
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Caravan: Practical Online Learning of In-Network
ML Models with Labeling Agents

Qizheng Zhang, Stanford University; Ali Imran, Purdue University;
Enkeleda Bardhi, Sapienza University of Rome; Tushar Swamy and

Nathan Zhang, Stanford University; Muhammad Shahbaz, Purdue University
and University of Michigan; Kunle Olukotun, Stanford University

https://www.usenix.org/conference/osdi24/presentation/zhang-qizheng

CARAVAN: Practical Online Learning of In-Network ML Models with Labeling Agents
Qizheng Zhang, Ali Imran†, Enkeleda Bardhi‡, Tushar Swamy, Nathan Zhang,

Muhammad Shahbaz†?, Kunle Olukotun
Stanford University †Purdue University ‡Sapienza University of Rome ?University of Michigan

Abstract
Recent work on in-network machine learning (ML) antic-
ipates offline models to operate well in modern network-
ing environments. However, upon deployment, these models
struggle to cope with fluctuating traffic patterns and network
conditions and, therefore, must be validated and updated fre-
quently in an online fashion.

This paper presents CARAVAN, a practical online learning
system for in-network ML models. We tackle two primary
challenges in facilitating online learning for networking: (a)
the automatic labeling of evolving traffic and (b) the efficient
monitoring and detection of model performance degradation
to trigger retraining. CARAVAN repurposes existing systems
(e.g., heuristics, access control lists, and foundation models)—
not directly suitable for such dynamic environments—into
high-quality labeling sources for generating labeled data for
online learning. CARAVAN also introduces a new metric, ac-
curacy proxy, to track model degradation and potential drift
to efficiently trigger retraining. Our evaluations show that
CARAVAN’s labeling strategy enables in-network ML models
to closely follow the changes in the traffic dynamics with
a 30.3% improvement in F1 score (on average), compared
to offline models. Moreover, CARAVAN sustains comparable
inference accuracy to that of a continuous-learning system
while consuming 61.3% less GPU compute time (on average)
via accuracy proxy and retraining triggers.

1 Introduction
Machine learning (ML) is being increasingly leveraged to bet-
ter manage and operate networks today [27, 30, 35, 37, 45, 49,
54,77,80,82,97,101,104,105,111,114,116]. In academia, sev-
eral proposals make a case for using ML to improve systems
security through anomaly and intrusion detection [30,54,105]
and to optimize systems performance through inference, di-
agnosis, and forecasting of systems’ behavior [49, 76, 80, 81].
Correspondingly, in industry, ML is being deployed to de-
tect threats and bots in public and enterprise-scale cloud net-
works [1,9,10] for securing physical and virtual infrastructure
and for providing better user experience by predicting network
incidents and congestion early on [8]. Moreover, to operate
at scale, with high throughput and low latency, the model
inference is being offloaded to the data plane (e.g., program-
mable switches [15, 114] and SmartNICs [17, 101]) in the
network (i.e., in-network ML)—to perform decision-making
on a per-packet basis [37, 104, 122].

InferenceData
Plane

TrainingControl
Plane

Model
Installed
Once

(a) Offline Learning (b) Online Learning

Labeling(Re)Training

Weight
Updates Sampling &

Validation

Inference

Figure 1: Comparison of in-network model learning. (a)
Offline learning: trained and deployed once; (b) Online
learning: trained and updated over time—requires itera-
tive sampling, labeling, and validation.

Unlike conventional approaches (e.g., hand-crafted heuris-
tics and static rulesets), ML models are better at revealing
hidden patterns and characteristics in vast amounts of high-
dimensional data—such as network traffic [35, 54, 71, 104,
111, 116, 117]. However, most efforts on replacing traditional
approaches (e.g., heuristics and access control lists) with
ML [35] are limited to using static models (aka offline learn-
ing, Figure 1a) [30, 35, 37, 49, 54, 82, 97, 101, 104, 105, 111,
114, 116]. These models are trained once using synthetic or
controlled network traces and are expected to operate well in
the real environment without further guidance (or retraining).
While showing significant promise in stable (less volatile)
environments, these static models perform poorly in the pres-
ence of fluctuations and unforeseen events—not captured by
the traffic during the initial training phase [33,115,117]. These
manifest as model drift either (a) when the network environ-
ment gradually evolves or suddenly changes due to traffic
bursts, time-of-day, or rare events (called concept drift) [117]
or (b) when new data patterns arrive or data distribution
changes (called data drift) [33]. This model drift is shown to
be prevalent in many online ML applications [33,94,100,115].

To keep these models up-to-date with new patterns and net-
work behavior, one approach is to train and update them con-
tinuously on the incoming traffic—referred to as online learn-
ing or continuous learning [33,94]. For example, a (re)training
pipeline in the control plane can continuously sample packets
from the network (e.g., using INT [68] or NetFlow [7]), label
them, and pass them to the model for retraining (Figure 1b). It
then updates the weights on the data-plane device, performing
model inference. As we show in our evaluations (§5), keeping
the model current through online training allows it to handle
new incidents with much higher accuracies compared to the
static offline models (i.e., the average difference in accuracy

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 325

is as high as 67%).
However, there are a number of challenges when it comes

to enabling continuous learning in modern networking en-
vironments (processing Tbps of traffic for varying tenants
and workloads) [32, 96, 119, 121]. First, unlike traditional
online learning systems in other domains (e.g., recommenda-
tion systems and financial systems) where the new retraining
data either contains labels (ground truth) [59, 103, 113] or
can be easily labeled using existing approaches (like Data
Programming [93] or Weak Supervision [91,92]), in network-
ing the incoming data is raw (sampled) traffic with no labels.
Challenge #1: How can we prepare (and label) traffic data
for retraining in-network models? Second, we cannot rely
on fixed interval-based or periodic retraining to ensure the
installed models perform well. The network conditions are
highly dynamic and erratic; a large interval will miss such vari-
ations, whereas frequent updates would be too costly in terms
of resource usage (CPU/GPU cycles and network bandwidth).
Challenge #2: How to decide when to trigger retraining?

In this paper, we present CARAVAN, an online learning
system for in-network ML to tackle these challenges. To label
new incoming network traffic, CARAVAN relies on labeling
agents that use different user-defined knowledge sources to
assist with labeling. In networking, many existing systems,
such as heuristics, access control lists, deep learning, or even
foundation models (e.g., GPT-4 [87], Gemini [106], Llama
3 [16]), fare poorly when used for real-time decision-making—
they either fail to adapt to changing network conditions or
take too much time to process. However, we observe that
these can be used as knowledge sources to label incoming
traffic for online learning of in-network models. For instance,
using foundation models (which encode a broad spectrum of
information about the environment [89,95,112]) and guidance
from users (e.g., prompts [28] and document retrievals [72]),
we can generate application-specific, weak-supervision labels
to (re)train these models. We also introduce a new metric,
accuracy proxy, to decide when to trigger retraining. Instead
of relying on ground-truth labels to compute model accuracy,
we compute accuracy proxy based on generated labels we
receive from the labeling agents for model (re)training. Doing
so allows CARAVAN to track degradation in model behavior
through relative changes in the accuracy level on a temporal
scale, and to trigger retraining. More specifically, if there is an
abrupt change in the accuracy proxy (i.e., model drift exceeds
a certain threshold), CARAVAN uses this as a signal to trigger
retraining. This limits CARAVAN from excessively retraining
the model under normal conditions.

We evaluate our CARAVAN system both in simulation
(for microbenchmarks) and with a Taurus FPGA-based
switch [104] (for end-to-end results). Our simulation results
show that labels generated using knowledge sources perform
similarly to ground-truth labels in terms of inference accu-
racy when used to label incoming traffic for retraining. More-
over, our accuracy proxy and retraining triggers save up to

74.55% GPU compute time compared to continuous online
training while sustaining similar accuracy gains. With our
Taurus FPGA testbed, we show that CARAVAN maintains
30% higher accuracy on average compared to offline mod-
els while using 56.23% less CPU and with similar memory
footprint compared to continuous retraining baselines—with
CARAVAN, the model operates at line rate while adapting to
changing traffic dynamics.

In summary, we make the following contributions:
• We present CARAVAN, a practical online learning system

for in-network ML. CARAVAN’s labeling-agent strategy
allows the use of existing network systems (e.g., heuristics,
access control lists) and emerging foundation models (e.g.,
GPT-4, Gemini, and Llama 3) as knowledge sources to
label incoming traffic. Using accuracy proxy further allows
CARAVAN to efficiently retrigger the training pipeline while
closely tracking changes in the network conditions.

• We implement CARAVAN as a software logic running in the
control plane, and test it both in a simulation setting and
using a real testbed with Taurus FPGA-based switches. Our
CARAVAN prototype is available as open-source.1

• Our evaluations show that CARAVAN allows in-network
models to track changes in the network at line rate while
sustaining 30.3% higher F1 score (on average) compared
to offline systems. Moreover, it consumes 61.3% less GPU
compute time (on average) than a continuous-learning sys-
tem by selectively triggering retraining via accuracy proxy.

2 Background & Motivation
In-network Machine Learning. Network operators face
many challenges with managing the size and complexity of
modern networks while maintaining their stringent (and ever-
increasing) performance requirements [32,96,119,121]. Over
time, the networking community has developed a plethora of
hand-tuned heuristics permeating the network, which contin-
uously introduce new parameters that must then be tuned to
the given network (and workload). We see this with the con-
stant iterations of congestion-control variants [55, 73], active-
queue management [23], load balancing algorithms [26, 66],
anomaly detection [25, 34, 38] and more. Relying on net-
work developers and researchers to keep adding new pa-
rameters to each algorithm being used throughout the net-
work, as the workloads change and evolve, has limited scal-
ability as networks grow. Networking researchers have,
therefore, begun to turn toward data-driven algorithms, in
the form of ML, particularly deep-learning and neural net-
works [35, 40, 63, 80, 83, 105, 111, 116]. Rather than tuning
individual model weights by hand, ML algorithms take train-
ing data as input and learn model weights to optimize for
performance metrics (e.g., prediction accuracy).

To operate at scale with high throughput and low latency,
these models are further offloaded to the network data plane

1Artifact: https://github.com/Per-Packet-AI/Caravan-Artifact-OSDI24

326 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(e.g., programmable switches and SmartNICs) [17, 101, 104,
114, 125]. Doing so allows more fine-grained control over
the traffic, with decision-making (and model inference) tak-
ing place at or near the packet level. For example, program-
mable switches (e.g., Intel Tofino series [15]) with match-
action tables (MATs) can perform ML algorithms (such as
SVMs and decision trees) [37, 114], with more recent data-
plane devices incorporating MapReduce-based processing
blocks to run deep neural networks (DNNs) directly in the net-
work [104]. Likewise, emerging SmartNIC devices (e.g., Mar-
vell Octeon 10 [17] and Xilinx SN1000 [2]) come equipped
with on-board ML inference engines for per-packet inference.
Similarly, data/infrastructure processing units (DPUs/IPUs)
from Nvidia [6], AMD [4], and Intel [14] also provide compu-
tational resources capable of running ML inference alongside
the packet-processing pipelines.

Online Learning and Model Drifts. Recent work on apply-
ing online learning in networking domains (such as video
analytics and edge monitoring) shows promising results. For
example, Ekya [33] and RECL [67] demonstrate that retrain-
ing computer vision models for video analytics applications
with new video frames can effectively mitigate data drift for
compressed ML models. Nazar [58] features online moni-
toring and adapts various ML models on mobile devices to
relieve the problem of potential model drifts.

