
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Motor: Enabling Multi-Versioning for Distributed
Transactions on Disaggregated Memory

Ming Zhang, Yu Hua, and Zhijun Yang, Wuhan National Laboratory for
Optoelectronics, School of Computer, Huazhong University of Science and Technology

https://www.usenix.org/conference/osdi24/presentation/zhang-ming

Motor: Enabling Multi-Versioning for Distributed Transactions on
Disaggregated Memory

Ming Zhang, Yu Hua*, Zhijun Yang
Wuhan National Laboratory for Optoelectronics, School of Computer

Huazhong University of Science and Technology
*Corresponding Author: Yu Hua (csyhua@hust.edu.cn)

Abstract
In modern datacenters, memory disaggregation unpacks
monolithic servers to build network-connected distributed
compute and memory pools to improve resource utilization
and deliver high performance. The compute pool leverages
distributed transactions to access remote data in the mem-
ory pool to provide atomicity and strong consistency. Ex-
isting single-versioning designs have been constrained due
to limited system concurrency and high logging overheads.
Although the multi-versioning design in the conventional
monolithic servers is promising to offer high concurrency and
reduce logging overheads, which however fails to work in the
disaggregated memory. In order to bridge the gap between the
multi-versioning design and the disaggregated memory, we
propose Motor that holistically redesigns the version struc-
ture and transaction protocol to enable multi-versioning for
fast distributed transaction processing on the disaggregated
memory. To efficiently organize different versions of data in
the memory pool, Motor leverages a new consecutive ver-
sion tuple (CVT) structure to store the versions together in a
continuous manner, which allows the compute pool to obtain
the target version in a single network round trip. On top of
CVT, Motor leverages a fully one-sided RDMA-based MVCC
protocol to support fast distributed transactions with flexible
isolation levels. Experimental results demonstrate that Motor
improves the throughput by up to 98.1% and reduces the la-
tency by up to 55.8% compared with state-of-the-art systems.

1 Introduction
Memory disaggregation in modern datacenters receives ex-
tensive attentions [2, 3, 35, 46, 53, 62]. Specifically, memory
disaggregation decouples the compute and memory resources
from traditional monolithic servers to build independent and
scalable compute and memory pools. These pools are con-
nected via fast network (e.g., RDMA [75] or CXL [7]). A
compute pool contains many powerful compute units to run
tasks and small DRAM-based memory to maintain metadata.
Moreover, a memory pool consists of substantial memory
modules to store application data and a small number of weak

compute units only for memory allocations and network in-
terconnections [84, 86]. With the aid of efficient resource
pooling, memory disaggregation significantly improves the
resource utilization, elasticity, and failure isolation [65, 72].

To provide atomicity and strong consistency guarantees for
applications on the disaggregated memory, the compute pool
leverages distributed transactions to access remote data in the
memory pool. A recent design, i.e., FORD [84], is able to
run distributed transactions on the disaggregated memory. To
simplify the data store in the memory pool, FORD maintains
one version of each data. However, this single-versioning
design limits the concurrency since the reads need to wait
for the writes to become visible during transaction commit.
Moreover, to guarantee atomicity, FORD writes many undo
logs to back up the old data, which consumes the network
bandwidth and decreases throughput.

Enabling multi-versioning is expected to efficiently address
the above limitations. By storing multiple versions of each
data in the memory pool, the read requests are able to fetch
existing versions of data rather than waiting for the writes to
complete, thus improving the concurrency. Moreover, with
multi-versioning, the old versions of data are retained to pro-
vide the atomicity, thus eliminating the need of writing undo
logs. Prior multi-versioning based distributed transaction pro-
cessing systems have been proposed in the traditional mono-
lithic architecture [57, 64, 76]. Unfortunately, these systems
are difficult to work on the new disaggregated memory archi-
tecture due to two challenges, as presented below.

1) Incompatible Transaction Protocol. Prior systems
working on monolithic architecture assume that each server
has strong CPUs to execute compute tasks in the transaction
protocol, e.g., locking [64], validation [57], and timestamp
calculation [76]. In general, a single task is not computa-
tionally expensive. However, when the number of requests
increases, these tasks become substantial and frequent. The
CPU in a memory pool is too weak to frequently poll massive
tasks and execute them [45, 46, 66, 69, 75, 84, 86]. Therefore,
legacy multi-versioning based transaction protocols are not
compatible with the disaggregated memory pool.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 801

2) Inefficient Version Structure. To store different ver-
sions of data, existing schemes leverage pointer-based struc-
tures to dynamically link the versions, called linked chains in
this paper. In general, there are two types of the linked chains.
(1) The old-to-new chain links the versions from the oldest
to the newest version [10, 25, 38, 76], as shown in Fig. 1a. (2)
The new-to-old chain links the versions from the newest to the
oldest version [9,32,57,64,81], as shown in Fig. 1b. To read a
specific version, CPU performs chain walking that leverages
the pointers to fetch the versions one by one until the target
version. In fact, the linked chains work well in monolithic
servers, since each server contains enough CPUs to quickly
perform chain walking in its local memory. However, the
linked chains become inefficient in disaggregated memory,
since all the application data are stored in the remote memory
pool, which does not contain powerful CPU to execute the
chain walking. As a result, the compute pool has to perform
the chain walking by consuming multiple network round trips
to fetch remote versions one after another until the target
version, leading to high overheads. Fig. 1c shows that when
increasing the number of steps in the chain walking from 1 to
20, the RDMA read latency significantly increases by 24.8×
in our testbed (§ 7.1). Moreover, to prevent long chains, the
garbage collection (GC) is required to delete the obsolete
versions that are no longer used by any transaction [16]. How-
ever, when using linked chains, GC is difficult to carry out
on disaggregated memory, since the compute pool needs to
frequently track the oldest transaction and reclaim the un-
used versions. Such tracking consumes many round trips for
synchronizations and wastes the compute power.

To address the above challenges, we propose Motor, which
holistically redesigns the version structure and transaction
protocol to enable multi-versioning for distributed transaction
processing on the disaggregated memory. Instead of using
linked chains, Motor leverages a new consecutive version
tuple (CVT) structure to efficiently organize multiple versions
of one data in the memory pool. CVT consecutively stores
several versions together to fill in continuous address space. In
this way, the compute pool is able to fetch all the versions of
the same data by reading a CVT in a single round trip, instead
of fetching the remote versions one by one, thus reducing the
networking overheads to achieve low latency. When the CVT
is filled up, Motor leverages a lightweight coordinator-active
garbage collection (GC) scheme that reclaims the old versions
in a preemptive manner without tracing transaction states. In
the presence of GC, Motor also enables the applications to
easily identify the consistency between the data value and its
version in CVT to guarantee the correctness.

On top of the CVT structure, Motor designs a fast multi-
version concurrency control (MVCC) based transaction proto-
col. This protocol fully leverages one-sided RDMA to bypass
the weak compute units in the memory pool. Our protocol
allows the reads not to be blocked by writes, and avoids writ-
ing logs, thus improving the concurrency and saving network

Key Value Version (1) Ptr

Value Version (2) Ptr

Value Version (4) Ptr

(a) Old-to-new chain (b) New-to-old chain

R
ea

d
 la

te
n

cy
 (

µ
s)

The number of steps in chain walking
(c) Read latency of different walk steps

0

20

40

60

80

2 4 6 8 10 12 14 16 18 20

Value Version (3) Ptr

Key Value Version (4) Ptr

Value Version (3) Ptr

Value Version (1) Ptr

Value Version (2) Ptr

Figure 1: The linked chain based version structures (a, b), and
the latency of using RDMA READ for chain walking (c).

bandwidth. Moreover, our protocol supports various isolation
levels (e.g., serializability and snapshot isolation) to flexibly
meet the requirements of different OLTP applications.

In summary, this paper makes the following contributions:
• We propose Motor that enables multi-versioning for dis-

tributed transactions on the disaggregated memory.
• Motor designs a new consecutive version tuple (CVT)

structure to efficiently organize multiple versions of data in
the memory pool. CVT enables the compute pool to obtain
the target version in one round trip, and provides lightweight
garbage collection without the overhead of tracking (§ 4).

• Motor leverages a fast MVCC transaction protocol that
fully exploits one-sided RDMA and CVT to meet the CPU-
less memory pool with various isolation-level supports (§ 5).

• We implement1 Motor and compare it with two state-of-
the-art systems [64,84]. The experimental results demonstrate
that Motor significantly improves the transaction throughput
by up to 98.1% and reduces the latency by up to 55.8%.

2 Background and Motivation
2.1 Memory Disaggregation
Traditional datacenters consist of many monolithic servers,
each of which contains a set of compute and memory units.
However, this monolithic architecture suffers from low re-
source utilization and coarse failure domain [65, 72]. Specif-
ically, even if a user only needs more compute power, we
have to add more entire servers in which the memory modules
are wasted. Moreover, if a CPU is broken, the whole server
becomes unusable, which expands the failure domain.

To improve resource utilization and failure isolation, mem-
ory disaggregation [20, 35, 46, 50, 51] becomes a promising
solution, which decouples the compute and memory resources
from a monolithic server to build separate resource pools.
These pools are connected via fast network, e.g., RDMA [29]
or CXL [7]. A compute pool contains many strong CPUs to
intensively execute computing tasks. There are small amounts
of DRAM in the compute pool to cache some metadata. More-
over, a memory pool consists of substantial memory modules
to store the large-volume application data. The memory pool
does not contain strong compute capability [46,65,69,72,75],
but have some low-power compute units only for memory
allocation and network interconnection [84, 86]. By efficient
resource pooling, datacenters are able to provide appropriate
amounts of compute and memory units to meet the require-
ments of different applications in an on-demand manner, thus

1 Source code is available at https://github.com/minghust/motor.

802 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/minghust/motor

improving the resource utilization and reducing costs [48].
Moreover, even if a CPU fails in the compute pool, the decou-
pled memory modules in the memory pool are not affected
due to the separate architecture, thus narrowing the failure
domain. Therefore, memory disaggregation is a promising
solution for modern datacenters and cloud providers. Without
loss of generality, this paper considers that the compute pool
leverages one-sided RDMA verbs (including READ, WRITE,
and atomics such as CAS an FAA) to access the application
data in the memory pool to bypass remote CPUs like existing
studies [53, 66, 75, 84].

2.2 Transactions on Disaggregated Memory
System Model. To provide atomicity and strong consistency
for applications on the disaggregated memory, the compute
pool is required to employ distributed transactions to access
remote data in the memory pool [84]. Specifically, the CPU
threads in a compute pool run many coordinators, which exe-
cute a transaction protocol to read data, handle conflicts, and
commit updates. The compute pool does not store applica-
tion data, but contains a small amount of DRAM to buffer
some metadata (e.g., remote data addresses). The memory
pool stores all the application data without running compute
tasks. Each data is replicated into multiple replicas for high
availability. In practice, the fail-stop failure [36] could occur
at any time to cause the data in the memory pool inacces-
sible2 [27]. To tolerate such failures, we adopt the (f + 1)-
way primary-backup replication [42] to generate 1 primary
replica and f backup replicas for each data in the memory
pool. Each replica can be accessed by multiple coordinators.
During transaction processing, coordinators in compute pool
read/write remote replicas via network at the byte granularity,
and the compute units in memory pool are not involved. Since
the coordinators and replicas are fully separated by network,
all transactions become distributed in our system model.
Limitations of Single-Versioning. Recently, FORD [84] sup-
ports distributed transactions on the disaggregated memory
and stores the latest version of each data in the memory pool.
This single-versioning design simplifies the memory store but
incurs two limitations. (1) Low concurrency. During transac-
tion commit, the data being updated cannot be read. FORD
makes these data invisible until completing the write, thus
blocking the read operations; (2) High logging overheads.
FORD writes the undo logs to all replicas to guarantee atom-
icity. These undo logs consume the network bandwidth, and
the coordinator needs to wait for all ACKs of the logging
requests before committing the updates to remote replicas.

