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Abstract
DistServe improves the performance of large language mod-
els (LLMs) serving by disaggregating the prefill and decoding
computation. Existing LLM serving systems colocate the two
phases and batch the computation of prefill and decoding
across all users and requests. We find that this strategy not
only leads to strong prefill-decoding interferences but also
couples the resource allocation and parallelism plans for both
phases. LLM applications often emphasize individual latency
for each phase: time to first token (TTFT) for the prefill phase
and time per output token (TPOT) of each request for the
decoding phase. In the presence of stringent latency require-
ments, existing systems have to prioritize one latency over
the other, or over-provision compute resources to meet both.

DistServe assigns prefill and decoding computation to dif-
ferent GPUs, hence eliminating prefill-decoding interferences.
Given the application’s TTFT and TPOT requirements, Dist-
Serve co-optimizes the resource allocation and parallelism
strategy tailored for each phase. DistServe also places the
two phases according to the serving cluster’s bandwidth to
minimize the communication caused by disaggregation. As
a result, DistServe significantly improves LLM serving per-
formance in terms of the maximum rate that can be served
within both TTFT and TPOT constraints on each GPU. Our
evaluations show that on various popular LLMs, applications,
and latency requirements, DistServe can serve 7.4× more
requests or 12.6× tighter SLO, compared to state-of-the-art
systems, while staying within latency constraints for > 90%
of requests.

1 Introduction
Large language models (LLMs), such as GPT-4 [37], Bard [2],
and LLaMA [51], represent a groundbreaking shift in gen-
erative AI. They start to reshape existing Internet services,
ranging from search engines to personal assistants [4], and
enable fundamentally new applications, like universal chat-
bots [1, 16] and programming assistants [15, 42]. Yet, these
advances come with a significant challenge: processing an
end-to-end LLM query can be substantially slower than a
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Figure 1: Performance when serving an LLM with 13B pa-
rameters under a synthetic workload with input length = 512
and output length = 64 on one NVIDIA 80GB A100. Upper:
The P90 time-to-first-token (TTFT) latency comparing exist-
ing systems vs. a system serving only the prefill phase. Down:
The P90 time-per-output-token (TPOT) latency comparing ex-
isting systems vs. a system serving only the decoding phase.

standard search query [41]. In order to meet the stringent la-
tency requirements of various applications, service providers
need to over-provision compute resources, particularly many
GPUs, leading to a shortfall in cost efficiency. Therefore, op-
timizing the cost per LLM query while adhering to high SLO
attainment (the proportion of requests that meet the SLOs) is
becoming increasingly essential for all LLM services.

An LLM service responds to a user query in two phases.
The prefill phase processes a user’s prompt, composed of a
sequence of tokens, to generate the first token of the response
in one step. Following it, the decoding phase sequentially
generates subsequent tokens in multiple steps; each decod-
ing step generates a new token based on tokens generated in
previous steps, until reaching a termination token. This dual-
phase process distinguishes LLM services from traditional
services – an LLM service’s latency is uniquely measured
by two key metrics: the time to first token (TTFT), which
is the duration of the prefill phase, and the time per output
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token (TPOT), which represents the average time taken to
generate a token for each request (except for the first token)1.
Different applications place varying demands on each metric.
For example, real-time chatbots [1] prioritize low TTFT for
response promptness, while TPOT only remains important un-
til it is faster than human reading speed (i.e., 250 words/min).
Conversely, document summarization emphasizes low TPOT
for faster generation of the summary.

Hence, given the application’s TTFT and TPOT require-
ments, an effective LLM serving system should balance these
needs and maximize per-GPU goodput, defined as the max-
imum request rate that can be served adhering to the SLO
attainment goal (say, 90%) for each GPU provisioned – higher
per-GPU goodput directly translates into lower cost per query.

As the prefill and decoding phases share the LLM weights
and working memory, existing LLM serving systems typi-
cally colocate both phases on GPUs and maximize the overall
system throughput – tokens generated per second across all
users and requests – by batching the prefill and decoding steps
across requests [31, 54]. However, to meet latency require-
ments, we find these systems must over-provision compute
resources. To see this, Figure 1 illustrates how the P90 TTFT
and TPOT shift with increasing request rates when serving
a 13B LLM using existing systems [32], with workload pat-
tern and two latency constraints set to emulate using LLM to
generate a short summary for an article. Under the SLO attain-
ment of 90%, the maximum achievable goodput on a single
A100 GPU, which is constrained by the more stringent one
of TTFT and TPOT requirements, is about 1.6 requests per
second (rps). The performance contrasts sharply when each
phase is served independently on a separate GPU, shown by
the orange and green curves, which achieve per-GPU goodput
of 5.6 rps for the prefill phase and 10 rps for decoding. Ide-
ally, by allocating 2 GPUs for prefill and 1 GPU for decoding,
we can effectively serve the model with an overall goodput
of 10 rps, or equally 3.3 rps per GPU, which is 2.1x higher
than existing systems. The gap in goodput primarily stems
from the colocation of the prefill and decoding – two phases
with very distinct computational characteristics and latency
requirements (§2.1).

First, colocation leads to strong prefill-decoding interfer-
ence. A prefill step often takes much longer than a decoding
step. When batched together, decoding steps in the batch
are delayed by the prefill steps, significantly elongating their
TPOT; similarly, the inclusion of decoding steps contributes
to a non-trivial increase in TTFT, as evidenced in Figure 2.
Even if we schedule them separately, issues persist as they
begin to compete for resources. Decoding tasks awaiting GPU
execution are subject to increased queuing delays due to on-
going prefill tasks, and vice versa. Prioritized scheduling of
one phase risks failing the latency requirements of the other.

Second, the prefill and decoding computation differ in la-

1The overall request latency equals TTFT plus TPOT times the number
of generated tokens in the decoding phase.

tency requirements and preference for different forms of paral-
lelism (§3). Colocating prefill and decoding, however, couples
their resource allocation, and prevents implementing differ-
ent parallelism strategies more suited to meeting the specific
latency requirements of each phase.

To overcome these challenges, we propose to disaggregate
the prefill and decoding phases of LLM inference, assigning
them to separate GPUs. Our approach has two benefits. First,
operating each phase independently on different GPUs elimi-
nates prefill-decoding interference. Second, it allows to scale
each phase independently with tailored resource allocation
and model parallelism strategies to meet their specific latency
requirements. Although disaggregation causes communica-
tion of intermediate states between GPUs, we show that the
communication overhead is insubstantial (§3.3) in modern
GPU clusters, and when managed appropriately, disaggrega-
tion significantly improves per-GPU goodput.

Based on the above insights, in this work, we build Dist-
Serve2, a goodput-optimized LLM serving system by disag-
gregating the prefill and decoding phases. Given TTFT and
TPOT requirements, DistServe first scales each phase indepen-
dently by co-optimizing the GPU allocation and parallelism
strategies of the prefill and decoding phase assuming serving
a single model replica. The optimization ensures maximiz-
ing the per-GPU goodput and may assign different numbers
of GPUs and parallelism strategies to each phase depend-
ing on their respective latency requirements. DistServe then
scales this allocation to multiple instances via replication un-
til meeting the user-required traffic rate (§4). DistServe also
features an algorithm to place the prefill and decoding compu-
tation according to their allocation schemes and the cluster’s
bandwidth to minimize the overhead of communicating inter-
mediate states between phases.

We implement DistServe as an orchestration layer on top
of the LLM inference engine. We evaluate DistServe on vari-
ous LLMs, varying the workloads based on three important
real-world LLM applications: chatbots, programming assis-
tant, and document summary. Compared to state-of-the-art
solutions, DistServe can serve up to 7.4× more requests or
12.6× tighter SLO under various latency constraints. Our
contributions are:

• Identify the problems of prefill-decoding interference
and resource coupling in existing LLM serving systems
and propose to disaggregate the two phases.

