to generate such lengthy, coherent, and valid source codes.
Therefore, we do not pursue the end-to-end generation of ten-
sor program source codes. Instead, we utilize language mod-
els to assist in decision-making. To facilitate this, we explic-
itly design the language model-friendly tensor language that
records decision information to represent tensor programs.

As understood from Section 4.1, a tensor program s(n) per-
tains exclusively to the initial program s(0) of the input sub-
graph and decisions d1,d2, . . . ,dn. Each decision di is ran-
domly sampled from decision space Di, the design of which
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Algorithm 1: Sampling tensor sentences from deci-
sion spaces.

1 Func GenerateSampleData(subgraph, hardware):
2 tokens = []
3 ExtractTokensFromSubgraph(subgraph, tokens)
4 ExtractTokensFromHardware(hardware, tokens)
5 decision_spaces = DetermineDecisionSpaces(subgraph,

hardware)
6 foreach space in decision_spaces do
7 switch space.type do
8 case "tile_size" do
9 HandleTileSizeSpace(space, tokens)

10 case "unroll" do
11 HandleParallelSpace(space, tokens)

// Additional space types
12 case ... do
13 ...

14 return tokens

15 Func HandleTileSizeSpace(space, tokens):
16 tokens.append("split")
17 tokens.extend(Serialize(space.operator))
18 tokens.extend(Serialize(space.axis))
19 tiles = RandomSample(space)
20 tokens.extend(Serialize(tiles))

// Other properties

hinges on the hardware platform. Consequently, to ensure
that a tensor language sentence uniquely corresponds to a
tensor program, a tensor sentence must encapsulate the input
subgraph, hardware specifications, and decisions. We utilize
Algorithm 1 to sample data from the exploration spaces. Each
sentence extracts information from the input subgraph, en-
compassing the type and shape information of each operator
within the subgraph. Furthermore, it retrieves hardware de-
tails, including the number of processing cores and the sup-
ported vector instructions. Successively extracting informa-
tion from each decision space, Algorithm 1 demonstrates how
to extract tokens from the tile size decision space, conserv-
ing details such as the corresponding operator, axis, decision
space type, sampled decisions from the space, and other piv-
otal information. A similar method is applied to other decision
spaces as well.

Tensor language is a form of natural language, not a pro-
gramming language, and thus does not strictly follow the
Backus-Naur Form [31]. Its primary intent is to represent a
tensor program using a single sentence, emphasizing its role
in recording rather than programming. This recording process
offers significant flexibility, with only one constraint being
the consistency between tensor sentences collected offline
and generated online. Such consistency is essential for deep
learning models to ensure that training and testing data are
independently and identically distributed.

Given the flexibility of tensor language, there are no strict
guidelines on the exact details that need to be recorded about
input subgraphs, hardware specifications, and decision infor-

p0 p1 T_matmul_NT p2 T_add 00a059b856ac30ac172b6252254479a6 1024 1024 512 1024 1024 512
1024 512 llvm -keys=cpu -mcpu=core-avx2 -model=i7 4 64 64 0 0 0 0 0 2 SP 2 0 1024 32 1 4 1 SP 2 4 
512 8 1 4 1 SP 2 8 1024 1024 1 RE 2 0 4 1 5 8 2 6 9 3 7 FSP 4 0 0 2 FSP 4 3 1 2 RE 4 0 3 1 4 2 5 CA 2 4 3 PPT 
SPC 2 0 1024 32 1 4 1 SPC 2 4 512 8 1 4 1 SPC 2 8 1024 1024 1 CLS FU 4 0 1 2 3 AN 4 0 3 PRS 2 PR 2 0 
auto_unroll_max_step$0 VECS

fused nn dense add fast tanh float32 4 512 float32 512 512 float32 1 512 float32 4 512 llvm -keys=cpu 
-mcpu=core-avx2 -model=i7 -num-cores=4 GetBlock T_matmul_NT main b0 GetBlock T_add main b1 
GetBlock T_minimum main b2 GetBlock T_maximum main b3 GetBlock root main b4 ComputeInline b3 
ComputeInline b2 ComputeInline b1 Annotate b0 \"SSRSRS\" meta_schedule.tiling_structure GetLoops b0 l5 
l6 l7 SamplePerfectTile l5 4 64 v8 v9 v10 v11 Split l5 v8 v9 v10 v11 1 l12 l13 l14 l15 SamplePerfectTile l6 4 64 
v16 v17 v18 v19 Split l6 v16 v17 v18 v19 1 l20 l21 l22 l23 SamplePerfectTile l7 2 64 v24 v25 Split l7 v24 v25 1 
l26 l27 Reorder l12 l20 l13 l21 l26 l14 l22 l27 l15 l23 GetConsumers b0 b28 ReverseComputeAt b28 l20 1 -1 
Annotate b4 1 meta_schedule.parallel Annotate b4 64 meta_schedule.vectorize SampleCategorical 0 16 64 
512 0.25 0.25 0.25 0.25 v29 Annotate b4 v29 meta_schedule.unroll_explicit EnterPostproc 10 1 1 1 1 12 1 1 1 
1 14 1 1 21 1 PPT 10 1 1 4 1 12 8 4 2 8 14 512 1 21 0 Annotate b4 2 meta_schedule.parallel

Figure 6: Tensor sentence samples tailored for Ansor (top)
and MetaSchedule (bottom), encompassing input subgraph,
hardware specifications, and decision information. For ex-
ample, at the top, "SP 2 0 1024 32 1 4 1" represents "split
operator_index axis_index axis_extent tile_size_0 tile_size_1
tile_size_2 save_manner".

mation. Under the premise of maintaining consistency, these
details can be dynamically adjusted in conjunction with spe-
cific engineering projects. Figure 6 showcases tensor sentence
samples tailored for Ansor (top) and MetaSchedule (bottom).

