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Message from the 
OSDI ’24 Program Co-Chairs 

Dear Colleagues,

Welcome to the 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’24).

We are pleased that, once again, OSDI is co-located with the USENIX Annual Technical Conference (USENIX ATC ’24). 
The two conferences combined are publishing a wide array of exciting papers representing some of the most innovative 
work in the systems research community. We hope you come away from OSDI and USENIX ATC with new colleagues, new 
friends, and new ideas.

This year, OSDI received 272 submissions. We accepted 49 submissions, which is an 18% acceptance rate. In addition to the 
papers accepted this year, 4 additional papers were accepted from the OSDI ’23 Revise and Resubmit process. This brings 
the total program to 53 papers being published in the OSDI proceedings. We continue to be committed to a single-track 
conference at OSDI, and we have put together a 3-day program in which all papers are being presented in the same room so 
attendees can watch every single talk if they so desire.

To deal with the number and technical breadth of the OSDI submissions, we assembled a program committee of 95 members 
not counting us, the Program Co-Chairs. Reviewing papers is a time-consuming task that requires high judgment, and we are 
grateful to the program committee for their diligence, professionalism, and cooperation during the review process. We are 
proud that OSDI is known for high quality reviews that help authors to produce their very best work and present it clearly to 
our community.

The program committee reviewed submissions in two rounds. Every paper received at least three reviews in the first round. 
Select papers then received 2 or 3 additional reviews in the second round. The accepted papers were chosen based on an 
online discussion phase and a two-day PC meeting. The committee completed more than 1,000 reviews and posted hundreds 
of comments as part of the online discussion process. Each accepted paper was assigned a shepherd to work with the authors 
to revise the paper in response to reviewer feedback.

OSDI ’24 had an artifact-evaluation committee, shared with USENIX ATC ’24, that organized and evaluated the artifacts 
submitted by authors. The committee co-chairs this year were Jianyu Jiang, Ji Qi, and Cesar A. Stuardo. The committee 
made one recommendation for a Distinguished Artifact Award.

OSDI ’24 had a poster submission process that was run by Aishwarya Ganesan and Amy Ousterhout, who graciously took on 
this task in addition to serving on the PC. They accepted 52 posters for display at the OSDI poster session, representing a mix 
of posters from papers presented at the conference as well as other work.

Once the accepted papers were decided, we began the process of deciding on the Jay Lepreau Best Paper Awards. A small 
committee of non-conflicted PC members read all of the top-ranked papers and agreed on the award recommendation.

As PC chairs, we are grateful to so many dedicated volunteers and professional staff whose efforts have made this conference 
a reality. We thank the authors who submitted such high-quality work. This conference is first and foremost a forum for 
disseminating, sharing, discussing, and debating world-class systems research. Thank you for your hard work and innovation! 
We thank the PC members and external reviewers for their significant investment of time, energy, and insight into shaping the 
program. We thank Vaibhav Bhosale and Vishal Suresh Rao, who helped us during the PC meeting and made sure we ran the 
technology and not the other way around. We especially thank the USENIX staff who have made chairing a conference like 
this one a well-oiled machine! Finally, we thank you for coming to this conference to engage with each other and with the 
authors of the accepted papers.

We are honored to have served as the OSDI ’24 Program Co-Chairs. Thank you for entrusting us with this important role. 
We hope that you enjoy the conference!

Ada Gavrilovska, Georgia Institute of Technology 
Doug Terry, Amazon Web Services 
OSDI ’24 Program Co-Chairs
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Abstract
MicroVM snapshotting significantly reduces the cold start
overheads in serverless applications. Snapshotting enables
storing part of the physical memory of a microVM guest into
a file, and later restoring from it to avoid long cold start-up
times. Prefetching memory pages from snapshots can further
improve the effectiveness of snapshotting. However, the effi-
cacy of prefetching depends on the size of the memory that
needs to be restored. Lossless page compression is therefore
a great way to improve the coverage of the memory foot-
print that snapshotting with prefetching achieves. Unfortu-
nately, the high overhead and high CPU cost of software-based
(de)compression make this impractical.

We introduce Sabre, a novel approach to snapshot page
prefetching based on hardware-accelerated (de)compression.
Sabre leverages an increasingly pervasive near-memory ana-
lytics accelerator available in modern datacenter processors.
We show that by appropriately leveraging such accelerators,
microVM snapshots of serverless applications can be com-
pressed up to a factor of 4.5⇥, with nearly negligible decom-
pression costs. We use this insight to build an efficient page
prefetching library capable of speeding up memory restora-
tion from snapshots by up to 55%. We integrate the library
with the production-grade Firecracker microVMs and eval-
uate its end-to-end performance on a wide set of serverless
applications.

1 Introduction

Serverless is an emerging cloud computing paradigm gain-
ing widespread popularity across applications of different
classes, from lightweight interactive services [73] to highly
data-parallel applications, such as machine learning and video
encoding [21,24,40,47,67]. Serverless offers a Function-as-a-
Service (FaaS) execution model, where applications instanti-
ate short-lived, fine-grained resources on-demand without the
overhead of provisioning and deployment typical cloud envi-
ronments incur. When requests are processed, the resources

are terminated, achieving a pay-as-you-go model. This both
avoids resource overprovisioning, which has been a long-
standing issue with cloud infrastructures [22, 28, 58] and re-
duces the end-to-end deployment cost [33, 46].

Serverless is based on lightweight virtualization/isolation
technologies [19] such as Docker, Google gVisor [3], Kata
containers [10], NEC’s LightVMs [53], and AWS Firecracker
microVMs [17]. These technologies implement sandboxes for
executing containerized applications with different levels of
isolation. For example, gVisor implements a lightweight user
space kernel capable of executing most of the system calls
within the sandbox. On the other hand, Firecracker is a full
lightweight virtualization technology, based on KVM, which
can boot standard Linux kernels in sub-second time [17]. Due
to the high isolation guarantees of microVMs, security, and
performance, Firecracker is widely used in serverless clouds.

Despite its advantages, serverless and microVMs introduce
a few critical overheads to performance. A major overhead is
cold starts (or cold boots) – the overhead of the initial boot
of container sandboxes upon a function invocation. Both in-
dustry and academia have proposed numerous techniques to
mitigate cold start overheads [31, 35, 64, 73], with one of the
most promising being VM snapshotting [31]. VM snapshots
capture the current state of the VM and its physical memory
and save them in a file. During the next boot, the guest sys-
tem is restored from the file instead of booting from scratch.
Several different techniques can be used to make snapshots,
depending on which parts of the guest’s physical memory
should be saved. For instance, Firecracker can snapshot the
full guest memory or only the dirty pages. Additionally, re-
cent studies have proposed using working sets of pages [71]
to make serverless VM snapshots smaller, faster to fetch, and
overall more efficient [20, 64] in reducing cold starts. How-
ever, independent of the underlying techniques used to create
snapshots, the overhead of storing and prefetching them is
non-negligible. Unfortunately, the latter is on the critical path
of VM restoration and therefore directly impacts cold starts.

Reducing the size of snapshots can make them signifi-
cantly more efficient, for example through lossless memory
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compression. While memory compression has been used
in domains where the application performance is not crit-
ical (e.g., zswap [39], zram [38] in Android OS for mo-
bile devices), in serverless the restoration of a memory
snapshot is on the critical path, precluding the use of ex-
isting software-based (de)compression algorithms. At the
same time, there are numerous hardware implementations
of (de)compression [23, 41, 51, 52, 56], however, they had
not, until now, been implemented in mainstream datacenter
processors [43]. In particular, Intel recently released the In-
Memory Analytics Accelerator (IAA) [6] in their 4th Gen
Xeon Scalable CPUs, which enables efficient compression for
datacenter applications at scale.

We present Sabre, a hardware-accelerated general-purpose
memory prefetching system, which uses lossless compression
mechanisms, such as IAA, to compress and restore microVM
snapshots. This paper makes two major contributions. First,
we characterize, for the first time, the IAA accelerator on a set
of diverse benchmarks, and show its potential for compressing
memory pages. We show that IAA can compress pages by
2�4.5⇥, depending on the underlying page selection algo-
rithm. Moreover, we show that decompression can be done
up to 10⇥ faster with hardware acceleration, and with careful
design, this time can be entirely hidden behind the disk I/O
and page fault handling. This results in near-free decompres-
sion in terms of the overall memory restoration latency, while
reducing the size and the loading time of snapshot pages.

Second, based on this characterization, we build Sabre
and integrate it with the Firecracker virtual machine mon-
itor (VMM) in a serverless environment with snapshotting
support. Sabre is agnostic to the underlying page snapshotting
policy, it operates entirely in the host’s user space, and inter-
acts with the IAA accelerator via the Shared Virtual Memory
(SVM) mechanism. The latter enables out-of-box and trans-
parent integration of Sabre with existing VMMs at scale.

We evaluate Sabre on its efficiency in restoring microVMs
from snapshots across a wide range of end-to-end serverless
applications using two methods of creating snapshots: dirty
page-based and working set-based. We show that Sabre com-
presses microVM snapshots up to 4.5⇥ without introducing
any decompression overheads. Moreover, we show that Sabre
enables up to 55% faster memory restoration, which results
in an additional reduction of the end-to-end cold start time by
20% with respect to already optimized state-of-the-art snap-
shotting baselines.

Sabre is open-source software and it is available at the
following link [13].

2 Background

2.1 MicroVMs for Serverless
Serverless is gaining popularity across many application
domains by reducing the cloud provisioning overhead and

enabling higher elasticity for applications with high paral-
lelism and intermittent activity. Lightweight virtualization
technologies (or microVMs) became a popular choice for
cloud providers due to the isolation and fast instantiation they
provide [17, 69]. Fully virtualized VMs running over Type-
1 hypervisors, such as KVM [37] or Hyper-V [70], allow
isolating tenants down to hardware and provide the highest
security guarantees for applications running in the cloud. On
the other hand, microVMs are much faster to boot and have a
much smaller memory footprint than traditional Type-1 vir-
tual machines. This means that microVMs achieve the best
of both worlds between containers and Type-1 hypervisors.
MicroVMs are widely used in serverless, where applications
require both strong isolation guarantees and fast start-up.

Modern microVMs, such as AWS Firecracker [17], use
several optimizations to boot up in sub-seconds. However,
booting the VM itself is only part of the end-to-end applica-
tion execution latency [31, 64], with a significant component
corresponding to the initialization of the software dependen-
cies after the boot. For applications based on complex multi-
layer stacks, such as gRPC servers and JavaScript runtimes,
bringing up the dependencies might be as high as several
seconds [31]. Additionally, the applications themselves can
contain long-running initialization routines, which also con-
tribute to end-to-end latency. For example, machine learning
(ML) services need to load the models before serving infer-
ence queries. Altogether, this makes the end-to-end execu-
tion of the first batch of requests running on freshly booted
microVMs an order of magnitude slower than subsequent
requests. This is known as cold start, and all microVMs are
prone to it.

Mitigating cold starts is one of the most well-researched
aspects of microVMs [65]. Existing solutions range from
scheduling techniques optimized for specific applications to
runtime and infrastructure optimizations [54, 73]. One solu-
tion that is generally agnostic to applications is VM snapshot-
ting [31].

2.2 MicroVM Snapshotting and Prefetching
Snapshotting is a technology that allows storing the VM state
and guest OS physical memory in a file in the local or remote
filesystem. Snapshots are usually created after the VM and the
application logic with all its dependencies are fully initialized
and ready to serve requests. Upon the next invocation of the
VM the hypervisor restores the VM state and guest memory
from the snapshot, instead of booting the VM from scratch.
This dramatically reduces cold start overheads.

In the most basic case, snapshots contain the entire guest
physical memory. Some hypervisors, such as Firecracker, also
allow dirty-memory tracking, which only stores the dirty guest
pages as seen by the hypervisor. Snapshots can be organized
hierarchically following the software dependencies of appli-
cations [31]. However, recovering from snapshots is far from
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free. In some cases, the size of the snapshots can be as high as
the whole guest memory, therefore precluding the possibility
of loading pages from snapshots in advance. For this reason,
existing commercial microVMs implement memory restora-
tion via on-demand paging. Unfortunately, on-demand paging
yields a lot of page faults on the critical path of the restoration
from snapshots, which slows down request execution.

A way to reduce the overhead of page faults is to enable
prefetching of pages from snapshots. This can be efficiently
done through, for example, working set (WS) estimation. This
approach has been used to create VM checkpoints [71], and
recently – for serverless microVMs [64]. Here, each snapshot
is accommodated in a WS file, storing pages that are likely
to be accessed during subsequent invocations. There are dif-
ferent ways of constructing WS files [20, 64, 71] according
to various working set estimation techniques. For example,
in Record-and-Replay (REAP) [64], the authors propose to
record all guest pages being accessed during the first invo-
cation of serverless functions and put them into the WS file.
Upon the next invocation, the WS file can be prefetched from
the disk, and the WS pages can be installed in the guest’s
memory to speed up the next cold invocations. REAP works
well for applications with a similar working set across dif-
ferent invocations of the same function. When this does not
hold, REAP can fail to deliver good performance; in this
case, prefetching some other subset of dirty pages (or even
all dirty pages) can be more beneficial. Snapshots generally
consume a lot of disk space and require cloud providers to
carefully provision their storage resources [2]. Even working-
set-based snapshots can sometimes be as large as a few hun-
dred megabytes [20]. This is non-negligible given that a single
server might host hundreds of microVMs.

Independently of the underlying technique to create mi-
croVM snapshots and/or WS files, the efficiency of prefetch-
ing depends on the memory size that needs to be restored
from the disk into the guest memory. A general rule to make
prefetching-based techniques more efficient is to reduce the
size of the snapshots/WS files. This also reduces the disk
space needed to store snapshots. This size reduction can be
achieved through memory compression. However, memory
restoration happens on the critical path of the VM boot-up,
and for compression algorithms with high deflate ratios, the
decompression might take a long time. Moreover, such al-
gorithms usually consume a lot of CPU time for compres-
sion and therefore VM snapshotting. This makes the use of
software memory compression for microVM snapshotting
undesirable.

2.3 Hardware-Accelerated (De)Compression
Software-based memory compression has been extensively
used in applications where performance is not critical. For
example, zram [38] is used in Android OS on mobile devices,
while zswap [39] can improve the efficiency of memory swap-

ping for non-performance critical applications. Unfortunately,
this does not apply to microVM memory restoration, where
decompression directly impacts the cold start overhead.

There have been many proposals for accelerating mem-
ory compression in hardware. For example, Pekhimenko et.
al. [56] propose base-delta compression for on-chip caches.
Hoyong et. al. [41] derive a novel compression algorithm
for GPU memory. Li et al. [52] introduced a hardware accel-
erator for the compression of genome sequences. All such
proposals are based on application-specific, special-purpose
compression accelerators and algorithms, and therefore have
never been implemented on commodity datacenter proces-
sors. Many (de)compression accelerators are based on FPGA
cards [25, 34, 50, 57] which are only available in a small set
of public clouds. However, the demand for general-purpose
(de)compression acceleration at scale is actively growing.

(De)Compression is known to be one of the major sources
of datacenter tax [36,42,61]. A recent study from Google [36]
showed that compression accounts for up to 30% of cycles for
large-scale database applications, such as BigTable and Big-
Query [32,62], and it is also extensively used in many other ap-
plications. This motivates cloud providers and chip vendors to
build efficient hardware accelerators [43] for general-purpose
lossless (de)compression. The primary use cases for such
accelerators are databases and query-processing engines. In
particular, Intel recently introduced the In-Memory Analytic
Accelerator (IAA), which is now part of commodity datacen-
ter processors, such as the Xeon 4th Generation CPUs, which
are already widely available. This accelerator can perform
DEFLATE compression, which is suitable for compressing
memory footprints. While other compression algorithms that
are optimized for performance (e.g., Snappy, zstd, LZ4) can
compress memory faster, they typically result in much lower
compression ratios, which is critical for microVM snapshot-
ting. Their software implementations increase the amount
of CPU resources required for making snapshots, especially
when configured for more aggressive compression [1]. At the
same time, hardware-accelerated DEFLATE yields high com-
pression ratios as well as high speed, while requiring no CPU
cycles for (de)compression. It should also be noted that hard-
ware accelerators for other compression algorithms are also
feasible [16, 26, 60] but not yet implemented in mainstream
datacenter processors at scale.

IAA and other similar accelerators are designed for cloud
environments. They are typically implemented as on-chip
near-memory PCIe components, which allows them to be
easily integrated with cloud services. For instance, IAA can
run entirely in user space, it operates transparently over the
application’s virtual memory and can be virtualized through
standard technologies, such as S-IOV [8]. All this makes IAA
attractive for microVM memory snapshotting and prefetching.
In this work, we explore this direction.

We first characterize the capabilities of IAA when it comes
to compressing memory pages. Based on this characterization,
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we design Sabre, a memory prefetching system for microVMs
built using IAA. Finally, we show how our memory prefetch-
ing unit integrates with serverless microVMs and evaluate its
impact on end-to-end serverless benchmarks.

3 In-Memory Analytic Accelerator: Overview,
Characterization, Insights

We now present an overview and characterization of the Intel
In-Memory Analytic Accelerator (IAA) [6] using a set of
diverse benchmarks [15]. This work mainly focuses on the
compression/decompression capabilities of the accelerator.
However, given that other capabilities share the same IAA
frontend pipeline, interfaces, and software semantics, most
of our findings also apply to these other domains. To our
knowledge, this is the first publicly available characterization
of the IAA hardware. The insights from this characterization
are used to derive the design of Sabre, described in Section 4.

Note that given the diverse set of execution models, con-
figurations, workloads, and variations of IAA hardware in
different SKUs, it may be possible to achieve even higher
performance compared to what we showcase in our char-
acterization. Specifically, benchmarks designed specifically
to stress test the accelerator may be able to improve IAA’s
performance further. For the purpose of this paper, we only
benchmark the accelerator with a set of scenarios required to
give comprehensive insights into using in-memory compres-
sion techniques in serverlerss microVMs and to derive the
design of Sabre.

3.1 Overview of the IAA
Intel’s IAA is a hardware accelerator first introduced in Intel’s
4th Gen Xeon Scalable Processors (code-named Sapphire
Rapids) [12] to speed up data processing across application
classes. It was designed with the primary use case being
databases and query processing systems [7]. The accelerator
physically resides in the uncore part of the processor’s SoC
near the memory controller and Last Level Cache. A single
CPU can accommodate multiple IAA devices on its SoC.

The IAA accelerators are logically integrated as PCIe de-
vices and exposed to the host as a single root complex inte-
grated endpoint. This is set up to enable transparent integra-
tion of the accelerators with software. IAA features scalabil-
ity, full virtualization support via PCIe S-IOV, Shared Virtual
Memory support (SVM or SVA as defined by Linux kernel
documentation) [11], and transparent user-space interaction
with applications via a new ISA extension, called ENQCMD.

Communication and job submission to the accelerator are
handled via Work Queues (WQs), similar to another emerg-
ing hardware – Data Streaming Accelerator (DSA) [48]. For
this, software needs to create descriptors and completions
allocated anywhere in the application virtual address space.
Descriptors contain information describing the jobs assigned

to the accelerator’s Processing Units (PEs), such as the lo-
cations of the source and destination buffers, opcodes, and
operational and memory policy flags. Descriptors are submit-
ted to the accelerator via the ENQCMD instruction directly
from user space, which writes them into the device’s memory-
mapped I/O (MMIO) registers. Upon receiving descriptors,
the PEs fetch data based on the pointers in the descriptors.
This is done through SVM which enables transparent sharing
of the application’s virtual memory with accelerators. When
a PE finishes processing, it writes the corresponding com-
pletion record with the status information. The software can
poll the completion records to identify the termination of
tasks and any error information. If some application memory
pages associated with data buffers are not available, the ac-
celerator can request them via either Page Request Service
(PRS) or through userspace page fault handling. In the latter
case, software applications can resolve the page faults in a
more suitable for a particular usage scenario way (e.g., by
requesting pages from, for example, the network) in the user
space.

IAA’s job submission mechanism enables
asynchronous/non-blocking and out-of-order process-
ing of descriptors. The current hardware permits a large
number of in-flight requests, which can be submitted from dif-
ferent threads and processes/tenants. The micro-architectural
pipeline of the IAA hardware contains multiple PEs that can
execute jobs concurrently. The DSA specification [4] and
in-depth characterization [48] contain more details since both
accelerators share the same specification for this part.

The IAA hardware contains PEs implementing different
processing capabilities. These include encryption, compres-
sion, CRC offload, data filtering, scanning, extraction, selec-
tion, and expansion [5] (Table 3-1). Due to the scope of this
work, we only focus on characterizing the (de)compression
capability of IAA. IAA performs DEFLATE [30] compres-
sion, as defined in RFC 1951. DEFLATE is based on LZ77
matching and Huffman encoding. LZ77 matching eliminates
redundancy by replacing repeated occurrences of substrings
with references to a single version of the substring. This is
a computationally intensive process making software imple-
mentations slow. The Huffman coder further deflates data by
re-encoding the most common symbols with fewer bits using
statistics of data distribution in the input stream. Internally,
the IAA compression unit operates in three modes.

In the first – Huffman-mode, IAA performs hardware-
accelerated LZ77 dictionary coding, using 4 KB windows,
and encodes the results with pre-defined static Huffman tables.
The second IAA mode – Statistics-mode is designed to sam-
ple input streams and construct the statistical data distribution
to optimize Huffman tables for a particular input. Compres-
sion with input-specific Huffman tables usually allows much
higher compression ratios. In Statistics-mode, IAA only con-
structs the histogram of the distribution of Huffman codes,
but it does not write the actual Huffman tables yet. The latter
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Style Description
Fixed
Block

Standard static DEFLATE; based on Huffman-mode with standard Huffman tables; enables faster
compression, but under general Huffman tables, which usually results in low compression ratios.

Static
Block

Similar to Fixed Block, but using user-defined Huffman tables; can result in good compression ratios if the
application is able to provide Huffman tables fitting all inputs well.

Dynamic
Block

Standard dynamic DEFLATE; two-phase compression with Statistics-mode followed by Huffman-mode;
enables optimal Huffman tables per block and a better compression ratio, but requires more time to compress.

Canned Allows sharing the same Huffman tables between multiple blocks of compressed data; this is important when
compressing many small scattered chunks to avoid having to keep/access Huffman tables per block.

Table 1: End-to-end compression styles supported in Intel IAA.
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Figure 1: Comparison of software- and hardware-based DEFLATE compression for different datasets (sorted by uncompressed size) from
Silesia Corpus and serverless VM snapshots (last two); the numbers denote speed-up of the hardware execution; a single IAA device with a
single PE (engine) in blocking/synchronous mode is used; the software baseline runs on a single thread.

is done in the third mode – Huffman-Generation mode, which
is only supported in some IAA implementations.

Based on these modes, IAA defines four main styles of com-
pression (Table 1), and it is up to the control plane software to
implement them. To make end-to-end (de)compression easier
to implement, Intel has recently released the Query Processing
Library (QPL) [7], which abstracts away the IAA modes and
allows users to express compression in any of the supported
modes. We next show the results of microbenchmarking IAA
with different modes and implementations.

3.2 Characterizing Compression Using IAA

We characterize IAA (de)compression with a set of bench-
marks written using the Intel QPL library v1.3.1. As input
data, we use 11 datasets from the standard Silesia Corpus [29];
a common way to evaluate (de)compression. We also add
two more datasets specific to our use case representing the
dirty memory snapshots of microVMs. The snapshots were

obtained during request execution for two serverless applica-
tions from vSwarm [66] and FunctionBench [44,45]: a Python
gRPC server (pythongrpc) and the Pillow image processing
library (pillow). Both datasets only contain dirty pages of
guest memory. Table 2 shows the specification of our testbed.
At the time of writing, we had access to two Sapphire Rapids
systems (SKUs) with slightly different configurations. We use
the most recent production-grade SKU (Server #2 in Table 2)
in all experiments unless otherwise noted.

3.2.1 Benchmarking IAA: Core Compute

We start with the characterization of the in-memory core com-
puting capability of IAA. We assume that data is always avail-
able in memory, both for the source and destination buffers.
We ensure that memories are initialized and touched to avoid
page faults. This is important as page fault handling affects
the accelerator’s performance, and therefore we evaluate it
separately. For all experiments in this section, we use a single
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CPU
(Server #1)

Intel 4th Gen Xeon Scalable Processor;
2 NUMA nodes, 56 cores/112 threads;
Core/Uncore frequency (GHz): 1.7/ 1.8;
LLC capacity (MB): 110
IAA devices: 8 (4 per NUMA node)

CPU
(Server #2)

Intel(R) Xeon(R) Gold 6438Y+;
2 NUMA nodes, 32 cores/64 threads;
Core/Uncore frequency (GHz): 2.3/ 1.8;
LLC capacity (MB): 60
IAA devices: 2 (1 per NUMA node)

IAA

available PEs per device: 8
capabilities (as per GENCAP register):
- Huffman generation mode: disabled;
- Page Request Service (PRS): enabled;
- Block-on-Fault: enabled;
WQ configuration: shared, 8 per device, size: 32

Memory Type: DDR5; Capacity (GB): 250

Disk Intel SSDSC2KG960G8
Sequential O_DIRECT read bandwidth (MB/s): 550

Host OS
Ubuntu 22.04;
Kernel: 5.15, patched with [9] to enable ENQCMD;
Kernel boot arguments: intel_iommu = on,sm_on

Guest OS
(Section 5)

Rootfs: Debian GNU/Linux 12 (bookworm)
Kernel: 4.14.174

IAA stack Driver: idxd
Middleware: Intel QPL v1.3.1

Table 2: Testbed hardware and software configuration.

IAA device configured with a single PE (engine); we sub-
mit the jobs to the accelerator from a single CPU thread in
the blocking/synchronous mode and wait till completion by
polling associated completion records. The software baseline
runs on a single CPU core.

We first compare the performance and compression ratios
of IAA-enabled compression and its software implementation
in QPL. Since the IAA hardware does not allow explicitly
selecting compression levels (compression levels are
subjective and vary across implementations), we set the
default compression level-1, as defined by QPL, for the corre-
sponding software implementation. Since our version of IAA
does not offload Huffman table generation, the hardware im-
plementation of dynamic DEFLATE compression is actually
hybrid: statistics collection, LZ77 encoding, and compressed
stream generation run in hardware, while Huffman table
generation runs in software. The hybrid operations run on
a single CPU core. Figure 1 shows the compression results.

The hardware implementation always overperforms soft-
ware in compression time. The difference reaches 6.1⇥ and
13.5⇥ for dynamic and fixed compression, respectively. In our
datasets of dirty memory snapshots, the speedup reaches 9⇥.
The achieved compression ratios for software and hardware
executions are similar. Figure 2 shows the performance of
decompression. We only show the decompression of dynamic
streams, as in these datasets, decompression performance
does not depend on the compression mode. In all cases, IAA
decompresses an order of magnitude faster than software.

Note that in this paper, our experiments only compare IAA
to the software implementation of the same DEFLATE al-
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Figure 2: Comparison of software- and hardware-based DEFLATE
decompression on the same datasets and setup as in Figure 1

Figure 3: (De)compression of scattered 4kB pages across modes.

gorithm. To compare against many other software compres-
sion algorithms (e.g., Snappy, zstd, LZ4, etc.), please refer to
the publicly available in-memory benchmarks based on the
Silesia Corpus (for example, lzbench [1]). The synchronous
throughput of IAA’s (de)compression can be obtained from
Figures 1 and 2 based on the size of the datasets. For example,
the fixed-DEFLATE compression on the nci dataset reaches
1800 MB/s, and its decompression - 4600 MB/s on a single
engine. These numbers are expected to be lower than the asyn-
chronous streaming (de)compression (using the non-blocking
mode of IAA) which we do not characterize in this paper.

We then profile (Figure 3) IAA’s (de)compression for
many small 4 KB sized chunks for the same datasets. As
previously mentioned, the Canned—which is essentially a
Static Block—mode allows sharing Huffman tables between
data chunks, therefore reducing both the space and processing
time when data is scattered over many small blocks. This
is very useful when compressing individual memory pages.
In Figure 3, the first group of bars shows the baseline
compression using Dynamic Block over a continuous region.
We then break it into 4 KB chunks and compress them naïvely,
with the Dynamic Block, independently for each chunk.
As a result, compression time explodes due to processing
tables separately; the decompression time also suffers, as
the Huffman tables need to be parsed. The Canned operation
reduces the overhead of scattered compression. Most
interestingly, it enables fast decompression of scattered data,
which is only marginally higher than the continuous baseline.
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Figure 4: Latency of single-thread synchronous (de)compression
with parallel hardware execution on 4 IAA devices with 8 engines
each; only two benchmarks are shown for brevity.

3.2.2 Benchmarking IAA: System Integration

We now characterize the IAA hardware together with system-
level aspects. We use the same datasets and setup as before.

We first evaluate how job parallelization within the IAA
PEs may further speed up (de)compression. Given that our
earlier SKU has more IAA engines/PEs (refer to Table 2),
we use Server #1 in this experiment. Note that at the time
of writing, the QPL library did not allow crossing NUMA
boundaries between the data and IAA devices. Therefore,
only 4 IAA devices (32 PEs/engines in total) are utilized at
most for this experiment.

There are two main ways to leverage parallelism within
the IAA: with synchronous and asynchronous job submission.
In the first case, a large chunk of data can be split into mul-
tiple smaller blocks, and these blocks are then submitted to
multiple available PEs. The software then blocks and waits
until all PEs finish processing. This allows us to reduce the
time/latency of a single (de)compression job. In the asyn-
chronous case, a stream of multiple blocks from potentially
different dataflows/threads is supplied into the accelerator
without waiting for the completion of the previous blocks,
therefore utilizing the hardware at maximum capacity. This
yields the highest IAA utilization and throughput. For fast mi-
croVM restoration, the only performance metric that matters
is how fast the system can decompress a single snapshot from
a single CPU thread into the microVM guest memory. We
therefore only benchmark the synchronous job parallelization
in this paper.

We implement parallel synchronous processing via the
non-blocking synchronous descriptor submission. Here multi-
ple descriptors are submitted at the same time from a single
CPU thread without waiting for immediate completion of in-
dividual descriptors. Figure 4 shows that for a hardware con-
currency of up to 8 compression jobs, the latency reduction

Figure 5: Impact of page faults and translation fetch on IAA perfor-
mance via PRS with block-on-fault enabled

.

reaches 4�7⇥ with respect to sequential execution. Dynamic
Block compression scales worse due to the software overhead
of Huffman table creation. Decompression scales up to 26
jobs, reaching 17⇥ latency reduction for the pillow dataset.
These results demonstrate how multiple IAA engines can be
used to achieve even lower (de)compression latency.

Until now, we have only tested the behavior of IAA when
processing in-memory data, which was the majority of initial
use cases for the accelerator. In-memory operation is achieved
when source and destination buffers are present both in the
memory and page table of the calling process. This holds
when, e.g., streaming over the same buffers. However, in cer-
tain cases, data is not entirely present in memory, e.g., when
processing inputs from a file or into newly allocated memory.
In these cases, the accelerator must resolve page faults.

The fundamental source of page faults in systems such as
IAA and DSA is the fact that they operate directly on the
application’s virtual address spaces via SVM [11]. As a result,
similarly to CPU processing, when a page requested by the
accelerator is not found in the page table, a major or minor
page fault occurs. The result of the page fault handling (e.g.,
the translation) is then cached in the accelerator’s Address
Translation Service (ATS). When the translation is available
in the CPU/kernel, the page fault does not happen, but the ATS
must fetch the translation from the host via a translation fetch
request. We now benchmark IAA in the case of page faults
and translation fetch requests. We use standard 4 KB pages
and an SSD disk with 550 MB/s of provisioned sequential
read bandwidth. For compression, we use a single-pass Fixed
Block to avoid the side effects of hybrid two-phase operations.

IAA supports two modes to handle page faults: via
hardware-initiated on-demand paging via PRS or in user
space with custom application-defined page fault handlers.
The mode is controlled via the work queue configuration or
through the PCIe device configuration if the former is not
available. When PRS is enabled, the hardware can request up
to N (specified in PRSREQCAP register) pages from the host
concurrently. The actual page fault handling is done by the
kernel through IOMMU interrupts. Figure 5 shows the time
required to process descriptors in case of different hardware-
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Figure 6: Single-job, single-engine, synchronous decompression
bandwidth when reading disk inputs via PRS with block-on-fault
enabled.

initiated page faults. We benchmark the worst-case scenario
when the entire dataset causes page faults (12492 pages for
mozila and 44672 pages for pillow). As expected, major page
faults have a severe impact on the accelerator’s performance.
The impact of minor page faults is lower, but still ⇡ 2⇥ for
decompression. The ATS translation fetch has the smallest
impact of ⇡ 20 us across all pages. In general, decompres-
sion is more sensitive to page faults than compression; this is
because the former is less compute-bounded.

Finally, we characterize the achieved decompression band-
width when reading input data from an SSD (Figure 6), which
is critical for our memory restoration use case. The dashed
black and gray lines show achieved sequential disk read band-
width with and without direct I/O (O_DIRECT). Direct I/O
allows bypassing the page cache when reading files from the
disk. In certain cases, this helps to reach the highest bandwidth
of I/O operations. The solid black line shows the achievable
bandwidth of a single-job synchronous decompression over
data in memory, and the red line when reading input from the
disk via hardware on-demand paging (i.e., via PRS). The latter
is achieved through shared mapping of the input file into the
IAA buffers and enforcing sequential I/O using posix_fadvise.

IAA decompression is a streaming operation, and it al-
ways accesses input buffers sequentially. In an ideal system,
the decompression phase will completely overlap with the
operation fetching data from the disk. Hence, the achieved
end-to-end throughput will be decided by the slower opera-
tion - be it decompression or disk I/O. As Figure 6 shows,
with default hardware on-demand paging, the achieved end-
to-end bandwidth is the same as disk read without direct I/O.
This demonstrates that IAA streaming processing can entirely
overlap with disk I/O. It is 10�15% lower, however, than the
achievable bandwidth of reads with direct I/O, because IAA
communicates with the disk via the OS page cache when run-
ning over PRS. A way to further improve IAA over data from
disk is to replace PRS with application-specific page fault han-
dling. However, in that case, the end-to-end behavior depends
on whether IAA is configured with enabled block-on-fault, a
feature that allows the accelerator to block and wait until data
becomes available. Without block-on-fault, IAA terminates

with partial completion and cannot continue decompression
from the place where it stopped; as a result, the job needs to
restart from scratch. Given the streaming nature of IAA, it is
possible to entirely close the gap between direct disk I/O and
decompression by using block-on-fault in combination with
O_DIRECT reads in a custom page service handler, either in
a driver or user space. We leave this to future work.

4 Sabre Design

4.1 Memory Prefetching Accelerator
We use the insights from the characterization study of Sec-
tion 3 to design Sabre. Sabre is a hardware-accelerated mem-
ory snapshotting and restoration system for microVMs that
is agnostic to the underlying algorithm used to identify dirty
pages and create VM snapshots.

Sabre is designed to efficiently compress the guest VM
physical pages to create snapshots, such that they can be
decompressed (and mapped) quickly when restoring the snap-
shot upon a function invocation resulting in a cold start. As
an input, Sabre accepts a vector of addresses for each of the
guest physical memory pages which need to be placed in the
snapshot, according to the underlying dirty page selection
mechanism. It then compresses pages using IAA and writes
them in a file. During the VM restoration process, Sabre
uses fast IAA decompression in combination with efficient
sequential disk I/O to quickly fetch the pages from the snap-
shot, decompress, and install them in the target VM’s physical
memory. The main goal of Sabre is to hide the decompression
latency as much as possible behind the disk I/O and page
fault handling (when mapping pages) such that the overhead
of decompression is minimized. This is possible to achieve
given the streaming nature of IAA decompression.

Sabre shows that irrespective of the method used to identify
dirty pages and create VM snapshots, hardware-accelerated
compression, and restoration can have a significant impact
on performance. In the simplest case, dirty pages can be
identified by the page tracking mechanism in the VMM (e.g.,
Firecracker’s Diff snapshots); in more complicated cases,
custom algorithms can be used (e.g., different working set
estimation techniques [64, 72]).

Figure 7-A shows an overview of Sabre’s snapshot creation
pipeline along with two designs for memory prefetching, both
of which are used by Sabre under different scenarios.
Snapshot creation: We first describe our snapshot creation
process, which is based on two observations. First, creating a
snapshot is outside of the VM restoration’s critical path, so the
objective is selecting the compression algorithm that achieves
the highest compression ratio, which as we showed in Sec-
tion 3 is dynamic DEFLATE. Second, since the VM dirty
pages are distributed in a non-contiguous manner across the
guest’s physical memory space, the (de)compressor should
operate over separate (often small) chunks of memory. As
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Figure 7: High-level overview of snapshotting with Sabre.

Figure 3 shows, the “Canned” style compression works best
in this case: it enables implementing static DEFLATE with
pre-computed Huffman tables, which closely resembles the
efficiency of Dynamic DEFLATE. Sabre’s snapshot creation
process first runs IAA in Statistics mode to sample the statisti-
cal distribution of data in all dirty pages and create appropriate
Huffman tables. It then compresses the scattered regions of
dirty pages with these Huffman tables. The resulting com-
pression stream alongside the Huffman tables is written into
the snapshot file. For experimentation reasons, we also en-
able using Dynamic DEFLATE as well. In addition to the
snapshot file itself, Sabre also writes the partition file con-
taining the “schema” of the dirty pages, i.e., the offsets and
original/compressed sizes of each partition.
Memory prefetching: The memory prefetching process is
more complicated to engineer as it is on the critical path of
VM restoration, and therefore needs to be carefully optimized.
The main trade-off Sabre must navigate is balancing the desire
to handle all partitions of dirty pages as a single contiguous
memory region and the cost that comes with that.

Handling all partitions of dirty pages as a single continuous
memory region is better for the accelerator, as continuous
DMA is more efficient than scattered DMA, and it is also bet-
ter for the PRS and disk I/O, as the underlying PRS-initiated
page faults are sequential. The latter works well with sequen-
tial disk reads, therefore yielding the best utilization in terms
of disk bandwidth. However, continuous decompressed par-
titions need to be placed by the same addresses in the guest
VM physical memory as in the original VM when the snap-
shot was taken. Sabre implements it using userfaultfd, which
comes at the cost of memory copy.

We implement this approach in Sabre’s single-chunk mem-
ory prefetching shown in Figure 7-B. To reduce the overhead
of allocating the decompression buffers, Sabre can optionally
use a pre-allocated memory pool for the buffer for the time
of decompression. The size of the pool is bounded by the

sum of the sizes of dirty pages of the VMs currently restored
simultaneously. This space is reusable across different restora-
tion processes and therefore does not consume much memory.
However, users of Sabre can always disable the memory pool
(at ⇡ 10% cost of memory restoration) if the pool’s impact on
the memory density is an important concern. Sabre’s memory
prefetching relies heavily on the PRS hardware mechanism
to bring snapshots from the disk. This is achieved by running
IAA against a shared not pre-faulted (i.e. the actual file I/O
gets initiated by PRS) mapping of the snapshot file. As Fig-
ure 6 shows, default PRS is near-optimal at handling IAA
inputs from the disk, and it allows hiding the decompression
time by overlapping it with the disk I/O. In most cases, the
difference with sequential disk read bandwidth is marginal.
We confirm that running IAA over pre-faulted or pre-fetched
(via read) snapshot files is much slower than via PRS.

To address the high cost of partition placement when
treating the entire memory region as contiguous, Sabre also
implements memory prefetching based on scattered IAA
decompression (Figure 7-C). Here, Sabre directly DMAs
decompressed partitions into the right locations in the guest’s
physical memory, while still handling inputs from disk via
PRS. This allows the system to bypass page installation,
however, it makes the IAA hardware less efficient due to the
large number of scattered DMAs and the bookkeeping of
the corresponding descriptors (the current implementation
of IAA does not allow chaining and batching of descriptors,
so each one must be submitted separately by software). In
addition, splitting the decompression stream into multiple
jobs hurts the efficiency of PRS at reading data from the disk,
which further slows down memory prefetching. The latter
can be addressed by implementing a custom user-space page
fault handler, as discussed in Section 3.

In both designs for memory prefetching, IAA decompres-
sion can be done using a single IAA job/engine or parallelized
across all available engines. This is implemented via non-
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blocking job submission with a rotating pool of descriptors.
In this mode, Sabre attempts to submit N decompression jobs
at the same time, where N is the desired concurrency degree
or the number of available free engines (whichever is smaller).
Upon asynchronous out-of-order completion, the correspond-
ing descriptors are returned to the pool for later reuse. This en-
ables a streaming operation for Sabre’s decompression when
multiple engines are used. Note that a single IAA engine
in blocking synchronous mode is capable of achieving ⇡
1.2 GB/s at decompressing our snapshot datasets. Since this
is higher than our disk read bandwidth, we always use a single
IAA job in all remaining experiments, unless otherwise noted.

The exact operation of the memory prefetching unit, such
as the choice of the restoration design (between single-chunk
and scattered), the compression style (dynamic or static DE-
FLATE) for snapshot creation, the number of concurrent de-
compression jobs, etc. are configured by Sabre during run-
time. The desired configuration can be selected differently
for each microVM’s snapshotting/restoration call. Next, we
microbenchmark our memory prefetching unit under different
configurations and types of snapshots.

4.2 Microbenchmarking Memory Restoration
We now analyze the two design options for memory prefetch-
ing shown in Figure 7 using a dataset of microVM dirty mem-
ory snapshots with different sparsities. We create synthetic
datasets from the pillow snapshot (Section 3) that range from
most scattered, when each page is separated, to a case with
few large contiguous regions of dirty pages. In practice, the
pattern depends on the underlying mechanism used to identify
snapshot pages and the applications running in the VMs.

Figure 8 shows the restoration time with each of the two
restoration mechanisms when the restoration is done in hard-
ware and software. The x-axis shows the sparsity of the
dataset. In all cases, the total size of the dataset is 174.5 MB.
The sparsity index denotes the number of pages in contin-
uous regions; each region is separated by its neighbor via
an empty page, which is not included in the snapshot. For
instance, in sparsity 1, each individual page is separated. We
use a single IAA engine in all experiments. As the top figure
shows, the scattered memory prefetching design outperforms
single-chunk prefetching for sparsities of more than 4 pages.
This is because this design avoids additional page copying
during the installation phase via userfaultfd. However, when
memory partitions become as sparse as every page or two
pages, the overhead of scattered DMA and suboptimal PRS
handling make scattered prefetching slower than single-chunk.
Given this, Sabre uses different memory prefetching strategies
depending on the sparsity of the underlying snapshots.

The dashed line in Figure 8 (Top) denotes the time required
to restore memory from uncompressed snapshots. We op-
timize this path similarly to REAP [64], where the whole
snapshot is fetched as a single continuous disk read via

Figure 8: Single-chunk and scattered prefetching across different
page sparsities; passthrough denotes the time to read uncompressed
snapshots; the system runs at 2.3 GHz with a single IAA engine.

O_DIRECT file I/O and installed via user f ault f d. Sabre’s
memory restoration overperforms prefetching of uncom-
pressed snapshots by up to 1.9⇥. Note that the achieved
compression ratio on this dataset is 2.2⇥, meaning that the
theoretical upper bound of memory restoration speed-up with
respect to uncompressed baselines is also 2.2⇥. Sabre’s mem-
ory prefetching is very close to this because it hides decom-
pression behind disk I/Os. For faster disks, these results would
still hold.

Figure 8 (bottom) shows the same results when running
Sabre with software-based DEFLATE decompression. Across
all different memory sparsities, the overhead of software de-
compression kills the speed-up of fetching deflated snapshots.
This demonstrates that hardware acceleration is required to
make snapshot compression practical.

For the sake of completeness, we additionally integrate
other software compression algorithms optimized for per-
formance in Sabre: Snappy, Zstandard (zstd), and LZ4. We
run them on a dedicated CPU core under the highest possi-
ble turbo boost frequency of 4 GHz and repeat the snapshot-
ting microbenchmark experiment. As Figure 9 shows, across
all sparsities, the memory restoration with IAA outperforms
these algorithms. The restoration times under Zstd level-3,10,
and 20 are very close to IAA results and are much lower than
prefetching uncompressed snapshots. However, as Figure 9
(Bottom) shows, they require a significant amount of CPU
resources at the snapshot creation stage (up to several sec-
onds at the highest frequency), and they do not demonstrate
performance as high as IAA when running at lower CPU fre-
quencies. We do not show results for LZ4 as its compression
ratios are low.
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Figure 9: Sabre with different fast software (de)compression al-
gorithms running on dedicated CPU cores under the turbo boost
frequency of 4 GHz; the bottom plots show CPU resources (in sec-
onds) consumed to make the snapshots (averaged over sparsities).

4.3 Full System Implementation
We now discuss how we integrate Sabre’s memory prefetch-
ing unit in an end-to-end serverless framework. We choose
Firecracker microVMs [17] as the target serverless sandbox.
Firecracker is the current industry-leading VMM, and it al-
ready provides good VM snapshotting capabilities. Most re-
cent work in this space, such as REAP [64], is also based
on Firecracker. To build the end-to-end serverless pipeline,
we partially reuse the infrastructure of vHive – an academic
framework for serverless used to showcase the effective-
ness of REAP working sets. vHive allows running serverless
Docker images inside Firecracker microVMs via firecracker-
containerd. vHive also extends the native Firecracker Go SDK
to support snapshotting and implements a simple orchestrator
to simplify managing the serverless environment.

We write Sabre’s snapshotting unit in ⇡ 3500 LoC in
C++17 excluding unit tests and benchmarks, using Intel’s
QPL library v1.3.1 and build it as a dynamic library. We then
integrate it with Firecracker VMM v1.5.0 in only 50 LoC in
Rust via FFI. Sabre runs in the default Firecracker’s snap-
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Figure 10: Sabre’s integration in end-to-end serverless frameworks.

shotting/restoration thread, and does not require additional
CPU resources. To expose Sabre’s snapshotting to the higher
layers of serverless frameworks, we additionally extend the
Firecracker’s Go SDK 1.0.0 with several new APIs. Figure 10
shows the simplified overview of the full system design. Sim-
ilarly to vHive [64], our infrastructure enables running end-
to-end serverless applications in Firecracker microVMs with
standard Docker environments.

5 End-to-End Evaluation

Methodology: We evaluate Sabre on a large set of end-
to-end serverless benchmarks from vSwarm [66], Function-
Bench [44, 45], and SeBS [27]. We modify the benchmarks
to run grpc servers and support server reflection so that we
can invoke functions using grpcurl. The set includes only
one synthetic benchmark – python-list implementing travers-
ing a large sparse Python list; we include it to showcase
the upper-bound of compression achievable with Sabre. We
slightly modify the dna-visualisation benchmark from SeBS
to make it use different DNA sequence datasets across dif-
ferent invocations (the default benchmark is always based on
the same dataset; dna-visualisation-1). Similarly, we modify
the datasets for the model training benchmark to use smaller
2 MB and larger 10 MB images. All other benchmarks are
taken from the aforementioned suites. In all experiments, we
use a single IAA engine for memory prefetching.

Sabre’s memory prefetching unit is agnostic to the under-
lying mechanism of creating a snapshot. It can be used with
dirty page-based snapshots, with working sets, and even when
snapshotting the whole guest’s VM memory. Since the latter
is not practical for realistic serverless workloads, and there-
fore rarely used in practice, we only evaluate Sabre on the first
two options. In all experiments, we use our testbed with the
configuration shown in Table 2. We focus our evaluation on
two metrics: (1) how well Sabre is able to compress snapshots
of different types, and (2) what is the impact of decompression
on the end-to-end cold start time.
End-to-end performance impact: Figure 11 shows the re-
sult of running the default dirty page-based snapshots of Fire-
cracker (Diff snapshots [2]) with Sabre. Diff snapshotting is
enabled via dirty page tracking in the hypervisor. We find
Diff snapshots to be relatively large (a few hundred MB)
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Figure 11: End-to-end evaluation of serverless cold starts with Sabre on Firecracker’s default Diff snapshots with prefetching; annotated
numbers show speedup of Sabre over the baseline.

and coarse-grained for all applications, which means that the
scattered prefetching (Figure 7-C) works best in this case.

Figure 11 compares the end-to-end cold start latency when
serving requests from a VM restored with on-demand paging
(default mechanism in Firecracker) and via prefetching with
Sabre. We find that in all cases, Sabre is able to compress
Diff snapshots by up to 4⇥, and 2.5⇥ on average. This is a
significant reduction in storage requirements, given the large
original size of Diff snapshots, ranging from hundreds of
megabytes to several gigabytes. This is even more significant
given that in serverless deployments, a physical node can host
hundreds or thousands of snapshotted VMs [17].

Most importantly, in all cases, the hardware-accelerated
decompression in Sabre allows restoring a compressed snap-
shot without any negative impact on the end-to-end latency.
Moreover, in some applications, we observe up to 60% lower
cold start overhead, enabled by the fast memory prefetching.
The speed-up and compression effect are particularly evi-
dent for our synthetic python-list benchmark, where the dirty
memory, i.e., the Python runtime heap storing the list, is well
compressible. The same holds for dna-visualization as well.
Optimizing the VM snapshotting strategy: While Diff snap-
shots and dirty page tracking currently represent the industry
standard in microVM snapshotting, they are not the most
efficient way to restore memory via prefetching. More ef-
ficient mechanisms are enabled via working set estimation.
We implement working sets in Sabre which are used with
our memory prefetching unit for evaluation purposes. Our
implementation is based on the record-and-replay technique.
Similarly to the original paper [64], Sabre records working
sets during the first invocation of serverless functions after the
standard restoration from vanilla Firecracker snapshots. We in-
tercept in user-space the guest memory page faults and record
all accessed addresses in a vector. The recorder then groups
the accessed pages to form continuous chunks, whenever pos-
sible, and saves them in a WS file. The REAP restoration uses

the passthrough functionality of Sabre’s memory prefetching
unit, which resembles the original REAP specification [64],
i.e., direct I/O disk reads combined with page installation in
the guest physical memory via userfaultfd. After prefetching,
the hypervisor continues serving the rest of the pages outside
of the working set via standard on-demand paging.

REAP working set files tend to be much more scattered than
Firecracker’s Diff snapshots. We make a similar observation
in our applications as well. Therefore, memory restoration
through single-chunk prefetching works best in this case, and
we configure Sabre accordingly for REAP snapshots. Table 3
shows the achieved compression ratios of REAP working set
files and the corresponding prefetching speedup when using
Sabre. Figure 12 shows the end-to-end cold start latencies
across the same set of serverless benchmarks as before.

Table 3 shows that working set files are better compressible
than dirty pages. The compression ratio reaches up to 4.7⇥;
3.2⇥ on average. The prefetching time itself with Sabre is
accelerated by 25�55%. On the synthetic application python-
list, the speedup reaches 70%. As expected, there is an ob-
vious correlation between the achieved compression ratio
and prefetching speedup. End-to-end, working set prefetch-
ing speedup translates in up to 20% of improvement in the
application’s cold start latency. For several of the examined
applications, the speedup is diminished due to the working set
size being small or their compute time being high. In the latter
case, the impact of accelerated restoration gets hidden behind
computing. In general, compression of snapshots/working set
files is more impactful on applications with larger working
sets, especially if they are memory-bounded (as in the case
of the python-list benchmark). Even when Sabre does not
accelerate cold start time significantly, it still greatly reduces
the size of the working set files without a negative impact on
prefetching latency and/or CPU cycles for restoration.
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Figure 12: End-to-end evaluation of serverless cold starts with Sabre on REAP snapshots; annotated numbers show the speedup over REAP.

Table 3: Compression ratios and page prefetching speedup of Sabre
over REAP working sets.

Application Size of REAP
WS (MB)

Compression
ratio

Sabre’s prefetching
speedup

fibonacci 12.93 2.64⇥ 29.02%
python list 405.23 14.82⇥ 70.81%
image-processing-low 27.67 3.74⇥ 45.17%
image-processing-hd 120.66 2.73⇥ 35.27%
matmull 13.02 2.62⇥ 32.65%
chameleon 18.45 2.90⇥ 36.05%
video-processing 44.91 3.21⇥ 43.30%
rnn-serving 17.64 2.50⇥ 26.59%
ml-serving 22.10 2.67⇥ 35.00%
cnn-image-classification 136.36 3.10⇥ 38.73%
bfs 44.22 4.29⇥ 49.39%
dna-visualization 16.04 2.76⇥ 28.73%
dna-visualization-1 720.95 4.70⇥ 55.01%
pagerank 62.23 2.94⇥ 34.60%
model-training-2MB 171.28 3.60⇥ 43.48%
model-training-10MB 111.71 3.57⇥ 45.54%

6 Discussion and Future Work
6.1 Prefetching on Faster Disks and Networks
While the performance impact of memory prefetching be-
comes less critical as the speed of disks and NVMe/persistent
memory devices increases, Sabre benefits when it comes to
storage space reduction remain. This is even more critical,
given the higher cost per Byte of new memory technologies.
CPU-free memory decompression, especially at zero negative
impact on end-to-end latency will always be beneficial, inde-
pendent of the underlying storage technology. In future work,
we plan to evaluate Sabre on CXL-enabled memory devices
and explore the potential of serving compressed snapshots
from them. The byte-addressable organization of CXL and
other similar memory disaggregation devices will make the in-
tegration with near-memory accelerators, such as IAA, much
more efficient than when using commodity disks, essentially
eliminating all overheads of PRS discussed in Section 3.

Additionally, the streaming nature of hardware accelerators,
such as IAA, allows combining Sabre with any streaming I/O,

including networking. This makes Sabre attractive for remote
snapshotting – another technology in serverless microVMs
where snapshots and/or working set files are served from
centralized storage or a remote server. Fast streaming decom-
pression can have a dramatic reduction of network bandwidth
consumed for snapshotting, which is critical for highly multi-
tenant and geographically distributed datacenters.

6.2 Further Optimizing Sabre
The biggest limitation in our current design of Sabre is its
integration with the disk via the standard IAA’s PRS mech-
anism. This disallows bypassing the OS page cache when
feeding an input to IAA, and results in lower effective band-
width utilization than direct I/O. This can be optimized by
redesigning the default PRS in one of two ways.

First, PRS can be replaced with user-space page fault han-
dling for input buffers. Disk I/O can be initiated separately
in user space using the read system call combined with
O_DIRECT file opening. In this case, the IAA page fault
handler only needs to wait until the disk DMA catches up
with the sequential data transfer. This requires enabling the
block-on-fault feature of IAA, otherwise, the input stream
would need to be resubmitted from the beginning every time
IAA reaches pages that have not been fetched yet. Alterna-
tively, one can directly connect the disk’s and IAA’s DMA
engines, and allow streaming of compressed inputs directly
into the accelerator through a small FIFO buffer. However,
this can only be done in the host kernel in custom IAA drivers
and is challenging to implement in a scalable way.

A second limitation in the current design’s single-
chunk prefetching (Figure 7-B) is using the COPY-based
userfaultfd mechanism. The original REAP snapshots [64]
suffer from the same inefficiency. Starting with Linux kernel
5.13, userfaultfd can be handled via minor page faults and
UFFDIO_CONTINUE page installation. Instead of copying
pages from the continuous buffers, one can install them from
the page cache via the underlying page table modification
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with zero-copy. This will, however, complicate managing the
decompression/prefetching buffers to ensure they are never
reclaimed, while the corresponding microVM is running.

6.3 Beyond MicroVM Snapshotting
VM memory compression and fast restoration go well beyond
microVM snapshotting and serverless. For example, VM live
migration [18,59] can benefit from hardware-accelerated com-
pression and on-the-fly decompression of memory pages. The
recent work [14] is exploring this opportunity for KVM. This
can dramatically accelerate applications heavily relying on
VM migration, including VM bin-packing for cloud man-
agement [55], low-latency cloud-native applications such as
vRAN [49, 68], and fast fault-tolerance solutions [63]. We
plan to extend Sabre to benefit these applications as well.

7 Conclusion
MicroVM snapshotting and restoration via page prefetching
is the most effective technique for reducing the cold start
overhead in serverless. Memory compression is a promising
technique to reduce the size of VM snapshots and speed up
prefetching during memory restoration, but it is only efficient
if decompression is fast. We showed that emerging hardware
accelerators for general-purpose compression are suitable for
microVM memory restoration as well. We first characterized
the Intel IAA accelerator and then designed Sabre, a system
for fast prefetching of VM memory from compressed snap-
shots. We showed that Sabre compresses snapshots of real
serverless applications up to 4.5⇥, and speeds up prefetching
by up to 55% compared to uncompressed baselines. This re-
sults in up to 20% of end-to-end performance improvement
for cold function invocations over the most optimized snap-
shotting technologies.
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Abstract

With the advent of byte-addressable memory devices, such as
CXL memory, persistent memory, and storage-class memory,
tiered memory systems have become a reality. Page migration
is the de facto method within operating systems for managing
tiered memory. It aims to bring hot data whenever possible
into fast memory to optimize the performance of data accesses
while using slow memory to accommodate data spilled from
fast memory. While the existing research has demonstrated
the effectiveness of various optimizations on page migration,
it falls short of addressing a fundamental question: Is exclu-
sive memory tiering, in which a page is either present in fast
memory or slow memory, but not both simultaneously, the
optimal strategy for tiered memory management?

We demonstrate that page migration-based exclusive mem-
ory tiering suffers significant performance degradation when
fast memory is under pressure. In this paper, we propose non-
exclusive memory tiering, a page management strategy that
retains a copy of pages recently promoted from slow mem-
ory to fast memory to mitigate memory thrashing. To enable
non-exclusive memory tiering, we develop NOMAD, a new
page management mechanism for Linux that features trans-
actional page migration and page shadowing. NOMAD helps
remove page migration off the critical path of program execu-
tion and makes migration completely asynchronous. Evalua-
tions with carefully crafted micro-benchmarks and real-world
applications show that NOMAD is able to achieve up to 6x
performance improvement over the state-of-the-art transpar-
ent page placement (TPP) approach in Linux when under
memory pressure. We also compare NOMAD with a recently
proposed hardware-assisted, access sampling-based page mi-
gration approach and demonstrate NOMAD’s strengths and
potential weaknesses in various scenarios.

1 Introduction

As new memory devices, such as high bandwidth memory
(HBM) [4, 30], DRAM, persistent memory [7, 39], Compute

Express Link (CXL)-based memory [1, 37, 44], and storage-
class memory [53, 55] continue to emerge, future computer
systems are anticipated to feature multiple tiers of mem-
ory with distinct characteristics, such as speed, size, power,
and cost. Tiered memory management aims to leverage the
strength of each memory tier to optimize the overall data
access latency and bandwidth. Central to tiered memory man-
agement is page management within operating systems (OS),
including page allocation, placement, and migration. Efficient
page management in the OS is crucial for optimizing memory
utilization and performance while maintaining transparency
for user applications.

Traditionally, the memory hierarchy consists of storage
media with at least one order of magnitude difference in per-
formance. For example, in the two-level memory hierarchy as-
sumed by commercial operating systems for decades, DRAM
and disks differ in latency, bandwidth, and capacity by 2-3
orders of magnitude. Therefore, the sole goal of page manage-
ment is to keep hot pages in, and maximize the hit rate of the
“performance” tier (DRAM), and migrate (evict) cold pages to
the “capacity” tier (disk) when needed. As new memory de-
vices emerge, the performance gap in the memory hierarchy
narrows. Evaluations on Intel’s Optane persistent memory
[56] and CXL memory [50] reveal that these new memory
technologies can achieve comparable performance to DRAM
in both latency and bandwidth, within a range of 2-3x. As
a result, the assumption of the performance gap, which has
guided the design of OS page management for decades, may
not hold. It is no longer beneficial to promote a hot page to
the performance tier if the migration cost is too high.

Furthermore, unlike disks which must be accessed through
the file system as a block device, new memory devices are
byte-addressable and can be directly accessed by the pro-
cessor via ordinary load and store instructions. Therefore,
for a warm page on the capacity tier, accessing the page di-
rectly and avoiding migration to the performance tier could
be a better option. Most importantly, while the performance
of tiered memory remains hierarchical, the hardware is no
longer hierarchical. Both the Optane persistent memory and
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CXL memory appear to the processor as a CPUless memory
node and thus can be used by the OS as ordinary DRAM.

These unique challenges facing emerging tiered memory
systems have inspired research on improving page manage-
ment in the OS. Much focus has been on expediting page
migrations between memory tiers. Nimble [54] improves
page migration by utilizing transparent huge pages (THP),
multi-threaded migration of a page, and concurrent migration
of multiple pages. Transparent page placement (TPP) [44]
extends the existing NUMA balancing scheme in Linux to
support asynchronous page demotion and synchronous page
promotion between fast and slow memory. Memtis [37] and
TMTS [24] use hardware performance counters to mitigate
the overhead of page access tracking and use background
threads to periodically and asynchronously promote pages.

However, these approaches have two fundamental limita-
tions. First, the existing page management for tiered memory
assumes that memory tiers are exclusive to each other – hot
pages are allocated or migrated to the performance tier while
cold pages are demoted to the capacity tier. Therefore, each
page is only present in one tier. As memory tiering seeks
to explore the tradeoff between performance and capacity,
the working set size of workloads that benefit most from
tiered memory systems likely exceeds the capacity of the per-
formance tier. Exclusive memory tiering inevitably leads to
excessive hot-cold page swapping or memory thrashing when
the performance tier is not large enough to hold hot data.

Second, there is a lack of an efficient page migration mech-
anism to support tiered memory management. As future mem-
ory tiers are expected to be addressable by the CPU, page
migrations are similar to serving minor page faults and in-
volve three steps: 1) unmap a page from the page table; 2)
copy the page content to a different tier; 3) remap the page
on the page table, pointing to the new memory address. Re-
gardless of whether page migration is done synchronously
upon accessing a hot page in the slower capacity tier or asyn-
chronously in the background, the 3-step migration process is
expensive. During migration, an unmapped page cannot be ac-
cessed by user programs. If page migration is done frequently,
e.g., due to memory thrashing, user-perceived bandwidth, in-
cluding accesses to the migrating pages, is significantly lower
(up to 95% lower) than the peak memory bandwidth [54].

This paper advocates non-exclusive memory tiering that al-
lows a subset of pages on the performance tier to have shadow
copies on the capacity tier 1. Note that non-exclusive tiering is
different from inclusive tiering which strictly uses the perfor-
mance tier as a cache of the capacity tier. The most important
benefit is that under memory pressure, page demotion is made
less expensive by simply remapping a page if it is not dirty
and its shadow copy exists on the capacity tier. This allows
for smooth performance transition when memory demand
exceeds the capacity of the performance tier.

1We assume that page migrations only occur between two adjacent tiers
if there are more than two memory tiers.
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Figure 1: The comparison of achieved memory bandwidth in a
micro-benchmark due to different phases in TPP and a baseline
approach that disables page migration. Higher is better performance.

To reduce the cost of page migration, especially for promo-
tion, this paper proposes transactional page migration (TPM),
a novel mechanism to enable page access during migration.
Unlike current page migrations, TPM starts page content copy
without unmapping the page from the capacity tier so that
the migrating page is still accessible by user programs. After
page content is copied to a new page on the performance
tier, TPM checks whether the page has been dirtied during
the migration. If so, the page migration (i.e., the transaction)
is invalidated and the copied page is discarded. Failed page
migrations will be retried at a later time. If successful, the
copied new page is mapped in the page table and the old page
is unmapped, becoming a shadow copy of the new page.

We have developed NOMAD, a new page management
framework for tired memory that integrates non-exclusive
memory tiering and transactional page migration. NOMAD
safeguards page allocation to prevent out-of-memory (OOM)
errors due to page shadowing. When the capacity tier is un-
der memory pressure, NOMAD prioritizes the reclamation of
shadow pages before evicting ordinary pages. We have im-
plemented a prototype of NOMAD in Linux and performed
a thorough evaluation on four different platforms, including
an FPGA-based CXL prototype, a persistent memory system,
and a pre-market, commercial CXL system. Experimental
results show that, compared to two representative page man-
agement schemes: TPP and Memtis, NOMAD achieves up
to 6x performance improvement over TPP during memory
thrashing and consistently outperforms Memtis by as much
as 130% when the working set size fits into fast memory.

2 Motivation and Related Work

We introduce the background of page management in tiered
memory systems and use TPP [44], a state-of-the-art page
placement system designed for CXL-enabled tiered memory,
as a motivating example to highlight the main limitations of
current page management approaches.
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2.1 Memory Tiering

Caching and tiering are two traditional software approaches
to manage a memory, or storage hierarchy, consisting of vari-
ous types of storage media (e.g., CPU caches, DRAM, and
hard disks) differing in performance, capacity, and cost. With-
out loss of generality, we consider a two-level memory hier-
archy with 1) a performance tier (i.e., the fast tier), backed
with smaller, faster, but more expensive storage media; and
2) a capacity tier (i.e., the slow tier) with larger, slower, and
cheaper storage media. For caching, data is stored in the ca-
pacity tier, and copies of frequently accessed or “hot” data are
strategically replicated to the performance tier. For tiering,
new data is first allocated to the performance tier and remains
there if it is frequently accessed, while less accessed data may
be relegated to the capacity tier when needed. At any mo-
ment, data resides exclusively in one of the tiers but not both.
Essentially, caching operates in an inclusive page placement
mode and retains pages in their original locations, only tem-
porarily storing a copy in the performance tier for fast access.
Conversely, tiering operates in an exclusive mode, actively
relocating pages across various memory/storage mediums.

Diverse memory/storage devices, such as high bandwidth
memory (HBM) [4], CXL-based memory [1], persistent mem-
ory (PM) [7], and fast, byte-addressable NVMe SSDs [31],
have emerged recently. While they still make a tradeoff be-
tween speed, size, and cost, the gap between their performance
narrows. For example, Intel Optane DC persistent memory
(PM), available in a DIMM package on the memory bus en-
abling programs to directly access data from the CPU using
load and store instructions, provides (almost) an order of
magnitude higher capacity than DRAM (e.g., 8x) and offers
performance within a range of 2-3x of DRAM, e.g., write
latency as low as 80 ns and read latency around 170 ns [56].
More recently, compute express link (CXL), an open-standard
interconnect technology based on PCI Express (PCIe) [1], pro-
vides a memory-like, byte-addressable interface (i.e., via the
CXL.mem protocol) for connecting diverse memory devices
(e.g., DRAM, PM, GPUs, and smartNICs). Real-world CXL
memory offers comparable memory access latency (<2x) and
throughput (∼50%) to ordinary DRAM [50].

From the perspective of OS memory management, CXL
memory or PM appears to be a remote, CPUless memory
node, similar to a multi-socket non-uniform memory access
(NUMA) node. State-of-the-art tiered memory systems, such
as TPP [44], Memtis [37], Nimble [54], and AutoTiering [32],
all adopt tiering to exclusively manage data on different mem-
ory tiers. Unlike the traditional two-level memory hierarchy
involving DRAM and disks, in which DRAM acts as a cache
for the much larger storage tier, current CXL memory tiering
treats CXL memory as an extension of local DRAM. While
exclusive memory tiering avoids data redundancy, it necessi-
tates data movement between memory tiers to optimize the
performance of data access, i.e., promoting hot data to the

fast tier and demoting cold data to the slow tier. Given that
all memory tiers are byte-addressable by the CPU and the
performance gap between tiers narrows, it remains to be seen
whether exclusive tiering is the optimal strategy considering
the cost of data movement.

We evaluate the performance of transparent page placement
(TPP) [44], a state-of-the-art and the default tiered memory
management in Linux. Figure 1 shows the bandwidth of a
micro-benchmark that accesses a configurable working set
size (WSS) following a Zipfian distribution in a CXL-based
tiered memory system. More details of the benchmark and the
hardware configurations can be found in Section 4. We com-
pare the performance of TPP while it actively migrates pages
between tiers for promotion and demotion (denoted as TPP
in progress) and when it has finished page relocation (TPP
stable) with that of a baseline that disables page migration
(no migration). The baseline does not optimize page place-
ment and directly accesses hot pages from the slow tier. The
tiered memory testbed is configured with 16GB fast memory
(local DRAM) and 16GB slow memory (remote CXL mem-
ory). We vary the WSS to fit in (e.g., 10GB) and exceed (e.g.,
24GB) fast memory capacity. Note that the latter requires
continuous page migrations between tiers since hot data spills
into slow memory. Additionally, we explore two initial data
placement strategies in the benchmark. First, the benchmark
pre-allocates 10GB of data in fast memory to emulate the ex-
isting memory usage from other applications. Frequency-opt
is an allocation strategy that places pages according to the
descending order of their access frequencies (hotness). Thus,
the hottest pages are initially placed in fast memory until the
WSS spills into slow memory. In contrast, Random employs
a random allocation policy and may place cold pages initially
in fast memory.

We have important observations from results in Figure 1.
First, page migration in TPP incurs significant degradation
in application performance. When WSS fits in fast memory,
TPP stable, which has successfully migrated all hot pages
to fast memory, achieves more than an order of magnitude
higher bandwidth than TPP in progress. Most importantly, no
migration is consistently and substantially better than TPP
in progress, suggesting that the overhead of page migration
outweighs its benefit until the migration is completed. Second,
TPP never reaches a stable state and enters memory thrashing
when WSS is larger than the capacity of fast memory. Third,
page migration is crucial to achieving optimal performance
if it is possible to move all hot data to fast memory and the
initial placement is sub-optimal, as evidenced by the wide gap
between TPP stable and no migration in the 10GB WSS and
random placement test.

2.2 Page Management

In this section, we delve into the design of page management
in Linux and analyze its overhead during page migration. We
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focus our discussions on 1) how to effectively track memory
accesses and identify hot pages, and 2) the mechanism to
migrate a page between memory tiers.

Tracking memory access can be conducted by software
(via the kernel) and/or with hardware assistance. Specifi-
cally, the kernel can keep track of page accesses via page
faults [2, 32, 44], scanning page tables [2, 14, 19, 43, 54], or
both. Capturing each memory access for precise tracking
can be expensive. Page fault-based tracking traps memory
accesses to selected pages (i.e., whose page table entry per-
missions are set to no access) via hint (minor) page faults.
Thus, it allows the kernel to accurately measure the recency
and frequency of these pages. However, invoking a page fault
on every memory access incurs high overhead on the critical
path of program execution. On the other hand, page table (PT)
scanning periodically checks the access bit in all page ta-
ble entries (PTE) to determine recently accessed pages since
the last scanning. Compared to page fault-based tracking,
which tracks every access on selected pages, PT scanning has
to make a tradeoff between scanning overhead and tracking
accuracy by choosing an appropriate scanning interval [37].

Linux adopts a lazy PT scanning mechanism to track hot
pages, which lays the foundation for its tiered memory man-
agement. Linux maintains two LRU lists for a memory node:
an active list to store hot pages and an inactive list for cold
pages. By default, all new pages go to the inactive list and
will be promoted to the active list according to two flags,
PG_referenced and PG_active, in the per-page struct page.
PG_reference is set when the access bit in the correspond-
ing PTE is set upon a PTE check and PG_active is set after
PG_reference is set for two consecutive times. A page is
promoted to the active list when its PG_active flag is set.
For file-backed pages, their accesses are handled by the OS
through the file system interface, e.g., read() and write().
Therefore, their two flags are updated each time they are
accessed. For anonymous pages, e.g., application memory
allocated through malloc, since page accesses are directly
handled by the MMU hardware and bypass the OS kernel, the
updates to their reference flags and LRU list management are
only performed during memory reclamation. Under memory
pressure, the swapping daemon kswapd scans the inactive
list and the corresponding PTEs to update inactive pages’
flags, and reclaims/swaps out those with PG_reference un-
set. Additionally, kswapd promotes hot pages (i.e., those with
PG_active set) to the active list. This lazy scanning mecha-
nism delays access tracking until it is necessary to reduce the
tracking overhead, but undermines tracking accuracy.

TPP [44] leverages Linux’s PT scanning to track hot pages
and employs page fault-based tracking to decide whether to
promote pages from slow memory. Specifically, TPP sets
all pages residing in slow memory (e.g., CXL memory) as
inaccessible, and any user access to these pages will trig-
ger a minor page fault, during which TPP decides whether
to promote the faulting page. If the faulting page is on the
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Figure 2: Time breakdown in the execution of TPP in progress:
Synchronous page migration and page fault handling account for a
significant portion of the runtime.

active list, it is migrated (promoted) to the fast tier. Page demo-
tion occurs when fast memory is under pressure and kswapd
migrates pages from the inactive list to slow memory.

Accurate and lightweight memory access tracking can be
achieved with hardware support, e.g., by adding a PTE count
field in hardware that records the number of memory ac-
cesses [45]. However, hardware-based tracking can increase
the complexity and require extensive hardware changes in
mainstream architectures (e.g., x86). In practice, the hardware-
assisted sampling, such as via Processor Event-Based Sam-
pling (PEBS) [24, 37] on Intel platforms, has been employed
to record page access (virtual address) information from sam-
pled hardware events (e.g., LLC misses or store instructions).
However, PEBS-based profiling also requires a careful bal-
ance between the frequency of sampling and the accuracy of
profiling. We observed that the PEBS-based approach [37],
with a sampling rate optimized for minimizing overhead, re-
mains coarse-grained and fails to capture many hot pages.
Further, the sampling-based approach may not accurately mea-
sure access recency, thus limiting its ability to make timely
migration decisions.

Page migration between memory tiers involves a complex
procedure: ① The system must trap to the kernel (e.g., via
page faults) to handle migration; ② The PTE of a migrating
page must be locked to prevent others from accessing the page
during migration and be ummapped from the page table; ③ A
translation lookaside buffer (TLB) shootdown must be issued
to each processor (via inter-processor interrupts (IPIs)) that
may have cached copies of the stale PTE; ④ The content of
the page is copied between tiers; ⑤ Finally, the PTE must be
remapped to point to the new location. Page migration can be
done synchronously or asynchronously. Synchronous migra-
tion, e.g., page promotion in TPP, is on-demand triggered by
user access to a page and on the critical path of program exe-
cution. During migration, the user program is blocked until
migration is completed. Asynchronous migration, e.g., page
demotion in TPP, is handled by a kernel thread (i.e., kswapd),
oftentimes off programs’ critical path, when certain criteria
are met. Synchronous migration is costly not only because
pages are inaccessible during migration but also may involve
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a large number of page faults.
Figure 2 shows the run time breakdown of the aforemen-

tioned benchmark while TPP is actively relocating pages be-
tween the two memory tiers. Since page promotion is syn-
chronous, page fault handling and page content copying (i.e.,
promotion) are executed on the same CPU as the application
thread. Page demotion is done through kswapd and uses a
different core. As shown in Figure 2, synchronous promotion
together with page fault handling incurs significant overhead
on the application core. In contrast, the demotion core re-
mains largely idle and does not present a bottleneck. As will
be discussed in Section 3.1, userspace run time can also be
prolonged due to repeated minor page faults (as many as 15)
to successfully promote one page. This overhead analysis
explains the poor performance of TPP observed in Figure 1.

2.3 Related Work

A long line of pioneering work has explored a wide range
of tiered storage/memory systems, built upon SSDs and
HDDs [12,15,22,26,33,41,49,52,57], DRAM and disks [21,
25, 29, 46], HBM and DRAMs [23, 45, 48], NUMA mem-
ory [2, 3], PM and DRAM [13, 14, 40, 43], local and far mem-
ory [19, 27, 34, 35, 47], DRAM and CXL memory [37, 38, 44],
and multiple tiers [32, 36, 40, 51, 54]. We focus on tiered
memory systems consisting of DRAM and the emerging byte-
addressable memory devices, e.g., CXL memory and PM.
NOMAD also applies to other tiered memory systems such as
HBM/DRAM and DRAM/PM.
Lightweight memory access tracking. To mitigate soft-
ware overhead associated with memory access tracking, Hot-
box [19] employs two separate scanners for fast and slow tiers
to scan the slow tier at a fixed rate while the fast tier at an
adaptive rate, configurable based on the local memory pres-
sure. Memtis [37] adjusts its PEBS-based sampling rate to
ensure its overhead is under control (e.g., < 3%). TMTS [24]
also adopts a periodic scanning mechanism to detect fre-
quency along with hardware sampling to more timely de-
tect newly hot pages. While these approaches balance scan-
ning/sampling overhead and tracking accuracy, an “always-on”
profiling component does not seem practical, especially for
high-pressure workloads. Instead, thermostat [14] samples a
small fraction of pages, while DAMON [3] monitors memory
access at a coarser-grained granularity (i.e., region). Although
both can effectively reduce the scanning overhead, coarse
granularity leads to lower accuracy regarding page access
patterns. On the other hand, to reduce the overhead associated
with frequent hint page faults like AutoNUMA [2], TPP [44]
enables the page-fault based detection only for CXL mem-
ory (i.e., the slow tier) and tries to promote a page promptly
via synchronous migration; prompt page promotion avoids
subsequent page faults on the same page.

Inspired by existing lightweight tracking systems, such as
Linux’s active and inactive lists and hint page faults, NOMAD

advances them by incorporating more recency information
with no additional CPU overhead. Unlike hardware-assisted
approaches [24, 37, 42], NOMAD does not require any addi-
tional hardware support.

Page migration optimizations. To hide reclamation overhead
from applications, TPP [44] decouples page allocation and
reclamation; however, page migration remains in the critical
path, incurring significant slowdowns. Nimble [54] focuses
on mitigating page migration overhead with new migration
mechanisms, including transparent huge page migration and
concurrent multi-page migration. Memtis [37] further moves
page migration out of the critical path using a kernel thread
to promote/demote pages in the background. TMTS [24]
leverage a user/kernel collaborative approach to control page
migration. In contrast, NOMAD aims to achieve prompt, on-
demand page migration while moving page migration off the
critical path. It is orthogonal to and can benefit from existing
page migration optimizations. The most related work is [20],
which leverages hardware support to pin data in caches, en-
abling access to pages during migration. Again, NOMAD does
not need additional hardware support.

3 NOMAD Design and Implementation

NOMAD is a new page management mechanism for tiered
memory that features non-exclusive memory tiering and trans-
actional page migration. The goal of NOMAD design is to
enable the processor to freely access pages from both fast
and slow memory tiers and move the cost of page migration
off the critical path of users’ data access. Note that NOMAD
does not make page migration decisions and relies on the
existing memory access tracking in the OS to determine page
temperature. Furthermore, NOMAD does not impact the initial
memory allocation in the OS and assumes a standard page
placement policy. Pages are allocated from the fast tier when-
ever possible and are placed in the slower tier only when there
is an insufficient number of free pages in the fast tier, or at-
tempts to reclaim memory in the fast tier have failed. After the
initial page placement, NOMAD gradually migrates hot pages
to the fast tier and cold pages to the slow tier. NOMAD seeks
to address two key issues: 1) how to minimize the cost of page
migration? 2) how to minimize the number of migrations?

Overview. Inspired by multi-level cache management in mod-
ern processors, which do not employ a purely inclusive or
exclusive caching policy between tiers [16] to facilitate the
sharing of or avoid the eviction of certain cache lines, NOMAD
embraces a non-exclusive memory tiering policy to prevent
memory thrashing when under memory pressure. Unlike the
existing page management schemes that move pages between
tiers and require that a page is only present in one tier, NO-
MAD instead copies pages from the slow tier to the fast tier
and keeps a shadow copy of the migrated pages at the slow
tier. The non-exclusive tiering policy maintains shadow copies
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Figure 3: The workflow of transactional page migration. PFN
is the page frame number and D is the dirty bit in PTE. The
page is only inaccessible by user programs during step 4 when
the page is remapped in the page table.

only for pages that have been promoted to the fast tier, thereby
not an inclusive policy. The advantage of the non-exclusive
policy is that the demotion of clean, cold pages can be sim-
plified to remapping the page table entry (PTE) without the
need to copy the cold page to the slower tier.

The building block of NOMAD is a new transactional page
migration (TPM) mechanism to reduce the cost of page mi-
grations. Unlike the existing unmap-copy-remap 3-step page
migration, TPM opportunistically copies a page without un-
mapping it from the page table. During the page copy, the
page is not locked and can be accessed by a user program.
After the copy is completed, TPM checks if the page has been
dirtied during the copy. If not, TPM locks the page and remaps
it in the PTE to the faster tier. Otherwise, the migration is
aborted and will be tried at a later time. TPM not only min-
imizes the duration during which a page is inaccessible but
also makes page migration asynchronous, thereby removing
it from the critical path of users’ data access.

Without loss of generality, we describe NOMAD design
in the context of Linux. We start with transactional page
migration and then delve into page shadowing – an essential
mechanism that enables non-exclusive memory tiering.

3.1 Transactional Page Migration
The motivation to develop TPM is to make page migration
entirely asynchronous and decoupled from users’ access to the
page. As discussed in Section 2.2, the current page migration
in Linux is synchronous and on the critical path of users’ data
access. For example, the default tiered memory management
in Linux, TPP, attempts to migrate a page from the slow tier
whenever a user program accesses the page. Since the page
is in inaccessible mode, the access triggers a minor page
fault, leading TPP to attempt the migration. The user program
is blocked and makes no progress until the minor page fault is
handled and the page is remapped to the fast tier, which can
be a time-consuming process. Worse, if the migration fails,
the OS remains in function migrate_pages and retries the

aforementioned migration until it is successful or reaching a
maximum of 10 attempts.

TPM decouples page migration from the critical path of
user programs by making the migrating page accessible dur-
ing migration. Therefore, users will access the migrating page
from the slow tier before the migration is complete. While ac-
cessing a hot page from the slow tier may lead to sub-optimal
memory performance, it avoids blocking user access due to
the migration, thereby leading to superior user-perceived per-
formance. Figure 3 shows the workflow of TPM. Before
migration commences, TPM clears the protection bit of the
page frame and adds the page to a migration pending queue.
Since the page is no longer protected and not yet unmapped
from the page table, following accesses to the page will not
trigger additional page faults.

TPM starts a migration transaction by clearing the dirty bit
of the page (step ❶) and checks the dirty bit after the page
is copied to the fast tier to determine whether the transaction
was successful. After changing the dirty bit in PTE, TPM
issues a TLB shootdown to all cores that ever accessed this
page (step ❷). This is to ensure that subsequent writes to the
page can be recorded on the PTE. After the TLB shootdown is
completed, TPM starts copying the page from the slow tier to
the fast tier (step ❸). To commit the transaction, TPM checks
the dirty bit by loading the entire PTE using atomic instruc-
tion get_and_clear (step ❹). Clearing the PTE is equivalent
to unmapping the page and thus another TLB shootdown is
needed (step ❺). Note that after unmapping the page from
PTE, it becomes inaccessible by users. TPM checks whether
the page was dirtied during the page copy (step ❻) and either
commits the transaction by remapping the page to the fast tier
if the page is clean (step ❼) or otherwise aborts the transac-
tion (step ❽). If the migration is aborted, the original PTE is
restored and waits for the next time when TPM is rescheduled
to retry the migration. The duration in which the page is in-
accessible is between ❹ and ❼/ ❽, significantly shorter than
that in TPP (possibly multiple attempts between ❶ and ❼).

Page migration is a complex procedure that involves mem-
ory tracing and updates to the page table for page remapping.
The state-of-the-art page fault-based migration approaches,
e.g., TPP in Linux [44], employ synchronous page migration,
a mechanism in the Linux kernel for moving pages between
NUMA nodes. In addition to the extended migration time
affecting the critical path of user programs, this mechanism
causes excessive page faults when integrated with the existing
LRU-based memory tracing. TPP makes per-page migration
decisions based on whether the page is on the active LRU
list. Nevertheless, in Linux, memory tracing adds pages from
the inactive to the active LRU list in batches of 15 requests 2,
aiming to minimize the queue management overhead. Due
to synchronous page migration, TPP may submit multiple
requests (up to 15 if the request queue is empty) for a page to

2The 15 requests could be repeated requests for promoting the same page
to the active LRU list
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Figure 4: TPM uses a two-queue design to enable asyn-
chronous page migration.

be promoted to the active LRU list to initiate the migration
process. In the worst case, migrating one page may generate
as many as 15 minor page faults.

TPM provides a mechanism to enable asynchronous page
migration but requires additional effort to interface with
memory tracing in Linux to minimize the number of page
faults needed for page migration. As shown in Figure 4, in
addition to the inactive and active LRU lists in memory trac-
ing, TPM maintains a separate promotion candidate queue
(PCQ) for pages that 1) have been tried for migration but 2)
not yet promoted to the active LRU list. Upon each time a
minor (hint) page fault occurs and the faulting page is added
to PCQ, TPM checks if there are any hot pages in PCQ that
have both the active and accessed bits set. These hot pages
are then inserted to a migration pending queue, from where
they will be tried for asynchronous, transactional migration
by a background kernel thread kpromote. Note that TPM
does not change how Linux determines the temperature of a
page. For example, in Linux, all pages in the active LRU list,
which are eligible for migration, have the two memory tracing
bits set. However, not all pages with these bits set are in the
active list due to LRU list management. TPM bypasses the
LRU list management and provides a more efficient method
to initiate page migration. If all transactional migrations were
successful, TPM guarantees that only one page fault is needed
per migration in the presence of LRU list management.

3.2 Page Shadowing

To enable non-exclusive memory tiering, NOMAD introduces
a one-way page shadowing mechanism to allow a subset of
pages resident in the performance tier to have a shadow copy
in the capacity tier. Only pages promoted from the slow tier
have shadow copies in the slow tier. Shadow copies are the
original pages residing on the slow tier before they are un-
mapped in the page table and migrated to the fast tier. Shadow
pages play a crucial role in minimizing the overhead of page
migration during periods of memory pressure. Instead of

Fast tier Slow tier

Shadow 
page, PFN1

Master
page, PFN0

PFN0 PFN1

Demote: remap PTE

Shadow r/w bit r/w bit

Restore r/w bit after demotion

Figure 5: Shadow page management using shadow r/w bit.

swapping hot and cold pages between memory tiers, page
shadowing enables efficient page demotion through page table
remapping. This would eliminate half of the page migration
overhead, i.e., page demotion, during memory thrashing.

Indexing shadow pages. Inspired by the indexing of file-
based data in the Linux page cache, NOMAD builds an XArray
for indexing shadow pages. An XArray is a radix-tree like,
cache-efficient data structure that acts as a key-value store,
mapping from the physical address of a fast tier page to the
physical address of its shadow copy on the slow tier. Upon
successfully completing a page migration, NOMAD inserts
the addresses of both the new and old pages into the XArray.
Additionally, it adds a new shadow flag to the struct page
of the new page, indicating that shadowing is on for this page.

Shadow page management. The purpose of maintaining
shadow pages is to assist with page demotion. Fast or efficient
page demotion is possible via page remapping if the master
page, i.e., the one on the fast tier, is clean and consistent
with the shadow copy. Otherwise, the shadow copy should
be discarded. To track inconsistency between the master and
shadow copies, NOMAD sets the master page as read-only
and a write to the page causes a page fault. To simplify system
design and avoid additional cross-tier traffic, NOMAD discards
the shadow page if the master page is dirtied.

However, tracking updates to the master page poses a sig-
nificant challenge. Page management in Linux relies heav-
ily on the read-write permission to perform various opera-
tions on a page, such as copy-on-write (CoW). While setting
master pages as read-only effectively captures all writes, it
may affect how these master pages are managed in the ker-
nel. To address this issue, NOMAD introduces a procedure
called shadow page fault. It still designates all master pages as
read-only but preserves the original read-write permission
in an unused software bit on the page’s PTE (as shown in
Figure 5). We refer to this software bit as shadow r/w. Upon
a write to a master page, a page fault occurs. Unlike an ordi-
nary page fault that handles write violation, the shadow page
fault, which is invoked if the page’s shadow flag is set in its
struct page, restores the read-write permission of the fault-
ing page according to the shadow r/w bit and discards/frees
the shadow page. The write may proceed once the shadow
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page fault returns and reinstates the page to be writable. For
read-only pages, tracking shadow pages does not impose
additional overhead; for writable pages, it requires one addi-
tional shadow page fault to restore their write permission.
Reclaiming shadow pages. Non-exclusive memory tiering
introduces space overhead due to the storage of shadow pages.
If shadow pages are not timely reclaimed when the system is
under memory pressure, applications may encounter out-of-
memory (OOM) errors, which would not occur under exclu-
sive memory tiering. There are two scenarios in which shadow
pages should be reclaimed. First, the Linux kernel periodically
checks the availability of free pages and if free memory falls
below low_water_mark, kernel daemon kswapd is invoked
to reclaim memory. NOMAD instructs kswapd to prioritize
the reclamation of shadow pages. Second, upon a memory
allocation failure, NOMAD also tries to free shadow pages. To
avoid OOM errors, the number of freed shadow pages should
exceed the number of requested pages. However, frequent
memory allocation failures could negatively affect system
performance. NOMAD employs a straightforward heuristic
to reclaim shadow pages, targeting 10 times the number of
requested pages or until all shadow pages are freed. While ex-
cessive reclamation may have a negative impact on NOMAD’s
performance, it is crucial to prevent Out-of-Memory (OOM)
errors. Experiments in Section 4 demonstrate the robustness
of NOMAD even under extreme circumstances.

3.3 Limitations
NOMAD relies on two rounds of TLB shootdown to effec-
tively track updates to a migrating page during transactional
page migration. When a page is used by multiple processes
or mapped by multiple page tables, its migration involves
multiple TLB shootdowns, per each mapping, that need to
happen simultaneously. The overhead of handling multiple
IPIs could outweigh the benefit of asynchronous page copy.
Hence, NOMAD deactivates transactional page migration for
multi-mapped pages and resorts to the default synchronous
page migration mechanism in Linux. As high-latency TLB
shootdowns based on IPIs continue to be a performance con-
cern, modern processors, such as ARM, future AMD, and Intel
x86 processors, are equipped with ISA extensions for faster
broadcast-based [17, 18] or micro-coded RPC-like [28] TLB
shootdowns. These emerging lightweight TLB shootdown
methods will greatly reduce the overhead of TLB coherence
in tiered memory systems with expanded memory capacity.
NOMAD will also benefit from the emerging hardware and
can be extended to scenarios where more intensive TLB shoot-
downs are necessary.

4 Evaluation

This section presents a thorough evaluation of NOMAD, fo-
cusing on its performance, overhead, and robustness. Our

RSS

WSS

Fast tier Slow tier

Figure 6: The three memory provisioning schemes used in the
evaluation. From bottom to top concerning fast memory: over-
provisioning, approaching capacity, and under-provisioning.

primary goal is to understand tiered memory management by
comparing NOMAD with existing representative approaches
to reveal the benefits and potential limitations of current page
management approaches for emerging tiered memory.

We analyze two types of memory footprints: 1) resident set
size (RSS) – the total size of memory occupied by a program,
and 2) working set size (WSS) – the amount of memory a
program actively uses during execution. RSS determines the
initial page placement, while WSS dictates the number of
pages that should be migrated to the fast tier. Since we focus
on in-memory computing, WSS is typically smaller than RSS.
Figure 6 illustrates the three scenarios we study with the WSS
size smaller than, close to, and larger than fast memory size.
Testbeds. We conducted experiments on four platforms with
different configurations in CPU, local DRAM, CXL memory,
and persistent memory, as detailed in Table 1.

• Platform A was built with commercial off-the-shelf (COTS)
Intel Sapphire Rapids processors and a 16 GB Agilex-7
FPGA-based CXL memory device [6].

• Platform B featured an engineering sample of the Intel Sap-
phire Rapids processors with the same FPGA-based CXL
memory device. The prototype processors have engineering
tweaks that have the potential to enhance the performance
of CXL memory, which were not available on platform A.

• Platform C included an Intel Cascade Lake processor and
six 256 GB 100 series Intel Optane Persistent Memory. This
platform enabled the full capability of PEBS-based mem-
ory tracking and allowed for a comprehensive comparison
between page fault- and sampling-based page migration.

• Platform D had an AMD Genoa 9634 processor and four
256 GB Micron’s (pre-market) CXL memory modules. This
platform allowed us to evaluate NOMAD with more realistic
CXL memory configurations.

Since the FPGA-based CXL memory device had only 16
GB of memory, we configured local DRAM to 16 GB for all
platforms 3. Note that platform C was equipped with DDR4
DRAM as fast memory while the other platforms used DDR5

3Although platform C and D have larger PM or CXL memory sizes, we
configured them with 16 GB slow memory consistent with platform A and B
for a fair comparison in micro-benchmarks.This limit was lifted when testing
real applications.
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Platform A Platform B Platform C Platform D
(engineering sample)

CPU
4th Gen Xeon Gold

2.1GHz
4th Gen Xeon Platinum

3.5GHz
2nd Gen Xeon Gold

3.9GHz
AMD Genoa

3.7GHz
Performance tier (DRAM) 16 GB DDR5 16 GB DDR5 16 GB DDR4 16GB DDR5

Capacity tier
(CXL or PM Memory)

Agilex 7
16 GB DDR4

Agilex 7
16 GB DDR4

Optane 100
256 GB DDR-T ×6

Micron CXL memory
256GB ×4

Performance tier read latency 316 cycles 226 cycles 249 cycles 391 cycles
Capacity tier read latency 854 cycles 737 cycles 1077 cycles 712 cycles

Performance tier
bandwidth (GB/s)

Single Thread / Peak performance

Read: 12/31.45
Write: 20.8/28.5

Read: 12/31.2
Write: 22.3/23.67

Read: 12.57/116
Write: 8.67/85

Read: 37.8/270
Write: 89.8/272

Capacity tier
bandwidth (GB/s)

Single Thread/Peak performance

Read: 4.5/21.7
Write: 20.7/21.3

Read: 4.45/22.3
Write: 22.3/22.4

Read: 4/40.1
Write: 8.1/13.6

Read: 20.25/83.2
Write: 57.7/84.3

Table 1: The configurations of four testbeds and performance characteristics of various memory devices.

Workload Type In progress Promotion In progress Demotion Steady Promotion Steady demotion

Small WSS
(1.2M|1M)/(15.9K|134K)/

(1.16M|781K)
(2.4M|2.2M)/(15.9K|140K)/

(2.7M|1.5M)
(0|3.3K)/(7.7K|104K)/

(82|74)
(424K|56K)/(0|104K)/

(48K|0)

Medium WSS
(4M|6M)/(0|0)/

(1.6M|5M)
(4.7M|6M)/(2|512)/

(2.5M|4.8M)
(1.8M|3.2M)/(17.4K|0)/

(417K|1.6M)
(1.9M|3.2M)/(16.9K|0)/

(293K|1.4M)

Large WSS
(7M|5.9M)/(0|0)/

(4.5M|7M)
(7.2M|6.5M)/(0|15)/

(4.1M|7.2M)
(7.1M|5.2M)/(0|143K)/

(6.8M|8.8M)
(7.1M|5.3M)/(0|143K)/

(6.8M|8.9M)

Table 2: The number of page promotions/demotions for read|write during the migration in progress and the stable phases for
TPP/Memtis-Default/NOMAD. The data corresponds to Figure 7 for platform A.

DRAM. We evaluated both CXL memory and persistent mem-
ory (PM) as slow memory. Table 1 lists the performance char-
acteristics of the four platforms for single-threaded and peak
(multi-threaded) performance. While CXL memory and PM
have distinct characteristics, including persistence, concurrent
performance, and read/write asymmetry, they achieve com-
parable performance within 2-3x of DRAM and provide a
similar programming interface as a CPUless memory node.
To ensure a fair comparison, we only enabled one socket on
each of the four platforms. Intel platforms were configured
with 32 cores while the AMD platform had 84 cores.

Baselines for comparison. We compared NOMAD with
two state-of-the-art tired memory systems: TPP [44] and
Memtis [37]. We evaluated both TPP and Nomad on Linux
kernel v5.13-rc6 and ran Memtis on kernel v5.15.19, the ker-
nel version upon which Memtis was built and released. We
tested two versions of Memtis – Memtis-Default and Memtis-
QuickCool – with different data cooling speeds (i.e., the num-
ber of samples collected before halving a page’s access count).
Specifically, Memtis-Default used the default cooling period
of 2,000k samples, while Memtis-QuickCool used a period
of 2k samples. A shorter cooling period encourages more
frequent page migration between the memory tiers.

Memtis relies on Intel’s Processor Event-Based Sampling
(PEBS) to track memory access patterns. It samples various
hardware events, including LLC misses, TLB misses, and re-
tired store instructions, to infer accessed page addresses and
build frequency-based histograms to aid in making migra-
tion decisions. Memtis currently only supports Intel-based

systems, though it can be ported to AMD processors with
Instruction-based Sampling (IBS). Thus, Memtis was not
evaluated on platform D. Memtis works slightly differently
on CXL-memory systems (platforms A and B) and the PM
system (platform C). LLC misses to CXL memory are re-
garded as uncore events on Intel platforms and thus cannot be
captured by PEBS. Therefore, Memtis relies solely on TLB
misses and retired store instructions to infer page temperature
on platforms A and B.

4.1 Micro-benchmarks

To evaluate the performance of NOMAD’s transactional page
migration and shadowing mechanisms, we developed a micro-
benchmark to precisely assess NOMAD in a controlled manner.
This micro-benchmark involves 1) allocating data to specific
segments of the tiered memory; 2) running tests with various
working set sizes (WSS) and resident set sizes (RSS); and 3)
generating memory accesses to the WSS data that mimic real-
world memory access patterns with a Zipfian distribution. We
created three scenarios representing small, medium, and large
WSS, as illustrated in Figure 6, to evaluate tiered memory
management under different memory pressures. As platform
B behaved similarly to platform A in micro-benchmarks, it is
excluded from the discussion.

Small WSS. We began with a scenario with a small WSS
of 10 GB and a total RSS of 20 GB. Initially, we filled the
first 10 GB of local DRAM with the first half of the RSS
data. Subsequently, we allocated 10 GB of WSS data as the
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Figure 7: Performance comparison between TPP, Memtis-Default, Memtis-QuickCool, and NOMAD on platform A.

second half of the RSS – 6 GB on the local DRAM and 4 GB
on CXL memory (platforms A and D) and the PM (platform
C). The micro-benchmark continuously performed memory
reads or writes (following a Zipfian distribution) to this 10
GB WSS data, spread across both the local DRAM and CXL
memory or PM. The frequently accessed, or “hot” data, was
uniformly distributed along the 10 GB WSS. In TPP and
NOMAD, accessing data on CXL memory or PM triggered
page migration to the local DRAM, with TPP performing
this migration synchronously and NOMAD asynchronously.
In contrast, Memtis used a background thread to migrate hot
data from CXL memory or PM to the local DRAM. Due
to page migration, the 4 GB WSS data, initially allocated
to CXL memory or PM, was gradually moved to the local
DRAM. Since the WSS was small (i.e., 10 GB), it could be
completely stored in the fast tier (i.e., local DRAM) after the
micro-benchmark reached a stable state.

Figures 7 (a), 8 (a), and 9 (a) show that in the transient
phase, during which page migration was conducted inten-
sively (i.e., migration in progress), both NOMAD and Memtis
demonstrated similar performance regarding memory band-
width for reads. Although page-fault-based page migration
in NOMAD could incur more overhead than the PEBS-based
approach in Memtis, when the WSS can fit in fast memory
and no memory thrashing occurs, the benefit of migration
outweighs its overhead. For writes, e.g., on platform A, NO-
MAD incurred noticeable performance degradation compared
to Memtis due to possibly aborted migrations and the mainte-
nance of shadow pages. Note that NOMAD’s overhead varies
across platforms depending on the performance difference
between fast and slow memory. In contrast, Nomad consis-
tently outperformed TPP for both read and write, except for
the slightly worse performance on platform C, highlighting
the advantage of asynchronous page migration in NOMAD.

In the stable phase (i.e., migration stable), when most of
the WSS data had been migrated from CXL memory or PM
to the local DRAM, both NOMAD and TPP achieved similar
read/write bandwidth. This was because memory accesses
were primarily served by the local DRAM with few page mi-
grations, as shown in Table 2. Memtis performed the worst,
achieving as low as 40% of the performance of the other two
approaches. We make two observations regarding Memtis’s
weaknesses. First, its stable phase performance is not drasti-
cally different from the transient phase. The migration statis-

tics in Table 2 show that Memtis performed significantly
fewer page migrations. This explains its sub-optimal perfor-
mance in the stable phase as most memory accesses were
still served from slow memory. Second, a shorter cooling pe-
riod in Memtis, which incentivizes more frequent migrations,
led to better performance. This also suggests that sampling-
based memory access tracking may not accurately identify
and timely migrate hot pages to fast memory.

Medium WSS. We increased the size of WSS and RSS to
13.5 GB and 27 GB, respectively. Similarly, we placed the
first half of the RSS (13.5 GB) at the start of the local DRAM,
followed by 2.5 GB of the WSS on the local DRAM, with the
remaining 11 GB residing on CXL memory or PM. However,
as the system (e.g., the OS kernel) required approximately
3-4 GB of memory, the WSS could barely fit in the fast tier,
resulting in occasional and substantial migrations even during
the stable phase. Accurately identifying hot pages and avoid-
ing thrashing is crucial to achieving high performance for this
medium-sized benchmark.

Unlike the small WSS case, Figures 7 (b), 8 (b), and 9 (b)
show that during the transient phase, NOMAD and TPP gen-
erally achieved lower performance for both read and write
compared to Memtis. This is because, under the medium
WSS, the system experienced higher memory pressure than
in the small WSS case, causing NOMAD and TPP to conduct
more page migrations (2x - 6x) and incur higher overhead
than Memtis, as shown in Table 2. Many of such migrations
were futile during thrashing. Conversely, Memtis performed
significantly fewer page migrations and avoided the waste.
However, there was no evidence that Memtis effectively de-
tected thrashing and throttled migration. The coarse-grained
sampling was unable to accurately determine page tempera-
ture in a volatile situation and inadvertently sustained high
performance under high memory pressure.

In the stable phase, NOMAD significantly outperformed
TPP in all cases, especially on platform D. These results show
the benefit of NOMAD’s transactional page migration and non-
exclusive memory tiering compared to TPP’s synchronous
page migration and exclusive tiering. On platform D, which
was equipped with an application-specific integrated circuit
(ASIC)-based CXL memory implementation, the performance
gap between fast and slow memory narrows. Thus, the soft-
ware overhead associated with synchronous page migration
was exacerbated and NOMAD offered more pronounced per-
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Figure 8: Performance comparison between TPP, Memtis-Default, Memtis-QuickCool, and NOMAD on platform C.
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Figure 9: Performance comparison between TPP and NOMAD on platform D with AMD Genoa processor. Memtis does not
support AMD’s instruction-based sampling (IBS) and thus was not tested.

formance gains. Similarly, NOMAD achieved substantially
higher performance in reads than Memtis and comparable per-
formance in writes. Unlike in the small WSS case, in which
asynchronous and transactional page migration in NOMAD
contributed most to its performance benefit, the advantage of
page shadowing played a critical role in alleviating thrashing
in the medium WSS case. Under memory thrashing, most
demoted pages, which were recently promoted from the slow
tier, can be simply discarded without migration. However,
for write-intensive workloads, page shadowing requires one
additional page fault for each write to restore a page’s original
read-write permission. This explains NOMAD’s inferior write
performance in the stable phase compared to Memtis.
Large WSS. We scaled up the WSS and RSS both to 27
GB and fully populated local DRAM with the first 16 GB
of the WSS. The remaining WSS spilled onto CXL memory
or PM. Unlike the medium WSS that incurred intermittent
memory thrashing, this workload caused continuous and se-
vere thrashing as the size of hot data greatly exceeded the
capacity of fast memory. Figures 7 (c), 8 (c), and 9 (c) present
the performance results in both the transient phase and the
stable phase. Compared to the tests with the medium-sized
workload in which NOMAD could outperform Memtis for
read-only benchmarks, especially in the stable phase, both
NOMAD and TPP performed worse than Memtis in almost
all scenarios. It suggests that page fault-based tiered mem-
ory management, which makes per-page migration decisions
upon access to a page, inevitably incurs high overhead during
severe memory thrashing. Nevertheless, NOMAD consistently
and significantly outperformed TPP thanks to asynchronous,
transactional page migration and page shadowing.
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Figure 10: The average cache line access latency on platform
C. The benchmark is a point-chasing workload optimized for
PEBS-based memory access tracking.

Limitations of PEBS-based approaches. Our evaluation re-
vealed several issues with PEBS-based memory access track-
ing. While Memtis prevented excessive migrations during
thrashing, it achieved sub-optimal performance and failed to
migrate all hot data to fast memory even when the WSS could
fit in the fast tier. Due to the lack of hardware support for hot
page tracking, PEBS-based approaches employ indirect met-
rics, such as LLC and TLB misses to sample recently accessed
addresses to infer page temperature. Sampling-based memory
tracking has two fundamental limitations. First, there is a dif-
ficult tradeoff between sampling rate and tracking accuracy.
Second and most importantly, cache misses may not effec-
tively capture hot pages. For most frequently accessed pages
that always hit the caches, Memtis fails to collect enough
(cache miss) samples to build the histogram. If such pages
are evicted from the caches, e.g., due to conflict or coherence
misses, they will be falsely regarded as “cold” pages.

To demonstrate these limitations, we created a favorable
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RSS 23GB 25GB 27GB 29GB
Total shadow page size 3.93GB 2.68GB 2.2GB 0.58GB

Table 3: Shadow memory size as RSS changes on platform B.
The size of tiered memory (DRAM+CXL) is 30.7 GB.

scenario where Memtis can capture every page access. We
used a pointer-chasing benchmark that repeatedly accesses
multiple fixed-sized (1 GB) memory blocks. Within each 1
GB block, the benchmark randomly accesses all cache lines
belonging to a block while accesses across blocks follow a
Zipfian distribution. The number of blocks determines the
WSS. Since the block size exceeds the LLC size in our
testbeds, every access generates an LLC miss that can be cap-
tured by Memtis. Effective memory access tracking should
identify hot blocks and place them in fast memory.

Figure 10 shows the average latency to access a cache line
in this benchmark on platform C. Note that platform C with
PM was the only testbed on which Memtis has full tracking
capability and can capture all the PEBS events. According
to Table 1, a latency closer to DRAM performance (∼250
cycles) indicates more effective page placement. As shown in
Figure 10, when the WSS exceeds fast tier capacity, Memtis
achieved latency close to slow memory performance, sug-
gesting that most hot pages still resided in the slow tier. In
comparison, page fault-based approaches, e.g., NOMAD and
TPP, can timely migrate hot pages and achieve low latency.
Robustness. Page shadowing can potentially increase mem-
ory usage and in the worst case can cause OOM errors if
shadow pages are not timely reclaimed. In this test, we evalu-
ated NOMAD’s shadow page reclamation. We measured the
total memory usage and the size of shadow memory using a
micro-benchmark that sequentially scans a predefined RSS
area. Table 3 shows the change of shadow pages as we var-
ied the RSS. The results suggest that NOMAD effectively
reclaimed shadow pages to reduce shadow memory usage as
RSS increased and approached memory capacity.

4.2 Real-world Applications
We continued the evaluation of NOMAD using three repre-
sentative real-world applications with unique memory access
patterns: Redis [10], PageRank [9], and Liblinear [5]. We ran
these three applications on four platforms (as shown in Ta-
ble 1) with two configurations: 1) a small RSS (under 32 GB)
working with all platforms and 2) a large RSS (over 32 GB)
only on platform C and D with large PM or CXL memory.
In addition, we include results from a “no migration” base-
line which disables page migrations to show whether tiered
memory management is necessary.
Key-value store. We first conducted experiments on a latency-
sensitive key-value database, Redis [10]. The workload was
generated from YCSB [11], using its update-heavy workload
A, with a 50/50 distribution of read and write operations. We
crafted three cases with different RSS and total operations.
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Figure 11: Performance comparisons using Redis and YCSB
between TPP, Memtis-Default, Memtis-QuickCool, NOMAD,
and “no migration”.

Note that the parameters of YCSB were set as default unless
otherwise specified. Case 1: We set recordcount to 6 million
and operationcount to 8 million. After pre-loading the dataset,
we used a customized tool to demote all memory pages to
the slow tier before starting the experiment. The RSS of this
case was 13GB. Case 2: We increased the RSS by setting
recordcount to 10 million and operationcount to 12 million.
We demoted all the memory pages to the slow tier in the same
way. The RSS of this case was 24GB. Case 3: We kept the
same total operations and RSS as Case 2. However, after pre-
loading the dataset, we did not demote any memory pages.

Consistent with the micro-benchmarking results, Figure 11
shows that NOMAD delivered superior performance (in terms
of operations per second) compared to TPP across all plat-
forms in all cases. In addition, NOMAD outperformed Memtis
when the WSS was small (i.e., in case 1), but suffered more
performance degradation as the WSS increased (i.e., in case 2
and 3) due to an increased number of page migrations and ad-
ditional overhead. Finally, all the page migration approaches
underperformed compared to the “no migration” baseline.
It is because the memory accesses generated by the YCSB
workload were mostly “random”, rendering migrating pages
to the fast tier less effective, as those pages were unlikely to
be accessed again. It indicates once again that page migration
could incur nontrivial overhead, and a strategy to dynamically
switch it on/off is needed.

We further increased the RSS of the database and opera-
tions of YCSB by setting the recordcount to 20 million and
operationcount to 30 million. The RSS for this case was
36.5GB, exceeding the total size of the tiered memory on
platforms A and B. Thus, the large RSS test was only per-
formed on platforms C and D. We tested two initial memory
placement strategies for the database – 1) thrashing that allo-
cated all pages first to the slow tier and immediately invoked
intensive page migrations, and 2) normal that prioritized page
allocation to fast memory and triggered page migration only
under memory pressure. As shown in Figure 14, NOMAD out-
performed TPP due to its graceful performance degradation
during thrashing but fell short of matching Memtis’s perfor-
mance. The initial placement strategy did not substantially
affect the results and performance under different placements
eventually converged.

Graph-based computation. We used PageRank [9], an ap-
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Figure 12: Performance comparisons of PageRank between
non-migration, TPP, Memtis, and NOMAD. Performance is
normalized to the approach with the lowest speed.
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Figure 13: Performance comparisons of Liblinear between
non-migration, TPP, Memtis, and NOMAD. Performance is
normalized to the approach with the lowest speed.

plication used to rank web pages. It involves iterative com-
putations to determine the rank of each page, based on the
link structures of the entire web. As the size of the dataset in-
creases, the computational complexity also increases, making
it both memory-intensive and compute-intensive. We used a
benchmark suite [8] to generate a synthetic uniform-random
graph comprising 226 vertices, each with an average of 20
edges. The RSS in this experiment was 22 GB, indicating that
the memory pages were distributed at both the local DRAM
and remote CXL memory or PM.

Figure 12 illustrates that there was negligible variance in
performance between scenarios with page migrations (using
NOMAD and TPP) and without page migrations (no migra-
tion). The results suggest that: 1) For non-latency-sensitive
applications, such as PageRank, using CXL memory can sig-
nificantly expand the local DRAM capacity without adversely
impacting application-level performance. 2) In such scenar-
ios, page migration appears to be unnecessary. These findings
also reveal that the overhead associated with NOMAD’s page
migration minimally influences PageRank’s performance. Ad-
ditionally, it was observed that among all evaluated scenarios,
Memtis exhibited the least efficient performance.

Figure 15 shows the case when we scaled the RSS to a
very large scale on platforms C & D. When the PageRank
program started, it first used up to 100GB memory, then its
RSS size dropped to 45GB to 50GB. NOMAD achieved 2x
the performance of TPP (both platforms) and slightly better
than Memtis (platform C), due to more frequent page migra-
tions – the local DRAM (16 GB) was not large enough to
accommodate the WSS in this case.

Workload type Success : Aborted

Liblinear (large RSS) on platform C 1:1.9
Liblinear (large RSS) on platform D 2.6:1

Redis (large RSS) on platform C 153:1
Redis (large RSS) on platform D 278.2:1

Table 4: The Success rate of transactional migration.

Machine learning. Our final evaluation of NOMAD involved
using the machine learning library Liblinear [5], known for
its large-scale linear classification capabilities. We executed
Liblinear with an L1 regularized logistic regression workload
with an RSS of 10 GB. Prior to each execution, we used our
tool to demote all memory pages associated with the Liblinear
workload to the slower memory tier.

Figure 13 demonstrates that both NOMAD and TPP signif-
icantly outperformed “no migration” and Memtis across all
platforms, with performance improvement ranging from 20%
to 150%. This result further illustrates that when the WSS is
smaller than the local DRAM, NOMAD and TPP can substan-
tially enhance application performance by timely migrating
hot pages to the faster memory tier. Figure 16 shows that
with a much larger model and RSS when running Liblinear,
NOMAD consistently achieved high performance across all
cases. In contrast, TPP’s performance significantly declined,
likely due to inefficiency issues, as frequent, high bursts in
kernel CPU time were observed during TPP execution.

Migration success rate. As stated in Section 3.1, NOMAD’s
transactional page migration may be aborted due to updates
to the migrating page, resulting in wasted memory bandwidth
and CPU cycles. Subsequent retries could also fail. A low
success rate could negatively affect application performance.
Table 4 shows NOMAD’s migration success rate for Liblin-
ear and Redis on platforms C and D. We chose a large RSS
for both applications and ensured there were sufficient cross-
tier migrations. We observed a low success rate for Liblinear
while Redis had a high success rate. Interestingly, this con-
trasted with NOMAD’s performance – it was excellent with
Liblinear but poor with Redis with large RSS. This suggests
that a high success rate in page migrations does not necessar-
ily lead to high performance. A low success rate indicates that
the pages being migrated by NOMAD are also being modified
by other processes, implying their “hotness”. Timely migra-
tion of such pages can benefit ongoing and future accesses.
Summary. The results from micro-benchmarks and appli-
cations indicate that when the WSS was smaller than the
performance tier, NOMAD enabled workloads to maintain
higher performance than Memtis through asynchronous, trans-
actional page migrations. However, when the WSS was com-
parable to or exceeded the performance tier capacity, leading
to memory thrashing, the page-fault-based migration in NO-
MAD became detrimental to workload performance, under-
performing Memtis in write operations. Notably, NOMAD’s
page shadowing feature preserved the efficiency of read opera-
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Figure 16: Liblinear (large RSS).

tions even under severe memory thrashing, often maintaining
comparable or superior performance to Memtis. In all test
scenarios, NOMAD significantly outperformed the state-of-
the-art page-fault-based migration approach, TPP.

The evaluation results across four different platforms re-
veal the following observations: First, NOMAD generally per-
formed better on platform D, which was equipped with faster
and larger CXL memory, compared to other platforms. Ad-
ditionally, the reduced performance gap between fast and
slow memory on platform D allowed NOMAD to achieve
greater performance gains than TPP, as the performance over-
head from TPP’s synchronous page migration was more pro-
nounced. Second, while platforms A and B showed similar
behavior in micro-benchmarks, their application-level perfor-
mance varied (slightly) across different applications, suggest-
ing that specific CPU features (differing between the off-the-
shelf Intel Sapphire Rapids CPU for platform A and the engi-
neering sample for platform B) may affect the performance
of page migration under more realistic workloads.

5 Discussions and Future Work

The key insight from NOMAD’s evaluation is that page mi-
gration, especially under memory pressure, has a detrimental
impact on overall application performance. While NOMAD
achieved graceful performance degradation and much higher
performance than TPP, an approach based on synchronous
page migration, its performance is sub-optimal compared to
that without page migration. When the program’s working set
exceeds the capacity of the fast tier, the most effective strategy
is to access pages directly from their initial placement, com-
pletely disabling page migration. It is straightforward to detect
memory thrashing, e.g., frequent and equal number of page
demotions and promotions, and disable page migrations. How-
ever, estimating the working set size to resume page migration
becomes challenging, as the working set now spans multiple
tiers. It requires global memory tracking, which could be
prohibitively expensive, to identify the hot data set that can
potentially be migrated to the fast tier. We plan to extend
NOMAD to unilaterally throttle page promotions and monitor
page demotions to effectively manage memory pressure on
the fast tier. Note that this would require the development
of a new page migration policy, which is orthogonal to the
NOMAD page migration mechanisms proposed in this work.

Impact of Platform Characteristics: There exist difficult
tradeoffs between page fault-based access tracking, such as
TPP and NOMAD, and hardware performance counter-based
memory access sampling like Memtis. While page fault-based
tracking effectively captures access recency, it can be poten-
tially expensive and on the critical path of program execution.
In comparison, hardware-based access sampling is off the
critical path and captures access frequency. However, it is not
responsive to workload changes and its accuracy relies on the
sampling rate. One advantage of NOMAD is that it is a page
fault-based migration approach that is asynchronous and off
the critical path. A potential future work is integrating NO-
MAD with hardware-based, access frequency tracking, such
as Memtis, to enhance the current migration policy.

6 Conclusion

This paper introduces non-exclusive memory tiering as an
alternative to the common exclusive memory tiering strategy,
where each page is confined to either fast or slow memory.
The proposed approach, implemented in NOMAD, leverages
transactional page migration and page shadowing to enhance
page management in Linux. Unlike traditional page migra-
tion, NOMAD ensures asynchronous migration and retains
shadow copies of recently promoted pages. Through com-
prehensive evaluations, NOMAD demonstrates up to 6x per-
formance improvement over existing methods, addressing
critical performance degradation issues in exclusive memory
tiering, especially under memory pressure. The paper calls for
further research in tiered memory-aware memory allocation.
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A Artifact Appendix

Abstract
The artifact contains the source code of NOMAD, TPP, and
Memtis for reproducing the results and graphs presented in
the paper. The code works on platforms with Persistent Mem-
ory, Intel Agilex CXL memory, and/or Micron CXL memory.
To facilitate the reproduction, we have provided a collection
of scripts for compiling and installing these approaches, exe-
cuting the experiments, collecting logs, and creating graphs.
More details are available in the "README.md" file.

Scope
This artifact demonstrates NOMAD’s strengths and weak-
nesses over TPP and Memtis across various scenarios and
platforms, as elaborated in the Evaluation section.

It is open-source and can be used for further research, de-
velopment, or other purposes by the community.

Contents
NOMAD, TPP and Memtis implementation. We provide
two separate patches to enable NOMAD and TPP to work with
the upstream kernel version v5.13-rc6. In particular, the TPP
patch comes from the Linux community email discussions.
Memtis, on the other hand, is directly incorporated from its
original artifact, with a few minor bugs fixed.
Documentation The "Reproducing Paper Results" section of
"README.md" provides a step-by-step guide for reproduc-
ing the results in the paper. This guide includes instructions
for compiling the three implementations (i.e., NOMAD, TPP,
and Memtis), running the experiments, and generating the
graphs as presented in the paper.

Hosting
Artifact link: https://github.com/lingfenghsiang/Nomad
Artifact license: GNU GPL V3.0
Artifact version tag: v0.0

Requirements
To reproduce the results in the paper, the system under test
requires one NUMA node with a CPU and another CPU-
less NUMA node. If the system has more NUMA nodes, the
operating system might encounter unexpected errors. Addi-
tionally, Memtis is only fully functional on platforms with
Optane Persistent Memory. More details are included in the
"Prerequisites" section of "README.md".
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Abstract
Cloud providers seek to deploy CXL-based memory to in-

crease aggregate memory capacity, reduce costs, and lower
carbon emissions. However, CXL accesses incur higher la-
tency than local DRAM. Existing systems use software to
manage data placement across memory tiers at page granu-
larity. Cloud providers are reluctant to deploy software-based
tiering due to high overheads in virtualized environments.
Hardware-based memory tiering could place data at cacheline
granularity, mitigating these drawbacks. However, hardware
is oblivious to application-level performance.

We propose combining hardware-managed tiering with
software-managed performance isolation to overcome the
pitfalls of either approach. We introduce Intel® Flat Memory
Mode, the first hardware-managed tiering system for CXL.
Our evaluation on a full-system prototype demonstrates that
it provides performance close to regular DRAM, with no
more than 5% degradation for more than 82% of workloads.
Despite such small slowdowns, we identify two challenges
that can still degrade performance by up to 34% for “outlier”
workloads: (1) memory contention across tenants, and (2)
intra-tenant contention due to conflicting access patterns.

To address these challenges, we introduce Memstrata, a
lightweight multi-tenant memory allocator. Memstrata em-
ploys page coloring to eliminate inter-VM contention. It im-
proves performance for VMs with access patterns that are
sensitive to hardware tiering by allocating them more local
DRAM using an online slowdown estimator. In multi-VM
experiments on prototype hardware, Memstrata is able to iden-
tify performance outliers and reduce their degradation from
above 30% to below 6%, providing consistent performance
across a wide range of workloads.

1 Introduction
Memory tiering is a promising approach to scale memory
capacity and reduce the total cost of ownership (TCO) in
datacenters. In public clouds, virtual machine (VM) memory
sizes are increasing, with typical configurations of 4–32GB
per virtual CPU [6, 7, 12]. However, the DRAM capacity
accessible via DDR channels is lagging the rapid growth in
available cores, due to physical limitations associated with

scaling the capacity of DDR DIMMs [73, 91, 92]. To this end,
cloud providers are increasingly adding a capacity memory
tier to augment regular locally-accessed DRAM, which we
refer to as the performance tier [61, 72, 78, 84, 99].

The recent Compute Express Link (CXL) standard [8, 91]
offers a new mechanism to access DRAM or non-volatile
memory (NVM) over the PCIe bus, potentially expanding
memory capacity significantly. In addition, CXL can re-
duce TCO and carbon emissions [83, 98] by provisioning
it with decommissioned DRAM or NVM. This has led
to broad investment in CXL memory by dozens of ven-
dors [9, 10, 15, 25, 27, 28, 37]. The CXL standard envisions a
variety of configurations. In this paper, we focus on the basic
use case where a CXL memory device is locally attached and
dedicated to a single host [91,98]. This use case is deployable
today, and extends to future memory pools [46, 77, 78].

Most prior work on memory tiering assumes software (e.g.,
the hypervisor or the OS) has full control over data placement,
i.e., whether a particular page resides in the capacity tier or
the performance tier [45, 61, 70, 74, 78, 84, 89, 90, 99, 100].
We term this software-managed memory tiering. Software-
managed tiering needs to track memory accesses to identify
frequently-accessed data to place in the performance tier.
Since the hypervisor/OS is not involved in most memory
accesses, it must rely on page table operations management
(e.g., scanning access bits [61, 84, 100] or PTE poisoning [45,
70,84]) or instruction sampling (e.g., Intel PEBS sampling [61,
74, 89] and AMD IBS [4]) to track memory accesses.

However, in our experience at Microsoft Azure, these ap-
proaches face severe limitations in virtualized environments
(§2). For example, instruction sampling is not supported for
VMs and has privacy implications. Fine-grained page table
operations consume excessive host CPU cycles [44,79]. In ad-
dition, with software-managed tiering, the hypervisor/OS can
only manage memory at page granularity. This leads to subop-
timal decisions [76] for the common case where a mix of hot
and cold data resides on the same page. This is particularly
problematic for hypervisors that use larger page sizes (e.g.,
2 MB and 1 GB) to reduce overheads. All of these drawbacks
make deploying software-based memory tiering techniques

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    37



unattractive in general-purpose cloud environments.
This paper addresses these issues by introducing a

hardware-managed memory tiering solution for CXL and
a system that combines hardware-managed tiering with
software-managed multi-tenant isolation. We introduce Intel®

Flat Memory Mode as the first cache-line granular, hardware-
managed memory tiering solution for CXL. Intel® Flat Mem-
ory Mode transparently manages data placement between the
two tiers at cache-line granularity within the processor mem-
ory controller (MC). It exposes the aggregate capacity of both
local DRAM and CXL memory to software by placing data
exclusively at either of the tiers. The hardware promotes the
most recently accessed lines to local DRAM by “swapping”
them with the lines that used to occupy local DRAM.

To reduce the performance degradation of CXL memory,
Intel® Flat Memory Mode supports a mixed mode which re-
serves a certain number of dedicated pages that are guaranteed
to reside in local memory, while cache lines associated with
the remaining pages may be placed in either local or CXL
memory, based on whether they were recently accessed.

Intel® Flat Memory Mode should not be confused with
the hardware-managed memory tiering solution for Intel®

OptaneTM NVDIMMs, known as 2LM or memory mode [18,
65]. Such systems employ DRAM as an inclusive cache for
non-volatile memory, which means the performance tier does
not add capacity visible to software. The inclusive cache
design makes them less useful for expanding memory capacity
and reducing TCO. Additionally, 2LM only supports non-
volatile memory, not CXL.

We describe Intel® Flat Memory Mode’s design and eval-
uate it on a real CXL hardware prototype with a set of 115
workloads, comparing it to running fully on local DRAM. We
find that 82% of workloads experience small (no more than
5%) slowdown in mixed mode. The remaining “outlier” work-
loads experience slowdowns up to 34%. We also observe that
when VMs are co-located naïvely on the same server, they
may interfere by “stealing” local DRAM from each other.

To address these challenges, we implement Memstrata,
the first multi-tenant memory management software stack
for hardware-managed tiered memory. Memstrata prevents
inter-VM interference by identifying pages with conflicting
cache lines, allocating them to the same VM using page col-
oring. In addition, Memstrata leverages a lightweight on-
line slowdown estimator to assess the overhead incurred
by tiered memory misses for each VM. It dynamically al-
locates dedicated local memory pages across VMs to improve
the performance of those that are most sensitive to mem-
ory latency. Intel® Flat Memory Mode will be available in
the Intel® Xeon® 6 Processor. We open source Memstrata at
https://bitbucket.org/yuhong_zhong/memstrata.

We implement a full system prototype on a preproduction
Intel® Xeon® 6 Processor that supports Intel® Flat Memory
Mode. Memstrata is implemented within the Linux/KVM
hypervisor and a new user-space management process. Our

evaluation covers common workload and VM mixes observed
in production at Azure. We find that Memstrata effectively
prevents cross-VM interference and mitigates the tail in all
scenarios. Specifically, the worst-case performance slowdown
is reduced from 35% to less than 6% in realistic multi-VM
experiments. Across all experiments, the maximum CPU over-
head of Memstrata is 4% of a single core, which is less than
1% of a single core per VM.
We make the following contributions:
1. We introduce Intel® Flat Memory Mode, the first

hardware-managed memory tiering mechanism for CXL.
We evaluate it on a real CXL system, and show that for
most applications it exhibits small slowdowns.

2. We design Memstrata, the first software multi-tenant man-
agement system for hardware-managed CXL that ensures
performance isolation and minimizes VM slowdowns.

3. We study a wide range of workloads, and demonstrate that
Intel® Flat Memory Mode combined with Memstrata elim-
inates almost all performance outliers, exhibiting minimal
performance degradation compared to regular DRAM.

2 Background and Motivation
This section motivates hardware-managed memory tiering for
CXL in virtualized environments.

2.1 Memory Tiering in Public Clouds
Current compute servers, which host customer VMs, use
locally-attached DDR5 memory. With CPU core counts of 60-
96 [66, 94] and Simultaneous Multithreading (SMT), achiev-
ing at least 4-8GB per virtual core requires 8-12 expensive
dual-rank DIMMs (e.g., 64GB or 96GB). These DIMMs are
the single biggest contributor to server cost [78,99]. For large-
memory VM sizes [6] or 128-288 core-count-CPUs [2,14,57],
cloud providers need to use DIMMs with 3D stacking, which
adds a multiplicative factor to per-GB memory cost [32].
Additionally, DIMMs make up 41% of a server’s embodied
carbon at Azure [49, 63, 83, 87, 98].

A second tier of memory can effectively reduce this cost.
In modern servers, this second tier will use CXL [8, 91] to ex-
pand server memory capacity and bandwidth. This saves cost
because cloud providers can use multiple smaller and cheaper
DIMMs. Cost can be further reduced by reusing memory from
decomissioned servers. Without CXL, DDR4 memory would
be incompatible with modern servers. Instead of discarding
DDR4 DIMMs, they can be repurposed for CXL memory.
DDR4 reuse is supported today and has significant industry
momentum [3, 26, 49, 83, 98]. This pattern can continue in
future generations of DRAM, e.g., when DDR6 will be de-
ployed, DDR5 can be reused with CXL. A third option is
denser memory media [17, 38]. Both reusing old memory
and using denser memory significantly cuts costs and car-
bon emissions. For example, attaching 40% of memory by
reusing DDR4 can save over 20% of server embodied carbon
emissions [83]. In this paper, we focus on this use case.
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The downside of CXL memory is its latency overhead.
CXL.mem customizes the PCIe link and transaction layers
for low latency [91]. CPUs can natively access CXL memory
via cacheable loads and stores, without involving page faults
or DMAs. While an order of magnitude faster than RDMA,
CXL is still slower than local DRAM as it essentially converts
a parallel bus into a serial one. Depending on the specific
memory controller, we measure that CXL memory has 2.02×
the load-to-use latency of local DDR5 on the 5th Gen Intel®

Xeon® Processor. A bidirectional ×8-CXL port at a typical 2:1
read:write-ratio matches a DDR5-4800 channel. In practice
we use at least four ×8 ports.

2.2 Cloud Workload and Design Goals
Azure and other large cloud providers virtualize all workloads.
VMs are generally small. For example, in a typical compute
cluster at Azure, 40% of VMs use no more than two cores and
86% of VMs use no more than eight cores. Most modern hosts
thus run dozens of VMs at any given time. Production cluster
schedulers [47,64,97] increase utilization by mixing different
workloads with no (or few) co-location constraints. Some
constraints force similar workloads to be run across many
hosts and racks, e.g., for fault tolerance. This leads to typical
hosts running heterogeneous sets of workloads representing
many different workload behaviors.
We derive the following four first-order design goals:

1. Compatibility with unmodified virtual machines. Do not
assume guest cooperation.

2. Low host resource overheads. Cloud providers seek to
sell almost all cores [44, 79]. Hosts typically use large
2 MB or 1 GB page sizes to reduce overhead.

3. No additional sources of cross-VM interference com-
pared to running entirely on local memory.

4. Performance close to local memory for all workloads.
Limit slowdown to about 5%, similar to prior work [78].

As observed in prior work, CXL slowdowns can be high
for many workloads [78, 84]. This motivates managing data
placement in tiered memory, either in software or in hardware.

2.3 Software-Managed Tiering
Software-managed tiering usually represents tiers as NUMA
nodes [61,78,84]. Software explicitly allocates memory from
a NUMA node and migrates pages between nodes. The hy-
pervisor/OS typically tracks memory hotness to promote hot
capacity-tier pages to the performance tier and demote cold
pages to the capacity tier [61, 84, 89, 100]. Hotness tracking
often relies on page table operations such as scanning PTE
access bits [61, 84, 100] or temporarily unmapping entries to
trigger minor page faults when they are accessed [45, 70, 84].
Other software tiering systems use instruction sampling (e.g.,
Intel PEBS [61, 74, 89] or AMD IBS [4]) to sample memory
requests along with their associated memory addresses.
Problem 1: High host CPU cost. Tracking hotness at fine
granularity is challenging in a cloud environment. Instruction
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Figure 1: Memory access distribution of bc-web measured using
DAMON in (a) a fresh VM, (b) a VM that enables free page ran-
domization, and (c) a warm VM that has already run the workload
50 times. The right-hand y-axis represents the number of accesses
captured by DAMON.

sampling is typically unfeasible due to security and privacy
concerns. Thus, cloud platforms need to rely on page-table-
based approaches. We find that they can consume excessive
host CPU cycles, which runs counter to design goal #2.

We measure the CPU overhead of TPP [84], a state-of-
the-art software tiering system for guest kernels. We start
a VM with 7.5 GB of local DRAM and 2.5 GB of second-
tier memory. The VM runs YCSB A on FASTER [54], a
production in-memory key-value store. FASTER consumes
8.3 GB memory in total, which means its memory cannot fit
entirely in local DRAM. TPP devotes nearly an entire core to
track memory accesses and migrate pages. This is caused by
the frequent scanning of access bits in kswapd, which is used
by TPP to demote cold pages. Without frequent access-bit
scanning, TPP is unable to leave enough free space in local
DRAM to promote hot pages. Scaling to larger systems and
multiple VMs requires proportionally more CPU cycles.

The CPU overhead of page-table-based approaches can
be reduced by exploiting spatial locality [11]. Unfortunately,
spatial locality is limited in virtualized systems, which employ
an additional layer of page table indirection. Additionally, a
guest’s free pages may be randomized for security [21]. We
run the bc-web workload from the GAP benchmark suite [48]
in a fresh VM, a VM with free page randomization enabled,
and a warm VM that has already run the same workload
50 times. Figure 1 shows the memory access distribution
measured using DAMON in the three VMs. While there is
spatial locality in a fresh VM, locality disappears in both
the VM with free page randomization and the warm VM.
Approaches that scan guest page tables [90] may overcome
fragmentation but run counter to goals #1 and #2.
Problem 2: Coarse-grained data placement. Software
tiering moves entire pages, making a strong assumption about
access locality. Many applications have spatially-sparse ac-
cess patterns and thus perform poorly on software-managed
tiering systems [53, 76]. Commonly, only a fraction of each
page’s cachelines are hot; moving such pages to the perfor-
mance tier would be wasteful. This problem is exacerbated
as cloud platforms use larger 2 MB and 1 GB page sizes to
reduce page table depth and TLB misses [1, 34, 43, 45, 50].

To study how page size affects application performance, we
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Figure 2: Throughput of FASTER on YCSB A with a varying
DRAM ratio and different page sizes. The performance tier is DRAM
and the second tier is Intel® OptaneTM NVM.

run a VM with FASTER using the YCSB A workload. Since
FASTER has a simple and predictable memory access pattern
when running YCSB A, we analytically compute the popu-
larity of each of its pages and always place the most popular
pages in DRAM. Figure 2 shows that when FASTER’s resi-
dent set can fit into DRAM, using 2 MB instead of 4 KB as the
page size improves the throughput of FASTER by 18% thanks
to the reduced page table depth and TLB misses. However,
when only 25% of the resident set can fit into DRAM, a 2 MB
page size degrades throughput by 25% due to the coarser
data placement by software tiering. Google also reports that
huge pages make cold page identification and demotion more
challenging in their tiered memory production clusters [61].

2.4 Hardware-Managed Tiering
There are multiple variants of hardware memory tiering [68,
75, 85, 103]. They are typically implemented within the MC
on the CPU SoC and behave similar to on-die CPU caches.
Different memory tiers are typically invisible to software (no
NUMA node) and fine-grained cache operations are visible
only to the MC.

A well-known implementation of hardware tiering is “2LM”
or “memory mode” for Intel® OptaneTM NVDIMMs in the
2nd and the 3rd Gen Intel® Xeon® Scalable Processors [18,
65]. 2LM configures DRAM as a direct-mapped cache at
cacheline granularity. It thus has no hotness tracking overhead
and excels at managing workloads with limited locality [76],
regardless of the page size (Figure 2). A major downside of
using 2LM in the context of CXL is that the second tier is
inclusive of the performance tier. This is wasteful, especially
for the case of cloud providers who seek high performance
and thus provision a large first memory tier. For example,
provisioning 600 GB of DDR5 and 1000 GB of CXL memory
means that only 1000 GB of overall memory is available,
wasting 60% of CXL capacity.

3 Intel® Flat Memory Mode
In this section, we describe the hardware design of Intel® Flat
Memory Mode and present a performance study on a wide
range of applications.

3.1 Hardware Design
Intel® Flat Memory Mode overcomes the drawbacks of
software-managed memory tiering by implementing the data
placement within the MC. This allows it to manage data place-

ment at cacheline granularity without involving host CPU.
This design is especially useful in virtualized environments
because the data placement is independent of the page size,
and almost all the host CPU cores can be used to run VMs.
CXL memory ratio. To ensure minimal slowdown com-
pared to local memory1 (design goal #4), we assume a 1:1
ratio between the local memory and the CXL memory ca-
pacities. Other tiered memory deployments in industry also
use small capacity-tier ratios to minimize slowdown: 33%
at Meta [84] and 25% at Google [61]. With a 1:1 ratio, we
can reduce the amount of local memory provisioned by 50%,
which already significantly reduces memory cost. A higher
CXL memory percentage may lead to higher slowdowns [78].
Exclusive placement. The amount of physical memory ex-
posed to software is the aggregate capacity of both local
DRAM and CXL memory. This is in contrast to 2LM, where
the physical memory capacity is only as large as the size of
the capacity tier (i.e., non-volatile memory). This design fully
utilizes the capacity of both local DRAM and CXL memory
by placing data exclusively at either of them, but not both. For
example, once a cacheline is moved to local DRAM, it will
no longer occupy any space in CXL memory.
Associativity. The associativity between physical memory
and local memory is direct-mapped, which means each line in
the physical memory address space can only be cached at one
location in local memory. While direct-mapped associativity
may lead to more conflict misses, this effect happens only
after all the processor set-associative caches have missed. In
addition, a straightforward implementation of set associativity
would read multiple local DRAM lines to serve one main
memory access, causing substantial bandwidth amplification.
Mixed mode. To further reduce local memory misses and
improve the performance of workloads with cache-unfriendly
memory access patterns, Intel® Flat Memory Mode supports
adding dedicated local DRAM that is not hardware-tiered as
a separate range in the physical memory address space. This
dedicated local memory is exposed as a second NUMA node
alongside the first NUMA node which contains the hardware-
tiered memory. This dedicated NUMA node can be used for
workloads suffering from severe local memory misses, as
implemented in Memstrata (§4). We denote configurations
where both hardware-tiered and dedicated NUMA nodes are
present as mixed mode.
Mapping physical and local memory. In the hardware-
tiered NUMA node, the ratio between local DRAM and the
total physical memory capacity is 1:2. Thus, each line in local
DRAM has 2 physical memory lines that map to it. This
means that each 64 B line in the physical address space may
be at one of two locations: either in local memory or in CXL
memory. We use a modulo operation as the mapping function
between the physical memory and local DRAM with the size
of local DRAM (L GB) as the modulus. Figure 3 shows

1We use “local memory” and “local DRAM” interchangeably.
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hardware managed and entirely backed by local memory for better
performance. In the actively-managed region, cache lines A and B
are mapped to the same local memory line, as are C and D. Only the
most recently-accessed lines remain in local memory.
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Figure 4: Main memory requests may miss in local memory. This
triggers a cache line swap. Subsequent accesses to the same cache
line hit local memory.

the mapping between the physical address space and local
memory. This mapping halves the hardware-tiered physical
memory, where the top half conflicts with the bottom half. For
example, to hold physical memory addresses [0 GB,1 GB] in
local DRAM, the hardware needs to evict [L GB,L+1 GB]
to CXL memory.
Read and write operations. A memory access (i.e., Last
Level Cache (LLC) miss) for a cache line in the hardware-
tiered NUMA node may result in a “hit” or a “miss”. The MC
first reads local memory and determines if the requested line
is in local memory. As only two physical memory lines can
be cached at a given local memory line, the hardware only
needs to maintain a single-bit tag to distinguish between them.
If the tag matches the read request, the data is sent to the core
that requested the line.

Otherwise, the requested line was a miss in local memory.

Figure 4 shows how the MC handles a miss. The MC first
fetches the data from CXL memory, and then sends the data
to the core that requested the line. Meanwhile, the MC swaps
the cache lines. Specifically, the MC writes the other line
that used to occupy local memory to CXL memory. The MC
writes the newly requested line to local memory.

When the MC receives a write request, just like the read
flow, it needs to first locate and read the line into the processor
caches. When the write is evicted from the processor caches
(since writes are posted), the data is written to local memory.
Request interleaving. To achieve maximum bandwidth,
we interleave local memory requests across memory channels
and interleave CXL memory requests across CXL devices at
cache line granularity within the same NUMA node.

3.2 Application Performance
Adding CXL memory capacity can provide clear performance
benefits to memory-hungry applications, due to reduced pag-
ing to disk, and higher page-cache hit rates. However, these
benefits depends heavily on the specific workloads and the
total amount of memory available to them. To conservatively
evaluate Intel® Flat Memory Mode, we compare it with X
local memory and Y CXL memory to a baseline configured
with X +Y local memory. We evaluate the performance using
a wide range of applications on a prototype CPU that sup-
ports Intel® Flat Memory Mode. The detailed hardware setup
is described in §6. We use 115 workloads in total, including:

• Web: DaCapo [51], Renaissance [88], Ruby YJIT [39],
and DeathStarBench benchmarks [62]

• Database: TPC-C [41] on Silo [96] and TPC-H [42] on
PostgreSQL [33]

• Machine learning (ML): DLRM benchmark [67, 86]
• Key-value (KV) store: YCSB [58] on FASTER [54],

Redis [36], and memcached [23]
• Big data: HiBench [13] on Spark [104]
• Graph processing: GAP benchmark [48]
• Scientific computing: SPEC CPU 2017 [40]
We measure the performance of each workload running

inside a VM on Linux/KVM. The VM memory size is chosen
by rounding up the workload’s peak resident set size to the
nearest common VM memory size on public cloud platforms
(2 GB, 4 GB, 8 GB, 16 GB, 32 GB, and 64 GB) [6,7,12]. We
run each workload in four different settings: (1) local DRAM
only, (2) CXL memory only, (3) hardware-tiered memory
only, and (4) a mixed mode with 33% dedicated local DRAM
and 67% hardware-tiered memory.

When allocating hardware-tiered memory pages to a VM,
we allocate pairs of conflicting pages so that half of the allo-
cation can be cached in local DRAM. As a result, our mixed
mode configuration consists of 67% local DRAM (33% dedi-
cated + half of 67% hardware-tiered) and 33% CXL memory.
We conservatively choose 67% as the percentage of hardware-
tiered memory as this configuration can already reduce the
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Figure 5: Slowdowns of 115 workloads when using only CXL memory, 100% hardware-tiered memory, or a mixed mode with 33% dedicated
memory and 67% hardware-tiered memory. The error bars represent the standard deviations of slowdowns across three runs.

provisioned local memory by 33%. We randomly assign the
dedicated local pages across a VM’s address space. Each VM
sees a uniform address space, as this is the default configura-
tion on cloud platforms.