Through retraining ML models with new incoming data, on-
line learning addresses two common issues these models face
post-deployment: concept drift [117] and data drift [33]. Con-
cept drift occurs as networks and traffic are subjected to dy-
namic signal interference due to environmental changes [123]
(e.g., weather, temperature, or time-of-day), as well as changes
in the network and user behavior (e.g., increased online activ-
ity during COVID-19 [46], addition/removal of devices and
software due to upgrades or failures [75]). For example, a
large file download may be classified as benign during the day
when networks are more active but are marked as malicious
during the night when the number of high-volume flows is
smaller. On the other hand, data drift happens when the live
traffic (or data) distribution diverges from the training data
distribution after the model is deployed [33, 94]. For classi-
fication models, in particular, the arrival of new data classes
(not already present in the offline training set) or a change in
data class distribution could cause an ML model to perform
poorly [33,94]. For example, in network security, new attacks
come up without warning, and it becomes challenging for
a static ML model to detect such an attack since it was not
trained on data featuring the new attack.

Network Data Labeling. The emerging interest in training
and testing ML models for networking applications sparks
extensive research in the area of obtaining labeled network
data [42,60,98,99]. Most recent work falls into three different
categories: generating labeled network data in a controlled
environment, synthetic data generation, and manual labeling

Streaming DB

ACLs Heuristics Foundation Models …

Conflict Resolution via Majority Voting

La
be

lin
g

A
ge
n
t

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
R
et
ra
in
in
g

Labeling Window:
[Flow/Pred.]

Labels

Generated LabelsLabeling Window

Generated LabelsLabeling Window

Weights

Samples

High Accuracy

Low Throughput

Low Accuracy

High Throughput

Domain Experts

Foundation Models

IP-based ACLs

Heuristics

Knowledge
Sources

Figure 2: High-level design of CARAVAN. The three key
components, Labeling Agent (§3.1), Model Validation
(§3.2), and Retraining, work in tandem to keep the in-
network ML model up-to-date.

through domain experts (i.e., network operators).
Efforts like NetUnicorn [31] propose to collect and ac-

tively label network data in a controlled environment where
operators can access different nodes (switches and hosts) in
the network. Though labeling accuracy would be high since
operators can choose to generate and collect selected traffic
classes, this approach might not offer representative labeled
data in real networks [53]—limiting its use in online learn-
ing. Other efforts feature synthetic data generation, where
models like GANs [118] or diffusion models [65] are used
to produce packet traces that match the feature distribution
of input network data. However, the generation process takes
a lot of time and cannot explicitly label new incoming data,
making it impractical in an online setting. Also, it is unclear
how closely the synthetic data reflects the traffic in a real
environment (an open area of research [57, 107, 109]). The
last resort is to ask human experts with domain knowledge
to label all or selected network data. Though there are many
efforts featuring selecting sampled data for human experts to
label [53], this still requires a human-in-the-loop and may not
operate at the timescales needed for automatic data labeling
in networks.

3 Design of CARAVAN

We present CARAVAN, a system for practical online learning
of in-network ML models deployed in the data plane. CAR-
AVAN is designed to satisfy the following requirements: (1)
generation of effective label datasets for retraining and (2)
efficient monitoring and detection of model performance.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 327

Overview. Figure 2 shows the high-level architecture of
CARAVAN. The system periodically collects a window of sam-
ples, arriving from the data-plane device running in-network
ML inference. Each sample contains a set of header fields
(called flow) along with the prediction made by the deployed
model. Once a window is full, a labeling agent (§3.1) gener-
ates application-specific (e.g., security) labels for each sample
in the window in the form of class predictions (e.g., type of
network attack) or confidence scores (e.g., the likelihood a
flow being malicious). The agent relies on a collection of
knowledge sources (§3.1.1), each generating its own labels.
The label with the most votes (i.e., occurrences) is added to
the final label set. Next, the validation stage (§3.2) monitors
and detects the degradation in the model performance using a
new metric, called accuracy proxy (§3.2.1), which uses pre-
dicted values and generated labels to measure the model’s
accuracy on the received samples in the window. Based on
the accuracy values (e.g., exceeding a certain threshold), the
retraining trigger stage decides whether retraining is neces-
sary (e.g., in the presence of new types of attacks missed
by the in-network ML model) for the current window of in-
coming samples. If an update is required, the final model
retraining stage will generate a balanced dataset from the win-
dow of samples received, i.e., a mix of malicious and benign
flows and generated labels. After training is complete, the
in-network model is updated with the new weights to detect
the new types of missed attacks.

3.1 Labeling Agent
The first component in CARAVAN is the labeling agent. It
generates application-specific labels that can be used in the
later stages of model validation and online retraining for:
(1) computing an accuracy proxy that can signal potential
model accuracy degradation to efficiently trigger retraining,
and (2) generating a class-balanced labeled dataset for retrain-
ing when necessary. To generate labels for new incoming net-
work traffic automatically and accurately, the labeling agent
relies on external knowledge sources. Knowledge sources
(§3.1.1) are defined to be entities or applications that can be
repurposed to assist with data labeling (e.g., access control
lists, heuristics, foundation models). They can be defined and
provided by users through a user interface (§3.1.2).

When a full window of samples from the data plane is
available, the labeling agent reads these samples and the as-
sociated inference results from a streaming database (e.g.,
InfluxDB [13] or Apache Kafka [5]). Then, it sends a labeling
request to every knowledge source it relies on. With one label
from each knowledge source, the labeling agent would do a
majority voting to determine the final set of labels to be used
(also called generated labels) for the current window of data
samples. These generated labels will be sent to the next stage
of CARAVAN for model validation (Figure 2).

3.1.1 Knowledge Sources. The labeling agent relies on
knowledge sources for labeling. We define knowledge sources

High Accuracy
Slow

Low Accuracy
Fast

Domain Experts

Foundation Models

(e.g., GPT-4 and Gemini)

Shallow-learning Models

(e.g., SVM and Decision Tree)

Heuristics

Deep-learning Models

(e.g., DNN and CNN)

Figure 3: Classifying network knowledge sources across a
spectrum based on accuracy and speed.

to be any entities or services that contain useful information
about the user-defined application and can be repurposed to
assist data labeling. Take network intrusion detection as an
example. A common knowledge source is IP-based access
control lists (ACLs) [52] that can block network flows or
packets from certain source IP addresses considered to be
of malicious origins. With IP-based ACLs as a knowledge
source, the labeling agent is able to label a flow as malicious
if its source IP is on the list. Another example is foundation
models. With appropriate adaptation, a foundation model can
assist with downstream tasks in networking, such as traffic
classification, by functioning as a multi-class classifier [54].

CARAVAN repurposes different knowledge sources in dif-
ferent ways for them to be used in the system for accurate
and efficient labeling. In particular, CARAVAN focuses on two
metrics of a knowledge source: (1) accuracy, which refers to
how accurate the knowledge source is after being repurposed
for labeling, and (2) speed (throughput and latency), which
refers to how fast a knowledge source can be used to label
data. Different knowledge sources can vary dramatically in
these two metrics, and as illustrated in Figure 3, there exists
a trade-off between these two metrics for a given knowledge
source: sources with high accuracy (e.g., domain experts and
foundation models) usually operate with lower throughput due
to extra time needed for in-depth analysis, while high-speed
sources (e.g., heuristics, IP-based ACLs) might not be able to
provide accurate labels. The aim of CARAVAN is that through
online learning, an in-network ML model can be turned into
a model with both high accuracy and high speed, so it would
be a good fit for real-time decision making in the data plane.

Low-Accuracy, Fast Knowledge Sources. Knowledge
sources with a low accuracy but high speed (e.g., heuristics,
IP-based ACLs) are a good fit for labeling large volumes of
incoming data [24, 51, 108]. However, the main issue is that
generated labels would be extremely noisy in this case. If
we use these labels to retrain the in-network ML model, the
accuracy of the retrained model can be even worse than that
of the existing one in the data plane. To tackle this challenge,
CARAVAN adopts the following solution: Instead of letting

328 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

these low-accuracy knowledge sources provide a label for
every unit of data in the current window, CARAVAN’s label-
ing agent will ask these knowledge sources to label parts of
data. These generated labels that cover a part of the dataset
are usually called weak-supervision labels in the machine-
learning community, and can reduce the amount of noise in
the labels [92]. For example, when we use an IP-based ACL
as a knowledge source for labeling, a straightforward way
of repurposing it into a labeler is that we would label every
flow with IP not on the blacklist as a benign flow. However,
we could have mislabeled a lot of malicious flows as benign
in this case and manually introduced a lot of noise into the
final set of labels. With CARAVAN’s solution of generating
weak-supervision labels, we would only generate labels for
flows whose IPs are on the blacklist (as we are more confident
they would be malicious). Even though we would only be
able to obtain a much smaller set of labeled data for model
validation and retraining, with a large volume of incoming
data, we would end up with a reasonable amount of labeled
data with good accuracy (§5).

Insight 1: Low-accuracy but fast knowledge sources,
such as heuristics and IP-based ACLs, can provide weak-
supervision labels for training high-accuracy models.

High-Accuracy, Slow Knowledge Sources. Knowledge
sources characterized by low speed but high accuracy (e.g.,
domain experts and foundation models) are well-suited for
labeling a small to medium amount of incoming data consid-
ered important or representative of the network (e.g., sampled
data with network telemetry algorithms). For example, foun-
dation models, like NetFound [54] and ChatGPT [20], are
shown to be capable of solving downstream traffic analysis
tasks with high accuracy and generalizing well across diverse
network environments with no extra retraining. The main is-
sue, however, is that they might either be too slow or use too
many system resources (e.g., GPU/CPU memory and API
costs) and thus cannot be activated frequently (for instance,
at the end of every window of sampled data).

One insight that CARAVAN takes advantage of is that
these knowledge sources can usually be transformed into
cheaper rulesets or heuristics that are able to offer much higher
throughput due to low latency or cost-effectiveness. In the
machine-learning community, this insight was originally used
to interpret black-box ML models [48, 62]. In CARAVAN, to
avoid the costs associated with calling expensive knowledge
sources at every labeling window, we introduce a labeling
rule cache. Each time the knowledge source is activated for
labeling, it is also asked to generate an ensemble of rulesets
that will be stored in the labeling rule cache for fast and cheap
labeling at the end of the next few labeling windows. For ex-
ample, though foundation models, like GPT-4 [87], can be re-
purposed as a labeling source, the fees incurred by calling the
GPT-4 APIs for inference can grow prohibitively expensive if

we call these APIs at the end of every labeling window—GPT-
4 turbo [11] can cost as high as $144 an hour for 1000-token
labeling request/response per second (on average). CARAVAN
specifically asks the language model to generate rules it relies
on for decision-making and stores these in the rule cache
for labeling the next few windows of data. Note that, in the
evaluation section (§5), though we demonstrate that using the
rule cache for labeling could save a lot on cost and system
resources with little performance penalty, we also find that
these rules could go stale quickly (Figure 7) and, therefore,
must be updated occasionally.

Insight 2: High accuracy but slow knowledge sources, such
as ChatGPT [20] and NetFound [54], can transform into
rulesets or heuristics to facilitate fast and resource-efficient
labeling for a limited duration, before becoming stale.

3.1.2 User Interface. CARAVAN’s labeling agent exposes
an interface where users can conveniently specify what knowl-
edge sources they would like to use for the labeling agent and
how the labeling sources should be defined. To support a new
knowledge source, the user only needs to complete a function
called label(), which takes a window of data samples as
input and returns a set of labels on this window as output.2

3.2 Model Validation
The model validation stage periodically monitors and evalu-
ates the performance of the in-network ML model. It is also
responsible for triggering online training when necessary, e.g.,
in the case of a potential concept drift or data drift when the
performance of the model degrades due to changes in the
network environment or due to new incoming classes. These
actions take place at the end of a labeling window, after the
labeling agent has generated labels for all data (samples) in
the current window.

Next, we introduce two components for model validation
that the user can define to express their intent or performance
goal of the chosen application. (a) Accuracy proxy (§3.2.1)
allows the user to specify what signals they would like to
capture on a temporal scale from the generated labels and the
inference results (e.g., drop in overall classification accuracy,
the appearance of a particular type of new class, and more). (b)
Retraining trigger (§3.2.2) allows the user to specify at what
occasion they would like to initialize online training based on
the observed signals through the accuracy proxy (e.g., retrain
when model performance degrade or retrain when certain
types of attacks show up).

