
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Using Dynamically Layered Definite Releases
for Verifying the RefFS File System

Mo Zou, Dong Du, and Mingkai Dong, Institute of Parallel and Distributed Systems,
SEIEE, Shanghai Jiao Tong University; Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China; Haibo Chen, Institute of Parallel
and Distributed Systems, SEIEE, Shanghai Jiao Tong University; Engineering Research

Center for Domain-specific Operating Systems, Ministry of Education, China;
Huawei Technologies Co. Ltd

https://www.usenix.org/conference/osdi24/presentation/zou

Using Dynamically Layered Definite Releases for Verifying the RefFS File System

Mo Zou1,2, Dong Du1,2, Mingkai Dong1,2, Haibo Chen1,2,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

3Huawei Technologies Co. Ltd

Abstract
RefFS is the first concurrent file system that guarantees

both liveness and safety, backed by a machine-checkable
proof. Unlike earlier concurrent file systems, RefFS prov-
ably avoids termination bugs such as livelocks and deadlocks,
through the dynamically layered definite releases specifica-
tion. This specification enables handling of general block-
ing scenarios (including ad-hoc synchronization), facilitates
modular reasoning for nested blocking, and eliminates the
possibility of circular blocking.

The methodology underlying the aforementioned specifi-
cation is integrated into a framework called MoLi (Modular
Liveness Verification). This framework helps developers ver-
ify concurrent file systems. We further validate the correctness
of the locking scheme for the Linux Virtual File System (VFS).
Remarkably, even without conducting code proofs, we uncov-
ered a critical flaw in a recent version of the locking scheme,
which may lead to deadlocks of the entire OS (confirmed
by Linux maintainers). RefFS achieves better overall perfor-
mance than AtomFS, a state-of-the-art, verified concurrent
file system without the liveness guarantee.

1 Introduction

This paper presents RefFS, a concurrent file system with a
mechanized proof of both safety and liveness properties. Live-
ness means that each operation of RefFS provably terminates
under the assumption of fair scheduling. The proof rules out a
wide range of bugs that occur in concurrent file systems [67],
such as deadlocks, livelocks, and infinite loops.

Proving the absence of termination bugs is important, be-
cause they are too subtle to be correctly handled by developers.
For instance [5], a task might not deadlock with another task
via a direct ABBA1 pattern, but instead through a complex
circular dependency chain involving multiple tasks. A wide
range of other termination bugs [54] occur, posing a threat to
the software system. Once triggered, these bugs can lead to
serious consequences, such as a system hang [16].

Testing and program analysis techniques (see §2 for more
detail) have been used to detect (a subclass of) termination
bugs. Although effective in practice, they cannot cover all
possible cases. Formal verification is a promising approach.
Researchers have made tremendous progress in concurrent

1One acquires locks in the order of AB while another in the order of BA.

file system verification [20, 101] and liveness verification [43,
56, 74]. Yet, modular liveness verification (focusing on one
operation or one line of code at a time) of concurrent file
systems remains an open problem.

In principle, proving liveness requires a well-foundedness
argument [2, 60], i.e., within a finite number of steps, some
progress event happens. For a sequential program, a well-
founded metric such as the remaining steps of the program
measures its progress [46, 66]. With each step, the metric
must decrease, but not infinitely. Hence, the program provably
terminates after running out the metric.

Unfortunately, proving liveness for a concurrent file sys-
tem still faces the following challenges. First, the approach
should support general blocking scenarios. A thread that is
blocked in a busy waiting loop (e.g., to acquire a lock) cannot
achieve progress by its own steps, but relies on the steps of
other threads (e.g., the thread owning the lock). We aim for
general busy waiting loops. This should be distinguished from
work [12, 48] that supports only lock primitives, ignoring ad-
hoc synchronization, which is common in file systems (see
§2).

Furthermore, it is important to support modular reasoning,
even though nested blocking causes progress dependencies
between threads. Consider the following case. An unlink
operation owns parent and requests child. Thread t1 that
tries to acquire parent is blocked by unlink, which itself
is blocked by another thread t2 that owns child. A metric
for t1’s progress towards acquiring parent would include
not only unlink’s steps to release parent, but also t2’s steps
to release child. The latter contributes to t1’s progress in-
directly. Explicitly considering such indirect steps hampers
modularity. This issue becomes more pronounced with more
threads chained by nested blocking.

Last but not least, the approach should prevent circular
nested blocking. While an intuitive approach might specify a
static order for nested blocking, the complexity of file systems
introduces diverse and dynamic blocking order. On the one
hand, file systems exhibit diverse nested blocking scenarios,
with different blocking orders and concurrently executed by
multiple threads. On the other hand, these nested blocking
scenarios exhibit dynamic order, i.e., the exact rank of some
specific blocking event cannot be known statically. For in-
stance, the parent-child nested blocking of unlink refers to
a dynamic set of inode pairs as a file system evolves. Two
inodes with parent-child relation may swap their positions, ex-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 629

hibiting opposite orders in unlink. In rename, the blocking
order of old and new parents is also unknown in advance. To
avoid circular dependency, formally capturing the blocking
order is essential but extremely challenging.

To meet such challenges, this paper makes the following
contributions:

• A methodology for proving liveness, based on an acyclic
waits-for graph. A vertex refers to an action waited by a
blocked thread. The blocking thread must definitely fulfill
the action. A directed edge represents a waits-for depen-
dency between actions. To avoid circular dependencies,
the waits-for graph must be acyclic.

• The dynamically layered definite releases (DLDR) specifi-
cation, which supports modular liveness reasoning about
concurrent file systems, with the following key ideas. (1)
Definite release specifies that an acquired lock will always
be released. (2) It proves termination of ad-hoc busy wait-
ing lock loop based on a metric-decreasing idea. (3) We
assign each definite release a layer, and allow a definite
release to wait for only a higher-numbered one. Acquiring
a lock waits only for the definite release of the lock (direct
steps); layers decouple dependencies between definite re-
leases (indirect steps), achieving modular reasoning. (4)
The layering has two components: one follows the file
system hierarchy (a parent may wait for a child), which is
acyclic by definition; a temporary dependency models the
non-deterministic blocking order in rename, and ensures
acyclicity by construction.

• A protocol-level proof of Linux VFS’s locking scheme
based on an extension of the DLDR specification. The
proof follows the Linux directory locking documenta-
tion [29]. We found a serious deadlock flaw; it was con-
firmed and fixed (we prove the fix correct).

• The MoLi framework for verifying termination and func-
tional correctness of concurrent file systems. MoLi sup-
ports (1) definite releases with dynamic layers to achieve
modular termination reasoning, and (2) non-atomic ab-
stract operations to model non-atomic implementations.
The framework is mechanized in Coq to ensure the relia-
bility of the verification. Currently, MoLi does not support
crash safety. MoLi’s soundness has been formally proved
on paper (a mechanized Coq proof is left as future work).

• The RefFS file system, the first modularly-verified con-
current file system with termination guarantees. RefFS
supports highly concurrent path traversal using reference
counting (refcount) [30]. Users are not bothered by the
more fine-grained behaviors because the abstraction of
RefFS hides refcounts, locks, and internal data structures,
and exhibits atomic directory lookups.

The rest of this paper is organized as follows. §2 motivates
this work with a study of termination bugs. §3 explains the

MoLi methodology. §4 introduces the DLDR specification
and its extension to directory locking in Linux. §5 describes
the MoLi framework. §6 presents RefFS’s design and veri-
fication. §7 evaluates RefFS and MoLi. §8 relates MoLi to
previous work. §9 concludes.

2 Motivation

2.1 Study of Termination Bugs

Termination bugs cover a wide range, from non-concurrent
ones (such as infinite loops) to concurrent ones (such as dead-
locks and livelocks). A recent survey [16] on security vul-
nerabilities in file systems shows that about 7% of CVEs are
related to non-termination. A prior study [67] on file system
patches reveals that up to 40% of concurrency bugs are due to
deadlocks. Deadlock-related semantic bugs are hard to diag-
nose, e.g., misuse of the GFP_KERNEL flag [70], and may hurt
the system for years.

From a verification perspective, this raises several impor-
tant questions: (1) How can one classify these bugs based on
the challenges they pose for verification? (2) What are the
primary classes of termination bugs? (3) What makes these
bugs dominant and challenging to avoid? Answering these
questions can help focus our verification efforts. Therefore,
we performed a comprehensive study of termination bugs in
Linux file systems (from 2020 to 2023). We collected 213
bugs in total by reading commit messages of patches [54]. We
make the following observations.

Bug classification. Termination bugs can be classified based
on whether they are concurrency bugs or not. 18% of termina-
tion bugs are non-concurrent. They include infinite loops
or recursion, due mainly to logic mistakes (e.g., missing
checks [82]) or generic errors (e.g., inappropriate trunca-
tion [42] or overflow [94]). 82% of termination bugs are
concurrent. Within concurrent bugs, 95% of them are dead-
locks and 5% are livelocks. Deadlock occurs when a thread
becomes blocked, waiting for a specific action that never hap-
pens, and none of the involved threads can make progress.
In livelock, a thread is constantly delayed, resulting in an
inability to make progress.

Let us now look into deadlocks to understand the underly-
ing factors contributing to their prevalence.

Ad-hoc synchronization. 46% of deadlocks (all percentages
hereafter are relative to deadlocks) involve ad-hoc synchro-
nization, where a thread is waiting for a specific event, such
as transaction completion [11], flushing of dirty inodes [9],
or other custom synchronization points [76, 90]. Deadlock
analysis tools commonly focus on well-known and structured
synchronization patterns, e.g., lock acquisition and release,
but ad-hoc synchronization often lacks such patterns, which
makes it challenging to analyze and detect.

Nested blocking. 21% of deadlocks are of type AA, where

630 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a thread is blocked by itself [25, 72]. The remaining 79%
involve nested blocking. Nested blocking occurs when a task
that is blocking another task, gets blocked itself. For instance,
nested acquisition of locks may cause nested blocking. 42%
of deadlocks involve both nested blocking and ad-hoc syn-
chronization [1, 24]. 23% of deadlocks involve at least three
concurrent tasks [4, 7]. To prevent such bugs, it is necessary
to examine, not only the local blocking order, but also the
absence of global, circular dependencies within the system.
However, existing approaches often fail to present a global
order of dependencies, hampering the ability to detect such
deadlocks effectively.

Dynamic order. 8% of deadlocks exhibit a dynamic block-
ing order, where the exact order between two blocking
events cannot be predetermined. For instance, object removal
(unlink/rmdir) acquires inode locks in a parent-child order,
with the definitions of “parent” and “child” based on the cur-
rent state of the file tree. As the file tree evolves, the set of
inode pairs that satisfy this parent-child relationship dynami-
cally changes. Similarly, many other data structures, such as
the forest structure in BTRFS and various list implementa-
tions, also exhibit dynamic blocking order. These scenarios
further contribute to the complexity of the issue. Even for ex-
perts in the domain, mistakes still occur [10,86,87], highlight-
ing the difficulty of effectively managing these complexities.

To summarize, this paper focuses primarily on addressing
the deadlock-related challenges in file systems, i.e., ad-hoc
synchronization (§4.1), nested blocking (§4.2), and dynamic
order (§4.3). We briefly discuss the support for livelocks
(§4.5) and non-concurrent bugs (§5.3).

2.2 Limitations of Previous Work
There are a number of program-analysis-based techniques that
aim at detecting deadlock [51, 91], livelock [13] or infinite
loop [15,17] respectively. Although effective in practice, their
common problem is false positives. Programmers still have
to manually confirm or reproduce the bug.