2.3 Enabling Multi-Versioning
To address the limitations of single-versioning, we adopt a
multi-versioning methodology to store multiple versions of
each data in the memory pool. By doing so, the writes do not

2 In line with existing studies [27, 38, 39, 64, 77, 84], we currently do not
consider the byzantine failures [37].

❷ RDMA connect

❶ Load data❸ Issue txn requests

Compute Pool

Clients

Memory Store

Indexes
❹ Execute,

Commit/Abort

Txn Protocol
One-sided RDMA
READ/WRITE/CAS

Coordinators DB Tables

Memory Pool

App App App App

Figure 2: The system overview of Motor.

block reads, since the read request obtains an existing ver-
sion of data, instead of waiting for the update operation, thus
improving the concurrency. Moreover, the multi-versioning
design does not need to additionally write logs to back up
data in replicas, since the old versions naturally act as “undo
logs” to guarantee atomicity. In this way, we eliminate the
logging overheads to accelerate transaction commit.
Challenges. Existing studies have adopted multi-versioning
in transaction processing [16, 43, 57, 64, 76]. However, as an-
alyzed in § 1, these studies do not fit the new disaggregated
memory architecture due to two reasons. (1) Their transac-
tion protocols target on traditional monolithic servers, which
requires powerful CPUs in each server to execute substantial
compute tasks [57, 64, 76]. However, in the disaggregated
memory architecture, the compute units in the memory pool
are too weak to frequently handle compute tasks [75, 84, 86].
(2) The version structures of new-to-old and old-to-new linked
chains incur substantial RDMA round trips for chain walking
and high overheads for garbage collection.

To address the above challenges, we propose Motor to effi-
ciently enable multi-versioning for fast distributed transaction
processing on the disaggregated memory.

3 Motor Overview
Fig. 2 illustrates the system overview of Motor, which con-
tains two parts working in harmony. First, the Motor memory
store (§ 4) efficiently organizes multiple versions of data in
the memory pool. Second, the Motor transaction protocol
(§ 5) handles multi-versioning based distributed transactions
in the compute pool.
Workflow. We outline the workflow of Motor. ❶ The client
initially leverages the CPUs in the memory pool to allocate
memory to load the application data into relational database
(DB) tables. These tables are organized by our consecutive
version tuple (CVT) structure, as described in § 4.1. The
CVTs can be quickly accessed using indexes, e.g., hash ta-
ble [86] or B+tree [75]. ❷ We establish RDMA connections
between the compute and memory pools. Moreover, the mem-
ory pool sends some metadata (e.g., the address of the RDMA
memory region and descriptions of indexes) to the compute
pool. These metadata help coordinators locate the remote data
at runtime. ❸ The clients issue transactions to the compute
pool to be executed. ❹ The compute pool uses CPU threads
to simultaneously run many coordinators, which leverage our

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 803

transaction protocol to process transactions. In general, the
coordinators fetch and lock remote data, and then execute the
transaction logic. After execution, the coordinators validate
that the data versions are not changed. Finally, the coordina-
tors commit the updates to remote memory pool and unlock
data. Our protocol enables coordinators to fully use one-sided
RDMA to bypass the weak CPUs in memory pool during
transaction processing.

4 Motor Memory Store
4.1 Consecutive Version Tuple
Key Idea. Motor proposes a consecutive version tuple (CVT)
structure to maintain different versions of data in the memory
pool. Unlike the linked chains using pointers to link versions,
CVT consecutively stores the versions together to fill in con-
tinuous address space. By using CVT, the coordinator is able
to fetch multiple versions in a single RDMA READ, instead
of performing the chain walking to read remote versions one
by one until the target version. After fetching the CVT, the
coordinator locally searches for the target version, which is
fast due to not involving any network I/O.
Structure. Fig. 3 shows the structure of the memory store in
the memory pool, which is organized by CVTs. All the CVTs
form a CVT region. A CVT consists of a header and several
version cells (Vcells). In a header, TableID indicates the DB
table this record belongs to. A record is a row of user data,
containing the key and value, in a DB table. Moreover, Key
is the unique identifier of this record, and Lock is used for
concurrency control in transaction processing (§ 5.1). The
AttrBarPtr points to an attribute bar in the value region. An
attribute bar stores the modified attributes of different versions
of a record’s value, as described in § 4.2. The VpkgPtr points
to a value package (Vpkg) in value region. A Vpkg contains
the actual data value, which is wrapped by a VpkgSA and a
VpkgEA to indicate whether the value is completely written,
as explained in § 4.4. Moreover, in a Vcell, the VcellSA
and VcellEA work with the VpkgSA and VpkgEA to check
the consistency between a version and its value (§ 4.4). The
Valid indicates whether this version of value is available,
and the Version represents a version number. In addition, the
Bitmap indicates the modified attributes at the current version,
and the StartOffset represents the offset of attributes stored
in the attribute bar (more details are presented in § 4.2).
Number of Versions in CVT. Motor needs to configure the
number of versions (VNum) to hold in CVT. Considering
that the memory pool does not contain powerful CPU to dy-
namically adjust VNum in transaction processing, Motor sets
VNum to be fixed, i.e., a record has a fixed maximum number
of versions. In fact, it is challenging to determine an effi-
cient VNum due to the tradeoff among read latency, memory
footprint, and transaction abort rate. Specifically, if VNum
is too small, the CVT size becomes small, which decreases
the RDMA transmission payload to decrease the read latency,

Header1 Vcell1 Vcelln-1 Vcelln

Header2 Vcell1 Vcelln-1 Vcelln

Headern Vcell1 Vcelln-1 Vcelln

A consecutive version tuple (CVT)

TableID (8B)

Key (8B)

Lock (8B)

VcellSA (1B)

Valid (1B)

Version (8B)

CVT Region

…
…
…

…

… …… …

Value Region

Header Version cell

VpkgPtr (8B)

AttrBarPtr (8B)

VcellEA (1B)

VpkgSA (1B)

Data Value

VpkgEA (1B)

Auxiliary info.

Full-value area Delta area

…

Vpkg

…
Vpkg

Value package

StartOffset (2B)

Bitmap (1-4B)

Table1

Table2

Tablen

…
An attribute bar

Modified attributes
of a version

A modified
attribute

Vpkg

…
Vpkg

Vpkg

…
Vpkg

Data value
in Vpkg Modified

attributes

A version of value

+

Bitmap
01011

Constructing a version of value

Figure 3: The structure of the Motor memory store, which is
organized by CVTs in the disaggregated memory pool.

and also reduces the memory footprint in memory pool. How-
ever, due to limited available versions in CVT, the garbage
collection (§ 4.3) can be frequently triggered, and this may
increase transaction aborts to hamper the throughput when the
contention is high. In contrast, if VNum is too large, it helps
mitigate transaction aborts, but would waste memory in read-
intensive workloads that do not require many versions of data.
Moreover, since an entire CVT is read at a time, a large CVT
increases the payload to lengthen the RDMA read latency.
We explore such tradeoff in § 7.2 and § 7.6, and observe that
a suitable VNum significantly depends on the characteristics
of workloads (e.g., the access contention and the number of
records to read in a transaction). In general, setting VNum to 2
is sufficient for low-contention workloads with short-running
transactions (e.g., TATP [1]). For high-contention workloads
with long-running transactions (e.g., TPCC [13]), a slightly
larger VNum (e.g., 4) efficiently reduces transaction aborts
without heavy memory footprint and high read latency.
Indexes Supports. Motor provides unified interfaces for coor-
dinators to quickly access remote CVTs by leveraging indexes
(e.g., hash table [86] and B+tree [75]). Motor stores CVTs
within the index. For example, when using B+tree indexes,
CVTs are stored in leaf nodes, and the internal pointer nodes
are cached in compute pool to reduce remote tree traverses.
When using hashing indexes, CVTs are stored in hash tables
by hashing Keys. Therefore, writing CVTs simultaneously
modifies the index. Without loss of generality, our paper con-
siders to use the hash table as a case in point to present the de-
tails of indexing remote data like existing studies [26, 78, 84].
To address hash collisions, Motor reserves multiple slots in a
hash bucket [86]. Each slot stores one CVT. Given a key (e.g.,
K0) of a record, the coordinator hashes K0 to obtain the ID of
hash bucket and calculate the remote address of this bucket.
The coordinator then reads the bucket and locally traverses
slots to search for the target CVT whose Key is equal to K0.
CVT Address Cache. In practice, it is expensive to fetch an
entire hash bucket each time when reading a CVT. To address
this issue, Motor enables each coordinator to leverage a small

804 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

private CVT address cache in the compute pool to store the
remote addresses of CVTs. When reading the same CVTs next
time, the coordinator can quickly use the cached addresses
to directly read the CVTs instead of hash buckets. However,
if the Key of fetched CVT mismatches the queried key, the
cached address becomes stale. The coordinator addresses this
issue by re-reading the hash bucket to confirm the existence
of the target CVT, and then updates its address cache. To store
millions of addresses (each one is 8B), an address cache only
consumes several MBs of DRAM space, which is acceptable
for the compute pool [65, 84].

4.2 Separate Value Region
Some prior studies like FORD [84] and Silo [71] store the
value together with its version, so that coordinators can fetch
the value and version in one read. However, this design be-
comes inefficient in our context, because storing the value
together with its version significantly increases the CVT size,
leading to high read latency and network bandwidth waste
(all values are transmitted but only one is needed). Such draw-
backs become even worse when the value size gets larger.

To tackle the above challenge, Motor separates the CVTs
from data values in memory pool. The coordinator first reads
a CVT to determine the target version, and then reads the
corresponding value. In this way, the CVT size is not affected
by the value size to achieve stable low read latency, and only
one data value is transmitted to mitigate bandwidth wastes.
Reducing Memory Overhead. In the value region, storing a
full-sized data value for each version simplifies the data store
but wastes memory space. To alleviate the memory overhead,
we have two observations. (1) The records in a relational
DB table follow the same schema, which defines the num-
ber of attributes of the value and the size of each attribute.
(2) When updating a record, a transaction can modify only
one or several attributes. For example, in TPCC, the value
of a record in DISTRICT table contains 9 attributes (100B in
total), but in NEW_ORDER transaction only one attribute is mod-
ified, i.e., D_NEXT_O_ID (4B). Based on these observations,
Motor stores the variable-sized modified attributes, instead
of full-sized values, to maintain different versions of values
for any record, thus reducing the memory overhead. Fig. 3
shows that the value region contains a full-value area plus
a delta area. The full-value area stores the newest version
of full-sized values, and the delta area stores old attributes
being modified by transactions (like “undo logs”). Therefore,
an updated record has only one full value and different ver-
sions of variable-sized attributes that are actually modified.
To construct an old-version value, we only need to apply the
attributes at the old target version into the newest full value.
Attribute Bar. In the delta area, Motor leverages a new struc-
ture, called attribute bar, to consecutively and compactly store
the modified attributes of a record across transactions, as il-
lustrated in Fig. 3. Motor uses the following metadata in CVT
to efficiently manage attributes bars.

1) AttrBarPtr in Header. When a record is updated for
the first time, the coordinator allocates an attribute bar in the
delta area, and keeps the remote address of the attribute bar
(i.e., AttrBarPtr) in the CVT’s header.

2) Bitmap in Vcell. The coordinator uses a bitmap in Vcell
to represent the modified attributes at the current version. For
example, if a value has 8 attributes and the 1st, 2nd, and 4th
attributes are modified by a transaction, the coordinator writes
a bitmap of “00001011” (the rightmost bit represents the first
attribute, i.e., the little-endian style) into the Vcell. The length
of bitmap depends on the number of attributes.

