
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Inductive Invariants That Spark Joy:
Using Invariant Taxonomies to Streamline

Distributed Protocol Proofs
Tony Nuda Zhang, University of Michigan; Travis Hance, Carnegie Mellon University;

Manos Kapritsos, University of Michigan; Tej Chajed, University of Wisconsin–
Madison; Bryan Parno, Carnegie Mellon University

https://www.usenix.org/conference/osdi24/presentation/zhang-nuda

Inductive Invariants That Spark Joy:
Using Invariant Taxonomies to Streamline Distributed Protocol Proofs

Tony Nuda Zhang
University of Michigan

Travis Hance
Carnegie Mellon University

Manos Kapritsos
University of Michigan

Tej Chajed
University of Wisconsin–Madison

Bryan Parno
Carnegie Mellon University

Abstract
Proving the correctness of a distributed protocol is a chal-
lenging endeavor. Central to this task is finding an inductive
invariant for the protocol. Currently, automated invariant in-
ference algorithms require developers to describe protocols
using a restricted logic. If the developer wants to prove a pro-
tocol expressed without these restrictions, they must devise
an inductive invariant manually.

We propose an approach that simplifies and partially auto-
mates finding the inductive invariant of a distributed protocol,
as well as proving that it really is an invariant. The key insight
is to identify an invariant taxonomy that divides invariants
into Regular Invariants, which have one of a few simple low-
level structures, and Protocol Invariants, which capture the
higher-level host relationships that make the protocol work.

Building on the insight of this taxonomy, we describe the
Kondo methodology for proving the correctness of a dis-
tributed protocol modeled as a state machine. The developer
first manually devises the Protocol Invariants by proving a
synchronous version of the protocol correct. In this simpler
version, sends and receives are replaced with atomic variable
assignments. The Kondo tool then automatically generates the
asynchronous protocol description, Regular Invariants, and
proofs that the Regular Invariants are inductive on their own.
Finally, Kondo combines these with the synchronous proof
into a draft proof of the asynchronous protocol, which may
then require a small amount of user effort to complete. Our
evaluation shows that Kondo reduces developer effort for a
wide variety of distributed protocols.

1 Introduction

Distributed protocols are notoriously difficult to reason about.
Because they underpin critical applications and infrastructure,
any bugs can have severe consequences. Hence, in recent
years, both researchers [14,20,25,37,38,41,45] and practition-
ers [2, 30, 46] have turned to formal verification to rigorously
prove the correctness of distributed systems and protocols.

At the core of a formal distributed protocol safety proof
is an inductive invariant, which implies that a desired safety
property holds throughout a system’s execution. As argued
in previous work [13, 26, 43, 44], manually deriving induc-
tive invariants is a creative challenge. For example, the Iron-
Fleet [14, 15] authors reported spending months to identify
and prove an inductive invariant for Paxos [22, 23].

Unsurprisingly, this challenge spurred a new category of
algorithms and tools to automatically find the inductive invari-
ants of distributed protocols [10,13,17–19,26,33,43,44]. For
instance, DuoAI [43] finds an inductive invariant for Paxos in
minutes, without any user guidance.

However, automated invariant inference has its own
Achilles’ heel—it limits how developers may express their
protocols. State-of-the-art tools like DuoAI only work when
the problem of checking the correctness of inductive invari-
ants is a decidable one. Thus, they apply only to protocols
that operate within the confines of a first-order logic fragment
known as effectively propositional reasoning (EPR [34]). As
an example of its limited expressivity, EPR does not permit
arithmetic, requiring developers to use creative abstractions
to encode common systems primitives such as epoch numbers
and vote counting. As detailed by Padon et al. [31], expressing
a protocol such as Paxos in EPR is quite challenging.

In summary, the current state of the art is a landscape of two
extremes: the developer has to choose between 1) expressing
the protocol naturally using standard programming primitives
such as arithmetic, but manually find the inductive invariant,
or 2) abstracting the protocol into the restrictive confines of
EPR so as to apply automated invariant finding tools.

In this work, we present a new approach to bridge this gap.
Our key insight is that there is an invariant taxonomy in the
clauses within an inductive invariant. This taxonomy can be
used to modularize invariants and proofs into strata of varying
difficulty. Furthermore, we observe that all but the most diffi-
cult stratum can be derived almost fully automatically, even
in a non-EPR setting that permits intuitive programming con-
structs such as arithmetic. Interestingly, proving the top-most

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 837

stratum is often equivalent to proving the safety of a simpler,
synchronous version of the protocol.

In this taxonomy, we identify a class of Regular Invariants
with simple, regular structure that stem from recurring fea-
tures and patterns in asynchronous message-passing systems.
These invariants relate messages to their sending or receiv-
ing hosts (dubbed Message Invariants), assert the monotonic
nature of common data structures (Monotonicity Invariants),
and govern the ownership of unique resources (Ownership
Invariants). As we will detail in subsequent sections, these
invariants are not only easy to derive, but also easy to prove.

On the other hand, there is a separate class of Protocol In-
variants that deal with the global relationships between hosts
in the system. These capture the macro-level operation of the
particular protocol, reflecting the structure of its design, and
thus may require careful developer thought. Such invariants
might state, for example, that a decision is made only when a
majority of the nodes agree on it, or that all replicas of a log
must have agreeing entries.

This taxonomy is not merely conceptual, but has significant
practical implications. First, it enables a streamlined, system-
atic approach to finding and proving inductive invariants. The
developer can easily dispatch Regular Invariants, before using
them as building blocks for proving Protocol Invariants. Such
an approach modularizes the derivation and proof of invari-
ants into distinct components, with the most challenging part,
Protocol Invariants, neatly contained. This is in contrast to
monolithic proofs of the past, where developers have written
invariants that intertwine complex protocol logic with simple
local-level reasoning, thereby proliferating the difficulty of
Protocol Invariants across the entire proof.

More importantly, Regular Invariants are sufficiently sys-
tematic that they can be derived from the protocol description
with a few hints from the user, and then proven automat-
ically, even in a general purpose verification tool such as
Dafny [24]. Although our proposed taxonomy does not cover
the space of all possible invariants, we observe that these
derived Regular Invariants, in conjunction with a set of user
crafted Protocol Invariants, often suffice to prove a wide vari-
ety of distributed protocols. In fact, these Protocol Invariants
are typically (although not always) the same set needed to
prove a synchronous version of the protocol; i.e., in a model
without a network, where a sender sends a message and the
receiver receives it in one atomic step.

Leveraging these insights, we design Kondo, a methodol-
ogy and tool that lets developers harness the structure afforded
by the invariant taxonomy. Using Kondo, the developer fo-
cuses their efforts on proving the correctness of a simpler,
synchronous version of the protocol. Kondo then generates
the asynchronous protocol from the synchronous description,
and automatically devises and proves Regular Invariants for
the asynchronous protocol with a few simple hints from the
user. In addition, Kondo carries over Protocol Invariants from
the synchronous proof, and combines them with Regular In-

states satisfying
safety property

reachable
states

states satisfying
inductive invariant

all states

Figure 1: Venn diagram of states in a distributed system. The
dots and arrows represent example states and transitions.

variants to create a draft proof of the asynchronous protocol.
Sometimes, this draft proof is complete and constitutes the
final proof; otherwise, the user helps complete the proof by
adding some proof annotations to the draft.

Overall, we make the following contributions.

1. We identify an invariant taxonomy that distinguishes be-
tween Regular Invariants and Protocol Invariants, and de-
fine three sub-classes of Regular Invariants (Section 3).

2. We propose the Kondo approach to help developers lever-
age the structure afforded by the invariant taxonomy, and
implement the Kondo tool [1] as a new feature in the
Dafny compiler. The user begins by proving a simpler,
synchronous protocol. Kondo then aids in lifting that proof
to a fully asynchronous setting (Sections 4 and 5).

3. We evaluate the effectiveness of Kondo on a range of dis-
tributed protocols that span different application domains,
from consensus to mutual exclusion. We show that Kondo
can simplify finding and proving the inductive invariants
of these protocols, and identify areas in which Kondo may
be less effective (Section 6).

2 The Challenge of Inductive Invariants

Manually proving the correctness of an asynchronous dis-
tributed protocol is widely regarded as a challenging task. Its
difficulty is compounded by the lack of principled techniques
for structuring the invariants that a developer must derive for
the proof. This results in invariants that entangle complex
protocol logic with otherwise standard network semantics.
Such invariants are hard to reason about and can complicate
the entire proof.