Various fuzzing-based testing tools [38, 50] can also re-
veal termination bugs. However, they and previous program-
analysis tools cannot avoid false negatives.

For instance, the Linux kernel has a runtime validator to
check locking correctness [31]. Users inform the validator of
the hierarchy (a fixed order) between lock objects. This has
the following drawbacks. First, the validator does not recog-
nize ad-hoc synchronization. Second, it does not provide a
general principle on how to handle dynamic locking order,
whose hierarchy cannot be predetermined. Third, the annota-
tions by developers may be wrong or insufficient, giving rise
to both false positives [95] and false negatives.

Some efforts support deadlock-freedom (DF) verifica-
tion [12, 48, 62, 93]. They track dependencies between block-
ing primitives to prevent circular blocking. This approach
treats deadlock-freedom as a safety property, and does not

A thread is

blocked

D0

D1

Lower-

numbered

D2

Fulfill to

unblock

Wait

for

D

D’
Higher-

numbered

(a) Definite action
(b) Waits-for

dependency

(c) Waits-for graphs

for different states

Definite action

State S1

D1D2

State S2

Wait for

Figure 1: The MoLi methodology for proving termina-
tion. Waits-for graph consists of definite actions (vertices)
and waits-for dependencies (edges). In (c), the dependencies
between D1 and D2 are different at different states.

prevent livelocks or non-termination of critical sections. They
often assume known lock primitives, and do not apply to
ad-hoc synchronization.

Some of these DF efforts [14,61] also have limited support
for dynamic lock orders. They consider only situations where
a lock order change has local effects, i.e., it suffices to locally
check some ordering constraints of the current operation to
ensure acyclicity, without considering concurrent operations.
For instance, for a rotation of a balanced tree, it suffices to
check only the relations between the moved nodes, to ensure
a global tree-based partial order. However, in a file system,
it is necessary to check the absence of circular dependen-
cies globally after the order change, which requires nontrivial
concurrency reasoning (see §4.3 for more detail).

There is theoretical work [32, 64] to help reason about gen-
eral blocking scenarios. LiLi [64] proposes a program logic
to support the verification of starvation freedom and deadlock
freedom. But LiLi does not support layered reasoning (see
§4.2), and thus does not allow modular reasoning over nested
blocking (i.e., verifying each line of code independently).
TaDA Live [32] introduces layers to capture blocking orders,
but it does not support layer changes caused by concurrent
operations. Neither TaDA Live nor LiLi has a mechanical
framework or an executable implementation.

3 The MoLi Methodology

Our approach to proving liveness is to exhibit an acyclic waits-
for graph. A vertex is an action that a blocked thread is waiting
for. A directed edge represents a waits-for dependency be-
tween actions. The waits-for graph shrinks as follows (we will
discuss its growth in §4.5). Vertices with out-degree zero (not
waiting for anything) must be unblocked to be removed from
the graph. New vertices become leaves and are unblocked.
Consequently, all waited actions eventually happen, creating
progress for the blocked threads. Below, we discuss how this
approach handles the challenges of file systems.

To support general blocking scenarios, MoLi borrows ideas
from previous work [64]: a thread t is blocked when another

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 631

thread does not fulfill the unblocking action that t is waiting
for (e.g., releasing the lock or finishing the transaction); thus,
the specification should describe actions that one thread will
definitely fulfill (Fig. 1a). All such definite actions should be
specified by proof authors, and constitute the vertices of the
waits-for graph (Fig. 1c).

In nested blocking, a definite action, e.g., releasing lock L1
by thread t, gets blocked and waits for another definite action,
e.g., releasing lock L2 by another thread. We represent this
waits-for dependency as a directed edge. To capture acyclic-
ity, MoLi requires proof authors to layer vertices so that a
vertex only waits for a higher-numbered vertex (Fig. 1b). For
instance, proof authors can define the layers as the reverse
topological order of the waits-for graph.

To capture the dynamic order of nested blocking, MoLi
allows to define layers dynamically according to the system
state. For instance (Fig. 1c), definite action D1 waits for D2
in one state, while this dependency may be the opposite in a
different state. The layers reflect the waits-for dependencies
of the current state.

To ensure acyclicity despite layer changes, MoLi enforces a
dependency condition on layers: for any ongoing dependency
between definite actions, their layer relation represents this
dependency and stays unchanged despite state changes. For
instance, as long as definite action D1 waits for D2, the layer
of D1 must remain less than D2 despite state changes. Be-
cause all ongoing dependencies are immune to state changes,
the system is never in danger of circular dependency.

We now explain in more detail how to apply this methodol-
ogy to a concurrent file system.

4 Dynamically Layered Definite Releases

Directory locking refers to the locking scheme used for di-
rectory operations. Ensuring its correctness is important yet
challenging. We tackle the challenges by introducing the dy-
namically layered definite releases specification (§4.1-4.3).
Then, we apply the specification to the Linux Virtual File
System (VFS) (§4.4) and discuss how to support delay (§4.5).

4.1 Definite Release

The rule for concurrent access in a Linux FS is to protect each
inode with its own associated, fine-grained lock. A thread t
acquiring a lock may be blocked by another thread holding
the lock. To prove t’s termination, we need to show that t will
eventually become unblocked. Consider the code snippet in
Fig. 2a2. The code traverses from the cur directory and looks
up the name path[i] to find the next inode. The lookup is
protected by holding the lock on cur, and the lock is released
afterward. Assume all threads only execute this piece of code.

2This simplified version is incorrect because it omits reference counting;
we will fix this in §6

// Pre: no lock owned
while(path[i]!=NULL)
lock(cur);
next=lookup(cur,path[i]);
if (next==NULL) {
unlock(cur); return;}

unlock(cur);
cur=next; i++;

}
(a) traversal loop.

def lock(cur):
int i;
i=getAndInc(cur.next);
while(i!=cur.owner){}

def unlock(cur):
cur.owner=cur.owner+1;

(b) ticket lock.

Figure 2: Single locking in path traversal. Termination of
lock(cur) relies on other threads releasing the lock by in-
creasing cur.owner.

A fair lock, such as a ticket lock (Fig. 2b), is used to ensure
termination; every thread lines up for the lock by getting a
ticket. A thread acquires the lock if its ticket equals owner,
and releases the lock by increasing the owner. The question
is why the lock(cur) statement would terminate.

Blocking is caused by the absence of environmental be-
havior, e.g., not releasing the lock. To prove termination, the
specification should describe the certainty of some state tran-
sition. For lock-based blocking, we propose a domain-specific
specification called definite release.
Definition 1 (Definite Release)

Definite release says, for some thread t and lock, if t
owns the lock, t will eventually release the lock.

Definite release is inspired by the definite action notion
proposed by LiLi [64], which can characterize an action that
will definitely happen. However, one key difference is that
definite action in LiLi does not support layered reasoning,
and thus cannot modularly handle nested locking (see §4.2).

Specifically, definite release (D) specifies a state transition:
“t owns the lock” ; “t releases the lock”, where, informally,
the notation ; states that the state transition eventually hap-
pens. Definite release supports busy-waiting lock loops (not
just lock primitives). For instance, definite release of a ticket
lock can be formalized as (owner= t.i); (owner= t.i+1),
where t.i means the local variable i of thread t.

Rely-guarantee style reasoning. Definite release establishes
a protocol that helps reason about the termination of locks as
follows. First, once acquired, the release of a lock must be
guaranteed by each thread. Second, to prove the termination
of a lock, a thread may rely on some other thread releasing
the lock. However, the above protocol does not avoid circular
reasoning, which is usually unsound in proving termination.
For instance, in a deadlock, each thread relies on the other
to release, but this is circular and will never happen. LiLi’s
approach fixes this by requiring that each thread fulfills a
definite release without waiting itself for any definite release.

Definite release achieves thread-modular verification of
Fig. 2, focusing on one thread at a time, rather than explicitly
considering steps of concurrent threads. Rely: if thread t is

632 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 // Pre: no lock owned
2 lock(parent);
3 child=lookup(parent,name);
4 lock(child);

5 // Perform checks and
6 // do unlink/rmdir
7 ...
8 unlock(parent);

Figure 3: Code snippet for nested locking in
unlink/rmdir. The release of parent may be blocked by
the acquisition of child. Code for error handling omitted.

blocked, spinning inside the while loop of lock, t relies on
definite release, i.e., the increase of owner by lock holder;
t can acquire the lock, because it needs to wait for a finite
number of definite releases only. Guarantee: once t acquires
the lock of cur, assuming that lookup terminates, t guarantees
to fulfill the release without waiting for any definite release.

4.2 Hierarchical Layering
Some file system operations require nested locking (holding
one lock and requesting another). For instance, consider the
algorithm for removing an inode (in unlink or rmdir) in
Fig. 3. The algorithm acquires parent to look up child.
The lock on parent does not protect its children. To check
whether child can be removed, we acquire child. When the
operation finishes, it releases parent.

Unfortunately, in such nested locking, the release of the
first lock may be blocked waiting for the release of the second
lock. Hence, the guarantee of the first lock’s definite release
no longer holds.

If we stick to LiLi’s approach in §4.1, we cannot prove
the first lock by using its definite release, but have to specify
more fine-grained actions that can definitely happen without
waiting for any actions. For instance, acquiring parent may
have to wait for (1) the release of child if the thread that owns
parent is blocked requesting child, and (2) the release of
parent if the thread that owns parent is not blocked. As a
result, the proof for lock(parent) explicitly considers how
lock(child) would be unblocked first, which is not modular.
A modular approach would verify each line of code separately.
The evaluation in §7.2 shows that LiLi’s approach may cost 7
times the proof effort (measured in the lines of Coq) than our
modular approach presented below.

We define lock dependency as below.
Definition 2 (Lock Dependency)

For nested locking in order of A and B, the definite release
of lock A may depend on the definite release of lock B. This
defines the lock dependency relation from A to B.

Intuition on termination. Lock dependency coincides with
waits-for dependency (§3). Fig. 4a shows the possible lock
dependencies in a file system as a waits-for graph. There is a
lock dependency from a parent to its child, as shown by the
directed edge. The dependencies extend transitively to the par-
ent’s descendants. For example, root has a lock dependency

(a) hierarchical layering

/

BA

lock(rename_mutex);

lock(A); // to lock(B)

(b) dynamic layering

C

B

/

A

Lock dependency Dynamic lock dependency

Layer-0

Layer-1

Layer-2

Layer-1

Layer-0

Layer-1 Layer-2

Figure 4: Waits-for graphs and layerings. Hierarchical lay-
ering accounts for parent-child lock dependencies. Dynamic
layering captures the dynamic lock dependencies in rename.

on B, which has a lock dependency on C. If the waits-for graph
ever contains a cycle, the system is deadlocked.

The good news is that this waits-for graph so far follows
the file system tree, so the dependency chain ends at the leaf
inodes. The definite release of a leaf inode does not wait for
anything. The definite releases of other inodes in the chain
occur one by one in the leaf-to-root direction. Consequently,
the definite release of all inodes must happen, ensuring that
the parent-child nested locking terminates.

Hierarchical layering for definite releases. It is not harmful
for definite releases to have dependencies as long as the de-
pendencies are not circular. To formalize this intuition, we
choose to assign a layer to each definite release, and allow a
definite release to wait only for a higher-numbered one. In
a file system, we use hierarchical layering — the layer of
an inode’s definite release (an inode’s layer in short) is the
length of the path from root. For instance, in Fig. 4a, root
is assigned 0, and after each hop, the layer increases by one.