4.3 Large-scale Sampling Tensor Sentences

This section introduces employing the sampling algorithm to
create a large-scale offline dataset.

Large-scale sampling serves two main purposes. Firstly, it
is to create an unbiased estimation of the exploration space S
through widespread random sampling, which allows TLM to
learn the basic structures and semantics of tensor language,
enabling TLM to generate any tensor sentence within space S.
Secondly, it is to build as large a vocabulary (§2.2) as possible,
where all decision options like "i.0=16" and "i.0=32" are
tokenized into discrete tokens. If a decision, such as "i.0=17",
is not in the vocabulary, it will never be generated.

The workload dataset configured for TLM takes cues from
TenSet. The workloads are derived from PyTorch’s Vision
Model Zoo and Huggingface’s Transformer Model Zoo, en-
compassing tasks emblematic of both computer vision (CV)
and natural language process (NLP). We adjust the input
shape to generate a variety of subgraphs. Note that we focus
on small batch sizes in this dataset because tensor compilers
are mainly used for optimizing trained models for inference.
Altogether, the dataset consists of 138 workloads, with 12
held out for testing; from the remaining approximately 3K
subgraphs are extracted.

We collect 2 million tensor sentences for 3K subgraphs to
pre-train TLM. It is worth noting that the 2 million data entries
are distinct from the 8.6 million used in TenSet/TLP. The data
here is unlabelled, i.e., it does not require measuring execution
latency; measurement is typically the most time-consuming
part. On a 96-core server, it takes about 2 hours to collect 2
million CPU data entries, and around 10 hours for the GPU.
This longer duration for GPU data is due to additional checks,
such as ensuring thread binding meets hardware constraints.
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5 Tensor Language Model

5.1 Model Details
Model architecture. Taking into account both learning ca-
pacity and resource overhead, TLM adopts the architecture of
GPT-2 Small, which encompasses approximately 100 million
parameters. TLM is composed of 12 Transformer layers, each
featuring 12 attention heads and 768 hidden units.

Training methodology. The TLM training is partially in-
spired by the training procedure utilized by ChatGPT, as in-
troduced in §2.3. To put it succinctly, we modify the for-
mula from 1× pre-training+ 1× SFT+ n× (RM+RL) to
1×pre-training+n× (measurement+SFT).

We substitute reward model (RM) with measurement. RM
allocates a reward value to the model output and evaluates
its quality. Here, tensor language has a natural advantage. A
tensor sentence can be converted into a tensor program (§5.2),
allowing its execution latency to be directly measured on
hardware, with a lower latency suggesting a better tensor sen-
tence. While ChatGPT only performs supervised fine-tuning
(SFT) once, we conduct it multiple times. The input for SFT
is demonstration data, provided by humans, symbolizing the
desired output behavior corresponding to a prompt. In the
NLP field, it’s hard to say which demonstration data is the
"best" for a prompt, but this is achievable in tensor language.
That is, the sentence with the lowest execution latency is the
"best" for its prompt. Performing measurement and SFT mul-
tiple times is consistently seeking the best tensor sentences
(§5.3). We abstained from using reinforcement learning (RL)
mainly because it requires adjusting various hyperparameters
and presents a training challenge to convergence, and we find
the performance was sufficiently good after performing SFT
multiple times.

Training details. The model resulting from pre-training is
termed TLM-base, and TLM is derived by performing SFT on
TLM-base. We pre-train TLM-base using the offline dataset
gathered in §4.3 in the same manner as pre-training other
language models. It is noteworthy that TLM-base converges
within just 2 epochs. This quicker convergence is due to the
more pronounced regularity in tensor language compared to
the broad diversity in natural languages. Among the 2 million
data entries, the input subgraph types, hardware types, and
decision types are all limited. Pre-training TLM-base for 2
epochs takes about 10 hours using 4 NVIDIA V100s.

Following its pre-training, TLM-base possesses the ability
to generate valid tensor sentences. Furthermore, for the input
subgraphs, we expect that TLM-base can aid in generating
high-performance tensor programs. To this end, we employ
demonstration data to fine-tune TLM-base through supervised
learning. Demonstration data refers to the tensor sentences
corresponding to a small subset of tensor programs with the
lowest execution latency for a given input subgraph. The pur-
pose of SFT of a language model with demonstration data
is to achieve that the model’s responses to prompts align

Algorithm 2: Generating tensor programs aided by
TLM in decision-making.