3.2.1 Accuracy Proxy. We define accuracy proxy as the
inference accuracy computed with generated labels as the
reference ground truth, which we describe in detail below.

Ideally, for a given sample of incoming data (e.g., a net-
work flow or a packet), the corresponding inference result

2As a case study, we show how to construct a new knowledge source for
intrusion detection using LLMs in §4.1.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 329

(e.g., in the form of a class label prediction, noted as MLlabels
below) from the in-network ML model would be compared
with the ground truth label in the validation stage. Ground
truth labels (noted as GndTlabels below), also called “golden”
labels, are objectively correct reference results for the given
application and are usually used to compute the performance
accuracy of ML models. Acquiring such labels is typically
challenging in practice as it necessitates domain knowledge
from human experts, requiring a costly and time-consuming
labeling process [53]. Moreover, during the online stage of
in-network ML, where the volume of data for validation is
immense, it is infeasible to obtain the ground truth labels for
all new incoming data and calculate the actual performance
accuracy of the in-network ML model. In CARAVAN, we in-
stead utilize generated labels (GenLlabels) and compute the
accuracy proxy for the current window of incoming data. For
instance, in the intrusion detection case, using F1 score [50] as
the performance metric, the real accuracy Accreal is computed
as follows:

Accreal = F1(MLlabels,GndTlabels) (1)

The accuracy proxy, on the other hand, is computed with
generated labels as ground-truth labels:

Accproxy = F1(MLlabels,GenLlabels) (2)

The accuracy proxy does not need to be defined in terms
similar to the real accuracy. The user has the flexibility to
define accuracy proxy to be any function as long as its defi-
nition is consistent with the user’s intent or the application’s
performance goal, e.g., to signal potential concept or data
drifts.

Without access to real accuracy values, we are unable to
know the absolute accuracy level of the in-network ML model
at the end of a labeling window. However, in our design, the
primary responsibility of the validation stage is monitoring: it
is expected to reveal potential model performance degradation
and trigger online training, instead of giving users or operators
the exact accuracy numbers of the in-network ML model.

In particular, we observe that accuracy proxy, though not
numerically the same as the real performance accuracy, could
signal a potential change in data distribution or class distribu-
tion based on its trend on a temporal scale. In our evaluation
using the intrusion-detection example (§5.2.2), we observe
that the arrivals of new types of attacks (unseen by the in-
network ML model before) cause a drop in the relative level
of accuracy on a temporal scale, and the values from accuracy-
proxy can reveal that incident (Figure 8).

Insight 3: The accuracy proxy reveals potential concept and
data drifts by capturing similar patterns of relative changes
in accuracy levels as observed in real accuracy.

3.2.2 Retraining Trigger. The goal of continuous model
validation is to enable updating the in-network ML model
through online training as and when necessary. The model

validation stage will activate online training through a user-
defined retraining trigger. A retraining trigger can take one
of the following three forms, as pre-specified by the user of
CARAVAN:

• Window-based: Retrain periodically once every X labeling
windows. When X = 1, CARAVAN will perform continuous
training for every window, similar to the approach in prior
works [33, 85]. For window-based triggers, the validation
stage will skip accuracy proxy since the trigger does not
use it.

• Accuracy-based: Retrain if the values of accuracy proxy
satisfy a certain pattern on a temporal scale. For example,
users can set certain accuracy thresholds, and the retraining
trigger will initialize retraining if the values of accuracy
proxy continuously stay below the threshold.

• Event-based: Retrain when a particular event takes place,
e.g., when the labeling agent or the human operator detects
a particular type of attack.

The retraining trigger should ideally be defined together
with accuracy proxy by the user: While accuracy proxy is able
to catch meaningful signals (e.g., F1 score drop) on a tempo-
ral scale, the retraining trigger explicitly expresses at what
occasions the user would like online training to happen, which
can be very different given the particular user application in
consideration.

In CARAVAN, we mainly focus on accuracy-based retrain-
ing triggers, in which we use values of accuracy proxy to
determine if online training should occur. There are two types
of decisions that the retraining trigger will need to make: (a)
If we do not retrain at the end of the last labeling window,
should we retrain for this window? CARAVAN’s retraining
trigger will initialize retraining if it observes an abrupt drop
in the value of accuracy proxy in the current labeling window
compared to the last one, since that could be an explicit signal
of potential concept or data drifts. (b) If we retrain at the
end of the last labeling window, should we stop retraining for
this window? As we demonstrate in the evaluation section
(Figure 8), if we continuously retrain for several windows, the
marginal inference accuracy gain would gradually decrease,
assuming that there are no new drifts that show up in this
period. As a result, the retraining trigger stops retraining if we
have retrained for the last few windows and obtained decent
inference accuracy gain.

Insight 4: The marginal inference accuracy gain of online
training would quickly diminish if no new sources of drifts
are present (i.e., the network is stable).

3.3 How to Select CARAVAN’s Elements?
For knowledge sources, we can choose existing systems (e.g.,
IDS) or construct new ones (e.g., fine-tuned foundation mod-
els). It is important to evaluate the labeling accuracy and

330 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

approximate speed of a knowledge source using an offline
labeled dataset before deploying it in CARAVAN. When se-
lecting accuracy proxy and retraining trigger, we should con-
sider the application’s performance objectives (e.g., low false-
positive rate) and identify signals or events from the system
that might indicate performance degradation (e.g., increased
rebuffering events in video streaming).

4 Implementation
We implement an end-to-end version of CARAVAN using
Python. To interact with in-network ML models, CARA-
VAN stores the samples of the arriving flows in a streaming
database, InfluxDB [13]. We initialize InfluxDB with a pre-
defined schema consisting of various header/feature fields
and metadata of the arriving packet (e.g., duration, data rate,
and 5-tuple) as well as the inference results (prediction) from
the deployed in-network ML model (for validation purposes).
Upon the arrival of a labeling window’s worth of samples, the
labeling agent queries these data samples from InfluxDB to
generate labels.

For knowledge sources (e.g., heuristics, DNN-based clas-
sifiers, and foundation models), we define how it labels data
by completing its label() function (as described in §3.1).
Heuristics come in the form of labeling functions [91] and are
easily defined by the user. The DNN-based classifiers load a
pre-trained DNN classifier, and run batched inference upon
calls of label() for labeling. For foundation models, we use
GPT-4 API [87] for sending labeling requests in the form
of prompts. In this setup, labeling is modeled as a text com-
pletion task, and we explicitly prompt the language model
to produce a label for each input data sample. We present a
case study of implementing a foundation model, LLM-based
knowledge source in §4.1. With individual knowledge sources
defined, we build a labeling agent by specifying what knowl-
edge sources it will be using. The labeling agent calls each
knowledge source’s label() function to obtain all labels
and selects the best ones (with the most occurrences) as final
labels.

For model validation and retraining, we define a model
validator that runs compute_accuracy_proxy() to compute
the accuracy proxy (in §3.2.1) with generated labels and in-
ference results (from InfluxDB) as input arguments. The re-
training trigger is defined as a function that checks if we have
retrained for the last window. If not, we check if there is a sig-
nificant drop in accuracy proxy value to initialize retraining;
if yes, we then check if the increase in accuracy proxy value is
small enough to stop retraining. If retraining is necessary, we
go on to form a class-balanced dataset based on iCaRL [94],
keeping the same number of data samples from each class and
maintaining a fixed upper bound for the size of the dataset
(which can be specified by the user). For training ML models,
we use PyTorch [88] and one Nvidia V100 Tensor Core GPU
from AWS.

CARAVAN maintains a busy-waiting process for data la-

beling, model validation, and online learning. This process
will periodically read data from InfluxDB and initialize data
labeling as well as model validation at the end of a labeling
window (determined by time or number of data samples). If
retraining is necessary, it will conduct retraining and send out
the weights to the in-network ML model as gRPCs [12] or
PCIe writes.

4.1 label() with Foundation Model (LLM)
We now present a case study of developing a new knowledge
source using large language models (LLMs). We use com-
mercial off-the-shelf LLM, more specifically ChatGPT [20].
ChatGPT is not explicitly fine-tuned on network traffic data;
but, as a foundation model, may have been trained on openly
available data from the Internet. Please refer to §A.1 for de-
tails on the specific model (and snapshot) we use for labeling.

• Instruction Following. To ensure the LLM understands
the structure of input data and properly follows the subse-
quent instructions, we compose system prompts §A.2 that are
shared by all incoming inference requests (including labeling
and rule extraction). The system prompts precisely state the
objective of the application (e.g., flag malicious traffic for
intrusion detection) and enumerate the names and meanings
of each feature in the network dataset.

In-context Learning Prompt (P1): To begin with, here are

some labeled flows for your reference later. The last field is

the binary label (0 for benign and 1 for malicious): [Flows,
their features and labels go here]. Next, I will give

you some unlabeled flows for labeling. Please let me know if

you understand the requirement by answering yes or no.

• In-context Learning. We take advantage of in-context
learning [36, 90] to improve LLM’s ability to label network
data (or packets) with higher accuracy without (re)training
or fine-tuning the original model. We provide a few labeled
examples from the CIC-IDS2018 dataset [98]. The network
traffic in these examples contains similar attack types (such as
brute force attacks and DDoS attacks) to those present in the
evaluation dataset (CIC-IDS2017). However, it is collected
from a different network and at a different time. Using these
labeled examples, we construct an in-context learning prompt
(P1) shared by all subsequent inference requests.

Data Labeling Prompt (P2): Please give me a label for each

of these unlabeled flows. No explanation or analysis needed,

label only; one flow on each line. Format for each line: (flow

number) label. [Flows and their features go here].

• Data Labeling. Whenever we invoke the label() func-
tion, we first compose a labeling prompt (P2). This prompt
specifies the expected response format, facilitating easy pars-
ing of responses for per-packet labels. Additionally, it includes
all the data to be labeled, and structured in accordance with

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 331

the system prompt. We concatenate the system prompt, the in-
context learning prompt, and the labeling prompt, and submit
an API request to the LLM.

Rule Extraction Prompt (P3): To begin with, here are some

example input flows for your reference later. [Flows and
their features go here]. Based on these example in-

put flows, can you do some analysis and help me come up

with some rules or heuristics (in the form of a Python func-

tion) to determine if an unlabeled flow is benign or not? Make

sure that in the Python function, you label a flow as mali-

cious only when you are very confident. Name the function

label_flow_with_rule_cache(), and pass it in a format

that can be executed by exec(). The input of the function

should be the 16 features in the system prompt (in order),

and the output should be 0 (benign) or 1 (malicious).

• Rule Extraction. To extract rules to store in the labeling
rule cache for fast and resource-efficient labeling, we con-
struct a rule-extraction prompt (P3). This prompt explicitly
requests the LLM to generate rules and heuristics for data
labeling as a Python function, specifying the expected in-
put/output formats to simplify the parsing of the generated
responses. §A.3 shows an example function generated by the
LLM for fast labeling.

5 Evaluation
In our evaluation, we show: (a) using three different choices
of knowledge sources, CARAVAN is able to efficiently label
new incoming network traffic for the purpose of model vali-
dation and retraining, and can achieve almost the same level
of inference accuracy gains compared to using ground-truth
labels (§5.2.1). (b) CARAVAN’s accuracy proxy and retraining
trigger allow us to efficiently determine when to initialize or
stop retraining. As compared to continuous retraining, the use
of accuracy proxy and retraining trigger has the potential to
reduce GPU compute cost by an average of 74.55% without
significantly hurting inference accuracy gain (§5.2.2). (c) In
software simulation (§5.3.1), CARAVAN is able to achieve a
30.3% improvement in F1 score (on average) compared to
static offline models across three chosen applications. CAR-
AVAN’s accuracy proxy and retraining trigger enable 61.3%
saving in GPU compute time (on average) for retraining with-
out significantly compromising inference accuracy gains. (d)
In the end-to-end Taurus FPGA testbed (§5.3.2), CARAVAN
continuously keeps in-network ML models up-to-date with
changing traffic dynamics and maintains high inference accu-
racy at network line-rate. With accuracy proxy and retraining
trigger, CARAVAN improves over static models in terms of F1
score by an average of 30% with 56.23% less CPU usage and
similar memory footprint as continuous retraining baselines.