• Design a novel placement algorithm to choose the
goodput-optimal schema for prefill and decoding in-
stances automatically.

• Conduct a comprehensive evaluation of DistServe with
realistic workloads.

2 Background and Motivation
An LLM service follows a client-server architecture: the client
submits a sequence of text as a request to the server; the server

2https://github.com/LLMServe/DistServe
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hosts the LLM on GPUs, runs inference over the request, and
responds (or streams) the generation back to the client. As
explained in §1, due to the unique prefill-decoding process,
LLM service may impose aggressive service-level objectives
(SLOs) on both TTFT and TPOT, varying with the applica-
tion’s needs. The serving system must meet both SLOs while
minimizing the cost associated with expensive GPUs. In other
words, we want the serving system to maximize the requests
served per second adhering to the SLO attainment goal for
each GPU provisioned – maximizing per-GPU goodput. Next,
we detail the LLM inference computation (§2.1) and discuss
existing optimizations for LLM serving (§2.2).

2.1 LLM Inference
Modern LLMs [37, 51] predict the next token given an input
sequence. This prediction involves computing a hidden repre-
sentation for each token within the sequence. An LLM can
take a variable number of input tokens and compute their hid-
den representations in parallel, and its computation workload
increases superlinearly with the number of tokens processed
in parallel. Regardless of the input token count, the compu-
tation demands substantial I/O to move LLM weights and
intermediate states from the GPU’s HBM to SRAM. This
process is consistent across varying input sizes.

The prefill step deals with a new sequence, often compris-
ing many tokens, and processes these tokens concurrently.
Unlike prefill, each decoding step only processes one new
token generated by the previous step. This leads to significant
computational differences between the two phases. When
dealing with user prompts that are not brief, the prefill step
tends to be compute-bound. For instance, for a 13B LLM,
computing the prefill of a 512-token sequence makes an A100
near compute-bound (see §3.1). In contrast, despite process-
ing only one new token per step, the decoding phase incurs a
similar level of I/O to the prefill phase, making it constrained
by the GPU’s memory bandwidth.

During both phases, intermediate states, known as KV
caches [32], are generated at each token position, which are
needed again in later decoding steps. To avoid recomputing
them, they are saved in GPU memory. Because of the shared
use of LLM weights and KV caches in memory, most LLM in-
ference engines opt to colocate the prefill and decoding phases
on GPUs, despite their distinct computational characteristics.

2.2 LLM Serving Optimization
In real-time online serving, multiple requests come and must
be served within SLOs. Batching and parallelizing their com-
putation is key for achieving low latency, high throughput,
and high utilization of GPUs.

Batching. Current serving systems [9, 32, 54] utilize a batch-
ing technique known as continuous batching. This method
batches the prefill of new requests with the decoding of on-
going ones. It boosts the GPU utilization and maximizes
the overall system throughput – tokens generated per second

across all users and requests. However, as mentioned in §1
and elaborated later in §2.3, this approach leads to trade-offs
between TTFT and TPOT. An advanced variant of contin-
uous batching [9] attempts to balance TTFT and TPOT by
segmenting long prefill into chunks and attaching decoding
jobs with a chunked prefill – but essentially, it trades TTFT
for TPOT and cannot eliminate the interference (§2.3). In
summary, batching prefill and decoding invariably leads to
compromises in either TTFT or TPOT.

Model parallelism. In LLM serving, model parallelism is
generally divided as intra- and inter-operator parallelisms [33,
46, 59]. Both can be used to support larger models but may
impact serving performance differently. Intra-operator paral-
lelism partitions computationally intensive operators, such
as matrix multiplications, across multiple GPUs, accelerat-
ing computation but causing substantial communication. It
reduces the execution time3, hence latency, particularly for
TTFT of the prefill phase, but requires high bandwidth con-
nectivity between GPUs (e.g., NVLINK). Inter-operator par-
allelism organizes LLM layers into stages, each running on
a GPU to form pipelines. It moderately increases execution
time due to inter-stage communication, but linearly scales the
system’s rate capacity with each added GPU. In this paper,
we reveal an additional benefit of model parallelism: reduced
queuing delay of both prefill and decoding phases, steaming
from shorter execution time. We delve into this further in
§3. Besides model parallelism, replicating a model instance,
irrespective of its model parallelism configurations, linearly
scales the system’s rate capacity.

These parallelism strategies create a complex space of op-
timization that requires careful trade-offs based on the appli-
cation’s latency requirements.

2.3 Problems and Opportunities
Colocating and batching the prefill and decoding computation
to maximize the overall system throughput, as in existing
systems, is cost-effective for service providers. However, in
the presence of SLOs, present approaches struggle to main-
tain both high service quality and low cost due to the issues
discussed below.

Prefill-decoding interference. As Figure 2 shows, adding a
single prefill job to a batch of decoding requests significantly
slows down both processes, leading to a marked increase in
TTFT and TPOT. Specifically, the decoding tasks in the batch
must wait for lengthier prefill jobs to complete, thus extending
TPOT; the slowdown intensifies with a longer prefill, shown
in Figure 2(b). Adding decoding jobs to prefill also increases
the time to complete the prefill task, particularly when the
GPU is already at capacity (Figure 2 blue curves).

One attempt to mitigate this interference is called chunked-
prefill with piggyback [3,9]. It proposes to split the long prefill

3we emphasize “execution time” instead of latency here because latency
comprises both execution time and queuing delay.
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Figure 2: Batch execution time when serving a 13B LLM
as batch size increases. Compared between a decoding-only
batch and the batch adding one more prefill job.
into chunks and batch a prefill chunk with a few decoding jobs
(a.k.a. piggybacking). This technique alleviates the slowdown
of the decoding job caused by the long prefill job, but it does
not eliminate it. Additionally, it results in an extra overhead
for the prefill job which cannot be easily mitigated by adjust-
ing the chunk size. First, if the chunk size is set much lower
than the inflection point that can saturate the GPU, then the
prefill job will have a longer execution time since it competes
with the decoding job in the same batch and cannot solely
utilize the GPU resources. Second, if we increase the chunk
size to nearly saturate the GPU, the chance of piggybacking
will diminish since the remaining slots for decode tokens are
limited. Also, chunked-prefill causes significantly more mem-
ory access for the prefill jobs. This is because the KV cache
of all previous chunks have to be loaded from HBM to SRAM
repeatedly to compute each subsequent chunk. Concretely,
if a prefill job is split into N equal chunks, we need to load
N +(N−1)+ ...+1 = O(N2) chunks of KV Cache in total,
compared to O(N) in the non-chunked case. This overhead
will increase as the context length becomes longer.

Ineffective scheduling. Unbatching prefill and decoding jobs
and scheduling them sequentially does not mitigate the inter-
ference. Decoding jobs may experience longer queuing delays
due to waiting for ongoing prefill jobs on GPUs. Moreover,
batches dedicated to decoding often lead to GPU underutiliza-
tion. Prioritizing tasks in either phase adversely affects the
latency of the other, rendering priority scheduling ineffective.

Resource and parallelism coupling. Colocating prefill and
decoding phases on the same GPUs unavoidably share their
resource and parallelism settings. However, each phase has its
unique computational characteristic and latency requirement
that calls for more heterogeneous resource allocation. For
example, the prefill phase tends to be compute-bound and
benefits from more intra-op parallelism to reduce execution
time to meet the tight SLO on TTFT. By contrast, the opti-
mal parallelism configuration of the decoding phase depends
on the running batch size. In existing systems, due to cou-
pling, resource allocation and parallelism plans are tailored
to satisfy the more demanding of TTFT and TPOT, which
may not be ideal for the other. This often leads to resource
over-provisioning to meet both SLOs.