1 Func GenerateTensorProgram(subgraph, hardware):
2 tokens = []
3 ExtractTokensFromSubgraph(subgraph, tokens)
4 ExtractTokensFromHardware(hardware, tokens)
5 program = GetInitProgram(subgraph, hardware)
6 decision_spaces = DetermineDecisionSpaces(subgraph,

hardware)
7 foreach space in decision_spaces do
8 switch space.type do
9 case "tile_size" do

10 ApplyTileSize(space, tokens, program)

11 case "unroll" do
12 ApplyParallel(space, tokens, program)

// Additional space types
13 case ... do
14 ...

15 return program

16 Func ApplyTileSize(space, tokens, program):
17 tokens.append("split")
18 tokens.extend(Serialize(space.operator))
19 tokens.extend(Serialize(space.axis))
20 response_tokens = TLM(tokens)
21 tiles = ConvertTokensToTiles(response_tokens)
22 if not CheckValidTiles(space, tiles) then
23 raise Exception("Invalid Tensor Program")

24 tokens.extend(Serialize(tiles))
25 program.apply(space.operator, space.axis, tiles)

// Other properties

with the human intentions reflected in the demonstra-
tion data. Similarly, we apply demonstration data to TLM,
aiming to empower it to generate high-performance outputs,
in response to prompts. Performing SFT on TLM-base re-
quires a small batch (about 3K, selecting the best one for each
subgraph) of demonstration data. We employ iterative opti-
mization (§5.3) to continuously optimize these demonstration
entries. With 3K demonstration data, using 4 NVIDIA V100s
to perform SFT on TLM-base once takes approximately 10
minutes.

5.2 Tensor Program Generation

The TLM framework utilizes TLM for decision-making dur-
ing the tensor program generation process, as detailed in
Algorithm 2. The steps in Algorithm 2 align with those in
Algorithm 1, adhering to the consistency required for gen-
erating tensor sentences. After TLM generates a decision,
the framework checks its validity within the decision space.
If the decision is invalid, the framework discards the tensor
program and initiates regeneration. Since the decision is ob-
tained through sampling, the next generation might sample
a different decision, preventing continuous failure in regen-
eration. Fortunately, following pre-training and fine-tuning,
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... split i=1024 to i.0=32 i.1=1 i.2=4 split ...

TLM

[…, "split", "i=1024", "to"] "i.0=32"

[…, "i=1024", "to", "i.0=32"] "i.1=1"

[…, "to", "i.0=32", "i.1=1"] "i.2=4"

[…, "i.2=4", "split", "j=512", "to"] "j.0=8"

[…, "j=512", "to", "j.0=8"] "j.1=1"
⋮

[…, "to", "j.0=8", "j.1=1", …] "</s>"

[…, "split", "i=1024", "to", "i.0=32", "i.1=1", "i.2=4", "split", …, "</s>"]

①

②

③

④

⑤

⑥

⑦

⑧

Input Next token

Prompt + Response

Figure 7: Generating a tensor sentence for a matrix multi-
plication operator with dimensions m = 1024, n = 512, and
k = 1024, with the tiling size component depicted therein.

we observe that invalid decisions are exceedingly rare. On
average, generating a valid tensor program necessitates no
more than 1.1 calls to Algorithm 2.

Figure 7 illustrates the process of response_tokens =
TLM(tokens) in Algorithm 2 for a matrix multiplication oper-
ator with dimensions m = 1024, n = 512, and k = 1024, with
the tiling size component depicted therein. This tensor sen-
tence matches the one at the top of Figure 6 and is presented
here (with the operator’s index omitted) in a more human-
readable format. In Step ①, known information—including
input subgraph, hardware specifications, and "split i=1024 to"
(corresponds to m = 1024) — serves as the input prompt to
TLM. TLM then predicts the probability distribution of the
next token based on this prompt, subsequently choosing a
token, assumably "i.0=32", via probabilistic sampling from
the distribution. In Step ②, the prompt and the predicted next
token from Step ① are combined to formulate a new input
for TLM to forecast the next token. Steps ③ replicates Step
②. After completing the three steps, TLM finalizes tile sizes
for the i-axis and returns to Algorithm 2. When necessary to
generate tile sizes for the j-axis, TLM will be invoked again.
In Step ④, the input from Step ③, its predicted next token,
and "split j=512 to" (corresponding to n = 512) are merged
into a new input, which is then input into TLM to predict the
next token. TLM can but does not employ the input graph and
hardware specifications as a prompt to generate all decision
information in one go. Instead, the framework repeatedly in-
vokes TLM within Algorithm 2, generating only a subset of
decisions each time. This granular approach efficiently filters
out invalid data, enhancing TLM availability and stability.

5.3 Iterative Optimization

Fine-tuning TLM-base using demonstration sentences is cru-
cial for its operation. This section focuses on the methods for
acquiring a batch of demonstration data.