More formally, hierarchical layering can be represented as
below. A layer function H L takes the inode number inum
and file system state FS to return inum’s layer under FS. If
inum is reachable from the root, distance computes the length
of path (with type Nat) from the root to inum under FS. The
layer is undefined otherwise.

H L(inum,FS)
def
= distance(root(FS),inum,FS) if defined

For a well-formed FS, each inode is reachable from the
root following a unique path, i.e., each inode has a uniquely
determined layer. Hence, inodes are totally ordered, and de-
pendencies are not circular for any well-formed FS (assume FS
does not change for now). Users specify the well-formedness
of FS as invariants (e.g., each child has only one parent), and
prove that invariants always hold.

Modular reasoning with layering. Each thread should still
guarantee to release an acquired lock. But its fulfillment
can wait for a higher-numbered definite release. Hierarchical
layering ensures the wait is not circular. A thread proves
the termination of a lock statement independently by only
relying on definite release of the lock.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 633

def lock_rename(d1,d2):
1 if(d1==d2){
2 lock(d1);return;}
3 lock(rename_mutex);
4 if(ancestor(d2,d1)){
5 lock(d2);

6 lock(d1);
7 return;
8 }

9 lock(d1); TDep:=(d1,d2)

10 lock(d2); TDep:=None

11 return;

Figure 5: Nested locking in lock_rename. The lock-
ing order is dynamic, e.g., lock_rename(d1,d2) and
lock_rename(d2,d1) may acquire d1 and d2 in an opposite
order. Code in gray boxes captures the dynamic order using
ghost state. These locks are released when rename exits.

Layering decouples the dependency between definite re-
leases and enables modular reasoning for Fig. 3. When
t is blocked inside lock(parent), t relies on definite re-
lease of parent, and proves termination by considering
only parent’s internal waiting queue, without looking into
other code. t proves lock(child) similarly. After t acquires
parent, its definite release requires to prove parent’s layer
is less than child, which is true by definition of layers.

4.3 Dynamic Layering

The rename operation moves an inode (more precisely, the
subtree with the inode as root) from its old parent to a new par-
ent. It needs to acquire the locks of both directories to ensure
atomicity. The function lock_rename in Fig. 5 is a simplified
version of the implementation of Linux VFS (ignore the code
in gray boxes for now). If the two directories are the same, it
only needs to acquire one lock. To avoid concurrent issues,
VFS requires a cross-directory rename to acquire the global
per-filesystem lock rename_mutex. Holding rename_mutex
prevents another cross-directory rename from changing the
ancestry relationship. Furthermore, to not conflict with the
parent-child order, if one directory is the ancestor to another,
it acquires the ancestor first. If not, the locking order does not
matter, so the code chooses a default order, i.e., old parent
first (d1 before d2).

Dynamic lock dependency. In contrast to the parent-child
lock dependency, the lock dependency in lock_rename
cannot be predetermined. Specifically, prior to acquiring
rename_mutex, the lock dependency between d1 and d2 is
not stable since other threads might dynamically alter it. Once
rename_mutex is acquired, the lock dependency becomes
fixed. If d2 is an ancestor to d1, the lock dependency is from
d2 to d1 as shown in lines 5-6. Otherwise, it is from d1 to
d2 as shown in lines 9-10. Furthermore, after lines 6 and 10
where the code has acquired the respective locks for d1 and
d2, we can remove the dependency between them, because
one of them no longer waits for the other.

Intuition on termination. The waits-for graph remains acyclic
during lock_rename, which ensures termination. Before

lock_rename executes, the graph is tree-shaped. Then there
is a dynamic lock dependency between d1 and d2. According
to the locking rules in lock_rename, this dynamic lock de-
pendency is not from a child to its ancestor, and thus does not
form a cycle with existing parent-child dependencies. Finally,
removing the dynamic lock dependency will not introduce a
cycle. The acyclicity of the waits-for graph ensures that defi-
nite releases happen in order, despite dynamically-changing
lock dependencies. The code terminates, because all definite
releases are guaranteed to be satisfied.
Dynamic layering. We propose dynamic layering to capture
the lock dependency in lock_rename. The layer for each in-
ode is defined as the length of the longest path from the root
in the waits-for graph. For instance, after the introduced dy-
namic lock dependency (drawn as a dashed arrow) in Fig. 4b,
the longest path from root to B is root-A-B, so the layer for
B is now 2.

To encode dynamic layers, we leverage ghost state [75], a
commonly used verification technique. Ghost state is added
by users in the abstract model to assist the proof, which does
not influence (or exist in) the concrete program. We intro-
duce a temporary dependency TDep, a globally unique value
that tracks the lock dependency introduced by lock_rename.
TDep is an option type of a pair of inums, i.e., either None or
(inum1,inum2) representing there is a lock dependency from
inum1 to inum2.

Dynamic layering DL is defined below. DL takes inum
to return its layer under full state S, where S includes file
system state FS and ghost state TDep. The root inode has
layer 0. If there is no dynamic dependency to inum, i.e., inum
does not equal the second item in TDep (written TDep.inum2
for simplicity), inum’s layer is one plus its parent’s layer. If
inum equals TDep.inum2, its layer is one plus the larger layer
between the hierarchical layers (as defined in §4.2) of its
parent and TDep.inum1. Otherwise, the layer is undefined.

S= (FS,TDep)

DL(inum,S)
def
=

0 if inum= root(FS)
DL(par,S)+1 if ∃par,parent(par,inum,FS)

∧inum 6= TDep.inum2
max{H L(TDep.inum1,FS),

H L(par,FS)}+1
if ∃par,parent(par,inum,FS)

∧inum= TDep.inum2
undefined otherwise

This definition focuses on inode locks. For the per-
filesystem lock rename_mutex, we also specify a definite
release, whose layer is a special minimum value so it can
depend on all other definite releases.

The code in gray boxes (Fig. 5) presents feasible updates
to TDep. Only the thread that holds rename_mutex can set
TDep, and TDep is None when no thread holds rename_mutex.
TDep is set to (d1,d2) after lock(d1) in line 9 to represent
the upcoming lock dependency from d1 to d2. Note that we
do not need to set TDep after lock(d2) in line 5 because the

634 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

lock dependency from d2 to d1 is already present in the waits-
for graph due to transitive parent-child dependencies. We set
TDep to None after line 10 to remove the lock dependency.

Reasoning with dynamic layering. Each lock statement still
enjoys a modular proof by relying on its definite release. The
guarantee of definite release can wait for a higher-numbered
definite release. Now, taking state changes into consideration,
we must further prove that the dependency relation (i.e., layer
relation) stays unchanged during the wait. We call this the
dependency condition.

The dependency condition is vital to acyclicity. Note that a
circular dependency can happen only if a state change intro-
duces a direct or indirect dependency opposite to an existing
dependency. However, the dependency condition forbids this,
by requiring the dependency relation to be stable.

Let’s prove the dependency condition for Fig. 3. When
a thread has acquired parent, and gets blocked by
lock(child) at line 4, parent’s definite release waits for
that of child. The dependency condition requires to show that
parent is lower-numbered than child, even in the presence
of concurrent operations modifying file-system state. This
is the case because (1) the current thread holding parent
prevents a concurrent unlink/rmdir/rename from removing
child and (2) according to the definition of DL , child’s
layer is greater than or equals parent’s layer +1.

4.4 Directory Locking in Linux VFS
To understand whether dynamic layering scales to more di-
rectory locking orders in VFS, we extend dynamic layering
to cover all the nested locking scenarios mentioned in the
Linux documentation [29]. The extra lock dependencies that
have not been discussed yet are the following: (1) the dir-to-
non-dir dependency, from a directory to a non-directory, and
(2) the inode-pointer (i.e., inode address) dependency, from
a non-directory to a non-directory with larger inode pointer.
For instance, (1) link creation locks the parent and then the
non-directory source, or (2) rename locks the source and the
target when they are non-directories.

To capture these dependencies, a layer could either be (Dir,
nat) for a directory with its dynamic layer (DL defined in
§4.3), or (NonDir, addr) for a non-directory with its inode
address. Comparison rules are:

• (Dir, nat) < (NonDir, addr) for the dir-to-non-dir depen-
dency;

• (NonDir, addr1) < (NonDir, addr2) iff addr1 < addr2
for the inode-pointer dependency;

• (Dir, n1) < (Dir, n2) iff n1 < n2.

These rules give a total order of layers, because a direc-
tory is always acquired before a non-directory and the two
groups are ordered by dynamic layers and inode pointers,
respectively.

/

A B

C

t1:rename(/A, /B) t2: rmdir(B,C)

t3: rename(/A/X, /B/C/Y)

X

Figure 6: A deadlock bug in Linux VFS. Locking order
according to increasing inode pointer order is (C, A, B), which
conflicts with parent-child order (B, C).

When layers do not change, deadlocks will not happen if
the code acquires locks in this total order (this can be easily
verified). When considering layer changes, one proves the
dependency condition to prevent circular dependency. We
have shown the reasoning for the most challenging case, i.e.,
rename in §4.3. Proof of all other cases is provided in [99].

Doing the proofs helped us uncover a flaw in a recent
version of the locking scheme (commit 28ecee [53]). Apart
from locking the two parents, rename may also need to lock
the source inode (under the old parent) to be renamed, and the
target inode (under the new parent) if it already exists. The
locking rules before commit 28ecee used to be:

• locking the source if it is a non-directory;

• locking the target if it exists;

• (if one need to lock both) locking them following the order
mentioned above, i.e., directory before non-directory, and
non-directories in inode pointer order.

However, commit 28ecee additionally locks the source even
when it is a directory, for the purpose of updating its pointer
to the new parent. For a non-cross-directory rename, this in-
troduces a new, dynamic order between source and target
subdirectories that is not protected by rename_mutex. Com-
mit 28ecee takes it for granted that locking source and target
subdirectories (and also two parents) in inode pointer order
would be enough to establish a total order between directories.

However, the problem is that inode pointer order is not
transitive with parent-child order, as shown in Fig. 6. Specif-
ically, assume the inode pointer order is C < A < B (all are
directories) and assume three operations have finished path-
name lookups. t3 owns rename_mutex and C, and requests A.
t1 owns root and A, and requests B. t1 owns B, and requests C.
Now, there is a deadlock. The maintainer confirmed this [98].

The fix [87] is to acquire the source subdirectory only in the
cross-directory rename case, because a non-cross-directory
rename does not change the parent of the source. The locking
of source and target subdirectories is now protected under
rename_mutex, and we can capture this order by constructing
a dynamic layering (see [99] for details).

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 635

We found this flaw when we failed to define the dynamic
layering specification for the scheme. Indeed, having a formal
specification that effectively captures lock dependencies is
crucial. Such a specification not only aids in conducting for-
mal proofs, but also enhances our fundamental understanding
of the system. Interestingly, even without engaging in code
proofs, the specification itself can help uncover practical bugs
and vulnerabilities.

4.5 Discussion about Support for Delay
A thread will not terminate if it is infinitely delayed in an
infinite loop. For example, when a thread requests an unfair
lock, e.g., test-and-set lock, other threads repeatedly preempt
the lock first. Delays are benign as long as there is whole-
system progress, e.g., the thread that preempts the lock can
make progress. To allow benign delays, while preventing infi-
nite delay without whole-system progress, previous work [64]
proposed the concept of token transfer. The basic premise is
that each thread is assigned a finite number of tokens. When
a thread causes delays for other threads, it should either show
progress itself or consume its tokens.