Opportunities. To address these issues, we propose to dis-
aggregate the prefill and decoding phases. We use the term
instance to denote a unit of resources that manages exactly
one complete copy of model weights. One instance can cor-
respond to many GPUs when model parallelism is applied.
Note that when we disaggregate the two phases to different
GPUs, each phase manages its copy of the model weights,
resulting in prefill instances and decoding instances. A prefill
instance, upon receiving a request, performs only the prefill
computation for this request to generate the first output token.
It then sends the intermediate results (mainly KV caches)
to a decoding instance, which is responsible for subsequent
decoding steps. Because decoding computation often has low
GPU utilization, we may allocate multiple prefill instances
per decoding instance. This allows batching more decoding
jobs to achieve higher GPU utilization.

Disaggregating prefill and decoding naturally resolves the
interference between the two phases and enables each to fo-
cus on its optimization target – TTFT or TPOT. Each type
of instance can employ different resources and parallelism
strategies to meet a variety of latency requirements. By ad-
justing the number of GPUs and parallelisms provided to
the two types of instances, we can maximize the per-device
goodput of the overall system, avoiding over-provisioning,
eventually translating to reduced cost-per-query adhering to
service quality. Next, we develop ways to find out the best
resource allocation and parallelism plan for each phase.

3 Tradeoff Analysis
Disaggregation uncouples the two phases and allows a dis-
tinct analysis of the characteristics of each phase, providing
valuable insights into the algorithm design. It also expands
the design space: now each phase needs to be scaled and
scheduled independently based on their latency requirements.

In this section, we analyze the computational pattern of pre-
fill (§3.1) and decoding instances (§3.2) post disaggregation.
We aim to identify key parameters and derive guidelines for
batching and parallelism in each phase. We then highlight sev-
eral practical deployment considerations (§3.3). This section
lays the foundation for per-gpu goodput optimization.

3.1 Analysis for Prefill Instance
After disaggregation, the prefill phase generates the first to-
ken by processing all tokens of the user prompt in parallel.
Assuming a given arrival rate, we aim to fulfill the service’s
latency requirement on TTFT using the least resources.

Batching strategy. The prefill step is typically compute-
intensive. Figure 3(a) shows how the throughput of the prefill
phase changes with the input length and the batch size. For
a 13B parameter LLM, processing a single sequence of 512
tokens can fully engage an A100 GPU. Once the GPU be-
comes compute-bound, adding more requests to the batch no
longer improves GPU efficiency. Instead, it proportionally
extends the total processing time for the batch, inadvertently
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Figure 3: Throughput for two phases with different batch sizes
and input lengths when serving an LLM with 13B parameters.

delaying all included requests. Hence, for prefill instances,
it is necessary to profile the specific LLM and GPUs in ad-
vance to identify a critical input length threshold, denoted as
Lm, beyond which the prefill phase becomes compute-bound.
Batching more requests should only be considered when the
input length of the scheduled request is below Lm. In practice,
user prompts typically average over hundreds of tokens [8].
Batch sizes for the prefill instance are generally kept small.

Parallelism plan. To study the parallelism preferences for
prefill-only instances, we serve a 66B LLM on two A100
GPUs with inter-op or intra-op parallelism strategy. To sim-
plify the problem, we assume uniform requests input lengths
of 512 tokens and a Poisson arrival process. We compare
the resulting average TTFT at various arrival rates in Fig-
ure 4(a): intra-op parallelism is more efficient at lower arrival
rates, while inter-op parallelism gains superiority as the rate
increases. Disaggregation enables the prefill phase to function
analogously to an M/D/1 queue, so we can use queuing theory
to verify the observation.

We start by developing notations using the single-device
case without parallelism: each request’s execution time, de-
noted as D, remains constant due to uniform prefill length.
Since one request saturates the GPU, we schedule requests via
First-Come-First-Served (FCFS) without batching. Suppose
the Poisson arrival rate is R and the utilization condition of
RD < 1, the average TTFT (Avg_T T FT ) can be modeled by
the M/D/1 queue [47] in close form:

Avg_T T FT = D+
RD2

2(1−RD)
. (1)

where the first term represents the execution time and the
second corresponds to the queuing delay. Based on Eq. 1, we
incorporate parallelism below.

With 2-way inter-op parallelism, we assume the request-
level latency becomes Ds, and the slowest stage takes Dm to
finish. We have D ≈ Ds ≈ 2×Dm, due to negligible inter-
layer activation communication [33, 59]. The average TTFT
with 2-way inter-op parallelism is derived as:

Avg_T T FTinter = Ds +
RD2

m
2(1−RDm)

= D+
RD2

4(2−RD)
. (2)
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Figure 4: Average TTFT when serving an LLM with 66B
parameters using different parallelism on two A100 GPUs.

For intra-op parallelism, we introduce a speedup coefficient
K, where 1 < K < 2, reflecting the imperfect speedup caused
by high communication overheads of intra-op parallelism.
With the execution time Ds =

D
K , the average TTFT for 2-

degree intra-op parallelism is:

Avg_T T FTintra =
D
K
+

RD2

2K(K−RD)
. (3)

Comparing Eq. 2 and Eq. 3: at lower rates, where execution
time (first term) is the primary factor, intra-op parallelism’s
reduction in execution time makes it more efficient. As the
rate increases and the queuing delay (second term) becomes
more significant, inter-op parallelism becomes advantageous,
concurred with Figure 4(a).

The prefill phase’s preference for parallelism is also influ-
enced by TTFT SLO and the speedup coefficient K. Seen
from Figure 4(a): A more stringent SLO will make intra-op
parallelism more advantageous, due to its ability to reduce
execution time. The value of K depends on factors such as the
input length, model architecture, communication bandwidth,
and placement [46,59]. As shown in Figure 4(b), a decrease in
K notably reduces the efficacy of intra-op parallelism. §4 de-
velops algorithms that optimize the resource and parallelism
configurations taking into consideration these knobs.

3.2 Analysis for Decoding Instance
Unlike the prefill instance, a decoding instance follows a dis-
tinct computational pattern: it receives the KV caches and
the first output token from the prefill instance and generates
subsequent tokens one at a time. For decoding instances, our
optimization goal is to satisfy the application’s TPOT require-
ment using minimal computing resources.

Batching strategy. Since a single decoding job is heav-
ily bandwidth-bound, batching is key to avoiding low GPU
utilization (hence high per-gpu goodput), as shown in Fig-
ure 3(b). In existing systems where the prefill and decoding
phases are colocated, increasing the decoding batch size is
difficult because it conflicts with meeting latency goals, par-
ticularly in scenarios with high request rates. This is because
sharing GPUs cause competition between prefill and decod-
ing jobs, leading to a trade-off between TTFT and TPOT. For
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Figure 5: Decoding phase latency and throughput when serv-
ing a 13B LLM with batch size = 128 and input length = 256
under different parallel degrees.

example, a higher arrival rate generates more prefill jobs, de-
manding greater GPU time to meet TTFT requirements if
prioritizing prefill jobs, which in turn adversely affects TPOT.

On the contrary, disaggregation offers a solution by en-
abling the allocation of multiple prefill instances to a single
decoding instance. This approach allows for accumulating a
larger batch size on dedicated GPUs for the decoding phase
without sacrificing TPOT.

Parallelism plan. Post-disaggregation, the batch size for de-
coding may be constrained by GPU memory capacity, as it is
necessary to maintain the KV caches for all active requests.
Scaling the decoding instance with model parallelism or lever-
aging advanced memory management techniques for LLM
KV caches, such as Paged-Attention [32] and GQA [10],
enable further scaling of the decoding batch size to nearly
compute-bound. As the decoding batch size continue to in-
crease to approach the compute-bound, the decoding compu-
tation begins to resemble the prefill phase. With this observa-
tion, we investigate how the latency and throughput change
under different parallelism degrees under large batch condi-
tions in Figure 5: intra-op parallelism reduces latency with
diminishing returns, caused by communication and reduced
utilization after partitioning. Inter-op parallelism can almost
linearly scale the throughput. Hence, when the TPOT SLO
is stringent, intra-op parallelism is essential to reduce TPOT
to meet latency goals. Beyond this, inter-op parallelism is
preferable to enhance throughput linearly.