3) StartOffset in Vcell. This is used to represent the
offset of a group of modified attributes at the current ver-
sion inside the attribute bar. The initial StartOffset is 0.
The coordinator calculates a new StartOffset by using the
last-written Vcell’s StartOffset and Bitmap. Specifically,
according to the positions of “1” in the last-written bitmap,
the coordinator accumulates the total size of attributes in
the last write, and adds this total size with the last-written
StartOffset to obtain a new StartOffset.
Attribute Bar Size. A coordinator needs to allocate a proper-
sized attribute bar to hold modified attributes to alleviate mem-
ory wastes. By sampling transaction execution, we observe
that for records in a DB table, the total sizes of attributes be-
ing updated per transaction (called TotAttrSizes) are different
but occur at specific frequencies. For example, in TPCC’s
CUSTOMER table, the TotAttrSize can be 512B, 12B, and 4B,
respectively occurring at frequencies of 10%, 88%, and 2%
across transactions. This is because in OLTP scenarios, the
transaction logic specifies the attributes to update, and dif-
ferent transactions follow the standard execution ratio in the
transaction mix [1, 4, 13]. According to the frequencies of
different TotAttrSizes, Motor reserves corresponding propor-
tions of space in the attribute bar to hold these attributes of
VNum versions (i.e., if some attributes are more frequently up-
dated, Motor reserves more space for these attributes). Hence,
Motor approximately estimates the attribute bar size (ABS) =
∑

n
i=1(max(V Num×Frequencyi,1)×TotAttrSizei), where n

is the number of TotAttrSizes. For example, when VNum = 4,
the ABS of records in CUSTOMER table is: 1×512B + 3×12B +
1×4B = 552B, which is sufficient to hold modified attributes
of different versions without wasting memory. Note that even
if all attributes of a value are modified at some versions (i.e.,
TotAttrSize = full-value size), the attribute bar can still store
all these attributes, since in this case the calculated ABS is
guaranteed to be larger than the full-value size.
Mitigating Contentions on Allocating Attribute Bars.
When coordinators simultaneously allocate attribute bars, they
will compete for the free space in delta area, leading to high
contentions. To avoid this, Motor pre-assigns a small MB-
scale delta space with proper size (based on ABS) in the delta
area to each coordinator. In this way, the coordinator allocates
attribute bars in its own delta space without competing with
others. The AttrBarPtr is globally visible to all coordinators

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 805

after completing the update operation, so that a coordinator is
able to append attributes to the attribute bars created by other
coordinators. In rare cases the delta space is exhausted, the
coordinator informs remote CPU to allocate larger space.
One RTT for Reading/Writing Values. Though the full
value and attributes are separated, Motor consumes only one
round-trip time (RTT) to read/write a value at target version.
(1) Read. A coordinator selects the target version (e.g., V 0)
in a CVT. The selection scheme is presented in § 5.1. If V 0
is the newest version, the coordinator reads the full value
using RDMA READ in one RTT. Otherwise, the coordinator
calculates remote addresses of the required old attributes by
using AttrBarPtr in CVT header and StartOffset as well
as Bitmap in the Vcells whose Version is larger than V 0.
The coordinator then uses batched RDMA READs to read the
full value and old attributes together in one RTT and locally
constructs an old version of value. (2) Write. The coordinator
uses batched RDMA WRITEs to update the full value and
appends old attributes to the attribute bar together in one RTT.

4.3 Coordinator-Active Garbage Collection
If there is no empty Vcell when updating data, we need a
garbage collection (GC) mechanism to reclaim the obsolete
versions. Legacy GC schemes track the oldest running trans-
actions and delete the versions that are no longer used [16,64].
However, since the compute unit in the memory pool is not
aware of transaction states, it is difficult to apply tracking
in the memory pool. On the other hand, if the compute pool
performs tracking, the coordinators need to confirm which
versions are unused among all the in-flight transactions. This
increases the network round trips for synchronizations and
wastes the compute power.

In order to avoid the overhead of tracking, Motor proposes
a coordinator-active GC scheme. The idea is that, if there
is no empty Vcell, Motor allows the coordinator to actively
select a victim version to be overwritten by the new version to
complete GC. This scheme is lightweight due to eliminating
the need of tracking the oldest running transaction.

To select the victim version, Fig. 4a shows a baseline
scheme that skips the versions being read in a CVT, and
selects the oldest version in the remaining versions. A read
queue is reserved in each CVT to store the timestamps of trans-
actions that are reading the CVT. Other coordinators check
the read queue and skip the in-use versions. However, for read
operations, since the coordinator does not know the current
position of the queue’s tail, it has to use RDMA FetchAndAdd
to atomically move the tail, and then use RDMA WRITE to
insert a timestamp to the read queue. Such extra RTTs in each
read significantly increase the latency.

We observe that the oldest version in CVT has the smallest
probability to be used, given that RDMA significantly acceler-
ates transactions [26, 78]. Hence, Motor enables coordinators
to preemptively select the oldest version in CVT as the vic-
tim, as shown in Fig. 4b. This GC scheme avoids the RTT

Header V1 V3 V5 V7

Header V9 V3 V5 V7

Header V1 V3 V5 V7

Header V1 V3 V9 V7

Txn2

Txn4

Read queue

(b) Overwriting the oldest version(a) Skipping the versions being read

Being read Preemptive
selection

Figure 4: Different garbage collection schemes for CVT.

overhead in the baseline method. The tradeoff is that some
long-running transactions would be aborted if their previously
read data are quickly reclaimed. Nevertheless, the experimen-
tal results in § 7.2 show that reserving a proper number of
versions in CVT efficiently mitigates such aborts. Overwrit-
ing old versions will make the versions in CVT unsorted, but
the correctness is not affected, since the coordinator locally
traverses all the versions in CVT to locate the target one.

Note that if the attribute bar does not have enough space,
the coordinator reclaims old attributes from the start of the
attribute bar to write newly modified attributes. In this proce-
dure, the coordinator checks which Vcells correspond to the
reclaimed attributes, and sets the Valid in these Vcells to 0 to
delete these versions. Since Motor appropriately configures
the size of attribute bar to store attributes of multiple versions,
reclaiming the old attributes does not invalidate many Vcells.

4.4 Anchor-Assisted Read
To obtain a data value, the coordinator reads a CVT to select
the target version, and then reads the full value and necessary
attributes. As shown in Fig. 5a, coordinator C1 reads a CVT
and needs the value at version V 1 (ValueV 1). C1 reads the full
value (ValueV 7) and old attributes to reconstruct ValueV 1. At
this point, another coordinator C2 is performing GC to reclaim
version V 1 and write ValueV 9. As a result, there are two incor-
rect results for C1. (1) C1 reads a corrupted full value due to
being partially updated by C2. (2) C1 reads ValueV 9 but mis-
takenly regards it as ValueV 7, thus reconstructing an incorrect
ValueV 1. The root cause of this issue is that the version and
data value are separately stored, which prevents coordinators
from “atomically” reading a value and its version.

To address the above challenge, Motor proposes an anchor-
assisted read scheme to help coordinators identify the consis-
tency between the version and value. As shown in Fig. 5b, this
scheme uses two anchors at the start and end of a Vcell, called
VcellSA (i.e., Vcell’s Start Anchor) and VcellEA (i.e., Vcell’s
End Anchor). Similarly, in a Vpkg, two anchors (VpkgSA
and VpkgEA) are used to wrap the full value. An anchor is 1
byte. A pair of SA and EA and the content they wrap are im-
plemented in a C++ struct, allowing a coordinator to access
them together using a single RDMA READ or WRITE.

To make anchors efficiently work, coordinators follow two
rules. (1) Write. A coordinator increases the anchor value by
1 for all the four anchors (i.e., VpkgSA, VpkgEA, VcellSA,
and VcellEA) to make them equal. The coordinator writes
the Vpkg first, then the modified attributes, and finally the
Vcell. (2) Read. A coordinator reads a CVT and then fetches
the Vpkg and necessary attributes. Since the full value region
stores the newest value, the VpkgSA and VpkgEA are also

806 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Value
Header V1 V3 V5 V7

C2

❶ Read CVT

❸ GC (V9)

❸ Read full value and required attributes
(Error 1: read a corrupted value. Error 2: read value V9)

VpkgSA VpkgEA

CVT

(a) Reading an incorrect value caused by concurrent GC (b) Using anchors to detect incorrectness

• Writer: write Vpkg g attributes g Vcell
• Reader: compare anchors as follows

VcellSA = VcellEA = VpkgSA = VpkgEA
Full Value(V7)

VersionVcellSA VcellEA

Start Anchor End Anchor

Vcell

Vpkg
want V1
❷

C1

Attribute Bar

Figure 5: The anchor-assisted read scheme.

the newest. Hence, the coordinator checks whether the newest
VcellSA and VcellEA in CVT are equal to VpkgSA and
VpkgEA. If the four anchors are equal, the full value and
attributes are not modified since the last read. The coordinator
then safely reconstructs the target-version value by copying
the fetched old attributes into the newest full value. However,
if any of the two anchors are not equal, the coordinator aborts
the transaction due to detecting partial updates or a conflicting
in-flight GC procedure. In essence, the four anchors assist the
coordinator to read a version and the corresponding value in
an “atomic” manner. Unlike Silo [71] that reads the version
twice to confirm consistency, our scheme only needs to read
once and compares the four anchors to identify consistency.
Guaranteeing Write Order. The correctness of the anchor-
assisted read scheme is based on that all the written data are
installed into the memory pool in the correct order, which has
two requirements. [R1] Vpkg → modified attributes → Vcell.
[R2] Inside a Vpkg (or Vcell): start anchor → content →
end anchor. In practice, the two requirements are satisfied in
network and at remote RDMA NIC (RNIC), because (1) the
reliable connection mode for one-sided RDMA guarantees
that the transmitted messages are not lost or reordered [6], and
(2) when the request reaches the remote RNIC, the RNIC en-
sures that the RDMA WRITEs are totally ordered with regard
to each other [61], i.e., these write requests are sent to the
on-chip integrated memory controller (iMC) in order. How-
ever, the two requirements can be then violated due to DDIO
(i.e., Data Direct I/O [8]). If DDIO is enabled, iMC sends the
written data to the L3 CPU cache. Due to unpredictable cache
behavior, the data in L3 cache could be evicted to memory
out of order to break R1 and R2. In fact, DDIO aims to im-
prove the cache locality, which benefits the CPU execution
in traditional monolithic servers, but becomes useless in the
disaggregated memory, since the weak CPU in memory pool
is not involved during transaction processing. Hence, Motor
disables DDIO in the memory pool, so that iMC directly sends
writes from its internal first-come-first-serve write pending
queue to the main memory. In this way, the writes are installed
into remote memory in the correct order to satisfy R1 and R2.

5 Motor Transaction Protocol
We present the Motor transaction protocol. Our protocol
works in a widely-recognized transaction processing frame-
work, which includes reading data, handling conflicts, and
writing data back. The main difference from existing stud-
ies [27,39,64,77,78,84] is that our protocol fully exploits the
CVT structure and pure one-sided RDMA to support MVCC
based distributed transactions on the disaggregated memory.

Timestamp Generation. Motor leverages sequential numbers
as transaction timestamps (i.e., 1, 2, 3 ...), which are also
adopted as data versions. In fact, the timestamp generation is
orthogonal to our designs. Existing studies propose scalable
timestamp generation schemes [24, 38, 64, 76], which can be
applied to the compute pool as the timestamp service to assign
strictly and monotonically increasing timestamps. Our paper
does not focus on optimizing the timestamp generation, and
we assume that a scalable timestamp service is efficiently
leveraged in the compute pool to serve for all coordinators.
Overview. In the memory pool, each table is replicated to 1
primary and f backups, and the weak CPUs are not involved
during transaction processing. In the compute pool, the co-
ordinators leverage our protocol to execute transactions and
access remote data through one-sided RDMA.
5.1 Processing Phases
Fig. 6 shows the procedure of handling a read-write trans-
action (e.g., T0) with serializability guarantee. All requests
in the same RTT are issued in parallel. The read-write set is
{A, B} and the read-only set is {C}. In Motor, the write set is
included in the read set, since (1) for Updates and Deletions,
the coordinator reads remote CVTs before writing data back,
and (2) for Insertions, the coordinator reads remote buckets
to obtain empty CVTs before inserting data. The detailed
processing phases are presented below.