Background. A correctness proof of a protocol involves
showing that a desired safety property ϕ is an invariant that is
true in all reachable states of the system. However, ϕ itself is
usually too weak to support an inductive argument; i.e., there
exist states satisfying ϕ that can transition to an unsafe state
(Figure 1). As a result, the developer must devise an inductive

838 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1: datatype Vote = Yes | No
2: datatype Decision = Abort | Commit
3: datatype Message =
4: VOTEREQMSG

5: | VOTEMSG(v: Vote, src: nat)
6: | DECIDEMSG(d: Decision)

7: datatype Option<T> = None | Some(v: T)

8: datatype Coordinator = Variables(
9: numParticipants: nat, // some constant N

10: decision: Option<Decision>, // initially None
11: yesVotes: set<nat>, // initially empty
12: noVotes: set<nat> // initially empty
13:)

14: datatype Participant = Variables(
15: hostId: nat, // unique identifier ∈ [0,N)

16: preference: Vote, // non-deterministic constant
17: decision: Option<Decision>, // initially None
18:)

Figure 2: Hosts and message states of the Two-Phase Com-
mit protocol, written in Dafny. Note that Vote, Decision and
Message are sum types.

invariant I = I1 ∧ ·· · ∧ In, composed of several individual
invariants Ik. I needs to both imply ϕ and be inductive, i.e., it
should hold in all initial states of the system, and be closed
under system transitions—if I holds for a state s, it also holds
for the next state s′ after any transition from s. If an individual
conjunct Ik is itself inductive (even if it does not imply ϕ) we
refer to it as self-inductive.

Coming up with an inductive invariant is a creative chal-
lenge because it must be strong enough to be inductive, yet
weak enough to encompass all the reachable states of the sys-
tem. For distributed protocols, this challenge is exacerbated
by the presence of an asynchronous network that may arbitrar-
ily delay, drop, duplicate, or re-order messages. In addition to
considering the local states of each host, the developer must
also contend with the state of the network and its interaction
with hosts. As a result, proofs of distributed protocols require
complex inductive invariants involving many clauses that si-
multaneously juggle host and network states [14, 28, 31].

2.1 Case Study: Two-Phase Commit

To highlight the challenge in finding inductive invariants, we
use the classic Two-Phase Commit protocol. It is parame-
terized by an arbitrary number of participants, and it has a
single coordinator (Figure 2). Participants are initialized with
some preference of Yes or No that they communicate to the
coordinator, which then makes a decision, using the protocol
listed in Figure 3. The safety specification we target in this

1. Coordinator broadcasts VOTEREQMSG.

2. Upon receiving VOTEREQMSG, a participant p replies
VOTEMSG(p. preference, p. hostId).

3. Upon receiving VOTEMSG(v, src), the coordinator adds
src to its yesVotes or noVotes set based on v.

4. The coordinator waits to receive votes from every partici-
pant. Then, if the coordinator has |noVotes|> 0, it sets its lo-
cal decision to Abort and broadcasts DECIDEMSG(Abort).
Otherwise, if |yesVotes|= numParticipants, it sets its deci-
sion to Commit and broadcasts DECIDEMSG(Commit).

5. Upon receiving DECIDEMSG(d), a participant sets its local
decision to d.

Figure 3: Two-Phase Commit protocol description.

example is that if any participant reaches a Commit decision,
then every participant’s local preference must be Yes:

∀ id : participants[id].decision = Some(Commit)

=⇒
(
∀ id ′ : participants[id ′].preference = Yes

)
(2PC-Safety)

Unfortunately, outside the context of EPR, there is no es-
tablished methodology one can follow in finding an inductive
invariant for this specification. Instead, they must rely solely
on wit and will, in a journey of intuition-guided trial and er-
ror. In particular, the developer devises a candidate list of
other protocol properties that when taken in conjunction with
2PC-Safety, they suspect, will form an inductive invariant.

An example of an invariant one may come up with is:

“if there is a DECIDEMSG(Commit) in the network,
then every VOTEMSG from each participant must
contain Yes.”

Despite its apparent correctness, proving this invariant re-
quires non-trivial supporting invariants. The developer will
find that the proof requires host-level reasoning about how the
coordinator processes votes, how it decides based on its local
vote tally, and how it avoids sending conflicting messages.
Overall, this leads to a proof that tightly intertwines host and
network reasoning.

In this work, we argue that such monolithic invariants need
not be the norm. Rather, they can be structured into forms
that are more tractable. The idea of using simple invariants as
building blocks for proving more complex ones is not a new
one [3,4]. However, we propose a systematic way of applying
this idea to distributed protocols and derive invariants in layers
of increasing complexity.

3 The Invariant Taxonomy

We present an invariant taxonomy designed to help developers
tease apart host-level invariants from low-level invariants (e.g.,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 839

Protocol
Invariants

Regular
Invariants

Message Monotonicity Ownership

Send Receive

creative host-level
reasoning

simple low-level
reasoning

Figure 4: The invariant taxonomy.

invariants about the network). This taxonomy has two distinct
categories—an upper stratum of Protocol Invariants, and a
lower stratum of Regular Invariants, illustrated in Figure 4.
Regular Invariants are easy to devise mechanically, and thus
they can be assumed while discovering Protocol Invariants
(which we show in Section 4 can even be discovered while
completely ignoring the network). Using this taxonomy, the
developer can contain host-level Protocol Invariants—the por-
tion that demands user creativity—inside a well-demarcated
portion of the proof. In turn, the Regular Invariants supporting
those invariants are uncontaminated by host-level logic.

Note that these categories do not cover the space of all
invariants. For a given protocol, there can exist invariants
that are neither Regular Invariants nor Protocol Invariants.
However, we find that our categorization is comprehensive
enough to encompass all the invariants needed to prove a wide
variety of distributed protocols (Section 6).

3.1 Regular Invariants
Regular Invariants are structurally simple and can be derived
without requiring an understanding of why the protocol works.
They concern low-level properties that follow from network
semantics, the monotonicity of data like certain counters and
sets, and the syntactic structure of protocol steps. They are
also often self-inductive, which makes them easy to prove,
and are even amenable to automation (Sections 4 and 5).

We identify three subcategories of Regular Invariants,
namely Message Invariants, Monotonicity Invariants and
Ownership Invariants, depicted by the hierarchy in Figure 4.

Message Invariants. These relate the state of the network
to the state of hosts. In this way, they act as the logical bridge
for proving invariants about relationships between host states
when the hosts are separated by a network medium. Message
Invariants come in two flavors:

1. Send Invariants assert that a message m is in the network
only if it was sent by a host. They also describe, for
each message variant, some relationship p between the
message contents and the state of its sender:

∀m ∈ network : p(m, hosts[m.src])

2. Receive Invariants assert that if some condition q is met
at some host h, then there must exist some message m in
the network that was received by that host and has some
relationship r with the host:

∀h : q(hosts[h]) =⇒(
∃m : m ∈ network ∧ h = m.dst ∧ r(hosts[h], m)

)
Monotonicity Invariants. Monotonic data types are a com-
mon primitive in distributed protocols [38]. Widely-used
structures include grow-only epoch counters to filter stale
messages, and add-only sets to collect votes from partici-
pant nodes. Monotonicity Invariants capture the monotonic
properties of these data types, by asserting how the state of
individual hosts may evolve as the system transitions:

∀σ, σ
′ : lteq(σ, σ

′)

Here, σ and σ′ are respectively the prior and current states
of a host, and lteq represents some ordering relation on the
values of local variables between the states.

Monotonicity Invariants require referencing the past states
of hosts, which are typically not part of the distributed system
model. In Section 4.2, we describe our history-preservation
technique that enables us to systematically transform a proto-
col into one that preserves information about state histories.
The protocol augmented with history information supports
stating and proving Monotonicity Invariants, and using them
in the proofs of higher-level Protocol Invariants.

Ownership Invariants. Many distributed protocols also
require reasoning about uniquely owned resources. For exam-
ple, at most one client can hold a unique lock in a distributed
lock system, or at most one host can hold a unique key in a
sharded key-value store.

Ownership Invariants capture the semantics of such re-
sources. Specifically, they say that for each unique resource γ,
at most one node can ‘own’ γ at any point in time, and if γ is
in transit in the network, then no nodes can have ownership
of γ. These properties are common to protocols that deal with
resource ownership.

3.2 Protocol Invariants
Protocol Invariants describe a relationship ℓ among hosts, and
do not mention the network. That is, they have the form

∀h1, . . . ,hn : ℓ(hosts[h1], . . . ,hosts[hn])

840 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

As such, Protocol Invariants are ignorant of the complica-
tions arising from network asynchrony. Instead, they focus
on the higher-level reasoning of how host behaviors culmi-
nate in the overall correctness of the protocol, thus capturing
properties that require insight into why the protocol is correct.

In addition, observe that given an asynchronous distributed
protocol P , any Protocol Invariant in P must also be an in-
variant in the synchronous version of the protocol Psync. This
version, Psync, is one in which messages are delivered instan-
taneously between hosts—a sender sending a message and
the receiver receiving it occurs as one atomic step, without a
network delay. In practice, we observe that invariants used in
proving the safety property in Psync tend to be helpful Protocol
Invariants in P . Moreover, in all the protocols we evaluated,
these Protocol Invariants, in conjunction with a set of auto-
matically derived Regular Invariants, are all that is needed to
prove P (Section 6.2).