It is worth noting that when the model can fit into the mem-
ory of a single GPU, replication is a competitive option in
addition to model parallelism for both prefill and decoding
instances, to linearly scale the system’s rate capacity. It may
also reduce the queuing delay – as indicated by Eq. 1 – by
substituting R with R/N assuming requests are equally dis-
patched to N replicas, at the cost of maintaining additional
replicas of the model weights in GPU memory.

3.3 Practical Problems
We have developed foundational principles for selecting batch-
ing and parallelisms for each phase. In this section, we discuss
and address several challenges encountered during the practi-
cal deployment of disaggregated prefill and decoding phases.

Variable prefill length. §3 has assumed uniform prompt
length across requests. In real deployments, depending on
the LLM application, the lengths of requests are non-uniform.
The non-uniformity can cause pipeline bubbles [28, 36] for
prefill instances applying inter-op parallelism because the
execution time of pipeline stages across requests of different
lengths will vary. This results in slight deviations from the
conclusions indicated by using the M/D/1 queue model. To
address the problem, §4 develops algorithms that search for
parallelisms based on workloads, and resort to scheduling to
minimize the bubbles (§4.3).

Communication overhead. Transferring KV caches from
prefill to decoding instances incurs notable overheads. For
example, the KV cache size of a single 512-token request
on OPT-66B is approximately 1.13GB. Assuming an aver-
age arrival rate of 10 rps, we need to transfer 11.3GB data
per second—or equivalently 90Gbps bandwidth to render the
overhead invisible. While many modern GPU clusters for
LLMs are equipped with InfiniBand (e.g., 800 Gbps), in cases
where cross-node bandwidth is limited, DistServe relies on
the commonly available intra-node NVLINK, where the peak
bandwidth between A100 GPUs is 600 GB/s, again rendering
the transmission overhead negligible (see §6.3). However, this
requirement imposes additional constraints on the placement
of prefill and decoding instances that we take into considera-
tion in the next section.

Through the analysis in this section, we identify the work-
load pattern, placement constraints, SLO requirements, paral-
lelism strategies, and resource allocation as key parameters
that create a web of considerations in designing the disag-
gregated serving system. How to automatically navigate the
search space to find the configuration that achieves optimal
per-gpu goodput is challenging, and addressed next.

4 Method

We built DistServe to solve the above challenges. Given the
model, workload characteristic, latency requirements, and
SLO attainment target, DistServe will determine (a) the par-
allelism strategies for prefill and decoding instances, (b) the
number of each instance type to deploy, as well as (c) how
to place them onto the physical cluster. We call the solution
a placement. Our goal is to find a placement that maximizes
the per-gpu goodput.

As explained in §3.3, a key design consideration is to man-
age communications between disaggregated prefill and de-
coding phases, given varying cluster setups. In this section,
we first present two placement algorithms: one for clusters
with high-speed cross-node networks (§4.1) and the other
for environments lacking such infrastructure (§4.2); the lat-
ter introduces additional constraints. We then develop online
scheduling optimizations that adapt to the nuances of real-
world workloads (§4.3).
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Algorithm 1 High Node-Affinity Placement Algorithm

Input: LLM G, #node limit per-instance N, #GPU per-node
M, GPU memory capacity C, workload W , traffic rate R.

Output: the placement best_plm.
configp,configd← /0, /0

for intra_op ∈ {1,2, ...,M} do
for inter_op ∈ {1,2, ..., N×M

intra_op} do
if G.size

inter_op×intra_op <C then
config← (inter_op, intra_op)
Ĝ← parallel(G,config)
config.goodput← simu_prefill(Ĝ,W )

if configp.goodput
con f igp.num_gpus <

config.goodput
con f ig.num_gpus then

configp← config

config.goodput← simu_decode(Ĝ,W )

if configd .goodput
con f igd .num_gpus <

config.goodput
con f ig.num_gpus then

configd← config
n,m← ⌈ R

configp.goodput⌉,⌈
R

configd .goodput ⌉
best_plm← (n,configp,m,configd)
return best_plm

4.1 Placement for High Node-Affinity Cluster
On high node-affinity clusters equipped with Infiniband, KV
caches transmission overhead across nodes is negligible, Dist-
Serve can deploy prefill and decoding instances across any
two nodes without constraints. We propose a two-level place-
ment algorithm for such scenarios: we first optimize the par-
allelism configurations for prefill and decoding instances sep-
arately to attain phase-level optimal per-gpu goodput; then,
we use replication to match the overall traffic rate.

However, finding the optimal parallel configuration for a
single instance type, such as for the prefill instance, is still
challenging, due to the lack of a simple analytical formula to
calculate the SLO attainment (a.k.a., percentage of requests
that meet TTFT requirement), given that the workload has
diverse input, output lengths, and irregular arrival patterns.
Gauging the SLO via real-testbed profiling is time-prohibitive.
We thus resort to building a simulator to estimate the SLO at-
tainment, assuming prior knowledge of the workload’s arrival
process and input and output length distributions. Although
short-term interval is impossible to predict, the workload
pattern over longer timescales (e.g., hours or days) is often
predictable [33, 55]. DistServe fits a distribution from the
history request traces and resamples new traces from the dis-
tribution as the input workload to the simulator to compute
the SLO attainment. Next, DistServe simply enumerates the
placements and finds the maximum rate that meets the SLO
attainment target with binary search and simulation trials.

Algorithm 1 outlines the process. We enumerate all feasible
parallel configurations, subject to cluster capacity limit, for
both prefill and decoding instances. Then, for a specific pre-
fill phase configuration, we use simu_prefill to simulate

Algorithm 2 Low Node-Affinity Placement Algorithm

Input: LLM G, #node limit per-instance N, #GPU per-node
M, GPU memory capacity C, workload W , traffic rate R.

Output: the placement best_plm.
config∗← /0

for inter_op ∈ {1,2, ...,N} do
P ← get_intra_node_configs(G,M,C, inter_op)
for Pp ∈ P do

for Pd ∈ P do
if Pp.num_gpus+Pd .num_gpus≤M then

config← (inter_op,Pp,Pd)
Ĝp, Ĝd ← parallel(G,config)
config.goodput← simulate(Ĝp, Ĝd ,W )

if config.∗goodput
config.∗num_gpus <

config.goodput
config.num_gpus then

config∗← config
n← ⌈ R

config.∗goodput ⌉
best_plm← (n,config∗)
return best_plm

and find its maximum goodput via binary search (similarly
for using simu_decode for decoding). After determining the
optimal parallel configurations for both prefill and decoding
instances, we replicate them to achieve the user-required over-
all traffic rate according to their goodput.

The complexity of Algorithm 1 is O(NM2), with N as the
node limit per instance and M representing the typical number
of GPUs per node in modern clusters (e.g., 8). The search
space is manageable and the solving time is under 1.3 minutes
in our largest setting, as demonstrated in §6.5.

Simulator building. Algorithm 1 relies on a simulator to es-
timate the goodput under various SLOs and SLO attainment
goals given the workload and the parallelism plan. To build an
accurate simulator, we analyze the FLOPs and the number of
memory accesses for prefill and decoding phases respectively,
and use a latency model to approximate the inference execu-
tion time. See details in Appendix A. The simulator aligns
well with real profiling results, thanks to the high predictabil-
ity of DNN workloads [23, 33], verified in §6.4.