Phase 1. Execution. The coordinator obtains a start times-
tamp (Tstart) from the timestamp service. For each read-only
(RO) or read-write (RW) data, the coordinator looks up its
local CVT address cache. (1) If the address has been cached
(e.g., A and C), for the RO data (e.g., C), the coordinator uses
RDMA READ to fetch their CVTs from the primaries; for
the RW data (e.g., A), the coordinator uses doorbell-batched
RDMA CAS+READ to respectively lock and read the CVTs
from the primaries. The locking request prevents other con-
flicting transactions from modifying the same CVT at the
same time. If the locking request fails, the coordinator aborts
the transaction, instead of waiting, to avoid deadlocks. (2)
If the address is not cached (e.g., B), the coordinator uses
RDMA READ to fetch a hash bucket and then locally search
for a Key-matched CVT. After obtaining the CVT, the coordi-
nator selects a target version V 0, which is the largest version
among all the versions that are smaller than Tstart .
Early Abort. If the coordinator observes a version (e.g., V 1)
larger than Tstart in the CVT, it means that another transaction
T1, has committed after T0’s Tstart . In this case, the coordina-
tor can early abort T0 to guarantee serializability. The reason
is that, even if using Tstart to select V 0 for execution, T0 will
be aborted in the next Validation phase, in which T0 will ob-
tain a larger commit timestamp than T1. That is, T0 with a
larger commit timestamp should have used T1’s update, i.e.,
V 1, for execution, but T0 used V 0. Hence, the coordinator
early aborts T0. Note that the early abort is unnecessary in the
snapshot isolation, since it is sufficient for T0 to read a snap-
shot at Tstart , even if the snapshot becomes slightly stale [76].

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 807

A
Coordinator

A’s primary

A’s backups

CommitValidation

A B B
Txn begin

Read A,B,C

Write A=A+C

Write B=B-C

Txn commit

Get Tstart Get Tcommit (Serialization point)

B’s primary

B’s backups

C’s primary

C’s backups

A B C C

B

A CB

Read CVT Read Value

Execution

B-CVT addr
uncached

Report “committed”

A CVT A Vpkg and any required attributes A Batched writes Lock Unlock

1 RTT 1 RTT 1 RTT 1 RTT

Figure 6: The distributed transaction protocol of Motor.

After version selection, the coordinator uses batched
RDMA READs to read the Vpkgs and any required old at-
tributes to construct the target-version value (§ 4.2). Note that
for RW data that have not been locked (e.g., B), the coordina-
tor additionally batches RDMA CAS with READs to lock and
re-read their CVTs when reading Vpkgs. After fetching all the
data, the coordinator performs three checks for correctness:
(1) if any locking fails, T0 is aborted; (2) if a newer version
larger than V 0 occurs in the re-read CVT, T0 is aborted, since
another transaction has updated this data; (3) if the four an-
chors are not equal, T0 is aborted, because the version and
value are inconsistent. If passing all checks, the coordinator
safely uses the data value inside the Vpkg to execute the trans-
action logic. Though Motor uses two RTTs to read the CVT
and data value, the network payload is significantly reduced
due to not transmitting unnecessary data values.

Phase 2. Validation. After all the remote CVTs of the RW
data are successfully locked, the coordinator obtains a commit
timestamp (Tcommit) from the timestamp service. Note that if
the read-write transaction does not contain any RO data, the
following operations can be skipped to reduce latency, since
all the RW data have been already locked. However, if the
transaction contains RO data, the coordinator needs to validate
that the versions of RO data are not changed from Tstart to
Tcommit to provide serializability. To this end, the coordinator
re-reads the CVT of each RO data from remote primaries
and uses Tcommit to select a version V ′, which is the largest
version among all the versions that are smaller than Tcommit .
The coordinator checks whether any of the two cases occur:
(1) the CVT is locked by another coordinator, or (2) V ′ ̸=V 0.
In the first case, it is possible that another transaction with
a lower Tcommit is committing a new version. The second
case means that another transaction with a lower Tcommit has
committed a new version. If either case occurs, the validation
fails, because T0 with a higher Tcommit should read the new
version but fails to do so in the Execution phase. As a result,
T0 is aborted to ensure serializability. In short, the validation
succeeds only if the CVT is not locked and V ′ =V 0.

Phase 3. Commit. When the validation succeeds, a coordi-
nator commits the updates to all remote replicas together in a
single RTT. The coordinator locally prepares the data to be
written, which can be interpreted in three scenarios. (1) Up-
date. If the record is updated for the first time, the coordinator
allocates an attribute bar in its own pre-assigned delta space.
The coordinator then finds an empty Vcell (i.e., Valid is 0)

in the fetched CVT, sets the Valid to 1, fills the Version
using Tcommit , sets the Bitmap of the updated attributes, calcu-
lates the StartOffset inside the attribute bar, and configures
both of VcellSA and VcellEA to be equal to a new number.
If there is no empty Vcell or the StartOffset exceeds the
length of attribute bar, the coordinator actively performs GC
to reclaim old versions. Moreover, the coordinator collects
the modified attributes that will be written to the attribute bar.
The coordinator then prepares a new Vpkg by filling the new
data value, and setting both of VpkgSA and VpkgEA to be
equal to VcellSA. (2) Insert. Apart from preparing the Vpkg
and Vcell like the Update operation, the coordinator prepares
a new header and fills the TableID, Key, and VpkgPtr. The
TableID and Key come from applications. The coordinator
allocates the VpkgPtr in its delta space, i.e., Motor allows the
newly inserted data to share the delta area with attribute bars
to improve the space efficiency. (3) Delete. The coordinator
sets the Valid of V 0 to 0, so that subsequent transactions with
larger timestamps cannot use the deleted version. The delete
operation needs to set the full value in remote memory pool to
an old-version value. To this end, the coordinator copies the
old attributes fetched in Execution phase into the full value.

After these local preparations, the coordinator leverages
doorbell-batched RDMA WRITEs to write the prepared data
to all replicas and unlocks primaries in one RTT. When re-
ceiving all ACKs from all replicas, the coordinator reports
“committed” to the application.
Processing Read-Only Transactions. A coordinator obtains
a read timestamp (Tstart) and reads the required CVTs from the
primaries. The coordinator uses Tstart to determine the target
version, and then fetches the Vpkgs and any required old
attributes from primaries to construct the value at the target
version. If the four anchors are equal, the transaction commits,
and otherwise aborts. Note that in single-versioning designs,
the read-only transactions require validation [27, 39, 77, 84].
However, with multi-versioning, the read-only transactions do
not require validation [57] due to obtaining a stable version
snapshot at Tstart (more details are discussed in § 5.2).

5.2 Flexible Support of Isolation Levels
By using our protocol, Motor supports two widely-used isola-
tion levels, i.e., serializability (SR) [11] and snapshot isolation
(SI) [12], to flexibly meet the requirements of different OLTP
applications. With SR, the concurrent transactions appear to
be executed one by one. Moreover, with SI, the transaction
reads data from a snapshot at a time, which does not reflect
changes made by other in-flight transactions.
Supporting SR. (1) For read-write transactions, they are seri-
alizable at the point of Tcommit if guaranteeing that all the target
versions selected at Tstart are equal to those at Tcommit . This
property allows the transactions to be considered as executing
at their Tcommit one after another. Motor ensures this property
by using locks and validations. i) If a transaction obtains all
the locks of CVTs at Tstart , the versions of read-write data

808 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cannot be changed by other transactions until Tcommit . Hence,
the versions of read-write data at Tstart are equal to those at
Tcommit . ii) During validation, if a transaction detects that the
remote CVT is locked or a new version appears at Tcommit ,
the validation fails and the transaction aborts, since the previ-
ously fetched versions of read-only data become stale. If the
validation succeeds, the versions of read-only data at Tstart
are equal to those at Tcommit . (2) For read-only transactions,
they do not have a commit timestamp due to not making data
changes. In the multi-versioning design, since read-only trans-
actions only observe a snapshot, the start time of read-only
transactions can be considered to be “movable” in order to
find a serializable execution order [57], i.e., the read-only
transactions can be placed among other read-write transac-
tions to make all the transactions appear to execute one by
one. In summary, the write-write and read-write conflicts be-
tween transactions are respectively addressed by using locks
and validations, which ensure that the precedence graphs [5]
of all the transaction schedules do not contain cycles, thus
guaranteeing serializability [68].
Supporting SI. To support SI, Motor disables the version
validation for the read-only data in read-write transactions,
i.e., these transactions are allowed to use a stale snapshot by
using Tstart . Note that the locking is still required to resolve
the write-write conflicts. SI is weaker than SR, but achieves
higher performance (as demonstrated in § 7.7) and has been
adopted by multiple popular systems, e.g., MySQL [56], Post-
greSQL [60], Oracle [59], and SQL Server [63].
ACID Guarantee. Motor guarantees ACID for transactions.
(1) Atomicity. Motor maintains multiple versions of data, and
the old versions act as “undo logs” to preserve the atomicity.
(2) Consistency. The data versions in memory pool are in a
consistent state before a transaction starts and after it commits.
(3) Isolation. Motor supports serializability and snapshot iso-
lation. (4) Durability. Motor stores f +1 replicas of each data
against data loss, and can employ UPS-backed DRAM [27] or
persistent memory [84] in the memory pool to durably store
the committed updates even if a power failure occurs.
5.3 Fault Tolerance
Replica Failures in Memory Pool. By enabling data repli-
cation, Motor is able to tolerate replica failures in the mem-
ory pool. The replica failures can be quickly detected using
RDMA [27]. If any replica fails before commit, the coor-
dinator discards all the fetched data, unlocks remote locks,
and aborts the transactions. If a primary fails during com-
mit, Motor promotes a backup as the new primary to retain
the committed updates, because the backups have the same
updates as primary. The new primary is not visible to coordi-
nators until the updates are installed into alive replicas. When
the new primary becomes visible and subsequent coordinators
can grab locks on the new primary, the updates of previous
transactions have been already committed, thus guaranteeing
serializability. Moreover, if a backup fails during commit,
the coordinator selects another memory node to add a new

backup. Adding a backup requires data migration, in which
Motor enables memory nodes to use RDMA WRITE to quickly
transmit application data. Subsequent transactions involving
failed replicas hang up until the replicas are recovered. The
(f +1)-way replication tolerates at most f replica failures.
Coordinator Failures in Compute Pool. In line with existing
studies [27, 78], Motor supports to use leases [31] to detect
coordinator failures. Motor enables the coordinators to write
small-sized operation logs in local memory to record the oper-
ations (e.g., the keys that will be locked or committed) during
execution. The operation logs are stored in UPS-backed mem-
ory and are not lost [27]. If a coordinator fails, Motor employs
a new one to use the operation logs to resume the in-flight
commit and unlock keys for recovery. For example, the new
coordinator uses RDMA CAS to unlock the recorded keys, i.e.,
if the CAS succeeds, the previous lock is released to avoid
starvation, and otherwise the key is actually not locked.
Network Failures. A network failure causes the network par-
tition. In practice, it is hard to distinguish network failure
from server failure. Like uKharon [34], we assume that the
network partitions are discovered and resolved by datacenter
administrators. If a network partition occurs, either availabil-
ity or consistency cannot be fully guaranteed according to the
CAP theorem [18,30]. In the context of OLTP applications,
offering consistency is more important to satisfy the ACID
requirements. Hence, Motor weakens the availability by only
allowing the major partition [17] to serve requests.

6 Implementations
We present some important implementation details including
the transaction interfaces and execution framework.
Easy-to-Use Transaction Interfaces. Motor provides the
following interfaces for applications to easily run MVCC
based distributed transactions on the disaggregated memory.