Let us go back to the discussion in §3. The waits-for graph
grows due to normal execution or delay; either case has a de-
creasing metric that shows progress. When a thread normally
executes, although it may get blocked by a while loop, its code
size decreases. We assume a fixed but arbitrary number of
threads to ensure the waits-for graph does not grow infinitely.
In the delay case, a thread is made to execute more steps and
may get blocked, but the delaying thread shows progress or
consumes its tokens.

The mechanism for delay is necessary for proving the ab-
sence of livelock, where a thread is constantly delayed in
infinite loops. This pattern does not appear in RefFS. For the
sake of simplicity in presentation, we will omit these details.

5 The MoLi Framework

5.1 Overview
The MoLi framework verifies the functional correctness and
termination of file systems based upon the following ideas.

• MoLi expresses correctness with termination-preserving
refinement [66], which means that all observable events
(e.g., output and termination events) from the implemen-
tation (i.e., concrete data structures and operations) must
also be produced from the abstraction (i.e., logical lay-
outs and abstract operations over them). Hence, func-
tional correctness and termination of implementation is
ensured, provided the abstraction is correct in these aspects.
Termination-preserving refinement also helps build proofs
in a layered way, i.e., low-level code can be replaced by its
abstraction in a higher-layer proof. For instance, the proof
of applications can use the abstraction of file systems.

Termination-

preserving refinement

C impl (Coq)

Spec Proof in MoLiCoq

exeC implInference rules

Figure 7: The MoLi workflow. Users provide a specification.
MoLi helps users develop code proofs with inference rules.

• MoLi supports compositional concurrency reasoning with
rely and guarantee conditions [35, 49]. A rely condition
specifies the interference that a thread will accept from
the other threads. A guarantee condition specifies the tran-
sitions that a thread will make. If the rely condition of
a thread is implied by the guarantee of all other threads,
and each thread is individually correct, then the concurrent
system is correct.

MoLi supports modular liveness reasoning with layered
definite actions. Fig. 7 shows the workflow of MoLi. MoLi is
a framework built on Coq. MoLi supports the verification of
C language (the Coq model of C language follows an existing
framework [101]). Users specify the specification (§5.2), and
then follow the inference rules provided by MoLi to manually
perform the Hoare-style verification (§5.3). The framework is
sound, which ensures that the proof implies the termination-
preserving refinement.

5.2 Specification in MoLi

A specification includes the abstraction, rely-guarantee con-
ditions, invariants, definite actions, and the layer function, as
defined next.

Abstraction. The abstraction includes the abstract represen-
tation of the concrete state and abstract operations (Aop) on
it. An abstraction can hide implementation details, which is
easier to check and less error-prone than the concrete imple-
mentation. MoLi provides a specification language, which
allows users to write non-atomic abstract operations. The lan-
guage has standard commands such as while and if, and is
suitable for expressing abstract operations: (1) the language’s
state includes the abstract state and a local abstract stack,
which maps variables to abstract values, e.g., lists; (2) the
language supports user-supplied primitives that model atomic
transitions of abstract state; (3) it also supports atomic block
〈C〉 where C executes atomically (see §6.1 for an example).

State. In MoLi, state includes not only the concrete state
accessed by the implementation, but also several auxiliary
parts, i.e., the specfication language’s state, tokens, and ghost
state. MoLi uses tokens as local state to ensure termination
(as explained in §5.3). Users may also introduce ghost state,
which exists only in the abstract model, to assist verification.

Rely/guarantee conditions (R/G) and invariants (I). R and G

636 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

t blocked

Termination of
while

Not blocked

Enter while loop

Waited action D’ enabled
on another thread

m
inim

um

!"

#"
$Consume

tokens

D’ fulfilled

%" If D enabled on t,
L(D,S) < L(D’,S)

Still
blocked

Imply StepState
Well-founded

metric
♦

♦↓

♦
♦not increase

Dependency
condition

Blocked
condition

Figure 8: Logic for termination of a while loop. Users spec-
ify the number of tokens and a well-founded metric ♦. In
the non-blocking case, tokens strictly decrease for each iter-
ation. In the blocking case, ♦ strictly decreases whenever a
waited definite action (D ′) executes. When ♦ decreases to its
minimum, the thread is no longer blocked. The dependency
condition enforces an enabled definite action (D) waits only
for a higher-numbered one (D ′).

define the allowed state transitions and are checked at each
step: one checks that (1) the current thread’s state transitions
satisfy G, (2) the pre-/post-conditions of a command stay true,
even when a concurrent thread changes the state, as long as
this change is allowed by R, and (3) I specifies an invariant on
state, which must remain true under all transitions. R/G and I
define the concurrency protocol. Previous efforts [35, 101]
provide more detail.

Definite action and layer function. A definite action describes
a state transition, written P ; Q, which means that, once
assertion P is true, (1) Q will eventually hold, and (2) P is
preserved by both current and environmental thread until Q
holds. The second condition ensures that P may not become
false until the definite action is fulfilled. A definite action
is called enabled when P holds. A layer function L takes a
definite action and a state S to return a layer if defined.

5.3 Verification in MoLi
The judgement L ,D,R,G, I ` {P∧Aop}C{Q∧skip}means
(1) starting from the precondition P, the operation C must
terminate to reach the postcondition Q, and meanwhile (2)
an abstract operation terminates (from Aop to skip), simu-
lating the concrete operation C. Here, both P and Q imply
the invariant I and specify the consistency relation between
the concrete and abstract state. MoLi provides inference rules
to help users prove the judgement holds. A top-level rule,
called the OBJECT rule, proves the well-formedness of the
specification and the judgement for each method of the object.
The OBJECT rule establishes termination of the implementa-
tion and abstraction, and a termination-preserving refinement
between them. To verify each method, users follow inference
rules of C language statements to step through the program.

Most rules for C language, e.g., sequence and if rules, are
standard and similar to previous work [35, 101]. We explain
the WHILE rule (see Fig. 8 and the simplified rule below).

Termination of a while loop. The WHILE rule requires estab-
lishing the judgement of the loop body (see the first line of
the rule). Assuming the loop body can terminate, we check
whether the loop is blocked by other threads. Based on that,
the logic uses different strategies to ensure termination, i.e.,
consumption of tokens in the non-blocking case and decrease
of metric by executing definite actions in the blocking case.

L ,D,R,G, I ` {P∧B}C{P}
if not blocked, consume tokens
if blocked, prove conditions 1©- 4©
(see 1©- 4© in the text and Fig. 8)

L ,D,R,G, I ` {P}while (B){C}{P∧¬B} (WHILE)

If the while loop is not blocked, we must show the while
loop can iterate for only a finite number of rounds. Follow-
ing previous efforts [46, 64], we require that each iteration
consumes resources called tokens. Users specify the number
of tokens before the while loop. The loop terminates after
exhausting its tokens. For instance, the traversal while loop
in Fig. 2a can iterate only a finite number of rounds, bounded
by the length of path, which specifies the number of tokens.

In contrast, if a thread t is blocked, its termination relies on
definite actions of other threads. Users define a well-found
metric (i.e., that cannot infinitely decrease) for the while loop.
Whenever a definite action happens, the metric must decrease.
When the metric decreases to its minimum, the thread is no
longer blocked. Specifically, users prove the following.

1© Blocked condition: if t is blocked, t must be waiting for
some definite action D ′ (to be specified) to happen, which
is enabled on another thread.

2© Dependency condition: if t has an enabled definite action
D, its layer must stay less than that of D ′ until D ′ is
fulfilled.

3© Metric decrease: whenever D ′ is fulfilled, the metric
decreases.

4© Metric non-increase: the metric never increases.

Let us prove the termination of ticket lock in Fig. 2b under
the above conditions. Suppose a thread t is blocked in the
while loop of lock(cur). A precondition is that t does not
own cur. Then we can prove 1© t waits for the definite release
of cur, which is enabled on another thread. If t has enabled
definite actions, e.g., t has acquired other locks, the layer
function must have captured these lock dependencies. With
the layer function, users prove 2© the layers of owned locks
are stably less than cur until t’s ticket equals cur.owner.
One can specify the well-founded metric as t.i-cur.owner,
which measures the distance from t’s ticket to the current
owner. 3© The metric decreases whenever an environment
thread increases cur.owner, and 4© never increases. When
the metric decreases to zero, the loop terminates.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 637

Lock abstraction. We can prove the termination of lock im-
plementations with the WHILE rule. But MoLi follows recent
work [65], and provides a specialized inference rule for fair
locks (e.g., ticket lock) to ease the burden. The abstract state
of a lock is an integer L, whose value is either 0 when available
or t when owned by thread t.

The reasoning of a lock operation is similar to the WHILE
rule, only with a different metric non-increase condition: the
metric never increases under transitions where the lock keeps
being unavailable. We allow the metric to increase when the
lock is available, because a fair lock guarantees that, if the
lock becomes available for a finite number of times, a thread
will eventually become the first to the lock.

Definiteness of definite actions. The WHILE rule assumes
that a definite action will be fulfilled once enabled. To meet
this assumption, the OBJECT rule checks two things.

• Well-formedness: all steps preserve an enabled definite
action of some thread except that the thread itself may
fulfill the definite action.

• Postcondition restriction: the postcondition of an opera-
tion implies no enabled definite actions.

MoLi requires an enabled definite action to be fulfilled
because the following conditions hold.

• When an operation terminates, it must be fulfilled accord-
ing to the postcondition restriction.

• Whenever the thread is blocked in a while loop, the proof
of while loop ensures the termination by only relying on
higher-layer definite actions according to the dependency
condition; intuitively, this will not introduce unsound cir-
cular dependencies, so those higher-layer definite actions
can indeed be fulfilled.

• The thread is proved to terminate, and thus fulfills the
definite action itself due to well-formedness.

Soundness. After users prove each operation by following
the inference rules, the framework constructs an overall ter-
mination metric for each thread, and shows that the overall
metric strictly decreases. The overall metric combines several
metrics that users have provided in their proofs.

• The totally ordered layering of definite actions ensures
that the waits-for graph shrinks until the thread’s waited
definite action is not blocked.

• The well-founded metric for a while loop measures the
progress from the execution of the waited definite action,
until the while loop is not blocked.

• The while loop tokens count down the iterations.

We have formally proved the following main theorem
(see [100] for the full pen-and-paper proof).

// Error handling omitted
// Def of Inode omitted
struct inodelock{
Inode *inode;
int refcount;
lock lk;

}

def getilock(ilock):
〈ilock->refcount++〉

def putilock(ilock):
〈ilock->refcount--;
if(ilock->refcount==0){
free(ilock);

}〉

def traversal(cur,path):
local i=0, ret;
getilock(cur);
while(path[i]){
ret=lookup(cur,path[i]);
cur=ret;i++;}

return cur;

def lookup(par,name):
local child;
lock(par);
child=find(par,name);
getilock(child);
unlock(par);
putilock(par);
return child;

Figure 9: Reference counting and traversal in RefFS. By
holding a refcount in hand, lookup requests par without
worrying par has been freed.

Theorem 1 (Main Theorem)
Given the implementation and abstraction, if there exist

rely/guarantee conditions, an invariant, definite actions
and a layer function, such that for each operation C of
the implementation and corresponding abstract operation
Aop, the judgment (L ,D,R,G, I ` {P∧Aop}C{Q∧skip})
holds w.r.t. the pre-/post-conditions by applying inference
rules, then the implementation ensures termination and is a
termination-preserving refinement of the abstraction.