5.1 Experiment Setup
Use Cases. To evaluate CARAVAN, we select two network
traffic analysis applications widely used and evaluated by

prior work in the domain of in-network ML (Table 1). (a) Net-
work Intrusion Detection: The goal is to flag network flows
or network packets regarding whether they involve malicious
activities. We expect the in-network ML model to offer a
preliminary analysis of the network flows through binary clas-
sification before running more expensive downstream security
analysis instead of providing complete end-to-end protection
of a networked system. This application is an example of
how in-network ML could improve the security of networked
systems. (b) IoT Traffic Classification: The goal is to assign
an IoT device type to a network flow or packet. Classifica-
tion results from the in-network ML model enable operators
to know what different flows might entail (e.g., application
or data type) early in the network, and to act correspond-
ingly based on different devices, applications, or data types
to optimize for the quality of service (QoS) or user quality of
experience (QoE). For example, network flows from video
cameras might require allocation to a less congested network
path, since the user will likely be in a live video conference. In
this case, fewer packet retransmissions and lower latency are
critical to good user perception of video and service quality.
This application is an example of how in-network ML could
improve the performance of networked systems.

Datasets and In-network ML Models. We closely follow
prior work in the domain of in-network ML when choosing
datasets and in-network ML models. A summary of these
datasets and related statistics is available in Table 1.

For network intrusion detection, we follow prior work [101,
125] to use CIC-IDS2017 [98] and UNSW-NB15 [84]. With
CIC-IDS2017, we use the same features from pForest [37]
and a deep neural network with similar architecture to the one
from Taurus [104]. With UNSW-NB15, we use the same fea-
tures and one of the deep neural networks from the intrusion
detection example of N3IC [101]. For IoT traffic classifica-
tion, we follow prior work [101,125] to use UNSW-IoT [102].
For the in-network ML model, we follow the IoT traffic clas-
sification example of N3IC [101] in terms of feature selection
and model architecture. For multi-class classification, we use
one of N3IC’s four-layer deep neural networks, which have
16, 64, 32, and 10 neurons on each layer, respectively; we
replace the binary weights with 32-bit weights.

Choices and Configuration of Knowledge Sources. We
choose three knowledge sources for the labeling agent to use.
(a) A DNN-based classifier for intrusion detection on CIC-
IDS2017: The DNN-based classifier has 8 layers and 13,222
parameters in total. The architecture is similar to a stacked
autoencoder in DeepPacket [78]. It is trained on a small part
of CIC-IDS2017 (a subset that is not used during testing)
and a small part of CIC-IDS2018 [98] (a different intrusion
detection dataset from the same publisher). (b) A large lan-
guage model for intrusion detection on UNSW-NB15: The
large language model is based on GPT-4 [87] text completion
APIs. We program the user prompts properly so the language

332 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Application Dataset # Samples # Features # Classes # Drifts

Network Intrusion Detection CIC-IDS2017 [98] 7,000 16 2 7
UNSW-NB15 [84] 5,000 20 2 5

IoT Traffic Classification UNSW-IoT [102] 108,000 16 10 9

Table 1: Network applications and datasets used in our evaluation with input features listed in §A.2 and [101]. A drift
occurs in intrusion detection with the arrival of new attack traffic, and in IoT classification with unseen IoT device traffic.

0.0

0.2

0.4

0.6

50 100 200 500
Window Size (# Flows)

Ac
cu

ra
cy

 G
ai

n
(F

1+
)

Ground Truth Labels
Generated Labels (DNN)
Generated Labels (LLM)
Generated Labels (Ruleset)

Figure 4: CARAVAN’s labeling agent generates labels for
online training, bringing comparable levels of accuracy
gain as ground-truth labels across three different knowl-
edge sources.

model can understand the particular format of our input net-
work flows and generate labels in a format easily parsed by
the labeling agent. To improve labeling accuracy, we take
advantage of in-context learning and give the language model
10–20 labeled flows (not used during testing) for reference.
(c) An IoT device list for IoT traffic classification on UNSW-
IoT: We use the device list provided by the original dataset
publishers. To ensure that the device list will generate strictly
worse labels than the ground-truth labels, we modify the MAC
address of some network flows so that the device list is unable
label them. Overall, the device list can identify and label 10%
of all the network flows in the dataset.

Quality and Usage Metrics. For accuracy, we use the F1
score [50] as the performance metrics for evaluating the qual-
ity of an in-network ML model. In machine learning, the F1
score is often preferred over basic metrics like classification
accuracy. It provides a more nuanced measure of a model’s
performance, especially when class distributions are imbal-
anced or when the costs of false positives and false negatives
differ. This preference for accuracy metrics aligns with previ-
ous research in the field [37, 101, 104, 122]. To better model
the performance gain of the validation and online learning
processes, we use the metrics of accuracy gain, defined as the
increase in the F1 score of the retrained in-network ML model
compared to that of the offline one. To determine the accuracy
of a specific experiment, we first calculate an F1 score based
on the model predictions and ground-truth labels at the end
of each labeling window using the data from that window.
Ultimately, we report the average F1 score, or the average
increase in F1 score (i.e., F1+) compared to the offline model,
as the final accuracy metric or accuracy gain.

To quantify the system resource usage for online training,

●

●

● ● ● ●

New Data Class
0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6
Incoming Window ID

Ac
cu

ra
cy

 (F
1)

● Retraining using Ground Truth Labels
Retraining using Generated Labels (IoT Dev. Ruleset)
Offline Model
IoT Dev. List as a Classifier

Figure 5: A comparison of generated labels using CAR-
AVAN’s labeling agent versus ground-truth labels for a
low-accuracy and fast knowledge source (IoT device list)
during data drift (i.e., encountering new data classes).

we use the metrics of GPU compute time, defined as the time
spent on the GPU during online training. When using large
language models as a knowledge source, we also use tokens
used for labeling to demonstrate the cost of using an expensive
knowledge source for labeling, defined to be the aggregate
number of tokens (an addition of prompt tokens by the user
and completion tokens by the language model) used for the
labeling task.

End-to-End Testbed. We use the Taurus FPGA-based
testbed [104] for end-to-end evaluation. A 32-port program-
mable Tofino Wedge100BF-32x switch [21] is used to sample
packets for the control plane and manage the Taurus ML core,
which is emulated as a bump-in-the-wire FPGA. The switch
bypasses its internal traffic through the Xilinx Alveo U250
FPGA [3], which is used to emulate the in-network ML model.
The control plane runs a process to perform model validation
and retraining on the sampled packets and update the model
weights in the FPGA via PCIe. It also runs the ONOS con-
troller [18] and a Python REST API to install forwarding rules
on the switch. Two 80-core Intel Xeon servers generate and re-
ceive traffic via ScaPy [19] or MoonGen [44]. The in-network
ML model has been compiled to Verilog using the Spatial [70]
compiler and installed on the FPGA for evaluations.

5.2 Microbenchmarks
5.2.1 Effectiveness of the Labeling Agent. We find that
noisy labels and partial-coverage labels generated by imper-
fect knowledge sources can still lead to decent inference ac-
curacy gains after online training.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 333

●●
●

●

47
10

20
Better

0.0
0.1
0.2
0.3
0.4
0.5

0 200 400 600 800
#Tokens (Thousands)Ac

cu
ra

cy
 G

ai
n

(F
1+

)
●a
a

With Rule Cache (LLM every 20, 10, 7, 4 windows)
Without Rule Cache (LLM every window)

Figure 6: With a validation rule cache, CARAVAN con-
serves language model request tokens used for labeling,
without significantly compromising the accuracy gains
from retraining.

● ● ●
●

● ● ●
●

●

●

●

●

●
●

● ●
●

●
●

●
New Cache Rules

New Data Class

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Incoming Window ID

Ac
cu

ra
cy

 (F
1)

Figure 7: Though labeling rule cache generated by LLMs
are subject to data drift, they generate accurate labels in
a short local period of time.

Effectiveness of Noisy Labels. Noisy labels are defined to be
labels that might be incorrect, and may be generated by knowl-
edge sources like DNN-based classifiers or large language
models in our case. Though these two knowledge sources
(DNN-based classifier and language model) can generate a
label for every sample of new incoming window when re-
quested, we find that the overall quality of generated labels
is around 0.7 to 0.8 in terms of F1 score on a small develop-
ment set, indicating that there is a non-trivial level of noise in
generated labels. We use these generated labels for a simple
experiment of continuous online training, in which we skip
validation and retrain at the end of every labeling window.
We find that even with noisy labels, we are able to obtain a
level of inference accuracy gain that is similar to the gain if
we retrain with ground-truth labels under different labeling
window sizes (Figure 4). The reason accuracy gain tends to
decrease as window size increases is that we use a fixed num-
ber of 30 epochs for training; with larger training data sizes,
it generally takes longer for the model to converge.

Effectiveness of Weak Supervision Labels. In the case of
CARAVAN, weak supervision labels are defined to be labels
that only cover a subset of all the samples in a labeling window
and can be generated by low-accuracy but fast knowledge
sources (e.g., an IoT device list) as discussed in §3.1.1. In
our setup, the IoT device list can only label around 10% of
all network flows in the dataset. To verify whether such a
knowledge source can effectively mitigate model drift, we
continuously retrain an ML model when new types of devices
are present in the incoming data. We find that even with weak

●

●●

●●
●
●●●

●

●

●●●●
●●

●●●

●●

●

●
●

●●

●
●

●

●

●●●
●●●

●●●

●

●

●
●
●
●●

●

●●

●

●
●

●

●
●

●
●●

●
●
●●

●●●●●
●
●

New Data Class
0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
Incoming Window ID

Ac
cu

ra
cy

 (F
1)

● Accuracy Proxy with DNN−generated Labels
Real Accuracy with Ground Truth Labels

Figure 8: CARAVAN’s accuracy proxy F1 scores align with
the real F1 scores in terms of relative changes in accuracy
on a temporal scale, particularly in instances of data drift.

supervision labels that have partial coverage, we can achieve
a comparable level of inference accuracy gain when data drift
occurs (after the arrival of a new class) to that of retraining
with ground-truth labels (Figure 5). At the same time, we find
that the device list cannot be used independently to classify
incoming data with high accuracy due to partial coverage, as
depicted in Figure 5.

5.2.2 Effectiveness of Labeling Rule Cache, Accuracy
Proxy, and Retraining Trigger.

Labeling Rule Cache. As discussed in §3.1.1, when using
expensive knowledge sources like large language models, we
can request the knowledge source to generate temporary rules
or heuristics in a rule cache that can be used for fast and cost-
effective labeling for the following few labeling windows.
In our experiment, we call language models for labeling and
rule generation (in the form of a simple executable function)
every 4, 7, 10, and 20 labeling windows. We use the generated
function as the rule cache for labeling at the end of all other
windows. By invoking the language model every 4, 7, or
10 windows, we achieve nearly the same level of inference
accuracy gain after online training compared to employing
language models for labeling at every window, while utilizing
65.4% fewer tokens on average (Figure 6). Note that the rules
or heuristics in the rule cache can quickly go stale, especially
in the case of a concept or data drift (Figure 7), so the rule
cache should be updated frequently to avoid the generation of
highly noisy labels.

Accuracy Proxy. We set up accuracy proxy in the same way
as defined in §3.2.1, and verify if it is consistent with our
insight that it can be used to reveal potential concept or data
drifts even though it is not numerically equivalent to the real
accuracy. In an incremental-class learning setup, where a new
data class shows up in the incoming data every 10 labeling
windows, we find that accuracy proxy is consistent with the
real accuracy in terms of overall trend and relative changes in
accuracy level on a temporal scale (Figure 8).