• TxnBegin(): Start a transaction and record its ID.
• GetTS(): Get a timestamp from the timestamp service.
• AddObject(): Add a read-only (or read-write) object to

the read-only (or read-write) set.
• FetchAll(): Obtain remote CVTs and target-version

data values. The remote CVTs are simultaneously locked.
• Validate(): Validate the versions of read-only data.
• TxnCommit(): Commit the transaction by writing the

updates back to remote replicas and unlocking the primaries.
Execution Framework. In the compute pool, Motor uses the
CPU cores to spawn massive threads to execute transactions in
parallel. However, if using a thread as a coordinator, the CPU
core will become idle when waiting for RDMA ACKs, which
decreases the throughput. To saturate the compute power of
a CPU core, Motor generates multiple coroutines in a CPU
thread to execute in a pipeline manner [39,77,84]. In a thread,
one coroutine polls the RDMA ACKs, and each of the other
coroutines acts as a transaction coordinator. Therefore, Mo-
tor enables substantial coordinators to concurrently execute
transactions in the compute pool.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 809

7 Performance Evaluation
7.1 Experimental Setup
Testbed. We configure four servers connected through a Mel-
lanox SB7890 100Gbps InfiniBand (IB) Switch. Each server
contains a 100Gbps Mellanox ConnectX-5 IB RNIC. One
server containing Intel Xeon Gold 6330 CPUs is configured as
the compute pool to run coordinators. Other three servers form
the memory pool, and each server contains 192GB DRAM.
Benchmarks. We leverage a key-value store (KVS) as a micro-
benchmark. KVS stores 10M key-value pairs in one database
(DB) table. The key is 8B and the value is 40B [39, 84]. In
KVS, each transaction performs a read or an update operation
to a 48B KV pair with skewed accesses following the Zipfian
distribution [23]. We enable the skewness and the ratio of
read-write transactions in the transaction mix of KVS to be
configurable to facilitate comprehensive evaluation. Further-
more, we leverage three widely-used OLTP benchmarks, i.e.,
TATP [1], SmallBank [4], and TPCC [13], to evaluate the end-
to-end transaction throughput and latency. Specifically, TATP
shows a telecom application, which includes 4 DB tables and
80% of the transactions are read-only. TATP contains 2M sub-
scribers and the record size is up to 48B. SmallBank models
a banking application, which contains 2 DB tables and 85%
of transactions are read-write. SmallBank has 10M accounts
and the record size is 16B. TPCC models a complex ordering
system, which contains 9 DB tables and 92% of transactions
are read-write. TPCC contains 24 warehouses and the record
size is up to 672B. Moreover, for all benchmarks, each DB
table is replicated to three memory nodes to maintain a 3-way
replication, i.e., 1 primary and 2 backups.
Comparisons. We compare our Motor with two state-of-the-
art systems, i.e., FaRMv2 [64] and FORD [84]. FaRMv2 sup-
ports multi-versioning for transactions on monolithic servers,
and uses the new-to-old chains to link versions [64]. To make
FaRMv2 compatible with disaggregated memory (DM), we
use one-sided RDMA to implement its transaction protocol,
which is referred to as FaRMv2-DM in the rest of this paper.
Moreover, FORD supports single-versioning for transactions
on the disaggregated memory, and we run its open-source
code. Though FORD leverages persistent memory, its one-
sided RDMA designs on transaction protocol are also com-
patible with DRAM. Note that Motor targets on the disaggre-
gated architecture, which is not comparable with the systems
running on the monolithic architecture [39, 57, 76].
Performance Metrics. We report the transaction throughput
by counting the number of committed transactions per second.
Moreover, we report the 50th and 99th percentile latencies of
committed transactions as the transaction latency.

7.2 Number of Versions in CVT
We explore how the number of versions (VNum) in CVT
affects the performance of Motor. For each benchmark, we
vary VNum from 2 to 15. The ratio of read-write transactions
in KVS is 80%. Fig. 8 and 9 show that as VNum increases,

0
1
2
3
4
5
6

0 4 8 12

R
D

M
A

 R
EA

D
 la

te
n

cy
 (

µ
s)

Data size (KB, 64B intervals)

Figure 7: The latency
of reading different
sizes of data.

VNum VNum

(a) Skewness = 0.7 (b) Skewness = 0.99

2000
2500
3000
3500
4000
4500
5000

2 4 6 8 10 12 14

2000
2500
3000
3500
4000
4500
5000

2 4 6 8 10 12 14Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Figure 8: The transaction through-
put on KVS benchmark when varying
VNum with skewness 0.7 and 0.99.

0
20
40
60
80

100
120

2 4 6 8 10 12 14
VNum VNum

(a) TPCC (b) SmallBank

VNum

(c) TATP

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

2000
2500
3000
3500
4000
4500
5000

2 4 6 8 10 12 14

0
500

1000
1500
2000
2500
3000

2 4 6 8 10 12 14

Figure 9: The transaction throughput on TPCC, SmallBank,
and TATP benchmarks when varying VNum.

the transaction throughput generally first increases and then
decreases. The reason is that, when VNum gets larger, the
abort rate of read-only transactions is reduced to increase the
throughput. For example, in TPCC, the abort rate of a long-
running read-only transaction STOCK_LEVEL decreases from
32.1% (VNum = 2) to 3.8% (VNum = 4). However, after
reaching the peak transaction throughput, increasing VNum
no longer significantly reduces aborts, but the CVT size con-
tinues to increase, which enlarges the payload size to increase
RDMA read latency, as shown in Fig. 7. The increased read
overhead overwhelms the benefit of reducing aborts, thus
decreasing the performance. Besides, large VNums also con-
sume more memory space, as presented in § 7.6. Fig. 8 shows
that at skewness 0.7, KVS reaches the peak throughput ear-
lier than 0.99, since a larger skewness incurs higher access
contention and requires more versions to reduce aborts.

We observe that, as VNum increases after the peak through-
put, the throughput degradation of TPCC (up to 49.6%) is heav-
ier than other workloads. This is because one transaction in
TPCC can access hundreds of records, which is much larger
than other benchmarks, e.g., one transaction in SmallBank
(or TATP) only accesses 1–3 (or 1–4) records. Therefore, the
overall read overhead (considered as CVT size × number
of records) of TPCC transactions is more sensitive to VNum,
leading to sharper performance decrease. SmallBank is write-
intensive, but its transactions are short, and maintaining 3
versions reaches the peak performance. TATP only requires
2 versions for a record to achieve the peak throughput, since
80% of transactions in TATP are read-only and short-running
with low contentions. As VNum grows, the high read over-
head leads to continuous throughput degradation in TATP.

In summary, determining a suitable VNum significantly
depends on the characteristics of workloads, including the
access contention and the number of accessed records in a
transaction. When the contention is low (e.g., TATP), setting
a small VNum is enough. If the contention is high, more
versions are needed to allow higher concurrency, especially
for the long-running transactions. We also need to consider

810 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

2000

4000

6000

8000

20% 40% 60% 80% AVG

O2N N20 CVT

0

2000

4000

6000

8000

20% 40% 60% 80% AVG

O2N N20 CVT

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

The ratio of read-write transactions The ratio of read-write transactions

(a) VNum = 3, skewness = 0.7 (b) VNum = 4, skewness = 0.99

Figure 10: The transaction throughput of different version
structures on KVS benchmark.

the number of records accessed per transaction to avoid large
CVTs incurring high overall read overhead. According to
these results, we respectively set the suitable VNum in TPCC,
TATP, SmallBank, and KVS to 4, 2, 3, and 4.

7.3 Performance of Version Structures
We compare the performance of our CVT and traditional
linked-chain version structures, i.e., old-to-new (O2N) and
new-to-old (N2O), upon the KVS benchmark. We configure
the access skewness as 0.7 and 0.99, and vary the ratio of
read-write transactions (RW-ratio) from 20% to 80% in the
transaction mix of KVS. Based on the results in Fig. 8, we
change the maximum number of versions to hold for all struc-
tures to 3 for skewness 0.7, and 4 for skewness 0.99.

Fig. 10 shows that CVT respectively improves the through-
put by 1.7–2.4× and 1.3–1.6× compared with O2N and N2O.
The reason is that, CVT enables the transaction to fetch the tar-
get version in a single round trip, while O2N and N2O require
multiple round trips for chain walking. When increasing the
RW-ratio, the throughputs of three structures decrease, since
the write conflicts increase and read-write transactions require
more round trips to commit. When the skewness is high (e.g.,
0.99) and RW-ratio is low (e.g., 20%), the throughput gap
between N2O and CVT becomes small, because the access is
more concentrated and many read-only transactions quickly
obtain new values from the chain head of N2O. However, such
performance gap between O2N and CVT becomes larger at
high skewness since the new versions in O2N are placed in the
chain tail, which increases the read overhead. Moreover, CVT
respectively reduces the 50th (and 99th) percentile latencies
by 59.8%/30.8% (and 67.9%/47.7%) on average compared
with O2N/N2O at skewness 0.99 due to the same reasons
above. We have also examined that when further increasing
the maximum number of versions to hold, CVT can deliver
more performance benefits over O2N and N2O.

7.4 End-to-End Performance
We leverage TATP, TPCC, and SmallBank to evaluate the end-
to-end performance of Motor, FORD, and FaRMv2-DM. All
systems guarantee serializability. We configure the maximum
number of versions in FaRMv2-DM’s version chain to be
the same as our CVT for fair comparisons. Fig. 11 illustrates
the transaction throughput and latency. To plot a throughput-
latency curve, we increase the request load by running 10–40
threads and 2–8 coroutines per thread, i.e., 10–280 concurrent
coordinators. Each thread executes 1M transactions following
the standard transaction mix of each benchmark [1, 4, 13].

(a) TATP

(c) SmallBank

(b) TPCC

0
5

10
15
20
25
30
35

0 1000 2000 3000 4000 5000

Transaction throughput (K txn/s)

FaRMv2-DM

FORD

Motor

0

50

100

150

200

250

0 1000 2000 3000 4000 5000

Transaction throughput (K txn/s)

FaRMv2-DM

FORD

Motor

0

30

60

90

120

150

0 20 40 60 80 100

Transaction throughput (K txn/s)

FaRMv2-DM
FORD
Motor

0

5000

10000

15000

20000

0 20 40 60 80 100

Transaction throughput (K txn/s)

FaRMv2-DM
FORD
Motor

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

Transaction throughput (K txn/s)

FaRMv2-DM

FORD

Motor

20

70

120

170

220

270

0 500 1000 1500 2000 2500

Transaction throughput (K txn/s)

FaRMv2-DM

FORD

Motor

5
0

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

5
0

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

5
0

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

Figure 11: The transaction throughput and latency of all the
systems on TATP, TPCC, and SmallBank benchmarks.

Compared with FORD, Motor respectively improves
the transaction throughput by 14.4% on TATP, 98.1% on
TPCC, and 65.4% on SmallBank. FORD adopts the single-
versioning design, which limits the throughput, since reads
are blocked by writes during commit, and the undo logs con-
sume network bandwidth. Unlike FORD, Motor allows to read
existing versions in CVTs, and does not need to write undo
logs to remote replicas by maintaining old versions of val-
ues. Hence, Motor improves the throughput over FORD. The
improvements are higher in TPCC and SmallBank, because
(1) they are write-intensive workloads in which Motor avoids
many undo logs, and (2) Motor reserves multiple versions
to reduces aborts for read-only transactions, especially long-
running ones, e.g., STOCK_LEVEL in TPCC. FORD delivers the
lowest 50th percentile latency in TATP, since the two trans-
actions, i.e., GET_SUBSCRIBER_DATA and GET_ACCESS_DATA,
occupy 70% of the transaction mix, and both of them only read
one object. In this case, FORD only uses one RTT to read data,
while Motor requires two RTTs to separately read the CVT
and data value. However, the 99th percentile latency of Motor
on TATP is close to FORD when the transaction becomes com-
plex. Furthermore, Motor reduces the 50th percentile latency
by 55.8%/26.2% on TPCC/SmallBank compared with FORD.