3.3 Streamlining Proofs Using the Taxonomy
The invariant taxonomy mirrors the unique roles played by
the network and the protocol logic. The network, while an
inevitable part of reasoning about distributed systems, does
not contribute to the underlying logic of the protocol—it
simply serves as a medium to carry information between
hosts. Instead, it is the interplay of host actions that affects
the outcome of the protocol.

Respecting this natural division is key to writing a modular
and efficient proof. By confining creativity-demanding invari-
ants to exclusively describe hosts, Protocol Invariants ensure
that user creativity is called upon only when needed, while the
remaining mundane Regular Invariants are dispatched with
minimal effort.

Two-Phase Commit Revisited. We revisit the Two-Phase
Commit example from Section 2.1 to demonstrate how one
can use the invariant taxonomy to bring order and simplicity
to their proof. Figure 5 lists a set of invariants for Two-Phase
Commit. The conjunction of these invariants and 2PC-Safety
forms an inductive invariant that proves 2PC-Safety.

Of the six invariants, only A5 and A6 are Protocol Invariants.
Discovering them involves protocol-level insight about how
the states of different hosts are related. On the other hand, the
remaining invariants are Regular Invariants. They arise from
the individual steps where messages are sent or received, and
describe what that particular step says about the network. For
instance, A3 stems directly from protocol step 4. Likewise,
A4 follows from step 5. They are also self-inductive—each
invariant is preserved by the step that it directly relates to and
is trivially preserved by other steps. For example, A1 relates
directly to protocol step 2, which is the only step that adds a
VOTEMSG to the network.

Armed with this insight, the developer can employ the fol-
lowing proof strategy. They can first write down the Regular

A1 For each VOTEMSG(v, src) in the network, src is a valid
participant identifier.

A2 For each VOTEMSG(v, src) in the network, v reflects the
preference of the participant identified by src.

A3 For each DECIDEMSG(d) in the network, d reflects the
local decision at the coordinator.

A4 For each participant that decided Commit, DE-
CIDEMSG(Commit) must be a message in the network.

A5 For each id in yesVotes at the coordinator, the participant
identified by id must have the corresponding preference.

A6 If the coordinator decided Commit, then every participant’s
preference must be Yes.

Figure 5: Two-Phase Commit protocol invariants structured
using the invariant taxonomy. The conjunction of these, to-
gether with 2PC-Safety, forms the inductive invariant of the
protocol. A5 and A6 are Protocol Invariants, while the rest are
Message Invariants.

Invariants A1, A2, A3 and A4 without any thought about over-
all protocol correctness. This is easy because these invariants
are apparent just from looking at individual, local protocol
steps. Their self-inductive nature also allows the developer to
quickly check if the invariants they wrote are correct. Finally,
with these Regular Invariants effortlessly in place, the devel-
oper then devises the crowning jewels A5 and A6 as Protocol
Invariants, the one part of the proof that requires creativity.

4 Finding Invariants the Kondo Way

We now present the Kondo methodology and tool to help de-
velopers leverage the regularity afforded by the invariant tax-
onomy. In contrast to EPR-based approaches, Kondo targets
general protocol models where determining the inductiveness
of an invariant is an undecidable problem.

Kondo is based on two core observations. First, the system-
atic structure of Regular Invariants makes both deriving and
proving these invariants amenable to automation, even in an
undecidable setting that permits higher-order logic.

More surprisingly, we observe that Protocol Invariants can
be devised and proven in a synchronous version of the proto-
col Psync and used directly in the asynchronous protocol. Be-
cause messages are delivered instantaneously between hosts
in Psync, it is much easier to iteratively devise an invariant
and prove inductiveness. In all the distributed protocols in our
evaluation (Section 6.2), the Protocol Invariants taken from
Psync, in conjunction with the set of derived Regular Invariants
for the asynchronous protocol, are sufficient to form an induc-
tive invariant for each protocol’s safety property (although
this may not always be the case; see Section 6.5).

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 841

1 3 Kondo
generates

Safety
spec

Lemmas

2
Inductive

invariant
of

Final proof
of

Asynchronous
protocol description

User
writes

Regular
Invariants
of

Proofs of
inductiveness

Synchronous
protocol

description

User-supplied
hints

5

4

Draft proof
of

6

User
completes
if needed

Figure 6: Kondo workflow. Shaded bubbles represent artifacts that the user writes. Boxes represent artifacts that Kondo generates.
Sometimes, the draft proof from ➎ may constitute the final proof, and the user need not perform step ➏ in such cases.

These observations inform the Kondo methodology. Using
Kondo, the developer first writes and proves a synchronous
version of the protocol. Then, Kondo automatically generates

1. a history-preserving asynchronous protocol Phist. In ad-
dition to modeling an asynchronous network, Phist main-
tains a history of host states that aid in expressing Mes-
sage and Monotonicity Invariants;

2. a set of Regular Invariants (sometimes with the help of
user-supplied hints), along with their proofs of inductive-
ness; and

3. a draft proof of correctness of Phist. This draft may con-
stitute the final proof, or may require modest effort from
the developer to complete.

4.1 Overview
Figure 6 shows an overview of how a developer uses the
Kondo methodology and tool to prove the safety of a protocol.

Step ➊: The user begins by writing a synchronous version
of the protocol, denoted as Psync, together with a safety speci-
fication ϕ. This synchronous execution model does not have
a network component. Instead, the overall system is simply a
collection of host states that communicate atomically.

Step ➋: The user proves that Psync satisfies ϕ by devising an
inductive invariant Isync that implies ϕ. Because we operate
in a general setting in which checking the inductiveness of
Isync is undecidable, the user may also need to write a set of
lemmas to convince the verifier that Isync is indeed inductive.

Step ➌: Given Psync, the Kondo tool automatically gen-
erates a history-preserving asynchronous protocol Phist. It
shares the same safety property ϕ as Psync.

Step ➍: Kondo generates a set of Regular Invariants for
Phist, together with lemmas that prove their inductiveness. We
denote the conjunction of all Regular Invariants as R. Note that
to generate Receive, Monotonicity and Ownership Invariants,
Kondo requires small hints from the user. The nature of these
hints is detailed in Section 5.1.

Step ➎: From the user-written proof of Psync, Kondo gen-
erates a draft proof of Phist. This draft uses the conjunction
Isync ∧R as the inductive invariant. It lifts lemmas written
for the Psync proof to the new asynchronous context, while
leaving gaps in places where the translation fails. Section 5.2
describes this process. Notably, code generated by Kondo is
human-readable.

Step ➏: The user runs the verifier on the draft proof. In
some cases, the draft suffices as the final proof. Otherwise,
particular lemmas in the draft may be incomplete. The user
then manually completes the proof of Phist by filling in gaps
in the bodies of these lemmas. Notably, no new lemmas need
to be constructed, and the logical line of reasoning is identical
to Psync. However, the user may need to write additional proof
annotations to convince the verifier that the lemmas still hold
in the asynchronous protocol.

4.2 Protocol Models

Like prior work [13, 14, 26, 43, 44], we use the temporal logic
of actions (TLA [21]) to model a protocol as a state machine
described by non-deterministic transition relations. This state
machine in turn contains one or more sets of hosts. For ex-
ample, the Paxos system has three sets of Proposer, Acceptor
and Learner hosts respectively.

842 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hosts are themselves modeled as event-driven state ma-
chines that communicate via messages. A host can 1) take a
spontaneous action that may or may not send a message, 2)
take an action given some received message as input, or 3)
crash for an indefinite amount of time.

Formally, a host is defined by a HOSTINIT(h: Host) predi-
cate and a HOSTNEXT(h: Host, h′: Host) relation. HOSTINIT
circumscribes the initial states of the host, while HOSTNEXT
describes the host’s state transition relation.

In the Kondo methodology, the developer works with two
versions of a distributed protocol, Psync and Phist, that differ by
their network model. Psync is initially written by the developer,
whereas Phist is derived automatically.

Synchronous Protocol Psync. The global state of Psync is
S := (σ1, . . . ,σn), an n-tuple of host states. Its initial states
are defined by the predicate

SYNCINIT(S) := (HOSTINIT(σ1), . . . ,HOSTINIT(σn))

asserting that hosts satisfy their respective initial conditions.
The system transitions are defined through the relation

SYNCNEXT(S, S′) :=
ACTION1(S, S′)∨·· ·∨ACTIONK(S, S′)

where each action disjunct represents an atomic transition
that the system may take. Each action also falls in one of two
categories. First, one non-deterministically chosen host may
take a local action, i.e., one that doesn’t send or receive any
data. Second, a non-deterministically chosen pair of sender
and recipient hosts may take a corresponding send and receive
action simultaneously; i.e., the sender transmits a message
that is received instantaneously by the recipient.

Note that a consequence of tightly coupling sender and
recipient pairs is that one host cannot both receive and send
messages within a single action, as that would allow an ar-
bitrary chain of hosts taking steps at once. This limitation
does not sacrifice generality, as an action that receives and
sends may always be modeled as two consecutive actions,
with the first receiving the message and the second sending its
response. It is, however, an additional restriction over the host
model in prior work [14,15], and may increase proof complex-
ity. Nevertheless, our evaluation shows that even with such a
restriction, Kondo allows users to write simpler proofs than
previous state of the art (see Paxos discussion in Section 6.3).