Figure 5 presents the results, categorizing workloads by
their types, and ordering them by their relative slowdowns
of hardware tiering. We refer to applications that experience
slowdowns above 5% (see goal #4 in §2.2) as outliers. Web
workloads experience negligible slowdowns even with CXL
memory only, indicating their insensitivity to main memory
latency. In contrast, database and Spark workloads have some
outliers with slowdowns of up to 20% when using only CXL
memory. Hardware tiering reduces the slowdowns for most
outliers to close to or lower than 5%, although a few out-
liers still exhibit around 10% degradation. Other categories
have more outliers with CXL memory only, with slowdowns
of up to 58%. Hardware tiering significantly alleviates the
performance degradation for these outliers. For example, the
slowdown of FASTER with uniform YCSB C is reduced
from 25% to 4%. However, even with reduced degradation,
some outliers still experience slowdowns of up to 50% with
hardware-tiered memory due to cache-unfriendly memory
access patterns and the associated high local memory miss ra-
tios. The most severe outlier, 649.fotonik3d_s, suffers from
a 41% miss ratio due to its large working set and scan-like
memory access pattern.

The mixed mode with 33% dedicated local memory im-
proves the performance of these outliers thanks to the reduc-
tion in the number of pages that conflict on local DRAM.
Overall, with only hardware-tiered memory, 73% of the work-
loads experience no more than 5% slowdown, and 86% expe-

rience no more than 10% slowdown. In the mixed mode, the
percentage of workloads with no more than 5% slowdown
increases to 82%, and 95% of the workloads experience no
more than 10% slowdown. These results are encouraging:
despite the non-negligible slowdown of CXL compared to
local DRAM, most applications have small slowdowns in the
mixed mode. However, even in the mixed mode, some ap-
plications experience non-trivial degradation of up to 34%.
This observation motivates the use of software to dynamically
allocate dedicated memory pages across VMs to consistently
achieve minimal slowdown, because the hardware is oblivious
to which VMs suffer from local memory misses.

3.3 Noisy Neighbors
In Intel® Flat Memory Mode, two conflicting physical mem-
ory lines compete for the same local DRAM line, and only
the most recently accessed one can be cached in local DRAM.
Therefore, when conflicting pages are allocated to different
VMs, they may contend for local memory, resulting in perfor-
mance interference.

We study this inter-VM interference due to local DRAM
conflicts by running two VMs: a normal VM and a noisy
neighbor VM. In the normal VM, we run one of the work-
loads from our workload set, while in the noisy-neighbor VM,
we always run a 6-thread Intel® Memory Latency Checker
(MLC) [19], which scans its memory in a busy loop. We al-
ways scale MLC to have the same memory size as the normal
VM. We configure MLC to use only 6 threads so that neither
the local DRAM bandwidth nor the CXL memory bandwidth
is saturated. Running MLC as the workload in the noisy neigh-
bor VM allows us to estimate the worst-case interference, as
MLC is optimized to be memory intensive.
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Figure 6: Slowdown caused by the noisy neighbor due to local
DRAM conflicts.
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Figure 7: Inter-VM interference caused by LLC contention and
local DRAM contention.

The experiments are conducted in two settings:
1. Isolated. Allocate conflicting pages to the same VM to

ensure each VM only conflicts with itself.
2. Conflicting. Allocate conflicting pages to different VMs.

This setting measures the worst-case interference since
the noisy neighbor VM might monopolize local DRAM.

Figure 6 shows the slowdown of conflicting compared to
isolated with a sampled set of representative workloads from
each category. 73% of the workloads experience more than
10% slowdown because of local DRAM conflicts. The mas-
sive slowdown of Redis is because we use p95 latency as its
performance metric. Redis always has some requests with ex-
treme latency (4× higher than the median), and the contention
causes the percentage of these requests to exceed 5%, which
translates to a 480% slowdown in p95 latency. The results in-
dicate that without any software management to isolate local
DRAM conflicts, VMs running on the same host could cause
significant performance interference to each other.

Besides local DRAM contention, other sources of interfer-
ence in multi-tenant environments include contention in the
LLC and power. We also study how LLC contention compares
to local memory contention in Intel® Flat Memory Mode. We
again use a normal VM and a noisy neighbor VM to measure
interference. Besides configuring how the two VMs conflict
with each other in local memory, we configure the LLC in
two settings: (1) sharing LLC across two VMs, or (2) parti-
tioning LLC evenly between two VMs. We use Intel’s Cache
Allocation Technology [20] to partition the LLC.

When the LLC is partitioned and local DRAM conflicts are
isolated, there will be no interference caused by either LLC or
local memory contention. When the LLC is shared but local
DRAM conflicts are still isolated, we will only observe LLC
interference. Similarly, we can only observe local memory
interference if the LLC is partitioned and the two VMs are

conflicting in local DRAM. Finally, to measure both LLC and
local memory interference, we can share the LLC and also let
the two VMs are conflicting in local memory.

Figure 7 shows the slowdowns caused by either LLC or
local memory interference, as well as the slowdowns when
both types of interference exist. Compared to LLC interfer-
ence, local memory interference is typically larger. In addi-
tion, the workloads that suffer from LLC interference also
suffer from local memory interference. When both LLC and
local memory interference exist, those workloads experience
higher slowdowns than when there is a single source of inter-
ference. These results again indicate that we should isolate
local DRAM conflicts to achieve design goal #3.

4 Memstrata
Memstrata leaves the heavy lifting of fine-grained memory
management to the hardware-managed tiering layer at the
MC. It provides consistent performance by integrating a
lightweight software stack with the virtualization host. This
achieves the first two design goals (§2.2).

To provide performance isolation (design goal #3), Mem-
strata adapts page coloring [69, 105], a classic technique for
partitioning CPU caches, to the CXL setting. Memstrata iden-
tifies all conflicting pages and allocates conflicting pairs to
the same VM, ensuring no inter-VM conflicts (§4.1).

To improve the performance of outliers (design goal #4),
Memstrata dynamically allocates dedicated local memory
pages across VMs to reduce the outliers’ local memory miss
rates. Our key insight is that many workloads exhibit low slow-
downs even without any dedicated local memory. Therefore,
if the hypervisor can identify outlier VMs and move dedicated
local memory pages to them, it can limit their slowdowns.

However, the hypervisor has limited visibility into the work-
loads running inside VMs, making it challenging to identify
outliers. Although monitoring local DRAM miss rates seems
attractive for detecting outliers, we cannot directly measure
per-core or per-VM miss rates because data placement is im-
plemented in the MC, so hardware performance counters can
report only the system-wide local memory miss rate.

To tackle these challenges, we analyze numerous perfor-
mance events measured during our application performance
study (§3.2) and propose a proxy to estimate per-VM miss
rates. By combining the estimated miss rate with other perfor-
mance metrics, we can accurately predict the slowdown of a
VM using a simple online ML model (§4.2). This model is
used by a dynamic page allocator to migrate dedicated local
memory pages across VMs, minimizing slowdowns across
all workloads with negligible CPU overhead (§4.3). Figure 8
shows an overview and the workflow of Memstrata.

4.1 Page Coloring
Page coloring is a software technique that has been widely
used to partition shared processor caches (e.g., the LLC) in a
modern CPU [80,93,95,102,105]. CPU caches are commonly
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Figure 8: Overview of Memstrata. 1©: Memstrata reads the perfor-
mance events of each VM and runs the slowdown estimator. 2©:
Slowdown estimations are used to decide the allocation of dedicated
pages. 3©: The dynamic page allocator uses the exchange_pages

syscall to migrate dedicated pages to an outlier. 4©: The hardware-
tiered pages of the outlier are exchanged with the dedicated pages of
a non-outlier VM.

organized in a set-associative (or direct-mapped) manner, in
which each physical memory address is mapped to the index
of a single set in the cache. If the indexing function is known,
then software can determine the subset of cache indices as-
sociated with a given memory page, referred to as its page
color. Since main memory is much larger than the cache,
many memory pages have the same color, which means that
they compete for the same limited cache space.

System software can control the amount of cache space
that may be used by different applications by allocating pages
to them with particular colors. For example, a hypervisor can
allocate host-physical pages so that each VM uses distinct
colors that are disjoint from other VMs.

Similar to shared processor caches, in Intel® Flat Memory
Mode, local memory is shared among all VMs within the
same NUMA node.2 Physical memory lines that are mapped
to the same local memory line compete for the same local
memory space, which will contain the one accessed most
recently. Therefore, we can adopt page coloring to partition
local memory pages across different VMs to avoid inter-VM
local memory conflicts.

We implement page coloring in the context of a virtualized
system configured with Intel® Flat Memory Mode. The im-
plementation consists of changing the free-page management
logic and the page allocator in the host Linux kernel. We
modify Linux’s free-page management to group the physical
pages that map to the same local DRAM page.

To avoid performance interference due to inter-VM con-
flicts, the page allocator always allocates the physical pages
that map to the same local memory page to the same VM.
This isolates each VM, ensuring that it can conflict only with

2For clarity, we only discuss the hardware-tiered memory without ded-
icated local memory in this subsection. Dedicated local memory is con-
tained in a distinct NUMA node from the local memory associated with the
hardware-tiered memory.
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Figure 9: Correlation between performance metrics.

itself, eliminating the possibility of conflicts with other VMs.
Isolating local memory conflicts within VMs also prevents
their use as inter-VM side channels, similar to those exploited
in other caching systems to leak memory access patterns and
to exfiltrate data across trust boundaries [71, 81, 82].

While one might expect this to cause poor performance,
there are, in fact, many cold or unused cache lines. This means
that we actually observe relatively low local memory miss
rates (§3.2).

4.2 Identifying Outliers
To improve the performance of outlier workloads, we first
need to determine which VMs suffer from high slowdowns
because of local DRAM misses. Since the workloads running
inside VMs are opaque to the hypervisor, we cannot rely on
application-level performance metrics for outlier detection.

Fortunately, modern processors provide performance coun-
ters that can be used to infer VM performance characteristics
with low overhead [5, 16, 31, 35, 101]. Our prototype CPU
also supports various performance events. In our large-scale
performance study of Intel® Flat Memory Mode using 115
workloads (§3.2), we configured the CPU to count all perfor-
mance events for each workload by time-multiplexing them,
yielding 151 performance metrics based on raw event counts.
MPKI and its proxy. Among all the performance metrics,
local memory miss rate seems promising for detecting outliers,
since the local memory is treated as a cache. Specifically, we
examine MPKI, which measures the number of local memory
misses per thousand instructions. Figure 9a shows that MPKI
is correlated (r2 = 0.73) with application slowdown.

Estimating slowdown for a single VM requires per-VM
miss rates. As each VM is pinned to a set of exclusive CPU
cores, this suggests aggregating the miss rates across its asso-
ciated cores to compute the VM-level miss rate. Unfortunately,
since cacheline promotions and demotions are handled in the
MC, it is not easy to track per-core misses, and the system-
wide miss rate is insufficient for outlier detection. Although
future hardware may support measuring per-core miss rates,
this is not implemented in the current prototype.

To work around this limitation, we analyze other perfor-
mance metrics that can be tracked with per-core granularity
to find a proxy for the per-core miss rate. As shown in Fig-
ure 9b, we find that the L3 miss latency3 of demand loads
event has a strong linear correlation (r2 = 0.87) with the local

3Figure 9b omits the y-axis latency scale for confidentiality.
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memory miss ratio (not MPKI), defined as the percentage of
main memory requests that miss in local memory. This is
not surprising, as Intel® Flat Memory Mode exhibits stable
hit and miss latencies unless the memory bandwidth is satu-
rated. We leverage this observation by fitting a linear model
to estimate the local memory miss ratio from demand load L3
miss latency. The estimated miss ratio is translated to MPKI
by multiplying it with the main memory request count and
then dividing by the instruction count. We use this estimated
MPKI as a proxy for the actual MPKI.

A limitation of this approach is that demand loads repre-
sent only a portion of main memory requests. Other sources
include read-for-ownership (RFO) requests, non-temporal
stores, CPU cache writebacks, and CPU cache prefetches.
However, we find that the estimated MPKI works well in
practice. When combined with other metrics, it can be used
to predict VM slowdown accurately.
Using a model to detect outliers. Although MPKI strongly
correlates with application slowdown, we find that MPKI
alone is not sufficient to identify outliers because applications
can have different sensitivities to memory latency. Therefore
we use an online random forest binary classifier [52] to deter-
mine whether a VM will experience more than 5% slowdown.
We choose a random forest classifier because it performs well
with low-level performance metrics [78], is lightweight, and
does not require a GPU. The input to the classifier includes the
estimated MPKI along with four additional per-VM metrics
that also exhibit useful correlations, selected by computing
the relative importance of features during classifier training:
(a) L3 miss latency of demand loads, (b) L2 miss latency of de-
mand loads, (c) data TLB load miss latency, and (d) L2 MPKI
of demand loads. We evenly split the workloads into training
and validation sets, and configure the random forest with 100
decision-tree estimators. The classifier achieves 100% accu-
racy on the training set and 88% accuracy on the validation
set, demonstrating the ability to detect outliers across a di-
verse set of workloads. In contrast, using MPKI as the only
feature achieves only 63% accuracy on the validation set.

4.3 Dynamic Page Allocator
The Memstrata dynamic page allocator manages how dedi-
cated local memory pages are allocated across VMs. It uses
the ML model to detect outlier VMs, and migrates dedicated
local memory pages accordingly to achieve minimum slow-
down across all workloads. Within each VM, the page alloca-
tor assigns dedicated local memory pages to guest physical
pages randomly. We also implemented an alternative hotness-
based approach that prioritizes popular guest physical pages,
but found that its overhead typically exceeds its benefit.
Inter-VM page allocation. The dynamic page allocator al-
locates dedicated pages to each VM based on its performance
events and slowdown predictions from the ML model. It starts
by measuring the events needed by the ML model for a given
time interval (10 seconds, by default), and runs the model

def comparator(vm1, vm2):

if vm1.isOutlier != vm2.isOutlier:

return vm2.isOutlier

return vm1.avgMissCount < vm2.avgMissCount

def migrate(vms, timeInterval, ewma, stepRatio):

while systemIsRunning():

sleep(timeInterval)

updatePerfMetrics(vms, ewma)

predictSlowdown(vms)

sort(vms, comparator)

donor = 0

for borrower in range(len(vms) - 1, 0, -1):

if not vms[borrower].isOutlier:

break

toBorrow = vms[borrower].pages * stepRatio

while donor < borrower and toBorrow > 0:

toDonate = (vms[donor].pages * stepRatio

- vms[donor].donated)

toMigrate = min(toBorrow, toDonate)

doMigrate(borrower, donor, toMigrate)

toBorrow -= toMigrate

vms[donor].donated += toMigrate

if toDonate == toMigrate:

donor += 1

Listing 1: Inter-VM page migration algorithm.

to predict if the slowdown for each VM is greater than 5%.
The 10-second interval enables the page allocator to react
quickly to changes, while averaging out noise associated with
low-level event counts. To reduce the effect of short-term vari-
ations, we employ an exponentially weighted moving average
(EWMA) to smooth the performance metrics derived from
the event counts (EWMA constant α = 0.2, by default).

Once the page allocator obtains the performance metrics
and slowdown prediction for each VM, it decides how ded-
icated local memory pages should be migrated across VMs.
Listing 1 presents the page migration algorithm. The page
allocator first ranks the VMs based on their predicted slow-
downs and the average number of local DRAM misses per
allocated hardware-tiered page. The average miss count is
computed by multiplying the estimated miss ratio with the
main memory request count, and dividing the result by the
number of hardware-tiered pages assigned to the VM. The
VMs predicted to have less than 5% slowdown receive lower
ranks than the outlier VMs. VMs that have the same slowdown
prediction are ordered based on their average miss count. The
intuition is that prioritizing VMs with higher average miss
counts minimizes system-wide local memory misses, since
they benefit more from a fixed amount of dedicated local
memory pages compared to others [56].

After the VMs are sorted according to their ranks, the allo-
cator repeatedly migrates dedicated pages from the VM with
the lowest rank to the VM with the highest rank. To prevent
large performance fluctuations, it never migrates more than a
fraction stepRatio of each VM’s pages (10%, by default) dur-
ing each step. Only VMs predicted to be outliers can receive
dedicated local memory pages from others.

To migrate dedicated local memory pages from VM 1 to
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VM 2, the page allocator first selects a given number of ded-
icated pages from VM 1 and the same amount of hardware-
tiered pages from VM 2. It then exchanges the selected pages
between the two VMs. To avoid introducing inter-VM local
DRAM conflicts, conflicting pages are always migrated to-
gether. After one round of page migrations, the page allocator
stops migrating and measures performance events over the
next timeInterval before the next round of migration.
Launching and terminating VMs. In cloud environments,
running VMs may be terminated and new VMs may be
launched at any time. To avoid disruptions, the page allo-
cator first removes a terminating VM from the list of active
VMs that participate in page migration. The terminating VM
can then be shut down, causing its pages to be returned to the
free page pool maintained by the host kernel.

When a new VM is launched, its initial allocation consists
of existing free pages from the host kernel, which could be
any mix of hardware-tiered pages and dedicated local memory
pages. Since the dynamic page allocator does not have any
prior information about the new VM, once it is added to the
active VM list, the allocator migrates pages so that the new
VM contains the same percentage of dedicated pages as the
entire system. For example, if the overall system has a total
of 33% dedicated local memory and 67% hardware-tiered
memory, the new VM will also have 33% dedicated pages.
This initial migration is performed by taking (or giving) dedi-
cated pages to (or from) other existing VMs, each of which
contributes (or receives) the same number of dedicated pages.
Assigning dedicated memory. By default, the dynamic
page allocator assigns dedicated local memory pages to guest
physical pages randomly within each VM. We also exper-
imented with an alternative hotness-based page allocation
option, which prioritizes popular guest physical pages when
allocating dedicated pages. To identify popular guest physical
pages, we employ DAMON [11], a low-overhead memory ac-
cess tracking subsystem integrated into the mainstream Linux
kernel. We use DAMON’s default settings, but configure its
aggregation period to match the timeInterval used by the
allocator. After finishing inter-VM page migration, the alloca-
tor checks the per-region access counts reported by DAMON.
Using simple thresholds (cold = 0, hot ≥ 20, by default),
it exchanges any hardware-tiered pages in hot regions with
dedicated pages in cold regions. To avoid large performance
fluctuations, such intra-VM migrations are limited to a small
fraction (2%, by default) of the VM memory size.

However, we found that the overhead of this hotness-
based approach exceeds it benefit (§6.2). Similar to software-
managed tiering, it consumes significant CPU cycles to track
memory accesses (§2.3). Therefore, by default, Memstrata
simply assigns dedicated local pages randomly.

5 Memstrata Implementation
Memstrata’s implementation consists of implementing page
coloring and the page-exchange system call in the host Linux

kernel (v5.19, 2729 LOC), modifying QEMU (v6.2, 60 LOC)
to preallocate guest memory for VMs, and building the main
functionality of Memstrata as a privileged userspace process
that runs on the host (2190 LOC, C++). Like QEMU, Mem-
strata uses 2 MB as the page size at the host level.

The page-exchange system call exchange_pages(pid_1,
pid_2, page_arr_1, page_arr_2, num_pages) accepts
the PIDs of two processes, an array of linear addresses for
each process, and the number of pages to exchange. One can
exchange pages within a single process by specifying the
same value for pid_1 and pid_2. The syscall is implemented
in the host kernel based on the migrate_pages() function.
To exchange two physical pages, the kernel initially moves
the first page to a temporary physical page, then transfers
the second page to occupy the first page’s original location,
and finally relocates the temporary page to the second
page’s initial position. It uses a Linux MMU notifier [24] to
synchronize the secondary page table used by the VM and
the QEMU host-level page table.

We implement only the necessary mechanisms (i.e., page
coloring and page exchange) in the host kernel and run Mem-
strata as a privileged userspace process, facilitating debugging
and extensions. The userspace process configures and reads
performance events via the perf interface exposed by the
host Linux kernel. It uses the custom page-exchange syscall
to exchange pages between two VMs, or within a single VM.
We use ONNX [60] to run the ML model in the userspace
process. To synchronize Memstrata with VM launching and
termination, we use POSIX message queues to let the VM
scheduler communicate with Memstrata.

6 Evaluation
In this section we seek to answer the following questions:
1. How does Intel® Flat Memory Mode compare to software-

managed tiering? (§6.1)
2. Can Memstrata improve the performance of outliers with-

out impacting other applications? (§6.1)
3. How does dedicated memory page allocation affect appli-

cation performance? (§6.2)
4. Is Memstrata sensitive to its parameters? (§6.3)

Experimental setup. We use a pre-production Intel® Xeon®

6 Processor that implements Intel® Flat Memory Mode. Our
test server contains a single socket with 128GB DDR5 local
memory and 128GB DDR5 CXL memory. The CXL mem-
ory is attached via three CXL cards, which each hold two
DDR5-4800 DIMMs and offer an x16 PCIe5 CXL connec-
tion. We use a preproduction Astera Labs Leo CXL Smart
Memory Controller [22]. The idle latency of the CXL mem-
ory is roughly 200-220% the latency of the local memory,
and the max bandwidth per CXL card is around 50 GB/s [91].
Although we use DDR5-4800 DIMMs in the CXL cards, we
believe the results are transferable to DDR4 DIMMs because
the actual CXL bandwidth usage is always below the limit
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Figure 10: Application slowdown of TPP and hardware tiering with and without Memstrata using different workload combinations.

0%
25%

50%
75%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

CD
F

Slowdown vs. Local Mem Only

Hardware-Tiered Memory Only TPP

Figure 11: Slowdown distribution of hardware-tiered memory and
TPP. TPP is configured with 50% local memory to match the local
memory ratio of hardware-tiered memory.

of DDR4 DIMMs. Since the CPU is pre-production, the core
count, frequency, and CPU cache sizes may not reflect those
of the final product. For confidentiality, we cannot share the
detailed technical specification. Similarly, these CXL cards
are pre-production and future versions may be faster.

We focus on end-to-end application performance to demon-
strate the performance benefits of Memstrata. Our software
stack comprises Ubuntu 22.04, modified Linux 5.19, and QE-
MU/KVM 6.2. Hyperthreading and CPU frequency scaling
are disabled. We pin each VM’s virtual cores to physical
cores in a 1:1 manner. We set the VM memory size of each
workload by rounding up its peak resident set size to the next
largest VM memory size offered on public cloud platforms.

We do not use public or Azure VM traces since they do
not label workloads for VMs. This is because public cloud
providers are not generally aware of workloads running in-
side VMs. Therefore, we rely on analyses of the composition
of 188 internal workloads over 100,000 VMs at Azure [98],
which reveal that web (31%), big data (32%), and ML (11%)
workloads constitute most of the VMs. The remaining work-
load categories include DevOps and real-time communication
workloads, which are challenging to run and have few open-
source representatives. Therefore, we focus on the web, big
data, and ML workload categories and reuse the set of work-
loads from §3.2 to match this composition. We exclude the
workloads that have unstable performance. With the prototype

system only offering 128 GB local memory, we also exclude
workloads that require more than 32 GB of memory, so that
we can measure a multi-VM local-only baseline.

We compare Intel® Flat Memory Mode without and with
Memstrata (referred to in the figures as “HW-Tiered” and
“HW-Tiered + Memstrata”, respectively). To emulate a set-
ting without Memstrata, we use a static allocation scheme in
which the percentage of dedicated pages in each VM remains
constant over time. In contrast, Memstrata dynamically mi-
grates dedicated pages across VMs to minimize slowdown.
All settings use page coloring to avoid inter-VM conflicts.

We also compare hardware tiering without Memstrata to
TPP [84], a state-of-the-art software-tiering approach. Since
TPP does not support virtualization, we run it within each one
of the isolated VMs, with a 2:1 ratio of local DRAM to CXL
memory, matching the default setting of hardware tiering.
Similar to hardware tiering without Memstrata, TPP does not
move memory across VMs. The open-sourced TPP has an
issue that wastes some local memory because it allocates local
memory only from the NORMAL memory zone [30]. We have
fixed this issue to enable TPP to perform better.

6.1 Performance Benefits
We assume a workload mix with about 1

6 of workloads being
outliers with hardware tiering, as our results show that 20%
of the web, big data, and ML workloads experience more than
5% slowdown with hardware tiering (§3.2). As our prototype
offers only 128 GB local memory, we must scale down the set
of workloads typical for a large server. We scale to six VMs,
typically with a single outlier workload4. We also consider
the less likely scenarios of 2/6 and 4/6 outliers, as well as

4If compute servers indeed were to only host six VMs, scenarios with
multiple outliers would be common. However, we seek to represent a scaled-
down typical compute server with large VM counts (§2.2). Due to large-
number effects most servers will thus have a 1

6 ratio of outlier workloads.
One can also integrate our slowdown estimator (§4.2) into the VM scheduler
to explicitly prevent colocating many outliers (§7).
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Figure 12: Application slowdown when the workload combination contains 2 or 4 outliers.

dynamic VM arrivals. We start each VM with 33% dedicated
local memory pages and 67% hardware-tiered pages.
Common cases. As web and data workloads are the dom-
inant workload categories at Azure [98], we choose the fol-
lowing workload mixes to evaluate Memstrata:
1. Web-heavy: 4 web, 1 data, and 1 outlier.
2. Data-heavy: 1 web, 4 data, and 1 outlier.
3. Balanced: 2 web, 2 data, 1 others, and 1 outlier.

For each workload mix, we generate two workload combina-
tions from our workload set. Each combination starts the six
workloads simultaneously at the beginning.

Figure 10 shows the slowdown across the entire run. Under
TPP, there are significantly more outliers than with hardware
tiering, despite TPP having an unfair advantage: TPP has
visibility inside the VM, and knows which pages are being
used at the 4 KB granularity. Consequently, TPP can place
the entire working set into local DRAM if its size does not
exceed the local DRAM size. Such visibility assumes guest
cooperation and is not compatible with design goal #1 (§2.2).

Interestingly, TPP and hardware tiering sometimes have
different outliers. We observe that TPP achieves minimal
slowdown whenever the working set can fit into local memory
(e.g., SPEC’s 619.lbm_s and FASTER with uniform YCSB
A), which is the target use case of TPP [84]. However, if the
working set is too large, TPP experiences severe thrashing,
causing massive TLB invalidations and page faults due to fre-
quent page migration. For example, in an extreme case where
TPP causes pr-web to have a 295% slowdown (Figure 10a),
TPP migrates memory at 22 GB/s in a 32 GB VM.

This thrashing issue arises because TPP uses NUMA bal-
ancing hints [29] to choose promotion candidates and is not
aware of the global memory access distribution. We repeat the
single-application performance study in §3.2 with TPP. The
results show that 17% of the workloads experience more than
50% slowdown with TPP because of thrashing (Figure 11).
Although software tiering can measure the global access distri-
bution and only migrate pages when the distribution is skewed
to avoid thrashing, the CPU overhead of such global telemetry
is prohibitive without guest cooperation, due to the lack of
spatial locality in the guest physical memory address space
(§2.3). In addition, even with global telemetry, the larger page
sizes used with virtualization still make software tiering less
effective, as they may average out the skewness in memory
access distribution (§2.3).

In summary, the comparison with TPP matches the results
of recent work [76] indicating that hardware-based memory
tiering’s low overhead and cacheline-level granularity typi-
cally provide superior performance to software-based tiering.
Therefore, in the rest of our experiments we focus on compar-
ing Intel® Flat Memory Mode with and without Memstrata.

For all six experiments in Figure 10 Memstrata is able to
significantly reduce the slowdown experienced by the outlier
application to near 5% or less, with minimal impact to the
other non-memory-sensitive applications. The max CPU over-
head of Memstrata across all workload combinations is 4%
of a single core, including running the ML model. The max
memory overhead of Memstrata is 110 MB. The results show
that Memstrata can accurately identify the outlier VM and mi-
grate dedicated local memory pages to reduce its slowdown,
without affecting the performance of other VMs.

Higher outlier ratio. To understand the limits of Mem-
strata, we consider a server that hosts a disproportionate ratio
of outlier workloads. We consider two combinations: one
with two outliers (Figure 12a), and another with four outliers
(Figure 12b). In both experiments, Memstrata significantly
improves outlier performance. However, is not able to reduce
the slowdown for all outliers to below 5% when four outliers
exist. This is because 33% of dedicated local DRAM (i.e.,
26.4 GB) is insufficient to accommodate the memory needs
of four outlier VMs (56 GB). We verify this by repeating the
experiment with 67% dedicated local DRAM. In this configu-
ration Memstrata removes all the outliers (Figure 12c).

Dynamic VM arrivals. We evaluate Memstrata in a more
complex setting where VMs are continuously launched and
terminated. We again use the three workload combinations
described above. Whenever a workload of one type finishes,
we start a new VM with a workload selected from the same
type. The experiment keeps running until all the workloads
have been run at least once. We measure the application per-
formance with and without Memstrata. For the workloads
that have finished multiple times, we report its average per-
formance across all the completed runs.

Figure 13 shows that Memstrata can significantly reduce
the slowdown of the outliers in such dynamic environments
under all three workload mixes. The results demonstrate that
Memstrata’s online outlier detection can identify the outliers
on-the-fly and dynamically migrate dedicated local memory
pages to reduce their slowdown. We conclude that a combi-
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Figure 13: Application slowdown in realistic environments with
three different workload mixes.
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Figure 14: Slowdown of random and hotness-based page allocation.
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Figure 15: Distributions of (a) memory accesses and (b) dedicated
pages of 619.lbm_s in the guest physical address space with hotness-
based dedicated page allocation. In (a), the color represents #accesses
captured by DAMON; in (b), the density of dedicated pages.

nation of Intel® Flat Memory Mode and Memstrata enables
server memory capacity to be expanded by 1.5× using CXL
at a minimal performance impact to applications.

6.2 Dedicated Memory Page Allocation
To understand how the allocation of dedicated local memory
pages within a VM affects performance, we compare random

page allocation (the default) with a hotness-based approach.
We study a representative set of 22 workloads from different
categories. With random allocation, the 33% of dedicated
pages are randomly allocated to the VM when it is launched.
With the hotness-based approach, the dedicated pages are
also allocated randomly at launch, but Memstrata’s dynamic
allocator migrates them to hot guest physical regions based
on the information provided by DAMON [11]. To measure
the best-case performance of the hotness-based approach,
we preserve the guest memory’s spatial locality by always
starting in a fresh VM.

Figure 14 shows the slowdown of both random and hotness-
based page allocation. The hotness-based approach provides
only marginal benefits and even causes worse slowdowns for
some workloads because of its overhead. Figure 15 presents
the hotness information recorded by DAMON and how the
page allocator moves dedicated pages within the guest phys-
ical address space for 619.lbm_s. Although it migrates ded-
icated pages to the hot regions identified by DAMON, the
improvement is still limited. This is because to track memory
accesses, DAMON must clear PTE access bits, resulting in
expensive TLB shootdowns that offset its benefits.

6.3 Sensitivity Analyses
Memstrata has three parameters: timeInterval and stepRa-

tio, which control the aggressiveness of page migration, and
the EWMA constant, which smoothes short-term variations
of performance metrics. Figure 16 plots Memstrata’s sensi-
tivity to the three parameters using the same workloads as
Figure 10e. With a lower timeInterval or a higher stepRa-
tio, Memstrata migrates dedicated local memory pages to the
outlier VM more quickly and achieves lower slowdowns (Fig-
ure 16a and Figure 16b). The default parameters (i.e., 10 s
timeInterval and 10% stepRatio) have performance simi-
lar to the optimal one in this experiment, but are less aggres-
sive and can avoid large performance fluctuations. Memstrata
is not sensitive to the EWMA constant (Figure 16c).

7 Discussion
Non-virtualized environments. Most of Memstrata’s com-
ponents can be readily applied to non-virtualized environ-
ments. For example, per-process performance event tracking
is already supported by Linux, and page migration mecha-
nisms for both VMs and normal processes are also supported.

However, the page coloring implementation needs to be
modified for non-virtualized settings. Unlike VMs, whose
memory sizes do not typically change during their lifetimes,
processes commonly have dynamic memory footprints. Mem-
strata statically allocates a fixed number of colors during VM
creation, which is insufficient for processes with dynamic
memory demands. Therefore, we need to augment the page
coloring mechanism to support on-demand color allocation.
In addition, as a process continuously allocates and frees mem-
ory, allocated colors may have numerous unused pages (e.g.,
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Figure 16: Sensitivity analyses of Memstrata under a data-heavy workload combination.

if a process allocates a large amount of memory but then frees
half of it later). Such fragmentation can lead to insufficient
free colors for new memory allocations. We therefore need to
implement a compaction mechanism to reclaim colors from
processes exhibiting significant fragmentation.

Intel® Flat Memory Mode with other memory ratios. In
principle, Intel® Flat Memory Mode could support other ratios
between local memory and CXL memory such as 1:2 or 1:4.
We are not prepared to discuss whether such ratios will be
available in a future version. There are also associated costs
such as requiring more tag bits for bookkeeping.

Detecting outliers at the VM scheduler. Similar to
Pond [78], the VM scheduler can correlate historical perfor-
mance event measurements with a new VM allocation request
by matching the customer ID, VM type, and location. Based
on the historical information, the scheduler can perform an
initial outlier detection to decide the memory type for the new
VM. Additionally, the VM scheduler can also run online out-
lier detection after the VM is allocated and can live migrate
the VM if the initial outlier detection proves to be inaccurate.

Adapting to other slowdown thresholds. Adapting to
slowdown thresholds other than 5% requires retraining the
random forest model using the performance events and the
corresponding slowdowns of various workloads. Since the
random forest model is lightweight and does not require any
GPU, retraining the model incurs only minimal overhead and
can be completed within a few seconds.

8 Related Work
Most prior work relies on software to place data across mem-
ory tiers [45, 70, 99, 100, 100], whereas Memstrata com-
bines hardware tiering with a lightweight software layer.
HeMem [89] and MEMTIS [74] are recent systems that use
Intel PEBS to track memory accesses. Unfortunately, PEBS
is not compatible with virtualized environments. In addition,
unlike MEMTIS, which balances the TLB benefits of huge
pages with the granularity of data placement by dynamically
splitting huge pages, Memstrata achieves both low TLB cost
and fine-grained data placement without sacrificing either.
TPP [84] relies on LRU and NUMA balancing hints [29] to
track memory accesses, but incurs high slowdowns (§6.1) and
significant CPU overhead (§2.3).

Three prior systems explore software-managed tiered mem-
ory in multi-tenant environments. Unfortunately, they are not
available for comparison. TMTS [61] is a memory tiering sys-
tem deployed in Google’s datacenters. We believe TMTS is
overly conservative and requires large amounts of local mem-
ory. Pond [78] statically places VMs into a CXL-based mem-
ory pool based on predictions of slowdowns. Pond uses VM
live migration to mitigate outliers, which impacts VM perfor-
mance and thus must be applied conservatively. vTMM [90]
is a dynamic software tiering memory management system
for VMs. We believe vTMM suffers from overheads similar to
other software-based systems (§2.3). Memstrata differs from
all three systems due to its unique combination of hardware
and software tiering in the same system.

2LM is a hardware-managed tiered memory system for
Intel® OptaneTM NVM, using DRAM as an inclusive direct-
mapped cache of NVM. In contrast, Intel® Flat Memory
Mode uses exclusive caching, and 2LM lacks the cross-
VM isolation provided by Memstrata. Other hardware ap-
proaches have been proposed for DRAM and high-bandwidth
memory [68, 75, 85, 103]; some Intel processors support a
hardware-managed “cache mode” that uses HBM as a cache
for DRAM [55, 59].

9 Conclusions
We presented a new hardware-based CXL tiering system,
Intel® Flat Memory Mode, combined with a software stack,
Memstrata. The combination provides performance similar to
local DRAM across a wide range of workloads. Consequently,
they enable expanding server memory capacity by 1.5× with
minimal impact to performance. We believe there remain
many open research challenges in deploying CXL in virtual-
ized environments, including fairness in inter-VM resource
allocation policies, guest cooperation for tiered memory, and
using device-side hotness tracking to reduce page conflicts.
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Abstract
Memory-bound stalls account for a significant portion of CPU
cycles in datacenter workloads, which makes harvesting them
to execute other useful work highly valuable. However, main-
stream implementations of the hardware harvesting mecha-
nism, simultaneous multithreading (SMT), are unsatisfactory.
They incur high latency overhead and do not offer fine-grained
configurability of the trade-off between latency and harvesting
throughput, which hinders wide adoption for latency-critical
services; and they support only limited degrees of concur-
rency, which prevents full harvesting of memory stall cycles.

We present MSH, the first system that transparently and effi-
ciently harvests memory-bound stall cycles in software. MSH
makes full use of stall cycles with concurrency scaling, while
incurring minimal and configurable latency overhead. MSH
achieves these with a novel co-design of profiling, program
analysis, binary instrumentation and runtime scheduling. Our
evaluation shows that MSH achieves up to 72% harvesting
throughput of SMT for latency SLOs under which SMT has
to be disabled, and that strategically combining MSH with
SMT leads to higher throughput than SMT due to MSH’s
capability to fully harvest memory-bound stall cycles.

1 Introduction
CPU cores are valuable resources in datacenter infrastructure.
To meet the ever-growing computation demand, there have
been extensive software efforts in harvesting idle CPU cycles
and keeping cores fully utilized [7, 43, 52, 88, 94]. While dif-
fering in mechanisms, these works share a similar harvesting
scheme: “scavenger” instances (e.g., spot VMs, batch jobs)
temporarily run on cores that primary instances are not ac-
tively using. Their common performance goal is to have scav-
enger instances fully utilize the idle cycles without slowing
down primary instances. Minimizing negative performance
impacts is particularly important for latency-critical services
as their increased latencies directly affect user experience.

Unlike prior efforts that harvest cores that are idle for a
relatively long period of time, e.g., allocated but unused cores
of the primary VM, we focus on memory-bound CPU stall
cycles. These are cycles that cores transiently stall while
waiting for memory accesses to finish. Although each lasts

only a few hundred nanoseconds, memory-bound stalls can
happen frequently and account for a significant portion of
CPU cycles [10, 23, 45, 78]: more than 60% for some widely-
used modern applications, which implies substantial benefits
harvesting these stall cycles. However, the current hard-
ware harvesting mechanism, simultaneous multithreading
(SMT), is unsatisfactory. First, SMT is known to likely
lead to significantly increased latencies, as it focuses solely
on multiplexing instruction streams to best utilize core re-
sources [37, 74, 83, 84]. Moreover, SMT does not allow
fine-grained control over the tradeoff between primary la-
tency and scavenger throughput, which is needed to maxi-
mize CPU utilization under a latency SLO. As a result, for
latency-critical services, a common compromise is thus to
avoid using SMT for better performance, at the cost of wast-
ing stall cycles [18, 19, 55, 69]. Lastly, there are cases where
SMT can not fully harvest memory-bound stall cycles: mod-
ern CPUs often support only limited degrees of concurrency
(e.g., 2 threads per physical core in the case of Intel’s Hyper-
threading), which are insufficient when concurrent threads
frequently incur cache misses [44, 45, 72].

In view of the significance of memory-bound CPU stalls
and the drawbacks of SMT as the hardware harvesting mech-
anism, our goal is to design a system that harvests these stall
cycles in software. This system should meet several require-
ments. First, it should be transparent to applications and
require no additional rewriting efforts from developers. As a
result, it will resemble SMT in terms of being conveniently
applicable to any code, including legacy code. The other
requirements then demand improving upon the drawbacks of
SMT. Specifically, it should efficiently and fully harvest the
memory-bound stall cycles, and it should do so while intro-
ducing minimal latency overhead to the primary instance.

A recent proposal [57] discusses the possibility of transpar-
ently hiding the latency of cache misses in software with the
combination of light-weight coroutines [25, 28, 64, 79] and
sample-based profiling [17, 47, 82]. The former allows inter-
leaving of primary and scavenger coroutines with a switching
overhead much smaller than traditional threads of executions
like processes and kernel threads; whereas the latter makes
it possible to do it transparently, as we could identify likely
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locations of cache misses via profiling. This is a key real-
ization that our work builds upon. However, there remains
to be a set of challenges toward building a software system
that harvests memory-bound CPU stall cycles and meets the
aforementioned requirements. First, to improve harvesting
efficiency, we have to minimize the amount of register savings
and restorations for each yield, while ensuring the correctness
of program executions. Second, to introduce minimal latency
overhead, scavengers need to yield back the core soon after
they have consumed enough stall cycles, which is challeng-
ing given that programs have complex and dynamic control
flows. Third, to fully harvest stall cycles, we need to detect
when a higher degree of concurrency is needed and properly
interleave the executions of multiple scavengers. Lastly, it is
challenging to transparently interleave scavenger executions
with a primary binary that has an internal threading structure.

To overcome these challenges, we present Memory Stall
Software Harvester (MSH), the first system that transparently
and efficiently harvests memory-bound CPU stall cycles in
software. MSH makes full use of stall cycles while incurring
only minimal latency overhead. MSH fulfills all the require-
ments with a novel co-design of profiling, program analysis,
binary instrumentation and runtime scheduling. To use MSH,
users simply provide unmodified primary binaries and a pool
of scavenger threads, and MSH takes care of running scav-
enger threads with stall cycles of the primary binaries.

Internally, MSH operates in two logical steps. First, after
profiling the primary and scavenger code, MSH statically in-
struments them at the binary level, by leveraging information
obtained via profiling and program analysis. Specifically, for
both primaries and scavengers, MSH inserts a prefetch instruc-
tion followed by yielding to either a primary or a scavenger
coroutine (configured in runtime, discussed below), before
selected load instructions that frequently incur cache misses
according to profiled data. In addition, MSH places additional
yields in scavengers to ensure that they timely relinquish their
core. The first two of the aforementioned challenges are re-
solved in this step. For the primary binaries, MSH carries out
various optimizations to reduce the amount of register savings
and restorations for each yield by analyzing register usage
and program structures. For the scavenger, MSH conducts a
forward data flow analysis that also takes in profiled data to
decide additional yield points, so that the distance between
consecutive yields is bounded to a configurable threshold.

In the second logical step, when executing a primary binary,
MSH sets up and dynamically assigns scavengers to active
primary threads. The last two challenges regarding scavenger
scheduling and concurrency scaling are tackled in this step.
MSH intercepts function calls that change the status of pri-
mary threads and efficiently adjusts the scavenger assignment.
This allows MSH to transparently schedule scavengers on top
of the primary’s threading structure. To support on-demand
concurrency scaling, MSH performs two operations: assign-
ing multiple scavengers to a primary thread and configuring

scavengers so that they yield to the right target. For the former,
MSH decides the number of scavengers assigned to a primary
thread by estimating and bounding the likelihood of not full
harvesting stall cycles. For the latter, MSH instruments yields
in scavengers that are close to each other to yield to the next
scavenger instead of the primary thread. MSH’s runtime then
takes care of correctly setting up the targets of these yields.

We implement MSH’s offline parts on top of Bolt [67], an
open-source binary optimizer built on the LLVM framework,
and MSH’s runtime as a user-level library1. We evaluate MSH
with unmodified syntactic and real applications and show that
MSH is general enough to harvest stall cycles from all of
them. Compared with SMT, MSH offers superior harvest-
ing performance in three aspects: first, MSH incurs minimal
latency overhead and achieves up to 72% harvesting through-
put of SMT, for latency SLOs under which SMT has to be
disabled. Second, as a configurable software solution, MSH
enables users to have fine-grained control over the tradeoff
between primary latency and scavenger throughput. Third,
MSH can fully harvest memory-bound stall cycles via concur-
rency scaling, achieving up to 2x higher throughput than SMT
when scavengers frequently stall. Moreover, we show that by
strategically combining MSH with SMT, one could achieve
higher throughput than SMT due to MSH’s ability to fully
harvest memory-bound stall cycles. Lastly, we extensively
evaluate MSH’s main components and show that they play a
vital role in achieving MSH’s superior performance.

In summary, the contributions of this paper are: (i) a trans-
parent and efficient approach to harvest memory-bound CPU
stall cycles in software; (ii) the detailed design and imple-
mentation of a system (MSH) based on this approach, which
involves a co-design of profiling, program analysis, binary
instrumentation, and runtime scheduling; (iii) an evaluation
with real applications showing that compared with SMT, MSH
can deliver high scavenger throughput under stringent primary
latency SLOs and fully harvest memory-bound stall cycles. In
addition to presenting the design, implementation, and evalu-
ation of MSH, we extensively discuss other related aspects in
§8. These include isolation mechanisms that can be integrated
with MSH to ensure memory safety, hardware support that
can enhance MSH’s performance and so on. Our hope here is
to motivate greater efforts in delivering these critical aspects.

2 Background and Motivation
Memory-bound stalls: Memory-bound stalls, where cores
stall and wait for memory accesses to finish, were reported to
be a dominant source of CPU overhead for datacenter work-
loads. To see this, we perform a top-down analysis [90] on
two latency-critical applications. This analysis classifies CPU
pipeline slots into four categories: retiring, frontend-bound,
bad speculation and backend-bound. The last three corre-
spond to different overhead, and backend-bound stalls can be
further divided into core-bound or memory-bound stalls. Our

1MSH is publicly available at https://github.com/sosson97/msh.
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Figure 1: Top-down analysis of Sphinx and Masstree; mem-
ory stalls account for 25% and 31% of cycles respectively.

Figure 2: (a) P95 latency of Masstree when running by itself
vs. co-locating with a Scan scavenger; (b) SMT is unable to
harvest stall cycles under low latency SLOs.

analysis confirms the dominance of memory-bound stalls, as
they account for 25% and 31% of total cycles for Masstree
and Sphinx respectively (Figure 1). While there have been
extensive efforts on reducing memory stalls, it is generally
infeasible to eliminate them (§7). In this work, we focus
on the alternative approach of harvesting these stall cycles
to execute useful work, where simultaneous multithreading
(SMT) is the representative hardware mechanism.
Drawbacks of SMT: However, SMT, as a harvesting mecha-
nism, suffers from three main drawbacks2 that we next show:

• Latency overhead: SMT focuses solely on multiplexing
instruction streams to best utilize CPU cores. As a result, it
significantly increases the primary latency if the scavenger
creates notable contention on core resources. This is prob-
lematic as it is common to co-locate latency-critical tasks
that have stringent latency SLOs, with best-effort tasks
that are resource-hungry. To see the latency overhead of
SMT, we measure the latency of Masstree while running a
synthetic Scan scavenger on its sibling cores. Scan is a rep-
resentative of contending scavengers: by iterating a 4MB
array and computing the sum, it consumes L1/L2 caches
and core resources like ALU. As shown in Figure 2-(a),
compared with running on dedicated cores, harvesting stall
cycles via SMT leads to 92x higher latency of Masstree
at 40% load. Such a behavior is widely observed in prior
studies, thus it is common to avoid using SMT for latency-
critical services at the cost of wasting cycles.

• Lack of Configurability: Related to the large latency over-
head, another drawback of SMT that hinders its uses for

2These drawbacks apply to SMT of most modern processors (e.g., Intel’s
and AMD’s), with IBM Power as an exception, discussed further in §7.

latency-critical services is the lack of fine-grained config-
urability. Given a latency SLO, what is needed to maxi-
mize CPU utilization is a knob that controls the extent of
resource sharing and hence the tradeoff between primary
latency and scavenger throughput. However, with SMT,
one can only decide whether to turn it on or off, which is
too coarse-grained to be useful. To see this, we compute
the maximum achievable Scan scavenger throughput under
different Masstree latency SLOs for the experiment above.
Here we set the SLO to be the latency under 30% load. An
ideal mechanism should gracefully harvest cycles propor-
tional to the latency budget given. In contrast, as shown
in Figure 2-(b), with SMT, one has to turn off SMT and
effectively achieve zero scavenger throughput when the
latency SLO is lower than SMT latency. Even after SMT
is on, it can not harvest more cycles when looser latency
SLOs are given. Neither of these two ends is desirable.

• Incomplete harvesting: Lastly, SMT often can not fully
harvest memory-bound stall cycles, especially when con-
current threads frequently incur cache misses. This is be-
cause the mainstream 2-wide SMT does not have sufficient
degrees of concurrency to harvest the bulk of memory stalls.
Note that while increasing the width of SMT helps with this
issue, it requires dedicating more hardware resources and
worsens the already problematic latency overhead issue.
We aim to design a software system that harvests memory-

bound stall cycles, is as generally applicable and convenient
to use as SMT, and improves upon the drawbacks of SMT.
Software opportunities: There are two capabilities a soft-
ware mechanism needs for harvesting memory stall cycles:
(i) transparently detecting the presence of memory stalls and
(ii) efficiently interleaving the executions of primaries and
scavengers. The former is challenging, because cache misses
are not exposed to software, and manually identifying stalls is
burdensome and error-prone. The latter requires much smaller
switching overhead than traditional threads of execution like
kernel threads. A recent proposal [57] discusses the opportu-
nity of enabling these two capabilities via a combination of
light-weight coroutines and sample-based profiling:
• Sample-based profiling: By using hardware performance

counters in modern CPUs, such as Intel’s PEBS [3] and
LBR [47], one could profile binaries with no special build
and negligible run time overhead. Thanks to these merits,
sample-based profiling has been widely used in production
for profile-guided optimizations (PGO) [17, 30, 66–68].

• Light-weight coroutines: Context switches of coroutines
are orders of magnitudes cheaper than traditional threads
of execution. This is because as a user-space mechanism
within a single process, coroutine context switch requires
no system calls nor changes to virtual memory mappings.
Building on these two techniques, MSH is the first software

system that transparently and efficiently harvests memory-
bound stall cycles. Next, we present an overview of MSH.
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3 MSH Overview
In this section, we discuss MSH’s overarching goals, deploy-
ment scenarios, high-level approach as well as overall flow.
Goal: Our goal is to transparently harvest memory-bound
stall cycles from any application, while overcoming SMT’s
performance limitations. We thus distill four requirements
that MSH as a software harvesting system should meet:
• Transparent: The system should be transparent to applica-

tions. It thus requires no rewriting effort from developers
and is applicable to any code, including legacy code.

• Efficient: The system should efficiently utilize the stall
cycles for scavenger executions, which demands extremely
low overhead from the harvesting machinery.

• Latency-aware: The system should incur minimal latency
overhead and allow fine-grained control over the trade-off
between primary latency and scavenger throughput.

• Full-harvesting: The system should fully harvest stall
cycles by interleaving sufficient scavenger executions, es-
pecially when scavengers also incur frequent cache misses.

Deployment scenario: System operators can use MSH to
harvest stall cycles of any application written in compiled
languages. MSH handles scavenger’s offline instrumentations
and runtime executions. MSH assumes that it is safe to run
these scavengers alongside the primaries [92], e.g., they are
crash-free and access memory safely. Ensuring safety prop-
erties with techniques like verification and information flow
control [14, 35, 62] is left to future work. MSH can be seam-
lessly integrated with existing profiling systems deployed for
PGO [17,30,68]. MSH is well suited for when latency-critical
and best-efforts tasks are co-located in the same machine, a
common arrangement in production [27, 55, 61, 93]. In this
case, latency-critical tasks serve as the primary, whose stall
cycles are harvested for the best-effort tasks.
Approach: MSH uses a novel co-design of binary instrumen-
tation, profiling, program analysis, and runtime scheduling,
each of which plays a role in meeting the requirements above:
• Binary instrumentation: MSH instruments primaries and

scavengers so that they are amenable to stall cycle harvest-
ing. Operating at the binary level provides visibility of
low-level information, e.g., register usage and basic block
control flows, which is needed by MSH’s program analysis.

• Profiling: With sample-based profiling, MSH decides loca-
tions to harvest stall cycles without requiring efforts from
developers. Profiling also allows MSH to use dynamic
information, e.g., basic block latency and branching proba-
bility, to achieve high accuracy in its program analysis.

• Program analysis: MSH leverages program analysis to
achieve efficiency, full-harvesting and latency-awareness.
For efficiency, MSH minimizes the amount of register sav-
ings and restorations for yields. For full-harvesting, MSH

directs yields in scavengers that are close to each other to
another scavenger. For latency-awareness, MSH bounds
the latency between adjacent yields in scavengers.

• Runtime scheduling: MSH’s runtime schedules scavenger
executions on top of the primary’s internal threading struc-
ture. It enables MSH to fully harvest stall cycles with
available scavengers, by assigning multiple scavengers to
a primary thread to scale up concurrency and migrating
scavengers from blocked primary threads to active ones.

Overall Flow: MSH performs both offline and run-time op-
erations (Figure 3). In the offline phase, MSH transforms
the primary and scavenger binaries so that they are amenable
to stall cycle harvesting. Specifically, MSH first profiles the
binaries and obtains information needed by program analysis
and later binary instrumentation: load instructions that in-
cur cache misses, indicating where CPU stalls happen; basic
block latencies and execution counts as well as branching
probability, which are used by the primary and scavenger in-
strumentations. After profiling, MSH analyzes the binaries
and extracts information that later guides the instrumentations.
For each yield site, where a yield is inserted to harvest stall
cycles of a delinquent load, MSH identifies a minimal amount
of register savings and restorations that still ensures program
correctness, by analyzing register usage and program struc-
tures. For scavengers, MSH conducts a data flow analysis to
decide the locations of additional yields, so that the expected
inter-yield latency is bounded. Most of the analysis is de-
signed to be intra-procedural, the complexity of which thus
scales only sublinearly with program sizes. Lastly, based on
the analysis results, MSH instruments the binaries.

The instrumented primary binaries contain so-called “pri-
mary” yields to expose CPU stalls: each primary yield is
inserted before a selected load instruction and prefetches the
cache line before yielding to a scavenger. As for instrumented
scavengers, they also contain primary yields before selected
load instructions, with default yield targets being a primary
thread. The special case is when primary yields are close
to each other: the target of these “special” primary yields is
set to another scavenger to scale up concurrency. Scavengers
also contain so-called “scavenger” yields, which are placed
to ensure that scavengers relinquish their cores in a timely
manner. We present the design of primary and scavenger
instrumentations in §4.1 and §4.2.

At runtime, MSH interleaves the executions of instru-
mented primaries and scavengers by dynamically assigning
scavengers to active primary threads, which means that MSH
does not require pre-determined or static pairings of primaries
and scavengers. To do that, MSH tracks the status of primary
threads by intercepting relevant function calls and adjusts
scavenger assignment accordingly. When a new thread is
created, MSH either steals the scavengers of a blocked thread
or fetches scavengers from the scavenger pool. If a thread
is blocked or ended, MSH marks its scavengers as stealable.
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Figure 3: MSH system overview. Offline: MSH profiles and analyzes primaries and scavengers. It then instruments the primaries
to yield control to scavengers at likely memory stall sites, with scavengers returning control to primaries within a bounded time.
Runtime: MSH sets up a scavenger pool and dynamically assigns scavengers to each active primary thread.

When a thread later resumes, it will first attempt to reuse its
previously assigned scavengers, before falling back to get-
ting new scavengers like the thread creation case. Multiple
scavengers could be assigned to a primary thread to scale up
concurrency. MSH’s runtime performs all these operations
efficiently, and its design is later presented in §4.3.

4 Design
MSH consists of three components: primary instrumentation
(§4.1), scavenger instrumentation (§4.2) and a runtime (§4.3).

4.1 Primary Instrumentation
Primary instrumentation allows MSH to prefetch and yield

before load instructions that incur cache misses to expose stall
cycles. This should be transparent – requiring no assistance
from developers, and efficient – leaving most stall cycles for
scavengers. MSH achieves transparency by selecting yield
sites based on profiled data, and efficiency by minimizing reg-
ister savings/restorations for each yield via program analysis.
Profile-guided yield instrumentation: MSH selects loca-
tions that both account for a significant portion of memory-
bound stalls and have a high likelihood of L3 cache misses:
the former indicates substantial stall cycles, and the latter
allows less impact to the primary’s latency. To support this,
MSH obtains two pieces of information via profiling: load
instructions with L2/L3 cache misses and execution counts
of basic blocks.. MSH then adopts a two-step selection logic.
First, MSH sorts load instructions whose cache miss rates
are higher than a threshold by their frequencies. Second,
MSH estimates the latency overhead for each load instruction
by multiplying its frequency with its cache hit rate and the
memory access latency. MSH then goes down the sorted
list, includes a load instruction if the aggregate overhead falls
below a provided bound, and skips otherwise. This selec-
tion logic maximizes harvesting opportunities by prioritizing
frequent load instructions, while limiting the overall latency
overhead. Both the cache miss threshold and overhead bound
are configurable parameters that affect the tradeoff between
primary latency and scavenger throughput (§6.4).

For each selected load instructions, MSH instruments a
prefetch instruction for the same address, followed by a yield
that consists of two parts: register savings/restorations and

control passing. The former accounts for most of the yielding
overhead, and as we will describe next, MSH minimizes it
while ensuring correctness of program executions. For control
passing, MSH instruments the primary to swap its instruction
and stack pointer with the ones of an assigned scavenger that
the primary reads from a per-thread data structure (§4.3). The
instrumented code also reads a flag that indicates whether to
bypass the yield and directly resumes. This allows the runtime
to turn off stall cycle harvesting for instrumented primaries
and avoid the latency overhead of scavenger executions.
Yield cost minimization: Minimizing the yield cost is impor-
tant for two reasons. First, it improves harvesting efficiency:
the less cycles spent on the yielding machinery, the more
cycles available for executing scavengers while the primary
stalls. Moreover, it reduces the latency impacts to the primary,
especially when an instrumented load instruction results in a
cache hit and only stalls for a short amount of time.

Register savings and restorations are the dominant cost for
yields. MSH thus performs various optimizations to reduce
them while ensuring correctness of the program executions.
To avoid preserving every register, MSH first leverages reg-
ister liveness analysis [71], a form of data-flow analysis that
determines for each program point the set of “live” registers
whose values will likely be used later. Given that register live-
ness is conservative, meaning that a register will be identified
as live as long as there is any potential program path that may
read its current value, by preserving live registers at the yield
site, we are guaranteed to not violate the program correctness.

While saving only live registers reduces the yielding over-
head, the cost saving is small for functions with non-trivial
control flows, where most registers are considered live. To
further reduce the cost, MSH builds on an observation: be-
sides what registers to preserve, where these register savings
and restorations take place also plays an important role in
the yielding overhead. In particular, the naive approach of
placing register savings and restorations at yield sites leads to
unnecessary overhead. This is because there can be multiple
yields between a definition of a register and its correspond-
ing uses that repeatedly save and restore the register’s value
as the register is indeed live. To fix this, the key insight is
to align register savings/restorations with register definition-
s/uses. Intuitively, if we were to save/restore the register at
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Figure 4: Loop optimization in primary instrumentation.

its definition/use sites, we can remove the redundancy due
to having multiple yields in between the definition-use pairs,
while still correctly preserving program semantics.

However, placing register savings/restorations at its def-
inition/use sites for arbitrary program structures is highly
complicated and potentially undesirable. Specifically, for cor-
rectness, one needs to identify all the definition sites, whose
definitions are likely to reach the yielding point, as well as all
the use sites that likely read these definitions. Instrumenting
at all these scattered locations requires a substantial amount
of work. Moreover, it is inevitable that some definition-use
pairs have paths that do not go through the yield point. This
means that there is register saving/restoring overhead even
when the function does not yield, which could lead to overall
increased overhead, if these cases happen frequently.

Instead of handling arbitrary program structures, MSH fo-
cuses on loops: it is often the case that a large portion of yields
reside in loops, which make them valuable targets for opti-
mizations. More importantly, the unique structure of loops
allows MSH to perform per-loop register savings or restora-
tions. As shown in Figure 4, most loops can be restructured
to have a preheader and some dedicated exits: the former
dominates the loop body whereas the latter post-dominate
it. As a result, any paths traversing the loop will enter the
preheader and leave one of the exits. MSH can thus simply
place register savings and restorations at the preheader and
exits, respectively, to ensure correctness for yields within
the loop. Moreover, as long as more than one loop iteration
goes through the yielding point, such a placement leads to
strictly fewer register savings and restorations than the yield-
site placement. In practice, this improvement is significant
as the operation now happens once per loop instead of once
per iteration. For registers that only have either uses or defi-
nitions within the loop body (R2 and R3 in Figure 4), MSH
adopts a hybrid approach that places either saving or storing
at the preheader/exit and the other at the yield site. To enable
such loop optimizations, besides register liveness analysis,
MSH performs reaching definition analysis to track the rel-
evant definitions and uses for live registers, as well as loop

simplification to transform feasible loops.
Besides when there are yields directly within a loop, MSH

optimizes for another common case, where a function called
within loops contains a single yield point. In particular, for
a function that has unused callee-saved registers, we need to
preserve values of these registers at the function boundary to
abide by the calling convention. However, when such func-
tions are called in loops, they incur redundant overhead due
to per-iteration saving and restoration. To address this issue,
MSH performs an optimization that we call “pseudo-inlining”:
MSH effectively inlines the target function by creating a copy
of the function, for which the values of unused callee-saved
registers are not preserved, and redirecting calls in loops to-
wards this copy. MSH then leverages its loop optimization
technique to save and restore the values of these unused callee-
saved registers at the loop granularity as much as possible.
MSH ensures that the original copy complies with the calling
convention, so that other calls to the function take place cor-
rectly. Pseudo-inlining thus enables loop optimizations as if
the function were inlined, while being easy to implement and
creating minimal code expansion since the copy is shared.

In summary, MSH is strategic about what registers to pre-
serve and where operations take place. It achieves the former
by identifying live registers and the latter by exploiting per-
loop operations. This reduced yield cost then leads to lower
primary latency and higher harvesting efficiency (§6.4).

4.2 Scavenger Instrumentation
Scavenger instrumentation allows full stall cycle harvesting,

while incurring minimal latency overheads. To minimize
latency overhead, MSH places scavenger yields to bound
inter-yield distances. To fully harvest stall cycles, primary
yields that are too close to each other are directed to another
scavenger. Next, we describe the mechanism in detail.
Primary yields: MSH instruments yields for stalling load
instructions within scavengers in the same way as primary in-
strumentation: identifying yield sites via profiling and adopt-
ing optimizations to reduce yield costs. By default, these
primary yields relinquish the core back to the primary. The
special case is when some yields are too close to each other
to fully harvest stall cycles (e.g., yields within tight loops).
These special primary yields will continue to the next scav-
enger. To support this, the per-thread data structure managed
by runtime contains two targets (i.e., primary thread and next
scavenger) for each scavenger (§4.3). Normal and special
primary yields are thus instructed to read different targets.
Scavenger yields: With only primary yields, it could take ar-
bitrarily long for scavengers to yield back. MSH thus bounds
inter-yield distances via a data-flow analysis that (i) calcu-
lates the average distances between a basic block and the
current set of scavenger yields and (ii) inserts yields if some
distance is over the bound. Note that the accuracy of bound-
ing inter-yield distances affects the latency overhead, but not
the correctness of the primary’s execution. We next describe
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the state, transfer function and join operation of the analysis:
• State: The state of our analysis is a list of yields and their

average uninstrumented distances (in terms of time/cycles)
to the current program point. If the scavenger were to yield
here, these are the expected amount of time the scavenger
has consumed before relinquishing the core since the pre-
vious yield points. Note that only yields with paths to the
current program point that do not contain any other yield
are included in the list. Input and output states of a basic
block thus represent the uninstrumented distances before
and after the basic block execution. MSH focuses on these
states as they directly allow bounding inter-yield distances.

• Transfer function: This determines how the output state
of a basic block is calculated based on its input state. If
no new yields are added, the output state is simply the in-
put incremented by the average latency of the basic block.
This average latency can be computed with latency samples
from profiling, or estimated as the product of the number
of instructions and the scavenger’s CPI. If any of the incre-
mented distance is larger than the bound, MSH looks for a
subset of its incoming edges to instrument yields. As de-
scribed below, this will change the input (and consequently
output) state of the basic block to contain new yield points
and hopefully keep all the distances in the output within
bound. If no such subset can be found, MSH inserts a yield
at the end of the basic block and sets the output state to
have only this yield point with zero distance.

• Join operation: This determines how the input state of
a basic block is calculated based on the output states of
its predecessors. For predecessors whose incoming edges
are not instrumented, yields in their output states are all
included in the basic block’s input state, with distances
being weighted averages of the corresponding distances in
predecessors’ output states. The weights are proportional
to hotness of incoming edges, obtained via profiling. For
instrumented incoming edges, the predecessor’s output
state will not propagate, instead the inserted yield is added
to the basic block’s input state with zero distance.
For the analysis, MSH ignores back edges (loops are han-

dled later) and sorts basic blocks topologically, so that output
states of predecessors are available before a basic block’s
turn. MSH sets the input state of the entry basic block to
be a pseudo-yield named “function-start” with zero distance.
MSH then iteratively computes all the states with the transfer
function and join operation. Here, there are two aspects that
require careful treatments – loops and function calls:
• Loops: For each loop, MSH computes the expected unin-

strumented distance as a weighted average of the distances
of all uninstrumented paths from the header basic block
to the latch basic block, where weights correspond to path
hotness. If the distance is zero (i.e., all paths have yields),
no loop instrumentation is needed. Otherwise, MSH instru-
ments the back edge so that it yields every bound divided

by distance iterations. To do this, MSH uses an induction
register if available; otherwise MSH maintains a counter
with unused registers or in per-thread data structures.

• Function calls: One aspect omitted so far is the treatment
of function calls. For calls whose callee are unknown or
external, MSH treats them as normal instructions. For
uninstrumented external library calls that are known to be
expensive, we adopt the standard practice of instrument-
ing right before and after the calls [13, 58]. Instead, for
calls to local functions, MSH considers whether there are
uninstrumented paths (i.e., from entry to exits) in the callee
– if yes, distances in the basic block’s output state are in-
cremented by the average uninstrumented latency of the
callee; otherwise, since previous yields will be terminated
in this call, MSH resets the output state to have only a
pseudo-yield for the call with zero distance. The uninstru-
mented latency of a callee is computed with the distances
for the function-start entry in the output states of its exit
basic blocks. To use callee’s analysis results, MSH builds
a function call graph, ignores some calls to break loops,
and analyzes functions in a topological order.
In summary, MSH can scale up concurrency to fully harvest

stall cycles (§6.2) and manage latency impacts by enforcing
inter-yield distance bounds via data-flow analysis (§6.4).

4.3 MSH Runtime
MSH intercepts function calls and assigns scavengers to

active primary threads with minimal runtime overhead using
tailored data structures. Next, we present the runtime design.
Function interception: MSH intercepts three types of func-
tions: (i) functions starting a thread: e.g., pthread_create, (ii)
functions (likely) blocking a thread, e.g., pthread_mutex_lock,
and (iii) functions terminating a thread, e.g., returning from
the thread’s start routine. Note that if there are unintercepted
function calls that alter thread status, MSH’s correctness is un-
affected: e.g., if a thread gets blocked silently (from the view
of MSH), its scavengers will stay with the blocked thread, and
harvestings will continue normally once the thread resumes.
Runtime operations: MSH performs different operations
before/after intercepted calls to adjust scavenger assignment:
• Scavenger initialization: MSH initializes a new scavenger

before assigning it to a primary thread, which includes
loading the scavenger code, allocating its stack space and
setting the return address for MSH to track when it finishes.

• Scavenger assignment: MSH assigns scavengers to a pri-
mary thread by configuring yield targets. The target for pri-
mary threads is a scavenger, and the target for scavengers
is a primary thread by default, or another scavenger for spe-
cial yields. MSH assigns more scavengers to a thread until
the product of special yield ratios for scavengers is below
a threshold or the scavenger number reaches a maximum.

• Scavenger stealing: When a primary thread needs scav-
engers, MSH first attempts to “steal” existing scavengers.
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1 bool steal_scavengers(per_thread_ctx *t) {
2 for (per_thread_ctx *it: thread_list) {
3 if (CAS(it->stealable, true, false)) {
4 it->stolen = migrate_scavengers(t, it);
5 it->stealable = true;
6 if(!need_more_scavengers(t))
7 return true;
8 }
9 }

10 return false;
11 }
12 void get_scavengers(per_thread_ctx *t) {
13 if(!steal_scavengers(t)) {
14 fetch_scavengers_from_pool(t);
15 }
16 }
17 void enter_blockable_call(per_thread_ctx *t) {
18 t->stealable = true;
19 }
20 void exit_blockable_call(per_thread_ctx *t) {
21 while (!CAS(t->stealable, true, false)) {}
22 if (t->stolen) {
23 get_scavengers(t);
24 update_yield_targets(t->yield_contexts);
25 t->stolen = false;
26 }
27 }

Listing 1: Pseudocode for key functions of MSH’s runtime.

MSH ensures that each scavenger is assigned to at most
one active thread at any time, by marking the scavengers
of a thread as stealable before the thread gets blocked or
terminated and only re-assigning stealable scavengers.

• Scavenger fetching: When there are no stealable scav-
engers, MSH fetches new scavengers from a pool. These
scavengers should be initialized before getting assigned.

For functions starting a thread, MSH obtains scavengers
via stealing or fetching and initializes them if necessary be-
fore assigning them to the thread. For functions (potentially)
blocking a thread, MSH marks the thread’s scavengers as
stealable before the function call. After the call, MSH first
attempts to reuse the scavengers previously assigned to this
thread. If some scavengers were stolen, MSH obtains new
scavengers with the same logic as the one for thread creation
functions. Having “sticky scavengers” is good for cache lo-
cality, as scavengers mostly remain in the same core unless
the primary thread gets migrated by the kernel. Lastly, for
functions terminating a thread, before the thread destruction,
MSH marks its scavengers as stealable.
Data structures: MSH tailors its data structures to prioritize
critical events that are short but take place frequently, as over-
head added to them likely leads to performance degradation.
We identify two critical events: (i) primary and scavenger
yielding and (ii) primary threads quickly resuming after block-
ing calls. (i) requires primaries and scavengers to quickly
check their yield targets. (ii) occurs because a likely blocking
function may not block after all (e.g., synchronization calls).

MSH’s data structures are shown in Figure 5. For event

Figure 5: Data structures managed by MSH runtime. Some
fields are omitted due to space constraints.

(i), the goal is allowing primaries and scavengers to quickly
check their yield targets. A naive design is to have a per-
application data structure that stores the context for each
primary thread and scavenger. Such a context includes its
stack and instruction pointers, and a runtime allocated stack
in the case of a scavenger. Each primary thread has a per-
thread data structure that stores pointers to contexts. Such a
design, while intuitive, adds indirection overhead for yields:
each primary thread or scavenger first reads its pointer in the
per-thread data structure, in order to read its target’s stack
and instruction pointers (in a different cache line) from the
per-application structure. Given the high frequency and small
time budgets of yields, such a design is undesirable.

In contrast, MSH adopts a design that effectively removes
the indirection overhead for yields. MSH divides a scavenger
context into two parts: a “yield context”, containing informa-
tion needed for yielding to the scavenger, i.e., its stack and
instruction pointers; and a “coroutine context”, containing
other relevant information, e.g., the scavenger stack and a
pointer to the yield context. The coroutine context of each
scavenger is stored in a per-application data structure, as it is
in the naive design. As for the yield context, it is augmented
with indexes of its targets (so effectively pointers), and the
augmented yield contexts of the primary thread and its scav-
engers are stored contiguously on the primary’s per-thread
data structure. With this arrangement, each primary thread or
scavenger yields by reading two yield contexts, one of itself
and the other of its target. MSH minimizes the size of yield
contexts, so that these two yield contexts often reside in the
same cache line, resulting in little overhead. Moreover, since
scavenger stacks reside in the shared data structure, MSH
can easily migrate scavengers by setting up the targets in the
per-thread data structures, without having to copy their stacks.

For event (ii), MSH strives to minimize the overhead for
when a primary thread quickly resumes with no blocking and
no scavengers stolen. A naive design is to maintain the status
of each scavenger, whether it is stealable or has been stolen,
in a per-application data structure. This makes scavenger
stealing simple by just looking for stealable scavengers and
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changing their status to stolen. However, such a design com-
plicates the operations that a primary thread needs to perform
before and after a (likely) blocking call, which includes read-
ing and setting the status of all the assigned scavengers. This
process is unnecessarily expensive when there is no blocking.

In contrast, MSH optimizes for this case by leveraging
two per-thread flags: a “stealable” flag indicating whether
this thread is blocked, and a “stolen” flag indicating whether
some scavengers were stolen. As shown in Listing 1, before
a primary thread enters a blocking function, it simply sets the
stealable flag to be true. If it does not get blocked, it (i) waits
for the stealable flag to become true (explained later), which
will be immediate in this case, and (ii) resumes its execution
if the stolen flag is false. As a result, a primary thread that
quickly resumes at a blocking function only performs a read,
a write, and a CAS operation on a single cache line, which is
significantly less work than the baseline design.

To steal scavengers, a new thread attempts to compare-and-
swap the stealable flags of other threads from true to false. If
succeeded, this means that (i) that thread is blocked and (ii) no
other thread is stealing from this thread. The new thread then
steals the blocked thread’s scavengers by looking at their yield
contexts – if a scavenger’s yield context is valid, it copies the
yield context to its own per-thread structure before invalidat-
ing the context. The new thread ends its stealing by setting
both the stolen and stealable flags of the blocked thread as
true. Once the blocked thread resumes, it finds out that some
of its scavengers get stolen via the stolen flag, which triggers
the slow path of replacing its stolen scavengers with new ones.
In essence, by using per-thread flags, MSH expedites the
cases where the per-thread flags are untouched due to short
or no blocking. The cost of more complex scavenger stealing
is acceptable given that stealings happen infrequently.

To sum up, MSH is capable of dynamically assigning scav-
engers to primary threads for unmodified multi-threaded ap-
plications (§6.2) and does so with minimal overhead (§6.4).

5 Implementation
We prototype MSH’s offline parts on top of Bolt [67], a binary
optimizer, as well as perf [24], a sample-based profiler; and
MSH’s runtime as a user-level library. Next, we describe how
the four main components are implemented:
Offline profiling: MSH adopts the same set of profiling prac-
tices as prior sample-based profiling works [17,30,31,41,66–
68]: sampled inputs are used for profiling, and in the case of
input changes leading to notable performance degradations,
different profiling runs happen in the background. In practice,
MSH’s performance is observed to be consistent across dif-
ferent inputs. This is because programs often have a fixed set
of delinquent load instructions that trigger cache misses, an
insight that has been observed and exploited in cache prefetch-
ing works [11, 41, 54]. MSH parallelizes profile processing
across multiple cores to speed up the process.
Primary instrumentation: There are three phases: a profil-
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Figure 6: Primaries, scavengers and mechanisms evaluated.

ing phase, where we profile load instructions causing cache
misses via PEBS and basic block execution counts via LBR,
and parse profiled data; an analysis phase, where program
analysis results (e.g., what registers to save) are annotated in
relevant program points (e.g., load instructions, loops); and an
instrumentation phase, where binaries are finally altered. We
reuse register liveness and reaching definition analysis from
Bolt, and implement loop optimizations and pseudo-inlining.
Scavenger instrumentation: This takes place in the same
three phases. In the profiling phase, we obtain the basic block
latency via LBR. Given that LBR reports the latency between
different branching instructions, which does not always cor-
respond to a basic block’s latency, we implement a script to
map LBR samples to basic blocks. In the analysis phase, we
construct call graphs and implement the data-flow analysis.
MSH Runtime: We use the LD_PRELOAD dynamic linker
feature [73] to override pthread functions, and implement in a
shared library MSH’s runtime operations before/after calling
the original pthread functions. For per-thread data structures,
the runtime sets their base addresses in the GS segment reg-
ister upon thread creations, so that they can be accessed by
primaries and scavengers via GS-based addressing [53].

6 Evaluation
In this section, we present our evaluation setup (§6.1) and
investigate three key questions regarding MSH: (i) how well
does MSH perform compared to SMT? (§6.2), (ii) how does
MSH change the landscape of cycle harvesting? (§6.3) and
(iii) how do different components of MSH contribute to its
performance? (§6.4). We answer (i) and (ii) by evaluating
different mechanisms with both synthetic workloads and real
applications, (iii) by carefully testing the specific component.

6.1 Evaluation Setup
As shown in Figure 6, we carefully select primaries, scav-

engers and mechanisms to allow a comprehensive understand-
ing of MSH’s behaviors and the cycle harvesting landscape.
Harvestable cycles: To set up evaluations, it is important to
realize that there are three main classes of harvestable cycles.
The first class is idle time, which occurs at low loads when an
application does not have enough work for its cores. Software
mechanisms like kernel scheduling (KS) focus on harvesting
these cycles. As the load increases, idle time reduces and
CPU stalls become the main harvestable cycles. CPU stalls

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    65



Figure 7: Maximum scavenger throughput vs. P95 Latency budget at 80% load. The red line denotes the standalone latency.

can be divided into either memory stalls, which often account
for a significant portion of cycles (§2) and can be efficiently
harvested by MSH, or non-memory stalls (e.g., core-bound or
frontend stalls), which remain to be private territory of SMT.
Primaries: For primaries, we include a synthetic pointer-
chasing workload (PtrChase), which has most of its active cy-
cles bounded by memory. It thus allows us to study how well
MSH harvests memory stalls in comparison to SMT. We also
have two real latency-critical applications: Masstree [59], an
in-memory key-value store, and Sphinx [87], a speech recog-
nition system. With these workloads, we evaluate harvesting
mechanisms on realistic mixes of memory and non-memory
stalls. Masstree and Sphinx are configured to use the same
dataset as Tailbench [46] with 6 and 24 threads respectively.
PtrChase has 8 threads, each iterating over its own 16MB
array via random pointer chasing upon new requests.
Mechanisms: SMT harvests all three classes of harvestable
cycles, but suffers from high latency overhead, lack of con-
figurability, and incomplete harvesting (§2). MSH harvests
memory-bound stalls and overcomes the drawbacks of SMT.
Building on MSH’s superior performance, we complement it
with KS and SMT to also harvest idle time and non-memory
stalls: KS adds little overhead to MSH but allows idle time
harvesting; MSH+SMT/KS enables SMT with MSH if the
primary latency meets the SLO, disables SMT and runs KS
otherwise. This allows exploiting SMT’s ability to harvest
non-memory stalls, while managing its latency impacts.

SMT3 runs scavengers on the sibling cores of the primary.
MSH interleaves scavenger executions within the primary.

3We focus on Intel’s SMT implementation (i.e., Hyper-threading) in our
evaluation. As we will discuss in §7, drawbacks of SMT stem from the lack of
(software-controllable) prioritizations and the limited degrees of concurrency,
which are common among most commercial SMT implementations. We thus
expect our results to be representative of common SMT behaviors.

MSH+KS schedules scavengers to run on the primary’s log-
ical cores with lower real-time priority, so that these scav-
engers run when the primary is idle. MSH+SMT/KS runs
other scavengers on sibling cores when SMT is enabled.
Scavengers: SMT performs poorly for scavengers that con-
tend for core resources or frequently stall, causing large la-
tency overhead and incomplete harvesting respectively. We
thus include synthetic workloads with such behaviors: Scan
– creating contention by scanning a 4MB array and comput-
ing the sum; PtrChase – frequently stalling due to iterating
through a 16MB array in random order via pointer chasing,
to evaluate whether MSH can handle such challenging cases.
We also include two graph analysis workloads: DFS and Con-
nected Component (CoCo), from the CRONO benchmark [1]
as representatives of scavengers with mixed behaviors.
Testbed and Metrics: We conduct experiments using a dual-
socket server with 56-core Intel Xeon Platinum 8176 CPUs
operating at 2.1 GHz4. We measure at different loads the 95
percentile primary latency as well the scavenger throughput
in terms of the number of scavengers finished per second.

6.2 MSH performance
Summary: We extensively evaluate MSH and show that it
provides three main performance benefits over SMT:

• MSH can harvest up to 72% scavenger throughput of SMT,
for latency SLOs under which SMT has to be disabled.

• MSH can further trade off primary latency for higher scav-
enger throughput if looser latency SLOs are given.

4Applications use memory from the local node in our evaluation. Under a
NUMA setup, MSH can be configured to efficiently harvest the longer stalls
caused by remote accesses, e.g., by using larger inter-yield distances (§6.2).

66    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Figure 8: Time to completion for a fixed number of pointer-
chasing jobs with different degrees of concurrency.

• Unlike SMT, MSH can fully harvest memory stalls when
scavengers stall and achieve up to 2x higher throughput.

MSH provides these benefits with its capabilities like fine-
grained configurability and concurrency scaling, which we
will elaborate further on §6.4. Here we focus on presenting
MSH’s performance characteristics in comparison to SMT.
The whole picture: As shown in Figure 7, for each of the
primary and scavenger combinations, we report the maximum
achievable scavenger throughputs under different primary la-
tency SLOs, which is defined as the latency budget at 80%
loads. Note that, the comparisons among harvesting mech-
anisms remain unchanged for different latency metrics (e.g.
average, 99 percentile) at other loads (other than 80%). As
discussed below, MSH can be flexibly configured to achieve
different scavenger throughputs depending on the primary
latency budgets. These results thus allow us to have a holistic
understanding of MSH’s performance in comparison to SMT.
Here one could make several key observations:

First, MSH harvests substantial stall cycles for latency
SLOs under which SMT effectively achieves zero scavenger
throughput (i.e., disabled). This is especially valuable when
contentious scavengers cause significant slowdown for SMT:
e.g., for Sphinx with Scan, MSH achieves up to 72% of SMT
scavenger throughput with lower than SMT primary latency.
Such behaviors exist for Sphinx and Masstree with all the eval-
uated scavengers, indicating the general usefulness of MSH
as a harvesting mechanism under stringent latency SLOs.

Second, unlike SMT, which achieves the same scavenger
throughput regardless of the latency SLO given, MSH can
trade off primary latency for higher scavenger throughput.
This capability, together with the aforementioned ability to
harvest stall cycles under stringent latency SLOs, makes MSH
a highly elastic harvesting mechanism that can be combined
with other mechanisms, as we will describe in §6.3.

Lastly, MSH can fully harvest memory stalls even when
scavengers frequently stall. Specifically, for the PtrChase
scavenger, with both Sphinx and PtrChase primaries, MSH
manages to achieve higher scavenger throughput than SMT
without incurring much latency overhead. Given that SMT
harvests both idle time and non-memory stalls, which MSH
does not handle, this indicates that MSH can better harvest
memory stalls with higher degrees of concurrency.

Figure 9: SMT, MSH and MSH+KS for Sphinx+Scan.

Full harvesting: To verify this, we conduct an experiment
with a fixed number of jobs, where each job traverses a 128
MB array via random pointer chasing and thus frequently
incurs memory stalls. We then measure the total completion
time of these jobs with a single physical core. For SMT, we
either run one job at a time or co-locate two concurrent jobs.
For MSH, we interleave these jobs with various degrees of
concurrency. The normalized completion times are shown in
Figure 8. In the ideal case, the completion time is one over the
concurrency degree. Although SMT-2 is close to ideal thanks
to hardware efficiency, it does not have enough concurrency to
further harvest memory stalls. In contrast, while having larger
interleaving overhead, MSH reduces SMT’s completion time
by roughly a half (i.e., 2x throughput) with a concurrency de-
gree of eight. This shows that compared with SMT, MSH can
harvest more memory stalls via concurrency scaling. When
the degree of concurrency goes beyond eight, the completion
time of MSH increases due to the aggregate yielding overhead
outweighing the benefits of additional multiplexings.

6.3 Cycle Harvesting Landscape
With various desirable properties, MSH can be efficiently

combined with other harvesting mechanisms to re-shape the
CPU cycle harvesting landscape. To see this, we evaluate two
compound mechanisms that leverage MSH for memory stalls:
MSH+KS and MSH+SMT/KS, and compare that with SMT.
• MSH+KS: KS complements MSH with idle time har-

vesting. MSH+KS thus achieves much higher scavenger
throughput than MSH at low loads, while adding small
latency overhead (Figure 9). As the load increases, idle
time reduces, and MSH+KS behaviors converge to MSH’s.
Note that MSH in this figure is only one configuration.

• MSH+SMT/KS: MSH+SMT/KS strives to utilize SMT’s
ability to harvest non-memory stalls, and falls back to KS
if SMT incurs excessive latency overhead. As shown in
Figure 7, MSH+SMT/KS delivers superior performance,
with higher scavenger throughput than SMT under almost
all latency SLOs. The reason is that: (i) for scavengers that
frequently stall, SMT can be safely enabled with minimal
latency overhead, the combination of SMT and MSH can
harvest idle time, non-memory and memory stalls to the
full extent; (ii) for contentious scavengers, the combination
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of KS and MSH then efficiently harvests both idle time and
memory stalls for latency SLOs where SMT is disabled.

6.4 Performance Breakdown
Summary: We test MSH’s configurability and performance
of its components, the results of which are outlined below:
• Configurability: MSH offers fine-grained control over

the latency-throughput trade-off via (i) yield site selections
in primary instrumentation, (ii) inter-yield distances in
scavenger instrumentation and (iii) concurrency degrees
in runtime. Since the effects of concurrency scaling have
been studied in Figure 8, we focus on the other two knobs.
We measure the primary latency and scavenger throughput
for Sphinx and Scan with different configurations, with
results shown in Figure 10. For the primary, MSH esti-
mates the overhead of each load instruction with its cache
miss rate and bounds the aggregate overhead when select-
ing yield sites (§4.1). We increase this overhead bound
from 5% to 15% and observe a clear latency-throughput
trade-off as more yields are instrumented. For the scav-
enger, increasing the target inter-yield distance also leads
to higher scavenger throughput at the cost of larger pri-
mary overhead. Besides the latency-throughput trade-off,
such configurability allows MSH to mitigate some inher-
ent issues of instruction interleaving, such as increased
memory contention and effectively partitioned caches, by
controlling the extent and locations of interleaving.

• Primary instrumentation: MSH reduces the yield cost by
minimizing the amount of register savings and restorations
per yield. To measure how this affects its harvesting perfor-
mance, we conduct an experiment with Sphinx and Scan,
where we measure Sphinx’s latency for different inter-yield
distances of Scan, with and without our optimizations. As
shown in Figure 11, reduced yield costs do lead to up to
23% lower primary latency. Note that the improvement
first increases with scavenger inter-yield distances before
dropping, because (i) the larger yield cost (without opti-
mizations) does not affect the primary latency until the
duration of the interleaved scavenger execution (i.e., inter-
yield distance plus yield cost) exceeds the cache hit latency,
and (ii) as the inter-yield distance further increases, yield
cost plays a smaller part in the overall overhead.

• Scavenger instrumentation: MSH accurately enforces
target inter-yield distances via its data-flow analysis (Fig-
ure 12-(a)). As for overhead, a unique source of overhead
for scavengers is the loop instrumentation overhead – using
an in-memory iteration counter is expensive for tight loops.
MSH thus attempts to reuse induction registers or maintain
a counter with unused registers before spilling to memory.
This optimization reduces the overhead by 130% and 15%
for CoCo and DFS respectively (Figure 12-(b)).

• MSH runtime: MSH harvests stall cycles via dynamic
scavenger assignment. It does so with low overhead: 10 ns

for thread resuming with unstolen scavengers, which does
not cause noticeable impacts on our evaluated applications.

• Profiling overhead: Even with sample-based profiling
using hardware performance counters, sampling events at
high frequencies can still slow down the primary applica-
tion. In MSH, we confirm that accurately capturing delin-
quent load instructions incurs minimal profiling overhead.
Specifically, for Masstree, using the default sampling fre-
quency and following the yield site selection logic (§4.1),
MSH selects the same set of load instructions as if it were
to sample 100x more frequently. As a result, while using a
100x higher sampling rate would slow down the application
by 25%, the slowdown from MSH’s profiling is negligible.

• Analysis complexity: MSH instruments only selective
loads and performs mostly intra-procedural analysis, which
finishes less than a minute for all the evaluated workloads.

7 Related Work
Reducing memory stalls: Orthogonal to harvesting efforts
like MSH, there has been extensive research on reducing
memory stalls. Beyond out-of-order executions, there are two
lines of techniques based on load slices, i.e., instructions that
generate the address of a load instruction. One technique is
prefetching [2, 4, 8, 12, 22, 39, 42, 56], where the cache line is
prefetched after the end of its load slice; and the other tech-
nique is criticality-aware instruction scheduling [5, 6, 16, 77],
where the processor prioritizes the executions of load slices,
which requires hardware changes. For both techniques, there
is a trade-off between capability and deployability. Simple
techniques like stream prefetchers [39, 75] and prefetch in-
sertion via static analysis [4, 20] have limited capability (e.g.,
unable to handle complex access patterns); whereas advanced
proposals like runahead prefetchers [26, 33] often have re-
quirements that hinder wide adoptions (e.g., excessive hard-
ware complexity, source code modification). Moreover, a
key requirement for both techniques to reduce stalls is that
load slices end sufficiently ahead of the load instruction. As a
result, for cases where load slices are close to the load instruc-
tion, neither technique can help. In contrast, MSH is easily
deployable, requiring no hardware changes nor rewriting ef-
forts, and harvests stall cycles for any access pattern.
SMT: For the three drawbacks of SMT (i.e., latency overhead,
lack of configurability and incomplete harvesting), the first
two stem from the lack of prioritizations, whereas the last
one is due to limited degrees of concurrency. Most modern
processors from Intel and AMD have these two issues, which
leads to unsatisfactory harvesting performance (§6.2). An ex-
ception is IBM Power processors [50, 63], as they (i) support
assigning hardware threads with priorities that determine the
ratio of physical core decode slots allotted to them, and (ii)
have wider SMT with up to eight threads per core, at the cost
of more complex and resource-consuming SMT design.

Given this context, the value of MSH is two fold. First,
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Figure 10: The effects of the aggregate yield overhead bound (left) and the scavenger inter-yield distance (right) on the primary
latency and the scavenger throughput in Sphinx+Scan.

Figure 11: Latency improvement made by the yield cost opti-
mizations in the primary instrumentation on Sphinx+Scan.

Figure 12: (a) Inter-yield distance of scavenger instrumenta-
tion; (b) overhead of loop instrumentation: opt uses induction
registers and unused registers, no ind. uses only unused regis-
ters, and all-mem uses in-memory iteration counters.

for most modern processors, MSH allows harvesting memory
stall cycles in software without the drawbacks of their SMT
mechanisms. Second, for processors like IBM Power and
Cray Threadstorm [48, 49] that support massive multithread-
ing and fine-grained parallelism, MSH raises the question of
whether certain functionality should be implemented in hard-
ware or software, e.g., concurrency scaling in MSH happens
on-demand, without requiring dedicated thus likely wasted
resources, such as die area and power.
Software efforts: Some work focuses on utilizing SMT with
latency-critical services, by disabling it when high latency or
resource interference is detected [29, 60, 70, 89]. However,
they do not address SMT’s high latency overhead and lack
of configurability, and are thus unable to harvest stall cycles
when SMT violates latency SLOs. As for software harvesting
efforts, prior work shows that if done correctly, prefetching
and yielding before load instructions can lead to increased
throughput for memory-intensive workloads [21, 34, 44, 72].
However, they either require manual identification of yield

sites and source code modification, or instrument every load
instruction at the cost of high latency. Moreover, none of
them can enforce low latency overhead and full harvesting
from diverse scavengers, which MSH provides with scavenger
instrumentation and runtime operations. In short, MSH is the
first software system that enables transparent and general
memory stall harvesting with competitive performance.

8 Discussion
Isolation mechanism: In MSH, the primary and its scav-
engers reside in the same process to benefit from fast yielding,
which necessitates mechanisms other than hardware isolation
to ensure memory safety under this setup. This turns out
to be an extensively studied problem, with solutions falling
into two main categories: (i) software-based fault isolation
(SFI) [76, 81, 86], which establishes logical protection do-
mains by inserting dynamic checks at the binary level; and
(ii) language-based isolation, where a program is accepted in
the form of a safe language (e.g., WebAssembly [32, 36, 85],
Rust [15, 51, 65, 92]) and validated by the type checker and
compiler. Operating at the binary level, MSH easily coexists
with either isolation mechanism: SFI can be a better fit as it
is applicable to code written in different languages, including
legacy code, which is a merit that MSH shares. Moreover,
a recent work [91] shows lower runtime overhead with a
lightweight SFI implementation than existing language-based
solutions. Integrating MSH with some isolation mechanism
and evaluating the resulting system is left for future work.
Further evaluation: In §6, we demonstrated and dissected
the desirability of MSH as a harvesting mechanism. Next, we
discuss directions for more thorough evaluation of MSH.
• Additional workloads: We focus on evaluating a set

of representative workloads with distinct characteristics,
e.g., scavengers that either create large contentions, or fre-
quently stall, or exhibit mixed behaviors. This appraoch
allows us to interpret the performance differences caused
by (i) the distinct characteristics of the primary-scavenger
pairs and (ii) the differences in harvesting mechanisms.
One could extend with more real workloads

• Cache prefetching: As discussed in §7, MSH can harvest
memory stalls that are not hidden by cache prefetching, and
prefetching techniques that are easy to deploy usually have
limited capability. It will thus be interesting to evaluate the
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effectiveness of MSH with software prefetching techniques
used in production [40]. That being said, most delinquent
loads in our evaluated workloads exhibit pointer-chasing
behaviors, which are inherently challenging to prefetch.

• Datacenter efficiency: The effect of MSH on the overall
CPU efficiency of a datacenter is hard to estimate, as it
depends on various factors such as workload character-
istics, colocation arrangements, and SLO policies. This
necessitates large-scale evaluation and profiling [45].

Efficacy of profiling: In terms of profiling overhead, we have
shown that MSH can capture delinquent load instructions
with a low sampling rate (§6.4). The other natural question
is whether profiling is consistently effective for the purpose
of harvesting stall cycles in MSH. Similar to prior works that
leverage profiling for cache prefetching [40, 41, 95], we show
positive results with our evaluated workloads (§6.2). One
conjecture is that, while whether a particular load invocation
will trigger a cache miss is highly random, the two pieces of
information MSH needs from profiling – namely, (i) the set
of load instructions that account for a significant portion of
memory stalls and (ii) their likelihoods of cache misses, are
often stable across runs and inputs. Evaluating a wider range
of applications can help further validate this conjecture.
Hardware support for MSH: We identify two aspects that
MSH can benefit from hardware support. First, an overhead
that MSH inevitably incurs is when an instrumented load
causes cache hits. MSH mitigates this with the selection logic
in primary instrumentation, which enforces a lower bound on
cache miss rate and an upper bound on aggregate overhead
(§4.1). To do better, what is needed is dynamic visibility of
cache misses, e.g., indicating if a cache line is in L2 cache.
This allows yields to be conditional on whether cache misses
actually happen. We expect conditional checking overhead
to be on the scale of L2 cache latency, much faster than
scavenger executions configured to harvest memory stalls.

Another aspect that hardware can offer support is reduc-
ing yield overhead. MSH minimizes the amount of register
savings and restorations for each yield, which leads to lower
latency overhead (§6.4). One useful hardware feature here
is to save/restore multiple registers to/from memory with a
single instruction for lower instruction fetch costs, which is
already provided in ARM with LDM/STM instructions [9].
Prior works also propose hardware support for fast saving and
restoration of process state during context switches [38, 80].

9 Conclusion
We presented MSH, a software system that transparently and
efficiently harvests memory stall cycles. With a co-design
of profiling, program analysis, binary instrumentation and
runtime scheduling, MSH fully harvests stall cycles, while
incurring minimal latency overhead and offering fine-grained
control of the latency-throughput tradeoff. MSH is thus a
preferable solution for harvesting memory stalls and brings
valuable changes to the CPU cycle harvesting landscape.
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Abstract
With rapid advances in network hardware, far memory has
gained a great deal of traction due to its ability to break the
memory capacity wall. Existing far memory systems fall into
one of two data paths: one that uses the kernel’s paging sys-
tem to transparently access far memory at the page granu-
larity, and a second that bypasses the kernel, fetching data
at the object granularity. While it is generally believed that
object fetching outperforms paging due to its fine-grained ac-
cess, it requires significantly more compute resources to run
object-level LRU and eviction.

We built Atlas, a hybrid data plane enabled by a runtime-
kernel co-design that simultaneously enables accesses via
these two data paths to provide high efficiency for real-world
applications. Atlas uses always-on profiling to continuously
measure page locality. For workloads already with good lo-
cality, paging is used to fetch data, whereas for those with-
out, object fetching is employed. Object fetching moves
objects that are accessed close in time to contiguous local
space, dynamically improving locality and making the exe-
cution increasingly amenable to paging, which is much more
resource-efficient. Our evaluation shows that Atlas improves
the throughput (e.g., by 1.5× and 3.2×) and reduces the tail
latency (e.g., by one and two orders of magnitude) when us-
ing remote memory, compared with AIFM and Fastswap, the
state-of-the-art techniques respectively in the two categories.

1 Introduction
Today’s datacenters commonly suffer from low memory uti-
lization [21]; yet, datacenter applications are increasingly
memory-constrained [19, 36, 42, 62] due to their need to hold
large datasets in memory for quick data analytics [11, 76]
or machine learning [8, 53]. Thanks to the high bandwidth
and low latency provided by modern network fabrics such
as InfiniBand, far memory techniques [9, 25, 57, 67–69] en-
able an abstraction of unlimited memory for applications by
allowing them to use available memory on remote servers,
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thereby simultaneously improving application performance
and datacenters’ overall memory utilization.

Although techniques such as RDMA enable fast network
accesses, each remote access is still at least an order of mag-
nitude slower than a local access. As such, it is paramount
to optimize the remote access data plane so that applications
can benefit from increased memory capacity without suffer-
ing a significant performance hit. A major line of work
for accessing remote memory is using the kernel’s paging
system, exemplified by techniques such as InfiniSwap [25],
Fastswap [9], Canvas [68] and Hermit [55]. These tech-
niques allow applications to transparently access far mem-
ory at the page granularity, using the kernel’s swap system
to swap pages in and out between local and remote memory.

While paging works well for applications that perform
bulk data movement and exhibit clear (sequential or strided)
access patterns, its coarse granularity incurs substantial I/O
amplification (i.e., pages loaded only contain a small amount
of useful data) for applications that exhibit irregular (or ran-
dom) access patterns, such as Memcached [5] and graph ap-
plications [34]. To reduce I/O amplification, a recent line of
work exemplified by AIFM [57] and Kona [13] advocates to
access data at a much finer (object) granularity using a user-
space runtime system. Swapping objects, rather than pages,
can significantly reduce the amount of useless data swapped,
leading to higher efficiency. Furthermore, since objects are
the data abstraction for developers to write programs, they
carry semantics (i.e., user intention) that can be exposed to
and used by the runtime to perform additional optimizations,
such as data-structure-based prefetching.

Fetching objects at runtime, however, comes at a cost. A
drawback that was often overlooked by existing works is that
object fetching requires non-trivial compute resources to pro-
file object usage, identify patterns, and perform object-level
LRU and eviction. For instance, running an object-level LRU
algorithm is one order of magnitude more expensive than
page-based LRU due to a huge number of objects to be pro-
cessed and the lack of hardware support for tracking object
accesses. This overhead is significantly more pronounced in
real-world scenarios where CPUs are all busy with execut-
ing application threads—given a tight time budget, memory

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    77



management threads cannot scan enough objects to make ac-
curate LRU and eventually have to evict arbitrary objects.

As a result, the right access mechanism is essentially the
result of a tradeoff between program locality (i.e., how bad
I/O amplification can be) and the amount of compute re-
sources available (i.e., how many cores can be dedicated to
object-level memory management tasks). For programs with
poor locality, the overhead of object-level memory manage-
ment can be offset from the large gains of reducing I/O ampli-
fication. On the other hand, for programs with good locality
and insignificant I/O amplification, the overhead of object
fetching stands out, especially in an environment where ap-
plications have taken all compute resources (see §3).

There is a recent line of compiler-based techniques (as
exemplified by Mira [26]) that profile a program offline to
understand such a tradeoff, so that compiler can statically
choose the mechanism for each data access when compil-
ing the program. However, offline profiling hinges upon pro-
gram input. For interactive applications such as Memcached,
their input data comes from users and keeps changing, ren-
dering a dry-run-based technique ineffective.
Major Insight. The main question we ask in this paper is:
can we enable always-on profiling for an application to iden-
tify its access patterns and dynamically switch between pag-
ing and object fetching to adapt to the observed patterns?
This approach, if implemented efficiently, has two advan-
tages over the state-of-the-art techniques. First, its contin-
uous profiling identifies patterns on-the-fly for different com-
putation stages or parallel threads accessing different data
structures, even if the program input keeps changing. As a
result, it can quickly change the access path to use a more ef-
ficient fetching mechanism. Second, for programs with irreg-
ular patterns, object fetching moves objects that are accessed
close in time into contiguous memory space, dynamically im-
proving locality as the program executes. This makes it pos-
sible for the execution to be increasingly amenable to paging,
which has higher resource efficiency (see §3).

Although promising, realizing this insight requires over-
coming three major challenges, as elaborated below:

The first challenge is how to continuously and accurately
profile an application with low overhead. Kernel-based page-
level profiling, though efficient, does not provide sufficient
information with respect to fine-grained data locality. For
example, if one single hot object on a page keeps getting
accessed but none of other objects do, the kernel-based pro-
filing would identify the page as a hot page although the
page clearly possesses poor locality and its accesses should
go through object fetching, not paging.

To enable fine-grained profiling, Atlas divides a page into
a set of cards, each of which is a unit for our locality mea-
surement. We leverage the runtime (and in particular, a read
barrier) to compute a card access table (CAT) (§4.3) for each
page, which is a bitmap where each bit corresponds to a card
(i.e., consecutive 16 bytes) on the page and a set bit repre-

sents that the card has been accessed since the page was allo-
cated or last swapped in. A page with a high card access rate
(CAR, measured as the percentage of the set bits in its CAT)
is deemed to possess good locality and should be accessed
with paging, while a page with a low CAR has poor locality
and should be accessed with object fetching.

The second challenge is how to dynamically switch ac-
cess mechanisms. Atlas uses a read barrier at each smart
pointer dereference. The barrier quickly checks a per-page
path selector flag (PSF) for the remote page to be accessed.
Each PSF is a 1-bit flag, set to either runtime or paging.
runtime indicates that the runtime path should be used to
fetch individual objects (like AIFM), while paging means
that the paging path is taken to fetch an entire page. The PSF
of a page is updated only when the page is evicted based
upon the page’s CAR—it is set to runtime if the page’s
CAR is low, indicating the page exhibits poor locality, and
paging otherwise, indicating good locality.

Although Atlas supports both object fetching and paging
at ingress, it evicts data only at the page granularity at egress,
to reduce the high overhead associated with object-level pro-
filing and LRU. While evicting pages may introduce I/O am-
plification for workloads with poor locality, this impact is in-
significant under Atlas, because accesses in these workloads
would likely go through the object fetching path, which im-
proves locality by moving objects accessed close in time into
contiguous local space. The enhanced locality effectively
mitigates the negative impact of page-level eviction.

To reduce fragmentation resulting from dead objects, At-
las runs concurrent evacuation tasks that periodically move
live objects into contiguous memory space. During each
evacuation, Atlas groups recently-accessed objects into con-
tiguous pages to further improve data locality.

The third challenge is how to synchronize the two access
paths. Since the kernel and the runtime are not coordinated
(e.g., the kernel does not inform the runtime of the start or
the completion of a page-fault handling), special care must
be taken to prevent the two access paths from creating incon-
sistent data copies. In particular, correctness issues may arise
from a set of ingress and egress events (i.e., object-in, page-
in, and page-out) that occur simultaneously. Atlas solves the
problem with a synchronization protocol (see §4.2), imple-
mented with a combination of runtime and kernel support.

Results. We have evaluated Atlas with a set of eight ap-
plications that cover a full range of memory access patterns:
sequential, random, and mixed. Our results show that At-
las enables these applications running on remote memory to
achieve an overall of 1.5× and 3.2× throughput improve-
ment, compared with AIFM [57] and Fastswap [9], respec-
tively. Atlas reduces the tail latency by one and two orders
of magnitude when compared with AIFM and Fastswap. At-
las is available at https://github.com/wangchenxi7/Atlas.
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2 Background on Object Fetching

Object fetching is motivated by two observations on the inef-
ficiencies of paging. First, fetching data at the page granular-
ity often leads to I/O amplification [13]. Second, managing
data in the kernel space is agnostic to program semantics,
resulting in missed optimization opportunities [57, 65, 67].
As such, work has been proposed to manage data with a lan-
guage runtime at a finer-grained object (or cache-line) gran-
ularity [13, 43, 57, 66, 67, 69]. Unlike paging, the runtime
can only manage objects in user space, which results in two
consequences: (1) the runtime must change the virtual ad-
dress of an object when moving it and hence must change
all its pointers; and (2) the runtime must maintain all meta-
data itself (e.g., LRU), which used to be maintained by the
kernel. Here we focus our discussion on AIFM [57]. AIFM
proposes two abstractions for developers to manage remote
memory: remoteable pointer and dereference scope.

Remoteable pointer. AIFM extends the smart pointer ab-
straction of C++ to implement remoteable pointers (RemPtr)
for remote data management. There are two types of
RemPtr: 64-bit unique remoteable pointers (similar to
std::unique_ptr) and 128-bit shared remoteable pointers
(similar to std::shared_ptr). Developers need to explic-
itly declare data as remote type and manage them via the
RemPtr. For example, each unique RemPtr has 64 bits—the
lower 47 bits are used as the virtual address of the data, and
the upper 17 bits are used to record metadata, such as dirty
(D), present (P), hot (H), evacuated (E), etc. When accessing
data via a RemPtr, AIFM checks the metadata of the RemPtr
to detect its status, e.g., checking the P bit to see if the object
is in local memory. Next, AIFM masks the RemPtr to obtain
the actual virtual address.

Dereference scope. Each smart pointer dereference and sub-
sequent raw pointer accesses must be enclosed by a deref-
erence scope, which works as an evacuation fence to guar-
antee correctness. AIFM performs periodical concurrent ob-
ject evacuation that swaps out cold objects to remote mem-
ory and compacts local memory to improve data locality. It
is challenging to move objects when they are being used by
other threads since moving objects requires updating all their
pointers. Smart pointers solve this problem because these
pointers can be recorded in object headers and updated after
moves are conducted. However, an application may read raw
pointers from smart pointers and store them in registers or on
the stack, which cannot be updated by the runtime.

To guarantee correctness for pointer updating, AIFM re-
quires developers to explicitly declare dereference scopes for
each object, which define where raw pointers of the object
may exist. Evacuation of the object never happens concur-
rently with the execution of any of its dereference scopes
that started before the evacuation decision. A dereference
scope serves as a synchronization mechanism between an
event that moves the object and another that uses it.

3 Motivation

We now motivate the necessity of a hybrid data plane. We
first demonstrate the diverse memory access patterns of real-
world cloud applications and explain the underlying reasons.
Next, we compare fetching performance between using a
runtime and the kernel’s paging system. For the runtime
approach, we re-implemented applications with AIFM [57].
For paging, we used Fastswap [9]. Finally, we discuss the
opportunities provided by dynamic path switching.

Diverse memory accesses. Real-world applications exhibit
complicated memory access patterns, which are a combina-
tion of multiple primitive patterns such as sequential, strided,
skewed, and random. Access patterns depend on at least two
factors: (1) the computation model and (2) the data model.
Next we elaborate on these factors:

On one hand, many applications are phase-changing and
each phase follows a distinct computation model. On the
other hand, the same phase may exhibit varied access pat-
terns when processing different data structures.

An example is data-processing applications [76, 78] that
implement MapReduce. We experiment with Metis [44],
a MapReduce framework optimized for multicore architec-
tures, with a Page View Count (PVC) program [29, 56] and
report its page fault sequence in Figure 1(a). Since PVC is
executed with 8 cores, we launch 8 threads for each (Map or
Reduce) phase to exploit data parallelism. During the Map
phase, each thread loads chunks of input data from the disk
and initializes loaded website URLs and users as memory
data. Next, PVC shuffles URLs into different buckets of a
hash table based on their hash values. The Reduce phase
scans each entry to count each URL’s users.

The left/right part of Figure 1(a) illustrates the page fault
sequence of the Map/Reduce phase. The Map phase (left) in-
serts URLs into the hash table, and accesses there are mostly
random. However, given that the dataset used to run this
program is skewed, there are several ranges of sequential ac-
cesses in the Map phase, as highlighted in the boxes (i.e.,
certain hash buckets are much larger than others and hence
traversing these buckets exhibits sequential patterns). Dur-
ing the Reduce phase (right), each task that aggregates users
of URLs scans entries in a bucket sequentially, resulting in a
clear sequential access pattern, as shown in the second (right)
half of Figure 1(a).

Granularity-performance tradeoff. Object fetching mini-
mizes I/O amplification by fetching fine-grained objects [14,
57]. However, compared to paging, object fetching does not
always show clear benefits—for workloads with good local-
ity, data on the same pages are accessed close in time and the
kernel can already effectively and accurately prefetch data.
When benefits are insignificant, the overhead for object-level
memory management stands out. To compare fetching effi-
ciency between the runtime and the kernel, we run the Metis

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    79



0K 5K 10K 15K
Page Fault Sequence

0
500K

1000K
1500K

Pa
ge

 In
de

x

Map Reduce Total0
20
40
60
80

Ex
ec

ut
io

n 
Ti

m
e 

(s
) AIFM

Fastswap

0 5 10 15 20
Reduce Elapsed Time (s)

0
50

100
150
200
250
300
350

CP
U 

Ut
iliz

at
io

n 
(%

)

0
200
400
600
800
1000
1200

Ev
ict

io
n 

Th
pt

 (M
B/

s)Fastswap CPU%
AIFM CPU%

Fastswap Thpt
AIFM Thpt

0K 5K 10K 15K
Page Fault Sequence

0

500K

1000K

Pa
ge

 In
de

x

(a) Page Fault Trace 1 (b) Throughput (c) Memory Eviction (d) Page Fault Trace 2
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PVC benchmark on AIFM and Fastswap, respectively. Fig-
ure 1(b) reports their performance comparisons.

Since a MapReduce program has clear phases, we broke
down the execution time into Map and Reduce. AIFM out-
performs Fastswap by 1.6× in the Map phase due to object
fetching—most remote accesses in Map are random as words
are inserted into different buckets of the hash map. On the
contrary, AIFM underperforms Fastswap by 3.3× in the Re-
duce phase, which exhibits clear sequential patterns.

Object eviction cost. The main reason why object fetching
underperforms paging for programs with good locality is the
high cost associated with profiling objects and maintaining
object-based LRU for eviction. For example, eviction must
be done quickly as it blocks further memory allocations [55].
As a result, AIFM constantly maintains dozens of profiling/e-
viction threads to track the hotness of (billions of) objects
and evict cold objects. However, if these threads cannot ob-
tain enough CPU resources from the application, they end up
scanning only a small percentage of objects before time runs
out and then evict objects with limited hotness information,
resulting in data thrashing (i.e., hot objects get swapped out
and quickly swapped back in).

Figure 1(c) compares the eviction throughput and CPU uti-
lization for eviction of AIFM and Fastswap during the Re-
duce phase. AIFM continuously performs object-level hot-
ness tracking and eviction with around 200% (up to 350%)
CPU usage in the entire Reduce phase. On the contrary,
Fastswap finishes most of the page eviction task within the
first five seconds and consumes no more than 100% CPU
resources during the eviction. Overall, Fastswap consumes
an order of magnitude less compute (cycles) than AIFM
for eviction over the Reduce phase. Even with significantly
fewer CPU resources, Fastswap’s eviction throughput is still
∼5× higher than that of AIFM, due to the low memory man-
agement cost associated with paging.

Necessity of online profiling and path switching. Offline
profiling techniques [26, 37, 41, 54, 70] were proposed to an-
alyze program semantics and data accesses. However, these
techniques are ineffective in identifying the optimal solution
for a real-world application for two major reasons.

On the one hand, even if the application’s computation
phases may be analyzed by an offline profiling technique,
its access patterns can change dramatically in response to
inputs. As Figure 1(d) demonstrates, when fed with a dif-
ferent dataset (which does not exhibit skewness), the pro-
gram’s access patterns change significantly—e.g., due to the
lack of skewness, the Map phase no longer exhibits sequen-
tial patterns. In fact, for any interactive applications includ-
ing Memcached [5], DataFrame [46], or streaming data sys-
tems [17, 34, 64], their behaviors and access patterns vary
significantly with different user requests and workloads.

On the other hand, as discussed earlier, object fetching
consumes extensive CPU resources. This may be accept-
able when CPU resources are not fully saturated but becomes
problematic as soon as all CPU cores are occupied (e.g., an-
other tenant starts using the server). Clearly, offline profiling
is not able to predict such environmental changes.

These issues necessitate a dynamic technique that can con-
tinuously profile program executions and perform runtime
data path switching as new behaviors and/or environmental
changes are detected. Our main objective is to use object
fetching to minimize I/O amplification and enhance locality,
paving the way for subsequent accesses to operate on data
with established locality and thus benefit from paging that is
considerably more resource efficient.

4 Atlas Design and Implementation
This section presents Atlas’s design. Like AIFM, Atlas re-
quires programs to use smart pointers (i.e., to implement bar-
riers) and declare dereference scopes for objects (inspired by
C++ weak pointers [4] and Folly RCU guards [1]). Objects
are managed by Atlas’s hybrid data plane. Atlas can also
take the same user-defined programming/offloading hints
and object-level prefetching logic as required by AIFM. At-
las uses such hints in the object fetching path.

4.1 Overview

Inspired by the design of the Java heap [51], Atlas divides a
page into cards to enable fine-grained profiling for accesses.
For each page, Atlas builds a card access table (CAT), which
is a bitmap where each set bit represents a card that has been
accessed since the page was allocated or last swapped in.
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CATs for contiguous pages are allocated contiguously in a
separate memory space. This design enables not only fine-
grained access profiling, but also simple mapping from a vir-
tual address to its CAT entry—this can be done with efficient
bit-wise operations on the address. Each card represents 16
consecutive bytes, which provides a fine enough granularity
as most objects are at least 16 bytes in our workloads.

Atlas maintains a 1-bit path selector flag (PSF) for each
page, which works as an indicator of the data path for data ac-
cess on the page. A runtime value indicates that data should
be retrieved by the runtime at the object granularity (i.e., run-
time path). A paging value indicates that data should be
paged in by the kernel (i.e., paging path). Atlas updates the
PSF of each page to runtime or paging at the moment
the page is swapped out if its CAR (i.e., the percentage of
the set bits among all bits in a CAT) goes below or above a
threshold (i.e., 80% used in our evaluation, see §5.4).
Ingress. Atlas uses a read barrier that executes at each
smart pointer dereference. The barrier first checks whether
the accessed data is remote. In AIFM, this is done by using a
bit in each pointer to encode the location of the referenced ob-
ject—these pointers are updated once the objects they point
to are swapped in or out. Atlas, however, cannot adopt this
approach due to the use of the hybrid data plane—when data
is paged out, Atlas cannot update any pointers. To solve
the problem without incurring the cost of checking with the
kernel at every read, Atlas leverages hardware transaction
memory and, in particular, Intel’s TSX [31], to run a quick
check—Atlas accesses the address in a hardware transaction,
which aborts if the address is not on a mapped page.

Upon an abort, the barrier reads the PSF for the page to be
accessed and determines which path (runtime vs. paging) the
access should take. If the runtime path is taken, the object is
moved (i.e., address changed) to a local page on the compute
server and its pointers are updated; otherwise, the page con-
taining the object is swapped in as a whole and the address
of the object remains the same (without requiring pointer up-
dating).
Egress. Given that the majority of the object-fetching over-
head comes from the need to find and evict cold objects, At-
las utilizes a single path, i.e., paging, to swap out data. This
approach achieves a sweet spot in balancing overhead and
benefits—on one hand, it significantly reduces the compute
resource usage for object fetching because of the elimination
of maintaining an object-level LRU; on the other hand, given
that object fetching gradually improves locality (by moving
together objects accessed closely in time), the amount of use-
less data in each swap-out (and thus the I/O amplification) is
reduced progressively during execution.

Another reason to not evict objects individually is that it
can potentially hurt locality—after objects are fetched in,
those that were scattered in remote memory but accessed
together were moved into contiguous local space; however,
these objects may not be evicted at the same time; evicting

them individually would make them go to unrelated locations
in remote memory, disrupting established locality.
Synchronization. Allowing the two paths to co-exist in har-
mony requires overcoming the following three synchroniza-
tion challenges: (1) ingress synchronization between object-
in and page-in, (2) egress synchronization between object-in
and page-out, and (3) move synchronization between object-
in and evacuation. AIFM already solves the third problem
with the declaration of dereference scopes, while the other
two are unique challenges that we target in Atlas.

4.2 Synchronization of the Two Paths

Atlas builds its object fetching path upon the same two ab-
stractions used by AIFM: the smart pointer (which is an
extension of C++ smart pointer) and the dereference scope.
This section elaborates on the synchronization mechanism
between the object fetching path and the paging path.

1 class AtlasUniquePtr<T>{
2 struct AtlasMetadata{
3 unsigned long is_moving : 1;
4 unsigned long access : 1;
5 unsigned long reserve : 2;
6 unsigned long offload : 1;
7 unsigned long size : 12;
8 unsigned long addr : 47;
9 } metadata; // 64 bits

10 AtlasUniquePtr(T* obj);
11 T* get_raw();
12 }

Figure 2: Atlas unique pointer metadata.

Pointer Metadata. Before discussing our barrier logic, we
first present the format of Atlas pointers, which are built on
C++ smart pointers. Atlas uses two types of smart pointers:
unique pointers (similar to std::unique_ptr) and shared
pointers (similar to std::shared_ptr). Figure 2 shows the
layout of an Atlas unique pointer. These fields are added for
the purpose of synchronization and pointer updating.

Each such pointer has 64-bit metadata, in which 47 bits
(addr) store the object’s raw pointer, 12 bits (size) record
its size, 1 bit (access) represents whether the object has
been accessed since the last evacuation (which will be used
by the evacuator to group recently accessed objects, see
§4.3), 1 bit (offload) indicates whether a function is be-
ing invoked on the object on the remote side, and 1 bit
(is_moving) indicates whether the object is being moved
(e.g., due to evacuation); this bit will be used for synchro-
nization between two threads trying to move the same object.
The remaining 2 bits (reserve) are reserved for future use.
Note that 12 bits can represent a size up to 4KB. Objects
larger than that are placed in the huge-object space of the
heap for which paging is the only option. get_raw retrieves
the raw pointer from a smart pointer.

A shared pointer allows aliasing. Atlas treats the first
shared pointer of an object as the main pointer. A shared
pointer’s layout is similar to a unique pointer, except that
it has an additional 8 bytes to chain all pointers—when the
main pointer is being released, Atlas follows the chain to se-
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lect a new main pointer. If an object is referenced by shared
pointers, Atlas needs to update all of them (by following the
chain).

Developers need to explicitly declare data types with
smart pointers. Developers can access data with raw (reg-
ular C++) pointers by first retrieving such raw pointers from
smart pointers. However, this can only be done within an
explicitly declared dereference scope. Figure 3 illustrates
an example of retrieving and manipulating data from At-
las smart pointers, confined by a dereference scope. As
discussed in §2, dereference scopes synchronize with ob-
ject migration tasks—once raw pointers are retrieved and
actively used, their objects are not allowed to move, and
vice versa. Atlas executes a pre_scope_barrier and a
post_scope_barrier at the beginning and the end of the
dereference scope, respectively.

1 deref_scope (smart_ptr) {
2 pre_scope_barier(smart_ptr); // Algorithm 1
3 Data * object = smart_ptr.get_raw();
4 /* Operations using the object */
5 ...
6 post_scope_barrier(smart_ptr); // Algorithm 2
7 }

Figure 3: Dereferencing an Atlas unique pointer in a deref scope.

Synchronization invariants. We present a set of high-
level invariants that Atlas maintains to solve the three syn-
chronization problems: (1) preventing an object from be-
ing fetched from the two paths simultaneously (object-in
vs. page-in), (2) preventing pages containing objects that
were just runtime-fetched from being immediately swapped
out (object-in vs. page-out), and (3) preventing an object
from being simultaneously runtime-fetched and moved by
the evacuator (object-in vs. evacuation).

Invariant #1: Object-in vs. page-in. At any moment, all
data on the same page must go through the same access path
as guided by the page’s PSF. In other words, Atlas prohibits
scenarios where certain requests are served by paging while
others are served by the runtime for the same page. Given
that Atlas changes PSF only at page-out (as opposed to set-
ting it while the page is in local memory), such scenarios can
never occur and this invariant is guaranteed by design.

Note that there is no issue if two threads fetch the same
page from the paging path—the kernel’s swap system guar-
antees only one page can be mapped. Fetching the same
object from two threads with the runtime path is not a con-
cern either: it is a solved problem in the literature of moving
garbage collectors [43] where pointer updating is used as a
synchronization point and only one object is retained.

Invariant #2: Object-in vs. page-out. Since swap-out
events can occur at any time with the runtime path unin-
formed, Atlas enforces that pages containing objects whose
dereference scopes are actively executed cannot be swapped
out. This is because if such pages are swapped out before
their dereference scopes finish, these objects may be fetched
back in immediately from the runtime path, requiring pointer

Algorithm 1: Atlas Pre-Scope Barrier (Simplified).

/* derefcnt > 0 precludes the page’s swap-out */
1 atom_inc(find_page_meta(addr).derefcnt)
2 if not tsx_check_local(addr) then /* Remote object */
3 if take_runtime_path(addr) then /* Runtime path */
4 new_addr← find_addr(addr, this.size)

/* Inc/dec the new/old page’s derefcnt */
5 atom_inc(find_page_meta(new_addr).derefcnt)
6 atom_dec(find_page_meta(addr).derefcnt)
7 alloc_copy_update(addr, new_addr, this.size)
8 this.metadata.addr← new_addr
9 addr← new_addr

10 end
11 else /* Paging path */
12 * (char*) addr
13 end
14 end

Algorithm 2: Atlas Post-Scope Barrier.

1 atom_dec(find_page_meta(this.addr).derefcnt)

updating. Pointer updating cannot be done when the raw
pointers of these objects are active on the stack. As a re-
sult, these pages cannot be swapped out until none of their
objects are executing their dereference scopes.

Atlas achieves this by maintaining a per-page deref count,
which is incremented when any object on the page enters a
dereference scope and decremented when the scope finishes.
Any page with a non-zero deref count is skipped when the
kernel looks for swap-out victims. Note that this does not cre-
ate much impact on performance because the pages whose
objects are actively used are usually hot pages and unlikely
to be selected as swap-out victims anyway.

One issue that may arise from this protection is a potential
live lock on the object-fetching path: either an ill-defined
large dereference scope or many active dereference scopes
in a parallel application may potentially lead to too much
data getting pinned in local memory, which may result in out-
of-memory errors. To tackle this issue, Atlas monitors the
pinned data and forces the flipping of their containing pages’
PSFs (to use paging) upon memory pressure. Once these
pages are swapped out, they will be paged in—this solves
the problem as page-in does not need pointer updating.

Invariant #3: Dereference scope vs. evacuation. Evacua-
tion threads may move an object while another thread is ex-
ecuting the object’s dereference scope. This must not occur
because evacuation requires pointer updating, which cannot
be done when a dereference scope is being executed (and raw
pointers are used). To this end, Atlas uses the page’s deref
count to synchronize between evacuation threads and deref-
erence scopes. A non-zero dereference count prevents the
page from being evacuated.

Compared to AIFM, Atlas employs a slightly different def-
inition of dereference scope. AIFM chose to decouple deref-
erence scopes from the barrier—it allows one dereference
scope to cover multiple smart pointer dereferences, serving
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as a coarse-grained fence between application threads and
the evacuator. On the contrary, Atlas employs fine-grained
dereference scopes, each of which is associated with one sin-
gle smart pointer dereference. This choice was made based
on our observation of frequent evacuations; using coarse-
grained dereference scopes would require constant synchro-
nizations between application and evacuation threads, lead-
ing to performance and latency impact. Fine-grained deref-
erence scopes not only reduce the degree of blocking but also
help alleviate potential live locks. Although a finer granular-
ity increases barrier overhead, this overhead is often amor-
tized by a large number of raw pointer accesses and compu-
tation within each scope. A detailed overhead analysis can
be found in §5.2 and §5.4.

With the invariants discussed above, we proceed to pre-
senting our barrier logic, which is shown in Algorithm 1 and
Algorithm 2. As illustrated in Figure 3, Atlas executes Algo-
rithm 1 and Algorithm 2 at the beginning and the end of a
dereference scope, respectively.
Pre-scope barrier. Atlas first atomically increments the
deref count for the page containing the object (Line 1). This
indicates that the page has an object whose dereference scope
is being executed, preventing the paging system from swap-
ping out the page (i.e., Invariant #2). This step must be done
before the barrier starts to guarantee that (1) if the page is
local, it cannot be swapped out from this point on, or (2) if
the object is remote, once it is fetched in, its containing page
cannot be swapped out.

Atlas uses Intel’s TSX [32] to efficiently check if the ad-
dress addr is local. Atlas starts an RTM transaction, which
contains nothing but a dereference of the object. If the ob-
ject’s containing page is unmapped, the RTM transaction
will abort with a special status captured by Atlas, which ver-
ifies the status by checking with the kernel. This hardware-
based check is ∼14× faster than a purely software-based ap-
proach that relies on a system call that walks the page table
and checks whether the page is local based on its PTE. A
true value (i.e., the object is local) returned by TSX directs
the execution to exit the barrier immediately. Otherwise, At-
las checks the PSF corresponding to the address (Line 3) to
decide whether this access should take the runtime (Lines
4-9) or the paging path (Line 12).

Using TSX to check object location may introduce false
positives—a transaction may abort even if data is local.
Since such cases are rare (e.g., less than 1/10000 in our exper-
iments), Atlas takes an optimistic approach to handle them.
Upon a TSX abort, Atlas sends an RDMA read to access the
remote object and simultaneously issues a page table walk to
verify the object’s location. If the verification fails (indicat-
ing the object is local), the fetched object is discarded. This
approach introduces only a negligible overhead (i.e., a small
number of unnecessary RDMA reads).
Runtime path. take_runtime_path in Algorithm 1
checks the PSF of the page corresponding to addr and re-

turns true if the PSF is runtime, indicating that object
fetching should be performed. For ease of presentation, Al-
gorithm 1 is significantly simplified to not show details of
how to synchronize between threads to guarantee the absence
of race condition when multiple threads fetching the same
object. Atlas first finds a new address to which the object
will be moved (Line 4). Since this address is on a new page,
before moving the object, the deref count of the new page
must be incremented (Line 5) to ensure that from this point
on, the new page cannot be swapped out until the dereference
scope finishes (i.e., Invariant #2). The barrier also needs to
decrement the deref count of the old page (Line 6) that was
incremented earlier in Line 1.

Next, Atlas fetches the object by allocating a new object
of the same size (using our log-structured allocator discussed
in §4.3), copying the object’s data into the new object, and
updates its pointers (Line 7). Atlas subsequently changes
the addr field of the pointer to the new address (Line 8).
Pointer updating is done by retrieving the object’s pointer
from its header and updating their addresses, in a way sim-
ilar to how it is done in AIFM. If it is a shared pointer, all
other pointers will be retrieved from the main one and up-
dated accordingly. The object’s is_moving field is used to
synchronize between pointer updating events performed by
multiple threads. The synchronization details are omitted for
simplicity. After the object is moved to a local page, future
accesses to the object will follow the PSF of the new page.
Paging path. The paging path simply touches the object
(Line 12) to ensure that the page fault handling is completed
after the execution passes this line.
Post-scope barrier. The post-scope barrier has much sim-
pler logic, as shown in Algorithm 2. All it needs to do is
to atomically decrement the page’s deref count, indicating
the finishing of the dereference scope. When its deref count
becomes zero, this page is subject to swap-out again (i.e., In-
variant #2).

4.3 Memory Management

Atlas’s heap is composed of a normal-object space, a huge-
object space, a metadata space, and an offload space. Atlas
manages the normal-object space via a log-structured alloca-
tor [57, 58] and maintains a background evacuator to reduce
fragmentation by compacting live objects. Atlas does not
handle huge objects that cannot fit into a page, placing them
into the huge-object space and delegating their management
to the kernel directly since they are too large to benefit from
object-level management. Metadata such as CATs are ac-
cessed by both the runtime and paging system, and hence,
it is shared between the user and kernel space. The offload
space stores objects whose functions can be offloaded to the
remote side. We will discuss it shortly.
Object allocation. The log-structured allocator maintains
thread-local allocation buffers (TLAB) to reduce the global
lock contention during parallel object allocation. The TLAB
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is managed at the granularity of log segment which is aligned
with a page to guaranteed that no object can go cross the page
boundary. Atlas allocates objects contiguously on the TLAB
as prior research [65, 70] shows that objects allocated close
in time exhibit similar usage patterns. In doing so, objects
with temporal proximity are naturally grouped into the same
log segment (page), enhancing locality.
Metadata allocation. Metadata such as dereference counters
and card tables is allocated in a dedicated metadata space.
Atlas maintains a card table for each page to record the ob-
ject access information. Each card table is a bitmap where
each bit represents a consecutive range of 16 bytes. Our ex-
periments show that the sizes of most objects are larger than
8 bytes, making 16 bytes a natural choice for the card size.
Each card table is allocated and initialized during the allo-
cation of a log segment. It is freed along with the log seg-
ment. The space needed by the card tables is 1/128 of the
total memory. In summary, the space overhead is less than
2%.
Object evacuation. The log-structure allocator [58] supports
defragmentation via a copying-based evacuator, a technique
widely used in modern garbage collectors [20]. In Atlas,
we extend the evacuator to improve the temporal locality of
pages by grouping hot objects into contiguous log segments
(pages) during the evacuation. The evacuator runs concur-
rently with the application to reduce fragmentation.

The evacuator periodically scans log segments and evac-
uates a log segment with a high garbage ratio by copying
its live objects to a newly allocated target segment. As a
result, the target segment is free of fragmentation, and the
source log segment can be freed right away. When moving
an object, the evacuator maintains its corresponding card ta-
ble values, i.e., if the object was recently accessed on the
source page, the evacuator marks its card bit on the target
page during evacuation. Furthermore, Atlas improves evac-
uation efficiency by prioritizing log segments in local mem-
ory and delaying the processing of remote log segments until
they are accessed or the free space runs out [67].

The Atlas runtime tracks whether an object has been ac-
cessed since the last evacuation via the access bit in the
smart pointer (see Figure 2). This bit is set by the read barrier
when the object is dereferenced and cleared by the evacuator
at the end of each evacuation. The evacuator segregates ob-
jects that have been accessed since the last evacuation into
a set of contiguously allocated log segments. We found this
approach to be particularly effective in improving temporal
locality for real-world workloads with skewness (e.g., 90%
of accesses hit 10% objects). The access bit allows Atlas
to distinguish hot and cold objects in such workloads, lead-
ing to a substantial performance boost. Note that this opera-
tion is significantly more efficient than maintaining an object-
level LRU for eviction. As opposed to ranking objects based
on hotness, Atlas’s access bit simply serves as an evacu-
ation location indicator. Its functionality is similar to CAT

but used differently; CAT is read and cleared by the kernel
at page eviction while the access bit is read and cleared by
the runtime at evacuation.

Computation offloading. As shown in many existing
far-memory systems, such as Semeru [66], Mako [43],
AIFM [57], and Mira [26], offloading memory-intensive op-
erations to the remote side can effectively reduce the data
movement overhead. A unique challenge for Atlas is how
to enable offloading when paging is used. Under paging,
remote memory is managed as a swap partition of a set of
swap slots. These slots are agnostic about the remote server’s
memory addresses. Pointer addresses contained in a page are
with respect to the compute server while the page can reside
at a completely different address on the remote server. This
address mismatch precludes the correct execution of a func-
tion on an object directly on the remote server.

To solve the problem, Atlas uses an approach that is sim-
ilar to Semeru [66]—we reserve a dedicated offload space
in the heap. Developers need to explicitly define remote-
able data structures and functions (which are similar to those
in AIFM). Objects registered as remotable are all allocated
into this space. Pages in this space have guaranteed vir-
tual address alignment between the compute and remote
servers—we modify the paging system to ensure that a page
at a virtual address A on the compute server is guaranteed to
be still at address A on the remote server when evicted. Atlas
requires users to guarantee a remotable data structure cannot
reference a non-remotable object. This property ensures ad-
dress consistency when a function is called remotely.

The offload space is an object-in, page-out space, which
allows objects to be fetched only through the runtime. This
is due to the need to synchronize between the servers for
safe remote execution. When a remote function is being in-
voked on an object, the offload field in its smart pointer is
used for synchronization—the runtime can not fetch the ob-
ject until the remote function is finished (and the offload

bit is cleared). Remotable objects can only be fetched into
the offload space to ensure the above-stated properties.

5 Evaluation

5.1 Setup and Methodology

We wrote 7,675 lines of C/C++ code to implement Atlas’s
runtime library, and added support in the Linux kernel (ver-
sion 5.14-rc5) for page management (e.g., path synchroniza-
tion). We ran experiments with one compute server and one
memory server connected by a 200 Gbps Infiniband switch.
Each server has 2 Intel Xeon Gold 6342 CPUs (24 physical
cores each), 256 GB of memory, and a 100 Gbps Mellanox
ConnectX-5 InfiniBand adapter. All evaluated systems ran
on Ubuntu 18.04. We configured the servers following com-
mon practice for low latency [52], disabling Turbo Boost,
CPU frequency scaling, and transparent huge pages.
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Baselines. Atlas was implemented based on Fastswap and
AIFM. For the paging path, Atlas uses unmodified Fastswap
with added tasks of profiling and synchronization. For the
runtime path, Atlas uses AIFM’s ingress algorithm and pag-
ing at egress. For evaluation, we used AIFM [57] and
Fastswap [9] as our baselines for object fetching and paging,
respectively. For Fastswap, we ran the original applications
to avoid unnecessary runtime overhead. For AIFM, we used
the performance-tuned versions of applications, where all op-
timizations were enabled including per-thread access pattern
tracking, object hotness tracking, and non-temporal program-
ming hints [57]. We turned off offloading when evaluating
throughput and latency, leaving its evaluation to §5.4.
Workloads. As shown in Table 1, we evaluated six real-
world applications and two synthetic applications, including
Metis [44]—an optimized MapReduce framework for mul-
ticore architectures, Aspen [17]—a purely functional tree-
based graph processing framework, GraphOne [34]—a data
store for real-time analytics on evolving graphs, as well
as Memcached [5]—an in-memory key-value store. We
ran Memcached with two different workloads: a real-world
workload (MCD-CL) that comes from Meta’s cache sys-
tem CacheLib [12] and a synthetic workload (MCD-U) gen-
erated by YCSB [15] that follows a uniform distribution.
We also employed two synthetic applications developed by
AIFM’s authors to compare Atlas and AIFM. These applica-
tions include one batch application, DataFrame [46], and one
latency-critical application, WebService.

Covering a wide spectrum of domains and memory access
patterns (i.e., sequential, random, skewed, and mixed pat-
terns), these applications can be divided into four categories:

First, both Memcached workloads exhibit random access
patterns, leading to significant I/O amplification under pag-
ing. The real-world workload MCD-CL has a high level of
skewness with churn behaviors. Churn refers to the phe-
nomenon that hot data in the working set changes rapidly
over time. On the contrary, the synthetic workload MCD-U
demonstrates completely random behaviors, with no skew-
ness and hot data. As a result, MCD-CL is more amenable
to Atlas’s dynamic locality improvement than MCD-U.

Second, GraphOne and and Aspen are evolving graph sys-
tems, which are representatives of applications that perform
analytics over frequently updated datasets. GraphOne uses
adjacency lists and edge lists to store an input graph while
Aspen utilizes compressed purely-functional trees to store a
graph, which supports a higher update rate. The working sets
of these applications change continuously. Their accesses
are very complex: the first stage builds the graph in memory,
exhibiting a random pattern. The second stage runs itera-
tive algorithms where the first iteration does not have local-
ity and thus performs random accesses; the subsequent iter-
ations would enjoy better locality if it runs on Atlas, which
dynamically improves the locality during the first iteration.
However, updates to the input graph disrupt the locality and

hence there can also be many random accesses in the mid-
dle of the iterations. We used these two graph frameworks
to evaluate how well Atlas can dynamically adjust the data
layout and improve locality.

Third, Metis (MapReduce) and DataFrame represent bulk
data processing systems with clear phase-changing behav-
iors (discussed in §3). These workloads are used to evalu-
ate whether Atlas can accurately recognize access patterns
and switch to the proper data path. DataFrame is addition-
ally used to evaluate compute offloading due to its memory-
intensive operations (§5.4).

Finally, WebService is an interactive web application
exhibiting mixed access patterns, from random, pointer-
chasing, to sequential accesses.

For Atlas to run these applications, we modified 263 lines
of code for Metis, 278 lines for Aspen, 219 lines for Gra-
phOne, and 391 lines for Memcached; the additional code
was used to declare smart pointers and dereference scopes.
It took one developer a few hours to port each program.
Memory setup. Each application was run with five local
memory configurations: 13%, 25%, 50%, 75% and 100%,
each representing a specific percentage of an application’s
working set that can fit into local memory. These configura-
tions were enforced using cgroup. The first four configura-
tions were employed to evaluate the performance of the three
systems when using different amounts of remote memory,
while the 100% (all local memory) configuration was used to
assess the runtime overhead of Atlas and AIFM, introduced
by the barriers (for smart pointer dereferencing), dereference
trace recording (for object-level prefetching), and evacuation
(for defragmentation), as well as other bookkeeping over-
heads; see Table 2 for more details.

5.2 Throughput

We first measured the throughput of the applications with
varying local memory ratios. Overall, Atlas outperforms
Fastswap and AIFM, respectively, by 3.2× and 1.5×, over
the eight real-world applications using remote memory (from
13% to 75% local memory). When running locally (100% lo-
cal memory), Atlas and AIFM incur an overall overhead of
19.1% and 14.0%, respectively, of which 10.2% and 2.3%
are from the barriers. This section reports the overall perfor-
mance and runtime overhead. We show a detailed overhead
breakdown in §5.4.
MCD-CL and MCD-U. Both workloads were configured
with the same operation ratios, i.e., 87.4% get and 12.6%
set. As shown in Figure 4(a), for a highly-skewed workload
like MCD-CL, both Atlas and AIFM outperform Fastswap
(by 6.4× and 3.2×, respectively). The performance dif-
ference comes primarily from the reduced I/O amplifica-
tion—Fastswap fetches 26× and 30× more data than At-
las and AIFM, respectively, resulting in wasted memory (for
storing unused data) and significantly more swaps. Under
100% local memory, Atlas and AIFM introduce an over-
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Application Dataset Size Characteristics
Memcached CacheLib [5] (MCD-CL) Meta CacheLib [12] 50M records Skewness with churn

Memcached Uniform (MCD-U) Synthetic, uniform distribution [15] 50M records Random access
GraphOne PageRank [34] (GPR) Twitter 2010 [35] 1.5B Edges, 41.7M Vertices Evolving graph
Aspen TriangleCount [17] (ATC) Friendster [73] 1.8B Edges, 65.6M Vertices Evolving graph
Metis Word Count [44] (MWC) The News Crawl Corpus [72] 5.1GB Phase-changing
Metis PageViewCount (MPVC) Wikipedia English [6] 15GB Phase-changing with mixed patterns

DataFrame [46] (DF) NYC Taxi [3] 16 GB Phase-changing with offloading
Web Service [57] (WS) Synthetic [57] 10GB hashmap, 16GB array Mixed patterns with offloading

Table 1: Applications used for our evaluation.
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Figure 4: Throughput comparison between Atlas, Fastswap and AIFM with varying local memory ratios. "All Local" lines represent the
performance of unmodified applications under 100% local memory.

all overhead of 9.0% and 3.2%, respectively, compared to
Fastswap. The primary source of the overhead is the barri-
ers, taking 6.2% and 1.5% of the execution time, respectively.
Given that Memcached spends a substantial portion of its ex-
ecution on communication, the barrier overhead, which is
associated with the in-memory processing, is insignificant.

Compared to AIFM, Atlas further improves the perfor-
mance by 1.2×, 1.8×, 2.2×, 2.5×, under the four different
memory configurations (75%, 50%, 25%, and 13%). This
improvement stems from a much higher eviction through-
put (on average 4.6× higher) in Atlas due to the elimination
of object eviction. In addition, Atlas’s concurrent evacua-
tor (§4.3) improves the temporal locality by segregating hot
objects into contiguous pages, leading to an overall of 18%
more accesses that go through the paging path (§5.4). This
result was achieved when AIFM used 20 eviction threads
while Atlas only used one single swap-out thread in the pag-
ing path. MCD-U performs random accesses with no hot
data, hindering opportunities for Atlas to improve locality.
Hence, the usefulness of the hybrid data plane is limited.
However, Atlas still outperforms AIFM by up to 1.4× due
to more efficient eviction, as shown in Figure 4(b).

GPR and ATC. To execute an evolving graph engine, we
divided the input datasets [35] into three batches, which are
incrementally fed to the graph engine. For each batch, the

graph engine conducts the following three steps: load the
updates, update the graph, and execute the analytics.