By far, we have developed Algorithm 1 assuming we can
place the prefill and decoding instance between any two nodes
(or on the same node) of the cluster, and the KV cache trans-
mission utilizes high bandwidth network. In many real clus-
ters, GPUs inside a node access to high-bandwidth NVLINK
while GPUs distributed across nodes have limited bandwidth.
We next develop an algorithm to address this constraint.

4.2 Placement for Low Node-Affinity Cluster
A straightforward solution is to always colocate prefill and
decoding instances on the same node, utilizing the NVLINK,
which is commonly available inside a GPU node. For large
models, e.g. with 175B parameters (350GB), we may be un-
able to even host a single pair of prefill and decoding instances
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in an 8-GPU node (80G× 8 = 640G < 350× 2GB). We in-
corporate this as additional placement constraints and co-
optimize it with model parallelism, presented in Algorithm 2.

The key insight is that KV cache transfer occurs exclu-
sively between corresponding layers of prefill and decoding
instances. Leveraging inter-op parallelism, we group layers
into stages and divide each instance into segments, termed
as instance segments, with each segment maintaining one
specific inter-op stage. By colocating prefill and decoding
segments of the same stage within a single node, we force
the transfer of intermediate states to occur only via NVLINK.
Inside a node, we set the same parallelism and resource allo-
cation for segments of the same instance. Given the typical
limitation of GPUs per node (usually 8), we can enumerate
possible configurations inside one node and use the simulator
to identify the configurations that yield the best goodput.

As outlined in Algorithm 2, we begin by enumerating inter-
op parallelism degrees to get all the possible instance seg-
ments. For each segment, we get all possible intra-node paral-
lelism configurations by calling get_intra_node_configs.
Then we use simulation to find the optimal one and replicate
it to satisfy the target traffic rate.

4.3 Online scheduling
The runtime architecture of DistServe is shown in Figure 6.
DistServe operates with a simple FCFS scheduling policy.
All incoming requests arrive at a centralized controller, then
dispatched to the prefill instance with the shortest queue for
prefill processing, followed by dispatch to the least loaded de-
coding instance for decoding steps. This setup, while simple,
is optimized with several key enhancements tailored to the
nuances of real-world workloads.

Reducing pipeline bubbles. To mitigate the pipeline bubbles
caused by non-uniform prompt lengths (§3.3), we schedule
the requests in a way that balances the execution time across
all batches in the pipeline. This is achieved by noting that,
for both prefill and decoding instances, the number of new
tokens in the batch is a reliable indicator of the batch’s real
execution time. For prefill instances, we profile the target
model and GPU to figure out the shortest prompt length Lm
needed to saturate the GPU. We schedule prefill batches with a
total sequence length close to Lm, by either batching multiple
requests shorter than Lm or individually scheduling requests
longer than Lm. For decoding instances, we set Lm as the
largest batch size.

Combat busrtiness. Burstiness in workloads can cause a
deluge of KV caches to transfer from prefill to decoding in-
stances, risking memory overload on decoding instances. To
circumvent this, DistServe employs a “pull” method for KV
cache transmission rather than a “push” approach – decoding
instances fetch KV cache from prefill instances as needed, us-
ing the GPU memory of prefill instances as a queuing buffer.
This way, the prefill instance can continue handling other
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Figure 6: DistServe Runtime System Architecture

prefill jobs by simply retaining the KV Cache in the GPU
memory after processing the prompt. Hence, each type of in-
stance operates at its own pace without complex coordination.

Replaning. The resource and parallelism plan in DistServe is
optimized for a specific workload pattern, which may become
suboptimal if the workload pattern changes over time. Dist-
Serve implement periodic replanning. A workload profiler
monitors key parameters such as the average input and output
length of the requests, the average arrival rate, etc. If a signif-
icant pattern shift is detected, DistServe will trigger a rerun
of the placement algorithm based on recent historical data.
This process is expedient – the proposed algorithm runs in
seconds (§6.5) and reloading LLM weights can be completed
within minutes – far shorter than the hourly scale at which
real-world workload variations tend to occur.

Preemption and fault tolerance. DistServe does not imple-
ment advanced runtime policies like preemption [26] and
fault tolerance [58], which are complementary to disaggre-
gation. Nevertheless, we discuss how they fit into DistServe.
In DistServe, the FCFS policy can lead to a “convoy effect”,
where longer requests block shorter ones in the prefill stage.
Incorporating preemptive strategies, as suggested in existing
literature [53], could enhance efficiency and is feasible within
our system’s architecture. While not a primary focus in the
current DistServe, fault tolerance is a critical aspect for con-
sideration. In traditional colocation- and replication-based
systems, a fault in one instance typically does not disrupt
other replica instances. However, in DistServe, the depen-
dency between prefill and decoding instances introduces the
risk of fault propagation. For example, a fault in a single de-
coding instance mapped to multiple prefill instances could
potentially cripple the entire service and cluster. We leave
both as future work.

5 Implementation
DistServe is an end-to-end distributed serving system for
LLMs with a placement algorithm module, a RESTful API
frontend, an orchestration layer, and a parallel execution en-
gine. The algorithm module, frontend, and orchestration layer
are implemented with 6.5K lines of Python code. The par-
allel execution engine is implemented with 8.1K lines of
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Application Model Size TTFT TPOT Dataset

Chatbot OPT-13B 26GB 0.25s 0.1s ShareGPT [8]
Chatbot OPT-66B 132GB 2.5s 0.15s ShareGPT [8]

Chatbot OPT-175B 350GB 4.0s 0.2s ShareGPT [8]
Code Completion OPT-66B 132GB 0.125s 0.2s HumanEval [14]
Summarization OPT-66B 132GB 15s 0.15s LongBench [13]

Table 1: Workloads in evaluation and latency requirements.
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Figure 7: The input and output length distributions of (a)
ShareGPT, (b) HumanEval, and (c) LongBench datasets.

C++/CUDA code.
The placement algorithm module implements the algorithm

and the simulator mentioned in §4 which gives the placement
decision for a specific model and cluster setting. The fron-
tend supports an OpenAI API-compatible interface where
clients can specify the sampling parameters like maximum
output length and temperature. The orchestration layer man-
ages the prefill and decoding instances, responsible for request
dispatching, KV cache transmission, and results delivery. It
utilizes NCCL [6] for cross-node GPU communication and
asynchronous CudaMemcpy for intra-node communication,
which avoids blocking the GPU computation during transmis-
sion. Each instance is powered by a parallel execution engine,
which uses Ray [35] actor to implement GPU workers that
execute the LLM inference and manage the KV Cache in
a distributed manner. It integrates many recent LLM opti-
mizations like continuous batching [54], FlashAttention [20],
PagedAttention [32] and supports popular open-source LLMs
such as OPT [56] and LLaMA [51].

6 Evaluation

In this section, we evaluate DistServe under different sizes
of LLMs ranging from 13B to 175B and various applica-
tion datasets including chatbot, code-completion, and sum-
marization. The evaluation shows that DistServe consistently
outperforms the current state-of-the-art system across all the
settings (§6.2). Specifically, DistServe can handle up to 7.4×
higher rates and 12.6× more stringent SLO while meeting
the latency requirements for over 90% requests. Addition-
ally, we analyze the latency breakdown in DistServe to show
the communication overhead is insubstantial thanks to our
bandwidth-aware placement algorithm (§6.3) and do abla-
tion studies of our techniques (§6.4). Finally, we profile the
execution time of our placement algorithm (§6.5).

6.1 Experiments Setup
Cluster testbed. We deploy DistServe on a cluster with 4
nodes and 32 GPUs. Each node has 8 NVIDIA SXM A100-
80GB GPUs connected with NVLINK. The cross-node band-
width is 25Gbps. Due to the limited cross-node bandwidth,
we use the low node-affinity placement algorithm (§2) for
DistServe in most of the experiments except for the ablation
study (§6.4) which uses simulation.