Throughout acquiring demonstration data, measurement is
the most time-consuming step and lies on the critical path,

Prompts 
( + 2

TLM ( + 2

TLM-base

Sentences
( + 2

Demonstration 
data $

DatabaseCandidates 
( + 2

Measure $ + 1 
in parallel Records (

SFT

To be 
measured

Measured

Prompts

TLM

TLM-base

Sentences

Demonstration 
data

DatabaseCandidates

Measure in 
parallel Records

SFT

To be 
measured

Measured

Prompts

Figure 8: Flowchart of the iterative optimization process.

acting as the bottleneck of the process. To address this, we
develop a pipeline system that executes the iterative optimiza-
tion algorithm for collecting demonstration data. This system
maximizes the utilization of the measurement hardware by
employing two separate processes: one for executing SFT
and another for measurement, with the former’s execution
time controlled to be shorter than the latter, ensuring continu-
ous measurement. When operating on GPUs, these processes
operate on separate GPU cards.

Figure 8 shows a flowchart of the iterative optimization
on the left and a flowchart incorporating a pipeline on the
right. We split (the text color matching that in Figure 8) all
subgraphs (with each subgraph corresponding to one prompt)
in the workload dataset into kb (e.g., 4) batches and then
cyclically select each batch. Upon the completion of the mea-
surement of batch i (referred to as records i), the optimal batch
of data is extracted from the database, noted as demonstration
data i, and employed to fine-tune TLM-base, yielding TLM
i+2. Subsequently, TLM i+2 is used to produce sentences
i+ 2 (one prompt produces kp (e.g., 16 or 32) sentences).
TLM 0 and TLM 1 are replaced by TLM-base.

There are several details worth noting:
• When splitting subgraphs, we sort them by subgraph type

(e.g., fused_nn_dense_add, fused_nn_conv2d_add_nn_relu,
and fused_nn_adaptive_avg_pool2d), selecting one every
kb, based on the rationale that a superior decision often also
has a certain optimizing effect on subgraphs of the same
type.

• Only when TLM can generate superior tensor sentences
can this iterative optimization algorithm operate normally.
So why can TLM generate more optimal data? From a
genetic perspective, when generating a sentence for a sub-
graph, TLM has already learned the demonstration data
corresponding to the current subgraph, as well as demon-
stration data from other subgraphs, thereby inheriting the
advantages of both itself and other subgraphs. When pro-
ducing the next token for a prompt, probability sampling is
used, which, owing to its stochastic nature, provides addi-
tional exploration and thus may introduce mutations. The
combination of inheritance and mutation may potentially
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generate higher quality data, aligning with the design phi-
losophy of genetic algorithms.

• Demonstration refers to low execution latency. The total
execution latency of all subgraphs can be expressed as
latencytotal = ∑si∈subgraphs min(all record latencies of si).
The latency of the demonstration data will not rise since
it always selects the best from all measurements, so it
decreases monotonically. Furthermore, the best latency of
the demonstration data cannot be lower than its physical
limit, so it is bounded. Mathematically speaking, a
monotonic and bounded limit results in convergence.
Section 6.2 of the evaluation discusses how much data
needs to be measured for convergence.

• TLM is designed to assist in making decisions within a
decision space, trained by a gradient descent strategy. TLM
i may perform worse than TLM i − 1 because gradient
descent does not guarantee that TLM can always be trained
to its optimal state. However, since TLM i is always trained
from TLM-base, it remains unaffected by TLM i−1 and
does not influence TLM i+ 1. Hence, TLM i does not
likely exhibit cumulative errors, and the final TLM is
only related to TLM-base and the final demonstration data.

• The demonstration data in Figure 8 is obtained through
iterative optimization from scratch. Similarly, there are
also other methods to obtain a batch of demonstration
data. For instance, it can be obtained using other search
algorithms; if there is a batch of demonstration data on
Hardware A, it can be transferred to Hardware B through
transfer learning; the data can be directly written using
expert knowledge. The good news is that this demonstra-
tion data can still continue to use iterative optimization
algorithms until convergence.

• The iterative optimization algorithm can also be viewed
as a tuning system, particularly suitable for situations
where multiple workloads need to be tuned at once. For
instance, in dynamic shape scenarios, the target workload
with different shapes need to be tuned simultaneously.

6 Evaluation

6.1 Experimental Settings
TLM supports several decision spaces, including those
adapted from Ansor (V0.12), MetaSchedule (V0.12), AKG
(V2.1), and AKG-MLIR (V0.1). In subsequent sections, these
TLMs are referred to as TLM-Ansor, TLM-Meta, TLM-AKG,
and TLM-AKG-MLIR. In the evaluation, we focus only on
TLM-Ansor and TLM-Meta, which together are implemented
in Python and C++ with about 10K lines of code.

The dataset we configured for TLM consists of 138 work-
loads. We hold out a test set that consists of 12 workloads, as
shown in Table 1.

For the CPU experiments, we use a notebook equipped with
a 4-core Intel(R) Core(TM) i7-10510U CPU supporting the
AVX2 instruction set, 16GB memory, and running on Ubuntu

Table 1: Workloads in the TLM test set.
Model Input shape Model Input shape

ResNet-50 [32] [1, 3, 224, 224] DenseNet-121 [33] [8, 3, 256, 256]
MobileNet-V2 [34] [1, 3, 224, 224] BERT-large [4, 256]
ResNeXt-50 [35] [1, 3, 224, 224] Wide-ResNet-50 [36] [8, 3, 256, 256]
BERT-base [37] [1, 128] ResNet3D-18 [38] [4, 3, 144, 144, 16]

BERT-tiny [1, 128] DCGAN [39] [8, 3, 64, 64]
GPT-2 [1, 128] LLAMA [40] [4, 256]

Figure 9: Demonstration data convergence curves of TLM-
Ansor and TLM-Meta on the GPU and the CPU.