As Figure 4(c) shows, in the presence of remote mem-
ory, Atlas outperforms AIFM and Fastswap by an average of
1.8× and 3.1×, respectively, on GPR. As stated earlier, graph
updating and the first iteration of analytics exhibit random
access patterns. As such, GPR’s throughput under AIFM is
1.7× higher than under Fastswap. For Atlas, when the ana-
lytics starts, objects are accessed and reordered by the object
fetching in the first few iterations; in the subsequent itera-
tions, pages storing edge objects are switched to using the
paging path due to the gradually established locality. As a re-
sult, up to 82% of pages have their PSFs changed during the
execution (from object fetching to paging), as demonstrated
in Figure 7(b). This improves the analytics throughput.

ATC’s computation stages and access patterns are both
similar to those of GPR. For ATC, the trees storing the graph
data are dynamically reorganized by Atlas’s runtime path,
leading to ∼38% of pages changing their PSFs (from object
fetching to paging). In addition, evacuation improves locality
by segregating hot objects from these trees into a few pages,
reducing remote memory accesses by 24%. As demonstrated
in Figure 4(d), ATC’s overall throughput is 2.0× higher un-
der Atlas than under AIFM.
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When running on 100% local memory, Atlas’s barrier
overheads for both GPR and ATC are modest, 8.2% and
4.3%, due to the high ratio between raw pointer accesses and
smart pointer dereferences. Oftentimes, one object derefer-
ence (e.g., obtaining a vertex that contains a series of edges)
is followed by dozens of raw pointer accesses (e.g., to indi-
vidual edges). Each dereference scope contains an average
of 21 raw pointer accesses. In addition, for ATC, the barrier
overhead is further diluted due to its higher computation and
memory access costs (from poor spatial locality).
MWC and MPVC. Figure 4(e) and (f) respectively show
the performance of MWC and MPVC. As discussed in §3,
MPVC exhibits a two-phase behavior that can benefit from
adaptive path switching, leading to a 1.2× and 1.4× im-
provement, compared with AIFM and Fastswap, respectively.
MWC has a similar two-phase behavior with MPVC but ex-
hibits more random accesses in its map phase, resulting in
almost no page that can be flipped to paging. Compared to
AIFM and Fastswap, MWC has 1.2× and 1.5× performance
improvement, respectively.

For these two applications, the runtime overhead is rela-
tively high—32.0% (Atlas) and 19.2% (AIFM), under 100%
local memory. These two Metis workloads are both memory-
intensive—they keep scanning data with high parallelism,
leading to both high barrier overhead and profiling overhead
(e.g., for card profiling and access trace recording, see §5.4).
Atlas’s barrier overhead reaches up to 16.1% and 17.4% for
MPVC and MWC, respectively, which are about 4× higher
than that of AIFM.
DF. DF is a table-structured in-memory data structure with
hundreds of columns and millions of rows, popularized in
Pandas [48]. Users can slice data in different ways and run
various statistics. As Figure 4(g) shows, Atlas outperforms
AIFM by 1.2∼1.4× in the four remote-memory settings. We
ran a client, developed by the AIFM authors, to conduct a se-
ries of Copy and Shuffle operations on DF. Similarly to Metis,
DF demonstrates clear phase-changing behaviors when pro-
cessing different operations—a Copy operation copies data
from a column, exhibiting excellent spatial locality and a
clear sequential pattern, while a Shuffle operation reorders
rows for each column, exhibiting random patterns. Atlas
achieves superior performance to AIFM and Fastswap, due
to its adaptive access path selection.

AIFM suffers a higher runtime overhead (51.4%) com-
pared to Atlas (34.7%) despite having a lighter barrier. The
reason is that AIFM maintains a remote vector on the mem-
ory server for every DataFrame vector to support the eviction
of individual objects with varied sizes. During the execution,
DataFrame vectors keep getting allocated and resized. As a
result, the remote data structure also needs to be frequently
resized to maintain a valid mapping from local objects to
their remote memory locations. Resizing is a heavy opera-
tion as it requires allocating memory and moving all existing
objects. Therefore, it becomes a major source of overhead,

which can take two-thirds of the runtime overhead under
100% local memory. On the other hand, under Atlas, evic-
tion is handled by the Linux kernel at a fixed page size and
there is no need to maintain any remote data structures. Note
that frequent resizing of data structures was not observed in
other applications. For example, for WS, the hash table array
is allocated at the start of the application and its size remains
fixed throughout the execution.
WS. WS is implemented by AIFM’s authors to simulate
a distributed workload. Each client (thread) sends 32 re-
quests to look up keys in an in-memory hash table and
fetches a single 8KB element from an array. This element
is then encrypted with Crypto++ [7] and compressed using
Snappy [23] before being sent back to the client. We use a
26GB dataset for the evaluation, which is consistent with the
dataset used in AIFM [57]. Client requests are generated by
following a Zipfian distribution.

As Figure 4(h) shows, compared to AIFM, Atlas improves
WS’ performance by an average of 1.3× with remote mem-
ory. This is due to an extremely large number of objects on
the LRU list that must be analyzed by AIFM. AIFM’s perfor-
mance degradation is primarily due to the compute resource
contention between application and evacuation threads (dis-
cussed in §3), making it hard for evacuation threads to
quickly identify and evict cold objects. Consequently, AIFM
ends up evicting arbitrary objects to reclaim memory, result-
ing in data thrashing. By using paging for eviction, Atlas
improves the eviction throughput by 5.8×, lifting data evic-
tion efficiency to 5.9 cycles/byte, which is 7.4× higher than
that of AIFM (43.7 cycles/byte).

Atlas and AIFM have relatively low overhead for WS due
to the coarse-grained data fetching (8KB element) and the
subsequent compute-intensive encryption. As a result, Atlas
and AIFM introduce a 10.1% and 1.9% runtime overhead
under 100% local memory, respectively.

5.3 Latency

This section evaluates the latency distribution using the two
latency-critical applications: WS and MCD-CL. The 25% lo-
cal memory ratio was used in these experiments.
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(a) 90th latency-throughput curve. (b) Latency CDF.

Figure 5: (a) 90th latency as a function of throughput; (b) Latency
CDF under 0.23 MOPS offered throughput. FS stands for Fastswap.
Web Service (WS). Figure 5(a) compares the tail latency
among the three systems. Fastswap’s tail latency rapidly
grows due to page thrashing caused by severe access ampli-
fication. AIFM reduces amplification so that requests are
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less blocked by eviction. Despite the reduced amplification,
AIFM still has to rank and evict individual key-value pairs,
and hence the system saturates at 0.36 MOPS.

Atlas fetches individual key-value pairs initially via the
runtime path and places those pairs which belong to the same
request together on the same page (because these KV pairs
are accessed close in time). As the execution progresses,
Atlas switches to paging that can load multiple key-values
pairs at the same time. Meanwhile, page-level eviction con-
tinuously offers a much higher eviction throughput so that it
never blocks swap-ins. As a result, Atlas’s tail latency stays
low until 0.45 MOPS and can finally reach a peak through-
put of 0.57 MOPS. As shown in Figure 5(b), the latencies
of AIFM and Atlas are comparable until the 50th percentile,
where the application starts accessing many remote objects
leading to increased object management overhead. On the
contrary, due to the optimized data layout which enables the
efficient use of paging, Atlas experiences fewer remote ac-
cesses.
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Figure 6: (a) 90th latency as a function of throughput; (b) Latency
CDF under 1 MOPS offered throughput. FS stands for Fastswap.

MCD-CL. Memcached CacheLib is similar to Web Service
as they both access key-value pairs from a hash table. The
difference is that every request key in MDC-CL follows a
Zipfian distribution, as opposed to accessing key-value pairs
always in groups of 32. Figure 6 compares the tail latency
among the three systems. It is clear that Atlas outperforms
the other two systems. In addition to the same reasons ex-
plained above, MCD-CL is a skewed workload and hence a
substantial portion (40%) of the improvement comes from
the evacuation that groups hot objects in contiguous pages,
making these pages amenable to paging.

5.4 Performance Drill Down
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Figure 7: The percentage of pages with PSF=paging in the mem-
ory footprint changes with the elapsed execution time.

Adaptive path switching. To understand the effectiveness
of Atlas’s adaptive path switching, we measured the percent-
age of the pages whose PSF is paging during the execu-
tion. Figure 7 demonstrates how this percentage changes

during the execution for three applications: Memcached
CacheLib (MCD-CL), GraphOne Pagerank (GPR) and Metis
PageViewCount (MPVC). As Figure 7(a) shows, the number
of pages that go through the paging path rises and falls over
the time due to the churn behavior in MCD-CL discussed in
§5.1. Since the workload is highly skewed, most accesses
fall on a small number of hot objects, which stay in local
memory and are moved into contiguous pages (with a high
CAR) until the hot spot shifts.

As discussed in §5.1, the execution of GPR has experi-
enced three batches of updates to the input graph, each of
which contains two steps: graph building and analytics. Dur-
ing graph building, applying edge-level updates exhibits ran-
dom access patterns, which can disrupt locality and leave
many pages with a low CAR; these pages would have to
go through the object fetching path. However, the subse-
quent analytics (like PageRank) runs multiple iterations; At-
las can quickly improve locality in the first few iterations,
making pages turn their PSF to paging in subsequent itera-
tions. This pattern can be clearly seen in Figure 7(b).

MPVC has a clear two-phase behavior (see Figure 1(a))
which can be accurately recognized by Atlas —the number
of pages that go through the paging path increases dramat-
ically as the phase change is detected by Atlas (shown in
Figure 7(c)). To understand the individual contributions of
object fetching and evacuation to the locality, we disabled
the access bit tracking and let the evacuator move live ob-
jects without guidance. This reduces the overall percentage
of pages that go through paging by 4% on average.
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Figure 8: Throughput comparisons of DataFrame (DF) and Web
Service (WS) when Atlas and AIFM enable compute offloading.
CO stands for variants with compute offloading.
Computation offloading. We compared the offloading per-
formance between Atlas and AIFM using DF and WS. Fig-
ure 8 shows the results of Atlas and AIFM with and with-
out offloading. 18 cores were reserved on the remote side
for both Atlas and AIFM, which is consistent with the of-
floading settings used by AIFM [57]. For DF, we offloaded
the memory-intensive operations, i.e., Copy and Shuffle,
to the remote side. For WS, we offloaded the heavyweight
array processing (on the 16GB data array). Compared to the
setting where offloading is disabled (Figure 4 (g) and (h)),
the throughputs of Atlas and AIFM are both dramatically im-
proved (by up to 1.5× and 1.9× for DF, and 1.6× and 2.3×
for WS, respectively), due to reduced remote accesses and
data movement. On the other hand, Atlas and AIFM achieve
comparable performance. This is because Atlas focuses on
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fetching efficiency; offloading reduces the need for fetching,
making Atlas’s benefit less significant.
Runtime overhead analysis. To understand the performance
penalty introduced by the runtime of Atlas and AIFM, we
break down and compare the runtime overhead by sources.
When running with all local memory, the runtime overhead
of Atlas and AIFM can be divided into five major compo-
nents, listed in Table 2. Note that the overhead reported here
represents the worst-case scenario for Atlas when compared
against AIFM. When there is remote memory, part of Atlas’s
runtime overhead can be eliminated by switching to the pag-
ing path—dereference trace profiling is not used for paging
as its goal is to analyze dereference traces for prefetching
objects. Meanwhile, AIFM incurs more profiling overheads
that do not exist under the all local memory setting, such as
maintaining the object-level LRU for eviction.

Sources of overhead Functionality Affected systems

Barrier Correctness guarantee, such as Atlas and AIFM
(Dereferencing) location check & synchronization

Card Profiling Offering data path switching hints. Atlas

Dereference Trace Offering object-level Atlas and AIFM
Profiling prefetching hints

Evacuation Defragmentation Atlas and AIFM

Remote Data Structure Managing AIFM
Management object-level eviction

Table 2: Major types of runtime overheads, operations involved in
each type, and their affected systems.
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Figure 9: Runtime overhead breakdown: overhead is calculated as
the ratio between the extra execution time introduced and the exe-
cution time under 100% local memory.

As shown in Figure 9, compared to Fastswap, the extra
tasks in Atlas incur a runtime overhead of 7.7-34.7%, while
AIFM’s overhead is 1.9-51.4%. The overall overheads of the
two systems are 19.1% and 14%, respectively. The primary
source of overhead for both systems is the barrier (except for
DF with AIFM, for which the reasons are explained in §5.2).
Specifically, the Atlas barrier accounts for half of the total
overhead (∼10%), and its cost is 4.4× of that of AIFM. Note
that this overhead correlates with an application’s memory
access behavior: the most memory-intensive applications
suffer the heaviest barrier overhead (MWC, MPVC, DF).

Although Atlas uses a heavier barrier, it underperforms
AIFM by only 4% under 100% local memory. The reason is
three-fold: (1) the barrier overhead is effectively amortized

across the computation and raw pointer accesses (§5.2); (2)
AIFM’s use of coarse-grained dereference scopes leads to
higher synchronization costs than Atlas; and (3) there are
other operations that also contribute to the runtime overhead.
Since the first item has been discussed earlier in this section,
here we elaborate on the second and third items.

The barrier conducts two basic tasks, object location
checking and synchronization. For location checking, Atlas
has a much higher overhead than AIFM due to the use of
TSX to detect an object’s location whereas AIFM checks a
bit on each reference. However, for synchronization, AIFM’s
coarse-grained dereference scopes incur a higher cost, which
effectively reduces the performance gap between the barri-
ers of the two systems. After selecting the victim segments,
AIFM’s evacuator must wait until all application threads exit
their dereference scopes to avoid compacting objects being
accessed through raw pointers. This design does not work
well for big data applications with high object allocation
rates, such as MWC, MPVC and Memcached. On the con-
trary, Atlas’s fine-grained dereference scope design enables
evacuation threads to skip the segments (each aligned to a
page in Atlas) whose deref count is non-zero (indicating
they are being used in active dereference scopes) instead of
blocking the whole evacuation, leading to significantly re-
duced synchronization efforts. In fact, Atlas’s CPU yield rate
caused by synchronization is an order of magnitude lower
than that of AIFM due to our non-blocking design.

Another major source of overhead is the dereference trac-
ing (to provide prefetching hints), accounting for 14% and
19% of the total overhead for Atlas and AIFM, respectively.
Among our applications, DF, MWC, MPVC and GPR use ar-
ray data structures which are amenable to prefetching. As a
result, there is a relatively high tracking overhead (account-
ing for 34% overhead on average) for both Atlas and AIFM.
Other applications such as WS and Memcached use hash
maps and small objects as their data structures, which are not
as amenable to prefetching as arrays. Hence, for most of their
memory accesses, the locations are not tracked and their trac-
ing overhead is much lower. Note that with remote memory,
the dereference tracing overhead is significantly lower under
Atlas than under AIFM because a large amount of data (e.g.,
up to 82% for GPR) goes through the paging path, which
utilizes the lightweight page-level prefetcher.
CAR threshold. Figure 10 shows the influence of CAR
threshold on the throughput of three applications. Picking
the right CAR threshold is a tradeoff between fetching effi-
ciency and resource waste. We used 80% as the CAR thresh-
old for flipping PSF in our evaluation. A higher CAR is
often too conservative. For example, in the case of MCD-
CL, when the threshold is set to 100%, we observed that few
pages can be flipped to paging. Therefore, most remote ob-
jects still have to be fetched individually instead of fetched
in batches with page faults, leading to a 25% decrease in
throughput. On the contrary, a lower CAR may result in
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Figure 10: Sensitivity of the CAR threshold.

premature use of paging, leading to I/O amplification. As
shown, the best performance is achieved when the threshold
is between 80% and 90%. As such, we used the lower bound
80% based on the observation that the bandwidth of a mod-
ern network such as InfiniBand [49] is already high and will
only become higher in the future, making it possible to trans-
fer (slightly) more data with little overhead.
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Figure 11: Normalized throughput of Memcached workloads run-
ning on Atlas and Atlas-LRU under 25% local memory.

Hotness tracking. Atlas uses an access bit on each smart
pointer to segregate hot and cold objects during evacua-
tion, offering benefits to workloads that exhibit skewness.
We evaluated the effectiveness of Atlas’s access bit with
three skewed workloads, i.e., highly-skewed (Meta, MCD-
CL) [2], moderately-skewed (Twitter, MCD-TWT) [74] and
uniformed without skewnewss (MCD-U) [15]. We compared
Atlas with a baseline (Atlas-LRU) equipped with an LRU-
like policy from CacheLib [12], which represents a more ac-
curate approach to identifying hotness.

As shown in Figure 11, Atlas’s single-bit design outper-
forms the LRU-like design by 7.5%, 3.3% and 6.0%, respec-
tively. The LRU-like policy trades compute resources for
accuracy by maintaining the logical ordering of objects via a
linked list. Each dereference triggers a promotion that moves
the object to the head of the LRU list. In order to reduce the
overhead, we adopted flat combining [30] (to reduce thread
lock contention) and ignored the dereferences of an object
within 10s (to reduce promotion frequency for extremely hot
objects) [12]. However, although an LRU-like policy can re-
duce the frequency of remote access, it incurs a maintenance
overhead of up to 9% due to a huge number of objects.

Of course, the more bits used, the higher accuracy they
bring. Atlas allows developers to customize the hotness
tracking policy with the two reserved bits in each smart
pointer (Figure 2). For our applications, we did not observe
significant performance variations between using one and
two access bits—likely the ability of distinguishing hot and
cold objects is not increased much with two access bits.

6 Related Work
Disaggregation. Resource disaggregation has become a
trending architecture for datacenters to improve resource uti-

lization. Its key idea is to break the server hardware bound-
ary and unstrand idle resources of remote servers by lever-
aging advanced network hardware [22, 28]. Existing sys-
tems have demonstrated the viability of disaggregated stor-
age [33, 38], accelerators [50, 63, 75], network [60], and
memory [25, 59]. For a memory-disaggregated system,
memory spans across multiple servers. The efficient data
path of Atlas can speed up the data transfer between servers.
Paging-based far memory. A practical way to deliver far
memory is to leverage the paging system to access far mem-
ory. Google and Meta have reported their successful deploy-
ment of such systems in their datacenters [36, 71]. Many
optimizations to the kernel data path have been proposed for
improved efficiency, including but not limited to bypassing
the block layer [9, 55], prefetching more accurately [45], and
reducing interference [68]. The design of Atlas is orthogo-
nal to the underlying paging systems and can directly benefit
from optimizations within these systems.
Object-based far memory. Many runtime libraries offer new
primitives for object-granularity far memory management,
making them a more efficient alternative for scattered data
on far memory. For example, AIFM [57] proposed remote-
able data structures, FaRM [18] offered key-value interfaces,
and Grappa [47] builds a software distributed memory. At-
las focuses on the cooperative use of its two data paths and
benefits directly from existing optimizations.
Emerging hardware. Emerging hardware technologies un-
lock new opportunities for efficient far memory. Clio [27],
StRoM [61], and RMC [10] offload functionalities to their
customized hardware to reduce network traffic. Finally,
CXL [16, 24, 39, 40, 77] and Project PBerry [13, 14] en-
able far memory access at the cache-line granularity. Atlas
directly benefits from the throughput and latency advance-
ments of new hardware technologies. Besides, for hardware
solutions with a fixed access granularity, Atlas can improve
data locality to improve data transfer efficiency.

7 Conclusion
We present Atlas, a hybrid dataplane that enables efficient far
memory for bulk data and scattered objects simultaneously.
Atlas outperforms both the state-of-the-art object-based and
paging-based far memory systems.
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A Artifact Appendix
A.1 Overview

Atlas is a kernel-runtime co-designed system to enable a hy-
brid remote memory data plane. The artifact includes the
custom Linux kernel and the runtime library to enable Atlas-
managed applications. To run the artifact, two servers with
Intel CPUs connected by InfiniBand are required. The server
running the application is the CPU server, while the other
server providing remote memory is the memory server. De-
tailed instructions can be found in Atlas code repository.

A.2 Checklist

• Hardware: Two servers with Intel CPUs with TSX,
connected by InfiniBand

• Software Environment: Ubuntu 18.04, 20.04 or 22.04,
with the specified version of MLNX_OFED driver and
provided Linux kernel described below

• Public Link to Repository: https://github.
com/wangchenxi7/Atlas

• Code License: MIT License

A.3 Building the Linux Kernel

## all operations are performed on both

servers unless specified

cd linux-5.14-rc5

cp config .config

sudo apt install -y build-essential

bc python2 bison flex libelf-dev

libssl-dev libncurses-dev libncurses5-dev

libncursesw5-dev

./build_kernel.sh build

./build_kernel.sh install

./build_kernel.sh headers-install

## edit GRUB_DEFAULT="Advanced

options for Ubuntu>Ubuntu, with Linux

5.14.0-rc5+", or whatever the new kernel

version code is

## edit GRUB_CMDLINE_LINUX="nokaslr

transparent_hugepage=never

processor.max_cstate=0

intel_idle.max_cstate=0 tsx=on

tsx_async_abort=off mitigations=off"

sudo vim /etc/default/grub

sudo update-grub

sudo reboot

A.4 Setting up InfiniBand Connection

## use Ubuntu 18.04 as an example below

wget https://content.mellanox.com/ofed/

MLNX_OFED-5.5-1.0.3.2/MLNX_OFED_LINUX-5.5-

1.0.3.2-ubuntu18.04-x86_64.tgz

tar xzf MLNX_OFED_LINUX-5.5-1.0.3.2-

ubuntu18.04-x86_64.tgz

cd MLNX_OFED_LINUX-5.5-1.0.3.2-

ubuntu18.04-x86_64

sudo apt install -y bzip2

sudo ./mlnxofedinstall

-add-kernel-support

sudo /etc/init.d/openibd restart

sudo update-rc.d opensmd remove -f

sudo sed "s/# Default-Start:

null/# Default-Start: 2 3 4 5/g"

/etc/init.d/opensmd -i

sudo systemctl enable opensmd

sudo service opensmd start

## assign IPs to InfiniBand interfaces on

both servers

sudo nmtui

A.5 Building Atlas Runtime

## use gcc-9

cd atlas-runtime/third_party

git clone -depth 1 -b

54eaed1d8b56b1aa528be3bdd1877e59c56fa90c

https://github.com/jemalloc/jemalloc.git

cd ../bks_module/remoteswap

## on memory server

cd server && make

## on CPU server

cd client && make

cd ../../bks_drv && make

cd ../.. && mkdir build && cd build

cmake .. && make -j

A.6 Running Atlas Applications

cd atlas-runtime/bks_module/remoteswap

## on memory server

cd server

##./rswap-server <memory server IB ip>

<memory server IB port> <memory pool size

in GBs> <CPU server core count> e.g.,

./rswap-server 172.16.16.1 9999 48 96

## on CPU server

cd client

## edit ‘mem_server_ip‘,

‘mem_server_port‘ and

‘SWAP_PARTITION_SIZE_GB‘ to be consistent

with memory server parameters

vim manage_rswap_client.sh

bash manage_rswap_client.sh install

## run a test

cd atlas-runtime/build/tests/

runtime/unique_ptr

bash test.sh ./unique_ptr_test
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Abstract
Despite being a powerful concept, distributed shared memory
(DSM) has not been made practical due to the extensive syn-
chronization needed between servers to implement memory
coherence. This paper shows a practical DSM implementa-
tion based on the insight that the ownership model embedded
in programming languages such as Rust automatically con-
strains the order of read and write, providing opportunities
for significantly simplifying the coherence implementation if
the ownership semantics can be exposed to and leveraged by
the runtime. This paper discusses the design and implementa-
tion of DRust, a Rust-based DSM system that outperforms the
two state-of-the-art DSM systems GAM and Grappa by up to
2.64× and 29.16× in throughput, and scales much better with
the number of servers.

1 Introduction
The concept of distributed shared memory (DSM) received
significant attention during the early years of distributed com-
puting systems. This era witnessed a plethora of pioneering
efforts, as exemplified by seminal works such as [10, 16–18,
31, 36, 49, 50, 56, 61–63, 80]. DSM offers the power of par-
allel computing using multiple processors and machines and,
more crucially, streamlines the development of distributed
applications with a unified, contiguous memory view.

The initial enthusiasm for DSM was tempered by sig-
nificant performance bottlenecks, primarily due to the
low network speeds prevalent during its nascent stages.
Recent advances in hardware and networking technolo-
gies [3,7,12,19,23,29,33,38,40,42,46,51,54,64,66,74,78]
have revitalized the DSM explorations. Several new DSM
systems [14, 45, 60, 77, 81, 88] were proposed in recent
years to take advantage of these enhanced networks. How-
ever, these systems are still far from achieving satisfactory
performance, exhibiting poor scalability and substantial
slowdown compared to their single-machine counterparts.

⋆ Part of the work was done when Haoran Ma and Shi Liu interned at
Alibaba Group.

This is mainly due to the intensive synchronization operations
needed to ensure memory coherence across servers.
State of the art. The majority of existing DSM sys-
tems [6, 14, 45, 88] adopt an approach to achieve data
consistency by adhering to the following invariant: for each
data block to be accessed, the block is either located on
a single node with potential read and write access, or it
is replicated across multiple nodes with each having read
access only. Prior to a server attempting to access a block, a
DSM system checks the state of the block, invalidates copies
of that block on all other servers, and then transmits the
block to the requesting server. This synchronization process
necessitates multiple network round trips. Even with RDMA,
the incurred latency is still orders of magnitude higher
compared to a single local access, significantly degrading
overall performance. Effectively reducing the number of
synchronizations is, therefore, crucial for minimizing DSM
overhead and rendering it feasible for real-world deployment.

A practical strategy to minimize synchronization overhead
involves implementing high-level protocols to guarantee
exclusive access for each server. For instance, Apache
Spark [91] utilizes an immutable data structure known as
a resilient distributed dataset (RDD) for distributed access.
However, RDD only facilitates coarse-grained distributed
access, limiting each server to accessing a distinct partition
of an RDD. While increasing access granularity enhances
performance, it comes at the expense of reduced general-
ity—Spark is tailored for bulk processing of batch data and
is incapable of supporting distributed applications requiring
object-level accesses, such as social networks where objects
of various types and sizes (e.g., images, connections, etc.) are
created and manipulated upon each user request.
Insights. Our main observation is that synchronization
overheads in existing DSM systems are introduced primarily
due to the use of a generic approach that overlooks semantic
information from programs. For example, many real-world
concurrent programs are engineered with a single-writer-
multiple-reader (SWMR) discipline to ensure correctness
during concurrent operations. Leveraging such information
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can potentially eliminate the need to check the state of remote
data blocks before accessing them, leading to dramatically
improved performance. A major challenge is, however, how
to expose such semantics in a sensible way so that the DSM
system can see and act upon it.

One approach to convey such semantics, as demonstrated
by AIFM [73] and Midas [68], involves exposing APIs that
developers can invoke to specify program regions accessible
only by a single writer. However, this process is cumbersome
and error-prone, demanding a profound understanding of
potential executions and involving substantial program
writing. Our key insight in this endeavor is that the SWMR
programming paradigm aligns seamlessly with ownership
types, which have already been integrated into programming
languages like Rust [75]. Rust is widely employed in the sys-
tem community for dependable and secure implementation
of low-level systems code.

Rust’s ownership type inherently upholds SWMR proper-
ties in any compiled Rust program. The fundamental concept
behind the ownership type is that each value is ensured to
have a single unique variable as its owner throughout the
execution. While multiple references to a value are allowed,
only the owner and mutable references can modify the value.
Moreover, only one of these references is permitted to be
used for modifying the value at any given point.

When developing a DSM system on top of an ownership-
based language like Rust, SWMR semantics are inherently
embedded in any Rust program by design. Effortlessly
extracting such information becomes possible with basic
compiler support, sparing developers from the need for code
rewriting. Utilizing the SWMR semantics from the program
leads to a considerably simplified process for accessing data
in DSM. In the case of a write access, the ownership type
ensures exclusive access to the data. Consequently, DRust
can move the data to the requesting machine, performing
the write there without explicitly invalidating its copies on
other machines. In the case of a read access, data can be
efficiently replicated to (and cached in) each requesting
machine, benefiting from the compiler-provided assurance of
freedom from concurrent writes.

This paper presents DRust, an efficient Rust-based DSM
implementation that enables object-level concurrent accesses
by leveraging the SWMR semantics made explicit by Rust’s
ownership type. DRust automatically turns a single-machine
Rust program into a DSM-based distributed version without
requiring code rewriting. While extracting the ownership se-
mantics appears straightforward, leveraging it to implement
a distributed coherence protocol correctly and efficiently
presents two main challenges.

The first challenge is how to manage memory correctly
and efficiently. Rust’s ownership type system is inherently
designed for a single-machine environment, where the
memory address of an object remains constant post-creation.
This assumption is disrupted in a distributed environment,

where objects may be migrated or duplicated on different
machines. Such actions can lead to the risk of dangling
pointers, potentially breaking memory coherence.

To tackle these issues, DRust builds a global heap spanning
multiple servers based on the idea of partitioned global ad-
dress space [21]. Each object in the heap has a unique global
address in the address space, which can be used for accessing
the object from any server. DRust re-implements Rust’s
memory management constructs to allocate objects in the
global heap. Given that a server can have cached objects (to
accelerate reads), DRust carefully crafts an ownership-based
cache coherence protocol upon the global heap abstraction to
achieve both memory coherence and efficiency (§4.1.1).

In a nutshell, our coherence protocol leverages the owner-
ship semantics to eliminate the need for explicit cache invali-
dation. It allows multiple readers to fetch a copy of the object
from its host server and cache it, but disallows any change to
the global address and the value of the object. When a write
access occurs, it must first borrow the ownership, at which
point DRust moves the object in the global heap to a new
address on the server issuing the write. The address change of
the object automatically invalidates cache copies that use the
stale address and triggers the subsequent readers to update
the cache by fetching the object from its latest address.

The second challenge is how to support transparency in
programming. Rust’s standard libraries and programs were
originally built for running on a single machine, and they can-
not deal with distributed resources in a cluster. For example,
a Rust program running on server A cannot spawn a thread
on another server B, let alone synchronize threads between A
and B. To enable a Rust program to run as is under DRust, we
provide distributed threading utilities by restructuring critical
elements of the Rust standard library, including threading,
communication channels, and shared-state locks (§4.1.2).
Our adapted libraries offer the same interfaces, making
them compatible with single-machine Rust programs, but
internally invoke our distributed scheduler, which determines
where to run the thread and facilitates cross-server synchro-
nization. We built them atop the ownership-based memory
model, enabling the DRust runtime to safely pass references
of objects between threads and automatically fetch the value
from the global heap upon dereferencing.

With our programming abstractions, a Rust application
can start on a single server and gradually spawn its threads to
other servers. Under the hood, DRust employs a runtime to
manage distributed physical compute and memory resources
for the application. The runtime runs as a process on
each node in the cluster, and they work cooperatively for
cross-server memory allocation and thread scheduling. The
runtime prioritizes the current server for object allocation and
thread creation, but it will schedule the resource allocation
request to another server under memory pressure (§4.2.1). To
make cluster-wise decisions such as deciding the target server
for global memory allocation and thread creation, DRust
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has a global controller that is launched together with the
application. The global controller communicates with DRust
runtime on each node to collect resource usage information
and applies adaptive policies to achieve load balance (§4.2.2).
Results. We evaluated our system on four real-world applica-
tions in an eight-node cluster. Our evaluation demonstrated
an average of 2.02× and 9.48× (up to 2.64× and 29.16×)
speedup compared with two state-of-the-art DSM systems
GAM and Grappa, respectively. Furthermore, DRust in-
curred a mere 2.42% slowdown compared to the original Rust
program on a single machine with sufficient resources. DRust
is available at https://github.com/uclasystem/DRust.

2 Background in Ownership
Over the past decades, numerous programming languages
have been designed to provide safe memory management and
data sharing. At the core of such a design is often a tradeoff
between memory abstraction level and management effi-
ciency. The ownership concept, and the Rust programming
language built upon, are considered promising solutions
that achieve a sweet spot between abstraction and efficiency.
This section provides an overview of these techniques and
explains how ownership can benefit DSM implementations.
Ownership Type. The ownership model has a long history
in pursuit of memory-safe language designs and type sys-
tems [8, 9, 27, 43, 58, 83]. It has also inspired many systems
for safe and efficient resource management [13, 41, 59, 89].
At a high level, ownership enhances a language’s type system
in a way that guarantees the memory and thread safety of
a program with type checking done at compile time. The
ownership model encompasses a range of concepts, among
which the most important are lifetimes and borrowing.

An ownership-based type system uses lifetimes to control
the allocation/deallocation of objects. It enforces that each
object must have one and only one owner at a time. This
allows the compiler to statically track an object’s lifetime
via its owner, and immediately deallocate the object once its
owner goes out of scope, preventing memory leaks without
using garbage collection that can introduce disruptive pauses
to program execution.

To access an object, a program can create a reference from
its owner, but the reference must “borrow” the permission
from the owner, and “return” it to the owner after the access.
Specifically, the type system allows the creation of multiple
immutable references to an object from its owner for concur-
rent reads but prohibits any write with these references. It
allows only one mutable reference to the object only when
no other (mutable or immutable) references exist. Through
borrowing, the ownership type disallows simultaneous
writers and hence prevents data races. In addition, references
must return the borrowed permission when they go out of
scope. For any program that demonstrates type soundness,
the type checker guarantees that references to an object can
only reside within the object’s lifetime; the object can be

Owned
(by the owner)Modified Shared

Invalid

mut borrow

return

immut borrow

return
deallocation

immut borrowownership transfer

Figure 1: State machine for Rust’s ownership-based memory model.

safely and automatically deallocated when its owner goes out
of scope, by which time it has already lost all its references.

Finally, ownership can be transferred from one owner to
another—e.g., at a function call, the creation of a thread, or
message passing (i.e., via channel). However, the type system
enforces that ownership transfer must occur in the absence of
“borrowing”. In other words, no other references can exist in
scope when transferring the ownership, preventing data races
during ownership transfers.

The guarantees provided by the ownership model with
respect to object lifetime and data sharing can be summarized
with the following four invariants:
1. Singular Owner: each value has one single owner at any

time (which must also belong to one single thread).
2. Safe Borrowing: All references are created from the

owner; permission borrowing and returning guarantees
that references that can be used to access the object must
be valid.

3. Single Writer: Each object allows one mutable reference
at most, and it cannot coexist with any other references in
the same scope.

4. Multiple Reader: Multiple references are permitted only
when all of them are immutable.

The last two invariants are commonly called the single-writer-
multiple-reader (SWMR) property in the DSM literature [57].
Rust Language. Rust offers a practical implementation
of ownership and is designed with a range of zero-cost
abstractions for efficient fine-grained resource management.
Figure 1 depicts the state machine for Rust’s ownership-based
memory model. At a high level, this model restricts that
the owner is always in the O (owned) state, and transitions
between M (modified), S (shared), and I (invalid) must go
through the O state1. Clearly, a distributed implementation
of this approach avoids broadcasts or snooping, and only
requires peer-to-peer message passing.

Listing 1 exemplifies a simple accumulator implemented
in Rust (Lines 1–7). The Accumulator struct keeps an integer
val and exposes an interface add to increment the value. Rust
uses a smart pointer type Box<T> to store values on the heap;
this pointer serves as the initial owner of the referenced value,
as shown in Line 10 and 11. Line 13 instantiates Accumulator
a, where the ownership is implicitly transferred from val to
a.val during its initialization. Rust allows the creation of
mutable and immutable references to access the value. For

1A transition from M to S is also possible as an optimization in Rust.
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1 pub struct Accumulator { pub val: Box <i32 >, }
2 impl Accumulator {
3 pub fn add(&mut self , delta: &i32)->i32 {
4 *self.val += *delta;
5 *self.val
6 }
7 }
8 fn main() {
9 // Allocates two integers in the heap.

10 let val: Box <i32 > = Box::new(5); // val is an owner.
11 let mut b: Box <i32 > = Box::new(0); // b is an owner.
12 // Ownership is transferred from val to a.val
13 let mut a = Accumulator{val};
14 { // Only one mutable reference is allowed.
15 let mutr: &mut i32 = &mut *b;
16 // No other reference is allowed now.
17 /* let another_r = &*b; */ // COMPILE ERROR!
18 *mutr = 10; // b == 10
19 }
20 { // Multiple immutable references are allowed.
21 let (b_r1 , b_r2): (&i32 , &i32) = (&*b, &*b);
22 // Mutable reference is prohibited now.
23 /* let b_mutr = &mut *b; */ // COMPILE ERROR!
24 // Passing by references won’t transfer ownership.
25 let sync_add = a.add(b_r1); // a.val == 15
26 let sync_add = a.add(b_r2); // a.val == 25
27 }
28 {// Ownership of a and b is moved to the new thread.
29 // No reference should or can borrow a or b now.
30 let async_add = thread::spawn(move ||
31 a.add(&*b) // a.val == 35
32 ).join(); // lifetime of a and b ends
33 // Current thread cannot access a and b anymore.
34 /* println!("{}", a.val); */ // COMPILE ERROR!
35 }
36 }

Listing 1: A simple accumulator implementation in Rust.

example, Lines 14–19 create a singular mutable reference
(&mut) to b and set its value to 10. Similarly, Lines 20–27
create two immutable references (&) to b and add them to a via
two function calls. Note that passing references as arguments
in function calls does not transfer their ownership.

Finally, Rust allows spawning new threads for concurrent
programming, as shown in Lines 28–35. A new thread is cre-
ated via thread::spawn, where the use of move captures a and b

in the current scope and transfers their ownership to the newly
spawned thread. Rust performs shallow copying for inter-
thread communication, where only the pointers stored in a and
b are transferred to the child thread while the actual values on
the heap are not moved. Rust guarantees memory safety of a
and b by tracking their ownership. At Line 32, when the child
thread finishes its closure (i.e., not necessarily after join), and
a and b exit the scope (to which their ownership belongs), their
lifetimes terminate and Rust deallocates them from the heap.

3 Motivation
DSM was proposed to eliminate the barrier of distributed
programming by offering the same memory consistency
model as single-machine shared memory. The core of its
design is a software-based cache coherence protocol, which
mimics a hardware-based approach on multi-core CPUs
and synchronizes memory states on different servers by
sending control messages between them. However, it is
notoriously hard to implement cache coherence efficiently
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Figure 2: Design overview of DRust.

at the software level due to the high communication latency
between physically disjointed servers.
High Synchronization Overheads for Coherence. To gain
a high-level understanding of how much improvement can
be achieved by improving the cache coherence protocol,
we performed an analysis by running a real-world applica-
tion DataFrame [67] with a state-of-the-art DSM system
GAM [14] with a fast network. We first ran Dataframe on
a single server with 16 CPU cores and 64GB memory. We
then ran it with GAM on eight servers connected by a 40Gbps
Infiniband network by evenly distributing the same amount of
resources to eight servers (i.e., each server uses 2 CPU cores
and 8GB memory). Our experiments show a 2.4× slowdown
when Dataframe runs on eight servers.

A detailed examination reveals that such a slowdown stems
primarily from its complicated coherence protocol. GAM
runs a directory-based protocol, which assigns each DSM
cache block a home node. Upon each object read/write, the
home node tracks the state of its cache block and updates
all cache copies for the state change, incurring extensive
computation and network overhead. We broke down the
average time spent on each component when accessing one
object in the DSM. Reading a 512-byte (i.e., GAM’s default
cache block size) uncached object in GAM takes 16µs, while
the actual time to read the object over the network is only
3.6µs. In other words, maintaining cache coherence takes
77% of the total time. This large memory access overhead
significantly increases operation latency, hindering the
practical deployment of distributed shared memory. With the
single writer invariant inherent in the ownership model, we
expect that most of this overhead can be eliminated, leading
to significant (>2×) speedups for each access.

4 Design
DRust is an efficient DSM framework atop the Rust pro-
gramming language. As shown in Figure 2, it consists of
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1 // Unmodified Rust code.
2 pub struct Accumulator { pub val: Box <i32 >, }
3 impl Accumulator {
4 pub fn add(&mut self , delta: &i32)->i32 {
5 *self.val += *delta;
6 *self.val
7 }
8 }
9 fn main() {

10 // Allocates two integers in the distributed heap.
11 let val: Box <i32 > = Box::new(5);
12 let b: Box <i32 > = Box::new(10);
13 let mut a = Accumulator{val};
14 // a.val and b will be fetched to local.
15 let local_add = a.add(&*b); // a.val == 15
16 // Only refs to a and b are shipped to remote.
17 let remote_add = thread::spawn(move ||
18 a.add(&*b)).join(); // a.val == 25
19 }

Listing 2: DRust seamlessly transforms an unmodified accumulator
implemented in Rust into a distributed version.

Rust-based programming abstractions for DSM (§4.1) and a
runtime (§4.2) that manages distributed physical resources.

DRust is compatible with standard Rust. Listing 2 illus-
trates how the accumulator (shown in Listing 1) runs on
DRust distributively without requiring code rewriting. The
program starts running on a single machine A and the DRust
runtime gradually allocates its memory and spawns new
threads on different machines. Specifically, Lines 10–13 cre-
ate Accumulator a and b where a.val and b are in the global
heap. We use a global allocator to allocate objects in the
global address space and hence these objects may be allocated
on a different server. Line 15 synchronously adds b to a by
fetching both values a.val and b to A’s local memory (if they
are allocated somewhere else). Line 17 spawns a new thread
and ships the function closure to perform add asynchronously.
This thread will be scheduled on a different server B if A’s
compute power has been saturated. In this case, DRust
performs shallow copying and only ships the pointers stored
in a and b to B without actually moving objects in the global
heap. The newly-created thread relies on the DRust runtime
to detect data locations and fetch objects upon dereferencing.

4.1 DRust Programming Abstraction

DRust provides each thread with a local stack and abstracts
distributed memory as a shared global heap. Each server
allocates thread stacks and backs one partition of the global
heap with its physical memory. DRust re-implemented
core memory management constructs including Box, &, and
&mut for transparent heap access. This approach hides the
complex details of memory allocation/deallocation, moving
objects, and coherence maintenance (§4.1.1). DRust supports
distributed threading and synchronization by adapting Rust’s
standard libraries atop the core language constructs (§4.1.2).
Furthermore, DRust offers affinity annotations that allow
developers to build more efficient applications by expressing
data affinity semantics (§4.1.3).

Partition 0Thread

Partitioned Global HeapAligned Private Stack

Partition 1

Partition N

…
Server N

Server 1

Server 0

Virtual Address

Thread

Thread

Figure 3: The address space layout of DRust. The stack is private to
each thread but they share an aligned address space to ease migration,
while the heap is globally shared and partitioned across servers.

4.1.1 Memory Management

Next, we discuss how DRust (re)implements the memory-
related language constructs in Rust to achieve memory safety
and memory coherence.
Address Space. As shown in Figure 3, DRust maintains
an identical address space layout on all servers. It exposes
distributed memory as a coherent shared heap to applications.
Embracing the idea of partitioned global address space
(PGAS) [21], it partitions the heap space and assigns each
server a unique address range. The stack, in contrast, is pri-
vate to each thread. However, DRust aligns the stack space on
each server and pads stacks to avoid overlapping. This stream-
lines thread migration between servers as it allows a thread to
keep its private stack address unchanged when being moved.
Coherence Protocol in a Nutshell. For efficiency, DRust
employs a call-by-reference model for newly created threads.
Upon creation of a thread, the DRust runtime only passes
references or Box pointers to objects to the newly created
thread. Upon dereferencing, objects are fetched to the server
where the thread is executed.

When a read access of an object is issued on a server,
our runtime simply fetches a copy of the object from its
hosting server and places it in its local cache. As a result,
multiple copies of the same object may exist on different
servers. This allows multiple servers to read the object at
the same time from their respective cached copies. Fetching
a copy of the object for read does not change the object’s
address in the global space. When a write access occurs on
an object, the server issuing the write must first obtain the
object’s write access permission through a mutable borrow.
Our reimplementation of mutable borrow (discussed shortly)
moves2 the object in the global heap to a new address that
belongs to that server. In doing so, the object’s cached
copies on other servers are automatically invalidated without
sending explicit invalidation messages—subsequent reads
on these servers must obtain an immutable reference to the
object through an immutable borrow from its owner pointer,
which has been updated to the new address immediately after

2The term “copy” is used to describe the process of adding an object into
the cache without changing its global address. The term “move” means re-
locating the object into a server’s heap partition, which requires changing its
global address.
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Figure 4: DRust repurposes Rust pointers and references to contain a
global heap address and an extension field for its coherence protocol.

the mutable borrow returns. Upon identifying the owner’s
address change, each immutable borrow would direct a server
to fetch a fresh version of the object from the new address as
opposed to relying on a stale copy residing in its cache.

Note that this is a general protocol that covers the case
that the object is on the same server that issues the write—as
long as the server moves the object into a different location
in the global heap, no other servers can read the stale copies
of the object. However, this is not efficient as each local write
requires moving the object to a new address. To address this
inefficiency, DRust employs a pointer-coloring technique,
inspired by the designs of many concurrent garbage collec-
tors [1, 52]. Discussed at the end of this subsection, this tech-
nique offers a more efficient solution for handling local writes.
Pointer Layout. In order to support this protocol, each
pointer must remember not only the object’s global address,
but also the address of the cached copy in a server’s local
cache (to avoid redundant remote fetches). As such, we
modify Rust’s pointer structure, as illustrated in Figure 4.
DRust internally extends each Rust Box pointer and reference
with an additional 64-bit field, which is used differently for
read and write access. At a high level, the field records the
address of the cached copy for faster read accesses; for write
accesses, this field records the address of the object’s owner
for post-write synchronization. Additionally, DRust reserves
the highest 16 bits in the global address field as “color” bits.
These bits record the version number of the pointer and play
a crucial role in DRust’s efficient handling of local writes.

Next, we discuss how DRust reimplements Rust’s owner-
ship operations to realize the distributed coherence protocol.
For ease of presentation, this subsection focuses on a simpli-
fied version of the protocol. A complete coherence protocol
and its proof of memory coherence are available in [53].
Mutable Borrow. Mutable borrow creates a mutable ref-
erence that holds exclusive access to the referenced object
for writing. Algorithm 1 outlines the procedures for both
dereferencing and dropping a mutable reference. When
performing dereferencing, DRust first checks the object’s
location (Line 2) and performs direct access if the object’s
address belongs to the heap partition of the machine A that
executes the access. Otherwise, DRust moves it to A’s heap
partition (as opposed to caching it) (Line 3). The move,
conducted in the following three steps, changes the object’s

Algorithm 1: Access logic for mutable references.
Input: A mutable reference m containing a global address

m.g and the owner address m.o.
Output: A local memory address to be written to.

1 Function DEREFMUT(m):
2 if ¬ISLOCAL(m.g) then
3 m.g← MOVE(CLEARCOLOR(m.g))

4 return CLEARCOLOR(m.g)

5 Function DROPMUTREF(m):
6 c′← GETCOLOR(m.g)+1
7 WRITE(m.o, APPENDCOLOR(m.g, c′))

global address. DRust (1) copies the object into A’s heap at an
address p, (2) updates the mutable reference with the address
p, and (3) asynchronously requests the remote server that
previously stored the object to deallocate the original object.

A challenge arises with its original owner Box, which now
becomes a dangling pointer, pointing to an invalid memory lo-
cation. Fortunately, the integrity of the system is maintained
by the single-writer invariant (referenced as Invariant 3). This
invariant ensures that while the mutable reference remains
alive, no other entity, including the original owner, can access
the data. To ensure correctness, when this new reference is
dropped, DRust synchronously updates the original owner
Box, redirecting it to the new address p (Line 7). As a result,
the original owner always possesses the latest view of the
object. Additionally, all modifications made through this
mutable reference are visible in all subsequent accesses, as
they necessitate borrowing permission from the updated
owner Box. The single-writer invariant also eliminates the
possibility of simultaneous updates to the owner, ensuring
that updating the owner is free from concurrency issues.
Immutable Borrow. Immutable borrowing allows concurrent
reads to the same object from immutable references on the
same or different servers. As detailed in Algorithm 2, DRust
handles the dereferencing of immutable references by first
checking the object’s location (Line 2). For remote objects,
DRust creates a local copy in the per-node read-only “cache”
and records its local address in the reference’s extension
field (see Figure 4). This preserves the original global
address of the object, ensuring that any new immutable
reference—whether it is derived from the owner Box or from
another immutable reference—can always access the original
object from the global heap.

As opposed to being a separate memory space, our “cache”
provides a “virtual” aggregation of all local copies main-
tained on each server. These copies reside in the regular heap,
managed by a per-node hashmap H. This hashmap maps each
global address to a pair of its local address and the number
of local immutable references to the local copy. To prevent
redundant copies of an object on the same server, DRust
checks the hashmap H before creating a new local copy
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Algorithm 2: Access logic for immutable reference.
Input: A shared immutable reference r containing a global

address r.g and a local copy address r.l, and a local
cache hashmap H.

Output: A local memory address for reading.
1 Function DEREF(r,H):
2 if ISLOCAL(r.g) then
3 return CLEARCOLOR(r.g)

4 else
5 if r.l=Null then
6 ATOMIC {
7 if r.g∈H then
8 ⟨l′,cnt⟩← GETENTRY(H, r.g)
9 r.l← l′

10 UPDATEENTRY(H, r.g, ⟨l′, cnt+1⟩)
11 else
12 r.l← COPY(CLEARCOLOR(r.g))
13 INSERTENTRY(H, r.g, ⟨r.l,1⟩)
14 }

15 return r.l

16 Function DROPREF(r,H):
17 if r.l ̸=Null then
18 ATOMIC {
19 ⟨l′, cnt⟩← GETENTRY(H, r.g)
20 UPDATEENTRY(H, r.g, ⟨l′, cnt−1⟩)
21 }

(Line 7). If a local copy is already present, DRust increments
its reference count in H and updates the extension field in the
immutable reference to point to this copy (Lines 8–10). If no
existing copy is found, a new one is created (Lines 12–13).
Since the hashmap uses objects’ global addresses as keys, if
an object has been modified by another server since its last
read, its global address must have changed, making cache
lookup fail even if a (stale) local copy exists.

DRust actively updates the reference count of each local
copy when an immutable reference is either dereferenced
or dropped, as outlined in Lines 10 and 20. Utilizing these
counts, the DRust runtime periodically scans the “cache” and
lazily reclaims unreferenced copies (i.e., those with a zero ref-
erence count) under memory pressure (§4.2.1). This mecha-
nism, in conjunction with the safe borrowing invariant (2), pre-
vents the local cache from memory leaks or illegal accesses.
Owner Access without Borrow. DRust treats a direct memory
access via the owner Box as a pair of mutable/immutable
borrow and return. Depending on the reference type, DRust
uses the extension field of Box accordingly and executes
the read/write dereferencing logic. A special case arises
when a mutable owner is immutably borrowed and becomes
immutable until all borrowed references return. In this case,
the owner can only cache the object during the borrow and
delay the move until the borrow finishes. This would not

Algorithm 3: Utility functions for pointer coloring.
1 Function GETCOLOR(g):
2 return g≫48

3 Function CLEARCOLOR(g):
4 return g & ((1≪48)−1)

5 Function APPENDCOLOR(g, c):
6 return CLEARCOLOR(g) | (c≪48)

create any correctness issues because the owner cannot be
used for write access during this period.
Ownership Transfer. Similar to Rust, DRust does not move
the actual value during the transfer and only copies the Box

pointer. DRust additionally checks and resets the pointer’s
extension field and frees the cached copy in the executing
machine’s cache to avoid cache leakage.
Memory Deallocation. Like Rust, DRust tracks the lifetime
of an object via its owner. Given that ownership transfer is
implemented by only evicting the cached copy of the object
(without changing its global presence), the memory safety
of DRust’s global heap is preserved by the singular owner
invariant (1). In other words, DRust still guarantees that
when an object’s owner goes out of scope, the object must be
unreachable (and dead) and can be safely deallocated.
Consistency Model. Our protocol, together with Rust’s own-
ership model, offers sequential consistency for cross-server
memory accesses in safe Rust programs (i.e., following the
original Rust, no guarantees can be provided when Rust
Unsafe is used), which is a strong consistency order. There-
fore, it allows any safe Rust program to preserve its memory
consistency on DSM. Sequential consistency necessitates
a coherent memory system, requiring not only the SWMR
invariant but also the data-value invariant [57]. In simple
terms, the data-value invariant requires that the latest write
to a value is immediately visible to subsequent readers. As
discussed earlier, DRust’s protocol moves an object upon
a write and updates the owner immediately. Therefore, the
latest value is globally visible after each mutable borrow
finishes. Subsequent read accesses, either in the Owned state
or the Shared state, are hence guaranteed to see the moved
object and read its latest value.
Optimizing for Local Writes. A special case is that a server
issues a write to an object that resides in its own heap par-
tition. While the coherence protocol still guarantees safety,
requiring moving an object in its local heap each time it is
written clearly brings inefficiencies. To optimize for local
writes, DRust adopts a pointer-coloring method, inspired by
the design of concurrent garbage collectors in a managed
runtime system such as JVM [1, 52]. Several utility pointer
coloring functions are shown in Algorithm 3 which are used
when dereferencing and dropping a reference. We reserve
the first 16 bits of a global address as a “color”. The color
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value stored in the object’s owner gets incremented upon the
expiration of a mutable reference, as detailed in Lines 6–7 in
Algorithm 1. Any subsequent immutable borrow would look
up the cache with the object’s global address. Even if the
actual address remains the same, its color changes if a write
has occurred. As such, the lookup would not return any stale
copy from the local cache.

The 16-bit color field may overflow when the pointer
keeps being borrowed for local writes on the same server.
DRust implements a move-on-overflow strategy that moves
the object to a new address and resets its color to zero once
the maximum color value is reached (216), thereby preventing
overflow and maintaining system integrity and performance.
Writing Unsafe Code in DRust. Rust allows developers to
bypass compiler safety checks and write unsafe code for low-
level operations such as accessing raw pointers and mutating
shared variables at their own risk [44, 70]. Since DRust relies
on SWMR semantics enforced by Rust’s ownership types,
DRust ensures consistency and memory safety only in the
“safe” Rust code. DRust does not cache objects in unsafe
code but allows developers to implement their own cache.
Developers must ensure that they do not violate consistency
in unsafe code blocks where type safety is not enforced.
This caution mirrors practices in other managed languages,
like native code in Java and unsafe code in C#. To assist
developers, DRust offers primitives such as dalloc, dread,
and dwrite for managing data on the global DSM heap.

4.1.2 Adapting Rust Standard Libraries

To further reduce the barrier for programs to run distributively,
we reimplement several standard Rust libraries atop DRust’s
core memory constructs covering four categories: threading
for distributed computation (std::thread), inter-thread
channel for communication (std::sync::mpsc), reference-
counted pointers for ownership sharing (std::sync::Rc and
std::sync::Arc), and shared-state locks for concurrency
control (std::sync::Mutex and std::sync::atomic).
Threading. DRust’s threading library enables Rust threads to
run distributively with two major adaptations. First, it enables
distributed thread launching by re-implementing the spawn

interface. Internally, it captures the thread body as a closure
during compile time and forwards it to the runtime. During
execution, the runtime launches the thread according to each
server’s load (details in §4.2.1). Second, DRust performs
implicit ownership transfers between the parent and the child
threads at the start or the end of the child thread execution.
Thanks to the distributed ownership transfer support provided
by DRust’s memory model, the implementation in the thread-
ing library is hidden from developers and preserves type
soundness and memory safety. Additionally, DRust is com-
patible with advanced thread utilities such as thread::scope,
which allows for the spawning of scoped threads that can
borrow non-static data. These utilities ensure that all threads
are joined at the end of their scope and can internally utilize

DRust’s functions for spawning and joining threads, thus
extending their applicability to the distributed setting.

Inter-Thread Channel. DRust extends Rust’s channel
to connect two distributed threads for message passing.
DRust internally builds a network-based message queue for
cross-server messages. Benefiting from the shared global
heap, Box pointers and references can be safely copied and
remain valid across servers. Therefore, the sender can push
an object into the channel as is without serialization, even if
it may contain Box pointers. DRust forwards the object binary
bytes to the receiver over the network, and the receiver can
recover the object from the binary by direct type conversion
without deserialization.

Ownership Sharing. Rust allows multiple owners to share
an object via reference-counted smart pointers, which count
the number of live owners. In this case, smart pointers only
have read access, and the object lifetime terminates when
all owners die and the reference count hits zero. DRust
does not require special treatment for Rc as it only allows
ownership sharing inside a single thread. For Arc which
shares ownership among multiple threads, DRust handles it
in a similar way to immutable references with on-demand
local caching and lazy eviction.

Shared-State Concurrency. Rust supports shared-state
concurrency, primarily through its atomics and mutexes,
where threads commonly share an atomic-typed value or one
mutex via ownership sharing (i.e., Arc). Unfortunately, the
ownership model cannot type check concurrent read/write to
shared states. Hence, Rust relies on an unsafe implementation
in its standard library. §4.1.1 already provides a general dis-
cussion on writing unsafe code in DRust, and here we focus
on DRust’s implementation for distributed shared states.

Shared states create a unique challenge for DRust, as
they may be replicated on multiple servers and those states
must be synchronized among these servers. For example, an
Arc<AtomicBool> may be replicated across different servers
and used independently, causing multi-version issues if not
synchronized properly. DRust addresses this inconsistency
by allocating the actual value on the global heap and storing
only the Box pointer in atomic types. This design allows
atomics to be freely moved or replicated across servers while
keeping a single version of the actual value. To synchronize
concurrent operations on atomics, DRust adapts methods of
atomic types to forward the operation as a message to the
server storing the actual value, which serializes all operations
with unsafe logic similar to the original Rust to guarantee
atomicity and memory consistency. Similarly, DRust imple-
ments Mutex by allocating its metadata and owned object on
the global heap and leaving only Box pointers in the mutex
struct. Concurrent operations on mutexes are serialized on
the server storing the mutex.
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1 pub struct Node { val: i32 , next: Option <TBox <Node >>, }
2 pub struct List { pub head: Option <Box <Node >>, }
3 impl List {
4 pub fn sum(&self) -> i32 {
5 let mut total: i32 = 0;
6 if let Some(r) = &self.head {
7 let mut node = &**r; // Fetch whole list to local.
8 loop { // Iterate every list node.
9 // Accessing node is guaranteed local.

10 total += (*node).val;
11 if let Some(next) = &node.next {
12 node = &**next;
13 } else { break; }
14 }
15 }
16 total
17 }
18 }

Listing 3: A linked list implementation with TBox in DRust. The use
of TBox ties list nodes one by one. Iterating a list will fetch all nodes
together (if they are on another server), and henceforth accessing any
node is guaranteed local.

4.1.3 Affinity Annotations

To further improve performance, DRust allows developers
to provide optional data affinity semantics via annotations.
These annotations are useful for many datacenter applications
that make extensive use of object-oriented data structures
that require pointer-chasing to access. For instance, Mem-
cached [55] uses a chained hash table where each hash bucket
stores its KV pairs with a linked list. To find one KV pair from
a bucket, Memcached has to iterate the linked list following
the node pointers. However, frequent pointer chasing is un-
favorable in a distributed setting, where each pointer deref-
erence incurs additional runtime checks and potential cross-
server traffic. It would be beneficial for the runtime to colocate
them on the same server and schedule the computation there.
Data-Affinity Pointer. To expose data affinity for clustered
placement, DRust includes a new pointer type TBox for
developers to “tie” a heap object to its owner. TBox shares
the same interfaces as the ordinary Box and can be used as a
drop-in replacement for Box. However, TBox enforces that the
pointed-to object must reside on the same server as its owner.
In other words, when its owner object is copied or moved, the
object referenced by TBox will be copied or moved as well.
TBox can be used in a nested manner to allow a large union
of objects to be co-located. The DRust runtime fetches (i.e.,
copies or moves) them together in a single batch, leading
to fewer network round-trips and higher throughput. TBox

can also be assigned to and owned by a stack variable, in
which case the referenced object is pinned onto the heap
partition of the server that hosts the stack and cannot be
moved. Dereferencing a TBox is thus guaranteed to be a local
access—DRust optimizes it by skipping the runtime check.

Listing 3 presents a linked list implementation using TBox.
Our linked list uses TBox (Line 1) to specify the data affinity
between consecutive nodes. As a result, all list nodes are
chained with TBox, forming an affinity group. Line 4–17
define a sum function that calculates the total sum of all node

1 fn main() {
2 let val: Box <i32 > = Box::new(5);
3 let mut a = Accumulator{val};
4 let remote_add = spawn_to(a.val , move ||
5 a.add(10)).join(); // a.val == 15
6 }

Listing 4: A distributed accumulator can leverage spawn_to to of-
fload a thread to the server where a.val locates.

values. Assuming the list is non-empty, Line 7 dereferences
the pointer to the head node, and the DRust runtime checks
the location of the head node and fetches the entire list of
nodes together if they are not local. Next, accessing each
node inside the loop body (Line 8–14) is guaranteed local and
hence skips runtime checks. Compared to using Box directly,
TBox makes both data fetching and accessing more efficient.
Data-Affinity Thread. To expose the affinity between data
and computation for thread scheduling, DRust extends its
threading library with a spawn_to interface. spawn_to mirrors
the ordinary spawn interface to spawn a new thread but takes
an additional Box pointer argument, which indicates where
the thread should be created. The runtime checks where
the Box points to and creates the new thread on that same
server. A common practice to use spawn_to is to pass the
mostly-accessed object as the location indicator. Listing 4
presents how the distributed accumulator (shown in Listing 2)
can use spawn_to to offload a thread to the same server as
a.val resides. Line 5 hence performs local dereference to
a.val inside a.add().

4.2 DRust Runtime System

DRust’s runtime system is the core component that manages
memory and compute resources. It includes a runtime library
(§4.2.1) that is linked to each application and launched on
each server and a cluster-wise global controller (§4.2.2).

4.2.1 Application-Integrated Runtime

The runtime library consists of a communication layer to sup-
port inter-server coordination and data transfer, a heap alloca-
tor to manage the heap partition and the read-only cache, and
a thread scheduler to launch and schedule application threads.
Communication Layer. The DRust runtime uses its commu-
nication layer to support the cache coherence protocol and
cross-server memory accesses. The communication layer
consists of a control plane and a data plane, both built with
RDMA. The control plane leverages two-sided verbs to send
and receive small control messages, and the receiver can
perform the coherence logic upon receiving the message to
minimize the end-to-end latency. The data plane, in contrast,
is specialized for bulky data transfer with one-sided verbs. It
fetches an object as a whole with a single RDMA message
upon pointer dereferencing without interrupting the target
server, minimizing both latency and CPU usage.
Heap Allocator. The DRust runtime provides standard mem-
ory allocation interfaces and always returns global addresses
to the upper-level language abstractions. It prioritizes local

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    105



memory allocation as long as the local heap partition has
sufficient space. This strategy improves data locality by
colocating an object with its creating thread.

When the local heap partition is depleted, DRust queries
the global controller and allocates memory on the most
vacant server. For remote memory allocation, it forwards
the request to the target server by sending a message through
the communication layer and returns the allocated address
to the user. Memory deallocation follows a similar logic but
it bypasses the controller and finds the server directly via
the object’s global address. The allocator does not reserve
separate space for the local cache. Instead, it manages the
cache as part of the local heap partition and always allocates
cached entries in the local heap partition. Under memory
pressure, the allocator will scan the local cache and evict
entries that are no longer used (i.e., reference count hits zero).
Thread Scheduler. The DRust thread scheduler runs in the
user space and schedules threads locally to maximize CPU
utilization. It also provides thread migration functionalities,
facilitating the global controller to balance load between busy
and vacant servers.

The scheduler represents a newly created user thread as a
closure, which includes a function pointer and a set of initial
arguments (i.e., references). It collaborates with the global
controller to allocate a unique stack space for a thread (see
Figure 3), and starts the thread by executing the closure.

The scheduler adopts the method of cooperative multitask-
ing and context switches between threads non-preemptively.
A running thread yields its control flow proactively when
developers call await or reactively upon long-latency opera-
tions. Similarly to other systems [60, 65, 82], our scheduler
handles context switches as function calls, which allow
DRust to save only a few registers per thread.

The scheduler supports creating/migrating a thread to
another server as well. To migrate a thread, DRust sends its
function pointer, the saved register state, and its stack to the
target server. Because each thread reserves its stack address
range globally, DRust can copy the stack across servers
without changing its address. Therefore, the thread can be
easily resumed by directly calling the function pointer with
the saved register state on the target server. DRust generates
code for state transmission during the compile time for the
scheduler to call upon thread migration.

4.2.2 Global Controller

The controller runs as a daemon process on the machine
where the program is launched. It manages cluster resources
and coordinates memory allocation and thread migration.
It periodically pings each server to probe and record its
resource usage (CPU and memory). It controls resource
allocation in cooperation with the DRust runtime on each
server. When allocating memory or creating a thread, the
runtime will first query the controller, which chooses a target
server following adaptive policies (discussed later), and then

coordinate with the runtime on the target server to perform
the actual operation. The controller also maintains a global
table to track the location of each thread; the table is queried
and updated by the scheduler when migrating a thread.

During program execution, servers may run into imbal-
anced loads when objects get relocated or new threads are
created. DRust balances the load of each server by migrating
threads from the busy server to less occupied ones, following
an adaptive policy to minimize cross-server memory accesses.
If a server is about to run out of memory (>90% memory us-
age), the controller keeps migrating the thread that consumes
the most local heap memory until the pressure is resolved. If
the server is under compute congestion (>90% CPU usage),
the controller migrates threads that frequently access remote
objects. The thread is then moved to the server it accesses the
most unless the target server is also overloaded, in which case
it moves to a vacant server instead.

4.2.3 Fault Tolerance

In DRust, the global heap can be replicated to tolerate failures.
Replication creates copies for each heap partition at the
same virtual address on backup servers. Threads, in contrast,
are not replicated for efficiency and are only executed with
the primary global heap. To maintain a synchronized view
between the primary heap partition and its backup copy, a
thread must additionally write back to the backup partition
after each mutable borrow. However, our insight is that the
thread can batch modifications to an object and delay the
write-back until the object ownership is transferred to another
server, which is the time point that the object becomes visible
to threads on other servers. When a server with a primary
heap partition fails, the controller will automatically promote
its backup server to the primary and add a new backup server.

5 Implementation
The majority of DRust was implemented in Rust except for
its communication library which is in C. We implemented
DRust’s core language constructs as three Rust types (i.e.,
struct): Ref<T>, MutRef<T>, and DBox<T>. They serve as
the counterpart for the original Rust &T, &mut T, and Box<T>,
respectively. We implemented the coherence protocol
with traits on these types, including Copy, Clone, and Drop,
which are automatically embedded into the program source
code and executed when references/pointers are created
or destroyed. To support unmodified Rust programs, we
changed the Rust compiler and added additional compilation
passes to transform Rust references and Box pointers into
corresponding types in DRust.

Our communication layer links libibverbs directly for fast
and kernel-bypassing RDMA networking. We implemented
a low-level C library that covers basic connection estab-
lishment and exposes high-level Rust interfaces for various
RDMA verbs, including RDMA_READ, RDMA_WRITE, RDMA_SEND,
RDMA_RECV, ATOMIC_FETCH_AND_ADD, and ATOMIC_CMP_AND_SWP.
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We primarily utilize one-sided READ and WRITE verbs for data
transfers between servers, as they outperform the two-sided
SEND/RECV counterparts—one-sided operations bypass the
CPU and OS at the receiver side, whereas two-sided oper-
ations require the receiver to pre-post RECV verbs and await
notification upon message arrival. For instance, when a
remote object is accessed via mutable references, DRust
copies the object to local memory using the READ verb. Upon
dropping the reference, DRust updates the original owner Box
to reflect the new address, a process executed using the WRITE

verb. Conversely, two-sided SEND/RECV verbs are utilized for
control message exchanges, such as establishing connections
across servers. Atomic verbs ATOMIC_FETCH_AND_ADD, and
ATOMIC_CMP_AND_SWP are primarily utilized for implementing
shared states (e.g., atomic types and mutexes). DRust uses
the RC (reliable connection) transport type to ensure reliable
transmission and strict message ordering.

Our heap allocator implementation piggybacks Rust’s
original allocator and aligns its virtual address range with
the heap partition range. Our thread scheduler was built
upon Tokio [82] for its efficient user thread and cooperative
scheduling integration. The global controller is responsible
for managing all threads in the cluster and padding their
stacks to avoid address overlapping.

6 Limitations
DRust’s design has three limitations. First, although DRust
permits the use of unsafe code, its consistency guarantees
are only applicable to safe Rust code. In unsafe code
blocks, developers are responsible for ensuring consistency
themselves. Second, DRust’s superior performance relies on
SWMR semantics exposed by applications. In cases where
data is mostly under shared states (such as Mutex), DRust
degenerates into a traditional DSM system; all concurrent
accesses to the same data have to be centralized and serialized
by the server responsible for the shared states. However, such
scenarios contradict Rust’s recommended programming prac-
tices. Finally, the current implementation of DRust does not
support address space layout randomization (ASLR) yet, and
we have temporarily disabled it. However, DRust’s design
is compatible with ASLR as long as DRust threads share the
same randomized address space layout on each server. This
can be achieved by delegating the randomization of stack and
heap address allocation in DRust to its global controller, a
feature that will be supported in future versions of DRust.

7 Evaluation

Setup. We evaluated our system on an 8-node cluster, where
each node was equipped with dual Intel Xeon E5-2640 v3 pro-
cessors (16 cores), 128GB of RAM, and a 40 Gbps Mellanox
ConnectX-3 InfiniBand network adapter, connected by a Mel-
lanox 100 Gbps InfiniBand switch. All servers ran Ubuntu
18.04 with kernel 5.14. We disabled hyperthreading, CPU

Application Dataset Memory
(GB)

Comp. Intensity
(cycles/byte)

DataFrame [67] h2oai [37] 64 110.13

SocialNet [32] Socfb-Penn94 [71] 64 86.09

GEMM [11] LAPACK [2] 96 300.63

KV Store [14] YCSB [22] 48 48.15

Table 1: Applications used in the evaluation.

frequency scaling, OS security mitigations in accordance
with common practices [69, 72].
Methodology. We compared DRust with two state-of-the-art
DSM systems, GAM [14] and Grappa [60]. For a fair
comparison, we ported the evaluated applications to each
baseline system and invested extensive effort in tuning
parameters to achieve their best possible performance. GAM
offers ordinary object read/write interfaces, and we exported
it as a library to Rust and hooked pointer dereferencing to use
GAM’s API without program modification. Grappa, in con-
trast, offers a drastically different programming abstraction
that requires rewriting the program to access shared memory
via delegation. Therefore, we re-implemented applications
in C++ and re-structured them using Grappa’s abstractions.

7.1 Applications

We evaluated four representative datacenter applications
covering a wide range of use cases and resource demands, in-
cluding data analytics, microservices, scientific computation,
and key-value storage, as shown in Table 1.
DataFrame is an in-memory data analytics framework
similar to Spark [91] and Pandas [90]. We built our library
atop Polars [67], a native DataFrame engine in Rust offering
OLAP query APIs such as filter, groupby, and join.
DataFrame organizes the dataset as columnar format tables
in shared memory, and user queries will manipulate table
columns by reading/writing rows and transforming them into
new tables. DataFrame exploits data-level parallelism by
internally partitioning columns by row into an array of small
chunks where each chunk can be processed independently.
We additionally applied TBox to annotate chunks from the
same table column for co-location and used spawn_to to
offload columnar operations to the data side to improve data
locality and performance. Note that such annotations were
not necessary for the application to run; they were added for
additional performance optimizations.
SocialNet is a twitter-like web service from the DeathStar-
Bench suite [32]. It is composed of 12 microservices with
complicated call dependencies. Each microservice in Social-
Net can scale independently with replicas, thereby offering
higher throughput with more servers. SocialNet decouples
the process of user texts, media resources, and storage into
different microservices, and it employs RPCs to pass values
(texts, media files, etc.) between them. DRust enables
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(a) DataFrame (318 s) (b) SocialNet (120 ops/s) (c) GEMM (1039 s) (d) KV Store (2.7 Mops/s)
Figure 5: Application throughput when running with DRust, GAM, and Grappa, normalized to the throughput of their original implementation
running on a single node. The number in the parenthesis is the original application’s throughput on a single node.

SocialNet to pass only references in RPCs, eliminating the
serialization/deserialization overhead and redundant data
copies. Because SocialNet was implemented in C++ and
deployed with Docker Swarm [28], we ported it into Rust
for our evaluation. We followed its original microservice
structure but changed the RPC call sites to pass references
instead of values, and we followed the original orchestration
configuration to spread and scale each microservice in the
cluster. We did not use any affinity annotations for SocialNet.
GEMM (general purpose matrix multiplication) is a highly-
optimized matrix multiplication routine from the BLAS
library [11]. We ported the library using the same divide-
and-conquer algorithm by recursively partitioning each
matrix into small chunks for parallel processing and reducing
the final results. Input and output matrices are stored in
the shared memory, where each subroutine will read two
input matrix chunks and write the partial results back to
the output matrix. Our port strictly followed the original
implementation without using additional affinity annotation.
KV Store is an in-memory key-value cache engine similar
to Memcached [55]. It uses a hash table to store KV pairs
in shared memory and mutexes to synchronize concurrent
requests. We used YCSB benchmark [22] to generate zipf
load with 90% GET and 10% SET using default skewness
parameter 0.99.

7.2 Scaling Performance

In this experiment, we investigated whether DRust can speed
up applications by distributing them in a cluster and how well
they can scale with the number of servers used. For each
application, we first ran it as is on a single server without
using DSM and measured its throughput. Then, we ran the
same application on DSM (subject to modifications when
running Grappa) with the same configuration but on varying
numbers of servers and measured the throughput normalized
to its single-node throughput (i.e., strong scaling). As GAM
and Grappa cannot adaptively balance the workload across
servers, we evenly distributed the application’s working
set and threads among all participating nodes. Ideally, an
application should scale linearly and enjoy proportionally
higher throughput with more nodes. However, this is usually

unachievable because of the limited parallelism of real-world
applications and the coherence overhead of DSM systems,
and a good result for DRust will show that applications’
throughput can get close to their ideal throughput.

Figure 5 shows the results for each application respectively.
DRust outperforms both GAM and Grappa in all cases. On a
single node, it is 1.04–2.10× faster than two baseline DSMs,
while only adding a maximum overhead of 2.42% compared
to the original program. When running with multiple nodes,
DRust scales up applications significantly better than GAM
and Grappa. On eight nodes, DRust achieves a throughput
that is 1.33–2.64× higher than that of GAM, 2.53–29.16×
higher than that of Grappa.

Compared to each program’s single-machine performance,
using DSM over DRust enables each program to easily lever-
age the available distributed resources and achieve a through-
put that is 3.34–11.73× higher than their single-machine
counterparts. Next, we discuss each application to explain the
scalability difference between DRust and the baseline DSMs.
DataFrame. As shown in Figure 5a, compared with its
original version, DataFrame running on eight nodes with
DRust achieves 5.57× higher throughput, whereas with
GAM and Grappa, the throughput improvements are 2.18×
and 1.69×, respectively. In other words, DataFrame with
DRust is 2.56× and 3.29× faster than GAM and Grappa on
eight nodes, respectively.

A detailed examination reveals that the performance
difference comes from the shared index table in each
DataFrame operation and the shared chunks between depen-
dent DataFrame operations. In each operation, DataFrame
constructs an index hash table to track the mapping from
each destination chunk in the output column to all its source
chunks in the input column. This index table is shared by all
index-builder threads and worker threads. During processing,
index-builder threads will concurrently insert into the index
table using the destination chunk ID as the key and an array
of source chunk IDs as the value, and worker threads will
look up the shared index table and retrieve source chunks for
processing. As a result, the massive writes and reads to the
shared table can incur heavy coherence overhead. Further,
DataFrame passes chunks as references between dependent
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operations and relies on the DSM system for actual data
movement. However, it only performs lightweight compu-
tation over the fetched data (i.e., low compute intensity as
shown in Table 1), making the coherence overhead stand out.

DRust outperforms GAM and scales much better because
of its light coherence protocol, which incurs negligible object
move overhead for writes and no coherence overhead for
reads. The use of affinity annotations also helps DataFrame
colocate worker threads with their frequently accessed data,
bringing 20% additional boost (details in §7.3). GAM, in
contrast, has to invalidate each cache block upon each write
and read, thereby bottlenecked by the extensive coherence
traffic. Grappa performs the worst in all three DSM systems
due to its always-delegation programming model, which
implements every global memory read/write via a delegated
function call. The cost for delegation overwhelms the actual
memory access latency in this case, ruining the performance
of the shared hash table. Grappa’s delegation overhead
actually causes a 1.23× slowdown when scaling DataFrame
from a single node to two nodes.
SocialNet. Since SocialNet is microservice-based and can
be deployed distributively, we added another baseline by
running the original (non-DSM) code but deploying it on
varying numbers of nodes. Figure 5b demonstrates the
performance of all systems. SocialNet runs consistently
faster with all three DSM systems compared to the original
version. DRust, GAM, and Grappa achieve a 2.18×, 2.02×,
and 1.57× speedup on a single node and a 3.51×, 1.33×, and
1.39× speedup on eight nodes, respectively. In the conven-
tional setup, SocialNet requires data—such as text and media
files—to be serialized into byte streams for network transmis-
sion, and then deserialized back into usable formats at the
receiving end. This serialization and deserialization process
is computationally intensive, particularly for large or complex
data objects. In contrast, DSM systems enable SocialNet to
pass references instead of the entire data values required by
remote procedure calls. This approach eliminates the need
for serialization and deserialization, reduces redundant data
copies, and significantly enhances performance. DRust scales
much better than GAM and Grappa thanks to its lightweight
coherence protocol, achieving up to 2.77× and 3.16× higher
throughput than GAM and Grappa, respectively.
GEMM. GEMM differs from the previous two applications
in its high compute intensity and relatively infrequent shared
memory accesses. In this application, matrices are trans-
formed and divided into smaller sub-matrices for parallel
processing. Each computing thread, responsible for multiply-
ing sub-matrices, is assigned to a server. These threads cache
their respective sub-matrices in the server’s local memory
and access them repeatedly to compute product results. This
process is highly compute-intensive. As depicted in Figure 5c,
DRust and GAM scale well for GEMM and achieve 5.93×,
3.82× speedup with eight nodes. In contrast, Grappa only
achieves a 2.02× speedup with eight nodes due to its inability
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Figure 6: Effectiveness of
DRust’s affinity annotations.

Latency
(cycles) Average Median P90

DRust 395 356 536
Rust 364 332 496

Table 2: DRust’s Box pointer only
adds a small dereferencing cost
compared to Rust’s ordinary Box.

to cache sub-matrices locally, necessitating frequent remote
accesses. DRust’s superior performance over GAM, with a
1.55× higher speedup on eight nodes, is primarily due to its
more efficient handling of initial cross-server data accesses
required when a sub-matrix is first accessed remotely. Unlike
GAM, which incurs significant runtime overhead due to
the maintenance of state and location of data copies, DRust
directly copies data to local memory, without any complex
cross-server synchronization operations, thus enhancing
overall efficiency.
KV Store. KV Store is the most DSM-unfriendly application
in our evaluation because it exposes poor memory locality
and low compute intensity, which amplifies the overhead of
cross-server memory accesses. In addition, it uses mutexes to
synchronize between workers and the structure of the program
does not lend itself to ownership-based read/write ordering.

Figure 5d shows the results. KV Store experiences a
slowdown on all three DSM systems when scaling from a
single node to two nodes (13% for DRust, 25% for GAM,
and 93% for Grappa). However, the impact is mitigated when
more servers are enlisted—DRust and GAM achieve 3.34×
and 2.50× higher throughput on eight nodes compared to
the original KV Store implementation, respectively. Due
to the limited ownership semantics exposed by mutexes,
DRust does not scale as well with KV Store as with other
applications. DRust is 1.33× faster than GAM on eight
nodes, benefiting from its adaptive load balancing and a
more efficient implementation of mutexes utilizing one-sided
RDMA atomic verbs, whereas GAM depends on less efficient
two-sided RDMA messages for synchronization. Grappa, in
contrast, incurs the highest distribution overhead and poorest
scalability, primarily because each PUT/GET operation
requires remote delegation, and nodes handling popular
objects become bottlenecked due to skewed load.

7.3 Drill-Down Experiments

Affinity Annotations. In this experiment, we evaluated the
individual contributions of affinity annotations by enabling
each of them incrementally for DataFrame on eight nodes.
Figure 6 reports the results. Using TBox helps DataFrame
group chunks from the same column and eliminates the
runtime dereference check overhead for single-column opera-
tions (e.g., filter), bringing a 12% throughput improvement.
Adding spawn_to further improves the throughput by 9% by
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Figure 7: Comparison of cache coherence costs between DRust,
GAM, and Grappa on eight nodes.

informing DRust runtime to colocate the worker thread to its
input columns, which reduces cross-server memory accesses.
Runtime Dereference Checks. We measured the latency
of dereferencing DRust’s Box pointer and compared it with
an ordinary Rust Box pointer. Both of them point to an
8-byte object in local memory and not in CPUs cache,
which represents the common path for pointer dereferencing.
Table 2 reports the results. DRust only adds a small overhead
of ∼30 cycles. Note that this microbenchmark is extremely
memory-intensive, whereas real-world applications usually
employ larger object sizes and are more compute-intensive,
further mitigating the runtime check overhead. For our
evaluated applications, we observed a 1.02% overhead for
DataFrame and a 1.14% overhead for BLAS, when they run
with DRust on a single node, respectively.
Thread Migration Latency. To quantify how quickly DRust
can resolve the workload imbalance, we measured the latency
for the DRust runtime to migrate a thread by running GEMM
on eight nodes and repeated the experiment for ten times. On
average, DRust migrated 15 threads with an average of 218µs
latency for each migration.
Cost of Cache Coherence. In this experiment, we ran each
application again on a single node and eight nodes but fixed
the total amount of CPU and memory resources. For the
eight-node setting, we distributed the resources evenly to
each node and measured application throughput. We expect
to see a slowdown due to the cost of running the coherence
protocol and cross-server memory accesses, but a good result
for DRust should show that application performance remains
close to its original single-node version. Figure 7 reports the
results. SocialNet uses pass-by-value RPCs in its original
version and is significantly slower than our DSM-based
version, so it is omitted in the evaluation. DRust adds only
moderate cache coherence cost with an overhead of 32% in
the worst case (KV Store) and 4% in the best case (GEMM).
GAM and Grappa, in contrast, incur much higher overheads
ranging from 10% to 98% for different applications.

8 Related Work
Software DSM Systems. Distributed cache coherence pro-
tocols and their implementations for DSM have been exten-
sively studied since 1980s [16–18,31,36,49,50,56,61–63,80].

Among them, Munin [10] and TreadMarks [6] proposed
relaxed consistency models and simpler protocols try-
ing to alleviate the coherence overhead. Recent DSM
systems leveraged today’s advanced hardware such as
RDMA [14, 45, 60, 77, 81, 92] to improve efficiency.
Disaggregated and Remote Memory. Memory disaggrega-
tion and remote memory techniques are another promising
approach to scaling applications out of a single machine.
Their key idea is to connect a host server with large memory
pools [33, 40, 46] via fast datacenter network, which can
be accessed by applications via OS kernel [4, 69, 76, 86] or
software runtimes [34, 52, 73, 84, 85, 87]. However, they do
not provide cache coherence.
Distributed Programming Abstractions. Researchers have
studied and proposed new programming languages and ab-
stractions. Munin [10] built a type system that defines types
for local and global pointers and tracks whether the pointer
is shared via type checking. X10 [20, 39] and UPC [30]
introduce function offloading interfaces for distributed com-
puting and additional type annotations to reduce the runtime
overhead. Ray [89] and Nu [72] are two recent systems
proposing new abstractions for distributed programming.
Unlike DRust, they require effort to port applications to avoid
fine-grained memory sharing.
Hardware-Accelerated DSM. Specialized datacenter net-
work technologies and emerging hardware designs stand for
another trend to accelerate DSM. Clio [35], StRoM [79], and
RMC [5] reduce remote memory access latency by offloading
tasks into customized hardware. Concordia [88], Kona [15],
and CXL [23–26, 47, 48, 92] enable block-level or cache-line-
level memory coherence with their hardware-implemented
protocols. DRust can benefit from advances in hardware
support and achieve better scalability.

9 Conclusion
This paper presents DRust, a practical DSM system based on
the ownership model. It automatically turns a single-machine
Rust program into its distributed version with a lightweight
coherence protocol guided by language semantics. DRust
significantly outperforms existing state-of-the-art DSM
systems, demonstrating that a language-guided DSM can
achieve strong memory consistency, transparency, and
efficiency simultaneously.

Acknowledgement
We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd Daniel
S. Berger for his feedback. This work is supported by CNS-
1763172, CNS-2007737, CNS-2006437, CNS-2106838,
CNS-2147909, CNS-2128653, CNS-2301343, CNS-
2330831, CNS-2403254, CNS-1764077, CNS-1956322,
CNS-2106404. This work is also supported by Alibaba
Group through Alibaba Research Intern Program, and
funding from Amazon and Samsung.

110    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



A Artifact Appendix
A.1 Artifact Summary

DRust is an efficient, consistent, and user-friendly DSM sys-
tem featuring a lightweight coherence protocol guided by lan-
guage semantics. DRust allows for seamless scaling of single-
machine applications to multi-server environments without
sacrificing performance. Demonstrating significant improve-
ments over existing DSM systems, DRust combines strong
memory consistency, transparency, and efficiency effectively.

A.2 Artifact Check-list

• Hardware: Intel servers equipped with InfiniBand

• Software Environment: Rust 1.69.0, GCC 5.5, Linux
Kernel 5.4, Ubuntu 18.04, MLNX-OFED 4.9

• Public Link to Repository: https://github.com/
uclasystem/DRust

• Code License: GNU General Public License (GPL)

A.3 Description

A.3.1 DRust’s Codebase

DRust comprises four main components:

• An RDMA communication library written in C
• The DRust library
• Applications integrated with DRust
• Necessary shell scripts and configuration files

A.3.2 Deploying DRust

The initial step in deploying DRust involves cloning the
source code on all involved servers:

git clone git@github.com:uclasystem/DRust.git

Adjust several configurations according to your server
setup and operational requirements:

1. Set the Number of Servers:

• Define TOTAL_NUM_SERVERS in
comm-lib/rdma-common.h based on the total
number of available servers.

• Similarly, adjust NUM_SERVERS in
drust/src/conf.rs.

2. Configure the Distributed Heap Size by setting
UNIT_HEAP_SIZE_GB in drust/src/conf.rs to the
required heap size per server, e.g., 16 for 16GB.

3. Update the InfiniBand IP addresses and ports in
comm-lib/rdma-server-lib.c:

const char *ip_str[2] = {"10.0.0.1",

"10.0.0.2"};

const char *port_str[2] = {"9400", "9401"};

4. In drust.json, update each server’s IP address and
specify three available ports.

Following configuration, build DRust as follows:

# Compile the communication static library

cd comm-lib

make -j lib

# Copy the static library to the DRust directory

cp libmyrdma.a ../drust/

# Compile the Rust components

cd ../drust

cargo build --release

Deploy the compiled binary across all servers post-build,
ensuring its correct distribution:

scp target/release/drust user@ip:DRust/drust.out

A.3.3 Running Applications

DRust is bundled with four example applications: Dataframe,
GEMM, KVStore, and SocialNet. Follow these steps to
execute them:

1. Launch the DRust executable on all servers, excluding
the main server:

# Start the DRust process with the specified

server index and application name.

# For example, ./../drust.out -s 7 -a gemm

cd drust

./../drust.out -s server_id -a app_name

2. On the main server:

# Start the main DRust process with the

specified application.

cd drust

./../drust.out -s 0 -a app_name

More details of DRust’s installation and deployment can
be found in DRust’s code repository.
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Abstract

Each LLM serving request goes through two phases. The
first is prefill which processes the entire input prompt and pro-
duces the first output token and the second is decode which
generates the rest of output tokens, one-at-a-time. Prefill it-
erations have high latency but saturate GPU compute due to
parallel processing of the input prompt. In contrast, decode
iterations have low latency but also low compute utilization
because a decode iteration processes only a single token per
request. This makes batching highly effective for decodes
and consequently for overall throughput. However, batching
multiple requests leads to an interleaving of prefill and decode
iterations which makes it challenging to achieve both high
throughput and low latency.

We introduce an efficient LLM inference scheduler, Sarathi-
Serve, to address this throughput-latency tradeoff. Sarathi-
Serve introduces chunked-prefills which splits a prefill request
into near equal sized chunks and creates stall-free schedules
that adds new requests in a batch without pausing ongoing
decodes. Stall-free scheduling unlocks the opportunity to im-
prove throughput with large batch sizes while minimizing the
effect of batching on latency. Furthermore, uniform batches
in Sarathi-Serve ameliorate the imbalance between iterations,
resulting in minimal pipeline bubbles.

Our techniques yield significant improvements in inference
performance across models and hardware under tail latency
constraints. For Mistral-7B on single A100 GPUs, we achieve
2.6× higher serving capacity and up to 3.7× higher serving ca-
pacity for the Yi-34B model on two A100 GPUs as compared
to vLLM. When used with pipeline parallelism on Falcon-
180B, Sarathi-Serve provides up to 5.6× gain in the end-to-
end serving capacity. The source code for Sarathi-Serve is
available at https://github.com/microsoft/sarathi-serve.

*Part of this work was done during an internship at MSR India.
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Figure 1: Yi-34B running on two A100 GPUs serving 128
requests from arxiv-summarisation trace. 1a highlights one
of the many generation stalls lasting over several seconds in
vLLM [53]. 1b shows the impact of increasing load on tail
latency. Sarathi-Serve improves throughput while eliminating
generation stalls.

1 Introduction

Large language models (LLMs) [34,35,52,57,71] have shown
impressive abilities in a wide variety of tasks spanning nat-
ural language processing, question answering, code gener-
ation, etc. This has led to tremendous increase in their us-
age across many applications such as chatbots [2, 5, 6, 57],
search [4, 9, 11, 19, 25], code assistants [1, 8, 20], etc. The
significant GPU compute required for running inference on
large models, coupled with significant increase in their usage,
has made LLM inference a dominant GPU workload today.
Thus, optimizing LLM inference has been a key focus for
many recent systems [29, 53, 58, 59, 63, 75, 77].

Optimizing throughput and latency are both important ob-
jectives in LLM inference since the former helps keep serving
costs tractable while the latter is necessary to meet applica-
tion requirements. In this paper, we show that current LLM
serving systems have to face a tradeoff between throughput
and latency. In particular, LLM inference throughput can be
increased significantly with batching. However, the way exist-
ing systems batch multiple requests leads to a compromise on
either throughput or latency. For example, Figure 1b shows
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that increasing load can significantly increase tail latency in a
state-of-the-art LLM serving system vLLM [53].

Each LLM inference request goes through two phases – a
prefill phase followed by a decode phase. The prefill phase
corresponds to the processing of the input prompt and the
decode phase corresponds to the autoregressive token genera-
tion. The prefill phase is compute-bound because it processes
all tokens of an input prompt in parallel whereas the decode
phase is memory-bound because it processes only one token
per-request at a time. Therefore, decodes benefit significantly
from batching because larger batches can use GPUs more
efficiently whereas prefills do not benefit from batching.

Current LLM inference schedulers can be broadly classified
into two categories1, namely, prefill-prioritizing and decode-
prioritizing depending on how they schedule the prefill and
decode phases while batching requests. In this paper, we argue
that both strategies have fundamental pitfalls that make them
unsuitable for serving online inference (see Figure 2).

Traditional request-level batching systems such as Faster-
Transformer [7] employ decode-prioritizing scheduling.
These systems submit a batch of requests to the execution
engine that first computes the prefill phase of all requests and
then schedules their decode phase. The batch completes only
after all requests in it have finished their decode phase i.e.,
new prefills are not scheduled as long as one or more requests
are doing decodes. This strategy optimizes inference for la-
tency metric time-between-tokens or TBT – an important
performance metric for LLMs. This is because new requests
do not affect the execution of ongoing requests in their de-
code phase. However, decode-prioritizing schedulers severely
compromise on throughput because even if some requests in a
batch finish early, the execution continues with reduced batch
size until the completion of the last request.

Orca [75] introduced iteration-level batching wherein re-
quests can dynamically enter or exit a batch at the granu-
larity of individual iterations. Iteration-level batching im-
proves throughput by avoiding inefficiencies of request-level
batching systems. Orca and several other recent systems
like vLLM [23] combine iteration-level batching with prefill-
prioritizing scheduling wherein they eagerly schedule the
prefill phase of one or more requests first i.e., whenever GPU
memory becomes available. This way, prefill-prioritizing
schedulers have better throughput because computing pre-
fills first allows subsequent decodes to operate at high batch
sizes. However, prioritizing prefills leads to high latency be-
cause it interferes with ongoing decodes. Since prefills can
take arbitrarily long time depending on the lengths of the
given prompts, prefill-prioritizing schedulers lead to an unde-
sirable phenomenon that we refer to as generation stalls in
this paper. For example, Figure 1a shows that a generation
stall in vLLM can last over several seconds.

Another challenge introduced by traditional iteration-level

1We classify recent schedulers Splitwise [58] and DistServe [77] under a
third category “disaggregated” and discuss them in §6.
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Figure 2: Current LLM serving systems involve a tradeoff be-
tween throughput and latency depending on their scheduling
policy. Prioritizing prefills optimizes throughput but sacrifices
TBT (time-between-tokens) tail latency whereas prioritizing
decodes has the opposite effect. Sarathi-Serve serves high
throughput with low TBT latency via stall-free batching. (The
figure is illustrative and actual values will depend on the
model and workload characteristics.)

scheduling systems like Orca [75] is pipeline stalls or bub-
bles [49]. These appear in pipeline-parallelism (PP) deploy-
ments that are needed to scale LLM inference across several
nodes. In servers with high bandwidth connectivity such as
NVIDIA DGX A100 [16], tensor-parallelism (TP) [64] can
enable deployment of an LLM on up to 8 GPUs, supporting
large batch sizes with low latencies. However, TP can have
prohibitively high latencies when hyper-clusters are unavail-
able [33]. Thus, as an alternative to TP, pipeline-parallelism
(PP) [33, 55] is typically used across commodity networks.
Existing systems rely on micro-batches to mitigate pipeline
stalls or bubbles [49]. However, the standard micro-batch
based scheduling can still lead to pipeline bubbles due to the
unique characteristics of LLM inference. Specifically, LLM
inference consists of a mixture of varying length prefills and
decodes. The resulting schedule can thus have wildly vary-
ing runtimes across different micro-batches that waste GPU
cycles and degrade the overall system throughput.

To address these challenges, we propose Sarathi-Serve, a
scheduler to balance the throughput-latency tradeoff for scal-
able online LLM inference serving. Sarathi-Serve is based
on two key ideas: chunked-prefills and stall-free scheduling.
Chunked-prefills splits a prefill request into equal compute-
sized chunks and computes a prompt’s prefill phase over mul-
tiple iterations (each with a subset of the prompt tokens).
Stall-free scheduling allows new requests to join a running
batch without pausing ongoing decodes. This involves con-
structing a batch by coalescing all the on-going decodes with
one (or more) prefill chunks from new requests such that each
batch reaches the pre-configured chunk size. Sarathi-Serve
builds upon iteration-level batching but with an important
distinction: it throttles the number of prefill tokens in each it-
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eration while admitting new requests in a running batch. This
not only bounds the latency of each iteration, but also makes it
nearly independent of the total length of input prompts. This
way, Sarathi-Serve minimizes the effect of computing new
prefills on the TBT of ongoing decodes enabling both high
throughput and low TBT latency.

In addition, hybrid batches (consisting of prefill and decode
tokens) constructed by Sarathi-Serve have a near-uniform
compute requirement. With pipeline-parallelism, this allows
us to create balanced micro-batching based schedules that
significantly reduce pipeline bubbles and improve GPU uti-
lization, thus allowing efficient and scalable deployments.

We evaluate Sarathi-Serve across different models and hard-
ware — Mistral-7B on a single A100, Yi-34B on 2 A100
GPUs with 2-way tensor parallelism, LLaMA2-70B on 8
A40 GPUs, and Falcon-180B with 2-way pipeline and 4-way
tensor parallelism across 8 A100 GPUs connected over com-
modity ethernet. For Yi-34B, Sarathi-Serve improves system
serving capacity by up to 3.7× under different SLO targets.
Similarly for Mistral-7B, we achieve up to 2.6× higher serv-
ing capacity. Sarathi-Serve also reduces pipeline bubbles,
resulting in up to 5.6× gains in end-to-end serving capacity
for Falcon-180B deployed with pipeline parallelism.

The main contributions of our paper include:
1. We identify a number of pitfalls in the current LLM

serving systems, particularly in the context of navigating
the throughput-latency tradeoff.

2. We introduce two simple-yet-effective techniques,
chunked-prefills and stall-free batching, to improve the
performance of an LLM serving system.

3. We show generality through extensive evaluation over
multiple models, hardware, and parallelism strategies
demonstrating that Sarathi-Serve improves model serv-
ing capacity by up to an order of magnitude.

2 Background

In this section, we describe the typical LLM model architec-
ture along with their auto-regressive inference process. We
also provide an overview of the scheduling policies and im-
portant performance metrics.

2.1 The Transformer Architecture
Popular large language models, like, GPT-3 [18], LLaMA
[66], Yi [24] etc. are decoder-only transformer models trained
on next token prediction tasks. These models consist of a
stack of layers identical in structure. Each layer contains two
modules – self-attention and feed-forward network (FFN).
Self-attention module: The self-attention module is central
to the transformer architecture [67], enabling each part of
a sequence to consider all previous parts for generating a
contextual representation. During the computation of self-
attention, first the Query (Q), Key (K) and Value (V ) vectors

corresponding to each input token are obtained via a linear
transformation. Next, the attention operator computes a se-
mantic relationship among all tokens of a sequence. This
involves computing a dot-product of each Q vector with K
vectors of all preceding tokens of the sequence, followed by
a softmax operation to obtain a weight vector, which is then
used to compute a weighted average of the V vectors. This at-
tention computation can be performed across multiple heads,
whose outputs are combined using a linear transformation.
Feed-forward network (FFN): FFN typically consists of two
linear transformations with a non-linear activation in between.
The first linear layer transforms an input token embedding of
dimension h to a higher dimension h2. This is followed by an
activation function, typically ReLU or GELU [27,46]. Finally,
the second linear layer, transforms the token embedding back
to the original dimension h.

2.2 LLM Inference Process

Autoregressive decoding: LLM inference consists of two dis-
tinct phases – a prefill phase followed by a decode phase. The
prefill phase processes the user’s input prompt and produces
the first output token. Subsequently, the decode phase gener-
ates output tokens one at a time wherein the token generated
in the previous step is passed through the model to generate
the next token until a special end-of-sequence token is gen-
erated. Note that the decode phase requires access to all the
keys and values associated with all the previously processed
tokens to perform the attention operation. To avoid repeated
recomputation, contemporary LLM inference systems store
activations in KV-cache [7, 64, 75].

A typical LLM prompt contains 100s-1000s of input tokens
Table 2, [76]. During the prefill phase all these prompt tokens
are processed in parallel in a single iteration. The parallel
processing allows efficient utilization of GPU compute. On
the contrary, the decode phase involves a full forward pass of
the model over a single token generated in the previous itera-
tion. This leads to low compute utilization making decodes
memory-bound.
Batched LLM inference in multi-tenant environment: A
production serving system must deal with concurrent requests
from multiple users. Naively processing requests in a sequen-
tial manner leads to a severe under-utilization of GPU com-
pute. In order to achieve higher GPU utilization, LLM serving
systems leverage batching to process multiple requests con-
currently. This is particularly effective for the decode phase
processing which has lower computational intensity at low
batch sizes. Higher batch sizes allows the cost of fetching
model parameters to be amortized across multiple requests.

Recently, several complementary techniques have been pro-
posed to optimize throughput by enabling support for larger
batch sizes. Kwon et al. propose PagedAttention [53], which
allows more requests to concurrently execute, eliminating
fragmentation in KV-cache. The use of Multi Query Attention
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Algorithm 1 Request-level batching. New requests are admit-
ted only if there are no decodes left (line 3). This optimizes
TBT but wastes GPU compute in many decode-only iterations
(line 10) with potentially small batch sizes.

1: Initialize current batch B← /0

2: while True do
3: if B = /0 then
4: Rnew← get_next_request()
5: while can_allocate_request(Rnew) do
6: B← B+Rnew
7: Rnew← get_next_request()
8: prefill(B)
9: else

10: decode(B)
11: B← filter_finished_requests(B)

Algorithm 2 Iteration-level batching (vLLM). Prefills are exe-
cuted eagerly (lines 8-9), potentially introducing a generation
stall for ongoing decodes (line 12).

1: Initialize current batch B← /0

2: while True do
3: Bnew← /0

4: Rnew← get_next_request()
5: while can_allocate_request(Rnew) do
6: Bnew← Bnew +Rnew
7: Rnew← get_next_request()
8: if Bnew ̸= /0 then
9: prefill(Bnew)

10: B← B+Bnew
11: else
12: decode(B)
13: B← filter_finished_requests(B)

(MQA) [61], Group Query Attention (GQA) [30] in leading
edge LLM models like LLaMA2 [66], Falcon [31] and Yi [24]
has also significantly helped in alleviating memory bottleneck
in LLM inference. For instance, LLaMA2-70B model has a
8× smaller KV-cache footprint compared to LLaMA-65B.

2.3 Multi-GPU LLM Inference
With ever-increasing growth in model sizes, it becomes nec-
essary to scale LLMs to multi-GPU or even multi-node de-
ployments [22, 59]. Furthermore, LLM inference throughput,
specifically that of the decode phase is limited by the maxi-
mum batch size we can fit on a GPU. Inference efficiency can
therefore benefit from model-parallelism which allows larger
batch sizes by sharding model weights across multiple GPUs.
Prior work has employed both tensor-parallelism (TP) [64]
and pipeline-parallelism (PP) [7, 72, 75] for this purpose.

TP shards each layer across the participating GPUs by split-
ting the model weights and KV-cache equally across GPU

workers. This way, TP can linearly scale per-GPU batch size.
However, TP involves a high communication cost due to two
all-reduce operations per layer – one in attention computation
and the other in FFN [64]. Moreover, since these commu-
nication operations are in the critical path, TP is preferred
only within a single node where GPUs are connected via high
bandwidth interconnects like NVLink.

Compared to TP, PP splits a model layer-wise, where each
GPU is responsible for a subset of layers. To keep all GPUs in
the ‘pipeline’ busy, micro-batching is employed. These micro-
batches move along the pipeline from one stage to the next at
each iteration. PP has much better compute-communication
ratio compared to TP, as it only needs to send activations once
for multiple layers of compute. Furthermore, PP requires com-
munication only via point-to-point communication operations,
compared to the more expensive allreduces in TP. Thus, PP is
more efficient than TP when high-bandwidth interconnects
are unavailable e.g., in cross-node deployments.

2.4 Performance Metrics
There are two primary latency metrics of interest for LLM
serving: TTFT (time-to-first-token) and TBT (time-between-
tokens). For a given request, TTFT measures the latency of
generating the first output token from the moment a request
arrives in the system. This metric reflects the initial respon-
siveness of the model. TBT on the other hand measures the
interval between the generation of consecutive output tokens
of a request, and affects the overall perceived fluidity of the
response. When system is under load, low throughput can lead
to large scheduling delays and consequently higher TTFT.

In addition, we use a throughput metric, Capacity, defined
as the maximum request load (queries-per-second) a system
can sustain while meeting certain latency targets. Higher
capacity is desirable because it reduces the cost of serving.

2.5 Scheduling Policies for LLM Inference
The scheduler is responsible for admission control and batch-
ing policy. For the ease of exposition, we investigate existing
LLM inference schedulers by broadly classifying them under
two categories – prefill-prioritizing and decode-prioritizing.

Conventional inference engines like FasterTransformer [7],
Triton Inference Server [17] use decode-prioritizing sched-
ules with request-level batching i.e., they pick a batch of
requests and execute it until all requests in the batch com-
plete (Algorithm 1). This approach reduces the operational
complexity of the scheduling framework but at the expense of
inefficient resource utilization. Different requests in a batch
typically have a large variation in the number of input and
output tokens. Request-level schedulers pad shorter requests
with zeros to match their length with the longest request in
the batch which results in wasteful compute and longer wait
times for pending requests [75].
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Figure 3: Throughput of the prefill and decode phases with
different batch sizes for Mistral-7B running on a single A100
GPU. We use prompt length of 1024 for both prefill and
decode experiments. Note that different y-axis, showing pre-
fills are much more efficient than decode. Further, note that
batching boosts decode throughput almost linearly but has a
marginal effect on prefill throughput.

To avoid wasted compute of request-level batching,
Orca [75] introduced a fine-grained iteration-level batching
mechanism where requests can dynamically enter and exit
a batch after each model iteration.(Algorithm 2). This ap-
proach can significantly increase system throughput and is
being used in many LLM inference serving systems today
e.g., vLLM [23], TensorRT-LLM [21], and LightLLM [12].

Current iteration-level batching systems such as vLLM [23]
and Orca [75] use prefill-prioritizing schedules that eagerly
admit new requests in a running batch at the first available
opportunity, e.g., whenever GPU memory becomes available.
Prioritizing prefills can improve throughput because it in-
creases the batch size of subsequent decode iterations.

3 Motivation

In this section, we first analyse the cost of prefill and decode
operations. We then highlight the throughput-latency trade-off
and pipeline bubbles that appear in serving LLMs.

3.1 Cost Analysis of Prefill and Decode

As discussed in §2.2, while the prefill phase processes all input
tokens in parallel and effectively saturates GPU compute, the
decode phase processes only a single token at a time and is
very inefficient. Figure 3 illustrates throughput as a function of
batch size, and we can observe that while for decode iterations
throughput increases roughly linearly with batch size, prefill
throughput almost saturates even with a single request.
Takeaway-1: The two phases of LLM inference – prefill and
decode – demonstrate contrasting behaviors wherein batching
boosts decode phase throughput immensely but has little effect
on prefill throughput.

Figure 4 breaks down the prefill and decode compute times
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Figure 4: Prefill and decode time with different input sizes
for Mistral-7B running on single A100 GPU. Linear layers
contribute to the majority of runtime in both prefill and decode
phases. Due to the low arithmetic intensity in decode batches,
the cost of linear operation for 1 decode token is nearly same
as 128 prefill tokens.

into linear, attention and others, and shows their individual
contributions. From the figure, we see that linear operators
contribute to the majority of the runtime cost. While attention
cost grows quadratically with sequence length, linear opera-
tors still contribute more than 80% to the total time even at
high sequence lengths. Therefore, optimizing linear operators
is important for improving LLM inference.
Low Compute Utilization during Decodes: Low compute
utilization during the decode phase is a waste of GPU’s pro-
cessing capacity. To understand this further, we analyze the
arithmetic intensity of prefill and decode iterations. Since
the majority of the time in LLM inference is spent in linear
operators, we focus our analysis on them.

Matrix multiplication kernels overlap memory accesses
along with computation of math operations. The total ex-
ecution time of an operation can be approximated to T =
max(Tmath,Tmem), where Tmath and Tmem represent the time
spent on math and memory fetch operations respectively.
An operation is considered memory-bound if Tmath < Tmem.
Memory-bound operations have low Model FLOPs Utiliza-
tion (MFU) [35]. On the other hand, compute-bound opera-
tions have low Model Bandwidth Utilization (MBU). When
Tmath = Tmem, both compute and memory bandwidth utiliza-
tion are maximized. Arithmetic intensity quantifies the num-
ber of math operations performed per byte of data fetched
from the memory. At the optimal point, the arithmetic in-
tensity of operation matches the FLOPS-to-Bandwidth ratio
of the device. Figure 5 shows arithmetic intensity as a func-
tion of the number of tokens in the batch for linear layers in
LLaMA2-70B running on four A100 GPUs. Prefill batches
amortize the cost of fetching weights of the linear operators
from HBM memory to GPU cache over a large number of
tokens, allowing it to have high arithmetic intensity. In con-
trast, decode batches have very low computation intensity.
Figure 6 shows the total execution time of linear operators in
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Figure 5: Arithmetic intensity trend for LLaMA2-70B lin-
ear operations with different number of token running on
four A100s. Decode batches have low arithmetic intensity
i.e., they are bottlenecked by memory fetch time, leading to
low compute utilization. Prefill batches are compute bound
with sub-optimal bandwidth utilization. Sarathi-Serve forms
balanced batches by combining decodes and prefill chunks to
maximize both compute and bandwidth utilization.

an iteration for LLaMA2-70B as a function of the number of
tokens. Note that execution time increases only marginally in
the beginning i.e., as long as the batch is in a memory-bound
regime, but linearly afterwards i.e., when the batch becomes
compute-bound.2

Takeaway-2: Decode batches operate in memory-bound
regime leaving compute underutilized. This implies that more
tokens can be processed along with a decode batch without
significantly increasing its latency.

3.2 Throughput-Latency Trade-off
Iteration-level batching improves system throughput but we
show that it comes at the cost of high TBT latency due to a
phenomenon we call generation stalls.

Figure 7 compares different scheduling policies. The ex-
ample shows a timeline (left to right) of requests A, B, C
and D. Requests A and B are in decode phase at the start of
the interval and after one iteration, requests C and D enter
the system. Orca and vLLM both use FCFS iteration-level
batching with eager admission of prefill requests but differ in
their batch composition policy. Orca supports hybrid batches
composed of both prefill and decode requests whereas vLLM
only supports batches that contain either all prefill or all de-
code requests. Irrespective of this difference, both Orca and
vLLM can improve throughput by maximizing the batch size

2Theoretically, we expect the operators to become compute-bound at
∼200 tokens on A100 GPUs, however, in practice we observe that it hap-
pens at ∼500-600 tokens for higher tensor parallel dimensions due to fixed
overheads.
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Figure 6: Linear layer execution time as function of number of
tokens in a batch for LLaMA2-70B on A100(s) with different
tensor parallel degrees. When the number of tokens is small,
execution time is dictated by the cost of fetching weights from
HBM memory. Hence, execution time is largely stagnant in
the 128-512 tokens range, especially for higher tensor parallel
degrees. Once the number of tokens in the batch cross a
critical threshold, the operation become compute bound and
the runtime increases linearly with number of tokens.
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Figure 7: A generation stall occurs when one or more prefills
are scheduled in between consecutive decode iterations of
a request. A, B, C and D represent different requests. Sub-
script d represents a decode iteration, p represents a full prefill
and p0, p1 represent two chunked prefills of a given prompt.
vLLM induces generation stalls by scheduling as many pre-
fills as possible before resuming ongoing decodes. Despite
supporting hybrid batches, Orca cannot mitigate generation
stalls because the execution time of batches containing long
prompts remains high. FasterTransformer is free of generation
stalls as it finishes all ongoing decodes before scheduling a
new prefill but compromises on throughput due to low decode
batch size. In contrast, Sarathi-Serve generates a schedule
that eliminates generation stalls yet delivers high throughput.

in subsequent decode iterations. However, eagerly scheduling
prefills of requests C and D delays the decodes of already
running requests A and B because an iteration that computes
one or more prefills can take several seconds depending on the
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Figure 8: A 2-way pipeline parallel iteration-level schedule
in Orca across 4 requests (A,B,C,D) shows the existence of
pipeline bubbles due to non-uniform batch execution times.
Sarathi-Serve is able to minimize these stalls by creating
uniform-compute batches.

lengths of input prompts. Therefore, prefill-prioritizing sched-
ulers can introduce generation stalls for ongoing decodes
resulting in latency spikes caused by high TBT.

In contrast to iteration-level batching, request-level batch-
ing systems such as FasterTransformer [7] do not schedule
new requests until all the already running requests complete
their decode phase (line 3 in Algorithm 1). In Figure 7, the
prefills for requests C and D get stalled until requests A and
B both exit the system. Therefore, decode-prioritizing sys-
tems provide low TBT latency albeit at the cost of low system
throughput. For example, Kwon et al. [53] show that iteration-
level batching with PagedAttention can achieve an order of
magnitude higher throughput compared to FasterTransformer.

One way to reduce latency spikes in iteration-level batching
systems is to use smaller batch sizes as recommended in
Orca [75]. However, lowering batch size adversely impacts
throughput as shown in §2.2. Therefore, existing systems are
forced to trade-off between throughput and latency depending
on the desired SLOs.
Takeaway-3: The interleaving of prefills and decodes in-
volves a trade-off between throughput and latency for current
LLM inference schedulers. State-of-the-art systems today use
prefill-prioritizing schedules that trade TBT latency for high
throughput.

3.3 Pipeline Bubbles waste GPU Cycles
Pipeline-parallelism (PP) is a popular strategy for cross-node
deployment of large models, owing to its lower communica-
tion overheads compared to Tensor Parallelism (TP). A chal-
lenge with PP, however, is that it introduces pipeline bubbles
or periods of GPU inactivity as subsequent pipeline stages
have to wait for the completion of the corresponding micro-
batch in the prior stages. Pipeline bubbles is a known prob-
lem in training jobs, where they arise between the forward
and backward passes due to prior stages needing to wait for
the backward pass to arrive. Micro-batching is a common
technique used in PP training jobs to mitigate pipeline bub-
bles [33, 49, 55].

Inference jobs only require forward computation and there-
fore one might expect that micro-batching can eliminate
pipeline bubbles during inference. In fact, prior work on
transformer inference, such as, FasterTransformer [7] and
FastServe [72] use micro-batches but do not mention pipeline-
bubbles. Recently proposed Orca [75] also suggests that
iteration-level scheduling eliminates bubbles in pipeline
scheduling (see Figure 8 in [75]). However, our experiments
show that even with iteration-level scheduling, pipeline bub-
bles can waste significant GPU cycles with PP (§5.3).

Each micro-batch (or iteration) in LLM inference can re-
quire a different amount of compute (and consequently has
varying execution time), depending on the composition of
prefill and decode tokens in the micro-batch (see Figure 8).
We identify three types of bubbles during inference: (1) bub-
bles like PB1 that occur due to the varying number of prefill
tokens in two consecutive micro-batches (2) bubbles like PB2
that occur due to different compute times of prefill and decode
stages when one is followed by the other, and (3) bubbles like
PB3 that occur due to difference in decode compute times
between micro-batches since the attention cost depends on
the accumulated context length (size of the KV-cache) and
varies across requests. For Falcon-180B, a single prompt of 4k
tokens takes≈ 1150 ms to execute compared to a decode only
iteration with batch size 32 which would take about ≈ 200
ms to execute. Interleaving of these iteration could result in a
bubble of ≈ 950 ms. These pipeline bubbles are wasted GPU
cycles and directly correspond to a loss in serving through-
put and increased latency. This problem is aggravated with
increase in prompt lengths and batch size, due to longer and
more frequent prefill iterations respectively. If we can ensure
that each micro-batch performs uniform computation, we can
mitigate these pipeline bubbles.
Takeaway-4: There can be a large variance in compute time
of LLM iterations depending on composition of prefill- and
decode-tokens in the batch. This can lead to significant bub-
bles when using pipeline-parallelism.

4 Sarathi-Serve: Design and Implementation

We now discuss the design and implementation of Sarathi-
Serve — a system that provides high throughput with pre-
dictable tail latency via two key techniques – chunked-prefills
and stall-free batching.

4.1 Chunked-prefills
As we show in §3.1, decode batches are heavily memory
bound with low arithmetic intensity. This slack in arithmetic
intensity presents an opportunity to piggyback additional com-
putation in decode batches. Naively, this can be done by creat-
ing hybrid batches which combine the memory bound decodes
along with compute bound prefills. However, in many practi-
cal scenarios, input prompts contain several thousand tokens
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(a) Mistral-7B on one A100s with token budget of 256.

(b) LLaMA2-70B on four A100s with token budget of 512.

Figure 9: The incremental cost of coalescing prefills with decode batches. We consider two batching schemes – (i) Decode +
Full Prefill represents the hybrid batching of Orca wherein the entire prefill is executed in a single iteration along with ongoing
decodes. (ii) Decode + Chunked Prefill represents Sarathi-Serve wherein prefills are chunked before being coalesced with
ongoing decodes with a fixed token budget. Sarathi-Serve processes prefill tokens with much lower impact on the latency of
decodes. Further, the relative impact of Sarathi-Serve on latency reduces with higher decode batch size and context lengths.

on average e.g., Table 2 shows that the median prompt size
in openchat_sharegpt4 and arxiv_summarization datasets is
1730 and 7059 respectively. Combining these long prefills
with decode iterations would lead to high TBT latency.

To tackle this challenge, we present a technique called
chunked-prefills which allows computing large prefills in
small chunks across several iterations. Chunked-prefills is a
prefill splitting mechanism hinged on two key insights. First,
as discussed in §3.1, a prefill request with modest sequence
length can effectively saturate GPU compute. For example,
in Figure 4, prefill throughput starts saturating around se-
quence length of 512 tokens. Second, in many practical scenar-
ios, input prompts contain several thousand tokens on average
(Table 2). This provides an opportunity to break large prefill
requests into smaller units of compute which are still large
enough to saturate GPU compute. In Sarathi-Serve, we lever-
age this mechanism to form batches with appropriate number
of tokens such that we can utilize the compute potential in
decode batches without violating the TBT SLO.

4.2 Stall-free batching

The Sarathi-Serve scheduler is an iteration-level scheduler
that leverages chunked-prefills and coalescing of prefills and
decodes to improve throughput while minimizing latency.

Unlike Orca and vLLM which stall existing decodes to ex-
ecute prefills, Sarathi-Serve leverages the arithmetic intensity

slack in decode iterations to execute prefills without delay-
ing the execution of decode requests in the system. We call
this approach stall-free batching (Algorithm 3). Sarathi-Serve
first calculates the budget of maximum number of tokens that
can be executed in a batch based on user specified SLO. We
describe the considerations involved in determining this to-
ken budget in depth in §4.3. In every scheduling iteration,
we first pack all the running decodes in the next batch (lines
6-8 in Algorithm 3). After that, we include any partially com-
pleted prefill (lines 9-12). Only after all the running requests
have been accommodated, we admit new requests (lines 13-
20). When adding prefill requests to the batch, we compute
the maximum chunk size that can be accommodated within
the leftover token budget for that batch (lines 11, 15). By re-
stricting the computational load in every iteration, stall-free
batching ensures that decodes never experience a generation
stall due to a co-running prefill chunk. We compare the la-
tency for hybrid batches with and without chunked prefills in
Figure 9. Naive hybrid batching leads to dramatic increase
of up to 28.3× in the TBT latency compared to a decode-
only batch. In contrast, Sarathi-Serve provides a much tighter
bound on latency with chunking.

Figure 7 shows the scheduling policy of Sarathi-Serve in
action, for the same example used in §3.2. The first iteration is
decode-only as there are no prefills to be computed. However,
after a new request C enters the system, Sarathi-Serve first
splits the prefill of C into two chunks and schedules them in
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Algorithm 3 Stall-free batching with Sarathi-Serve. First the
batch is filled with with ongoing decode tokens (lines 6-8)
and optionally one prefill chunk from ongoing (lines 10-12).
Finally, new requests are added (lines 13-20) within the token
budget so as to maximize throughput with minimal latency
impact on the TBT of delaying the ongoing decodes.

1: Input: Tmax, Application TBT SLO.
2: Initialize token_budget, τ← compute_token_buget(Tmax)
3: Initialize batch_num_tokens, nt ← 0
4: Initialize current batch B← /0

5: while True do
6: for R in B do
7: if is_prefill_complete(R) then
8: nt ← nt +1
9: for R in B do

10: if not is_prefill_complete(R) then
11: c← get_next_chunk_size(R, τ, nt )
12: nt ← nt + c
13: Rnew← get_next_request()
14: while can_allocate_request(Rnew) ∧ nt < τ do
15: c← get_next_chunk_size(Rnew, τ, nt )
16: if c > 0 then
17: nt ← nt + c
18: B← Rnew
19: else
20: break
21:
22: process_hybrid_batch(B)
23: B← filter_finished_requests(B)
24: nt ← 0

subsequent iterations. At the same time, with stall-free batch-
ing, it coalesces the chunked prefills with ongoing decodes
of A and B. This way, Sarathi-Serve stalls neither decodes
nor prefills unlike existing systems, allowing Sarathi-Serve to
be largely free of latency spikes in TBT without compromis-
ing throughput. Furthermore, stall-free batching combined
with chunked-prefills also ensures uniform compute hybrid
batches in most cases, which helps reduce bubbles when using
pipeline parallelism, thereby enabling efficient and scalable
deployments.

4.3 Determining Token Budget

The token budget is determined based on two competing fac-
tors — TBT SLO requirement and chunked-prefills overhead.
From a TBT minimization point of view, a smaller token bud-
get is preferable because iterations with fewer prefill tokens
have lower latency. However, smaller token budget can result
in excessive chunking of prefills resulting in overheads due
to 1) lower GPU utilization and 2) repeated KV-cache access
in the attention operation which we discuss below.

During the computation of chunked-prefills, the attention
operation for every chunk of a prompt needs to access the
KV-cache of all prior chunks of the same prompt. This results
in increased memory reads from the GPU HBM even though
the computational cost is unchanged. For example, if a prefill
sequence is split into N chunks, then the first chunk’s KV-
cache is loaded N−1 times, the second chunk’s KV-cache is
loaded N− 2 times, and so on. However, we find that even
at small chunk sizes attention prefill operation is compute
bound operation. In practice, there can be small overhead
associated with chunking due to fixed overheads of kernel
launch, etc. We present a detailed study of the overheads of
chunked-prefills in §5.4.

Thus, one needs to take into account the trade-offs between
prefill overhead and decode latency while determining the
token budget. This can be handled with a one-time profiling of
batches with different number of tokens and setting the token
budget to maximum number of tokens that can be packed in a
batch without violating TBT SLO.

Another factor that influences the choice of token budget
is the tile-quantization effect [13]. GPUs compute matmuls
by partitioning the given matrices into tiles and assigning
them to different thread blocks for parallel computation. Here,
each thread block refers to a group of GPU threads and com-
putes the same number of arithmetic operations. Therefore,
matmuls achieve maximum GPU utilization when the ma-
trix dimensions are divisible by the tile size. Otherwise, due
to tile-quantization, some thread blocks perform extraneous
computation [13]. We observe that tile-quantization can dra-
matically increase prefill computation time e.g., in some cases,
using chunk size of 257 can increase prefill time by 32% com-
pared to that with chunk size 256.

Finally, when using pipeline parallelism the effect of token
budget on pipeline bubbles should also be taken into account.
Larger chunks lead to higher inter-batch runtime variations
that result in pipeline bubbles which results in lower overall
system throughput. On the other hand, picking a very small
token budget can lead to higher overhead due to lower arith-
metic intensity and other fixed overheads.

Therefore, selecting a suitable token budget is a complex
decision which depends on the desired TBT SLO, parallelism
configuration, and specific hardware properties. We leverage
Vidur [28], a LLM inference profiler and simulator to deter-
mine the token budget that maximizes system capacity under
specific deployment scenario.

4.4 Implementation

We implement Sarathi-Serve on top of the open-source im-
plementation of vLLM [23, 53]. We added support for paged
chunk prefill using FlashAttention v2 [38] and FlashInfer [74]
kernels. We use FlashAttention backend for all the evalua-
tions in this paper due to its support for wider set of models.
We also extend the base vLLM codebase to support various
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Model Attention GPU Memory
Mechanism Configuration Total (per-GPU)

Mistral-7B GQA-SW 1 A100 80GB (80GB)
Yi-34B GQA 2 A100s (TP2) 160GB (80GB)

LLaMA2-70B GQA 8 A40s (TP4-PP2) 384GB (48GB)
Falcon-180B GQA 4 A100s×2 nodes (TP4-PP2) 640GB (80GB)

Table 1: Models and GPU configurations (GQA: grouped-
query attention, SW: sliding window).

Dataset Prompt Tokens Output Tokens
Median P90 Std. Median P90 Std.

openchat_sharegpt4 1730 5696 2088 415 834 101
arxiv_summarization 7059 12985 3638 208 371 265

Table 2: Datasets used for evaluation.

scheduling policies, chunked prefills, pipeline parallelism and
an extensive telemetry system. We use NCCL [15] for both
pipeline and tensor parallel communication. Source code for
the project is available at https://github.com/microsoft/sarathi-
serve.

5 Evaluation

We evaluate Sarathi-Serve on a variety of popular models and
GPU configurations (see Table 1) and two datasets (see Ta-
ble 2). We consider vLLM and Orca as baseline because they
represent the state-of-the-art for LLM inference. Our evalua-
tion seeks to answer the following questions:

1. What is the maximum load a model replica can serve under
specific Service Level Objective (SLO) constraints with
different inference serving systems (§5.1) and how does
this load vary with varying SLO constraints (§5.2)?

2. How does Sarathi-Serve perform under various deploy-
ments such as TP and PP? (§5.3)

3. What is the overhead of chunked-prefills? (§5.4.1)

4. What is the effect of each of chunked-prefills and stall-free
batching in isolation as opposed to using them in tandem?
(§5.4.2)

Models and Environment: We evaluate Sarathi-Serve across
four different models Mistral-7B [51], Yi-34B [24], LLaMA2-
70B [66] and Falcon-180B [31] – these models are among

Model relaxed SLO strict SLO
P99 TBT (s) P99 TBT (s)

Mistral-7B 0.5 0.1
Yi-34B 1 0.2

LLaMA2-70B 5 1
Falcon-180B 5 1

Table 3: SLOs for different model configurations.

the best in their model size categories. We use two different
server configurations. For all models except LLaMA2-70B we
use Azure NC96ads v4 VMs, each equipped with 4 NVIDIA
80GB A100 GPUs, connected with pairwise NVLINK. The
machines are connected with a 100 Gbps ethernet connec-
tion. For LLaMA2-70B, we use a server with eight pairwise
connected NVIDIA 48GB A40 GPUs. We run Yi-34B in a 2-
way tensor parallel configuration (TP-2), and LLaMA2-70B
and Falcon-180B in a hybrid parallel configuration with four
tensor parallel workers and two pipeline stages for (TP4-PP2).
Workloads: In order to emulate the real-world serv-
ing scenarios, we generate traces by using the request
length characteristics from the openchat_sharegpt4 [68] and
arxiv_summarization [36] datasets (Table 2). The open-
chat_sharegpt4 trace contains user-shared conversations with
ChatGPT-4 [6]. A conversation may contain multiple rounds
of interactions between the user and chatbot. Each such inter-
action round is performed as a separate request to the system.
This multi-round nature leads to high relative variance in
the prompt lengths. In contrast, arxiv_summarization is a
collection of scientific publications and their summaries (ab-
stracts) on arXiv.org [3]. This dataset contains longer prompts
and lower variance in the number of output tokens, and is
representative of LLM workloads such as Microsoft M365
Copilot [14] and Google Duet AI [10] etc. The request arrival
times are generated using Poisson distribution. We filter out-
liers of these datasets by removing requests with total length
more than 8192 and 16384 tokens, respectively.
Metrics: We focus on the median value for the TTFT since
this metric is obtained only once per user request and on the
99th percentile (P99) for TBT values since every decode token
results in a TBT latency value.

5.1 Capacity Evaluation

We evaluate Sarathi-Serve, Orca and vLLM on all four models
and both datasets under two different latency configurations:
relaxed and strict. Similar to Patel et al. [58], to account for
the intrinsic performance limitations of a model and hardware
pair, we define the SLO on P99 TBT to be equal to 5× and
25× the execution time of a decode iteration for a request
(with prefill length of 4k and 32 batch size) running without
any prefill interference for the strict and relaxed settings,
respectively. Table 3 shows a summary of the absolute SLO
thresholds. Note that the strict SLO represents the latency
target desired for interactive applications like chatbots. On
the other hand, the relaxed configuration is exemplary of
systems where the complete sequence of output tokens should
be generated within a predictable time limit but the TBT
constraints on individual tokens is not very strict. For all load
experiments, we ensure that the maximum load is sustainable,
i.e., the queuing delay does not blow up (we use a limit of 2
seconds on median scheduling delay).

Figure 10 and Figure 11 show the results of our capacity
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Figure 10: Capacity (in queries per second) of Mistral-7B and
Yi-34B with different schedulers under strict (SLO-S) and
relaxed (SLO-R) latency SLOs.

experiments. Sarathi-Serve consistently outperforms Orca
and vLLM in all cases across models and workloads. Under
strict SLO, Sarathi-Serve can sustain up to 4.0× higher load
compared to Orca and 3.7× higher load than vLLM under
strict SLO (Yi-34B, openchat_sharegpt4). For larger models
using pipeline parallelism, Sarathi-Serve achieves gains of up
to 6.3× and 4.3× compared to Orca and vLLM respectively
(LLaMA2-70B, openchat_sharegpt4) due to few pipeline bub-
bles.

We observe that in most scenarios, Orca and vLLM violate
the P99 TBT latency SLO before they can reach their maxi-
mum serviceable throughput. Thus, we observe relaxing the
latency target leads to considerable increase in their model
serving capacity. In Sarathi-Serve, one can adjust the chunk
size based on the desired SLO. Therefore, we use a strict
token budget and split prompts into smaller chunks when
operating under strict latency SLO. This reduces system effi-
ciency marginally but allows us to achieve lower tail latency.
On the other hand, when the latency constraint is relaxed,
we increase the token budget to allow more efficient prefills.
We use token budget of 2048 and 512 for all models under
the relaxed and strict settings, respectively, except for the
LLaMA2-70B relaxed configuration where we use token bud-
get of 1536 to reduce the impact of pipeline bubbles. The
system performance can be further enhanced by dynamically
varying the token budget based on workload characteristics.
We leave this exploration for future work.
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Figure 11: Capacity of LLaMA2-70B and Falcon-180B (mod-
els with pipeline parallelism) with different schedulers under
strict (SLO-S) and relaxed (SLO-R) latency SLOs.

We further notice that vLLM significantly outperforms
Orca under relaxed setting. The reason for this is two-fold.
First, Orca batches prompts for multiple requests together
(max sequence length * batch size compared to max sequence
length in vLLM), which can lead to even higher tail latency
in some cases. Second, vLLM supports a much larger batch
size compared to Orca. The lower batch size in Orca is due to
the lack of PagedAttention and the large activation memory
footprint associated with processing batches with excessively
large number of tokens.

Finally, note that the capacity of each system is
higher for openchat_sharegpt4 dataset compared to the
arxiv_summarization dataset. This is expected because
prompts in the arxiv_summarization datasets are much longer
- 7059 vs 1730 median tokens as shown in Table 2. The larger
prompts makes Orca and vLLM more susceptible to latency
violations due to higher processing time of these longer pre-
fills.

5.2 Throughput-Latency Tradeoff

To fully understand the throughput-latency tradeoff in LLM
serving systems, we vary the P99 TBT latency SLO and ob-
serve the impact on system capacity for vLLM and Sarathi-
Serve. Figure 12 shows the results for Mistral-7B and Yi-
34B models with five different SLO values for the open-
chat_sharegpt4 dataset.
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Figure 12: Latency – Throughput tradeoff in vLLM and
Sarathi-Serve for Mistral-7B and Yi-34B models on open-
chat_sharegpt4 dataset. We evaluate vLLM with three differ-
ent max batch sizes of 32, 64 and 128. For Sarathi-Serve, we
consider token budget of 512 and 2048 with max batch size
of 128. Sarathi-Serve delivers 3.5× higher capacity under
stringent SLOs for Yi-34B using Stall-free batching.

We evaluate vLLM with three different batch sizes in an
attempt to navigate the latency-throughput trade-off as pre-
scribed by Yu et al. [75]. The maximum capacity of vLLM
gets capped due to generation stalls under stringent TBT
SLOs. Notably, the capacity of vLLM remains largely iden-
tical for all the three batch size settings. This implies that
even though PagedAttention enables large batch sizes with
efficient memory management – in practical situations with
latency constraints, vLLM cannot leverage the large batch
size due to the steep latency-throughput tradeoff made by it’s
prefill-prioritizing scheduler.

On the other hand, the latency-throughput tradeoff in
Sarathi-Serve can be precisely controlled by varying the token
budget. Sarathi-Serve achieves 3.5× higher capacity com-
pared to vLLM under strict SLO (100ms, Mistral-7B) using a
small token budget of 512. For scenarios with more relaxed
SLO constraints, picking a larger token budget of 2048 allows
Sarathi-Serve to operate more efficiently resulting in 1.65×
higher capacity compared to vLLM (1s, Yi-34B).
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Figure 13: TP scales poorly across nodes. (a) Median TBT for
decode-only batches: cross node TP increases median TBT
by more than 2× compared to a 4-way TP within node and
PP across nodes. (b) Capacity under strict (SLO-S) and re-
laxed (SLO-R) latency SLOs: Sarathi-Serve increases Falcon-
180B’s serving capacity by 4.3× and 3.6× over vLLM’s TP-
only and hybrid-parallel configurations under strict SLOs.

5.3 Making Pipeline Parallel Viable

We now show that Sarathi-Serve makes it feasible to effi-
ciently serve LLM inference across commodity networks
with efficient pipeline parallelism. For these experiments, we
run Falcon-180B over two nodes, each with four A100 GPUs,
connected over 100 Gbps Ethernet. We evaluate model capac-
ity under three configurations: vLLM with 8-way TP, vLLM
with our pipeline-parallel implementation and Sarathi-Serve
with pipeline-parallel. For PP configurations, we do 4-way
TP within node and 2-way PP across nodes.

Figure 13a shows the latency for decode-only batches for
Falcon-180B with purely tensor parallel TP-8 deployment
compared to a TP-4 PP-2 hybrid parallel configuration. We
observe that the median latency for tensor parallelism is∼ 2×
higher than pipeline parallelism. This is because TP incurs
high communication overhead due to cross-node all-reduces.

Figure 13b shows the capacity for tensor and hybrid par-
allel configurations for Falcon-180B on openchat_sharegpt4
dataset. Note that unlike the hybrid parallel configuration, TP
achieves low capacity even under the relaxed SLO due to
high latency. Even though vLLM can support a fairly high
load with hybrid parallelism under relaxed SLO, it’s perfor-
mance drops sharply under the strict regime due to pipeline
bubbles. Sarathi-Serve on the other hand, leverages chunked-
prefills to reduce the variation in the execution time between
microbatches to avoid pipeline bubbles, resulting in a 1.48×
increase in capacity under relaxed SLOs and 3.6× increase
in capacity under strict SLOs.

5.4 Ablation Study

In this subsection, we conduct an ablation study on different
aspects on Sarathi-Serve. In particular, we are interested in
answering the following two questions: 1) what is the effect of
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Figure 14: Overhead of chunked-prefills in prefill computation
for Yi-34B (TP-2) normalized to the cost of no-chunking,
shown for various prompt lengths using chunk lengths of 512,
1024 and 2048.

Scheduler openchat_sharegpt4 arxiv_summarization
P50 TTFT P99 TBT P50 TTFT P99 TBT

hybrid-batching-only 0.53 0.68 3.78 1.38
chunked-prefills-only 1.04 0.17 5.38 0.20

Sarathi-Serve (combined) 0.76 0.14 3.90 0.17

Table 4: TTFT and TBT latency measured in seconds for
hybrid-batching and chunked-prefills used in isolation as well
as when they are used in tandem, evaluated over 128 requests
for Yi-34B running on two A100s with a token budget of
1024. By using both hybrid-batching and chunked-prefills,
Sarathi-Serve is able to lower both TTFT and TBT.

chunking on prefill throughput, and 2) analyzing the impact of
hybrid-batching and chunking on latency. While we provide
results only for a few experiments in this section, all the trends
discussed below are consistent across various model-hardware
combinations.

5.4.1 Overhead of chunked-prefills

Figure 14 shows how much overhead chunking adds in Yi-
34B – on overall prefill runtime. As expected, smaller chunks
introduce higher overhead as shown by the gradually decreas-
ing bar heights in Figure 14. However, even with the smallest
chunk size of 512, we observe a moderate overhead of at
most ∼25%. Whereas with the larger token budget of 2048,
chunked prefills have almost negligible overhead.

5.4.2 Impact of individual techniques

Finally, Table 4 shows the TTFT and TBT latency with
each component of Sarathi-Serve evaluated in isolation i.e.,
chunked-prefills-only, hybrid-batching-only (mixed batches
with both prefill and decode requests) and when they are used
in tandem. These results show that the two techniques work
best together: chunked-prefills-only increases TTFT as prefill
chunks are slightly inefficient whereas hybrid-batching-only
increases TBT because long prefills can still create generation

stalls. When used together, Sarathi-Serve improves perfor-
mance along both dimensions.

6 Related Work

Model serving systems: Systems such as Clipper [37],
TensorFlow-Serving [56], Clockwork [45] and Batch-
Maker [44] study various placement, caching and batching
strategies for model serving. However, these systems fail to
address the challenges of auto-regressive transformer infer-
ence. More recently, systems such as Orca [75], vLLM [53],
FlexGen [63], FasterTransformers [7], LightSeq [70], and
TurboTransformers [42] propose domain-specific optimiza-
tions for transformer inference. FlexGen [63] optimizes LLM
inference for throughput in resource-constrained offline sce-
narios i.e., it is not suitable for online serving. FastServe [72]
proposed a preemptive scheduling framework for LLM in-
ference to minimize the job completion times. We present a
detailed comparison with Orca and vLLM as they represent
the state-of-the-art in LLM inference.

Another approach that has emerged recently is to disag-
gregate the prefill and decode phases on different replicas as
proposed in SplitWise, DistServe and TetriInfer [47, 58, 77].
These solutions can entirely eliminate the interference be-
tween prefills and decodes. However, disaggregation requires
migrating the KV cache of each request upon the comple-
tion of its prefill phase which could be challenging in the
absence of high-bandwidth interconnects between different
replicas. In addition, this approach also under-utilizes the
GPU memory capacity of the prefill replicas i.e., only the de-
code replicas are responsible for storing the KV cache. On the
positive side, disaggregated approaches can execute prefills
with maximum efficiency (and therefore yield better TTFT)
unlike chunked prefills that are somewhat slower than full
prefills. We leave a quantitative comparison between Sarathi-
Serve and disaggregation-based solutions for future work.

Recently, Sheng et al. [62] proposed modification to
iteration-level batching algorithm to ensure fairness among
clients in a multi-tenant environment. FastServe [72] uses a
preemption based scheduling mechanism to mitigate head-of-
the-line blocking. Such algorithmic optimizations are compli-
mentary to our approach and can benefit from lower prefill-
decode interference enabled by Sarathi-Serve. Another recent
system, APIServe [26] adopted chunked prefills from Sarathi
to utilize wasted compute in decode batches for ahead-of-time
prefill recomputation for multi-turn API serving.
Improving GPU utilization for transformers: Recent works
have proposed various optimizations to improve the hardware
utilization for transformers. FasterTransformer uses model-
specific GPU kernel implementations. CocoNet [50] and [69]
aim to overlap compute with communication to improve GPU
utilization: these techniques are specially useful while us-
ing a high degree of tensor-parallel for distributed models
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where communication time can dominate compute. Further,
the cost of computing self-attention grows quadratically with
sequence length and hence can become significant for long
contexts. [38,39,60] have proposed various techniques to min-
imize the memory bottlenecks of self-attention with careful
tiling and work partitioning. In addition, various paralleliza-
tion strategies have been explore to optimize model placement.
These techniques are orthogonal to Sarathi-Serve.
Model optimizations: A significant body of work around
model innovations has attempted to address the shortcomings
of transformer-based language models or to take the next
leap forward in model architectures, beyond transformers. For
example, multi-query attention [61] shares the same keys
and values across all the attention heads to reduce the size
of the KV-cache, allowing to fit a larger batch size on the
GPUs. Several recent works have also shown that the model
sizes can be compressed significantly using quantization [40,
41, 43, 73]. Mixture-of-expert models are aimed primarily at
reducing the number of model parameters that get activated
in an iteration [32, 48, 54]. More recently, retentive networks
have been proposed as a successor to transformers [65]. In
contrast, we focus on addressing the performance issues of
popular transformer models from a GPU’s perspective.

7 Conclusion

Optimizing LLM inference for high throughput and low la-
tency is desirable but challenging. We presented a broad char-
acterization of existing LLM inference schedulers by dividing
them into two categories – prefill-prioritizing and decode-
prioritizing. In general, we argue that the former category is
better at optimizing throughput whereas the latter is better
at optimizing TBT latency. However, none of them is ideal
when optimizing throughput and latency are both important.

To address this tradeoff, we introduce Sarathi-Serve—
a system that instantiates a novel approach comprised of
chunked-prefills and stall-free batching. Sarathi-Serve chunks
input prompts into smaller units of work to create stall-free
schedules. This way, Sarathi-Serve can add new requests in a
running batch without pausing ongoing decodes. Our evalua-
tion shows that Sarathi-Serve improves the serving capacity
of Mistral-7B by up to 2.6× on a single A100 GPU and up to
5.6× for Falcon-180B on 8 A100 GPUs.
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A Artifact Appendix

Abstract
Our open source artifact is available on GitHub. This reposi-
tory contains our implementation of Sarathi-Serve as well as
the harnesses and scripts for running and plotting the experi-
ments described in this paper.

This repository originally started as a fork of the vLLM
project. Sarathi-Serve is a lightweight high-performance re-
search prototype and doesn’t have complete feature parity
with open-source vLLM. We have only retained the most
critical features and adopted the codebase for faster research
iterations.

Scope
This artifact allows the readers to validate the claims made in
the Sarathi-Serve paper (the figures) and provides a means to
replicate the experiments described. The artifact can be used
to set up the necessary environment, execute the main results,
and perform microbenchmarks, thus providing a comprehen-
sive understanding of the key claims in Sarathi-Serve.