Model and workloads setup. Similar to prior work on LLM
serving [32], we choose the OPT [56] model series, which
is a representative LLM family widely used in academia and
industry. Newer GPT model families are adopting memory-
efficient attention mechanisms like GQA [10] and MQA [44].
DistServe will show better performance on these models be-
cause the transmission overhead is lower due to the decrease
in KV cache size. We choose OPT which uses the classic
MHA [52] to put enough pressure on the transmission over-
head. We use FP16 precision in all experiments. For work-
loads, as shown in Table 1, We choose three typical LLM
applications and set the SLOs empirically based on their ser-
vice target because there exists no available SLO settings for
these applications as far as we know. For each application,
we select a suitable dataset and sample requests from it for
evaluation. Since all the datasets do not include timestamps,
we generate request arrival times using Poisson distribution
with different request rates. Due to the space limit, we test the
chatbot workload on all three OPT models and the other two
workloads on OPT-66B, which matches the largest size in the
recent open-source LLM series [51].
• Chatbot [1]: We use the ShareGPT dataset [8] for the

chatbot application, which is a collection of user-shared
conversations with ChatGPT. For OPT-13B, the TTFT SLO
is set to 0.25s for responsiveness and the TPOT SLO is
set to 0.1s which is higher than the normal human read
speed. For OPT-66B and OPT-175B, we slightly relax the
two SLOs due to the increase in model execution latency.

• Code completion [14]: We use the HumanEval [14] dataset
for the code completion task. It includes 164 programming
problems with a function signature or docstring which is
used to evaluate the performance of code completion mod-
els. Since the code completion model is used as a personal
real-time coding assistant, we set both SLOs to be stringent.

• Summarization [5]: It is a popular LLM task to generate
a concise summary for a long article, essay, or even an
academic paper. We use LongBench [13] dataset which
contains the summarization task4. As shown in Figure 7,
LongBench has much longer input lengths than the other
two datasets. So we set a loose TTFT SLO but require a
stringent TPOT.

Metrics. We use SLO attainment as the major evaluation met-
ric. Under a specific SLO attainment goal (say, 90%), we are

4We capped the input lengths in LongBench because OPT’s absolute
positional embedding only supports a maximum length of 2048.
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Figure 8: Chatbot application with OPT models on the ShareGPT dataset.

concerned with two things: the maximum per-GPU goodput
and the minimal SLO the system can handle. We are partic-
ularly interested in an SLO attainment of 90% (indicated by
the vertical lines in all curve plots), but will also vary the
rate and latency requirements to observe how the SLO attain-
ment changes. We also include the results in the Appendix for
an SLO attainment of 99% to show the system performance
under a more stringent SLO attainment target.

Baselines. We compare DistServe to two baseline systems:
• vLLM [32]: vLLM is a representative LLM serving sys-

tem widely used in both academia and industry. It sup-
ports continuous batching [54] to increase throughput and
paged-attention [32] to reduce memory fragmentation dur-
ing KV cache allocation. However, it colocates the prefill
and decoding computation to maximize the overall system
throughput and struggles to meet the latency requirements
cost-efficiently. Since vLLM only supports intra-op paral-
lelism, we follow previous work [32] to set intra-op equals
1, 4, and 8 for the three OPT models, respectively.

• DeepSpeed-MII [3]: DeepSpeed Model Implementations
for Inference (MII) supports chunked-prefill by decompos-
ing long prompts into smaller chunks and composing with
short prompts to exactly fill a target token budget. It miti-
gates but cannot eliminate the prefill-decoding interference
caused by the long prefill job. We set its intra-op the same
as vLLM for OPT-13B and OPT-66B for a fair comparison.
However, DeepSpeed-MII cannot serve OPT-175B whose
vocab_size = 50272 because its underlying kernel imple-
mentation requires vocab_size/intra_op is a multiple of
8 where intra-op equals 8 does not satisfy. Setting intra-
op equals 4 can satisfy this requirement but will cause the
out-of-memory issue.

6.2 End-to-end Experiments
In this Section, we compare the end-to-end performance of
DistServe against the baselines on real application datasets.

Chatbot. We evaluate the performance of DistServe on the
chatbot application for all three OPT models. The first row
of Figure 8 illustrates that when we gradually increase the
rate, more requests will violate the latency requirements and
the SLO attainment decreases. The vertical line shows the
maximum per-GPU rate the system can handle to meet latency
requirements for over 90% of the requests.

On the ShareGPT dataset, DistServe can sustain 2.0×–
4.6× higher request rate compared to vLLM. This is because
DistLLM eliminates the prefill-decoding interference through
disaggregation. Two phases can optimize their own objec-
tives by allocating different resources and employing tailored
parallelism strategies. Specifically, by analyzing the chosen
placement strategy5 for 175B, we find the prefill instance
has inter-op = 3, intra-op = 3; and the decoding instance has
inter-op = 3, intra-op = 4. Under this placement, DistServe
can effectively balance the load between the two instances on
ShareGPT, meeting latency requirements at the lowest cost.
This non-trivial placement strategy is challenging to manu-
ally find, proving the effectiveness of the algorithm. In the
case of vLLM, collocating prefill and decoding greatly slows
down the decoding phase, thereby significantly increasing
TPOT. Due to the stringent TPOT requirements of chatbot
applications, although vLLM meets the TTFT SLO for most
requests, the overall SLO attainment is dragged down by a
large number of requests that violate the TPOT SLO. Com-
pared to DeepSpeed-MII, DistServe can sustain 1.6×–7.4×
higher request rate. DeepSpeed-MII shows better performance

5All the placements chosen by DistServe can be found in Appendix B.
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Figure 9: Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.

on larger models because the prefill job is larger and chunked-
prefill mitigates the interference to some extent. However,
due to the reasons discussed in §2.3, chunked prefill is slower
than full prefill, so it struggles to meet the TTFT SLO as a
sacrifice for better TPOT.

The second row of Figure 8 indicates the robustness to
the changing latency requirements of the two systems. We
fix the rate and then linearly scale the two latency require-
ments in Table 1 simultaneously using a parameter called
SLO Scale. As SLO Scale decreases, the latency requirement
is more stringent. We aim to observe the most stringent SLO
Scale that the system can withstand while still achieving the
attainment target. Figure 8 shows that DistServe can achieve
1.8×–3.2× more stringent SLO than vLLM and 1.7×–1.8×
more stringent SLO than DeepSpeed-MII, thus providing
more engaging service quality to the users.

Code completion. Figure 9(a) shows the performance of
DistServe on the code completion task when serving OPT-
66B. DistServe can sustain 5.7× higher request rate and 1.4×
more stringent SLO than vLLM. Compared to DeepSpeed-
MII, DistServe can sustain 1.6× higher request rate and 1.4×
more stringent SLO. As a real-time coding assistant, the code
completion task demands lower TTFT than chatbot, this leads
to both systems ultimately being constrained by the TTFT
requirement. However, in comparison, by eliminating the in-
terference of the decoding jobs and automatically increasing
intra-operation parallelism in prefill instances through the
searching algorithm, DistServe reduces the average latency
of the prefill jobs, thereby meeting the TTFT requirements of
more requests.

Summarization. Figure 9(b) shows the performance of Dist-
Serve on the summarization task when serving OPT-66B.
DistServe achieves 4.3× higher request rate and 12.6× more
stringent SLO than vLLM. Compared to DeepSpeed-MII,
DistServe achieves 1.8× higher request rate and 2.6× more
stringent SLO. The requests sampled from LongBench dataset
have long input lengths, which brings significant pressure to
the prefill computation. However, due to the loose require-
ment of TTFT for the summarization task, the TPOT service
quality becomes particularly important. Since vLLM collo-
cates prefill and decoding phases, it experiences a greater
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Figure 10: Left: Latency breakdown when serving OPT-175B
on ShareGPT dataset with DistServe. Right: The CDF func-
tion of KV Cache transmission time for three OPT models.

slowdown in the decoding phase with long prefill jobs and
fails to meet the TPOT requirement.