Retraining Trigger. To demonstrate the potential of using
retraining triggers to avoid excessive retraining and save GPU
compute time, we set up a window-based retraining trigger

334 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

●●

●
●

●

15
10

20

40 Better0.10
0.15
0.20
0.25
0.30

0.0 1.0 2.0 3.0 4.0 5.0 5.5
GPU Compute Time (Seconds)Ac

cu
ra

cy
 G

ai
n

(F
1+

) ● DNN triggered every 40, 20, 10, 5, 1 windows

Figure 9: With a window-based retraining trigger, CARA-
VAN saves GPU compute time without significantly com-
promising retraining accuracy gain.

−0.2

0.0

0.2

0.4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Labeling Accuracy

Ac
cu

ra
cy

 G
ai

n
(F

1+
)

Retraining with Generated Labels
Retraining with Ground Truth Labels

Figure 10: The relationship between CARAVAN’s retrain-
ing accuracy gain and the labeling accuracy of the knowl-
edge source. (Labeling accuracy is the percentage of data
that can be correctly labeled by the knowledge source,
compared to ground truth labels.)

that reduces the frequency of retraining from once every label-
ing window to once every 5, 10, 20, and 40 labeling windows.
We observe that even with this straightforward retraining trig-
ger, we manage to save an average of 74.55% GPU compute
time, with at most a 0.05 reduction in inference accuracy gain
in terms of F1 score when retraining occurs every 5 or 10
windows (Figure 9).

5.2.3 Sensitivity to External Knowledge Sources. CAR-
AVAN assumes that users will be able to provide reliable
knowledge sources that be adapted for data labeling. When
inaccurate knowledge sources are used, the accuracy gain
from CARAVAN’s retraining may decrease and sometimes
even drop below zero, as illustrated in Figure 10. We discuss
potential solutions to this issue in §6.

5.3 End-to-End Improvement
We evaluate the end-to-end improvements of CARAVAN in
software simulation and on the Taurus FPGA testbed [104].

5.3.1 Software Simulation. In software simulation, we find
that CARAVAN is able to achieve a 30.3% improvement in F1
score (on average) as compared to static offline models across
three chosen applications (Figure 12). We also find that the
gap between inference accuracy gain of continuous online
learning with ground-truth labels and with labeling-agent gen-
erated labels stays as little as 0.4–2.1% for intrusion detection
with DNNs as knowledge source, and 0.5–1.8% for IoT traffic
classification with device lists as knowledge source. Though
that gap can be as large as 11% for intrusion detection with

● ●

●

● ●

● ● ● ● ●

● ● ● ● ●
● ● ●

● ●

● ● ●

●

●

●

●
● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000
Incoming Window ID

Ac
cu

ra
cy

 (F
1)

● Caravan
Retraining with DNN−generated Labels
Retraining with Ground Truth Labels
Offline Model

Figure 11: End-to-end results on the Taurus FPGA
testbed. CARAVAN keeps in-network ML models up-to-
date against changing traffic when operating at line rate.

System LUT% FFs% BRAM% Power (W)

Taurus: Offline 6.49 4.35 4.15 16.86
CARAVAN 6.81 4.71 4.15 17.16

Table 2: Resource usage of CARAVAN’s in-network model
for intrusion detection on the Taurus FPGA testbed.

a large language model as a knowledge source, we believe
that performance can be further improved when specialized
network foundation models are used as knowledge sources in
the future. Moreover, CARAVAN’s accuracy proxy and retrain-
ing trigger enable 61.3% savings in GPU compute time (on
average) for retraining without significantly compromising
inference accuracy gain.

5.3.2 FPGA-based Experiments. In the Taurus FPGA
testbed [104], we run an intrusion detection application with
the same in-network model as in software simulation, pro-
grammed with Spatial [70]. We generate traffic by sampling
35 M packets from the CIC-IDS2017 dataset, while ensur-
ing a uniform distribution of the seven attacks present in the
dataset (i.e., 5 M packets for each attack). We preserve the
order of the attacks as in the original dataset. Using Moon-
gen [44], we send packets at 0.5 Million packets per second,
and set the sampling rate to about 0.1%. Each labeling win-
dow receives about 500 packets. We find that CARAVAN can
continuously keep in-network ML models up-to-date with
changing traffic dynamics and maintain high inference accu-
racy under network line rate on a temporal scale (Figure 11).
With accuracy proxy and retraining trigger, CARAVAN further
improves upon static models in terms of F1 score by an av-
erage of 30%. It is worth noting that at times, the accuracy
of CARAVAN can surpass that of the continuous retraining
baselines. This is because continuous retraining for small in-
network models may lead to overfitting, whereas CARAVAN’s
retraining trigger helps mitigate this issue.

5.3.3 Resource Usage & Latency Breakdown. Table 2
shows the FPGA’s percentage resource count in terms of
lookup tables (LUTs), flip flops (FFs), on-chip memory

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 335

●●

●

50100

200

50

100

200

50

100

200 Better
0.22

0.24

0.26

0.28

0.30

0 1 2 3 4 5 6 7 8
GPU Compute Time (Seconds)

Ac
cu

ra
cy

 G
ai

n
(F

1+
)

●a
a
a

Caravan ~ 200, 100, 50 window sizes
Retraining with Generated Labels
Retraining with Ground Truth Labels

(a) IDS with a DNN labeler on CIC−IDS2017

●
●

●

50
100

200

50

100

200

50

100

200

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6
GPU Compute Time (Seconds)

Ac
cu

ra
cy

 G
ai

n
(F

1+
)

(b) IDS with an LLM labeler on UNSW−NB15

●

●●

50

100200

50

100

200

50

100
200

0.125

0.150

0.175

0.200

0.225

0 2 4 6 8 10 12 14 16
GPU Compute Time (Seconds)

Ac
cu

ra
cy

 G
ai

n
(F

1+
)

(c) IoT Classif. with Ruleset on UNSW−IoT

Figure 12: Tradeoff between inference accuracy gain and GPU compute time for CARAVAN and continuous retraining
baselines across two applications (intrusion detection and IoT classification), three datasets, and three knowledge sources.

0

200

400

600

800

(a) CPU

U
sa

ge
 (%

)

Caravan
Retraining with Generated Labels
Retraining with Ground Truth Labels

0

100

200

300

(b) Memory

U
sa

ge
 (M

By
te

s)

Figure 13: CPU and memory usage of CARAVAN’s busy-
waiting process for labeling data, retraining model, and
updating model weights.

Retraining Step Latency (ms)

- Retrieving data from InfluxDB 6.041 ± 1.114
- Labeling data with DNN-based IDS 1.015 ± 1.238
- Computing accuracy proxy 1.732 ± 0.073
- Retraining in-network ML model 14.775 ± 0.982
- Installing new model weights 46.145 ± 0.507

Table 3: Latency breakdown of CARAVAN’s retraining
steps on a window of 100 packets for the network intrusion
detection application.

(BRAM), and power (W). In contrast to the vanilla Taurus
implementation (i.e., Offline ML) [104], which lacks support
for online weight updates, CARAVAN introduces minimal ad-
ditional overhead in FPGA resource usage while supporting
live weight updates.

We also measure the CPU and memory usage of the CARA-
VAN’s busy-waiting process that retrieves incoming data from
a streaming database (i.e., InfluxDB), labels it, computes ac-
curacy proxy, retrains models, and issues weight updates (§4).
We see that CARAVAN reduces CPU usage by an average of
56.23% compared to continuous retraining baselines, with-
out incurring any additional memory overhead (Figure 13).
Table 3 further shows a breakdown of each these retraining
steps in CARAVAN.

6 Limitations & Future Work
Optimizing Sample Selection for Online Learning. CARA-
VAN employs random sampling to reduce the volume of input
data sent to the labeling agent. Existing research in online
learning systems shows that network traffic is heavy-tailed
and empirically variable [115], which could undermine the

effectiveness of online learning in real-world deployments if
training samples are not carefully selected [43]. While it is
straightforward to modify the input data sampling and retrain-
ing data formation logic in CARAVAN, developing efficient
and effective algorithms for online sample selection remains
a future research direction that requires further understanding
of both machine learning techniques and the characteristics
of network traffic.

Reverting In-network ML Models. CARAVAN focuses on
updating and improving models using continuous sampling
of and selective retraining on the network’s data, which lets
them adapt to new events. However, in scenarios where data
is compromised, it would be necessary to revert or reset these
models to a previous good state. If online data (such as net-
work traffic) is being used to retrain and update models, bad
actors can poison training data by intentionally feeding bad
traffic in the network. Future research may detect and protect
against these attacks and restore models to a clean state.

Network Telemetry Data for ML. CARAVAN focuses on
retraining models with sampled data but does not dictate how
the collection of such data is performed. However, extensive
research is needed on how to collect and sample data for
the express purpose of retraining ML models. For instance,
some data may not contribute to an increase in the fidelity
of the model, even with further training iterations. In these
cases, the data may simply be orthogonal to the task the ML
model is built for. On the other hand, the system may need to
sample more frequently in cases where notable network events
are detected. For example, a server running out of resources
may indicate a network attack that breaches security. Packets
must be collected so as to classify and inoculate future ML
models to these attacks. In short, collection systems for online
training need to leverage dynamic sampling rates at various
points throughout the network in order to ascertain when and
where to get the best training data.

Creating Domain-Specific Knowledge Sources. In this pa-
per, we repurpose GPT-4 as a knowledge source for network
intrusion detection. We recognize that GPT-4 was not origi-
nally designed or trained for cybersecurity applications; in-
stead, it is used primarily as a proof-of-concept foundation

336 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

model for data labeling. An emerging research direction in-
volves pre-training or fine-tuning domain-specific founda-
tion models for networking or security on larger traffic traces
(e.g., NetLLM [112], NetFound [54], Lens [110]). Another
direction from the machine-learning community aims to en-
hance foundation models to better follow human intents and
self-improve through feedback, whether human-generated
or model-generated (e.g., constitutional AI [29] and self-
improving LLMs [56, 61, 120]). These efforts could lead to
developing knowledge sources that can generate accurate
labels and better align with human expertise and intentions.

Evaluating and Validating Knowledge Sources. CARA-
VAN assumes that the provided labeling sources are sufficient
to cover the space of input data for a given networking use
case. As a next step, these labeling sources must be vetted
further to ensure high-quality label generation. Common ac-
curacy metrics such as F1, precision, or recall are all valid
for assessing how well these labeling sources are performing
(on a given dataset), but additional metrics are required to
assess the full coverage of application space. For example,
in a security context, how many of the commonly seen net-
work attacks can the labeling source cover? Furthermore, the
network community should start making its labeling sources
public to allow retraining systems more effectively—similar
to how various ML communities have put forth public col-
lections of data and benchmarks. For instance, in the case
of foundation models, public benchmarks feature open and
comprehensive evaluations of models on specific applications,
such as chat [124], code generation [74], and question an-
swering [41]; these benchmarks help users select the best
model for their particular use case. Finally, as suggested in
Snorkel [92], multiple labeling sources can be aggregated for
greater coverage and fidelity. In this way, aggregate labeling
sources can generate more accurate labels than individual
sources, effectively allowing a given source to cover the blind
spots of another source.

Generalizing to Larger Control-Plane ML Models. Al-
though CARAVAN is designed for online learning of in-
network ML models, we believe that its core insights and
techniques—such as using weak supervision for labeling data
in an online setup, employing accuracy proxies, and utiliz-
ing retraining triggers to detect and mitigate model quality
degradation—can be generalized to larger ML models de-
ployed in the control plane. These control-plane ML models
also face similar challenges like data or concept drifts [75]
and a lack of labels for model monitoring and retraining in an
online setup [53].

7 Related Work
Systems for Online Learning. Ekya [33] and RECL [67]
discuss how online learning can be done for computer vision
models on an edge server jointly with inference, while CAR-
AVAN studies the case of in-network ML models in which

data-plane inference does not interfere with control-plane on-
line learning. Nazar [58] features how to mitigate data drift
for ML models on mobile devices, and differs from CARAVAN
as it does not address essential components of online learning
(e.g., data labeling).