Contents
The repository is structured as follows, the primary source
code for the system is contained in directory /sarathi. The
implementations for custom CUDA kernels are within the
/csrc directory. All the scripts to reproduce the experiments
are in /osdi-experiments and finally, the trace files used for
the experiments are stored in /data.

Hosting
You can obtain our artifacts from GitHub: GitHub. The main
branch of the Github repository is actively updated, but we

will maintain clear and accessible instructions about our arti-
facts in an easily identifiable README file. All the detailed
instructions and README files to reproduce the experiments
in the OSDI paper are available in the branch osdi-sarathi-
serve.

Requirements
Sarathi-Serve has been tested with CUDA 12.1 on A100 and
A40 GPUs. The specific GPU SKUs on which the experi-
ments were performed and the parallelism strategies used
are clearly explained in the README corresponding to the
figures in the artifact, for ease of reproducibility.
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Abstract
This paper presents ServerlessLLM, a distributed system

designed to support low-latency serverless inference for Large
Language Models (LLMs). By harnessing the substantial near-
GPU storage and memory capacities of inference servers,
ServerlessLLM achieves effective local checkpoint storage,
minimizing the need for remote checkpoint downloads and
ensuring efficient checkpoint loading. The design of Server-
lessLLM features three core contributions: (i) fast multi-tier
checkpoint loading, featuring a new loading-optimized check-
point format and a multi-tier loading system, fully utilizing
the bandwidth of complex storage hierarchies on GPU servers;
(ii) efficient live migration of LLM inference, which enables
newly initiated inferences to capitalize on local checkpoint
storage while ensuring minimal user interruption; and (iii)
startup-time-optimized model scheduling, which assesses the
locality statuses of checkpoints on each server and schedules
the model onto servers that minimize the time to start the
inference. Comprehensive evaluations, including microbench-
marks and real-world scenarios, demonstrate that Serverless-
LLM dramatically outperforms state-of-the-art serverless sys-
tems, reducing latency by 10 - 200X across various LLM
inference workloads.

1 Introduction

Large Language Models (LLMs) have recently been inte-
grated into various online applications, such as program-
ming assistants [26], search engines [21], and conversational
bots [54]. These applications process user inputs, such as ques-
tions, by breaking them down into tokens (e.g., words). LLMs
generate responses in an autoregressive manner, predicting
each subsequent token based on the combination of input
tokens and those already generated, until a sentence-ending
token (EoS) is reached. To optimize this process, LLMs uti-
lize key-value caches to store intermediate results, thereby
minimizing redundant computations.

Serving LLMs at scale presents significant challenges due
to the extensive GPU resources required and the stringent low

response time constraints demanded by interactive services.
Additionally, LLM inference latency is unpredictable as it
depends on the output length, which varies significantly due
to iterative token generation [27, 42, 81].

To achieve low latency, processing an LLM request often
requires multiple GPUs for durations ranging from seconds to
minutes. In practice, service providers hosting LLMs need to
cater to a diverse range of developers, leading to substantial
GPU consumption [20] and impacting the sustainability of
LLM services [23]. Consequently, LLM inference services
are compelled to impose strict limits on the number of re-
quests users can send (e.g., 40 messages per 3 hours for Chat-
GPT [54]), highlighting the providers’ current challenges in
meeting demand. Researchers predict that LLM inference
costs could escalate by more than 50 times as it approaches
the popularity of Google Search [23].

To reduce GPU consumption, LLM service operators are
turning to serverless inference, as demonstrated in platforms
such as Amazon SageMaker [63], Azure [50], KServe [16],
and HuggingFace [35]. In this model, developers upload their
LLM checkpoints, which include both model execution and
parameter files, to a checkpoint storage system. When a re-
quest is received, a model loading scheduler selects available
GPUs to initiate these checkpoints. A request router then di-
rects the inference request to the selected GPUs. This server-
less approach allows infrastructure providers to efficiently
multiplex LLMs on GPUs, improving resource utilization.
Additionally, it offers economic advantages to infrastructure
users, who incur costs only for each request’s duration, thereby
avoiding expensive long-term GPU reservations.

While serverless inference offers cost savings for deploy-
ing LLMs, it also introduces significant latency overheads.
These overheads are commonly attributed to inference cold
starts, a frequent issue in serverless workloads, as demon-
strated by public traces [64, 92]. Cold starts are especially
prolonged for LLM checkpoints, whose sizes can range from
gigabytes [11,76,91] to terabytes [29]. The vast size is due to
the immense number of parameters in such models, leading
to notable delays when downloading from remote storage.
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Moreover, these checkpoints consist of numerous tensors,
each with unique structures and sizes. The complex process
of loading these tensors onto GPUs, which involves file de-
serialization, memory allocation, and tensor shape parsing,
further compounds these delays.

We aim to explore system designs that support low-latency
serverless inference for LLMs. We note that GPU-based in-
ference servers typically feature a sophisticated yet underuti-
lized storage hierarchy, equipped with extensive host memory
and storage capacities. Current serverless inference systems,
such as KServe [16] and Ray Serve [73], often only utilize
a fraction of the available host memory and minimally em-
ploy SSDs for caching checkpoints from the model reposi-
tory. This observation has led us to propose a novel system
design: leveraging the multi-tier storage hierarchy for local
checkpoint storage and harnessing their significant storage
bandwidth for efficient checkpoint loading.

However, several open concerns arise when implementing
local checkpoint storage: (i) Given the complex storage ar-
chitecture of a GPU server, which includes multiple GPUs,
DRAM, SSDs, and remote storage, all interconnected through
various links such as PCIe, NVMe, and network connections,
how can we optimize the loading of LLM checkpoints to fully
exploit the available bandwidth? (ii) Assigning requests to
servers with pre-loaded checkpoints can avoid the need for
remote checkpoint downloads, but this strategy might lead
to prolonged queuing delays or high preemption costs. This
is particularly challenging as LLMs typically have long, un-
predictable inference durations, which differ markedly from
traditional deep neural network inference. (iii) In a distributed
cluster where model requests are concurrently served and
checkpoints are preloaded onto various layers of local storage,
which servers should be strategically selected to minimize the
time required to start a model inference?

To address the above, we have designed and implemented
ServerlessLLM, which includes three core contributions:

(1) Fast multi-tier checkpoint loading. ServerlessLLM can
maximize the storage bandwidth usage of GPU servers for
LLM checkpoint loading. It introduces (i) a new loading-
optimized checkpoint that supports sequential, chunk-based
reading and efficient tensor in-memory addressing, and (ii)
an efficient multi-tier checkpoint storage system that can har-
ness the substantial capacity and bandwidth on a multi-tier
storage hierarchy, through an in-memory data chunk pool,
memory-copy efficient data path, and a multi-stage data load-
ing pipeline.

(2) Efficient live migration of LLM inference. We moti-
vate the need for live migration of LLM inference and are
the first to implement LLM live migration in serverless infer-
ence systems to enhance the performance when supporting
locality-driven inference. To achieve high efficiency when
migrating LLM inference, we have implemented two strate-
gic designs: (i) the source server migrates only the tokens,

rather than the large kv-cache, which significantly reduces
network traffic during the migration; and (ii) it triggers an
efficient re-computation of the kv-cache at the destination
server, ensuring migration can complete in a timely manner.

(3) Startup-time-optimized model scheduling. Serverless-
LLM aids serverless inference systems by enabling latency-
preserving, locality-aware model scheduling. It integrates cost
models for accurately estimating the time of loading check-
points from different tiers in the storage hierarchy and the
time of migrating an LLM inference to another server. Based
on the estimation results, Phantom can choose the best server
to minimize model startup latency.

We have conducted comprehensive evaluation to compare
ServerlessLLM against various baseline methods in a GPU
cluster. Micro-benchmark results revealed that Serverless-
LLM’s LLM checkpoint loading significantly outperforms
existing systems such as Safetensors [36], and PyTorch [58],
achieving loading times that are 3.6 - 8.2X faster. This perfor-
mance enhancement is particularly notable with large LLMs
like OPT [91], LLaMA-2 [76], and Falcon [11]. Serverless-
LLM also supports emerging LoRA adaptors [34], achieving
4.4X speed-ups in checkpoint loading.

Furthermore, we evaluated ServerlessLLM with real-world
serverless workloads, modeled on the public Azure Trace [64],
and benchmarked it against KServe, Ray Serve, and a Ray
Serve variant with local checkpoint caching. In these scenar-
ios, ServerlessLLM demonstrated a 10 to 200 times improve-
ment in latency for running OPT model inferences across
datasets (i.e., GSM8K [25] and ShareGPT [83]). These re-
sults underscore ServerlessLLM’s effectiveness in combining
fast checkpoint loading, efficient inference migration, and op-
timized scheduling for model loading. The source code for
ServerlessLLM is released at https://github.com/Serve
rlessLLM/ServerlessLLM.

2 Background and Motivation

2.1 Why Serverless Inference for LLMs

Numerous companies, including Amazon, Azure, Google,
HuggingFace, Together AI [6], Deepinfra [2], Replicate [5],
Databricks [7], Fireworks-AI [3], and Cohere [4], have intro-
duced serverless inference services (also known as serverless
model entrypoints). These services enable users to deploy
standard open-source LLMs either in their original form or
by modifying them through fine-tuning or by running custom-
built models.

Serverless inference can significantly reduce costs for LLM
users by charging only for the duration of inference and the
volume of processed data. These serverless platforms also
offer functionalities such as auto-scaling and auto-failure-
recovery to keep instances in an "always-on" state. For the
providing companies, serverless inference allows effective
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Figure 1: Overview of GPU serverless clusters, LLM infer-
ence and new designs introduced by ServerlessLLM.

multiplexing of models within a GPU cluster, improving re-
source utilization, and generating a software premium for
managing infrastructure on behalf of users.

Serverless inference systems are especially advantageous
for LLM applications with dynamic and unpredictable work-
loads. These may include newly launched products without
clear predictions of user engagement (e.g., the launch of the
ChatGPT service) or those facing spontaneous and unpre-
dictable demands, which are typical in sectors such as health-
care, education, legal, and sales. Unlike global-scale LLM
services, these applications are activated only when users
access the LLM service.

2.2 Serverless Cluster and LLM Inference

We introduce the key components in GPU serverless clus-
ters in Figure 1. Upon receiving a new inference request, the
controller dispatches it to GPU-equipped nodes in a cluster
running LLM inference service instances, and to cloud storage
hosting model checkpoints. The controller typically consists
of two main components: the request router and the model
loading scheduler. The request router directs incoming re-
quests to nodes already running LLM inference processes, or
instructs the model loading scheduler to activate LLM infer-
ence processes on unallocated GPUs. The selected GPU node
initiates a GPU process/container, setting up an inference li-
brary (e.g., HuggingFace Accelerate [32] and vLLM [42]).
This inference process involves downloading the requested
model’s checkpoint from a remote model storage and loading
it into the GPU, passing through SSD and DRAM.

The LLM inference process often handle requests that in-
clude user-specified input prompts, i.e., a list of tokens, as
shown in Figure 1. This process iteratively generates tokens
based on the prompt and all previously generated tokens, con-
tinuing until an end-of-sentence token (denoted as EoS) is pro-
duced, resulting in non-deterministic total inference time [55].
During each iteration, the LLM caches intermediate compu-
tations in a KV-cache to accelerate subsequent token gen-
eration [42, 56]. The tokens generated by each iteration are
continuously streamed back to the requesting client, making

LLM applications interactive by nature. Their performance
is thus measured by both first-token latency (i.e., the time to
return the first token) and per-token latency (i.e., the average
time to generate a token).

2.3 Challenges with Serverless LLM Inference
The deployment of LLMs on serverless systems, although
promising, often incurs significant latency overheads. This
is largely due to the substantial proportions of cold-start in
serverless clusters, as demonstrated by public data: the Azure
Trace [64] shows that over 40% of functions exhibit a cold-
start rate exceeding 25%, and approximately 25% of func-
tions experience a cold-start rate greater than 60%, within
a 5-minute keep-alive interval. These figures align with the
findings from our experiments, underscoring the impact of
cold-starts in real-world settings. Consequently, many server-
less providers, including Bloomberg, have publicly acknowl-
edged experiencing extremely high latencies, often reaching
tens of seconds, when initializing state-of-the-art LLMs for
inference on their platforms.

We observe several primary reasons for the prolonged LLM
cold-start latency:

(1) LLM checkpoints are large, prolonging downloads.
LLM checkpoints are significantly larger than conventional
DNN checkpoints, which leads to longer download times.
For instance, Grok-1 [82] checkpoints are over 600 GB,
DBRX [72] are 250GB, and Mixtral-8x22B [71] are about
280GB 1 Downloading such large checkpoints from remote
storage becomes costly. For example, acquiring an LLM
checkpoint with a size of 130GB (e.g., LLaMA-2-70B [76])
from S3 or blob storage takes a minimum of 26 seconds using
a fast commodity network capable of 5GB/s [19].

(2) Loading LLM checkpoints incurs a lengthy process.
Even when model checkpoints are stored locally on NVMe
SSDs, loading these checkpoints into GPUs remains a com-
plex process including model initialization, GPU memory
allocation, tensor creation, and tensor data copy, typically tak-
ing tens of seconds (as detailed in §7.2). For instance, loading
the OPT-30B model into 4 GPUs requires 34 seconds using
PyTorch, and loading LLaMA-2-70B into 8 GPUs takes 84
seconds. This loading latency far exceeds the time required
for generating a token during the inference process, which is
usually less than 100ms [55]. Consequently, the prolonged
first-token latency can significantly disrupt user experience.

2.4 Existing Solutions and Associated Issues
To improve the latency performance when supporting LLMs,
existing solutions show a variety of issues:

(1) Over-subscribing GPUs. The prevalent solutions [13,84],
aimed at circumventing model download and loading times

1Model size calculated in float16 precision.
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in serverless inference clusters, frequently involve over-
subscribing GPUs to accommodate peak demand scenarios.
For instance, AWS Serverless Inference [13] maintains a cer-
tain number of GPU instances in a warmed state to alleviate
the impacts of slow cold starts. While this strategy is effective
for managing conventional smaller models, such as ResNet
and BERT, it proves challenging for LLMs, which require
substantially greater resources from costly GPUs.

(2) Caching checkpoints in host memory. Several solu-
tions [33, 39] have been developed that cache model check-
points in the host memory of GPU servers to eliminate the
need for model downloads. This approach is typically ef-
fective for smaller conventional models (e.g., up to a few
GBs [39]). However, solely relying on host-memory-based
caching proves inadequate for LLMs. LLMs can easily ex-
ceed hundreds of GBs in size, challenging the capacity of
host memory to store a sufficient number of their checkpoints
adequately. The limited size of host memory leads to signifi-
cant cache misses, resulting in frequent model downloads, as
further discussed in §7.4.

(3) Deploying additional storage servers. Various strate-
gies [19] recommend the deployment of additional storage
servers within a local cluster to cache model checkpoints.
Despite these enhancements, recent trace studies [19] indi-
cate that model downloads can exceed 20 seconds through
an optimized pipeline, even when connected to local com-
modity storage servers equipped with a 100 Gbps NIC. Al-
though the integration of faster networks (e.g., 200 Gbps Eth-
ernet or InfiniBand) could reduce this latency, the associated
costs of implementing additional storage servers and high-
bandwidth networks are substantial [18, 31]. For instance,
utilizing network-optimized AWS ElasticCache servers [1]
to support a 70B model can lead to a 100% increase in
costs. Specifically, cache.c7gn.16xlarge servers, which pro-
vide 210GB of memory and 200 Gbps of network perfor-
mance, are priced at $16.3/h, equivalent to the cost of an
8-GPU g5.48xlarge server.

3 Exploiting In-Server Multi-Tier Storage

ServerlessLLM addresses the challenges highlighted in the
previous sections—namely, high model download times and
lengthy model loading—using a design approach that is cost-
effective, scalable, and long-term viable.

3.1 Design Intuitions

Our design is inspired by the simple observation that GPU
servers used for inference feature a multi-tier storage hierar-
chy with substantial capacity and bandwidth. From a capacity
standpoint, these servers are equipped with extensive memory
capabilities. For example, a contemporary 8-GPU server can
support up to 4 TBs of main memory, 64 TBs on NVMe SSDs,

and 192 TBs on SATA SSDs [52]. Additionally, we observe
that in the serverless inference context, a significant portion of
the host memory and storage devices in GPU servers remains
underutilized.

Regarding bandwidth, GPU servers typically house multi-
ple GPUs, each connected to the host memory via a dedicated
PCIe connection, providing significant aggregated bandwidth
between the memory and GPU. NVMe and SATA SSDs also
connect through their respective links and can be configured in
RAID to enhance throughput. For instance, an 8-GPU server
utilizing PCIe 5.0 technology can achieve an aggregated band-
width of 512 GB/s between the host memory and GPUs, and
around 60 GB/s from NVMe SSDs (RAID 0) to host memory.

Building on these observations, we propose a design ap-
proach that leverages the unused in-server multi-tier storage
capacity to store models locally and load them more rapidly,
thus reducing latency. This approach is (i) cost-effective, as
it reutilizes existing, underutilized storage resources in GPU
servers; (ii) scalable, given that the available local storage
capacities and bandwidth can naturally increase with the ad-
dition of more inference servers; and (iii) long-term viable, as
upcoming GPU servers will include even greater capacities
and bandwidth (e.g., each Grace-Hopper GPU features 1 TB
on-chip DRAM and a 900GB/s C2C link between on-chip
DRAM and HBM).

3.2 Design Concerns and Overview

In implementing our design, we identify three crucial con-
cerns that must be addressed.

(1) Support complex multi-tiered storage hierarchy. Cur-
rent checkpoint and model loading tools such as PyTorch [58],
TensorFlow [75], and ONNX Runtime [62] are primarily de-
signed to enhance the training and debugging phases of model
development. However, these tools are not optimized for read
performance, which becomes critically important in a server-
less inference environment. In these settings, model check-
points are stored once but need to be frequently loaded and
accessed across multiple GPUs. This insufficient optimization
for read operations results in significant loading delays. While
solutions like Safetensors [36] can enhance loading perfor-
mance, as demonstrated in Section 7, they still fail to fully
leverage the capabilities of a multi-tiered storage hierarchy.

(2) Strong locality-driven inference. Supporting efficient
model loading alone is insufficient; we also need approaches
that can effectively schedule requests onto GPU servers
with locally stored checkpoints. Implementing locality-driven
LLM inference, however, presents challenges. Current ML
model serving systems such as ClockWork [33] and Shep-
herd [90] take checkpoint locality into account. Yet, they ei-
ther depend on accurate predictions of model inference time,
which is problematic with LLMs, or they preempt ongoing
model inferences, causing significant downtime and redun-
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dant computations. Therefore, ServerlessLLM must adopt a
new approach that is tailored to the unique characteristics of
LLM inference (i.e., this workload is interactive and features
long, unpredictable durations), necessitating the support for
inference live migration, which is further detailed in Section 5.

(3) Scheduling models for optimized startup time. Server-
lessLLM is designed to minimize the model startup latency.
The cluster scheduler (or controller) plays a crucial role in
scheduling models onto GPU resources to answer incoming
inference requests. However, the scheduler needs to carefully
consider the checkpoint’s locality in the entire cluster. Many
factors may influence the overall startup latency, such as the
difference in the bandwidth offered by each layer in the mem-
ory hierarchy. There may be instances where it is beneficial
to move the current inference execution to a new GPU than
to allocate the request to a GPU where the model may have
to be loaded from the storage media. Hence, ServerlessLLM
needs to accurately estimate the startup times considering the
cluster’s checkpoint locality status and accordingly allocate
resources to minimize startup time.

Overview. ServerlessLLM addresses these concerns with
three novel designs, as depicted in Figure 1. Firstly, it facil-
itates fast multi-tier checkpoint loading (Section 4) to fully
utilize the storage capacity and bandwidth of each GPU server.
It also coordinates GPU servers and the cluster controller for
efficient live migration of LLM inference (Section 5), ensur-
ing locality-driven inference with minimal resource overhead
and user disruption. Lastly, ServerlessLLM features a startup-
time-optimized model scheduling policy (Section 6) imple-
mented in its controller, effectively analyzing the checkpoint
storage status of each server within a cluster, and it chooses a
server for initiating a model, minimizing its startup time.

4 Fast Multi-Tier Checkpoint Loading

In this section, we introduce the design of fast multi-tier check-
point loading in ServerlessLLM, with several key objectives:
(i) to fully utilize the bandwidth and capacity of multi-tier
local storage on GPU servers, (ii) to ensure predictable load-
ing performance, critical for ServerlessLLM’s readiness in
low-latency inference clusters, and (iii) to maintain a generic
design that supports checkpoints from various deep learning
frameworks.

4.1 Loading-Optimized Checkpoints

Our design is motivated by the observation that LLM check-
points are often written frequently during training and de-
bugging but loaded infrequently. Conversely, in serverless
inference environments, checkpoints are uploaded once and
loaded multiple times. This discrepancy has inspired us to
convert these checkpoints into a loading-optimized format.

To ensure our design is generic for different frameworks,
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we operate under a set of assumptions that are common in
checkpoints. The checkpoints have: (i) Model execution files
which define the model architecture. Depending on the frame-
work, the format varies; TensorFlow typically uses protobuf
files [74], while PyTorch employs Python scripts [57]. Be-
yond architecture, these files detail the size and shape of each
tensor and include a model parallelism plan. This plan speci-
fies the target GPU for each tensor during checkpoint loading.
(ii) Model parameter files which stores the binary data of
parameters in an LLM. Tensors within these files can be ar-
ranged in any sequence. Runtimes such as PyTorch may also
store tensor shapes as indices to calculate the offset and size
for each tensor.

To ensure fast loading performance, we implement two
main features for the converted checkpoints: (i) Sequential
chunk-based reading: To ensure efficient sequential reading,
tensors for each GPU are grouped in partitions (shown in
Figure 2). These files contain only the binary data of model
parameters and exclude metadata such as tensor shapes, fa-
cilitating large chunk reading. (ii) Direct tensor addressing:
We create a tensor index file (shown in Figure 2) that maps
tensor names to a tuple of GPU id, offset, and size, facilitating
the efficient restoration of tensors. The tensors are aligned
with memory word sizes, facilitating direct computation of
memory address.

We observe that decoupling the loading and inference pro-
cesses can further enhance loading performance. This sep-
aration allows checkpoint loading to be pre-scheduled and
overlapped with the initialization of the inference process. For
this, ServerlessLLM uses a model manager to load tensor data,
while allowing the inference process to focus on initializing
the model by setting the data pointers for each tensor. More
specifically, the model manager allocates memory on GPUs
and loads the binary data of the checkpoint via a fast multi-tier
loading subsystem (see details in 4.2). The inference process
initializes the model object and sets the GPU memory address
for each tensor. It acquires the base addresses for each GPU
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(i.e., CUDA IPC handles) from the model manager and reads
the tensor offset from the tensor index file, facilitating the
computation of the tensor GPU memory address (i.e., base +
offset). To ensure the model is fully initialized before infer-
ence, the inference process and the model manager perform a
synchronization.

4.2 Multi-Tier Loading Subsystem

To achieve fast and predictable checkpoint loading perfor-
mance, we design a multi-tier loading subsystem, integrated
within the model manager. This subsystem incorporates sev-
eral techniques:

Chunk-based data management. For fast loading perfor-
mance, we have implemented chunk-based data management
with three main features: (i) Utilizing parallel PCIe links. To
mitigate the bottleneck caused by a single PCIe link from
storage when loading multiple models into GPUs, we employ
parallel DRAM-to-GPU PCIe links to facilitate concurrent
checkpoint loading across GPUs. (ii) Supporting application-
specific controls. Our memory pool surpasses simple caching
by providing APIs for the allocation and deallocation of
memory. This enables fine-grained management of cached
or evicted data chunks, based on specific requirements of
the application. (iii) Mitigating memory fragmentation. We
address latency and space inefficiencies caused by memory
fragmentation by using fixed-size memory chunks.

Predictable data path. We have created an efficient data path
in our model manager with two main strategies: (i) Exploiting
direct file access. We use direct file access (e.g., ‘O_DIRECT’
in Linux) to avoid excessive data copying by directly read-
ing data into user space. This method outperforms memory-
mapped files (mmap), currently adopted in high-speed loaders
such as Safetensors [36], which rely on system cache and lack
consistent performance guarantees (critical for predictable per-
formance). (ii) Exploiting pinned memory. We utilize pinned
memory to eliminate redundant data copying between DRAM
and GPU. This approach allows direct copying to the GPU
with minimal CPU involvement, ensuring efficient use of PCIe
bandwidth with a single thread.

Multi-tier loading pipeline. We have developed a multi-tier
loading pipeline to support various storage interfaces and im-
prove loading throughput. This pipeline has three features:
(i) Support for multiple storage interfaces. ServerlessLLM
offers dedicated function calls for various storage interfaces,
including local storage (e.g., NVMe, SATA), remote storage
(e.g., S3 object store [12]), and in-memory storage (pinned
memory). It utilizes appropriate methods for efficient data
access in each case. (ii) Support for intra-tier concurrency. To
leverage modern storage devices’ high concurrency, Server-
lessLLM employs multiple I/O threads for reading data within
each storage tier, improving bandwidth utilization. (iii) Flex-
ible pipeline structure. We use a flexible task queue-based
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pipeline design, supporting new storage tiers to be efficiently
integrated. I/O threads read storage chunks and enqueue their
indices (offset and size) for the I/O threads in the next tier.

5 Efficient Live Migration of LLM Inference

In this section, we describe why live migration is the key to
effective locality-driven LLM inference, and how to make
such a live migration process particularly efficient.

5.1 Need for Live Migration

We consider a simple example to analyze the performance
of different current approaches in supporting the checkpoint
locality. In this example, we have two servers (named Server
1 and Server 2) and two models (named Model A and Model
B), as illustrated in Figure 3. Server 1 currently has Model
A in DRAM and Model B in SSD and its GPU is idle, while
Server 2 currently has Model B in DRAM, and its GPU is
running the inference of Model A.

In Figure 3, we analyze the performance of potential poli-
cies for starting up Model B. Our analysis is based on their
impact on the latency performance of both Model A and B:

• Availability-driven policy chooses Server 1 currently with
an available GPU, and it is agnostic to the location of Model
B. As a result, the Model B’s startup latency suffers while
the Model A remains unaffected.

• Locality-driven policy opts for the locality in choosing the
server and thus launching Model B on Server 2. However,
it waits for Model A to complete, making Model B suffer
from a long queuing delay. Furthermore, the locality policy
leaves Server 1 under-utilized, preventing all servers from
being fully utilized.
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• Preemption-driven policy preempts Model A on Server 2
and startups Model B. It identifies that Server 1 is free and
reinitiates Model A there. This policy reduces Model B’s
latency but results in significant downtime for Model A
when it performs reloading and recomputation.

• Live-migration-supported locality-driven policy prioritizes
locality without disrupting Model A. It initially preloads
Model A on Server 1, maintaining inference operations.
When Model A is set on Server 1, its intermediate state
is transferred there, continuing the inference seamlessly.
Following this, Model B commences on Server 2, taking
advantage of locality. This policy optimizes latency for both
Models A and B.

According to the examples above, live migration stands out
in improving latency for both Model A and Model B among
all locality-driven policies.

5.2 Making Live Migration Efficient
We aim to achieve efficient live migration of LLM inference,
incurring minimal resource overhead and minimal user inter-
ruption. We initially considered using the snapshot method
from Singularity [68], which involves snapshotting the LLM
inference. However, this method is slow due to lengthy snap-
shot creation and transfer times (e.g., typically 10s seconds or
even minutes). Dirty-page-based migration might be consid-
ered to accelerate virtual machine migration, but this approach
is currently not supported in GPU-enabled containers and vir-
tual machines. Hence, we decided to explore live migration
methods that can be easily implemented in applications.

To make the live migration method effective for LLM in-
ference, we aim to achieve two objectives: (i) the migrated
inference state must be minimal to reduce network traffic, and
(ii) the destination server must quickly synchronize with the
source server’s progress to minimize migration times.

For (i), we propose to migrate tokens (typically 10-100s
KB) instead of the large KV-Cache (typically 1-10s GB), as
recomputing the KV-Cache based on the migrated tokens on
the destination GPU is generally much faster than transferring
the dirty state over the network. In certain conditions (e.g.,
given high-bandwidth network and short input sequences),
migrating KV-Cache might also be fast yet it still increases
cluster network traffic compared to migrating tokens.

For (ii), we leverage an insight from LLM inference: re-
computing the KV-Cache for current tokens on the destination
GPU is significantly faster (usually an order of magnitude
shorter) than generating an equivalent number of new tokens
on the source GPU. This approach facilitates efficient conver-
gence of multi-round token-based migration, with the quan-
tity of tokens generated on the source diminishing with each
round. For example, time to recompute the KV-Cache for
1000 tokens equals to the time to generate about 100 new
tokens according to [70].
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Figure 4: Live migration process for LLM inference

5.3 Multi-Round Live Migration Process

We implement the above proposal as a multi-round live mi-
gration process. In each migration round (step 3 , 4 and 5 ),
the destination server (referred to as the dest server) recom-
putes the KV cache using the intermediate tokens sent by
the source server (referred to as the src server). When the
gap (i.e., the tokens generated after the last round) between
the source server and the destination server is close enough,
the src server stops generating and sends all tokens to the
dest via the request router, ensuring minimal interruption on
ongoing inference during migration. This migration process
is depicted in Figure 4 with its steps defined below:

1. The model loading scheduler sends a model loading re-
quest to dest server to load model A into GPUs. If there is
an idle instance of model A on dest server, the scheduler
skips this step.

2. After loading, the scheduler sends a migration request
carrying the address of dest server to src server.

3. Upon receiving a migrate request, src server sets itself
as “migrating”, sends a resume request with intermediate
tokens (i.e., input tokens and the output tokens produced
before step 3) to dest server if the inference is not com-
pleted. Otherwise, it immediately returns to the scheduler.

4. dest server recomputes KV cache given the tokens in the
resume request.

5. Once resume request is done, src server stops inference,
returns to the scheduler, and replies to the request router
with all tokens (i.e., the intermediate tokens together with
the remaining tokens produced between step 3 and step 5)
and a flag “migrated”.

6. The scheduler finishes the migration, unloads model A at
src server and starts loading model B.

7. The request router checks the flag in the inference response.
If it is “migrated”, the request router replaces src server
with dest server in its route table and sends all tokens to
dest server to continue inference.
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5.4 Practical Concerns

Handling inference completion. The autoregressive nature
of LLM inference may lead to task completion at src server
between steps 3 and 5 . In such cases, src server informs the
request router of the inference completion as usual. Addition-
ally, it notifies the loading scheduler, which then instructs dest
server to cease resuming, terminating the migration.

Handling server failures. ServerlessLLM can manage server
failures during LLM inference migration. In scenarios where
src server fails, if the failure happens during loading (i.e.,
before step 2 in Figure 4), the scheduler aborts the migration
and unloads the model from the destination. If the failure
occurs during migration (i.e., between steps 2 and 3 ), the
scheduler directs the destination to clear any resumed KV
cache and unload the model.

In cases where src server fails, if the failure takes place
during loading, the migration is canceled by the scheduler.
Should the failure occur while resuming, the source notifies
the scheduler of the failure and continues with the inference.

6 Startup-Time-Optimized Model Scheduling

In this section, we describe the design of the startup-time-
optimized model scheduling implemented in Serverless-
LLM’s cluster scheduler (denoted as controller), as shown
in Figure 5. This scheduler processes loading tasks from the
request router and employs two key components: a model
loading time estimator and a model migration time estima-
tor. The former assesses loading times from various storage
media, while the latter estimates times for necessary model
migrations. For example, as shown in Figure 5, the scheduler
calculates the time to load Model A (indicated by A ) from

different servers’ DRAM and SSD, aiding in server selection.
Similarly, for Model B ( B ), it assesses whether to migrate
Model C to another server or load Model B from Server 2’s
SSD.

To ensure robust time estimation, the ServerlessLLM sched-
uler employs distinct loading task queues for each server, ef-
fectively mitigating the impact of contentions caused by con-
current loading activities. Upon assigning a task, it promptly
updates the server status—including GPU and DRAM/SSD
states—in a reliable key-value store (e.g., , etcd [30] and
ZooKeeper [38]). This mechanism enables ServerlessLLM to
maintain continuity and recover efficiently from failures.

6.1 Estimating Model Loading Time

To estimate the time needed to load models from different
storage tiers, we consider three primary factors: (i) queuing
time (q), which is the wait time for a model in the server’s
loading task queue. This occurs when other models are pend-
ing load on the same server; (ii) model size (n), the size of the
model in bytes, or its model partition in multi-GPU inference
scenarios; (iii) bandwidth (b), the available speed for transfer-
ring the model from storage to GPUs. ServerlessLLM tracks
bandwidth for network, SSD, and DRAM, allowing us to cal-
culate loading time as q+ n/b. Here, q accumulates from
previous estimations for the models already in the queue.

For precise estimations, we have implemented: (i) Sequen-
tial model loading per server, with single I/O queues for both
Remote-SSD and SSD-DRAM paths (since these paths are
shared by multiple GPUs on a server), reducing bandwidth
contention which complicates estimation; (ii) In multi-tier
storage, ServerlessLLM uses the slowest bandwidth for esti-
mation because of ServerlessLLM’s pipeline loading design.
For example, when SSD and DRAM are both involved, SSD
bandwidth is the critical bottleneck since it is orders of mag-
nitude slower than DRAM; (iii) The scheduler monitors the
loading latency returned by the servers. It leverages the moni-
toring metrics to continuously improve its estimation of the
bandwidth through different storage media.

6.2 Estimating Model Migration Time

For live migration time estimation, our focus is on model
resuming time (as shown in step 4 in Figure 4), as this is
significantly slower (seconds) than token transfer over the
network (milliseconds). We calculate model resuming time
considering: (i) input tokens (tin), the number of tokens in
the LLM’s input prompt; (ii) output tokens (tout), the tokens
generated so far; and (iii) model-specific parameters (a and
b), which vary with each LLM’s batch sizes and other factors,
based on LLM system studies like vLLM [42]. With all the
above factors, we can compute the model resuming time as
a× (tin + tout)+b.
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However, obtaining real-time output tokens from servers
for the scheduler can lead to bottlenecks due to exces-
sive server interactions. To circumvent this, we developed
a method where the scheduler queries the local request router
for the inference status of a model, as illustrated in Figure 5.
With the inference duration (d) and the average time to pro-
duce a token (t), we calculate tout = d/t.

For selecting the optimal server for model migration,
ServerlessLLM employs a dynamic programming approach
to minimize migration time.

6.3 Practical Concerns

Selecting best servers. Utilizing our time estimations, Server-
lessLLM evaluates all servers for loading the forthcoming
model, selecting the one offering the lowest estimated startup
time. The selection includes the server ID and GPU slots to
assign. If no GPUs are available, even after considering mi-
gration, the loading task is held pending and retried once the
request router informs the scheduler to release GPUs.

Handling scheduler failures. ServerlessLLM is built to with-
stand failures, utilizing a reliable key-value store to track
server statuses. On receiving a server loading task, its GPU
status is promptly updated in this store. Post server’s confir-
mation of task completion, the scheduler updates the server’s
storage status in the store. Once recorded, the scheduler no-
tifies the request router of the completion, enabling request
routing to the server. In the event of a scheduler failure, re-
covery involves retrieving the latest server status from the
key-value store and synchronizing it across all servers.

Scaling schedulers. The performance of the loading sched-
uler has been significantly enhanced by implementing asyn-
chronous operations for server status reads, writes, and esti-
mations. Current benchmarks demonstrate its capability to
handle thousands of loading tasks per second on a standard
server. Plans for its distributed scaling are earmarked for fu-
ture development.

Resource fairness. ServerlessLLM treats all models with
equal importance and it ensures migrations do not impact
latency. While we currently adopt sequential model loading
on the I/O path, exploring concurrent loading on servers with
a fairness guarantee is planned for future work.

Estimator accuracy. Our estimator can continuously improve
their estimation based on the monitored loading metrics re-
turned by the servers. They offer sufficient accuracy for server
selection, as shown in Section 7.

7 Evaluation

This section offers a comprehensive evaluation of Server-
lessLLM, covering three key aspects: (i) assessing the per-
formance of our loading-optimized checkpoints and model

manager, (ii) examining the efficiency and overheads associ-
ated with live migration for LLM inference, and (iii) evaluat-
ing ServerlessLLM against a large-scale serverless workload,
modelled on real-world serverless trace data.

7.1 Evaluation Setup

Setup. We have two test beds: (i) a GPU server has 8 NVIDIA
A5000 GPUs, 1TB DDR4 memory and 2 AMD EPYC 7453
CPUs, two PCIe 4.0-capable NVMe 4TB SSDs (in RAID 0)
and two SATA 3.0 4TB SSDs (in RAID 0). This server is
connected to a storage server via 1 Gbps networks on which
we have deployed MinIO [51], an S3 compatible object store;
(ii) a GPU cluster with 4 servers connected with 10 Gbps
Ethernet connections. Each server has 4 A40 GPUs, 512 GB
DDR4 memory, 2 Intel Xeon Silver 4314 CPUs and one PCIe
4.0 NVMe 2TB SSD.

Models. We use state-of-the-art LLMs, including OPT [91],
LLaMA-2 [76] and Falcon [11] in different sizes. For cluster
evaluation (§7.3 and §7.4) on test bed (ii), following prior
work [44], we replicate OPT-6.7B/OPT-13B/OPT-30B models
for 32/16/8 instances respectively (unless otherwise indicated)
that are treated as different models during evaluation.

Datasets. We use real-world LLM datasets as the input to
models. This includes GSM8K [25] that contains problems
created by human problem writers, and ShareGPT [83] that
contains multilanguage chat from GPT4. Since the models
we used can handle at most 2048 context lengths, we trun-
cate the input number of tokens to the max length. We also
randomly sample 4K samples from each dataset to create a
mixed workload, emulating real-world inference workloads.

Workloads. Since there are no publicly available LLM server-
less inference workloads, we use Azure Serverless Trace [64]
which is a representative serverless workload used in recent
serverless studies [61] and model-serving studies [44, 90].
We designate functions to models and creates bursty request
traces (CV=8 using Gamma distribution), following the work-
load generation method used in AlpaServe [44]. We then scale
this trace to the desired requests per second (RPS). For cluster
evaluation, we replicate each model based on its popularity
and distribute them across nodes’ SSDs using round-robin
placement until the total cluster-wide storage limit is reached.
Optimization of checkpoint placement is considered a sepa-
rate issue and is not addressed in this paper. For all experi-
ments (unless we indicate otherwise), we report the model
startup latency, a critical metric for serverless inference sce-
narios. When migration or preemption is enabled, this latency
is added with pause latency, accounting for the impacts of
delays.
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Figure 6: Checkpoint loading performance.

7.2 ServerlessLLM Checkpoint Loading
We now evaluate the model manager’s effectiveness in reduc-
ing the model loading latency. For our experiments, we test
the checkpoint read on test bed (i). We record reads from 20
copies of each model checkpoint to get a statistically signifi-
cant performance report. We clear the page and inode caches
after checkpoint copies are made to ensure a cold start. For
each type of model, we randomly access the 20 copies to
simulate real-world access patterns.
Loading performance. We aim to quantify the performance
gains achieved by the ServerlessLLM checkpoint manager.
We compare PyTorch [58] and Safetensors [36], represent-
ing the read-by-tensor checkpoint loading and mmap-based
checkpoint loading, respectively. We use all types of models
with all checkpoints in FP16 and run the test on RAID0-
NVMe SSD having a throughput of 12 GB/s.

Figure 6a shows the performance comparison in terms of
mean latency for all the models2. We observe that Serverless-
LLM is 6X and 3.6X faster than PyTorch and Safetensors,
respectively, for our smallest model (OPT-2.7B). We observe
similar results with the largest model (LLaMA-2-70B) where
ServerlessLLM is faster than PyTorch and Safetensors by
8.2X and 4.7X respectively. Safetensors is slower than Server-
lessLLM due to a lot of page faults (112K for LLaMA-2-7B)
on cold start. In contrast, ServerlessLLM’s checkpoint man-
ager leverages direct I/O and realizes chunk-based parallel
loading, all contributing to the significant improvement in
loading throughput. PyTorch is about 2X slower than Safeten-
sors in our evaluation, consistent with the results in a public
benchmark [37] reported by Safetensors. The primary reason
is that PyTorch first copies data into host memory and then
into GPU memory.

Furthermore, we observe that the loading performance of
ServerlessLLM is agnostic to the type of the model. For ex-
ample, the performance of both OPT-13B and LLaMA-2-13B
is similar signifying the fact that the performance is only
dependent on the checkpoint size.

2The number after the model name represents the number of parameters
in the figure and B stands for Billion.

Loading performance with LoRA adapters. Serverless-
LLM also supports loading LoRA adapters [34] in PEFT
format [49]. We conducted experiments using the same set-
ting in [65]. For an adapter (rank=32, size=1GB) of LLaMA-
70B model, ServerlessLLM achieves 83.5ms loading latency
which is 4.4X faster than Safetensors whose loading latency
is 370ms. This demonstrates ServerlessLLM’s loader design
efficiency in small checkpoint loading.

Harness full bandwidth of the storage devices. We now
move to understand if ServerlessLLM can utilize the entire
bandwidth that a storage medium offers to achieve low la-
tency. We use the same setup as described above. We choose
LLaMA-2-7B to represent the SOTA LLM model. We use
FIO [17] with the configuration of asynchronous 4M direct
sequential read with the depth of 32 as the optimal baseline
and optimized throughput using the result in all storage media.
We test various settings of FIO to make sure the configuration
chosen has the highest bandwidth on each storage media. For
object storage over the network, we use the official MinIO
benchmark to get the maximum throughput.

Figure 6b shows the bandwidth utilization across different
storage devices, normalized relative to the measurements ob-
tained using FIO and MinIO. The storage device from bottom
to top is ascending in maximum bandwidth. We observe that
ServerlessLLM’s model manager is capable of harnessing dif-
ferent storage mediums and saturating their entire bandwidth
to get maximum performance. Interestingly, we observe that
ServerlessLLM is well suited for faster storage devices such
as RAID0-NVMe compared to Pytorch and Safetensors. It
shows that existing mechanisms are not adaptive to newer and
faster storage technology. Despite the loading process passing
through the entire memory hierarchy, ServerlessLLM is capa-
ble of saturating the bandwidth highlighting the effectiveness
of pipelining the loading process.

Performance breakdown. We now move to highlight how
each optimization within the model manager contributes to-
wards the overall performance. We run an experiment using
RAID0-NVMe with various OPT models. We start from the
basic implementation (ReadByTensor) and incrementally add
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Figure 7: Performance breakdown of checkpoint loaders.

optimizations until the Pipeline implementation. Figure 7
shows the performance breakdown for each model. We ob-
serve similar contributions by different optimizations for all
the models despite having different checkpoint size.

Bulk reading improves 1.2x throughput, mitigating the
throughput degradation from reading small tensors one after
another (on average one-third of the tensors in the model are
less than 1MB). Direct IO improves 2.1x throughput, bypass-
ing cache and data copy in the kernel. Multi-thread improves
2.3x throughput, as multiple channels within the SSD can be
concurrently accessed. Pinned memory provides a further 1.4x
throughput, bypassing the CPU with GPU DMA. Pipeline
provides a final 1.5x improvement in throughput, helping to
avoid synchronization for all data on each storage tier.

We run ServerlessLLM in a container to limit the CPU
cores it can use. We find that with 4 CPU cores, Serverless-
LLM can achieve maximum bandwidth utilization. We set
a sufficiently large chunk size in bulk reading (16MB) to in-
volve less number of reads and also pinned memory-based
chunk pool does not need extra CPU cycles for data copy.

7.3 ServerlessLLM Model Scheduler
In this section, we evaluate the performance of the Server-
lessLLM’s cluster scheduler on test bed (ii). We compare
ServerlessLLM against two schedulers – the de-facto server-
less scheduler and Shepherd [90] scheduler. The serverless
scheduler randomly chooses any GPU available and does
not comprise any optimization for loading time. We imple-
ment Shepherd scheduler and use ServerlessLLM’s loading
time estimation strategy to identify the correct GPU. We call
the modified scheduler as Shepherd*. Therefore, in principle,
Shepherd* and ServerlessLLM will choose the same GPU.
However, Shepherd* will continue to rely on preemption,
while ServerlessLLM will rely on live migration to ensure
lower latency times.

Figure 8a shows the result of a scenario where we run all
three schedulers against OPT-6.7B model and GSM8K and
ShareGPT dataset while increasing the requests per second.
ShareGPT dataset’s average inference time is 3.7X longer
than GSM8K. Figure 8a and Figure 8d show the case where
there is no locality contention for both datasets. The serverless
scheduler cannot take advantage of locality-aware scheduling
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Figure 8: Impacts of RPS on model loading schedulers.

unlike ServerlessLLM and Shepherd* leading to longer la-
tency. For 40% of the time, the model is loaded from SSD due
to random allocation of the GPUs. As there is no migration or
preemption, the performance of Shepherd and ServerlessLLM
is similar.

When the schedulers are subjected to medium requests
per second, for GSM8K (Figure 8b, without locality-aware
scheduling, the loading times start causing queueing latency
leading with Serverless scheduler resulting in increasing the
P99 latency by 1.86X. As there is no migration or preemption,
the performance of Shepherd and ServerlessLLM is similar.
With a longer inference time with ShareGPT (Figure 8e, we
even observe 2X higher P99 latency with Shepherd* com-
pared to ServerlessLLM due to preemption. As Serverless-
LLM relies on live migration in case of locality contention,
ServerlessLLM performs better than the other schedulers de-
spite the number of migrations is higher (114 out of 513 total
requests) than the number of preemptions (40 out of 513 total
requests).

On further stressing the system by increasing the requests
per second to 1.4, for GSM8K, one can clearly observe the
impact of live migration and preemption. ServerlessLLM out-
performs Shepherd* and Serverless schedulers by 1.27X and
1.95X on P99 latency respectively. There are 9 preemptions
and 53 migrations respectively for a total of 925 requests. As
discussed in Section 5.1, preemptions lead to longer latency
compared to migrations. We also observe that with Shepherd*,
model checkpoints are read from SSD 2X times more than
with ServerlessLLM. With ShareGPT (figure 8f, we observe
that the GPU occupancy reaches 100% leading to requests
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Figure 9: Impacts of datasets and models on model loading
schedulers.

timeouts with all the three schedulers3. Shepherd behaves
the worst compared to Serverless and ServerlessLLM sched-
ulers, i.e., 1.43X and 1.5X higher P95 latency respectively.
ServerlessLLM and Shepherd* issue 64 migrations and 166
preemptions, respectively for a total of 925 requests. In this
scenario, ServerlessLLM’s effectiveness is constrained by
resource limitations.

We further stress the system by running even larger mod-
els (OPT-13B and OPT-30B) with GSM8K and ShareGPT
datasets. Figure 9 shows the results for those experiments.
locality-aware scheduling is more important for larger models
as caching them in the main memory can reap better perfor-
mance. As ServerlessLLM and Shepherd* are both locality-
aware, they can make better decisions while scheduling the
requests leading to better performance. As Serverless sched-
uler makes decisions randomly, for GSM8K, we observe that
for 35-40% times, the model is loaded from SSD leading to
poor performance. We see similar behavior for ShareGPT,
OPT-13B experiment too. For the OPT-30B ShareGPT case,
the model size is 66 GB. Hence, only two models can be
stored in the main memory at any given time reducing the
impact of locality-aware scheduling. Even in this extreme
case, ServerlessLLM still achieves 35% and 45% lower P99
latency compared to Serverless and Shepherd* respectively.

Time Estimation. The GPU time estimation error is
bounded at 5ms, while the SSD loading error is bounded
at 40ms. However, we do observe instability in CUDA
driver calls. For instance, when migrating a model, we
noted that cleaning up GPU states (e.g., KV cache) using

3Based on the average inference time of OPT-6.7B on ShareGPT dataset,
the maximum theoretically RPS is 1.79.
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Figure 10: Impacts of datasets and models on overall serving
systems.

torch.cuda.empty_cache() can lead to inaccurate estima-
tions, resulting in an average underestimation of 25.78 ms.
While infrequent, we observed a maximum underestimation
of 623 ms during GPU state cleanup in one out of 119 migra-
tions (as depicted in Figure 8e).

7.4 Entire ServerlessLLM in Action

We aimed to deploy the entire ServerlessLLM with a server-
less workload on test bed (ii). Here, we compare Server-
lessLLM against state-of-the-art distributed model serving
systems: (i) Ray Serve (Version 2.7.0), a version we have
extended to support serverless inference scenarios with per-
formance that can match SOTA serverless solutions such as
KServe; (ii) Ray Serve with Cache, a version we improved
to adopt a local SSD cache on each server (utilizing the LRU
policy as in ServerlessLLM) to avoid costly model down-
loads; and (iii) KServe (Version 0.10.2), the SOTA serverless
inference system designed for Kubernetes clusters.

For best performance, Ray Serve and its cache variant are
both enhanced by storing model checkpoints on local SSDs
and estimating download latency by assuming an exclusively
occupied 10 Gbps network. For each system, we set the maxi-
mum concurrency to one and set the keep-alive period equal
to its loading latency, following prior work [60]. We launch
parallel LLM inference clients to generate various workloads,
where each request has a timeout threshold of 300 seconds.

Effectiveness of loading-optimized checkpoints. We aimed
to assess the effectiveness of loading-optimized checkpoints
within a complete serverless workload, employing various
model sizes and datasets to diversely test the checkpoint load-
ers.

In this experiment, as depicted in Figure 10, Ray Serve
and Ray Serve with Cache utilize Safetensors. Owing to the
large sizes of the models, the SSD cache cannot accommo-
date all models, necessitating some to be downloaded from
the storage server. With OPT-6.7B and GSM 8K, Serverless-
LLM starts models in an average of 0.8 seconds, whereas
Ray Serve takes 12.1 seconds and Ray Serve with Cache 8.2
seconds, demonstrating an improvement of over 10X. Even
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Figure 11: Impacts of RPS on overall serving systems.

with a faster network (i.e., 100 Gbps), the average latency
of Ray Serve could drop to 3.8 seconds, making it still 4.7
times slower than ServerlessLLM. The significance of the
model loader becomes more pronounced with larger models,
as ServerlessLLM can utilize parallel PCIe links when load-
ing large models partitioned on multiple GPUs from pinned
memory pool. For instance, with OPT-30B, ServerlessLLM
still initiates the model in 7.5 seconds, while Ray Serve’s time
escalates to 213 seconds and Ray Serve with Cache to 199.2
seconds, marking a 28X improvement.

This considerable difference in latency substantially affects
the user experience in LLM services. Our observations indi-
cate that ServerlessLLM can fulfill 89% of requests within a
300-second timeout with OPT-30B, whereas Ray Serve with
Cache manages only 26%.

With the ShareGPT dataset (Figure 10b), which incurs a
3.7X longer inference time than GSM 8K, the challenge for
model loaders becomes even more intense. For models like
6.7B and 13B, ServerlessLLM achieves latencies of 0.8 and
1.6 seconds on average, respectively, compared to Ray Serve
and Ray Serve with Cache, which soar to 182.2 and 162.4
seconds. When utilizing OPT-30B, ServerlessLLM begins
to confront GPU limitations (with all GPUs occupied and
migration unable to free up more resources), leading to an
increased latency of 89.9 seconds. However, this is still a
significant improvement over Ray Serve with Cache, which
reaches a latency of 261.8 seconds

Effectiveness of live migration and loading scheduler. In
evaluating the effectiveness of LLM live migration and the
loading scheduler, we created workloads with varying RPS
levels. Scenarios with higher RPS highlight the importance of
achieving load balancing and locality-aware scheduling since
simply speeding up model loading is insufficient to address
the resource contention common at large RPS levels.

From Figure 11a, it is evident that ServerlessLLM,
equipped with GSM8K, consistently maintains low latency,
approximately 1 second, even as RPS increases. In contrast,
both Ray Serve and Ray Serve with Cache experience rising
latency once the RPS exceeds 0.5, which can be attributed
to GPU resource shortages. Their inability to migrate LLM
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Figure 12: System scalability and resource efficiency.

inference for locality release or to achieve load balancing,
unlike ServerlessLLM, results in performance degradation.

With the more demanding ShareGPT workload, as shown
in Figure 11b, ServerlessLLM maintains significant perfor-
mance improvements — up to 212 times better — over Ray
Serve and Ray Serve with Cache across RPS ranging from
0.2 to 1.1. However, at an RPS of 1.4, ServerlessLLM’s la-
tency begins to rise, indicating that despite live migration
and optimized server scheduling, the limited GPU resources
eventually impact ServerlessLLM’s performance.

Resource efficiency. A major advantage of the low model
startup latency in ServerlessLLM is its contribution to re-
source savings when serving LLMs. We vary the number of
GPUs available on each server to represent different levels
of resource provisioning. As shown in Figure 12a, Server-
lessLLM scales well with elastic resources. With just one
GPU per server, ServerlessLLM already achieves a 4-second
latency by efficient migrations and swaps. In contrast, Ray
Serve with Cache requires at least four GPUs per server to at-
tain a 12-second latency, which is still higher than Serverless-
LLM’s performance with only one GPU per node. With larger
clusters, the resource-saving efficiency of ServerlessLLM is
expected to become even more pronounced, as larger clusters
offer more options for live migration and server scheduling.

The resource efficiency of ServerlessLLM is further ev-
ident when maintaining a fixed number of GPUs while in-
creasing the number of LLMs in the cluster. In Figure 12b,
with a limited number of models, Ray Serve with Cache can
match ServerlessLLM in latency performance. However, as
the number of models grows, the performance gap widens,
showcasing ServerlessLLM’s potential suitability for large-
scale serverless platforms.

KServe comparison. In our study, we assess KServe and
ServerlessLLM within a Kubernetes cluster. Given that our
four-server cluster is unsuitable for a Kubernetes deployment,
we instead utilize an eight-GPU server, simulating four nodes
with two GPUs each. Since KServe performs slower than the
other baselines considered in our evaluation, we only briefly
mention KServe’s results without delving into details.
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With KServe, the GPU nodes initially exhibited a first to-
ken latency of 128 seconds. This latency was primarily due to
KServe taking 114 seconds to download an OPT-6.7B model
checkpoint from the local S3 storage over a 1 Gbps network.
However, after applying the same enhancement as those for
Ray Serve, we reduced the first token latency to 28 seconds.
Despite this improvement, KServe’s best latency was signifi-
cantly higher than those achieved by ServerlessLLM. Notably,
ServerlessLLM was the only system able to reduce the latency
to within one second.

8 Related Work

Serverless inference systems. Extensive research has fo-
cused on optimizing ML model serving in serverless archi-
tectures, targeting batching [10, 84, 89], scheduling [60, 87],
and resource efficiency [24, 43]. Industry solutions like AWS
SageMaker and Azure ML [50], along with the open-source
KServe [16], demonstrate practical implementations. Despite
these advancements, serverless inference systems still per-
form suboptimally with LLMs, as our paper demonstrates.
Serverless cold-start optimizations. Cold-start latency is a
significant issue in serverless systems, addressed through var-
ious strategies including fast image pulling [79], lightweight
isolation [45, 53], snapshot and restore [15, 22, 28, 67, 77],
resource pre-provision [64], elastic resource provisioning [48,
78], and fork [9, 80]. These approaches mainly focus on re-
ducing startup times for containers or VMs without loading
large external states. Recent research has explored optimizing
cold-starts by facilitating faster model swaps between GPUs
and host memory [39, 88], though scalability with LLMs is
still challenging. In contrast, ServerlessLLM effectively mini-
mizes cold-start latency through LLM-specific innovations,
such as optimized checkpoint formats and loading pipelines,
live migration, and a cluster scheduler tailored to LLM infer-
ence characteristics.
Exploiting locality in serverless systems. Locality plays a
crucial role in various optimization strategies for serverless
systems. This includes leveraging host memory and local
storage for data cache [41, 59, 69], optimizing the reading of
shared logs [40], and enhancing communication efficiency in
serverless Directed Acyclic Graphs (DAGs) [46, 47]. Server-
lessLLM, distinct from existing methods, introduces a high-
performance checkpoint cache for GPUs, markedly improving
checkpoint loading from multi-tier local storage to GPU mem-
ory. Recent studies [8, 86] have also recognized the need for
leveraging locality in orchestrating serverless functions. Be-
yond these studies, ServerlessLLM leverages LLM-specific
characteristics in improving the locality-based server’s selec-
tion and launching locality-driven inference.
LLM serving systems. Recent advancements in LLM serving
have improved inference latency and throughput. Orca [85]
uses continuous batching for better GPU utilization during

inference. AlpaServe [44] shows that model parallelism can
enhance throughput while meeting SLO constraints, though
it has yet to be tested on generative models. vLLM [42] in-
troduces PagedAttention for efficient KV cache management.
SplitWise [55] improves throughput by distributing prompt
and token generation phases across different machines. Some
approaches [14,66] also use storage devices to offload param-
eters from GPUs to manage large LLM sizes. However, these
systems often overlook model loading challenges, leading to
increased first token latencies when multiple models share
GPUs. ServerlessLLM addresses this by focusing on mini-
mizing loading latency to complement these throughput and
latency optimizations.

9 Conclusion

This paper describes ServerlessLLM, a low-latency serverless
inference system purposefully designed for LLMs. The de-
sign of ServerlessLLM uncovers significant opportunities for
system research, including designing new loading-optimized
checkpoints, discovering the need to support live migration
when conducting locality-driven LLM inference, and enabling
a serverless cluster scheduler to be aware of the locality of
checkpoints in a cluster when optimizing its model scheduling
decision. We believe our work can be extended to ensure fair-
ness of resources across the cluster and explore the possibility
of smart checkpoint placement. We look forward to address-
ing these issues in the future. We consider ServerlessLLM
as the first step towards unlocking the potential of serverless
computing for LLMs. We will continue to develop the open-
source version of ServerlessLLM. Given its versatility, we
envision it as a platform to test new research ideas.
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InfiniGen: Efficient Generative Inference of Large Language Models with
Dynamic KV Cache Management
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Abstract
Transformer-based large language models (LLMs) demon-
strate impressive performance across various natural language
processing tasks. Serving LLM inference for generating long
contents, however, poses a challenge due to the enormous
memory footprint of the transient state, known as the key-
value (KV) cache, which scales with the sequence length and
batch size. In this paper, we present InfiniGen, a novel KV
cache management framework tailored for long-text gener-
ation, which synergistically works with modern offloading-
based inference systems. InfiniGen leverages the key insight
that a few important tokens that are essential for comput-
ing the subsequent attention layer in the Transformer can be
speculated by performing a minimal rehearsal with the in-
puts of the current layer and part of the query weight and key
cache of the subsequent layer. This allows us to prefetch only
the essential KV cache entries (without fetching them all),
thereby mitigating the fetch overhead from the host memory
in offloading-based LLM serving systems. Our evaluation on
several representative LLMs shows that InfiniGen improves
the overall performance of a modern offloading-based system
by up to 3.00× compared to prior KV cache management
methods while offering substantially better model accuracy.

1 Introduction

Large language models (LLMs) have opened a new era
across a wide range of real-world applications such as chat-
bots [40, 76], coding assistants [11, 43], language transla-
tions [1, 68], and document summarization [64, 74]. The re-
markable success of LLMs can largely be attributed to the
enormous model size, which enables effective processing and
generation of long contents. For instance, while the maximum
sequence length of the first version of GPT was restricted to
512 tokens [51], the latest version, GPT-4, can handle up to
32K tokens, which is equivalent to approximately 50 pages
of text [3]. Some recently announced models such as Claude

†Equal contribution

3 [6] and Gemini 1.5 [53] can even process up to 1 million
tokens, significantly expanding the context window by several
orders of magnitude.

In addition to the well-studied challenge of the model size,
deploying LLMs now encounters a new challenge due to the
substantial footprint of the transient state, referred to as the
key-value (KV) cache, during long context processing and gen-
eration. For generative LLM inference, the keys and values of
all preceding tokens are stored in memory to avoid redundant
and repeated computation. Unlike the model weights, how-
ever, the KV cache scales with the output sequence length,
often consuming even more memory capacity than the model
weights. As the demand for longer sequence lengths (along
with larger batch sizes) continues to grow, the issue of the KV
cache size will become more pronounced in the future.

Meanwhile, modern LLM serving systems support offload-
ing data to the CPU memory to efficiently serve LLMs within
the hardware budget [5,57]. These offloading-based inference
systems begin to support even offloading the KV cache to
the CPU memory, thereby allowing users to generate much
longer contexts beyond the GPU memory capacity. However,
transferring the massive size of the KV cache from the CPU
memory to the GPU becomes a new performance bottleneck
in LLM inference.

In this work, we propose InfiniGen, a KV cache manage-
ment framework designed to synergistically work with mod-
ern offloading-based inference systems. InfiniGen builds on
two key design principles. First, it speculates and chooses
the KV cache entries that are critical to produce the next
output token, dropping the non-critical ones, by conducting
a minimal rehearsal of attention computation for Layer i at
Layer i−1. Second, it leverages the CPU memory capacity
and maintains the KV cache pool on the CPU, rather than on
the GPU, to ensure that the critical KV cache values can be
identified for all outputs and layers with a large window size
while alleviating the concerns about limited GPU memory
capacity for long content generation.

In particular, InfiniGen manipulates the model weights of-
fline to make the speculation far more efficient and precise, by
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skewing the Transformer architecture query and key matrices
to emphasize certain important columns. During the prefill
stage, while the prompt and input of an inference request are
initially processed, InfiniGen generates partial weights for
use in the subsequent decoding (i.e., output generation) stage.
At Layer i−1 of the decoding stage, InfiniGen speculates on
the attention pattern of the next layer (Layer i) using the atten-
tion input of Layer i−1, a partial query weight, and a partial
key cache of Layer i. Based on the speculated attention pat-
tern, InfiniGen prefetches the essential KV cache entries from
the CPU memory for attention computation at Layer i. By
dynamically adjusting the number of KV entries to prefetch,
InfiniGen brings only the necessary amount of the KV cache
to the GPU, thereby greatly reducing the overhead of the
KV cache transfer. In addition, InfiniGen manages the KV
cache pool by dynamically removing the KV cache entries of
infrequently used tokens.

We implement InfiniGen on a modern offloading-based
inference system [57] and evaluate it on two representative
LLMs with varying model sizes, batch sizes, and sequence
lengths. Our evaluation shows that InfiniGen achieves up to
a 3.00× speedup over the existing KV cache management
methods while offering up to a 32.6 percentage point increase
in accuracy. In addition, InfiniGen consistently provides per-
formance improvements with larger models, longer sequence
lengths, and larger batch sizes, while prior compression-based
methods lead to saturating speedups.

In summary, this paper makes the following contributions:

• We present InfiniGen, a dynamic KV cache manage-
ment framework that synergistically works with modern
offloading-based LLM serving systems by intelligently
managing the KV cache in the CPU memory.

• We propose a novel KV cache prefetching technique with
ephemeral pruning, which speculates on the attention
pattern of the subsequent attention layer and brings only
the essential portion of the KV cache to the GPU while
retaining the rest in the CPU memory.

• We implement InfiniGen on a modern offloading-based
inference system and demonstrate that it greatly out-
performs the existing KV cache management methods,
achieving up to 3.00× faster performance while also
providing better model accuracy.

2 Background

This section briefly explains the operational flow and the
KV caching technique of large language models and intro-
duces the singular value decomposition (SVD) as a method of
skewing matrices for a better understanding of our proposed
framework, which we discuss in Section 4.

2.1 Large Language Models

Large language models (LLMs) are composed of a stack of
Transformer blocks, each of which contains an attention layer
followed by a feed-forward layer [61]. The input tensor (X)
of the Transformer block has a dimension of N ×D, where N
is the number of query tokens, and D is the model dimension.
This input tensor (X) is first layer-normalized (LayerNorm),
and the layer-normalized tensor (Xa) is fed into the attention
layer as input. The attention input (Xa) is multiplied by three
different weight matrices (WQ, WK , WV ) to generate Query
(Q), Key (K), and Value (V ) matrices. Each weight matrix has
a dimension of D×D. Thus, Query, Key, and Value have a
dimension of N ×D. These matrices are reshaped to have a
dimension of H ×N ×d, where H is the number of attention
heads and d is the head dimension; note that D = H ×d.

Each head individually performs attention computation,
which can be formulated as follows: softmax(QKT )V .1 The
attention output, after a residual add (adding to the input tensor
X) and layer normalization, is fed into the feed-forward layer.
The feed-forward network (FFN) consists of two consecutive
linear projections and a non-linear activation operation be-
tween them. The output of FFN after a residual add becomes
the output of a Transformer block, which has the same dimen-
sionality as the input of the Transformer block (i.e., N ×D).
This allows us to easily scale LLMs by adjusting the number
of Transformer blocks.

2.2 Generative Inference and KV Caching

Generative LLM inference normally involves two key stages:
the prefill stage and the decoding stage. In the prefill stage,
LLMs summarize the context of the input sequence (i.e., input
prompt) and produce a new token that serves as the initial
input for the decoding stage. Subsequently, using this new
token, LLMs run the decoding stage to generate the next token.
The newly generated token is then fed back into the decoding
stage as input, creating an autoregressive process for token
generation. In this work, we refer to each token generation in
the decoding stage as an iteration.

To generate a new token that aligns well with the context,
LLMs need to compute the relationship between the last token
and all the previous ones, including the tokens from the input
sequence, in the attention layer. A naïve approach to this is
to recompute the keys and values of all the previous tokens
at every iteration. However, this incurs a significant overhead
due to redundant and repeated computation. Furthermore, the
computation overhead linearly grows with the number of the
previous tokens; i.e., the overhead becomes larger for longer
sequences.

To avoid such overhead, the keys (K) and values (V ) of
all the previous tokens are typically memoized in memory,

1In this work, we refer to the results of QKT and softmax(QKT ) as atten-
tion scores and attention weights, respectively.
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Figure 1: Transformation from matrix VT to matrix Q in terms of
SVD. The orthogonal matrix A maximizes the difference in magni-
tude between the column vectors of Q.

which is known as the KV cache. The KV cache then keeps
updated with the key and value of the generated token at each
iteration. As such, the dimension of the KV cache at the i-
th iteration can be expressed as H × (N + i)×d. If batched
inference is employed, the size of the KV cache also grows
linearly to the batch size. By employing the KV cache, we can
avoid repeated computation and produce the key and value
of only one token at each iteration. Note that in the decoding
stage, the input to the Transformer block (X) has a dimension
of 1×D, and the dimension of the attention score matrix
becomes H ×1× (N + i) at the i-th iteration.

2.3 Outliers in Large Language Models
Large language models have outliers in the Transformer block
input tensors. The outliers refer to the elements with substan-
tially larger magnitudes than the other elements. The outliers
in LLMs appear in a few fixed channels (i.e., columns in a
2D matrix) across the layers. Prior work has shown that out-
liers are due to the intrinsic property of the model (e.g., large
magnitudes in a few fixed channels of layer normalization
weights) [19, 65].

2.4 Singular Value Decomposition
We observe that skewing the query and key matrices to make
a small number of channels much larger than others and using
only those channels to compute the attention score matrix can
effectively predict which tokens are important. In essence, we
multiply the Q and K matrices with an orthogonal matrix A to
make it align with the direction that Q stretches the most, to
produce the respective skewed matrices Q̃ and K̃. We explain
in detail why we use an orthogonal matrix in Section 4.2.

To find such an orthogonal matrix A, we employ the sin-
gular value decomposition (SVD), which is a widely used
matrix factorization technique in linear algebra. For a real
matrix Q of size m×n, its SVD factorization can be expressed
as follows:

Q = UΣVT ,

0

50

100

150

200

250

2 4 8 16 32 64

Si
ze

 (G
B)

(b) Batch Size

0

50

100

150

200

250

256 512 1024 2048 4096 8192

Si
ze

 (G
B)

(a) Sequence Length

Figure 2: Total size of the KV cache and model weights of OPT-30B
for different sequence lengths and batch sizes. The batch size of
(a) is 16, and the sequence length of (b) is 2048. The dotted line
represents the size of the model weights.

where U and V are orthogonal matrices of size m×m and
n× n, respectively.2 Σ is an m× n diagonal matrix, which
has nonzero values (σ1,σ2, ...,σk) on the diagonal, where
k = min(m,n). In terms of linear transformation, it is well
known that a transformation of a vector v∈Rn by a real matrix
B (i.e., the product of B and v) is a rotation and/or reflection
in Rn if the B matrix is orthogonal. If B is an m×n diagonal
matrix, each dimension of v is stretched by the corresponding
diagonal entry of B and is projected to Rm.

For example, Figure 1 shows how the column vectors v1
and v2 of VT would transform to column vectors q1 and q2
of Q, when m and n are 2. In Figure 1(a), the orthogonal unit
vectors v1 and v2 are first stretched to the points on an ellipse
whose semi-axis lengths correspond to the diagonal entries in
Σ. The vectors are then rotated and/or reflected to q1 and q2
by matrix U. On the other hand, Figure 1(b) shows how or-
thogonal matrix A performs rotation to make the resulting q̃1
much larger than q̃2. Specifically, A rotates vectors v1 and v2
to e1 and e2, which map to the semi-axes of the ellipse. In this
way, the vectors are stretched to the maximum and minimum
by the matrix Σ. This process emphasizes the magnitude of
q̃1 over q̃2, which allows us to effectively predict the attention
score using only q̃1 while omitting q̃2.

3 Motivation

In this section, we first explain that the KV cache size becomes
a critical issue for long-text generation in LLM inference,
and it becomes more problematic when deploying modern
offloading-based inference systems (Section 3.1). We then
discuss why the existing KV cache management methods
cannot fundamentally address the problem in the offloading-
based inference system (Section 3.2).

3.1 KV Cache in LLM Inference Systems
As discussed in Section 2.2, today’s LLM serving systems ex-
ploit KV caching to avoid redundant computation of key and

2Note that this V, typeset with a different font, is one of the resulting matri-
ces of SVD and is distinct from the V of the Value matrix in the Transformer
attention layer.
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Figure 3: Comparison between different execution styles of Trans-
former blocks.

value projections during the decoding stage. While this is an
effective solution for short sequence generation with a single
client request, the KV cache quickly becomes a key mem-
ory consumer when we generate long sequences or employ
modern request batching techniques [57, 71].

Figure 2 shows the combined size of LLM weights and the
KV cache across different sequence lengths and batch sizes.
As depicted in the figure, the model size remains constant
regardless of sequence lengths or batch sizes, whereas the KV
cache size linearly scales with them. Note that modern LLM
serving systems, such as NVIDIA Triton Inference Server [45]
and TensorFlow Serving [47], already support batched infer-
ence for better compute utilization and higher throughput in
serving client requests. When individual requests are batched,
each request retains its own KV cache, thereby increasing
the overall KV cache size for the inference. Even for a single
client request, beam search [59] and parallel sampling [20]
are widely used to generate better outputs or to offer clients a
selection of candidates [11, 24]. The techniques also increase
the size of the KV cache like batched inference as multiple se-
quences are processed together. Consequently, the KV cache
size can easily exceed the model size for many real-world use
cases, as also observed in prior work [37,49,57,78]. This can
put substantial pressure on GPU memory capacity, which is
relatively scarce and expensive.
LLM Inference Systems with Offloading. Modern LLM
serving systems such as DeepSpeed [5] and FlexGen [57] al-
ready support offloading the model weights or the KV cache
to the CPU memory. When it comes to offloading-based infer-
ence systems, the KV cache size becomes more problematic
due to the low PCIe bandwidth between the CPU and GPU,
which becomes a new and critical bottleneck.

Figure 3 depicts a high-level timing diagram between dif-
ferent execution styles of Transformer blocks. Figure 3(a)
represents the case when the KV cache entirely resides in
the GPU memory (Full GPU). In this case, the load latency
of the KV cache (Load Cache) involves a simple read oper-
ation from the GPU memory, which is negligible due to the
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Figure 4: Cosine similarity between the attention weights of the base
model with full cache and (a) H2O or (b) Optimal. H2O and Optimal
use 200 tokens for attention computation. We use OPT-6.7B and a
random sentence with 2000 tokens from the PG-19 dataset [52].

high bandwidth of GPU memory. However, the maximum
batch size or sequence length is limited by the GPU memory
capacity, which is relatively smaller than the CPU memory.

To enable a larger batch size or a longer sequence length,
we can offload the KV cache to CPU memory (KV cache
on CPU), as shown in Figure 3(b). While offloading-based
inference systems alleviate the limitation on the batch size
and sequence length, transferring hundreds of gigabytes of the
KV cache to the GPU for attention computation significantly
increases the overall execution time of Transformer blocks
due to the limited PCIe bandwidth.

Even when we apply a conventional prefetching technique
(Prefetch KV cache), as shown in Figure 3(c), only part of
the load latency can be hidden by the computation of the
preceding Transformer block. Note that although compressing
the KV cache via quantization could potentially reduce the
data transfer overhead in offloading-based systems [57], it
does not serve as a fundamental solution as quantization does
not address the root cause of the KV cache problem, which is
the linear scaling of KV entries with the sequence length. This
necessitates intelligent KV cache management to mitigate the
performance overhead while preserving its benefits.

3.2 Challenges in KV Cache Management

The fundamental approach to mitigating the transfer overhead
of the KV cache from the CPU to GPU is to reduce the vol-
ume of the KV cache to load by identifying the critical keys
and values for computing attention scores, as shown in Fig-
ure 3(d). It is widely recognized that the keys and values of
certain tokens are more important than others in attention
computation [9, 10, 14, 33, 63]. As explained in Section 2.1,
after computing the attention score, the softmax operation
is applied, which emphasizes a few large values of tokens.
Therefore, skipping attention computation for some less criti-
cal tokens does not significantly degrade the model accuracy,
provided the token selection is appropriate.

In this context, several recent works propose to reduce
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the KV cache size through key/value evictions at runtime
within a constrained KV cache budget [37, 78]. However, all
the prior works assume the persistence of attention patterns
across iterations; that is, if a token is deemed unimportant in
the current iteration (i.e., having a low attention weight), it
is likely to remain unimportant in the generation of future
tokens. Under the assumption, they evict the tokens with a
low attention weight from the KV cache at each iteration
when the KV cache size exceeds its budget. The keys and
values of the evicted tokens are permanently excluded from
the subsequent iterations while being removed from the mem-
ory. Although the recent works on managing the KV cache
can be applied to offloading-based inference systems, we ob-
serve that they do not effectively address the challenges in KV
cache management below and thus have subpar performance
with offloading-based inference systems.
C1: Dynamic nature of attention patterns across iterations.
Figure 4 shows the cosine similarity between the attention
weights of the baseline model, which uses the KV cache of all
prior tokens for computing attention weights (i.e., a maximum
of 2000 tokens in the experiment), and two different KV cache
management methods (H2O and Optimal) with a KV cache
budget of 200 tokens.3 H2O [78] is a state-of-the-art technique
that retains only a small percentage of important tokens in
the KV cache to reduce its size. It assesses the importance of
each token in every iteration and removes unimportant ones
before the next iteration to keep the KV cache size in check
(i.e., using a narrow assessment window). In contrast, Optimal
represents the scenario where we choose the same number
of tokens as H2O from the KV cache at each iteration but
retain all prior keys and values (i.e., using a wider assessment
window). In other words, Optimal selects 200 tokens out of
the entire sequence of previous tokens at each iteration.

The figure indicates that despite H2O-like approaches as-
suming that the attention pattern does not change across it-
erations, this is not the case in practice. The tokens deemed
unimportant in the current iteration could become important in
subsequent iterations. Consequently, H2O exhibits high simi-
larity until around 200 iterations (i.e., within the KV cache
budget), but as the sequence length extends beyond the KV
cache budget, it starts to struggle with the dynamic nature of
the attention pattern, resulting in lower cosine similarity than
the Optimal case. Note that while we only show the scenario
of a KV cache budget of 200 out of a total sequence length
of 2000 tokens for brevity, this issue would become more
pronounced as the sequence length surpasses it.
C2: Adjusting the number of KV entries across layers. Fig-
ure 4 also illustrates that the impact of the KV cache eviction
varies across the layers in LLMs. For Layer 0, both H2O and
Optimal show a significant drop in cosine similarity as the

3The cosine similarity measures how much each row of the attention
weight is similar to the case of the full KV cache. If they are similar, the
generated tokens will also be similar. Thus, a low cosine similarity indicates
low accuracy far from the baseline model with the full KV cache.
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Figure 5: Histogram that shows the number of key tokens needed
to achieve 0.9 out of 1.0 total attention weight for (a) Layer 0 and
(b) Layer 18 of the OPT-6.7B model. The bin width is set to 16. We
observe that the distribution dynamically changes across the layers.

token ID increases. This implies that Layer 0 has a broader
attending pattern than other layers; i.e., the attention weights
are relatively similar between key tokens. Thus, the selected
200 tokens with the large attention weight do not adequately
represent the attention pattern of the baseline model for this
layer, as they are likely only slightly larger than the others, not
strongly so. In such cases, it becomes necessary to compute
the attention weight with a larger number of tokens.

To estimate how many keys/values from the KV cache need
to be retained, we sort the attention weight for each query
token in descending order and sum the key tokens until the
cumulative weight reaches 0.9. Figure 5 presents a histogram
of the number of query tokens (y-axis) requiring the number
of key tokens (x-axis) needed to reach a weight of 0.9 (out of
the total attention weight of 1.0) in two different layers: Layer
0 and Layer 18. Layer 0 shows a broad distribution, indicating
a significant variation in the number of key tokens required
to achieve a weight of 0.9 for each query token. In contrast,
Layer 18 exhibits a highly skewed distribution, suggesting
that the majority of the query tokens in this layer require
only a few key tokens to reach a weight of 0.9. This implies
that we need to dynamically adjust the number of key tokens
participating in attention computation across different layers
to make efficient use of the KV cache budget.

C3: Adjusting the number of KV entries across queries. H2O
sets the number of key/value tokens to retain as a fixed per-
centage of the input sequence length. The KV cache budget
remains constant regardless of how many tokens have been
generated. By analyzing the data from Figure 5 on Layer 18,
we observe that this fixed KV cache budget has some limi-
tations. For instance, with an input sequence length of 200
and a 20% KV cache budget, H2O maintains 40 key/value
tokens throughout token generations. However, most of the
subsequent query tokens require more than 40 tokens to effec-
tively represent the attention weight of the baseline model; for
example, the 500th, 1000th, 1500th, and 2000th tokens need
80, 146, 160, and 164 key tokens, respectively, to reach a
cumulative attention weight of 0.9. This implies an inade-
quate amount of the key/value tokens to properly represent
the attention weight of the baseline model. Furthermore, the
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number of key tokens required to reach 0.9 varies even for the
adjacent query tokens; for instance, the 998th, 999th, 1000th,
1001st, and 1002nd tokens need 172, 164, 146, 154, and 140
key tokens, respectively. Fixing the KV cache budget without
accounting for the variance between query tokens inevitably
results in ineffective KV cache management. Therefore, we
need to dynamically adjust the amount of the key/value to-
kens loaded and computed for each query token to efficiently
manage the KV cache.
Summary. Prior works aiming to reduce the KV cache
size through token eviction inherently have some challenges.
Given the dynamic attention pattern across iterations, perma-
nently excluding evicted tokens from future token generation
can result in a non-negligible drop in accuracy. Instead, we
need to dynamically select critical tokens from the KV cache
while avoiding the outright eviction of less important ones.
Furthermore, the fixed size of the KV cache budget in prior
works leads to inefficient KV cache management. The number
of key/value tokens required for each layer differs, and each
query token demands a varying number of key/value tokens
to effectively represent the attention pattern of the baseline
model. Failing to account for these variations may result in
ineffective KV cache management. Thus, we need to dynam-
ically adjust the number of key/value tokens to select from
the KV cache while considering the variances between layers
and query tokens.

4 InfiniGen Design

In this section, we present InfiniGen, a KV cache manage-
ment framework for offloading-based inference systems. We
first show the high-level overview of our proposed KV cache
management solution (Section 4.1) and discuss the opportuni-
ties of KV cache prefetching that we observe (Section 4.2).
We then explain our prefetching module (Section 4.3), which
builds on the offloading-based inference systems, and dis-
cuss how InfiniGen manages the KV cache on CPU memory
regarding the memory pressure (Section 4.4).

4.1 Overview

Figure 6 shows an overview of our KV cache management
framework, InfiniGen, which enables offloading the KV cache
with low data transfer overhead. The key design principle
behind InfiniGen is to exploit the abundant CPU memory
capacity to increase the window size when identifying the
important tokens in the KV cache. As such, the majority of the
tokens for the KV cache are kept in the CPU memory as we
generate new tokens, not completely discarding them unlike
prior works [37, 78]. However, we do not bring the entire
KV cache to the GPU for attention computation, but load and
compute with only the keys and values of a few important
tokens, dropping other unimportant ones dynamically. To do
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Figure 6: Overview of InfiniGen design.

so, we maintain the KV cache pool in the CPU memory and
selectively and speculatively load a few of tokens.

In detail, we use the attention input of the previous Trans-
former layer to speculate and prefetch the keys and values of
the important tokens for the current layer. The speculation is
done by performing a minimal rehearsal of attention computa-
tion of the current layer in the preceding layer. This allows for
reducing the waste of PCIe bandwidth by only transferring the
keys and values critical for attention computation while pre-
serving model accuracy. In addition, although the KV cache is
offloaded to CPU memory, which is much cheaper and larger
than GPU memory, we manage the KV cache pool size so as
not to put too much pressure on CPU memory.

As shown in Figure 6, there are two major components in
the InfiniGen runtime. The first includes the Partial Weight
Index Generation Controller, KV Selection Controller, and
Inference Controller. These controllers cooperate to specu-
late and prefetch the critical KV cache entries while serving
LLM inference. Additionally, to aid in prefetching, the Skew-
ing Controller performs offline modifications on the model
weights. We explain each operation in Section 4.3. The sec-
ond component is the Pool Manager. It manages the KV cache
pool on CPU memory under CPU memory pressure, which
we discuss in Section 4.4.

4.2 Prefetching Opportunities

In the following, we first explain why using the attention input
of the previous layer for speculation makes sense. We then
show how we modify the query and key weight matrices to
make our speculation far more effective.
Attention Input Similarity. Our prefetching module builds
on the key observation that the attention inputs of consecutive
attention layers are highly similar in LLMs. There are two
major reasons behind this. The first is the existence of outliers
in LLMs, as discussed in Section 2.3, and the second is due
to layer normalization (LayerNorm).
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Transformer blocks. (b) Query matrix of Layer 18 of the OPT-13B
model. We only show channels from 3000 to 4000 for a clearer view
of column-wise patterns.

To begin with, the input to the Transformer block i
(Tblock_ini) can be formulated as follows:

Attn_outi−1 = Attn(LN(T block_ini−1))

FFN_outi−1 = FFN(LN(T block_ini−1 +Attn_outi−1))

T block_ini = T block_ini−1 +Attn_outi−1 +FFN_outi−1,

(1)

where Tblock_ini−1 is an input for Layer i− 1, which is
first layer-normalized (LN) and is fed into the attention
layer in the Transformer block. After performing atten-
tion, we obtain the output (Attn_outi−1), which is added
to Tblock_ini−1 because of the residual connection. Then,
the sum of Tblock_ini−1 and Attn_outi−1 is again layer-
normalized and is fed into the FFN layer. Afterward, we ob-
tain the FFN output (FFN_outi−1), which is added to the sum
of Tblock_ini−1 and Attn_outi−1 again due to the residual
connection. Finally, the sum of Tblock_ini−1, FFN_outi−1,
and Attn_outi−1 is used as input to the next Transformer
block (Tblock_ini).

Now, we show why the attention input of Layer i is similar
to the one of Layer i−1 with the example in Figure 7(a). In
the figure, there are four vectors, each of which corresponds to
a term in Equation 1. The x-axis represents an outlier channel
among the model dimension, while the y-axis represents a
normal channel (i.e., other than the outlier channel). In prac-
tice, there exist more normal channels and only a few outlier
channels in the input tensors, but we only present one channel
each for both outlier and normal channels for clarity.
Tblock_ini−1 is highly skewed along the outlier chan-

nel (x-axis) due to a few outlier channels containing signifi-
cantly large values compared to those in the normal chan-
nels. In contrast, Attn_outi−1 and FFN_outi−1 have rela-
tively small values for both outlier and normal channels (i.e.,
short vectors). This is because the attention and FFN inputs
are layer-normalized, reducing the magnitude of each value.
The small magnitude of the attention and FFN inputs nat-
urally results in their output values being relatively small
compared to Tblock_ini−1. Consequently, Tblock_ini is
highly influenced by Tblock_ini−1, rather than Attn_outi−1
or FFN_outi−1. Highly similar inputs between consecutive
Transformer blocks lead to similar inputs across the attention
layers, as the attention input is a layer-normalized one of the

Table 1: Average cosine similarity between the Transformer
block input of Layer i (Tblock_ini) and the other three tensors
(Tblock_ini−1, Attn_outi−1, FFN_outi−1) across the layers. We
use a random sentence with 2000 tokens from the PG-19 dataset [52].

Tensors OPT-6.7B OPT-13B OPT-30B Llama-2-7B Llama-2-13B

Tblock_ini−1 0.95 0.96 0.97 0.89 0.91
Attn_outi−1 0.29 0.28 0.36 0.31 0.27
FFN_outi−1 0.34 0.28 0.35 0.37 0.34

Transformer block input.
Table 1 shows the cosine similarity between Tblock_ini

and the other three tensors (Tblock_ini−1, Attn_outi−1,
FFN_outi−1). As shown in the table, Tblock_ini is highly
dependent on the Tblock_ini−1 rather than others. InfiniGen
leverages this key observation to speculate on the attention
pattern of Layer i using the attention input of Layer i− 1.
Note that Tblock_in gradually changes across the layers; the
inputs to distant layers are distinct.
Skewed Partial Weight. We observe that the attention score
highly depends on a few columns in the query and key matri-
ces. Figure 7(b) shows the values in a query matrix of Layer
18 of the OPT-13B model, where the column-wise patterns
indicate that there exist certain columns with large magni-
tudes in the matrix; we observe the same patterns in the key
and query matrices across different layers and models. The
large magnitude columns have a great impact on the attention
pattern because the dot product between the query and key is
highly affected by these few columns. The column-wise pat-
tern in the attention input indicates that there is little variance
between each row in the outlier channels. Thus, the dot prod-
uct between any row of the attention input and a column of the
weight matrix could have a similarly large magnitude, which
induces the outlier channels in the query and key matrices.

Going one step further, if we make a few columns in the
query and key matrices have much larger magnitude than oth-
ers, a much smaller number of columns significantly affects
the attention pattern. We can do this by multiplying the query
and key weight matrices with the same orthogonal matrix A.
Since the transpose of the orthogonal matrix is the inverse of
itself, the proposed operation does not change the final result,
as shown in Equation 2 (i.e., this is mathematically equivalent
to QKT , not an approximation):

Q̃ = Xa ×WQ ×A, K̃ = Xa ×WK ×A

Q̃× K̃T = Xa ×WQ ×A× (Xa ×WK ×A)T

= Xa ×WQ ×A×AT ×W T
K ×XT

a

= Xa ×WQ ×W T
K ×XT

a

= Xa ×WQ × (Xa ×WK)
T

= Q×KT ,

(2)

where Q̃ and K̃ are skewed query and key matrices, while WQ
and WK are query and key weight matrices. Xa denotes the at-
tention input. We set the orthogonal matrix A whose direction
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Figure 8: Operation flow of the prefetching module of InfiniGen.

aligns with the direction that the query matrix stretches the
most. Specifically, we first decompose the query matrix using
SVD and obtain U, Σ, and V. We then set A to orthogonal
matrix V to align the column vectors with the standard unit
vectors as VT A = VT V = I, where I is an identity matrix. We
formulate the skewed query matrix as follows:

Q̃ = Q×A = UΣVT ×A = UΣVT ×V (3)

In this way, we can make a few columns with large mag-
nitudes in Q̃ without altering the result of computation, as
discussed in Section 2.4.

4.3 Efficiently Prefetching KV Cache

Prefetching Scheme. Figure 8 shows the operation flow of the
prefetching module in InfiniGen. In the offline phase, Infini-
Gen modifies the weight matrices to generate skewed query
and key matrices. To achieve this, InfiniGen first runs the for-
ward pass of the model once with a sample input. During this
process, InfiniGen gathers the query matrix from each layer
and performs singular value decomposition (SVD) of each
query matrix. The skewing matrix (Ai) of each layer is ob-
tained using the decomposed matrices of the query matrix, as
shown in Equation 3. This matrix is then multiplied with each
of the query and key weight matrices in the corresponding
layer. Importantly, after the multiplication, the dimensions of
the weight matrices remain unchanged. Note that the skewing
is a one-time offline process and does not incur any runtime
overhead because we modify the weight matrices that are
invariant at runtime. As we exploit the column-wise pattern,
which stems from the intrinsic property of the model rather
than the input, whenever we compute the query and key for
different inputs after the skewing, the values exhibit a high
degree of skewness, thereby improving the effectiveness of
our prefetching module. Note that skewing does not alter the
original functionality. Even with the skewing, the attention
layer produces identical computation results.
Prefill Stage. In the prefill stage, InfiniGen selects several
important columns from the query weight matrix and the key
cache to speculate on the attention pattern, and generates par-
tial query weight and key cache matrices used in the decoding
stage. Figure 9 shows how InfiniGen creates these partial ma-
trices. Because we multiply each column in the query matrix
with the corresponding row in the transposed key matrix, it
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Figure 9: Partial weight generation in the prefill stage.
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is essential to select the same column indices in the query
weight matrix and the key cache to obtain a proper approxima-
tion of the attention score. However, the indices of the outlier
columns of the skewed query (Q̃) and key (K̃) matrices may
not align exactly. To obtain partial matrices that capture the
outliers, we first take the element-wise absolute values of the
skewed query and key matrices, then add these two matrices
together. This helps us calculate the sum of each column and
perform top-k operation only once while accommodating the
outlier columns of both query and key matrices. We then sum
the elements in each column and select the top-k columns in
the matrix; we choose 30% of the columns in our work. Using
the sum of column values captures the global trend of each
column while minimizing the effect of variance in each row.
The selected columns better approximate the attention pattern
because of the use of skewed query and key matrices.
Decoding Stage. In the decoding stage, InfiniGen speculates
on the attention pattern of the next layer and determines the
critical keys and values to prefetch. Figure 10 shows how
InfiniGen computes the speculated attention score. At Layer
i−1, we use the partial query weight matrix and key cache
of Layer i, which are identified in the prefill stage, along with
the attention input of Layer i−1. After multiplying the partial
query and partial key cache, InfiniGen selects tokens with
high attention scores.

We set the threshold considering the maximum value of
the speculated attention score. We select only the tokens with
an attention score greater than the maximum score subtracted
by alpha. It is noted that subtraction from the attention score
results in division after softmax. For example, assume that
the attention score of the 3rd token is the maximum attention
score minus 5. Once we apply softmax to the attention scores,
the attention weight of the 3rd token is the maximum attention
weight divided by e5 ≈ 148.4. Even though we do not use this
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token, it does not noticeably hurt the accuracy of the model
since it accounts for less than 1% of importance (≈ 1/148.4)
after softmax. Thus, InfiniGen only prefetches the keys and
values of the tokens with an attention score larger than the
highest attention score minus alpha. As multiple attention
heads are computed in parallel, we ensure that each head in the
same layer fetches the same number of tokens by averaging
the number of tokens between the maximum score and the
threshold across the heads.

By reducing the amount of KV cache to load and compute,
InfiniGen effectively reduces the loading latency (i.e., data
transfer from CPU to GPU) while maintaining an output qual-
ity similar to that of the original model with a full KV cache.
Moreover, as InfiniGen does not require a fixed number of to-
kens to load from CPU memory, it utilizes only the necessary
PCI interconnect bandwidth. InfiniGen initiates speculation
and prefetching from Layer 1 because the outliers, which are
essential for exploiting input similarity, emerge during the
computation in Layer 0.

4.4 KV Cache Pool Management

We manage the KV cache as a pool, offloading to the CPU
memory and prefetching only the essential amount to the
GPU. While CPU memory is more affordable and larger than
GPU memory, it still has limited capacity. Hence, for certain
deployment scenarios, it might be crucial to confine the size of
the KV cache pool and remove less important KV entries that
are infrequently selected by query tokens. We extend the de-
sign to incorporate a user-defined memory size limit. During
runtime, when the size of the CPU memory reaches a user-
defined limit, the KV cache pool manager selects a victim
KV entry for eviction. Subsequently, the manager overwrites
the selected victim with the newly generated key and value,
along with updating the corresponding partial key cache re-
siding in the GPU. It is noted that the order of KV entries can
be arbitrary, as long as the key and value of the same token
maintain the same relative location in the KV cache pool.

The policy of selecting a victim is important since it directly
impacts model accuracy. We consider a counter-based policy
along with two widely used software cache eviction policies:
FIFO [7, 69, 70] and Least-Recently-Used (LRU) [2]. The
FIFO-based policy is easy to implement with low overhead
but results in a relatively large accuracy drop since it simply
evicts the oldest residing token. The LRU-based policy gener-
ally exhibits a smaller decrease in accuracy but often entails a
higher runtime overhead. In general, LRU-based policy uses
a doubly linked list with locks to promote accessed objects to
the head, which requires atomic memory updates for accessed
KV entries. In the case of the counter-based policy, the pool
manager increments a counter for each prefetched KV entry
and selects a victim with the smallest count in the KV cache
pool. If any counter becomes saturated, all the counter values
are reduced by half. We observe that the counter-based policy

and the LRU-based one show comparable model accuracy,
which we discuss in Section 5.2. We opt for a counter-based
approach due to its simpler design and to avoid atomic mem-
ory updates for better parallelism.

5 Evaluation

5.1 Experimental Setup
Model and System Configuration. We use Open Pre-trained
Transformer (OPT) models [77] with 6.7B, 13B, and 30B
parameters for evaluation. The 7B and 13B models of Llama-
2 [60] are also used to demonstrate that InfiniGen works
effectively across different model architectures. We run the
experiments on a system equipped with an NVIDIA RTX
A6000 GPU [44] with 48GB of memory and an Intel Xeon
Gold 6136 processor with 96GB of DDR4-2666 memory.
PCIe 3.0 ×16 interconnects the CPU and GPU.
Workload. We evaluate using few-shot downstream tasks and
language modeling datasets. We use five few-shot tasks from
the lm-evaluation-harness benchmark [23]: COPA [54], Open-
BookQA [42], WinoGrande [55], PIQA [8], and RTE [62].
The language modeling datasets used are WikiText-2 [41] and
Penn Treebank (PTB) [38]. Additionally, randomly sampled
sentences from the PG-19 dataset [52] are used to measure
the speedup with long sequence lengths.
Baseline. We use two inference environments that support KV
cache offloading: CUDA Unified Virtual Memory (UVM) [4]
and FlexGen [57]. On UVM, all data movements between the
CPU and GPU are implicitly managed by the UVM device
driver, thereby enabling offloading without requiring interven-
tion from the programmer. In contrast, FlexGen uses explicit
data transfers between the CPU and GPU. For the FlexGen
baseline, unless otherwise specified, we explicitly locate all
the KV cache in the CPU memory. The model parameters
are stored in the GPU memory as much as possible, with
the remainder in the CPU memory. We compare InfiniGen
with two different KV cache management methods: H2O [78]
and Quantization [57]. H2O, a recent method in KV cache
management, maintains the KV cache of the important or
recent tokens by assessing the importance of each token and
discarding others. Quantization-based compression applies
group-wise asymmetric quantization to the KV cache.
Key Metric. We evaluate accuracy (%) to assess the impact
of approximation when InfiniGen, H2O, and Quantization are
used. For the language modeling tasks with WikiText-2 and
PTB, we use perplexity as a metric; lower perplexity means
better accuracy. To present performance improvements, we
measure the wall clock time during inference with varying
batch sizes and sequence lengths. The partial weight ratio is
set to 0.3. We set alpha to 4 for OPT and 5 for Llama-2, result-
ing in using less than 10% of the KV cache on average across
the layers. For each layer, we allow sending up to 20% of
the total KV cache to the GPU if it contains more candidates.
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Figure 11: Accuracy of LLMs on 5-shot tasks in lm-evaluation-harness.
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Figure 12: Perplexity of OPT-13B and Llama-2-13B for WikiText-2
dataset. Lower is better. Perplexity is computed for each decoding
chunk that contains 256 tokens.

The partial weight ratio and alpha are determined based on
a sensitivity study for each model to balance accuracy and
inference latency, which we discuss in Section 6.1.

5.2 Language Modeling
Accuracy on lm-evaluation-harness. Figure 11 shows the
accuracy of the baselines and InfiniGen across different mod-
els with 5-shot tasks. The relative KV cache size indicates
the size of the KV cache involved in the attention computa-
tion compared to the full-cache baseline (e.g., a 10% relative
KV cache size means that 10% of the full KV cache size is

used). InfiniGen consistently shows better accuracy across the
models and tasks when the relative KV cache size is less than
10%, whereas the others exhibit a noticeable accuracy drop
due to insufficient bit widths (Quantization) or permanent KV
cache elimination (H2O). This implies that our proposed so-
lution can effectively reduce the KV cache transfer overhead
while preserving model accuracy. For relative KV cache sizes
larger than 10%, the accuracy with InfiniGen closely matches
that of the full-cache baseline. In some cases, InfiniGen even
shows slightly better accuracy than the full-cache baseline.
This is likely because reducing the amount of the KV cache
participating in the attention computation can help the model
focus more on critical tokens.

Sequence Length. Figure 12 shows the perplexity of two
different models with InfiniGen and the baselines, as the se-
quence length increases. In this experiment, H2O is config-
ured to use the same amount of KV cache as InfiniGen. The
sequence lengths are 2048 and 4096 for OPT-13B and Llama-
2-13B, respectively. For a clearer view, we evaluate perplexity
with consecutive 256 tokens as a group, which is referred
to as a decoding chunk in the figure. The results show that
even though the sequence length becomes longer (i.e., the
decoding chunk ID increases), the perplexity of InfiniGen
remains consistently comparable to the full-cache baseline,
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Table 2: Perplexity on WikiText-2 and PTB with 2048 sequence
length with or without KV cache memory limits. Lower is better.

Scheme
OPT-6.7B OPT-13B OPT-30B Llama-2-7B Llama-2-13B

Wiki PTB Wiki PTB Wiki PTB Wiki PTB Wiki PTB

100% 11.68 13.86 10.55 12.78 10.14 12.31 5.69 22.53 5.25 31.94

80-FIFO% 19.64 16.82 30.99 33.84 30.66 35.45 22.26 61.88 21.41 32.34

80-LRU% 11.68 13.85 10.55 12.78 10.14 12.31 5.69 22.53 5.25 31.94

80-Counter% 11.68 13.86 10.55 12.78 10.14 12.31 5.69 22.53 5.25 31.94
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Figure 13: Accuracy on the lm-evaluation-harness benchmark with
or without skewing on OPT-6.7B.

while H2O shows an increasing divergence from the baseline.
H2O suffers from permanent KV cache elimination and may
not retain a sufficient amount of KV cache in certain layers
due to its fixed budget. In contrast, InfiniGen dynamically
computes attention using only the essential amount of KV
cache for each layer. The difference is likely to widen as the
models become capable of handling much longer sequences.
Effect of Skewing. Figure 13 shows the accuracy with or
without key/query skewing on the OPT-6.7B model. For the
experiment, we use a fixed KV cache budget of 20%, in-
stead of using a dynamic approach, to clearly show the effect
of skewing. We observe that several language models (e.g.,
Llama-2) show a small drop in accuracy without skewing. For
some models such as OPT-6.7B, however, we see a large ac-
curacy drop if we do not apply the skewing method as shown
in Figure 13. This indicates that in the case of OPT-6.7B, the
partial weight does not adequately represent the original ma-
trix without skewing. After applying our skewing method, we
achieve accuracy similar to the full-cache baseline. Our skew-
ing method effectively skews key and query matrices such
that a few columns can better represent the original matrices.
KV Cache Pool Management. Table 2 shows the perplexity
of five different models with or without limiting the memory
capacity for WikiText-2 and PTB. We compare FIFO-based,
LRU-based, and Counter-based victim selection policies in
Section 4.4 under the 80% memory limit of a full KV cache.
We also present the perplexity results with no memory limit
(100%). The FIFO-based approach shows the worst model
performance because it simply deletes the oldest KV entry
regardless of its importance. The LRU and Counter-based
approaches show perplexity that is almost similar to that with
no memory limit. We choose a Counter-based victim selection
policy instead of an LRU-based approach because the LRU-
based approach typically needs to maintain a doubly linked
list queue with locks for atomic memory updates.
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Figure 14: Inference latency on OPT-13B with a sequence length of
2048 (1920 input and 128 output tokens) and a batch size of 20.
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5.3 Performance
In this section, we refer to H2O (with a KV cache budget of
20%) and 4-bit quantization implemented on top of FlexGen
as H2O and INT4.
Inference Latency. Figure 14 shows the inference latency
including the prefill and decoding stages. We use the OPT-
13B model with 1920 input tokens, 128 output tokens, and a
batch size of 20. InfiniGen achieves 1.63×-32.93× speedups
over the baselines. The performance benefit mainly comes
from the significantly reduced amount of KV cache to load
from the CPU memory due to our dynamic approach.

UVM shows an extremely long latency because the work-
ing set size (i.e., the size of the model parameters and KV
cache) is larger than the GPU memory capacity, thereby lead-
ing to frequent page faults and data transfers between the CPU
and GPU. The prefill stage of UVM + H2O also shows a long
latency due to the page faults and data transfers. However,
because all required data are migrated to the GPU memory
after the prefill stage, UVM + H2O shows a substantially
shorter decoding latency. FlexGen loads the full KV cache
with high precision (i.e., FP16) from the CPU memory for
every attention computation. On the other hand, INT4 and
H2O load relatively small amounts of the data from the CPU
because of the low-bit data format (INT4) or a smaller size of
the KV cache (H2O). However, they still load larger amounts
of data than InfiniGen; even with low precision, INT4 loads
the KV cache of all the previous tokens; H2O always loads the
same amount of data no matter how many tokens are actually
important in each layer. As a result, InfiniGen achieves better
performance than both of them.
Batch Size. Figure 15 shows the inference latency across
different batch sizes. The results show that InfiniGen achieves
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lower latency than others across the batch sizes (1.28×-
34.64×). As the batch size increases, the performance gap be-
tween InfiniGen and others becomes larger. UVM and UVM
+ H2O show increasing latency mainly due to frequent page
faults in the prefill stage. For UVM, the latency also rapidly
increases at a batch size of 16 because the working set size
exceeds the GPU memory capacity for both prefill and decod-
ing stages. As the batch size keeps increasing, UVM + H2O
will face the same problem as well.

The latency of FlexGen almost linearly increases with the
batch size because the KV cache transfer occupies the ma-
jority of the inference latency. As we increase the batch size
from 4 to 20, the throughput (tokens per second) of InfiniGen
increases from 27.36 to 41.99, while INT4 and H2O offer a
small increase in throughput (from 12.22 to 14.02 and from
21.31 to 25.70 each). By dynamically adjusting the amount
of the KV cache to load, InfiniGen achieves scalable perfor-
mance across the batch sizes.
Sequence Length. Figure 16(a) shows the speedup of INT4,
H2O, and InfiniGen over FlexGen on OPT-13B across dif-
ferent sequence lengths. With a batch size of 8, we use four
different input/output configurations. Each configuration com-
prises 128 output tokens and 384, 896, 1408, 1920 input to-
kens (i.e., a total number of tokens ranging from 512 to 2048).
The speedup of InfiniGen continues to increase across the
sequence lengths (up to 5.28×), whereas INT4 and H2O show
saturating speedups (up to 1.92× and 3.40×). This suggests
that neither INT4 nor H2O provides a scalable solution for
KV cache management. INT4 shows a negligible increase
in speedup due to the inherent growth in the size of the KV
cache. Similarly, H2O lacks scalability due to its fixed ratio of
the KV cache budget; as the sequence length increases, H2O
stores and loads more KV cache.

Even though the sequence length increases, the number of
tokens that each token attends to does not increase linearly.
For instance, in the OPT-13B model, we count the number
of important tokens with attention scores larger than (max−
4) and identify that, on average, 37, 60, 66, and 73 tokens
are assessed as important for sequence lengths of 512, 1024,
1536, and 2048, respectively. H2O, which employs 20% of
a fixed KV cache budget, loads 409 tokens for the sequence
length of 2048, while only 73 tokens are relatively important.
In contrast, InfiniGen naturally captures this trend (i.e., a
non-linear increase in the number of important tokens) by
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Figure 17: Accuracy and inference latency across (a) alpha values
and (b) partial weight ratios.

dynamically observing the speculated attention score.
Model Size. Figure 16(b) shows the speedup of INT4, H2O,
and InfiniGen over FlexGen on three different model sizes.
We use 1920 input tokens and 128 output tokens with a batch
size of 4 for the experiment. The results show that InfiniGen
outperforms others across the model sizes. As the model size
increases from 6.7B to 13B, the speedup of InfiniGen also
increases by 1.17×, while others do not lead to a noticeable
increase in speedup. For most of the layers, InfiniGen loads a
smaller amount of KV cache than H2O because a relatively
small number of tokens are needed. Thus, InfiniGen performs
better than H2O as the model size becomes larger due to the
increased number of Transformer blocks. For the 30B model,
the model parameters do not fit in the GPU memory. As such,
we offload 30% of the model parameters to the CPU. In this
case, the size of the offloaded parameters is 1.7× larger than
the KV cache size. Even so, InfiniGen shows a 1.34× speedup
over FlexGen, while others achieve 1.18× and 1.28× each.

6 Analysis and Discussion

6.1 Sensitivity Study

We use the OPT-6.7B model with 1920 input tokens, 128
output tokens, and a batch size of 8. The accuracy is evaluated
with the WinoGrande task in lm-evaluation-harness.
Threshold and Alpha. As discussed in Section 4.3, we load
the KV cache of the tokens with a speculated attention score
greater than the threshold (i.e., the maximum attention score
minus alpha). Increasing alpha results in fetching more KV
entries to the GPU, thus increasing inference latency but also
improving accuracy. Figure 17(a) shows such trade-offs be-
tween accuracy and inference latency for nine different alpha
values with a partial weight ratio of 0.3. The results show that
more KV entries are fetched and involved in attention compu-
tation as alpha increases, thereby leading to better accuracy.
For the alpha values beyond 4, however, since most important
tokens are already included, the accuracy does not further
increase, while the cost for KV transfers and attention com-
putation keeps increasing. This trend is similarly observed in
other models, and we thus opt for an alpha value of 4 or 5 to
strike a balance between inference latency and accuracy.
Partial Weight Ratio. Figure 17(b) shows the accuracy and
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Figure 18: Latency breakdown of a Transformer block for OPT-13B
with a sequence length of 2048 and a batch size of 8.

inference latency across different partial weight ratios with an
alpha value of 4. As shown in the figure, the amount of partial
weights has a negligible impact on inference latency because
the cost for computing the speculated attention score is rela-
tively small. Note that the amount of KV cache to transfer is
not related to the partial weight ratio. However, increasing the
partial weight ratio results in higher memory consumption for
partial weights and key cache (e.g., doubling the ratio doubles
the memory consumption overhead). The accuracy also does
not noticeably differ beyond a ratio of 0.3. In our work, we
opt for a partial weight ratio of 0.3 to achieve better accuracy
while considering memory consumption overhead.

6.2 Overhead
Prefetching Overhead. Figure 18 shows the latency break-
down of executing a single Transformer block for the OPT-
13B model; FFN is not shown in the figure for schemes other
than Ideal because it is fully overlapped with data transfer
time. Ideal is a scenario where all the computations (i.e., at-
tention and FFN) are performed on the GPU without any data
transfer between the CPU and GPU. As shown in the results,
the key performance bottleneck of FlexGen and H2O is the
data transfer overhead, which occupies 96.9% and 91.8% of
the execution time, respectively. For INT4, due to the quan-
tization and dequantization overhead, attention computation
also occupies a large portion of the execution time in addition
to the data transfer. InfiniGen, on the other hand, considerably
improves the inference speed over FlexGen by reducing the
amount of data transfer with our dynamic KV cache prefetch-
ing. Furthermore, InfiniGen is only 1.52× slower than Ideal,
while others show 3.90×-18.55× slowdowns.
Memory Consumption. InfiniGen uses the partial query
weight and key cache for speculation. For a ratio of 0.3, the
sizes of the partial query weight and key cache are only 2.5%
and 15% of the total model parameters and total KV cache,
respectively. While we simply store them in the GPU dur-
ing our experiments, we can manage the storage overhead
in various optimized ways if needed. For example, we can
store only the column indices of the partial query weight and
retrieve the column vectors from the full query weight ma-
trix (which already resides in the GPU) as needed for partial
query projection. Additionally, we can place the partial key
cache in the CPU and perform speculation on the CPU after
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Figure 19: Perplexity of Llama-2-7B-32K across (a) relative KV
cache sizes with a sequence length of 32768 and (b) sequence lengths
while retaining 64 tokens. Lower is better. Llama-2-7B-32K is a fine-
tuned version capable of processing up to 32K tokens using position
interpolation [12]. Quantization is omitted in (b) since the KV cache
cannot be compressed below 6.25% (i.e., 1 bit).

fetching the partial query from the GPU. Even a naïve method
of lowering the partial ratio would likely still provide better
accuracy compared to other methods while reducing storage
overhead. In summary, by minimally sacrificing inference
performance, we can greatly reduce the storage overhead on
the GPU if necessary.

6.3 Long Context Window

Figure 19 shows the perplexity of the Llama-2-7B-32K model,
which can process up to 32K tokens, across the relative cache
sizes and sequence lengths. We use the WikiText-2 dataset
for the experiment. As the context window size increases for
future LLMs, the relative portion of the KV cache that the
GPU can retain would decrease due to the limited capacity of
GPU memory.

Figure 19(a) shows that InfiniGen maintains perplexity lev-
els close to the full-cache baseline even as the relative KV
cache size decreases, without leading to a noticeable increase
in perplexity even with much smaller cache sizes. In contrast,
other methods increase perplexity compared to the full-cache
baseline and significantly diverge at certain sizes due to in-
sufficient bit widths for preserving adequate information on
all keys and values (Quantization) or the permanent removal
of KV cache entries (H2O). As shown in Figure 19(b), the
perplexity gap between InfiniGen and H2O widens for longer
sequence lengths, which is likely to increase further for se-
quence lengths beyond 32K. This implies that InfiniGen can
scale to longer sequences and better preserve model accuracy
compared to others.

We further speculate on how InfiniGen would benefit in an
era of million-token context windows by analyzing a model
capable of handling 1 million tokens. Figure 20(a) shows that
the percentage of query tokens that attend to less than 1% of
key tokens increases as the sequence length becomes longer.
InfiniGen can adapt to this changing trend by dynamically
adjusting the amount of the KV cache to load, whereas prior
fixed-budget/pruning approaches would not easily adjust the
effective KV cache size. Figure 20(b) further shows that the
attention weights of key tokens can change across iterations;
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Figure 20: Analysis of 1 million tokens using Llama-3-8B-1048K.
(a) Percentage of query tokens that attend to less than 1% of the
key tokens across the sequence lengths. (b) Attention weight of
sampled key tokens from different layers and heads across the last
16K iterations out of 1 million tokens.

the sampled key tokens show sudden spikes after thousands
of iterations with significantly low attention weights (e.g., the
7425th iteration out of the last 16K iterations in Layer 18,
Head 30). We observe that the prior approaches that perma-
nently eliminate tokens while they are unimportant could lose
the critical contexts if they become important again at later
iterations. In contrast, InfiniGen can preserve model perfor-
mance by keeping the temporarily unimportant KV entries
for potential future use.

7 Related Work

DNN Serving Systems. A systematic approach to enabling
an efficient and fast model serving system is an important
topic that has been widely studied by both academia and in-
dustry. Some prior works focus on distributed systems with
predictable latency for service-level objectives (SLOs) [15,
16, 25, 56]. Other works improve parallelism and through-
put of the system through preemption [28, 75], fine-grained
batching [17, 21, 71], or memory optimizations [18, 35, 58].

Several other works aim at achieving high throughput exe-
cution with limited GPU memory by offloading parameters
to secondary storage (e.g., CPU memory and disk). Some of
them build on CUDA Unified Memory [46] with prefetch-
ing [31, 39], while others explicitly move tensors in and out
as needed for computation [29, 30, 48, 72, 73]. FlexGen [57]
is a recent LLM serving system that enables high-throughput
inference on a single GPU by offloading weights and KV
cache to CPU memory and disk. InfiniGen is orthogonal to
FlexGen and can work in conjunction with it to efficiently
offload and prefetch the KV cache.
KV Cache Management. vLLM [35] mitigates the KV
cache memory waste from fragmentation and duplication.
StreamingLLM [67] enables LLMs to generate longer se-
quence lengths than the trained ones. However, since neither
vLLM nor StreamingLLM reduces the size of the KV cache,
data transfers still incur a significant overhead in offloading-
based inference systems. InfiniGen complements the KV
cache management to reduce the data transfer overhead, which
is a major bottleneck in offloading-based systems.
Efficient LLM Inference. There are lines of research that ex-

ploit quantization or sparsity to make LLMs efficient through
algorithmic methods [13, 19, 22, 34, 66] or hardware-software
co-design [26,27,36,50]. Regarding sparsity, most algorithm-
based works focus on reducing the model size by exploiting
the sparsity of weights. Alternatively, H2O and Sparse Trans-
former [13] leverage the row-wise (i.e., token-level) sparsity
in the KV cache by permanently removing certain KV entries.
On the other hand, most hardware-software co-design studies
focus on relaxing the quadratic computational complexity in
the prefill stage by skipping non-essential key tokens with the
aid of specialized hardware. However, they often do not re-
duce memory access as they identify the important key tokens
only after scanning all the elements of the key tensors.

Kernel fusion [18,32] is another approach to mitigating the
quadratic memory overhead of attention in the prefill stage.
InfiniGen can be implemented with kernel fusion techniques
to alleviate the overhead of KV cache access in the decoding
stage. To our knowledge, this is the first work to enable effi-
cient LLM inference by prefetching only essential KV entries
in offloading-based inference systems.

8 Conclusion

The size of the KV cache poses a scalability issue in high-
throughput offloading-based inference systems, even surpass-
ing the model parameter size. Existing KV cache eviction
policies show a large accuracy drop and do not efficiently
use the interconnect bandwidth when they are employed in
offloading-based LLM systems. We propose InfiniGen, an
offloading-based dynamic KV cache management framework
that efficiently executes inference of large language models.
InfiniGen exploits the attention input of the previous layer to
speculatively prefetch the KV cache of important tokens. We
manipulate the query and key weights to make the speculation
more efficient. InfiniGen shows substantially shortened infer-
ence latency while preserving language model performance.
It also shows much better scalability regarding the batch size,
sequence length, and model size compared to prior solutions.
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Llumnix: Dynamic Scheduling for Large Language Model Serving

Biao Sun∗† , Ziming Huang∗† , Hanyu Zhao∗ , Wencong Xiao, Xinyi Zhang† , Yong Li, Wei Lin

Alibaba Group

Abstract
Inference serving for large language models (LLMs) is the key
to unleashing their potential in people’s daily lives. However,
efficient LLM serving remains challenging today because the
requests are inherently heterogeneous and unpredictable in
terms of resource and latency requirements, as a result of
the diverse applications and the dynamic execution nature of
LLMs. Existing systems are fundamentally limited in han-
dling these characteristics and cause problems such as severe
queuing delays, poor tail latencies, and SLO violations.

We introduce Llumnix, an LLM serving system that re-
acts to such heterogeneous and unpredictable requests by
runtime rescheduling across multiple model instances. Sim-
ilar to context switching across CPU cores in modern op-
erating systems, Llumnix reschedules requests to improve
load balancing and isolation, mitigate resource fragmenta-
tion, and differentiate request priorities and SLOs. Llumnix
implements the rescheduling with an efficient and scalable
live migration mechanism for requests and their in-memory
states, and exploits it in a dynamic scheduling policy that
unifies the multiple rescheduling scenarios elegantly. Our
evaluations show that Llumnix improves tail latencies by
an order of magnitude, accelerates high-priority requests
by up to 1.5×, and delivers up to 36% cost savings while
achieving similar tail latencies, compared against state-of-the-
art LLM serving systems. Llumnix is publicly available at
https://github.com/AlibabaPAI/llumnix.

1 Introduction

Large language models (LLMs) such as the GPT series [15,
49] are bringing generative AI to an unprecedented level.
Their human-level generation capabilities are being quickly
adopted in a wide range of domains, inspiring many imagina-
tions for future applications, and expected to have profound
influences on how people live and work.

∗Equal contribution.
†Work done during internship at Alibaba Group.

Inference serving of LLMs plays a key role in LLM-
powered services, becoming a critical workload in datacenters.
Such services are typically backed by multiple instances of
the LLM deployed on a GPU cluster. The system involves
a scheduler and an inference engine, where a request is first
dispatched by the scheduler to a model serving instance, then
gets executed by the inference engine inside. The requests are
typically batched for execution on each instance to increase
throughput and cost efficiency.

We observe unique characteristics of LLMs that call for
new design philosophy of the serving infrastructure. The first
is workload heterogeneity. LLMs are designed to be universal,
by learning as much knowledge as possible from whatever
domains. People can query the same LLM in totally different
situations or even build custom applications atop LLMs for
various scenarios; for all of these, a context-specific input (i.e.,
prompt) is all you need [15]. Such universality and application
diversity lead to heterogeneity of the inference requests, in
terms of input lengths, output lengths, expected latencies, etc.
For instance, the task of summarizing long text can introduce
significant input lengths, where the latency of returning the
first token (word) is often important to user experience [38].

The second characteristic is execution unpredictability.
Serving an LLM request needs to run the model for multiple
iterations, each producing a single output token; however, it
is not known a priori how many tokens will be generated
eventually. Moreover, the iterative generation also brings con-
siderable GPU memory consumption that dynamically grows
with the tokens. As such, the execution time and the resource
demand of a request are both unpredictable.

These characteristics make an LLM inherently a multi-
tenant and dynamic environment, serving heterogeneous and
unpredictable workloads on multiple instances. This behav-
ior is fundamentally different from traditional DNN models,
where the requests are homogeneous and the execution is
one-shot, stateless, and deterministic. Instead, we find LLMs
more similar to modern operating systems hosting processes
with dynamic working sets and different priorities on multiple
cores. Managing such systems has complex goals, which goes
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beyond what existing inference serving systems are designed
for. Although there has been a series of LLM-tailored infer-
ence engines that shows superior performance, such systems
concentrate on the sole goal of maximizing throughput within
a single instance [34, 46, 67]. The request scheduling across
instances, on the other hand, has received relatively little at-
tention; the common practice today is still to use generic
scheduling systems or policies inherited from the era of tradi-
tional DNNs [4, 28, 35, 47, 53]. Such a clear gap introduces
challenges in the following aspects that are crucial in multi-
tenant environments and online services.
Isolation. The system can hardly provide performance isola-
tion to requests as their memory consumption grows unpre-
dictably. Memory contention incurs performance interference
and even preemptions of certain requests in a batch [34], lead-
ing to highly unstable latencies and service-level objective
(SLO) violations, significantly sacrificing user experiences.
Fragmentation. The varying request lengths and memory
demands inevitably result in memory fragmentation across
instances, which introduces conflicting scheduling objectives.
The running requests prefer load balancing to reduce preemp-
tions and interference, but such load balancing fragments the
free memory space across instances at the same time. The
fragmentation can cause long queuing delays of new requests
that instead require a large space on one instance for the in-
put sequences. This conflict is difficult for the scheduler to
reconcile with unpredictable arrivals and lengths of requests.
Priorities. Requests from different applications and scenarios
naturally come with different latency objectives. Online chat-
bots [6, 8] are interactive applications and are therefore with
tight SLO constraints. On the contrary, offline applications,
such as evaluation [51], scoring [36], or data wrangling [43],
are less sensitive to latency. Such different latency objectives
are also a consequence of the commercial purpose of earn-
ing more profits from LLMs via diversified service classes
(e.g., ChatGPT Plus [2]). However, existing LLM inference
systems [34, 67] often treat all requests for a model equally
and cannot differentiate their priorities, which has limitations
in meeting different latency objectives of requests.

We introduce Llumnix, a new scheduling system for LLM
serving that addresses the challenges above via runtime
rescheduling of requests across model instances. Analogous
to context switching across CPU cores in OS process man-
agement, rescheduling enables Llumnix to react to the unpre-
dictable workload dynamics at runtime, instead of having to
address all the complex scheduling concerns and tradeoffs
with the one-shot dispatching of requests. Llumnix resched-
ules requests for multiple purposes (Figure 1): load balancing
for reducing preemptions and interference, de-fragmentation
for mitigating queuing delays, prioritization of urgent requests
by creating even higher degree of isolation, saturating or drain-
ing out instances during auto-scaling more quickly.

Llumnix reschedules requests via an efficient and scalable
live migration mechanism of requests along with their GPU

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Normal instance Terminating instance

Running request Rescheduling destination High-priority request

Queuing request

Figure 1: Example rescheduling scenarios in Llumnix.

memory states across instances. Straightforward rescheduling
approaches could introduce substantial downtimes to resched-
uled requests, especially for long sequences. By contrast,
Llumnix introduces near-zero downtime that is constant to
sequence lengths, by carefully coordinating the computation
and the memory transfer to hide the cost.

To exploit such great scheduling flexibility of migration,
Llumnix adopts a distributed scheduling architecture that en-
ables continuous rescheduling with high scalability. Llumnix
further introduces a dynamic scheduling policy under this
architecture that unifies all the rescheduling scenarios with
different goals elegantly. This unification is achieved via a
concept called virtual usage: Llumnix just needs to define a
set of rules for setting the virtual usages of GPU memory for
requests in different scenarios, and then use a simple load-
balancing policy based on the virtual usages.

We have implemented Llumnix as a scheduling layer on
top of inference engines. Llumnix currently supports a repre-
sentative system, vLLM [34], as the underlying engine. Eval-
uation on a 16-GPU cluster using realistic workloads shows
that Llumnix improves P99 first-token latency by up to 15×
and P99 per-token generation latency by up to 2×, compared
against a state-of-the-art scheduler INFaaS [53]. Llumnix also
accelerates high-priority requests by 1.5×, and achieves 36%
cost saving when delivering similar tail latencies.

In summary, this paper makes the following contributions.

• We reveal the unique characteristics and scheduling chal-
lenges of LLM serving that necessitate new scheduling
goals such as isolation, de-fragmentation, and priorities.

• We propose request rescheduling as a key measure to
achieve these goals and realize it with an efficient migration
mechanism of requests and their GPU memory states.

• We design a distributed scheduling architecture and an
accompanying scheduling policy that exploit request mi-
gration to achieve the multiple goals in a unified manner.

• We implement and evaluate Llumnix to show its advantages
over state-of-the-art inference serving systems.
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Figure 2: Request queuing and preemption using continuous
batching and dynamic memory allocation.

2 Background

Application diversity of LLMs. Recent LLMs are becom-
ing task-agnostic. That is, the same model can work for vari-
ous tasks with context-specific inputs (a.k.a. the “prompts”)
provided. This is achieved by both increasingly larger model
and dataset sizes and advanced pre-training approaches such
as few-shot learning [14]. Task-agnostic models enable di-
verse applications, from chatbots, search engines, summariza-
tion, coding, AI assistants, to AI agents, to name a few.

The diverse applications lead to requests with different
requirements for the serving. An important aspect is the se-
quence lengths. LLMs are racing to support longer sequence
lengths — for example, from March to November 2023, the
maximum sequence lengths of the GPT family have scaled
from 32k 1 (GPT-4 [49]) to 128k (GPT-4 Turbo [50]). We
expect this trend to continue as longer sequences are neces-
sary for broader applications of LLMs. Consider an intuitive
example of the tasks for summarizing and writing an article:
they require sufficiently long input and output lengths, respec-
tively. Another aspect is expected latencies. A real product
example is that OpenAI introduces a subscription plan called
ChatGPT Plus [2] to offer faster responses of common Chat-
GPT services. In general, different applications and situations
also naturally have different levels of urgency. For example,
more interactive applications like personal assistants expect
shorter latencies than tasks like summarizing an article.
Autoregressive generation. The inference for state-of-the-
art LLMs is autoregressive: the model iteratively accepts the
input sequence plus all the previous output tokens to generate
the next output token, until an “end-of-sequence” (EOS) token
is generated. The phase for generating the first token and that
for each new token afterwards are usually referred to as prefill
and decode, respectively. LLM services typically return the
generated tokens in a streaming manner. Therefore, the prefill
and decode latencies are both user-perceivable and important
to user experiences. The prefill latency determines how long it
takes to start receiving the response, which can be dominated
by the queuing delay. The decode latency determines the
speed of receiving the following tokens subsequently.

During the autoregression, the intermediate results (key and

11k stands for 1,024 when describing sequence length in this paper.
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Figure 3: Request preemptions in LLaMA-7B serving.

value tensors used in the attention operation [59]) for each
token are involved in the generation of all following tokens.
Therefore, the inference engine typically stores these states
in GPU memory for reuse, known as the KV cache [52].
Batching and memory management. State-of-the-art infer-
ence engines apply the continuous batching technique [34,67]
to handle the varying sequence lengths and dynamic arrivals
of requests. That is, a new/completed request can join/leave
the running batch immediately, instead of waiting for all the
running requests to complete. Batching also raises concern
about memory management of KV cache. Since the memory
demand of KV cache is not known a priori, it would clearly
limit the batch size and batching benefits if the memory is
reserved to the maximum length. For example, a LLaMA-2-
13B [58] model supports sequence lengths up to 4k, which
translates to 3.2 GB KV cache for a single request; while the
memory of current GPUs remain tens of GBs, let alone the
space for model weights (26 GB for LLaMA-2-13B). There-
fore, recent work (vLLM [34]) proposed dynamic memory
allocation for KV cache to increase batch size and throughput,
enabled by a technique named PagedAttention: the KV cache
tensors are stored in dynamically allocated blocks as the KV
cache grows. Figure 2 presents an example of using continu-
ous batching with dynamic memory allocation. The running
requests are chosen based on the free memory blocks, hence
there is a queuing request (the gray one) at iteration N as the
memory is insufficient. At the next iteration, the system runs
out of memory for the new blocks of the running requests.
Therefore, the system preempts certain running requests (the
blue one), which then goes back to the queue.

3 Motivation

We motivate the design of Llumnix with a series of key char-
acteristics of LLM serving as follows.
Unpredictable memory demands and preemptions. With
dynamic memory allocation, request preemptions are in-
evitable as a result of the unpredictable memory demands,
which can significantly increase the latencies of the preempted
requests. Figure 3 shows an experiment of LLaMA-7B model
serving using vLLM on an A10 GPU running a trace of 2,000
requests generated from a Poisson distribution. The input and
output lengths follow a power-law distribution with a mean
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Figure 4: Latencies of one decode step of LLaMA-7B and
LLaMA-30B with different sequence lengths and batch sizes.

value of 256 tokens (details in §6). We control the request
rate (0.42 req/s) to get a moderate memory load (62% on av-
erage) with some spikes due to the varying sequence lengths.
Under such load, we still observe 8% of the requests being
preempted. We quantify the preemption loss by measuring
the latency penalty caused by preemption, including the extra
queuing time and the recomputing for previous KV cache. We
show different percentiles of per-token decode latency (aver-
aged across all decode iterations of a request). We do not use
the end-to-end latency because it depends on the number of
iterations. We observe that the P99 per-token decode latency
is much worse than the P50 (3.8×), and the preemption loss
accounts for 70% for the P99 request. In particular, the P99
request experiences a total preemption loss of 50 seconds (pre-
empted twice), showing severe service stalls and degradation
of user experiences due to preemptions.
Performance interference among requests. We also ob-
serve performance interference of requests in a batch to each
other, due to resource competition on GPU compute and mem-
ory bandwidth resources. Figure 4 shows the times for a de-
code step of LLaMA-7B (1-GPU) and LLaMA-30B (4-GPU)
using different sequence lengths and batch sizes (the X-axis
shows the total number of tokens in a batch for each data
point). The decode speed decreases with more requests and
higher interference, and the gap between the same sequence
length is up to 2.6×.
Memory fragmentation. Considering the aforementioned
problems, it would be better to spread requests across in-
stances to reduce preemptions and interference. However,
such spreading will make the available memory of the cluster
fragmented across instances simultaneously. Here fragmenta-
tion refers to external fragmentation, i.e., unallocated memory
on an instance. Dynamic allocation techniques like PagedAt-
tention [34] can eliminate external fragmentation during the
decode phase, where the blocks are allocated one at a time.
However, external fragmentation remains a significant prob-
lem for the prefill phase, which requires many blocks on an
instance in one allocation to accommodate the KV cache of
all tokens in the inputs. Therefore, external fragmentation can
cause long queuing delays of new requests, especially those
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Figure 5: Total free memory vs. demands of the head-of-line
queuing requests across four LLaMA-7B instances.

with long inputs.
Figure 5 shows an experiment of four LLaMA-7B in-

stances, where the trace also uses the input/output length
distribution with mean value 256 and a Poisson distribution
with a request rate of 1.9 req/s. We implement a spreading dis-
patching policy that dispatches new requests to the instance
with the lowest memory load for load balancing. We demon-
strate the fragmentation by showing the total free memory
blocks across the cluster, against the demand of the head-of-
line queuing request on each instance. For most of the time
span, the total free memory can accommodate the queuing re-
quests on at least three instances (sometimes all of them). The
request are queuing despite enough total memory because
they exceed the free space on their own instances, which
demonstrates the fragmentation and also the potential of de-
fragmentation to reduce queuing delays.
Different emergency and priorities of requests. With
requirements of products like ChatGPT Plus and the diverse
application scenarios of LLMs, we foresee more applications
with different latency sensitivities. However, existing systems
usually treat all requests equally, where the latency-sensitive
could easily be interfered by other normal ones, e.g., excessive
queuing delays or performance interference. This calls for a
systematic approach to differentiating the request priorities
for an LLM to meet their respective latency objectives.
Opportunity: request rescheduling across instances. This
paper explores a new dimension that is missing in current
LLM serving systems: the multiple model instances of a de-
ployment and their interaction. A simple intuition is that when
the aforementioned problems occur on a certain instance, it
is possible that the whole cluster still has enough space for
avoiding preempting requests, accommodating new requests,
or mitigating interference. This is also a natural consequence
of the varying request lengths and memory loads across in-
stances. However, existing systems cannot exploit such free
space on other instances because requests are tied on the same
instance once scheduled throughout the autoregressive exe-
cution. Llumnix unifies the request scheduling component
and the model inference engine to explore the potentials of
fine-grained coordination among inference instances.
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4 Llumnix Design

4.1 Overview

Llumnix builds upon the key idea of rescheduling LLM in-
ference requests at runtime across model instances. Llumnix
inherits continuous batching [67] and dynamic memory allo-
cation [34] from state-of-the-art systems for high throughput.
Beyond that, Llumnix exploits request rescheduling to react
to the unpredictable workload dynamics in various situations
with different scheduling goals, as illustrated in Figure 1.

A first goal is load balancing (Figure 1-a) to reduce re-
quest preemptions and interference on high-load instances.
Although the dispatching can also consider load balancing of
memory usage, it could be sub-optimal as the final memory
usages of requests are unknown at the arrivals, due to the un-
predictability of output lengths. Rescheduling complements it
by reacting to the real usage growths of requests. Meanwhile,
as shown before, load balancing can also lead to higher mem-
ory fragmentation and longer queuing delays of long inputs
probably. Therefore, Llumnix also reschedules requests for
de-fragmentation (1-b), i.e., creating contiguous space on an
instance by moving requests onto others. Although these two
goals remain a tradeoff, Llumnix has a much larger space
to balance them with rescheduling. Another goal is prioriti-
zation (1-c) of certain requests by rescheduling co-located
requests away for lower load and avoiding interference. Such
rescheduling provides “decicated” resources to high-priority
requests dynamically, without the need for reserving machines
statically. Finally, Llumnix also reschedules requests during
auto-scaling, e.g., to drain out an instance to be terminated
(1-d) or saturate a new instance more quickly.

Realizing such highly dynamic rescheduling efficiently is
challenging, considering the large request context states (i.e.,
the KV cache). Naïve solutions include recomputing or copy-
ing the KV cache of the rescheduled requests, however with
high computation stalls and downtime, reaching over 50× of
the decoding cost (§6.2). What’s more, the KV cache states
increase with sequence lengths, limiting the scheduling flexi-
bility under the trend of growing context lengths [50]. Such
a high inference delay in generating next tokens greatly de-
grades the user experiences of LLM serving and thus prohibits
request rescheduling. Llumnix addresses this challenge with
a live migration mechanism that pipelines and coordinates
the KV cache copying and the token generation computation,
thereby bringing negligible downtime (§4.2).

To exploit the benefits of migration, Llumnix adopts a scal-
able architecture that combines global and local scheduling to
decentralize the scheduling decisions and the coordinated mi-
gration actions, facilitating continuous rescheduling at scale
(§4.3). Under this architecture, we further design an efficient
heuristic scheduling policy that centers around the virtual
usage concept to abstract the requirements of the different
scheduling goals in a unified manner (§4.4).
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Figure 6: Llumnix adopts multi-stage migration to overlap the
computation and KV cache copying for minimal downtime.

4.2 Live Migration of LLM Requests

The significant KV cache states of requests can potentially
introduce great cost and serving stalls during rescheduling.
Llumnix addresses this challenge by exploiting a key char-
acteristic of LLM inference: the KV cache is append-only.
LLM inference iteratively concatenates the output token of
the current iteration with the input tokens, which is set as
the input for the next iteration. In this way, inference engines
also keep appending the calculated KV state of the current
iteration to the KV cache parameters, leaving the parameters
generated by previous iterations remain constant.

The live migration mechanism of Llumnix utilizes the in-
herent append-only characteristic of KV cache to pipeline the
KV cache copying with the decoding computation. Because
the KV cache already generated won’t be modified in the
following iterations, Llumnix can safely copy the KV cache
of previous tokens in parallel with the computation for new
tokens. In this way, Llumnix achieves near-zero and constant
downtime to the rescheduled request. As shown in Figure 6,
when migration is initiated, the source instance starts to copy
the KV cache blocks of completed iterations, and continues
the computation at the same time (stage 0). When the copying
for the previous KV cache blocks is done, there will be a few
more iterations (i.e., blocks in Figure 6) computed in stage 0.
Then, it switches to stage 1 to copy the KV cache generated
by stage 0, while continuing the computation afterwards. The
copying is generally much faster than the computation, thus
the number of new blocks is typically small such that we can
copy them in a very short period. To the end, only one itera-
tion of computation is conducted for the KV cache migration
(i.e., stage-N). Therefore, Llumnix suspends the computation
for the request by draining it out of the current batch and
copies the remaining block, which introduces the downtime
of this request. Once it is finished, the migration completes
and the request resumes on the destination instance. Although
the total copying duration of the whole sequence depends on
the sequence length, the downtime for the request is only the
period of copying the KV cache generated by one iteration,
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which is negligible regardless of the sequence length.
The request migration approach of Llumnix borrows the

key concept introduced in virtual machine (VM) live migra-
tion [17], which gradually reduces the working set to mini-
mize the downtime. Llumnix does not require the dirty page
tracing in VM migration as the working set (i.e., KV cache) is
append-only and does not change during migration. However,
LLM serving further introduces additional challenges. Firstly,
as both the source and destination instances are continually
processing requests, the request might run out of memory
during migration. Secondly, the request can complete in the
middle of migration, due to the unpredictable execution (i.e.,
generating EOS token) and the continuous batching [67]. To
handle such exceptions and guarantee correctness during the
asynchronous computation and memory copying, Llumnix in-
troduces fine-grained coordination between the participating
instances with a handshake process (Figure 7). Before each
stage, the source instance issues a pre-allocate request with
the number of blocks to migrate to make sure that the destina-
tion has enough space. The destination will try to allocate and
reserve the blocks; if it succeeds or fails, the destination will
notify the source to proceed or abort the migration and clean
the states, respectively. Similarly, after each stage, the source
instance also checks whether the request being migrated has
completed or been preempted — if it has, the source will no-
tify the destination to abort and release the reserved blocks;
otherwise the source will go ahead to the next stage. The
source or destination will also abort the migration if the other
side fails. After the final stage finishes, the source releases
its local blocks and notifies the destination to commit the
migration and resume the execution of the request.

4.3 Distributed Scheduling Architecture

The live migration mechanism provides the foundation for
runtime rescheduling of LLM inference requests. However,
achieving fully dynamic scheduling is still non-trivial due to
the higher scheduling pressure than in traditional schedulers.
In particular, Llumnix would need to continuously track and
reschedule every single running request throughout the cluster,
rather than only dispatch incoming requests for one time or
only manage running requests on one instance. This implies a
higher scheduling frequency and a larger number of requests
for the scheduler to track and schedule in each round.

Llumnix devises a scalable architecture that combines a
cluster-level global scheduler and distributed instance-level

llumlet
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Report loadDispatch
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Coordinator

GPU
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Migration control

Instance
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New requests Instance loads
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Figure 8: Llumnix architecture.

schedulers, named llumlets, to enable continuous rescheduling
efficiently (Figure 8). Llumnix defines a clean separation of
concerns with a narrow interface between the two levels. The
global scheduler does not directly track or schedule the run-
ning requests; instead, it makes all scheduling decisions ori-
ented to the instances, according to the memory loads of them.
This way, the complexity of the global scheduler remains
independent from the running requests, thereby preserving
similar scalability to schedulers without dynamic scheduling.
The loads are reported by the llumlets periodically, based on
the request status and Llumnix’s scheduling policy.

The global scheduler utilizes the load information to dis-
patch new requests, trigger migration across instances, and
control the instance auto-scaling. In particular, for migration,
the decisions are not made for specific requests; the global
scheduler just pairs the source and destination instances, only
based on the loads, and marks them as in the corresponding
states to trigger the migration. The llumlets will decide the
requests to migrate and execute the migration automatically.

The llumlet of each instance consists of a local scheduler
and a migration coordinator. In addition to the functionalities
of similar roles in existing systems like queuing, batching,
and block management, an important new task of the local
scheduler is to calculate the memory load of the instance. The
load is not simply the physical memory being used; instead,
it is a sum of the “virtual usages” (§4.4) of the requests. The
local scheduler is also responsible for deciding the requests
to migrate when triggered. Given the chosen requests, the
migration coordinator will coordinate with the local scheduler
and the other instance, and instruct the model executor to do
the memory copying, as described before.

4.4 Dynamic Scheduling Policy
4.4.1 Goals and Definitions

Llumnix’s scheduling policy is designed with the following
goals. The first is to improve prefill and decode latencies,
by reducing queuing delays, preemptions, and interference.
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The second goal is load-adaptivity to handle varying cluster
load and improve cost efficiency. We notice that the benefits
of rescheduling is also relevant to cluster load, which could
be limited under too high/low load. Llumnix incorporates
instance auto-scaling to keep appropriate cluster load for both
saving costs and maximizing the benefits of rescheduling.

Besides these two goals similar to those of existing sys-
tems, Llumnix introduces a new goal of request priorities
that comes from the new requirements of LLMs. Priorities
present a systematic approach for the same LLM to serve
certain requests with higher emergency, e.g., from ChatGPT
Plus or more interactive applications. Llumnix provides ap-
plications with an interface for specifying request priorities
to meet different SLOs, in terms of scheduling priority and
execution priority. Requests with higher scheduling priori-
ties will get scheduled earlier to reduce their queuing delays.
Those with higher execution priorities will be given lower
instance load and hence less interference to accelerate their
execution. Currently, Llumnix supports two priority classes,
high and normal, to demonstrate the ability of Llumnix to
prefer high-priority requests, but our design also generalizes
to more priorities.

4.4.2 Virtual Usage

To achieve the multiple goals above under the distributed
scheduling architecture, Llumnix needs a scheduling policy
that can express these goals using simple instance-level met-
rics, to improve the efficiency and scalability of the global
scheduler. To this end, Llumnix introduces the virtual usage
abstraction to unify these different, sometimes conflicting
goals into a simple load metric of instances. The key observa-
tion here is that the aforementioned rescheduling scenarios
fall into two categories: load balancing, and creating free
space on one instance (de-fragmentation, prioritization, and
draining out instances). We find that they can be unified into
load balancing by assuming a virtual load on the instance: to
create free space on an instance, we just need to set the vir-
tual usages of certain requests to make the instance virtually
overloaded, then a load balancing policy will be triggered to
migrate the requests to other instances.