6 Design and Verification of RefFS

RefFS is a concurrent in-memory file system running on
FUSE. We verify its interfaces that manipulate the file system
structure (e.g., mkdir/mknod, rmdir/unlink and rename),
and that perform input and output to files (e.g., open, read,
write and close). This covers most common operations.

6.1 Implementation and Abstraction
RefFS reuses code from a previously verified concurrent file
system, AtomFS [101], e.g., the internal functions that op-
erate on directories and files. However, RefFS uses refer-
ence counting (refcounting) for traversal, which is more fine-
grained and provides better performance than lock coupling
used by AtomFS. Consequently, the rename implementation,
file-descriptor-based interfaces and abstraction of RefFS are
different from AtomFS, as explained below. We also prove
liveness guarantee of RefFS.

Refcounting. In Fig. 9, struct inodelock wraps over an in-
ode with a lock for protecting the struct, and a reference
count for resource reclamation. The refcount field counts
the references to the struct. getilock increases refcount

638 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

by one. putilock decreases refcount by one and frees
the struct when refcount becomes zero. In other words,
refcount can prevent use-after-free as long as a thread still
holds a refcount that other threads may not decrease (i.e.,
refcount>0). We use the atomic block notation 〈C〉 to rep-
resent that command C executes atomically. This is achieved
with locks (not shown in the code).

To correctly implement refcounting, RefFS takes care of
the following aspects.

1© Initialization: when allocated, an inode’s refcount is
initialized to 1, marking that there is one reference in
its parent’s directory entry; this refcount is decreased
when the inode is removed from its parent (the root’s
initial reference cannot be decreased).

2© Reference increase: a thread can increase the refcount
of an inode when it already holds its refcount (a thread
can directly increase the refcount of root).

3© Reference decrease: a thread can decrease a refcount
that belongs to the thread, e.g., the thread has increased
the refcount previously.

4© Reference counting: each thread decreases the refcount
that it no longer needs, and the value of refcount equals
the number of all references combined.

3© is the key to stablizing refcount>0 and preventing use-
after-free, because if a thread has increased a refcount, other
threads may not arbitrarily decrease it. The above refcounting
protocols are formalized as rely/guarantee conditions and
invariants, and proved for RefFS.

Let us see how the traversal function in Fig. 9 obeys and
leverages the above protocols. The precondition specifies that
either cur is root, or the current thread holds a reference to
cur, so that traversal can increase the refcount of cur
(2©). The code invokes lookup for each item of the path.
lookup can request par’s lock without worrying that par
is freed, because the code holds par’s refcount (3©). After
having found the child in par, the thread holds a reference
to child, due to owning the directory entry of child in par.
Therefore, it can increase the refcount of child (2©). It then
releases par’s lock and refcount (3© and 4©).

Refcounting provides the following performance benefits.

• During path traversal, there are intervals where an oper-
ation has searched the parent directory and is about to
lookup the child directory. The operation does not need
to nestedly lock parent and child to protect the child from
being freed during the interval. Instead, traversal pre-
vents use-after-free by holding a refcount of child. This
creates more parallelism because concurrent operations
can bypass each other during path traversal.

• Some operations use a file descriptor (FD) to directly
access an inode, and leverage refcounting to prevent use-
after-free. For instance, open increases the refcount of

def rename(src,sn,dst,dn):
1 ... //Traverse common
path of src and dst

2 rel=pathrel(src,dst);
3 if(rel!=0){
4 lock(rename_mutex);}
5 ... //Traverse to get
src and dst directories

6 if (rel==0){
7 lock(sdir);
8 } else if(rel==1){
9 lock(sdir);

10 lock(ddir);
11 } else {
12 lock(ddir);

13 TDep:=(ddir,sdir)

14 lock(sdir); }
15 ...
16 //If dn exists in ddir

17 TDep:=(sdir,dchild)

18 lock(dchild);
19 TDep:=None

20 ...

Figure 10: Highlighting lock acquisitions of RefFS
rename. pathrel(src,dst) returns 0 if src equals dst,
returns 1 if src is a proper prefix of dst, and returns -1 in
other cases. Depending on the result, the code decides whether
to acquire rename_mutex after traversing the common path
of src and dst. Code in gray boxes updates ghost state.

the target inode, and returns the inum as FD, thereafter,
read and write operations can directly access the inode.

Refcounting brings challenges for liveness reasoning be-
cause we need to consider more intricate lock dependencies
of FS operations. Specifically, when using lock coupling (con-
current operations cannot bypass each other), an operation
that starts the traversal first would not be blocked. This is
not the case with refcounting: an operation may be blocked
by another operation that bypasses it, or by a file-descriptor-
based operation. Nevertheless, MoLi’s modular verification
approach effectively manages the complexities.

Rename implementation. In Fig. 10 (ignore the code in gray
boxes for now), src/dst is the path to the old/new parent, and
sn/dn is the name of source/target. rename first traverses the
common path of src and dst (using traversal in Fig. 9).
After getting the reference of their least common ancestor, the
algorithm decides whether this is a cross-directory rename
by comparing src and dst. If they are not equal (or cross-
directory), the code acquires rename_mutex. The code then
traverses the remaining path to get the references of the old
and new parents. Holding rename_mutex ensures that the rel-
ative position between the two directories will not be changed
by concurrent renames. Therefore, one may use the path argu-
ments to know whether they are ancestors to each other, e.g.,
if src is a proper prefix of dst, this means that sdir is an
ancestor to ddir. The code acquires the lock of the ancestor
first. Otherwise, it will acquire them in a default order. If the
target (i.e., dchild) already exists, the code acquires its lock.

Non-atomic abstraction. The abstraction of RefFS consists of
abstract file system state and abstract operations. The abstract
file system, called AFS, is a mapping of inode number (inum)
to an abstract inode. An abstract inode is either a file (a list
of bytes) or a directory (a mapping of name to inum).

For an operation that needs path traversal, the correspond-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 639

def MKDIR(path,n):
1 local cur=root,tmp,i=0;
2 while(path[i]){
3 〈tmp=lookup(cur,path[i]);

4 if(tmp==NULL){
5 return -1;}
6 cur=tmp;i++〉}
7 ret do_mkdir(cur,n);

Figure 11: Abstract operation MKDIR of RefFS. MKDIR
consists of a series of atomic directory lookups (line 3-6) and
an atomic critical section (line 7).

ing abstract operation hides as much implementation detail as
possible (e.g., hiding refcount, locks and internal data struc-
ture), and guarantees atomic directory lookups and an atomic
fulfillment of the operation after locating the target inodes.
Fig. 11 shows the abstract operation MKDIR. lookup and
do_mkdir primitives model atomic transitions of the abstract
file system. We simplify the abstract operation by grouping
the loop body (lines 3-6) into an atomic block.

6.2 Verification of RefFS

We use ghost state, the temporary dependency TDep, to assist
the proof, as introduced in §4.3. In Fig. 10, code in gray
boxes updates it. TDep is set to (ddir, sdir) before line 14
to represent the upcoming lock dependency between them.
TDep may be updated to (sdir,dchild) before line 18 to
establish the lock dependency from sdir to dchild. TDep is
reset to None after line 18.

The termination proofs include the checks in the OBJECT
rule and the termination proof of locks and while loops. Since
while loops are not blocked in RefFS, their proofs are trivial.

Definiteness check. The well-formedness of definite releases
holds because once a thread holds a lock, all steps keep the
fact true until the thread releases the lock itself. The post-
condition of each operation specifies that the thread does not
own any lock, so it must be the case that definite releases are
fulfilled before the thread reaches the end.

Proof for locks. When thread t is blocked in lock(L), t waits
for the definite release of L (specified as D ′). The metric is 0
when L is available and 1 otherwise. The following holds. (1)
Blocked condition: some thread t’ holds L, so D ′ is enabled on
t’. (2) Dependency condition: the dynamic layering ensures
that for any lock that t owns, its layer is stably lower than L.
(3) Metric decrease: when L is released, the metric decreases.
(4) Metric non-increase for the lock: when L is not available,
the metric stays 1 and never increases.

7 Evaluation

This section empirically answers several questions:

• Can RefFS provide good performance for real-world
applications, and does reference-counting perform better
compared with lock-coupling (§7.1)?

 0

 2

 4

 6

 8

git-clone make-xv6 cp-qemu largefile smallfile

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

s)

RefFS
AtomFS

DaisyNFS
Ext4

TmpFS

Figure 12: Applications. The figure shows the running time of
different applications, i.e., git, make and cp. Largefile operates
on a big file with 10MB. Smallfile operates on 10K files with
1KB size.

• Compared with previous work, how modular are the
termination proofs using MoLi (§7.2)?

• How much is the verification effort (§7.3)?

• Can MoLi help eliminate bugs in practice (§7.4)?

7.1 Performance Evaluation

Experimental setup. We run all of the experiments on a
server machine (AWS EC2 i3.metal instance) with 72 cores
(2.3GHz), 512GB DRAM, and a local 15,200GB SSD (8
disks) running Linux 5.15.8. We limit our experiments to one
36-core socket to avoid variability. We compare the perfor-
mance of RefFS to the widely-used disk file system ext4 [84],
the verified concurrent file system AtomFS [101], the verified
concurrent NFS server DaisyNFS [20], and an in-memory file
system tmpfs. All the file systems use in-memory storage.

Application performance. RefFS is complete enough to run
many kinds of realistic software, including Vim [85] and
GCC [37]. To evaluate application performance, we select
two microbenchmarks and three application workloads: LFS
microbenchmark [71, 77], cloning the git repository of xv6-
public, compiling the sources of the xv6 file system with a
makefile and copying the source code of qemu. These work-
loads are also used by previous verified file systems [22, 101].
The application workloads use only a single core.

In Fig. 12, RefFS achieves similar results to AtomFS, and
better performance than DaisyNFS in most cases, due to the
network I/O overhead of DaisyNFS. The worse performance
of RefFS compared with tmpfs and ext4 is due mainly to
the lack of fine-grained optimizations, e.g., highly optimized
path traversals and optimized structures for data and metadata.
Running RefFS with FUSE also introduces overhead. These
issues can be overcome by more engineering.

File system scalability. We adopt two commonly used work-
loads in Filebench [36], Fileserver and Webproxy, to measure
the scalability of RefFS. We evaluate with 16 cores and in-
crease the number of threads used in the workloads. We do
not evaluate DaisyNFS because its in-memory disk can only

640 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Thread number

RefFS
AtomFS

Ext4
TmpFS

(a) Scalability on Fileserver.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Thread number

RefFS
AtomFS

Ext4
TmpFS

(b) Scalability on Webproxy.

Figure 13: Scalability of RefFS. The overall scalability of
RefFS is similar to AtomFS.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
sp

ee
d

u
p

Directory depth

seq-write
seq-read

Figure 14: Speedup of RefFS over AtomFS. RefFS achieves
higher speedup over AtomFS as the directory depth increases
in LargeFile benchmarks.

support about 400MB of space, while the scalability tests
consume more than 3GB in many cases.

The speedup results are in Fig. 13. RefFS can scale up
to 9 cores. AtomFS shows a similar scalability, but the ac-
tual throughput (not shown in figure) of RefFS is better than
AtomFS at all loads (1.08–1.43x higher in Fileserver and 1.03–
1.32x higher in Webproxy). RefFS’s performance is worse
than ext4 and tmpfs, as expected.

Other benefits of reference counting. AtomFS uses lock cou-
pling to traverse the path even for read and write operations.
In RefFS, reference counting allows read and write to directly
access the inode because open has increased the inode’s ref-
erence. To show the benefit of this, we evaluate RefFS and
AtomFS using LargeFile benchmarks under different depths
of directories. In Fig. 14, with the depth increase, the speedup
of RefFS over AtomFS becomes higher in both seq-write and
seq-read tests in LargeFile.