Data Collection and Generation for Networking. The
emerging need to train ML models for networking tasks and
design new network telemetry algorithms sparks extensive
research in designing better tools for network data collection
and network data generation. NetUnicorn [31] is a platform
for collecting and actively labeling network data for develop-
ing offline generalizable ML models. It features a human-in-
the-loop approach where users can select what data to collect
and label, and it is different from our focus since CARAVAN
features automatic online data labeling after ML models have
been deployed. NetShare [118] enables synthetic IP-header
generation for network flows but has a different focus from
CARAVAN and does not study data labeling for downstream
traffic analysis tasks.

Interpretability of ML Models. With the growth of ML
models in networking, many existing efforts focus on the in-
terpretation of these black-box models to make their decision-
making logic transparent to network operators. For example,
Trustee [62] proposes a framework that determines whether or
not a given ML model suffers inductive biases by extracting
a high-fidelity decision tree from the model being analyzed.
However, such diagnosis of the ML models is not yet automa-
tized and needs a human-in-the-loop. Indeed, CARAVAN can
use Trustee as an orthogonal system component for diagnos-
ing the behavior of the online learning model.

Programmatic Data Labeling. CARAVAN complements and
augments (rather than competes with) existing data program-
ming systems, such as Snorkel [92]. Snorkel uses generative
models to estimate the accuracies of different knowledge
sources, and can potentially be used for conflict resolution in
CARAVAN’s labeling agent. CARAVAN is similar to Snorkel in
the aspect that both point out that weak knowledge sources can
be used for labeling data and training ML models instead of
using them for independent decision-making. However, CAR-
AVAN focuses on how automatic data labeling helps online
learning of ML models and mitigates drifts (by incorporating
knowledge sources, accuracy proxy, and retraining trigger),
while Snorkel focuses on enabling users to label datasets with
multiple knowledge sources for training better ML models
offline.

Weak Supervision in Networking. The concept of weak
supervision has been extensively applied in networking, par-
ticularly in cybersecurity and internet measurement applica-
tions [47, 69, 86]. CARAVAN differs from these works by
focusing on enabling weak supervision in an online setup to
detect model quality degradation and retrain outdated models.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 337

Label-free Data Drift Mitigation. Recent efforts in network-
ing and security domains feature data drift mitigation with no
need for labels. For example, CADE [117] proposes to train a
neural network that can help determine if new incoming data
has drifted away from training data. However, CARAVAN fo-
cuses on the continuous adaptation of an online model, where
the training data are constantly evolving. Moreover, CADE
uses root cause analysis to fix drifted models offline when
there is no explicit requirement on how fast model update
needs to happen, which is in contrast to CARAVAN’s focus on
the online setting when model updates must be done fast and
automatically to keep up with the high inference rate. In sum-
mary, CARAVAN aims to be a more generalized framework
designed for various in-network ML applications.

8 Conclusion
Once deployed online, in-network machine learning (ML)
models can experience accuracy degradation owing to fluctua-
tions in traffic patterns and changes in online data distribution.
While online learning is a promising solution, it is challenging
in practice due to the need for automatic labeling of evolving
network traffic and the efficient monitoring of model perfor-
mance degradation. To overcome these challenges, we present
CARAVAN, the pioneering system for practical online learning
of in-network ML models. CARAVAN addresses the issue of
labeling new incoming traffic data for retraining by leveraging
diverse knowledge sources that, otherwise, are unsuitable for
real-time decision-making. Moreover, CARAVAN introduces
the accuracy proxy metric to monitor model degradation and
potential data drifts, providing an effective signal to trigger
model retraining. Our evaluation shows that CARAVAN can
keep in-network ML models up-to-date, achieving a 30.3%
improvement in F1 score (on average) and reducing GPU com-
pute time for training by 61.3% (on average), while achieving
similar accuracy gains as continuous retraining. We hope the
development of such a system will not only contribute to the
domain of ML for networking and traffic analysis applica-
tions but also influence the design of practical and efficient
machine-learning systems in general.

Acknowledgements
We thank our anonymous shepherd and reviewers for their
invaluable feedback, which significantly enhanced the quality
of this paper. We also thank Gerry Wan, Gautam Akiwate,
Shinan Liu, Shiv Sundram, Tian Zhao, Alex Ratner, James
Hong, Azalia Mirhoseini, Haijie Wu, Junchen Jiang, and Vyas
Sekar for their insightful discussions. This research was sup-
ported by ACE, one of the seven centers in JUMP 2.0, an
SRC program sponsored by DARPA; NSF awards CAREER-
2338034, CNS-2211381, and CNS-2211384; and “SERICS”
(PE00000014) under the NRRP MUR program funded by the
EU-NGEU. Support also came in part from affiliate mem-
bers and other supporters of the Stanford DAWN project—
Ant Financial, Facebook, Google, Intel, Microsoft, NEC, SAP,
Teradata, and VMware.

References
[1] AI and ML: The New Frontier for Data Center Innovation

and Optimization. https://www.techradar.com/news/d
ata-centres-in-an-ai-and-ml-driven-future.

[2] Alveo SN1000 SmartNIC Accelerator Card. https://www.
xilinx.com/products/boards-and-kits/alveo/sn10
00.html.

[3] Alveo U250 Data Center Accelerator Card. https://www.
xilinx.com/products/boards-and-kits/alveo/u250
.html.

[4] AMD Pensando. https://www.amd.com/en/accelerat
ors/pensando.

[5] Apache Kafka. https://kafka.apache.org/.

[6] Bluefield Data Processing Units (DPUs). https://www.nv
idia.com/en-us/networking/products/data-proce
ssing-unit/.

[7] CISCO NetFlow. https://www.cisco.com/c/en/us/te
ch/quality-of-service-qos/netflow/index.html.

[8] Creating a Predictive Network for the Human Mind. https:
//newsroom.cisco.com/c/r/newsroom/en/us/a/y202
2/m05/creating-a-predictive-network-for-the-h
uman-mind.html.

[9] Data Centers in an AI and ML Driven Future. https://www.
techradar.com/news/data-centres-in-an-ai-and-m
l-driven-future.

[10] Every Request, Every Microsecond: Scalable Machine Learn-
ing at Cloudflare. https://blog.cloudflare.com/scal
able-machine-learning-at-cloudflare/.

[11] GPT-4 Turbo in the OpenAI API. https://help.openai.
com/en/articles/8555510-gpt-4-turbo-in-the-ope
nai-api.

[12] gRPC. https://grpc.io/.

[13] InfluxDB. https://www.influxdata.com/.

[14] Infrastructure Processing Unit (Intel IPU) and SmartNICs.
https://www.intel.com/content/www/us/en/produc
ts/network-io/smartnic.html.

[15] Intel Tofino 2. https://www.intel.com/content/ww
w/us/en/products/details/network-io/intelligen
t-fabric-processors/tofino-2.html.

[16] Introducing Meta Llama 3: The Most Capable Openly Avail-
able LLM to Date. https://ai.meta.com/blog/meta-l
lama-3/.

[17] Marvell OCTEON 10 DPU Platform. https://www.marv
ell.com/content/dam/marvell/en/public-collatera
l/embedded-processors/marvell-octeon-10-dpu-p
latform-product-brief.pdfe/.

[18] ONOS: Open Network Operating System. https://openne
tworking.org/onos/.

[19] Scapy. https://scapy.net/.

[20] Three LLMs Walk into a Network Operations Center. . . . ht
tps://www.bigpanda.io/blog/three-large-languag
e-models-walk-into-a-network-operations-cente
r/.

338 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[21] WEDGE 100BF-32X: 100GBE Data Center Switch. https:
//www.edge-core.com/cloud-data-center-100g/.

[22] What Is LLM Temperature? https://www.iguazio.com/
glossary/llm-temperature/.

[23] Richelle Adams. Active Queue Management: A Survey.
IEEE Communications Surveys & Tutorials, 15(3):1425–
1476, 2012.

[24] Kazeem B Adedeji, Adnan M Abu-Mahfouz, and Anish M
Kurien. DDoS Attack and Detection Methods in Internet-
Enabled Networks: Concept, Research Perspectives, and Chal-
lenges. Journal of Sensor and Actuator Networks, 12(4):51,
2023.

[25] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun
Hu. A Survey of Network Anomaly Detection Techniques.
Journal of Network and Computer Applications, 60:19–31,
2016.

[26] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar,
Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut,
Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav,
and George Varghese. CONGA: Distributed Congestion-
aware Load Balancing for Datacenters. In ACM SIGCOMM,
2014.

[27] Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. Naive
Bayes vs Decision Trees in Intrusion Detection Systems. In
ACM Symposium on Applied Computing, 2004.

[28] Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr,
Neel Guha, Kush Bhatia, Ines Chami, and Christopher Re.
Ask Me Anything: A Simple Strategy for Prompting Lan-
guage Models. In ICML, 2022.

[29] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda
Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen,
Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn
Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan
Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt,
Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi
Mercado, Nova DasSarma, Robert Lasenby, Robin Larson,
Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R.
Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared
Kaplan. Constitutional AI: Harmlessness from AI Feedback.
arXiv preprint arXiv:2212.08073, 2022.

[30] Diogo Barradas, Nuno Santos, Luıs Rodrigues, Salvatore Sig-
norello, Fernando MV Ramos, and André Madeira. FlowLens:
Enabling Efficient Flow Classification for ML-Based Network
Security Applications. In NDSS, 2021.

[31] Roman Beltiukov, Wenbo Guo, Arpit Gupta, and Walter Will-
inger. In Search of netUnicorn: A Data-Collection Platform
to Develop Generalizable ML Models for Network Security
Problems. In ACM CCS, 2023.

[32] Theophilus Benson, Aditya Akella, and David A Maltz. Net-
work Traffic Characteristics of Data Centers in the Wild. In
ACM IMC, 2010.

[33] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan,
Junchen Jiang, Yuanchao Shu, Nikolaos Karianakis, Kevin
Hsieh, Paramvir Bahl, and Ion Stoica. Ekya: Continuous
Learning of Video Analytics Models on Edge Compute
Servers. In USENIX NSDI, pages 119–135, 2022.

[34] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Ju-
gal K Kalita. Network Anomaly Detection: Methods, Sys-
tems and Tools. IEEE Communications Surveys & Tutorials,
16(1):303–336, 2013.

[35] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam,
Sara Ayoubi, Nashid Shahriar, Felipe Estrada-Solano, and Os-
car M. Caicedo. A Comprehensive Survey on Machine Learn-
ing for Networking: Evolution, Applications and Research
Opportunities. Journal of Internet Services and Applications,
2018.

[36] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. In NeurIPS, 2020.

[37] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller,
Tobias Bühler, and Laurent Vanbever. pForest: In-
Network Inference with Random Forests. arXiv preprint
arXiv:1909.05680, 2019.

[38] Brian Caswell, Jay Beale, and Andrew Baker. Snort Intrusion
Detection and Prevention Toolkit. Syngress, 2007.

[39] Lingjiao Chen, Matei Zaharia, and James Zou. How Is
ChatGPT’s Behavior Changing over Time? arXiv preprint
arXiv:2307.09009, 2023.

[40] David D Clark, Craig Partridge, J Christopher Ramming, and
John T Wroclawski. A Knowledge Plane for the Internet. In
ACM SIGCOMM, pages 3–10. ACM, 2003.

[41] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish
Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think
You Have Solved Question Answering? Try ARC, the AI2
Reasoning Challenge. arXiv preprint arXiv:1803.05457,
2018.

[42] L. Dhanabal and S.P. Shantharajah. A Study on NSL-KDD
Dataset for Intrusion Detection System Based on Classifica-
tion Algorithms. International Journal of Advanced Research
in Computer and Communication Engineering, 4(6):446–452,
2015.

[43] Alexander Dietmüller, Romain Jacob, and Laurent Vanbever.
On Sample Selection for Continual Learning: a Video Stream-
ing Case Study. arXiv preprint arXiv:2405.10290, 2024.

[44] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Flo-
rian Wohlfart, and Georg Carle. MoonGen: A Scriptable
High-Speed Packet Generator. In ACM IMC, 2015.