History-Preserving Asynchronous Protocol Phist. Given
the synchronous protocol Psync, Kondo automatically gener-
ates a history-preserving asynchronous protocol Phist. This
model adds to the synchronous model an asynchronous net-
work that may arbitrarily delay, drop, duplicate, or re-order
messages. Like prior work [14,15,45], we model this network
as a monotonically increasing set of sent messages. When a

host sends a message, the message is added to this set. When
a host calls receive, it retrieves from this set some message
addressed to it.

Unique to Kondo is the history-preserving aspect of Phist.
It maintains a sequence history of host snapshots, enabling us
to express monotonicity properties. Formally, let history :=[
S0, . . . ,Sm

]
be a sequence of host state n-tuples. Each entry

in history is a snapshot of all hosts in the system. Then the
global state of Phist is Shist := (history, N). The latest entry in
history represents the current state of the hosts, while N is the
set of messages representing the network’s latest state.

The initial states of the system are defined by

INIT(Shist) := len(Shist.history) = 1
∧ SYNCINIT(Shist.history[0]) ∧ Shist.N = /0

The system transitions are given by the relation

NEXT(Shist, S′hist) :=
∧ len(Shist.history)≥ 1
∧ Shist.history = trunc(S′hist.history)

∧ SYNCNEXT(curr(Shist), curr(S′hist))

Here, trunc(s) yields s with the last item removed. Meanwhile,
curr(Shist) gives the current state of the system, namely the
tuple (last(Shist. history), Shist.N), where last(s) returns the
last item in a sequence s.

4.3 Case Study: Echo Server
To illustrate the Kondo methodology, we apply it to a simple
Echo Server protocol. It comprises an arbitrary number of
clients and a single server. Each client maintains a constant
set of requests that are defined by unique client and request
identifiers.

Clients send their requests to the server. Upon receiving a
request, the server responds by echoing the request back to
the sender. When a client receives a response, it stores it in
a local responses set. The safety specification is that clients
do not receive rogue responses; i.e. for each client c, every
element in c.responses matches a request in c.requests:

∀ client : client. responses ⊆ client. requests (ES-Safety)

We now show how the developer applies the Kondo method-
ology to proving this protocol.

Step ➊. The user starts by writing a synchronous version of
the Echo Server protocol, Psync. They define the states of hosts
(Figure 7), and the transitions that they can make (Figure 8).

They then define Psync as the collection of a group of clients
and a server. Here, SYNCINIT asserts that every host satisfies
their respective initialization predicates:

SYNCINIT(S) :=
∧SERVERINIT(S.server)
∧∀ 0 ≤ id < |S.clients| : CLIENTINIT(S.clients[id], id)

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 843

1: datatype Request = Req(clientId: nat, reqId: nat)

2: datatype Message =
3: SUBMITREQ(req: Request)
4: | RESPONSE(req: Request)

5: datatype Client = Variables(
6: clientId: nat, // unique identifier
7: requests: MonotonicSet<Request>,
8: responses: set<Request>
9:)

10: datatype Server =
11: Variables(currentRequest: Option<Request>)

12: predicate CLIENTINIT(v: Client, id: nat)
13: ∧ v.clientId = id
14: ∧ v. responses = /0

15: ∧ (∀ req ∈ v. requests : req.clientId = id)
16:
17: predicate SERVERINIT(v: Server)
18: currentRequest = None
19:

Figure 7: Client and server states of the Echo Server pro-
tocol, written in Dafny. The MonotonicSet type is wrapper
around Dafny’s built-in set type and implemented in Kondo’s
monotonic type library. It indicates to Kondo that the sets are
non-decreasing. Meanwhile, CLIENTINIT does not constrain
the size of a client’s requests set, but ensures that every item
in requests is marked with the client’s unique clientId.

Meanwhile, SYNCNEXT is a disjunction of two system-
level atomic actions:

SYNCNEXT(S, S′) := ACTION1(S, S′)∨ACTION2(S, S′)

In ACTION1, a client-server pair performs CLIENTREQUEST-
STEP and SERVERRECEIVESTEP respectively, where the
client sends a request to the server, and the model ensures that
the server instantaneously receives the request. In ACTION2,
a server-client pair performs SERVERRESPONSESTEP and
CLIENTRECEIVESTEP, with the server sending its response
and the client receiving it.

Step ➋. Next, the developer writes an inductive proof that
Psync satisfies its safety specification. Here, the inductive in-
variant is simple. It is the conjunction of ES-Safety with a
single predicate asserting that the server’s currentRequest
belongs in the requests set of its sender:

∀ req : server.currentRequest = Some(req)

=⇒ req ∈ clients[req.clientId]. requests (1)

Step ➌. Given Psync written in step ➊, Kondo produces a
history-preserving asynchronous version of the Echo Server
protocol, Phist.

1: step CLIENTREQUESTSTEP(

2: v: Client, v′: Client, send: Message)
3: ∧ v′ = v // client state unchanged
4: ∧ send.SUBMITREQ?
5: ∧ send. req ∈ v. requests // send SUBMITREQ(req)
6:
7: step CLIENTRECEIVESTEP(

8: v: Client, v′: Client, recv: Message)
9: // client receives RESPONSE

10:
11: step SERVERRECEIVESTEP(

12: v: Server, v′: Client, recv: Message)
13: // server receives REQUEST

14:
15: step SERVERRESPONSESTEP(

16: v: Server, v′: Server, send: Message)
17: ∧ v. currentRequest. Some? // enabling condition
18: ∧ v′. currentRequest = None
19: ∧ send = RESPONSE(v. currentRequest)
20:

Figure 8: Client and server transition relations from state v to
v′, with the bodies of CLIENTRECEIVESTEP and SERVER-
RECEIVESTEP omitted for brevity. The argument send is a
new message sent into the network, and recv is a message
received from the network. Note that the ‘?’ syntax is used to
assert if a value is of a particular type or variant.

Step ➍. Together with Phist, Kondo also derives a set of
Regular Invariants, along with their proof of correctness in
Phist. In this example, the only hint required from the user is to
label the client’s requests set as a MonotonicSet type, shown
in Figure 7. Note that the client’s responses set does not need
to be labeled as a MonotonicSet, because even though it is
monotonic, such a property is not relevant to proving safety.
The generated Regular Invariants are:

• A Message Invariant stating that every RESPONSE(req) is
such that req was once processed by the server:

∀ RESPONSE(req) ∈ network :
∃ i : history[i].server.currentRequest = Some(req) (2)

• A Message Invariant stating that every SUBMITREQ(req)
is such that req is in the requests set of the sender:

∀ SUBMITREQ(req) ∈ network :
∃ i : req ∈ history[i].clients[req.clientId]. requests (3)

• A Monotonicity Invariant stating that the requests set at
each client is non-decreasing:

∀ i ≤ j, clientId :
history[i].clients[clientId]. requests
⊆ history[j].clients[clientId]. requests (4)

844 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Step ➎. The final step is to prove that Phist satisfies the
safety property. To this end, Kondo generates a draft proof of
Phist by combining the synchronous proof written in step ➊
with the generated Regular Invariants from step ➍. It derives
from Equation (1) the history-preserving analogue

∀ i, req : history[i].server.currentRequest = Some(req)

=⇒ req ∈ history[i].clients[req.clientId]. requests (5)

It then uses the conjunction of Equations (2) to (5) as the
protocol’s inductive invariant I.

Step ➏. In this example, the draft proof suffices as the
final proof for the asynchronous Echo Server protocol, and
no additional effort is required from the user.

4.4 Why History Preservation is Important
The Echo Server example also underscores the importance
of our history-preservation technique. First, the history-
preserving property of Phist makes deriving and proving Reg-
ular Invariants amenable to automation. For instance, observe
that for any RESPONSE(req), its presence in the network im-
plies that the sender of the message performed a SERVERRE-
SPONSESTEP at some point in its execution history, during
which req was its currentRequest value (Figure 8 line 19).
This can be expressed as

∀ msg : msg.RESPONSE? ∧ msg ∈ network

=⇒ ∃ i : SERVERRESPONSESTEP(

history[i].clients[msg.src],
history[i+1].clients[msg.src],
msg) (6)

Equation (6) is easy to derive mechanically because it does
not contain explicit references to internal host state, yet it
implies all the properties that such a step entails, such as
Equation (2).

Beyond making Message Invariants easy to derive, history
preservation is what allows the invariant taxonomy to apply
cleanly to a wide variety of protocols. Consider how the in-
ductive invariant derived in step ➎ of Echo Server proves
ES-Safety. First, Equation (2) allows us to relate RESPONSE
messages directly to the state of their sender (i.e., the server).
Equation (5) then connects the server’s state to a prior state
of the respective client. Finally, Equation (4) relates that prior
state to the current state to imply ES-Safety.