Compared with FaRMv2-DM, Motor respectively improves
the transaction throughput by 18.9%/44.3%/29.5%, and re-
duces the 50th (99th) percentile latencies by 8.6% (39.1%) /
52.1% (35.6%) / 43.6% (34.5%), on TATP/TPCC/SmallBank.
Motor achieves these improvements due to three reasons.
(1) FaRMv2 uses the linked chain to store different versions,
which increases network round trips to perform chain walking
to obtain the target version. Unlike FaRMv2, Motor uses CVT
to fetch the versions together in one round trip. Motor shows
the highest improvement over FaRMv2-DM in TPCC, since
TPCC requires more versions and the transactions read many

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 811

M
em

o
ry

 o
ve

rh
ea

d
 (

G
B

)

0

2

4

6

8

10

TPCC TATP SmallBank KVS

FaRMv2-DM Motor FORD

M
em

o
ry

 o
ve

rh
ea

d
 (

G
B

)

(a) Benchmark Scale-1 (b) Benchmark Scale-2

0

1

2

3

4

5

TPCC TATP SmallBank KVS

FaRMv2-DM Motor FORD

Figure 12: The space consumption in memory pool of all
systems at two scales of benchmarks.

records, which exacerbates the chain walking in FaRMv2-
DM to cause high overheads. (2) The design of FaRMv2
consumes a dedicated RTT to lock the read-write data, but
Motor enables to batch the locking and CVT/value read re-
quests to save RTTs. (3) The design of FaRMv2 uses two
RTTs to commit the backups and primaries, while Motor up-
dates all replicas together in one RTT. Moreover, FORD can
also achieve lower latency than FaRMv2-DM by alleviating
the read overhead, but FaRMv2-DM allows more concurrency
in multi-versioning to improve the throughput.

7.5 Memory Overhead
We present the memory overheads of all systems in the mem-
ory pool using two different scales of benchmarks. Scale-1 (or
Scale-2): TPCC contains 24 (or 48) warehouses; TATP has 2M
(or 4M) subscribers; SmallBank has 10M (or 20M) accounts;
KVS stores 10M (or 20M) KV pairs with skewness 0.99 and
RW-ratio 80%. Scale-1 is the default configuration in § 7.1.

As shown in Fig. 12, FORD exhibits the lowest memory
overhead by storing only one version of data. Due to support-
ing multi-versioning, Motor and FaRMv2-DM consume larger
memory space than FORD. Nevertheless, Motor saves mem-
ory space in three aspects: (1) maintaining the actually mod-
ified attributes rather than full values for different versions;
(2) appropriately estimating the size of attribute bar without
wasting space; and (3) configuring suitable VNums for dif-
ferent workloads without storing unnecessary versions. For
example, Motor supports 4 versions of data in TPCC, but only
consumes 1.45×, instead of 4×, of memory space over FORD.
Such memory saving is also shown in other benchmarks. In
TATP, Motor only incurs 17.3% higher memory overhead than
FORD, since only 16% of transactions perform updates and
the modified attributes are small. In SmallBank and KVS,
Motor respectively consumes 32.7% and 37.7% higher mem-
ory space than FORD, since SmallBank and KVS are write-
intensive and require more versions than TATP. FaRMv2-DM
suffers from 14.6%-22.8% higher memory overhead than
Motor due to two reasons. First, FaRMv2 stores a full-sized
value for each version, while Motor only stores the modified
attributes of values. Second, FaRMv2 requires pointers to link
old versions in its version chain, while Motor does not need
such pointers since our CVT structure consecutively stores all
the versions. Moreover, Fig. 12b shows that when the bench-
mark scale increases, the gap of space consumption between
Motor and FORD generally keeps stable in all benchmarks.
This demonstrates that our reduction of memory overhead
still works even if the workload scale becomes larger. In

3600
3800
4000
4200
4400
4600
4800

1000 1500 2000 2500 3000 3500 4000

FORD FaRMv2-DM Motor

20

40

60

80

100

120

2000 2500 3000 3500 4000 4500 5000

FORD FaRMv2-DM Motor

(a) TPCC (b) SmallBank

(c) KVS (d) TATP

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

1000

1400

1800

2200

2600

1000 1500 2000 2500 3000 3500

FORD FaRMv2-DM Motor

1500
2000
2500
3000
3500
4000
4500

700 1000 1300 1600 1900 2200

FORD FaRMv2-DM Motor

Total memory used (MB) Total memory used (MB)

Total memory used (MB) Total memory used (MB)

Figure 13: The comparisons of transaction throughput when
varying Motor memory footprint by changing VNum.

60

70

80

90

100

110

2800 3200 3600 4000 4400 4800 5200

Motor

LargeABSSmallABS

2000

2500

3000

3500

4000

4500

1200 1500 1800 2100

Motor

LargeABSSmallABS

0
1000
2000
3000
4000
5000
6000

1750 1770 1790 1810 1830

Motor

LargeABSSmallABS

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

1000
1300
1600
1900
2200
2500
2800

1700 1800 1900 2000 2100

Motor

LargeABSSmallABS

(a) TPCC (b) SmallBank

(c) KVS (d) TATP

Total memory used (MB) Total memory used (MB)

Total memory used (MB) Total memory used (MB)

Figure 14: The transaction throughput of Motor when varying
the memory footprint by changing ABS.

summary, Motor trades some extra memory space to achieve
better performance than the single-versioning design, while
also reducing the memory overhead as much as possible.

7.6 Varying Motor Memory Footprint
We study how Motor performs when varying the memory foot-
print based on the benchmark Scale-1 (§ 7.5). In the memory
pool, since the full values always exist to provide complete
user data, we vary Motor memory footprint by changing the
number of versions (VNum) and the attribute bar size (ABS).
As Motor has significantly reduced the memory overhead, the
room to further decrease memory footprint is limited. For ex-
ample, Motor only reserves 2 versions of data in TATP. This is
the minimal number of versions for multi-versioning. Hence,
in TATP, we increase VNum up to 8 to increase memory foot-
prints. For other benchmarks, since their suitable VNums are
larger than 2, we decrease (and increase) VNum from the
suitable VNum to 2 (and 8) to vary memory footprints. When
changing VNum (2–8), the corresponding ABS is estimated
using the formula in § 4.2. Moreover, to vary ABS, we fix
VNum to the suitable VNum in each benchmark, and (1) in-
crease ABS to 2–6× of the estimated ABS using the suitable
VNum, and (2) decrease ABS to 1× of the sum of different
TotAttrSizes per transaction. Fig. 13–16 show the transaction
throughput and latency of Motor when varying memory foot-
prints. We also report the performance and memory footprints
of FORD and FaRMv2-DM for comparisons.

812 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

20
30
40
50
60
70
80

2000 2500 3000 3500 4000 4500 5000

FORD FaRMv2-DM Motor

20

30

40

50

1000 1500 2000 2500 3000 3500

FORD FaRMv2-DM Motor

0

10

20

30

40

50

700 1000 1300 1600 1900 2200

FORD FaRMv2-DM Motor

5
0

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

5
0

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

5
0

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

5
0

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

0

4

8

12

16

1000 1500 2000 2500 3000 3500 4000

FORD FaRMv2-DM Motor

(a) TPCC (b) SmallBank

(c) KVS (d) TATP

Total memory used (MB) Total memory used (MB)

Total memory used (MB) Total memory used (MB)

Figure 15: The comparisons of the 50th percentile latency
when varying Motor memory footprint by changing VNum.

2000

4000

6000

8000

10000

2000 2500 3000 3500 4000 4500 5000

FORD FaRMv2-DM Motor

20
30
40
50
60
70
80

700 1000 1300 1600 1900 2200

FORD FaRMv2-DM Motor

0

20

40

60

80

100

1000 1500 2000 2500 3000 3500 4000

FORD FaRMv2-DM Motor

9
9

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

60

70

80

90

100

110

1000 1500 2000 2500 3000 3500

FORD FaRMv2-DM Motor

(a) TPCC (b) SmallBank

(c) KVS (d) TATP

Total memory used (MB) Total memory used (MB)

Total memory used (MB) Total memory used (MB)

Figure 16: The comparisons of the 99th percentile latency
when varying Motor memory footprint by changing VNum.

As shown in Fig. 13, when decreasing VNum from the suit-
able value, the memory footprints of Motor are reduced by up
to 22.8% and are close to FORD on many workloads. Through
reducing the memory footprint to contain less versions, Motor
still achieves higher throughput than FORD and FaRMv2-DM.
The reason is that compared with FORD, (1) Motor reserves
more than one version to avoid blocking reads and reduce
transaction aborts; (2) Motor does not need to additionally
write undo logs and the read-only transactions do not need to
validate versions with multi-versioning. Moreover, compared
with FaRMv2-DM, (1) our CVT structure avoids chain walk-
ing to reduce latency; (2) our MVCC protocol saves RTTs
via efficient request batching (§ 7.4). When slightly increas-
ing VNum (e.g., from 4 to 6 in KVS), Motor still consumes
less memory than FaRMv2-DM thanks to only storing neces-
sary modifications in the delta area. Hence, compared with
FaRMv2-DM, Motor can store more versions using a smaller
amount of memory. In fact, when VNum increases from 2
to 8 (4×), the Motor memory footprint only increases by
1.4×/2.1×/2×/1.9× on TPCC/SmallBank/TATP/KVS. Fig. 14
shows that when fixing VNum and reducing ABS from the
suitable ABS, the throughput decreases, since a small-sized
attribute bar would result in more than one Vcells being in-
validated in garbage collection to increase aborts. However,
when increasing ABS from the suitable ABS, the throughput

0

40

80

120

160

1000 2000 3000 4000 5000

Transaction throughput (K txn/s)

Motor-SI

Motor-SR

0

3000

6000

9000

12000

15000

20 40 60 80 100 120
Transaction throughput (K txn/s)

Motor-SI

Motor-SR

10
20
30
40
50
60
70
80

20 40 60 80 100 120

Transaction throughput (K txn/s)

Motor-SI

Motor-SR

0
5

10
15
20
25
30

1000 2000 3000 4000 5000

Transaction throughput (K txn/s)

Motor-SI

Motor-SR

(a) TATP

(b) TPCC

5
0

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

5
0

th
 p

er
ce

n
ti

le
 la

te
n

cy
 (

µ
s)

Figure 17: The transaction throughput and latency on TATP
and TPCC benchmarks when using different isolation levels.

generally keeps stable, since the transaction aborts are hardly
reduced. This demonstrates the efficiency of our estimation
on ABS, i.e., reserving an exact and sufficient size for the at-
tribute bar without wasting memory. Fig. 15 and 16 show that
the latency of Motor grows when increasing VNum to enlarge
the memory footprint, since large-sized CVTs increase the
transmission latency. Nevertheless, Motor still exhibits lower
latency than FaRMv2-DM by using the CVT to obtain all
versions in a single read. In TATP, FORD achieves the lowest
latency due to consuming less RTTs to fetch data, as ana-
lyzed in § 7.4. But in other benchmarks, Motor shows lower
latency than FORD at suitable VNums due to eliminating the
overheads of writing logs for read-write transactions and vali-
dating versions for read-only transactions. In summary, these
results demonstrate the benefits of Motor over state-of-the-art
systems when varying Motor memory footprint.

7.7 Performance of Different Isolation Levels
Motor supports two isolation levels, i.e., serializability (SR)
and snapshot isolation (SI). Fig. 17 show that Motor-SI gener-
ally achieves lower latency and higher throughput than Motor-
SR on both read-intensive (TATP) and write-intensive (TPCC)
workloads by eliminating the validation phase for read-write
transactions. Compared with TATP, Motor-SI shows higher
throughput improvement in TPCC, since TPCC accesses more
read-only data per transaction and features higher read-write
contentions, thus allowing more throughput improvement
when relaxing the isolation requirement.