This observation leads us to a simple heuristic with load-
balancing as the basis, combined with a set of rules for setting
request virtual usages in different situations. We summarize
the rules in the function CalcVirtualUsage in Algorithm 1
and illustrate example scenarios in Figure 9. In normal cases,
the virtual usage of a request is just its physical memory usage
to enable routine load balancing, as shown in Figure 9(a). We
discuss the rules for other cases as follows.
Queuing requests. For the head-of-line queuing request
on an instance, we assign a positive virtual usage to it to
reflect its resource demand in terms of the required memory,
although the physical usage is 0. Thus, queuing requests will
increase the total virtual usage of the instance, then the policy

Physical usage Virtual usage

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Figure 9: Llumnix combines virtual usages with a load-
balancing policy to unify multiple scheduling goals.

will trigger migration for load balancing (which in effect
is de-fragmentation for the queuing request), as shown in
Figure 9(b). There could be a lot of heuristics to explore for
setting the virtual usage, which controls the tradeoff between
reducing queuing delays and load balancing — for example,
gradually increasing the virtual usage of a queuing request
until it reaches the real memory demand. Llumnix currently
uses a simple rule that directly uses its real demand (line
4 in Algorithm 1), which favours reducing queuing delays.
This rule is based on our observation that queuing delay can
dominate the end-to-end latency and worth such preference.
Our evaluation also shows that this rule preserves the benefits
of load balancing, due to the high flexibility of migration.
Execution priorities. For a request with high execution
priorities, Llumnix tries to prevent the instance the request
is running on from exceeding a given level of real load, by
reserving a memory space as headroom, as shown in Fig-
ure 9(c). This is achieved by adding such a headroom on the
physical usage of a high-priority request to get the virtual
usage (line 8). When there are multiple high-priority requests
on an instance, this headroom is divided among them (line
10). The headroom for high-priority requests is currently de-
fined as that required to preserve the ideal decode speed (i.e.,
no visible interference), which is obtained through profiling.
The headroom for normal requests is 0. Llumnix can also
support more execution priorities by specifying the sizes for
the headroom. When the headroom for a high-priority request
is running up, the other normal requests will be migrated
away by the load balancing policy because the instance is
overloaded in terms of the total virtual usage.
Auto-scaling. When a new instance is launched, Llumnix’s
load balancing policy will automatically saturate it by migrat-
ing requests from other instances to it. When an instance is
terminating, we artificially add a fake request with a virtual
usage of infinity on it (line 7), then the remaining requests
will be migrated to other instances, as shown in Figure 9(d).

4.4.3 Policies

We then describe how the specific scheduling decisions are
made based on the virtual usages.
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Algorithm 1: Virtual Usage and Freeness Calculation
1 Function CalcVirtualUsage(req, instance):
2 if req.isQueuing then
3 if req.isHeadO f Line then
4 return req.demand

5 return 0

6 if req.isFake then
7 return ∞

8 return req.physicalUsage+GetHeadroom(req.priority, instance)

9 Function GetHeadroom(p, instance):
10 return headroomForPriority[p]/instance.numRequests[p]

11 Function CalcFreeness(instance):
12 if instance.isTerminating then
13 AddFakeReq (instance.requests)

14 totalVirtualUsages = 0
15 for req in instance.requests do
16 totalVirtualUsages+=CalcVirtualUsage(req, instance)

17 f reeness = (instance.M− totalVirtualUsage)/instance.B
18 return f reeness

Dispatching. Llumnix dispatches new requests with higher
scheduling priorities first. Within the same priority, it adopts
a simple first-come-first-serve order. On each instance, re-
quests are scheduled in the same order. Llumnix uses a load-
balancing policy that dispatches each request to the freest
instance. We introduce a metric for measuring the freeness
of an instance defined as F = (M−∑V )/B, where M is the
total memory, V is the virtual usage of each request, and B
is the batch size. While (M−∑V ) already measures the free
space, we divide it by the batch size because it determines
the consumption speed, i.e., the number of new tokens per
iteration. Thus the metric suggests how many iterations the
batch can still run for. Then Llumnix dispatches each incom-
ing request to the instance with the highest freeness. Because
the virtual usage of a request can be larger than the physi-
cal, it is possible that F is a negative value, e.g., when there
are queuing requests or high-priority requests. Such nega-
tive freeness values help Llumnix automatically treat such
instances as overloaded and prefer dispatching requests to
other instances. The freeness metric also guides the migration
and auto-scaling, as shown later.

Migration. Llumnix triggers the migration policy period-
ically. In each round, Llumnix selects the candidate sets of
source and destination instances by choosing those with free-
ness values smaller or greater than given thresholds, respec-
tively. Llumnix pairs the instances from both sets by picking
the two with the lowest and the highest freeness values repeat-
edly, and then sets them in corresponding states. The llumlet
of each source instance then starts to migrate requests to the
destination continuously, until it is no longer set in the source
state. The llumlet prefers the requests with lower priorities
and shorter sequence lengths when choosing the requests to
migrate. In the next round, if an instance during migration
is no longer beyond the thresholds, Llumnix will unset the
migration state and the migration will stop.

Auto-scaling. Llumnix scales the instances according to the
cluster load in terms of the averages freeness for the normal
priority across instances. The policy maintains the average
freeness within a range [x,y], and adds or terminates an in-
stance when the freeness is smaller than x or greater than y
for a period, respectively. Llumnix chooses the instance with
fewest running requests for termination.

5 Implementation

We implement Llumnix with 3,300 lines of Python code.
Llumnix is a standalone library comprising both its own com-
ponents and an interface to integrate and communicate with
backend inference engines. This architecture makes Llumnix
non-intrusive and extensible to different backends. Llumnix
currently supports vLLM [11] as the backend, which is an
open-source state-of-the-art inference engine that features
continuous batching, PagedAttention, and tensor-parallel dis-
tributed inference [34, 56].
Multi-instance serving. Llumnix instantiates the multiple
instances of the backend and the other components as Ray [42]
actors. Ray’s Python-native distributed runtime enables fine-
grained coordination among these actors in a simple and
efficient manner. Llumnix also launches a set of request fron-
tend actors that exposes an OpenAI-style API endpoint [48].
Although a request can be migrated across backend instances,
the generated tokens are forwarded to the frontend and then
returned to end users, ensuring a steady API service.
KV cache transfer. We use the Gloo collective communica-
tion library [5] (the Send/Recv primitives) for the KV cache
transfer during migration. A potential alternative is NCCL [1],
which is generally faster than Gloo on GPUs but has been
adopted in communication for distributed inference. However,
Llumnix needs to migrate requests in parallel with the infer-
ence to minimize the downtimes, but concurrent invocations
of NCCL are known to be unsafe [45]. The pipelined migra-
tion design allows us to use Gloo while maintaining negligible
downtimes. Using Gloo needs to copy the KV cache between
CPU and GPU memory, which is done in another CUDA
stream to avoid blocking the inference computation. Note
that in typical deployments, the communication-heavy ten-
sor parallelism is limited in a single machine for high-speed
transfer [44]. In such cases, migration between instances (ma-
chines) will not interfere with the tensor-parallel inference.
Block fusion. vLLM stores the KV cache in non-contiguous
small blocks that are dynamically allocated. For example, the
block size of a 16-bit LLaMA-7B model is 128 KB (for key or
value tensors of 16 tokens in each layer), and a sequence of 1k
tokens translates to 4k such blocks (32 layers). To avoid the
overhead of sending these blocks using many small messages,
we fuse the blocks by copying them from GPU memory to
a contiguous CPU memory buffer and use Gloo to send the
buffer as a whole, thereby improving the transfer efficiency.
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Fault tolerance. Llumnix provides fault tolerance for each
component to ensure high service availability. When the
global scheduler fails, Llumnix temporarily falls back to a
scheduler-bypassing mode, thus not affecting the service avail-
ability: that is, the request frontends directly dispatch requests
to certain instances using simple rules, and migration is dis-
abled. When an instance (or the co-located llumlet) fails, the
requests running on it will be aborted. In particular, ongoing
migration on failed instances will also be aborted (the request
being migrated is not necessarily aborted, depending on if its
source instance is healthy), which is handled by the handshake
process. These failed actors will be automatically restarted by
Ray, after which the service could go back to normal state.

6 Evaluation

We evaluate Llumnix on a 16-GPU cluster using realistic mod-
els and various workloads. Overall, our key findings include:

• Llumnix introduces near-zero downtime to requests being
migrated and near-zero overhead to other running requests.

• Llumnix improves prefill latencies by up to 15×/7.7×
(P99/mean) over INFaaS on 16 LLaMA-7B instances via
de-fragmentation. Llumnix also improves P99 decode la-
tency by up to 2× by reducing preemptions.

• Llumnix improves high-priority request latencies by up to
1.5× by reducing their queuing delays and accelerating
their execution, while preserving similar performance of
the normal requests.

• Llumnix achieves up to 36% cost saving while preserving
similar P99 latencies with efficient auto-scaling.

6.1 Experimental Setup
Testbed. We use a 16-GPU cluster with 4 GPU VMs on Al-
ibaba Cloud (type ecs.gn7i-c32g1.32xlarge), each with
4 NVIDIA A10 (24 GB) GPUs connected via PCI-e 4.0, 128
vCPUs, 752 GB memory, and 64 Gb/s network bandwidth.
Models. We conduct experiments using a popular model
family, LLaMA [57]. We test two different specifications:
LLaMA-7B, which runs on a single GPU, and LLaMA-30B,
which runs on 4 GPUs of a machine using tensor parallelism.
The models adopt the commonly used 16-bit precision. The
version of vLLM that we based on only supports the orig-
inal LLaMA with a maximum sequence length of 2k, but
there have been a series of recent LLaMA variants supporting
longer sequence lengths ranging from 4k to 256k [3,7,58,65].
Since the model architectures and inference performance of
these variants are mostly similar to those of LLaMA, we be-
lieve that our results are representative of more model types
and larger sequence length ranges from a systems perspective.
Traces. Similar to prior work [34, 35, 67], we synthesize
request traces to asses Llumnix’s online serving performance.

Distribution Mean P50 P80 P95 P99

Real
ShareGPT In 306 74 348 1484 3388

Out 500 487 781 988 1234

BurstGPT In 830 582 1427 2345 3549
Out 271 243 434 669 964

Gen
Short (S) 128 38 113 413 1464

Medium (M) 256 32 173 1288 4208
Long (L) 512 55 582 3113 5166

Table 1: Real and generated distributions of sequence lengths
(numbers of tokens) used in our evaluation. The real distribu-
tions include those of both inputs (“In”) and outputs (“Out”).

We use Poisson and Gamma distributions with different re-
quest rates (requests per second) to generate request arrivals.
For Gamma, we also use varying coefficients of variance
(CVs) to adjust the burstiness of the requests. Each trace has
10,000 requests. We choose an appropriate range of request
rates or CVs for the traces to maintain the loads within a rea-
sonable range: nearly no queuing delays and preemptions for
P50 requests, and queuing delays within a few tens of seconds
for P99 requests when using Llumnix.

For the input/output lengths of requests, we use two public
ChatGPT-4 conversation datasets, ShareGPT (GPT4) [10] and
BurstGPT (GPT4-Conversation) [62], for an evaluation on
real workloads. Considering that Llumnix targets more diver-
sified applications, we also use generated power-law length
distributions to emulate long-tail workloads that mix both fre-
quent, short sequences (e.g., for interactive applications like
chatbots and personal assistants) and seldom, long sequences
(e.g., summarizing or writing articles). We generate multiple
distributions with different long-tail degrees and mean lengths
(128, 256, 512), as shown by the Short (S), Medium (M), and
Long (L) distributions in Table 1. These distributions have
a maximum length of 6k, thus the total sequence length of a
request (input plus output) will not exceed the capacity of an
A10 GPU when running LLaMA-7B (13,616 tokens). To ob-
serve the performance with different workload characteristics,
we construct the traces by picking different combinations of
the length distributions for inputs and outputs as follows: S-S,
M-M, L-L, S-L, and L-S.
Baselines. We compare Llumnix with the following sched-
ulers. All the baselines and Llumnix use vLLM as the under-
lying inference engine to focus the comparison on the request
scheduling across instances.

• Round-robin dispatching: a simple dispatching policy to
distribute requests across instances evenly, which is a typi-
cal behavior of production-grade serving systems [4, 9, 47].

• INFaaS++: an optimized version of INFaaS [53], a state-
of-the-art scheduler for multi-instance serving. We evaluate
its load-balancing dispatching and load-aware auto-scaling
policies. We improve it by making it focus on the GPU
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Figure 10: Downtime and overhead of migration.

memory load as it is the dominant resource in LLM serving.
This load also counts in the memory required by queuing
requests on each instance to reflect the queue pressure.

• Llumnix-base: a base version of Llumnix that is priority-
agnostic (i.e., treats all requests as the same priority) but
enables all the other features including migration.

Key metrics. We focus on request latency, in terms of end-
to-end, prefill (that of the first generated token), and decode
(that since first generated token to the last, averaged over all
generated tokens). We report both mean and P99 values.

6.2 Migration Efficiency
We first examine the performance of Llumnix’s migration
mechanism, in terms of the downtimes introduced to the mi-
grated requests and the performance overheads for the running
requests. We test both the 1-GPU LLaMA-7B and the 4-GPU
LLaMA-30B models. For each model, we deploy two in-
stances on two different machines. We use different sequence
lengths, for each of which we run a batch of requests with the
same total length of 8k on both instances. We migrate one
of the requests from one instance to another and measure its
downtime and the decode speeds of the running batches on
both instances during migration.

We compare the downtime during migration with two sim-
ple approaches: recomputing, and blocking copying of the
KV cache using Gloo (non-blocking for other requests). As
shown in Figure 10 (left), the downtime of migration is nearly
constant with increasing sequence lengths (roughly 20-30 ms),
even shorter than a single decode step. In comparison, the
downtimes of baselines increase with the sequence lengths,
reaching up to 111× that of migration. For example, recom-
puting an 8k sequence for LLaMA-30B takes 3.5s, which
translates to a service stall similar to 54 decode steps. We
also notice that for all sequence lengths, the migration only
takes two stages, which is the minimum. This is because the
data copying is sufficiently fast and the number of new tokens
generated during the first stage is small.

Figure 10 (right) also compares the per-step decode times
during migration on the source instance with that during nor-
mal execution (results on the destination are mostly simi-
lar). We observe up to 1% performance differences for both

LLaMA-7B and LLaMA-30B, showing the negligible migra-
tion overhead. Also note that such overhead exists only when
there are requests being migrated (in or out) on an instance.
We find that in all the serving experiments in the following
sections, the average fraction of time span with ongoing mi-
gration for each instance is only roughly 10%. This implies
an effective overhead that is even much smaller, which is
worthwhile for the great scheduling benefits of migration.

6.3 Serving Performance

We evaluate the scheduling performance of Llumnix in on-
line serving using 16 LLaMA-7B instances (auto-scaling is
disabled except in experiments in §6.5).
Real datasets. We first compare Llumnix with round-robin
and INFaaS++ using the ShareGPT and BurstGPT traces (the
top two rows in Figure 11). Llumnix outperforms the base-
lines in end-to-end request latency by up to 2× and 2.9×
for mean and P99, respectively. In particular, we observe
that round-robin always performs much worse than both IN-
FaaS++ and Llumnix: since the sequence lengths have high
variance, simply distributing requests evenly can still lead
to unbalanced load, impacting both prefill and decode laten-
cies. Llumnix achieves significant gains in prefill latency over
round-robin, by up to 26.6× for mean and 34.4× for P99. This
is because round-robin can possibly dispatch new requests to
overloaded instances, leading to long queuing delays. Llum-
nix also improves P99 decode latency by up to 2×, by load
balancing to reduce preemptions. This margin seems smaller
as the latency penalty caused by preemptions is averaged
over all generated tokens. However, whenever preemption
occurs, it results in a sudden service stall, which impacts user
experience. Figure 11 (the rightmost column) reports the pre-
emption loss in terms of the extra queuing and recomputing
times (mean value of all requests). Llumnix reduces preemp-
tion loss by 84% on average compared to round-robin. These
results highlight the importance of load balancing in LLM
serving. In the following experiments using generated distri-
butions with higher variance, round-robin showed up to two
orders of magnitude worse latencies. Therefore, we omit it
for the other traces for clarity of the figures and focus on the
comparison between INFaaS++ and Llumnix.

Llumnix outperforms INFaaS++ in mean and P99 prefill
latencies by up to 2.2× and 5.5×, and P99 decode latencies
by up to 1.3×, respectively, showing the extra benefits of
migration, beyond dispatch-time load balancing. Next we use
more traces with different characteristics to further evaluate
them for a deeper understanding of the improvements.
Generated distributions. We compare Llumnix and IN-
FaaS++ using multiple generated distributions (bottom five
rows in Figure 11). Llumnix outperforms INFaaS++ across all
traces in end-to-end request latency by up to 1.5× and 1.6×
for mean and P99, respectively. For prefill, the improvements
are up to 7.7× for mean and 14.8× for P99. Despite dispatch-

182    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



7.0 7.5 8.0
0

50

100

150

Sh
ar

eG
PT

La
te

nc
y 

(s
)

Request P99

7.0 7.5 8.0
0

20

40

Request Mean

7.0 7.5 8.0
0

50

100
Prefill P99

7.0 7.5 8.0
0

5

10

Prefill Mean

7.0 7.5 8.0
0.0

0.1

Decode P99

7.0 7.5 8.0
0.00

0.02

0.04

0.06

Decode Mean

7.0 7.5 8.0
0

1

Preemption Loss

7.5 8.0 8.5
0

100

200

Bu
rs

tG
PT

La
te

nc
y 

(s
)

7.5 8.0 8.5
0

20

40

7.5 8.0 8.5
0

100

7.5 8.0 8.5
0

10

20

7.5 8.0 8.5
0.00

0.05

0.10

7.5 8.0 8.5
0.00

0.02

0.04

0.06

7.5 8.0 8.5
0.0

0.2

0.4

32 34 36
0

100

S-
S

La
te

nc
y 

(s
)

32 34 36
0

5

10

32 34 36
0

25

50

75

32 34 36
0

2

4

32 34 36
0.0

0.1

32 34 36
0.000

0.025

0.050

0.075

32 34 36
0.0

0.2

0.4

7.4 7.6 7.8
0

200

M
-M

La
te

nc
y 

(s
)

7.4 7.6 7.8
0

10

20

7.4 7.6 7.8
0

100

200

7.4 7.6 7.8
0

2

4

6

7.4 7.6 7.8
0.00

0.05

0.10

0.15

7.4 7.6 7.8
0.00

0.02

0.04

0.06

7.4 7.6 7.8
0.0

0.5

1.0

1.5

2.6 2.8 3.0
0

100

200

300

L-
L

La
te

nc
y 

(s
)

2.6 2.8 3.0
0

10

20

30

2.6 2.8 3.0
0

20

40

2.6 2.8 3.0
0.0

0.5

1.0

1.5

2.6 2.8 3.0
0.00

0.05

0.10

0.15

2.6 2.8 3.0
0.00

0.02

0.04

0.06

2.6 2.8 3.0
0

1

2

4.1 4.2 4.3
0

200

400

S-
L

La
te

nc
y 

(s
)

4.1 4.2 4.3
0

20

40

4.1 4.2 4.3
0

50

100

150

4.1 4.2 4.3
0

2

4

4.1 4.2 4.3
0.0

0.2

0.4

4.1 4.2 4.3
0.000

0.025

0.050

0.075

4.1 4.2 4.3
0

5

10 15
Request Rate

0

100

200

L-
S

La
te

nc
y 

(s
)

10 15
Request Rate

0

10

20

10 15
Request Rate

0

100

200

10 15
Request Rate

0

5

10

15

10 15
Request Rate

0.00

0.05

0.10

0.15

10 15
Request Rate

0.000

0.025

0.050

10 15
Request Rate

0.0

0.1

0.2

Llumnix INFaaS++ Round-Robin

Figure 11: Request end-to-end, prefill, and decode latencies and preemption loss of serving 16 LLaMA-7B instances. Each row
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Figure 12: Memory fragmentation over time.

ing requests to instances with the lowest load, INFaaS++ can
still exhibit long queuing delays due to fragmentation, espe-
cially for the long-tail requests with long inputs. Llumnix
uses migration for de-fragmentation to reduce such queuing
delays, showing more gains in traces with more long inputs.

To take a closer look at the memory fragmentation, we
further present a case study on the experiment of the M-M
trace with the request rate of 7.5. We define the fragmented

memory at each moment as the portion of cluster free memory
that could satisfy the demands of the head-of-line blocking
requests across all instances, if no fragmentation. For exam-
ple, if the total free memory is 8 GB, with three head-of-line
blocking requests each requiring 3 GB, then the fragmented
memory is counted as 6 GB, i.e., this 6 GB memory could
satisfy two queuing requests if no fragmentation. This metric
suggests the memory space wasted due to fragmentation. We
report the proportion of fragmented memory in the cluster
total memory. In the example, if the total memory is 16 GB,
then the proportion is 37.5% (6/16). Figure 12 shows the frag-
mentation proportion of the experiment during a busy period.
We observe that INFaaS++ often shows higher than 10% frag-
mentation, wasting a significant amount of cluster memory.
In comparison, the fragmentation is often 0 in Llumnix. The
average values during this period are 0.7% and 7.9% for Llum-
nix and INFaaS++ respectively (92% reduction), highlighting
the effect of de-fragmentation using migration.

Llumnix also improves the P99 decode latency by up to

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    183



2 4 6 8
0

25

50

75

Hi
gh

 P
rio

rit
y

La
te

nc
y 

(s
)

Request P99

2 4 6 8
0

5

Request Mean

2 4 6 8
0

5

10
Prefill P99

2 4 6 8
0.0

0.5

1.0

1.5
Prefill Mean

2 4 6 8
0.00

0.05

0.10

0.15
Decode P99

2 4 6 8
0.000

0.025

0.050

0.075
Decode Mean

2 4 6 8
0.0

2.5

5.0

Decode Execution Time

2 4 6 8
CV

0

50

100

No
rm

al

La
te

nc
y 

(s
)

2 4 6 8
CV

0

5

10

2 4 6 8
CV

0

5

10

2 4 6 8
CV

0

1

2 4 6 8
CV

0.00

0.05

0.10

0.15

2 4 6 8
CV

0.000

0.025

0.050

0.075

2 4 6 8
CV

0.0

2.5

5.0

7.5

Llumnix-base Llumnix

Figure 13: Performance of high-priority and normal requests, as annotated on the Y-axis labels.

2×, through migration to reduce preemptions. Although IN-
FaaS++ already implements load balancing in dispatching to
reduce preemptions, migration complements it by reacting
to the real sequence lengths, which are unknown at request
arrivals. As shown in Figure 11, Llumnix significantly re-
duces the preemption loss, in many cases down to near zero.
The reduction is 70.4% on average across all experiments,
which translates to an average reduction of 1.3 seconds in the
end-to-end request latency.

6.4 Support for Priorities

We evaluate the support for priorities of Llumnix by randomly
picking 10% of the requests and assigning high scheduling
and execution priorities. We use traces with the Short-Short
length distribution and Gamma arrival distribution. We vary
the CV parameter to show the interference to high-priority
requests due to bursty workloads and load spikes. We em-
pirically choose a target memory load of 1,600 tokens for
high-priority requests, as we observe that such load preserves
near-ideal decode speed (refer to Figure 4). Llumnix translates
this target load to the corresponding memory headroom for
high-priority requests. We compare Llumnix with Llumnix-
base, which simply treats all requests as the same priority.

As shown in the first row in Figure 13, Llumnix improves
mean request latencies for the high-priority by 1.2× to 1.5×
with increasing CVs. Higher CVs leads to more high-load
periods, where high-priority requests can suffer more inter-
ference if not protected. Even with higher CVs, Llumnix still
delivers similar latencies of high-priority requests, showing
the isolation Llumnix provides to such requests. This is be-
cause Llumnix can handle changing high-priority loads by
dynamically creating space for them, which is difficult in ap-
proaches like static resource reservation. For prefill latencies,
Llumnix shows 2.9× to 8.6× gains for the mean, and 3.6× to
10× for the P99, respectively. This is achieved by reducing
the queuing delays with high scheduling priorities. Llumnix
also improves decode latencies by 1.2× to 1.5× for the mean
and 1.3× to 2.2× for the P99, respectively. This improvement
comes from the acceleration of the decode computation by

giving lower instance loads and interference to high execution
priorities, shown by the similar gains in the average decode
computation time (the rightmost column). We also notice
that Llumnix preserves similar performance of the normal
requests (the second row in Figure 13): Llumnix increases the
mean request, prefill, and decode latencies of normal requests
by up to 4.5%, 13%, and 2%, respectively.

6.5 Auto-scaling

We evaluate the auto-scaling capability of Llumnix using
larger ranges of request rates and Gamma CVs to show the
adaptivity to load variation. By default, Llumnix uses a scaling
threshold range of [10, 60], i.e., Llumnix scales instances up
or down when the average freeness is under 10 or above
60; recall that this metric represents the most decode steps
an instance can still run for given the current batch. We let
INFaaS++ use the same scaling strategy, thus both Llumnix
and INFaaS++ have the same degree of aggressiveness of
scaling up instances. We use a maximum instance number of
16 and the Long-Long sequence length distribution.

We first vary the request rates using Poisson distribution.
As shown in the first row of Figure 14, Llumnix consistently
achieves latency improvements across all request rates, e.g.,
up to 12.2× for P99 prefill latency. We also measure the
resource cost in terms of average instances used, shown in the
rightmost column. Llumnix saves costs by up to 16%, because
Llumnix increases the auto-scaling efficiency by saturating
or draining out instances more quickly. We also test different
workload burstiness with varying CVs of Gamma distribution
(request rate = 2). As shown in the second row, Llumnix
shows similar improvements in latencies and costs, e.g., up to
11× for P99 prefill latency and 18% for the cost.

Finally, we examine the cost efficiency of Llumnix in terms
of how aggressively Llumnix needs to scale out instances to
preserve a certain latency objective, e.g., a given P99 prefill
latency. We vary the scaling up threshold t, and the scaling
threshold range is determined as [t, t+50]. Higher values of t
means that Llumnix tends to use more instances. Figure 15
shows the P99 prefill latencies and costs with different scaling
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Figure 14: Auto-scaling of LLaMA-7B instances with Poisson and Gamma distributions, as annotated on the Y-axis labels.
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Figure 15: P99 prefill latencies vs. average numbers of in-
stances with varying scaling thresholds.

thresholds. We observe that Llumnix achieves similar P99
prefill latency (roughly 5s, the red dash line) while saving 36%
of the cost compared to INFaaS++, as a result of the combi-
nation of the ability to reduce queuing delays via migration
and the higher auto-scaling efficiency.

6.6 Scheduling Scalability
We conduct a scheduling stress test to examine the scalability
of Llumnix with 64 LLaMA-7B instances using higher re-
quest rates. Since this cluster exceeds the size of our testbed,
we replace the real GPU execution in vLLM with a simple
sleep command, whose duration is determined by offline
measurement on A10 GPUs with different sequence lengths
and batch sizes. We build a simple centralized scheduler as
the baseline by extending the vLLM scheduler to manage all
requests across all instances. We issue requests with input and
output lengths of 64 tokens with increasing request rates.

As shown in Figure 16, with increasing request rates, the
baseline experiences scheduling stalls during the inference
computation of up to 40ms per iteration, translating to 1.7×
slowdown. Such stalls are a result of the communication be-
tween instances and the centralized scheduler synchronizing
request statuses and scheduling decisions, which becomes a
bottleneck under high load. By contrast, Llumnix exhibits
near-zero scheduling stalls even under high request rates,
showing the scalability of the distributed scheduling archi-
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Figure 16: Per-token latencies and scheduling stalls under
increasing request rates using 64 LLaMA-7B instances.

tecture. Llumnix offloads and distributes the intra-instance
scheduling logic across llumlets so that it is done in paral-
lel and asynchronously with the global scheduling. More-
over, llumlets only report instance-level metrics, instead of
the precise status of every single request, further improving
the communication efficiency.

7 Related Work

LLM inference. As transformer models show signifi-
cance in model serving, recent works, such as FasterTrans-
former [46], TurboTransformer [25], LightSeq [61], and
FlashAttention [21, 22], optimize GPU kernels to improve
the inference performance. SpotServe [41] supports LLM
inference using preemptible instances for improving cost ef-
ficiency. FastServe [63] optimizes request completion times
using a preemptive time-slicing approach. AlpaServe [35]
exploits pipeline parallelism to reduce serving latency for
bursty workloads. To further increase the GPU utilization
and serving throughput, Orca [67] proposes iteration-level
scheduling (referred to as continuous batching in recent works
and this paper) and selective batching, while vLLM [34] opti-
mizes the memory usage with PageAttention. [55] proposes
fair scheduling of requests on an LLM instance. Prior works
mostly target solo-instance serving, therefore complementing
to Llumnix. Llumnix explores the challenges and opportu-
nities of deploying multi-instance LLM serving. The key
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append-only characteristic of KV cache is exploited to enable
migration capability of requests in the inference engine. Such
a mechanism opens great policy design space to offer prior-
ity and performance isolation, improve memory efficiency,
and enable instance auto-scaling. We also plan to explore
the interplay between the global scheduling across instances
with local scheduling techniques inside each instance (e.g.,
preemptive [63] and fair [55] scheduling) as future works.
Request scheduling. To support deep learning model de-
ployment, numerous systems (e.g., Clipper [19], Nexus [54],
DVABatch [20], and TritonServer [47]) have been proposed
to optimize request scheduling for DNN inference serving. To
meet the SLOs of DNN inference requests, Clockwork [29]
utilizes the execution predictability of traditional DNNs, while
Reef [33] and Shepherd [68] perform preemptions to serve
high-priority requests. AlpaServe [35] uses a simple load-
balancing dispatching policy based on queue lengths. These
works mostly focus on traditional DNN model serving, where
a request requires only one-time inference on the model. How-
ever, LLM inference service requires autoregressive com-
putation on models for unpredictable numbers of iterations
and introduces intermediate states (i.e., KV cache), showing
brand new characteristics. DeepSpeed-MII [4], albeit target-
ing multi-instance LLM serving, uses a simple round-robin
dispatching policy that ignores LLM characteristics. Llumnix
steps further to incorporate request migration and ensures
high throughput and low latency, provides SLO for prioritized
requests, and auto-scales instances for resource efficiency
with a unified load-aware dynamic scheduling policy.

Beyond multiple model instances, INFaaS [53] further sup-
ports scheduling across multiple model types/variants, con-
sidering the performance and accuracy requirements in differ-
ence applications. This is also a typical scenario for LLMs:
for example, fine-tuned models for a specific task (e.g., cod-
ing [3, 13, 30]); variants with different sizes or precisions
( [26,37,39]) of the base LLM. We plan to extend Llumnix to
support multiple model types in future work, considering the
larger tradeoff space of latency/throughput and accuracy.
Isolation vs. fragmentation. The tradeoff between iso-
lation and fragmentation, or that between workload pack-
ing and spreading, have been a classic scheduling challenge.
That is, workload packing improves resource utilization, at
the expense of potential interference between co-located
workloads; spreading workloads, on the contrary, provides
better isolation but also increases resource fragmentation.
Many research efforts have been devoted to better balanc-
ing isolation and fragmentation in datacenters for big-data
jobs and virtual machines, by identifying the interference-
sensitivity of workloads and optimized scheduling policies
( [16,18,23,24,27,31,32,40,60,66]). This challenge was also
identified in GPU clusters for deep learning workloads. Ama-
ral et al proposed a topology-aware placement algorithm to ad-
dress the tradeoff between packing and spreading deep learn-
ing training jobs on multi-GPU servers [12]. Gandiva [64]

addresses the heterogeneous sensitivity to packing/spreading
of different jobs with introspective job migration. This chal-
lenge becomes more complex for LLM serving due to the
unpredictable autoregressive execution. Llumnix exploits re-
quest migration at runtime to react to the workload dynamics
to better reconcile these two goals.
Migration. Gandiva [64] enables introspective migration
for deep learning training jobs during scheduling. It utilizes
the inherent iterative behavior of deep learning, and conducts
checkpoint-resume approach on the minimal working set (i.e.,
mini-batch boundary) to migrate model weights. Even though
LLM inference is iterative as well, directly migrating the
entire states of a request is unacceptable, because the latency
SLO of an inference request is crucial. Moreover, the working
set per request is linear to the sequence length, which can
be considerable given the trend of longer contexts [49, 50].
The migration approach in Llumnix is inspired by virtual
machine live migration [17]. By carrying out the majority of
migration while LLM requests continue decoding tokens on
GPUs, Llumnix minimizes the downtime of request migration,
making the cost negligible regardless of the sequence lengths.

8 Conclusion

Llumnix, as implied by the name, represents our vision of
serving LLMs as Unix. This vision originates in the observa-
tion that LLMs and modern operating systems have common
natures such as the universality, multi-tenancy, and dynamism,
and hence share similar requirements and challenges. This
paper takes an important step towards this vision by draw-
ing lessons from conventional OS wisdom including: defini-
tion of classic abstractions like isolation and priorities in the
new context of LLM serving; implementation of the “con-
text switching” as the key approach with inference request
migration; and continuous, dynamic request rescheduling ex-
ploiting the migration. All these combined, Llumnix delivers
better latency, cost efficiency, and support for differentiated
SLOs, pointing to a new way of LLM serving.
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A Artifact Appendix

Abstract

This artifact includes the source code and scripts to run the
experiments and reproduce the evaluation results of this paper.

Scope

The artifact can be used to reproduce the results of the follow-
ing experiments.

• Migration efficiency: Figure 10.

• Serving performance: Figure 11.

• Support for priorities: Figure 13.

• Auto-scaling: Figure 14 and Figure 15.

Contents

This artifact includes the following contents.

• Source code of a prototype implementation of Llumnix.

• Scripts to prepare the environment, run the experiments,
plot the figures, and validate the claims in this paper auto-
matically.

• A README file including detailed instructions on how to use
this artifact.

Hosting

The artifact is publicly available at https://github.com/
AlibabaPAI/llumnix (the osdi24ae branch). Note that this
is not the same branch as the official release of Llumnix (the
main branch). We will describe their difference later.

Requirements

The artifact runs on GPU machines, with software dependen-
cies mostly the same as those of vLLM. To reproduce our
results, you would need 4 GPU machines each with 4 A10
GPUs (24 GB). We recommend that you use the same VM
type as in our experiments (ecs.gn7i-c32g1.32xlarge on
Alibaba Cloud).

Difference from the Official Release

This artifact is a research prototype and was used during
the experiments of this paper. After the paper submission,
we refactored it into a new implementation that is more
production-ready, i.e., the official release, as described in §5.
Major differences between the two versions include:

• The artifact is directly based on the vLLM code base,
whereas the official release is a standalone Python library,
making it more extensible and non-intrusive to backend
inference engines.

• The artifact is not fault-tolerant, whereas the official release
provides fault tolerance for each component.

• The official release is still being actively developed, and
has supported or will support a series of new features, such
as scalable API servicing via distributed request frontends,
support for newer versions of vLLM and more models,
further improvements of the scheduling policies, etc.

The artifact is sufficient to reproduce the experiment re-
sults in this paper. However, if you want to use Llumnix in
production or conduct further research, we do recommend the
official release.
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Abstract
DistServe improves the performance of large language mod-
els (LLMs) serving by disaggregating the prefill and decoding
computation. Existing LLM serving systems colocate the two
phases and batch the computation of prefill and decoding
across all users and requests. We find that this strategy not
only leads to strong prefill-decoding interferences but also
couples the resource allocation and parallelism plans for both
phases. LLM applications often emphasize individual latency
for each phase: time to first token (TTFT) for the prefill phase
and time per output token (TPOT) of each request for the
decoding phase. In the presence of stringent latency require-
ments, existing systems have to prioritize one latency over
the other, or over-provision compute resources to meet both.

DistServe assigns prefill and decoding computation to dif-
ferent GPUs, hence eliminating prefill-decoding interferences.
Given the application’s TTFT and TPOT requirements, Dist-
Serve co-optimizes the resource allocation and parallelism
strategy tailored for each phase. DistServe also places the
two phases according to the serving cluster’s bandwidth to
minimize the communication caused by disaggregation. As
a result, DistServe significantly improves LLM serving per-
formance in terms of the maximum rate that can be served
within both TTFT and TPOT constraints on each GPU. Our
evaluations show that on various popular LLMs, applications,
and latency requirements, DistServe can serve 7.4× more
requests or 12.6× tighter SLO, compared to state-of-the-art
systems, while staying within latency constraints for > 90%
of requests.

1 Introduction
Large language models (LLMs), such as GPT-4 [37], Bard [2],
and LLaMA [51], represent a groundbreaking shift in gen-
erative AI. They start to reshape existing Internet services,
ranging from search engines to personal assistants [4], and
enable fundamentally new applications, like universal chat-
bots [1, 16] and programming assistants [15, 42]. Yet, these
advances come with a significant challenge: processing an
end-to-end LLM query can be substantially slower than a
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Figure 1: Performance when serving an LLM with 13B pa-
rameters under a synthetic workload with input length = 512
and output length = 64 on one NVIDIA 80GB A100. Upper:
The P90 time-to-first-token (TTFT) latency comparing exist-
ing systems vs. a system serving only the prefill phase. Down:
The P90 time-per-output-token (TPOT) latency comparing ex-
isting systems vs. a system serving only the decoding phase.

standard search query [41]. In order to meet the stringent la-
tency requirements of various applications, service providers
need to over-provision compute resources, particularly many
GPUs, leading to a shortfall in cost efficiency. Therefore, op-
timizing the cost per LLM query while adhering to high SLO
attainment (the proportion of requests that meet the SLOs) is
becoming increasingly essential for all LLM services.

An LLM service responds to a user query in two phases.
The prefill phase processes a user’s prompt, composed of a
sequence of tokens, to generate the first token of the response
in one step. Following it, the decoding phase sequentially
generates subsequent tokens in multiple steps; each decod-
ing step generates a new token based on tokens generated in
previous steps, until reaching a termination token. This dual-
phase process distinguishes LLM services from traditional
services – an LLM service’s latency is uniquely measured
by two key metrics: the time to first token (TTFT), which
is the duration of the prefill phase, and the time per output
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token (TPOT), which represents the average time taken to
generate a token for each request (except for the first token)1.
Different applications place varying demands on each metric.
For example, real-time chatbots [1] prioritize low TTFT for
response promptness, while TPOT only remains important un-
til it is faster than human reading speed (i.e., 250 words/min).
Conversely, document summarization emphasizes low TPOT
for faster generation of the summary.

Hence, given the application’s TTFT and TPOT require-
ments, an effective LLM serving system should balance these
needs and maximize per-GPU goodput, defined as the max-
imum request rate that can be served adhering to the SLO
attainment goal (say, 90%) for each GPU provisioned – higher
per-GPU goodput directly translates into lower cost per query.

As the prefill and decoding phases share the LLM weights
and working memory, existing LLM serving systems typi-
cally colocate both phases on GPUs and maximize the overall
system throughput – tokens generated per second across all
users and requests – by batching the prefill and decoding steps
across requests [31, 54]. However, to meet latency require-
ments, we find these systems must over-provision compute
resources. To see this, Figure 1 illustrates how the P90 TTFT
and TPOT shift with increasing request rates when serving
a 13B LLM using existing systems [32], with workload pat-
tern and two latency constraints set to emulate using LLM to
generate a short summary for an article. Under the SLO attain-
ment of 90%, the maximum achievable goodput on a single
A100 GPU, which is constrained by the more stringent one
of TTFT and TPOT requirements, is about 1.6 requests per
second (rps). The performance contrasts sharply when each
phase is served independently on a separate GPU, shown by
the orange and green curves, which achieve per-GPU goodput
of 5.6 rps for the prefill phase and 10 rps for decoding. Ide-
ally, by allocating 2 GPUs for prefill and 1 GPU for decoding,
we can effectively serve the model with an overall goodput
of 10 rps, or equally 3.3 rps per GPU, which is 2.1x higher
than existing systems. The gap in goodput primarily stems
from the colocation of the prefill and decoding – two phases
with very distinct computational characteristics and latency
requirements (§2.1).

First, colocation leads to strong prefill-decoding interfer-
ence. A prefill step often takes much longer than a decoding
step. When batched together, decoding steps in the batch
are delayed by the prefill steps, significantly elongating their
TPOT; similarly, the inclusion of decoding steps contributes
to a non-trivial increase in TTFT, as evidenced in Figure 2.
Even if we schedule them separately, issues persist as they
begin to compete for resources. Decoding tasks awaiting GPU
execution are subject to increased queuing delays due to on-
going prefill tasks, and vice versa. Prioritized scheduling of
one phase risks failing the latency requirements of the other.

Second, the prefill and decoding computation differ in la-

1The overall request latency equals TTFT plus TPOT times the number
of generated tokens in the decoding phase.

tency requirements and preference for different forms of paral-
lelism (§3). Colocating prefill and decoding, however, couples
their resource allocation, and prevents implementing differ-
ent parallelism strategies more suited to meeting the specific
latency requirements of each phase.

To overcome these challenges, we propose to disaggregate
the prefill and decoding phases of LLM inference, assigning
them to separate GPUs. Our approach has two benefits. First,
operating each phase independently on different GPUs elimi-
nates prefill-decoding interference. Second, it allows to scale
each phase independently with tailored resource allocation
and model parallelism strategies to meet their specific latency
requirements. Although disaggregation causes communica-
tion of intermediate states between GPUs, we show that the
communication overhead is insubstantial (§3.3) in modern
GPU clusters, and when managed appropriately, disaggrega-
tion significantly improves per-GPU goodput.

Based on the above insights, in this work, we build Dist-
Serve2, a goodput-optimized LLM serving system by disag-
gregating the prefill and decoding phases. Given TTFT and
TPOT requirements, DistServe first scales each phase indepen-
dently by co-optimizing the GPU allocation and parallelism
strategies of the prefill and decoding phase assuming serving
a single model replica. The optimization ensures maximiz-
ing the per-GPU goodput and may assign different numbers
of GPUs and parallelism strategies to each phase depend-
ing on their respective latency requirements. DistServe then
scales this allocation to multiple instances via replication un-
til meeting the user-required traffic rate (§4). DistServe also
features an algorithm to place the prefill and decoding compu-
tation according to their allocation schemes and the cluster’s
bandwidth to minimize the overhead of communicating inter-
mediate states between phases.

We implement DistServe as an orchestration layer on top
of the LLM inference engine. We evaluate DistServe on vari-
ous LLMs, varying the workloads based on three important
real-world LLM applications: chatbots, programming assis-
tant, and document summary. Compared to state-of-the-art
solutions, DistServe can serve up to 7.4× more requests or
12.6× tighter SLO under various latency constraints. Our
contributions are:

• Identify the problems of prefill-decoding interference
and resource coupling in existing LLM serving systems
and propose to disaggregate the two phases.

• Design a novel placement algorithm to choose the
goodput-optimal schema for prefill and decoding in-
stances automatically.

• Conduct a comprehensive evaluation of DistServe with
realistic workloads.

2 Background and Motivation
An LLM service follows a client-server architecture: the client
submits a sequence of text as a request to the server; the server

2https://github.com/LLMServe/DistServe
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hosts the LLM on GPUs, runs inference over the request, and
responds (or streams) the generation back to the client. As
explained in §1, due to the unique prefill-decoding process,
LLM service may impose aggressive service-level objectives
(SLOs) on both TTFT and TPOT, varying with the applica-
tion’s needs. The serving system must meet both SLOs while
minimizing the cost associated with expensive GPUs. In other
words, we want the serving system to maximize the requests
served per second adhering to the SLO attainment goal for
each GPU provisioned – maximizing per-GPU goodput. Next,
we detail the LLM inference computation (§2.1) and discuss
existing optimizations for LLM serving (§2.2).

2.1 LLM Inference
Modern LLMs [37, 51] predict the next token given an input
sequence. This prediction involves computing a hidden repre-
sentation for each token within the sequence. An LLM can
take a variable number of input tokens and compute their hid-
den representations in parallel, and its computation workload
increases superlinearly with the number of tokens processed
in parallel. Regardless of the input token count, the compu-
tation demands substantial I/O to move LLM weights and
intermediate states from the GPU’s HBM to SRAM. This
process is consistent across varying input sizes.

The prefill step deals with a new sequence, often compris-
ing many tokens, and processes these tokens concurrently.
Unlike prefill, each decoding step only processes one new
token generated by the previous step. This leads to significant
computational differences between the two phases. When
dealing with user prompts that are not brief, the prefill step
tends to be compute-bound. For instance, for a 13B LLM,
computing the prefill of a 512-token sequence makes an A100
near compute-bound (see §3.1). In contrast, despite process-
ing only one new token per step, the decoding phase incurs a
similar level of I/O to the prefill phase, making it constrained
by the GPU’s memory bandwidth.

During both phases, intermediate states, known as KV
caches [32], are generated at each token position, which are
needed again in later decoding steps. To avoid recomputing
them, they are saved in GPU memory. Because of the shared
use of LLM weights and KV caches in memory, most LLM in-
ference engines opt to colocate the prefill and decoding phases
on GPUs, despite their distinct computational characteristics.

2.2 LLM Serving Optimization
In real-time online serving, multiple requests come and must
be served within SLOs. Batching and parallelizing their com-
putation is key for achieving low latency, high throughput,
and high utilization of GPUs.

Batching. Current serving systems [9, 32, 54] utilize a batch-
ing technique known as continuous batching. This method
batches the prefill of new requests with the decoding of on-
going ones. It boosts the GPU utilization and maximizes
the overall system throughput – tokens generated per second

across all users and requests. However, as mentioned in §1
and elaborated later in §2.3, this approach leads to trade-offs
between TTFT and TPOT. An advanced variant of contin-
uous batching [9] attempts to balance TTFT and TPOT by
segmenting long prefill into chunks and attaching decoding
jobs with a chunked prefill – but essentially, it trades TTFT
for TPOT and cannot eliminate the interference (§2.3). In
summary, batching prefill and decoding invariably leads to
compromises in either TTFT or TPOT.

Model parallelism. In LLM serving, model parallelism is
generally divided as intra- and inter-operator parallelisms [33,
46, 59]. Both can be used to support larger models but may
impact serving performance differently. Intra-operator paral-
lelism partitions computationally intensive operators, such
as matrix multiplications, across multiple GPUs, accelerat-
ing computation but causing substantial communication. It
reduces the execution time3, hence latency, particularly for
TTFT of the prefill phase, but requires high bandwidth con-
nectivity between GPUs (e.g., NVLINK). Inter-operator par-
allelism organizes LLM layers into stages, each running on
a GPU to form pipelines. It moderately increases execution
time due to inter-stage communication, but linearly scales the
system’s rate capacity with each added GPU. In this paper,
we reveal an additional benefit of model parallelism: reduced
queuing delay of both prefill and decoding phases, steaming
from shorter execution time. We delve into this further in
§3. Besides model parallelism, replicating a model instance,
irrespective of its model parallelism configurations, linearly
scales the system’s rate capacity.

These parallelism strategies create a complex space of op-
timization that requires careful trade-offs based on the appli-
cation’s latency requirements.

2.3 Problems and Opportunities
Colocating and batching the prefill and decoding computation
to maximize the overall system throughput, as in existing
systems, is cost-effective for service providers. However, in
the presence of SLOs, present approaches struggle to main-
tain both high service quality and low cost due to the issues
discussed below.

Prefill-decoding interference. As Figure 2 shows, adding a
single prefill job to a batch of decoding requests significantly
slows down both processes, leading to a marked increase in
TTFT and TPOT. Specifically, the decoding tasks in the batch
must wait for lengthier prefill jobs to complete, thus extending
TPOT; the slowdown intensifies with a longer prefill, shown
in Figure 2(b). Adding decoding jobs to prefill also increases
the time to complete the prefill task, particularly when the
GPU is already at capacity (Figure 2 blue curves).

One attempt to mitigate this interference is called chunked-
prefill with piggyback [3,9]. It proposes to split the long prefill

3we emphasize “execution time” instead of latency here because latency
comprises both execution time and queuing delay.
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Figure 2: Batch execution time when serving a 13B LLM
as batch size increases. Compared between a decoding-only
batch and the batch adding one more prefill job.
into chunks and batch a prefill chunk with a few decoding jobs
(a.k.a. piggybacking). This technique alleviates the slowdown
of the decoding job caused by the long prefill job, but it does
not eliminate it. Additionally, it results in an extra overhead
for the prefill job which cannot be easily mitigated by adjust-
ing the chunk size. First, if the chunk size is set much lower
than the inflection point that can saturate the GPU, then the
prefill job will have a longer execution time since it competes
with the decoding job in the same batch and cannot solely
utilize the GPU resources. Second, if we increase the chunk
size to nearly saturate the GPU, the chance of piggybacking
will diminish since the remaining slots for decode tokens are
limited. Also, chunked-prefill causes significantly more mem-
ory access for the prefill jobs. This is because the KV cache
of all previous chunks have to be loaded from HBM to SRAM
repeatedly to compute each subsequent chunk. Concretely,
if a prefill job is split into N equal chunks, we need to load
N +(N−1)+ ...+1 = O(N2) chunks of KV Cache in total,
compared to O(N) in the non-chunked case. This overhead
will increase as the context length becomes longer.

Ineffective scheduling. Unbatching prefill and decoding jobs
and scheduling them sequentially does not mitigate the inter-
ference. Decoding jobs may experience longer queuing delays
due to waiting for ongoing prefill jobs on GPUs. Moreover,
batches dedicated to decoding often lead to GPU underutiliza-
tion. Prioritizing tasks in either phase adversely affects the
latency of the other, rendering priority scheduling ineffective.

Resource and parallelism coupling. Colocating prefill and
decoding phases on the same GPUs unavoidably share their
resource and parallelism settings. However, each phase has its
unique computational characteristic and latency requirement
that calls for more heterogeneous resource allocation. For
example, the prefill phase tends to be compute-bound and
benefits from more intra-op parallelism to reduce execution
time to meet the tight SLO on TTFT. By contrast, the opti-
mal parallelism configuration of the decoding phase depends
on the running batch size. In existing systems, due to cou-
pling, resource allocation and parallelism plans are tailored
to satisfy the more demanding of TTFT and TPOT, which
may not be ideal for the other. This often leads to resource
over-provisioning to meet both SLOs.

Opportunities. To address these issues, we propose to dis-
aggregate the prefill and decoding phases. We use the term
instance to denote a unit of resources that manages exactly
one complete copy of model weights. One instance can cor-
respond to many GPUs when model parallelism is applied.
Note that when we disaggregate the two phases to different
GPUs, each phase manages its copy of the model weights,
resulting in prefill instances and decoding instances. A prefill
instance, upon receiving a request, performs only the prefill
computation for this request to generate the first output token.
It then sends the intermediate results (mainly KV caches)
to a decoding instance, which is responsible for subsequent
decoding steps. Because decoding computation often has low
GPU utilization, we may allocate multiple prefill instances
per decoding instance. This allows batching more decoding
jobs to achieve higher GPU utilization.

Disaggregating prefill and decoding naturally resolves the
interference between the two phases and enables each to fo-
cus on its optimization target – TTFT or TPOT. Each type
of instance can employ different resources and parallelism
strategies to meet a variety of latency requirements. By ad-
justing the number of GPUs and parallelisms provided to
the two types of instances, we can maximize the per-device
goodput of the overall system, avoiding over-provisioning,
eventually translating to reduced cost-per-query adhering to
service quality. Next, we develop ways to find out the best
resource allocation and parallelism plan for each phase.

3 Tradeoff Analysis
Disaggregation uncouples the two phases and allows a dis-
tinct analysis of the characteristics of each phase, providing
valuable insights into the algorithm design. It also expands
the design space: now each phase needs to be scaled and
scheduled independently based on their latency requirements.

In this section, we analyze the computational pattern of pre-
fill (§3.1) and decoding instances (§3.2) post disaggregation.
We aim to identify key parameters and derive guidelines for
batching and parallelism in each phase. We then highlight sev-
eral practical deployment considerations (§3.3). This section
lays the foundation for per-gpu goodput optimization.

3.1 Analysis for Prefill Instance
After disaggregation, the prefill phase generates the first to-
ken by processing all tokens of the user prompt in parallel.
Assuming a given arrival rate, we aim to fulfill the service’s
latency requirement on TTFT using the least resources.

Batching strategy. The prefill step is typically compute-
intensive. Figure 3(a) shows how the throughput of the prefill
phase changes with the input length and the batch size. For
a 13B parameter LLM, processing a single sequence of 512
tokens can fully engage an A100 GPU. Once the GPU be-
comes compute-bound, adding more requests to the batch no
longer improves GPU efficiency. Instead, it proportionally
extends the total processing time for the batch, inadvertently
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Figure 3: Throughput for two phases with different batch sizes
and input lengths when serving an LLM with 13B parameters.

delaying all included requests. Hence, for prefill instances,
it is necessary to profile the specific LLM and GPUs in ad-
vance to identify a critical input length threshold, denoted as
Lm, beyond which the prefill phase becomes compute-bound.
Batching more requests should only be considered when the
input length of the scheduled request is below Lm. In practice,
user prompts typically average over hundreds of tokens [8].
Batch sizes for the prefill instance are generally kept small.

Parallelism plan. To study the parallelism preferences for
prefill-only instances, we serve a 66B LLM on two A100
GPUs with inter-op or intra-op parallelism strategy. To sim-
plify the problem, we assume uniform requests input lengths
of 512 tokens and a Poisson arrival process. We compare
the resulting average TTFT at various arrival rates in Fig-
ure 4(a): intra-op parallelism is more efficient at lower arrival
rates, while inter-op parallelism gains superiority as the rate
increases. Disaggregation enables the prefill phase to function
analogously to an M/D/1 queue, so we can use queuing theory
to verify the observation.

We start by developing notations using the single-device
case without parallelism: each request’s execution time, de-
noted as D, remains constant due to uniform prefill length.
Since one request saturates the GPU, we schedule requests via
First-Come-First-Served (FCFS) without batching. Suppose
the Poisson arrival rate is R and the utilization condition of
RD < 1, the average TTFT (Avg_T T FT ) can be modeled by
the M/D/1 queue [47] in close form:

Avg_T T FT = D+
RD2

2(1−RD)
. (1)

where the first term represents the execution time and the
second corresponds to the queuing delay. Based on Eq. 1, we
incorporate parallelism below.

With 2-way inter-op parallelism, we assume the request-
level latency becomes Ds, and the slowest stage takes Dm to
finish. We have D ≈ Ds ≈ 2×Dm, due to negligible inter-
layer activation communication [33, 59]. The average TTFT
with 2-way inter-op parallelism is derived as:

Avg_T T FTinter = Ds +
RD2

m
2(1−RDm)

= D+
RD2

4(2−RD)
. (2)
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Figure 4: Average TTFT when serving an LLM with 66B
parameters using different parallelism on two A100 GPUs.

For intra-op parallelism, we introduce a speedup coefficient
K, where 1 < K < 2, reflecting the imperfect speedup caused
by high communication overheads of intra-op parallelism.
With the execution time Ds =

D
K , the average TTFT for 2-

degree intra-op parallelism is:

Avg_T T FTintra =
D
K
+

RD2

2K(K−RD)
. (3)

Comparing Eq. 2 and Eq. 3: at lower rates, where execution
time (first term) is the primary factor, intra-op parallelism’s
reduction in execution time makes it more efficient. As the
rate increases and the queuing delay (second term) becomes
more significant, inter-op parallelism becomes advantageous,
concurred with Figure 4(a).

The prefill phase’s preference for parallelism is also influ-
enced by TTFT SLO and the speedup coefficient K. Seen
from Figure 4(a): A more stringent SLO will make intra-op
parallelism more advantageous, due to its ability to reduce
execution time. The value of K depends on factors such as the
input length, model architecture, communication bandwidth,
and placement [46,59]. As shown in Figure 4(b), a decrease in
K notably reduces the efficacy of intra-op parallelism. §4 de-
velops algorithms that optimize the resource and parallelism
configurations taking into consideration these knobs.

3.2 Analysis for Decoding Instance
Unlike the prefill instance, a decoding instance follows a dis-
tinct computational pattern: it receives the KV caches and
the first output token from the prefill instance and generates
subsequent tokens one at a time. For decoding instances, our
optimization goal is to satisfy the application’s TPOT require-
ment using minimal computing resources.

Batching strategy. Since a single decoding job is heav-
ily bandwidth-bound, batching is key to avoiding low GPU
utilization (hence high per-gpu goodput), as shown in Fig-
ure 3(b). In existing systems where the prefill and decoding
phases are colocated, increasing the decoding batch size is
difficult because it conflicts with meeting latency goals, par-
ticularly in scenarios with high request rates. This is because
sharing GPUs cause competition between prefill and decod-
ing jobs, leading to a trade-off between TTFT and TPOT. For
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Figure 5: Decoding phase latency and throughput when serv-
ing a 13B LLM with batch size = 128 and input length = 256
under different parallel degrees.

example, a higher arrival rate generates more prefill jobs, de-
manding greater GPU time to meet TTFT requirements if
prioritizing prefill jobs, which in turn adversely affects TPOT.

On the contrary, disaggregation offers a solution by en-
abling the allocation of multiple prefill instances to a single
decoding instance. This approach allows for accumulating a
larger batch size on dedicated GPUs for the decoding phase
without sacrificing TPOT.

Parallelism plan. Post-disaggregation, the batch size for de-
coding may be constrained by GPU memory capacity, as it is
necessary to maintain the KV caches for all active requests.
Scaling the decoding instance with model parallelism or lever-
aging advanced memory management techniques for LLM
KV caches, such as Paged-Attention [32] and GQA [10],
enable further scaling of the decoding batch size to nearly
compute-bound. As the decoding batch size continue to in-
crease to approach the compute-bound, the decoding compu-
tation begins to resemble the prefill phase. With this observa-
tion, we investigate how the latency and throughput change
under different parallelism degrees under large batch condi-
tions in Figure 5: intra-op parallelism reduces latency with
diminishing returns, caused by communication and reduced
utilization after partitioning. Inter-op parallelism can almost
linearly scale the throughput. Hence, when the TPOT SLO
is stringent, intra-op parallelism is essential to reduce TPOT
to meet latency goals. Beyond this, inter-op parallelism is
preferable to enhance throughput linearly.

It is worth noting that when the model can fit into the mem-
ory of a single GPU, replication is a competitive option in
addition to model parallelism for both prefill and decoding
instances, to linearly scale the system’s rate capacity. It may
also reduce the queuing delay – as indicated by Eq. 1 – by
substituting R with R/N assuming requests are equally dis-
patched to N replicas, at the cost of maintaining additional
replicas of the model weights in GPU memory.

3.3 Practical Problems
We have developed foundational principles for selecting batch-
ing and parallelisms for each phase. In this section, we discuss
and address several challenges encountered during the practi-
cal deployment of disaggregated prefill and decoding phases.

Variable prefill length. §3 has assumed uniform prompt
length across requests. In real deployments, depending on
the LLM application, the lengths of requests are non-uniform.
The non-uniformity can cause pipeline bubbles [28, 36] for
prefill instances applying inter-op parallelism because the
execution time of pipeline stages across requests of different
lengths will vary. This results in slight deviations from the
conclusions indicated by using the M/D/1 queue model. To
address the problem, §4 develops algorithms that search for
parallelisms based on workloads, and resort to scheduling to
minimize the bubbles (§4.3).

Communication overhead. Transferring KV caches from
prefill to decoding instances incurs notable overheads. For
example, the KV cache size of a single 512-token request
on OPT-66B is approximately 1.13GB. Assuming an aver-
age arrival rate of 10 rps, we need to transfer 11.3GB data
per second—or equivalently 90Gbps bandwidth to render the
overhead invisible. While many modern GPU clusters for
LLMs are equipped with InfiniBand (e.g., 800 Gbps), in cases
where cross-node bandwidth is limited, DistServe relies on
the commonly available intra-node NVLINK, where the peak
bandwidth between A100 GPUs is 600 GB/s, again rendering
the transmission overhead negligible (see §6.3). However, this
requirement imposes additional constraints on the placement
of prefill and decoding instances that we take into considera-
tion in the next section.

Through the analysis in this section, we identify the work-
load pattern, placement constraints, SLO requirements, paral-
lelism strategies, and resource allocation as key parameters
that create a web of considerations in designing the disag-
gregated serving system. How to automatically navigate the
search space to find the configuration that achieves optimal
per-gpu goodput is challenging, and addressed next.

4 Method

We built DistServe to solve the above challenges. Given the
model, workload characteristic, latency requirements, and
SLO attainment target, DistServe will determine (a) the par-
allelism strategies for prefill and decoding instances, (b) the
number of each instance type to deploy, as well as (c) how
to place them onto the physical cluster. We call the solution
a placement. Our goal is to find a placement that maximizes
the per-gpu goodput.

As explained in §3.3, a key design consideration is to man-
age communications between disaggregated prefill and de-
coding phases, given varying cluster setups. In this section,
we first present two placement algorithms: one for clusters
with high-speed cross-node networks (§4.1) and the other
for environments lacking such infrastructure (§4.2); the lat-
ter introduces additional constraints. We then develop online
scheduling optimizations that adapt to the nuances of real-
world workloads (§4.3).
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Algorithm 1 High Node-Affinity Placement Algorithm

Input: LLM G, #node limit per-instance N, #GPU per-node
M, GPU memory capacity C, workload W , traffic rate R.

Output: the placement best_plm.
configp,configd← /0, /0

for intra_op ∈ {1,2, ...,M} do
for inter_op ∈ {1,2, ..., N×M

intra_op} do
if G.size

inter_op×intra_op <C then
config← (inter_op, intra_op)
Ĝ← parallel(G,config)
config.goodput← simu_prefill(Ĝ,W )

if configp.goodput
con f igp.num_gpus <

config.goodput
con f ig.num_gpus then

configp← config

config.goodput← simu_decode(Ĝ,W )

if configd .goodput
con f igd .num_gpus <

config.goodput
con f ig.num_gpus then

configd← config
n,m← ⌈ R

configp.goodput⌉,⌈
R

configd .goodput ⌉
best_plm← (n,configp,m,configd)
return best_plm

4.1 Placement for High Node-Affinity Cluster
On high node-affinity clusters equipped with Infiniband, KV
caches transmission overhead across nodes is negligible, Dist-
Serve can deploy prefill and decoding instances across any
two nodes without constraints. We propose a two-level place-
ment algorithm for such scenarios: we first optimize the par-
allelism configurations for prefill and decoding instances sep-
arately to attain phase-level optimal per-gpu goodput; then,
we use replication to match the overall traffic rate.

However, finding the optimal parallel configuration for a
single instance type, such as for the prefill instance, is still
challenging, due to the lack of a simple analytical formula to
calculate the SLO attainment (a.k.a., percentage of requests
that meet TTFT requirement), given that the workload has
diverse input, output lengths, and irregular arrival patterns.
Gauging the SLO via real-testbed profiling is time-prohibitive.
We thus resort to building a simulator to estimate the SLO at-
tainment, assuming prior knowledge of the workload’s arrival
process and input and output length distributions. Although
short-term interval is impossible to predict, the workload
pattern over longer timescales (e.g., hours or days) is often
predictable [33, 55]. DistServe fits a distribution from the
history request traces and resamples new traces from the dis-
tribution as the input workload to the simulator to compute
the SLO attainment. Next, DistServe simply enumerates the
placements and finds the maximum rate that meets the SLO
attainment target with binary search and simulation trials.

Algorithm 1 outlines the process. We enumerate all feasible
parallel configurations, subject to cluster capacity limit, for
both prefill and decoding instances. Then, for a specific pre-
fill phase configuration, we use simu_prefill to simulate

Algorithm 2 Low Node-Affinity Placement Algorithm

Input: LLM G, #node limit per-instance N, #GPU per-node
M, GPU memory capacity C, workload W , traffic rate R.

Output: the placement best_plm.
config∗← /0

for inter_op ∈ {1,2, ...,N} do
P ← get_intra_node_configs(G,M,C, inter_op)
for Pp ∈ P do

for Pd ∈ P do
if Pp.num_gpus+Pd .num_gpus≤M then

config← (inter_op,Pp,Pd)
Ĝp, Ĝd ← parallel(G,config)
config.goodput← simulate(Ĝp, Ĝd ,W )

if config.∗goodput
config.∗num_gpus <

config.goodput
config.num_gpus then

config∗← config
n← ⌈ R

config.∗goodput ⌉
best_plm← (n,config∗)
return best_plm

and find its maximum goodput via binary search (similarly
for using simu_decode for decoding). After determining the
optimal parallel configurations for both prefill and decoding
instances, we replicate them to achieve the user-required over-
all traffic rate according to their goodput.

The complexity of Algorithm 1 is O(NM2), with N as the
node limit per instance and M representing the typical number
of GPUs per node in modern clusters (e.g., 8). The search
space is manageable and the solving time is under 1.3 minutes
in our largest setting, as demonstrated in §6.5.

Simulator building. Algorithm 1 relies on a simulator to es-
timate the goodput under various SLOs and SLO attainment
goals given the workload and the parallelism plan. To build an
accurate simulator, we analyze the FLOPs and the number of
memory accesses for prefill and decoding phases respectively,
and use a latency model to approximate the inference execu-
tion time. See details in Appendix A. The simulator aligns
well with real profiling results, thanks to the high predictabil-
ity of DNN workloads [23, 33], verified in §6.4.

By far, we have developed Algorithm 1 assuming we can
place the prefill and decoding instance between any two nodes
(or on the same node) of the cluster, and the KV cache trans-
mission utilizes high bandwidth network. In many real clus-
ters, GPUs inside a node access to high-bandwidth NVLINK
while GPUs distributed across nodes have limited bandwidth.
We next develop an algorithm to address this constraint.

4.2 Placement for Low Node-Affinity Cluster
A straightforward solution is to always colocate prefill and
decoding instances on the same node, utilizing the NVLINK,
which is commonly available inside a GPU node. For large
models, e.g. with 175B parameters (350GB), we may be un-
able to even host a single pair of prefill and decoding instances
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in an 8-GPU node (80G× 8 = 640G < 350× 2GB). We in-
corporate this as additional placement constraints and co-
optimize it with model parallelism, presented in Algorithm 2.

The key insight is that KV cache transfer occurs exclu-
sively between corresponding layers of prefill and decoding
instances. Leveraging inter-op parallelism, we group layers
into stages and divide each instance into segments, termed
as instance segments, with each segment maintaining one
specific inter-op stage. By colocating prefill and decoding
segments of the same stage within a single node, we force
the transfer of intermediate states to occur only via NVLINK.
Inside a node, we set the same parallelism and resource allo-
cation for segments of the same instance. Given the typical
limitation of GPUs per node (usually 8), we can enumerate
possible configurations inside one node and use the simulator
to identify the configurations that yield the best goodput.

As outlined in Algorithm 2, we begin by enumerating inter-
op parallelism degrees to get all the possible instance seg-
ments. For each segment, we get all possible intra-node paral-
lelism configurations by calling get_intra_node_configs.
Then we use simulation to find the optimal one and replicate
it to satisfy the target traffic rate.

4.3 Online scheduling
The runtime architecture of DistServe is shown in Figure 6.
DistServe operates with a simple FCFS scheduling policy.
All incoming requests arrive at a centralized controller, then
dispatched to the prefill instance with the shortest queue for
prefill processing, followed by dispatch to the least loaded de-
coding instance for decoding steps. This setup, while simple,
is optimized with several key enhancements tailored to the
nuances of real-world workloads.

Reducing pipeline bubbles. To mitigate the pipeline bubbles
caused by non-uniform prompt lengths (§3.3), we schedule
the requests in a way that balances the execution time across
all batches in the pipeline. This is achieved by noting that,
for both prefill and decoding instances, the number of new
tokens in the batch is a reliable indicator of the batch’s real
execution time. For prefill instances, we profile the target
model and GPU to figure out the shortest prompt length Lm
needed to saturate the GPU. We schedule prefill batches with a
total sequence length close to Lm, by either batching multiple
requests shorter than Lm or individually scheduling requests
longer than Lm. For decoding instances, we set Lm as the
largest batch size.

Combat busrtiness. Burstiness in workloads can cause a
deluge of KV caches to transfer from prefill to decoding in-
stances, risking memory overload on decoding instances. To
circumvent this, DistServe employs a “pull” method for KV
cache transmission rather than a “push” approach – decoding
instances fetch KV cache from prefill instances as needed, us-
ing the GPU memory of prefill instances as a queuing buffer.
This way, the prefill instance can continue handling other
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Figure 6: DistServe Runtime System Architecture

prefill jobs by simply retaining the KV Cache in the GPU
memory after processing the prompt. Hence, each type of in-
stance operates at its own pace without complex coordination.

Replaning. The resource and parallelism plan in DistServe is
optimized for a specific workload pattern, which may become
suboptimal if the workload pattern changes over time. Dist-
Serve implement periodic replanning. A workload profiler
monitors key parameters such as the average input and output
length of the requests, the average arrival rate, etc. If a signif-
icant pattern shift is detected, DistServe will trigger a rerun
of the placement algorithm based on recent historical data.
This process is expedient – the proposed algorithm runs in
seconds (§6.5) and reloading LLM weights can be completed
within minutes – far shorter than the hourly scale at which
real-world workload variations tend to occur.

Preemption and fault tolerance. DistServe does not imple-
ment advanced runtime policies like preemption [26] and
fault tolerance [58], which are complementary to disaggre-
gation. Nevertheless, we discuss how they fit into DistServe.
In DistServe, the FCFS policy can lead to a “convoy effect”,
where longer requests block shorter ones in the prefill stage.
Incorporating preemptive strategies, as suggested in existing
literature [53], could enhance efficiency and is feasible within
our system’s architecture. While not a primary focus in the
current DistServe, fault tolerance is a critical aspect for con-
sideration. In traditional colocation- and replication-based
systems, a fault in one instance typically does not disrupt
other replica instances. However, in DistServe, the depen-
dency between prefill and decoding instances introduces the
risk of fault propagation. For example, a fault in a single de-
coding instance mapped to multiple prefill instances could
potentially cripple the entire service and cluster. We leave
both as future work.

5 Implementation
DistServe is an end-to-end distributed serving system for
LLMs with a placement algorithm module, a RESTful API
frontend, an orchestration layer, and a parallel execution en-
gine. The algorithm module, frontend, and orchestration layer
are implemented with 6.5K lines of Python code. The par-
allel execution engine is implemented with 8.1K lines of
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Application Model Size TTFT TPOT Dataset

Chatbot OPT-13B 26GB 0.25s 0.1s ShareGPT [8]
Chatbot OPT-66B 132GB 2.5s 0.15s ShareGPT [8]

Chatbot OPT-175B 350GB 4.0s 0.2s ShareGPT [8]
Code Completion OPT-66B 132GB 0.125s 0.2s HumanEval [14]
Summarization OPT-66B 132GB 15s 0.15s LongBench [13]

Table 1: Workloads in evaluation and latency requirements.
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Figure 7: The input and output length distributions of (a)
ShareGPT, (b) HumanEval, and (c) LongBench datasets.

C++/CUDA code.
The placement algorithm module implements the algorithm

and the simulator mentioned in §4 which gives the placement
decision for a specific model and cluster setting. The fron-
tend supports an OpenAI API-compatible interface where
clients can specify the sampling parameters like maximum
output length and temperature. The orchestration layer man-
ages the prefill and decoding instances, responsible for request
dispatching, KV cache transmission, and results delivery. It
utilizes NCCL [6] for cross-node GPU communication and
asynchronous CudaMemcpy for intra-node communication,
which avoids blocking the GPU computation during transmis-
sion. Each instance is powered by a parallel execution engine,
which uses Ray [35] actor to implement GPU workers that
execute the LLM inference and manage the KV Cache in
a distributed manner. It integrates many recent LLM opti-
mizations like continuous batching [54], FlashAttention [20],
PagedAttention [32] and supports popular open-source LLMs
such as OPT [56] and LLaMA [51].

6 Evaluation

In this section, we evaluate DistServe under different sizes
of LLMs ranging from 13B to 175B and various applica-
tion datasets including chatbot, code-completion, and sum-
marization. The evaluation shows that DistServe consistently
outperforms the current state-of-the-art system across all the
settings (§6.2). Specifically, DistServe can handle up to 7.4×
higher rates and 12.6× more stringent SLO while meeting
the latency requirements for over 90% requests. Addition-
ally, we analyze the latency breakdown in DistServe to show
the communication overhead is insubstantial thanks to our
bandwidth-aware placement algorithm (§6.3) and do abla-
tion studies of our techniques (§6.4). Finally, we profile the
execution time of our placement algorithm (§6.5).

6.1 Experiments Setup
Cluster testbed. We deploy DistServe on a cluster with 4
nodes and 32 GPUs. Each node has 8 NVIDIA SXM A100-
80GB GPUs connected with NVLINK. The cross-node band-
width is 25Gbps. Due to the limited cross-node bandwidth,
we use the low node-affinity placement algorithm (§2) for
DistServe in most of the experiments except for the ablation
study (§6.4) which uses simulation.

Model and workloads setup. Similar to prior work on LLM
serving [32], we choose the OPT [56] model series, which
is a representative LLM family widely used in academia and
industry. Newer GPT model families are adopting memory-
efficient attention mechanisms like GQA [10] and MQA [44].
DistServe will show better performance on these models be-
cause the transmission overhead is lower due to the decrease
in KV cache size. We choose OPT which uses the classic
MHA [52] to put enough pressure on the transmission over-
head. We use FP16 precision in all experiments. For work-
loads, as shown in Table 1, We choose three typical LLM
applications and set the SLOs empirically based on their ser-
vice target because there exists no available SLO settings for
these applications as far as we know. For each application,
we select a suitable dataset and sample requests from it for
evaluation. Since all the datasets do not include timestamps,
we generate request arrival times using Poisson distribution
with different request rates. Due to the space limit, we test the
chatbot workload on all three OPT models and the other two
workloads on OPT-66B, which matches the largest size in the
recent open-source LLM series [51].
• Chatbot [1]: We use the ShareGPT dataset [8] for the

chatbot application, which is a collection of user-shared
conversations with ChatGPT. For OPT-13B, the TTFT SLO
is set to 0.25s for responsiveness and the TPOT SLO is
set to 0.1s which is higher than the normal human read
speed. For OPT-66B and OPT-175B, we slightly relax the
two SLOs due to the increase in model execution latency.

• Code completion [14]: We use the HumanEval [14] dataset
for the code completion task. It includes 164 programming
problems with a function signature or docstring which is
used to evaluate the performance of code completion mod-
els. Since the code completion model is used as a personal
real-time coding assistant, we set both SLOs to be stringent.

• Summarization [5]: It is a popular LLM task to generate
a concise summary for a long article, essay, or even an
academic paper. We use LongBench [13] dataset which
contains the summarization task4. As shown in Figure 7,
LongBench has much longer input lengths than the other
two datasets. So we set a loose TTFT SLO but require a
stringent TPOT.

Metrics. We use SLO attainment as the major evaluation met-
ric. Under a specific SLO attainment goal (say, 90%), we are

4We capped the input lengths in LongBench because OPT’s absolute
positional embedding only supports a maximum length of 2048.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    201



1 2 3
Per-GPU Rate (req/s)

0

50

100

SL
O 

At
ta

in
m

en
t (

%
)

0.25 0.50 0.75 1.00
Per-GPU Rate (req/s)

0

50

100

0.05 0.10 0.15 0.20 0.25
Per-GPU Rate (req/s)

0

50

100
DistServe DeepSpeed-MII vLLM

0.751.001.251.50
SLO Scale

0

50

100

SL
O 

At
ta

in
m

en
t (

%
)  

 

3.0 2.5 2.0 1.5 1.0
SLO Scale

0

50

100

0.751.001.251.50
SLO Scale

0

50

100

(a) OPT-13B (b) OPT-66B (C) OPT-175B

Figure 8: Chatbot application with OPT models on the ShareGPT dataset.

concerned with two things: the maximum per-GPU goodput
and the minimal SLO the system can handle. We are partic-
ularly interested in an SLO attainment of 90% (indicated by
the vertical lines in all curve plots), but will also vary the
rate and latency requirements to observe how the SLO attain-
ment changes. We also include the results in the Appendix for
an SLO attainment of 99% to show the system performance
under a more stringent SLO attainment target.

Baselines. We compare DistServe to two baseline systems:
• vLLM [32]: vLLM is a representative LLM serving sys-

tem widely used in both academia and industry. It sup-
ports continuous batching [54] to increase throughput and
paged-attention [32] to reduce memory fragmentation dur-
ing KV cache allocation. However, it colocates the prefill
and decoding computation to maximize the overall system
throughput and struggles to meet the latency requirements
cost-efficiently. Since vLLM only supports intra-op paral-
lelism, we follow previous work [32] to set intra-op equals
1, 4, and 8 for the three OPT models, respectively.

• DeepSpeed-MII [3]: DeepSpeed Model Implementations
for Inference (MII) supports chunked-prefill by decompos-
ing long prompts into smaller chunks and composing with
short prompts to exactly fill a target token budget. It miti-
gates but cannot eliminate the prefill-decoding interference
caused by the long prefill job. We set its intra-op the same
as vLLM for OPT-13B and OPT-66B for a fair comparison.
However, DeepSpeed-MII cannot serve OPT-175B whose
vocab_size = 50272 because its underlying kernel imple-
mentation requires vocab_size/intra_op is a multiple of
8 where intra-op equals 8 does not satisfy. Setting intra-
op equals 4 can satisfy this requirement but will cause the
out-of-memory issue.

6.2 End-to-end Experiments
In this Section, we compare the end-to-end performance of
DistServe against the baselines on real application datasets.

Chatbot. We evaluate the performance of DistServe on the
chatbot application for all three OPT models. The first row
of Figure 8 illustrates that when we gradually increase the
rate, more requests will violate the latency requirements and
the SLO attainment decreases. The vertical line shows the
maximum per-GPU rate the system can handle to meet latency
requirements for over 90% of the requests.

On the ShareGPT dataset, DistServe can sustain 2.0×–
4.6× higher request rate compared to vLLM. This is because
DistLLM eliminates the prefill-decoding interference through
disaggregation. Two phases can optimize their own objec-
tives by allocating different resources and employing tailored
parallelism strategies. Specifically, by analyzing the chosen
placement strategy5 for 175B, we find the prefill instance
has inter-op = 3, intra-op = 3; and the decoding instance has
inter-op = 3, intra-op = 4. Under this placement, DistServe
can effectively balance the load between the two instances on
ShareGPT, meeting latency requirements at the lowest cost.
This non-trivial placement strategy is challenging to manu-
ally find, proving the effectiveness of the algorithm. In the
case of vLLM, collocating prefill and decoding greatly slows
down the decoding phase, thereby significantly increasing
TPOT. Due to the stringent TPOT requirements of chatbot
applications, although vLLM meets the TTFT SLO for most
requests, the overall SLO attainment is dragged down by a
large number of requests that violate the TPOT SLO. Com-
pared to DeepSpeed-MII, DistServe can sustain 1.6×–7.4×
higher request rate. DeepSpeed-MII shows better performance

5All the placements chosen by DistServe can be found in Appendix B.
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Figure 9: Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.

on larger models because the prefill job is larger and chunked-
prefill mitigates the interference to some extent. However,
due to the reasons discussed in §2.3, chunked prefill is slower
than full prefill, so it struggles to meet the TTFT SLO as a
sacrifice for better TPOT.

The second row of Figure 8 indicates the robustness to
the changing latency requirements of the two systems. We
fix the rate and then linearly scale the two latency require-
ments in Table 1 simultaneously using a parameter called
SLO Scale. As SLO Scale decreases, the latency requirement
is more stringent. We aim to observe the most stringent SLO
Scale that the system can withstand while still achieving the
attainment target. Figure 8 shows that DistServe can achieve
1.8×–3.2× more stringent SLO than vLLM and 1.7×–1.8×
more stringent SLO than DeepSpeed-MII, thus providing
more engaging service quality to the users.

Code completion. Figure 9(a) shows the performance of
DistServe on the code completion task when serving OPT-
66B. DistServe can sustain 5.7× higher request rate and 1.4×
more stringent SLO than vLLM. Compared to DeepSpeed-
MII, DistServe can sustain 1.6× higher request rate and 1.4×
more stringent SLO. As a real-time coding assistant, the code
completion task demands lower TTFT than chatbot, this leads
to both systems ultimately being constrained by the TTFT
requirement. However, in comparison, by eliminating the in-
terference of the decoding jobs and automatically increasing
intra-operation parallelism in prefill instances through the
searching algorithm, DistServe reduces the average latency
of the prefill jobs, thereby meeting the TTFT requirements of
more requests.

Summarization. Figure 9(b) shows the performance of Dist-
Serve on the summarization task when serving OPT-66B.
DistServe achieves 4.3× higher request rate and 12.6× more
stringent SLO than vLLM. Compared to DeepSpeed-MII,
DistServe achieves 1.8× higher request rate and 2.6× more
stringent SLO. The requests sampled from LongBench dataset
have long input lengths, which brings significant pressure to
the prefill computation. However, due to the loose require-
ment of TTFT for the summarization task, the TPOT service
quality becomes particularly important. Since vLLM collo-
cates prefill and decoding phases, it experiences a greater
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Figure 10: Left: Latency breakdown when serving OPT-175B
on ShareGPT dataset with DistServe. Right: The CDF func-
tion of KV Cache transmission time for three OPT models.

slowdown in the decoding phase with long prefill jobs and
fails to meet the TPOT requirement.

The results above are all under the 90% SLO attainment
target. We observe that DistServe can have better perfor-
mance under a more stringent attainment target (say, 99%)
and present the results in Appendix C.

6.3 Latency Breakdown
To understand DistServe’s performance in detail, we make a
latency breakdown of the requests in DistServe. We divide the
processing lifecycle of a request in DistServe into five stages:
prefill queuing, prefill execution, transmission, decoding queu-
ing, and decoding execution. The total time consumed by all
requests in each stage is then summed up to determine their
respective proportions in the system’s total execution time.

Figure 10(a) shows the latency breakdown for the OPT-
175B models on the ShareGPT dataset. We chose OPT-175B
because the KV Cache transmission is more demanding for
larger models. In fact, even for OPT-175B, the KV Cache
transmission only accounts for less than 0.1% of the total
latency. Even by examining the CDF of the absolute transmis-
sion time shown in Figure 10(b), we observe that over 95%
of requests experience a delay of less than 30ms, despite our
testbed having only limited cross-node bandwidth. This is due
to the algorithm described in §4.2, where we require the prefill
and decoding instance to maintain the same stage on one ma-
chine, enabling the use of intra-node NVLINK bandwidth for
transmission, thus significantly reducing transmission delay.
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Rate
(req/s)

vLLM DistServe-Low
Real System Simulator Real System Simulator

1.0 97.0% 96.8% 100.0% 100.0%
1.5 65.5% 65.1% 100.0% 100.0%
2.0 52.8% 51.0% 99.3% 99.3%
2.5 44.9% 46.1% 87.3% 88.3%
3.0 36.7% 38.3% 83.0% 84.1%
3.5 27.8% 28.0% 77.3% 77.0%
4.0 23.6% 24.1% 70.0% 68.9%

Table 2: Comparison of the SLO attainment reported by the
simulator and the real system under different rates.
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Figure 11: Ablation experiments.

6.4 Ablation Studies
We study the effectiveness of the two key innovations in
DistServe: disaggregation and the placement searching algo-
rithm. In §6.2, we choose the default parallelism setting for
vLLM following its original paper [32]. So we implement
"vLLM++" which enumerates different parallelism strategies
and chooses the best. For DistServe, We also compare the
placement found by Alg. 2 (DistServe-Low) with the one
found by Alg. 1 (DistServe-High) which has fewer searching
constraints and assumes high cross-node bandwidth. Since
vLLM does not support inter-op parallelism and our physi-
cal testbed does not have high cross-node bandwidth, we use
simulation for this experiment.

Simulator accuracy. Noticing that DNN model execu-
tion [24] has high predictability, even under parallel set-
tings [33, 59]. We study the accuracy of the simulator in
Tab. 2. For "vLLM" and "DistServe-Low", we compare the
SLO attainment reported by the simulator and by real runs on
our testbed under different rates. The error is less than 2% in
all cases, verifying the accuracy of our simulator.

Results. Figure 11 shows the performance of the four systems
when serving OPT-66B on the ShareGPT dataset. "vLLM++"
has the same performance as "vLLM" because we find the
default parallelism setting (intra-op=4) has the best per-
GPU goodput. This further demonstrates the importance
of disaggregation. The interference between the prefill and
decoding phases significantly reduces the potential perfor-
mance improvement through adjusting parallelism. In con-
trast, "DistLLM-High" can achieve further improvements over
"DistLLM-Low" because it is not constrained by the deploy-
ment constraint that the prefill and decoding instance on one
node should share the same model stage. Through disaggre-
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Figure 12: Algorithm Running Time

gation, we can use tailored parallelism strategies for prefill
and decoding instances and optimize their targets without the
coupling effects.

6.5 Algorithm Running Time
Figure 12 shows the running time for Alg. 1 (DistServe-Low)
and Alg. 2 (DistServe-High) on an AWS m5d.metal instance
with 96 cores as the number of GPUs (N×M) provided to a
single instance increases. According to the results, DistServe
scales well with the number of GPUs and is independent of
the model size. This is because the simulator only simulates
discrete events and the running time is the same no matter
how big the model is. On the other hand, both algorithms are
highly parallelizable, as the searches for different parallelism
strategies are independent of each other, allowing the execu-
tion time of the algorithms to accelerate almost linearly with
more CPU cores.

As the number of GPUs increases, the execution time of
"Dist-Low" becomes higher than that of "Dist-High". This is
because the search for parallelism strategies for prefill and
decoding instances in "Dist-High" is independent and can
be parallelized. But for "Dist-Low", due to additional restric-
tions on deployment, we need to enumerate all the possible
intra-node parallelism combinations for prefill and decoding
instances. Even so, the execution time of the algorithm is in
minutes, and since it only needs to be executed once before
each redeployment, this overhead is acceptable.

7 Discussion
In this paper, we focus on the goodput-optimized setting and
propose DistServe under the large-scale LLM serving sce-
nario. As LLMs are widely used and deployed across vari-
ous service scenarios with different optimization targets and
resource limits, it becomes almost impossible to find a one-
size-fits-all solution that effectively addresses all aspects of
LLM serving. In this section, we discuss the pros and cons of
DistServe and potentially better solutions in other scenarios.

Throughput-optimized scenarios. In offline applications
that are not latency-sensitive, users typically have lower re-
quirements for response time [45]. This allows serving sys-
tems to shift focus towards maximizing overall throughput
instead of goodput and the effectiveness of DistServe may be
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compromised. In this case, techniques such as chunked-prefill
with piggyback [3, 9] may be preferred since it can fill each
batch to the compute-bound threshold, thereby maintaining
higher GPU utilization in every iteration.

Resource-constrained scenarios. Small-scale enterprises
and individual researchers often lack the resources to deploy
LLMs on large-scale clusters [45,48]. In resource-constrained
scenarios, such as environments with only a few or even a
single GPU, the design space for DistServe is significantly
limited. It struggles or even fails to adjust the parallel strate-
gies and resource allocation to effectively enhance serving
performance. In this case, simpler architectural choices like
non-disaggregated systems [3, 32] may reduce deployment
complexity and optimize operational efficiency.

Long-context scenarios. Nowadays, more and more GPT
models support extremely long contexts, such as Claude-
3 [11], Gemini-1.5 [22], and Large World Model (LWM) [34],
which all have a 1M context window. In such scenarios, the
transmission overhead will increase as the size of the KV
cache grows linearly with the prompt length. However, the
prefill computation grows quadratically, so the relative dura-
tion of transmission and prefill job decreases. Meanwhile, a
longer context further exacerbates the disparity in computa-
tional demands between prefill and decoding jobs, leading to
increased interference between them. Therefore, the disaggre-
gation approach proposed in DistServe remains promising in
long-context serving.

8 Related Work

Inference serving. There has been plenty of work on in-
ference serving recently. They range from general-purpose
production-grade systems like TorchServe [7] and NVIDIA
Triton [19] to systems optimized specifically for Transformer-
based LLMs [9, 18, 21, 33, 50, 53, 54, 60]. Among them,
Orca [54] introduces continuous batching to increase through-
put. vLLM [32] proposes paged-attention for fine-grained
KV cache management. SARATHI [9] suggests a chunked-
prefill approach, splitting a prefill request into chunks and
piggybacking decoding requests to improve hardware utiliza-
tion. FastServe [53] implements iteration-level preemptive
scheduling to mitigate the queuing delay caused by long jobs.
However, they all employ a colocation approach for prefill
and decoding processing, thus leading to severe interference.
There are also concurrent works such as Splitwise [38], Tetri-
Infer [27] and DéjàVu [49] which adopt similar disaggregation
idea to optimize LLM inference, further confirming the ef-
fectiveness of this method. Differently, DistServe emphasizes
the goodput optimization scenario more and takes a closer
look at the aspect of network bandwidth.

Goodput-optimized systems. Optimizing goodput is a hot
topic in DL applications. Pollux [39] improves scheduling
performance in DL clusters by dynamically adjusting re-
sources for jobs to increase cluster-wide goodput. Sia [29]

introduces a heterogeneous-aware scheduling approach that
can efficiently match cluster resources to elastic resource-
adaptive jobs. Clockwork [23] and Shepherd [55] provide
latency-aware scheduling and preemption to improve the serv-
ing goodput, but they only target traditional small models.
AlpaServe [33] focuses on LLMs, employing model paral-
lelism to statistically multiplex the GPU execution thus im-
proving the resource utilization. However, it only targets the
non-autoregressive generation. DistServe is the first work to
optimize the goodput for autoregressive LLM inference.

Resource disaggregation. Resource disaggregated sys-
tems [17, 25, 43] decouple the hardware resources from the
traditional monolithic server infrastructure and separate them
into resource pools to manage independently. It allows for
more flexible, efficient, and scalable deployment and increases
resource utilization. Many applications benefit from a truly
disaggregated data center with high-speed network bandwidth
and heterogenous hardware support [12, 30, 57]. DistServe
shares the concept by disaggregating its system components,
allowing for independent resource scaling and management.

Model parallelism for training. DistServe is orthogonal
to the large body of work on model parallelism in train-
ing [28,36,40,46,59]. As described in §3.3, inference-serving
workloads have unique characteristics not found in training
settings. Where these systems do intersect with DistServe, is
in their methods for implementing model parallelism along
various dimensions. DistServe can integrate new parallelism
optimizations into its placement searching algorithm.

9 Conclusion
We present DistServe, a new LLM serving architecture that
disaggregates the prefill and decoding computation. DistServe
maximizes the per-gpu goodput – the maximum request rate
that can be served adhering to the SLO attainment goal for
each GPU provisioned, hence resulting in up to 7.4× lower
cost per LLM query with guaranteed satisfaction of SLOs.
Our findings affirm that as latency becomes an increasingly
important metric for LLM services, prefill and decoding dis-
aggregation is a vital strategy in promising improved perfor-
mance and service quality guarantees.
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A Latency Model for LLM Inference
To accurately simulate the goodput of different placement
strategies, we use an analytical model to predict the execution
time of the prefill and decoding phases in LLM inference.

In modern LLM serving systems [18, 32, 53], memory-
bound operations like Softmax and LayerNorm are usually
fused with matrix multiplication kernels for efficiency. Thus
the GEMMs dominate the overall latency and our analysis
primarily focuses on them.

A.1 Symbol Definition
Here are symbols related to the architecture of the model:

• h: hidden size
• n: number of heads
• s: head size (h = n · s)
• m: FFN intermediate size
Note: If tensor parallelism is used, h, n, and m should be

divided by the tensor parallelism size.
Below are symbols that characterize the batch to be exe-

cuted:
• B: batch size
• l0, l1, . . . , lB−1: input length of each request within the

batch
• t: number of tokens in the batch, (t = ∑

B−1
i=0 li)

• t2: squared sum of the input lengths (t2 = ∑
B−1
i=0 l2

i )
• b: block size in the attention kernel. This parameter is

used in FlashAttention [20], a common kernel optimiza-
tion technique adopted by current LLM serving systems.

A.2 Prefill Phase Latency Modeling
Since the attention operation uses specially optimized kernels,
we first discuss the other four matrix multiplications in the
prefill phase:

GEMM Name Shape of M Shape of N
QKV Linear (t,h) (h,3h)
Attn Output (t,h) (h,h)
FFN Input (t,h) (h,m)

FFN Output (t,m) (m,h)

The arithmetic intensity (AI) of these operations is O(t).
On NVIDIA A100-80GB GPU, it is compute-bound when AI
is over 156. Since t usually can reach several hundred in real
cases, all of these operations are compute-bound. Therefore,
we can model the latency of these operations according to the
total FLOPs:

T1 =C1 · (4th2 +2thm)

Next, we discuss the prefill attention operation with
FlashAttention [20] optimization. Since the attention only
operates among the tokens in the same request, current im-
plementations launch attention kernels for each request in
the same batch. For one attention head and a request with

l tokens, the attention kernel needs to perform a total of
2sl+3sl · (l/b)≈ 3sl · (l/b) memory reads and writes, along-
side 2sl2+sl(l/b)≈ 2sl2 FLOPs. So the AI is 2b/3= 10.677
(when b = 16) or 21.333 (when b = 32), indicating that it is
a memory-bound operation on A100 GPU. Therefore, the
whole attention layer latency (including all requests and all
heads) can be modeled as:

T2 =C2 ·n ·
B−1

∑
i=0

3sl2
i

b
=C2 ·

3nst2
b

=C2 ·
3ht2

b

Overall, the latency of the prefill phase can be modeled as:

TPre f ill =C1 · (4th2 +2thm)+C2 ·
3ht2

b
+C3

We use C3 to quantify other overheads like Python Run-
time, system noise, and so on. Then we use profiling and
interpolation to figure out the values of C1, C2, and C3.

A.3 Decoding Phase Latency Modeling
Similarly, we first focus on the following GEMMs in the
decoding phase:

GEMM Name Shape of M Shape of N
QKV Linear (B,h) (h,3h)
Attn Output (B,h) (h,h)
FFN Input (B,h) (h,m)

FFN Output (B,m) (m,h)

The AI of these operations is O(B). B is limited by the GPU
memory size and stringent latency requirements, so in existing
serving scenarios, these operations are memory-bound. The
total memory reads and writes is 8Bh+ 4h2 + 2hm+ 2Bm,
and since h and m are usually significantly larger than B, we
can model the latency as:

T3 =C4 · (4h2 +2hm)

As for the decoding attention operation, for one attention
head and a request with l generated tokens, it needs to per-
form 3sl memory reads and writes, alongside 2sl FLOPs. It
is memory-bound, so we can model the latency of decoding
attention as:

T4 =C5 ·n ·3s
B−1

∑
i=0

li =C5 ·3ht

Summing up, the latency of the decoding phase is:

TDecoding =C4 · (4h2 +2hm)+C5 ·3ht

Here we do not introduce the overhead term (like C3 in the
profiling stage) because 4h2 +2hm is already a constant, and
the overhead can be put into C4. Similarly, we use profiling
and interpolation to figure out the values of C4 and C5.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    209



1 2 3
Per-GPU Rate (req/s)

0

50

100

SL
O 

At
ta

in
m

en
t (

%
)

0.25 0.50 0.75 1.00
Per-GPU Rate (req/s)

0

50

100

0.05 0.10 0.15 0.20 0.25
Per-GPU Rate (req/s)

0

50

100
DistServe DeepSpeed-MII vLLM

0.751.001.251.50
SLO Scale

0

50

100

SL
O 

At
ta

in
m

en
t (

%
)  

 

3.0 2.5 2.0 1.5 1.0
SLO Scale

0

50

100

0.751.001.251.50
SLO Scale

0

50

100

(a) OPT-13B (b) OPT-66B (C) OPT-175B

Figure 13: Chatbot application with OPT models on the ShareGPT dataset.
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Figure 14: Code completion and summarization tasks with OPT-66B on HumanEval and LongBench datasets, respectively.

B DistServe Placements in End-to-end Experi-
ments

Table 3 shows the tensor parallelism (TP) and pipeline paral-
lelism (PP) configurations for prefill and decoding instances
chosen by DistServe in the end-to-end experiments §6.2.

Model Dataset Prefill Decoding
TP PP TP PP

OPT-13B ShareGPT 2 1 1 1
OPT-66B ShareGPT 4 1 2 2
OPT-66B LongBench 4 1 2 2
OPT-66B HumanEval 4 1 2 2

OPT-175B ShareGPT 3 3 4 3

Table 3: The parallelism strategies chosen by DistServe in the
end-to-end experiments.

C End-to-end Results under 99% SLO attain-
ment

Figure 13 and Figure 14 show the end-to-end performance
between DistServe and baselines with the same setup in §6.2
except that the SLO attainment goal is changed to 99%. We
can see that under a more stringent SLO attainment goal,
compared to vLLM, DistServe can still sustain 3×–8× higher
rate and 1.24×–6.67× more stringent SLO. When compared
to DeepSpeed-MII, DistServe can achieve 1.32×–8× higher
rate and 1.20×–1.58× more stringent SLO.
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Abstract
FPGAs are increasingly prevalent in cloud deployments, serv-
ing as Smart-NICs or network-attached accelerators. To facil-
itate the development of distributed applications with FPGAs,
in this paper we propose ACCL+, an open-source, FPGA-
based collective communication library. Portable across dif-
ferent platforms and supporting UDP, TCP, as well as RDMA,
ACCL+ empowers FPGA applications to initiate direct FPGA-
to-FPGA collective communication. Additionally, it can serve
as a collective offload engine for CPU applications, freeing
the CPU from networking tasks. It is user-extensible, allow-
ing new collectives to be implemented and deployed with-
out having to re-synthesize the entire design. We evaluated
ACCL+ on an FPGA cluster with 100 Gb/s networking, com-
paring its performance against software MPI over RDMA.
The results demonstrate ACCL+’s significant advantages for
FPGA-based distributed applications and its competitive per-
formance for CPU applications. We showcase ACCL+’s dual
role with two use cases: as a collective offload engine to
distribute CPU-based vector-matrix multiplication, and as a
component in designing fully FPGA-based distributed deep-
learning recommendation inference.

1 Introduction

FPGAs are increasingly being deployed in data centers [16,
81] as Smart-NICs [29, 35, 64, 67, 103], streaming proces-
sors [31, 32, 55, 68], and disaggregated accelerators [15, 41,
61, 65, 86, 93, 115]. In scenarios where FPGAs are directly
connected to the network, efficient distributed systems can
be built using direct FPGA-to-FPGA communication. How-
ever, designing distributed applications with FPGAs is dif-
ficult. It requires both a network stack on the FPGA com-
patible with the data center infrastructure, and a higher level
abstraction, e.g., collective communication, for more com-
plex interaction patterns. Unlike in the software ecosystem
where many such libraries exist [38, 76], there is a lack of

∗Work done during internship at AMD Research

(a) For distributed accelerator (b) For Smart-NIC

Figure 1: Collective communication library (CCL) in differ-
ent FPGA-accelerated systems, where the blue line indicates
application data flow and the red line indicates collective in-
vocation commands.

similar resources for FPGAs. While new development plat-
forms [53, 59] are improving FPGA programmability, and
other recent efforts [10, 18, 60, 70, 72, 100] focus on virtualiz-
ing FPGA resources for abstracting data movement, they lack
support for networking. This forces distributed applications
on FPGAs to rely on the CPU for communication [22,92,116],
thereby increasing the latency of data transfers between FP-
GAs. It has not been until recently that native networking
support [14, 45, 56, 87, 95] has become available for FPGAs.
But these systems lack collective communication, limiting
their applicability in larger distributed use cases.

Implementing high-performance and versatile collective
abstractions for FPGAs poses several challenges:
Challenge 1: Support of Diverse Transport Protocols. This
requirement stems from the need for application-specific so-
lutions and to ensure interoperability in mixed environments
where FPGAs coexist with CPUs and accelerators. The ability
to adapt to various communication protocols is crucial for
integrating FPGA-based components seamlessly with other
parts of a system. Existing work [25,26,36,44,73,84,85,101,
104, 112] is often tailored to scenarios where FPGAs are di-
rectly connected to each other rather than connected through
a data center packet-switched network. In these approaches,
communication is through low-level link-layer protocols, lead-
ing to scalability and integration challenges at a data-center
scale.
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Challenge 2: Flexibility for Collective Implementation. A
key challenge is to provide a flexible design in hardware al-
lowing the selection of different collectives and algorithms at
runtime. Current solutions [26,45] often integrate all possible
collective modules directly into FPGA hardware, resulting in
static primitives that necessitate hours-long recompilations
for any changes. Alternative approaches, e.g., collectives us-
ing embedded micro-controllers (uC) [89] on FPGAs, offer
more flexibility at the expense of performance.
Challenge 3: Portability Across Applications and Plat-
forms. Portability stands out as a key challenge, as FPGAs
are used in a wide variety of configurations. Figure 1a shows
the FPGA collective communication library (CCL) as en-
abler for direct networking between FPGAs accelerators. It
also demonstrates a partitioned memory model [54, 59, 60]
for FPGA-centric applications, where an explicit memory
copy is required if the data originates from CPU memory
(dashed line). Figure 1b illustrates CCL’s role as an collec-
tive offload engine for a CPU application with shared virtual
memory [62,70,75,106]. This portability also raises questions
about which communication models should be provided to the
application. Should interfaces support message passing, i.e.,
MPI, where communication occurs between memory buffers,
or streaming, where communication flows through continuous
data streams?

In summary, the key question to address is how to effec-
tively design a portable, flexible, high-level collective abstrac-
tion on FPGAs that can support various memory models (e.g.,
partitioned and shared virtual memory model), communica-
tion models (e.g., message passing and streaming), and trans-
port protocols (e.g., TCP and RDMA), while accommodating
a broad spectrum of applications. Achieving this objective is
complex, given the significant impact of these configurations
on runtime, interfaces, and data movement. Moreover, given
FPGAs’ extended compilation times and lengthy hardware de-
bugging cycles, we need a parameterized approach that allows
a FPGA-resident CCL to be modified without recompilation,
in order for the CCL to be practical in real-world use. Table 1
summarizes existing FPGA-based solutions, and all existing
solutions have their own limitations.
Our Contributions. To address these challenges, we in-
troduce ACCL+, an Adaptive Collective Communication
Library on FPGAs. ACCL+ can be used to enable direct
communication between FPGAs and can function as a collec-
tive offload engine for the CPU. ACCL+ provides MPI-like
collective APIs with explicit buffer allocation and streaming
collective APIs with direct channels to the communication
layer. To achieve portability, we employ a modular system
architecture which decouples platform-specific IO manage-
ment and runtime from the collective implementation, incor-
porating platform and network protocol-specific adapters and
drivers. For flexibility, we have developed a platform and
protocol-independent collective offload engine that supports
modifying the collective implementation without hardware re-

Table 1: Comparison of ACCL+ with FPGA-based solutions
in terms of bandwidth, flexibility in implementing different
collectives, target application scenarios, and supported trans-
port protocols.

Solution BW (Gb) Flex. Application Protocol

Easynet [45] 100 Low FPGA TCP
SMI [26] 40 Low FPGA Serial Link
Galapagos [97] 10 Low FPGA TCP
ZRLMPI [85] 10 Low FPGA UDP
TMD-MPI [89] <10 High FPGA Serial Link

ACCL+ (Ours) 100 High CPU/FPGA UDP/TCP/RDMA

compilation. We test ACCL+ on two platforms, a commodity,
partitioned memory platform (AMD Vitis [59]) and a shared
virtual memory platform (Coyote [62]). We choose AMD
Vitis for its recent integration of high-performance 100 Gb/s
UDP [107] and TCP [45] hardware stacks, aligning with our
goal of leveraging cutting-edge networking capabilities for
optimal communication performance. Coyote is used due to
its unique provisioning of unified and virtualized memory
across CPU-FPGA boundaries [62], coupled with compre-
hensive network services, including RDMA. ACCL+ is also
designed to minimize control overheads, improve scalability,
and facilitate simulation.
Key Results. We first evaluate ACCL+ using micro bench-
marks. ACCL+ achieves a peak send/recv throughput of 95
Gbps, almost saturating the 100 Gb/s network bandwidth. We
evaluate collective operations under two scenarios: FPGA-to-
FPGA distributed applications with FPGA kernels directly in-
teracting with ACCL+ (F2F), and CPU-to-CPU distributed ap-
plications with ACCL+ as a collective offload engine (H2H).
ACCL+ exhibits significantly lower latency in F2F scenarios
compared to software RDMA MPI for FPGA-generated data.
In H2H scenarios, ACCL+ has comparable performance to
software RDMA MPI for CPU-generated data while freeing
up CPU cycles and reducing pressure on CPU caches. Then,
we examine ACCL+ with two use-case scenarios. First, dis-
tributed vector-matrix multiplication with CPU computation
and ACCL+-based reduction, where ACCL+ improves per-
formance compared to software MPI. Secondly, we show that
ACCL+ enables the distribution of an industrial recommen-
dation model across a cluster of 10 FPGAs, achieving more
than two orders of magnitude lower inference latency and
more than an order of magnitude higher throughput than CPU
solutions. The use case study not only highlights ACCL+’s
effectiveness in different scenarios but also paves the way
for future research opportunities in investigating hybrid CPU-
FPGA co-design for distributed applications.

2 Background

FPGA Programming. In the past, hardware description lan-
guage (HDL - Verilog, VHDL) was the sole method to pro-
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gram FPGAs. With High-Level-Synthesis (HLS) [21], the
programmability of FPGAs is enhanced by allowing the de-
velopers to program in C-like code with hints (pragmas) to
infer parallel hardware blocks. Unfortunately, existing HLS-
based libraries lack networking and collective abstractions.

Communication Models. Message passing, e.g., MPI, is a
communication model for distributed programming on CPUs,
whereby communicating agents exchange messages, i.e., user
buffers, typically resulting from previous computation. This
model can be applied to FPGAs [46, 84, 85], but a more com-
mon communication model for FPGAs is the streaming model.
FPGA kernels support direct streaming interfaces, into which
data can be pushed in a pipelined fashion during process-
ing. Kernels executing on the same FPGA can stream data
to each-other through low-level latency-insensitive channels,
such as AXI-Stream [9]. The streaming model can be applied
for communication across FPGAs, however, existing stream-
ing communication framework [26, 33, 34] often do not have
transport protocols or collective abstractions.

FPGA Development Platforms. Modern FPGA platforms
adopt various virtualization methodologies [13, 83, 99] for
FPGA resources. Most simplify development with a static
shell for resource management and data movement, with some
offering additional services like transport layer networking,
and the host-device interaction relies on runtime libraries.
This approach allows developers to concentrate on designing
the application kernel. Many commodity platforms [54, 59]
implement a partitioned memory model, which permits data
movement from FPGA applications to FPGA memory while
restricting direct access to host CPU memory. In contrast,
shared virtual memory platforms, such as Coyote [62] and
Optimus [70], offer a virtualized and unified memory space
between CPU and FPGA.

Network-Attached FPGAs. FPGAs today feature 100 Gb/s
transceivers, enabling direct processing of network data [81,
105]. FPGA-based Smart-NICs [2, 14, 28, 35, 66, 67, 98, 103,
119] perform programmable packet filtering but often leave
the network stack to the CPU software, limiting their appli-
cability to FPGA applications. Distributed machine learn-
ing [3, 12, 19, 77, 118], and data processing [24, 61, 65] ap-
plications capitalize on network-attached FPGAs. Follow-
ing this trend, there is an increasing effort to develop hard-
ware network stacks on FPGAs, such as UDP [47, 107],
TCP [4, 27, 56, 87, 94], and RDMA [65, 69, 91, 95]. With the
growing demands and the increasingly distributed nature of
these applications, their communication patterns have become
more complex, motivating the need for high-level collective
abstractions on FPGAs. Therefore, simply offloading the net-
work stack is often insufficient for complex applications in
distributed settings.

3 Related Work

Collective for Accelerators. MPI implementation of collec-
tive communication are becoming more accelerator-aware,
e.g., GPU-aware MPI [80,102,111] or FPGA-aware MPI [22].
In GPU-Direct RDMA collective libraries, e.g., NCCL [74]
and RCCL [5], the network data can be directly forwarded to
the GPU memory from the commodity RNIC via the shared
PCIe switch, bypassing the CPU memory. However, FPGAs
can connect directly to the network, and as such, the RDMA
stack in ACCL+ resides completely in FPGA, eliminating
the need for an external NIC. ACCL+ can provide stream-
ing interfaces directly to FPGA kernels, in addition to the
standard READs/WRITEs to memory used by commodity
RNICs, therefore reducing latency by bypassing the memory
hierarchy. Finally, the commodity RNICs typically lack of-
fload capabilities, with collectives implemented on GPU cores,
leading to computation and communication contention on the
GPU which affects performance [51,79]. Thus, ACCL+ could
serve as a collective offload engine for GPUs in the future.
FPGA-based Collectives. Projects such as Galapagos [30,97]
and EasyNet [45] provide in-FPGA communication stacks
for data exchange within a cluster, serving as a foundation
for collectives without an external NIC. TMD-MPI [88, 89]
orchestrates in-FPGA collectives using embedded processors,
yet its bottleneck lies in control due to sequential execution
in low-frequency FPGA microprocessors. Collective offload
with NetFPGA [6–8] has been explored, but static collective
offload engines limit flexibility and often rely on software-
defined network switches for orchestration. SMI [26] pro-
poses a streaming message-passing model, exposing stream-
ing collective interfaces to FPGA kernels. While SMI en-
ables kernels to initiate collectives directly, it employs dedi-
cated FPGA logic for collective control, limiting flexibility
for post-synthesis reconfiguration. In an earlier prototype,
ACCL [46], we focused primarily on message-passing col-
lectives for FPGA applications. However, the coordination of
collectives required CPU involvement, it lacked significant
streaming support, and was not tested at scale.
Collective Offload for CPUs. BluesMPI [11, 96] offloads
collective operations to a BlueField DPU, demonstrating com-
parable communication latency to host-based collectives, but
it does not target accelerator applications. The latency of
ACCL+ targeting host data matches BluesMPI, even with
BluesMPI ARM cores working at ten times the frequency.
Multi-FPGA Frameworks. Frameworks like ViTAL and
its successors [112–114] propose FPGA resource virtual-
ization and compilation flows for mapping large designs
onto multiple FPGAs through latency-insensitive channels.
OmpSs@cloudFPGA [25] introduces a multi-FPGA program-
ming framework that partitions large OpenMP programs with
domain-specific programs into smaller distributed parts for ex-
ecution on FPGA clusters, providing communication through
static, compile-time-defined send/recv and collective opera-
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Figure 2: System overview of the FPGA-based collective
communication library.

tions supporting only the unreliable UDP protocol. Elastic-
DF [3] and FCsN [40] present domain-specific frameworks
for automatically distributing large neural network model in-
ference across FPGAs with hardware UDP/TCP send/recv for
FPGA-to-FPGA data movement. These projects are comple-
mentary to our work, and integrating ACCL+ will enhance
their flexibility and performance.

4 ACCL+: An FPGA Collective Engine

ACCL+ is an FPGA-based collective abstraction designed for
both FPGA and CPU applications, focusing on versatility and
adaptability. Its primary goals include:

G1: Offering a standard collective API that abstracts different
platforms and protocols from the application layer.

G2: Providing flexibility to dynamically select collectives
and their algorithms at runtime, and to modify them
without major architectural changes.

G3: Ensuring portability across various FPGA platforms and
communication models for a wide range of applications.

G4: Supporting multiple transport protocols under a high-
level collective abstraction.

G5: Providing high-throughput and low-latency performance
for various collectives.

To achieve these goals, ACCL+ features a modular design
that separates platform-specific and transport layer compo-
nents from the core collective design. Its architecture includes
layers of abstraction in both software and hardware, as shown
in Figure 2, enabling a central CCL offload engine (CCLO)

to adapt to diverse platforms and communication protocols.
In this section we will describe each layer.

4.1 Application Interface

To satisfy G1, ACCL+ provides standard APIs for both CPU
and FPGA applications. ACCL+ implements two drivers that
offer similar, platform- and protocol-agnostic collective APIs
for these scenarios. The ACCL+ drivers expose an MPI-like
API, catering to the message-passing paradigm and facilitat-
ing the porting of existing MPI-based applications to ACCL+
collectives, and a streaming collectives API to overlap com-
munication and computation in hardware.
ACCL+ Drivers. The host-side CCL driver allows initializa-
tion and runtime management of platform and ACCL+ data
structures and hardware, as well as protocol offload engine
(POE) initialization, i.e., setting up sessions for TCP or queue-
pairs for RDMA. The CCL HLS driver is not capable of such
initialization, and therefore the application must perform host-
side initialization before any FPGA application kernels are
started. We provide a more detailed description of ACCL+
initialization in Appendix A.

Listing 1: Reduce collective API in C++.

1 CCLRequest *reduce(BaseBuffer &buf, unsigned int
count , unsigned int root , reduceFunction func ,
communicatorId comm_id, flagType flags ) ;

MPI-like Collective API. This API require the application
to store data in memory before invoking collectives. Listing 1
shows the MPI-like collective API, including arguments like
datatype, buffer pointer, and element count, along with flags
indicating buffer location (host or FPGA memory) and the
option for synchronous calls. To facilitate portability, message
passing collectives operate on an ACCL+ specific buffer class
which can wrap normal C++ arrays with additional platform-
specific information. Common collectives, such as reduce,
broadcast, and barrier, are supported. Each MPI-like collective
call in the host CCL driver has a corresponding HLS API call
with a similar syntax for direct invocation from FPGA kernels.
Streaming Collective API. This API allows data to originate
and terminate at the stream interfaces between the FPGA
application kernels and the ACCL+ hardware, instead of in
memory buffers.

Listing 2: Example kernel using streaming send in HLS.

1 // set up command and data interfaces
2 cclo_hls :: Command cclo(cmd, sts, communicator);
3 cclo_hls :: Data data ( data_to_cclo , data_from_cclo) ;
4 // issue streaming send command without buffer argument
5 cclo .send(type , count , dst_rank ) ;
6 // push data in streams to network without buffering
7 for ( int i = 0; i < N; i++) {
8 data .push(/* generate data */ ) ; }
9 cclo . finalize () ; // wait for send completion
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Figure 3: Hardware architecture of CCLO engine.

Listing 2 demonstrates an example FPGA kernel issuing
a streaming send command to the CCLO engine (line 5) and
subsequent pushes to the CCLO streaming data interface,
64B per cycle (line 8), followed by a wait for CCLO comple-
tion. The HLS-based streaming APIs are tailored for FPGA
applications running in a streaming fashion and this code
is synthesizable with HLS tools. HDL-based FPGA kernels
can interact with the collective engine directly, through the
same interfaces. Additionally, the host can also call streaming
collectives via the host-side CCL driver.

4.2 CCLO Engine
Our approach to satisfying G2, i.e., achieving flexible collec-
tive implementation in hardware, differs from related work.
One method deploys all collective modules in FPGA fab-
ric simultaneously [26, 45], consuming extensive resources
and not allowing modifications to the collective algorithms
without recompiling the entire design. Another method pur-
sues flexibility by implementing the collectives in embedded
micro-controllers (uC) on FPGAs [89], which are often lim-
ited by a low clocking frequency, e.g., 200 MHz, and the
sequential execution nature, thus sacrificing performance.
Our Approach. We utilize a hybrid approach that leverages
the strengths of both methods. To ensure flexibility, low la-
tency, and high throughput, the key design principle is to
decouple the CCLO logic into the flexible control plane and
the parallel data processing plane. The CCLO control plane
is flexible, centered around an embedded uC [108], which
enables the implementation of different collective algorithms
through firmware updates without needing to refactorize the
entire design and re-synthesize. The CCLO data plane con-
tains independent latency-optimized hardware modules with

Figure 4: Architecture of the Data Movement Processor.

wide data path for concurrent execution. Moreover, to further
reduce the load on the uC, we minimize its code footprint by of-
floading tasks such as packet assembling and tag matching to
hardware. Additionally, interactions with memory controllers
are offloaded to dedicated hardware, preventing the uC from
stalling during memory accesses. As a result, the uC handles
a set of high-level data movement primitives that facilitate the
implementation of the actual collective algorithms.

Figure 3 shows the overall architecture of the CCLO en-
gine, which orchestrates the collective data movement through
a set of standardized CCLO interfaces to interact with the
application, the memory and the network. The CCLO ac-
cepts communication requests from the host or application
kernels, communicates with the protocol offload engine, man-
ages buffers in FPGA memory (HBM, DDR, BRAM), and
manage data streams from other kernels.

4.2.1 Flexible Control Plane

The CCLO control plane contains a uC that issues high-level
data movement commands to a hardware-accelerated data
movement processor (DMP). The CCLO control plane also
contains a RxBuf Manager (RBM), which manages temporary
Rx buffers. The uC, DMP, and RBM store states in a small
configuration memory implemented as FPGA BRAM. The
configuration memory is also accessible by the CPU through
MMIO and includes information about the communicator,
e.g., session or queue pair IDs, pool of allocated Rx buffers.
Besides, FIFO queues are incorporated into all command
paths, allowing multiple in-flight instructions. Currently, these
FIFO queues are set to a depth of 32, which can be further
increased at compile time.
Collective Programming with Primitives in uC. The uC
firmware implements various collective algorithms and syn-
chronization protocols, such as eager and rendezvous, using
high-level primitives. Each primitive instruction consists of
three slots: two for operands (data entering CCLO) and one
for the result (data exiting CCLO). This design aligns with
common collective operations, e.g., reduce, which processes
two inputs to produce one output. Unary operations like send
can disregard one operand slot. Operand slots include opcodes
and flags that define the data movement specifics, dictating
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when and where data should move. For instance, data can be
moved immediately or upon arrival, sourced from a memory
buffer when using the MPI-like API, or from the data interface
of the FPGA kernel when using the streaming API. Addition-
ally, the data can either be sent to a remote node through the
network or remain local as intermediate results. These ele-
ments can be combined to cover nearly all data movement
needs in collective operations.
Data Movement Processor. The primary purpose of the DMP
is to conceal memory access latency from the uC, ensuring
that the uC does not stall for memory accesses or wait for
data streams, as shown in Figure 4. Upon the receipt of the
microcode generated by the uC 2 , the DMP first decodes
the microcode and dispatch the code to different compute
units (CUs). The DMP primarily consists of three CUs, align-
ing with the structure of the primitive, each responsible for
controlling one or more components in the datapath. If the
microcode indicates to fetch data from memory and forward
it to the network, the CU issues memory requests to the target
address and then issues the Tx control 6 to the data plane,
ensuring the data plane waits for incoming memory streams
to forward to the network. If the operand is expected to come
over network and buffered in temporary buffers, the DMP also
sends out requests periodically to the RBM to check if the mes-
sage has arrived 3 . The DMP operates in a pipelined fashion,
and each operand slot independently interprets its instruction
fields, emitting commands for corresponding datapath blocks.
Upon receiving acknowledgements from datapath blocks, the
DMP signals instruction completion to the uC.
RxBuf Manager. The RBM alleviates uC load by au-
tonomously managing temporary Rx buffers and reassem-
bling messages from network packets, especially under the
eager protocol. It uses a state table in FPGA on-chip mem-
ory and a set of finite-state machines (FSMs) to handle Rx
buffers. Upon notification of incoming messages 5 , RBM
checks the state table using the message ID. If the message
is new, it identifies a free Rx buffer from the configuration
memory and issues requests to store the message there. Since
messages are often split into packets that may arrive inter-
leaved, RBM uses the state table to piece together packets
into complete messages in the appropriate Rx buffer. When a
full message is assembled, RBM updates the exchange mem-
ory’s buffer list 4 , marking it ready for retrieval, and stores
essential metadata (source ID, tag, Rx buffer address) for tag
matching, facilitating buffer identification by the DMP.

4.2.2 Parallel Data Plane

Rx and Tx System. In ACCL+, we implement a message
protocol that includes a signature for each message. This sig-
nature contains metadata such as message type, destination
rank, length, tag, and a sequence number to track the order
of messages. The Tx and Rx systems feature a 512-bit wide
data path and are responsible for packetizing and depacke-

(a) Eager protocol (b) Rendezvous protocol

Figure 5: CCLO eager and rendezvous with send/recv.

tizing the signature along with the user payload. They also
issue commands to interact with the POEs. The processes of
issuing commands, inserting signatures, and parsing can vary
across different synchronization protocols. Both the Rx and
Tx systems incorporate a finite state machine to manage these
variations appropriately.
Network On Chip. All the data streams internal to the CCLO
can be routed in the granularity of packets based on the dest
field that comes along with the data.
Streaming Plugins. The plug-ins are utilized for applying
unary and binary operations to in-flight data and can be en-
abled at compile time. Binary operations are typically utilized
to implement reductions - sum, max, etc. Unary operators may
implement compression or encryption. Each of the plug-ins
is a streaming kernel and may implement more than one func-
tion, in which case the control plane will specify the desired
function by setting its dest field of the plugin input stream.

4.2.3 Message Synchronization Protocol

The CCLO supports two distinct message synchronization
protocols: eager and rendezvous. Thanks to its flexible design,
both protocols can be tuned dynamically at runtime.

The eager protocol allows the sender CCLO to immedi-
ately send data upon receiving a command, and the receiver
buffers the data in the CCLO Rx buffer before moving it to
its destination (either in memory or in FPGA kernel streams
depends on runtime configuration), as shown in Figure 5a.
This protocol is preferred for small messages to minimize
latency since there is no handshake phase and small message
sizes incur little overhead. We implement the eager protocol
using UDP/TCP or two-sided RDMA verb.

In contrast, the rendezvous protocol requires resolving the
result buffer address before transmission, as shown in Fig-
ure 5b. Once resolved, data is directly placed into the des-
tination, eliminating the need for temporary buffering. We
use two-sided RDMA SEND for rendezvous handshake mes-
sages, and we use one-sided RDMA WRITE for actual message
transmission bypassing the intervention from the receiver uC.
Given that one-sided RDMA operations are transparent to
the receiver uC, a key design decision is how the uC should
detect message arrival. One approach is to make the uC pe-
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Table 2: Algorithms used for example collectives.

Collective Eager Rendezvous
Bcast One-to-all One-to-all;Recursive doubling

Reduce Ring All-to-one;Binary tree
Gather Ring All-to-one;Binary tree

All-to-all Linear Linear

riodically poll the destination buffers in memory. However,
this approach increases uC overhead and latency, especially
since buffers may be located in various memory systems like
CPU or FPGA memory. Additionally, if the destination is a
streaming interface rather than a buffer, polling is not feasible.
Therefore, we choose an alternative method: the sender uC
dispatches a small control message using two-sided RDMA
SEND immediately after the one-sided RDMA WRITE. This
control message is processed by the receiver uC to confirm
the completion of the data transfer. Though not depicted in
Figure 3, the uC contains specific ports that directly interact
with the data plane for rendezvous handshake and control
messages, bypassing the RBM and DMP. These command
paths also incorporate FIFO queues.

4.2.4 Collective Algorithms

We provide different implementations for various collectives,
and users can define their own. Collectives are realized by
specifying a communication pattern as a C function in uC
firmware, and then executing this pattern through instructions
in DMP and Tx/Rx System on each FPGA in the communica-
tor. Table 2 summarizes the algorithms and communication
patterns used to implement collectives. For eager protocols
with unreliable transmission (e.g., UDP), we currently use
simple algorithms like ring and one-to-all to minimize the
chances of packet loss. Future firmware improvements can
enhance POE awareness for finer-grained algorithm selec-
tion. In contrast, when using RDMA, the rendezvous protocol
employs more advanced algorithms like tree or recursive dou-
bling. The token-based flow control in RDMA makes it well-
suited for these sophisticated algorithms in the rendezvous
protocol. For broadcast, we implement a simple one-to-all
algorithm with small rank size, while with large rank size, we
adopt more advanced recursive doubling such that the data
transmission is not bottlenecked at the root rank. For gather
and reduce, we apply a similar strategy. With small message
size, we adopt an all-to-one approach to reduce the number
of intermediate hops needed. On the other hand, with larger
message sizes, to avoid a potential in-cast problem with the
all-to-one approach, we adopt a tree-based algorithm. Tuning
of the algorithms for specific collectives can be done at run-
time through configuration parameters to the CCLO engine.

Figure 6: CCL driver for different memory managements.

4.3 ACCL+ Platform Support

A platform is defined by a software interface specification,
defining how FPGA memory is allocated and manipulated,
and how FPGA kernels are called, and a hardware interface
specification, i.e., how FPGA kernels, including the CCLO,
plug into hardware services in the FPGA. To facilitate porta-
bility between platforms and to satisfy G3, the ACCL+ host
CCL driver layers the APIs on top of generic class types, such
as BaseBuffer for memory allocation and data movement be-
tween host and FPGA, and BaseDevice for CCLO invocation.
These are specialized to individual platforms through class
inheritance, as illustrated in Figure 6. Each specific CCL class
interfaces with platform-native drivers and employs distinct
processes for handling data movement. ACCL+ supports both
the commercial AMD Vitis platforms and the open-source
Coyote platform [62], as well as a virtual simulation platform.
New platforms can be added easily.
Integration with Coyote. Coyote utilizes a shared-memory
model with a central memory management logic governed by
a software-populated translation lookaside buffer (TLB). This
TLB records allocated pages and facilitates virtual-physical
address translation. The FPGA kernel issues memory requests
through a descriptor interface, using virtual addresses directed
to either host or device memory. The TLB interprets these
requests, interacting with host DMA or device DMA based on
the physical location of the memory page, forwarding the data
to FPGA applications in a streaming manner. If a memory
page is not registered during TLB lookup, it triggers an inter-
ruption to the CPU, resulting in a page fault and introducing a
performance penalty. Therefore, the CCL driver, specifically
the CoyoteBuffer class, eagerly maps pages to the Coyote
TLBs when instantiating buffers. We modified Coyote, during
integration, to increase the associativity of the TLB cache
and expand the number of streaming interfaces Coyote pro-
vided to a single application region, from a single interface to
three interfaces which is required by the CCLO engine. We
also implemented a Coyote-specific adapter to convert from
CCLO (R)DMA request syntax to Coyote-specific syntax, as
indicated in Figure 7.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    217



Integration with Vitis. Vitis platforms implement a parti-
tioned memory model and the Xilinx Runtime (XRT) [59] is
utilized by the CCL driver for low-level interaction with the
platform. A XRT-controlled XDMA IP core [110] moves data
between host and FPGA memory, while FPGA memory is
accessed by FPGA kernels through Data Movers [109]. The
CCLO memory interfaces align with the Data Mover inter-
faces, eliminating the need for dedicated memory interface
adapters for the Vitis platform. As a result of the partitioned
memory, the CCL driver explicitly migrates buffers between
host and FPGA memory prior to or after the collective execu-
tion if the data originally resides in host memory - a process
denoted staging. Staging creates performance penalty when
ACCL+ collectives target host memory, as observed by re-
lated work on collective offload on DPUs [96]. Therefore,
Vitis platforms favor distributed FPGA applications where
data is streamed or resides in FPGA memory.
Simulation Platform We implemented an additional sim-
ulation platform for debugging and performance optimiza-
tion. This simulation platform roughly models a Vitis plat-
form, whereby FPGA chip interfaces (XDMA, Ethernet) are
replaced by ZMQ [48] interfaces. A stand-alone simulated
FPGA node is compiled to include memory and one ACCL+
CCLO Engine. The ACCL+ host driver includes dedicated
buffer and device abstractions capable of connecting to the
simulated node via ZMQ. ACCL+ provides convenient launch
scripts to set up a simulated cluster of such simulation nodes.

The simulated nodes connect to each other through ZMQ
rather than real Ethernet. While the simulated ZMQ network
may lack realistic features like packet loss and reordering, it
serves as a valuable functional simulation.

ACCL+ provides two simulation levels of the CCLO en-
gine: functional simulation using compiled ACCL+ HLS
source code and C firmware, and cycle-accurate (but slow)
simulation using Verilog HDL generated from compiling the
CCLO HLS code and firmware. For FPGA applications re-
quiring streaming data exchange between FPGA kernels and
the CCLO, we provide a bus functional model of the CCLO
that connects via ZMQ to the simulated node.

4.4 Protocol Offload Engine

To satisfy G4, ACCL+ supports several 100 Gb/s protocol
offload engines (POE) in hardware: UDP [107] and TCP [45]
on Vitis platforms, and all the network services provided by
Coyote. Notably, ACCL+ supports collectives with RDMA by
leveraging the unified and virtualized memory space across
the FPGA and the CPU provided by Coyote. All the POEs
expose streaming control and data interfaces to other modules
and some POEs (e.g., TCP) require direct memory access
for packet buffering for re-transmission. For portability, the
CCLO Engine has a set of POE-independent internal inter-
faces - two pairs of meta and data streaming interfaces (one
for Tx and one for Rx). The meta interfaces contains various

Figure 7: ACCL+ with Coyote-RDMA data path with corre-
sponding POE and memory adapters.

sub fields to indicate the op code, data length, communication
session IDs, etc. The meta interfaces are then adapted to the
POE interfaces with dedicated FPGA components as exem-
plified in Figure 7. The selection of the POE and its adapters
is a compile time parameter of the CCLO Engine.

Coyote RDMA POE. It supports standard RDMA verbs,
including one-sided operations like WRITE and two-sided op-
erations like SEND. The RDMA POE incorporates various
streaming interfaces for RDMA commands, memory com-
mands, and data. Default Configuration: On the initiating
side of a WRITE operation, the RDMA POE issues memory
requests directly to the Coyote memory management logic,
fetching data from either host or device memory and stream-
ing it through the network. On the passive side of WRITE, the
data is directly written to virtualized memory. ACCL+ Integra-
tion: In the ACCL+-enabled configuration, the CCLO engine
acts as a "bump-in-the-wire" engine between the memory
management unit and the RDMA POE, as shown in Figure 7.
On the initiating side of a WRITE, the CCLO engine issues
RDMA commands and is responsible for data preparation,
either fetching from memory or obtaining it from the applica-
tion kernel in the form of streams. On the passive side, data
bypasses the CCLO and is directly forwarded to the memory
management unit. For single-sided WRITE, streaming into the
application kernel is also possible by configuring the datapath
at compile time. The CCLO engine consistently manages data
and metadata streams from two-sided SEND. For CCL driver
with RDMA, a queue pair needs to be exchanged between
each node and needs to be registered to the RDMA POE.

TCP POE. The TCP POE supports up to 1,000 connections
and can be configured to support window scaling and out-of-
order packet processing. As a reliable transmission protocol,
the TCP POE also needs to access protocol-internal buffers
for re-transmission. The CCLO engine prepares and accepts
all the data streams with the TCP POE. For CCL driver with
TCP POE, a TCP session needs to be established between
each node to construct the communicator.
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Figure 8: Send/Recv throughput comparison.

Figure 9: CCLO invocation latency from different parts.

5 Microbenchmark Evaluation

We evaluate ACCL+ on a heterogeneous cluster with 10 AMD
EPYC CPUs and 10 attached FPGA cards (Alveo-U55C).
Each CPU is equipped with a 100 Gb/s Mellanox NIC, while
each FPGA features a 100 Gb/s Ethernet interface. All de-
vices are connected to Cisco Nexus 9336C-FX2 switches.
Evaluation scenarios consider data residing on the FPGA for
distributed FPGA application (suffix F2F) and on the CPU
for distributed CPU applications (suffix H2H). For F2F, the
FPGA application data traverses the network directly through
ACCL+. As a baseline, the FPGA data initially is moved to
the CPU memory and then is transmitted via a commodity
NIC. In H2H, the CPU application data is transferred to the
FPGA and then transmitted with ACCL+. This is compared
to transmitting the CPU data directly with a commodity NIC.
We use the notion of cclo with different suffixes to indicate
different configurations of ACCL+. The focus of these ex-
periments is evaluating RDMA running with Coyote (suffix
cyt) due to space limitations. We nevertheless present some
results with ACCL+ running TCP on top of the Vitis XRT
(suffix xrt) platform to compare it to ACCL [16], which uti-
lizes an embedded micro-controller to orchestrate collective
operations. Experiments configure both MPI-like collectives
with memory pointers and streaming collectives. For the H2H
experiments, MPI-like collectives are mandatory, while the
F2F experiments are configured to run with streaming col-
lectives. ACCL+ operates at 250 MHz in micro-benchmarks,
with varying frequency in the use-case study due to the design
complexity. The comparisons involve MPICH 4.0.2 with TCP
and OpenMPI 4.1.3 compiled with RDMA using OpenUCX
1.13.1 on the cluster CPUs and Mellanox 100 Gb/s NICs.
MPI libraries self-configure for collective algorithms and syn-
chronization protocols. Each micro benchmark experiment is
averaged over 250 runs.

Figure 10: Latency breakdown of broadcasting FPGA pro-
duced data using software MPI with eight ranks with Coyote.

Send/Recv Throughput. We first evaluate pure throughput
using send/recv. Figure 8 shows the throughput compari-
son of ACCL+ with Coyote RDMA and software MPI with
RoCE backend. Notably, ACCL+ with RDMA achieves a
peak throughput of 95 Gb/s, nearly saturating the network
bandwidth. Compared to software MPI variants, ACCL+ ex-
hibits comparable and slightly higher peak throughput. This
is attributed to the FPGA network stack’s ability to process
network packets at line-rate in a pipelined fashion. More-
over, there is minimal distinction between F2F and H2H for
ACCL+, thanks to the unified memory space provided by Coy-
ote and both host memory access through PCIe and FPGA
memory access offer higher bandwidth than the network.
Invocation Latency. Figure 9 shows the invocation latency of
the CCLO engine to execute a dummy NOP operation, which
includes the time from receiving request untill the acknowl-
edgement. For FPGA kernels that can directly interact with
the CCLO engine, the invocation latency is minimal compared
to software invocation from the host, showing a clear bene-
fit of bypassing host control with FPGA-based applications.
Coyote software driver contains a thin and optimized layer for
invocation and scheduling and the resulting CCLO invocation
time mainly consists of a PCIe write and a PCIe read latency.
In contrast, the XRT invocation latency is significantly higher
as it is not intended for fine-grained data movement.
FPGA-to-FPGA with Software MPI. To enable a more
direct ACCL+ vs. software MPI comparison for executing
collectives between kernels on FPGA, we model the execu-
tion time for MPICH- and OpenMPI-based device-to-device
data movement, which includes: (1) moving data from FPGA
HBM/kernel to host DDR through the PCIe, (2) executing
the collective using software MPI, (3) moving data from host
DDR to FPGA HBM/kernel, and (4) invoking the next com-
putation kernel. We use the CCLO host invocation time as an
approximation of the invocation time of other computation
kernels. We measure the duration of each of the above steps
and present a break-down of execution time of the collec-
tive with Coyote platform in Figure 10. We could observe
that the PCIe transfer time is dominant for small messages
while the collective time is dominant for large messages. Such
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(a) Broadcast (b) Gather (c) Reduce (d) All-to-all

Figure 11: Collective latency comparison between ACCL+ RDMA and software MPI RDMA with eight ranks and device data

(a) Broadcast (b) Gather (c) Reduce (d) All-to-all

Figure 12: Collective latency comparison between ACCL+ RDMA and software MPI RDMA with eight ranks and host data

breakdown for XRT platform can be derived by changing the
Coyote invocation latency to XRT invocation latency.

F2F Collective Latency RDMA. Figure 11 illustrates the
latency of ACCL+ RDMA collectives with various mes-
sage sizes on eight Alveo-U55C boards. This is compared
to FPGA-to-FPGA data movement with software MPI over
RDMA. For clarity, we present experiments showcasing bet-
ter performance between eager and rendezvous collectives.
The algorithms for each collective in ACCL+ are detailed in
Table 2. Notably, ACCL+ exhibits significant performance
benefits compared to its software counterpart. This advantage
stems from the hardware’s efficient execution of collectives
and the direct network access within the FPGA device, elimi-
nating the need for data copying to CPU memory.

H2H Collective Latency RDMA. Figure 12 illustrates a
latency comparison between ACCL+ and software MPI tar-
geting host data. The performance gains with ACCL+ vary
across different collectives. Notably, for operations like broad-
cast and gather, ACCL+ consistently outperforms software
MPI across a range of message sizes. However, for other col-
lectives such as reduce and all-to-all, ACCL+ shows only
marginal benefits and, in some cases, falls short of software
MPI performance. One reason is that software MPI adapts its
algorithms more finely to different configurations, whereas
ACCL+ currently supports only a limited set of options. How-
ever, by offloading collective to hardware, CPU cycles could
be freed for other computation tasks. Besides, by comparing
ACCL+ F2F and H2H performance, we could observe that
the ACCL+ collective latency has minimal difference because

(a) 8KB message size. (b) 128KB message size.

Figure 13: Latency vs. rank sizes (Reduce).

Coyote with unified memory allows direct memory access to
both host and FPGA memory.
Effect of Synchronization Protocol. Despite the simpler
algorithms used by most eager collectives, such as one-to-
all or ring, we observe that eager collectives can sometimes
outperform rendezvous collectives with small message sizes,
as seen in broadcast. This is because eager collectives do not
require a handshake to resolve addresses.
Collective Algorithm and Scalability. Figure 13 illustrates
the impact of algorithm selection and scalability on both
ACCL+ and software MPI during collective executions. For
an 8 KB message size, ACCL+’s reduce operation adopts an
all-to-one algorithm, resulting in minimal latency increase
across nodes. However, recognizing potential bottlenecks at
the root node with this approach, ACCL+ switches to a bi-
nary tree algorithm for larger message sizes, such as 128
KB. In this case, an increase in latency is observed after
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(a) Gather. (b) Reduce.

Figure 14: Comparison of collective performance between
ACCL+ TCP with XRT, software MPI TCP and ACCL TCP.

four nodes, stabilizing until eight nodes due to a consistent
tree depth. On the other hand, software MPI exhibits a more
fine-grained approach to algorithm selection based on the
scale of the message size and the number of nodes. For in-
stance, it deploys three distinct algorithms within the 8 KB
range: an all-to-one algorithm for fewer than four nodes, a
ring protocol for four to eight nodes, and an optimized bino-
mial algorithm for 8 nodes. Additionally, for larger messages,
software MPI switches between an all-to-one algorithm be-
low three nodes and a binomial tree algorithm between four
and eight nodes. This fine-grained algorithmic tuning con-
tributes to its superior performance in certain H2H scenarios.
While software MPI’s approach involves detailed algorithmic
tuning, ACCL+’s flexible design allows for potential future en-
hancements through additional fine-grained tuning to further
optimize performance.

XRT Platform and TCP. In Figure 14, we evaluate ACCL+
TCP with the XRT platform and compare it against software
MPI with TCP. We also include a comparison with ACCL [46]
collectives, which employs a similar embedded processor to
orchestrate collectives and supports TCP on the XRT plat-
form. Notably, ACCL+ TCP consistently outperforms its soft-
ware counterpart across all configurations, benefiting from the
line-rate processing capabilities of a hardware TCP POE. Fur-
thermore, ACCL+ demonstrates superior performance com-
pared to ACCL. While both ACCL+ and ACCL utilize embed-
ded microprocessors for collective orchestration in hardware,
ACCL+ distinguishes itself by offloading more tasks to the
hardware data plane, such as utilizing the RxBuf Manager for
packet assembling. In contrast, ACCL relies more on the mi-
croprocessor, leading to lower performance. When comparing
ACCL+ TCP for serving host applications and device applica-
tions, a significant overhead is observed for host applications.
This is attributed to the limitation of XRT platform, which
prohibits direct data movement from the FPGA kernel to host
buffers, resulting in a memory-copy overhead. Additionally,
the XRT software invocation latency is notably higher, as
indicated in Figure 9.

Table 3: Parameters of the target recommendation model.

Tables Concat Vec Len FC Layers Embed Size
100 3200 (2048, 512, 256) 50GB

Figure 15: Checkerboard block decomposition.

6 Case Study: Deep Learning Recommenda-
tion Model

Deep Learning Recommendation Models (DLRM) are widely
used in personalized recommendation systems for various
scenarios [23, 37, 117]. The structure of a DLRM includes
two major components: memory-bound embedding layers
and computation-bound fully-connected (FC) layers. These
models handle both dense and sparse features, with the latter
stored as embedding vectors in tables. In inference, these
vectors are accessed via indexes, resulting in multiple random
memory accesses. The retrieved embedding vectors are then
concatenated with dense features and passed through several
FC layers to predict the click-through rate, incurring heavy
computational loads due to vector-matrix multiplication.

DLRM has been a focal point for acceleration on GPUs and
FPGAs, given that CPU solutions are generally constrained
by both random memory access and computation [43, 49, 63].
GPU-based solutions [42, 49, 52, 58] mostly accelerate the
computation-bound FC layers to gain high throughput. How-
ever, the large batch sizes required for efficient GPU com-
putation, coupled with random memory access, often lead to
increased latency (tens of milliseconds). FPGA-based tech-
niques [57,71] overcome the embedding lookup bottleneck by
distributing tables across memory banks and enabling paral-
lel accesses, leveraging high-bandwidth-memory (HBM) and
on-chip memory (BRAM/URAM). However, this approach
is constrained by the requirement for embedding tables to fit
within a single FPGA’s memory (e.g., 16 GB HBM on AMD
Alveo-U55C), limiting the size of embedding layer. Addition-
ally, the finite computational resources on a single node pose
restrictions on overall throughput for all FC layers.