20.04. For the GPU experiments, we utilize a server outfitted
with a 48-core Intel(R) Xeon(R) Gold 6226 CPU, 376GB
memory, and four 32GB NVIDIA Tesla V100 GPUs. It runs
on Ubuntu 20.04 with CUDA 11.6 and cuDNN 8.4.0.

6.2 Convergence Behavior of Demonstration
Data

This section discusses the convergence behavior of obtaining
demonstration data through the iterative algorithm, which is
the slowest phase of the entire pipeline. Figure 9 displays
four curves corresponding to the convergence of TLM-Ansor
and TLM-Meta on both the GPU and the CPU, respectively
labeled as TLM-Ansor-GPU, TLM-Meta-GPU, TLM-Ansor-
CPU, and TLM-Meta-CPU. These four scenarios utilize 2169,
3120, 2169, and 2657 subgraphs (extracted from 126 work-
loads). The horizontal axis denotes measured data entries
(across all subgraphs), while the vertical axis indicates nor-
malized total latency. We define "convergence" as the point at
which 20K measurements (across all subgraphs) result in a
performance improvement of less than one percent, denoted in
the graph as "Profit < 1% for 20K." We also mark the instance
where 20K measurements (across all subgraphs) yield a per-
formance gain of less than one per thousand, corresponding
to "Profit < 1‰ for 20K".

To reach the convergence state, an average of 104, 69, 145,
and 130 measurements per subgraph are required, correspond-
ing to overall totals of 225K, 213K, 314K, and 344K measure-
ments, respectively, for all subgraphs. In other words, inducing
convergence across all 126 workloads utilizing TLM calls for
approximately 200K tensor program measurements on the
GPU and about 300K on the CPU. TLM involves a data vol-
ume an order of magnitude smaller compared to TenSet and
TLP, which utilize approximately 8.6 million measurements.
Furthermore, for a performance gain of less than 1‰, individ-
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Table 2: The overall speedup for the 23 TLM-Ansor sub-
graphs. The higher the overall speedup, the better. In the table,
"Times" represents the measurement times for each subgraph.

Ansor TLM-Ansor
Times 64 1K 10K 10K

TLM-Ansor

1 1.26 0.98 0.92 0.85
10 1.40 1.08 1.03 0.95
16 1.43 1.10 1.04 0.96
32 1.45 1.12 1.06 0.98
64 1.45 1.12 1.06 0.98
1K 1.46 1.13 1.07 0.99

10K 1.48 1.14 1.08 1.00
Ansor 10K 1.37 1.06 1.00 0.92

Table 3: The overall speedup for the 40 TLM-Meta subgraphs.
MetaSchedule TLM-Meta

Times 64 1K 10K 1K

TLM-Meta

1 1.00 0.69 0.68 0.67
10 1.41 0.96 0.95 0.94
16 1.45 1.00 0.99 0.97
32 1.46 1.01 1.00 0.97
64 1.49 1.02 1.01 0.99
1K 1.50 1.02 1.01 1.00

MetaSchedule 10K 1.48 1.01 1.00 0.99

ual subgraphs require 272, 150, 375, and 363 measurements
each, which also translates to a cumulative total of 588K,
467K, 813K, and 963K measurements for all subgraphs. The
TLM used in the experiments of the subsequent sections has
been fine-tuned using about 300K labelled data.

6.3 Subgraph Benchmark
After SFT, we conduct subgraph experiments on the NVIDIA
V100. The TLM test set comprises 12 workloads, yielding 232
and 364 subgraphs for TLM-Ansor and TLM-Meta, respec-
tively. These subgraphs fall into 23 and 40 categories, and we
select one representative subgraph from each category for the
experiments. Two comparisons are established: TLM-Ansor
vs. Ansor and TLM-Meta vs. MetaSchedule, with measure-
ment times set at 10K, 10K, 1K, and 10K for each subgraph,
respectively. The latency of a subgraph is defined as the low-
est value among its measurements. The latency comparison
curves are presented in Figures 14 and 15 in the Appendix B,
while here, we focus on critical data highlights in Tables 2
and 3.

We define Frameworkk as follows:

Frameworkk = ∑
si∈subgraphs

min
(

Framework’s k
record latencies of si

)
,

where Framework can be TLM-Ansor, TLM-Meta, Ansor, or
MetaSchedule, and k represents the measurement times. Each
speedup in Table 2 represents the overall speedup for the 23
subgraphs of Framework1k1 in the first two columns compard
to Framework2k2 in the first two rows. Table 3 is similar to
Table 2.

In Tables 2 and 3, TLM-Ansor1K achieves 99% (the text
color matching that in the tables) of the performance of TLM-

Ansor10K , while TLM-Meta64 attains 99% of the performance
of TLM-Meta1K . Furthermore, MetaSchedule10K shows a
speedup of 1.01× compared to MetaSchedule1K . We observe
that a tenfold increase in the number of measurements results
in a performance gain of no more than one percent. Achiev-
ing further acceleration in the current exploration space is
challenging, and a better approach to gain additional speedup
is to explore a larger space.