Table 1: Lines of Coq proof for verifying RefFS.

Component LOC Component LOC
Abstraction and aops .1K Invariant .7K
Rely/guarantee .4K Code .4K
Layered definite releases .1K Proof 32K
Total 33.7K

7.2 Modularity of Termination Proofs

Dynamically layered definite releases allow to verify each
lock separately, and reuse the termination proofs for all each
lock statement. To evaluate the benefits, we also use the non-
layered definite actions (LiLi’s approach in §4.1) to verify
the termination of a lock statement in RefFS. The crucial
difference is that the non-layered approach has to reason
globally about the dependency chain.

Suppose there is a lock dependency chain of root → B
→ C as shown in Fig. 4a, where each thread in the chain
owns a lock and requests the next lock except the last thread.
Now suppose t wants to acquire root’s lock. To prove t’s
progress, LiLi’s non-layered approach needs to prove how
the chain gets shorter until t can acquire root. The following
complexities exist.

In LiLi’s approach, one must specify actions that can defi-
nitely happen on their own. In this case, t first waits for the
lock release of C. Defining the action needs following the
dependency chain, which requires a proof that the chain is
free of cycles. Proving this fact in a general situation requires
establishing global invariants, adding to the proof burden. The
resulting definite action is very fine-grained and less intuitive.

Furthermore, to show the progress created by the fine-
grained definite action, one should define a decreasing metric.
However, the definition of the metric is unavoidably complex.
Defining it as the length of the dependency chain does not
work. Because after lock C is released, the thread that owns B
acquires C, and may go on requesting other locks, thus getting
involved in a even longer dependency chain. As a result, defin-
ing this metric requires considering a thread’s local progress
(e.g., its remaining steps), and the length of the dependency
chain, with the former prioritized before the latter (we omit
further detail). This poses a significant proof burden in the
metric-decrease and metric-non-increase proofs.

By contrast, the specification and termination proof for a
lock statement with our layered approach (see §6.2) focus
only on the lock. The extra proof burden is the dependency
condition, which requires to show any owned locks are lower-
numbered than the lock to acquire. This proof is usually trivial
with dynamic layering. Code proofs in Coq have confirmed
the analysis—the non-layered approach needs 3K LOC while
the layered approach requires less than 0.4K LOC.

7.3 Verification Evaluation

Verification effort. MoLi reuses the code from CRL-H [101]
framework, including the support for C language and con-
currency reasoning. MoLi’s extension mainly devotes to the
logic for termination and the model of non-atomic abstract
operations, which is about 3K LOC. Table 1 shows the lines
of proof for verifying RefFS. RefFS also reuses AtomFS’s
internal functions inside the critical section and their proofs,
except that now we also verify termination.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 641

Trusted computing base and tests. Our work has some trusted
parts. The abstraction of RefFS is trusted. VFS, FUSE, C
compiler, C implementation of a lock and memory allocator of
glibc are trusted. Termination proof assumes a fair scheduler
and a sequentially consistent hardware model. We also test
RefFS with xfstests, a comprehensive file system testing suite,
which reports no bugs.

Limitations. Our prototypes of MoLi and RefFS still have
limitations. Currently, RefFS is an in-memory file system
and does not consider crashes. In general, the reasoning for
termination is orthogonal to crashes because the recovery
procedure will restore the state to re-execute the code. Hence,
the termination proof still applies to the non-crash setting.
When a crash happens in the middle of a program, what MoLi
does not consider is the termination of the recovery procedure,
whose precondition is the crashed state. To support crash
safety, one may combine the techniques in DaisyNFS [18–20].

MoLi does not support reasoning about termination in the
presence of interrupts or exceptions. Similar to crash safety,
supporting them requires considering intermediate states.

RefFS has simplified read access to use exclusive locks.
Nevertheless, we can use read-write locks in RefFS and reason
with their implementations in MoLi.

7.4 Bug Discussion
We discuss whether MoLi can help find practical bugs. Non-
concurrent termination bugs such as logic and low level pro-
gramming errors [59, 83] will fail the proof, because one
cannot define a well-founded metric that decreases for each
iteration. In AA-deadlocks [25,58,72], when a thread requests
for a lock again, the layer of the waited action (definite re-
lease of the lock by other threads) is not larger than that of
enabled action (definite release of the lock by the current
thread), which will violate the dependency condition. In dead-
locks caused by nested blocking [6, 23, 39, 97], proof authors
either fail to define the layers, or define the wrong layers, later
finding that the layers cannot pass the dependency condition
proof.

For deadlocks with dynamic orders [3, 8, 55, 96], MoLi
allows defining state-dependent dynamic layers to precisely
represent such orders. Therefore, such bugs can be discovered
during proofs. For deadlocks that involve ad-hoc synchroniza-
tion [24,52,69], MoLi’s general notion of definite actions can
specify and verify them, similar to the bug types above.

These bug patterns also exist in other domains, e.g., mem-
ory management [27] and network [45] subsystems in an OS,
database and web applications [68]. Therefore, we believe
MoLi is also applicable to these domains.

8 Related Work

Starting from the seminal work of seL4 [57], these years
have witnessed tremendous progress on the verification of

systems, including operating systems [40, 73, 80], distributed
systems [43, 78, 92], file systems [21, 22, 47, 79] and many
others [26, 28, 63, 81, 88, 89]. Yet, only few of them guarantee
systems’ liveness, and none of the proposed frameworks could
be used for concurrent file systems.

VSync [74] relies on a special await loops shown in lock
implementations, and proposes await model checking to auto-
matically verify the termination of lock primitives, even under
weak memory models. It does not support general while loops.
VSync relies on a specific client library for correctness; the
client library may still not cover all corner cases, especially
for large-scale systems such as file systems.

CCAL [41] has been used to verify the termination of an
MCS lock [56] by organizing the implementation into layers.
However, it does not provide a program logic to guide the
proofs, so it is unclear how CCAL can be used to prove the
termination of concurrent file systems.

Ironfleet [43] verifies distributed systems with a blend of
TLA and Hoare style automated verification. However, this
methodology does not have the power for concurrency and
termination verification in file systems. Ironfleet’s reduction
approach for concurrency verification relies on implementa-
tion being atomic, but file systems, e.g., RefFS, are not atomic.
On termination, Ironfleet does not consider blocking and dy-
namic lock dependencies as shown in file systems.

Reference counting, a widely used technique in Linux, has
also caused many severe bugs [44]. Various methods (e.g.,
invariant-based [33,34] and anti-pattern based [44]) have been
proposed to detect these bugs. Although effective in practice,
they still suffer from false positives and false negatives. Our
work verifies the correctness of refcounting by showing the
implementation using it can refine an abstraction where its
details are hidden.

9 Conclusion

This paper has presented MoLi for verifying concurrent file
systems. It supports the dynamically layered definite releases
specification, with which we verify RefFS, the first modularly
verified concurrent file system with termination guarantee. We
also for the first time formally prove the correctness of direc-
tory locking scheme in Linux VFS. The formal specification
has helped us uncover real Linux bugs in practice.

Acknowledgments

We sincerely thank the anonymous reviewers for their valu-
able comments. We are especially grateful to our shep-
herd Marc Shapiro, whose suggestions significantly im-
proved this paper. We thank Xinyu Feng and Hongjin Liang
for discussions on the metatheory of MoLi. This work is
supported by the National Natural Science Foundation of
China (No. 61925206 and 62132014). Haibo Chen (hai-
bochen@sjtu.edu.cn) is the corresponding author.

642 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Paulo Alcantara. cifs: fix potential dead-
lock in cache_refresh_path(). https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
9fb0db40513e27537fde63287aea920b60557a69,
2023.

[2] Bowen Alpern and Fred B. Schneider. Recognizing
safety and liveness. Distrib. Comput., 2(3):117–126,
sep 1987.

[3] Josef Bacik. btrfs: drop path before
adding new uuid tree entry. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
9771a5cf937129307d9f58922d60484d58ababe7,
2020.

[4] Josef Bacik. btrfs: fix lockdep splat
in add_missing_dev. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
fccc0007b8dc952c6bc0805cdf842eb8ea06a639,
2020.

[5] Josef Bacik. btrfs: fix potential deadlock in the search
ioctl. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
a48b73eca4ceb9b8a4b97f290a065335dbcd8a04,
2020.

[6] Josef Bacik. btrfs: move the chunk_mutex
in btrfs_read_chunk_tree. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
01d01caf19ff7c537527d352d169c4368375c0a1,
2020.

[7] Josef Bacik. btrfs: open device with-
out device_list_mutex. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
18c850fdc5a801bad4977b0f1723761d42267e45,
2020.

[8] Josef Bacik. btrfs: unlock to current
level in btrfs_next_old_leaf. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
0e46318df8a120ba5f1e15210c32cfab33b09f40,
2020.

[9] Josef Bacik. btrfs: exclude mmaps while doing remap.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=

8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5,
2021.

[10] Josef Bacik. btrfs: fix lockdep splat
with reloc root extent buffers. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
b40130b23ca4a08c5785d5a3559805916bddba3c,
2022.

[11] Josef Bacik. btrfs: unlock locked ex-
tent area if we have contention. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1,
2022.

[12] Stephanie Balzer, Bernardo Toninho, and Frank Pfen-
ning. Manifest deadlock-freedom for shared session
types. In ESOP, pages 611–639, 2019.

[13] Johann Blieberger, Bernd Burgstaller, and Robert Mit-
termayr. Static detection of livelocks in Ada multi-
tasking programs. In Proceedings of the 12th Interna-
tional Conference on Reliable Software Technologies,
Ada-Europe’07, page 69–83, Berlin, Heidelberg, 2007.
Springer-Verlag.

[14] Chandrasekhar Boyapati, Robert Lee, and Martin Ri-
nard. Ownership types for safe programming: Pre-
venting data races and deadlocks. SIGPLAN Not.,
37(11):211–230, nov 2002.

[15] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and
Koushik Sen. Looper: Lightweight detection of in-
finite loops at runtime. In Proceedings of the 24th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, page 161–169, USA,
2009. IEEE Computer Society.

[16] Miao Cai, Hao Huang, and Jian Huang. Understanding
security vulnerabilities in file systems. In Proceedings
of the 10th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys ’19, page 8–15, New York, NY, USA,
2019. Association for Computing Machinery.

[17] Michael Carbin, Sasa Misailovic, Michael Kling, and
Martin C. Rinard. Detecting and escaping infinite
loops with jolt. In Proceedings of the 25th Euro-
pean Conference on Object-Oriented Programming,
ECOOP’11, page 609–633, Berlin, Heidelberg, 2011.
Springer-Verlag.