Without preserving history, Monotonicity Invariants such as
Equation (4) would be impossible to express. Moreover, any
previous values of server.currentRequest are overwritten and
erased from the system, hence preventing us from expressing
simple Message Invariants such as Equation (2). Instead, the
developer would have to resort to the alternative statement

∀ RESPONSE(req) ∈ network :
SUBMITREQ(req) ∈ network

which mixes the protocol logic of how the server processes
requests together with network reasoning, and is neither a
Protocol Invariant nor a Regular Invariant. As explained in
Section 2.1, this would result in proofs that are less tractable.

5 Automation in Kondo

Given a file describing a synchronous protocol Psync,
Kondo generates the asynchronous protocol Phist, and human-
readable files stating the derived Regular Invariants together
with the proof that they are indeed invariants in Phist. Kondo
also produces a draft proof of Phist by combining the user-
written synchronous proof with the derived Regular Invari-
ants. In this section, we describe how Kondo derives and
proves Regular Invariants with minimal user guidance, and
how Kondo generates the draft proof of Phist.

We use the Dafny language and verifier [24] to specify
and verify our protocols. We also implement Kondo as a new
feature [1] inside the Dafny compiler.

5.1 Automating Regular Invariants
Message Invariants. In Kondo, we use the special sum type
Message to define the messages of the system (e.g., Figure 7
line 2). We also require that messages be tagged with the
unique identifier of their source host, accessed via msg.src.
Without loss of generality, we assume that for each message
variant α, there is exactly one host step Tα that sends that
message. If there is more than one, α can simply be split into
multiple variants, one for each host step that sends α.

Recall that Message Invariants relate the state of hosts
to the state of the network via Send Invariants and Receive
Invariants (Section 3.1). Kondo derives Send Invariants as-
serting that for each message in the network, its sender must
have performed the action that sent that message. To do so,
Kondo enumerates over Message variants. For each variant
α, Kondo produces the statement that for each α message,
mα, in the network, there is some index i in the execution
history when the source host of mα performed the step Tα that
sent mα (exemplified by Equation (6)). Such statements yield
two critical pieces of information—one, the enabling condi-
tion of step Tα (i.e., the preconditions required for step Tα to
be taken) was satisfied at time i; and two, the state at time
i+ 1 is in accordance with the transition. When combined
with Monotonicity Invariants, they provide information on
the current state of the system.

On the other hand, Receive Invariants derived by Kondo
assert that if some witness condition qα is met at a host state σ,
then there must be a message of variant α in the network that
made qα(σ) true. More formally, if a host satisfies qα at index
j in its execution history, then there must be an earlier index
i < j and message mα such that qα is satisfied at index i+1
but not i, and this step involved the receipt of mα. An example
of a witness condition and the derived Receive Invariant for

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 845

// User-provided witness for PROMISE messages in Paxos
1: predicate PROMISEQ(v: ProposerHost, acc: AcceptorId)
2: acc ∈ v. promisesSet
3:

// Generated Receive Invariant
4: predicate RECVPROMISEVALIDITY(s: GlobalState)
5: ∀ ℓ, j, acc :
6: PROMISEQ(s. history[j]. proposers[ℓ], acc)
7: =⇒
8:

(
∃ i, msg : i < j

9: ∧ ¬ PROMISEQ(s. history[i]. proposers[ℓ], acc)
10: ∧ PROMISEQ(s. history[i+1]. proposers[ℓ], acc)
11: ∧ RECVPROMISESTEP(

12: s. history[i]. proposers[ℓ],
13: s. history[i+1]. proposers[ℓ],
14: msg)

)
15:

Figure 9: PROMISEQ is an example of a witness condition
for the Paxos protocol. From this definition Kondo generates
a corresponding Receive Invariant.

the Paxos protocol is listed in Figure 9. Receive Invariants
inform the state of the network given the state of recipient
hosts. When combined with Send Invariants, they bridge the
relationship between senders and recipients.

Presently, Kondo requires the user to manually write the
witness conditions. Kondo then generates one Receive Invari-
ant for each condition. In practice, these are simple conditions
that do not require much creativity. For instance, a representa-
tive condition is PROMISEQ in the Paxos protocol (Figure 9),
which hints that any acceptor’s ID in the promises set of a
proposer host must have arrived via a message. The fact that
specific fields in the host state are designed to track informa-
tion received from messages must already be known by the
developer at the time the protocol is conceived.

Monotonicity Invariants. These assert the monotonic poli-
cies of common data fields in local host state, such as round
numbers and write-once variables used to store consensus
decisions. In Kondo, we implement a library of common data
types, each of which has a partial order relation, less-than-
or-equal-to (lteq). The library includes write-once option
types, grow-only numeric types, and append-only sets and
sequences. Developers can easily expand this library with
custom data types that implement the lteq interface.

Whenever the developer uses a monotonic type, Kondo
produces an invariant stating that at any point in history, a
value of that type must be lteq any future value. Equation (4) is
one example, where lteq is the ⊆ relation for sets. Importantly,
the verifier enforces that these types are used correctly.

// User-provided label
1: predicate HOSTOWNSRESOURCE(v: Host)
2: v. hasLock // boolean flag
3:

// User-provided label
4: predicate INFLIGHTFORHOST(v: Host, msg: Message)
5: msg. dst = v. hostId ∧ v. epoch < msg. epoch
6:

// Generated Ownership Invariant
7: predicate ATMOSTONEOWNERPERRESOURCE(

8: s: GlobalState)
9: ∀ h1, h2 :

(
10: ∧ HOSTOWNSRESOURCE(s.hosts[h1])

11: ∧ HOSTOWNSRESOURCE(s.hosts[h2])

12: =⇒ h1 = h2
)

13:
// Generated Ownership Invariant
// RESOURCEINFLIGHTBYMSG is auto-generated wrapper
// around INFLIGHTFORHOST

14: predicate ATMOSTONEINFLIGHT(s: GlobalState)
15: ∀ m1, m2 :

(
16: ∧ RESOURCEINFLIGHTBYMSG(s, m1)

17: ∧ RESOURCEINFLIGHTBYMSG(s, m2)

18: =⇒ m1 = m2
)

19:
// Generated Ownership Invariant
// RESOURCEINFLIGHT is auto-generated wrapper
// around INFLIGHTFORHOST

20: predicate HOSTOWNSRESOURCEIMPLIESNOTINFLIGHT(

21: s: GlobalState)
22: RESOURCEINFLIGHT(s)
23: =⇒ NOHOSTOWNSRESOURCE(s)
24:

Figure 10: Example of user-provided ownership labels and the
Ownership Invariants that Kondo generates for the Distributed
Lock protocol.

Ownership Invariants. Many distributed protocols, such
as lock services and sharded stores, revolve around owner-
ship of exclusive resources. Though resources vary greatly
in function and behavior, the semantics of what it means for
the resource to be uniquely-owned is common. Figure 10
shows an example for how Ownership Invariants work in the
Distributed Lock protocol [14], where hosts pass around a
unique lock in a ring configuration.

For Kondo to generate Ownership Invariants, the user la-
bels a data type as a uniquely-owned resource and describes
its ownership semantics. This is done by defining two pred-
icates under special names. First, HOSTOWNSRESOURCE
states what it means for the host to own the lock. Second,
INFLIGHTFORHOST describes the enabling condition for a

846 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

host to receive a lock that is in-flight, meaning that the lock
is in transit as a network message and can be received by
the destination host. In Distributed Lock, HOSTOWNSRE-
SOURCE says that a host owns the lock when its hasLock field
is true, and INFLIGHTFORHOST evaluates to true when the
message’s epoch value is larger than that of the host.

We emphasize that these labeled conditions are not new
concepts that a user must invent for Kondo. Instead, these are
formulas that they must inevitably write for any ownership-
based protocol. Kondo just requires them to be named in a
standardized format.

Using the two predicates, Kondo generates invariants to
cover the semantics of a uniquely owned resource. They as-
sert that at most one host can own the resource, at most one
copy of the resource can be in-flight, and that if the resource
is in-flight then no one can own the resource in the meantime
(respectively, ATMOSTONEOWNERPERRESOURCE, ATMO-
STONEINFLIGHT, and HOSTOWNSRESOURCEIMPLIESNOT-
INFLIGHT).

Inductive Proofs of Regular Invariants. All of the Regu-
lar Invariants generated by Kondo come with verified Dafny
lemmas proving that they are indeed invariants. The system-
atic structure of Regular Invariants ensures that these lemmas
can be derived through simple syntax-driven rules. These in-
variants are such that every individual Message Invariant and
Monotonicity Invariant is self-inductive, while the conjunc-
tion of Ownership Invariants is inductive.

5.2 Automating the Draft Proof

The final goal is to prove that the history-preserving asyn-
chronous protocol Phist satisfies its safety property. To aid the
user in doing so, Kondo generates a draft proof based on the
proof of the synchronous version Psync.