The primary goal of the TLM framework is to generate
high-performance tensor programs efficiently. Notably, even
with 10 measurements, TLM can achieve 103% and 95% of
the performance of Ansor and MetaSchedule after 10K mea-
surements, respectively. Additionally, TLM-Ansor32 achieves
a 1.06× speedup over Ansor10K , while TLM-Meta32 reaches
a 1.00× speedup compared to MetaSchedule10K . It is evident
that TLM’s performance, with 32 measurements, has already
exceeded that of both Ansor and MetaSchedule.

TLM-Ansor1K achieves a 1.13× speedup over Ansor1K ,
TLM-Ansor10K reaches a 1.08× speedup compared to
Ansor10K , and TLM-Meta1K attains a 1.02× speedup over
MetaSchedule1K . These ratios demonstrate that TLM consis-
tently achieves acceleration relative to Ansor and MetaSched-
ule with equal measurement times. To attain a higher accel-
eration ratio, building a larger exploration space might be
necessary.

6.4 End-to-End Workload Benchmark

6.4.1 Comparison with Ansor/MetaSchedule

For both GPU and CPU, we set up four experiments: 1) Tun-
ing with Ansor (V0.12) and conducting 20K measurements; 2)
Tuning with MetaSchedule (V0.12) and conducting 20K mea-
surements; 3) Generating tensor programs using TLM-Ansor,
carrying out 20K measurements, and reporting end-to-end per-
formance for 1×g, 10×g, and 32×g measurements, where
g indicates the number of subgraphs partitioned from the test
workload1; 4) Generating tensor programs using TLM-Meta,
with the same settings as in 3.

GPU results. Initially focusing on the last four columns
of each workload in Figure 10, TLM-Ansor-20K shows a
speedup of 0.99-1.38× compared to Ansor-20K across 12
test workloads, with the average speedup being 1.08. Sim-
ilarly, TLM-Meta-20K achieves a speedup of 0.98-1.14×
relative to MetaSchedule-20K, with the average speedup be-
ing 1.04. These results align with those from the subgraph
benchmark, indicating that TLM offers acceleration over An-
sor/MetaSchedule.

The primary goal of the TLM framework is to efficiently
generate high-performance tensor programs. We now turn our
attention to the first six columns in Figure 10. For Ansor-20K,

1For instance, TLM-Ansor can partition 9 subgraphs from BERT-base;
thus, 1× g represents 9 measurements, 10× g represents 90, and 32× g
represents 288.
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Figure 10: Workload inference performance comparison with
Ansor/MetaSchedule on V100.

Figure 11: Workload inference performance comparison with
Ansor/MetaSchedule on the Intel CPU.

TLM-Ansor-1×g achieves a 0.68-1.03 speedup, with an av-
erage speedup of 0.83; TLM-Ansor-10×g offers a 0.91-1.08
speedup, averaging at 0.99; and TLM-Ansor-32×g speeds
up by 0.96-1.16, with an average speedup of 1.03. Regard-
ing MetaSchedule-20K, TLM-Meta-1×g can accelerate by
0.63-1.04, with an average speedup of 0.80; TLM-Meta-
10×g achieves a 0.91-1.11 speedup, averaging at 1.00; and
TLM-Meta-32×g offers a 0.96-1.12 speedup, with an average
speedup of 1.02.

To summarize, TLM can reach 80% of An-
sor/MetaSchedule’s performance by conducting only
1×g measurements, as opposed to the 20K measurements
required by Ansor/MetaSchedule. With 10×g measurements,
TLM’s performance aligns with that of Ansor/MetaSchedule.
Notably, the purpose of measurement is to identify the
tensor program with the lowest execution latency. The
fact that only one measurement is needed implies no
necessity for measurement, indicating that TLM can reach
83% of Ansor/MetaSchedule’s performance without any
measurement. This indicates the feasibility of applying the
TLM strategy within deep learning training frameworks (e.g.,
PyTorch, TensorFlow, MindSpore [41]).

CPU results. The CPU results (excluding BERT-large,
GPT-2, and LLAMA, which will trigger the OOM error), de-
picted in Figure 11, align with the GPU outcomes. Here,

Figure 12: Workload inference performance comparison with
Roller on V100.

we simply present the average speedup. Relative to Ansor-
20K, TLM-Ansor-10×g achieves a 1.01× speedup, while
TLM-Ansor-32×g accomplishes a 1.03× speedup. Compared
to MetaSchedule-20K, TLM-Meta-10×g attains a 0.97×
speedup, and TLM-Meta-32×g achieves a 1.00× speedup.

Compilation time. This paper uses the measurement times
to calculate the speedup of compilation time, the justification
for which is discussed in the Appendix A. Simply put, the time
allocated to measurement predominates the entire compilation
time and remains unaffected by the system’s load, establishing
it as a stable metric for the issue.

In the TLM-Ansor test set, the 12 workloads comprise
5-72 subgraphs, averaging 20.9 subgraphs. As a result, TLM-
Ansor-10×g, compared to Ansor-20K, can deliver the same
performance level while accelerating compilation by 95×.
Similarly, TLM-Meta-10×g can speed up compilation by
61× relative to MetaSchedule-20K.