[45] Alice Este, Francesco Gringoli, and Luca Salgarelli. Support
Vector Machines for TCP Traffic Classification. Computer
Networks, 2009.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 339

[46] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pu-
jol, Ingmar Poese, Christoph Dietzel, Daniel Wagner, Matthias
Wichtlhuber, Juan Tapiador, Narseo Vallina-Rodriguez, Oliver
Hohlfeld, and Georgios Smaragdakis. The Lockdown Effect:
Implications of the COVID-19 Pandemic on Internet Traffic.
In ACM IMC, 2020.

[47] Vojtech Franc, Michal Sofka, and Karel Bartos. Learning
Detector of Malicious Network Traffic from Weak Labels. In
ECML PKDD, pages 85–99. Springer, 2015.

[48] Nicholas Frosst and Geoffrey Hinton. Distilling a Neu-
ral Network into a Soft Decision Tree. arXiv preprint
arXiv:1711.09784, 2017.

[49] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prab-
hakar, Mendel Rosenblum, and Amin Vahdat. SIMON: A
Simple and Scalable Method for Sensing, Inference and Mea-
surement in Data Center Networks. In USENIX NSDI, 2019.

[50] Cyril Goutte and Eric Gaussier. A Probabilistic Interpretation
of Precision, Recall and F-Score, with Implication for Eval-
uation. In European Conference on Information Retrieval,
pages 345–359. Springer, 2005.

[51] Vic Grout, John McGinn, and John Davies. Real-Time Opti-
misation of Access Control Lists for Efficient Internet Packet
Filtering. Journal of Heuristics, 13:435–454, 2007.

[52] Andreas Grünbacher. POSIX Access Control Lists on Linux.
In USENIX ATC, 2003.

[53] Jorge Luis Guerra, Carlos Catania, and Eduardo Veas.
Datasets Are Not Enough: Challenges in Labeling Network
Traffic. Computers & Security, 120:102810, 2022.

[54] Satyandra Guthula, Navya Battula, Roman Beltiukov, Wenbo
Guo, and Arpit Gupta. netFound: Foundation Model for
Network Security. arXiv preprint arXiv:2310.17025, 2023.

[55] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New
TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Oper-
ating Systems Review, 2008.

[56] Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. Language Models Can Teach Themselves to Program
Better. arXiv preprint arXiv:2207.14502, 2023.

[57] James Halvorsen, Clemente Izurieta, Haipeng Cai, and Asse-
faw H Gebremedhin. Applying Generative Machine Learning
to Intrusion Detection: A Systematic Mapping Study and Re-
view. ACM Computing Surveys, 2024.

[58] Wei Hao, Zixi Wang, Lauren Hong, Lingxiao Li, Nader
Karayanni, Chengzhi Mao, Junfeng Yang, and Asaf Cidon.
Monitoring and Adapting ML Models on Mobile Devices.
arXiv preprint arXiv:2305.07772, 2023.

[59] Bruno Miranda Henrique, Vinicius Amorim Sobreiro, and
Herbert Kimura. Literature Review: Machine Learning Tech-
niques Applied to Financial Market Prediction. Expert Sys-
tems with Applications, 124:226–251, 2019.

[60] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek
Mittal. New Directions in Automated Traffic Analysis. In
ACM CCS, 2021.

[61] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large Language

Models Can Self-Improve. arXiv preprint arXiv:2210.11610,
2022.

[62] Arthur S Jacobs, Roman Beltiukov, Walter Willinger,
Ronaldo A Ferreira, Arpit Gupta, and Lisandro Z Granville.
AI/ML for Network Security: The Emperor Has No Clothes.
In ACM CCS, 2022.

[63] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. A Deep Reinforcement Learn-
ing Perspective on Internet Congestion Control. In ICML,
2019.

[64] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas,
Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. Mistral 7B. arXiv
preprint arXiv:2310.06825, 2023.

[65] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Paul Schmitt,
Francesco Bronzino, and Nick Feamster. Generative, High-
Fidelity Network Traces. In ACM HotNets, 2023.

[66] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivara-
man, and Jennifer Rexford. HULA: Scalable Load Balancing
Using Programmable Data Planes. In ACM SOSR, 2016.

[67] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin Hsieh,
Junchen Jiang, Ravi Netravali, Yuanchao Shu, Mohammad
Alizadeh, and Victor Bahl. RECL: Responsive Resource-
Efficient Continuous Learning for Video Analytics. In
USENIX NSDI, 2023.

[68] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin
Bas, Advait Dixit, and Lawrence J Wobker. In-Band Net-
work Telemetry via Programmable Dataplanes. In ACM SIG-
COMM, 2015.

[69] Jared Knofczynski, Ramakrishnan Durairajan, and Walter
Willinger. ARISE: A Multitask Weak Supervision Framework
for Network Measurements. IEEE Journal on Selected Areas
in Communications, 40(8):2456–2473, 2022.

[70] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi
Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi,
Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun.
Spatial: A Language and Compiler for Application Accelera-
tors. In ACM PLDI, 2018.

[71] Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar.
Rethinking Data-Driven Networking with Foundation Mod-
els: Challenges and Opportunities. In ACM HotNets, 2022.

[72] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike
Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In NeurIPS, 2020.

[73] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei
Feng, Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly,
Mohammad Alizadeh, and Minlan Yu. HPCC: High Precision
Congestion Control. In ACM SIGCOMM, 2019.

[74] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming
Zhang. Is Your Code Generated by ChatGPT Really Correct?

340 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Rigorous Evaluation of Large Language Models for Code
Generation. In NeurIPS, 2023.

[75] Shinan Liu, Francesco Bronzino, Paul Schmitt, Arjun Nitin
Bhagoji, Nick Feamster, Hector Garcia Crespo, Timothy
Coyle, and Brian Ward. LEAF: Navigating Concept Drift in
Cellular Networks. Proceedings of the ACM on Networking,
1(CoNEXT2):1–24, 2023.

[76] Shinan Liu, Ted Shaowang, Gerry Wan, Jeewon Chae, Jonatas
Marques, Sanjay Krishnan, and Nick Feamster. ServeFlow: A
Fast-Slow Model Architecture for Network Traffic Analysis.
arXiv preprint arXiv:2402.03694, 2024.

[77] Yingqiu Liu, Wei Li, and Yunchun Li. Network Traffic Clas-
sification Using K-Means Clustering. In IMSCCS, 2007.

[78] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shi-
rali Hossein Zade, and Mohammdsadegh Saberian. Deep
Packet: A Novel Approach for Encrypted Traffic Classifica-
tion Using Deep Learning. Soft Computing, 24(3):1999–2012,
2020.

[79] Inbal Magar and Roy Schwartz. Data Contamination:
From Memorization to Exploitation. arXiv preprint
arXiv:2203.08242, 2022.

[80] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and
Srikanth Kandula. Resource Management with Deep Re-
inforcement Learning. In ACM HotNets, 2016.

[81] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neu-
ral Adaptive Video Streaming with Pensieve. In ACM SIG-
COMM, 2017.

[82] Tahir Mehmood and Helmi B Md Rais. SVM for Network
Anomaly Detection Using ACO Feature Subset. In IEEE
iSMSC, 2015.

[83] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere
Barlet-Ros, Eduard Alarcón, Marc Solé, Victor Muntés-
Mulero, David Meyer, Sharon Barkai, Mike J Hibbett, Giovani
Estrada, Khaldun Ma’ruf, Florin Coras, Vina Ermagan, Hugo
Latapie, Chris Cassar, John Evans, Fabio Maino, Jean Wal-
rand, and Albert Cabellos. Knowledge-Defined Networking.
ACM SIGCOMM CCR, 47(3):2–10, 2017.

[84] Nour Moustafa and Jill Slay. UNSW-NB15: A Compre-
hensive Data Set for Network Intrusion Detection Systems
(UNSW-NB15 Network Data Set). In 2015 military com-
munications and information systems conference (MilCIS),
pages 1–6. IEEE, 2015.

[85] Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva Ra-
manan, and Kayvon Fatahalian. Online Model Distillation
for Efficient Video Inference. In ICCV, 2019.

[86] Anirudh Muthukumar and Ramakrishnan Durairajan. Denois-
ing Internet Delay Measurements Using Weak Supervision.
In 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), pages 479–484. IEEE,
2019.

[87] OpenAI. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774, 2023.

[88] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An Im-
perative Style, High-Performance Deep Learning Library. In
NeurIPS, 2019.

[89] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian
Riedel. Language Models as Knowledge Bases? arXiv
preprint arXiv:1909.01066, 2019.

[90] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language Models Are Unsuper-
vised Multitask Learners. OpenAI Blog, 1(8):9, 2019.

[91] Alex Ratner, Braden Hancock, Jared Dunnmon, Roger Gold-
man, and Christopher Ré. Snorkel Metal: Weak Supervi-
sion for Multi-Task Learning. In Proceedings of the Second
Workshop on Data Management for End-To-End Machine
Learning, pages 1–4, 2018.

[92] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason
Fries, Sen Wu, and Christopher Ré. Snorkel: Rapid Training
Data Creation with Weak Supervision. The VLDB Journal,
29(2-3):709–730, 2020.

[93] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel
Selsam, and Christopher Ré. Data Programming: Creating
Large Training Sets, Quickly. In NeurIPS, 2016.

[94] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H Lampert. iCaRL: Incremental Classifier and
Representation Learning. In CVPR, 2017.

[95] Adam Roberts, Colin Raffel, and Noam Shazeer. How Much
Knowledge Can You Pack into the Parameters of a Language
Model? arXiv preprint arXiv:2002.08910, 2020.

[96] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and
Alex C Snoeren. Inside the Social Network’s (Datacenter)
Network. In ACM SIGCOMM, 2015.

[97] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco.
Can the Network Be the AI Accelerator? In ACM NetCom-
pute, 2018.

[98] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani.
Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. International Conference
on Information Systems Security and Privacy (ICISSP), 1:108–
116, 2018.

[99] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and
Ali A Ghorbani. Developing Realistic Distributed Denial of
Service (DDoS) Attack Dataset and Taxonomy. In Interna-
tional Carnahan Conference on Security Technology (ICCST),
pages 1–8. IEEE, 2019.

[100] Konstantin Shmelkov, Cordelia Schmid, and Karteek Ala-
hari. Incremental Learning of Object Detectors without Catas-
trophic Forgetting. In ICCV, 2017.

[101] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mo-
hammad Malekzadeh, Gianni Antichi, Paolo Costa, Hamed
Haddadi, and Roberto Bifulco. Re-Architecting Traffic Anal-
ysis with Neural Network Interface Cards. In USENIX NSDI,
2022.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 341

[102] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi,
Adam Radford, Chamith Wijenayake, Arun Vishwanath, and
Vijay Sivaraman. Classifying IoT Devices in Smart Environ-
ments Using Network Traffic Characteristics. IEEE Transac-
tions on Mobile Computing, 18(8):1745–1759, 2018.

[103] Linqi Song, Cem Tekin, and Mihaela Van Der Schaar. Online
Learning in Large-Scale Contextual Recommender Systems.
IEEE Transactions on Services Computing, 9(3):433–445,
2014.

[104] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Is-
han Gaur, and Kunle Olukotun. Taurus: A Data Plane Archi-
tecture for Per-Packet ML. In ACM ASPLOS, 2022.

[105] Tuan A. Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza
Zaidi, and Mounir Ghogho. Deep Learning Approach for
Network Intrusion Detection in Software Defined Networking.
In IEEE WINCOM, 2016.

[106] Gemini Team. Gemini: A Family of Highly Capable Multi-
modal Models. arXiv preprint arXiv:2312.11805, 2024.

[107] Saar Tochner, Giulia Fanti, and Vyas Sekar. Gen-T: Reduce
Distributed Tracing Operational Costs Using Generative Mod-
els. In Temporal Graph Learning Workshop@ NeurIPS 2023,
2023.

[108] Gerry Wan, Fengchen Gong, Tom Barbette, and Zakir Du-
rumeric. Retina: Analyzing 100GbE Traffic on Commodity
Hardware. In ACM SIGCOMM, 2022.