First, Kondo lifts the inductive invariants of Psync to
the history-preserving asynchronous world using the fol-
lowing mechanical transformation. Given a Psync invari-
ant I(S), its history-preserving analogue is I′(Shist) := ∀ i :
I(Shist.history[i]), which simply states that I is true at all
points in the history of Shist. An example of this is the trans-
formation of Equation (1) into Equation (5).

Second, Kondo also lifts lemmas for Psync into lemmas for
Phist. It converts inductive proofs of synchronous invariants
to those of their history-preserving analogues by adding quan-
tifiers over histories and choosing the appropriate elements in
the histories as arguments to functions such as I.

One important detail is how Kondo handles triggers [29].
Triggers are syntactic patterns involving quantified variables
that tell the Dafny verifier when to consider concrete instan-
tiations of the quantifiers. For each quantified formula, the
user may either manually supply its triggers or rely on Dafny
to infer them automatically. In both these cases, Kondo lifts

the triggers used in the synchronous invariants into their asyn-
chronous counterparts. This ensures that the Dafny verifier
triggers on the same terms in the draft proof as in the syn-
chronous proof, such that lemmas that pass the verifier for
Psync are also likely to pass for Phist.

Overall, Kondo’s generated draft proof is a best-effort
syntax-guided translation. As such, it may contain lemmas
that do not pass the Dafny verifier. Failing lemmas fall into
one of two categories. First, the lemma’s body contains Psync-
specific constructs, namely the concrete instantiation of syn-
chronous actions that cannot be easily translated into the Phist
context. In these cases, Kondo removes these lines from the
Phist proof, and requires the user to complete the translation.
Second, Dafny simply needs more proof annotations to guide
the verifier in exploring Phist’s more complex state space. In
both these cases, the user embellishes the lemma body with
more proof code, and may additionally call upon the gener-
ated Regular Invariants. With the candidate inductive invariant
already in place, however, the effort demanded in this step is
mechanical, and the bulk of user creativity is confined to the
initial Psync proof. We quantify this effort in Section 6.4.

6 Evaluation

We evaluate the Kondo methodology and tool by applying
it to a wide range of distributed protocols. Informed by our
experience in building and verifying distributed systems, this
selection seeks to cover the space of common protocols as
much as possible. The result is the list of protocols in Table 1,
which concern a variety of application domains, ranging from
consensus to mutual exclusion and concurrency control. We
used Two-Phase Commit, Ring Leader Election, and Lock
Server to develop and refine the Kondo approach. We then
applied the Kondo approach to the remaining protocols.

Our evaluation determines whether Kondo is effective in
helping developers prove the correctness of their distributed
protocols. In doing so, we answer the following questions.

1. How applicable is the Kondo methodology in finding
the inductive invariants of various distributed protocols?
(Section 6.2)

2. How effective is Kondo in reducing the number of invari-
ants a user must derive manually? (Section 6.3)

3. How burdensome is writing proof annotations when using
Kondo? (Section 6.4)

4. Are there cases in which the Kondo methodology fails?
(Section 6.5)

6.1 Evaluation Methodology
Each protocol in Table 1 is described as a state machine
in Dafny following the IronFleet style [14], together with
an associated safety property. For each protocol, the desired
output is a theorem checked by Dafny which shows that the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 847

Invariant Clauses Lines of Proof Code
Psync LoC No Kondo Sync Owner Mono Msg No Kondo Sync Mods

Echo Server 260 5 1 0 1 3 93 40 0
Ring Leader Election [5] 183 6 1 0 0 2 191 56 0
Simplified Leader Election [39] 255 7 3 0 1 2 136 94 0
Two-Phase Commit 400 8 4 0 1 3 184 133 19
Paxos [23] 631 27 20 0 5 6 856 557 220
Flexible Paxos [16] 633 27 20 0 5 6 856 554 226
Distributed Lock [14] 194 2 0 3 0 0 64 31 0
ShardedKV 213 2 0 3 0 0 172 61 7
ShardedKV-Batched 225 2 0 3 0 0 172 31 0
Lock Server [26] 287 7 1 6 0 0 267 44 15

Table 1: Summary of proof effort using Kondo. Column ‘Psync LoC’ is the lines of code of the Psync protocol description. Under
‘Invariant Clauses’, ‘No Kondo’ is the number of invariants a user writes to prove the asynchronous protocol when not using
Kondo, while ‘Sync’ is the number of Protocol Invariants the user writes in completing the synchronous proof when using Kondo.
The columns ‘Owner’, ‘Mono’ and ‘Msg’ count the Ownership, Monotonicity and Message Invariants Kondo generates.
Under ‘Lines of Proof Code’, ‘No Kondo’ is the amount of code a user writes to prove the asynchronous protocol when not using
Kondo. Meanwhile, ‘Sync’ is the amount of user-written code to prove Psync in Kondo, and ‘Mods’ represent the total size of
lemmas that the user had to modify in completing the draft proof generated by Kondo.

protocol’s safety property is an invariant. In particular, we
note that every protocol and its respective inductive invariant
is outside of EPR.

To obtain the proof of each protocol, we apply the Kondo
methodology by first finding and proving the inductive in-
variant for a synchronous version of the protocol Psync. From
Psync and its proof, the Kondo tool generates the asynchronous
protocol Phist, a set of Regular Invariants, and a draft proof of
Phist. Finally, we manually fill in any gaps in the draft proof
to complete the final output.

6.2 Applicability of Kondo and the Invariant
Taxonomy

We report that the Kondo methodology succeeds in producing
inductive invariants for all 10 protocols. Table 1 tallies how
the invariant clauses in each inductive invariant are classified
in the invariant taxonomy. We note that the Regular Invariant
columns in Table 1 only counts those that are useful in the fi-
nal inductive invariant; i.e., removing such an invariant causes
the proof to fail. In all of the examples we tested, the number
of extraneous Regular Invariants generated by Kondo is small
(at most 2). Hence, there is little threat of the developer being
overwhelmed by a deluge of unneeded invariants.

Overall, this result demonstrates the applicability of Kondo
along three fronts. First, it shows that the taxonomy is compre-
hensive in the properties that it covers. Using only invariants
that fall within the taxonomic categories, we are able to ex-
press all the properties needed to form the inductive invariants
of an extensive set of distributed protocols.

Second, the result shows that the inductive invariant for
each of these protocols can be formulated in way that respects
the classification between Protocol Invariants and Regular
Invariants, where host-level reasoning is cleanly confined to
Protocol Invariants. This supports the main hypothesis of the
invariant taxonomy—it is the well-delineated core of Protocol
Invariants that capture the deeper intuitions of the system
design. Beyond this core, a set of easily derivable Regular
Invariants completes the rest of the proof.

Third, the result supports the conclusion that Kondo is a
viable strategy and tool for proof developers. By using only
Protocol Invariants derived from Psync in conjunction with the
Regular Invariants generated using Kondo, we are able to find
inductive invariants for a wide selection of protocols.

6.3 Reducing the Invariant-Finding Burden

In this study, we investigate the degree to which Kondo alle-
viates the developer’s burden through reducing the number of
invariant clauses they need to find manually for a protocol. In
the case of Kondo, manually-derived invariants are the Proto-
col Invariants listed under ‘Sync’ in Table 1. We compare this
to the number of invariants one must devise using the conven-
tional IronFleet approach, listed under ‘No Kondo’—these
numbers are obtained from performing fully manual proofs
of the asynchronous but non-history-preserving versions of
the protocols, which represent the conventional way to write
these protocols [14, 15].

In most cases, the number of manual invariants is drastically
reduced when using Kondo, e.g., by up to 6x for Ring Leader

848 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Election. Surprisingly, for Distributed Lock, ShardedKV and
ShardedKV-Batched, the user need not write any invariants
at all when using Kondo. This is because these protocols are
about managing unique resource ownership, a problem that is
trivial in the synchronous model where resources are passed
atomically between hosts and there is no need to guard against
duplication that may occur in an asynchronous network. In the
asynchronous model, Ownership reasoning is in turn handled
automatically by Kondo’s Ownership Invariants.

For Paxos and Flexible Paxos, we observe that the reduction
is less drastic, from 27 to 20 in both cases. An experimental
factor contributes to the smaller difference. In the non-history-
preserving version of these protocols (used to obtain the ‘No
Kondo’ numbers), we used a simpler state machine for the
proposer hosts. In particular, they include a step that received
a message and sent the response in the same step, a simplifi-
cation that made the proofs more tractable. Kondo, however,
does not allow steps that perform both a send and a receive
(see “Synchronous Protocol” in Section 4.2). Hence, we ap-
plied Kondo to a modified proposer state machine where that
step was decomposed into two separate steps. Indeed, the
fact that Kondo required fewer manual invariants despite this
added complication highlights the usefulness of Kondo.

Furthermore, these numbers do not fully reflect the quali-
tative relief Kondo gives to the developer. Because Protocol
Invariants are derived from the synchronous protocol model
Psync, the developer can ignore the complications caused
by network asynchrony when conceiving them. This luxury
makes deriving Protocol Invariants qualitatively easier than
the invariants in the traditional setting that is tarnished by the
asynchronous network.