6.1 Distributed DLRM Inference
We aim to demonstrate that ACCL+ can facilitate distribut-
ing DLRM inference across FPGAs to accommodate larger
embedding layers, as in many large-scale industrial settings,
while at the same time achieving low latency and high through-
put. Table 3 shows the detailed configuration of such an
industrial-level recommendation model [58]. In such a use
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Figure 16: Conceptual design of partitioned DLRM, with FC1
decomposed and FC2, FC3 pipelined across nodes.

case, the embedding table does not fit into a single FPGA
HBM and therefore both the embedding lookup and the com-
putation are distributed across the network. This poses signifi-
cant challenges for performance, scalability, and networking.
Vector-Matrix Multiplications Decomposition for DLRM.
The computation pattern in DLRM inference involves a chain
of three vector-matrix multiplications, with the inference out-
put vector computed as a sequence of operations involving
three matrices of FC layers (FC1, FC2, FC3) and a concate-
nated embedding vector. The concept of distributed vector-
matrix multiplication has been extensively studied in litera-
ture [90] across CPUs and the same principle can be applied
to an FPGA cluster. One common approach is checkerboard
block decomposition of matrix, as shown in Figure 15. This
method involves partitioning the matrix in terms of both rows
and columns, while partitioning the vector ensures that pro-
cesses associated with the same matrix row partition share the
same sub-embedding vector. Each process can then perform
partial computations, and the results belonging to the same
row partition are concatenated and subsequently aggregated.
Decomposed and Pipelined Distributed DLRM. The parti-
tioning strategy for the DLRM considers the need for balanced
resource utilization, ensuring that the overall throughput is not
limited by any process among all nodes. Typically, the compu-
tation load of the FC1 is significantly larger than subsequent
layers like FC2 and FC3. To accommodate this, resource dis-
tribution should reflect the varying computation requirements.
Additionally, for modern FPGAs with HBM, the capacity re-
quires a minimum number of FPGAs to effectively store the
embedding layer. A conceptual partitioned DLRM is illus-
trated in Figure 16. In this scenario, FC1 is decomposed and
distributed across multiple FPGAs using the checkerboard
block decomposition, and FC2 and FC3 are assigned to one
FPGA each. The embedding tables are evenly distributed
across nodes 1-4, with partial vectors transmitted to nodes
5-8, leveraging the network’s low latency. Similarly, partial
results computed on nodes 1-4 are forwarded to correspond-
ing nodes 5-8, where an overall reduction of all partial FC1
results is conducted. The aggregated FC1 results are then for-
warded to node 9 for FC2 computation, followed by node 10
for FC3 computation and final processing. Scaling resources

Figure 17: Speedup comparison and latency breakdown of
distributed vector-matrix multiplication.

according to the computation distribution requirements of
each layer could lead to improved performance. For exam-
ple, increasing the allocation of FPGAs for different layers
based on their computational load. Such partitioning method
requires diverse communication patterns by each node, such
as send-only, send/recv, and reduction and ACCL+ provides a
unified design supporting all the communication requirements
of the DLRM through a standard interface. Additionally, for
nodes that do not require reduction, the streaming reduction
plugins of ACCL+ can be removed with a compilation flag,
reducing resource consumption and improving routing and
timing. Furthermore, the cross-node simulation provided by
ACCL+ can facilitate the development process, reducing hard-
ware debugging cycles.

6.2 Use Case Evaluation
Distributed FC Layer Execution on CPU. We use an illus-
trative example to demonstrate how ACCL+ can be utilized
to improve the efficiency of distributed work executing on
CPU. In this use case, we distribute an FC layer workload
(matrix-vector multiplication) by partitioning the weight ma-
trix column-wise, with each rank receiving part of the input
vector and a subset of the weight matrix columns. The matrix-
vector product is obtained by summing the partial rank prod-
ucts using the reduce collective. For the implementation, we
use the highly optimized Eigen library [39], distributing it
with both ACCL+ RDMA and MPI RDMA. In this experi-
ment we do not overlap computation and communication.

The overall execution time of the distributed FC layer is
compared to its single-node execution, as depicted in Fig-
ure 17, where top-of-bar numbers indicate the speed-up com-
pared to single-node execution. We observe that utilizing
ACCL+ instead of MPI for the reduction generally results
in lower matrix-vector computation time. This performance
increase is most likely due to reduced pressure on the CPU
cache, as ACCL+ utilizes FPGA memory for all intermediate
reduction data structures. The figure indicates two instances
of super-linear scaling, attributed to the weight matrix parti-
tions fitting into either L2 (8 MB) or L3 (128 MB) caches
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(a) DLRM latency. (b) DLRM Throughput.

Figure 18: ACCL+ DLRM performance comparison.

on the CPU after partitioning, whereas the entire matrix did
not fit in caches during single-node execution. The reduction
time itself is higher in most cases due to an additional copy re-
quired to move data between Eigen result buffers and ACCL+
buffers, which can be eliminated with further optimization.
Overall, distributing work with ACCL+ achieves lower la-
tency, especially for specific configurations of FC size and
number of ranks.

Distributed FPGA-based DLRM. We distribute an indus-
trial DLRM model, as in Table 3, with ACCL+ on 10 U55C
FPGAs following the same design principle as shown in Fig-
ure 16. The communication between the embedding node
and the reduce slave node during each inference requires the
transmission of a 3.2 KB partial embedding vector and a 4
KB partial result. Additionally, the reduction process span-
ning nodes 5 to 9 operates with a message size of 8 KB per
inference. The achieved operating frequency is 115 MHz. We
utilize 32-bit fixed-point precision for computation. All the
application kernels utilize streaming collective APIs to inter-
act with ACCL+. ACCL+ DLRM is configured with the TCP
backend from XRT. Though the communication latency could
be further optimized with ACCL+ RDMA, it is not on the criti-
cal path of overall latency as it is overlapped with computation.
We also compare with CPU implementation [58], where the
DLRM inference is run on an Intel Xeon Platinum 8259CL
CPU @ 2.50 GHz (32 vCPU, Cascade Lake, SIMD supported)
and 256 GB DRAM with TensorFlow Serving enabled. Fig-
ure 18(a) shows the latency comparison between ACCL+
and the CPU baseline. We evaluate various batch sizes on
the CPU. On the other hand, ACCL+ works with streaming
data without batching. The hardware implementation demon-
strates two orders of magnitude lower latency compared to
the CPU. This substantial latency reduction in the hardware
implementation is attributed to the parallel arithmetic units
in hardware and the significant latency introduced by random
memory accesses. Figure 18(b) shows the throughput compar-
ison. ACCL+ shows more than an order of magnitude higher
throughput compared to CPU baseline.

Table 4: Resource utilization.

Component CLB kLUT DSP BRAM URAM

U55C(100%) 1303 9024 2016 960

CCLO 12.1% 1.6% 5.7% 0
TCP POE 19.8% 0 10.6% 0

RDMA POE 13.0% 0 5.3% 0

DLRM FC1 278.1% 580.1% 186.3% 798.3%
DLRM FC2 29.6% 85.1% 34.2% 97.9%
DLRM FC3 6.2% 16.1% 2.2% 20.8%

6.3 Resource Consumption
The resource utilization of ACCL+ components and the over-
all utilization of DLRM across nodes are summarized in Ta-
ble 4. In the ACCL+ subsystem, the majority of resources
are allocated to POEs, with the TCP POE being the most
resource-intensive, while the CCLO engine utilizes compara-
tively fewer LUT and memory resources. DLRM utilization
is categorized by different layers, and the presented utilization
values represent the sum across multiple FPGAs after decom-
position. Note that DLRM FC1 utilization exceeds 100%,
reflecting the decomposition across 8 FPGAs (max 800%).
The primary resource bottlenecks for DLRM are URAM,
serving as fast on-chip memory for storing small embedding
tables, and DSP, essential for matrix computations.

7 Discussion

In this paper we have explored the design of ACCL+ target-
ing efficient and high-speed offload of MPI-like collective
operations. However, due to its flexible and portable design,
ACCL+ can be utilized in various applications and scenarios
beyond the demonstrated use cases. This section explores
how ACCL+ can be extended for a broader range of users
applications.
Integrating ACCL+ with Machine Learning Frameworks.
While in HPC it is commonplace to develop distributed ap-
plications utilizing MPI collectives explicitly, in the field of
Machine Learning, codes are often written by Data Scien-
tists who reason about distributed execution in high-level
terms such as data, model, or expert parallelism [20]. Integrat-
ing ACCL+ into popular machine learning frameworks like
TensorFlow [1] and PyTorch [78] is therefore essential to en-
able its use in ML. Our ongoing work focuses on integrating
ACCL+ into PyTorch’s Distributed Data Parallel (DDP) [82]
module. DDP supports various communication backends for
collective operations, which are invoked automatically by the
PyTorch execution orchestrator to distribute work to a cluster.
We aim to add ACCL+ as a new communication backend to
PyTorch DDP, enabling the use of FPGA-based smartNICs
to enhance collective operations in AI training and inference.
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Additionally, we plan to extend ACCL+ support to other ma-
chine learning frameworks.
ACCL+ for Streaming Applications. ACCL+ can also be
used for distributed applications that do not require bulk syn-
chronous parallel collective communications, such as stream-
ing applications. In such a scenario, one could use ACCL+
as a transport layer for model-parallel, multi-FPGA stream-
ing accelerators, e.g., Elastic-DF [3]. ACCL+ has existing
streaming primitives and collectives which could be utilized
for this purpose, as demonstrated in the implementation of
the DLRM in Section 6. A more flexible transport based
on ACCL+ would, for example, enable higher flexibility in
partitioning DNNs to multiple FPGAs.
Implementing Other Distributed Programming Models
with ACCL+. The shared memory (SHMEM) programming
model [17] is gaining in popularity as it becomes evident
that it enables finer-grained overlap between compute and
communication on GPU-accelerated systems [50]. SHMEM
libraries include MPI-like collectives but add asynchronous
one-sided operations (put/get) and signals. These additional
operations could be implemented easily into ACCL+ with
minimal firmware modifications and no hardware recompi-
lation. Utilizing ACCL+ could reduce the latency of one-
sided SHMEM operations, especially where these are used to
implement complex communication sequences such as halo
exchanges in stencil computations.

8 Conclusion

In this paper, we introduce ACCL+, an open-source FPGA-
based collective library designed for portability across diverse
platforms and communication protocols. ACCL+ offers flexi-
bility in implementing collectives without the need for FPGA
re-synthesis and demonstrates high performance as collective
abstractions for FPGA-distributed applications and as a collec-
tive offload engine for CPU applications. With ACCL+, there
is potential for exploring new possibilities by extending col-
lectives across CPU and FPGA boundaries and orchestrating
them for a unified application.
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Appendices
A ACCL+ Initialization

ACCL+ is specifically designed to deliver a high-speed col-
lective communication solution tailored for FPGAs, or to
function as a specialized NIC for CPUs. To simplify the ini-
tialization process, we choose not to generalize the network
stack in the hardware for general-purpose communication. In-
stead, we utilize the conventional NIC in the CPU system for
launching ACCL+ applications in a distributed environment,
such as through mpirun, or for establishing RDMA queue
pairs for ACCL+ communicators. This NIC only involves a
lower-speed connection to other ranks.

Other than the collective API, the CCL driver also exposes
a housekeeping API which enables CCLO configuration and
monitoring, and a primitive API consisting of simple data
movement operations (send, receive, copy). Listing 3 illus-
trates the three APIs - the code initializes ACCL+, invokes
the ACCL+ send/receive primitives to exchange data between
ranks 0 and 1, and executes an reduce collective on all ranks.

In this example, we utilize the MPI library to determine
the local rank ID (lines 6-8) when the application has been
launched with mpirun. Then ACCL+ is initialized by calling
the constructor function and passing the Coyote device object
(line 11). Similar approach is applied for Vitis device object.
Within the constructor, it also allocates and configures a set
of CCLO-managed Rx buffers for collective operations in the

FPGA memory, e.g., for the eager protocol. The code then
constructs the communicator according to rank information
and protocol type (line 15). If the protocol is TCP, the code
will issue commands to open connections between each rank
in the communicator via the protocol offload engine. If the
protocol is RDMA, the code utilizes the commodity NIC to
change queue pair information. The TCP connections and
the RDMA queue pairs are generalized to session IDs in the
communicator. All configuration information is offloaded to
the FPGA so that the CCLO can rapidly access them. Just like
MPI, ACCL+ can be configured with multiple communicators
of different sizes. While not pictured here for brevity, each
ACCL+ collective can specify the communicator it operates
on, with COMM_WORLD being the default.

Lines 21-25 implement data movement from the buffer
of rank 1 to the buffer of rank 0 utilizing the primitives API.
Lines 27 execute collectives on the entire communicator using
the collectives API.

1 #include "accl.hpp"
2 #include <mpi.h>
3 using namespace ACCL;

5 int main(int argc, char **argv) {
6 int mpi_rank;
7 MPI_Init(&argc, &argv);
8 MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);

10 CoyoteDevice* device = new CoyoteDevice();
11 ACCL* accl = new ACCL(device);

13 std::map<int, std::string> ranks_dict = /*
Populate rank vector*/;

14 Protocol protocol = TCP; // or RDMA
15 accl->configure_communicator(ranks_dict, mpi_rank,

protocol);

17 const int bufsize = 64;
18 auto opbuf = accl->create_buffer<int>(bufsize);
19 auto resbuf = accl->create_buffer<int>(bufsize);

21 if (mpi_rank == 0) {
22 accl->send(opbuf, bufsize, 1); // Send to rank 1
23 } else if (mpi_rank == 1) {
24 accl->receive(opbuf, bufsize, 0); // Receive

from rank 0
25 }

27 accl->reduce(opbuf, resbuf, bufsize, 0); // Root
rank 0

29 opbuf->free_buffer();
30 resbuf->free_buffer();
31 delete accl;
32 delete device;
33 MPI_Finalize();
34 }

Listing 3: Initialization and invocation of collectives from
CPU.
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Abstract
Distributed snapshots are a classic class of protocols used for
capturing a causally consistent view of states across machines.
Although effective, existing protocols presume an isolated
universe of processes to snapshot and require instrumentation
and coordination of all. This assumption does not match
today’s cloud services—it is not always practical to instrument
all involved processes nor realistic to assume zero interaction
of the machines of interest with the external world.

To bridge this gap, this paper presents Beaver, the first
practical partial snapshot protocol that ensures causal consis-
tency under external traffic interference. Beaver presents a
unique design point that tightly couples its protocol with the
regularities of the underlying data center environment. By
exploiting the placement of software load balancers in public
clouds and their associated communication pattern, Beaver
not only requires minimal changes to today’s data center op-
erations but also eliminates any form of blocking to existing
communication, thus incurring near-zero overhead to user
traffic. We demonstrate the Beaver’s effectiveness through
extensive testbed experiments and novel use cases.

1 Introduction

The ability to capture a consistent, global view of a system is
a powerful tool. For many tasks—deadlock detection, check-
points and failure recovery, network telemetry, debugging of
distributed software, and many others [3–5, 8, 9, 17, 33, 37, 39,
52,54,55,58,60]—a global view, and particularly a consistent
one, is essential for correct operation. Without consistency,
results are unreliable, and the value of associated tools is
questionable.

The classic method for capturing consistent global states
is the Chandy-Lamport snapshot algorithm that was pro-
posed almost four decades ago and its subsequent vari-
ants [11,26,33–35,41,57,60]. At a high level, these protocols
flood snapshot initiation messages throughout the system,
triggering local captures of state at every node they pass in
a manner that guarantees causal consistency of the recorded
values. Some versions (including the original) also include
support of capturing messages that are in-flight at the time of
the snapshot, i.e., channel state.

While these protocols have been simple, effective, and
widely used for decades, they all rely on the fundamental

assumption that the set of participants in the protocol is closed
under causal propagation. In other words, if any node can both
send and receive messages from participants in the protocol,
it can propagate Lamport’s ‘happened-before’ relation [35]
and must also be a participant in the snapshot. For systems
operating in isolation, ensuring full participation is trivial;
however, modern cloud deployments are not so utopian.

Today’s cloud services are often modular, e.g., structured as
microservices, each of which might be developed and main-
tained by a different user, team, or organization or hosted
on otherwise inaccessible infrastructure. Take, for instance,
a managed pub/sub messaging layer like Amazon’s Simple
Notification Service (SNS). As a proprietary and black-box
service, users cannot directly propagate snapshot initiation
markers through the service. Further, while they might be able
to add markers to the application-level content manually, with
concurrency, replication, and reordering (e.g., due to priori-
tization), content-based markers are unlikely to track causal
relationships accurately. Even when developers fully control
all relevant servers, the clients of the service can also intro-
duce hidden causal relationships, for example, when the user
of a generative AI chatbot sends a follow-up message based
on the response to the previous prompt. Ultimately, the nature
of causal consistency means that a single non-participant can
render all snapshots useless.

Observing this gap between classical assumptions and the
practicalities of real-world deployments, we ask the question:
Can we make distributed snapshots practical in modern cloud
data centers, i.e., is it possible to capture a causally consistent
snapshot when only a subset of the broader system partici-
pates? At first glance, this goal seems far-fetched: With par-
tial participation, we cannot control the messaging behaviors
nor instrument any coordination logic for machines external
to those of interest. Complicating the issue is the fact that,
to be practical, the protocol cannot block, e.g., by buffering
or delaying user packets during a snapshot. In essence, this
means that hidden causal relationships between participants
and external communication partners are unavoidable.

This work presents Beaver1, the first ‘partial’ snapshot pro-
tocol that extends the capability of distributed snapshots to
cloud services with external interactions. Beaver provides the
same basic abstraction as other snapshot protocols—for any
event whose effects are observed in the snapshot, all other

1The animal species known for their engineering expertise in constructing
dams using locally available materials such as rocks and tree branches.
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events that ‘happened-before’ are also included. It achieves
this even when the target service communicates with an ar-
bitrary number of external, black-box entities, regardless of
their scale, semantics, or placement, and despite potential
multi-hop propagation of causal dependencies. Beaver does
all of this without blocking or delaying user requests. Beaver
tackles this seemingly impossible problem by:

1. Relying on two features found in all of today’s largest
cloud data centers: (a) Layer-4 Software Load Bal-
ancers (SLBs) that interpose on a subset of inbound traf-
fic [15, 28, 49, 50] and (b) servers with low time strata or
otherwise stable clocks [13, 25, 29, 36, 38, 42, 44, 45].

2. Eschewing the enforcement of causal consistency in favor
of simply detecting when violations may have occurred, a
mechanism we call Optimistic Gateway Marking (OGM).

Note that for (1b), Beaver does not rely on the traditional
notion of clock synchronization that other recent systems [13,
38, 42] are founded upon, which requires that the clocks of
distinct machines have bounded drift. Instead, it uses a much
weaker property [25, 40] over the frequency drift of a single
machine2. Also note that (2) implies a tradeoff: snapshots
are not always successful, but users can be assured of their
correctness when they are and retry when they are not.

At a high level, Beaver’s approach is based on the observa-
tion that when examining the causal consistency of a snapshot,
only inbound traffic is relevant and only a small subset therein.
More specifically, we can divide inbound traffic into messages
that are ‘causally irrelevant’ (e.g., triggered asynchronously
and, thus, are not a part of any transitive causal relationships)
and messages that are ‘causally relevant’ (e.g., triggered by
post-snapshot outbound traffic but may not carry any markers
of that fact). Beaver’s OGM mechanism is an approximate
but full-recall detector of causally relevant traffic.

Our prototype3 of Beaver demonstrates that not only is it
possible to build an OGM mechanism, but by leveraging the
aforementioned features of today’s cloud data centers, we can
render the possibility of rejected snapshots minimal (near-
zero in many cases). To summarize, this paper makes the
following contributions:

• To the best of our knowledge, we are the first to detail the
gap between classical assumptions of distributed snapshots
and the practicalities of real-world clouds.

• We propose Beaver, the first partial distributed snapshot
primitive for modern cloud services. Beaver presents a
unique design point by tightly coupling the protocol with
the regularities of the underlying data center environment.

• We evaluate Beaver through end-to-end implementation
on a real-world testbed aligned with the production data
center settings. We also show that the causally consistent
view provided by Beaver enables a spectrum of use cases.
2Bounded clock drift to a low-stratum reference server is sufficient to

guarantee bounded local frequency drift, but not necessary.
3The prototype is available at https://github.com/eniac/Beaver.

Data center fabric

VIP 1 VIP 2

Inter-VIP
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Figure 1: Today’s public cloud services place SLBs to handle
the external traffic to its VIP in the inbound direction (solid
lines to VIP 1). The response to inbound messages (dotted
lines from VIP 1) typically bypasses its SLB to minimize the
SLB traffic load.

2 Background and Motivation

We begin by describing the structure of today’s cloud services
and the data centers in which they reside before we discuss
the application of distributed snapshots to these services.

2.1 Communication in Public Cloud Data Centers

Today’s cloud data centers are massive collections of servers
connected by a network fabric that host user services of di-
verse sizes and scopes. In this context, we can abstract user
services as a set of virtual or bare metal machines managed
as a single logical entity. Each service is typically assigned a
public Virtual IP (VIP) address, and each physical machine a
private Direct IP (DIP) address [15, 50].

Software Load Balancers (SLBs). A set of dedicated servers
or programmable devices is responsible for translating be-
tween VIPs and DIPs. We refer interested readers to prior
work [15, 50] for full details, but at a high level, these layer-4
devices act similarly to traditional Network Address Trans-
lators (NATs), allocating a new mapping for every new con-
nection and rewriting the headers of every passing packet
according to the mapping. In cloud systems, these devices
are distributed, replicated, and serve an additional purpose as
software load balancers that spread requests over available
backend servers. A single service/VIP typically has a dedi-
cated set of SLBs based on its scale (e.g., ∼7–20, including
replication).

The path of packets in public clouds. In the presence of
SLBs, packets can take different paths depending on the rela-
tionship between their source and destination (Figure 1):

Internet traffic: Incoming packets from the Internet are
always routed through an SLB to translate from the service’s
publicly visible VIP to a relevant internal DIP [15, 21, 22, 43,
50, 63]. Unlike most other NAT-like mechanisms, response
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packets are usually sent back directly, bypassing the SLB
using techniques like Direct Server Return (DSR) [15, 50].

Inter-service traffic: Inbound traffic from other services
within the same provider also passes through SLBs [15, 21,
22, 43, 50, 63], which still need to perform the same VIP-to-
DIP translation. This is true even if the two service’s servers
are physically adjacent. Note that, like with Internet traffic,
outbound traffic can bypass the responder’s SLB; however,
even in this case, the packet will still need to pass through
the SLB responsible for the destination VIP(s), as shown in
Figure 1. Note that while cached DIPs have been suggested to
bypass inbound SLBs on the fast path [50], this optimization
is currently disabled for major classes of production traffic
due to load imbalance and cache management issues. The
implication is that, at least for public clouds, this need to
interpose on all inbound traffic is ubiquitous [10, 15, 63].

Intra-service traffic: Finally, messages between sources
and destinations belonging to the same VIP are sent directly,
bypassing the SLBs entirely.

Typical service communication patterns. In parallel to the
above, we note that modern cloud services rarely operate in
isolation. Frontend services typically rely on a wide array of
backend services, e.g., to handle storage, analytics, and learn-
ing, thus triggering inter-service traffic. The rise of managed
cloud service offerings and microservice design patterns have
further encouraged modularity and the associated growth in
the number of distinct services involved in processing a single
user request. At a more basic level, most cloud services take
requests from and return responses to external clients, each
with its own internal, causality-carrying logic.

2.2 Revisiting the Chandy-Lamport Snapshot

The ability to capture a consistent snapshot of a cloud ser-
vice’s global state is a powerful tool. Indeed, many problems
in distributed systems boil down to determining the global
state across machines, including distributed logging and de-
bugging, network telemetry, checkpointing and recovery, and
deadlock detection [3, 11, 17, 33, 56, 60].

Intuitively, a snapshot is a collection of local states captured
from the processes of a system. For simplicity, we omit
channel states in our definitions, but the analysis is similar.
The snapshot is deemed consistent if the captured states at
each process ‘cut’ the timeline of events in a way that respects
the following definition:

DEFINITION 1. (Consistent Snapshot [11, 56]). For a
snapshot, let C be the set of events on every process that
occurs before the ‘cut’. C is causally consistent iff ∀e ∈C, if
e′→ e, then e′ ∈C, where x→ y denotes that x ‘happened
before’ y.

The seminal Chandy-Lamport algorithm was the first to
present a solution for this problem. We refer the interested
readers to the original paper [11] or a distributed systems

Universe of all processes

p0

p1

e0 e1 e2

e3

e4
e5

Figure 2: A minimal example of a consistent cut for 2 pro-
cesses p0, p1 and 6 events e0,1,...,5. The global snapshot
formed from the collection of and is a ‘causal cut’ of
the event timelines for all processes, where and indi-
cate snapshot initiations triggered out-of-band or by receiving
marker messages, respectively.

textbook [33,56] for complete details, but we give a simplified
description of the model and the protocol below:

• Model: A system involves a set of asynchronous processes
P = {p0, p1, . . . , pN−1} that interconnect with each other
through FIFO message channels. Each process pi holds
state of interest, si, that may change in response to local
events (e.g., local computation, message sends or receives,
etc.). A global snapshot involves a union of states {si}
recorded at different times for all processes.

• Protocol state machine: The protocol requires coordina-
tion in all processes p ∈ P. An initiator process first
records its local state and then sends a marker message
to all others. The captured state is application-dependent
and can range from a single bit representing the state of
a lock to all of local memory. When any other process pi
receives a marker message for the first time, it records its
state si and, to ensure consistency, sends marker messages
immediately through all other channels.

Later variants refine the basic algorithm to generalize chan-
nel assumptions, allow for concurrent initiation, or reduce
message complexity [26, 33, 34, 41, 57, 60]. In particular, the
Lai-Yang algorithm permits non-FIFO and lossy channels
by having processes piggyback a single marker bit in every
sending message [34] rather than sending separate marker
messages as in the original protocol. Upon receiving a mes-
sage with a marker bit set, the receiving process first records
the local state, processes the payload, and sets the bit for fu-
ture sending messages. Additional bits can be used to support
concurrent snapshots. Figure 2 shows a consistent cut with
the Lai-Yang algorithm.

2.3 A Case for Partial Snapshots

The above snapshot algorithm makes a fundamental and im-
plicit assumption that all processes that can communicate
with processes in P are themselves in P. Unfortunately, as
previously mentioned, today’s cloud services are frequently
interconnected, with efforts toward modular design and man-
aged solutions promoting increasing complexity in the de-
pendency graph over time. As a rough indication of severity,
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Figure 3: An application where a distributed serving system
is accessed by an external user (e.g., an Apache Airflow work-
flow). The out-group process pout

0 imposes a hidden causal
relationship e′4→ e′5 between events e′4 and e′5, rendering a
traditional snapshot of only the serving system inconsistent.

previous studies have shown that inter-service traffic com-
prises 10–50% of total traffic in the data center, and Internet
traffic accounts for 5–25% [21, 22, 50].

Consider, for instance, a HuggingFace-like ML inference
service [2] that hosts a collection of models that can be ac-
cessed from external clients. As they are externally visible,
the models are frequently used in larger jobs, e.g., as part of
an interactive chatbot (where clients submit requests based on
prior responses) or more complex Apache Airflow workflows.

The inference service might want to capture a service-wide
statistic (e.g., tracking the maximum number of in-flight re-
quests) to decide on the number of servers to provision. Any
analysis of the developer’s application that does not consider
the potential dependencies introduced by external services or
clients will miss important causal dependencies.

Figure 3 shows a simple example of this, where a single ex-
ternal Airflow job makes requests to multiple models hosted
by the inference service such that only one request is outstand-
ing at any given time. Occasional internal messages are for
monitoring and coordination. Although there is at most one
outstanding request at any given time, a traditional distributed
snapshot that only considers the inference service will not
respect that bound.

For example, in Figure 3, the depicted cut ‘observes’ two
inflight messages because it fails to capture the external in-
teractions (e′5 ∈ C, yet e′4 /∈ C). In fact, for a single client
that issues a single request at a time, an n-server snapshot
can ‘observe’ any number of in-flight requests [0, n]. These
arbitrary results can cause the developer to waste money and
resources on redundant provisioning. More broadly, while
the frequency and consequences of consistency violations are
application-dependent, there is often a meaningful difference
between ‘correct’ and ‘incorrect’.

Although converting all cloud services into participants
of the snapshot protocol might be possible given either (a)
a well-resourced developer who can implement and man-
age everything (even if machines are geo-distributed or on
the broader Internet) in-house or (b) support from the cloud
provider to propagate snapshot markers on all packets, these
approaches are not always feasible. For (a), the popularity of

In-group processes

pout0 e′0

e′1
e′2

e′3
e′4

Out-group processes

e′6
e′7

e′8
e′9

Monolithic gateway overlay

G

e′5

pin0

pin1

Figure 4: With the gateway indirection, Beaver’s MGM re-
sults in a new frontier at the in-group process pin

1 that precedes
rather than succeeds the event e′5 (as in the scenario of Fig-
ure 3), converging to a consistent partial snapshot.

managed services demonstrates their importance to low-cost
and agile development. For (b), forced instrumentation can
lead to overhead and fragmentation for users not involved in
the snapshot. Even worse, if the external source of depen-
dencies is a human (e.g., accessing your service through a
browser), incorporating her into the snapshot is impractical.

A formal definition of partial snapshots. We seek the design
and implementation of a partial snapshot. In a partial snapshot,
processes are divided into two groups. The first, in-group
processes Pin, are the machines of the VIP(s) of interest. The
second, out-group processes Pout , includes all other machines,
whether in the same data center or the broader Internet.

Given these sets, we refine Definition 1 to obtain a defini-
tion of consistent partial snapshots:

DEFINITION 2. (Consistent Partial Snapshot). Consider
a universe of processes P = Pin ∪Pout , Pin ∩Pout = /0. Let
Cpart be the set of pre-snapshot events for Pin. Cpart is causally
consistent iff ∀e ∈Cpart, if e′.p ∈ Pin∧ e′→ e, then e′ ∈Cpart.

Similar to traditional snapshots, for a set of in-group pro-
cesses Pin, if a consistent partial snapshot includes the effect
of an event e, it must include any event e′ at p ∈ Pin that
leads to it. Like traditional snapshots, the ‘happened before’
relation, → is transitive and defined over events in the uni-
verse of processes. Unlike traditional snapshots, however, the
included events only account for in-group events.

3 Gateway Marking

This paper introduces Beaver, a partial snapshot primitive that
captures a causally consistent collection of state for cloud
services sitting behind one or more operator-specified VIPs.

Fundamentally, the nodes in Pout are uncontrollable and,
as a result, can introduce arbitrary hidden causal relation-
ships, disrupting the consistency of traditional snapshots. At
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Symbol Description

P Set of all processes.
Pin Set of in-group processes with states of interest.
Pout Set of out-group processes without any control.
G Set of gateways handling inbound traffic for Pin.

C Set of pre-snapshot events for a snapshot ‘cut’.
e Event tuple e = (p,m, t).

e.p The process at which an event e occurs.
e.m The message involved in an event e, if any.
e.t Global wall clock time, for ease of discussion.

ess
gmax The event when the last gateway is in a new snapshot.

ess
gmin The event when the first gateway is in a new snapshot.
ess

g The event when g ∈ G enters a new snapshot.
ess

p The event triggering p ∈ Pin to enter a new snapshot.

d(p,q;V ) One way delay from p to q with intermediate nodes
v ∈V (p,q ∈ (P∪G), V ⊆ (P∪G)) in sequence.

τmin Min time for an external causal chain to occur.

Table 1: Summary of notations in Beaver.

the core of Beaver is a primitive called Optimistic Gateway
Marking (OGM), which allows Beaver to detect when such
causality violations may have occurred. As we show later in
§5, by combining this primitive with common-case features
of today’s cloud data centers, Beaver can provide:
• Partial deployability where only the in-group machines

for the target VIP(s) participate while ensuring high-rate,
consistent partial snapshots for the target service(s).

• Minimal cost for data center infrastructure, for example,
without switch reconfiguration or additional SLB replicas.

• Near-zero impact on existing data center service traffic.
In this section, we first introduce a strawman version of

the primitive before discussing practicalities and how Beaver
addresses them with OGM in §4.

Strawman: Monolithic Gateway Marking (MGM). Beaver
starts with a simple idea: for all packets originating from
out-group nodes and destined for in-group nodes, route them
through a gateway. The gateway is responsible for two tasks:
1. Tagging incoming packets to in-group nodes with snap-

shot markers.
2. Initiating snapshots by tagging all subsequent inbound

messages accordingly.
After the gateway initiates a snapshot, the protocol pro-

ceeds as a traditional snapshot among the in-group nodes. For
the strawman, assume that the gateway is implemented by a
single monolithic node. Figure 4 shows an example execu-
tion using the above protocol and the same application-level
communication pattern as Figure 3. In contrast to Figure 3,
indirection and marking via a gateway cause pin

1 to take the
snapshot at the correct time. In a way, the gateway node in this
protocol can be seen as a stand-in for all nodes in Pout . We
can prove that MGM produces a consistent partial snapshot.

THEOREM 1. With MGM, a partial snapshot Cpart for
Pin ⊆ P is causally consistent, that is, ∀e ∈ Cpart , if e′.p ∈
Pin∧ e′→ e, then e′ ∈Cpart .

PROOF. Let e.p = pin
i and e′.p = pin

j . There are 3 cases:

1. Both events occur in the same process, i.e., i = j.
2. i ̸= j and the causality relationship e′ → e is imposed

purely by in-group messages.
3. Otherwise, the causality relationship e′→ e involves at

least one p ∈ Pout .

In cases (1) and (2), the theorem is trivially true using
identical logic to proofs of traditional distributed snapshot
protocols. We prove (3) by contradiction.

Assume (e ∈Cpart)∧ (∃e′→ e) but (e′ /∈Cpart). With (3),
e′→ e means that there must exist some eout (at an out-group
process) satisfying e′→ eout → e. Now, because e′ /∈Cpart ,
we know ess

pin
j
→ e′ or ess

pin
j
= e′, that is, pin

j ’s local snapshot

happened before or during e′. Combined with the fact that
the gateway is the original initiator of the snapshot protocol,
we know that ess

g → e′→ eout → e.
We can focus on a subset of the above causality chain:

ess
g → e. From the properties of the in-group snapshot proto-

col, ess
g → e implies e /∈Cpart .

This contradicts our original assumption that e ∈ Cpart!

Theorem 1 implications: Beyond correctness, the strawman
exhibits several valuable properties:

1. Obliviousness to out-group semantics: The proof treats
the internals of the out-group processes as a black box.
In fact, the protocol remains correct, even if the causal
dependency results from multiple network hops through
distinct out-group nodes or if an element of the out-group
chain is a human.

2. Obliviousness to outbound messages: The gateway only
needs to observe messages inbound to in-group processes
without requiring any visibility or tagging of outbound
messages. MGMs achieve this by initiating the snapshot
at the gateway, which—as a stand-in for Pout—obviates
the need to track dependencies carried to the out-group.

SLBs as a candidate for gateway marking. The SLBs de-
scribed in §2.1 are a convenient candidate for implementing
gateway marking as VIPs are a natural granularity for service-
specific partial snapshots, and SLBs already interpose on all
incoming traffic to a VIP—regardless of whether it is from
the Internet or a different service. MGM’s obliviousness to
outbound messages helps here as well, making the system
amenable to DSR.

Of course, assuming that a single server can handle all
incoming traffic to a service is not feasible. The scale of
modern SLBs serves as proof that even for simple gateway
processing incoming requests for a single service, multiple
servers are necessary to handle typical data volumes, load
balance among SLBs, and provide fault tolerance.
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Figure 5: An inconsistent partial snapshot using two asyn-
chronous SLBs g0,g1. When e′8.m arrives at g1, g1 has not
initiated the new snapshot mode to mark the message, thus
triggering the violation.

4 Optimistic Gateway Marking (OGM)

Beaver extends gateway marking to practical, distributed envi-
ronments using OGM. First, to see why asynchronous SLBs
could break the consistency guarantee, consider a simple sce-
nario in Figure 5 where two SLBs, signaled by an out-of-band
controller, initiate a new snapshot. When g0 initiates snapshot
mode and marks e′6.m, it triggers a snapshot at pin

0 . However,
a new message e′2.m from pout

0 is routed to a different gateway
g1

4, which has not yet entered snapshot mode. This leads to
inconsistency: while e′5 ∈C and e′4→ e′5, e′4 /∈C.

To block or not to block? An obvious solution would be to
block inbound packets at SLBs during a snapshot and only
resume forwarding them after all SLBs have ‘committed’
to the new snapshot. Unfortunately, this method introduces
large overheads—not only to the applications, whose response
times will spike while the SLB is blocking requests but also
to the cloud providers, where the SLB would require large
buffers and overprovisioned capacity to drain said buffers
after a snapshot.

Rather than trying to enforce consistency, Beaver seeks
a method to (a) detect inconsistency, (b) reject snapshots
when they are potentially inconsistent, and (c) minimize the
rejection rate. It seeks to do this with near-zero overhead for
applications and cloud infrastructure.

4.1 Causal Relevance and Irrelevance

A key idea in Beaver is that, even among the incoming traffic
to the in-group, only a subset of that traffic is causally relevant.
Using Figure 5 to illustrate, an incoming message, m, is
causally relevant only when (1) an initiated SLB (g0) sends
a marked message to an in-group node (e.g., pin

0 ), (2) that
node interacts directly or indirectly with an out-group node

4This is typical in ECMP routing, where connections even from the same
source may reach different SLBs.

(e.g., pout
0 ), and (3) that out-group node sends m back to

a different in-group node via an uninitiated SLB (e.g., g1).
Other communication patterns, e.g., an m triggered by an
uninitiated process, are causally irrelevant.

In essence, causally relevant messages are only produced
if the message loop: GWA → INA → OUT → GWB all oc-
curs within the window of time in which the gateways are
propagating snapshot initiation. More formally:

THEOREM 2. In a system with multiple asynchronous
gateways, let the wall-clock time of the first and last
gateway initiating snapshots be ess

gmin.t = miness
g (e

ss
g .t) and

ess
gmax.t = maxess

g (e
ss
g .t), ∀g ∈ G, respectively. Also let τmin =

min(d(g,g′;{p,q})), ∀g,g′ ∈ G, p ∈ Pin, and q ∈ Pout . If
ess

gmax.t− ess
gmin.t < τmin, then the partial snapshot is causally

consistent.

PROOF. We extend the proof of Theorem 1 to a distributed
setting. Similar to Theorem 1, there are three cases, with (3)
being the one that differs. We again prove it by contradiction.

Assume (e ∈Cpart)∧ (∃e′→ e) but (e′ /∈Cpart). As before,
there must be some chain e′→ eout → eg→ e. Because e′ /∈
Cpart , we have ess

pin
j
→ e′ or ess

pin
j
= e′, that is, pin

j must have

been triggered directly or indirectly by an inbound message.
Denote the arrival of this inbound message at its marking
gateway as eg′ . By the definition of τmin, we have eg.t−eg′ .t ≥
τmin > ess

gmax.t− ess
gmin.t. Thus, at event eg, the gateway must

have already initiated the snapshot and will mark eg.m before
forwarding. This results in e /∈Cpart , a contradiction!

Theorem 2 implications: Informally, this theorem suggests
that if the time gap between the first and last SLB snapshot
initiations (ess

gmax.t− ess
gmin.t) is sufficiently small, or the min-

imum time for a message to revisit a gateway (τmin) is long
enough, causally relevant messages are impossible and the
concerned partial snapshot is provably consistent5.

Causally relevant messages are rare in the real world. In-
tuitively and with anecdotal evidence, the inequality ess

gmax.t−
ess

gmin.t < τmin can be satisfied with an exceedingly high prob-
ability in real-world contexts:

For the LHS (ess
gmax.t−ess

gmin.t): This time gap is essentially
the difference in one-way delays between the controller and
each of the SLBs. As SLBs share a region with the target
service, a well-placed initiator (e.g., equidistant from all target
SLBs or one whose messages are forced to travel to the root
of the data center fabric) can simultaneously ensure reactive
snapshot initiation and ess

gmax.t− ess
gmin.t of near zero.

For the RHS (τmin): This value includes multiple network
hops, extending from an SLB to in-group nodes, then to
out-group nodes, and back to an SLB. Particularly when out-
group nodes are in other data centers or are end-host clients,

5In principle, another sufficient condition is when the in-group snapshot
completes quickly enough. We do not rely on this because it has worse scaling
properties than SLB convergence, but it can be added as an optimization.
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Figure 6: The time difference t1− t0 as a safe upper bound for
ess

gmax.t− ess
gmin.t by querying a single hardware clock source

with bounded frequency drift.

this value can be orders of magnitude higher than typical
values for the LHS—on the order of milliseconds or tens of
milliseconds. However, even when the out-group nodes are
in the same region or data center as the in-group, we can
still expect that this value is higher than any observed delta
between initiator-to-SLB one-way delays as it includes at
least three trips through the data center fabric in addition to
processing time at the in/out-group network stacks6.

4.2 Efficiently Verifying Causal Irrelevance
The primary technical challenge of OGM is minimizing the
LHS of the above inequality and efficiently/confidently verify-
ing that the resulting inequality held for a given snapshot, even
in the presence of message drops, delays, and other sources
of unexpected latency. The cloud provider can compute the
two sides of the inequality separately.

4.2.1 Computing a Lower Bound for the RHS

For the RHS, the value can be determined statically, as dy-
namic network conditions like failures and congestion can
only add to the latency of the message sequence. The la-
tency is then equivalent to the sum of each hop’s minimum
propagation, transmission, and processing delays. These val-
ues depend on the relative placements of the in-group nodes,
SLBs, and out-group communication partners, but all of those
are known at runtime. To ensure a conservative lower bound,
operators can and should assume that application-level pro-
cessing and transmission delays are zero (Figure 13).

4.2.2 Determining an Upper Bound for the LHS

The LHS is harder to compute statically as failures and con-
gestion mean a true upper bound may not exist7. Instead,
we need to measure an upper bound online for the observed
difference between gateway timestamps (ess

gmax.t−ess
gmin.t) for

the snapshot in question.
6Even with the detection criteria later described in §4.2, LHS entails only

2 trips and encompasses a simpler data path with SLB stacks that are heavily
optimized for minimal processing latency and jittering [15, 18, 22, 63].

7Beyond the heat death of the universe or at least the life of a data center.

Rubidium JILA Sr Quartz Quartz (calibrated)

∆ f ±0.05 ppb ±2.1×10−18 ±100 ppm ±100 ppb

Table 2: Frequency drift (∆ f ) uncertainty range of today’s
clocks, ppb (parts per billion) = 10−9, ppm (parts per million)
= 10−6.

The typical method of measuring time gaps on different ma-
chines is via clock synchronization. Although today’s clock
synchronization techniques can achieve microsecond or sub-
microsecond precision, fundamentally, they rely on frequent
cross-machine messaging to correct the offset, which is sensi-
tive to congestion and failures, thus impacting the bound on
clock drift in the worst case [23,62]. Data center services like
TrueTime provide a reliable interface to query time points and
calculate their differences. However, a general timing service
incurs higher overhead and a typical clock uncertainty range
of 1–7 ms [13], much greater than the timescales relevant for
Beaver detection.

Synchronization-free approach. Beaver adopts an alterna-
tive, customized approach using a single hardware clock to
calculate the elapsed time. As depicted in Figure 6, the con-
troller queries the start time at t0 from this clock source with a
read tr

0 before initiating a new snapshot. Once the final ACK
from the SLBs arrives, it reads the end time tr

1 at t1 from the
source, where t0, t1 represents the global wall clock time, and
tr
0, t

r
1 the actual clock reads. This hardware clock can be a local

hardware clock from either a COTS PCIe NIC [46] or from
one equipped with an atomic clock, which are increasingly
deployed in production data centers [42, 48].

Note that t1− t0 is an upper bound on the LHS as t1 >
ess

gmax.t and t0 < ess
gmin.t. Thus, if t1− t0 < τmin, the partial

snapshot under examination is consistent. In practice, the time
difference tr

1− tr
0 is adjusted to account for the maximum fre-

quency drift ∆ f according to the clock data sheet, to determine
an upper bound estimate for the corresponding elapsed time
t1− t0, thus the detection criteria (tr

1− tr
0)× (1+∆ f )< τmin.

This method, which relies solely on a single hardware clock
to calculate time differences, eliminates issues common in
traditional clock synchronization approaches, such as cross-
machine message congestion and errors stemming from de-
lays in clock readings due to software interrupts. The fre-
quency drift of a single clock is relatively low and is mainly
deterministically affected by temperature, which has low vari-
ance in modern data centers [38, 44, 59]. Standard quartz
crystal oscillators in production data centers typically drift by
±100 ppm, or 0.01% error [13, 25, 36, 38, 44]; recent studies
are able to reduce this drift of quartz clocks in commodity
data center servers to ±100 ppb (10−7 error) by calibrating
the offset due to temperature variations. More advanced os-
cillators (e.g., atomic clocks) can reduce this frequency drift
by further orders of magnitude [29, 45] (Table 2).

Snapshot invalidation. While ensuring correctness (i.e., no
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false negatives), our proposed upper bound adds an additional
margin to the original time gap. This margin comprises the
clock query latency and the RTT between the controller and
the SLBs, which may lead to false positives. In practice,
however, we note that many devices support precise hard-
ware timestamping along with the packet data path (i.e., when
sending the first notification and when receiving the last noti-
fication). Our evaluations on a cloud data center in §7 reveal
that the resulting snapshot invalidation rate is < 5% for typ-
ical SLB scales today, even in worst-case scenarios when
the out-group nodes are in the same data center and under
stressed snapshot operation frequencies.

In the end, false positives—while leading to the invalida-
tion of potentially consistent snapshots—are of little concern
due to our system’s efficient snapshot operations and its ability
to achieve a high snapshot rate.

5 Beaver’s Partial Snapshot Protocol

As mentioned previously, Beaver’s snapshot ‘quantum’ is a
single VIP—Beaver can provide snapshots for one or more
such VIPs within a single region.

Operation. At a high level, Beaver’s partial snapshot protocol
distinguishes itself from traditional snapshots in two aspects:
(1) its lightweight SLB marking logic for inbound traffic and
(2) the snapshot verification process at the controller.

In-group processes: Among in-group processes, Beaver
inherits its coordination logic (and the omitted, optional
recording of in-flight messages) from prior snapshot algo-
rithms [34, 60] that piggyback ‘marker’ information per mes-
sage to handle non-FIFO and lossy channels8. Figure 7 de-
picts the core logic: upon receiving a packet, either from an
SLB or another in-group process, the current in-group process
evaluates if pkt.sid > csid. If true, it signals a new snapshot
operation: it records the relevant state, updates the local csid,
and asynchronously notifies the controller of completion. For
outgoing packets, if the destination address falls within the
scope of in-group processes, the process updates pkt.sid to
its current csid.

SLBs: As discussed in §4, Beaver instantiates the gateway
overlay with the SLBs. For the set of SLBs handling the
target in-group process traffic, Beaver embeds logic for mark-
ing inbound messages. On receiving an inbound packet, an
SLB first checks if the destination VIP is for the in-group
[line 16]—since operators may multiplex a single SLB server
for multiple VIPs—and modifies the snapshot ID field ac-
cordingly. On the control path, the SLB initializes a new
snapshot upon receiving an ‘INIT’ notification from the con-
troller and subsequently sends the acknowledgment to the
controller. This process happens out-of-band to avoid biases
in the snapshot verification process. Combined, Beaver’s

8Optional broadcast of marker messages from SLBs to in-group processes
may accelerate the snapshot convergence when service traffic is infrequent.

• csid: Current snapshot ID state for p ∈ Pin or g ∈ G.
− pkt.sid: Snapshot ID (Nb) in SLB encapsulation header.
− pkt.dst: Destination address of a user packet.
− pkt.src: Source address of a user packet.

1 function IN-OnReceive (pkt):
2 /* Signaled a new snapshot */
3 if pkt.sid > csid then
4 Record the state of interest;
5 Send FIN for csid +1, . . ., pkt.sid to the controller;
6 csid← pkt.sid;

7 function IN-OnSend (pkt):
8 if pkt.dst ∈ Pin then
9 pkt.sid← csid;

10 function SLB-OnReceive (INIT):
11 if INIT.sid > csid then
12 csid← INIT.sid;
13 ACK for csid +1, . . . , pkt.sid to the controller;

14 function SLB-OnReceive (pkt):
15 /* Mark inbound packet from out-group */
16 if (pkt.dst ∈ Pin)∧ (pkt.src /∈ Pin) then
17 pkt.sid← csid;
18 Forward packet to pkt.dst;

Figure 7: Logic for partial snapshots at in-group processes
and SLBs. All control plane operations are asynchronous.

gateway logic requires minimal processing and can be incor-
porated into existing SLB data planes at line rate, including
hardware-accelerated ones.

Controller: With Beaver, operators can designate any
server with direct or indirect access to a stable clock source,
preferably located near the pertinent SLBs, as the controller.
The core logic to initiate snapshots, shown in Figure 8, in-
volves continuously sending INIT commands to SLBs to
initiate new snapshots. The protocol maintains the number
of snapshots in flight and controls the snapshot frequency.
The detection of invalid snapshots follows the methodology
outlined in §4.2: The controller queries the clock read for
t0 before sending notifications [line 5] and uses the clock
reads upon receiving the last ACK to determine the snap-
shot’s validity [line 20]. It the local NIC supports hardware
time-stamping capabilities, queryClock() can occur along
the data path during the send of the first INIT notification and
the receive of the last ACK response.

Handling packet loss, delay, and reordering. Beaver is
robust to faults in data- and control-plane communications.

Data plane: Unlike the original Chandy-Lamport protocol,
which relies on separate marker messages, Beaver draws inspi-
ration from subsequent variants [34,60] to incorporate marker
information by piggybacking it into existing traffic. This
piggybacking makes Beaver inherently resilient to ‘marker’
losses and reordering on the data path, whether these occur
within the network core or the host networking stacks.

Control plane: Although timely and reliable delivery of
control messages can be beneficial (e.g., through an alternate
port that is dedicated to control tasks) Beaver does not de-
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• csid: The next snapshot ID to initiate at the controller.
• receivedFIN[sid][p]: If received FIN from p ∈ Pin for sid.
• receivedACK[sid][g]: If received FIN from g ∈ G for sid.
• t0[sid]: Timestamp t0 for sid.
− FIN.p: The source process sending the FIN.
− FIN.sids: The associated sid(s) of the FIN.
− ACK.g: The source SLB sending the FIN.
− ACK.sids: The associated sid(s) of the ACK.

1 function Controller-OnSnapshot():
2 num_inflight_ss = 0, csid = 0;
3 while num_inflight_ss < 2N−1−1 do
4 /* Optional rate-limiting for less greedy snapshots */
5 t0[csid] = queryClock();
6 Send INIT s (INIT.sid = csid) to all g ∈ G;
7 num_inflight_ss += 1, csid += 1;

8 function Controller-OnReceive(FIN):
9 for sid ∈ FIN.sids do

10 receivedFIN[sid][FIN.p] = 1;
11 /* Check all FINs received with bitwise negation */
12 if ∼ receivedFIN[sid][·] == 0 then
13 num_inflight_ss−= 1;
14 receivedFIN[sid][·] = 0;

15 function Controller-OnReceive(ACK):
16 for sid ∈ ACK.sids do
17 receivedACK[sid][ACK.g] = 1;
18 /* If all ACKs received */
19 if ∼ receivedACK[sid][·] == 0 then
20 if (queryClock()− t0[sid])(1+∆ f )< τmin then
21 /* Accept the snapshot */
22 else
23 /* Invalidate the snapshot */
24 receivedACK[sid][·] = 0;

Figure 8: Main controller logic for continuous snapshots.

pend on it for its core functionality. It operates effectively
even with unreliable transport protocols such as UDP and it
requires only a negligible number of control messages: |Pin|
FIN messages (or less as members of the in-group, Pin, can
batch updates in a single ACK on the increments in prior
snapshots), |G| INIT commands, and |G| ACK responses for
each snapshot.

While delays or losses of the above messages might slow
down the snapshot rate—a minimal impact as observed in
our evaluation—they do not compromise the correctness of
Beaver. The controller, in response to any delays or losses,
simply invalidates the affected snapshot.

Handling failures. One important problem is how to han-
dle failures of the SLBs and backend servers. Fortunately,
most public clouds today already apply central management
mechanisms that ensure fault tolerance and state consistency
during changes in membership of machines for each VIP9

[10, 15, 22, 50]. Operating on top of the abstraction, Beaver’s
controller coordinates with the SLBs and backend servers
belonging to the requested VIP (as indicated by the current
central state), incurring minimal additional costs and deploy-

9Unlike the DIP caching feature in §2.1, the consistency mechanism was
originally absent in [50], but later incorporated as an essential component.

Layer-3 switches

Internet

SLBs Controller Backend servers
(w/ in-group VIP)

Client

Data center A

1

Backend servers

Data center B

2

3

Figure 9: Evaluation setup considering three different out-
group locations: within the same data center, data center of a
different region, or on the Internet (from a local laptop).

ment complexity. To handle failure events during a snapshot,
Beaver incorporates a single ACK mechanism (Figure 8): if
the controller does not receive the ACK from an SLB or an
in-group process, Beaver simply invalidates the snapshot or
drops affected states while guaranteeing correctness.

Supporting parallel snapshots. Many cases, such as event-
driven or telemetry tasks, require higher-frequency state cap-
ture [60, 61]. Rather than waiting for the completion of one
snapshot before initiating another, limiting the snapshot rate to
the slowest component in the snapshot convergence process,
Beaver can initiate snapshots concurrently. The controller
ensures that the number of packets in flight remains within
2N − 1 [line 3 in Figure 8], the maximum concurrent snap-
shots supported by the header field sid. The extra −1 in the
exponent is to eliminate ambiguities in comparator operations
at in-group processes [line 3 in Figure 7] under worst-case
wrap-around conditions.

Beaver also supports parallel snapshots for distinct groups
of VIPs without needing extra metadata. This is facilitated by
the SLBs’ ability to naturally segregate operations based on
VIP information. Consequently, the same sid header space
can be utilized for simultaneous snapshots across groups with
non-overlapping VIPs.

6 Implementation

We implement a Beaver prototype on a cloud data center [14]
(Figure 9) that aligns with a production setup [15, 28, 50].

Supporting SLB-associated functionalities. We implement
an end-to-end workflow to mirror the behaviors associated
with SLBs in production data centers [15, 28, 50]. Addi-
tionally, our system facilitates automated service discovery
operations through an out-of-band controller server.

SLB implementation: Our setup configures DELL EMC
PowerSwitch S4048-ON [1] for layer-3 ECMP forwarding
based on service VIPs to SLBs. Emulating prior work [15,28],
we implement the core SLB functions with DPDK [19], in-
volving around 1860 lines of C/C++ code. Each SLB main-
tains an in-memory connection flow state, employs consistent
hashing on the 5-tuple of each packet to determine the ap-
propriate backend server, and caches the decision for future
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decisions. Then, the SLBs encapsulate the inbound packet’s
header and forward it to the backend server with the destina-
tion DIP. To maximize utilization of SLB servers, we perform
load balancing across different CPU cores using RSS.

Backend servers: To maintain transparency for the upper-
layer applications, we implement the re-computation of
checksums, NAT caching in a shared eBPF map, and the
de-encapsulation of incoming packets from the SLB via
XDP [27]. For outbound packets, we instrument the Linux
tc to look up the NAT entries and perform the header trans-
formations to replicate Direct Server Return (DSR). In total,
they involve 1040 lines of C/C++ code.

Topology. Our testbed supports typical communication pat-
terns, encompassing a variety of out-group positions, includ-
ing other VIPs within the same data center, VIPs in other data
centers, and Internet clients—all through the layer-3 switches
and SLBs, along with DSR on the return path. We scale up
to 16 SLB servers, each capable of supporting 64 in-group
processes, due to limits in resource availability. Our cur-
rent testbed servers are equipped with Intel(R) Xeon(R) CPU
E5-2640 v4 @ 2.40GHz and dual-port ConnectX-4 Lx NICs.

Integrating the Beaver protocol. We implement Beaver’s
partial snapshot protocol from §5. The SLBs append a snap-
shot ID to inbound packet headers that encapsulate the destina-
tion DIP and the source SLB IP. The in-group processes and
SLBs embed Beaver’s snapshot logic from Figure 7 through
XDP and DPDK. The additional logic involves 68 lines of C++
for SLB data-path logic and 102 lines of C codes for eBPF at
in-group processes. The controller server, following Figure 8,
automates the initiation, control, collection, and verification
of snapshots. We use UDP for bi-directional control messages
with SLBs and unidirectional messages from in-group servers.
The controller currently exploits local NIC hardware times-
tamping (SOF_TIMESTAMPING_RAW_HARDWARE) for precise
timing of INIT and ACK messages on their data path [47].

7 Evaluation

Our evaluation focuses on exploring the following questions.

• Can Beaver sustain fast snapshot rates? How does the
scale of the in-group nodes and SLBs affect? (§7.1)

• What about effective snapshot rates? How often do Beaver
invalidate snapshots in cloud data centers? (§7.2)

• Does Beaver’s distributed coordination affect the existing
service traffic? (§7.3)

• How does Beaver help real-world services? (§7.4)

7.1 Beaver Supports Fast Snapshot Rates

To stress-test Beaver, unless otherwise specified, our evalua-
tion runs Beaver at very high snapshot frequencies. To further
ensure that our performance/overhead results are conservative,
state capture in the snapshots are NOPs. Real local record

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 4 6 8 10 12 14 16

S
n

a
p

s
h

o
t 

fr
e

q
u

e
n

c
y
 [

H
z
]

|G|

(a) w/o parallelism

 0

 50000

 100000

 150000

 200000

 250000

 300000

2 4 6 8 10 12 14 16

S
n

a
p

s
h

o
t 

fr
e

q
u

e
n

c
y
 [

H
z
]

|G|

(b) w/ parallelism

Figure 10: Beaver’s sustained snapshot frequency versus a
strawman approach with blocking operations at varying scales
of SLBs and backend processes.
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Figure 11: Beaver’s effective snapshot rates under varying
snapshot frequencies and in-group process scale.

operations (which are application-dependent and orthogonal
to the study of distributed snapshot protocols) will only result
in less contention and overhead.

As a measure of Beaver’s efficiency and scalability, even at
these high rates, Beaver exhibits good performance. Figure 10
shows the maximum snapshot rate compared to a strawman
approach, which waits for completion before initiating an-
other. The maximum rate is determined by increasing the
snapshot frequency until we observe backlogs in the ACK
and INIT message notification queue. We vary the number
of gateways (|G|) up to 16, aligning with typical values for
SLBs assigned to a VIP.

The baseline is limited by the snapshot convergence time,
which depends on factors such as scale, traffic pattern, and
topology. In contrast, Beaver’s parallel snapshot capability
significantly enhances the rate and shifts the bottlenecks to
the processing power of the controller’s CPU. Even at the
maximum scale, Beaver reaches a snapshot rate of > 77000
Hz, > 18× that of the strawman. In practical applications,
leveraging a more powerful processor or scaling the controller
server could further improve its speed.

7.2 Beaver Invalidates Snapshots Infrequently

With a high snapshot frequency, how does Beaver perform
in terms of effective snapshot rates? Recall in §4.2, Beaver
uses an upper bound t1− t0 for the time gap between SLB ini-
tiations (ess

gmax.t− ess
gmin.t) to eliminate the need for time syn-

chronization, it invalidates a snapshot if the bound is greater
than τmin, the minimum time to for an external causal chain
to occur. While this upper bound ensures correctness, it may
reject snapshots and reduces the effective snapshot rate.
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Figure 12: CDF of Beaver’s upper bound t1− t0 with the ground truth (ess
gmax.t− ess

gmin.t) for > 10M snapshots and a zoom in to
its snapshot series, under stressed scenario with 65536 Hz snapshot frequency and varying number of SLBs/processes.
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To measure the time for an external causal chain to occur,
we consider three distinct scenarios for out-group process
locations in Figure 9. In each scenario, we set up a worst-case
condition where, immediately following an SLB’s snapshot
initiation, the SLB forwards an inbound packet to the closest
in-group node. The in-group node then loopbacks an immedi-
ate message to out-group node with the shortest path, which
bounces the packet back to any SLB. Figure 13 shows that
the intra-DC scenario results in the shortest time window,
resulting in τmin as 33µs. This value is robust because, even
though varying cloud conditions often cause latency spikes,
they primarily affect the tail rather than the minimum.

To stress test Beaver’s performance, we focus on the worst-
case scenarios with out-group processs located within the
same data center. For other scenarios, τmin is significantly
greater, leading to 100% effective snapshot rates across 10M
snapshot operations. We execute Beaver in various exper-
imental settings, including scale and snapshot frequencies.
For each configuration, we calculate the effective rate based
on more than 10 million snapshots. The results, as in Fig-
ure 11, reveal that the proportion of snapshots invalidated by
Beaver is remarkably low even under the maximum operating
frequencies and scales of our testbed.

To better understand the results, we compare the recorded
upper bound estimation of t1− t0 with the true ground truth
ess

gmax.t − ess
gmin.t. As the two events ess

gmax and ess
gmin occur

on separate SLB machines, we synchronize the clocks of
all SLBs to controller’s PTP master clock over symmetric
paths without contending traffic, which reports maximum
50 ns offsets during the ground truth measurement. This
step, meant solely to understand the behavior, should not be
confused with Beaver’s clock-synchronization-free approach.
Figure 12 shows the comparison over > 10M snapshots when
Beaver operates at a frequency of 65536 Hz. Overlapping tails
of ess

gmax.t− ess
gmin.t and the heads of t1− t0 are expected—the

cdf of the pairwise calculation of (t1− t0)−(ess
gmax.t−ess

gmin.t)
for each snapshot clearly demonstrates that the upper bound
is strictly higher than the ground truth SLB initiation time
gap. The observed outliers in t1 − t0 are typically due to
queueing in our manager’s processing queue at high rates
or asynchrony in SLB initiations. Furthermore, the margin
introduced by t1− t0 over ess

gmax.t− ess
gmin.t is due to the RTT

between the controller and the SLBs, which is used to ensure
the theoretical upper bound without clock synchronization.

7.3 Beaver Incurs Near-zero Impact

We also stress test the overhead of Beaver on user traffic.
Figure 14a compares throughput with and without Beaver
under the 65536 Hz snapshot frequency and the max scale of
our testbed. iperf clients send traffic with varying degree of
the total consumed bandwidth capacity of the 16 SLBs. We
also run YCSB benchmark workloads [12] with varying mix
of read, update, and scan operations, as shown in Figure 14
for backend servers running CassandraDB [6]. The requests
follow zipfian distributions, and the scan length adheres to
the uniform distribution.
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Figure 14: Performances with and without Beaver’s overhead,
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Figure 15: Example benign and bot access patterns.

The results of various performance metrics are almost iden-
tical, confirming that Beaver has a near-zero effect on service
traffic. This is because Beaver, by design, eliminates any
delay or blocking operations on the data path for distributed
coordination, and the lightweight control path messages are
orthogonal.

7.4 Use Cases

We also examine several use cases of Beaver. These examples
are intended as instruments through which we can understand
its potential utility, differences versus traditional snapshots,
and the semantics of its causal consistency guarantee under
partial deployments that were previously impossible.

7.4.1 Detecting Anomalous Access

Web applications often feature a JavaScript browser fron-
tend for user interaction and a backend providing service
APIs. Consider a legitimate user access in an e-commerce
application (Figure 15a). The frontend calls a Search API
fetch(“example.com/api/v1/search”), followed by a
Stock API fetch(“example.com/api/v1/get_stock”)
for product details. However, malicious traffic, such as web
scrapers, might bypass the initial search stage and directly
query the stock backend, potentially overwhelming the server.
This type of traffic can be challenging to detect as it differs
from legitimate traffic in intent rather than content [16, 31].

Beaver can help detect such anomaly patterns, as its par-
tial snapshot can capture the external dependency of these
requests, even though it occurs through communication with
the Internet. To illustrate, we run a varying mixture of benign
and illegal bot clients on our testbed. The backend servers

Bot ratio = 0% Bot ratio = 5% Bot ratio = 10%
Method TP, FP, TN, FN TP, FP, TN, FN TP, FP, TN, FN

Polling 0, 0.005, 0.995, 0 0.005, 0.062, 0.874, 0.059 0.069, 0.136, 0.666, 0.129
L-Y 0, 0.005, 0.995, 0 0.001, 0.058, 0.886, 0.055 0.011, 0.105, 0.783, 0.101

Beaver 0, 0, 1, 0 0.053, 0, 0.947, 0 0.113, 0, 0.887, 0.001

Table 3: Beaver’s detection accuracy versus (1) polling-based
approach using time synchronization, and (2) Lai-Yang algo-
rithm, a state-of-the-art global snapshot protocol.
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partial 

snapshot
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traditional 

snapshot
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life time

Invoke

Figure 16: Garbage collection for the ephemeral storage for
serverless analytics.

maintain per-client request count in a BPF map through dou-
ble buffering, so as to ‘freeze’ the current state through a sin-
gle switch of the pointer and minimize the impact of blocking
local record calls. Table 3 shows detection results calculated
against the ground truth. We find that Beaver can accurately
recognize the interdependence between the accesses. For ex-
ample, when all clients are benign, Beaver consistently results
in true negatives, aligning with the ground truth. However, a
polling-based approach and traditional snapshots (L-Y) can
result in false positives due to interpretations of erroneous
capture of higher counts at the Search backend than at the
Stock backend.

7.4.2 Serverless Garbage Collection

Backend services that support serverless applications are also
a natural fit, as requests to serverless functions rely on sched-
ulers and logic that are not visible to the backend services or
the serverless functions themselves. Consider an application
that provides storage for a serverless analytics job and uses
reference counting for garbage collection [32]. The storage
service deploys multiple servers for scalability and supports
three primary APIs: get()/put(), which fetch/upload the
object and increment the reference counter, and deref(),
which indicates that the previously fetched object is no longer
in use and decrements the reference counter.

Beaver’s consistent partial snapshots can support safe
garbage collection decisions. To illustrate, we instantiate two
serverless functions through [30] that follow the workflow
of Figure 16 on our testbed. The backend storage maintains
an in-memory state of reference counters for each KV ob-
ject. When a reference counter reaches 0 in a snapshot, the
controller informs the backends to recycle the correspond-
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Figure 17: A simplified example of geo-distributed social
media application [17] which includes distinct services such
as post-upload, post-storage, and notifier.

ing object. During invocations, we also record the incident
counts of invalid get() access or deref() calls. We find
that, across invocations, the Lai-Yang algorithm may produce
inconsistent snapshots (shown in Figure 16) that indicate no
open references to the object—however, λ1 is still keeping a
reference to it. This leads to unsafe decisions to recycle the
object associated with the key and results in an observed in-
valid call percentage of 23–29%. In contrast, Beaver’s partial
snapshots guarantee causal consistency even in the presence
of external communication that ensures safe reclamation of
the object and consistently results in 0 invalid calls.

7.4.3 Integration Testing

Integration testing, commonly used in CI/CD pipelines [24],
extends the coverage of testing to inter-service logic. Unfortu-
nately, applying it to distributed applications can be challeng-
ing. Consider the example shown in Figure 17, a violation
of the application specification occurs when followers in a
region receive a notification and request the storage DB (case
1) before the cross-region protocol actually replicates the post
data. Recent solutions [17, 53] address the inconsistencies by
forming explicit dependencies (case 2). However, the involve-
ment of auxiliary services and additional dependencies make
it difficult to capture a holistic snapshot.

Beaver offers a practical abstraction to test distributed appli-
cations by enabling partial deployment and capturing causal
dependencies relevant to the local service. By snapshotting
states in post-storage and notifier services, developers can
write test cases to verify the crucial invariant above: the
presence of a post in the storage must always precede its
corresponding notification in the notifier service. In partic-
ular, Beaver’s guarantee of causal consistency means that if
a canary solution is correct, a partial snapshot observing a
log in the notifier must have captured the data entry of the
corresponding version in post-storage. Therefore, a single
violating test case will suggest the presence of bugs.

7.4.4 In-flight Message Tracking

We also revisit the example in Figure 3. As mentioned in
§2.2, a useful query is to estimate the number of concurrent
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Figure 18: (a) Example snapshots for in-flight message track-
ing. (b) Comparison of estimated number of in-flight requests
with and without Beaver.
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Figure 19: An example of deadlock detection using dis-
tributed snapshots.

requests, which can inform resource provision decisions. Fig-
ure 18a illustrates a scenario with only one active request.
In theory, traditional snapshots, which fail to capture the
causality between the client’s follow-up request and the prior
response, can give an overestimation of 2 in-flight messages
(indicated by the cut in red). Beaver, in contrast, can capture
the external causality and results in an estimation of no more
than 1 message in flight (indicated by the cut in green).

To validate the behavior in practice, we run 100 clients
concurrently that conform to the poisson arrival pattern on our
testbed. Each backend process maintains a total request and
response count value using a BPF map. Thus, the difference
between the two counters indicates the number of messages
in flight. The controller then collects the snapshot of counter
values and then obtains the aggregate estimate. Figure 18b
shows that traditional snapshots can overestimate the number
of concurrent requests by more than 30%, while Beaver’s
result consistently matches the ground truth. Worse, a higher
number of backends will lead to an overestimation further
divorced from reality.

7.4.5 Distributed Deadlock Detection

A classic use of distributed snapshots is deadlock detection, a
fundamental problem in distributed systems. Consider the sce-
nario in Figure 19, where the machines of a frontend service
interact with a reservation microservice to book flights and
hotels on behalf of its clients. Here, a frontend server acquires
a lock from the backend server for a target resource ID and
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Figure 20: (a) Comparison of transaction throughput (nor-
malized to Beaver). (b) WFG for the inconsistent snapshot in
Figure 19.

releases it after completing its transaction. A deadlock may
occur when a client requests resources that are held by others,
forming a directed cycle in the resource dependency graph
(known as Wait-For Graphs or WFGs). As these systems
(such as those used by Airbnb and Uber) encompass thou-
sands of microservices, each with its own sovereignty [20,64],
global snapshots are challenging and expensive to enforce.

Beaver, however, is amenable to only taking partial snap-
shots of the reservation service. To illustrate, we run backend
processes that maintain the ID list of client(s) currently own-
ing/waiting for the local resources in memory. When the
controller detects a deadlock based on a snapshot, it informs
backend processes to abort the current transaction. We em-
ulate clients that request backend resources in random order
and measure the resulting transaction throughput. Figure 20a
shows that the traditional snapshot algorithm can suffer from
more than 20% throughput drops compared to Beaver. This
is because, without accounting for the external message de-
pendencies, it can render a snapshot that is inconsistent (Fig-
ure 19), which leads to false deadlocks (Figure 20b) and the
unnecessary costs of deadlock resolution operations. Beaver,
on the other hand, guarantees safe detection.

8 Discussion

Instantiating Beaver gateways. Beaver focuses on pub-
lic clouds, which already contain SLBs, imposing minimal
changes and costs to integrate its functionality. We argue
that these are where partial snapshots are most important as
smaller private clouds are easier to modify wholesale [51].
Without cloud providers’ support, cloud tenants could also
deploy their own Beaver-compatible gateways on virtual ma-
chines (e.g., Network Virtual Appliances (NVAs) [7]) to en-
sure consistency under external communication with clients
and human users. This involves additional costs and complex-
ities and can be suitable if NVAs are already in use, e.g., to
provide firewall functionality.

Optimizing local record operations. Similar to classic dis-
tributed snapshot protocols (§2.2), Beaver is agnostic to the
semantics of local record operations. An interesting problem—

orthogonal to the core mechanism of Beaver—is to enable
efficient local-state capturing mechanisms, especially when
the user desires a large target state or a high snapshot fre-
quency. Besides application-specific practices in §7.4, we
postulate that a more generic and opportunistic approach may
minimize their online impacts by focusing on state changes
during IDLE times of the application. We leave a complete
exploration for future work.

9 Related Work

Distributed snapshots. This work builds on the large array
of classic distributed snapshot algorithms [11, 26, 33, 34, 41,
56, 57, 60]. To the best of our knowledge, Beaver formalizes,
designs, and implements the first partial snapshot primitive
that extends their capabilities for practical usage.

Cloud data centers. Beaver is also related to works on vari-
ous facets of cloud data centers, including layer-4 load bal-
ancers [10, 15, 22, 43, 50, 63] and its clock services [13, 23, 25,
36, 38, 42, 44, 48, 59, 62]. For the former, Beaver integrates
its gateway marking logic based on the behaviors of SLBs
fundamental to cloud data center services and implements a
practical prototype aligned with today’s setups. Meanwhile,
Beaver builds on extensive measurement studies that high-
light the reliable properties of frequency drifts of a single
clock. Combined, Beaver presents a unique design without
making any assumptions about clock synchronization that
ensures consistent, high-rate partial snapshots under external
interactions while incurring minimal changes and impacts to
current operations and service traffic.

10 Conclusion

This paper rethinks the classic distributed snapshots and ob-
serves the mismatch of their assumptions with today’s cloud
services. With it, we present Beaver, the first partial snapshot
primitive that advances the capabilities of existing snapshots
for practical usage in distributed cloud services. Central to
Beaver is the design and instantiation of a novel optimistic
gateway marking primitive. Beaver presents a unique design
point by tightly integrating the protocol with the regularities
of data center networks. Our evaluation demonstrates that
Beaver not only can capture partial snapshots at high speed,
but it also incurs near-zero costs to existing service traffic.
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Abstract

Distributed lock services are extensively utilized in dis-

tributed systems to serialize concurrent accesses to shared

resources. The need for fast and scalable lock services has be-

come more pronounced with decreasing task execution times

and expanding dataset scales. However, traditional lock man-

agers, reliant on server CPUs to handle lock requests, ex-

perience significant queuing delays in lock grant latency.

Advanced network hardware (e.g. programmable switches)

presents an avenue to manage locks without queuing delays

due to their high packet processing power. Nevertheless, their

constrained memory capacity restricts the manageable lock

scale, thereby limiting their effect in large-scale workloads.

This paper presents FISSLOCK, a fast and scalable dis-

tributed lock service that exploits the programmable switch

to improve (tail) latency and peak throughput for millions of

locks. The key idea behind FISSLOCK is the concept of lock

fission, which decouples lock management into grant deci-

sion and participant maintenance. FISSLOCK leverages the

programmable switch to decide lock grants synchronously

and relies on servers to maintain participants (i.e., holders

and waiters) asynchronously. By using the programmable

switch for routing, FISSLOCK enables on-demand fine-

grained lock migration, thereby reducing the lock grant

and release delays. FISSLOCK carefully designs and im-

plements grant decision procedure on the programmable

switch, supporting over one million locks. Evaluation us-

ing various benchmarks and a real-world application shows

the efficiency of FISSLOCK. Compared to the state-of-the-

art switch-based approach (NetLock), FISSLOCK cuts up

to 79.1% (from 43.0%) of median lock grant time in the

microbenchmark and improves transaction throughput for

TATP and TPC-C by 1.76× and 2.28×, respectively.

1 Introduction

Distributed lock services are essential building blocks for

coordinating concurrent access to shared resources in nu-

merous distributed systems, such as OLTP databases [23,

62, 67], file systems [18, 51], and rich cloud-based sys-

tems [1, 22, 25, 52]. Modern distributed systems commonly

rely on fine-grained locks to concurrently access near-billion-

scale datasets, such as files and directories [57, 58, 61],

database tuples [10, 12, 14], and knowledge graphs [2, 4, 15].

With the prevalence of affordable high-performance net-

works (e.g., RDMA) and high-capacity persistent memory

(e.g., Intel Optane) in modern datacenters, it is not uncom-

mon to see microsecond-scale execution time in distributed

in-memory systems [20, 60, 66, 71–73, 78] (see Table 1). As

a result, the overhead of granting locks (10–100µs) becomes

non-trivial (e.g., comparable to task execution time) and even

dominates the end-to-end performance [62, 75, 76].

Distributed lock managers [6, 13, 30, 54, 55, 65, 76] are

commonly designed in a centralized manner to handle lock

requests and grant locks. This makes it easy to enable pow-

erful features such as latency predictability [31, 38, 46], star-

vation freedom [36], and performance isolation [76]. Specif-

ically, before and after accessing a set of objects, the corre-

sponding locks must be acquired from and released to the

lock manager, which acts as a central point for granting and

managing locks. Traditional lock managers rely on commod-

ity servers to serve lock requests, which imposes one net-

work round-trip overhead in granting locks and often incurs

significant queueing delay due to limited request processing

throughput of the server CPUs.

To overcome these drawbacks, it has recently been pro-

posed to use the programmable switch as a centralized lock

manager to host part of locks [76], as it offers lower la-

tency and higher throughput than servers for packet process-

ing. Further, using the switch to handle lock requests halves

the network overhead due to its central network location.

However, due to the limited switch memory (typically just

a few MB), only a small fraction of locks (e.g., less than

10,000 [76]) can be hosted on a programmable switch for

large-scale workloads. This is mainly because the variable-

size metadata of a lock—a set for holders and a queue for

waiters—consumes several hundred bytes of switch mem-

ory. Moreover, the performance of existing switch-based ap-

proaches is heavily dependent on the workloads, which must

be both highly skewed and predictable to achieve significant

improvement. It is also difficult, or even impossible, to dy-

namically update the data plane model of a programmable

switch for exchanging locks.

Key insight. The centralized lock manager can be di-

vided into two phases: synchronous grant decision and asyn-

chronous participant maintenance. Making a grant decision

is based solely on the fixed-size metadata (lock mode),
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Table 1: Task execution time of distributed in-memory systems.

Systems Workload Exec. Time

Txn. Processing [37, 73] TPC-C / TATP 7 / 2.8µs

File System [18, 51] Read / Write / Mkdir 1 / 10 / 20µs

Key-value Store [71, 78] Search / Insert / Delete 8 / 15 / 12µs

Online Trading [20] Trade Execution 10µs

while maintaining participants also requires the remaining

variable-size metadata (holders and waiters).

Our approach. Armed with the above insight, we design

FISSLOCK, a switch-centric lock managing system that also

leverages programmable switches but in a new way to of-

fer significant performance improvement (both latency and

throughput) and memory efficiency for millions of locks.

The key idea is lock fission, which decouples grant decision

and participant maintenance procedures of the lock manager

and deploys the two parts on the programmable switch and

commodity servers, respectively. Specifically, the switch acts

as the decider that immediately makes a decision and replies

to the requester if the lock is granted. Meanwhile, the lock

request is further routed to the server, hosting the agent of

the lock, for updating lock holders and waiters with rich se-

mantics. The main advantages of lock fission are three-folds.

First, it stores only a small, fixed-size lock mode in switch

memory to accelerate millions of locks, which is two orders

of magnitude larger than existing switch-based approaches.

Second, it leverages high-speed, line-rate request processing

of the switch to concurrently grant locks with lower latency

and higher throughput than server-based approaches. Third,

it delegates lock management tasks (i.e., maintaining holders

and waiters) to the server of the lock holder, enhancing load

balance and data locality for diverse workloads.

FISSLOCK proposes the first design of the lock fission pro-

tocol, which splits the lock manager into a centralized, sta-

tionary decider on the switch, and migratable agents for each

lock on the servers. The protocol introduces new workflows

for acquiring and releasing locks, which allow for halfway re-

sponses from the switch when acquiring grantable locks and

migrating agents among servers to exploit locality and bal-

ance lock management loads. FISSLOCK further addresses

the anomalies in the protocol caused by network exceptions

using incarnation checks.

FISSLOCK stores small fixed-size metadata (e.g., lock

mode) for each lock in the switch memory. By carefully de-

signing on-switch metadata structure, a single switch with a

few MB of memory can host millions of locks. To implement

the decider of the lock fission protocol on an ASIC-based

programmable switch (e.g., Intel Tofino [16]), FISSLOCK de-

vises a 6-stage pipeline to process four types of packets in the

protocol. Each stage employs one or more match-action units

in the switch data plane to perform simple operations that a

programmable switch can afford, such as metadata matching

and updating, and packet destination selection.
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Fig. 1: Distributed lock management.

We implemented FISSLOCK from scratch on a Tofino

switch [16] and evaluated it using a microbenchmark, two

transaction benchmarks, and a real-world application. Our

experimental results show that FISSLOCK cuts up to 79.1%

(from 43.0%) of median lock grant time in the microbench-

mark and improves the transaction throughput of TATP [12]

and TPC-C [14] by 1.76× and 2.28×, respectively, com-

pared to the state-of-the-art switch-based approach (Net-

Lock [76]). We built a Redis-backed mobile banking applica-

tion [11] with FISSLOCK, which is one order of magnitude

faster than Redis’s official implementation (RedLock [5]).

Contributions. We summarize our contributions as follows:

• An in-depth analysis of performance issues in existing

lock manager designs for modern distributed in-memory

systems (§2).

• A new centralized lock management scheme, lock fission,

which decouples grant decision and participant mainte-

nance to embrace the best of both programmable switches

and servers (§3).

• A switch-centric lock manager design that enables the

lock fission protocol (§4) and implements grant decision

for millions of locks on the programmable switch (§5).

• A prototype implementation and evaluation that demon-

strates the efficacy of FISSLOCK over state-of-the-art (§7).

2 Background

2.1 Distributed Lock Management

The distributed lock service commonly uses a centralized

lock manager (LM) to handle all requests and grant the lock

for various applications, such as transactions and file systems.

As shown in the left part of Fig. 1, before reading or updat-

ing the protected data, applications—through the lock client

(LC)—acquire the lock in shared or exclusive mode by send-

ing the request to the lock manager, and waits until the lock

manager grants the lock. After accessing the data, applica-

tions release the lock to the lock manager asynchronously.

The lock manager maintains the metadata of locks (meta)

identified by a unique lock ID. The metadata of each lock

contains a mode of lock (mode), a set of lock holders (hold-

ers), and a queue for waiters (wqueue) [13]. The mode is a

small, fixed-size flag (2 bits) that represents the current lock

state (i.e., free, exclusive, or shared) and decides the grant of

locks. Both holders and wqueue require large, variable-size

data structures (up to hundreds of bytes) that represents the

current lock participants and enables flexible locking policies

(e.g., priority and fairness).
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Fig. 2: The architecture of programmable switches (PS) and the

internal structure of match-action units (MAU).

The lock manager can run on dedicated servers to avoid

interference with applications [54, 55, 65] (called SrvLock).

However, it may not scale well with fast-growing applica-

tion workloads and datasets. Therefore, the lock manager

can also be partitioned and co-located with applications to

further exploit locality [6, 13, 30] (called ParLock), but it

may suffer from load imbalance under skewed workloads.

Recently, the programmable switch has been proposed to

handle skewed workloads by managing a small fraction of

hot locks (e.g., less than 10,000) directly on the switch

(i.e., NetLock [76]), because it provides higher throughput

than servers, halves the network latency, and saves server re-

sources. However, due to the limited memory resources of

programmable switches (a few MB), just a part of the work-

load can be accelerated, and the rest will be downgraded to

server-based solutions. The right part of Fig. 1 illustrates the

above three solutions for distributed lock management.

2.2 Programmable Switch (PSwitch)

Programmability is becoming a trend in modern network

switch design, with support from major manufacturers like

Cisco [3], Broadcom [33], and Intel [16]. Compared with

commodity servers, programmable switches possess orders

of magnitudes higher throughput (several billion packets

per second) and lower delay (less than 1µs) for packet

processing [34]. Yet, only very limited memory resources

(a few MB) are available. As shown in Fig. 2, modern

programmable switches have a general-purpose CPU with

DRAM (i.e., the control plane) attached to the switch ASIC

(i.e., the data plane) via a PCIe bus. The control plane hosts

a Linux-based operating system that manipulates the switch

ASIC as a device. The data plane is programmable via P4

Language [19], which describes the logic of packet parsing,

processing, and forwarding. Specifically, packet processing

is realized as pipelines of match-action units (MAUs), which

perform pre-defined packet modifications (actions) accord-

ing to the value of specific fields in the packet header. In-

coming packets can be either forwarded to a single egress

port (unicast) or replicated to multiple egress ports (multi-

cast). Each MAU reads and updates user-defined data stored

in register arrays (hundreds of KB) once for each packet,

and conditionally modifies packet header fields according to

match-action tables (up to over 1 MB).
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down with different task execution times (1µs, 10µs, and 20µs) un-

der update-heavy (UH) and read-mostly (RM) workloads (left), and

the lock grant time distribution under read-mostly Uniform (Uni.)

and Zipfian (Zipf.) workloads when using different LMs (right).

Testbed: An 8-node cluster with an Intel Tofino switch. Workload:

A microbenchmark with one million locks (see §7.1 for details).

2.3 Performance Analysis

Grant time becomes increasingly important. The end-to-

end latency of typical distributed tasks is mainly composed

of execution time and lock acquire/release time. Lock re-

lease time is irrelevant as locks are typically released asyn-

chronously. Lock acquire time consists of two parts—wait

time and grant time, which denotes the duration that the

request is suspended in wqueue and the rest, respectively.

Nowadays, microsecond-scale execution time becomes com-

mon in distributed in-memory systems [18, 51, 60, 66, 71–

73, 78]. Meanwhile, the rapidly increasing size of datasets

(e.g., millions of objects per thread [29, 66]) dramatically en-

larges the lock space, resulting in lower lock contention rate

and less wait time. Consequently, grant time becomes non-

negligible in the end-to-end task latency. As shown in Fig. 3

(left), grant time accounts for a significant portion of the me-

dian and tail end-to-end task latency under workloads with

varied read-write ratio and skewness, while wait time is neg-

ligible because of the low lock contention.

Despite its importance, grant time has not drawn enough

attention in existing lock manager designs, in which we ob-

serve three major performance issues (see Fig. 3 (right)).

Issue#1: Unstable latency. All existing approaches rely on

server CPUs to process (partial or all) lock requests, intro-

ducing significant queueing delay that makes the grant time

unstable. Since the server receives and processes packets in

batches, the handling latency of requests is proportional to

their positions in the batch. Due to the limited packet pro-

cessing power of server CPUs, this results in non-trivial grant

time variance, from a few µs to over 100µs in our testbed.

Note that requests handled by the switch do not exhibit ap-

parent queueing delay because of line-rate processing.

Issue#2: Limited acceleration. Both ParLock and NetLock

adopt fast-path request handling to accelerate a part of lock

requests, but the portion of accelerated requests is rather lim-

ited. ParLock partitions the locks to handle some lock re-

quests locally, which saves 1 RT as compared with SrvLock.

However, the portion of locally handled requests is inversely

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    253



proportional to the cluster size (e.g., 12.5% in our 8-node

setup). NetLock manages hot locks on the programmable

switch, halving the required round trips and eliminating

queueing delay. However, due to limited switch memory ca-

pacity, the switch can only manage thousands of locks, which

are insufficient for protecting million-scale datasets without

exhibiting significant contention (see §7.7). When managing

1 million locks, even with workload profiling in advance,

NetLock only accelerates 1% and 27% of grants under the

Uniform and Zipfian workloads, respectively, as most re-

quests are handled by the lock server instead of the switch.

Issue#3: Workload sensitivity. The performance of Par-

Lock and NetLock are sensitive to workload attributes,

which results in their dependence on prior knowledge of the

workload. ParLock partitions locks statically, which incurs

severe load imbalance problem under skewed workloads. In

our experiment on the Zipfian read-mostly workload, 56.7%

of requests are processed by one server, which throttles the

LM and results in extremely high grant time. Due to the lim-

ited switch capacity, NetLock prefers skewed workloads and

heavily relies on workload profiling for detecting hot locks.

It falls back to SrvLock on occasions that the workload is

uniform or has dynamic patterns (e.g., e-commerce).

3 Approach and Overview

System model and design goals. FISSLOCK is a distributed

lock management system that uses programmable switches

to accelerate the processing of millions of locks across

diverse workloads. It is designed for distributed in-memory

systems that rely on a centralized lock service to coordinate

concurrent access of microsecond-scale tasks to large-scale

shared datasets. Unlike lock-based coordination services

like Zookeeper [32] and Chubby [21], which aim for reliable

but coarse-grained coordination, FISSLOCK is not designed

to achieve high availability. Instead, FISSLOCK has three

high-level design goals:

• Efficiency: Grant locks in single-digit microseconds to

meet the common needs of microsecond-scale tasks.

• Pervasiveness: Unleash full-scale acceleration for million-

scale locks, making it feasible for large-scale systems.

• Robustness: Ensure good yet stable performance for

diverse or dynamic workloads without prior knowledge.

Key insight. The lock management can be divided into two

phases: grant decision and participant maintenance. The de-

cision phase determines whether the lock can be granted with

regard to the current lock mode, while the maintenance phase

manages lock participants (i.e., holders and waiters) accord-

ingly. We recognize two key insights that motivate the split

design of a centralized lock manager. First, decision making

must be synchronous (i.e., executed before handling other

requests) to ensure the correctness of lock semantics, while

participant maintenance can be asynchronous to shorten the
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Fig. 4: The lock fission scheme (left) and the system architecture of

FISSLOCK (right).

critical path of granting a lock. Second, decision making re-

lies solely on the fixed-size metadata (shared or exclusive),

while participant maintenance also requires the remaining

variable-size metadata (holders and waiters).

Our approach. We propose lock fission as a technique

that decouples decision and maintenance in terms of both

functionality and metadata. Specifically, the lock manager is

split into a centralized decider and multiple per-lock agents

(see Fig. 4 (left)). The decider records each lock’s mode

and makes granting decisions for lock requests accordingly,

while the agent stores and maintains the remaining lock meta-

data (e.g., holders and waiters) of the corresponding lock.

The lock acquisition request is first sent to the decider, which

makes decisions and replies instantly if the lock is granted.

Simultaneously, the decider forwards the request to the re-

sponsible lock agent, which updates holders and waiters ac-

cording to the decision. Release requests are also sent to the

decider and forwarded to the agent. When the last holder re-

leases, the agent grants the lock to the next holder or frees

the lock. In both cases, the decider is notified in advance to

update the lock mode.

Lock fission provides the opportunity to accustom work-

load attributes without prior knowledge. By recording the

resident machine ID (mid) of each lock’s agent, the decider is

always able to route requests to the latest location of agents,

which supports the dynamic migration of lock agents among

machines. To balance the request handling load among ma-

chines, agents are on-demand dispatched to the lock holder’s

machine. When the lock is freed or transferred to waiters, the

agent is deconstructed or migrated to the waiter’s machine.

The migration of agents also enables most release requests

to be processed by local agents, thereby shortening the net-

work path of lock release operations.

Lock fission meets the design goals by exploiting the

packet processing strengths of programmable switches and

the high memory capacity of commodity servers simultane-

ously. First, metadata for decision is small, fixed-size data,

which enables decision making for million-scale locks with

limited switch memory capacity. Second, since maintenance

is decoupled with decision, servers are not involved in the

lock granting critical path, which eliminates the queueing de-

lay. Third, lock fission does not require any prior knowledge

of the workload and resolves the load imbalance problem by

dynamic lock agent migration.
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System overview. FISSLOCK is a switch-centric lock man-

agement system that applies lock fission to enable effi-

cient and centralized management of million-scale locks. As

shown in Fig. 4 (right), FISSLOCK is composed of lock

clients (LC), a decider (Dr), and lock agents (A). Lock clients

are libraries that encapsulate lock acquire/release requesting

functionalities into APIs. The decider resides on the switch

for accelerating lock grants and routing requests to agents.

Each machine owns an agent pool that manages all agents

on it. Lock requests forwarded from the decider are received

by the agent pool, which finds the responsible agent for each

request and hands over the request. The agent subsequently

updates the lock metadata.

Applications acquire locks via the LC, which sends the re-

quest to the decider, or if the lock agent can be found locally,

the lock agent. The decider makes decision and replies in-

stantly, multicasting the request to the lock agent’s resident

machine at the same time. Packets arriving at machines are

dispatched to the lock client (grant replies) and the agent

pool (lock requests), which wakes up application tasks and

calls agent functions to update the lock metadata respectively.

When the lock is released, similar to the acquire case, the

request is forwarded to or directly handed over to the lock

agent. If the lock needs to be granted to the next holder, the

agent is transferred along with the lock ownership.

4 FISSLOCK

This section describes the lock fission protocol implemented

by FISSLOCK. Although the design principles of lock fission

are independent of specific lock mechanisms used, we elabo-

rate on the read-preferring design as an example, and briefly

discuss the write-preferring design in §6.

4.1 Lock Operation Workflow

Fig. 5 illustrates the nine possible workflows (➀–➈) for ac-

quiring and releasing locks in the lock fission protocol. The

branches executed in each workflow are marked on the pseu-

docode presented in Fig. 6, Fig. 7, and Fig. 8.

Lock acquisition workflow (➀–➄). To acquire a lock, the

lock client (C) sends an ACQUIRE request to the lock decider

(D) (Line 5 in Fig. 6). The decider makes a lock granting de-

cision by examining the mode of the lock (meta.mode) and

# lid|mid|tid: lock|machine|task ID

# mode: lock mode in {FREE=00, EXCLUSIVE=10, SHARED=11}

sslock_acquire(lid, mid, tid, mode)

1 if agents.find(lid) then # local agent (rare)

2     if acquire(lid, mid, tid, mode) then

3       return   # local grant

4 else # remote agent

5 net_send(ACQUIRE, {lid, mid, tid, mode})

# wait for grant

6   pkt = net_recv(GRANT, lid, mid, tid)   

7   if pkt.agent != nil then   # add agent

8     grant(lid, mid, tid, mode, pkt.agent)  

sslock_release(lid, mid, tid)

9 if agents.find(lid) then # local agent

10    release(lid, mid, tid)

11 else   # remote agent (rare)

12 net_send(RELEASE, {lid, mid, tid})

Fig. 6: Pseudocode of FISSLOCK client lib implementation.

the requested mode in the packet (pkt.mode). If the lock is

free (➀), the decider will update the lock mode and imme-

diately grant a lock with an empty agent (A) to the client

by returning a GRANT packet (Lines 2–6 in Fig. 8). After re-

ceiving the packet, the client calls the grant function of the

agent pool to initialize the agent and add it to the pool (Lines

17–19 in Fig. 7). If the lock is being held and both modes

are SHARED (➁), the decider will still immediately grant

the lock to the client and multicasts the ACQUIRE request

to the agent (Lines 8–11 in Fig. 8). The agent will add the

requester to holders later (Lines 2–4 in Fig. 7). Finally, if the

lock cannot be granted immediately (➂), the decider will for-

ward the request to the agent, and the agent will append the

requester to the wait queue (Line 6 in Fig. 7). In rare cases

(➃ and ➄), the agent is on the same machine since another

client on the machine is hosting the lock, such that the client

will locally acquire the lock by calling the acquire func-

tion of the agent pool (Line 2 in Fig. 6). The agent can make

a decision by itself—to grant (➃) or to wait (➄)—without

consulting the decider. This is because the agent always has

the latest lock mode and does not need to update the decider.

Lock release workflow (➅–➈). In the lock fission proto-

col, the agent (A) is always located on the same machine

as the current holder (e.g., the first holder of the shared lock).
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# agent:

#   mode: lock mode in {FREE=00, EXCLUSIVE=10, SHARED=11}

#   holders: a set of lock holders {mid, tid}

#   wqueue: a queue of waiters {mid, tid, mode}

acquire(lid, mid, tid, mode)

1   agent = agents[lid]

2   if mode == SHARED && agent.mode == SHARED then

3     agent.holders.add({mid, tid})

4     return TRUE   # grant lock

5   else

6     agent.wqueue.append({mid, tid, mode})

7     return FALSE   # wait for grant

release(lid, mid, tid)

8   agent = agents[lid]

9   agent.holders.remove({mid, tid})

10  if agent.holders.empty() then

11    agents.remove(lid) # remove agent

12    if agent.wqueue.empty() then

13      net_send(FREE, {lid}) # free agent

14    else # transfer agent and grant lock

15      next = agent.wqueue.pop()

16      net_send(GRANT, {lid, next.mid, next.tid, 

next.mode, agent})

grant(lid, mid, tid, mode, agent)

17  agent.mode = mode

18 agent.holders.add({mid, tid})   # grant lock

19 agents.add(lid, agent)   # add agent

20 if agent.mode == SHARED then   # grant others

21 .. # pop shared waiters and add to holders

22 .. # send grant lock (w/o agent) to them

Fig. 7: Pseudocode of FISSLOCK agent pool implementation.

Therefore, when releasing a lock, its agent is highly probable

to be local to the requester. The client requests the local agent

to release a lock through calling the release function of

the agent pool (Lines 9–10 in Fig. 6). If the lock is also held

by other clients of the machine (➅), the release completes

immediately (Line 9 in Fig. 7). If there is no waiter (➆), the

agent pool will remove the local agent and send a FREE re-

quest to the decider (Lines 11–13 in Fig. 7). The decider will

free the lock and drop the packet directly (Lines 14–15 in

Fig. 8). If there are waiters (➇), the lock with its agent will be

transferred to the next holder, popping from the wait queue,

by sending a GRANT packet to the decider (Lines 15–16 in

Fig. 7). The decider updates the lock metadata and forwards

the packet to the machine of the next holder (Lines 17–19 in

Fig. 8). After receiving the packet, the client calls the grant

function of the agent pool to maintain the agent and add it to

the pool (Lines 17–19 in Fig. 7). Furthermore, if the lock

could be shared with subsequent waiters, the client will pop

them from the wait queue and add to the holders, sending a

GRANT packet to each of them (Lines 20–22 in Fig. 7). If

the client, without a local agent (e.g., one holder of a shared

lock), releases the lock (➈), it will send a RELEASE request

to the decider (Line 12 in Fig. 6). The decider will then for-

ward the request to the agent (Line 13 in Fig. 8), and the

agent will call the release function (Lines 8–16 in Fig. 7)

to release the lock, as in the above workflows (➅–➇).

# meta:

#   mode: lock mode in {FREE=00, EXCLUSIVE=10, SHARED=11}

#   mid: machine ID

process_acquire(pkt): # pkt: {lid, mid, tid, mode}

1   meta = metas[pkt.lid]

2 if meta.mode == FREE then # lock is free

3   meta = {pkt.mode, pkt.mid}   # alloc agent

# grant lock and assign (empty) agent

4     agent = {pkt.mode, {}, {}}

5     grant_pkt = pkt.append(agent)

6 forward_packet_to(GRANT, pkt.mid, grant_pkt)

7 return

8   if meta.mode == SHARED && pkt.mode == SHARED then

# grant lock

9     grant_pkt = pkt.append(nil)

10 forward_packet_to(GRANT, pkt.mid, grant_pkt)

# acquire lock on agent

11 forward_packet_to(ACQUIRE, meta.mid, pkt)

process_release(pkt): # pkt: {lid, mid, tid}

12  meta = metas[pkt.lid]

# release lock on agent

13  forward_packet_to(RELEASE, meta.mid, pkt)

process_free(pkt): # pkt: {lid}

14  metas[pkt.lid] = {FREE, nil}   # free agent

15  drop_packet(pkt)

process_grant(pkt): # pkt: {lid, mid, tid, mode, agent}

16  meta = metas[pkt.lid]

17  if pkt.agent != nil then   # transfer agent

18    meta = {pkt.mode, pkt.mid}

# grant lock and assign agent

19 forward_packet_to(GRANT, pkt.mid, pkt)

Fig. 8: Pseudocode of FISSLOCK decider implementation.

4.2 Network Exceptions

The lock fission protocol splits the lock manager into a sta-

tionary decider on the switch and migratable agents for each

lock on the servers. Since they are connected via the network,

network exceptions including lost, out-of-order, and delayed

packets may cause some anomalies. FISSLOCK addresses

these anomalies by retransmission, rerouting, and incarna-

tion checks, respectively. As requests for different locks do

not interfere with each other, we only consider out-of-order

and delayed packets pertaining to the same lock.

Lost packets. FISSLOCK uses different approaches to han-

dle the loss of packets initially sent by the switch and servers.

Server-initiated packets. FISSLOCK addresses the loss of

packets initially sent by servers through TCP-based retrans-

mission. When a server receives a packet, it sends an ac-

knowledgement (ACK) to the origin of the packet. The

switch forwards ACKs without updating on-switch meta-

data. Specifically, the destination of FREE packets (➆) is the

switch instead of servers, in which case the switch sends the

packet back as an ACK. Servers monitor the arrival of ACKs

for each packet regularly and retransmit packets that are not

ACKed within a certain time frame.

In cases where the ACK is lost or delayed, the retransmis-
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Fig. 9: Two anomalies in the protocol due to out-of-order packets.

sion mechanism can cause packet duplication, which is han-

dled by servers through TCP. To prevent duplicated packets

from corrupting on-switch metadata, the switch maintains a

sequence number for each server to signify the number of

processed packets. Servers track the number of packets sent

to the switch, excluding retransmitted ones, and embed this

number into all packets. If the incoming packet’s number

is not larger than the on-switch number, indicating that the

packet is a duplicate, the switch does not update the lock

metadata when processing the packet.

Switch-initiated packets. In workflows ➀ and ➁, the lock

request is granted by the switch instead of servers. There-

fore, the GRANT packets in these workflows are considered

switch-initiated. To avoid the complexities of monitoring

ACK arrivals and executing retransmissions on the switch,

FISSLOCK addresses the loss of switch-initiated packets in

an alternative way—by setting a fixed timeout for lock acqui-

sition operations. If an acquisition operation times out due to

the absence of the GRANT packet, the client releases the lock

(➈) and retries the acquisition operation later. When process-

ing the RELEASE packet, the switch frees the lock and drops

the packet if it originates from the agent’s server (➀). If the

RELEASE packet arrives at the agent, the agent removes the

client from holders (➁) or, if the client is not in holders (➂),

the wait queue.

Out-of-order packets. Packets with dependencies arriving

out of order may lead to two anomalies. If ACQUIRE

and RELEASE requests from the same requester are re-

ordered (Fig. 9 (left)), the agent pool will fail to process

the RELEASE request because the requester is not yet the

holder or waiter of the lock. Further, the lock will never be re-

leased after granting it to the requester. If the ACQUIRE (and

RELEASE) packet arrives before the agent is granted (Fig. 9

(right)), the agent pool will fail to process the ACQUIRE

(and RELEASE) request because the agent does not exist.

To avoid extra on-switch design, FISSLOCK resolves these

anomalies by simply sending failed requests back to the de-

cider. The decider then routes the request to the agent again,

correcting the order.

Delayed packets. The ACQUIRE packet, which is immedi-

ately granted by the decider (➁), may lead to anomalies

when it arrives after the agent has been transferred (➇) or
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Fig. 10: Two anomalies in the protocol due to delayed packets.

freed (➆). Note that the lock mode and the ACQUIRE packet

must be both shared, as the lock is immediately granted. As

shown in Fig. 10, the decider will incorrectly transfer the

lock with its agent to the next holder (➇) or grant the freed

lock to a new client (➀). The agent pool will fail to process

the delayed packet.

FISSLOCK uses incarnation checks [68] to detect anoma-

lies on the decider. Both the decider and the agent have a

per-lock incarnation that is initially zero and is incremented

when receiving a shared ACQUIRE request (➁). The agent

pool will include the expected incarnation in the GRANT and

FREE packets. When the decider receives these packets and

the lock is shared, it will check if its own incarnation matches

the incarnation in the packet. If they match, the decider re-

sets the incarnation and handles the request as normal. Oth-

erwise, it refuses the packets, and the agent pool restores

the agent to continue handling lock requests. Moreover, the

failed ACQUIRE request will also be sent back to the decider,

which will then route the request to the agent again.

4.3 Protocol Correctness

The lock fission protocol introduces two changes to the tra-

ditional reader-writer lock design: decoupling the decision

process from the lock manager and allowing lock agents to

migrate among servers. We argue the correctness of our lock

fission protocol by showing that these changes preserve the

reader-writer property [24, 53]. Specifically, we prove that

the following two invariants always hold.

Invariant 1 (reader-writer exclusion): Locks held in exclu-

sive mode do not have any other holders; locks held in shared

mode do not have any exclusive holders.

In the traditional reader-writer lock design, all acquisition re-

quests are processed by the lock manager, which maintains

Invariant 1. In the lock fission protocol, requests are either

processed by the local agent or sent to the decider. Both of

them grant or suspend lock requests following the same cri-

teria as traditional lock managers. Hence, Invariant 1 holds

as long as the local agent and the decider always have con-

sistent lock mode, and the lock mode correctly reflects the

number of holders, which we prove as follows.

Lemma 1: If the local agent exists, it has the same lock mode

as the decider.
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Proof: The lock mode in the decider becomes shared or ex-

clusive when a free lock is acquired for the first time (➀) or

the lock is transferred to a shared or exclusive waiter (➇).

In both cases, the agent is carried by the GRANT packet, so

the local agent does not exist until the GRANT packet is re-

ceived by the requester’s machine. Moreover, the lock mode

in the carried agent, which subsequently becomes the local

agent, is identical to the updated lock mode in the decider.

Before the local agent is removed, the decider only receives

ACQUIRE and RELEASE packets, which do not change the

lock mode. Hence, the lock mode in the decider remains con-

sistent with the lock mode in the local agent.

Lemma 2: The lock mode in the decider always correctly re-

flects the number of holders.

Proof: We enumerate all possible lock mode transitions to

prove Lemma 2. Initially, each lock is free and has no hold-

ers. The lock mode transits from free to shared or exclusive

only when the lock is granted to a requester, which guaran-

tees that the lock has at least one holder. If the lock mode is

exclusive, subsequent ACQUIRE packets will not be granted.

Hence, exclusive locks have at most one holder. The lock

mode transits back to free only when receiving FREE packets

whose incarnation matches the decider’s incarnation, which

indicates that all holders have released the lock. Similarly,

the lock mode transits between shared and exclusive when

receiving GRANT packets that have matched incarnation. In

this case, all former holders have released the lock, and the

destination of the GRANT packet becomes the new holder.

Invariant 2 (finite wait): Waiters of the lock will be granted

in finite time.

Traditional lock managers decide to suspend a lock request

and add the requester to the wait queue simultaneously. How-

ever, in the lock fission protocol, these two operations are de-

coupled and executed by different entities, i.e., the decider

and the agent. We show that Invariant 2 still holds in the

decoupled setup, which allows the agent to migrate among

servers, by proving Lemma 3 and 4.

Lemma 3: Lock acquisition requests that are suspended will

eventually be added to the wait queue.

Proof: Lock acquisition requests may be suspended by the

agent locally (➄) or remotely (➂). In the former case (➄),

the local agent directly adds the requester to the wait queue

when suspending the request. In the latter case (➂), the

decider, after deciding not to grant the lock, forwards the

ACQUIRE request to the agent, which adds it to the wait

queue. If the agent is not present due to packet reordering,

the request is sent back to the decider. The decider then for-

wards it to the agent’s latest location, guaranteeing that it will

eventually be recorded in the agent’s wait queue.

Lemma 4: Waiters recorded in the wait queue will eventually

be granted.

Proof: All holders of a lock will eventually release it, either

Agent Pool

mode holders wqueue

mid modetid

agents

mid tidincahash(lid)

Fig. 11: The main structures in the agent pool.

locally (➅) or remotely (➈). Therefore, the number of hold-

ers will eventually become zero, unless the lock is continu-

ously granted to new shared holders (➁), which FISSLOCK

averts by adopting a starvation prevention mechanism (see

§6). When the number of holders reaches zero, at least one

waiter is granted and becomes the new holder (➇). Thus, ac-

cording to induction, all waiters will eventually be granted.

5 Design

5.1 On-server Agent Pool

Data structures. As shown in Fig. 11, the agent pool uses

a hash table to store granted agents, which is shared by all

clients on the same machine. Each agent maintains com-

plete lock metadata, including mode, incarnation, holders,

and wqueue. The holders is an unordered set of current lock

holders (mid, tid), and the wqueue is a FIFO queue of pend-

ing lock requests (mid, tid, mode). The incarnation (inca) is

used to handle delayed packets.

Agent operations. The agent pool adds an agent when re-

ceiving a GRANT packet with agent information (Lines 17–

19 in Fig. 7) and removes an agent when the lock is freed or

granted to the next holder (Line 11 in Fig. 7). Furthermore, if

the agent pool fails to process packets due to network excep-

tions (see §4.2), it sends such packets back to the decider. For

incarnation checking, the agent pool includes the expected

incarnation in the GRANT and FREE packets and restores the

agent if the decider refuses these packets.

5.2 On-Switch Lock Decider

Data structures. The metadata of all locks (metas) is stored

in register arrays of MAUs (RA in Fig. 12). When lock pack-

ets pass through the MAU, predefined actions read and up-

date lock metadata via ALUs attached to the RA. To guar-

antee line-rate packet processing, each RA can only be ac-

cessed once per packet, and the ALU is allowed to perform a

few simple arithmetic operations. Therefore, the lock decider

functionality and metadata must be split into multiple MAUs,

creating a pipeline. Each MAU stores a piece of metadata

and performs the corresponding logic. All RAs are indexed

by the lock ID (lid).

FISSLOCK carefully selects the register size of RA for

minimal memory consumption. The allowed register size in-

cludes 1 bit and a specific amount of bytes (1, 2, 4, or 8).

An intuitive design is to store all of the lock mode, machine

ID (mid), and incarnation (inca) into 1-byte RAs, while it

wastes 6 bits for each lock mode. Instead, FISSLOCK stores

the lock mode with two 1-bit RAs (free RA and r/w RA in
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Table 2: Packet types used in FISSLOCK.

Type Contents

ACQUIRE lock ID and mode to be acquired, machine ID and

task ID of the requester

RELEASE lock ID to be released, machine ID and task ID of

the requester

FREE lock ID to be freed, INCA, and lock mode before free

GRANT lock ID to be granted to machine ID and task ID,

INCA, and agent of the lock (optional)

Fig. 12), indicating whether the lock is held and whether the

lock is shared, respectively. Both inca and mid use 1-byte

RAs (inca RA and mid RA in Fig. 12). Although 8 bits are

still over-sufficient, there are unfortunately no smaller regis-

ter units in the RA to store them. Packing multiple mids (or

incas) in one register is not feasible due to memory accessing

restrictions. In summary, FISSLOCK compresses the switch

memory consumption of each lock to 18 bits, which is two

orders of magnitudes smaller than prior work [76].

Using 1-byte registers for mid and inca, a single MAU

is not enough for the million-scale lock amount. Therefore,

FISSLOCK splits them into multiple MAUs, each storing a

fixed range of locks. For these MAUs, the lock ID is trans-

lated into a MAU index and an offset within the MAU (MAU-

selection stage in Fig. 12).

Packet processing pipeline. The decider is realized as a 6-

stage pipeline that processes four types of packets in FISS-

LOCK (see Table 2), where all packets share the same header

format but use different header fields. Each stage checks the

metadata in the packet or loaded from former stages for se-

lecting proper actions to execute. Actions leverage the ALUs

attached to RAs to read, update, and write back the meta-

data simultaneously. FISSLOCK organizes the MAU order

to ensure that all metadata is loaded from RAs before be-

ing used by subsequent stages. Only packet types marked in

Fig. 12 are processed in corresponding stages. The logic of

each stage is described as follows.1

MAU-selection stage translates the lock ID into the MAU in-

dex and the offset in the MAU in Fig. 12 for Check stage and

MID stage. In Check stage and MID stage, MAUs other than

the indexed MAU are skipped.

Check stage checks and updates the incarnation. ACQUIRE

packets for a shared lock increment the incarnation by 1.

GRANT packets with agent and FREE packets reset the in-

carnation if the current lock mode is exclusive2 or the incar-

nation in the packet is matched, i.e., there are no delayed

packets. Otherwise, the packet is marked as invalid and will

be skipped by the rest stages except for Destination stage.

Free stage updates the free register in RA and loads its orig-

1Stages for identifying lock packets and supporting retransmissions are not

included for convenience.
2The mode field of packet header is used to transfer the current lock mode.
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Fig. 12: The metadata of locks stored in register array of MAUs

and packet processing pipeline (data flow) in programmable switch.

inal value to the FREE flag in Fig. 12. ACQUIRE and FREE

packets set the free register to 0 (held) and 1 (free) despite

its original value, respectively, as 1-bit RAs do not support

conditional updates with regard to the original register value.

R/W stage updates the r/w register in RA. GRANT packets

update the r/w register to the next holder’s mode. ACQUIRE

packets only update the r/w register to the requester’s mode

when the lock is free (Line 3 in Fig. 8), i.e., the FREE flag is

1. This stage sets the SHARED flag in Fig. 12 that indicates

whether both the pkt.mode and the r/w register are SHARED,

which determines packet destinations later.

MID stage loads and updates meta.mid in mid RA.ACQUIRE

and GRANT packets store the pkt.mid into mid RA as the new

agent’s location when the lock is free (Line 3 in Fig. 8) and

when carrying the agent (Lines 17–18 in Fig. 8), respectively.

FREE packets reset meta.mid to 0 (Line 14 in Fig. 8).

Destination stage routes packets to correct egress ports. The

destination is controlled by two fields defined by the switch

(DEST and DEST2 in Fig. 12), which specify the ports that

the packet should be replicated and forwarded to. Both fields

can be null for dropping the corresponding packet replica.

Packets specify their destination in DEST and the multi-

casted packet’s destination in DEST2. Programmed egress

pipelines update the type of multicasted packets to GRANT.

ACQUIRE packets are forwarded to the pkt.mid when the

lock is free (Line 6 in Fig. 8), meta.mid when the request is

suspended (Line 11 in Fig. 8), and both mids when a shared

lock is granted to a shared requester (Lines 10–11 in Fig. 8).
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RELEASE packets are always forwarded to meta.mid (Line

13 in Fig. 8). GRANT and FREE packets are forwarded to

pkt.mid (Line 19 in Fig. 8) and dropped (Line 15 in Fig. 8),

respectively, unless marked as invalid in Check stage, in

which case they are forwarded back to meta.mid.

5.3 Failure Handling

Failure model. FISSLOCK can tolerate individual and simul-

taneous switch and server failures, but it does not guaran-

tee availability (without data replication). Switch and server

failures are detected by a reliable external coordinator using

heartbeats. On failed servers, the granted locks are consid-

ered expired, and pending lock acquire operations are consid-

ered aborted. FISSLOCK assumes that applications will han-

dle lock expiration and aborted operations, such as manually

aborting ongoing transactions. The availability of FISSLOCK

can be achieved through existing methods that replicate the

switch data plane to backup switches [39], which are orthog-

onal to our work.

Failure recovery. Switch and server failures in FISSLOCK

may result in the loss of network packets (see Table 2),

switch states (metas), lock agent states (agents), and lock

client states (granted and pending lock requests). When

a failure is detected by the coordinator, FISSLOCK will

restart the failed switch if necessary and perform three steps

sequentially to recover the aforementioned states.

• Server data aggregation (S1). All surviving servers

pause lock operations and submit lock agent states and

lock client states to the coordinator.

• Server data recovery (S2). All surviving servers recover

the lost and inconsistent states by referring to the aggre-

gated states from the coordinator.

• Switch data recovery (S3). The switch recovers its states

by referring to lock agent states from all surviving servers.

5.4 Scale to Multiple Racks

FISSLOCK can be scaled out by partitioning locks to each

ToR switch. Each switch only handles requests for the locks

it manages and routes other requests to responsible racks.

Each machine has a global mid, which is translated by the

switch to an egress port for the next-hop switch or the ma-

chine. In the current implementation of FISSLOCK, these

translation rules are statically predetermined, which disables

on-demand scaling. However, on-demand scaling could po-

tentially be achieved by updating these rules through the

switch control plane. Although requests for remote-rack

locks may experience higher network latency, they still have

a stable grant time without any queueing delay. The imbal-

ance of loads among switches is not a significant concern, as

switches have orders-of-magnitude higher packet processing

speed than servers. Even under heavy loads, servers would

reach saturation before a hotspot switch does.

6 Implementation

We implemented FISSLOCK from scratch using roughly

1,200 lines of P4 code and 5,000 lines of C++ code.3 DPDK

is used for packet sending and receiving.

Non-linear lock IDs. The lock ID can be sparse and ineffi-

cient for indexing RAs. In this case, FISSLOCK maps lock

IDs to linear RA indexes with an RPC daemon. Lock clients

cache the mapping and embeds the RA index in packets.

Lock scales. FISSLOCK supports efficient management of

over 1 million on-switch locks. In our experiments on TPC-

C, we use them to protect billion-scale data by protecting

a range of data objects with each lock (see §7.4). To sup-

port out-of-range locks that exceed the switch capacity, FISS-

LOCK adopts ParLock as a fallback, i.e., these locks are

handled by on-server LMs, and the switch forwards their re-

quests to the server (see §7.6).

Read/Write preference. FISSLOCK is implemented as read-

preferring since it is common. For a write-preferring design,

the switch requires an additional 1-bit state ww (write-waiter)

to indicate the existence of exclusive waiters. When encoun-

tering an exclusive waiter, the decider sets ww to true, so

subsequent shared requests are not granted even if all holders

are shared. The server-side write-preferring implementation

is identical to server-based lock managers [24, 53].

Policy support. In FISSLOCK, the on-server lock agents are

tasked with enabling various lock policies (e.g., fairness), as

they determine the next holders when the current holders re-

lease the lock. For example, FISSLOCK ensures first-come-

first-served fairness by using a FIFO wait queue, which pri-

oritizes waiters that are enqueued earlier.

Starvation prevention. In the read-preferring design, FISS-

LOCK uses an additional 1-bit state per lock on the switch

to prevent readers from starving writers. This state is peri-

odically set by the agent if there exists a writer in the wait

queue and is cleared when all current holders release the lock.

In the write-preferring design, readers are not starved. When

the lock is held by a writer, all incoming lock requests are

appended to the agent’s FIFO wait queue. This guarantees

that writers are not granted ahead of preceding readers.

Deadlocks. FISSLOCK offers a lock aborting mechanism to

assist applications resolve deadlocks. Specifically, it sets a

local timeout for each lock request and aborts pending lock

requests that have not been granted after the timeout.

7 Evaluation

7.1 Experimental Setup

Testbed. The experiments were conducted on a cluster con-

sisting of four machines, each has two 12-core Intel CPUs,

128 GB of RAM, and two ConnectX-5 100 Gbps NICs. All

3The source code of FISSLOCK is available at https://github.com/

SJTU-IPADS/fisslock.
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Table 3: Workload description.

Microbenchmark TATP TPC-C

Wkld Type Ratio Txn Type Ratio Txn Type Ratio

UH
{

R 50% GS R 35% NEW RW 45%

W 50% GD R 10% PAY RW 43%

RM
{

R 90% GA R 35% DLY RW 4%

W 10% US W 2% OS RO 4%

RO
{

R 100% UL W 14% SL RO 4%

W 0% IF W 2%

DF W 2%

NICs are connected to a Top-of-Rack (ToR) wedge100BF-

32x programmable switch, which is equipped with an Intel

Tofino ASIC [16]. Each machine hosts two logical nodes,

each has one CPU connected with one NIC used by all

threads running on it. For each node, we assign 10 cores to

application threads for issuing lock requests and receiving

grant replies, and 1 core to FISSLOCK’s agent pool for main-

taining lock metadata. Incoming packets are triaged utilizing

DPDK Flow Director and Receive Side Scaling. To further

adjust the degree of concurrency, we use coroutines in each

application thread to simulate multiple clients.

Comparing targets. We compare FISSLOCK with the state-

of-the-art centralized lock manager NetLock [76] and two

traditional server-based lock managers, namely SrvLock and

ParLock. We re-implemented NetLock following its open-

sourced artifact [9], which is not compatible with our pro-

grammable switch. The maximum number of locks that Net-

Lock manages on the switch is determined by the scripts

in its artifact. Due to the lack of open-source artifacts, we

hand-crafted ParLock following the specification of popular

commercial systems [6, 13], and used the lock server imple-

mentation of NetLock as SrvLock. ParLock uses the same

allocation of CPU cores as FISSLOCK, while NetLock and

SrvLock use one node as the dedicated lock server and the

other seven nodes as clients. For fairness, all systems are as-

signed the same total amount of CPU cores, i.e., 8 cores as

lock managers and 80 cores as lock clients.

Workloads. We use one microbenchmark to evaluate lock

granting performance, and two transaction benchmarks to

study the impact on accelerating transaction execution (see

Table 3). We trace all lock requests during a pre-execution

phase for NetLock to profile the workload. To maintain fair-

ness, we evaluate all lock managers using the same lock re-

quest traces and report the actual execution performance, like

prior work [75, 76].

Microbenchmark. We built a microbenchmark to emulate the

typical use of locks in modern distributed in-memory sys-

tems, where shared (resp. exclusive) locks are acquired be-

fore and released after data reads (resp. updates) to serialize

these operations. To study the lock granting performance of

lock managers under different read-write ratios and work-

load skewness, the microbenchmark includes three repre-

sentative workloads: update-heavy (UH), read-mostly (RM),

and read-only (RO). Each workload has both Uniform (Uni.)

and Zipfian (Zipf.) lock request distributions.

Transaction benchmarks. TATP [12] and TPC-C [14] are

evaluated to study the impact of lock managers on the end-

to-end performance of distributed in-memory systems. TATP

represents low-locality4 and read-intensive (80% of trans-

actions are read-only) workload, while TPC-C represents

high-locality (∼90% of transactions only access local ta-

bles [14, 37]) and write-intensive (8% of transactions are

read-only) workload. We use the default population size

(100,000 subscribers) for TATP and adopt the same per-

client warehouse number as prior work [29, 66] for TPC-

C. We protect a range of records with each lock to control

the total amount of locks in the benchmark. We run 160

clients for TATP and 1,200 clients for TPC-C, all clients

issue lock requests synchronously. We adopt the two-phase

locking (2PL) protocol when executing transactions. After

acquiring all locks required by each transaction, we delay

around 2µs for TATP and 10µs for TPC-C to simulate the

execution time in Table 1. Transactions executed over 10 ms

are aborted to avoid deadlocks.

7.2 Memory Consumption

We first study the switch memory usage of FISSLOCK, which

limits the maximum number of locks a programmable switch

can host. Following the internal structure of programmable

switch ASICs (see Fig. 2), two factors collectively impact the

limitation: the number of MAUs and the memory capacity of

each MAU. Let N be the number of locks in the system, C

be the per-MAU memory capacity in bits, then the amount

of MAUs required M can be described as:

M =

⌈

N

C

⌉

× 2 +

⌈

N × 8

C

⌉

× 2 + 4

where 4 MAUs are occupied by the control and comput-

ing logic of the lock decider, and others denote MAUs for

lock mode (mode), machine ID (mid), and incarnation (inca).

The switch ASIC in our testbed has 12 MAUs at the ingress

pipeline, each providing about 560 KB stateful storage (i.e.,

register array). Assuming that all MAUs are used by FISS-

LOCK and following an optimal allocation scheme (i.e., 2

MAUs for mode, 3 MAUs for mid, and 3 MAUs for inca),

the maximum number of locks that can be hosted is 1.68 mil-

lion. In contrast, NetLock can only manage a few thousand

locks on the same switch ASIC throughout our experiments.

7.3 Lock Granting Performance

We study the lock granting performance of FISSLOCK and

baselines through the grant time distribution (Fig. 13) and

lock request throughput (Fig. 14 (left)) in the microbench-

mark. All experiments use 160 clients and 1 million locks.

4Like prior work [29, 37], we do not improve the locality by deliberately

partitioning TATP tables.
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Fig. 13: The CDF of lock grant time in the microbenchmark when

using different lock managers.

Overall, FISSLOCK achieves low and stable grant time under

all workloads. Compared with baselines, it cuts down the me-

dian grant time by up to 79.5% (SrvLock), 79.1% (NetLock),

and 96.4% (ParLock), and the 90th percentile grant time by

up to 89.7% (SrvLock), 88.9% (NetLock), and 96.5% (Par-

Lock). Consequently, FISSLOCK outperforms baselines on

lock request throughput by up to 4.08× (ParLock), 4.79×

(SrvLock), and 4.99× (NetLock). The performance gain of

FISSLOCK mainly comes from three aspects: (1) the elimi-

nation of queueing delay by switch-based grant deciding, (2)

the pervasiveness of acceleration by lock fission, and (3) the

automatic load balancing by dynamic agent migration.

Uniform workloads. FISSLOCK mainly benefits from (1) and

(2) under Uniform workloads. The queueing delay dominates

the grant time of all three baseline systems, which grows to

up to 84.5µs (SrvLock), 76.2µs (NetLock), and 54.8µs (Par-

Lock) at 90th percentile. Oppositely, FISSLOCK controls the

90th percentile grant time of all workloads under 9.42µs by

eliminating queueing delay. NetLock falls back to SrvLock

under Uniform workloads because only ∼1% of requests are

handled by the switch, while FISSLOCK accelerates all re-

quests. ParLock handles around 12.5% of requests locally,

which alleviates the remote LM’s load and helps it slightly

outperform SrvLock and NetLock.

Zipfian workloads. FISSLOCK benefits from all three aspects

under Zipfian workloads. Even with workload profiling, Net-

Lock accelerates merely ∼27% of requests under Zipfian

workloads. Although these requests have slightly (0–2µs)

lower grant time than FISSLOCK because FISSLOCK de-

votes additional time to skim through the agent pool, the

other 73% of requests are still handled by the server and have

similar performance to SrvLock. Oppositely, FISSLOCK

makes grant decisions on the switch for all lock requests. Par-

Lock suffers from severe load imbalance under Zipfian work-

loads, which significantly increases its grant time. Mean-

while, FISSLOCK balances the load among servers and min-

imizes the impact of workload skewness, achieving up to
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Fig. 14: The lock request throughput in the microbenchmark, and

the transaction throughput on TATP and TPC-C with different lock

managers.

96.4% lower grant time than ParLock. The R/W lock con-

tention becomes the main restriction of FISSLOCK’s through-

put under Zipfian workloads and significantly reduces the

lead of FISSLOCK.

7.4 Distributed Transaction Performance

We study the impact of lock managers on the end-to-end la-

tency (Fig. 15) and throughput (Fig. 14 (right)) of transaction

execution with TATP and TPC-C benchmarks. We show the

latency distribution of each type of transaction individually.

TATP. TATP is a read-dominated workload containing 7

short transactions. Overall, FISSLOCK outperforms baseline

systems by 2.93× (ParLock), 2.37× (SrvLock), and 1.76×

(NetLock) on transaction throughput. Since most transac-

tions acquire only one or two locks, there were no deadlocks

throughout the test. When executing transactions that only

acquire one lock, FISSLOCK exhibits similar performance

to the microbenchmark case, i.e., the latency remains low

for 99% of GS (17.5µs), GA (15.4µs), and UL (27.7µs)

transactions. For multi-lock transactions (GD, US, IF, and

DF), the latency of FISSLOCK is proportional to the aver-

age amount of locks acquired when executing the transaction.

ParLock suffers from severe load imbalance when executing

GS, US, UL, IF, and DF transactions, which drags down its

throughput and results in lower queueing delay in GD and

GA. Moreover, the effect of ParLock’s local fast-path is less

apparent in multi-lock transactions as the possibility of lo-

cal grants is powered. NetLock has similar performance to

SrvLock because the switch LM has limited acceleration pro-

portion (17% in total), even if all rows are selected in a non-

uniform manner, because the on-switch lock proportion is

too restricted (0.09%). Queueing delay dominates the trans-

action latency of both systems.

TPC-C. TPC-C is a write-dominated workload containing

5 types of complicated transactions, where 90% of transac-

tions solely acquire local locks. Given this workload locality

information, ParLock can serve most requests with local lock

servers, achieving superior performance. To show that FISS-

LOCK can also benefit from this workload-aware optimiza-

tion, we additionally evaluate FISSLOCK-Local, which fol-

lows ParLock’s method of co-locating locks with the clients

acquiring them. Among lock managers that do not exploit
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Fig. 15: The CDF of transaction latency on TATP and TPC-C

workloads when using different LMs.

workload locality, FISSLOCK outperforms SrvLock and Net-

Lock by 2.36× and 2.28× on transaction throughput, respec-

tively. Both FISSLOCK-Local and ParLock handle over 90%

of requests locally, where they have similar performance.

However, FISSLOCK-Local still has 1.08× higher through-

put than ParLock because of better remote lock requesting

performance. We analyze the latency of write-intensive and

read-only transactions separately as follows.

Write-intensive transactions (NEW and PAY). NEW and

PAY acquire 14 and 4 locks on average. Even when ac-

quiring almost all locks remotely, FISSLOCK still achieves

fairly low and stable latency for 81% of NEW (< 125.5µs)

and 85% of PAY (< 44.5µs) transactions. The latency of

other transactions is dominated by the wait time due to lock

contention. NetLock falls back to SrvLock because only 6%

of requests to 0.3% of locks are handled by the switch, due

to sparse data accesses in large datasets [29, 66]. Both LMs

have over an order-of-magnitude higher transaction latency

than FISSLOCK because of queueing delay. ParLock and

FISSLOCK-Local have 40%–60% lower transaction latency

than FISSLOCK due to local lock request handling. FISS-

LOCK-Local exhibits a shorter tail than ParLock because of

higher remote lock acquire performance.

Read-only transactions (DLY, OS, and SL). All read-only

transactions are local, which explains the identical per-

formance of ParLock and FISSLOCK-Local. The latency

turning point of FISSLOCK appears later (96.5%, 97.7%,
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Fig. 16: The timeline of lock request throughput on a dynamic

workload (left), and the CDF of lock grant time with various lock

scales when using a uniform RM workload (right).

and 96.2% for DLY, OS, and SL) because of lower wait time

when acquiring shared locks. The performance of NetLock

and SrvLock is similar to the write-intensive case as the

queueing delay instead of wait time dominates the latency.

7.5 Dynamic Workload

To study the robustness of lock managers under dynamic

workloads, we alter the hotspot of 1 million locks every

300 ms (i.e., 2,500 hot locks). In this workload, half of the

requests target the hotspot, while the other half are evenly

distributed to the remaining locks. As shown in Fig. 16 (left),

FISSLOCK achieves a consistently high throughput of over

6 million requests per second (M rps) regardless of hotspot

changes, thanks to its pervasive acceleration. In contrast, Net-

Lock’s throughput fluctuates between 3.44 M and 4.58 M rps,

as the switch only handles half of the requests. When the

hotspot changes at 300 ms, the throughput instantly drops to

around 3 M rps, close to SrvLock (its fallback), and remains

low until the hotspot returns.5

7.6 Lock Scales

We further evaluate the lock granting performance of FISS-

LOCK as the number of locks increases, using a uniform

RM workload. We also report the result of ParLock, the

fallback approach of FISSLOCK, with 10M locks as a ref-

erence. As shown in Fig. 16 (right), as expected, the per-

formance of FISSLOCK gradually approaches that of Par-

Lock as the number of locks increases. We found that FISS-

LOCK still achieves 39.9% lower 20th percentile and 9.9%

lower 90th percentile grant time compared to ParLock for

10M locks by shipping the load of around 10% requests to

the switch and thereby relieving server CPUs. At 0–12.5

percentiles, workloads with fewer locks perform worse be-

cause almost all requests for on-switch locks are handled by

the switch, while around 12.5% of requests for out-of-range

locks are handled locally.

7.7 Lock Granularity

To justify the necessity of using fine-grained locks for large-

scale datasets, we conduct an experiment that varies the num-

ber of locks used to protect accesses to 10 million objects.

These objects are evenly distributed among the locks. As

shown in Fig. 17 (left), when using coarse-grained locks,

5Due to space limitations, we omit this part in Fig. 16 (left).
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the lock granting throughput of FISSLOCK is significantly

dragged down (up to 5.40×) by lock contention in a uniform

RM workload. NetLock achieves the peak throughput when

using around 1,000 locks due to limited switch memory.

However, the peak throughput is only 5.65 M rps due to se-

vere lock contention. In contrast, FISSLOCK unleashes full-

scale acceleration with over one million fine-grained locks,

thereby resulting in 1.99× (Uniform) and 1.26× (Zipfian)

higher peak throughput than NetLock.

7.8 Failure Recovery

To study the performance of failure recovery, we manually

inject a simultaneous failure of one switch and one server

into the experiment used in §7.7. As shown in Fig. 17 (mid),

the recovery time mainly comes from aggregating states of

surviving servers (S1) and repairing them (S2), and is propor-

tional to the number of locks due to scanning the metadata

(e.g., granted requests) of all locks. The recovery time for

switch states (S3) is trivial, as it only involves held locks.

7.9 Application: Mobile Banking

We build a mobile banking application that supports common

banking operations like balance checking (BC) and funds

transferring (FT) [7, 8]. The application server uses FISS-

LOCK following the 2PL protocol for transactions and uses

Redis-backed in-memory store [11]. It combines Redis asyn-

chronous APIs and coroutines to hide network latency and

maximize throughput when serving massive clients. We use

Redis’s official implementation of distributed locks (Red-

Lock [5]) as the baseline and use a mixed workload con-

taining 90% BC and 10% FT operations, which reflects the

user behavior that checks balance much more frequent than

transferring funds [11]. We initialize the bank with 1 million

accounts. By adjusting the number of clients that issue op-

erations, we compare accumulative throughput of all clients

and median latency of the application using FISSLOCK and

RedLock. As shown in Fig. 17 (right), the operation through-

put when using RedLock peaks at 24.8 K ops due to lock

contention. Conversely, when using FISSLOCK, the opera-

tion throughput scales to 825.4 K ops because FISSLOCK

grants and transfers locks faster. Additionally, FISSLOCK

cuts down the median latency of banking operations by at

least one order of magnitude.

8 Related Work

Distributed lock management. There have been many ef-

forts to investigate distributed lock management which are

classified into two categories, centralized LM [6, 13, 21, 30,

54, 55, 65, 76] and decentralized LM [28, 56, 73, 75]. Cen-

tralized LMs are widely used because they enable rich prop-

erties such as latency predictability [31, 38, 46], starvation

freedom [36], and performance isolation [76]. Decentralized

LMs leverage one-sided RDMA primitives to bypass the

CPU bottleneck of lock managers [28, 56, 73, 75], which

offers better performance but loses support to the properties

above. Prior work [76] uses programmable switches to host

part of locks, achieving desired performance without sacri-

ficing centralized properties. However, it assumes that the

workload is highly skewed and predictable. Differently, FISS-

LOCK can accelerate million-scale locks for diverse work-

loads without prior knowledge.

In-network optimization. The emergence of programmable

switches [3, 16, 33] inspires numerous in-network designs

for distributed systems, including distributed cache [35, 42,

47, 49, 50], consensus and concurrency control [26, 27, 34,

43, 44, 59, 76], machine learning [17, 40, 48, 63, 64, 77],

task scheduling [69, 74], and distributed data coherence [41,

45, 70]. These systems primarily leverage the stronger packet

processing power and shorter network round trip of switches

to achieve higher performance for a portion of workloads.

NetLock [76], the system most relevant to FISSLOCK, imple-

ments a full lock manager on the switch to handle requests

on hot locks. However, due to limited switch memory, the on-

switch lock manager can only optimize thousands of locks.

In contrast, FISSLOCK achieves consistent performance im-

provement for millions of locks via lock fission.

9 Conclusion

This paper presents FISSLOCK, a switch-centric lock service

that enables lock fission scheme to provide microsecond-

scale lock grant time for millions of locks. The concept of

lock fission—decoupling the locking process to align with

the characteristics of heterogeneous hardware—could be ap-

plied to other contexts. For instance, the locking process can

be decoupled differently in various heterogeneous environ-

ments, such as disaggregated memory. We leave the investi-

gation of these to future work.
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Abstract
At the heart of state machine replication, the celebrated tech-
nique enabling decentralized and secure universal computa-
tion, lies Atomic Broadcast, a fundamental communication
primitive that orders, authenticates, and deduplicates mes-
sages. This paper presents Chop Chop, a Byzantine Atomic
Broadcast system that uses a novel authenticated memory pool
to amortize the cost of ordering, authenticating and dedupli-
cating messages, achieving “line rate” (i.e., closely matching
the complexity of a protocol that does not ensure any ordering,
authentication or Byzantine resilience) even when process-
ing messages as small as 8 bytes. Chop Chop attains this
performance by means of a new form of batching we call
distillation. A distilled batch is a set of messages that are
fast to authenticate, deduplicate, and order. Batches are dis-
tilled using a novel interactive protocol involving brokers, an
untrusted layer of facilitating processes between clients and
servers. In a geo-distributed deployment of 64 medium-sized
servers, Chop Chop processes 43,600,000 messages per sec-
ond with an average latency of 3.6 seconds. Under the same
conditions, state-of-the-art alternatives offer two orders of
magnitude less throughput for the same latency. We showcase
three simple Chop Chop applications: a Payment system, an
Auction house and a “Pixel war” game, respectively achieving
32, 2.3 and 35 million operations per second.

1 Introduction
Is an Internet computer feasible? A computer that is highly-
available, decentralized, secure, universal and shared by all?
Theory says yes: state machine replication (SMR) [28, 66]
enables decentralized universal computation in the face of
arbitrary failures [50, 68]. In practice, however, SMR’s ineffi-
ciency still makes for limited throughput. At the heart of SMR
lies Atomic Broadcast [24], a powerful consensus-equivalent
primitive that comes with fundamental bounds [29] and con-
straints [32], hindering its real-world performance despite
decades of extensive research [5,9,14,18,20,47,53,62,79,80,
82] and attention from industry, where SMR powers a myriad
of blockchains and ledgers [4,35,46,48,52,58,72–74,77,78].

100 101 102 103 104 105 106 107 108

Throughput [event/s, log scale]

Chop Chop
WhatsApp messages

Google searches
Credit card payments

Youtube video watches
Tweets

Figure 1: Throughput of Internet-scale services.

When deployed globally, seminal Atomic Broadcast imple-
mentations, such as BFT-SMaRt [9] and HotStuff [80], can
deliver a few thousand messages per second, three orders of
magnitude short of the millions of requests per second collec-
tively handled by the Internet’s largest, centralized services
(Fig. 1). Pushing Atomic Broadcast’s throughput into the
tens of millions of messages per second seems a necessary
stepping stone towards achieving an Internet-scale computer.

Towards line rate. While slow and expensive, ordering
messages in Atomic Broadcast is amenable to batching [18]:
order once, deliver in bulk. This observation motivated the de-
velopment of memory pool (mempool) protocols [26, 34, 69],
as initiated by Narwhal [26], designed to amortize ordering.
This strategy proved effective, e.g., Bullshark [69] delivers in
the order of 380,000 messages per second when accelerated
by Narwhal. Despite this improvement, however, state-of-
the-art batching still falls short of achieving line rate, i.e.,
matching the communication complexity of a protocol that
does not ensure any ordering, authentication, or Byzantine
resilience. In such a simplified setting, a server could simply
deliver a sequence of application messages as it receives them
from the network: b bits received, b bits delivered. Mod-
ern connections have enough bandwidth to receive tens of
millions of application messages per second:1 2.5 orders of
magnitude of gap still exist between Atomic Broadcast and
unordered, unauthenticated dissemination. It is natural to ask

1Payloads as small as 12 bytes can have real-world applications (see §2.1).
A 5 Gbit/s link can receive 52 millions such payloads per second.
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if such a large gap is inherent to atomicity’s unavoidable cost
of ordering, authenticating and deduplicating messages. This
paper answers in the negative, accelerating Atomic Broadcast
by a further two orders of magnitude with a system that per-
forms close to optimal efficiency, i.e., within 8% of line-rate,
even when handling 40 million requests per second.

Chop Chop. We present Chop Chop, a Byzantine Atomic
Broadcast system using a novel authenticated mempool.
Mempools amortize the cost of ordering by having an un-
derlying instance of Atomic Broadcast order batches. Classic
methods of batching, however, fail to also amortize authenti-
cation and deduplication: each payload in a batch still carries
an individual public key, signature and sequence number.

Chop Chop addresses this shortcoming with a new form of
batches: distilled batches. Unlike a classic batch, a distilled
batch contains condensed information that allows to authenti-
cate and deduplicate its messages in bulk, much faster than in
existing schemes. Distilled batches leverage the strong order-
ing of Atomic Broadcast to minimize redundant information.

Trustless brokers. Chop Chop produces distilled batches
using a novel interactive protocol involving brokers, a layer
of facilitating processes between clients and servers. Distilled
batches are faster for servers to receive and process, but ex-
pensive for brokers to produce: distillation is interactive and
relies on expensive cryptographic operations for brokers.

Importantly, however, incorrectly distilled batches are vis-
ibly malformed. As such, brokers can be untrusted: good
brokers take load off the servers; bad ones cannot compromise
the system’s safety. Servers are exposed to every message in
the system, bottleneck easily, and only a threshold of them
can be compromised before the system loses safety. Brokers,
instead, can be spun up by anyone, outside of Chop Chop’s
security perimeter, to meet the load produced by clients.

Evaluation. We evaluate Chop Chop in a cross-cloud, geo-
distributed environment including 320 medium-sized AWS
EC2 machines and 64 OVH machines. We simulate up to 257
million clients and consider 12 experimental environments.
Setting up each environment requires the installation of 13 TB
of synthetic workload. A naive installation using scp from
a single machine would take 68 hours. We designed silk, a
one-to-many peer-to-peer file transfer tool optimized for high
latency connections, to install the files in 30 minutes instead.

We compare Chop Chop’s throughput and end-to-end la-
tency against its baselines in multiple real-world scenarios
including server failures, adverse network conditions, and
applications running. In all scenarios, Chop Chop’s through-
put outperforms its closest competitor by up to two orders
of magnitude, with no penalty in terms of latency. When
put under stress, Chop Chop orders, authenticates and dedu-
plicates upwards of 43,600,000 messages per second with a
mean latency of 3.6 seconds. Except under the most adverse
network conditions and proportions of faulty clients, Chop
Chop still achieves millions of operations per second.

Applications. Unlike most Atomic Broadcast implementa-
tions [9, 26, 69, 80], Chop Chop does not offload authentica-
tion and deduplication to the application. This allows Chop
Chop-based applications to focus entirely on their core logic
without ever engaging in expensive, and easy to get wrong,
cryptography. To showcase this, we implement three simple
applications to evaluate on top of Chop Chop: a Payment
system, an Auction house and an instance of the game “Pixel
war”. These three simple applications (300 lines of logic)
work effectively with messages as small as 8 bytes, further
underlying the communication overhead represented by pub-
lic keys, signatures and sequence numbers in non-distilled
systems. Both Payments and Pixel war inherit Chop Chop’s
throughput, respectively processing over 32 and 35 million
operations per second. Even the Auction house, which is
single-threaded, achieves 2.3 million operations per second.
(These applications are meant as examples, and further opti-
mization is beyond the scope of this paper.)