[18] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with perennial. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles,

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 643

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9fb0db40513e27537fde63287aea920b60557a69
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9fb0db40513e27537fde63287aea920b60557a69
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9fb0db40513e27537fde63287aea920b60557a69
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9fb0db40513e27537fde63287aea920b60557a69
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9771a5cf937129307d9f58922d60484d58ababe7
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=fccc0007b8dc952c6bc0805cdf842eb8ea06a639
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=fccc0007b8dc952c6bc0805cdf842eb8ea06a639
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=fccc0007b8dc952c6bc0805cdf842eb8ea06a639
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=fccc0007b8dc952c6bc0805cdf842eb8ea06a639
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a48b73eca4ceb9b8a4b97f290a065335dbcd8a04
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a48b73eca4ceb9b8a4b97f290a065335dbcd8a04
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a48b73eca4ceb9b8a4b97f290a065335dbcd8a04
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=01d01caf19ff7c537527d352d169c4368375c0a1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=18c850fdc5a801bad4977b0f1723761d42267e45
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=18c850fdc5a801bad4977b0f1723761d42267e45
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=18c850fdc5a801bad4977b0f1723761d42267e45
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=18c850fdc5a801bad4977b0f1723761d42267e45
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0e46318df8a120ba5f1e15210c32cfab33b09f40
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8c99516a8cdd15fe6b64a12297a5c7f52dcee9a5
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b40130b23ca4a08c5785d5a3559805916bddba3c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b40130b23ca4a08c5785d5a3559805916bddba3c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b40130b23ca4a08c5785d5a3559805916bddba3c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b40130b23ca4a08c5785d5a3559805916bddba3c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9e769bd7e5db5e3bd76e7c67004c261f7fcaa8f1

SOSP ’19, page 243–258, New York, NY, USA, 2019.
Association for Computing Machinery.

[19] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. Gojour-
nal: a verified, concurrent, crash-safe journaling sys-
tem. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21), pages
423–439. USENIX Association, July 2021.

[20] Tej Chajed, Joseph Tassarotti, Mark Theng, M Frans
Kaashoek, and Nickolai Zeldovich. Verifying the
daisynfs concurrent and crash-safe file system with
sequential reasoning. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
22), pages 447–463, 2022.

[21] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay undefinedleri, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Verifying a high-
performance crash-safe file system using a tree specifi-
cation. In Proceedings of the 26th Symposium on Op-
erating Systems Principles, SOSP ’17, page 270–286,
New York, NY, USA, 2017. Association for Computing
Machinery.

[22] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chli-
pala, M. Frans Kaashoek, and Nickolai Zeldovich. Us-
ing crash hoare logic for certifying the fscq file system.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, page 18–37, New York,
NY, USA, 2015. Association for Computing Machin-
ery.

[23] Zhihao Cheng. ubifs: Fix deadlock in con-
current bulk-read and writepage. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2,
2020.

[24] Zhihao Cheng. ubifs: Fix deadlock in con-
current rename whiteout and inode writeback.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
afd427048047e8efdedab30e8888044e2be5aa9c,
2021.

[25] Zhihao Cheng. ubifs: Fix aa dead-
lock when setting xattr for encrypted file.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
a0c51565730729f0df2ee886e34b4da6d359a10b,
2022.

[26] Rafael Lourenco de Lima Chehab, Antonio Paolillo,
Diogo Behrens, Ming Fu, Hermann Härtig, and Haibo

Chen. Clof: A compositional lock framework for
multi-level numa systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Prin-
ciples, SOSP ’21, page 851–865, New York, NY, USA,
2021. Association for Computing Machinery.

[27] Hugh Dickins. mm: lock newly mapped
vma with corrected ordering. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
1c7873e3364570ec89343ff4877e0f27a7b21a61,
2023.

[28] Haoran Ding, Zhaoguo Wang, Zhuohao Shen, Rong
Chen, and Haibo Chen. Automated verification of
idempotence for stateful serverless applications. In
17th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 23), pages 887–910,
Boston, MA, July 2023. USENIX Association.

[29] Linux documentation. Kernel subsystem documen-
tation » filesystems in the linux kernel » directory
locking. https://www.kernel.org/doc/html/
latest/filesystems/directory-locking.html,
2023. Referenced December 2023.

[30] Linux documentation. Kernel subsystem documen-
tation » filesystems in the linux kernel » pathname
lookup. https://www.kernel.org/doc/html/
latest/filesystems/path-lookup.html, 2023.
Referenced December 2023.

[31] Linux documentation. Locking in the ker-
nel » runtime locking correctness validator.
https://www.kernel.org/doc/html/latest/
locking/lockdep-design.html, 2023. Referenced
April 2023.

[32] Emanuele D’Osualdo, Julian Sutherland, Azadeh
Farzan, and Philippa Gardner. Tada live: Composi-
tional reasoning for termination of fine-grained con-
current programs. ACM Trans. Program. Lang. Syst.,
43(4), nov 2021.

[33] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak
Majumdar. Verifying reference counting implemen-
tations. In International Conference on Tools and
Algorithms for Construction and Analysis of Systems,
2009.

[34] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak
Majumdar. Verifying reference counting implementa-
tions. In Proceedings of the 15th International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems: Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software,
ETAPS 2009,, TACAS ’09, page 352–367, Berlin, Hei-
delberg, 2009. Springer-Verlag.

644 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f5de5b83303e61b1f3fb09bd77ce3ac2d7a475f2
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=afd427048047e8efdedab30e8888044e2be5aa9c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=afd427048047e8efdedab30e8888044e2be5aa9c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=afd427048047e8efdedab30e8888044e2be5aa9c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a0c51565730729f0df2ee886e34b4da6d359a10b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a0c51565730729f0df2ee886e34b4da6d359a10b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a0c51565730729f0df2ee886e34b4da6d359a10b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1c7873e3364570ec89343ff4877e0f27a7b21a61
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1c7873e3364570ec89343ff4877e0f27a7b21a61
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1c7873e3364570ec89343ff4877e0f27a7b21a61
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1c7873e3364570ec89343ff4877e0f27a7b21a61
https://www.kernel.org/doc/html/latest/filesystems/directory-locking.html
https://www.kernel.org/doc/html/latest/filesystems/directory-locking.html
https://www.kernel.org/doc/html/latest/filesystems/path-lookup.html
https://www.kernel.org/doc/html/latest/filesystems/path-lookup.html
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html
https://www.kernel.org/doc/html/latest/locking/lockdep-design.html

[35] Xinyu Feng. Local rely-guarantee reasoning. In Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL ’09, page 315–327, New York, NY, USA, 2009.
Association for Computing Machinery.

[36] Filebench. Filebench, 2019.

[37] GNU. Gcc, the gnu compiler collection. https://www.
gnu.org/software/gcc/, 2019. Referenced April
2019.

[38] Google. syzkaller - kernel fuzzer, 2023.

[39] Andreas Gruenbacher. gfs2: Fix deadlock
between gfs2_{create_inode,inode_lookup}
and delete_work_func. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
dd0ecf544125639e54056d851e4887dbb94b6d2f,
2020.

[40] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. Certikos: An extensible architecture for
building certified concurrent OS kernels. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 653–669, Savannah,
GA, 2016. USENIX Association.

[41] Ronghui Gu, Zhong Shao, Jieung Kim, Xiong-
nan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg,
Hao Chen, David Costanzo, and Tahina Ramananan-
dro. Certified concurrent abstraction layers. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2018, page 646–661, New York, NY, USA, 2018.
Association for Computing Machinery.

[42] Chunhai Guo. erofs: avoid infinite loop in
z_erofs_do_read_page() when reading beyond
eof. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
8191213a5835b0317c5e4d0d337ae1ae00c75253,
2023.

[43] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Sri-
nath Setty, and Brian Zill. Ironfleet: proving practical
distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP
’15, page 1–17, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[44] Liang He, Purui Su, Chao Zhang, Yan Cai, and Jinxin
Ma. One simple api can cause hundreds of bugs an

analysis of refcounting bugs in all modern linux ker-
nels. In Proceedings of the 29th Symposium on Oper-
ating Systems Principles, SOSP ’23, page 52–65, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[45] Allison Henderson. net:rds: Fix possi-
ble deadlock in rds_message_put. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
f1acf1ac84d2ae97b7889b87223c1064df850069,
2024.

[46] Jan Hoffmann, Michael Marmar, and Zhong Shao.
Quantitative reasoning for proving lock-freedom. In
Proceedings of the 2013 28th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS ’13, page
124–133, USA, 2013. IEEE Computer Society.

[47] Atalay Ileri, Tej Chajed, Adam Chlipala, Frans
Kaashoek, and Nickolai Zeldovich. Proving confiden-
tiality in a file system using disksec. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 323–338, Carlsbad, CA,
2018. USENIX Association.

[48] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers.
Connectivity graphs: a method for proving deadlock
freedom based on separation logic. Proc. ACM Pro-
gram. Lang., 6(POPL), jan 2022.

[49] C. B. Jones. Tentative steps toward a development
method for interfering programs. ACM Trans. Program.
Lang. Syst., 5(4):596–619, oct 1983.

[50] D. Jones. Trinity: A linux system call fuzz tester, 2019.

[51] Horatiu Jula, Daniel M Tralamazza, Cristian Zamfir,
George Candea, et al. Deadlock immunity: Enabling
systems to defend against deadlocks. In OSDI, vol-
ume 8, pages 295–308, 2008.

[52] Jan Kara. ext4: fix deadlock with fs freezing and ea in-
odes. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
46e294efc355c48d1dd4d58501aa56dac461792a,
2020.

[53] Jan Kara. fs: Lock moved directories.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
28eceeda130f5058074dd007d9c59d2e8bc5af2e,
2023.

[54] Linux kernel stable tree. https://git.kernel.org/
pub/scm/linux/kernel/git/stable/linux.git/
log/, 2024.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 645

https://www.gnu.org/software/gcc/
https://www.gnu.org/software/gcc/
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=dd0ecf544125639e54056d851e4887dbb94b6d2f
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8191213a5835b0317c5e4d0d337ae1ae00c75253
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8191213a5835b0317c5e4d0d337ae1ae00c75253
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=8191213a5835b0317c5e4d0d337ae1ae00c75253
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f1acf1ac84d2ae97b7889b87223c1064df850069
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f1acf1ac84d2ae97b7889b87223c1064df850069
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f1acf1ac84d2ae97b7889b87223c1064df850069
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=f1acf1ac84d2ae97b7889b87223c1064df850069
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=46e294efc355c48d1dd4d58501aa56dac461792a
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=46e294efc355c48d1dd4d58501aa56dac461792a
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=46e294efc355c48d1dd4d58501aa56dac461792a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=28eceeda130f5058074dd007d9c59d2e8bc5af2e
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=28eceeda130f5058074dd007d9c59d2e8bc5af2e
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=28eceeda130f5058074dd007d9c59d2e8bc5af2e
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/log/

[55] Hyeong-Jun Kim. f2fs: compress: fix po-
tential deadlock of compress file. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
7377e853967ba45bf409e3b5536624d2cbc99f21,
2021.

[56] Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong
Shao. Safety and liveness of mcs lock—layer by layer.
In Asian Symposium on Programming Languages and
Systems, pages 273–297. Springer, 2017.

[57] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Win-
wood. sel4: formal verification of an os kernel. In Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, SOSP ’09, page 207–220,
New York, NY, USA, 2009. Association for Computing
Machinery.

[58] Konstantin Komarov. fs/ntfs3: Chang-
ing locking in ntfs_rename. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796,
2022.

[59] Greg Kurz. fuse: Fix infinite loop in sget_fc().
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
e4a9ccdd1c03b3dc58214874399d24331ea0a3ab,
2021.

[60] Leslie Lamport. Proving the correctness of multipro-
cess programs. IEEE Transactions on Software Engi-
neering, SE-3:125–143, 1977.

[61] K. Rustan M. Leino and Peter Müller. A basis for
verifying multi-threaded programs. In European Sym-
posium on Programming, 2009.

[62] K. Rustan M. Leino, Peter Müller, and Jan Smans.
Deadlock-free channels and locks. In ESOP, pages
407–426, 2010.

[63] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and verification of the arm confidential compute archi-
tecture. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
465–484, 2022.