7.8 Using PM in Memory Pool
Both DRAM and persistent memory (PM) can be used in a
memory pool [69, 86]. We leverage six 128GB Intel Optane
PM modules in each memory node to evaluate the perfor-
mance of Motor on TPCC. We use RDMA READ-after-WRITE
to flush the written data from remote RNIC to PM for re-
mote data persistency [84]. Fig. 18 shows that the throughput
only decreases by 13.1% on PM due to the limited PM band-
width [80, 84]. The results demonstrate that Motor efficiently
works on both DRAM and PM, thus offering good portability
for applications to run on different types of memory devices.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 813

10
20
30
40
50
60
70
80

20 40 60 80 100

Motor-PM

Motor-DRAM

0

3000

6000

9000

12000

15000

20 40 60 80 100

Motor-PM

Motor-DRAM

5
0

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

9
9

th
 p

e
rc

en
ti

le
 la

te
n

cy
 (

µ
s)

Transaction throughput (K txn/s) Transaction throughput (K txn/s)

Figure 18: The transaction throughput and latency on TPCC
benchmark when using DRAM and PM in the memory pool.

7.9 Fault Tolerance
We leverage TPCC to show the resilience of Motor under coor-
dinator failures in compute pool and replica failures in mem-
ory pool. We report the instantaneous transaction throughput
in 1 ms interval over time (the crash occurs at time 0).

Fig. 19a shows the throughput timeline of recovering co-
ordinators. We run 84 coordinators and 60 of them fail at the
same time. Motor then generates 60 new coordinators and
establishes network connections, which consumes about 170
ms. Afterwards, the new coordinators take over the remaining
tasks. In Motor, each coordinator writes local operation logs
to record the operations during execution. These operation
logs consume very small space (up to 556B per transaction)
and the log space can be reused across transactions. The new
coordinators use the operation logs of failed ones to resume
in-flight commits and unlock CVTs to avoid starvation. After
recovery, Motor regains peak throughput.

Fig. 19b shows the results of recovering replicas. Consid-
ering that the CUSTOMER table is frequently used, we respec-
tively allow the primary and one backup of CUSTOMER to fail,
i.e., cannot be accessed. A small portion of transactions that
do not access the failed replicas are normally executed, and
hence the throughput does not become 0. Motor handles the
primary failure by promoting a backup as the new primary and
adding a backup. Motor tolerates the backup failure by adding
a backup. Recovering the primary consumes more time, since
Motor needs to change the view of primaries for coordina-
tors, and the new primary is not visible until the updates are
committed into alive replicas. Adding a backup requires data
migration, during which Motor allows a memory node to use
RDMA WRITE to transmit DB tables, CVTs, and attribute
bars to another memory node. Write requests to the replicas
involved in migration are blocked to guarantee the data con-
sistency among replicas. Since the CUSTOMER table is large,
the migration consumes nearly 200 ms. We also examine that
if a small DISTRICT table fails, the migration consumes only
1.1 ms. Further optimization on migration is out of our scope.
In practice, our ms-scale recovery is acceptable given that
prior systems [27, 64, 66] also provide ms-scale recovery.

8 Related Work
Fast Distributed Transactions. Fast distributed transaction
processing is a key pillar in distributed systems. Many systems
use RDMA to process transactions [22, 26, 27, 39, 41, 58, 64,
77, 78]. Some studies transform a distributed transaction to a
local one to reduce the communication overheads [19, 40, 52].
Some protocols on concurrency control [55, 74, 79, 82] and

0
20
40
60
80

100
120
140

-200 -150 -100 -50 0 50 100 150 200 250 300 350

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Time (ms)

failure occurs

generating
new coordinators

new coordinators
take over tasks

recovery finishes

0
20
40
60
80

100
120
140

-200 -150 -100 -50 0 50 100 150 200 250 300 350

Th
ro

u
gh

p
u

t
(K

 t
xn

/s
)

Time (ms)

Primary failure Backup failure

failure occurs

recovery starts

backup recovery
finishes

primary
recovery
finishes

(a) Tolerating coordinator failures

(b) Tolerating replica failures

Figure 19: The Motor’s transaction throughput on TPCC over
time under (a) coordinator failures and (b) replica failures.
data replication [83] are proposed to improve the performance.
The above systems work on the monolithic architecture, while
our Motor targets on the disaggregated architecture.
Memory Disaggregation. Memory disaggregation improves
the resource utilization. Existing studies explore memory
disaggregation in many areas, such as hardware designs [35,
50,51], operating systems [65], indexes [53,75,86], key-value
stores [45,49,66,69], networking [29,67], erasure coding [47,
85], swapping [15,20,33,62], and memory managements [14,
46, 48, 54, 70, 72, 73]. In fact, Motor focuses on transaction
processing, which is orthogonal to the above systems. Though
FORD [84] supports transactions on disaggregated memory,
it adopts single-versioning, which limits the concurrency and
incurs high logging overheads. Unlike FORD, Motor enables
multi-versioning to address these limitations.
Multi-Versioning Schemes. Multi-versioning schemes have
been adopted to support distributed transactions. They focus
on high-performance MVCC protocols [28, 43, 57, 64], times-
tamp generations [38,76,81], garbage collections [16,44], and
verifications [21]. These systems are designed for traditional
monolithic servers, which do not fit the disaggregated mem-
ory. Unlike these studies, our CVT structure and distributed
transaction protocol efficiently support multi-versioning on
the disaggregated memory.
9 Conclusion
This paper proposes Motor, an efficient distributed transac-
tion processing system for multi-versioning in the context of
disaggregated memory. Motor proposes a new consecutive
version tuple structure to efficiently organize multiple ver-
sions of data in memory pool. On top of this, Motor designs a
fully one-sided RDMA-oriented MVCC protocol to acceler-
ate transactions. Extensive experimental results demonstrate
that Motor significantly improves the transaction throughput
and reduces the latency with moderate memory overhead.
Acknowledgments
This work was supported in part by National Natural Science
Foundation of China (NSFC) under Grant No. 62125202 and
U22B2022. We are grateful to anonymous reviewers for their
constructive suggestions and feedback.

814 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Telecom application transaction processing benchmark.
http://tatpbenchmark.sourceforge.net, 2011.

[2] Intel® rack scale design architecture. https://www.
intel.com/content/dam/www/public/us/en/doc
uments/white-papers/rack-scale-design-arc
hitecture-white-paper.pdf, 2018.

[3] Vmware Research: Remote memory. https://resear
ch.vmware.com/projects/remote-memory, 2021.

[4] Smallbank benchmark. https://hstore.cs.brown.
edu/documentation/deployment/benchmarks/sm
allbank, 2022.

[5] Precedence graph. https://en.wikipedia.org/wik
i/Precedence_graph, 2023.

[6] Rdma aware networks programming user manual v1.7.
https://docs.nvidia.com/networking/display
/rdmaawareprogrammingv17/transport+modes,
2023.

[7] Compute express link®. https://www.computeexp
resslink.org, 2024.

[8] Intel® Data Direct I/O Technology. https://www.in
tel.com/content/www/us/en/io/data-direct-i
-o-technology.html, 2024.

[9] MySQL: The world’s most popular open source
database. https://www.mysql.com, 2024.

[10] PostgreSQL: The World’s Most Advanced Open Source
Relational Database. https://www.postgresql.org,
2024.

[11] Serializability. https://en.wikipedia.org/wiki/
Database_transaction_schedule#Serializable,
2024.

[12] Snapshot isolation. https://en.wikipedia.org/w
iki/Snapshot_isolation, 2024.

[13] Tpc-c benchmark. http://www.tpc.org/tpcc, 2024.

[14] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: a simple abstraction for remote mem-
ory. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
pages 775–787. USENIX Association, 2018.

[15] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
far memory improve job throughput? In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 14:1–14:16. ACM, 2020.

[16] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons
Kemper. Scalable garbage collection for in-memory
MVCC systems. Proc. VLDB Endow., 13(2):128–141,
2019.

[17] Eric Brewer. Cap twelve years later: How the "rules"
have changed. Computer, 45(2):23–29, 2012.

[18] Eric A Brewer. Towards robust distributed systems. In
PODC, volume 7, pages 343477–343502. Portland, OR,
2000.

[19] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with RDMA and caching. Proc.
VLDB Endow., 11(11):1604–1617, 2018.

[20] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In ASPLOS ’21: 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pages 79–92. ACM, 2021.

[21] Yun-Sheng Chang, Ralf Jung, Upamanyu Sharma,
Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-
dovich. Verifying vmvcc, a high-performance trans-
action library using multi-version concurrency control.
In 17th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2023, Boston, MA, USA,
July 10-12, 2023, pages 871–886. USENIX Association,
2023.

[22] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen,
and Haibo Chen. Fast and general distributed trans-
actions using RDMA and HTM. In Proceedings of the
Eleventh European Conference on Computer Systems,
EuroSys 2016, London, United Kingdom, April 18-21,
2016, pages 26:1–26:17. ACM, 2016.

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, Indiana, USA, June 10-11, 2010, pages
143–154. ACM, 2010.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 815

http://tatpbenchmark.sourceforge.net
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rack-scale-design-architecture-white-paper.pdf
https://research.vmware.com/projects/remote-memory
https://research.vmware.com/projects/remote-memory
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank
https://en.wikipedia.org/wiki/Precedence_graph
https://en.wikipedia.org/wiki/Precedence_graph
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/transport+modes
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17/transport+modes
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.mysql.com
https://www.postgresql.org
https://en.wikipedia.org/wiki/Database_transaction_schedule#Serializable
https://en.wikipedia.org/wiki/Database_transaction_schedule#Serializable
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation
http://www.tpc.org/tpcc

[24] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In
10th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2012, Hollywood, CA, USA,
October 8-10, 2012, pages 251–264. USENIX Associa-
tion, 2012.

[25] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke
Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma,
and Mike Zwilling. Hekaton: SQL server’s memory-
optimized OLTP engine. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013, pages 1243–1254. ACM, 2013.

[26] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote mem-
ory. In Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2014, Seattle, WA, USA, April 2-4, 2014, pages 401–414.
USENIX Association, 2014.

[27] Aleksandar Dragojevic, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
compromises: distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP
2015, Monterey, CA, USA, October 4-7, 2015, pages 54–
70. ACM, 2015.

[28] Tamer Eldeeb, Xincheng Xie, Philip A. Bernstein, Asaf
Cidon, and Junfeng Yang. Chardonnay: Fast and general
datacenter transactions for on-disk databases. In 17th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2023, Boston, MA, USA, July 10-
12, 2023, pages 343–360. USENIX Association, 2023.

[29] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,
Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016, pages
249–264. USENIX Association, 2016.

[30] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. Acm Sigact News, 33(2):51–59, 2002.

[31] Cary Gray and David Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache con-
sistency. ACM SIGOPS Operating Systems Review,
23(5):202–210, 1989.

[32] Martin Grund, Jens Krüger, Hasso Plattner, Alexander
Zeier, Philippe Cudré-Mauroux, and Samuel Madden.
HYRISE - A main memory hybrid storage engine. Proc.
VLDB Endow., 4(2):105–116, 2010.

[33] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory dis-
aggregation with infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
649–667. USENIX Association, 2017.

[34] Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
ukharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference,
USENIX ATC 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 101–120. USENIX Association, 2022.

[35] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: a hardware-software co-
designed disaggregated memory system. In ASPLOS

’22: 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Lausanne, Switzerland, 28 February 2022 -
4 March 2022, pages 417–433. ACM, 2022.

[36] Doug Hakkarinen, Panruo Wu, and Zizhong Chen. Fail-
stop failure algorithm-based fault tolerance for cholesky
decomposition. IEEE Transactions on Parallel and
Distributed Systems, 26(5):1323–1335, 2015.