Overall, we find that Kondo allows the developer to be
responsible for both fewer and simpler invariants across a
variety of protocols.

6.4 Proof Experience

Because our protocols are not expressed in a decidable logic
such as EPR, the user is inevitably tasked with writing proof
annotations to convince the verifier of the correctness of the
inductive invariant. In the Dafny language, these proof annota-
tions come in the form of lemmas that resemble a hand-written
inductiveness proof. Using the Kondo methodology, the user
is responsible for writing proof annotations in two steps of
the process (steps ➋ and ➏ in Figure 6, respectively):

1. Prove that the conjunction of Protocol Invariants is an
inductive invariant of the synchronous protocol Psync.

2. Complete the draft proof of the asynchronous protocol,
if it is not already complete. This involves adding proof
annotations to the bodies of lemmas that fail to verify. No-
tably, the user need not introduce new lemmas, or modify
the pre- and post-conditions of existing lemmas.

The columns ‘Sync’ and ‘Mods’ in Table 1 under the head-
ing ‘Lines of Proof Code’ quantify the above efforts respec-
tively, using lines of code as a proxy. They are in contrast
to the ‘No Kondo’ column, which represents the amount of
proof a user writes when not using Kondo.

Note that in the ‘Mods’ column, the numbers represent the
total lines of lemmas that required additional proof annota-
tions. In other words, even if just one line had to be added
to the lemma, the lines of the entire lemma definition are
counted. This is to include conservatively the effort the user
may spend reading the lemma in order to complete the proof.

Finally, we emphasize that completing the asynchronous
draft proof is a mechanical process once the developer has the
synchronous proof in place. In particular, in the asynchronous
proof, the developer uses exactly those lemmas already de-
fined in the sync-proof, and the logical reasoning behind why
the lemmas are true remains identical. The developer sim-
ply adds more assertions in the proof to guide the verifier in
exploring a larger state space.

6.5 Limitations

Kondo targets safety proofs of crash fault tolerant distributed
protocols. As such, liveness proofs are beyond its scope. More-
over, Kondo is not applicable in a Byzantine fault model, as it
is not safe to relate a message to the state of a Byzantine-faulty
sender or receiver.

Next, Kondo is not guaranteed to be complete, in that it may
not work for every protocol or safety property. First, Protocol
Invariants derived based on the synchronous protocol may not
be correct invariants in the asynchronous model. For instance,
the property “there is at least one node holding the lock” is an
invariant in the synchronous version of Distributed Lock, but
not the asynchronous one where the lock can be in-flight and
not held by any node. In our evaluation, however, we have not
encountered any safety properties where such invariants were
required.

Second, even when the Protocol Invariants derived in
the synchronous protocol are correct invariants in the asyn-
chronous version, it is not theoretically guaranteed that their
conjunction with Kondo-generated Regular Invariants must be
an inductive invariant of the asynchronous protocol. However,
we did not come across any such examples.

Ultimately, unlike EPR-based techniques, Kondo is in-
tended to augment, rather than replace, general verification
frameworks. In cases where Kondo fails to apply, it is always
possible to fall back to the general verification framework, al-
beit giving up on the full benefits of using Kondo’s structured
invariants. It is also possible that new invariant categories
and techniques may be needed as we apply Kondo to more
diverse protocols. In this sense, Kondo comprises a toolkit
of techniques that is general enough to cover a useful set of
protocols, and it may grow to accommodate new classes of
problems as they arise.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 849

7 Related Work

Verification of distributed systems has received substantial
attention, with proposed solutions falling along a spectrum of
automation with differing trade-offs.

Manual Proofs. IronFleet’s proof of Paxos [14] and Verdi’s
proof of Raft [42] both use general-purpose theorem provers
to tackle their respective correctness proofs. They require en-
tirely handwritten invariants and proofs, cumulating in 4,581
lines of Dafny for IronFleet and 50,000 lines of Coq for Verdi.
However, they both accomplish the feat of verifying not just
the protocol in the abstract, but an entire executable imple-
mentation, whereas Kondo is concerned with the protocol.

Automated Invariant Inference. To reduce the substan-
tial effort needed for these proofs, considerable work has
focused on automating the process. Ivy [32] makes use of the
effectively propositional logic fragment (EPR [34]), which
makes inductiveness-checking decidable and efficient in prac-
tice. Building on this, several algorithms aim to automate the
construction of invariants wholesale; these include I4 [26],
SWISS [13], DistAI [44], IC3PO [11], DuoAI [43], Primal-
Dual Houdini [33], and P-FOL-IC3 [19].

However, EPR restricts how developers can express their
protocols. In invariant inference, this restriction applies to
the protocol description and its inductive invariant. For exam-
ple, to handle Paxos, Padon et al. [31] develop abstractions
that transform the verification conditions into EPR, a creative
process aided by knowing the invariants in advance. Mean-
while, most approaches that can automatically infer invariants
for Paxos (e.g., SWISS) require the protocol to already be
transformed. Kondo, however, is not limited to EPR, so it
does not share these restrictions. This is possible because it is
not a fully automatic approach, instead allowing some human
intervention. As a result, our solution to Paxos uses a natural,
non-transformed protocol description.

Other works that infer invariants outside of EPR include
a paper [12] targeting Paxos and the endive tool [36], which
verifies a Raft-based protocol using the expressive language
of TLA+. Being outside EPR, they cannot check invariants
automatically in the unbounded domain, similar to Kondo.
The endive authors report providing human guidance but did
not quantify such effort.

Leveraging the Structure of Distributed Systems. Like
Kondo, some work has used the observation that synchronous
systems are easier to reason about than asynchronous ones.
Pretend Synchrony [40], for example, rewrites asynchronous
protocols into synchronous ones with much simpler invari-
ants. However, it requires protocols to obey a restriction called
“round non-interference” which precludes certain optimiza-
tions that save state between rounds, as in Multi-Paxos.

Some work introduces reasoning principles for the round-
based Heard-Of model [6], including PSync [9], the CL
logic [8], and ConsL [27]. Of course, these frameworks are
only applicable to protocols that operate in rounds. Other
work in this area [7] makes use of the communication-closure
property of some protocols, but may not apply to protocols
that do not have this property, such as the Echo Server.

Like Kondo, the work on message chains [28] identifies a
class of useful invariants based on an insight into the structure
of distributed systems. It proposes message-chain invariants
that accumulate history inside network messages, explicitly
mixing host and network state. In contrast, Kondo aims to
isolate these two concerns.

Leveraging Ownership. Frameworks such as Aneris [20]
and Grove [38] use separation logic [35] to reason about
distributed systems. Separation logic is particularly good at
reasoning about resource ownership, a concept also captured
by Kondo’s Ownership Invariants. Separation logic is very
expressive, but it also requires the developer to come up with
invariants (a process that is hard to automate), and it often
requires significant technical expertise to use effectively.

8 Conclusion

This paper presents an invariant taxonomy that identifies struc-
ture in the inductive invariants of distributed protocols. The
taxonomy classifies invariants into Regular Invariants (with
regular structure that follows from the protocol description)
and Protocol Invariants (which capture protocol-specific rea-
sons why the protocol is correct). Building on this insight,
the Kondo methodology gives developers a workflow and
tool for coming up with an inductive invariant and proving
inductiveness. They identify the Protocol Invariants on a syn-
chronous version of the protocol; then use the Kondo tool to
get an asynchronous protocol description and Regular Invari-
ants; and finally, prove the inductiveness of the conjunction
of Protocol and Regular Invariants, by completing the draft
proof generated by Kondo.

Acknowledgment

We thank Andrea Lattuada and Jon Howell for the fruitful
early discussions about this project. We also thank our shep-
herd, Alexey Gotsman, and the anonymous OSDI reviewers
for their great feedback. This work was supported by a gift
from VMware and by National Science Foundation grants
CCF-2318953 and CCF-2318954.

850 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] The Kondo tool. Available online at: https://github.
com/GLaDOS-Michigan/Kondo.

[2] James Bornholt, Rajeev Joshi, Vytautas Astrauskas,
Brendan Cully, Bernhard Kragl, Seth Markle, Kyle
Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. Using lightweight
formal methods to validate a key-value storage node in
Amazon S3. In Proceedings of the 28th ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
2021, page 836–850, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

[3] Aaron R. Bradley. Understanding IC3. In Proceedings
of the 15th International Conference on Theory and
Applications of Satisfiability Testing, SAT’12, page 1–14,
Berlin, Heidelberg, 2012. Springer-Verlag.

[4] Aaron R. Bradley and Zohar Manna. Property-directed
incremental invariant generation. Form. Asp. Comput.,
20(4–5):379–405, Jul 2008.

[5] Ernest Chang and Rosemary Roberts. An improved
algorithm for decentralized extrema-finding in circu-
lar configurations of processes. Commun. ACM,
22(5):281–283, May 1979.

[6] Bernadette Charron-Bost and André Schiper. The Heard-
Of model: computing in distributed systems with benign
faults. Distributed Computing, 22, 04 2009.