Contributions. We identify authentication and deduplica-
tion as the main bottlenecks of batched Atomic Broadcast;
we introduce distilled batches to extend the amortizing prop-
erties of batching to authentication and deduplication; we
present distillation, an interactive protocol to produce distilled
batches, and identify the opportunity to offload it to an un-
trusted set of brokers; we implement Chop Chop, a Byzantine
Atomic Broadcast system that takes advantage of distillation
through an authenticated mempool; we thoroughly evalu-
ate Chop Chop, improving state-of-the-art Atomic Broadcast
throughput by two orders of magnitude, maintaining near line-
rate performance up to 40 million requests per second; we
showcase Chop Chop through a Payment system, an Auction
house and an instance of the “Pixel war” game, respectively
achieving 32, 2.3 and 35 million operations per second.

Roadmap. §2 introduces Atomic Broadcast, discusses clas-
sic batching mechanisms and highlights the cost of authenti-
cating and deduplicating messages in the resulting batches. §3
presents distilled batches and introduces a simplified failure-
free version of Chop Chop’s protocol. §4 describes Chop
Chop’s fault-tolerant protocol in detail. §5 discusses Chop
Chop’s implementation. §6 discusses Chop Chop’s empirical
evaluation, highlighting the challenges of such large scale
experiments. We summarize related work in §7 and future
work in §8. Appendix A describes Chop Chop’s artifact. The
full correctness proof of Chop Chop is available online [15].

2 Atomic Broadcast
In an Atomic Broadcast system [19], clients broadcast mes-
sages that are delivered by servers.

Properties [13]. Correct servers deliver the same messages
in the same order (agreement). Messages from correct clients
are eventually delivered (validity). Spurious messages cannot
be attributed to correct clients (integrity). No message is
delivered more than once (no duplication).
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2.1 Cost of Atomic Broadcast
Informally, Atomic Broadcast’s most distinctive property,
agreement, is also the most challenging to satisfy. Correct
servers must coordinate to order messages without compro-
mising liveness. A great deal of research effort has been
put in developing ordering techniques, optimizing for la-
tency [47, 56] or communication complexity [55, 63].

Integrity and no duplication, instead, allow for simple so-
lutions. Clients can ensure integrity by authenticating their
messages using digital signatures: servers simply ignore incor-
rectly authenticated messages. For no duplication, clients can
tag each message with a strictly increasing sequence number:
after ordering, servers discard old messages as replays.

Both techniques—we call them classic authentication and
classic sequencing—are non-interactive, easy to implement,
and agnostic of the protocol employed to order messages.
Arguably due to the simplicity and effectiveness of classic
authentication and sequencing, most Atomic Broadcast im-
plementations overlook integrity and no duplication entirely:
they offload authentication and sequencing to the application,
focusing on the more challenging task of ordering.

Batching for ordering. Lacking an efficient technique to
minimize its complexity, ordering could be Atomic Broad-
cast’s main bottleneck.2 The well-known strategy of batching,
however, is both general and effective at amortizing the agree-
ment cost of an Atomic Broadcast implementation [18, 68].

Broadly speaking, batching is orchestrated by a broker
as follows [26].3 Over a small window of time, the broker
collects multiple client-issued messages in a batch, which
it disseminates to the servers; the broker then submits to an
underlying instance of Atomic Broadcast a cryptographic
hash of the batch it collected; upon delivering the hash of a
batch from Atomic Broadcast, a server retrieves the batch,
and delivers to the application all the messages it contains.
Because the size of a hash is constant, the cost of ordering a
batch does not depend on its size: as batches become larger,
the cost of ordering each message goes to zero. In practice,
batching can effectively eliminate the cost of ordering in any
real-world implementation of Atomic Broadcast.

Cost of integrity and no duplication. Batching does not
efficiently uphold integrity and no duplication. Regardless of
how many messages are batched together, the cost of classic
authentication and sequencing stays constant: one public key,
one signature and one sequence number for each message.

In practice, these costs dominate the computation and com-
munication budget of a batched Atomic Broadcast system (see
§3.2). On the one hand, signatures are among the most CPU-
intensive items in the standard cryptographic toolbox, dwarf-

2Byzantine Atomic Broadcast among n participants cannot be achieved
with a bit complexity smaller than Θ(n2) [29].

3In the literature, servers usually play the role of brokers. As we discuss
in §4, however, Chop Chop minimizes its load on the servers by offloading
brokerage to a separate, trustless set of processes.

ing in particular symmetric primitives such as hashes and
ciphers. On the other, public keys, signatures and sequence
numbers can easily account for the majority of a batch’s size.

To illustrate these costs, consider the example of a payment
system. A payment operation requires three fields: sender,
recipient, and amount. Sender and recipient fit in 4 B each
if the system serves less than 4 billion users. Amount needs
4 B for payments between 1 cent and 40 millions. Hence, a
payment can be encoded in just 12 B. Using public keys to
identify sender and recipient (2×32 B using Ed25519 [8, 40])
and attaching a signature (64 B) and a sequence number (8 B)
to each message inflates payloads to 140 B. For payments,
91% of the bandwidth is spent on integrity and no duplication.

2.2 Existing Mitigations
Chop Chop integrates the two following techniques to reduce
the bandwidth and CPU cost of authentication.

Short identifiers. Repeated public keys consume a signifi-
cant slice of a server’s communication budget. A workaround
is to have servers store public keys in an indexed directory [2].
Upon first joining the system, a client announces its public key
via Atomic Broadcast to sign up. Upon delivering a sign-up
message, a server appends the new public key to its directory.
The same public key appears at the same position in the di-
rectory of all correct servers thanks to Atomic Broadcast’s
agreement. Having signed up, a client uses its position in the
directory as identifier instead of its public key.

In the previous example of a payment system, using such
identifiers reduces a payment size by 40%, from 140 B to 84 B.
However, a signature per payment must still be transmitted.

Pooled signature verification. Authenticating a batch by
verifying its signatures is a computationally intensive task
for a server [18, 71]. However, Red Belly [23] and Mir [71]
showed that not all servers need to authenticate all batches.
Indeed, assuming at most f faulty servers, a broker optimisti-
cally asks only f + 1 servers to authenticate a batch to be
certain to reach at least one correct server. If f + 1 servers
do not reply by a timeout, the broker extends its request to f
additional servers, thus reaching at least f +1 correct servers.

A correct server that authenticates a batch sends back to the
broker a witness shard, i.e., a signed statement that the batch
is correctly signed. The broker aggregates f + 1 identical
shards into a witness, which it sends to the other 2 f servers.
Because every witness contains at least one correct shard, the
servers can trust the witness instead of verifying the batch.

Assuming 3 f +1 servers, this technique shaves up to two-
thirds off the system’s authentication complexity.

3 Distilled Batches
Chop Chop’s main contribution is distillation, a set of
techniques aimed at extending the amortizing properties of
batches to authentication and sequencing.
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Figure 2: Full distillation in action. With classic authentica-
tion and sequencing, each payload qi contains a public key
pki, a sequence number sni, a message msgi and a signature
sigi. In the fully distilled case, each qi reduces to just idi and
msgi: one header H, composed of one aggregate sequence
number SN and one aggregate signature SIG, is sufficient
for the entire batch. Bars are to scale if small messages are
broadcast using Ed25519 for signatures and BLS12-381 for
uncompressed multi-signatures: sni and SN are 8 B, msgi is
8 B, pki is 32 B, sigi is 64 B, SIG is 192 B.

Background: multi-signatures. Chop Chop makes use of
multi-signature schemes [39] to authenticate batches. Secret
keys produce signatures that can be verified against the corre-
sponding public keys. Public keys and signatures, however,
can be aggregated. Let (p1,r1), . . . ,(pn,rn) be distinct key
pairs, and s1, . . . ,sn be signatures produced by r1, . . . ,rn on
the same message m: p1, . . . , pn (resp., s1, . . . ,sn) can be ag-
gregated into a constant-sized aggregate public key p (resp.,
aggregate signature s).

Remarkably, s can be verified in constant time against p
and m [10, 57]. Chop Chop uses BLS multi-signatures [10]
which can be aggregated cheaply and non-interactively: even
a non-signing process can compute p (resp., s) once provided
with p1, . . . , pn (resp., s1, . . . ,sn) by computing a single multi-
plication over an elliptic curve.

3.1 Distillation at a Glance
In brief, distillation aims to produce distilled batches. A dis-
tilled batch has some of its signatures (resp., sequence num-
bers) replaced by an aggregate signature (resp., aggregate
sequence number). When maximally successful, distillation
produces a fully distilled batch, where all signatures (resp.,
sequence numbers) have been replaced by a single aggregate
signature (resp., sequence number). As we discuss below,
distilled batches are vastly cheaper for servers to receive and
process. Fig. 2 depicts the effect of distillation on a batch.

Full distillation (failure-free). For pedagogical purposes,
we introduce distillation under the assumption that all pro-
cesses are correct. We detail Chop Chop’s fault-tolerant distil-
lation techniques in §4.2, optimized and adapted to the Byzan-

tine setting. As in the classic batching case, a set χ1, . . . ,χb of
clients submit their messages m1, . . . ,mb to a broker β. Each
χi selects for its message mi a sequence number ki (greater
than any sequence number it previously used), then sends
(ki,mi) to β. Upon receiving all (ki,mi)-s, β computes the
aggregate sequence number

k = max
i

ki

then builds the batch proposal

B = [(x1,k,m1) , . . . ,(xb,k,mb)]

where xi is χi’s numerical identifier in the system (see §2.2). β

then sends B back to every χi. Upon receiving B, χi produces
a multi-signature si for the hash H(B) of B, which it sends
back to β. Having collected all multi-signatures, β computes
the aggregate signature

s = ∏
i

si

In doing so, β obtains the fully distilled batch

B̃ = [s,k,((x1,m1) , . . . ,(xb,mb))]

Upon receiving B̃, any server now can: compute B by inserting
k between each (xi,mi); compute H(B); use each xi to retrieve
χi’s public key pi from its directory; compute the aggregate
public key

p = ∏
i

pi

and finally verify s against p and H(B).

Distillation outcome. Having engaged with β to distill the
batch, every χi multi-signs the same message H(B) and up-
dates its sequence number to the same k. This allows β to
authenticate and sequence all of B̃ using s and k only.

Distillation safety. The proposed distillation protocol has
no safety drawback. First, because (xi,k,mi) appears in B, χi
still gets to authenticate mi. Intuitively, χi’s multi-signature
on H(B) publicly authenticates whatever message in B is
attributed to χi, mi in this case. Second, because k ≥ ki, k
is still a valid sequence number for mi. Sequence number
distillation might cause χi to skip some sequence numbers
whenever any χ j issues some k j > ki. Contiguity of sequence
numbers, however, is not a requirement for deduplication. As
with classic sequencing, χi produces—and servers deliver—
messages with strictly increasing sequence numbers; servers
disregard all other messages as replays.

3.2 Distillation Microbenchmark
Having discussed how distilled batches are produced, we now
estimate the significance of their effect by means of a back-
of-the-envelope calculation and a simple microbenchmark on
AWS. Consider a setting where 100 million clients broadcast
8-byte messages, e.g., to issue payments (see § 2.1). We
compare classic authentication and sequencing, where clients
are identified by their public keys, messages are individually
signed and sequenced, against fully distilled batches where
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Figure 3: Full distillation of a batch of 65,536 payloads
(sizes to scale). The aggregate signature and aggregate se-
quence number do not appear as a result of their small size.

clients are identified by a numerical identifier and each batch
contains only one aggregated signature and sequence number.
We use Ed25519 [40] for signatures (32 B public keys, 64 B
signatures) and BLS12-381 [12] for multi-signatures (192 B
uncompressed signatures). We use uncompressed BLS multi-
signatures to save computation time at the cost of storage
space (96 B compressed vs. 192 B uncompressed).

Communication complexity. Payloads are 112 B per mes-
sage in the classic case (32 B of public key, 8 B of sequence
number, 8 B of message, 64 B of signature) vs. 11.5 B in
the fully distilled case (28 bits = 3.5 B of identifier to repre-
sent 257M clients, 8 B of message). Assuming batches of
65,536 messages (Fig. 3), classic batches are exactly 7 MB
long, while fully distilled batches are 736 KB long including
aggregate signature and sequence number.

Computation complexity. Running at maximum load, an
Amazon EC2 c6i.8xlarge instance authenticates 16.2± 0.4
classic batches per second using Ed25519’s batch verifica-
tion for 65,536 signatures. The same machine authenticates
457.1±0.3 fully distilled batches per second: each authenti-
cation requires the aggregation of 65,536 BLS12-381 public
keys and the verification of one BLS12-381 multi-signature.

Summary. By the order-of-magnitude calculations above,
fully distilled batches hold the promise to reduce the costs
of authentication and sequencing by a factor 9.7 for network
bandwidth, and 28.2 for CPU. Chop Chop aims to deliver on
that promise for a real-world fault-tolerant system.

4 Chop Chop
This section overviews Chop Chop’s architecture, Chop
Chop’s protocol, and provides arguments for its correctness.

Overview. Chop Chop involves three types of processes
(Fig. 4): broadcasting clients, delivering servers and a layer
of broadcast-facilitating brokers between them. Servers run
an Atomic Broadcast instance among themselves, to which
brokers submit messages. Chop Chop is agnostic to the imple-
mentation of Atomic Broadcast used by the servers. On top of
the provided broker-to-server Atomic Broadcast, Chop Chop
implements a much faster client-to-server Atomic Broadcast:
clients submit messages to the servers, aided by brokers.

Chop Chop’s protocol unfolds in two phases: distillation
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Figure 4: Chop Chop architecture.

(§4.2) and submission (§4.3). In the distillation phase, clients
interact with a broker to gather their messages in a distilled
batch (see §3). In the submission phase, the broker dissemi-
nates the distilled batch to the servers and submits the batch’s
hash to the server-run instance of Atomic Broadcast. Upon de-
livering its hash from Atomic Broadcast, servers retrieve the
batch and deliver its messages. Chop Chop’s contributions
mainly focus on the distillation phase. Chop Chop’s sub-
mission strategy closely resembles prior batch-based Atomic
Broadcast implementations [26, 34, 69].

4.1 Architecture and Model
Chop Chop augments the architecture of a classic Atomic
Broadcast, as described in §2, with novel brokers.

Clients and servers. Clients broadcast messages to a (dis-
tinct) set of servers. We assume that less than one third of
servers can be faulty and behave in an arbitrary manner, i.e.,
be Byzantine [50], while all clients can be faulty. For sim-
plicity, servers form a fixed set that is known by all correct
processes at system startup. Chop Chop can be extended for
reconfiguration thanks to its modular use of Atomic Broad-
cast [9,49] (Fig. 4). Clients issue messages after broadcasting
their public keys to the system (see §2.2).

Brokers. We discussed in §3 how both classic and distilled
batches are assembled by a broker. The role of brokers is
traditionally taken by servers. Given the additional strain put
on brokers by Chop Chop’s interactive distillation protocol,
however, having servers be brokers would result in a waste of
scarce, trusted resources. Importantly, however, distillation is
trustless. On the one hand, agreement rests entirely on Chop
Chop’s underlying Atomic Broadcast instance, for which bro-
kers are only clients. On the other hand, as we argue in §§4.2
and 4.4.1, a faulty broker cannot compromise integrity or no
duplication: distilled batches are publicly authenticated, and
correct clients cannot be tricked into using stale sequence
numbers. Hence, brokers need no trust: a broker either does
its job correctly or produces distilled batches that are visibly
malformed, and easily discarded by all correct servers.

This observation is of paramount importance to the per-
formance of Chop Chop: because distillation is heavy but
trustless, brokers should be distinct from servers. Along with
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clients and servers, we thus assume a third, independent set
of brokers, sitting between clients and servers, to accelerate
Atomic Broadcast by assembling client messages in distilled
batches. We assume that at least one broker is correct; the
system loses liveness but not safety if all brokers are faulty.

Network. Chop Chop guarantees that the batches collected
and submitted to servers by correct brokers are well-formed
even in asynchrony, but achieves full distillation when the
network is synchronous (see §4.2). Chop Chop inherits the
network requirements of its underlying Atomic Broadcast.

4.2 Distillation Phase
We introduced in §3 a simplified, failure-free distillation pro-
tocol. This section describes how Chop Chop renders distilla-
tion tolerant to arbitrary failures and improves its performance
via a sequence of improvements, each addressing a shortcom-
ing of the simplified protocol. The complete fault-tolerant
protocol of Chop Chop is depicted in Fig. 5.

In the failure-free distillation protocol: clients χ1, . . . ,χb
send their messages m1, . . . ,mb, with sequence numbers
k1, . . . ,kb (#2) to a broker β (Fig. 5, #1); β identifies the
maximum submitted sequence number k and builds a batch
proposal B = [(x1,k,m1), . . . ,(xb,k,mb)] (#3); β disseminates
B to χ1, . . . ,χb (#4); each χi produces a multi-signature si
on H(B) (#5), which it sends to back β (#6); β aggregates
s1, . . . ,sn into an aggregate s, thus producing a fully distilled
batch B̃ = [s,k,((x1,m1), . . . ,(xb,mb))] (#7).

Background: Merkle trees. Chop Chop uses Merkle
trees [59] to hash batches. An l-element vector z1, . . . ,zl
is hashed into a root r, used as commitment. For each i, zi’s
value can be proved by means of a proof of inclusion pi, ver-
ifiable against r and zi. Proofs of inclusions are O(log l) in
size and are verified in O(log l) time.

What if a broker forges messages? A faulty β could try to
falsely attribute to some χi a message m′

i ̸= mi. β could do so
by replacing mi with m′

i in B, then having χi sign H(B), thus
implicitly authenticating m′

i. This is easily fixed by having χi
check that mi correctly appears in B before signing H(B).

Can a broker avoid sending the entire batch? A clear
inefficiency of the simplified protocol is that β has to convey
all of B back to each χi. This is fixed using Merkle trees. Upon
assembling B, β computes the Merkle root r of B, along with
the Merkle proof pi for each (xi,k,mi) in B. Instead of sending
B to all clients, β just sends r, k and pi to each χi. Upon
receiving r, k and pi, χi checks pi against r and (xi,k,mi),
producing si on r only if the check succeeds. If χi signs r,
then (xi,k,mi) is necessarily an element of B. Importantly,
however, β could inject (xi,k,m′

i ̸= mi) somewhere else in
B, while still providing χi only with the proof for (xi,k,mi).
This is solved by having servers ignore every distilled batch
where two or more messages are attributed to the same client.
This way, if χi signs r, then either mi is the only message in B

attributed to χi, or B̃ is rejected by all servers as malformed:
either way, integrity is upheld.

What if a client does not multi-sign? Under the assump-
tion that χ1, . . . ,χb are correct, β can safely wait until it col-
lects all s1, . . . ,sb. This policy is clearly flawed in the Byzan-
tine setting: a single crashed client can prevent β from ever
aggregating s. Furthermore, lacking an assumption of syn-
chrony, β cannot exclude from B̃ those clients that do not sign
r by some timeout: consistently slow clients would always be
excluded, and validity would be lost. This issue is fixed by
the fallback mechanism introduced in the following.

Fault-tolerant distillation. Upon first sending (ki,mi) to β

(#2), χi also sends an individual, non-aggregable signature
ti for (xi,ki,mi), which β stores. β then waits for si-s on r
until either all si-s are collected, or a timeout expires. For
every si that ends up missing, due to χi being crashed or de-
layed, β attaches (ki, ti) to B̃. Upon receiving B̃, a server first
checks each individual signature ti against the corresponding
(xi,ki,mi). The server then checks s against the public keys of
the clients for which an individual signature ti was not given,
i.e., the public keys of all clients that signed r in time.

In summary: fast, correct clients who successfully produce
their si-s in time authenticate their message by multi-signing
r; slow or crashed clients still get their messages through,
individually authenticated by the ti-s that they originally pro-
duced. Full distillation is achieved whenever the network is
synchronous and all clients are correct, which we argue is the
case in practice for the majority of a system’s lifetime. When
the network is asynchronous, however, a fraction of clients
might fail to produce their si in time, resulting in a partially
distilled batch. At the limit where all clients fail to sign r in
time, B̃ reduces to a classic batch, degrading server-side per-
formance to pre-distillation levels. We underline that safety
and liveness are preserved regardless of synchrony.

What if a broker replays messages? A problem introduced
by the last fix is that χi authenticates both ki and k as sequence
numbers for mi, allowing a faulty β to play mi twice, hence
breaking Atomic Broadcast’s no duplication. This is fixed
by having each client engage in the broadcast of only one
message at a time. This way, while β can indeed replay mi,
it can only do so consecutively: all sequence numbers χi
authenticates for mi belong to a range that does not contain
sequence numbers for any other message mi′ ̸=i issued by χi.

This observation is key to the following fix: along with the
last sequence number k̄χ each client χ used, a correct server
σ stores the last message m̄χ that χ broadcast; upon ordering
a message m with sequence number k from χ, σ delivers m
if and only if k > k̄χ and m ̸= m̄χ. In doing so, σ discards all
consecutive replays of m̄χ, thus preventing replays in general.

What if a client broadcasts too frequently? The last fix
relies on clients broadcasting one message at a time. Depend-
ing on latency, a client broadcasting too frequently might

274    17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



16
17
18

19

2
3
4

5

6

8

1

9

10
11

Response

12

Atomic
Broadcast

Distillation Witness

7

Delivery

13

14

15

Submission
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accrue an ever-growing queue of pending messages. This
issue is fixed by flushing application messages in bursts, akin
to Nagle’s buffering algorithm for TCP.

What if a client uses the largest possible sequence number?
Assuming that a finite number of bits (e.g., 64) are allocated
to representing sequence numbers, a faulty client χm could
set its km to the largest possible sequence number kmax (e.g.,
264 −1). In doing so, χm would force all other χi-s to update
their sequence number to kmax. Since correct clients only
use strictly increasing sequence numbers, no χi could ever
broadcast again: sequence numbers would run out. Proving
the legitimacy of sequence numbers fixes this issue.

Legitimate sequence numbers. By the rule that we estab-
lished, no more than one message from the same client can
appear in the same batch. Moreover, correct clients always
tag their messages with the smallest sequence number they
have not yet used, i.e., the largest they have used plus one. By
induction, we then have that unless some client misbehaves,
no client ever needs to use a sequence number larger than the
number of batches ever delivered by the servers: the largest
sequence number any client submits to the very first batch is
0, therefore no client submits a sequence number larger than
1 to the second batch, and so on. This observation allows us
to define as legitimate any sequence number smaller than the
number of batches servers have delivered at any given time.

Legitimacy proofs. This definition of legitimacy allows
for the generation of legitimacy proofs: upon delivering the
n-th batch, a server publicly states so with a signature. By
collecting f +1 server signatures stating that the n-th batch
was delivered into a certificate ln, any process can publicly
prove that any sequence number smaller than n is legitimate.

Upon initially submitting ki (#2), χi also sends to β a cer-
tificate ln, for any n > ki; β ignores client submissions that
lack such certificate, except when ki = 0 since no certificate
is needed. Upon sending k back to all χi-s (#4), β attaches
the highest ln̂ it collected: ln̂ proves that k is legitimate since
n̂ > k. χi signs r (#5) only if k is proved legitimate by ln̂.

This technique ensures correct clients always use legitimate

sequence numbers. Since legitimate sequence numbers grow
only with the number of delivered batches, no correct client is
forced to skip too far ahead, compromising its own liveness.

What if a broker crashes? If β fails to engage in the pro-
tocol, each χi can submit its message to any other broker.

4.3 Submission Phase
The submission phase ensures that all servers efficiently de-
liver a distilled batch, and that all broadcasting clients receive
a proof that their messages were delivered.

Witness. Having gathered a distilled batch B̃ (#7), β moves
on to have f +1 servers signs a witness shard for B̃. In signing
a witness shard for B̃, a server σ simultaneously makes two
statements. First, B̃ is well-formed: σ successfully verified
B̃’s signatures and found all messages in B̃ to have a different
sender. Second, B̃ is retrievable: σ stores B̃ and makes it
available for retrieval, should any other server need it. We
call a witness for B̃ the aggregation of f +1 witness shards
for B̃. Because any set of f +1 processes includes a correct
process, when presented with a witness for B̃ any server can
trust B̃ to be well-formed and retrievable.

As discussed in §2.2, witnesses optimize server-side com-
putation. Only f +1 servers need to engage in the expensive
checks required to safely witness B̃. All other servers can
trust B̃’s witness, saving trusted CPU resources.

In order to collect a witness for B̃, β sends B̃ to all servers
(#8). Optimistically, β asks only f + 1 servers to sign a
witness shard for B̃, progressively extending its request to
2 f + 1 servers upon expiration of suitable timeouts. Upon
receiving B̃ (#9), a correct server σ stores B̃. If asked to
witness B̃, σ checks that B̃ is well-formed and sends back to β

its witness shard for B̃ (#10). β collects and aggregates f +1
shards into a witness for B̃ (#11), then submits B̃’s hash and
witness to the server-run Atomic Broadcast (#12).

Delivery. Upon delivering B̃’s hash and witness from
Atomic Broadcast (#13), a correct server σ retrieves B̃, ei-
ther from its local storage (if it directly received B̃ from β at
#8) or from another server (#14). Because B̃ is retrievable, σ
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is guaranteed to eventually find a server to pull B̃ from. Hav-
ing retrieved B̃ (#15), σ delivers all non-duplicate messages
in B̃ (see §4.2 for how σ detects duplicates).

Response. Finally, σ signs a delivery certificate, listing the
messages in B̃ that σ delivered. σ sends its signature back
to β (#16). By agreement of Atomic Broadcast, all correct
servers deliver the same subset of messages in B̃. As such,
β is guaranteed to eventually collect f +1 signatures on the
same delivery certificate (#17). Upon doing so, β distributes
a copy of B̃’s delivery certificate to χ1, . . . ,χb (#18). Armed
with B̃’s delivery certificate, a correct χi can publicly prove
the delivery of mi (#19) and safely broadcast its next message.

4.4 Correctness
This section summarizes Chop Chop’s correctness analysis.
We prove Chop Chop’s correctness to the fullest extent of
formal detail in an extended document available online [15].

4.4.1 Safety

The safety of Chop Chop is given by its agreement, integrity
and no duplication properties (see §2).

Agreement. Chop Chop inherits agreement from its under-
lying, server-run instance of Atomic Broadcast. A correct
server delivers messages only upon delivering the hash of a
batch from the server-run Atomic Broadcast. Upon doing so,
a correct server retrieves the full batch, checks its hash, and
delivers all its messages in order of appearance. All correct
servers deliver the same messages in the same order assuming
cryptographic hashes are collision-resistant.

Integrity. A correct server only delivers messages included
in a batch witnessed by f + 1 servers, i.e., by at least one
correct server. A correct server witnesses a batch only if: no
more than one message in the batch is attributed to the same
client; every client in the batch authenticates its message with
a signature or the root of the batch’s Merkle tree with a multi-
signature. A correct client multi-signs the root of a batch’s
Merkle tree only upon receiving a proof of the inclusion of its
message in the batch. As such, if a correct client multi-signs
the root of a batch’s Merkle tree, either the batch contains
only the client’s intended message or it is not witnessed. In
summary, a correct server delivers a message m from a correct
client χ only if χ broadcast m.

No duplication. A correct client only broadcasts one mes-
sage at a time. As such, while the client might attach multiple
sequence numbers to the same message (different brokers
may propose different aggregate sequence numbers for the
client to authenticate) the sequence numbers the client at-
taches to each message belong to distinct ranges. A correct
server delivers client messages only in increasing order of se-
quence number, and ignores repeated messages. This means
that a correct server delivers at most one message from each
sequence number range. In summary, no server delivers a
correct client’s message more than once.

4.4.2 Liveness

The liveness of Chop Chop is given by its validity property.

Validity. If a correct client submits its message to a correct
broker, the message is guaranteed to eventually be delivered
by all correct servers: even if the client fails to engage in
distillation in a timely manner, its message is still included in
a batch which gets disseminated, witnessed and delivered by
all correct servers. Faulty brokers can clearly refuse to service
(specific) clients. Upon expiration of a suitable timeout, how-
ever, a correct client submits its message to a different broker.
As we assume that at least one broker is correct, all correct
clients are eventually guaranteed to find a correct broker and
get their messages delivered by all correct servers.

4.4.3 Other Attacks

As we outlined in §§4.4.1 and 4.4.2, Chop Chop satisfies
all properties of Atomic Broadcast. In this section, we con-
sider other attacks an adversary might deal to impair Atomic
Broadcast’s performance and fairness [43] in Chop Chop.

Denial of service. A faulty broker may refuse to service
clients, thus forcing them to fall back on other brokers, in-
creasing latency. A faulty broker may also submit deliberately
non-distilled batches to servers to force them to waste trusted
resources to receive and verify individual signatures. While
handling DoS is beyond the scope of this paper, Chop Chop is
amenable to accountability mechanisms [36]. Brokers could
be asked to stake resource to join the system. Correct, high-
performance brokers could be rewarded, akin to gas fees in
Ethereum [78]. Brokers that accrue a reputation of misbehav-
ior or slowness could be banned and lose their initial stake.

Front-running. A faulty broker might impact fairness by
front-running messages of interest [25, 83]. While front-
running resistance is beyond the scope of this paper, Chop
Chop is compatible as-is with existing mechanisms to mit-
igate or prevent front-running, most notably schemes that
have clients submit encrypted messages whose content is re-
vealed only after delivery [60,81]. Importantly, these encrypt-
order-reveal schemes could be selectively employed only for
those messages that are vulnerable to front-runs, e.g., mes-
sages used for stock trading [65]. Maintaining Chop Chop’s
throughput while providing quorum-enforced fairness for ev-
ery message [82] opens a valuable future avenue of research.

5 Implementation Details
A straightforward implementation of the protocol we pre-
sented in §4 would not achieve the throughput and latency we
observe in §6. In this section, we discuss some of the tech-
niques and optimizations required on the way to practically
achieving Chop Chop’s full potential. (Many optimizations
are however left out due to space constraints).

Code. Chop Chop is implemented in Rust, totaling 8,900
lines of code. The main libraries Chop Chop depends on
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are: tokio 1.12 for an asynchronous, event-based runtime;
rayon 1.5 for worker-based parallel computation; serde 1.0
for serialization and deserialization; blake3 1.0 for crypto-
graphic hashes; ed25519-dalek 1.2 for EdDSA signatures
on Curve25519 [40]; blst 0.3.5 for multi-signatures on the
BLS12-381 curve [12]. Chop Chop also depends on in-house
libraries: talk (9,800 lines of code) for basic distributed com-
puting and high-level networking and cryptography; zebra
(7,100 lines of code) for Merkle-tree based data structures.

5.1 Broker
The goal of a Chop Chop broker is to produce batches as
distilled as possible (to minimize server load), as large as
possible (to amortize ordering), and as quickly as possible
(to minimize latency). Our target is for a broker to assemble
one fully distilled batch of 65,536 messages (∼ 736 KB, see
Fig. 3) per second, with a 1 second distillation timeout.

Reliable UDP. Short-lived TCP connections between bro-
ker and clients are easier to work with, but unfeasible for the
broker to handle. Assuming an end-to-end broadcast time of
up to 10 seconds, the broker would need to maintain upwards
of 600,000 simultaneous TCP connections, which prelimi-
nary tests immediately proved unfeasible on the hardware we
have access to. This makes UDP the only option for client-
broker communication. However, UDP lacks the reliability
properties of TCP, and tests showed non-negligible packet
loss even within the same AWS EC2 availability zone. As
we discussed in §4.2, message loss immediately translates
to partial distillation. We address this issue by means of an
in-house, ACK-based, message retransmission protocol based
on UDP that also smoothens the rate of outgoing packets.

EdDSA batch verification. To avoid spoofing, all client
messages are authenticated with signatures. At the target
rate, however, individually verifying each signature is unfea-
sible for a broker. Luckily, ed25519-dalek allows for more
efficient batched verification. A broker buffers the client mes-
sages it receives and authenticates them in batches.

Tree-search invalid multi-signatures. Clients contributing
to the same batch produce matching multi-signatures for the
batch’s root. At the target rate the broker cannot indepen-
dently verify each multi-signature. We tackle this problem by
gathering multiple matching multi-signatures on the leaves
of a binary tree: internal nodes aggregate their children. For
each tree, the broker verifies the root multi-signature, recur-
ring only on the children of an invalid parent. This allows
to identify invalid multi-signatures in logarithmic time while
enabling batched verification in the good case.

Caching legitimacy proofs. Clients justify their sequence
numbers with legitimacy proofs. Again, the broker cannot
verify each proof in time. We address this problem by having
the broker verify a legitimacy proof only if higher than the
highest it previously observed. As a result, a faulty client

might get away with submitting an invalid legitimacy proof
but, importantly, not an illegitimate sequence number.

5.2 Server
The goal of a Chop Chop server is to process distilled batches
as quickly as possible without overflowing its memory.

Batch garbage collection. Servers update each other on
which batches they delivered. A server garbage-collects a
batch, both messages and metadata, as soon as it is delivered
by all other servers. We underline that, even if a single server
fails to deliver a batch, the others cannot garbage-collect it as
the slow server might be correct. This is an inherent limitation
of Atomic Broadcast: agreement without synchrony can be
ensured only in the infinite-memory model.

Identifier-sorted batching. No two messages from the
same client must appear in the same batch. To simplify pro-
cessing, brokers sort the messages in a batch by client identi-
fier. Servers reject batches whose identifiers are not strictly
increasing, thus verifying that all identifiers are distinct in
constant size and in linear time. Sorting messages by identi-
fier also enables parallel deduplication: messages are split by
identifier range, chunks are deduplicated independently.

6 Evaluation
We evaluate Chop Chop focusing on the following research
questions (RQs): What workload can Chop Chop sustain
(§6.3)? What are the benefits of Chop Chop’s distillation
(§6.4)? How does Chop Chop scale to different numbers of
servers (§6.5)? How efficiently does Chop Chop use resources
overall (§6.6)? How does Chop Chop perform under adverse
conditions, such as server failures (§6.7)? What performance
can applications achieve using Chop Chop (§6.8)?

6.1 Baselines
We compare Chop Chop against four baselines:

• HotStuff [80]: an Atomic Broadcast protocol designed
for high-throughput (written in C++);

• BFT-SMaRt [9]: an Atomic Broadcast protocol, similar
to PBFT [18], designed for low-latency (written in Java);

• Narwhal-Bullshark: the DAG-based Atomic Broadcast
protocol Bullshark [69] with the state-of-the-art high-
throughput mempool Narwhal [26] (written in Rust);

• Narwhal-Bullshark-sig: akin to Narwhal-Bullshark but
with Narwhal modified to authenticate messages, thus
matching Chop Chop’s guarantees.

We deploy Chop Chop with two distinct underlying Atomic
Broadcast protocols (Fig. 5): HotStuff and BFT-SMaRt.

HotStuff and BFT-SMaRt. Evaluating HotStuff and BFT-
SMaRt allows us to assess the base performance of an
Atomic Broadcast protocol and determine how much accel-
eration Chop Chop provides. We evaluate Chop Chop on
top of the same implementations of HotStuff [22] and BFT-
SMaRt [21] we benchmark against. These implementations
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are production-ready and do not use state-of-the-art mempool
protocols, only some basic form of batching. When evaluated
stand-alone, each message in these systems includes 80 B
of header composed of a client identifier (8 B), a sequence
number (8 B), and a signature (64 B) verified by the servers.
Both systems use batches of 400 messages, i.e., of 34.4 KB.

Narwhal-Bullshark. As a state-of-the-art mempool, Nar-
whal is a close point of comparison for Chop Chop. Servers
in Narwhal scale out following a primary-workers model:
each server is paired with one or several workers into a server
group. Similarly to Chop Chop, Narwhal greatly accelerates
its underlying Atomic Broadcast (here, Bullshark). Unlike
Chop Chop, however, Narwhal leaves the responsibility of
authenticating and deduplicating messages to the application.

Narwhal-Bullshark-sig. For a better comparison, we
also benchmark Narwhal-Bullshark-sig: Narwhal-Bullshark
where messages are authenticated by Narwhal in a state-of-
the-art way, i.e., using batched, multi-core Ed25519 signature
verification. Each message includes an 80 B header as for
HotStuff and BFT-SMaRt. As for Narwhal-Bullshark, the re-
maining parameters are the default ones, e.g., 500 KB batches.

6.2 Setup
Unless otherwise specified—in §§ 6.5 and 6.6—the Chop
Chop benchmarks involve 64 c6i.8xlarge AWS servers, of 32
Intel vCPUs each, geo-distributed across 14 regions. Brokers
assemble, and servers process, batches of 65,536 messages.
Each message is 8 B in length, resulting in 736 KB batches
(Fig. 3). Baselines always use the same set of server ma-
chines as their Chop Chop counterpart. All experiments run
with maximum resilience, e.g., the system survives 21 faulty
servers out of 64. Fig. 6 overviews the used deployment.

Matching trusted and total resources. Unlike its baselines,
Chop Chop leverages untrusted resources, brokers, to boost
its performance. Lacking a well-defined conversion between
trusted and untrusted resources, two extremes can be taken to

compare Chop Chop with its baselines: we can either match
trusted resources, e.g., same number of Chop Chop servers as
Narwhal workers, or match total resources, e.g., same number
of servers and brokers in Chop Chop as workers in Narwhal.

Intuitively, the first approach considers untrusted resources
to be free while the second considers untrusted resources to
be as costly as trusted resources. We use the first approach in
§§6.3 to 6.5, 6.7 and 6.8 to stress Chop Chop, provisioning
the system with enough brokers to bottleneck servers. We use
the second approach in §6.6 to assess how efficiently Chop
Chop uses its hardware resources, trusted or not.

Load clients and load brokers. We show in §6.3 that Chop
Chop servers handle up to 43.6 million operations per second
with an average latency of 3.6 seconds. To produce this level
of workload, a real-world deployment would require over 700
brokers, each handling around 200,000 clients broadcasting
back-to-back thus totaling hundreds of millions of machines.
As we cannot experiment at such a scale, we introduce two
new actors: load clients and load brokers. (In the rest of this
section, “brokers” and “clients” denote real brokers and real
clients; the term “load” is always used explicitly.)

Load clients connect to brokers and simulate thousands of
concurrent client requests. Most system evaluation typically
use this approach to stress the system and measure latency.
However, we explicitly separate clients from load clients in
this evaluation. Clients run on very small machines—less
powerful than most smartphones—to provide more accurate
end-to-end latency measurements. We similarly split clients
from load clients in all baseline runs.

Load brokers are unique to Chop Chop. Even using load
clients, we could not deploy enough brokers to bottleneck
Chop Chop’s servers. Load brokers work around this limita-
tion, submitting batches of pre-generated messages directly
to the servers. Free from interactions with clients and expen-
sive cryptography, a load broker puts on the servers a load
equivalent to that of tens of brokers working at full capacity.

Using load clients and load brokers, we manage to show
that brokers can quickly generate large batches of messages,
and servers can process large numbers of batches.

Cross-cloud deployment. All servers are deployed on
AWS, balanced across 14 regions: Cape Town, São Paulo,
Bahrain, Canada, Frankfurt, Northern Virginia, Northern Cal-
ifornia, Stockholm, Ohio, Milan, Oregon, Ireland, London,
and Paris. For system sizes of 8 in §6.5, we distribute servers
across the first 8 regions from the list, which constitute the
most adversarial setup with the highest pairwise latency.

Load brokers are placed in a separate cloud provider, OVH,
for two purposes. First, it provides a better representation of
Internet load than a single-cloud deployment. AWS operates
under its own AS so any AS peering bottlenecks would be
bypassed by an AWS-only deployment. Second, OVH is one
of the few cloud providers with enough peering with AWS
to stress Chop Chop without charging for egress bandwidth,
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saving us from using AWS’ costly bandwidth. The final cost
amounted to 25,000 USD in AWS credits. Using OVH saved
us more than 70,000 USD since each of Chop Chop’s data
point on a figure would have cost 1,700 USD in AWS egress
bandwidth—21 TB at 0.08 USD per GB ≈ 1,700 USD.

For all experiments, we deploy one broker in each conti-
nent (Cape Town, São Paulo, Tokyo, Sydney, Frankfurt, and
Northern Virginia) and one client in each of the 14 regions
above, plus Tokyo and Sydney. Clients connect to their near-
est broker. We configure the network for geo-distribution and
high load, e.g., TCP buffer sizes [37] and UDP parameters.

All baselines run on the same parameters. For Narwhal-
Bullshark, we collocate each server with one of the workers in
its server group. We reproduced Narwhal-Bullshark’s original
experiments [69] and matched the results.

Hardware. All servers, brokers and load clients run on
c6i.8xlarge machines with an Intel Xeon Platinum 8375C (32
virtual CPUs, 16 physical cores, 2.9 GHz baseline, 3.5 GHz
turbo), 64 GB of memory and 12.5 Gb/s of bandwidth. We
selected these machines since they provide good performance
and are in the same “commodity” price range as those chosen
initially for Chop Chop’s main baseline: Narwhal-Bullshark.
Clients run on t3.small machines: 2 vCPUs, 1 physical core,
2 GB of memory, and up to 5 Gb/s bandwidth—of which
they use less than 1 KB/s. All machines run Linux Ubuntu
20.04 LTS on the AWS patched version of the Linux kernel
5.15.0, except for the load brokers on OVH which run on
Linux kernel 5.4.0—the same kernel was not available.

Challenges. The most significant evaluation challenges
arose from the scale of the targeted deployment. The setup
and orchestration alone required simultaneous handling of up
to 320 machines across two different cloud providers and 25
regions, as well as transferring 13TB of files—mostly public
keys and pre-generated batches—for each of the 12 setups.
To handle this, we developed a new command-line tool to
efficiently deploy distributed systems: silk. Among other
things, we use silk for peer-to-peer-style file transfer over
aggregated TCP connections, as well as for grouped process
control. With silk, transferring all files from a single ma-
chine takes around 30 minutes, compared to 68 hours with
scp. The code for silk can be found at [anonymized].

Additional challenges came from the real-world nature of
the targeted deployment. First, the connection between OVH
and AWS’s Asia and Pacific regions was particularly unstable
at certain times of day especially when close to saturation.
For example, Tokyo’s connection was frequently degraded be-
tween 3pm and 5pm UTC. Second, the performance of some
machines sometimes deviated from their specifications. As an
example, in a setup size of 64, we observed around 2 machines
operating with a 10% lower CPU turbo clock rate than speci-
fied. Considering these variations, we increased the number
of servers a broker initially asks for witness shards (see §4.3)
by a margin, e.g., f +5 instead of f +1. This improves sys-

tem stability—i.e., lower latency variability—while slightly
reducing maximum throughput. Unless otherwise specified,
we set the margin to 4 in all experiments, i.e., f +5.

Plots. Every data point is the mean of 5 runs of 2 minutes
each (after excluding warmup and cooldown, the relevant
cross-section is at least 1 minute). All plots further depict one
standard deviation from the mean using either colored shaded
areas or black error bars (which may be too small to notice).
Experimental data can be found at [anonymized].

6.3 RQ1 – Load Handling
Fig. 7 shows the latency and throughput of Chop Chop and
all its baselines for various input rates of 8 B messages. The
variability is represented using shaded areas.

Baselines. Both BFT-SMaRt and HotStuff showcase sta-
ble performances under low loads, respectively achieving
around 1,400 and 1,600 operations per second. BFT-SMaRt’s
latency is consistently better than HotStuff’s up to its inflec-
tion point (0.45–0.53 s vs. 1.2–1.6 s). We measure up to
3.8M op/s for Narwhal-Bullshark and up to 382k op/s for
Narwhal-Bullshark-sig. The difference in respective through-
puts highlights the cost of authentication for servers: verifying
signatures reduces the throughput of Narwhal-Bullshark by
one order of magnitude. We observe a latency of around 3.6 s
for both Narwhal-Bullshark and Narwhal-Bullshark-sig.

Chop Chop. Chop Chop achieves close to 44M op/s while
running on top of both HotStuff and BFT-SMaRt. Chop
Chop’s latency range is 3.0–3.6 s with BFT-SMaRt and 5.8–
6.5 s with HotStuff. Notably, the latency of Chop Chop-
HotStuff decreases under high load. This is due to the internal
batching mechanism of the HotStuff implementation: buffers
fill faster under higher load, thus avoiding timeouts. This has
an immediate impact on Chop Chop, which feeds HotStuff
at a low rate: HotStuff alone accounts for over 60% of Chop
Chop-HotStuff’s overall latency. BFT-SMaRt makes a better
fit for Chop Chop, as its throughput is sufficient for Chop
Chop’s needs, and its latency is lower than HotStuff’s.

Mempools’ trade-off. In comparison to BFT-SMaRt and
HotStuff, Chop Chop trades latency in favor of throughput.
This trade-off is mostly explained by batching and distilla-
tion. When assembling a batch, a broker has to wait twice:
once to collect enough messages to fill a batch, and once
to collect all multi-signatures from clients engaging in dis-
tillation. We set both waits’ timeout to 1 second. Notably,
Narwhal-Bullshark seems to incur a similar latency cost, as
Chop Chop’s latency approximately matches that of Narwhal-
Bullshark, even though Chop Chop needs an extra round trip
between clients and broker (Fig. 5, #4–#6).

6.4 RQ2 – Distillation Benefits
We showcase the benefits of distillation by: evaluating
throughput with and without distillation, evaluating distilla-
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Figure 8: Throughput of Chop Chop and authenticated
Narwhal with Bullshark (log scale) when (a) Chop Chop
has no distillation and with (b) varying message size.

tion for messages of different sizes, and observing the impact
of distillation on network bandwidth to achieve line rate.

Distillation vs. mitigations. Along with distillation, Chop
Chop makes use of two techniques available in the literature
to mitigate the cost of Atomic Broadcast’s authentication:
short identifiers and pooled signature verification (see §2.2).

Fig. 8a breaks down Chop Chop’s throughput, measur-
ing how significantly distillation alone contributes to Chop
Chop’s performance. When no message is distilled, Chop
Chop’s servers bottleneck at 1.5M op/s, 3.9× higher than
Narwhal-Bullshark-sig. This result is in line with both sys-
tems bottlenecking on server CPU, as the technique employed
by Chop Chop to mitigate authentication complexity has only
one third of the servers verify each client signature. (We
conjecture that the additional 1.3 factor may be owed to engi-
neering differences.) When batches are fully distilled, Chop
Chop’s throughput grows to 44M op/s, accounting for the
additional 29-fold boost to Chop Chop’s performance.

Distillation for larger messages. Fig. 8b illustrates Chop
Chop’s maximum throughput for message sizes of 8 B to
512 B which may be relevant to applications that cannot
work around smaller message sizes, e.g., many smart con-
tracts. Chop Chop’s throughput is similar with BFT-SMaRt
and HotStuff, decreasing at an approximately 1-to-1 ratio as
the message size increases: 44.3M op/s for 8 B, 17.6M op/s
for 32 B, 3.5M op/s for 128 B and 890k op/s for 512 B.

This is in line with expectations. As we discuss in §3.2, a
server should receive ∼ b bytes in order to deliver a b-bytes
message in a large, fully distilled batch, as full distillation
amortizes to zero the communication cost of authenticating
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Figure 9: Throughput efficiency of authenticated Narwhal
with Bullshark (left, log scale) and Chop Chop with BFT-
SMaRt (right, linear scale) with various input rates.

and sequencing each message. For 8 B messages, servers
encounter a CPU bottleneck slightly before the link between
load brokers and servers is saturated. This explains why
the throughput decreases only 2.52× when messages grow to
32 B: all remaining server-bound bandwidth is used to convey
messages (as messages are larger) while the load on server
CPUs is reduced (as less messages are delivered overall).
The system remains communication-bottlenecked as the size
of the messages increases, and throughput starts decreasing
linearly with message size, e.g., Chop Chop’s throughput for
512 B messages is 4.00× smaller than for 128 B.

By contrast, Narwhal-Bullshark-sig bottlenecks on server
CPUs longer, due to signature verification, maintaining a sta-
ble throughput until 512 B messages finally fill server links.
Overall, Narwhal-Bullshark-sig’s throughput only decreases
from 382k op/s for 8 B messages to 142k op/s for 512 B mes-
sages, which matches their non-authenticated evaluation with
512 B messages. The gap between Chop Chop and Narwhal-
Bullshark-sig at 512 B messages can be mostly attributed to
Chop Chop’s more efficient use of server bandwidth: unlike
Narwhal, Chop Chop offloads the dissemination of batches
to external brokers. Narwhal’s use of worker-to-worker com-
munication in its common path also makes it more prone to
be affected by AWS’s various upload limitations, e.g., AWS
upload bandwidth is half the stated download bandwidth, and
there are network credit limits for “burst” uploading.

Line rate. Fig. 9 illustrates Chop Chop’s near line-rate net-
work use by depicting its input, network and output rates:

• Input rate measures the total bytes of useful information—
i.e., client identifiers and messages—that clients, load
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clients and load brokers all broadcast per time unit;
• Network rate measures the ingress bandwidth of servers

at their network interface, i.e., useful information cap-
tured by the input rate as well as the Atomic Broadcast’s
overhead for ordering, authentication and deduplication;

• Output rate, or “goodput”, measures the total bytes of
useful information that each server delivers per time unit.

A system with perfect line rate would match all three rates:
input rate would match output rate as messages can be deliv-
ered in a timely fashion with no backlogging, and output rate
would match network rate as a server would only receive use-
ful information, with no overhead due to Atomic Broadcast.
The gray-shaded areas in Fig. 9 highlight this overhead, i.e.,
the difference between network and input rates. Network and
output rates are averaged over all servers.

In this experiment, each of the 257M simulated clients
broadcast 8 B messages. This results in 11.5 B of useful
information per broadcast as 28 bits = 3.5 B are sufficient
to represent every identifier. This conversion is captured
by the dotted line which converts the input rate from op/s,
represented on the x-axis, to B/s, represented on the y-axis.

For authenticated Narwhal-Bullshark, the output rate
closely matches the input rate until signature verification be-
comes the bottleneck at 378k op/s, shown by the plateauing
output rate. The gap between Narwhal-Bullshark-sig’s net-
work and input rates is evident, differing by one order of mag-
nitude (notably in line with our back-of-the-envelope calcula-
tion in §3.2). In contrast, thanks to distillation, Chop Chop
practically achieves line-rate up to its maximum through-
put. Before its inflection point at 40M op/s, the overhead of
Chop Chop is less than 8%. The drop in output and network
rates at 60M op/s is due to servers surpassing their computa-
tional capacity: broadcasts stall, server witness verification
gets backlogged and brokers, suspecting server faults, ask for
more batch witnesses, further stressing servers’ CPUs.

6.5 RQ3 – Number of Servers
Fig. 10a illustrates the maximum throughput for systems of 8
( f = 2), 16 ( f = 5), 32 ( f = 10) and 64 ( f = 21) servers. For
Chop Chop, we adjust the witnessing margin as the system
grows by 0, 1, 2, and 4 for 8, 16, 32 and 64 servers respectively
(see § 6.2). Both Chop Chop and authenticated Narwhal-
Bullshark scale well to 64 servers. Note that, unless trust
assumptions are modified, Narwhal-Bullshark-sig only scales
vertically: if a Narwhal server or any of its workers are faulty,
the entire server group is compromised. Chop Chop, instead,
scales horizontally with the number of brokers.

6.6 RQ4 – Overall Efficiency
The center cluster of bars in Fig. 10b compares Chop Chop’s
throughput with that of authenticated Narwhal-Bullshark
when overall hardware resources are matched. In this set-
ting, both systems have 128 machines at their disposal. Chop
Chop is provided with 64 servers, 64 brokers and 0 load bro-
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kers. Since a load broker uses pre-generated synthetic data
to simulate tens of brokers (see §6.2), involving load brokers
in this experiment would give an unfair advantage to Chop
Chop. Narwhal-Bullshark-sig is provided with 128 workers,
to match Chop Chop’s total machines, balanced across 64
server groups, to match Chop Chop’s servers. The left and
right clusters of bars depict Chop Chop using load brokers
and Narwhal-Bullshark-sig with 64 server groups containing
1 worker each, respectively, as in the other experiments.

We observe 4.6M op/s for Chop Chop, with servers re-
porting around 5% CPU usage. We observe 679k op/s for
Narwhal-Bullshark-sig. Chop Chop’s higher throughput is in
line with expectations. In Narwhal-Bullshark-sig, workers are
trusted, and as such a worker can only contribute to its own
server group. Instead, since Chop Chop brokers are untrusted,
a broker’s work is useful to all servers.

6.7 RQ5 – Chop Chop Under Failures
Fig. 11a depicts Chop Chop’s throughput when some servers
crash 30 seconds into the run. Performance drops marginally
(from 44M op/s to 43M op/s) with one crash and by 66%
(down to 15M op/s) when one-third of the servers crash, re-
sulting in less CPU globally available to witness batches.

Fig. 8a captures Chop Chop’s performance hit when clients
fail to engage in distillation. This could be caused by clients
being slow or crashed, or brokers being malicious. Under the
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most extreme conditions, where no client engages in distilla-
tion, the throughput drops from 44M op/s to 1.5M op/s.

6.8 RQ6 – Application Use Cases
Fig. 11b depicts the maximal stable throughput for various
application use cases. In the Auction app, a client can bid an
amount on a token it does not own, or take the highest offer it
received for an item it owns. The highest amount bid on each
token is locked and cannot be used to bid elsewhere. Money
bid is transferred when the owner of the token takes the offer,
or refunded when the bid is raised by another client. The
Auction app is single-threaded and many clients bid on the
same token to approximate a real auction. In the Payments
app, clients choose a recipient and an amount to transfer. In
Pixel war, clients choose a pixel and an RGB color to paint on
a 2,048 by 2,048 board. Operations are generated at random.

We observe 2.3M op/s for the Auction, 32M op/s for Pay-
ments and 35M op/s for Pixel war. The bottleneck is the
application in all cases, thus Chop Chop has sufficient capac-
ity for high, single-application throughput. Chop Chop can
also support many separate high-throughput applications si-
multaneously, making it a fitting Atomic Broadcast candidate
to power a universal SMR system, i.e., an Internet computer.

7 Related Work
We overview below the state-of-the-art most relevant to
Chop Chop, namely Atomic Broadcast systems with high-
throughput and efficient signature aggregation schemes.

High-throughput Atomic Broadcast. Narwhal [26] is a
mempool protocol that separates the reliable distribution of
payloads from the communication-expensive ordering in or-
der to accelerate DAG-based Atomic Broadcast [33, 42, 69].
Narwhal utilizes trusted workers to increase throughput while
Chop Chop relies on trustless brokers, for the same effect, and
scales out more efficiently. To circumvent the bottleneck as-
sociated with the broadcast leader, approaches using multiple
leaders have been developed—both for crash [31,61] and arbi-
trary [3,6,70,71] faults—to scale the broadcast throughput lin-
early with the number of leaders. Dissemination trees [44,63]
have also been employed to reduce communication cost and
maximize network bandwidth utility, while sharded [46, 76]
and federated [54] approaches reduce communication cost
by promoting local communication in geo-distributed setups.
In comparison, Chop Chop shows that an optimal distillation
mechanism for batches achieves better performances without
adding complexity to the Atomic Broadcast protocol itself.

Other approaches have shown that the underlying hardware
of servers can also be exploited for higher throughput, such
as FPGA [38, 41] and Intel SGX enclaves [7]. In compari-
son, Chop Chop uniquely boosts throughput by exploiting
trustless hardware via brokers. Atomic Broadcast can also
be accelerated in data centers by using the topology of the
network [51, 64] or even by running within the network itself
using P4-programmable switches [27, 45]. In such low la-

tency environments, the processing overhead incurred by the
operating system kernel can be bypassed to further increase
the throughput of Atomic Broadcast [1, 45, 75].

Signature aggregation. Aggregate signatures were first
proposed to save space by compacting a large number of
signatures into just one [11, 67]. Up until recently, aggre-
gation could also save verification time but only in certain
cases: either when the signatures are generated by the same
signer [17, §5.1], or when the signatures are on the same mes-
sage, i.e., multi-signatures [39]. In the latter case, aggregation
mechanisms have been proposed to achieve constant-time
verification of aggregated multi-signatures for both BLS [10]
and Schnorr [57] signature schemes. In particular, multi-
signatures are used in cryptocurrencies to have many servers
sign the same batch of payloads [30, 44]. Servers in Chop
Chop use rapidly-verifiable BLS multi-signatures [10] for that
very purpose. In addition to aggregating server signatures on
batches, Chop Chop’s distillation mechanism also aggregates
all client signatures in a batch in a way that provides constant-
time verification. The theoretical scheme Draft [16] proposed
signature aggregation with similar verification performances
but is tailored to Reliable Broadcast. It is however unclear how
Draft could be implemented as a real-world system without
compromising liveness. Indeed, Draft assumes infinite mem-
ory to prevent message replay attacks which would rapidly
exhaust servers’ memory if deployed to match Chop Chop’s
maximum throughput (see §6.2). Chop Chop also aggregates
client sequence numbers to significantly reduce bandwidth
consumption when small messages are broadcast (Fig. 2).
Chop Chop aggregates sequence numbers thanks to the order-
ing of and thanks to novel legitimacy proofs (see §4.2).

8 Concluding Remarks
Chop Chop’s performance comes with two limitations. First,
Chop Chop’s high throughput makes memory management
a challenge: servers fill their memory quickly if unable to
garbage-collect under heavy load. Second, all servers in Chop
Chop are known at startup and it is unclear if its performance
would be maintained when deployed on thousands of servers.
Interesting avenues of future research include sharding to
achieve even higher throughput by running multiple, inde-
pendent, coordinated instances of Chop Chop, and offloading
more tasks to the brokers, such as public key aggregation.
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A Artifact Appendix
Abstract
This artifact is a full implementation of Chop Chop, an end-to-
end client-server Byzantine Atomic Broadcast system lever-
aging a third-party—brokers—to optimize network usage and
vastly reduce the computational load of authenticating client
requests on the server-side while preserving safety.

Scope
This artifact can be used to validate the following claims
(provided the setup is the same):

• End-to-end performance (Figs. 7 and 10).

• Distillation benefits (Fig. 8) and throughput efficiency
(Fig. 9).

• Performance under faults (Fig. 11).

Note that reproducing the same plots (including error
bands) can be prohibitively costly given the scale of the eval-
uation (number and hourly price of machines, see §6.2).

Contents
The artifact contains all the source code used to implement
Chop Chop. We provide a docker file to set up experi-
ments. We also provide automated scripts to extract and
interpret the data as well as generate plots. Please refer to the
README.md file in the repository for more details.

Hosting
The repository can be accessed through GitHub4 (see the
instructions on the README.md file).

Requirements
There are no special hardware or software requirements be-
yond a recent enough version of Rust (§5) and the desired
network layout to evaluate. If you wish to reproduce our
results exactly, please see §6.2 for the setup used.

4https://github.com/Distributed-EPFL/chop-chop-osdi24
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Abstract
Obtaining high-performance tensor programs with high ef-

ficiency continues to be a substantial challenge. Approaches
that favor efficiency typically limit their exploration space
through heuristic constraints, which often lack generalizabil-
ity. Conversely, approaches targeting high performance tend
to create an expansive exploration space but employ ineffec-
tive exploration strategies.

We propose a tensor program generation framework for
deep learning applications. Its core idea involves maintaining
an expansive space to ensure high performance while perform-
ing powerful exploration with the help of language models to
generate tensor programs efficiently. We thus transform the
tensor program exploration task into a language model gener-
ation task. To facilitate this, we explicitly design the language
model-friendly tensor language that records decision infor-
mation to represent tensor programs. During the compilation
of target workloads, the tensor language model (TLM) com-
bines knowledge from offline learning and previously made
decisions to probabilistically sample the best decision in the
current decision space. This approach allows more informed
space exploration than random sampling commonly used in
previously proposed approaches.

Experimental results indicate that TLM excels in deliv-
ering both efficiency and performance. Compared to fully
tuned Ansor/MetaSchedule, TLM matches their performance
with a compilation speedup of 61×. Furthermore, when
evaluated against Roller, with the same compilation time,
TLM improves the performance by 2.25×. Code available at
https://github.com/zhaiyi000/tlm.

1 Introduction

As deep learning rapidly grows in both scale and complexity,
the gap between the computational needs of deep learning
workloads and the capabilities of existing computing plat-
forms is widening. This gap underscores the imperative for

∗Corresponding authors.
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Figure 1: The left shows the architecture of common tensor
compilers, while the right illustrates the structure incorporat-
ing our tensor program generation framework.

low-latency execution of deep learning workloads. Solutions
for low-latency execution primarily include kernel libraries
provided by vendors (e.g., cuDNN [1], oneDNN [2]) and
search-based tensor compilers (e.g., TVM [3], Halide [4],
Tensor comprehensions [5], Flextensor [6], NeoCPU [7]). Ex-
isting deep learning frameworks (e.g., TensorFlow [8], Py-
Torch [9], and MXNet [10]) map the operators (e.g., con-
volution, matrix multiplication) in deep learning workloads
to vendor-provided kernel libraries to optimize performance.
Given the high development costs of vendor-provided ker-
nel libraries, developers are increasingly turning to tensor
compilers to auto-explore for tensor programs, i.e., optimized,
low-level implementations of operators.

The left of Figure 1 shows that a tensor compiler can be
divided into three parts: a graph processor (e.g., Relay [11],
HLO), a tensor program exploration framework (e.g., Au-
toTVM [12], Ansor [13], MetaSchedule [14], AKG [15]), and
a code generator (e.g., LLVM [16], NVCC [17]). The graph
processor is responsible for converting various deep learning
workloads of different formats (e.g., ONNX [18], TensorFlow
PB) into a unified graph representation, performing graph op-
timizations, and splitting the workloads into subgraphs. Then,
the tensor program exploration framework takes subgraphs
as inputs, which, after scheduling, are lowered into tensor
programs. Finally, a code generator is invoked to produce
executables explicitly tailored for the target hardware.

The tensor program exploration framework, in lowering
subgraphs to tensor programs, is tasked with making a se-
ries of critical decisions. These include determining the tiling
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sizes of loop axes, setting unroll steps, choosing computa-
tion locations for operators, strategizing on parallelization
and vectorization, and, particularly on GPUs, deciding thread
bindings. The options for each decision create a decision
space, and all decision combinations form the exploration
space. The primary objective of this exploration framework is
to find a decision combination that minimizes the execution
latency of the resulting tensor program.

Previous work either introduces heuristic constraints to
define or prune the exploration space, resulting in limited
performance or constructs an expansive exploration space but
employs less effective exploration strategies – for instance, the
random sampling used by Ansor [13] and MetaSchedule [14].
For a detailed literature review, please refer to section §2.1.

To address this challenge, we propose an approach to main-
tain an expansive exploration space while conducting more
powerful exploration – i.e., enabling language models to assist
in generating high-performance tensor programs. Specifically,
we present a generation-based tensor program exploration
framework, i.e., a tensor program generation framework, for
deep learning applications. The proposed framework consists
of two components, a space builder and a generator, as shown
in the right of Figure 1. The space builder is dedicated to
building an expansive tensor program exploration space, en-
suring high performance; meanwhile, the generator focuses
on efficiently generating high-performance tensor programs,
regardless of the exploration space’s magnitude. They func-
tion independently without mutual constraints, each focusing
solely on ensuring high performance and high efficiency.

Generating tensor program source code with language mod-
els naturally presents challenges. The length of tensor pro-
gram source codes often exceeds ten thousand tokens, and
these programs must adhere to strict syntactic rules. Crafting
such lengthy and syntactically valid tensor program source
codes is nearly unfeasible. Therefore, instead of aiming for
direct end-to-end generation source code, we utilize tensor
compilers for constructing tensor programs and leverage lan-
guage models to assist in decision-making. To facilitate this,
we explicitly design the language model-friendly tensor lan-
guage to represent tensor programs. A tensor language sen-
tence (abbreviated as tensor sentence) uniquely corresponds
to a tensor program by recording the input subgraph, hard-
ware specifications, and decision information of the tensor
program. Compared to tensor program source code, a tensor
sentence conveys the same semantics (i.e., both represent a
tensor program) but in a far more concise manner, capped at
no more than 1024 tokens. Building on the tensor language,
we draw on the training methods of ChatGPT [19] to develop
a language model, the tensor language model (TLM). We
utilize millions of tensor sentences and a select few demon-
stration sentences (corresponding to high-performance tensor
programs) to pre-train and fine-tune TLM in a supervised
manner. After that, during the compilation of target work-
loads, TLM combines knowledge from offline learning and

previous decisions to make probabilistic predictions for the
current decision space, resulting in more effective exploration
than random sampling.

It is noteworthy that, in contrast to methods like An-
sor/MetaSchedule that depend exclusively on online data,
TLM requires about 300K pieces of offline labeled data (i.e.,
tensor programs with measured execution latency) to select
demonstration sentences, requiring tens of hours to collect.
However, the labeled data for TLM is still significantly less
than that for TenSet [20] or TLP [21], which amounts to 8.6
million and requires several weeks to collect.

In this paper, we also refer to our proposed tensor program
generation framework as the TLM framework. The primary in-
novations of the TLM framework focus on the tensor language
and tensor language model. The supported decision spaces
are adapted from previous frameworks, which is largely an
engineering effort. The space builder currently supports deci-
sion spaces adapted from several previous search frameworks,
including Ansor, MetaSchedule, AKG, and AKG-MLIR.

We conducted extensive experiments to validate the high
efficiency and performance of the TLM framework, examin-
ing scenarios with various exploration budget points. Under
a limited budget, TLM’s performance matches that of An-
sor/MetaSchedule yet compiles 61× faster. While its com-
pilation time aligns with Roller, its performance is 2.25×
better. In ample exploration times, TLM’s compilation dura-
tion is consistent with Ansor and MetaSchedule, delivering a
performance boost of 1.08× and 1.04×, respectively.

In summary, this paper makes the following contributions:

• We design the language model-friendly tensor language
to represent tensor programs, bridging the gap between
tensor programs and language models.

• We develop a tensor language model that combines
knowledge from offline learning and previously made
decisions to probabilistically sample the best decision
in the current decision space, enabling more effective
space exploration.

• Experimental results show that TLM excels in delivering
both high efficiency and performance.

2 Background

2.1 Tensor Program Exploration Framework
In the development of tensor program exploration frame-
works, previous studies mainly employ search algorithms
to locate optimal tensor programs automatically. As a result,
the search-based tensor program exploration framework often
gets dubbed as the tensor program search framework, with its
exploration space used as the search space.

Earlier, the Halide auto-scheduler [4] aggressively prunes
the search space by evaluating incomplete programs; Au-

290    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



toTVM and FlexTensor [6] employ predefined, manually writ-
ten templates to define their search space. These methodolo-
gies introduce constraints that limit the search space, thereby
missing out on many potent decision combinations and lead-
ing to suboptimal performance.

Subsequently, Ansor [13] and MetaSchedule [14] utilize
derivation rules to build an expansive search space, pushing
performance to state-of-the-art levels. However, this came
with a notably vexing issue — excessive compilation time.
In our experience, using Ansor to bring a BERT-base work-
load to convergence takes 21.6 hours on the NVIDIA V100
GPU; on the Intel i7-10510U CPU, it requires 13.1 hours.
The reason behind this is that Ansor/MetaSchedule utilizes a
strategy of random sampling followed by evaluation using a
learnable cost model. Until completing the random sampling
of all decision spaces, Ansor/MetaSchedule lowers subgraphs
to tensor programs and then extracts statistical features, in-
cluding computation, memory access, and arithmetic strength
for performance evaluation with the learnable cost model.
However, this strategy has three main issues:
• Random sampling represents a form of inefficient explo-

ration, with equal probabilities of sampling optimal or sub-
optimal decisions.

• The evaluation demonstrates hysteresis. Decisions made
during the initial sampling might lead to poor performance
but can only be ascertained when evaluating.

• The inadequacy of training data and the small parameter
size of the cost model weaken the model’s learning ability,
limiting its effectiveness in guiding the search algorithm.
Ansor/MetaSchedule relies exclusively on minimal online
data to train cost models. Moreover, their models are pri-
marily based on low-parameter machine learning or deep
learning models (e.g., XGBoost [22], MLP, LSTM).
More recent studies, Roller [23], TenSet [20], and TLP [21],

were proposed to address the issue of slow compilation. Roller
speeds up the compilation by aligning tensor shapes with the
properties of the hardware. However, in doing so, Roller ex-
periences a declining performance (§6.4.2), still due to the
generalizability of the heuristic constraint. TenSet and TLP
collect offline datasets before compiling the target workloads
to build a stronger cost model. While these approaches expe-
dite compilation, they exhibit two key shortcomings. Firstly,
they adopt the Ansor/MetaSchedule strategy of conducting
random sampling followed by evaluating with a cost model.
Moreover, they rely on 8.6 million pieces of labeled data.

An example. We illustrate an example to analyze the dif-
ferences between heuristic compilers, exemplified by Roller,
search-based frameworks like Ansor/MetaSchedule, and our
generation-based TLM framework from a probabilistic per-
spective. Consider a decision space, Di, with four valid deci-
sions. The optimal decision is d3, as depicted in Figure 2.

Heuristic compilers use heuristic constraints to eliminate
d1, d2, and d4. After this pruning, d3 has a 100% chance of
being sampled, reducing the search space and speeding up the

Figure 2: Example of probability distributions in a decision
space for several different methods.

compilation. However, such heuristics aren’t always accurate
and can sometimes degrade performance. In contrast, search-
based frameworks keep all decision options and sample one
decision randomly. Here, d3 has a 25% sampling probability.
Until all decision spaces are sampled, a learnable cost model
evaluates the results. After sufficient searching, search-based
frameworks can always approximate the optimal solution,
making them performance-oriented but inefficient methods.
Unlike search-based frameworks, TLM combines the knowl-
edge learned offline with the decisions already made to make
probabilistic predictions about the best decision in the current
decision space.

2.2 Language Model

Deep learning language models mainly fall into two cate-
gories: the Masked Language Model (MLM) and the Causal
Language Model (CLM), with CLM also known as the Au-
toregressive Language Model. Notable examples of CLM
include the GPT series, such as GPT-2 [24] and GPT-3 [25].
CLMs, recognized for their natural text generation method,
often excel in tasks that need coherent text creation, like writ-
ing or chatbot conversations. In this paper, a language model
refers specifically to a CLM.

Before training a language model, a vocabulary is created
through tokenization. Tokenization typically refers to frag-
menting an input sentence into its constituent tokens for sub-
sequent language analysis or as input to a model, with all such
tokens collectively forming a vocabulary. The steps ①② and
⑦⑧ in Figure 3 represent the processes of tokenizing a sen-
tence into tokens and converting tokens back into a sentence,
respectively. For simplicity in description, here we tokenize
by words (in practice, the process is more complex). The only
thing language models perform is to combine the learned
knowledge with the given input to predict the probability dis-
tribution of the next token being a specific one from the vocab-
ulary. The initial input is referred to as a prompt. During the
training of a language model, natural language sentences are
utilized as input. Through the backpropagation algorithm [26],
the language model’s parameters are iteratively updated to
maximize the probability that the next token generated aligns
with the corresponding token within the natural language.

Employing the language model for inference, take a real-
life instance as an example: we ask a language model, "What
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What is a language model? A language model...

LM

["What", "is", "a", "language", "model", "?"] "A"

[..., "is", "a", "languange", "model", "?", "A"] "language"

[..., "languange", "model", "?", "A", "language"] "model"
⋮

[..., "model", "?", "A", "language", "model" ...,] "</s>"

["What", "is", "a", "language", "model", "?", "A", "language", "model" …, "</s>"]

⑤

③

④

⑥

⑦

⑧

Input Next token

Prompt + Response

What is language model? A language model is a type of artificial intelligence that is trained to understand, generate, and respond to human language.

What is a language model?

["What", "is", "a", "language", "model", "?"] ②

①

Prompt

Figure 3: Employing a language model to generate a natural
language sentence.

is a language model?" and it responds, "A language model is
a type of artificial intelligence that is trained to understand,
generate, and respond to human language...". The generation
process is illustrated in Figure 3. In step ③, the language
model uses the prompt as input to predict a probability for
each token in the vocabulary. This probability signifies the
likelihood of each token logically following the input. The
next token is then sampled based on these probabilities. Step
④ involves using the prompt and the token generated in step ③
as input to sample the next token probabilistically, continuing
this process until the "</s>" token is generated. The ending
"</s>" signifies the end of a sentence.

2.3 ChatGPT/InstructGPT

ChatGPT [19] and InstructGPT [27] employ a similar training
methodology that encompasses: pre-training, SFT, and RLHF
(RM + RL). TLM partially adopts these training approaches.
The training process for InstructGPT includes:
Pre-training GPT-3. InstructGPT is based on GPT-3, which
boasts 175 billion parameters, leverages approximately 45TB
of Internet text for training, and necessitates a significant
amount of hardware resources throughout its training process,
with the aim of enabling GPT-3 to learn the fundamental struc-
tures and semantics of language.
Supervised fine-tuning (SFT). Training a supervised pol-
icy by collecting demonstration data (around 14K entries) to
fine-tune GPT-3 through supervised learning, with the demon-
stration data provided by humans representing the desired
output behavior corresponding to a prompt.
Reward modeling (RM). Training a reward model by col-
lecting comparison data (around 51K entries), wherein the
comparison data, also provided by humans, offers a ranking
of model outputs from best to worst.
Reinforcement learning (RL). Optimizing a policy against
the reward model using the PPO [28] reinforcement learning
algorithm, with rewards determined by the preceding reward
model, this step will be iterated multiple times.

Space building

Large-scale sampling

Exploration

space $

Subgraphs

Offline dataset

Tensor
language

Pre-training

Supervised 

fine-tuning

Tensor program

generation
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optimization

Space builder Generator
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Tensor program
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Figure 4: System overview of the TLM framework.

3 System Overview

The TLM framework is a tensor program generation frame-
work designed to generate high-performance tensor programs
efficiently. Maintaining a large exploration space can ensure
that high-performance tensor programs are not eliminated by
heuristic constraints. However, this requires stronger explo-
ration capabilities. Utilizing deep learning models to glean
knowledge from offline data for aiding online tensor program
exploration presents a promising strategy. Given the current
learning capabilities, language models are the most powerful
method available. Hence, we propose to leverage the language
model to assist in generating high-performance tensor pro-
grams, transforming the tensor program exploration task into
a language model generation task.

Figure 4 shows the system overview and marks the cor-
responding subsections that detail each system component.
Section 4 centers on collecting a large-scale offline dataset
necessary for the pre-training of TLM. Section 4.1 details
the exploration space for data sampling and its build process,
providing a theoretical foundation for tensor language de-
sign through formalization of the exploration space. Section
4.2 discusses tensor language design, emphasizing its role
in preserving tensor programs sampled from the exploration
space in a format more amenable to language models. Fol-
lowing the discussion of the sampling space and preservation
methods, Section 4.3 introduces large-scale sampling, where
extensive random sampling achieves an unbiased estimation
of the exploration space.

Section 5 focuses on the development of a tensor language
model. Initially, Section 5.1 addresses the model architecture,
training methods, and the training process of TLM, encom-
passing both pre-training and supervised fine-tuning. Upon
completing pre-training, TLM should be able to generate
any valid tensor program within the exploration space. Sec-
tion 5.2 then details how the TLM framework generates ten-
sor programs with decision-making support from TLM. For
generating high-performance tensor programs, we employ
demonstration data (corresponding to high-performance ten-
sor programs) to fine-tune TLM through supervised learning,
aligning the tensor sentences it generates with our anticipated
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Figure 5: Two intermediate representations of common tensor
compilers.

demonstration sentences. Section 5.3 discusses obtaining this
demonstration data via iterative algorithms.

4 Space Builder

The function of a space builder is to create a large exploration
space to ensure high performance. This exploration space
consists of all possible tensor programs. Regarding the idea
that a large exploration space can guarantee high performance,
two aspects need to be discussed. First, a larger space implies
that, in comparison to a smaller one, it is constructed with
fewer constraints, thus enabling the generation of more tensor
programs. To some extent, it can be said that the large space in-
cludes the smaller space. Second, ensuring high performance
means maintaining the potential for high-performance tensor
programs to exist within the exploration space. The larger the
space, the less likely it is to be pruned by constraints, but this
also demands greater exploration capabilities.

4.1 Exploration Space

In this section, we introduce two primary topics. The first is
about building the exploration space. The second involves
formalizing the tensor program generation process, providing
a theoretical basis for designing the tensor language.

Tensor compilers customarily extract two intermediate rep-
resentations (IRs) for optimization purposes, i.e., the graph
layer and the tensor layer, which are specifically tailored
for hardware-independent and hardware-dependent enhance-
ments, respectively. As depicted in Figure 5, the graph layer
ingests a workload, optimizing with several passes and em-
ploying algorithms for operator fusion and partitioning. Then,
it produces subgraphs, each consisting of one or more op-
erators. A subgraph describes the expected computational
results, whereas the tensor program exploration framework
transforms this subgraph into a tensor program, providing a
detailed computational implementation. The collective of all
possible tensor programs forms the exploration space S of the
tensor layer. Previous exploration frameworks utilize expert
knowledge, including templates (AutoTVM), the polyhedral
model (AKG), and derivation rules (Ansor, MetaSchedule), to
map subgraphs into tensor programs. For areas where expert

knowledge falls short, these frameworks use tunable parame-
ters (AutoTVM, AKG), annotations (Ansor), or random vari-
ables (MetaSchedule) to create a decision space Di and then
employ search algorithms, such as simulated annealing [29]
and genetic algorithm [30], to locate the optimal solution.

The decision spaces chiefly involve determining tiling sizes
for loop axes, setting unroll steps, selecting computation loca-
tions for operators, strategizing parallelization and vectoriza-
tion, and on GPUs, specifically determining thread bindings.

From the analysis above, tensor programs result from op-
timizing input subgraphs through a series of decisions. We
formalize the tensor layer’s exploration space as follows:

S =

{
s(n)

∣∣∣∣∣ s(i) = apply
(

s(i−1),di

)
,

∀di ∈ Di, 1 ≤ i ≤ n

}

where s(0) denotes the initial program of the input subgraph,
and di represents a random sample from the set Di. Thus,
the size of the exploration space aligns with the number of
decision combinations. We have:

|S|= |D1| × |D2| × . . . × |Dn|.

This work discusses only the exploration space of the tensor
layer. On a CPU, the exploration space size corresponding to
a subgraph is roughly 106; on a GPU, it approximates 109.

We reuse the decision space from previous work (e.g., An-
sor, MetaSchedule), as we think that this space is already
sufficiently large to yield high-performance tensor programs.
Expanding the exploration space of tensor layers to larger is a
considerable challenge. In future endeavors, we advocate ex-
ploring larger spaces mainly by integrating the decision space
of the graph layer. Certainly, the TLM framework supports
exploration spaces of varying sizes since they all integrate
with TLM in the same manner.

4.2 Tensor Language
In this section, we focus on how to store tensor programs
sampled from the exploration space.

Recall that our objective is to teach language models of
these tensor programs, enabling them to aid in generating
high-performance tensor programs during target workload
compilation. Tensor program source codes often exceed ten
thousand tokens, posing a challenge for language models
to generate such lengthy, coherent, and valid source codes.
Therefore, we do not pursue the end-to-end generation of ten-
sor program source codes. Instead, we utilize language mod-
els to assist in decision-making. To facilitate this, we explic-
itly design the language model-friendly tensor language that
records decision information to represent tensor programs.

As understood from Section 4.1, a tensor program s(n) per-
tains exclusively to the initial program s(0) of the input sub-
graph and decisions d1,d2, . . . ,dn. Each decision di is ran-
domly sampled from decision space Di, the design of which
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Algorithm 1: Sampling tensor sentences from deci-
sion spaces.

1 Func GenerateSampleData(subgraph, hardware):
2 tokens = []
3 ExtractTokensFromSubgraph(subgraph, tokens)
4 ExtractTokensFromHardware(hardware, tokens)
5 decision_spaces = DetermineDecisionSpaces(subgraph,

hardware)
6 foreach space in decision_spaces do
7 switch space.type do
8 case "tile_size" do
9 HandleTileSizeSpace(space, tokens)

10 case "unroll" do
11 HandleParallelSpace(space, tokens)

// Additional space types
12 case ... do
13 ...

14 return tokens

15 Func HandleTileSizeSpace(space, tokens):
16 tokens.append("split")
17 tokens.extend(Serialize(space.operator))
18 tokens.extend(Serialize(space.axis))
19 tiles = RandomSample(space)
20 tokens.extend(Serialize(tiles))

// Other properties

hinges on the hardware platform. Consequently, to ensure
that a tensor language sentence uniquely corresponds to a
tensor program, a tensor sentence must encapsulate the input
subgraph, hardware specifications, and decisions. We utilize
Algorithm 1 to sample data from the exploration spaces. Each
sentence extracts information from the input subgraph, en-
compassing the type and shape information of each operator
within the subgraph. Furthermore, it retrieves hardware de-
tails, including the number of processing cores and the sup-
ported vector instructions. Successively extracting informa-
tion from each decision space, Algorithm 1 demonstrates how
to extract tokens from the tile size decision space, conserv-
ing details such as the corresponding operator, axis, decision
space type, sampled decisions from the space, and other piv-
otal information. A similar method is applied to other decision
spaces as well.

Tensor language is a form of natural language, not a pro-
gramming language, and thus does not strictly follow the
Backus-Naur Form [31]. Its primary intent is to represent a
tensor program using a single sentence, emphasizing its role
in recording rather than programming. This recording process
offers significant flexibility, with only one constraint being
the consistency between tensor sentences collected offline
and generated online. Such consistency is essential for deep
learning models to ensure that training and testing data are
independently and identically distributed.

Given the flexibility of tensor language, there are no strict
guidelines on the exact details that need to be recorded about
input subgraphs, hardware specifications, and decision infor-
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Figure 6: Tensor sentence samples tailored for Ansor (top)
and MetaSchedule (bottom), encompassing input subgraph,
hardware specifications, and decision information. For ex-
ample, at the top, "SP 2 0 1024 32 1 4 1" represents "split
operator_index axis_index axis_extent tile_size_0 tile_size_1
tile_size_2 save_manner".

mation. Under the premise of maintaining consistency, these
details can be dynamically adjusted in conjunction with spe-
cific engineering projects. Figure 6 showcases tensor sentence
samples tailored for Ansor (top) and MetaSchedule (bottom).

4.3 Large-scale Sampling Tensor Sentences

This section introduces employing the sampling algorithm to
create a large-scale offline dataset.

Large-scale sampling serves two main purposes. Firstly, it
is to create an unbiased estimation of the exploration space S
through widespread random sampling, which allows TLM to
learn the basic structures and semantics of tensor language,
enabling TLM to generate any tensor sentence within space S.
Secondly, it is to build as large a vocabulary (§2.2) as possible,
where all decision options like "i.0=16" and "i.0=32" are
tokenized into discrete tokens. If a decision, such as "i.0=17",
is not in the vocabulary, it will never be generated.

The workload dataset configured for TLM takes cues from
TenSet. The workloads are derived from PyTorch’s Vision
Model Zoo and Huggingface’s Transformer Model Zoo, en-
compassing tasks emblematic of both computer vision (CV)
and natural language process (NLP). We adjust the input
shape to generate a variety of subgraphs. Note that we focus
on small batch sizes in this dataset because tensor compilers
are mainly used for optimizing trained models for inference.
Altogether, the dataset consists of 138 workloads, with 12
held out for testing; from the remaining approximately 3K
subgraphs are extracted.

We collect 2 million tensor sentences for 3K subgraphs to
pre-train TLM. It is worth noting that the 2 million data entries
are distinct from the 8.6 million used in TenSet/TLP. The data
here is unlabelled, i.e., it does not require measuring execution
latency; measurement is typically the most time-consuming
part. On a 96-core server, it takes about 2 hours to collect 2
million CPU data entries, and around 10 hours for the GPU.
This longer duration for GPU data is due to additional checks,
such as ensuring thread binding meets hardware constraints.
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5 Tensor Language Model

5.1 Model Details
Model architecture. Taking into account both learning ca-
pacity and resource overhead, TLM adopts the architecture of
GPT-2 Small, which encompasses approximately 100 million
parameters. TLM is composed of 12 Transformer layers, each
featuring 12 attention heads and 768 hidden units.

Training methodology. The TLM training is partially in-
spired by the training procedure utilized by ChatGPT, as in-
troduced in §2.3. To put it succinctly, we modify the for-
mula from 1× pre-training+ 1× SFT+ n× (RM+RL) to
1×pre-training+n× (measurement+SFT).

We substitute reward model (RM) with measurement. RM
allocates a reward value to the model output and evaluates
its quality. Here, tensor language has a natural advantage. A
tensor sentence can be converted into a tensor program (§5.2),
allowing its execution latency to be directly measured on
hardware, with a lower latency suggesting a better tensor sen-
tence. While ChatGPT only performs supervised fine-tuning
(SFT) once, we conduct it multiple times. The input for SFT
is demonstration data, provided by humans, symbolizing the
desired output behavior corresponding to a prompt. In the
NLP field, it’s hard to say which demonstration data is the
"best" for a prompt, but this is achievable in tensor language.
That is, the sentence with the lowest execution latency is the
"best" for its prompt. Performing measurement and SFT mul-
tiple times is consistently seeking the best tensor sentences
(§5.3). We abstained from using reinforcement learning (RL)
mainly because it requires adjusting various hyperparameters
and presents a training challenge to convergence, and we find
the performance was sufficiently good after performing SFT
multiple times.

Training details. The model resulting from pre-training is
termed TLM-base, and TLM is derived by performing SFT on
TLM-base. We pre-train TLM-base using the offline dataset
gathered in §4.3 in the same manner as pre-training other
language models. It is noteworthy that TLM-base converges
within just 2 epochs. This quicker convergence is due to the
more pronounced regularity in tensor language compared to
the broad diversity in natural languages. Among the 2 million
data entries, the input subgraph types, hardware types, and
decision types are all limited. Pre-training TLM-base for 2
epochs takes about 10 hours using 4 NVIDIA V100s.

Following its pre-training, TLM-base possesses the ability
to generate valid tensor sentences. Furthermore, for the input
subgraphs, we expect that TLM-base can aid in generating
high-performance tensor programs. To this end, we employ
demonstration data to fine-tune TLM-base through supervised
learning. Demonstration data refers to the tensor sentences
corresponding to a small subset of tensor programs with the
lowest execution latency for a given input subgraph. The pur-
pose of SFT of a language model with demonstration data
is to achieve that the model’s responses to prompts align

Algorithm 2: Generating tensor programs aided by
TLM in decision-making.

1 Func GenerateTensorProgram(subgraph, hardware):
2 tokens = []
3 ExtractTokensFromSubgraph(subgraph, tokens)
4 ExtractTokensFromHardware(hardware, tokens)
5 program = GetInitProgram(subgraph, hardware)
6 decision_spaces = DetermineDecisionSpaces(subgraph,

hardware)
7 foreach space in decision_spaces do
8 switch space.type do
9 case "tile_size" do

10 ApplyTileSize(space, tokens, program)

11 case "unroll" do
12 ApplyParallel(space, tokens, program)

// Additional space types
13 case ... do
14 ...

15 return program

16 Func ApplyTileSize(space, tokens, program):
17 tokens.append("split")
18 tokens.extend(Serialize(space.operator))
19 tokens.extend(Serialize(space.axis))
20 response_tokens = TLM(tokens)
21 tiles = ConvertTokensToTiles(response_tokens)
22 if not CheckValidTiles(space, tiles) then
23 raise Exception("Invalid Tensor Program")

24 tokens.extend(Serialize(tiles))
25 program.apply(space.operator, space.axis, tiles)

// Other properties

with the human intentions reflected in the demonstra-
tion data. Similarly, we apply demonstration data to TLM,
aiming to empower it to generate high-performance outputs,
in response to prompts. Performing SFT on TLM-base re-
quires a small batch (about 3K, selecting the best one for each
subgraph) of demonstration data. We employ iterative opti-
mization (§5.3) to continuously optimize these demonstration
entries. With 3K demonstration data, using 4 NVIDIA V100s
to perform SFT on TLM-base once takes approximately 10
minutes.

5.2 Tensor Program Generation

The TLM framework utilizes TLM for decision-making dur-
ing the tensor program generation process, as detailed in
Algorithm 2. The steps in Algorithm 2 align with those in
Algorithm 1, adhering to the consistency required for gen-
erating tensor sentences. After TLM generates a decision,
the framework checks its validity within the decision space.
If the decision is invalid, the framework discards the tensor
program and initiates regeneration. Since the decision is ob-
tained through sampling, the next generation might sample
a different decision, preventing continuous failure in regen-
eration. Fortunately, following pre-training and fine-tuning,
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... split i=1024 to i.0=32 i.1=1 i.2=4 split ...

TLM

[…, "split", "i=1024", "to"] "i.0=32"

[…, "i=1024", "to", "i.0=32"] "i.1=1"

[…, "to", "i.0=32", "i.1=1"] "i.2=4"

[…, "i.2=4", "split", "j=512", "to"] "j.0=8"

[…, "j=512", "to", "j.0=8"] "j.1=1"
⋮

[…, "to", "j.0=8", "j.1=1", …] "</s>"

[…, "split", "i=1024", "to", "i.0=32", "i.1=1", "i.2=4", "split", …, "</s>"]

①

②

③

④

⑤

⑥

⑦

⑧

Input Next token

Prompt + Response

Figure 7: Generating a tensor sentence for a matrix multi-
plication operator with dimensions m = 1024, n = 512, and
k = 1024, with the tiling size component depicted therein.

we observe that invalid decisions are exceedingly rare. On
average, generating a valid tensor program necessitates no
more than 1.1 calls to Algorithm 2.

Figure 7 illustrates the process of response_tokens =
TLM(tokens) in Algorithm 2 for a matrix multiplication oper-
ator with dimensions m = 1024, n = 512, and k = 1024, with
the tiling size component depicted therein. This tensor sen-
tence matches the one at the top of Figure 6 and is presented
here (with the operator’s index omitted) in a more human-
readable format. In Step ①, known information—including
input subgraph, hardware specifications, and "split i=1024 to"
(corresponds to m = 1024) — serves as the input prompt to
TLM. TLM then predicts the probability distribution of the
next token based on this prompt, subsequently choosing a
token, assumably "i.0=32", via probabilistic sampling from
the distribution. In Step ②, the prompt and the predicted next
token from Step ① are combined to formulate a new input
for TLM to forecast the next token. Steps ③ replicates Step
②. After completing the three steps, TLM finalizes tile sizes
for the i-axis and returns to Algorithm 2. When necessary to
generate tile sizes for the j-axis, TLM will be invoked again.
In Step ④, the input from Step ③, its predicted next token,
and "split j=512 to" (corresponding to n = 512) are merged
into a new input, which is then input into TLM to predict the
next token. TLM can but does not employ the input graph and
hardware specifications as a prompt to generate all decision
information in one go. Instead, the framework repeatedly in-
vokes TLM within Algorithm 2, generating only a subset of
decisions each time. This granular approach efficiently filters
out invalid data, enhancing TLM availability and stability.

5.3 Iterative Optimization

Fine-tuning TLM-base using demonstration sentences is cru-
cial for its operation. This section focuses on the methods for
acquiring a batch of demonstration data.

Throughout acquiring demonstration data, measurement is
the most time-consuming step and lies on the critical path,

Prompts 
( + 2

TLM ( + 2

TLM-base

Sentences
( + 2

Demonstration 
data $

DatabaseCandidates 
( + 2

Measure $ + 1 
in parallel Records (

SFT

To be 
measured

Measured

Prompts

TLM

TLM-base

Sentences

Demonstration 
data

DatabaseCandidates

Measure in 
parallel Records

SFT

To be 
measured

Measured

Prompts

Figure 8: Flowchart of the iterative optimization process.

acting as the bottleneck of the process. To address this, we
develop a pipeline system that executes the iterative optimiza-
tion algorithm for collecting demonstration data. This system
maximizes the utilization of the measurement hardware by
employing two separate processes: one for executing SFT
and another for measurement, with the former’s execution
time controlled to be shorter than the latter, ensuring continu-
ous measurement. When operating on GPUs, these processes
operate on separate GPU cards.

Figure 8 shows a flowchart of the iterative optimization
on the left and a flowchart incorporating a pipeline on the
right. We split (the text color matching that in Figure 8) all
subgraphs (with each subgraph corresponding to one prompt)
in the workload dataset into kb (e.g., 4) batches and then
cyclically select each batch. Upon the completion of the mea-
surement of batch i (referred to as records i), the optimal batch
of data is extracted from the database, noted as demonstration
data i, and employed to fine-tune TLM-base, yielding TLM
i+2. Subsequently, TLM i+2 is used to produce sentences
i+ 2 (one prompt produces kp (e.g., 16 or 32) sentences).
TLM 0 and TLM 1 are replaced by TLM-base.

There are several details worth noting:
• When splitting subgraphs, we sort them by subgraph type

(e.g., fused_nn_dense_add, fused_nn_conv2d_add_nn_relu,
and fused_nn_adaptive_avg_pool2d), selecting one every
kb, based on the rationale that a superior decision often also
has a certain optimizing effect on subgraphs of the same
type.

• Only when TLM can generate superior tensor sentences
can this iterative optimization algorithm operate normally.
So why can TLM generate more optimal data? From a
genetic perspective, when generating a sentence for a sub-
graph, TLM has already learned the demonstration data
corresponding to the current subgraph, as well as demon-
stration data from other subgraphs, thereby inheriting the
advantages of both itself and other subgraphs. When pro-
ducing the next token for a prompt, probability sampling is
used, which, owing to its stochastic nature, provides addi-
tional exploration and thus may introduce mutations. The
combination of inheritance and mutation may potentially
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generate higher quality data, aligning with the design phi-
losophy of genetic algorithms.

• Demonstration refers to low execution latency. The total
execution latency of all subgraphs can be expressed as
latencytotal = ∑si∈subgraphs min(all record latencies of si).
The latency of the demonstration data will not rise since
it always selects the best from all measurements, so it
decreases monotonically. Furthermore, the best latency of
the demonstration data cannot be lower than its physical
limit, so it is bounded. Mathematically speaking, a
monotonic and bounded limit results in convergence.
Section 6.2 of the evaluation discusses how much data
needs to be measured for convergence.

• TLM is designed to assist in making decisions within a
decision space, trained by a gradient descent strategy. TLM
i may perform worse than TLM i − 1 because gradient
descent does not guarantee that TLM can always be trained
to its optimal state. However, since TLM i is always trained
from TLM-base, it remains unaffected by TLM i−1 and
does not influence TLM i+ 1. Hence, TLM i does not
likely exhibit cumulative errors, and the final TLM is
only related to TLM-base and the final demonstration data.

• The demonstration data in Figure 8 is obtained through
iterative optimization from scratch. Similarly, there are
also other methods to obtain a batch of demonstration
data. For instance, it can be obtained using other search
algorithms; if there is a batch of demonstration data on
Hardware A, it can be transferred to Hardware B through
transfer learning; the data can be directly written using
expert knowledge. The good news is that this demonstra-
tion data can still continue to use iterative optimization
algorithms until convergence.

• The iterative optimization algorithm can also be viewed
as a tuning system, particularly suitable for situations
where multiple workloads need to be tuned at once. For
instance, in dynamic shape scenarios, the target workload
with different shapes need to be tuned simultaneously.

6 Evaluation

6.1 Experimental Settings
TLM supports several decision spaces, including those
adapted from Ansor (V0.12), MetaSchedule (V0.12), AKG
(V2.1), and AKG-MLIR (V0.1). In subsequent sections, these
TLMs are referred to as TLM-Ansor, TLM-Meta, TLM-AKG,
and TLM-AKG-MLIR. In the evaluation, we focus only on
TLM-Ansor and TLM-Meta, which together are implemented
in Python and C++ with about 10K lines of code.

The dataset we configured for TLM consists of 138 work-
loads. We hold out a test set that consists of 12 workloads, as
shown in Table 1.

For the CPU experiments, we use a notebook equipped with
a 4-core Intel(R) Core(TM) i7-10510U CPU supporting the
AVX2 instruction set, 16GB memory, and running on Ubuntu

Table 1: Workloads in the TLM test set.
Model Input shape Model Input shape

ResNet-50 [32] [1, 3, 224, 224] DenseNet-121 [33] [8, 3, 256, 256]
MobileNet-V2 [34] [1, 3, 224, 224] BERT-large [4, 256]
ResNeXt-50 [35] [1, 3, 224, 224] Wide-ResNet-50 [36] [8, 3, 256, 256]
BERT-base [37] [1, 128] ResNet3D-18 [38] [4, 3, 144, 144, 16]

BERT-tiny [1, 128] DCGAN [39] [8, 3, 64, 64]
GPT-2 [1, 128] LLAMA [40] [4, 256]

Figure 9: Demonstration data convergence curves of TLM-
Ansor and TLM-Meta on the GPU and the CPU.

20.04. For the GPU experiments, we utilize a server outfitted
with a 48-core Intel(R) Xeon(R) Gold 6226 CPU, 376GB
memory, and four 32GB NVIDIA Tesla V100 GPUs. It runs
on Ubuntu 20.04 with CUDA 11.6 and cuDNN 8.4.0.

6.2 Convergence Behavior of Demonstration
Data

This section discusses the convergence behavior of obtaining
demonstration data through the iterative algorithm, which is
the slowest phase of the entire pipeline. Figure 9 displays
four curves corresponding to the convergence of TLM-Ansor
and TLM-Meta on both the GPU and the CPU, respectively
labeled as TLM-Ansor-GPU, TLM-Meta-GPU, TLM-Ansor-
CPU, and TLM-Meta-CPU. These four scenarios utilize 2169,
3120, 2169, and 2657 subgraphs (extracted from 126 work-
loads). The horizontal axis denotes measured data entries
(across all subgraphs), while the vertical axis indicates nor-
malized total latency. We define "convergence" as the point at
which 20K measurements (across all subgraphs) result in a
performance improvement of less than one percent, denoted in
the graph as "Profit < 1% for 20K." We also mark the instance
where 20K measurements (across all subgraphs) yield a per-
formance gain of less than one per thousand, corresponding
to "Profit < 1‰ for 20K".

To reach the convergence state, an average of 104, 69, 145,
and 130 measurements per subgraph are required, correspond-
ing to overall totals of 225K, 213K, 314K, and 344K measure-
ments, respectively, for all subgraphs. In other words, inducing
convergence across all 126 workloads utilizing TLM calls for
approximately 200K tensor program measurements on the
GPU and about 300K on the CPU. TLM involves a data vol-
ume an order of magnitude smaller compared to TenSet and
TLP, which utilize approximately 8.6 million measurements.
Furthermore, for a performance gain of less than 1‰, individ-
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Table 2: The overall speedup for the 23 TLM-Ansor sub-
graphs. The higher the overall speedup, the better. In the table,
"Times" represents the measurement times for each subgraph.

Ansor TLM-Ansor
Times 64 1K 10K 10K

TLM-Ansor

1 1.26 0.98 0.92 0.85
10 1.40 1.08 1.03 0.95
16 1.43 1.10 1.04 0.96
32 1.45 1.12 1.06 0.98
64 1.45 1.12 1.06 0.98
1K 1.46 1.13 1.07 0.99

10K 1.48 1.14 1.08 1.00
Ansor 10K 1.37 1.06 1.00 0.92

Table 3: The overall speedup for the 40 TLM-Meta subgraphs.
MetaSchedule TLM-Meta

Times 64 1K 10K 1K

TLM-Meta

1 1.00 0.69 0.68 0.67
10 1.41 0.96 0.95 0.94
16 1.45 1.00 0.99 0.97
32 1.46 1.01 1.00 0.97
64 1.49 1.02 1.01 0.99
1K 1.50 1.02 1.01 1.00

MetaSchedule 10K 1.48 1.01 1.00 0.99

ual subgraphs require 272, 150, 375, and 363 measurements
each, which also translates to a cumulative total of 588K,
467K, 813K, and 963K measurements for all subgraphs. The
TLM used in the experiments of the subsequent sections has
been fine-tuned using about 300K labelled data.

6.3 Subgraph Benchmark
After SFT, we conduct subgraph experiments on the NVIDIA
V100. The TLM test set comprises 12 workloads, yielding 232
and 364 subgraphs for TLM-Ansor and TLM-Meta, respec-
tively. These subgraphs fall into 23 and 40 categories, and we
select one representative subgraph from each category for the
experiments. Two comparisons are established: TLM-Ansor
vs. Ansor and TLM-Meta vs. MetaSchedule, with measure-
ment times set at 10K, 10K, 1K, and 10K for each subgraph,
respectively. The latency of a subgraph is defined as the low-
est value among its measurements. The latency comparison
curves are presented in Figures 14 and 15 in the Appendix B,
while here, we focus on critical data highlights in Tables 2
and 3.

We define Frameworkk as follows:

Frameworkk = ∑
si∈subgraphs

min
(

Framework’s k
record latencies of si

)
,

where Framework can be TLM-Ansor, TLM-Meta, Ansor, or
MetaSchedule, and k represents the measurement times. Each
speedup in Table 2 represents the overall speedup for the 23
subgraphs of Framework1k1 in the first two columns compard
to Framework2k2 in the first two rows. Table 3 is similar to
Table 2.

In Tables 2 and 3, TLM-Ansor1K achieves 99% (the text
color matching that in the tables) of the performance of TLM-

Ansor10K , while TLM-Meta64 attains 99% of the performance
of TLM-Meta1K . Furthermore, MetaSchedule10K shows a
speedup of 1.01× compared to MetaSchedule1K . We observe
that a tenfold increase in the number of measurements results
in a performance gain of no more than one percent. Achiev-
ing further acceleration in the current exploration space is
challenging, and a better approach to gain additional speedup
is to explore a larger space.

The primary goal of the TLM framework is to generate
high-performance tensor programs efficiently. Notably, even
with 10 measurements, TLM can achieve 103% and 95% of
the performance of Ansor and MetaSchedule after 10K mea-
surements, respectively. Additionally, TLM-Ansor32 achieves
a 1.06× speedup over Ansor10K , while TLM-Meta32 reaches
a 1.00× speedup compared to MetaSchedule10K . It is evident
that TLM’s performance, with 32 measurements, has already
exceeded that of both Ansor and MetaSchedule.

TLM-Ansor1K achieves a 1.13× speedup over Ansor1K ,
TLM-Ansor10K reaches a 1.08× speedup compared to
Ansor10K , and TLM-Meta1K attains a 1.02× speedup over
MetaSchedule1K . These ratios demonstrate that TLM consis-
tently achieves acceleration relative to Ansor and MetaSched-
ule with equal measurement times. To attain a higher accel-
eration ratio, building a larger exploration space might be
necessary.

6.4 End-to-End Workload Benchmark

6.4.1 Comparison with Ansor/MetaSchedule

For both GPU and CPU, we set up four experiments: 1) Tun-
ing with Ansor (V0.12) and conducting 20K measurements; 2)
Tuning with MetaSchedule (V0.12) and conducting 20K mea-
surements; 3) Generating tensor programs using TLM-Ansor,
carrying out 20K measurements, and reporting end-to-end per-
formance for 1×g, 10×g, and 32×g measurements, where
g indicates the number of subgraphs partitioned from the test
workload1; 4) Generating tensor programs using TLM-Meta,
with the same settings as in 3.

GPU results. Initially focusing on the last four columns
of each workload in Figure 10, TLM-Ansor-20K shows a
speedup of 0.99-1.38× compared to Ansor-20K across 12
test workloads, with the average speedup being 1.08. Sim-
ilarly, TLM-Meta-20K achieves a speedup of 0.98-1.14×
relative to MetaSchedule-20K, with the average speedup be-
ing 1.04. These results align with those from the subgraph
benchmark, indicating that TLM offers acceleration over An-
sor/MetaSchedule.

The primary goal of the TLM framework is to efficiently
generate high-performance tensor programs. We now turn our
attention to the first six columns in Figure 10. For Ansor-20K,

1For instance, TLM-Ansor can partition 9 subgraphs from BERT-base;
thus, 1× g represents 9 measurements, 10× g represents 90, and 32× g
represents 288.
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Figure 10: Workload inference performance comparison with
Ansor/MetaSchedule on V100.

Figure 11: Workload inference performance comparison with
Ansor/MetaSchedule on the Intel CPU.

TLM-Ansor-1×g achieves a 0.68-1.03 speedup, with an av-
erage speedup of 0.83; TLM-Ansor-10×g offers a 0.91-1.08
speedup, averaging at 0.99; and TLM-Ansor-32×g speeds
up by 0.96-1.16, with an average speedup of 1.03. Regard-
ing MetaSchedule-20K, TLM-Meta-1×g can accelerate by
0.63-1.04, with an average speedup of 0.80; TLM-Meta-
10×g achieves a 0.91-1.11 speedup, averaging at 1.00; and
TLM-Meta-32×g offers a 0.96-1.12 speedup, with an average
speedup of 1.02.

To summarize, TLM can reach 80% of An-
sor/MetaSchedule’s performance by conducting only
1×g measurements, as opposed to the 20K measurements
required by Ansor/MetaSchedule. With 10×g measurements,
TLM’s performance aligns with that of Ansor/MetaSchedule.
Notably, the purpose of measurement is to identify the
tensor program with the lowest execution latency. The
fact that only one measurement is needed implies no
necessity for measurement, indicating that TLM can reach
83% of Ansor/MetaSchedule’s performance without any
measurement. This indicates the feasibility of applying the
TLM strategy within deep learning training frameworks (e.g.,
PyTorch, TensorFlow, MindSpore [41]).

CPU results. The CPU results (excluding BERT-large,
GPT-2, and LLAMA, which will trigger the OOM error), de-
picted in Figure 11, align with the GPU outcomes. Here,

Figure 12: Workload inference performance comparison with
Roller on V100.

we simply present the average speedup. Relative to Ansor-
20K, TLM-Ansor-10×g achieves a 1.01× speedup, while
TLM-Ansor-32×g accomplishes a 1.03× speedup. Compared
to MetaSchedule-20K, TLM-Meta-10×g attains a 0.97×
speedup, and TLM-Meta-32×g achieves a 1.00× speedup.

Compilation time. This paper uses the measurement times
to calculate the speedup of compilation time, the justification
for which is discussed in the Appendix A. Simply put, the time
allocated to measurement predominates the entire compilation
time and remains unaffected by the system’s load, establishing
it as a stable metric for the issue.

In the TLM-Ansor test set, the 12 workloads comprise
5-72 subgraphs, averaging 20.9 subgraphs. As a result, TLM-
Ansor-10×g, compared to Ansor-20K, can deliver the same
performance level while accelerating compilation by 95×.
Similarly, TLM-Meta-10×g can speed up compilation by
61× relative to MetaSchedule-20K.

Summary. In subgraph and end-to-end benchmarks, we
primarily analyze from a statistical perspective rather than
investigating why certain subgraphs or workloads surpass
the baseline. This is due to the inherent randomness of the
probabilistic/random sampling, which results in a lack of clear
patterns in speedup. What becomes apparent, however, is that
across nearly all subgraphs and workloads, TLM matches the
baseline results with significantly fewer measurements. This
indicates a general improvement in exploration capabilities.

6.4.2 Comparison with Roller on V100

Roller is implemented on top of TVM (V0.8) and Ram-
mer [42]. We utilize the Docker image provided by Roller for
experiments, which runs on Ubuntu 16.04 with CUDA 10.2
and cuDNN 7.6.5; it lacks maintenance to utilize the latest
CUDA. To observe the impact of software versions on per-
formance, we present the performance of Ansor, integrated
within TVM (V0.8), as a bridge for comparing TLM and
Roller; the performance of Ansor is measured in the same
execution environment as Roller. Compiling workloads with
Roller requires carefully configured, workload-specific script
files; we offer script files for six workloads.

We set up four experiments: 1) Compiling with Roller and
performing 10×g measurements; 2) Adopting TLM-Ansor-
10×g from §6.4.1; 3) Tuning with Ansor (V0.8) and executing
20K measurements; 4) Adopting Ansor-20K from §6.4.1,
designated as Ansor-20K-V0.12.
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Figure 13: Workload inference performance comparison with
TensorRT/PyTorch on V100.

Figure 12 illustrates that in the same execution environ-
ment, Ansor-20K-V0.8 outperforms Roller-10×g. Addition-
ally, TLM-Ansor-10×g and Ansor-20K-V0.12 have compara-
ble performance levels, slightly better than Ansor-20K-V0.8.
Therefore, it is evident that TLM-10×g surpasses Roller-
10×g when the influence of software versions is excluded. In
a direct comparison, TLM-Ansor-10×g achieves a speedup
of 1.28-4.23× compared to Roller-10×g, with the average
speedup being 2.25. The reason is that, in pursuit of high effi-
ciency, Roller significantly prunes the exploration space by
aligning tensor shapes with the key features of the hardware,
as discussed earlier.

6.4.3 Comparison with TensorRT/PyTorch on V100

In this section, we conduct a performance comparison against
TensorRT [43] (V8.6) and PyTorch (V1.13.1) on V100. Both
TensorRT and PyTorch are backed by static kernel libraries.

We set up five experiments: 1, 2) Performing inference
using TensorRT and PyTorch; 3) Adopting Roller-10×g from
§6.4.2; 4, 5) Adopting TLM-Ansor-10×g and Ansor-20K
from §6.4.1.

Figure 13 illustrates that relative to TensorRT, TLM-Anosr-
10×g achieves a 0.38-1.89× speedup, averaging at 1.04; com-
pared to PyTorch, TLM-Anosr-10×g sees a 0.21-12.92× in-
crease in performance, with an average speedup of 3.42. Ten-
sorRT outperforms TLM-Anosr-10×g in BERT-tiny, BERT-
base, BERT-large, GPT-2, LLAMA, and DCGAN workloads,
while PyTorch excels over TLM-Anosr-10×g in BERT-large,
LLAMA, and DCGAN. The primary components of BERT
and LLAMA are batch matmul operators, GPT-2 mainly in-
volves matmul operators, and DCGAN primarily uses trans-
posed 2D convolution operators. The speedup achieved by
TensorRT/PyTorch is attributed to the deep optimization of
batch matmul, matmul, and transposed 2D convolution oper-
ators in recent kernel libraries, as well as the utilization of
hardware computing units. Overall, tensor compilers excel
in supporting a wide range of operators, while static kernel
libraries are more adept at deeply optimizing commonly used
operators.

7 Related Work
Halide [44] introduces the concept of separating compute and
schedule, employing a domain specific language (DSL) to de-
fine computations and scheduling primitives to abstract hard-
ware characteristics, enhanced by an auto scheduler [4,45,46]
for optimal primitive combination. TVM [3], inheriting the
philosophy of Halide, utilizes scheduling primitives for op-
erator implementation. It currently boasts three generations
of tensor program search frameworks: The first generation
maps subgraphs to tensor programs using templates and opti-
mizes them through AutoTVM [12]. The second generation,
Ansor [13], addresses the limitations of template-based explo-
ration spaces by constructing tensor programs with derivation
rules and searching for efficient programs using the genetic al-
gorithm. The third generation, which includes TensorIR [47]
and MetaSchedule [14], tackles the challenges of supporting
TensorCore, introducing a block abstraction that isolates ten-
sorized computations for mapping to tensor computing units.
TenSet [20] and TLP [21] propose using offline datasets to
address the issue of extended search times brought by An-
sor/MetaSchedule. Roller [23] introduces a tile abstraction
that encapsulates tensor shapes, aligning them with the key
features of the underlying accelerator to limit shape choices.
FlexTensor [6] is a schedule exploration and optimization
framework proposing automatically general templates to map
the tensor algorithms onto low-level implementations for dif-
ferent hardware platforms.

Tiramisu [48], AKG [15], and Tensor Comprehensions [5]
apply polyhedral-based techniques, formulating the optimiza-
tion of programs as an Integer Linear Programming (ILP)
problem. Triton [49] introduces a tile-based template repre-
sentation where programmers can specify block sizes and
manage their scheduling for effective program optimization.
CUTLASS [50] is a collection of template abstractions for
implementing high-performance matrix-matrix multiplica-
tion and related computations within CUDA at all levels and
scales. MLIR [51] builds reusable and extensible compiler
infrastructure to address software fragmentation and improve
compilation for heterogeneous hardware.

8 Discussion
Limitation. 1) At its core, TLM is a deep learning model that
leverages offline data to guide exploration. The data distribu-
tions of the target and training scenarios need to be aligned.
To achieve optimal performance in scenarios with significant
discrepancy, it might be necessary to incorporate additional
training data. 2) TLM’s design philosophy is trading compile
time for pre-compile time. The overhead of training TLM,
which could span tens of hours, should not be overlooked. If
the intent is solely to compile one or just a handful of models,
TLM might not be the most economical choice. Instead, TLM
is better suited for compiling a vast array of models.
Future Work. 1) With 100M parameters, TLM’s time and
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hardware overhead for training and inference should be no-
ticed. It may be worthwhile to explore substantial reductions
in parameter size while ensuring TLM’s performance remains
robust. 2) In contrast, with just 100M parameters, there is an
opportunity to substantially expand TLM’s parameter size and
the training data. These improvements could lead to remark-
able generalization capabilities. Examples include compiling
directly from TLM-generated results without measurement
or achieving strong generalization across various hardware
platforms. 3) Delve into a more expansive exploration space.
Equipped with TLM’s potent exploration capabilities, it’s fea-
sible to navigate vast territories without being constrained by
exploration costs.

9 Conclusion
We introduce the TLM framework, a novel tensor program
generation framework that consists of two decoupled compo-
nents: a space builder and a generator. The TLM framework
is pioneering in its integration of language models into the
tensor program domain. Owing to TLM’s dual strengths of
adeptly learning from offline data and effectively capturing
context, it demonstrates formidable generative capabilities.
Experimental results show that TLM consistently delivers
both high efficiency and high performance.
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A Compilation Speedup Metrics

In this section, we discuss the rationality of using measure-
ment times to calculate the speedup of compilation time.

Ttotal = Texploration +Tpost exploration compilation

= ∑
k

(
c×Tsample +Tmeasurement

)
+Tpost exploration compilation

= ∑
k

(
c×Tsample +(Tcompilation +Texecution)

)
+Tpost exploration compilation

The total time for compiling a workload (Ttotal), as indi-
cated in the formula above, consists of two main components:
the time spent exploration to identify high-performance tensor
programs (Texploration), and the time for the final compilation
of the workload (Tpost exploration compilation). The exploration
process involves sampling c tensor programs (c×Tsample) and
then measuring the execution latency of one of these pro-
grams (Tmeasurement ). In Ansor/MetaSchedule, the purpose of
sampling multiple tensor programs is to use a cost model
to select the most promising tensor program; if a program
sampled by TLM is found to be invalid, it will be resampled.
The sampling coefficients cAnsor and cMetaSchedule are approx-
imately 128, while cT LM does not exceed 1.1. Measuring a
tensor program includes both its compilation (Tcompilation) and
execution (Texection).

Ttotal = Texploration +Tpost exploration compilation

≈ Texploration if k ≥ k0

= ∑
k

(
c×Tsample +Tmeasurement

)
= ∑

k
Tmeasurement if Tmeasurement hides c×Tsample

= ∑
k

(
Tcompilation +Texecution

)
When measurement times k exceeds a certain threshold

k0 (e.g., 100), Texploration becomes the dominant factor in
Ttotal , making Tpost exploration compilation negligible. Sampling
and measurement processes can be optimized using a pipeline
approach for parallel execution. Overall, measurement is a
critical part of the entire compilation process, and reducing
measurement times requires methodological innovation rather
than just engineering efforts.

TLP uses the speedup on Ttotal to calculate the accelera-
tion of compilation time, while Roller uses ∑k Tcompilation to
calculate the acceleration of compilation time. Although they
indeed reflect the speedup of compilation time to some extent,
these metrics are unstable due to the influence of system load.
In this paper, we use measurement times k to calculate the
speedup of compilation time.

B Subgraph Performance
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Figure 14: Subgraph latency comparison curves for TLM-Ansor vs. Ansor. To enhance the comparison of subtle details, the
curve only includes latencies that do not exceed 1.1 times the lowest latency of either TLM-Ansor or Ansor. In the figure, if one
is not visible throughout, it indicates that its lowest latency exceeds that of the other by 10%.

Figure 15: Subgraph latency comparison curves for TLM-Meta vs. MetaSchedule. To enhance the comparison of subtle details,
the curve only includes latencies that do not exceed 1.1 times the lowest latency of either TLM-Meta or MetaSchedule. In the
figure, if one is not visible throughout, it indicates that its lowest latency exceeds that of the other by 10%.
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Abstract
The increasing demand for improving deep learning model
performance has led to a paradigm shift in supporting low-
precision computation to harness the robustness of deep learn-
ing to errors. Despite the emergence of new low-precision
data types and optimization approaches, existing hardware
and software have insufficient and inefficient support for those
evolving data types, making it challenging to achieve real per-
formance gains through low-precision computing.

This paper introduces LADDER, a novel compiler designed
to bridge the gap between evolving custom data types and
the fixed precision formats supported by current hardware.
Leveraging a general type system, tType, and an extended
tensor expression, LADDER transforms deep neural network
(DNN) computations into optimized computing pipelines with
custom data types as the first-class citizen, exposing an opti-
mization space for efficiently handling data storage, accesses,
and type conversions. LADDER employs a new set of tensor
scheduling primitives and a hardware-aware optimization pol-
icy to navigate the complex transformation space, ensuring op-
timal performance across different memory layers and DNN
operators. Our evaluation demonstrates LADDER’s capability
to systematically support a wide array of low-bit precision
custom data types, significantly enhancing the performance
of DNN computations on modern accelerators without neces-
sitating hardware modifications. This innovation empowers
model designers with the ability to explore data type opti-
mizations and offers hardware vendors a flexible solution to
expand their support for diverse precision formats.

1 Introduction

Building on the recent advancements in scaling up deep learn-
ing models [11, 17, 26], there’s a growing demand for more
powerful computing performance in hardware accelerators
like GPUs. The inherent robustness of deep learning to errors
enables the use of lower precision arithmetic, setting it apart

∗Work is done during the internship at Microsoft Research.

from traditional workload like scientific computing, which
necessitate high precision like float64. In line with this trend,
cutting-edge accelerators are increasingly integrating more
low-precision computational units, such as 32-bit, 16-bit, and
even 8-bit floating-point operations, into their new genera-
tions. At the same time, model developers are vigorously in-
vestigating various custom low-precision data types, such as
mixed precision formats, to strike an optimal balance between
model accuracy and training efficiency. Moreover, during the
model deployment phase, computations can be converted to
even more compact data representations to achieve extreme
efficiency, such as 2 bits fixed-point precision in LLM [12]
or group-based types where multiple values share the same
scaling factor [41].

However, hardware accelerators are challenging in keep-
ing pace with the diverse and rapidly evolving requirements
for supporting various data precision formats, i.e., custom
data types. This difficulty arises because each accelerator can
only integrate a few types of computing units for standard
data types, given the limited chip area and high hardware
cost. Even for those recently supported low-precision data
types, such as those under 16 bits in width, existing software
is generally inefficient due to the complexity of aligning fine-
grained low-bit data access with the coarse-grained memory
system. For instance, NVIDIA GPU’s shared memory bank
size is 4 bytes in width, and simply loading or storing 8-bit
data elements can easily lead to bandwidth waste. This of-
ten necessitates non-trivial optimizations, such as packing
multiple data values together to align with the features of dif-
ferent memory hierarchies. Consequently, optimizing kernel
libraries for all these new data types, combined with differ-
ent operators and shapes, becomes a challenging task. For
instance, the highly-optimized cutlass library for NVIDIA
GPUs only achieves 422 tflops (68% utilization) on INT8
matrix multiplication. The inadequacy and inefficiency in sup-
porting these new custom data types significantly hinder the
innovation for both models and accelerators.

To address these challenges, we make the following obser-
vations: First, despite hardware accelerators lacking comput-
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ing instructions for those custom data types, their memory
system can be utilized to store arbitrary data types by cast-
ing them into an opaque data chunk with a fixed bit width.
Second, most custom data type can be losslessly converted to
a wider-bits standard data type supported by the computing
units in existing hardware. For example, NF4 tensors can be
computed with an FP16 or FP32 operation by converting their
data types. These observations inspire us a general approach
to support all custom data types by separating data storage
and computation. That is, store and transmit tensors in cus-
tom data types and compute in standard data types through
type conversion. Given that modern DNN models tend to be
memory-intensive and the latest hardware faces the memory
wall issue [43], such an approach is increasingly critical as it
can effectively exploit the performance benefits of low-bits
data types by saving memory traffic and footprint.

However, efficiently supporting such computing pipeline
for general custom data types on existing accelerators is non-
trivial. A typical tensor computation pipeline involves load-
ing data from multiple layers of memory hierarchy, such as
DRAM, L2 cache, shared memory, register, etc. First, con-
verting tensor data types in different layers could significantly
impact the performance factors like memory footprint, data ac-
cess traffic, hardware cost, etc., which is complex to optimize.
For example, converting a low-bit data chunk to a higher-bit
type in a register could lead to register spill, causing a dra-
matic performance drop. Second, pipelines involving different
data types usually require different data layout optimization to
align with memory system, e.g., align with memory bank, to
maximize the data access throughput. Existing optimizations
like swizzling memory accesses [6] are mostly designed for a
few specific data types, which is hard to be generalized.

To address these challenges, we present LADDER, a com-
piler for efficient deep learning computation on general cus-
tom data types. To facilitate the implementation of quickly-
evolving custom data types, such as block-wise data types
like MXFP, LADDER first introduces a general type system
called tType. tType is inherently a tile-wise data type, which
can define all common custom types by explicitly specifying
type width, element shape, and the type-converting functions.
Based on tType, LADDER extends the existing tensor expres-
sion, used to express a DNN operator, to natively support
annotating tType for each tensor. This way, LADDER can sys-
tematically translate a DNN computation with custom data
types into a standard computation pipeline.

To optimize the computation pipeline involving custom
data storage, access, and type conversions, we observe that
tensor storage and access in a pipeline can be transformed into
various logically equivalent formats, each with dramatically
different performance impacts. For instance, a sub-tensor can
be stored in row-major, column-major, block-wise, or even
custom-defined layouts, padded to a certain shape to match
computing instructions, and accessed in different granulari-
ties (e.g., different tile shapes) by the upper-layer memory.

All these factors significantly affect overall performance. To
facilitate such transformations, LADDER introduces a set of
tensor scheduling primitives, including slice, map, pad, and
convert, that can be used to transform a default computing
pipeline into optimized ones.

Deriving optimal tensor transformations for a specific
computing pipeline requires holistic consideration of inter-
memory layer and inter-operator optimizations. For example,
a specific data layout can be propagated to adjacent opera-
tors to avoid explicit layout conversation costs. Moreover,
the data layout in a specific memory layer needs to consider
both the memory feature and upper-layer access pattern. Both
cross-layer or cross-operator optimizations form a vast op-
timization space. LADDER optimizes such transformation
space through a layer-wise hardware-aware optimization pol-
icy: a lower-layer memory provides the preferred data access
granularity as a hint, and the upper layer decides the opti-
mal compute granularity by aligning with the data access
granularity. Thus, LADDER first models a DNN computation
into a tile-level data flow graph and then optimizes the trans-
formation scheduling using a granularity-aware scheduling
policy.

LADDER is implemented on top of TVM [13], Roller [57]
and Welder [43]. We have open-sourced LADDER 1. Further-
more, the DNN operation compilation in LADDER has also
been released as BitBLAS 2, a library that can be integrated
into existing DNN and LLM frameworks to empower efficient
low-precision computing in existing deep learning ecosystem.
Our evaluation of DNN inference on NVIDIA A100, NVIDIA
V100, NVIDIA RTX A6000 and AMD Instinct MI250 GPUs
shows that LADDER outperforms state-of-the-art DNN com-
pilers on native-supported data types, while efficiently sup-
ports custom data types that GPUs do not support with up to
14.6× speedup. As a result, LADDER is the first system to
systematically support general low-bit precision represented
by custom data types for DNN computation on modern hard-
ware accelerators. It opens the door for both model designers
to explore more flexible data type optimization with real per-
formance feedback and hardware vendors to support a large
range of types without hardware modification.

2 Background and Motivation

2.1 Precision Requirements in Deep Learning
The increasing demand to scale deep learning models to larger
sizes, such as Large Language Models (LLM), enhances the
requirement of computing in lower bits and mixed precision
to increase computation efficiency and save memory. This
section introduces some new data type requirements in deep
learning.

1https://github.com/microsoft/BitBLAS/tree/osdi24_
ladder_artifact

2https://github.com/microsoft/BitBLAS
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Figure 1: Diverse narrow-precision data types in deep learning
training and inference.

Lower-bit numeric precision. FP32 (32-bit float) has been
the go-to choice for data representation in deep learning mod-
els. However, recent practices suggest that the high preci-
sion of FP32 isn’t always necessary. Lower precision can
deliver the same level of effectiveness while simultaneously
reducing costs. A pivotal example of this precision shift is
the FP16/BF16 computation in Automatic Mixed Precision
(AMP) training [36]. More aggressively, systems like Trans-
former Engine [37] and MS-AMP [39] have begun to employ
FP8 for weight, gradient, and even optimizer tensors, pushing
the boundaries of precision reduction in deep learning. Dur-
ing inference, models are frequently quantized to significantly
lower precision, typically down to 8 or 4 bits [14,22,48]. Con-
temporary cutting-edge research is challenging these limits
further, aiming to decrease weight quantization to a remark-
able 2 or even 1 bit [12, 46]. This is primarily due to the
redundancy inherent in pretrained weights and the fact that
computations are mostly forward passes. Figure 1 highlights
various data formats used in deep learning models, marking
the notable shift from high-precision formats to low-bit alter-
natives.

Group-wise precision scaling. To improve the accuracy and
robustness of low-precision deep learning models, a common
approach is to use a scaling factor to rescale the values for
a more accurate representation of the data distribution. Tra-
ditional methods typically employ a tensor-wise or channel-
wise scaling factor. However, group-wise scaling, by virtue
of its finer granularity, can better capture the distribution of
sub-tensors or groups, leading to improved performance. For
instance, in Post-training Quantization (PTQ) [22], group
sizes of 128 and 64 are typically preferred, with each group
scaled using FP16. In OCP-MXFP [41], an 8-bit shared scale
is applied to a group of 32 elements.

Mixed-precision operations. Mixed-precision operations
emerge in data quantization due to the varying sensitivity
of different tensors to lower bit quantization. For example,
mixed-precision training employs a combination of higher and

Data Type WFP16AFP16 WINT 8AINT 8 WFP8AFP8 WNF4AFP16
GPU V100 A100 MI250 V100 A100 MI250 V100/A100/MI250
cuBLAS 78% 87% X X 68% X X X
rocBLAS X X 46% X X 75% X X
AMOS 64% 38% X X 45% X X X
TensorIR 67% 56% 22% X X X X X
Roller 50% 70% 29% X X X X X

Table 1: MatMul [M,N]=[M,K]x[N,K] where M,N,K=16384.
"X" indicates not supported in tensor core or matrix core.

lower bit tensors, such as FP32, FP16, and FP8. This strate-
gic utilization of precision levels strikes a balance between
computational efficiency and precision, thereby optimizing
performance. Similarly, in Large Language Model (LLM)
quantization, weights that are more receptive to quantization
can be represented using lower bits. On the other hand, acti-
vations, which pose more substantial quantization challenges,
require higher bit representations. This divergence leads to
mixed-precision operations, including W4A16 (i.e., weight
values are represented in 4-bit data types, and activations
are represented in 16-bit data types), W2A16, W1A8, and
others [12, 22, 46].

2.2 Insufficient Precision Supports in GPUs
Hardware accelerators like GPUs are constantly adapting to
the evolving data type requirements in deep learning. Early
generations of GPUs, such as NVIDIA’s Fermi, supported
standard data types like FP32 and FP64. As deep learning
workloads gained relevance, lower precision formats like
FP16 were introduced in the Pascal architecture. The Turing
architecture further expanded support by introducing INT4
and INT8 for inference workloads. The Ampere architec-
ture later introduced BF16, striking a balance between per-
formance benefits and numerical range for machine learning
applications. The latest architecture, NVIDIA’s Hopper, ex-
tends this trend by supporting FP8, showcasing the ongoing
pursuit of efficiency by adjusting the precision-performance
trade-off. This evolution highlights the increasing versatility
of GPUs in handling diverse computing workloads.

However, hardware typically lags behind the requirements
of algorithms or models. When encountering unsupported
data types, we must convert or simulate them in higher-
precision supported data types. This could lead to significant
performance issues and inefficiencies.

2.3 Inefficiency of Low-precision Computing
Low-precision computing is particularly challenging to op-
timize due to the fine-grained data access granularity and
special hardware units, such as TensorCore. We tested the
performance of a standard matrix multiplication benchmark
with different precisions, using the latest software libraries
and compilers on three of the latest GPUs: NVIDIA V100 and
A100, and AMD MI250, as shown in Table 1. We make the
following observations. First, the hardware utilization of low-
precision computing is generally low, i.e., less than 60% on
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average. Even for the most dominant precision in today’s deep
learning workload, like FP16, the average utilization is around
60%. Second, some hardware-supported precisions are not
well supported by the software. For example, while INT8 is
supported in both A100 and MI250, most existing deep learn-
ing compilers do not support INT8 computing on these GPUs.
Third, meeting new precision requirements is challenging for
hardware to support in a timely manner. For instance, FP8 is
only available in the next generation of NVIDIA Hopper ar-
chitectures. Mixed precision computing, such as F16 × NF4,
is not supported by all the latest GPUs.

2.4 Our Insights
We use mixed-precision matrix multiplication, specifically
FP16×INT8, as an example to illustrate our key insights, as
shown in Figure 2. A DNN operation is often implemented
as a computing pipeline, which continuously loads small data
tiles from input tensors across multiple layers of memory
hierarchy to compute in the top-level cores. Each memory
layer usually has its preferred minimum access granularity,
such as an 8-byte transaction length in the L1 layer. Some
of the latest GPUs even introduce built-in instructions for
highly efficient data loading, which load a two-dimensional
data tile at a time—for instance, the ldmatrix.2x2.f16 loads a
2x2 tile. Given that a data tile is typically stored in a strided
memory space, data access often becomes unaligned with the
transaction length or instruction shape, potentially leading to
low bandwidth utilization. For example, the left figure illus-
trates that each memory access from L1 only achieves half
utilization for both tensors. Furthermore, due to the absence of
computing instructions for FP16×INT8, the operation cannot
be supported, even if we manage to load the corresponding
data into the register.

To address these issues, we observe that the alignment issue
can be circumvented by transforming the tensor layout into
a well-optimized one based on the data type width, memory
transaction length, and instruction shape. For instance, in the
right figure, we store each 2x2 tile in contiguous memory
space in the L1 layer so that the load instructions at the upper
layer can fully utilize the bandwidth. Moreover, given that
the computing instruction only supports the FP16 data format,
we can convert the second tensor from INT8 to FP16 during
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Figure 3: The system overview of LADDER

the data loading from the L2 to the L1 memory layer. Conse-
quently, the data loading from L2 to L1 efficiently leverages
the low traffic due to the low-bit data type, the data loading
from L1 to L0 fully utilizes the memory bandwidth through
transaction alignment, and the computation is ultimately ac-
celerated in the hardware computing unit by type conver-
sion. This example demonstrates that a DNN computation
on a custom data type not supported by hardware can still
be scheduled and optimized through a well-designed tensor
transformation on its layout and data types.

3 LADDER Design

The observations in §2 motivate LADDER, a DNN compiler
that treats data type as a first-class citizen and introduces
tensor transformations to support efficient DNN computation
on custom data types. Figure 3 shows the system architecture.

The core of LADDER is the TypedTile (tTile) abstraction,
which augments the tile-based tensor abstraction with data
type (i.e., tType, §3.1). Specifically, the algorithm designer
can use commonly-used data type (e.g., FP16) or define a
custom data type (e.g., MXFP8, NF4) as a tType, and define
the DNN computation at this data type. Then, LADDER takes
the DNN model as input and converts it into a tTile-based
data-flow graph (i.e., tTile-graph) where operators are defined
as tTile-based computing tasks (i.e., tTile-operator) (§3.1).

Besides, LADDER abstracts a hardware accelerator as a
multi-layer hierarchy where the requirement of each layer is
represented as a tTile (tTile-device, §3.1). tTile-device explic-
itly describes the requirements of each layer, e.g., supported
data type, transaction size, etc. By aligning tTiles in the tTile-
graph with the tTile-device, the tTile-graph represented DNN
computation can be executed on the hardware accelerator.

Given the initial tTile-graph and the hardware specifica-
tions, LADDER will compile the DNN model into an efficient
execution plan on the accelerator. To schedule the tTile-graph
on the tTile-device and satisfy the requirements of the hard-
ware hierarchy, LADDER separates the scheduling mechanism
from its policy. On the mechanism side, LADDER proposes
four tTile transformation primitives: slice, map, pad, and con-
vert, enabling the transformation from a tTile to an equivalent
tTile (§3.2).

Then, the scheduler will schedule the initial tTile-graph
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class tType {
TileShape shape;
size_t nElemBits;
struct metadata;
map<TileType, c_func> c_tTypes;
};

(a)

class tTile {
TileShape shape;
tType type;

struct metadata;
};

(b)
class tTile-Operator {
TensorExpr expr;
TileShape shape;
vector<tTile> get_input_tTiles();
vector<tTile> get_output_tTiles();
void compute();
};

(c)
Figure 4: The definition of tType, tTile and tTile-operator

into a tTile-graph of fine-grained control over tTile configura-
tions, transformations and tTile placement on the hardware
hierarchy. The tTile abstraction enlarges the scheduling space
for DNN computation and opens a new trade-off between
memory footprint efficiency and latency efficiency. On the
policy side, LADDER plays heuristics based on observations
and provides a hardware-aware layer-wise policy optimizing
for latency efficiency (§3.3).

Finally, the compiled plan represented as a tTile-graph is
then generated as an executable code for the given hardware
accelerator.

3.1 The tTile Abstraction

tType According to the observations in §2, data types in
DNN computation are usually defined at either element-wise
granularity or block-wise granularity. To express these data
types, LADDER introduces the concept of tType (Figure 4(a)).
Specifically, the tType represents a data type that consists of a
group of homogeneous elements. The layout of these elements
is a n-dimensional array shape. Each element shares the same
type with nElemBits bits to store an element. This group of
elements also share the same metadata. As described in
§2, data types usually can be losslessly represented by some
higher-bit data types. The c_tTypes represents a tType can
be losslessly converted to another tType with the c_func
function.

Both existing commonly-used data types and new cus-
tomized data types can be represented with tType. For exam-
ple, the FP16 type can be expressed as a tType of shape=[1]
with nElemBits=16. The element-wise granulated NF4 type
can be expressed as a tType of shape=[1] with nElemBits=4
and the shared value map in metadata. The NF4 type can
be losslessly represented as FP16, and therefore there could
be a <FP16, NF4_to_FP16_func> entry in c_tTypes. The
block-wise granulated OCP-MXFP8 type can be expressed
as a tType of shape=[32] with nElemBits=8 and the shared
scaling factor in metadata.
tTile Based on the tType that represents a data type, LADDER

proposes tTile to represent a tensor of a specific data type at
the fine-grained tiles. Specifically, as shown in Figure 4(b),
a tTile is defined as a group of homogeneous elements with
the same data type dtype and a layout of a n-dimensional
array shape. Elements in a tTile share a metadata. Besides,
elements in a tTile are stored as row-major.
tTile-Operator A DNN operator (e.g., MatMul) are com-
monly implemented as a group of independent and homo-
geneous tasks, where each task processes a tile of the in-
put tensor and outputs a tile of the output tensor. With the
tTile abstraction, a tensor of a specific data type is repre-
sented at the fine-grained tile granularity. Therefore, LADDER
can leverage tTile to representent a DNN operator of custom
data types as a group of independent and homogeneous fine-
grained tasks, i.e., tTile-operator. Specifically, as Figure 4(c)
shown, a tTile-operator explicitly represents the tensor com-
putation task over elements of shape. get_input_tTiles()
and get_output_tTiles() return the input and output tTiles
of this computation task. compute() executes the computa-
tion defined in the tensor expression expr for the input and
output tTiles.

The computation of a tTile-operator is defined as an index-
based lambda expression expr [13, 40, 57]. However, the ten-
sor expression in existing tensor compilers [13, 21, 52, 56, 57]
focuses on describing the index and the shape and cannot
flexibly indicate the data type during computation. For exam-
ple, it cannot express a tensor in FP16 multiples a tensor in
FP16 with FP32 as the accumulation. To support expressing
computation over mix-ed data types, it requires the expression
of data types during computation. Therefore, LADDER intro-
duces the tType annotation in tensor expression to explicitly
indicate the data type during computation, including inputs,
outputs and intermediate data, to represent computation over
mix-ed data types. For example, a tensor A[M,K] of FP16
type multiplies a tensor B[N,K] of NF4 type with FP32 as
the accumulation and outputs a tensor C[M,N] of FP16 type
can be expressed as Figure 5(a). With the tType-annotated
tensor expression, given the shape, LADDER can infer the
corresponding input and output tTiles.

With the tTile-based fine-grained representation for DNN
operators, a DNN model can be represented as a fine-grained
tTile-graph, where each node is a tTile-operator and each
edge represents the dependency of two tTile-operators.
tTile-based Hardware Abstraction Modern hardware accel-
erators usually have a hardware hierarchy, including memory
layers (e.g., DRAM, register) and computing units. Each layer
in the hardware hierarchy has its preference for data access-
ing. Specifically, a memory layer usually requires accesses
via transactions where a transaction is a sequential or a shape
of data at a granularity. For example, the shared memory of
NVIDIA GPUs requires a transaction of 32 4-byte banks.
A compute unit also usually requires processing a shape of
data at a granularity. For example, the hfma2 instruction in
NVIDIA GPUs processes at the granularity of two FP16 value.
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C=compute((M,N), lambda i,j:(sum((A[i,k]@FP16*B[j,k]@NF4)@FP32)@FP32)@FP16), M=32, N=32, K=63
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    t0= slice(tTile,0,[16,63],[16,63]);
    t1=pad(t0,[0,0,0,1],0);
    t2=convert(t1, FP16);
    ret=map(t2, map_func);
    return ret;

… … … … … … … …
B12,48-55 B12,56-63 B13,48-55 B13,56-63 B14,48-55 B14,56-63 B15,48-55 B15,56-63

tTile TransformLoad_L0B(tTile):
    // slice with ldmatrix.m8n8.x4
    ret=slice(tTile,0,[4,64],[16,16]);
    return ret;

tTile Compute(tTile_A, tTile_B):
    ret=mma.f16.f32(tTile_A, tTile_B);
    return ret;

for L1_iter in L2_tTile.split(L1_tTile):
    //Load A and B from L2 to L1
    L1_A = TransformLoad_L1A(L1_iter.L2_A);
    L1_B = TransformLoad_L1B(L1_iter.L2_B);
    for L0_iter in L1_tTile.split(L0_tTile):
        //Load A and B from L1 to L0 with ldmatrix
        L0_A = TransformLoad_L0A(L0_iter.L1_A);
        L0_B = TransformLoad_L0B(L0_iter.L1_B);
        //Compute with mma instruction
        L0_C = Compute(L0_A, L0_B);
        //Store C to L2
        TransformStore_L0C(L0_C, L2_C);

(a)

(b)
(c)

(e)(d)

C0,8-11 C0,12-15
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Figure 5: MatMul of FP16 tensor A and NF4 tensor B: (a) tType-annotated tensor expression, (b) tTile-device for NVIDIA A100,
(c) Pseudo code of computing pipeline, (d) Tramsform-Load with tTile transformation primitives, (e) Tensor B transformations

These requirements can be described as tTiles.
Therefore, LADDER abstracts a hardware accelerator as

a hierarchy of multiple layers described as tTiles, i.e., tTile-
device. Each layer is a memory layer or the compute unit,
whose requirement represented as a shape on a granularity is
described as a tTile and the granularity is described as tType.

Figure 5(b) shows the tTile-device for the NVIDIA A100
GPU with the FP16 tensor cores. The FP16 tensor core MMA
instruction 3 requires processing at a granularity of [16,16]
and [8, 16] for two inputs, respectively. This can be expressed
as a tTile of shape[16,16] with the dtype=FP16. The FP16
tensor core data loading instruction 4 requires loading [16,2]
data at a granularity of half8 (i.e., 8 FP16 value), and can
be expressed as a tTile of shape[16,2] with the dtype=16B.
Besides, the requirement of fully utilizing the shared memory
can be expressed as a tTile of shape[32] with the dtype=4B.
The 32-byte transaction requirement of the global memory
can be expresses as a tTile of shape[32] with the dtype=1B.