[109] Minxiao Wang, Ning Yang, Nicolas J Forcade-Perkins, and
Ning Weng. ProGen: Projection-Based Adversarial Attack
Generation against Network Intrusion Detection. IEEE Trans-
actions on Information Forensics and Security, 2024.

[110] Qineng Wang, Chen Qian, Xiaochang Li, Ziyu Yao, and Hua-
jie Shao. Lens: A Foundation Model for Network Traffic in
Cybersecurity. arXiv preprint arXiv:2402.03646, 2024.

[111] Keith Winstein and Hari Balakrishnan. TCP ex Machina:
Computer-Generated Congestion Control. In ACM SIG-
COMM, 2013.

[112] Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang,
Shuguang Cui, and Fangxin Wang. NetLLM: Adapting
Large Language Models for Networking. arXiv preprint
arXiv:2402.02338, 2024.

[113] Jun Xiao, Minjuan Wang, Bingqian Jiang, and Junli Li. A
Personalized Recommendation System with Combinational
Algorithm for Online Learning. Journal of Ambient Intelli-
gence and Humanized Computing, 9:667–677, 2018.

[114] Zhaoqi Xiong and Noa Zilberman. Do Switches Dream of
Machine Learning? Toward In-Network Classification. In
ACM HotNets, 2019.

[115] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi,
James Hong, Keyi Zhang, Philip Alexander Levis, and Keith
Winstein. Learning in situ: A Randomized Experiment in
Video Streaming. In USENIX NSDI, 2020.

[116] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan,
Riad S. Wahby, Philip Alexander Levis, and Keith Winstein.
Pantheon: The Training Ground for Internet Congestion-
Control Research. In USENIX ATC, 2018.

[117] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi,
Ali Ahmadzadeh, Xinyu Xing, and Gang Wang. CADE:
Detecting and Explaining Concept Drift Samples for Security
Applications. In USENIX Security, 2021.

[118] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas
Sekar. Practical GAN-Based Synthetic IP Header Trace Gen-
eration Using NetShare. In ACM SIGCOMM, 2022.

[119] Liangcheng Yu, John Sonchack, and Vincent Liu. Mantis:
Reactive Programmable Switches. In ACM SIGCOMM, 2020.

[120] Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tau-
man Kalai. Self-Taught Optimizer (STOP): Recur-
sively Self-Improving Code Generation. arXiv preprint
arXiv:2310.02304, 2024.

[121] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krish-
namurthy. High-Resolution Measurement of Data Center
Microbursts. In ACM IMC, 2017.

[122] Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaup-
mees, Riyad Bensoussane, Antoine Bernabeu, Shay Var-
gaftik, Yaniv Ben-Itzhak, and Noa Zilberman. IIsy: Hybrid
In-Network Classification Using Programmable Switches.
IEEE/ACM Transactions on Networking, 2024.

[123] Gan Zheng, Ioannis Krikidis, Christos Masouros, Stelios Tim-
otheou, Dimitris-Alexandros Toumpakaris, and Zhiguo Ding.
Rethinking the Role of Interference in Wireless Networks.
IEEE Communications Magazine, 52(11):152–158, 2014.

[124] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan
Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging LLM-as-a-Judge with MT-Bench
and Chatbot Arena. In NeurIPS, 2024.

[125] Zhizhen Zhong, Mingran Yang, Jay Lang, Christian Williams,
Liam Kronman, Alexander Sludds, Homa Esfahanizadeh,
Dirk Englund, and Manya Ghobadi. Lightning: A Recon-
figurable Photonic-Electronic SmartNIC for Fast and Energy-
Efficient Inference. In ACM SIGCOMM, 2023.

342 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

A Details on LLM-based Knowledge Source
A.1 Model Choice & Reproducibility
We use the gpt-4-1106-preview model snapshot from the
OpenAI API service as the LLM—the latest model available
at the time of implementation and evaluation of CARAVAN.
We anticipate that future model snapshots released by Ope-
nAI (such as gpt-4-turbo and gpt-4o) or Google (such
as Gemini Ultra and Gemini Flash) could be adapted for
data labeling using similar prompts, as long as the model sup-
ports a sufficiently large context window. The same would
hold true for emerging open-source LLMs, such as those from
Meta (e.g., Llama 3 series [16]) and Mistral AI (e.g., Mixtral
7B [64]).

The behavior of commercial LLM APIs may evolve over
time, even using the same model snapshot and prompts [39].
To ensure reproducibility, one strategy would involve leverag-
ing open-source LLMs instead of third-party APIs. However,
these LLMs necessitate high-end GPUs or aggressive com-
pression before deployment; we do not use these in our paper.
Another approach is to decrease the temperature [22] during
the generation process to minimize variability across different
runs when utilizing third-party APIs.

A.2 System Prompts

a. System Prompt (UNSW-NB15): You are an expert in net-

work security. The user is now labeling a network intrusion

detection dataset, and he/she wants to assign a binary label

(0 for benign or 1 for malicious) to each traffic flow in the

dataset based on each flow’s input features. He/She will give

you a few labeled flows for reference, and you will then help

him/her label another few unlabeled flows. Feel free to use

your own expertise and any information the user gives you.

These are the features of the input flows and meanings of the

features: dur (record total duration), proto (transaction proto-

col, which will be categorized), sbytes (source to destination

transaction bytes), dbytes (destination to source transaction

bytes), sttl (source to destination time to live value), dttl (des-

tination to source time to live value), sload (source bits per

second), dload (destination bits per second), spkts (source to

destination packet count), dpkts (destination to source packet

count), smean (mean of the packet size transmitted by the

src), dmean (mean of the packet size transmitted by the

dst), sinpkt (source interpacket arrival time (mSec)), dinpkt

(destination interpacket arrival time (mSec)), tcprtt (TCP con-

nection setup round-trip time), synack (TCP connection setup

time, the time between the SYN and the SYN_ACK pack-

ets), ackdat (TCP connection setup time, the time between

the SYN_ACK and the ACK packets), ct_src_ltm (no. of con-

nections of the same source address in 100 connections

according to the last time), ct_dst_ltm (no. of connections of

the same destination address in 100 connections according

to the last time), ct_dst_src_ltm (no. of connections of the

same source and the destination address in 100 connections

according to the last time).

b. System Prompt (CIC-IDS2017): You are an expert in

network security. The user is now labeling a network intrusion

detection dataset, and he/she wants to assign a binary label

(0 for benign or 1 for malicious) to each traffic flow in the

dataset based on each flow’s input features. He/She will give

you a few labeled flows for reference, and you will then help

him/her label another few unlabeled flows. Feel free to use

your own expertise and any information the user gives you.

These are the features of the input flows and meanings of the

features: flow IAT min (minimum packet inter-arrival time in

microseconds), flow IAT max (maximum packet inter-arrival

time in microseconds), flow IAT mean(average packet inter-

arrival time in microseconds), packet length min (minimum

packet length), packet length max (maximum packet length),

packet length mean (average packet length), total packet

length (total packet length), number of packets (total number

of packets in the flow), SYN flag count (number of TCP SYN

flags), ACK flag count(number of TCP ACK flags), PSH flag

count (number of TCP PSH flags), FIN flag count (number of

TCP FIN flags), RST flag count (number of TCP RST flags),

ECE flag count (number of TCP ECE flags), flow duration

(duration of flow in microseconds), and DST port (destination

port).

A.3 A Rule Extraction Output by LLM
In Figure 14, we show an example heuristics-based label-
ing function generated by the LLM, based on 500 unlabeled
flows from the UNSW-NB15 dataset. The model generates
all comments along with the function.

A.4 Concerns Regarding Data Contamination
In the domain of machine learning, data contamination [79]
occurs when pre-trained language models, trained on ex-
tensive web-based datasets, inadvertently incorporate down-
stream test sets into their pretraining corpus. This phe-
nomenon can lead to biases in evaluation metrics and diminish
the generalization capacity of large language models. In CAR-
AVAN, the issue of data contamination is also pertinent, as we
adhere to previous methodologies by utilizing public datasets
for evaluation.

While it is not feasible to entirely eradicate the issue of data
contamination through retraining a new model from scratch,
we implement the following measures to mitigate its potential
impact on our evaluation: (a) We ensure that the LLM never
generates trivial labels, meaning labels that precisely match
the ground truth labels. (b) We carefully examine the labeling
rule functions produced by the LLM to ensure they do not
generate labels through memorization based on features, such
as IP address.

B Artifact Appendix
B.1 Abstract
The artifact includes the software simulation and the FP-
GA/P4 testbed we built for implementing and evaluating CAR-
AVAN. We also include a detailed guide with step-by-step

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 343

def label_flow_with_rule_cache(flow):

 """

 Labels a network flow as benign (0) or malicious (1) based on certain heuristics.

 This function is designed to be conservative and only labels a flow as malicious when it is highly confident.

 :param flow: A tuple containing features of the flow.

 :return: An integer label, 0 for benign and 1 for malicious.

 """

 # Unpack the flow features

 dur, proto, sbytes, dbytes, sttl, dttl, sload, dload, spkts, dpkts, smean, dmean, sinpkt, dinpkt, tcprtt, synack,

 ackdat, ct_src_ltm, ct_dst_ltm, ct_dst_src_ltm = flow

 # Define thresholds and conditions for a flow to be considered malicious

 # These thresholds are derived from cybersecurity expertise and unlabeled data provided

 conditions = [

 # If the source to destination time to live value is maximum (255) and the destination to source packet count

 # is 0, it is likely to be a scan or a DoS attack.

 sttl == 254 and dpkts == 0,

 # If the number of connections to the same source address in the last 100 connections is high (above 30),

 # it might indicate a scanning activity or a distributed attack.

 ct_src_ltm > 30,

 # If the number of connections to the same destination address in the last 100 connections is high (above 30),

 # it might indicate a scanning activity or a distributed attack.

 ct_dst_ltm > 30,

 # If the number of connections to the same source and destination address in the last 100 connections is high

 # (above 30), it might indicate a scanning activity or a distributed attack.

 ct_dst_src_ltm > 30,

 # If the TCP connection setup round-trip time, the time between the SYN and the SYN_ACK packets,

 # and the time between the SYN_ACK and the ACK packets are all 0, it might indicate a SYN flood attack.

 tcprtt == 0.0 and synack == 0.0 and ackdat == 0.0,

]

 # If any of the malicious conditions are met, label the flow as malicious

 if any(conditions):

 return 1

 # Otherwise, label the flow as benign

 return 0
 Figure 14: A heuristics-based labeling function generated by the LLM.

344 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

instructions for automatically running the key experiments
and plotting the figures presented in the paper.

B.2 Scope
The simulation/ folder contains the source code to automat-
ically run key experiments from the paper and reproduce the
corresponding figures (i.e., Figures 4–10, 12). The testbed/
folder contains the new code changes and the instructions to
set up and run the FPGA/P4-based evaluations for CARAVAN.

B.3 Contents
The artifact is provided as a self-contained repository avail-
able at https://github.com/Per-Packet-AI/Caravan-Artifact-
OSDI24.

• simulation/ contains the software code for re-
producing evaluated figures, with automation scripts
for generating data and producing figures located
at simulation/scripts/experiments.sh and
simulation/scripts/plots.sh, respectively.

• testbed/ contains a modified version of the Taurus
FPGA testbed [104] for testing CARAVAN’s use cases.

B.4 Hosting
CARAVAN is hosted on GitHub: https://github.com/Per-
Packet-AI/Caravan-Artifact-OSDI24.

B.5 Requirements
Hardware. CARAVAN requires at least an 8-core server with
16 GiB of RAM, one CUDA 12.1-compatible GPU (e.g.,
Nvidia V100), along with Internet connectivity to access Ope-
nAI API endpoints. We recommend using a Google Compute
Engine (g2-standard-8) instance.

Software. CARAVAN runs with Python version 3.10 or later
with CUDA support. The complete list of dependencies
is available in simulation/pyproject.toml and gets in-
stalled automatically using pip install -e . from the
simulation/ directory.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 345