The results above are all under the 90% SLO attainment
target. We observe that DistServe can have better perfor-
mance under a more stringent attainment target (say, 99%)
and present the results in Appendix C.

6.3 Latency Breakdown
To understand DistServe’s performance in detail, we make a
latency breakdown of the requests in DistServe. We divide the
processing lifecycle of a request in DistServe into five stages:
prefill queuing, prefill execution, transmission, decoding queu-
ing, and decoding execution. The total time consumed by all
requests in each stage is then summed up to determine their
respective proportions in the system’s total execution time.

Figure 10(a) shows the latency breakdown for the OPT-
175B models on the ShareGPT dataset. We chose OPT-175B
because the KV Cache transmission is more demanding for
larger models. In fact, even for OPT-175B, the KV Cache
transmission only accounts for less than 0.1% of the total
latency. Even by examining the CDF of the absolute transmis-
sion time shown in Figure 10(b), we observe that over 95%
of requests experience a delay of less than 30ms, despite our
testbed having only limited cross-node bandwidth. This is due
to the algorithm described in §4.2, where we require the prefill
and decoding instance to maintain the same stage on one ma-
chine, enabling the use of intra-node NVLINK bandwidth for
transmission, thus significantly reducing transmission delay.
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Rate
(req/s)

vLLM DistServe-Low
Real System Simulator Real System Simulator

1.0 97.0% 96.8% 100.0% 100.0%
1.5 65.5% 65.1% 100.0% 100.0%
2.0 52.8% 51.0% 99.3% 99.3%
2.5 44.9% 46.1% 87.3% 88.3%
3.0 36.7% 38.3% 83.0% 84.1%
3.5 27.8% 28.0% 77.3% 77.0%
4.0 23.6% 24.1% 70.0% 68.9%

Table 2: Comparison of the SLO attainment reported by the
simulator and the real system under different rates.
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Figure 11: Ablation experiments.

6.4 Ablation Studies
We study the effectiveness of the two key innovations in
DistServe: disaggregation and the placement searching algo-
rithm. In §6.2, we choose the default parallelism setting for
vLLM following its original paper [32]. So we implement
"vLLM++" which enumerates different parallelism strategies
and chooses the best. For DistServe, We also compare the
placement found by Alg. 2 (DistServe-Low) with the one
found by Alg. 1 (DistServe-High) which has fewer searching
constraints and assumes high cross-node bandwidth. Since
vLLM does not support inter-op parallelism and our physi-
cal testbed does not have high cross-node bandwidth, we use
simulation for this experiment.

Simulator accuracy. Noticing that DNN model execu-
tion [24] has high predictability, even under parallel set-
tings [33, 59]. We study the accuracy of the simulator in
Tab. 2. For "vLLM" and "DistServe-Low", we compare the
SLO attainment reported by the simulator and by real runs on
our testbed under different rates. The error is less than 2% in
all cases, verifying the accuracy of our simulator.

Results. Figure 11 shows the performance of the four systems
when serving OPT-66B on the ShareGPT dataset. "vLLM++"
has the same performance as "vLLM" because we find the
default parallelism setting (intra-op=4) has the best per-
GPU goodput. This further demonstrates the importance
of disaggregation. The interference between the prefill and
decoding phases significantly reduces the potential perfor-
mance improvement through adjusting parallelism. In con-
trast, "DistLLM-High" can achieve further improvements over
"DistLLM-Low" because it is not constrained by the deploy-
ment constraint that the prefill and decoding instance on one
node should share the same model stage. Through disaggre-
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Figure 12: Algorithm Running Time

gation, we can use tailored parallelism strategies for prefill
and decoding instances and optimize their targets without the
coupling effects.

6.5 Algorithm Running Time
Figure 12 shows the running time for Alg. 1 (DistServe-Low)
and Alg. 2 (DistServe-High) on an AWS m5d.metal instance
with 96 cores as the number of GPUs (N×M) provided to a
single instance increases. According to the results, DistServe
scales well with the number of GPUs and is independent of
the model size. This is because the simulator only simulates
discrete events and the running time is the same no matter
how big the model is. On the other hand, both algorithms are
highly parallelizable, as the searches for different parallelism
strategies are independent of each other, allowing the execu-
tion time of the algorithms to accelerate almost linearly with
more CPU cores.

As the number of GPUs increases, the execution time of
"Dist-Low" becomes higher than that of "Dist-High". This is
because the search for parallelism strategies for prefill and
decoding instances in "Dist-High" is independent and can
be parallelized. But for "Dist-Low", due to additional restric-
tions on deployment, we need to enumerate all the possible
intra-node parallelism combinations for prefill and decoding
instances. Even so, the execution time of the algorithm is in
minutes, and since it only needs to be executed once before
each redeployment, this overhead is acceptable.

7 Discussion
In this paper, we focus on the goodput-optimized setting and
propose DistServe under the large-scale LLM serving sce-
nario. As LLMs are widely used and deployed across vari-
ous service scenarios with different optimization targets and
resource limits, it becomes almost impossible to find a one-
size-fits-all solution that effectively addresses all aspects of
LLM serving. In this section, we discuss the pros and cons of
DistServe and potentially better solutions in other scenarios.

Throughput-optimized scenarios. In offline applications
that are not latency-sensitive, users typically have lower re-
quirements for response time [45]. This allows serving sys-
tems to shift focus towards maximizing overall throughput
instead of goodput and the effectiveness of DistServe may be
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compromised. In this case, techniques such as chunked-prefill
with piggyback [3, 9] may be preferred since it can fill each
batch to the compute-bound threshold, thereby maintaining
higher GPU utilization in every iteration.

Resource-constrained scenarios. Small-scale enterprises
and individual researchers often lack the resources to deploy
LLMs on large-scale clusters [45,48]. In resource-constrained
scenarios, such as environments with only a few or even a
single GPU, the design space for DistServe is significantly
limited. It struggles or even fails to adjust the parallel strate-
gies and resource allocation to effectively enhance serving
performance. In this case, simpler architectural choices like
non-disaggregated systems [3, 32] may reduce deployment
complexity and optimize operational efficiency.

Long-context scenarios. Nowadays, more and more GPT
models support extremely long contexts, such as Claude-
3 [11], Gemini-1.5 [22], and Large World Model (LWM) [34],
which all have a 1M context window. In such scenarios, the
transmission overhead will increase as the size of the KV
cache grows linearly with the prompt length. However, the
prefill computation grows quadratically, so the relative dura-
tion of transmission and prefill job decreases. Meanwhile, a
longer context further exacerbates the disparity in computa-
tional demands between prefill and decoding jobs, leading to
increased interference between them. Therefore, the disaggre-
gation approach proposed in DistServe remains promising in
long-context serving.

8 Related Work

Inference serving. There has been plenty of work on in-
ference serving recently. They range from general-purpose
production-grade systems like TorchServe [7] and NVIDIA
Triton [19] to systems optimized specifically for Transformer-
based LLMs [9, 18, 21, 33, 50, 53, 54, 60]. Among them,
Orca [54] introduces continuous batching to increase through-
put. vLLM [32] proposes paged-attention for fine-grained
KV cache management. SARATHI [9] suggests a chunked-
prefill approach, splitting a prefill request into chunks and
piggybacking decoding requests to improve hardware utiliza-
tion. FastServe [53] implements iteration-level preemptive
scheduling to mitigate the queuing delay caused by long jobs.
However, they all employ a colocation approach for prefill
and decoding processing, thus leading to severe interference.
There are also concurrent works such as Splitwise [38], Tetri-
Infer [27] and DéjàVu [49] which adopt similar disaggregation
idea to optimize LLM inference, further confirming the ef-
fectiveness of this method. Differently, DistServe emphasizes
the goodput optimization scenario more and takes a closer
look at the aspect of network bandwidth.