Summary. In subgraph and end-to-end benchmarks, we
primarily analyze from a statistical perspective rather than
investigating why certain subgraphs or workloads surpass
the baseline. This is due to the inherent randomness of the
probabilistic/random sampling, which results in a lack of clear
patterns in speedup. What becomes apparent, however, is that
across nearly all subgraphs and workloads, TLM matches the
baseline results with significantly fewer measurements. This
indicates a general improvement in exploration capabilities.

6.4.2 Comparison with Roller on V100

Roller is implemented on top of TVM (V0.8) and Ram-
mer [42]. We utilize the Docker image provided by Roller for
experiments, which runs on Ubuntu 16.04 with CUDA 10.2
and cuDNN 7.6.5; it lacks maintenance to utilize the latest
CUDA. To observe the impact of software versions on per-
formance, we present the performance of Ansor, integrated
within TVM (V0.8), as a bridge for comparing TLM and
Roller; the performance of Ansor is measured in the same
execution environment as Roller. Compiling workloads with
Roller requires carefully configured, workload-specific script
files; we offer script files for six workloads.

We set up four experiments: 1) Compiling with Roller and
performing 10×g measurements; 2) Adopting TLM-Ansor-
10×g from §6.4.1; 3) Tuning with Ansor (V0.8) and executing
20K measurements; 4) Adopting Ansor-20K from §6.4.1,
designated as Ansor-20K-V0.12.
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Figure 13: Workload inference performance comparison with
TensorRT/PyTorch on V100.

Figure 12 illustrates that in the same execution environ-
ment, Ansor-20K-V0.8 outperforms Roller-10×g. Addition-
ally, TLM-Ansor-10×g and Ansor-20K-V0.12 have compara-
ble performance levels, slightly better than Ansor-20K-V0.8.
Therefore, it is evident that TLM-10×g surpasses Roller-
10×g when the influence of software versions is excluded. In
a direct comparison, TLM-Ansor-10×g achieves a speedup
of 1.28-4.23× compared to Roller-10×g, with the average
speedup being 2.25. The reason is that, in pursuit of high effi-
ciency, Roller significantly prunes the exploration space by
aligning tensor shapes with the key features of the hardware,
as discussed earlier.

6.4.3 Comparison with TensorRT/PyTorch on V100

In this section, we conduct a performance comparison against
TensorRT [43] (V8.6) and PyTorch (V1.13.1) on V100. Both
TensorRT and PyTorch are backed by static kernel libraries.

We set up five experiments: 1, 2) Performing inference
using TensorRT and PyTorch; 3) Adopting Roller-10×g from
§6.4.2; 4, 5) Adopting TLM-Ansor-10×g and Ansor-20K
from §6.4.1.

Figure 13 illustrates that relative to TensorRT, TLM-Anosr-
10×g achieves a 0.38-1.89× speedup, averaging at 1.04; com-
pared to PyTorch, TLM-Anosr-10×g sees a 0.21-12.92× in-
crease in performance, with an average speedup of 3.42. Ten-
sorRT outperforms TLM-Anosr-10×g in BERT-tiny, BERT-
base, BERT-large, GPT-2, LLAMA, and DCGAN workloads,
while PyTorch excels over TLM-Anosr-10×g in BERT-large,
LLAMA, and DCGAN. The primary components of BERT
and LLAMA are batch matmul operators, GPT-2 mainly in-
volves matmul operators, and DCGAN primarily uses trans-
posed 2D convolution operators. The speedup achieved by
TensorRT/PyTorch is attributed to the deep optimization of
batch matmul, matmul, and transposed 2D convolution oper-
ators in recent kernel libraries, as well as the utilization of
hardware computing units. Overall, tensor compilers excel
in supporting a wide range of operators, while static kernel
libraries are more adept at deeply optimizing commonly used
operators.

7 Related Work
Halide [44] introduces the concept of separating compute and
schedule, employing a domain specific language (DSL) to de-
fine computations and scheduling primitives to abstract hard-
ware characteristics, enhanced by an auto scheduler [4,45,46]
for optimal primitive combination. TVM [3], inheriting the
philosophy of Halide, utilizes scheduling primitives for op-
erator implementation. It currently boasts three generations
of tensor program search frameworks: The first generation
maps subgraphs to tensor programs using templates and opti-
mizes them through AutoTVM [12]. The second generation,
Ansor [13], addresses the limitations of template-based explo-
ration spaces by constructing tensor programs with derivation
rules and searching for efficient programs using the genetic al-
gorithm. The third generation, which includes TensorIR [47]
and MetaSchedule [14], tackles the challenges of supporting
TensorCore, introducing a block abstraction that isolates ten-
sorized computations for mapping to tensor computing units.
TenSet [20] and TLP [21] propose using offline datasets to
address the issue of extended search times brought by An-
sor/MetaSchedule. Roller [23] introduces a tile abstraction
that encapsulates tensor shapes, aligning them with the key
features of the underlying accelerator to limit shape choices.
FlexTensor [6] is a schedule exploration and optimization
framework proposing automatically general templates to map
the tensor algorithms onto low-level implementations for dif-
ferent hardware platforms.