[64] Hongjin Liang and Xinyu Feng. A program logic
for concurrent objects under fair scheduling. In Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages,
POPL ’16, page 385–399, New York, NY, USA, 2016.
Association for Computing Machinery.

[65] Hongjin Liang and Xinyu Feng. Progress of concurrent
objects with partial methods. Proc. ACM Program.
Lang., 2(POPL), dec 2017.

[66] Hongjin Liang, Xinyu Feng, and Zhong Shao. Com-
positional verification of termination-preserving re-
finement of concurrent programs. In Proceedings of
the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14,
New York, NY, USA, 2014. Association for Comput-
ing Machinery.

[67] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of linux
file system evolution. In Proceedings of the 11th
USENIX Conference on File and Storage Technologies,
FAST’13, page 31–44, USA, 2013. USENIX Associa-
tion.

[68] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan
Zhou. Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In Pro-
ceedings of the 13th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, page 329–339, New
York, NY, USA, 2008. Association for Computing Ma-
chinery.

[69] Filipe Manana. btrfs: fix deadlock when cloning
inline extent and low on free metadata space.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
3d45f221ce627d13e2e6ef3274f06750c84a6542,
2020.

[70] Changwoo Min, Sanidhya Kashyap, Byoungyoung
Lee, Chengyu Song, and Taesoo Kim. Cross-checking
semantic correctness: The case of finding file system
bugs. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles, pages 361–377. ACM, 2015.

[71] mit pdos. mit-pdos/fscq: Fscq is a certified file system
written and proven in coq. https://github.com/
mit-pdos/fscq, 2019. Referenced April 2019.

[72] Trond Myklebust. Nfs: Don’t deadlock
when cookie hashes collide. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
648a4548d622c4ae965058db1a6b5b95c062789a,
2022.

646 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=7377e853967ba45bf409e3b5536624d2cbc99f21
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0ad9dfcb8d3fd6ef91983ccb93fafbf9e3115796
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4a9ccdd1c03b3dc58214874399d24331ea0a3ab
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4a9ccdd1c03b3dc58214874399d24331ea0a3ab
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4a9ccdd1c03b3dc58214874399d24331ea0a3ab
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3d45f221ce627d13e2e6ef3274f06750c84a6542
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3d45f221ce627d13e2e6ef3274f06750c84a6542
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3d45f221ce627d13e2e6ef3274f06750c84a6542
https://github.com/mit-pdos/fscq
https://github.com/mit-pdos/fscq
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=648a4548d622c4ae965058db1a6b5b95c062789a

[73] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang,
Dylan Johnson, James Bornholt, Emina Torlak, and
Xi Wang. Hyperkernel: Push-button verification of
an os kernel. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
252–269, New York, NY, USA, 2017. Association for
Computing Machinery.

[74] Jonas Oberhauser, Rafael Lourenco de Lima Chehab,
Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Ober-
hauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. Vsync: push-button
verification and optimization for synchronization prim-
itives on weak memory models. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’21, page 530–545, New York, NY,
USA, 2021. Association for Computing Machinery.

[75] Susan Owicki and David Gries. Verifying properties
of parallel programs: an axiomatic approach. Commun.
ACM, 19(5):279–285, may 1976.

[76] Bob Peterson. gfs2: fix a deadlock on
withdraw-during-mount. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
865cc3e9cc0b1d4b81c10d53174bced76decf888,
2021.

[77] Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of a log-structured file system.
In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, SOSP ’91, page 1–15,
New York, NY, USA, 1991. Association for Computing
Machinery.

[78] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans
Kaashoek, and Nickolai Zeldovich. Grove: A
separation-logic library for verifying distributed sys-
tems. In Proceedings of the 29th Symposium on Op-
erating Systems Principles, SOSP ’23, page 113–129,
New York, NY, USA, 2023. Association for Computing
Machinery.

[79] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file systems
via crash refinement. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 1–16, Savannah, GA, 2016. USENIX Asso-
ciation.

[80] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-
Karney, James Bornholt, Emina Torlak, and Xi Wang.
Nickel: A framework for design and verification of
information flow control systems. In 13th USENIX

Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 287–305, Carlsbad, CA,
2018. USENIX Association.

[81] Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li,
Jason Nieh, and Ronghui Gu. Formal verification of
a multiprocessor hypervisor on arm relaxed memory
hardware. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP
’21, page 866–881, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

[82] Theodore Ts’o. ext4: add error checking
to ext4_ext_replay_set_iblocks(). https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
1fd95c05d8f742abfe906620780aee4dbe1a2db0,
2021.

[83] Theodore Ts’o. ext4: add error checking
to ext4_ext_replay_set_iblocks(). https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
1fd95c05d8f742abfe906620780aee4dbe1a2db0,
2021.

[84] Theodore Ts’o and Stephen Tweedie. Future direc-
tions for the ext2/3 filesystem. In Proceedings of
the USENIX annual technical conference (FREENIX
track), 2002.

[85] vim. welcome home: vim online. https://www.vim.
org, 2019. Referenced April 2019.

[86] Al Viro. rename(): avoid a deadlock in the
case of parents having no common ancestor.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
a8b0026847b8c43445c921ad2c85521c92eb175f,
2023.

[87] Al Viro. rename(): fix the locking of subdirecto-
ries. https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
22e111ed6c83dcde3037fc81176012721bc34c0b,
2023.

[88] Jiawei Wang, Diogo Behrens, Ming Fu, Lilith Ober-
hauser, Jonas Oberhauser, Jitang Lei, Geng Chen, Her-
mann Härtig, and Haibo Chen. BBQ: A block-based
bounded queue for exchanging data and profiling. In
2022 USENIX Annual Technical Conference (USENIX
ATC 22), pages 249–262, Carlsbad, CA, July 2022.
USENIX Association.

[89] Jiawei Wang, Bohdan Trach, Ming Fu, Diogo Behrens,
Jonathan Schwender, Yutao Liu, Jitang Lei, Viktor

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 647

 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=865cc3e9cc0b1d4b81c10d53174bced76decf888
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=1fd95c05d8f742abfe906620780aee4dbe1a2db0
https://www.vim.org
https://www.vim.org
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a8b0026847b8c43445c921ad2c85521c92eb175f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a8b0026847b8c43445c921ad2c85521c92eb175f
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=a8b0026847b8c43445c921ad2c85521c92eb175f
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=22e111ed6c83dcde3037fc81176012721bc34c0b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=22e111ed6c83dcde3037fc81176012721bc34c0b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=22e111ed6c83dcde3037fc81176012721bc34c0b

Vafeiadis, Hermann Härtig, and Haibo Chen. BWoS:
Formally verified block-based work stealing for par-
allel processing. In 17th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
23), pages 833–850, Boston, MA, July 2023. USENIX
Association.

[90] Wengang Wang. ocfs2: fix deadlock
between setattr and dio_end_io_write.
https://git.kernel.org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?id=
90bd070aae6c4fb5d302f9c4b9c88be60c8197ec,
2021.

[91] Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane
Lafortune, and Scott A Mahlke. Gadara: Dynamic
deadlock avoidance for multithreaded programs. In
OSDI, volume 8, pages 281–294, 2008.

[92] James R. Wilcox, Doug Woos, Pavel Panchekha,
Zachary Tatlock, Xi Wang, Michael D. Ernst, and
Thomas Anderson. Verdi: a framework for imple-
menting and formally verifying distributed systems.
In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’15, page 357–368, New York, NY, USA,
2015. Association for Computing Machinery.

[93] Amy Williams, William Thies, and Michael D. Ernst.
Static deadlock detection for java libraries. In Pro-
ceedings of the 19th European Conference on Object-
Oriented Programming, ECOOP’05, page 602–629,
Berlin, Heidelberg, 2005. Springer-Verlag.

[94] Darrick J. Wong. xfs: fix s_maxbytes
computation on 32-bit kernels. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
932befe39ddea29cf47f4f1dc080d3dba668f0ca,
2020.

[95] Darrick J. Wong. xfs: more lockdep
whackamole with kmem_alloc*. https:
//git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
6dcde60efd946e38fac8d276a6ca47492103e856,
2020.

[96] Darrick J. Wong. xfs: fix an abba
deadlock in xfs_rename. https://git.
kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/commit/?id=
6da1b4b1ab36d80a3994fd4811c8381de10af604,
2021.

[97] Chao Yu. f2fs: compress: fix potential deadlock.
https://git.kernel.org/pub/scm/linux/

kernel/git/stable/linux.git/commit/?id=
3afae09ffea5e08f523823be99a784675995d6bb,
2021.

[98] Mo Zou. Re: [PATCH] Documentation: fs: fix
directory locking proofs. https://lore.kernel.
org/linux-fsdevel/CAHfrynPiUWiB0Vg3-pTi_
yC6cER0wYMmCo_V8HZyWAD5Q_m+jQ@mail.gmail.
com/, 2023.

[99] Mo Zou. Directory locking proof for Linux VFS.
https://ipads.se.sjtu.edu.cn/pub/projects/
reffs, 2024.

[100] Mo Zou. The soundness proof of MoLi.
https://ipads.se.sjtu.edu.cn/pub/projects/
reffs#soundness_proof, 2024.

[101] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using concurrent relational logic
with helpers for verifying the atomfs file system. In
Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, SOSP ’19, page 259–274, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

648 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=90bd070aae6c4fb5d302f9c4b9c88be60c8197ec
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=90bd070aae6c4fb5d302f9c4b9c88be60c8197ec
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=90bd070aae6c4fb5d302f9c4b9c88be60c8197ec
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=932befe39ddea29cf47f4f1dc080d3dba668f0ca
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6dcde60efd946e38fac8d276a6ca47492103e856
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3afae09ffea5e08f523823be99a784675995d6bb
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3afae09ffea5e08f523823be99a784675995d6bb
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=3afae09ffea5e08f523823be99a784675995d6bb
https://lore.kernel.org/linux-fsdevel/CAHfrynPiUWiB0Vg3-pTi_yC6cER0wYMmCo_V8HZyWAD5Q_m+jQ@mail.gmail.com/
https://lore.kernel.org/linux-fsdevel/CAHfrynPiUWiB0Vg3-pTi_yC6cER0wYMmCo_V8HZyWAD5Q_m+jQ@mail.gmail.com/
https://lore.kernel.org/linux-fsdevel/CAHfrynPiUWiB0Vg3-pTi_yC6cER0wYMmCo_V8HZyWAD5Q_m+jQ@mail.gmail.com/
https://lore.kernel.org/linux-fsdevel/CAHfrynPiUWiB0Vg3-pTi_yC6cER0wYMmCo_V8HZyWAD5Q_m+jQ@mail.gmail.com/
https://ipads.se.sjtu.edu.cn/pub/projects/reffs
https://ipads.se.sjtu.edu.cn/pub/projects/reffs
https://ipads.se.sjtu.edu.cn/pub/projects/reffs#soundness_proof
https://ipads.se.sjtu.edu.cn/pub/projects/reffs#soundness_proof

	Introduction
	Motivation
	Study of Termination Bugs
	Limitations of Previous Work

	The MoLi Methodology
	Dynamically Layered Definite Releases
	Definite Release
	Hierarchical Layering
	Dynamic Layering
	Directory Locking in Linux VFS
	Discussion about Support for Delay

	The MoLi Framework
	Overview
	Specification in MoLi
	Verification in MoLi

	Design and Verification of RefFS
	Implementation and Abstraction
	Verification of RefFS

	Evaluation
	Performance Evaluation
	Modularity of Termination Proofs
	Verification Evaluation
	Bug Discussion

	Related Work
	Conclusion