Goodput-optimized systems. Optimizing goodput is a hot
topic in DL applications. Pollux [39] improves scheduling
performance in DL clusters by dynamically adjusting re-
sources for jobs to increase cluster-wide goodput. Sia [29]

introduces a heterogeneous-aware scheduling approach that
can efficiently match cluster resources to elastic resource-
adaptive jobs. Clockwork [23] and Shepherd [55] provide
latency-aware scheduling and preemption to improve the serv-
ing goodput, but they only target traditional small models.
AlpaServe [33] focuses on LLMs, employing model paral-
lelism to statistically multiplex the GPU execution thus im-
proving the resource utilization. However, it only targets the
non-autoregressive generation. DistServe is the first work to
optimize the goodput for autoregressive LLM inference.

Resource disaggregation. Resource disaggregated sys-
tems [17, 25, 43] decouple the hardware resources from the
traditional monolithic server infrastructure and separate them
into resource pools to manage independently. It allows for
more flexible, efficient, and scalable deployment and increases
resource utilization. Many applications benefit from a truly
disaggregated data center with high-speed network bandwidth
and heterogenous hardware support [12, 30, 57]. DistServe
shares the concept by disaggregating its system components,
allowing for independent resource scaling and management.

Model parallelism for training. DistServe is orthogonal
to the large body of work on model parallelism in train-
ing [28,36,40,46,59]. As described in §3.3, inference-serving
workloads have unique characteristics not found in training
settings. Where these systems do intersect with DistServe, is
in their methods for implementing model parallelism along
various dimensions. DistServe can integrate new parallelism
optimizations into its placement searching algorithm.

9 Conclusion
We present DistServe, a new LLM serving architecture that
disaggregates the prefill and decoding computation. DistServe
maximizes the per-gpu goodput – the maximum request rate
that can be served adhering to the SLO attainment goal for
each GPU provisioned, hence resulting in up to 7.4× lower
cost per LLM query with guaranteed satisfaction of SLOs.
Our findings affirm that as latency becomes an increasingly
important metric for LLM services, prefill and decoding dis-
aggregation is a vital strategy in promising improved perfor-
mance and service quality guarantees.
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A Latency Model for LLM Inference
To accurately simulate the goodput of different placement
strategies, we use an analytical model to predict the execution
time of the prefill and decoding phases in LLM inference.

In modern LLM serving systems [18, 32, 53], memory-
bound operations like Softmax and LayerNorm are usually
fused with matrix multiplication kernels for efficiency. Thus
the GEMMs dominate the overall latency and our analysis
primarily focuses on them.

A.1 Symbol Definition
Here are symbols related to the architecture of the model:

• h: hidden size
• n: number of heads
• s: head size (h = n · s)
• m: FFN intermediate size
Note: If tensor parallelism is used, h, n, and m should be

divided by the tensor parallelism size.
Below are symbols that characterize the batch to be exe-

cuted:
• B: batch size
• l0, l1, . . . , lB−1: input length of each request within the

batch
• t: number of tokens in the batch, (t = ∑

B−1
i=0 li)

• t2: squared sum of the input lengths (t2 = ∑
B−1
i=0 l2

i )
• b: block size in the attention kernel. This parameter is

used in FlashAttention [20], a common kernel optimiza-
tion technique adopted by current LLM serving systems.

A.2 Prefill Phase Latency Modeling
Since the attention operation uses specially optimized kernels,
we first discuss the other four matrix multiplications in the
prefill phase:

GEMM Name Shape of M Shape of N
QKV Linear (t,h) (h,3h)
Attn Output (t,h) (h,h)
FFN Input (t,h) (h,m)

FFN Output (t,m) (m,h)

The arithmetic intensity (AI) of these operations is O(t).
On NVIDIA A100-80GB GPU, it is compute-bound when AI
is over 156. Since t usually can reach several hundred in real
cases, all of these operations are compute-bound. Therefore,
we can model the latency of these operations according to the
total FLOPs:

T1 =C1 · (4th2 +2thm)

Next, we discuss the prefill attention operation with
FlashAttention [20] optimization. Since the attention only
operates among the tokens in the same request, current im-
plementations launch attention kernels for each request in
the same batch. For one attention head and a request with

l tokens, the attention kernel needs to perform a total of
2sl+3sl · (l/b)≈ 3sl · (l/b) memory reads and writes, along-
side 2sl2+sl(l/b)≈ 2sl2 FLOPs. So the AI is 2b/3= 10.677
(when b = 16) or 21.333 (when b = 32), indicating that it is
a memory-bound operation on A100 GPU. Therefore, the
whole attention layer latency (including all requests and all
heads) can be modeled as:

T2 =C2 ·n ·
B−1

∑
i=0

3sl2
i

b
=C2 ·

3nst2
b

=C2 ·
3ht2

b

Overall, the latency of the prefill phase can be modeled as:

TPre f ill =C1 · (4th2 +2thm)+C2 ·
3ht2

b
+C3

We use C3 to quantify other overheads like Python Run-
time, system noise, and so on. Then we use profiling and
interpolation to figure out the values of C1, C2, and C3.

A.3 Decoding Phase Latency Modeling
Similarly, we first focus on the following GEMMs in the
decoding phase:

GEMM Name Shape of M Shape of N
QKV Linear (B,h) (h,3h)
Attn Output (B,h) (h,h)
FFN Input (B,h) (h,m)

FFN Output (B,m) (m,h)

The AI of these operations is O(B). B is limited by the GPU
memory size and stringent latency requirements, so in existing
serving scenarios, these operations are memory-bound. The
total memory reads and writes is 8Bh+ 4h2 + 2hm+ 2Bm,
and since h and m are usually significantly larger than B, we
can model the latency as:

T3 =C4 · (4h2 +2hm)

As for the decoding attention operation, for one attention
head and a request with l generated tokens, it needs to per-
form 3sl memory reads and writes, alongside 2sl FLOPs. It
is memory-bound, so we can model the latency of decoding
attention as:

T4 =C5 ·n ·3s
B−1

∑
i=0

li =C5 ·3ht

Summing up, the latency of the decoding phase is:

TDecoding =C4 · (4h2 +2hm)+C5 ·3ht

Here we do not introduce the overhead term (like C3 in the
profiling stage) because 4h2 +2hm is already a constant, and
the overhead can be put into C4. Similarly, we use profiling
and interpolation to figure out the values of C4 and C5.
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Figure 13: Chatbot application with OPT models on the ShareGPT dataset.
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Figure 14: Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.

B DistServe Placements in End-to-end Experi-
ments

Table 3 shows the tensor parallelism (TP) and pipeline paral-
lelism (PP) configurations for prefill and decoding instances
chosen by DistServe in the end-to-end experiments §6.2.

Model Dataset Prefill Decoding
TP PP TP PP

OPT-13B ShareGPT 2 1 1 1
OPT-66B ShareGPT 4 1 2 2
OPT-66B LongBench 4 1 2 2
OPT-66B HumanEval 4 1 2 2

OPT-175B ShareGPT 3 3 4 3

Table 3: The parallelism strategies chosen by DistServe in the
end-to-end experiments.

C End-to-end Results under 99% SLO attain-
ment

Figure 13 and Figure 14 show the end-to-end performance
between DistServe and baselines with the same setup in §6.2
except that the SLO attainment goal is changed to 99%. We
can see that under a more stringent SLO attainment goal,
compared to vLLM, DistServe can still sustain 3×–8× higher
rate and 1.24×–6.67× more stringent SLO. When compared
to DeepSpeed-MII, DistServe can achieve 1.32×–8× higher
rate and 1.20×–1.58× more stringent SLO.
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