Tiramisu [48], AKG [15], and Tensor Comprehensions [5]
apply polyhedral-based techniques, formulating the optimiza-
tion of programs as an Integer Linear Programming (ILP)
problem. Triton [49] introduces a tile-based template repre-
sentation where programmers can specify block sizes and
manage their scheduling for effective program optimization.
CUTLASS [50] is a collection of template abstractions for
implementing high-performance matrix-matrix multiplica-
tion and related computations within CUDA at all levels and
scales. MLIR [51] builds reusable and extensible compiler
infrastructure to address software fragmentation and improve
compilation for heterogeneous hardware.

8 Discussion
Limitation. 1) At its core, TLM is a deep learning model that
leverages offline data to guide exploration. The data distribu-
tions of the target and training scenarios need to be aligned.
To achieve optimal performance in scenarios with significant
discrepancy, it might be necessary to incorporate additional
training data. 2) TLM’s design philosophy is trading compile
time for pre-compile time. The overhead of training TLM,
which could span tens of hours, should not be overlooked. If
the intent is solely to compile one or just a handful of models,
TLM might not be the most economical choice. Instead, TLM
is better suited for compiling a vast array of models.
Future Work. 1) With 100M parameters, TLM’s time and
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hardware overhead for training and inference should be no-
ticed. It may be worthwhile to explore substantial reductions
in parameter size while ensuring TLM’s performance remains
robust. 2) In contrast, with just 100M parameters, there is an
opportunity to substantially expand TLM’s parameter size and
the training data. These improvements could lead to remark-
able generalization capabilities. Examples include compiling
directly from TLM-generated results without measurement
or achieving strong generalization across various hardware
platforms. 3) Delve into a more expansive exploration space.
Equipped with TLM’s potent exploration capabilities, it’s fea-
sible to navigate vast territories without being constrained by
exploration costs.

9 Conclusion
We introduce the TLM framework, a novel tensor program
generation framework that consists of two decoupled compo-
nents: a space builder and a generator. The TLM framework
is pioneering in its integration of language models into the
tensor program domain. Owing to TLM’s dual strengths of
adeptly learning from offline data and effectively capturing
context, it demonstrates formidable generative capabilities.
Experimental results show that TLM consistently delivers
both high efficiency and high performance.
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A Compilation Speedup Metrics

In this section, we discuss the rationality of using measure-
ment times to calculate the speedup of compilation time.

Ttotal = Texploration +Tpost exploration compilation

= ∑
k

(
c×Tsample +Tmeasurement

)
+Tpost exploration compilation

= ∑
k

(
c×Tsample +(Tcompilation +Texecution)

)
+Tpost exploration compilation

The total time for compiling a workload (Ttotal), as indi-
cated in the formula above, consists of two main components:
the time spent exploration to identify high-performance tensor
programs (Texploration), and the time for the final compilation
of the workload (Tpost exploration compilation). The exploration
process involves sampling c tensor programs (c×Tsample) and
then measuring the execution latency of one of these pro-
grams (Tmeasurement ). In Ansor/MetaSchedule, the purpose of
sampling multiple tensor programs is to use a cost model
to select the most promising tensor program; if a program
sampled by TLM is found to be invalid, it will be resampled.
The sampling coefficients cAnsor and cMetaSchedule are approx-
imately 128, while cT LM does not exceed 1.1. Measuring a
tensor program includes both its compilation (Tcompilation) and
execution (Texection).

Ttotal = Texploration +Tpost exploration compilation

≈ Texploration if k ≥ k0

= ∑
k

(
c×Tsample +Tmeasurement

)
= ∑

k
Tmeasurement if Tmeasurement hides c×Tsample

= ∑
k

(
Tcompilation +Texecution

)
When measurement times k exceeds a certain threshold

k0 (e.g., 100), Texploration becomes the dominant factor in
Ttotal , making Tpost exploration compilation negligible. Sampling
and measurement processes can be optimized using a pipeline
approach for parallel execution. Overall, measurement is a
critical part of the entire compilation process, and reducing
measurement times requires methodological innovation rather
than just engineering efforts.

TLP uses the speedup on Ttotal to calculate the accelera-
tion of compilation time, while Roller uses ∑k Tcompilation to
calculate the acceleration of compilation time. Although they
indeed reflect the speedup of compilation time to some extent,
these metrics are unstable due to the influence of system load.
In this paper, we use measurement times k to calculate the
speedup of compilation time.

B Subgraph Performance
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Figure 14: Subgraph latency comparison curves for TLM-Ansor vs. Ansor. To enhance the comparison of subtle details, the
curve only includes latencies that do not exceed 1.1 times the lowest latency of either TLM-Ansor or Ansor. In the figure, if one
is not visible throughout, it indicates that its lowest latency exceeds that of the other by 10%.

Figure 15: Subgraph latency comparison curves for TLM-Meta vs. MetaSchedule. To enhance the comparison of subtle details,
the curve only includes latencies that do not exceed 1.1 times the lowest latency of either TLM-Meta or MetaSchedule. In the
figure, if one is not visible throughout, it indicates that its lowest latency exceeds that of the other by 10%.
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