[7] Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and
Josef Widder. Communication-closed asynchronous pro-
tocols. In Isil Dillig and Serdar Tasiran, editors, Com-
puter Aided Verification, pages 344–363, Cham, 2019.
Springer International Publishing.

[8] Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith,
Josef Widder, and Damien Zufferey. A logic-based
framework for verifying consensus algorithms. In Pro-
ceedings of Computer Aided Verification (CAV), 2014.

[9] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zuf-
ferey. PSync: A partially synchronous language for
fault-tolerant distributed algorithms. In ACM Sympo-
sium on Principles of Programming Languages (POPL),
2016.

[10] Yotam M. Y. Feldman, James R. Wilcox, Sharon
Shoham, and Mooly Sagiv. Inferring inductive invariants
from phase structures. In Isil Dillig and Serdar Tasiran,
editors, Computer Aided Verification, pages 405–425,
Cham, 2019. Springer International Publishing.

[11] Aman Goel and Karem Sakallah. On symmetry and
quantification: A new approach to verify distributed
protocols. In NASA Formal Methods: 13th International
Symposium, NFM 2021, Virtual Event, May 24–28, 2021,
Proceedings, page 131–150, Berlin, Heidelberg, 2021.
Springer-Verlag.

[12] Aman Goel and Karem A. Sakallah. Towards an auto-
matic proof of Lamport’s Paxos. CoRR, abs/2108.08796,
2021.

[13] Travis Hance, Marijn Heule, Ruben Martins, and Bryan
Parno. Finding invariants of distributed systems: It’s a
small (enough) world after all. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 115–131. USENIX Association, April
2021.

[14] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving practical dis-
tributed systems correct. In Proceedings of the 25th
ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP 2015, page 1–17, New York, NY, USA,
2015. Association for Computing Machinery.

[15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving safety and live-
ness of practical distributed systems. Commun. ACM,
60(7):83–92, Jun 2017.

[16] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-
man. Flexible paxos: Quorum intersection revisited.
CoRR, abs/1608.06696, 2016.

[17] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky,
Noam Rinetzky, and Sharon Shoham. Property-directed
inference of universal invariants or proving their absence.
J. ACM, 64(1), Mar 2017.

[18] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex
Aiken. First-order quantified separators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page
703–717, New York, NY, USA, 2020. Association for
Computing Machinery.

[19] Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex
Aiken. Inferring invariants with quantifier alternations:
Taming the search space explosion. In Dana Fisman
and Grigore Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 338–356,
Cham, 2022. Springer International Publishing.

[20] Morten Krogh-Jespersen, Amin Timany, Marit Edna
Ohlenbusch, Simon Oddershede Gregersen, and Lars

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 851

https://github.com/GLaDOS-Michigan/Kondo
https://github.com/GLaDOS-Michigan/Kondo

Birkedal. Aneris: A mechanised logic for modular rea-
soning about distributed systems. In Peter Müller, editor,
Programming Languages and Systems, pages 336–365,
Cham, 2020. Springer International Publishing.

[21] Leslie Lamport. The temporal logic of actions. ACM
Trans. Program. Lang. Syst., 16(3):872–923, May 1994.

[22] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[23] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, Dec 2001.

[24] K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Proceedings of the
16th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR’10,
pages 348–370, Berlin, Heidelberg, 2010. Springer-
Verlag.

[25] Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldwe-
ber, Jean-Baptiste Jeannin, Manos Kapritsos, and Baris
Kasikci. Sift: Using refinement-guided automation to
verify complex distributed systems. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
151–166, Carlsbad, CA, July 2022. USENIX Associa-
tion.

[26] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A. Sakallah. I4:
Incremental inference of inductive invariants for verifi-
cation of distributed protocols. In Proceedings of the
27th ACM SIGOPS Symposium on Operating Systems
Principles, SOSP 2019, page 370–384, New York, NY,
USA, 2019. Association for Computing Machinery.

[27] Ognjen Maric, Christoph Sprenger, and David A. Basin.
Cutoff bounds for consensus algorithms. In Proceedings
of Computer Aided Verification (CAV), 2017.

[28] Federico Mora, Ankush Desai, Elizabeth Polgreen, and
Sanjit A. Seshia. Message chains for distributed system
verification. Proc. ACM Program. Lang., 7(OOPSLA2),
Oct 2023.

[29] Michał Moskal. Programming with triggers. In Proceed-
ings of the 7th International Workshop on Satisfiability
Modulo Theories, SMT ’09, page 20–29, New York, NY,
USA, 2009. Association for Computing Machinery.

[30] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. How
Amazon Web Services uses formal methods. Communi-
cations of the ACM, 2015.

[31] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon
Shoham. Paxos made EPR: decidable reasoning about
distributed protocols. Proc. ACM Program. Lang.,
1(OOPSLA), Oct 2017.

[32] Oded Padon, Kenneth L. McMillan, Aurojit Panda,
Mooly Sagiv, and Sharon Shoham. Ivy: Safety veri-
fication by interactive generalization. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, page
614–630, New York, NY, USA, 2016. Association for
Computing Machinery.

[33] Oded Padon, James R. Wilcox, Jason R. Koenig, Ken-
neth L. McMillan, and Alex Aiken. Induction duality:
Primal-dual search for invariants. Proc. ACM Program.
Lang., 6(POPL), Jan 2022.

[34] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner.
Deciding effectively propositional logic using DPLL
and substitution sets. Journal of Automated Reasoning,
44(4):401–424, Apr 2010.

[35] John C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science,
LICS ’02, page 55–74, USA, 2002. IEEE Computer
Society.

[36] William Schultz, Ian Dardik, and Stavros Tripakis. Plain
and simple inductive invariant inference for distributed
protocols in TLA+. 2022 Formal Methods in Computer-
Aided Design (FMCAD), pages 273–283, 2022.

[37] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Pro-
gramming and proving with distributed protocols. Proc.
ACM Program. Lang., 2(POPL), Dec 2017.

[38] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans
Kaashoek, and Nickolai Zeldovich. Grove: A separation-
logic library for verifying distributed systems. In Pro-
ceedings of the 29th ACM SIGOPS Symposium on Op-
erating Systems Principles, SOSP 2023, page 113–129,
New York, NY, USA, 2023. Association for Computing
Machinery.

[39] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan,
Oded Padon, Mooly Sagiv, Sharon Shoham, James R.
Wilcox, and Doug Woos. Modularity for decidability
of deductive verification with applications to distributed
systems. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2018, page 662–677, New York,
NY, USA, 2018. Association for Computing Machinery.

852 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[40] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander
Bakst, Deian Stefan, and Ranjit Jhala. Pretend syn-
chrony: Synchronous verification of asynchronous dis-
tributed programs. In ACM Symposium on Principles of
Programming Languages (POPL), 2019.

[41] James R. Wilcox, Doug Woos, Pavel Panchekha,
Zachary Tatlock, Xi Wang, Michael D. Ernst, and
Thomas Anderson. Verdi: A framework for implement-
ing and formally verifying distributed systems. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2015, page 357–368, New York, NY, USA, 2015.
Association for Computing Machinery.

[42] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tat-
lock, Michael D. Ernst, and Thomas Anderson. Planning
for change in a formal verification of the Raft consensus
protocol. In ACM Conference on Certified Programs
and Proofs (CPP), Jan 2016.

[43] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
DuoAI: Fast, automated inference of inductive invari-
ants for verifying distributed protocols. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 485–501, Carlsbad, CA,
July 2022. USENIX Association.

[44] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. DistAI: Data-Driven
automated invariant learning for distributed protocols.
In 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 21), pages 405–421.
USENIX Association, July 2021.

[45] Tony Nuda Zhang, Upamanyu Sharma, and Manos
Kapritsos. Performal: Formal verification of latency
properties for distributed systems. Proc. ACM Program.
Lang., 7(PLDI), Jun 2023.

[46] Naiqian Zheng, Mengqi Liu, Yuxing Xiang, Linjian
Song, Dong Li, Feng Han, Nan Wang, Yong Ma, Zhuo
Liang, Dennis Cai, Ennan Zhai, Xuanzhe Liu, and Xin
Jin. Automated verification of an in-production DNS
authoritative engine. In Proceedings of the 29th ACM
SIGOPS Symposium on Operating Systems Principles,
SOSP 2023, page 80–95, New York, NY, USA, 2023.
Association for Computing Machinery.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 853

	Introduction
	The Challenge of Inductive Invariants
	Case Study: Two-Phase Commit

	The Invariant Taxonomy
	Regular Invariants
	Protocol Invariants
	Streamlining Proofs Using the Taxonomy

	Finding Invariants the Kondo Way
	Overview
	Protocol Models
	Case Study: Echo Server
	Why History Preservation is Important

	Automation in Kondo
	Automating Regular Invariants
	Automating the Draft Proof

	Evaluation
	Evaluation Methodology
	Applicability of Kondo and the Invariant Taxonomy
	Reducing the Invariant-Finding Burden
	Proof Experience
	Limitations

	Related Work
	Conclusion