[37] Chi Ho, Robbert van Renesse, Mark Bickford, and
Danny Dolev. Nysiad: Practical protocol transforma-
tion to tolerate byzantine failures. In 5th USENIX Sym-
posium on Networked Systems Design & Implementa-
tion, NSDI 2008, April 16-18, 2008, San Francisco, CA,
USA, Proceedings, pages 175–188. USENIX Associa-
tion, 2008.

[38] Tianyang Jiang, Guangyan Zhang, Zhiyue Li, and
Weimin Zheng. Aurogon: Taming aborts in all phases
for distributed In-Memory transactions. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 217–232, Santa Clara, CA, February 2022.
USENIX Association.

[39] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Fasst: Fast, scalable and simple distributed trans-
actions with two-sided (RDMA) datagram rpcs. In
12th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2016, Savannah, GA,

816 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

USA, November 2-4, 2016, pages 185–201. USENIX
Association, 2016.

[40] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew
Bainbridge, Matthew Balkwill, Aleksandar Dragojevic,
Boris Grot, Bozidar Radunovic, and Yongguang Zhang.
Zeus: locality-aware distributed transactions. In Eu-
roSys ’21: Sixteenth European Conference on Computer
Systems, Online Event, United Kingdom, April 26-28,
2021, pages 145–161. ACM, 2021.

[41] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: group-based nic-
offloading to accelerate replicated transactions in multi-
tenant storage systems. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018, pages 297–312. ACM, 2018.

[42] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-
tical paxos and primary-backup replication. In Proceed-
ings of the 28th Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 2009, Calgary,
Alberta, Canada, August 10-12, 2009, pages 312–313.
ACM, 2009.

[43] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig
Freedman, Jignesh M. Patel, and Mike Zwilling. High-
performance concurrency control mechanisms for main-
memory databases. Proc. VLDB Endow., 5(4):298–309,
2011.

[44] Juchang Lee, Hyungyu Shin, Chang Gyoo Park,
Seongyun Ko, Jaeyun Noh, Yongjae Chuh, Wolfgang
Stephan, and Wook-Shin Han. Hybrid garbage col-
lection for multi-version concurrency control in SAP
HANA. In Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 1307–1318. ACM, 2016.

[45] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal,
Marcos K. Aguilera, Kimberly Keeton, and Vijay Chi-
dambaram. DINOMO: an elastic, scalable, high-
performance key-value store for disaggregated persistent
memory. Proc. VLDB Endow., 15(13):4023–4037, 2022.

[46] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
MIND: in-network memory management for disaggre-
gated data centers. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual
Event / Koblenz, Germany, October 26-29, 2021, pages
488–504. ACM, 2021.

[47] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Hydra : Resilient
and highly available remote memory. In 20th USENIX
Conference on File and Storage Technologies, FAST
2022, Santa Clara, CA, USA, February 22-24, 2022,
pages 181–198. USENIX Association, 2022.

[48] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023, pages 574–
587. ACM, 2023.

[49] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and
Jiajie Sheng. ROLEX: A scalable rdma-oriented learned
key-value store for disaggregated memory systems. In
21st USENIX Conference on File and Storage Technolo-
gies, FAST 2023, Santa Clara, CA, USA, February 21-23,
2023, pages 99–114. USENIX Association, 2023.

[50] Kevin T. Lim, Jichuan Chang, Trevor N. Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt, and
Thomas F. Wenisch. Disaggregated memory for ex-
pansion and sharing in blade servers. In 36th Inter-
national Symposium on Computer Architecture (ISCA
2009), June 20-24, 2009, Austin, TX, USA, pages 267–
278. ACM, 2009.

[51] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F. Wenisch. System-level implications of
disaggregated memory. In 18th IEEE International Sym-
posium on High Performance Computer Architecture,
HPCA 2012, New Orleans, LA, USA, 25-29 February,
2012, pages 189–200. IEEE Computer Society, 2012.

[52] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi,
Kian-Lee Tan, and Zhengkui Wang. Towards a non-2pc
transaction management in distributed database systems.
In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages
1659–1674. ACM, 2016.

[53] Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu,
Xin Wang, Michael R. Lyu, and Yangfan Zhou and.
SMART: A high-performance adaptive radix tree for
disaggregated memory. In 17th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2023, Boston, MA, USA, July 10-12, 2023, pages 553–
566. USENIX Association, 2023.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 817

[54] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song,
Yongwei Wu, and Xuehai Qian. Asymnvm: An efficient
framework for implementing persistent data structures
on asymmetric NVM architecture. In ASPLOS ’20:
Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, March 16-
20, 2020, pages 757–773. ACM, 2020.

[55] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’14, Broomfield, CO, USA, October 6-8, 2014, pages 479–
494. USENIX Association, 2014.

[56] MySQL. Transaction isolation levels. https://dev.
mysql.com/doc/refman/8.0/en/innodb-transac
tion-isolation-levels.html, 2024.

[57] Thomas Neumann, Tobias Mühlbauer, and Alfons Kem-
per. Fast serializable multi-version concurrency control
for main-memory database systems. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 677–689. ACM, 2015.

[58] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli,
Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-
menny, Liran Liss, Michael Wei, Dan Tsafrir, and Mar-
cos K. Aguilera. Storm: a fast transactional dataplane
for remote data structures. In Proceedings of the 12th
ACM International Conference on Systems and Stor-
age, SYSTOR 2019, Haifa, Israel, June 3-5, 2019, pages
97–108. ACM, 2019.

[59] Oracle. Transaction isolation levels. https://www.or
eilly.com/library/view/java-programming-w
ith/0596000871/0596000871_orasqlj-CHP-9-S
ECT-2.html, 2024.

[60] PostgreSQL. Transaction isolation. https://www.po
stgresql.org/docs/current/transaction-iso
.html, 2024.

[61] Waleed Reda, Marco Canini, Dejan Kostic, and Simon
Peter. RDMA is turing complete, we just did not know it
yet! In 19th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2022, Renton, WA,
USA, April 4-6, 2022, pages 71–85. USENIX Associa-
tion, 2022.

[62] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: high-performance,
application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6,
2020, pages 315–332. USENIX Association, 2020.

[63] SQL Server. Set transaction isolation level. https:
//learn.microsoft.com/en-us/sql/t-sql/sta
tements/set-transaction-isolation-level-t
ransact-sql?view=sql-server-ver16, 2023.

[64] Alex Shamis, Matthew Renzelmann, Stanko No-
vakovic, Georgios Chatzopoulos, Aleksandar Dragoje-
vic, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. In Pro-
ceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD Conference 2019, Amster-
dam, The Netherlands, June 30 - July 5, 2019, pages
433–448. ACM, 2019.

[65] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. Legoos: A disseminated, distributed OS for hard-
ware resource disaggregation. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018,
pages 69–87. USENIX Association, 2018.

[66] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang,
Yuxin Su, Yangfan Zhou, and Michael R. Lyu. FUSEE:
A fully memory-disaggregated key-value store. In 21st
USENIX Conference on File and Storage Technologies,
FAST 2023, Santa Clara, CA, USA, February 21-23,
2023, pages 81–98. USENIX Association, 2023.

[67] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki-Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A network architec-
ture for disaggregated racks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2019, Boston, MA, February 26-28, 2019, pages
255–270. USENIX Association, 2019.

[68] Abraham Silberschatz, Henry F. Korth, and S. Sudar-
shan. Database System Concepts, 7th Edition. McGraw-
Hill Education, 2019.

[69] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, pages
33–48. USENIX Association, 2020.

[70] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 306–324.
ACM, 2017.

[71] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13,

818 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://www.oreilly.com/library/view/java-programming-with/0596000871/0596000871_orasqlj-CHP-9-SECT-2.html
https://www.oreilly.com/library/view/java-programming-with/0596000871/0596000871_orasqlj-CHP-9-SECT-2.html
https://www.oreilly.com/library/view/java-programming-with/0596000871/0596000871_orasqlj-CHP-9-SECT-2.html
https://www.oreilly.com/library/view/java-programming-with/0596000871/0596000871_orasqlj-CHP-9-SECT-2.html
https://www.postgresql.org/docs/current/transaction-iso.html
https://www.postgresql.org/docs/current/transaction-iso.html
https://www.postgresql.org/docs/current/transaction-iso.html
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver16

Farmington, PA, USA, November 3-6, 2013, pages 18–32.
ACM, 2013.

[72] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Ne-
travali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 261–280. USENIX
Association, November 2020.

[73] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao,
Jonathan Eyolfson, Christian Navasca, Shan Lu, and
Guoqing Harry Xu. Memliner: Lining up tracing and
application for a far-memory-friendly runtime. In 16th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2022, Carlsbad, CA, USA, July
11-13, 2022, pages 35–53. USENIX Association, 2022.

[74] Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: High-performance transactions via learned
concurrency control. In 15th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2021, July 14-16, 2021, pages 198–216. USENIX Asso-
ciation, 2021.

[75] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+ tree index on disaggre-
gated memory. In Proceedings of the 2022 International
Conference on Management of Data, pages 1033–1048,
2022.

[76] Xingda Wei, Rong Chen, Haibo Chen, Zhaoguo Wang,
Zhenhan Gong, and Binyu Zang. Unifying timestamp
with transaction ordering for MVCC with decentralized
scalar timestamp. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021, pages 357–372. USENIX Associa-
tion, 2021.

[77] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed transac-
tions: Hybrid is better! In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages
233–251. USENIX Association, 2018.

[78] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing us-
ing RDMA and HTM. In Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015, pages 87–104.
ACM, 2015.

[79] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi,
Manos Kapritsos, and Yang Wang. High-performance

ACID via modular concurrency control. In Proceed-
ings of the 25th Symposium on Operating Systems Prin-
ciples, SOSP 2015, Monterey, CA, USA, October 4-7,
2015, pages 279–294. ACM, 2015.

[80] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide to
the behavior and use of scalable persistent memory. In
18th USENIX Conference on File and Storage Technolo-
gies, FAST 2020, Santa Clara, CA, USA, February 24-27,
2020, pages 169–182. USENIX Association, 2020.

[81] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The end of a myth: Distributed transactions can
scale. Proc. VLDB Endow., 10(6):685–696, February
2017.

[82] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim
Kraska. Chiller: Contention-centric transaction exe-
cution and data partitioning for modern networks. In
Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, on-
line conference [Portland, OR, USA], June 14-19, 2020,
pages 511–526. ACM, 2020.

[83] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Build-
ing consistent transactions with inconsistent replication.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, pages 263–278. ACM, 2015.

[84] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu.
FORD: Fast One-sided RDMA-based Distributed Trans-
actions for Disaggregated Persistent Memory. In 20th
USENIX Conference on File and Storage Technologies,
FAST 2022, Santa Clara, CA, USA, February 22-24,
2022, pages 51–68. USENIX Association, 2022.

[85] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao,
James Mickens, Minlan Yu, Chris Kennelly, Paul Turner,
David E. Culler, Henry M. Levy, and Amin Vahdat.
Carbink: Fault-tolerant far memory. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 55–71. USENIX Association, 2022.

[86] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided rdma-conscious extendible hash-
ing for disaggregated memory. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16,
2021, pages 15–29. USENIX Association, 2021.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 819

	Introduction
	Background and Motivation
	Memory Disaggregation
	Transactions on Disaggregated Memory
	Enabling Multi-Versioning

	Motor Overview
	Motor Memory Store
	Consecutive Version Tuple
	Separate Value Region
	Coordinator-Active Garbage Collection
	Anchor-Assisted Read

	Motor Transaction Protocol
	Processing Phases
	Flexible Support of Isolation Levels
	Fault Tolerance

	Implementations
	Performance Evaluation
	Experimental Setup
	Number of Versions in CVT
	Performance of Version Structures
	End-to-End Performance
	Memory Overhead
	Varying Motor Memory Footprint
	Performance of Different Isolation Levels
	Using PM in Memory Pool
	Fault Tolerance

	Related Work
	Conclusion