3.2 tTile Transformation
tTile explicitly describes the fine-grained tensor storage
and the requirements of the hardware hierarchy. The tTile-
represented DNN computation in the tTile-graph should align
with the tTile-device for efficient execution. Fortunately, ac-
cording to our observations in §2, the tensor storage and ac-
cess in a pipeline can be transformed into logically equivalent
formats, where each has different performance impacts in the
hardware hierarchy. Therefore, LADDER proposes tTile trans-
formation mechanism to enable transforming the layout or
the tType of a tTile to an equivalent tTile. Specifically, LAD-
DER augments the computation pipeline of a tTile-operator as
three stages on the hardware hierarchy: Transform-Load,
Compute, and Transform-Store. Transform-Load loads
the tTiles from the lower memory layer to a higher mem-
ory layer with tTile transformations. Compute executes the

3mma.sync.aligned.m16n8k16.row.col.f16.f16.f32.f32
4ldmatrix.sync.aligned.m8n8.x4.shared.b16

tTile slice(tTile_input, index, shape, out_shape);
tTile map(tTile_input, map_func);
tTile pad(tTile_input, pad_shape, pad_value);
tTile convert(tTile_input, new_tType);

Figure 6: tTile transformation primitives

computation task of the tTile-operator on the compute units.
Transform-Store stores the tTiles from the higher memory
layer to a lower memory layer with tTile transformations.

LADDER provides four primitives to transform a tTile to
an equivalent tTile, as shown in Figure 6.

Slice The slice primitive slices a group elements of shape
from the address index of the tTile_input and returns them
as a new tTile of out_shape. The slice primitive is usually
used to represent the data tiling.

Map The map primitive modifies the layout of the elements
in a tTile. Given the map_func, the map primitive maps the
address of each element to the expected address. For example,
in Figure 5(d), the TransformLoad_L1B from the L2 memory
layer to the L1 memory layer leverages the map primitive to
modify the elements’ addresses with the map_func.

Pad The pad primitive pads the tTile_input with the
pad_value on each border given in pad_shape. The length
of the pad_shape is 2 times of that of the tTile_input’s
shape, and describes the left and the right borders of each
dimension, respectively.

Convert The convert primitive converts the tType of
the tTile_input to the given new_tType. The given
new_tType should be in the c_tTypes of the tTile_input’s
tType. convert will call the corresponding c_func of the
given new_tType on each element in the tTile_input, and
return the expected tTile of new_tType. For example, in Fig-
ure 5(d), the TransformLoad_L1B converts the tType from
NF4 to FP16 with the convert primitive to satisfy the cores’
FP16 tType requirement.

With the above four primitives, a tTile can be transformed
to another equivalent tTile by changing the shape with slice
and pad, modifying the elements’ layout with map, or con-
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verting the tType with convert. This enables transforming
the tTiles of a tTile-operator to align with the tTile-device, so
that these tTiles can be efficiently processed in the hardware
hierarchy.

Figure 5 shows an example that a FP16 tensor A[32,63]
multiplies a NF4 tensor B[32,63] with FP32 as the accumu-
lation and outputs a FP16 tensor C[32,32] (Figure 5(a)) on a
four-layered tTile-device (i.e., from L2 to core, Figure 5(b)).
Specifically, Figure 5(c) shows the pseudo code of the exe-
cution. tTiles of A and B are transformed and loaded from
L2 to L1 as FP16 type. Then, the tTiles are loaded to L0
with ldmatrix and processed by the mma instruction which
accumulates intermediates as FP32 in L0. Finally, the tTiles
of C in L0 are transformed and stored to L2 as FP16. Fig-
ure 5(d)(e) shows the detailed transformations of the NF4 ten-
sor B to align with the tTile-device, while the transformations
of tensor A are similar. Specifically, the mma and ldmatrix
instructions require the FP16 data type in L1. Each layer
also has its transaction requirement shown as Figure 5(b).
Therefore, TransformLoad_L1B slices [16,63] and pads it
to [16,64], which aligns with the L2’s transaction requirement.
Then, TransformLoad_L1B converts it to FP16 and maps it
to another elements layout to align with the transaction re-
quirements of L1 and L0. We get the FP16 L1_B[16,64] in
L1. Then, TransformLoad_L0B leverages the ldmatrix to
slice the L1_B and gets the FP16 L0_B[16,16] on L0, which
aligns with the requirements of L1, L0 and the mma core.

3.3 Hardware-Aware tTile-Graph Scheduling

Given the DNN computation represented as a tTile-graph, to
schedule it to a tTile-device, we can map each tTile-operator’s
computation pipeline for tTiles (i.e., Transform-Load,
Compute, and Transform-Store) to the tTile-device. Specif-
ically, we can partition each tTile-operator into multiple tTiles
to fit the capacity of each memory layer, schedule tTile trans-
formations to align the tTiles with the requirements of hard-
ware layers, and coordinate inter-operator tTile configurations
and transformations for holistic optimizations. Finally, the
entire tTile-graph is scheduled as a data pipeline where tTiles
of a tTile-operator node move up and down on the hardware
hierarchy and are passed cross the edge to the successor tTile-
operator node.

The scheduling space of the tTile-graph becomes much
larger because tTile opens another dimension (i.e., tensor
transformation) in DNN computation scheduling. Further-
more, the tTile transformations introduce a new trade-off
between memory footprint efficiency and latency efficiency,
which brings more complexities and challenges in schedul-
ing. Take the MatMul of a FP16 tensor and a NF4 tensor on
NVIDIA GPU as an example, it requires to convert the NF4
type to FP16 due to the hardware support limitation. This
conversion should be finished before the Transform-Load
from L1 to L0, and therefore can be scheduled to either L2

Algorithm 1: Hint-based layer-wise scheduling
Data: g: tTile-graph; D: tTile-device
Result: gret : scheduled tTile-graph

1 Function GetDeviceHint(g, D):
2 D = SelectDeviceConfig(g, D);
3 HintShape = None, HintGranularity = None;
4 for layer ∈ D.layers do
5 HintGranularity = LCM(HintGranularity, layer.tTile.type);
6 for layer ∈ D.layers do
7 layer.tTile = convert(layer.tTile, HintGranularity);
8 HintShape = LCM(HintShape, layer.tTile.shape);
9 for layer ∈ D.layers do

10 layer.tTile.shape = HintShape;
11 return D;
12 Function ScheduleTransform(op,D,lid ):
13 tTileh = op.tTile[lid -1];
14 tTilel = op.tTile[lid ];
15 ScheduleSlice(tTilel , tTileh);
16 if LCM(tTilel .shape, tTileh.shape) ̸= tTilel .shape then
17 SchedulePad(tTilel , tTileh, D);
18 if tTilel .type ̸= tTileh.type then
19 ScheduleConvert(tTilel , tTileh, D);
20 if nBits(tTileh.shape[-1]) ̸= nBits(D.layers[lid].shape[-1]) then
21 ScheduleMap(tTilel , tTileh, D);
22 return op.transform[lid -1];
23 Function ScheduleConnectedGraph(g, D):
24 D = GetDeviceHint(g, D);
25 for lid in length(D.layers) do
26 for op ∈ g[lid] do
27 op.tTile[lid ] = ScheduleTiling(op,D,lid );
28 if lid > 0 then
29 op.transform[lid ] = ScheduleTransform(op,D,lid );
30 g = ProfileAndSelect(g);
31 return g;
32 Function Schedule(g,D):
33 g = ExtractConnectedGraph(g, D);
34 for gconn ∈ g do
35 gconn = ScheduleConnectedGraph(gconn, D);
36 return g;

or L1. When the conversion is on L2, it will take more mem-
ory on L2 and L1, but it will not occupy the compute unit
in later tTile movement from L2 to L1 and to L0. When the
conversion is on L1, it will save memory on L2 and save the
memory bandwidth of L2, but it will occupy the compute
unit for the type conversion. When the operator is bounded
by the compute unit, the previous option can achieve lower
latency but more memory footprint. When the operator is
bounded by the memory IO, the latter one can achieve better
performance on both latency and memory footprint. Addition-
ally, as the convert is only required to be finished before the
Transform-Load from L1 to L0, this convert can be fused
into the previous operator for execution to achieve better end-
to-end performance.

Given such a large scheduling space, LADDER provides
a latency-oriented policy that targets at minimizing the end-
to-end latency. Specifically, LADDER proposes a layer-wise
scheduling policy based on hardware-awareness: a lower-
layer memory provides the preferred data access granularity
as a hint represented as a tTile, and the upper layer decides
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the optimal compute granularity by aligning with this tTile
represented granularity with transformations. To reduce the
large scheduling space and schedule a proper plan within
reasonable time, LADDER plays heuristics based on our ob-
servations.
Scheduling policy. Algorithm 1 describes the hint-based
layer-wise scheduling policy. It takes a DNN model g repre-
sented as a tTile-graph and the hardware specifications rep-
resented as a tTile-device D, and returns the scheduled tTile-
graph gret . Initially, this policy schedules the graph into sub-
graphs (line 33). Each sub-graph represents as a computation
pipeline that loads tTiles from the lowest memory layer to the
core and then stores the results to the lowest memory layer.
A sub-graph could be a tTile-operator or a group of tTile-
operators that can be fused. The ExtractConnectedGraph
can leverage existing DNN compiler work [13, 43].

Given a sub-graph, it first infers the hints from the hard-
ware. Specifically, it first selects the proper hardware con-
figurations (e.g., the compute cores) (line 2), which prefers
the bit-nearest tType supported by the hardware. Because
numeric types of more bits usually require more transistors to
implement the hardware instructions [] and usually result in
lower performance. For example, in NVIDIA A100 GPU, the
NF4 type can be converted to FP16 or FP32 for processing,
and LADDER will select the FP16 core (312 TFlops) rather
than FP32 (19.5 TFlops). Then it finds the aligned granu-
larity and shape for each hardware layer by bit-alignment,
and configures the hints (line 1-11). Take the NVIDIA A100
as an example (Figure 5(b)), the HintGranularity is 16B
required by ldmatrix and the HintShape is [4,8], where the
inner dimension is 128B and aligns with the 32B transaction
of global memory and the 128B transaction of shared mem-
ory. Then, the policy schedules this sub-graph from the top
layer (i.e., core) to the bottom layer (i.e., DRAM) layer by
layer (line 25-29). In each layer, the policy first schedules the
tTile-operator tiling via ScheduleTiling with hint (line 27),
and then schedules the tTile transformation (line 29). If the
ScheduleTiling (line 27) schedules the operator tiling as
multiple of [4,8] with 16B, the later ScheduleTransform
can align this scheduling with the tTile-device. Additionally,
the ScheduleTiling can leverage existing tensor compil-
ers [13,52,57]. In ScheduleTransform, the policy will check
the alignment of both shape and type with the tTile-device,
and schedule corresponding transformations to align tTiles
(line 12-22). There may be some candidates after the schedul-
ing, which will be profiled and returned the best (line 30).
ScheduleMap. The map_func in scheduling the map trans-
formation is non-trivial. LADDER proposes a method to infer
the map_func, i.e., mapping the elements in the tTile to the re-
quired transaction size in row-major order. Figure 5(e) shows
an example: at the granularity of 16B, to map the shape[16,2]
in L0 to the required shape[8] in L1, elements are flatten in
row-major order, resulting in shape[4,8]. map can also support
other map_funcs.

This scheduling policy is not guaranteed as optimal. How-
ever, as shown in §5, this scheduling policy can already out-
perform state-of-the-arts and enable efficient low-precision
DNN computing on GPUs. We also hope that this optimiza-
tion space from the proposed scheduling mechanism could
be further explored by future research on more advanced
scheduling policies.

4 Implementation

LADDER is implemented by about 5K lines of code, includ-
ing Python and C++, based on open-source DNN compilers:
TVM [13], Welder [43], and Roller [57]. LADDER modifies
TVM for implementing kernel schedules and generating ker-
nel code, while Roller is leveraged to infer efficient tTile
configurations. Welder is the state-of-the-art DNN compiler
that can holistically optimize DNN models, and is leveraged
for end-to-end graph optimizations.

The input of LADDER is a PyTorch program. For PyTorch
built-in data types, LADDER does not require any modifica-
tions on the DNN model program. Additionally, for new data
types that PyTorch does not support, LADDER extends the Py-
Torch with custom operators for expressing tensor expressions
on the user-defined data types. Given the PyTorch program,
LADDER exports it to an ONNX graph. LADDER also ex-
tends ONNX to represent computation on new data types,
where the tType-annotated tensor expression is saved in the
attribute of an ONNX graph node. With the exported ONNX
graph and the tTile-based specification file of the targeted
hardware accelerator, LADDER automatically converts the
ONNX graph into the tTile-graph and performs the schedul-
ing. Then, LADDER generates the device code for the targeted
hardware accelerator.

We implemented LADDER for NVIDIA GPUs and AMD
GPUs, recognizing their widespread use as the most popular
accelerators for DNNs. In the rest of this section, we describe
the LADDER implementation on NVIDIA GPUs in detail and
briefly describe the implementation on AMD GPUs. Addi-
tionally, LADDER can be ported to new hardware instructions
(e.g., FP8 tensor cores in the latest Hopper GPUs) and other
hardware accelerators (e.g., Graphcore IPU) if they align with
the tTile-based hardware abstraction and provide program-
ming interfaces of loading and storing data on the hardware
hierarchy.

4.1 LADDER on NVIDIA CUDA GPUs
4.1.1 tType and tTile

LADDER has implemented the tTypes for common data types,
e.g., FP32, FP16, INT8, FP8, MXFP, INT4, NF4, INT1.

A GPU is a single instruction multiple threads (SIMT) ar-
chitecture, and it prefers a group of threads process the same
instruction on different data. Therefore, LADDER separately
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Figure 7: The storage of a MXFP8 tTile of shape[32, 32]
on NVIDIA GPU. E: elements. S: shared scaling in metadata.

stores the elements and each of the metadata in the tTile. Fig-
ure 7 shows the storage of a MXFP8 tTile of shape[32,32]
on NVIDIA GPU. The elements are stored in an array, while
the shared scaling factors are stored in another array. To ac-
cess a tTile, consecutive threads process consecutive elements,
resulting in coalesced accesses.

Note that, there may be some data types that the nElemBits
is not 2n, e.g., 3-bit [22]. To support these data types, LADDER
stores at the granularity of 4B due to the GPU specifications,
e.g., 10 3-bit value can be stored in a 4B (32-bit) granularity.

4.1.2 Optimizing Code Generation with PTX Instruction

NVIDIA does not provides the assembly instructions for pro-
gramming. Instead, NVIDIA introduces the Parallel-Thread-
Execution (PTX) as a low-level virtual machine for NVIDIA
GPUs, where the ISA (Instruction Set Architecture) on the
PTX virtual machine can be considered as the instruction-
level APIs for NVIDIA GPUs [8]. CUDA C++ code is first
compiled to the PTX code and then compiled to the machine
code for execution. CUDA provides both the C++ APIs and
the PTX APIs for some units. For example, the tensor cores
provides both the WMMA C++ APIs and the MMA PTX
APIs, where a WMMA API is compiled as a group of MMA
instructions by the nvcc compiler. The MMA PTX APIs have
more flexibility and better performance than the WMMA
C++ APIs. LADDER uses the MMA PTX APIs for codegen
on tensor cores, and uses cp.async instructions for the new
asynchronous memory copy feature on Ampere GPUs [3].
Additionally, we observed converting low-bit integers (e.g.,
INT4) to floats (e.g., FP16) may introduce significant over-
heads. LADDER implements the conversion of integers of
lower than 4 bits with the LOP3 instruction [8]. We modi-
fied the code generation module in TVM to implement these
optimizations.

4.2 LADDER on AMD ROCm GPUs
AMD GPUs are similar to NVIDIA GPUs, which also have
a hardware hierarchy of global memory shared by all CUs,
local data store in each CU (similar to the shared memory),
registers, and cores. Therefore, similar to NVIDIA GPUs,
an AMD GPU can be abstracted as a four-layer tTile-device
with different tTile configurations. ROCm provides the HIP
programming model [1] for AMD GPUs, which is similar to
CUDA’s functionality and supports most CUDA statements.
We implemented a new code generation backend for HIP in
TVM to support AMD ROCm GPUs. Additionally, we use the

MFMA (Matrix Fused-Multiply Add) ISA-level APIs to utilize
the matrix core (the equivalent of the NVIDIA tensor core).

5 Evaluation
5.1 Evaluation Setup
Hardware platforms. We evaluate LADDER on a diverse
range of GPUs from both NVIDIA and AMD to ensure
a comprehensive assessment of performance across differ-
ent hardware ecosystems. Our evaluation comprises three
high-performance NVIDIA GPUs: Tesla V100 (16GB), A100
(80GB), and RTX A6000 (48GB), utilizing the CUDA toolkit
version 12.1 for optimal performance. We extend to the AMD
ecosystem with the inclusion of the AMD Instinct MI250
GPU (128GB), utilizing the ROCm toolkit version 5.7.0. The
operating systems remain consistent, utilizing Ubuntu 20.04.
DNN models. We evaluate the effectiveness of LADDER by
benchmarking the inference on a suite of state-of-the-art DNN
models that span various domains and architectures. These
models encompass large language models, such as LLAMA-
70B [45] and BLOOM-176B [47], computer vision mod-
els, including ResNet-50 [24], ShuffleNet-V2 [34], and ViT-
Base [19], as well as audio models like transducer Conformer-
l [23]. The data type configurations used in these models
are all from state-of-the-art research literature and have been
evaluated by the deep learning community. LADDER follows
these configurations and does not introduce additional model
quality loss. The data type configurations, representing both
weights and activations and denoted as WtypeAtype, for the
evaluated models are detailed below:

• LLAMA-70B and BLOOM-176B: Evaluated with
data type configurations of WFP16AFP16 [45, 47],
WINT4AFP16 [22, 31], WNF4AFP16 [15], WFP8AFP8 [37],
WMXFP8AMXFP8 [41], and WINT1AINT8 [46].

• ResNet-50: Evaluated with data type configurations of
WFP16AFP16 [24], WFP8AFP8 [37], WMXFP8AMXFP8 [41],
and WINT1AINT4 [25].

• ShuffleNet-V2: Evaluated with data type configurations
of WFP16AFP16 [34] and WFP8AFP8 [42].

• ViT-Base: Evaluated with data type configurations of
WFP16AFP16 [19], WFP8AFP8 [27], and WINT4AINT4 [29].

• Conformer-L: Evaluated with data type configu-
rations of WFP16AFP16 [23], WINT8AINT4 [18], and
WINT4AINT4 [18].

We configure various batch size (BS) and sequence length
(SEQ) settings to cover diverse deployment scenarios. For
large language models such as LLAMA-70B and BLOOM-
176B, we conduct tests with (BS, SEQ) settings of (1, 1), (32,
1), and (1, 4096) to comprehensively represent online and
offline inference scenarios, as well as pre-fill and decoding
stages. Additionally, models like ResNet-50, ShuffleNet-V2,
ViT-Base, and Conformer-L are evaluated with batch sizes
of both 1 and 128 to assess performance across online and
offline inference scenarios.
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Figure 8: End-to-end performance on the NVIDIA A100 GPU.
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Figure 9: End-to-end performance on the NVIDIA V100 GPU.

Baselines. We compare LADDER against various well-
established compilers and frameworks across different GPU
platforms. For NVIDIA GPUs, we include comparisons with
Welder [43], PyTorch-Inductor [38], ONNXRuntime [7], Ten-
sorRT [9], AMOS [56], TensorIR [21], vLLM [28], vLLM-
WINT4AFP16 (the 4-bit quantized model support in vLLM) [28].
On AMD GPUs, we compare LADDER with Welder [43],
PyTorch-Inductor [38], ONNXRuntime [7] and TensorIR [21].
To harness the MatrixCore capabilities on ROCm devices,
we have integrated MIOpen and rocBLAS into Welder, and
we have also enhanced TensorIR with rocWMMA Auto
Tensorize support. For operator benchmarks, LADDER is
evaluated against cuBLAS [4], CUTLASS [6], vLLM [28],
cuDNN [5], AMOS [56] and TensorIR [21].

5.2 Evaluation on NVIDIA GPUs

5.2.1 End-to-End Performance

Inference latency. Our inference latency evaluation targets
the previously detailed DNN models, executed on the Tesla
A100, V100, and RTX A6000 GPUs. For large language mod-
els, such as LLAMA-70B and BLOOM-176B, due to GPU
memory constraints, we evaluate the inference latency using
one decoder layer of these models, which serves as a proxy
for the full model’s performance because each layer is the
same and the latency is linear with the number of layers.

Figure 8 summarizes the inference latency results on the
A100 GPU. In the data type configuration of WFP16AFP16,
LADDER achieves notable performance enhancements. Com-
pared to Welder, we report an average speedups of 1.0×, 1.2×,
2.0×, 1.2×, 1.1×, and 1.4× for LLAMA, BLOOM, ResNet,
ShuffleNet, Conformer, and ViT, respectively. The reason is
because Welder leverages Roller [57], cuBLAS [4] and CUT-
LASS [6] for kernel generations and suffers from kernel per-
formance issues like shared memory bank conflicts, especially
in ResNet where Conv2D operations introduce more irregular
shapes. LADDER can achieve higher efficiency by resolving
these kernel performance issues with tensor transformation
scheduling, e.g., 1.1 ms and 7.6 ms latency on BS1 and BS128
of ResNet. In the data type configuration of WINT4AFP16 which
is widely used in LLMs, LADDER achieves a remarkable 2.3×
speedup on average over vLLM. Moreover, LADDER exhibits
robust versatility by supporting custom data types not tra-
ditionally accommodated by other systems. For instance, in
the case of WINT1AINT8 configuration, LADDER achieves an
impressive speedup of up to 10× relative to Welder on one
layer of BLOOM-176B-BS1SEQ1 with 0.32 ms latency.

Our inference latency evaluation extends to the Tesla V100
and RTX A6000 GPUs, with results shown in Figures 9 and
Figure 10. The results on these platforms align closely with
those observed on the A100. It is important to note that the
V100, equipped with 16GB of memory, encounters limitations
when handling even a single decoder layer of the BLOOM
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Figure 10: End-to-end performance on the NVIDIA RTX A6000 GPU.
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Figure 11: Memory usage of LLM inference on the NVIDIA
A100 GPU across varying data type configurations.

model, resulting in out-of-memory errors. In terms of per-
formance gains, with the WFP16AFP16 configuration, LADDER
delivers an average speedup of 1.1× on the V100 and 1.2×
on the A6000, compared to Welder on both platforms. With
the WINT4AFP16 configuration, LADDER achieves an average
speedup of 2.0× compared to vLLM on the A6000 GPUs, and
also enables effective WINT4AFP16 inference on V100 GPUs.
In scenarios utilizing the WINT1AINT8 configuration, LADDER
reaches up to 13.3× speedup on the V100 and 14.6× speedup
on the A6000, compared to Welder.

Memory usage. Employing reduced-precision data types is a
critical strategy for alleviating the substantial memory require-
ments of large language models (LLMs). To quantify the ben-
efits of this approach, we conduct a thorough investigation of
memory usage across various data type configurations during
LLM inference on the A100 GPU. The results are shown in
Figure 11, which illustrates a near-linear decrease in memory
usage corresponding to the reduction in bit width. This trend
is particularly pronounced during the decoding phase with a
sequence length of 1, highlighting the advantages of precision
scaling in the memory-intensive decoding stage of inference.
In the most extreme scenario, employing a weight precision
of 1-bit and activation precision of 8-bit (WINT1AINT8), we
observe substantial memory savings. Specifically, when com-
pared to the full precision (WFP16AFP16) configuration, the
memory footprint for LLAMA model inference is reduced
by 74%, 74%, and 24% across three different batch size and
sequence length combinations, respectively. For the BLOOM

Model (BS) AMOS TensorIR Welder LADDER

ResNet (1) 3852 156 11 31
ResNet (128) 2191 836 18 44
ShuffleNet (1) 3328 128 13 17

ShuffleNet (128) 3121 400 12 29

Table 2: Compilation time (in minutes) comparison of end-to-
end models on NVIDIA A100 GPU.

model, the memory footprint is reduced by 85%, 85%, and
6% for the corresponding settings.
Compilation time. To assess the efficiency of our system,
we present a comparative analysis of compilation times in
Table 2. Our evaluation compares LADDER against other
prominent systems: AMOS, TensorIR, and Welder. The com-
pilation times are measured for the end-to-end compilation of
two representative neural network models, ResNet and Shuf-
fleNet, with different batch sizes (1 and 128) on an NVIDIA
A100 GPU. The results highlight that on average, LADDER
demonstrates a significant reduction in compilation time com-
pared to both AMOS and TensorIR. Notably, LADDER is an
order of magnitude faster than TensorIR, and two orders of
magnitude faster than AMOS. As LADDER enables support-
ing low precision arithmetic through tensor transformation
and thus, inherently, a broader schedule space. While it al-
lows LADDER to capitalize on the performance benefits of
low-precision arithmetic, it also imposes additional overhead
during the compilation process. Consequently, LADDER ex-
hibits slightly higher compilation times compared to Welder.

5.2.2 Operator Benchmark
To assess kernel performance within LADDER, we con-
structed an operator benchmark incorporating commonly uti-
lized operators from the LLAMA and ResNet models. The
benchmark is composed of six matrix multiplication (Mat-
Mul) operators, labeled M0-M5, and eight 2D convolution
(Conv2d) operators, labeled C0-C7. We tested each opera-
tor under a variety of data type configurations, including
WFP16AFP16,WINT4AFP16,WNF4AFP16,WFP8AFP16,WINT1AINT8,
WMXFP8AMXFP8, and WINT4AINT4. All experiments were exe-
cuted on an NVIDIA A100 GPU to ensure consistency and
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Figure 12: Operator benchmark on NVIDIA A100 GPU.
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Figure 13: Operator benchmark on NVIDIA RTX 4090 GPU.

reliability in performance evaluation. As depicted in Fig-
ure 12, LADDER demonstrates optimal performance with
the WFP16AFP16 configuration. Transitioning to WINT4AFP16,
LADDER achieves an average speedup of 1.8×, while the
WINT1AINT8 configuration enables an even further average
speedup of 4.5×.

The Ada Lovelace, Hopper and Blackwell GPUs support
WFP8AFP8 tensor core. We also conducted the operator bench-
mark on a NVIDIA RTX 4090 GPU with CUDA 12.4 to
evaluate the hardware-supported WFP8AFP8 performance. Fig-
ure 13 shows the results. For WFP8_E4M3AFP8_E4M3, LAD-
DER outperforms cuBLAS and achieves comparable perfor-
mance over CUTLASS. For WFP8_E5M2AFP8_E5M2, LADDER
achieves comparable performance over CUTLASS, while
cuBLAS does not support this case. RTX 4090 only enables
the WFP8AFP8 with FP32 accumulation which has the same
theoretical performance as WFP16AFP16. Therefore, cuBLAS,
CUTLASS and LADDER of WFP8AFP8 is similar to that of
WFP16AFP16 on large matrices like M2 and M5. Although
WFP8AFP8 with FP16 accumulation has double theoretical
performance, it is not exposed by NVIDIA currently. LAD-
DER achieves higher speedup on data types like WNF4AFP16
and WINT 1AINT 8 than those on A100, because RTX 4090 has
more powerful cores for transforming data types.

5.2.3 Optimization Breakdown

Figure 14 illustrates the step-by-step optimizations LADDER
applied to the LLAMA-70B model’s kernels for both sin-
gle (BS1 SEQ1) and large batch sequences (BS1 SEQ4096)
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Figure 14: Optimization breakdown
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Figure 15: Scaling the bit width of weight and activation.

across different data formats. Tile-aware kernel transforma-
tion led to smoother data handling and a 2.0× speed boost
over the Roller baseline, also enabling support for various data
types. PTX-level optimizations reduced GPU memory load,
and with advanced control over tensor operations and layout,
LADDER achieved a further up to 1.7× speedup. A compre-
hensive scheduling strategy yielded a up to 2.5× speedup,
especially benefiting memory-constrained types like MXFP8,
by optimizing transformations. Overall, LADDER’s optimiza-
tions enhance computational efficiency and adaptability, deliv-
ering marked performance gains across multiple operations.

5.2.4 Scaling Bit Width

Leveraging the versatile capabilities of LADDER, we are able
to support a wide range of data types with arbitrary bit widths
for both weights and activations. To thoroughly evaluate the
performance implications of precision scaling, we conducted
experiments across data type settings that progressively de-
crease bit widths. Our evaluation encompasses end-to-end per-
formance as well as individual operator performance across
two distinct batch size and sequence length configurations.
The experimental outcomes are detailed in Figure 15. As we
scale down the bit widths of W and A, we observe a cor-
responding escalation in speedup, reflecting the efficiency
gains of lower precision arithmetic. In decoding scenarios
with sequence length of 1, which are memory-bound, our
experiments show a clear speedup increase with reduced W
bit width (from WINT4AINT4 to WINT2AINT4, to WINT1AINT4).
However, during encoding at sequence length of 4096, which
is compute-bound, speedup remains unchanged across these
configurations due to the reliance on higher-precision compu-
tations in mixed-precision operations.
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5.2.5 Efficiency and Accuracy of Low-Precision LLMs

Low-precision computing focuses on both model quality and
model efficiency, thus there is usually an efficiency-accuracy
trade-off in designing low-precision models. We take
LLMs (i.e., LLAMA2-3B, LLAMA2-7B, LLAMA2-13B and
LLAMA2-70B) as the example to evaluate both the efficiency
and the accuracy of state-of-the-art low-precision methods.
Specifically, we evaluated PTQ for WFP8_E4M3AFP8_E4M3 [2,
37], GPTQ for WINT 4AFP16 [22], PTQ for WNF4AFP16 [16],
BitDistiller for WINT 2AFP16 [20], OneBit for WINT 1AFP16 [49],
and BitNet-b1.58 for WINT 2AINT 8 [35]. Both PTQ and GPTQ
are post-training quantization methods, which does not in-
clude model training. BitDistiller and OneBit are quantization-
aware training methods, leveraging distillation to achieve 2-bit
and 1-bit weight quantization. BitNet-b1.58 trains LLMs from
scratch to achieve ternary weights represented in WINT 2AINT 8.

Figure 16 shows the perplexity (PPL) on WikiText-2
and the latency of decoding single token on A100. Note
that the lower PPL indicates the better model quality. The
PPL of WINT 4AFP16, WNF4AFP16 is reported by AFPQ [51].
The PPL of WINT 1AFP16 is reported by OneBit [49]. The
PPL of WFP16AFP16 on LLAMA2-3B is reported by BitNet-
b1.58 [35]. The PPL of other models are evaluated with
open-sourced model checkpoints and open-sourced implemen-
tations. WFP8_E4M3AFP8_E4M3, WNF4AFP16 and WINT 4AFP16
show little affects on PPL, while achieve 1.6×, 1.7×, 2.5× on
average, respectively. Quantizing LLMs to 2-bit weights with
PTQ and GPTQ will result in NaN PPL [20,49], while BitDis-
tiller and OneBit leverage distillation to achieve stable results
in 2-bit and 1-bit quantization. However, the group-wise scal-
ing introduces extra computation cost to WINT 2AFP16-G64,
resulting in similar speedup as WINT 4AFP16.

It is noticeable that BitNet-b1.58 achieves even better
PPL with 1.8× speedup on the LLAMA2-3B configuration,
when compared to the WFP16AFP16 model trained on the
same dataset with same tokens [35]. This speedup does not
achieve the theoretical speedup because the LLAMA2-3B is
too small to saturate the GPU. We further evaluated BitNet-
b1.58’s WINT 2AINT 8 on the LLAMA2-70B configuration and

achieved 4.6× speedup over WFP16AFP16, thus BitNet-b1.58
shows a good potential on both accuracy and efficiency.

When comparing across different model configurations,
the model size has significant impact on both accuracy
and efficiency. It is noticeable that LLAMA2-13B with
WINT 4AFP16 achieved better performance than LLAMA2-7B
with WFP16AFP16 on both accuracy and efficiency, and the
quantized LLAMA2-7B models also outperform LLAMA2-
3B with WFP16AFP16 on both accuracy and efficiency. This
shows the power of low-precision computing.

The community is actively exploring low-precision com-
puting, and we hope LADDER can help researchers to explore
this direction by providing feedback on efficiency.

5.3 Evaluation on AMD GPUs
We evaluate the efficient LADDER on AMD Instinct MI250
GPU by comparing it with Welder, PyTorch-Inductor and
ONNXRuntime. Figure 17 shows the end-to-end perfor-
mance of 6 models. In the data type of WFP16AFP16, LADDER
achieves an average 2.1×, 2.35×, 1.5×, 10.5×, 1.6×, and
1.5× speedup over Welder for LLAMA, BLOOM, ResNet,
ShuffleNet, Conformer, and ViT, respectively. Welder does not
perform well on ShuffleNet because it leverages rocBLAS and
MIOpen for matrix core and thus breaks fusion opportunities.
LADDER not only generates efficient computing kernel for
matrix core but also enables more fusion opportunities, result-
ing in 14.1× speedup over Welder on ShuffleNet-BS1 with
0.43 ms latency. In the data type configuration of WINT4AFP16
for LLMs, LADDER achieves up to 3.8× speedup on LLAMA
with 0.73 ms latency on BS1SEQ1 and 4.5× speedup on
BLOOM with 1.75 ms latency on BS1SEQ1 over Welder.

6 Discussion

LADDER’s current implementation mainly focuses on model
inference. We discuss some LADDER’s limitations and future
work in this section.
Multi-GPU serving. Multiple GPUs are required to de-
ploying some large-scale models like BLOOM-176B and
LLAMA2-70B, becuase these models cannot fit into a single
GPU. Multi-GPU support is complementary with LADDER.
LADDER focuses on supporting low-precision computing on a
hardware accelerator. Multi-GPU frameworks [28, 30, 32, 53]
focus on partitioning model and scheduling parallel com-
putation across multiple GPUs. LADDER can collaborate
with multi-GPU frameworks to enable parallel computation
for low-precision models on multiple GPUs that multi-GPU
frameworks partition a model and schedule the partitioned
computation to LADDER on a device for execution. We leave
integrating LADDER with multi-GPU frameworks to our fu-
ture work.
Low-precision training. LADDER’s design is not limited
to inference. Both training and inference of low-precision
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Figure 17: End-to-end performance on AMD Instinct MI250 GPU.

models require low-precision support of system and hard-
ware. And the backward computation in training is similar to
the forward computation. Low-precision model training can
achieve gains from: 1) leveraging more efficient low-precision
computation units, e.g., WINT 8AINT 8 tensor core supported
on A100 has 2× throughput than that of WFP16AFP16, while
WINT 4AINT 4 tensor core has 4×; and 2) less memory foot-
print from low-precision model representation enabling larger
batch sizes which may improve the hardware utilization. We
leave low-precision training to our future work.

7 Related Work

Deep learning compilers and frameworks. Most existing
deep learning compilers, such as [10, 13, 33, 38, 43, 50, 52,
54, 57], focus on operator or model computation optimiza-
tions for mainstream data types, e.g., FP16 or FP32, with little
emphasis on low-precision data types. However, many opti-
mizations are complementary with low-precision computing,
for example, Roller [57] is leveraged to infer efficient tTile
configurations, and Welder [43] is leveraged for end-to-end
graph optimization in LADDER. SparTA [55] treats model
pruning and quantization as model sparsity to holistically
optimize sparse model inference and training, and LADDER
can provide efficient low-precision kernels to further improve
the performance. AMOS [56] has optimized for TensorCore
computation, covering FP16 and INT8 types, but it is specific
to NVIDIA GPUs. In comparison, LADDER is the first com-
piler to optimize for general low-precision computations that
support general custom data types on different GPUs. Deep
learning libraries or frameworks like ONNXRuntime [7] and
TensorRT [9] support some low-bit operators for inference
scenarios, but their coverage is still limited due to the signifi-
cant effort required to implement those combinatorial cases.
Some recent compilers like Triton [44] and TensorIR [21]
allow users to directly write the computation pipeline of a
DNN operator, providing flexibility in specifying scheduling
in each stage. However, these compilers mostly focus on com-
putation scheduling and have little support in data scheduling

for custom data types, which is the primary focus of LADDER.
Model-specific low-precision optimization. Given the lack-
ing efficient support of low-precision in existing compil-
ers and frameworks, many works have conducted workload-
specific low-precision optimizations. For example, some quan-
tization and model training on low-precision types are opti-
mized for Large Language Models (LLMs) [22, 28, 31, 35, 41,
45–47]. Previous work like [23–25, 34, 42] optimizes other
models like ShuffleNet, Conformer, etc., into FP8 or FP16
precision. In comparison, LADDER provides a mechanism to
allow one to more easily implement custom data types and
optimization policies. Thus, these optimization approaches
are complementary to LADDER, as they can be implemented
or automatically optimized in LADDER.

8 Conclusion

In conclusion, this paper introduces LADDER, the first deep
learning compiler designed to optimize general low-precision
computation on accelerators like GPUs. LADDER exposes a
general type system (tType) and an extended tensor expres-
sion, enabling users to easily implement and express new
data types in deep learning. It introduces a set of new tensor
scheduling primitives to facilitate optimizations like tensor
storage, access, and type conversions in a computing pipeline.
The layer-wise hardware-aware optimization policy of LAD-
DER navigates the complex transformation space, showcasing
its capability to systematically support a wide array of low-bit
precision custom data types. This enhances DNN computa-
tion performance on modern accelerators without requiring
hardware modifications. This innovation empowers model
designers to explore data type optimizations and offers hard-
ware vendors a flexible solution to expand support for diverse
precision formats.
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Abstract
Recent work on in-network machine learning (ML) antic-
ipates offline models to operate well in modern network-
ing environments. However, upon deployment, these models
struggle to cope with fluctuating traffic patterns and network
conditions and, therefore, must be validated and updated fre-
quently in an online fashion.

This paper presents CARAVAN, a practical online learning
system for in-network ML models. We tackle two primary
challenges in facilitating online learning for networking: (a)
the automatic labeling of evolving traffic and (b) the efficient
monitoring and detection of model performance degradation
to trigger retraining. CARAVAN repurposes existing systems
(e.g., heuristics, access control lists, and foundation models)—
not directly suitable for such dynamic environments—into
high-quality labeling sources for generating labeled data for
online learning. CARAVAN also introduces a new metric, ac-
curacy proxy, to track model degradation and potential drift
to efficiently trigger retraining. Our evaluations show that
CARAVAN’s labeling strategy enables in-network ML models
to closely follow the changes in the traffic dynamics with
a 30.3% improvement in F1 score (on average), compared
to offline models. Moreover, CARAVAN sustains comparable
inference accuracy to that of a continuous-learning system
while consuming 61.3% less GPU compute time (on average)
via accuracy proxy and retraining triggers.

1 Introduction
Machine learning (ML) is being increasingly leveraged to bet-
ter manage and operate networks today [27, 30, 35, 37, 45, 49,
54,77,80,82,97,101,104,105,111,114,116]. In academia, sev-
eral proposals make a case for using ML to improve systems
security through anomaly and intrusion detection [30,54,105]
and to optimize systems performance through inference, di-
agnosis, and forecasting of systems’ behavior [49, 76, 80, 81].
Correspondingly, in industry, ML is being deployed to de-
tect threats and bots in public and enterprise-scale cloud net-
works [1,9,10] for securing physical and virtual infrastructure
and for providing better user experience by predicting network
incidents and congestion early on [8]. Moreover, to operate
at scale, with high throughput and low latency, the model
inference is being offloaded to the data plane (e.g., program-
mable switches [15, 114] and SmartNICs [17, 101]) in the
network (i.e., in-network ML)—to perform decision-making
on a per-packet basis [37, 104, 122].

InferenceData
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TrainingControl
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Model
Installed
Once

(a) Offline Learning (b) Online Learning

Labeling(Re)Training

Weight
Updates Sampling &

Validation

Inference

Figure 1: Comparison of in-network model learning. (a)
Offline learning: trained and deployed once; (b) Online
learning: trained and updated over time—requires itera-
tive sampling, labeling, and validation.

Unlike conventional approaches (e.g., hand-crafted heuris-
tics and static rulesets), ML models are better at revealing
hidden patterns and characteristics in vast amounts of high-
dimensional data—such as network traffic [35, 54, 71, 104,
111, 116, 117]. However, most efforts on replacing traditional
approaches (e.g., heuristics and access control lists) with
ML [35] are limited to using static models (aka offline learn-
ing, Figure 1a) [30, 35, 37, 49, 54, 82, 97, 101, 104, 105, 111,
114, 116]. These models are trained once using synthetic or
controlled network traces and are expected to operate well in
the real environment without further guidance (or retraining).
While showing significant promise in stable (less volatile)
environments, these static models perform poorly in the pres-
ence of fluctuations and unforeseen events—not captured by
the traffic during the initial training phase [33,115,117]. These
manifest as model drift either (a) when the network environ-
ment gradually evolves or suddenly changes due to traffic
bursts, time-of-day, or rare events (called concept drift) [117]
or (b) when new data patterns arrive or data distribution
changes (called data drift) [33]. This model drift is shown to
be prevalent in many online ML applications [33,94,100,115].

To keep these models up-to-date with new patterns and net-
work behavior, one approach is to train and update them con-
tinuously on the incoming traffic—referred to as online learn-
ing or continuous learning [33,94]. For example, a (re)training
pipeline in the control plane can continuously sample packets
from the network (e.g., using INT [68] or NetFlow [7]), label
them, and pass them to the model for retraining (Figure 1b). It
then updates the weights on the data-plane device, performing
model inference. As we show in our evaluations (§5), keeping
the model current through online training allows it to handle
new incidents with much higher accuracies compared to the
static offline models (i.e., the average difference in accuracy
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is as high as 67%).
However, there are a number of challenges when it comes

to enabling continuous learning in modern networking en-
vironments (processing Tbps of traffic for varying tenants
and workloads) [32, 96, 119, 121]. First, unlike traditional
online learning systems in other domains (e.g., recommenda-
tion systems and financial systems) where the new retraining
data either contains labels (ground truth) [59, 103, 113] or
can be easily labeled using existing approaches (like Data
Programming [93] or Weak Supervision [91,92]), in network-
ing the incoming data is raw (sampled) traffic with no labels.
Challenge #1: How can we prepare (and label) traffic data
for retraining in-network models? Second, we cannot rely
on fixed interval-based or periodic retraining to ensure the
installed models perform well. The network conditions are
highly dynamic and erratic; a large interval will miss such vari-
ations, whereas frequent updates would be too costly in terms
of resource usage (CPU/GPU cycles and network bandwidth).
Challenge #2: How to decide when to trigger retraining?

In this paper, we present CARAVAN, an online learning
system for in-network ML to tackle these challenges. To label
new incoming network traffic, CARAVAN relies on labeling
agents that use different user-defined knowledge sources to
assist with labeling. In networking, many existing systems,
such as heuristics, access control lists, deep learning, or even
foundation models (e.g., GPT-4 [87], Gemini [106], Llama
3 [16]), fare poorly when used for real-time decision-making—
they either fail to adapt to changing network conditions or
take too much time to process. However, we observe that
these can be used as knowledge sources to label incoming
traffic for online learning of in-network models. For instance,
using foundation models (which encode a broad spectrum of
information about the environment [89,95,112]) and guidance
from users (e.g., prompts [28] and document retrievals [72]),
we can generate application-specific, weak-supervision labels
to (re)train these models. We also introduce a new metric,
accuracy proxy, to decide when to trigger retraining. Instead
of relying on ground-truth labels to compute model accuracy,
we compute accuracy proxy based on generated labels we
receive from the labeling agents for model (re)training. Doing
so allows CARAVAN to track degradation in model behavior
through relative changes in the accuracy level on a temporal
scale, and to trigger retraining. More specifically, if there is an
abrupt change in the accuracy proxy (i.e., model drift exceeds
a certain threshold), CARAVAN uses this as a signal to trigger
retraining. This limits CARAVAN from excessively retraining
the model under normal conditions.

We evaluate our CARAVAN system both in simulation
(for microbenchmarks) and with a Taurus FPGA-based
switch [104] (for end-to-end results). Our simulation results
show that labels generated using knowledge sources perform
similarly to ground-truth labels in terms of inference accu-
racy when used to label incoming traffic for retraining. More-
over, our accuracy proxy and retraining triggers save up to

74.55% GPU compute time compared to continuous online
training while sustaining similar accuracy gains. With our
Taurus FPGA testbed, we show that CARAVAN maintains
30% higher accuracy on average compared to offline mod-
els while using 56.23% less CPU and with similar memory
footprint compared to continuous retraining baselines—with
CARAVAN, the model operates at line rate while adapting to
changing traffic dynamics.

In summary, we make the following contributions:
• We present CARAVAN, a practical online learning system

for in-network ML. CARAVAN’s labeling-agent strategy
allows the use of existing network systems (e.g., heuristics,
access control lists) and emerging foundation models (e.g.,
GPT-4, Gemini, and Llama 3) as knowledge sources to
label incoming traffic. Using accuracy proxy further allows
CARAVAN to efficiently retrigger the training pipeline while
closely tracking changes in the network conditions.

• We implement CARAVAN as a software logic running in the
control plane, and test it both in a simulation setting and
using a real testbed with Taurus FPGA-based switches. Our
CARAVAN prototype is available as open-source.1

• Our evaluations show that CARAVAN allows in-network
models to track changes in the network at line rate while
sustaining 30.3% higher F1 score (on average) compared
to offline systems. Moreover, it consumes 61.3% less GPU
compute time (on average) than a continuous-learning sys-
tem by selectively triggering retraining via accuracy proxy.

2 Background & Motivation
In-network Machine Learning. Network operators face
many challenges with managing the size and complexity of
modern networks while maintaining their stringent (and ever-
increasing) performance requirements [32,96,119,121]. Over
time, the networking community has developed a plethora of
hand-tuned heuristics permeating the network, which contin-
uously introduce new parameters that must then be tuned to
the given network (and workload). We see this with the con-
stant iterations of congestion-control variants [55, 73], active-
queue management [23], load balancing algorithms [26, 66],
anomaly detection [25, 34, 38] and more. Relying on net-
work developers and researchers to keep adding new pa-
rameters to each algorithm being used throughout the net-
work, as the workloads change and evolve, has limited scal-
ability as networks grow. Networking researchers have,
therefore, begun to turn toward data-driven algorithms, in
the form of ML, particularly deep-learning and neural net-
works [35, 40, 63, 80, 83, 105, 111, 116]. Rather than tuning
individual model weights by hand, ML algorithms take train-
ing data as input and learn model weights to optimize for
performance metrics (e.g., prediction accuracy).

To operate at scale with high throughput and low latency,
these models are further offloaded to the network data plane

1Artifact: https://github.com/Per-Packet-AI/Caravan-Artifact-OSDI24
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(e.g., programmable switches and SmartNICs) [17, 101, 104,
114, 125]. Doing so allows more fine-grained control over
the traffic, with decision-making (and model inference) tak-
ing place at or near the packet level. For example, program-
mable switches (e.g., Intel Tofino series [15]) with match-
action tables (MATs) can perform ML algorithms (such as
SVMs and decision trees) [37, 114], with more recent data-
plane devices incorporating MapReduce-based processing
blocks to run deep neural networks (DNNs) directly in the net-
work [104]. Likewise, emerging SmartNIC devices (e.g., Mar-
vell Octeon 10 [17] and Xilinx SN1000 [2]) come equipped
with on-board ML inference engines for per-packet inference.
Similarly, data/infrastructure processing units (DPUs/IPUs)
from Nvidia [6], AMD [4], and Intel [14] also provide compu-
tational resources capable of running ML inference alongside
the packet-processing pipelines.

Online Learning and Model Drifts. Recent work on apply-
ing online learning in networking domains (such as video
analytics and edge monitoring) shows promising results. For
example, Ekya [33] and RECL [67] demonstrate that retrain-
ing computer vision models for video analytics applications
with new video frames can effectively mitigate data drift for
compressed ML models. Nazar [58] features online moni-
toring and adapts various ML models on mobile devices to
relieve the problem of potential model drifts.

Through retraining ML models with new incoming data, on-
line learning addresses two common issues these models face
post-deployment: concept drift [117] and data drift [33]. Con-
cept drift occurs as networks and traffic are subjected to dy-
namic signal interference due to environmental changes [123]
(e.g., weather, temperature, or time-of-day), as well as changes
in the network and user behavior (e.g., increased online activ-
ity during COVID-19 [46], addition/removal of devices and
software due to upgrades or failures [75]). For example, a
large file download may be classified as benign during the day
when networks are more active but are marked as malicious
during the night when the number of high-volume flows is
smaller. On the other hand, data drift happens when the live
traffic (or data) distribution diverges from the training data
distribution after the model is deployed [33, 94]. For classi-
fication models, in particular, the arrival of new data classes
(not already present in the offline training set) or a change in
data class distribution could cause an ML model to perform
poorly [33,94]. For example, in network security, new attacks
come up without warning, and it becomes challenging for
a static ML model to detect such an attack since it was not
trained on data featuring the new attack.

Network Data Labeling. The emerging interest in training
and testing ML models for networking applications sparks
extensive research in the area of obtaining labeled network
data [42,60,98,99]. Most recent work falls into three different
categories: generating labeled network data in a controlled
environment, synthetic data generation, and manual labeling
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Figure 2: High-level design of CARAVAN. The three key
components, Labeling Agent (§3.1), Model Validation
(§3.2), and Retraining, work in tandem to keep the in-
network ML model up-to-date.

through domain experts (i.e., network operators).
Efforts like NetUnicorn [31] propose to collect and ac-

tively label network data in a controlled environment where
operators can access different nodes (switches and hosts) in
the network. Though labeling accuracy would be high since
operators can choose to generate and collect selected traffic
classes, this approach might not offer representative labeled
data in real networks [53]—limiting its use in online learn-
ing. Other efforts feature synthetic data generation, where
models like GANs [118] or diffusion models [65] are used
to produce packet traces that match the feature distribution
of input network data. However, the generation process takes
a lot of time and cannot explicitly label new incoming data,
making it impractical in an online setting. Also, it is unclear
how closely the synthetic data reflects the traffic in a real
environment (an open area of research [57, 107, 109]). The
last resort is to ask human experts with domain knowledge
to label all or selected network data. Though there are many
efforts featuring selecting sampled data for human experts to
label [53], this still requires a human-in-the-loop and may not
operate at the timescales needed for automatic data labeling
in networks.

3 Design of CARAVAN

We present CARAVAN, a system for practical online learning
of in-network ML models deployed in the data plane. CAR-
AVAN is designed to satisfy the following requirements: (1)
generation of effective label datasets for retraining and (2)
efficient monitoring and detection of model performance.
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Overview. Figure 2 shows the high-level architecture of
CARAVAN. The system periodically collects a window of sam-
ples, arriving from the data-plane device running in-network
ML inference. Each sample contains a set of header fields
(called flow) along with the prediction made by the deployed
model. Once a window is full, a labeling agent (§3.1) gener-
ates application-specific (e.g., security) labels for each sample
in the window in the form of class predictions (e.g., type of
network attack) or confidence scores (e.g., the likelihood a
flow being malicious). The agent relies on a collection of
knowledge sources (§3.1.1), each generating its own labels.
The label with the most votes (i.e., occurrences) is added to
the final label set. Next, the validation stage (§3.2) monitors
and detects the degradation in the model performance using a
new metric, called accuracy proxy (§3.2.1), which uses pre-
dicted values and generated labels to measure the model’s
accuracy on the received samples in the window. Based on
the accuracy values (e.g., exceeding a certain threshold), the
retraining trigger stage decides whether retraining is neces-
sary (e.g., in the presence of new types of attacks missed
by the in-network ML model) for the current window of in-
coming samples. If an update is required, the final model
retraining stage will generate a balanced dataset from the win-
dow of samples received, i.e., a mix of malicious and benign
flows and generated labels. After training is complete, the
in-network model is updated with the new weights to detect
the new types of missed attacks.

3.1 Labeling Agent
The first component in CARAVAN is the labeling agent. It
generates application-specific labels that can be used in the
later stages of model validation and online retraining for:
(1) computing an accuracy proxy that can signal potential
model accuracy degradation to efficiently trigger retraining,
and (2) generating a class-balanced labeled dataset for retrain-
ing when necessary. To generate labels for new incoming net-
work traffic automatically and accurately, the labeling agent
relies on external knowledge sources. Knowledge sources
(§3.1.1) are defined to be entities or applications that can be
repurposed to assist with data labeling (e.g., access control
lists, heuristics, foundation models). They can be defined and
provided by users through a user interface (§3.1.2).

When a full window of samples from the data plane is
available, the labeling agent reads these samples and the as-
sociated inference results from a streaming database (e.g.,
InfluxDB [13] or Apache Kafka [5]). Then, it sends a labeling
request to every knowledge source it relies on. With one label
from each knowledge source, the labeling agent would do a
majority voting to determine the final set of labels to be used
(also called generated labels) for the current window of data
samples. These generated labels will be sent to the next stage
of CARAVAN for model validation (Figure 2).

3.1.1 Knowledge Sources. The labeling agent relies on
knowledge sources for labeling. We define knowledge sources
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Figure 3: Classifying network knowledge sources across a
spectrum based on accuracy and speed.

to be any entities or services that contain useful information
about the user-defined application and can be repurposed to
assist data labeling. Take network intrusion detection as an
example. A common knowledge source is IP-based access
control lists (ACLs) [52] that can block network flows or
packets from certain source IP addresses considered to be
of malicious origins. With IP-based ACLs as a knowledge
source, the labeling agent is able to label a flow as malicious
if its source IP is on the list. Another example is foundation
models. With appropriate adaptation, a foundation model can
assist with downstream tasks in networking, such as traffic
classification, by functioning as a multi-class classifier [54].

CARAVAN repurposes different knowledge sources in dif-
ferent ways for them to be used in the system for accurate
and efficient labeling. In particular, CARAVAN focuses on two
metrics of a knowledge source: (1) accuracy, which refers to
how accurate the knowledge source is after being repurposed
for labeling, and (2) speed (throughput and latency), which
refers to how fast a knowledge source can be used to label
data. Different knowledge sources can vary dramatically in
these two metrics, and as illustrated in Figure 3, there exists
a trade-off between these two metrics for a given knowledge
source: sources with high accuracy (e.g., domain experts and
foundation models) usually operate with lower throughput due
to extra time needed for in-depth analysis, while high-speed
sources (e.g., heuristics, IP-based ACLs) might not be able to
provide accurate labels. The aim of CARAVAN is that through
online learning, an in-network ML model can be turned into
a model with both high accuracy and high speed, so it would
be a good fit for real-time decision making in the data plane.

Low-Accuracy, Fast Knowledge Sources. Knowledge
sources with a low accuracy but high speed (e.g., heuristics,
IP-based ACLs) are a good fit for labeling large volumes of
incoming data [24, 51, 108]. However, the main issue is that
generated labels would be extremely noisy in this case. If
we use these labels to retrain the in-network ML model, the
accuracy of the retrained model can be even worse than that
of the existing one in the data plane. To tackle this challenge,
CARAVAN adopts the following solution: Instead of letting
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these low-accuracy knowledge sources provide a label for
every unit of data in the current window, CARAVAN’s label-
ing agent will ask these knowledge sources to label parts of
data. These generated labels that cover a part of the dataset
are usually called weak-supervision labels in the machine-
learning community, and can reduce the amount of noise in
the labels [92]. For example, when we use an IP-based ACL
as a knowledge source for labeling, a straightforward way
of repurposing it into a labeler is that we would label every
flow with IP not on the blacklist as a benign flow. However,
we could have mislabeled a lot of malicious flows as benign
in this case and manually introduced a lot of noise into the
final set of labels. With CARAVAN’s solution of generating
weak-supervision labels, we would only generate labels for
flows whose IPs are on the blacklist (as we are more confident
they would be malicious). Even though we would only be
able to obtain a much smaller set of labeled data for model
validation and retraining, with a large volume of incoming
data, we would end up with a reasonable amount of labeled
data with good accuracy (§5).

Insight 1: Low-accuracy but fast knowledge sources,
such as heuristics and IP-based ACLs, can provide weak-
supervision labels for training high-accuracy models.

High-Accuracy, Slow Knowledge Sources. Knowledge
sources characterized by low speed but high accuracy (e.g.,
domain experts and foundation models) are well-suited for
labeling a small to medium amount of incoming data consid-
ered important or representative of the network (e.g., sampled
data with network telemetry algorithms). For example, foun-
dation models, like NetFound [54] and ChatGPT [20], are
shown to be capable of solving downstream traffic analysis
tasks with high accuracy and generalizing well across diverse
network environments with no extra retraining. The main is-
sue, however, is that they might either be too slow or use too
many system resources (e.g., GPU/CPU memory and API
costs) and thus cannot be activated frequently (for instance,
at the end of every window of sampled data).

One insight that CARAVAN takes advantage of is that
these knowledge sources can usually be transformed into
cheaper rulesets or heuristics that are able to offer much higher
throughput due to low latency or cost-effectiveness. In the
machine-learning community, this insight was originally used
to interpret black-box ML models [48, 62]. In CARAVAN, to
avoid the costs associated with calling expensive knowledge
sources at every labeling window, we introduce a labeling
rule cache. Each time the knowledge source is activated for
labeling, it is also asked to generate an ensemble of rulesets
that will be stored in the labeling rule cache for fast and cheap
labeling at the end of the next few labeling windows. For ex-
ample, though foundation models, like GPT-4 [87], can be re-
purposed as a labeling source, the fees incurred by calling the
GPT-4 APIs for inference can grow prohibitively expensive if

we call these APIs at the end of every labeling window—GPT-
4 turbo [11] can cost as high as $144 an hour for 1000-token
labeling request/response per second (on average). CARAVAN
specifically asks the language model to generate rules it relies
on for decision-making and stores these in the rule cache
for labeling the next few windows of data. Note that, in the
evaluation section (§5), though we demonstrate that using the
rule cache for labeling could save a lot on cost and system
resources with little performance penalty, we also find that
these rules could go stale quickly (Figure 7) and, therefore,
must be updated occasionally.

Insight 2: High accuracy but slow knowledge sources, such
as ChatGPT [20] and NetFound [54], can transform into
rulesets or heuristics to facilitate fast and resource-efficient
labeling for a limited duration, before becoming stale.

3.1.2 User Interface. CARAVAN’s labeling agent exposes
an interface where users can conveniently specify what knowl-
edge sources they would like to use for the labeling agent and
how the labeling sources should be defined. To support a new
knowledge source, the user only needs to complete a function
called label(), which takes a window of data samples as
input and returns a set of labels on this window as output.2

3.2 Model Validation
The model validation stage periodically monitors and evalu-
ates the performance of the in-network ML model. It is also
responsible for triggering online training when necessary, e.g.,
in the case of a potential concept drift or data drift when the
performance of the model degrades due to changes in the
network environment or due to new incoming classes. These
actions take place at the end of a labeling window, after the
labeling agent has generated labels for all data (samples) in
the current window.

Next, we introduce two components for model validation
that the user can define to express their intent or performance
goal of the chosen application. (a) Accuracy proxy (§3.2.1)
allows the user to specify what signals they would like to
capture on a temporal scale from the generated labels and the
inference results (e.g., drop in overall classification accuracy,
the appearance of a particular type of new class, and more). (b)
Retraining trigger (§3.2.2) allows the user to specify at what
occasion they would like to initialize online training based on
the observed signals through the accuracy proxy (e.g., retrain
when model performance degrade or retrain when certain
types of attacks show up).

3.2.1 Accuracy Proxy. We define accuracy proxy as the
inference accuracy computed with generated labels as the
reference ground truth, which we describe in detail below.

Ideally, for a given sample of incoming data (e.g., a net-
work flow or a packet), the corresponding inference result

2As a case study, we show how to construct a new knowledge source for
intrusion detection using LLMs in §4.1.
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(e.g., in the form of a class label prediction, noted as MLlabels
below) from the in-network ML model would be compared
with the ground truth label in the validation stage. Ground
truth labels (noted as GndTlabels below), also called “golden”
labels, are objectively correct reference results for the given
application and are usually used to compute the performance
accuracy of ML models. Acquiring such labels is typically
challenging in practice as it necessitates domain knowledge
from human experts, requiring a costly and time-consuming
labeling process [53]. Moreover, during the online stage of
in-network ML, where the volume of data for validation is
immense, it is infeasible to obtain the ground truth labels for
all new incoming data and calculate the actual performance
accuracy of the in-network ML model. In CARAVAN, we in-
stead utilize generated labels (GenLlabels) and compute the
accuracy proxy for the current window of incoming data. For
instance, in the intrusion detection case, using F1 score [50] as
the performance metric, the real accuracy Accreal is computed
as follows:

Accreal = F1(MLlabels,GndTlabels) (1)

The accuracy proxy, on the other hand, is computed with
generated labels as ground-truth labels:

Accproxy = F1(MLlabels,GenLlabels) (2)

The accuracy proxy does not need to be defined in terms
similar to the real accuracy. The user has the flexibility to
define accuracy proxy to be any function as long as its defi-
nition is consistent with the user’s intent or the application’s
performance goal, e.g., to signal potential concept or data
drifts.

Without access to real accuracy values, we are unable to
know the absolute accuracy level of the in-network ML model
at the end of a labeling window. However, in our design, the
primary responsibility of the validation stage is monitoring: it
is expected to reveal potential model performance degradation
and trigger online training, instead of giving users or operators
the exact accuracy numbers of the in-network ML model.

In particular, we observe that accuracy proxy, though not
numerically the same as the real performance accuracy, could
signal a potential change in data distribution or class distribu-
tion based on its trend on a temporal scale. In our evaluation
using the intrusion-detection example (§5.2.2), we observe
that the arrivals of new types of attacks (unseen by the in-
network ML model before) cause a drop in the relative level
of accuracy on a temporal scale, and the values from accuracy-
proxy can reveal that incident (Figure 8).

Insight 3: The accuracy proxy reveals potential concept and
data drifts by capturing similar patterns of relative changes
in accuracy levels as observed in real accuracy.

3.2.2 Retraining Trigger. The goal of continuous model
validation is to enable updating the in-network ML model
through online training as and when necessary. The model

validation stage will activate online training through a user-
defined retraining trigger. A retraining trigger can take one
of the following three forms, as pre-specified by the user of
CARAVAN:

• Window-based: Retrain periodically once every X labeling
windows. When X = 1, CARAVAN will perform continuous
training for every window, similar to the approach in prior
works [33, 85]. For window-based triggers, the validation
stage will skip accuracy proxy since the trigger does not
use it.

• Accuracy-based: Retrain if the values of accuracy proxy
satisfy a certain pattern on a temporal scale. For example,
users can set certain accuracy thresholds, and the retraining
trigger will initialize retraining if the values of accuracy
proxy continuously stay below the threshold.

• Event-based: Retrain when a particular event takes place,
e.g., when the labeling agent or the human operator detects
a particular type of attack.

The retraining trigger should ideally be defined together
with accuracy proxy by the user: While accuracy proxy is able
to catch meaningful signals (e.g., F1 score drop) on a tempo-
ral scale, the retraining trigger explicitly expresses at what
occasions the user would like online training to happen, which
can be very different given the particular user application in
consideration.

In CARAVAN, we mainly focus on accuracy-based retrain-
ing triggers, in which we use values of accuracy proxy to
determine if online training should occur. There are two types
of decisions that the retraining trigger will need to make: (a)
If we do not retrain at the end of the last labeling window,
should we retrain for this window? CARAVAN’s retraining
trigger will initialize retraining if it observes an abrupt drop
in the value of accuracy proxy in the current labeling window
compared to the last one, since that could be an explicit signal
of potential concept or data drifts. (b) If we retrain at the
end of the last labeling window, should we stop retraining for
this window? As we demonstrate in the evaluation section
(Figure 8), if we continuously retrain for several windows, the
marginal inference accuracy gain would gradually decrease,
assuming that there are no new drifts that show up in this
period. As a result, the retraining trigger stops retraining if we
have retrained for the last few windows and obtained decent
inference accuracy gain.

Insight 4: The marginal inference accuracy gain of online
training would quickly diminish if no new sources of drifts
are present (i.e., the network is stable).

3.3 How to Select CARAVAN’s Elements?
For knowledge sources, we can choose existing systems (e.g.,
IDS) or construct new ones (e.g., fine-tuned foundation mod-
els). It is important to evaluate the labeling accuracy and
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approximate speed of a knowledge source using an offline
labeled dataset before deploying it in CARAVAN. When se-
lecting accuracy proxy and retraining trigger, we should con-
sider the application’s performance objectives (e.g., low false-
positive rate) and identify signals or events from the system
that might indicate performance degradation (e.g., increased
rebuffering events in video streaming).

4 Implementation
We implement an end-to-end version of CARAVAN using
Python. To interact with in-network ML models, CARA-
VAN stores the samples of the arriving flows in a streaming
database, InfluxDB [13]. We initialize InfluxDB with a pre-
defined schema consisting of various header/feature fields
and metadata of the arriving packet (e.g., duration, data rate,
and 5-tuple) as well as the inference results (prediction) from
the deployed in-network ML model (for validation purposes).
Upon the arrival of a labeling window’s worth of samples, the
labeling agent queries these data samples from InfluxDB to
generate labels.

For knowledge sources (e.g., heuristics, DNN-based clas-
sifiers, and foundation models), we define how it labels data
by completing its label() function (as described in §3.1).
Heuristics come in the form of labeling functions [91] and are
easily defined by the user. The DNN-based classifiers load a
pre-trained DNN classifier, and run batched inference upon
calls of label() for labeling. For foundation models, we use
GPT-4 API [87] for sending labeling requests in the form
of prompts. In this setup, labeling is modeled as a text com-
pletion task, and we explicitly prompt the language model
to produce a label for each input data sample. We present a
case study of implementing a foundation model, LLM-based
knowledge source in §4.1. With individual knowledge sources
defined, we build a labeling agent by specifying what knowl-
edge sources it will be using. The labeling agent calls each
knowledge source’s label() function to obtain all labels
and selects the best ones (with the most occurrences) as final
labels.

For model validation and retraining, we define a model
validator that runs compute_accuracy_proxy() to compute
the accuracy proxy (in §3.2.1) with generated labels and in-
ference results (from InfluxDB) as input arguments. The re-
training trigger is defined as a function that checks if we have
retrained for the last window. If not, we check if there is a sig-
nificant drop in accuracy proxy value to initialize retraining;
if yes, we then check if the increase in accuracy proxy value is
small enough to stop retraining. If retraining is necessary, we
go on to form a class-balanced dataset based on iCaRL [94],
keeping the same number of data samples from each class and
maintaining a fixed upper bound for the size of the dataset
(which can be specified by the user). For training ML models,
we use PyTorch [88] and one Nvidia V100 Tensor Core GPU
from AWS.

CARAVAN maintains a busy-waiting process for data la-

beling, model validation, and online learning. This process
will periodically read data from InfluxDB and initialize data
labeling as well as model validation at the end of a labeling
window (determined by time or number of data samples). If
retraining is necessary, it will conduct retraining and send out
the weights to the in-network ML model as gRPCs [12] or
PCIe writes.

4.1 label() with Foundation Model (LLM)
We now present a case study of developing a new knowledge
source using large language models (LLMs). We use com-
mercial off-the-shelf LLM, more specifically ChatGPT [20].
ChatGPT is not explicitly fine-tuned on network traffic data;
but, as a foundation model, may have been trained on openly
available data from the Internet. Please refer to §A.1 for de-
tails on the specific model (and snapshot) we use for labeling.

• Instruction Following. To ensure the LLM understands
the structure of input data and properly follows the subse-
quent instructions, we compose system prompts §A.2 that are
shared by all incoming inference requests (including labeling
and rule extraction). The system prompts precisely state the
objective of the application (e.g., flag malicious traffic for
intrusion detection) and enumerate the names and meanings
of each feature in the network dataset.

In-context Learning Prompt (P1): To begin with, here are

some labeled flows for your reference later. The last field is

the binary label (0 for benign and 1 for malicious): [Flows,
their features and labels go here]. Next, I will give

you some unlabeled flows for labeling. Please let me know if

you understand the requirement by answering yes or no.

• In-context Learning. We take advantage of in-context
learning [36, 90] to improve LLM’s ability to label network
data (or packets) with higher accuracy without (re)training
or fine-tuning the original model. We provide a few labeled
examples from the CIC-IDS2018 dataset [98]. The network
traffic in these examples contains similar attack types (such as
brute force attacks and DDoS attacks) to those present in the
evaluation dataset (CIC-IDS2017). However, it is collected
from a different network and at a different time. Using these
labeled examples, we construct an in-context learning prompt
(P1) shared by all subsequent inference requests.

Data Labeling Prompt (P2): Please give me a label for each

of these unlabeled flows. No explanation or analysis needed,

label only; one flow on each line. Format for each line: (flow

number) label. [Flows and their features go here].

• Data Labeling. Whenever we invoke the label() func-
tion, we first compose a labeling prompt (P2). This prompt
specifies the expected response format, facilitating easy pars-
ing of responses for per-packet labels. Additionally, it includes
all the data to be labeled, and structured in accordance with
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the system prompt. We concatenate the system prompt, the in-
context learning prompt, and the labeling prompt, and submit
an API request to the LLM.

Rule Extraction Prompt (P3): To begin with, here are some

example input flows for your reference later. [Flows and
their features go here]. Based on these example in-

put flows, can you do some analysis and help me come up

with some rules or heuristics (in the form of a Python func-

tion) to determine if an unlabeled flow is benign or not? Make

sure that in the Python function, you label a flow as mali-

cious only when you are very confident. Name the function

label_flow_with_rule_cache(), and pass it in a format

that can be executed by exec(). The input of the function

should be the 16 features in the system prompt (in order),

and the output should be 0 (benign) or 1 (malicious).

• Rule Extraction. To extract rules to store in the labeling
rule cache for fast and resource-efficient labeling, we con-
struct a rule-extraction prompt (P3). This prompt explicitly
requests the LLM to generate rules and heuristics for data
labeling as a Python function, specifying the expected in-
put/output formats to simplify the parsing of the generated
responses. §A.3 shows an example function generated by the
LLM for fast labeling.

5 Evaluation
In our evaluation, we show: (a) using three different choices
of knowledge sources, CARAVAN is able to efficiently label
new incoming network traffic for the purpose of model vali-
dation and retraining, and can achieve almost the same level
of inference accuracy gains compared to using ground-truth
labels (§5.2.1). (b) CARAVAN’s accuracy proxy and retraining
trigger allow us to efficiently determine when to initialize or
stop retraining. As compared to continuous retraining, the use
of accuracy proxy and retraining trigger has the potential to
reduce GPU compute cost by an average of 74.55% without
significantly hurting inference accuracy gain (§5.2.2). (c) In
software simulation (§5.3.1), CARAVAN is able to achieve a
30.3% improvement in F1 score (on average) compared to
static offline models across three chosen applications. CAR-
AVAN’s accuracy proxy and retraining trigger enable 61.3%
saving in GPU compute time (on average) for retraining with-
out significantly compromising inference accuracy gains. (d)
In the end-to-end Taurus FPGA testbed (§5.3.2), CARAVAN
continuously keeps in-network ML models up-to-date with
changing traffic dynamics and maintains high inference accu-
racy at network line-rate. With accuracy proxy and retraining
trigger, CARAVAN improves over static models in terms of F1
score by an average of 30% with 56.23% less CPU usage and
similar memory footprint as continuous retraining baselines.

5.1 Experiment Setup
Use Cases. To evaluate CARAVAN, we select two network
traffic analysis applications widely used and evaluated by

prior work in the domain of in-network ML (Table 1). (a) Net-
work Intrusion Detection: The goal is to flag network flows
or network packets regarding whether they involve malicious
activities. We expect the in-network ML model to offer a
preliminary analysis of the network flows through binary clas-
sification before running more expensive downstream security
analysis instead of providing complete end-to-end protection
of a networked system. This application is an example of
how in-network ML could improve the security of networked
systems. (b) IoT Traffic Classification: The goal is to assign
an IoT device type to a network flow or packet. Classifica-
tion results from the in-network ML model enable operators
to know what different flows might entail (e.g., application
or data type) early in the network, and to act correspond-
ingly based on different devices, applications, or data types
to optimize for the quality of service (QoS) or user quality of
experience (QoE). For example, network flows from video
cameras might require allocation to a less congested network
path, since the user will likely be in a live video conference. In
this case, fewer packet retransmissions and lower latency are
critical to good user perception of video and service quality.
This application is an example of how in-network ML could
improve the performance of networked systems.

Datasets and In-network ML Models. We closely follow
prior work in the domain of in-network ML when choosing
datasets and in-network ML models. A summary of these
datasets and related statistics is available in Table 1.

For network intrusion detection, we follow prior work [101,
125] to use CIC-IDS2017 [98] and UNSW-NB15 [84]. With
CIC-IDS2017, we use the same features from pForest [37]
and a deep neural network with similar architecture to the one
from Taurus [104]. With UNSW-NB15, we use the same fea-
tures and one of the deep neural networks from the intrusion
detection example of N3IC [101]. For IoT traffic classifica-
tion, we follow prior work [101,125] to use UNSW-IoT [102].
For the in-network ML model, we follow the IoT traffic clas-
sification example of N3IC [101] in terms of feature selection
and model architecture. For multi-class classification, we use
one of N3IC’s four-layer deep neural networks, which have
16, 64, 32, and 10 neurons on each layer, respectively; we
replace the binary weights with 32-bit weights.

Choices and Configuration of Knowledge Sources. We
choose three knowledge sources for the labeling agent to use.
(a) A DNN-based classifier for intrusion detection on CIC-
IDS2017: The DNN-based classifier has 8 layers and 13,222
parameters in total. The architecture is similar to a stacked
autoencoder in DeepPacket [78]. It is trained on a small part
of CIC-IDS2017 (a subset that is not used during testing)
and a small part of CIC-IDS2018 [98] (a different intrusion
detection dataset from the same publisher). (b) A large lan-
guage model for intrusion detection on UNSW-NB15: The
large language model is based on GPT-4 [87] text completion
APIs. We program the user prompts properly so the language
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Application Dataset # Samples # Features # Classes # Drifts

Network Intrusion Detection CIC-IDS2017 [98] 7,000 16 2 7
UNSW-NB15 [84] 5,000 20 2 5

IoT Traffic Classification UNSW-IoT [102] 108,000 16 10 9

Table 1: Network applications and datasets used in our evaluation with input features listed in §A.2 and [101]. A drift
occurs in intrusion detection with the arrival of new attack traffic, and in IoT classification with unseen IoT device traffic.
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Figure 4: CARAVAN’s labeling agent generates labels for
online training, bringing comparable levels of accuracy
gain as ground-truth labels across three different knowl-
edge sources.

model can understand the particular format of our input net-
work flows and generate labels in a format easily parsed by
the labeling agent. To improve labeling accuracy, we take
advantage of in-context learning and give the language model
10–20 labeled flows (not used during testing) for reference.
(c) An IoT device list for IoT traffic classification on UNSW-
IoT: We use the device list provided by the original dataset
publishers. To ensure that the device list will generate strictly
worse labels than the ground-truth labels, we modify the MAC
address of some network flows so that the device list is unable
label them. Overall, the device list can identify and label 10%
of all the network flows in the dataset.

Quality and Usage Metrics. For accuracy, we use the F1
score [50] as the performance metrics for evaluating the qual-
ity of an in-network ML model. In machine learning, the F1
score is often preferred over basic metrics like classification
accuracy. It provides a more nuanced measure of a model’s
performance, especially when class distributions are imbal-
anced or when the costs of false positives and false negatives
differ. This preference for accuracy metrics aligns with previ-
ous research in the field [37, 101, 104, 122]. To better model
the performance gain of the validation and online learning
processes, we use the metrics of accuracy gain, defined as the
increase in the F1 score of the retrained in-network ML model
compared to that of the offline one. To determine the accuracy
of a specific experiment, we first calculate an F1 score based
on the model predictions and ground-truth labels at the end
of each labeling window using the data from that window.
Ultimately, we report the average F1 score, or the average
increase in F1 score (i.e., F1+) compared to the offline model,
as the final accuracy metric or accuracy gain.

To quantify the system resource usage for online training,
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Figure 5: A comparison of generated labels using CAR-
AVAN’s labeling agent versus ground-truth labels for a
low-accuracy and fast knowledge source (IoT device list)
during data drift (i.e., encountering new data classes).

we use the metrics of GPU compute time, defined as the time
spent on the GPU during online training. When using large
language models as a knowledge source, we also use tokens
used for labeling to demonstrate the cost of using an expensive
knowledge source for labeling, defined to be the aggregate
number of tokens (an addition of prompt tokens by the user
and completion tokens by the language model) used for the
labeling task.

End-to-End Testbed. We use the Taurus FPGA-based
testbed [104] for end-to-end evaluation. A 32-port program-
mable Tofino Wedge100BF-32x switch [21] is used to sample
packets for the control plane and manage the Taurus ML core,
which is emulated as a bump-in-the-wire FPGA. The switch
bypasses its internal traffic through the Xilinx Alveo U250
FPGA [3], which is used to emulate the in-network ML model.
The control plane runs a process to perform model validation
and retraining on the sampled packets and update the model
weights in the FPGA via PCIe. It also runs the ONOS con-
troller [18] and a Python REST API to install forwarding rules
on the switch. Two 80-core Intel Xeon servers generate and re-
ceive traffic via ScaPy [19] or MoonGen [44]. The in-network
ML model has been compiled to Verilog using the Spatial [70]
compiler and installed on the FPGA for evaluations.

5.2 Microbenchmarks
5.2.1 Effectiveness of the Labeling Agent. We find that
noisy labels and partial-coverage labels generated by imper-
fect knowledge sources can still lead to decent inference ac-
curacy gains after online training.
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Figure 6: With a validation rule cache, CARAVAN con-
serves language model request tokens used for labeling,
without significantly compromising the accuracy gains
from retraining.
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Figure 7: Though labeling rule cache generated by LLMs
are subject to data drift, they generate accurate labels in
a short local period of time.

Effectiveness of Noisy Labels. Noisy labels are defined to be
labels that might be incorrect, and may be generated by knowl-
edge sources like DNN-based classifiers or large language
models in our case. Though these two knowledge sources
(DNN-based classifier and language model) can generate a
label for every sample of new incoming window when re-
quested, we find that the overall quality of generated labels
is around 0.7 to 0.8 in terms of F1 score on a small develop-
ment set, indicating that there is a non-trivial level of noise in
generated labels. We use these generated labels for a simple
experiment of continuous online training, in which we skip
validation and retrain at the end of every labeling window.
We find that even with noisy labels, we are able to obtain a
level of inference accuracy gain that is similar to the gain if
we retrain with ground-truth labels under different labeling
window sizes (Figure 4). The reason accuracy gain tends to
decrease as window size increases is that we use a fixed num-
ber of 30 epochs for training; with larger training data sizes,
it generally takes longer for the model to converge.

Effectiveness of Weak Supervision Labels. In the case of
CARAVAN, weak supervision labels are defined to be labels
that only cover a subset of all the samples in a labeling window
and can be generated by low-accuracy but fast knowledge
sources (e.g., an IoT device list) as discussed in §3.1.1. In
our setup, the IoT device list can only label around 10% of
all network flows in the dataset. To verify whether such a
knowledge source can effectively mitigate model drift, we
continuously retrain an ML model when new types of devices
are present in the incoming data. We find that even with weak
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Figure 8: CARAVAN’s accuracy proxy F1 scores align with
the real F1 scores in terms of relative changes in accuracy
on a temporal scale, particularly in instances of data drift.

supervision labels that have partial coverage, we can achieve
a comparable level of inference accuracy gain when data drift
occurs (after the arrival of a new class) to that of retraining
with ground-truth labels (Figure 5). At the same time, we find
that the device list cannot be used independently to classify
incoming data with high accuracy due to partial coverage, as
depicted in Figure 5.

5.2.2 Effectiveness of Labeling Rule Cache, Accuracy
Proxy, and Retraining Trigger.

Labeling Rule Cache. As discussed in §3.1.1, when using
expensive knowledge sources like large language models, we
can request the knowledge source to generate temporary rules
or heuristics in a rule cache that can be used for fast and cost-
effective labeling for the following few labeling windows.
In our experiment, we call language models for labeling and
rule generation (in the form of a simple executable function)
every 4, 7, 10, and 20 labeling windows. We use the generated
function as the rule cache for labeling at the end of all other
windows. By invoking the language model every 4, 7, or
10 windows, we achieve nearly the same level of inference
accuracy gain after online training compared to employing
language models for labeling at every window, while utilizing
65.4% fewer tokens on average (Figure 6). Note that the rules
or heuristics in the rule cache can quickly go stale, especially
in the case of a concept or data drift (Figure 7), so the rule
cache should be updated frequently to avoid the generation of
highly noisy labels.

Accuracy Proxy. We set up accuracy proxy in the same way
as defined in §3.2.1, and verify if it is consistent with our
insight that it can be used to reveal potential concept or data
drifts even though it is not numerically equivalent to the real
accuracy. In an incremental-class learning setup, where a new
data class shows up in the incoming data every 10 labeling
windows, we find that accuracy proxy is consistent with the
real accuracy in terms of overall trend and relative changes in
accuracy level on a temporal scale (Figure 8).

Retraining Trigger. To demonstrate the potential of using
retraining triggers to avoid excessive retraining and save GPU
compute time, we set up a window-based retraining trigger
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Figure 9: With a window-based retraining trigger, CARA-
VAN saves GPU compute time without significantly com-
promising retraining accuracy gain.
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Figure 10: The relationship between CARAVAN’s retrain-
ing accuracy gain and the labeling accuracy of the knowl-
edge source. (Labeling accuracy is the percentage of data
that can be correctly labeled by the knowledge source,
compared to ground truth labels.)

that reduces the frequency of retraining from once every label-
ing window to once every 5, 10, 20, and 40 labeling windows.
We observe that even with this straightforward retraining trig-
ger, we manage to save an average of 74.55% GPU compute
time, with at most a 0.05 reduction in inference accuracy gain
in terms of F1 score when retraining occurs every 5 or 10
windows (Figure 9).

5.2.3 Sensitivity to External Knowledge Sources. CAR-
AVAN assumes that users will be able to provide reliable
knowledge sources that be adapted for data labeling. When
inaccurate knowledge sources are used, the accuracy gain
from CARAVAN’s retraining may decrease and sometimes
even drop below zero, as illustrated in Figure 10. We discuss
potential solutions to this issue in §6.

5.3 End-to-End Improvement
We evaluate the end-to-end improvements of CARAVAN in
software simulation and on the Taurus FPGA testbed [104].

5.3.1 Software Simulation. In software simulation, we find
that CARAVAN is able to achieve a 30.3% improvement in F1
score (on average) as compared to static offline models across
three chosen applications (Figure 12). We also find that the
gap between inference accuracy gain of continuous online
learning with ground-truth labels and with labeling-agent gen-
erated labels stays as little as 0.4–2.1% for intrusion detection
with DNNs as knowledge source, and 0.5–1.8% for IoT traffic
classification with device lists as knowledge source. Though
that gap can be as large as 11% for intrusion detection with
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Figure 11: End-to-end results on the Taurus FPGA
testbed. CARAVAN keeps in-network ML models up-to-
date against changing traffic when operating at line rate.

System LUT% FFs% BRAM% Power (W)

Taurus: Offline 6.49 4.35 4.15 16.86
CARAVAN 6.81 4.71 4.15 17.16

Table 2: Resource usage of CARAVAN’s in-network model
for intrusion detection on the Taurus FPGA testbed.

a large language model as a knowledge source, we believe
that performance can be further improved when specialized
network foundation models are used as knowledge sources in
the future. Moreover, CARAVAN’s accuracy proxy and retrain-
ing trigger enable 61.3% savings in GPU compute time (on
average) for retraining without significantly compromising
inference accuracy gain.

5.3.2 FPGA-based Experiments. In the Taurus FPGA
testbed [104], we run an intrusion detection application with
the same in-network model as in software simulation, pro-
grammed with Spatial [70]. We generate traffic by sampling
35 M packets from the CIC-IDS2017 dataset, while ensur-
ing a uniform distribution of the seven attacks present in the
dataset (i.e., 5 M packets for each attack). We preserve the
order of the attacks as in the original dataset. Using Moon-
gen [44], we send packets at 0.5 Million packets per second,
and set the sampling rate to about 0.1%. Each labeling win-
dow receives about 500 packets. We find that CARAVAN can
continuously keep in-network ML models up-to-date with
changing traffic dynamics and maintain high inference accu-
racy under network line rate on a temporal scale (Figure 11).
With accuracy proxy and retraining trigger, CARAVAN further
improves upon static models in terms of F1 score by an av-
erage of 30%. It is worth noting that at times, the accuracy
of CARAVAN can surpass that of the continuous retraining
baselines. This is because continuous retraining for small in-
network models may lead to overfitting, whereas CARAVAN’s
retraining trigger helps mitigate this issue.

5.3.3 Resource Usage & Latency Breakdown. Table 2
shows the FPGA’s percentage resource count in terms of
lookup tables (LUTs), flip flops (FFs), on-chip memory
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0

200

400

600

800

(a) CPU

U
sa

ge
 (%

)

Caravan
Retraining with Generated Labels
Retraining with Ground Truth Labels

0

100

200

300

(b) Memory

U
sa

ge
 (M

By
te

s)

Figure 13: CPU and memory usage of CARAVAN’s busy-
waiting process for labeling data, retraining model, and
updating model weights.

Retraining Step Latency (ms)

- Retrieving data from InfluxDB 6.041 ± 1.114
- Labeling data with DNN-based IDS 1.015 ± 1.238
- Computing accuracy proxy 1.732 ± 0.073
- Retraining in-network ML model 14.775 ± 0.982
- Installing new model weights 46.145 ± 0.507

Table 3: Latency breakdown of CARAVAN’s retraining
steps on a window of 100 packets for the network intrusion
detection application.

(BRAM), and power (W). In contrast to the vanilla Taurus
implementation (i.e., Offline ML) [104], which lacks support
for online weight updates, CARAVAN introduces minimal ad-
ditional overhead in FPGA resource usage while supporting
live weight updates.

We also measure the CPU and memory usage of the CARA-
VAN’s busy-waiting process that retrieves incoming data from
a streaming database (i.e., InfluxDB), labels it, computes ac-
curacy proxy, retrains models, and issues weight updates (§4).
We see that CARAVAN reduces CPU usage by an average of
56.23% compared to continuous retraining baselines, with-
out incurring any additional memory overhead (Figure 13).
Table 3 further shows a breakdown of each these retraining
steps in CARAVAN.

6 Limitations & Future Work
Optimizing Sample Selection for Online Learning. CARA-
VAN employs random sampling to reduce the volume of input
data sent to the labeling agent. Existing research in online
learning systems shows that network traffic is heavy-tailed
and empirically variable [115], which could undermine the

effectiveness of online learning in real-world deployments if
training samples are not carefully selected [43]. While it is
straightforward to modify the input data sampling and retrain-
ing data formation logic in CARAVAN, developing efficient
and effective algorithms for online sample selection remains
a future research direction that requires further understanding
of both machine learning techniques and the characteristics
of network traffic.

Reverting In-network ML Models. CARAVAN focuses on
updating and improving models using continuous sampling
of and selective retraining on the network’s data, which lets
them adapt to new events. However, in scenarios where data
is compromised, it would be necessary to revert or reset these
models to a previous good state. If online data (such as net-
work traffic) is being used to retrain and update models, bad
actors can poison training data by intentionally feeding bad
traffic in the network. Future research may detect and protect
against these attacks and restore models to a clean state.

Network Telemetry Data for ML. CARAVAN focuses on
retraining models with sampled data but does not dictate how
the collection of such data is performed. However, extensive
research is needed on how to collect and sample data for
the express purpose of retraining ML models. For instance,
some data may not contribute to an increase in the fidelity
of the model, even with further training iterations. In these
cases, the data may simply be orthogonal to the task the ML
model is built for. On the other hand, the system may need to
sample more frequently in cases where notable network events
are detected. For example, a server running out of resources
may indicate a network attack that breaches security. Packets
must be collected so as to classify and inoculate future ML
models to these attacks. In short, collection systems for online
training need to leverage dynamic sampling rates at various
points throughout the network in order to ascertain when and
where to get the best training data.

Creating Domain-Specific Knowledge Sources. In this pa-
per, we repurpose GPT-4 as a knowledge source for network
intrusion detection. We recognize that GPT-4 was not origi-
nally designed or trained for cybersecurity applications; in-
stead, it is used primarily as a proof-of-concept foundation
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model for data labeling. An emerging research direction in-
volves pre-training or fine-tuning domain-specific founda-
tion models for networking or security on larger traffic traces
(e.g., NetLLM [112], NetFound [54], Lens [110]). Another
direction from the machine-learning community aims to en-
hance foundation models to better follow human intents and
self-improve through feedback, whether human-generated
or model-generated (e.g., constitutional AI [29] and self-
improving LLMs [56, 61, 120]). These efforts could lead to
developing knowledge sources that can generate accurate
labels and better align with human expertise and intentions.

Evaluating and Validating Knowledge Sources. CARA-
VAN assumes that the provided labeling sources are sufficient
to cover the space of input data for a given networking use
case. As a next step, these labeling sources must be vetted
further to ensure high-quality label generation. Common ac-
curacy metrics such as F1, precision, or recall are all valid
for assessing how well these labeling sources are performing
(on a given dataset), but additional metrics are required to
assess the full coverage of application space. For example,
in a security context, how many of the commonly seen net-
work attacks can the labeling source cover? Furthermore, the
network community should start making its labeling sources
public to allow retraining systems more effectively—similar
to how various ML communities have put forth public col-
lections of data and benchmarks. For instance, in the case
of foundation models, public benchmarks feature open and
comprehensive evaluations of models on specific applications,
such as chat [124], code generation [74], and question an-
swering [41]; these benchmarks help users select the best
model for their particular use case. Finally, as suggested in
Snorkel [92], multiple labeling sources can be aggregated for
greater coverage and fidelity. In this way, aggregate labeling
sources can generate more accurate labels than individual
sources, effectively allowing a given source to cover the blind
spots of another source.

Generalizing to Larger Control-Plane ML Models. Al-
though CARAVAN is designed for online learning of in-
network ML models, we believe that its core insights and
techniques—such as using weak supervision for labeling data
in an online setup, employing accuracy proxies, and utiliz-
ing retraining triggers to detect and mitigate model quality
degradation—can be generalized to larger ML models de-
ployed in the control plane. These control-plane ML models
also face similar challenges like data or concept drifts [75]
and a lack of labels for model monitoring and retraining in an
online setup [53].

7 Related Work
Systems for Online Learning. Ekya [33] and RECL [67]
discuss how online learning can be done for computer vision
models on an edge server jointly with inference, while CAR-
AVAN studies the case of in-network ML models in which

data-plane inference does not interfere with control-plane on-
line learning. Nazar [58] features how to mitigate data drift
for ML models on mobile devices, and differs from CARAVAN
as it does not address essential components of online learning
(e.g., data labeling).

Data Collection and Generation for Networking. The
emerging need to train ML models for networking tasks and
design new network telemetry algorithms sparks extensive
research in designing better tools for network data collection
and network data generation. NetUnicorn [31] is a platform
for collecting and actively labeling network data for develop-
ing offline generalizable ML models. It features a human-in-
the-loop approach where users can select what data to collect
and label, and it is different from our focus since CARAVAN
features automatic online data labeling after ML models have
been deployed. NetShare [118] enables synthetic IP-header
generation for network flows but has a different focus from
CARAVAN and does not study data labeling for downstream
traffic analysis tasks.

Interpretability of ML Models. With the growth of ML
models in networking, many existing efforts focus on the in-
terpretation of these black-box models to make their decision-
making logic transparent to network operators. For example,
Trustee [62] proposes a framework that determines whether or
not a given ML model suffers inductive biases by extracting
a high-fidelity decision tree from the model being analyzed.
However, such diagnosis of the ML models is not yet automa-
tized and needs a human-in-the-loop. Indeed, CARAVAN can
use Trustee as an orthogonal system component for diagnos-
ing the behavior of the online learning model.

Programmatic Data Labeling. CARAVAN complements and
augments (rather than competes with) existing data program-
ming systems, such as Snorkel [92]. Snorkel uses generative
models to estimate the accuracies of different knowledge
sources, and can potentially be used for conflict resolution in
CARAVAN’s labeling agent. CARAVAN is similar to Snorkel in
the aspect that both point out that weak knowledge sources can
be used for labeling data and training ML models instead of
using them for independent decision-making. However, CAR-
AVAN focuses on how automatic data labeling helps online
learning of ML models and mitigates drifts (by incorporating
knowledge sources, accuracy proxy, and retraining trigger),
while Snorkel focuses on enabling users to label datasets with
multiple knowledge sources for training better ML models
offline.

Weak Supervision in Networking. The concept of weak
supervision has been extensively applied in networking, par-
ticularly in cybersecurity and internet measurement applica-
tions [47, 69, 86]. CARAVAN differs from these works by
focusing on enabling weak supervision in an online setup to
detect model quality degradation and retrain outdated models.
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Label-free Data Drift Mitigation. Recent efforts in network-
ing and security domains feature data drift mitigation with no
need for labels. For example, CADE [117] proposes to train a
neural network that can help determine if new incoming data
has drifted away from training data. However, CARAVAN fo-
cuses on the continuous adaptation of an online model, where
the training data are constantly evolving. Moreover, CADE
uses root cause analysis to fix drifted models offline when
there is no explicit requirement on how fast model update
needs to happen, which is in contrast to CARAVAN’s focus on
the online setting when model updates must be done fast and
automatically to keep up with the high inference rate. In sum-
mary, CARAVAN aims to be a more generalized framework
designed for various in-network ML applications.

8 Conclusion
Once deployed online, in-network machine learning (ML)
models can experience accuracy degradation owing to fluctua-
tions in traffic patterns and changes in online data distribution.
While online learning is a promising solution, it is challenging
in practice due to the need for automatic labeling of evolving
network traffic and the efficient monitoring of model perfor-
mance degradation. To overcome these challenges, we present
CARAVAN, the pioneering system for practical online learning
of in-network ML models. CARAVAN addresses the issue of
labeling new incoming traffic data for retraining by leveraging
diverse knowledge sources that, otherwise, are unsuitable for
real-time decision-making. Moreover, CARAVAN introduces
the accuracy proxy metric to monitor model degradation and
potential data drifts, providing an effective signal to trigger
model retraining. Our evaluation shows that CARAVAN can
keep in-network ML models up-to-date, achieving a 30.3%
improvement in F1 score (on average) and reducing GPU com-
pute time for training by 61.3% (on average), while achieving
similar accuracy gains as continuous retraining. We hope the
development of such a system will not only contribute to the
domain of ML for networking and traffic analysis applica-
tions but also influence the design of practical and efficient
machine-learning systems in general.
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A Details on LLM-based Knowledge Source
A.1 Model Choice & Reproducibility
We use the gpt-4-1106-preview model snapshot from the
OpenAI API service as the LLM—the latest model available
at the time of implementation and evaluation of CARAVAN.
We anticipate that future model snapshots released by Ope-
nAI (such as gpt-4-turbo and gpt-4o) or Google (such
as Gemini Ultra and Gemini Flash) could be adapted for
data labeling using similar prompts, as long as the model sup-
ports a sufficiently large context window. The same would
hold true for emerging open-source LLMs, such as those from
Meta (e.g., Llama 3 series [16]) and Mistral AI (e.g., Mixtral
7B [64]).

The behavior of commercial LLM APIs may evolve over
time, even using the same model snapshot and prompts [39].
To ensure reproducibility, one strategy would involve leverag-
ing open-source LLMs instead of third-party APIs. However,
these LLMs necessitate high-end GPUs or aggressive com-
pression before deployment; we do not use these in our paper.
Another approach is to decrease the temperature [22] during
the generation process to minimize variability across different
runs when utilizing third-party APIs.

A.2 System Prompts

a. System Prompt (UNSW-NB15): You are an expert in net-

work security. The user is now labeling a network intrusion

detection dataset, and he/she wants to assign a binary label

(0 for benign or 1 for malicious) to each traffic flow in the

dataset based on each flow’s input features. He/She will give

you a few labeled flows for reference, and you will then help

him/her label another few unlabeled flows. Feel free to use

your own expertise and any information the user gives you.

These are the features of the input flows and meanings of the

features: dur (record total duration), proto (transaction proto-

col, which will be categorized), sbytes (source to destination

transaction bytes), dbytes (destination to source transaction

bytes), sttl (source to destination time to live value), dttl (des-

tination to source time to live value), sload (source bits per

second), dload (destination bits per second), spkts (source to

destination packet count), dpkts (destination to source packet

count), smean (mean of the packet size transmitted by the

src), dmean (mean of the packet size transmitted by the

dst), sinpkt (source interpacket arrival time (mSec)), dinpkt

(destination interpacket arrival time (mSec)), tcprtt (TCP con-

nection setup round-trip time), synack (TCP connection setup

time, the time between the SYN and the SYN_ACK pack-

ets), ackdat (TCP connection setup time, the time between

the SYN_ACK and the ACK packets), ct_src_ltm (no. of con-

nections of the same source address in 100 connections

according to the last time), ct_dst_ltm (no. of connections of

the same destination address in 100 connections according

to the last time), ct_dst_src_ltm (no. of connections of the

same source and the destination address in 100 connections

according to the last time).

b. System Prompt (CIC-IDS2017): You are an expert in

network security. The user is now labeling a network intrusion

detection dataset, and he/she wants to assign a binary label

(0 for benign or 1 for malicious) to each traffic flow in the

dataset based on each flow’s input features. He/She will give

you a few labeled flows for reference, and you will then help

him/her label another few unlabeled flows. Feel free to use

your own expertise and any information the user gives you.

These are the features of the input flows and meanings of the

features: flow IAT min (minimum packet inter-arrival time in

microseconds), flow IAT max (maximum packet inter-arrival

time in microseconds), flow IAT mean(average packet inter-

arrival time in microseconds), packet length min (minimum

packet length), packet length max (maximum packet length),

packet length mean (average packet length), total packet

length (total packet length), number of packets (total number

of packets in the flow), SYN flag count (number of TCP SYN

flags), ACK flag count(number of TCP ACK flags), PSH flag

count (number of TCP PSH flags), FIN flag count (number of

TCP FIN flags), RST flag count (number of TCP RST flags),

ECE flag count (number of TCP ECE flags), flow duration

(duration of flow in microseconds), and DST port (destination

port).

A.3 A Rule Extraction Output by LLM
In Figure 14, we show an example heuristics-based label-
ing function generated by the LLM, based on 500 unlabeled
flows from the UNSW-NB15 dataset. The model generates
all comments along with the function.

A.4 Concerns Regarding Data Contamination
In the domain of machine learning, data contamination [79]
occurs when pre-trained language models, trained on ex-
tensive web-based datasets, inadvertently incorporate down-
stream test sets into their pretraining corpus. This phe-
nomenon can lead to biases in evaluation metrics and diminish
the generalization capacity of large language models. In CAR-
AVAN, the issue of data contamination is also pertinent, as we
adhere to previous methodologies by utilizing public datasets
for evaluation.

While it is not feasible to entirely eradicate the issue of data
contamination through retraining a new model from scratch,
we implement the following measures to mitigate its potential
impact on our evaluation: (a) We ensure that the LLM never
generates trivial labels, meaning labels that precisely match
the ground truth labels. (b) We carefully examine the labeling
rule functions produced by the LLM to ensure they do not
generate labels through memorization based on features, such
as IP address.

B Artifact Appendix
B.1 Abstract
The artifact includes the software simulation and the FP-
GA/P4 testbed we built for implementing and evaluating CAR-
AVAN. We also include a detailed guide with step-by-step
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def label_flow_with_rule_cache(flow): 

    """ 

        Labels a network flow as benign (0) or malicious (1) based on certain heuristics. 

        This function is designed to be conservative and only labels a flow as malicious when it is highly confident. 

         

        :param flow: A tuple containing features of the flow.  

        :return: An integer label, 0 for benign and 1 for malicious.   

    """ 

     

    # Unpack the flow features 

    dur, proto, sbytes, dbytes, sttl, dttl, sload, dload, spkts, dpkts, smean, dmean, sinpkt, dinpkt, tcprtt, synack,   

    ackdat, ct_src_ltm, ct_dst_ltm, ct_dst_src_ltm = flow 

     

    # Define thresholds and conditions for a flow to be considered malicious 

    # These thresholds are derived from cybersecurity expertise and unlabeled data provided     

    conditions = [ 

        # If the source to destination time to live value is maximum (255) and the destination to source packet count  

        # is 0, it is likely to be a scan or a DoS attack. 

        sttl == 254 and dpkts == 0, 

         

        # If the number of connections to the same source address in the last 100 connections is high (above 30), 

        # it might indicate a scanning activity or a distributed attack. 

        ct_src_ltm > 30, 

         

        # If the number of connections to the same destination address in the last 100 connections is high (above 30), 

        # it might indicate a scanning activity or a distributed attack. 

        ct_dst_ltm > 30, 

         

        # If the number of connections to the same source and destination address in the last 100 connections is high  

        # (above 30), it might indicate a scanning activity or a distributed attack. 

        ct_dst_src_ltm > 30, 

         

        # If the TCP connection setup round-trip time, the time between the SYN and the SYN_ACK packets, 

        # and the time between the SYN_ACK and the ACK packets are all 0, it might indicate a SYN flood attack. 

        tcprtt == 0.0 and synack == 0.0 and ackdat == 0.0, 

    ] 

     

    # If any of the malicious conditions are met, label the flow as malicious 

    if any(conditions): 

        return 1 

         

    # Otherwise, label the flow as benign 

    return 0 
 Figure 14: A heuristics-based labeling function generated by the LLM.
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instructions for automatically running the key experiments
and plotting the figures presented in the paper.

B.2 Scope
The simulation/ folder contains the source code to automat-
ically run key experiments from the paper and reproduce the
corresponding figures (i.e., Figures 4–10, 12). The testbed/
folder contains the new code changes and the instructions to
set up and run the FPGA/P4-based evaluations for CARAVAN.

B.3 Contents
The artifact is provided as a self-contained repository avail-
able at https://github.com/Per-Packet-AI/Caravan-Artifact-
OSDI24.

• simulation/ contains the software code for re-
producing evaluated figures, with automation scripts
for generating data and producing figures located
at simulation/scripts/experiments.sh and
simulation/scripts/plots.sh, respectively.

• testbed/ contains a modified version of the Taurus
FPGA testbed [104] for testing CARAVAN’s use cases.

B.4 Hosting
CARAVAN is hosted on GitHub: https://github.com/Per-
Packet-AI/Caravan-Artifact-OSDI24.

B.5 Requirements
Hardware. CARAVAN requires at least an 8-core server with
16 GiB of RAM, one CUDA 12.1-compatible GPU (e.g.,
Nvidia V100), along with Internet connectivity to access Ope-
nAI API endpoints. We recommend using a Google Compute
Engine (g2-standard-8) instance.

Software. CARAVAN runs with Python version 3.10 or later
with CUDA support. The complete list of dependencies
is available in simulation/pyproject.toml and gets in-
stalled automatically using pip install -e . from the
simulation/ directory.
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Abstract
With the growing model size of deep neural networks (DNN),
deep learning training is increasingly relying on handcrafted
search spaces to find efficient parallelization execution plans.
However, our study shows that existing search spaces exclude
plans that significantly impact the training performance of
well-known DNN models (e.g., AlphaFold2) under important
settings, such as when handling large embedding tables in
large language models.

To address this problem, we propose nnScaler, a frame-
work that generates efficient parallelization plans for deep
learning training. Instead of relying on the existing search
space, nnScaler advocates a more general approach that
empowers domain experts to construct their own search
space through three primitives, op-trans, op-assign, and
op-order, which capture model transformation and the
temporal-spatial scheduling of the transformed model of any
parallelization plans. To avoid space explosion, nnScaler al-
lows the application of constraints to those primitives during
space construction. With the proposed primitives and con-
straints, nnScaler can compose existing search spaces as well
as new ones. Experiments show that nnScaler can find new
parallelization plans in new search spaces that achieve up
to 3.5× speedup compared to solutions such as DeepSpeed,
Megatron-LM, and Alpa for popular DNN models like Swin-
Transformer and AlphaFold2.

1 Introduction

Deep neural networks (DNN) have shown remarkable suc-
cess [2, 27, 35]. However, training a large DNN model today
requires resources far exceeding the capacity of a single com-
puting device, such as a GPU. Therefore, a common practice
has been to partition a large model, schedule the partitioned
model to a large number of GPUs, and then construct a well-
coordinated execution plan across the GPUs (i.e., a paral-
lelization plan) for deep learning training [24, 26, 39].

∗This work was done when the authors were with Microsoft Research.

It is challenging to find an efficient parallelization plan
for DNN model training. A DNN model is often represented
as a data flow graph (DFG) that can consist of thousands of
nodes [56], with each node representing a DNN operator, e.g.,
matrix multiplication. A parallelization plan requires deciding
on a partitioning choice for each operator, which can have
many different partition choices [26]. Additionally, each par-
titioning choice for all operators in the DFG further requires
the selection of a spatial-temporal scheduling scheme from
many scheduling options designed for thousands of GPUs.
This creates a vast search space with prohibitive combina-
torial complexity for identifying an effective parallelization
plan that dictates model partitioning and scheduling.

Due to the immense search space, model training often de-
pends on carefully designed parallelization plans. For exam-
ple, Megatron-LM [50] incorporates the well-known, param-
eterized parallelization plans known as data/tensor/pipeline
parallelism to support GPT-like models (§2). This approach
essentially constructs a few well-studied classes of paral-
lelization plans within the large search space. More recently,
Alpa [65] organized parallelization plan choices into a two-
level hierarchical space, where the system first searches a
parallelization plan on pipeline (inter-operator) parallelism
and then on tensor (intra-operator) parallelism within each
pipeline stage. This approach offers a larger search space and
so often results in better parallelization plans. However, exist-
ing search spaces exclude several configurations in the paral-
lelization plans (§2, §4.2). Our study shows that this limitation
significantly impacts training performance on well-known
models such as Swin-Transformer [35] and AlphaFold2 [27]
(§8).

While existing work studies specific parallelization plans
or searches within a carefully-crafted search space, we argue
that domain experts should be empowered with the capability
to compose their own search space. Given the wide variety
of model architectures and the expansive domain knowledge
of an expert, this approach could expose more paralleliza-
tion opportunities. To this end, we propose three primitives,
op-trans, op-assign, and op-order, that enable the com-
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position of search space with arbitrary model partitioning
(op-trans), as well as spatial (op-assign) and/or temporal
scheduling (op-order) of the partitioned model. We show
that existing parallelization plans or search spaces can be ele-
gantly expressed by the three primitives with constraints on
model partitioning and spatial-temporal scheduling. More im-
portantly, with the new constraints, searching within the space
composed by the three primitives can lead to new paralleliza-
tion plans that significantly outperform those found in existing
search spaces or specific parallelization plans. Essentially, the
three primitives, along with the necessary constraints, repre-
sent a more general abstraction to characterize parallelization
plans.

Based on the above insight, we built nnScaler, a framework
that facilitates the search, generation, and optimization of par-
allelization plans for deep learning training. Domain experts
first use nnScaler to construct the desired search space for
parallelization plans through the three primitives (§3). Specifi-
cally, given a model, op-trans designates how each operator
can be partitioned; op-assign denotes the placement of each
partitioned operator on GPUs; and op-order specifies the
preferred temporal order across multiple operators when they
are assigned to the same GPU.

nnScaler also allows the application of constraints to
the primitives (§4). An example of a constraint applied to
op-trans is one that only evenly splits an operator into 2, 4,
8, and 16 partitions. The use of constraints, especially those
leveraging the characteristics of DNN models (e.g., the large
embedding table in §4.2), greatly reduces the search space.
As a result, with proper search policies applied to such a
constrained search space (§5), nnScaler can discover uncon-
ventional parallelization plans that significantly outperform
existing ones.

Given the sophisticated model partitioning and spatial-
temporal scheduling enabled by nnScaler, a parallelization
plan may deviate significantly from the original dataflow
graph representing the DNN model. To ensure the correct-
ness of a generated plan, nnScaler introduces vTensor-pTensor
(§6), a tensor abstraction that tracks the “lineage” across op-
erators before and after partitioning. This allows nnScaler to
maintain correct data dependency during graph partitioning
and detect cycles in the graph that could lead to deadlocks,
thereby excluding invalid plans. Moreover, vTensor-pTensor
also enables automatic communication adaptation when an
operator is split and assigned across multiple devices. Finally,
nnScaler lowers the discovered parallelization plan into exe-
cutable code, enabling parallel deep learning training on each
device.

Implemented based on PyTorch [43], nnScaler demon-
strates great power and flexibility, facilitating the discovery
of new parallelization plans (§4.2, §8) that achieve up to
3.5× speedup over existing parallel training systems, such
as DeepSpeed [47], Megatron-LM [39], and Alpa [65], for
popular deep learning models in computer vision (Swin-

Transformer [34]), language translation (T5 [45]), and bi-
ological analysis (AlphaFold2 [27]). nnScaler has been used
to develop, train, and finetune next generation deep learning
models across Microsoft. The code is available in [5].

2 Background and Motivation

Search space for parallelization plans. A parallelization
plan refers to a training execution plan that specifies the model
partitioning and corresponding spatial-temporal scheduling
scheme on a given set of GPUs. Training a large model
with hundreds of billions of parameters requires thousands of
GPUs [9]. A large model may consist of approximately 100
layers, each representing a sub-neural architecture (e.g., atten-
tion [58]) with tens of operators handling tensors with tens of
thousands of dimension size (e.g., the hidden dimension). The
vast partitioning choices (for a large model) and the enormous
spatial-temporal scheduling choices (on a large number of
GPUs) combine to create a prohibitively large, combinatorial
search space for parallelization plans.

Existing approaches rely on well-studied, handcrafted par-
allelization plans or search space to address this problem. For
example, data parallelism, a special parallelization plan, par-
titions an operator along the batch dimension of its associated
tensors. These partitioned operators are then replicated across
multiple devices (GPUs) and shared with the same model
parameters (weights) to enable concurrent model training.

Tensor parallelism is a class of more general plans that
permit the partitioning on dimensions not limited to the batch
dimension [26, 50, 59]. This approach allows the partitioned
operators to be distributed across different devices, accommo-
dating models too large to fit into a single device.

As a large DNN model typically consists of multiple layers,
it is also possible to partition a model into multiple stages,
with each stage containing one or several layers. The stages
are placed on different devices and executed in a pipeline,
hence the name pipeline parallelism. To improve pipeline
efficiency, a batch of training samples is further divided into
micro-batches, and are then executed following a carefully
designed temporal order [18, 24, 30].

The aforementioned parallelism schemes can be combined
into a new scheme, known as 3D parallelism, to further im-
prove training efficiency. Megatron-LM [39] incorporates 3D
parallelism, which integrates data, tensor, and pipeline paral-
lelism in a parameterized manner to support GPT-like models.
Given N devices, Megatron-LM partitions a model into K
stages, with each stage divided into M partitions. The model
is executed using K-stage pipeline parallelism and M-way
tensor parallelism. For a sufficiently large N, Megatron-LM
can also employ ( N

M∗K )-way data parallelism to achieve fur-
ther improvement in training performance. 3D parallelism
represents a few well-studied classes of parallelization plans
within the large search space.
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Alpa [65] further generalizes these parallelism schemes
to handcraft a two-level hierarchical search space. This hier-
archy enables the use of efficient searching techniques like
dynamic programming. Alpa has been shown to produce supe-
rior parallelization plans due to its larger search space, i.e., a
combination of SPMD [61] (a generalized tensor-parallelism
space) and pipeline parallelism.

Limitations of existing search space. Although existing
handcrafted parallelization search space is shown effective for
mainstream models with similar model architectures, it relies
on assumptions that simplify the search and construction of
parallelization plans. These simplifications, however, may
exclude promising plans from considerations (§4.2).

In tensor parallelism, it is assumed that partitioned opera-
tors and their corresponding split tensors are distributed across
disjoint devices. For example, to train a vision model with
high fidelity images (e.g., [34]), tensor parallelism splits the
large tensors associated with the large image and distributes
the divided tensors among disjoint devices. This excludes
cases where the split operators are placed on fewer devices,
meaning multiple operators share one device and compute in a
streamlined manner to reduce memory consumption and inter-
device communication costs simultaneously [11] (detailed in
§4.2 and §8).

Pipeline parallelism assumes that the training involves one
forward pass and one backward pass. However, models like
AlphaFold2 [17, 27] require three forward passes coupled
with a single backward pass. This unconventional training
approach renders existing pipeline parallelism [24, 38, 39]
inapplicable.

Pipeline parallelism also assumes that different pipeline
stages are spread across disjoint devices and prohibit any two
stages from sharing the same set of devices through temporal
multiplexing. For example, multi-lingual LLMs [45, 62, 64]
often employ a large embedding table in the early compu-
tational stage in the model. This results in significant GPU
memory consumption (>40%) but small computation utiliza-
tion (<5%). Given the disjoint device assignments in pipeline
parallelism (and also in tensor parallelism), the imbalance in
hardware utilization is unavoidable.

The later handcrafted search spaces (e.g., [61, 65]) that
combine tensor and pipeline parallelism (and others), inherit
these assumptions and, therefore, suffer from the same limi-
tations. This motivated us to design a more flexible method
for space construction that can enable domain experts to find
more effective training plans for their models (§3, §4, §5).

New challenges due to flexibility. Introducing a more
flexible way to construct parallelization plan space brings
new challenges. While existing frameworks like Megatron-
LM [50], Alpa [65], and DeepSpeed [47] only implement
a few well-studied partitioning, scheduling, and communi-
cations schemes that support parallelization plans in well-

Primitives Usage
op-trans(op,algo,n) algo ∈ op.algos()

n ∈ N, natural numbers
op-assign(op,d) d ∈ D, a set of devices
op-order(op1,op2) op1 executes before op2

Table 1: Primitives for parallelization space construction.

understood parallelization spaces, the new space could un-
cover new ways of operator partitioning, new operator schedul-
ing with unconventional communication patterns. Further-
more, more flexible parallelization plans are less studied and
hence could be error-prone. To address the above challenges,
we designed a compiling process to detect and prevent poten-
tial errors in parallelization plans (e.g., cycles in a transformed
DFG), and to generate the runtime code with efficient com-
munication operations for the discovered parallelization plan
(§6).

3 Parallelization Search Space Construction

A parallelization plan can be naturally expressed by the model
partitioning and the spatial-temporal scheduling of the parti-
tioned model. Correspondingly, nnScaler proposes three prim-
itives, op-trans, op-assign, and op-order (summarized in
Table 1), to capture the three aspects of a parallelization plan.
Combined, the primitives can be used to compose any search
space for a parallelization plan given arbitrary models and
accelerator devices.
op-trans. op-trans(op,algo,n) transforms an oper-
ator op into n sub-operators according to a transformation
algorithm algo, selected from the algorithm set correspond-
ing to the type of op. For example, matmul(Ai,k,Bk, j), the
matrix multiplication operator, can be partitioned into two
matmul operators along dimension i of tensor A while repli-
cating tensor B. In fact, most operators can be partitioned
along a certain dimension (e.g., i or k in A or B) of the associ-
ated tensors and the computation of partitioned (sub) opera-
tors would remain the same as that of the original operators.
Based on this observation, nnScaler implements the partition-
ing algorithms for the major operators in most DNN models.
Domain experts can then reuse the desired algorithm via the
algos() interface. nnScaler can also integrate custom trans-
formation algorithms, such as those developed by domain
experts, for any given operator. Note that the transformation
algorithm can be more than just operator partitioning. For
instance, an operator can be augmented by an additional re-
computing operator or a memory-swapping operator to save
memory [11, 23, 28, 41, 53]. In this paper, we use the term
“transformation" and “partitioning" interchangeably.
op-assign. Given a set of devices D and an operator op,
op-assign(op,d) denotes that op will be executed on the
d-th device in D.
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op-order. When non-dependent operators, e.g., op1 and
op2, are assigned to the same device, op-order(op1,op2)
ensures that op1 must execute before op2. Execution order for
non-dependent operators can play a vital role in training per-
formance. For example, in pipeline parallelism, an operator in
a pipeline stage can be partitioned into multiple micro-batches
along the batch dimension. We denote these (sub)operators as
op.mb1, op.mb2, etc., where mbi designates the correspond-
ing microbatch ID. The operators op.mbi can be executed in
an arbitrary order with regard to op.mb j (i̸= j). Nonetheless,
various research shows that once these operators are being
orchestrated carefully in temporal dimension, it is possible
to minimize the pipeline “bubble” [24, 54] to significantly
improve training efficiency.

With the three primitives mentioned above, domain experts
can write Python codes to compose arbitrary search spaces for
parallelization plans given any DNN model. These codes are
not necessarily tied to specific DNN models. Consequently,
nnScaler separates the model codes from the codes related to
search space and search policy. Note that to ease programming
efforts, op in the primitives can represent a sub-graph, where
the primitive applies to each of the operators in the sub-graph.

Due to the flexibility of the primitives and the scale of
large DNN models, the constructed parallelization search
space often contains hundreds and thousands of operators
with combinatorial search complexity. To address this issue,
nnScaler allows domain experts to impose constraints when
applying those primitives. These constraints can significantly
reduce the search space (§4), thereby enabling effective search
methods (§5).

4 Applying Constraints in the Search Space

In nnScaler, constraints are expressed as parameterized argu-
ments to the primitives in Table 1. When all arguments be-
come specific values, the whole space is reduced to a concrete
parallelization plan. Below, we illustrate how well-studied
parallelization plans like data, tensor, and pipeline parallelism
can be expressed by using the three primitives and constraints
(§4.1). Several new constraints that lead to novel paralleliza-
tion plans are discussed in §4.2.

4.1 Constraints for Existing Search Spaces
Constraints for data and tensor parallelism. Table 2 shows
the primitives and the associated constraints for data and ten-
sor parallelism. Both data parallelism and tensor parallelism
partition an operator evenly into n partitions. The partition
is performed along a certain dimension, depicted by algo,
where each partitioned sub-operator is assigned to a distinct
device for concurrent execution, i.e., constraints 2 and 3
in Table 2. Note that data parallelism always partitions along
the batch dimension, hence the selection of algo is more
restricted compared to tensor parallelism.

Primitives Constraints
1 sub-ops = op-trans(op,algo,n) n =| D |
2 op-assign(sub-opi,di) di,d j ∈ D,

di ̸= d j3 op-assign(sub-opj,dj)

Table 2: Constraints for data and tensor parallelisms.

Constraints for pipeline parallelism. Given a device set
D, pipeline parallelism divides a model G in to sub-graphs
Gi (0≤ i <| D |), where i denotes the i-th pipeline stage. And
those sub-graphs will be assigned in disjoint devices, shown
in Table 3.

To minimize the bubble, pipeline parallelism divides a
batch of samples into micro-batches. A sub-graph, denoted
as (Gi,n), operates on the the n-th micro-batch. We further
denote a forward pass subgraph as fGi and a backward pass
subgraph as bGi, the constraints to schedule the well-known
1F1B [24] pipeline parallelism can be summarized in Table 4.

Primitives Constraints
1 op-assign(Gi, di) di,d j ∈ D,

di ̸= d j2 op-assign(Gj, dj)

Table 3: Constraints for dividing a model G into |D| stages.

Primitives Constraints
1 op-order((fGi,m),(fGi,n)) m < n
2 op-order((bGi,m),(bGi,n))

3 op-order((fGi,m+ofst),(bGi,m)) ofst=|D|− i,
m≥ 04 op-order((bGi,m),(fGi,m+ofst+1))

Table 4: Constraints for 1F1B schedule.

As illustrated in Figure 1, Constraints 1 and 2 in Table 4
ensure that: in stage i, the execution order of micro-batches
must be the same for both forward and backward passes. That
is, given any two micro-batches m and n, where m < n, f Gm
should be executed before f Gn ( 1 ). The same applies to
bGm and bGn in the backward pass ( 2 ).

Constraints 3 and 4 in Table 4 specify the subtle schedul-
ing order of 1F1B. They define o f st, the offset with respect
to the current stage. The earlier the stage in the pipeline, the
larger the offset. Therefore, given Gi, the backward pass of
the earlier microbatch should be executed later w.r.t. the for-
ward pass ( 3 ). And the forward pass of the later micro-batch
should be executed in adjacency to the backward pass of the
earlier micro-batch ( 4 ).

The hierarchical combination of tensor parallelism and
pipeline parallelism forms the space of Alpa [65], where ten-
sor parallelism is nested within each stage of pipeline paral-
lelism. This can be constructed by replacing di in the pipeline
constraints in Table 3 with a set of devices Di for each stage.
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Figure 1: The constraints from Table 4 for 1F1B pipeline.

The stage is then applied with the constraints of tensor paral-
lelism within Di. For ease of exposition, the construction of
this handcrafted parallelization space for certain sub-operators
of a model, along with the constraints, is collectively defined
in a general interface named staged_spmd(ops, devices),
to be used later.

4.2 New Constraints

In addition to existing search spaces, domain experts can
apply new constraints to construct customized search spaces
to search for new, more performant parallelization plans for
various models, as we will elaborate next.
Constraints for Swin-Transformer. To enhance capability
in vision tasks, there has been a growing trend to adopt higher
resolution images to train large vision models such as Swin
Transformer [34]. The use of larger images results in larger in-
termediate tensors during training, especially in the attention
(Attn) and feedforward (FF) operators (for transformer-based
models). It requires larger memory that a single GPU cannot
accommodate.

Tensor parallelism is the standard practice used to address
this issue. Given a pipeline, operators in Attn and FF are split
and assigned to |Mi| devices, where Mi denotes the set of
devices accommodating operators in the i-th stage. Operators
split by tensor parallelism are placed disjointedly, and so each
device holds only one split operator. However, we observe
that sometimes multiple split operators can share a single de-
vice and compute in a streamlined manner, resulting in fewer
devices required for each pipeline stage and less memory con-
sumption. Although the streamlined computing of multiple
split operators may slow down the computing process, the
reduced communications across fewer devices can lower cost
and speed up the overall process.

Given any operator op from Attn and FF in stage i, let
sub_op to be any transformed sub-operator of op. Suppose we
allow C of such sub_ops to share one device, leading to a set
of devices Di assigned to stage i operators, where |Di|< |Mi|.
The constraints are as specified in Table 5. The rest operators
can be described by the existing search space, namely the one
defined in [65]. Note that C is a hyper-parameter where the
value can be searched by the policy in §5.
Constraints for T5. Multi-lingual models such as T5 [45]
often employ a large embedding table, say E, which contains

Operators Primitives Constraints

op ∈
{Attn ∪ FF}

sub_ops =
op-trans(op,algo,n)

n =C· | Di |

op-assign(sub_opji,di)
0≤ j < |C|

di ∈ Di

Table 5: Constraints for Swin-Transformer.

vocabulary embeddings from multiple languages [64]. The
table E, required only in the first and last layers of an LLM,
incurs significant memory consumption but requires little
computation cost. Pipeline parallelism would prioritize the
device assignment to accommodate E, leaving the remaining
devices for the other operators. This arrangement results in
imbalanced hardware utilization, with devices containing E
exhibiting low GPU cycle usage but high memory usage.

Thanks to nnScaler’s three primitives and constraints, we
can split E across the entire device set D. All other operators
across all pipeline stages can then share the remaining re-
source left in D by constructing a search space following the
conventional search space. These constraints, highlighted in
Table 6, breaks the conventional assumption that operators in
different pipeline stages cannot share the same set of devices.
Similar solutions are also applicable to the training of graph
neural networks [19].

Operators Primitives Constraints

op ∈ E
sub_ops =

op-trans(op,algo,n)
n = |D|
di ∈ D

op-assign(sub_opi,di) 0≤ i < |D|
ops /∈ E staged_spmd(ops, D)

Table 6: Constraints for T5.

Constraints for AlphaFold2. In AlphaFold2 [27], training
each micro-batch requires three forward passes and one back-
ward pass, i.e., 3F1B. Traditional 1F1B pipeline parallelism
cannot support this type of pattern. As shown on the left side
of Figure 2, a naive approach of training one micro-batch after
another is inefficient due to pipeline bubbles and the accumu-
lation of many unnecessary intermediate results. Therefore,
we decided to interleave the forward and backward passes
across different micro-batches while maintaining constraints
on temporal orders. Let fpGi denote the forward sub-graph
f Gi at the i-th pipeline stage in the p-th forward pass, and
let ofst be S− i, where S denotes the total number of pipeline
stages. Table 7 highlights the constraints for 3F1B.

Constraints 1 and 2 in Table 7 interleave the three for-
ward passes of consecutive micro-batches in decreasing order.
Constraint 3 specifies that the smallest micro-batch in the
last executed forward pass should be executed before the cor-
responding backward pass sub-graph on a micro-batch ID
with an offset (ofst) relative to the current stage, where ofst is
defined similarly to that in Figure 1 of §4.1.
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Figure 2: 3F1B schedule for AlphaFold2.

Primitives Constraints
1 op-order((f1Gi,m+2),(f2Gi,m+1)) m≥ 0
2 op-order((f2Gi,m+1),(f3Gi,m)) m > 0
3 op-order((f3Gi,m),(bGi,m-ofst)) m > o f st

Table 7: Constraints for AlphaFold2.

In addition to Table 7, the search space for 3F1B also reuses
the primitives and constraints in Tables 2 and 3. As shown
on the right side of Figure 2, these constraints together form
a space comprising unconventional parallelization plans that
exhibit improved training performance (§8).

4.3 Discussion

Constraints are a powerful abstraction for customizing vari-
ous parallelization plans and defining the search space for the
plans. To design effective constraints, nnScaler assumes its
users, usually domain experts, are knowledgeable on model
architecture and parallel training. With such knowledge, it
becomes intuitive to construct a search space using the three
primitives. Based on our own experiences, effective con-
straints can be derived by identifying performance bottlenecks
in the training, e.g., excessive GPU memory usage, computa-
tion/communication imbalance. The constraints can then be
defined to alleviate the bottlenecks. And constraints can be
refined iteratively along with the changing bottlenecks after
the adjustment in constraints [33]. Through the refinement of
constraints, nnScaler makes the generation of parallelization
plans significantly easier than previous approaches.

5 Plan Search Policy

With the new user-defined search space, nnScaler incorporates
a general policy framework to search for an efficient paral-
lelization plan. As illustrated in Algorithm 1, the policy takes
model graph G and a user-specified search space as inputs.
We denote a space as Ctrans, Cassign, Corder, corresponding to
the three primitives op-trans, op-assign and op-order,
along with augments associated with the constraints. The pol-
icy gradually shrinks the space with increasingly stringent
constraints, ultimately reducing the space to a unique paral-
lelization plan, denoted as C f inal

trans , C f inal
assign, C f inal

order. A key feature
of this policy framework is that it allows developers to “carve
out" a sub-space from the new search space, where existing

Algorithm 1: The policy framework of plan search.
Input: G, Model graph; Ctrans, Cassign, Corder, the space

defined by the primitives with constraints.
Output: C f inal

trans , C f inal
assign, C f inal

order, that determine a concrete
parallelization plan.

/* Operator partitioning & placement search */
/* Subgraph search with existing search algo */

1 Gsub, Csub
trans, Csub

assign ← GetSubSpace(G, Ctrans, Cassign);
2 Cnew

trans, Cnew
assign ← Alpa(Gsub, Csub

trans, Csub
assign);

/* Search in the rest option space */
3 Ctrans, Cassign ← ShrinkSpace(Ctrans,Cnew

trans, Cassign, Cnew
assign);

4 C f inal
trans C f inal

assign ← ILP(G, Ctrans, Cassign, objective=eq.1);
/* Temporal ordering search */

5 C f inal
order ← Tessel(G, C f inal

trans , C f inal
assign, Corder);

6 return C f inal
trans , C f inal

assign, C f inal
order; /* a concrete plan */

search polices are applicable. Specifically, the search process
consists of two phases: operator partitioning and placement
search, and temporal ordering search.
Operator Partitioning and Placement Search. The goal of
this phase is to evenly distribute computations across devices
while minimizing communication costs. Various partitioning
options for an operator yield different communication costs.
For instance, partitioning the batch dimension involves an
allreduce on parameters, while partitioning parameters leads
to replicating input activation tensors across devices. Different
placement options for operators also result in varying execu-
tion times for each device. Therefore, the execution time on
a device d is the sum of its assigned operators’ computation
time Compd and the associated communication time Commd .
Overall runtime is dictated by the slowest device [54, 65],
which is formulated as:

minimize max
d∈D
{Compd +Commd}. (1)

By representing partitioning and placement options as inte-
gers, this optimization problem can be viewed as an integer
linear programming problem, which is NP-hard.

With the application of constraints, the space in Equation 1
can be greatly reduced, thus enabling a faster search process
(§8). nnScaler searches within a gradually reduced space by
leveraging multiple policies. It firstly inspects the constructed
search space and extracts a subspace (e.g., staged_spmd) that
can leverage existing search policies like Alpa [65] through
GetSubSpace (line 1 in Algorithm 1), an interface that re-
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duces the search space through the input constraints. The
extracted subspace may only consist of a subset of operators,
leaving the rest operators undetermined. Once the transforma-
tion and placement decisions are made for the operator sub-
set, the search space can be further reduced. Then, nnScaler
fetches the reduced search space through ShrinkSpace (line
3 in Algorithm 1) and proceeds to use other policies (e.g.,
ILP solvers) within it, until finding the transformation and
placement decisions for every operator.

For example, Table 5 reduces the operator assignment space
to C operators per device; and Table 7 mainly specifies tem-
poral order. The remaining subspace of these two cases can
be organized like the space defined by staged_spmd. Addi-
tionally, Table 6 evenly pre-allocates the embedding table E
to all devices evenly, with the remaining space corresponding
exactly to staged_spmd. Consequently, the framework can
apply the search policy in Alpa [65] to these sub-spaces to
find a specific partitioning and assignment scheme for the
involved operators (possibly a subset), i.e., Cnew

trans and Cnew
assign

(line 2). These two new constraints, combined with their orig-
inal versions, produce a smaller search space (line 3), where
the framework can apply an ILP solver to find the final parti-
tioning and assignment solution for the entire model, denoted
as C f inal

trans and C f inal
assign (line 4). Note that as a general framework,

users can replace the policies in Algorithm 1 by other search
policies such as FlexFlow [26] or Tofu [59].
Temporal Ordering Search. After operator transformation
and assignment, the temporal order of some operators is al-
ready specified by the data dependency in the transformed
graph. However, it is possible for two operators on the same
device to have no direct dependency, which means they can
be executed in arbitrary orders. Moreover, for pipeline paral-
lelism, the order of the same operator computed on different
micro-batches within one batch is unspecified. nnScaler lever-
ages Tessel [32], a state-of-the-art search policy, to determine
the execution orders for these operators. Tessel groups opera-
tors within a micro-batch on each device into sub-graphs and
formulates their execution order as an ILP problem. The opti-
mization goal is to minimize the end-to-end execution latency
of a mini-batch. Each sub-graph is assigned to an integer
time slot, and the search, powered by Z3 Solver, enumerates
possible order options without violating data dependencies.
User-specified constraints on op-order, acting as Z3 con-
straints, play a crucial role in effectively reducing the search
cost (line 5 in Algorithm 1).

Note that nnScaler does not claim contributions on indi-
vidual search policies discussed in this section. It is the ab-
straction of primitives and constraints that makes the efficient
search of parallelization plans possible.

6 Parallelization Plan Compilation

nnScaler compiles a model and the generated parallelization

Parallelization 
plan

Graph IR 
(vTensor-pTensor)

Deep learning 
model

Constraints
(customized space)

Parallelization 
plan in graph IR

Executable 
(PyTorch) code

Apply 
primitives

Plan search 
policy

Constraints programming and 
plan search

Plan compilation

Plan
materialization

Figure 3: System overview of nnScaler.

plan into executable codes, following the end-to-end process
illustrated in Figure 3. The system first converts a deep learn-
ing model into a data flow graph, known as Graph IR. With
the search space defined by the primitives and the associated
constraints, nnScaler leverages a search policy to generate a
parallelization plan. The plan compilation then applies the
primitives and the constraints defined in the plan to the Graph
IR. Data dependency tracking is performed during this step
with the vTensor-pTensor abstraction. The resulting Graph
IR, describing the new data dependency and the additional
communication operations incurred due to operator distribu-
tion across devices, will be further materialized into parallel
executable code.
Tensor Abstraction vTensor and pTensor are introduced
to track changing data dependencies during the application
of the three primitives. As depicted in Figure 4, a pTensor
represents a tensor in the original logical model; vTensors
are the resulting tensors after applying the three primitives
to the pTensor. A vTensor links to a pTensor and maintains a
mask indicating the accessed portion of the pTensor that this
vTensor represents. A pTensor can be associated with multiple
operators. At the top of Figure 4, the output of operator A
serves as the input for operator B. Both operators are linked
to the same pTensor through their respective vTensors.

With vTensor, each operator can be transformed, assigned,
and ordered independently. When applying an op-trans,
nnScaler partitions vTensors through the “mask”, leaving
pTensors unchanged. For instance, in Figure 4, operator A
only splits itself and its output vTensor, while the vTensor
of operator B remains unaffected. For other type of primi-
tives, vTensor’s mask remains unchanged. Therefore, given a
producer vTensor (e.g., in A) and a consumer vTensor (e.g.,
in B) that are linked to the same pTensor, nnScaler can de-
tect whether they have data dependency by intersecting their
masks. With a dataflow graph, each operator in the graph
consumes and produces vTensors according to underlying
pTensors, thus facilitating the fine-grained data dependency
tracking. During runtime execution, only vTensors will be
instantiated to real GPU tensor instances.

With the data dependency tracking enabled by vTensor-
pTensor abstraction during data flow graph transformation,
nnScaler can detect cycles in the new graph that leads to
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deadlock, thus excluding invalid parallelization plans.
Data Dependency Materialization After applying primi-
tives and constraints, nnScaler materializes the new data de-
pendencies described by vTensor-pTensor into concrete data
operations and communications. For a consumer vTensor
(e.g., B1 in Figure 4), nnScaler identifies dependent producer
vTensors (e.g., A1 and A2) and inserts tensor manipulation op-
erations, such as torch.split or torch.chunk, to extract
the corresponding tensor fragments. When producers and
consumers reside on different devices (due to op-assign),
peer-to-peer send-recv communication operators [44] will be
inserted during materialization.

To improve communication efficiency, certain communi-
cation patterns across vTensors within the same pTensor can
be implemented using collective communication primitives,
such as allgather, allreduce, or alltoall [44]. For instance, in
Figure 4, communications between vTensors 3, 4 of A and
vTensors 5, 6 of B can be materialized using the more efficient
alltoall primitive. nnScaler employs simple pattern matching
to identify appropriate collective primitives for each pTensor
and its associated vTensors.

7 Implementation and Experiences

We implemented nnScaler based on PyTorch [43] with 24K
lines of Python code. nnScaler takes a PyTorch model devel-
oped for a single device, and converts it into an intermedi-
ate graph representation (IR). After the transformation, the
spatial-temporal scheduling, and the insertion of communica-
tions and tensor manipulation operations specified in a par-
allelization plan, each device will receive a sub-graph repre-
sented by the IR. nnScaler then converts the sub-graph back
to a PyTorch code file. And PyTorch runs the code files (i.e.,
using torchrun) in parallel for distributed training.

To support a wide range of PyTorch models, nnScaler
implements an augmented graph converter based on
TorchFX [55], comprising 2,243 lines of Python code. This

converter combines TorchFX’s symbolic execution with value
tracing of torch.jit.trace to handle control flow, which is
a typical barrier when converting PyTorch models to TorchFX.
By default, PyTorch models usually contain only the forward
pass. nnScaler automatically completes the backward pass
using autograd functionality with the chain rule [40]. So
far, nnScaler has successfully converted 26319 out of 31301
(84.1%) PyTorch models from HuggingFace [25] Natural Lan-
guage Processing tasks. The conversion failures are mainly
due to unsupported operators, e.g., the custom operators de-
signed for specific models. We are actively exploring way
to support more operators, along with their corresponding
transformation algorithms.

7.1 Experiences
nnScaler has been used by multiple projects across differ-
ent teams in Microsoft to support the pretraining and fine-
tuning of next generation DNN models on several genera-
tions of NVIDIA and AMD GPUs. This includes RetNet [51],
YOCO [52], LongRoPE [16], Phi-3 series [7]1, and a large sci-
ence foundation model consisted of a transform-based model
combined with a graph neural network. The model size ranges
from 3 billion to 92 billion parameters.

The decision to use nnScaler is based on two key factors.
First, incorporating new models into existing distributed train-
ing frameworks presents intricate engineering challenges.
This involves tasks such as the parallelization of the new
modules, identifying suitable partition options, and ensuring
the end-to-end training correctness, which includes tasks like
data loading, gradient normalization (gnorm) [12], and opti-
mizer. This process typically takes two experienced engineers
about two months to complete. Compounding to the problem,
existing parallelization plans often do not works well on new
models, resulting in unsatisfactory Model FLOPs Utilization
(MFU). Second, the research on new models often requires
changes to model architectures, configurations, and training
settings. This, in turn, may necessitate further adjustments
to be made to the parallelization plan for efficient training,
a daunting task for machine learning researchers. nnScaler
precisely targets these pain points. Since nnScaler separates
codes for the logical model from codes for the parallelization
plan, it enables a separation of concerns: model developers
can focus on model architecture innovations while system
developers can study better parallelization plans. Moreover,
our collaboration with these teams have yielded a number of
insights, which will be discussed next.
Debugging nnScaler. nnScaler offers great flexibility in
model training, but the new primitives and constraints also
contribute to increased system complexity, rendering certain
parallelization plans error-prone. nnScaler enables a modu-
lar approach to debugging system problems, where a new,

1nnScaler is used in some post training steps for the long context version
of Phi-3, not for the model pretraining.
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less-studied sub-graph generated by a new constraint can be
replaced with a well-tested constraint. For instance, nnScaler
can selectively apply data parallelism, which is less likely to
have bugs, to a portion of the model while maintaining the ex-
isting parallelization plan for the rest of the model unchanged.
This adjustment does not require model code modification; it
simply configures the pre-build parallelization plan. By itera-
tively changing the suspected modules in the plan, it facilitates
the identification of the problematic module.
Model accuracy. Achieving high model accuracy is the
ultimate goal of model training. However, oftentimes, even
a small bug in the training framework or model code can
result in a degraded accuracy. Further complicating matters
is that while the situation may appear normal in the early
training stage, the loss curve tends to deteriorate over an ex-
tended training period (e.g., thousands of steps for a 7B LLM)
and may eventually diverge. Directly comparing the loss and
gradient values with well-tested training plans like data paral-
lelism is impractical. For example, as the reduce operations
(e.g., matmul or allreduce) in more complicated plans intro-
duce drifts in floating-point values due to different orders of
summation [20], which is an expected behavior. This makes
it difficult to discern if it is an expected numeric deviation
or a semantic bug. With respect to this issue, nnScaler firstly
evaluates the correctness of a large-scale parallelization plan
for a model by reducing the model’s hidden dimension to
fit the training in a single device. This makes debugging the
correctness a much easier task. The model change is easily
achievable by slight changes in the model code, thanks to the
clean separation between the model code and training code.
Subsequently we applied the searched parallelization plan to
the reduced model and then assessed the overlap of the loss
and gnorm curves with their counterparts in the well-tested
data parallelism training. We observed that the gnorm curve
is a good indicator, amplifying divergence at earlier stages
and signaling potential bugs in the system.
In-place operators. To improve training performance, in-
place operators like Tensor.add_ update tensors in-place.
However, partitioning in-place operators could become prob-
lematic. For example, if the partitioning of the in-place op-
erator leads to the cloning of a tensor that originally imple-
ments in-place updates, the resulting non-inplace sub-operator
would not preserve the original effect of the in-place oper-
ator’s effect. This is due to a violation of the Static Single
Assignment (SSA) form [14] when mixing in-place and non-
inplace operators. To avoid this problem, nnScaler follows
SSA during graph transformation, then replaces some of the
non-inplace operators with their original in-place versions in
the later optimization phase.

8 Evaluation

The evaluation of nnScaler covers the expressiveness of par-
allelization primitives and the search efficiency of paralleliza-

tion plan with constraints. More importantly, we evaluated
the performance of the newly searched parallelization plans
on real-word models to demonstrate the effectiveness of the
entire system in achieving efficient parallelization of new
models and settings. In summary, the evaluation results show
that:

• The parallelization primitives in nnScaler can construct
various parallelization plans, including both existing hand-
crafted ones (§8.1) and newly innovated ones, as introduced
in this paper(§8.2).

• End-to-end evaluation of the three novel parallelization
plans on SwinTransformer, T5, and AlphaFold2 shows up
to 3.5×, 2.5×, 1.4× speedup, respectively, compared to the
baselines of Megatron-LM [39], Alpa [65], DeepSpeed [47],
and DAP [13]. (§8.3)

• Parallelization space with constraints helps nnScaler
quickly discover efficient plans, resulting in an 11.7×
search speedup compared to the searches without con-
straints.

8.1 Expressiveness of Plan Construction
We evaluated the expressiveness of the three primitives for
plan construction by implementing popular handcrafted par-
allelization plans listed in Table 8. These plans can be decom-
posed into operator transformation, placement and ordering,
which is well aligned with the three primitives in Table 1. 14
out of 17 parallelization plans can be successfully supported
by nnScaler. The parallelization plans under SPMD are im-
plemented through op-trans. Data and flexible tensor paral-
lelism can be easily supported. Transformer Parallelism and
DAP are handcrafted tensor parallelisms for Transformer and
AlphaFold2, respectively. Sequence Parallelism and ZeRO
stage-3 are special tensor parallelisms, that decouple the par-
titioning of the operator and its input tensor to optimize mem-
ory usage. nnScaler supports them by inserting an identity
operator between the input tensor and its operator through
op-trans, facilitating easy decoupling.

The parallelization plans under MPMD are different types
of handcrafted pipeline parallelism. They can be supported
using op-order without implementing a new execution en-
gine. Notably, nnScaler does not support PipeDream due to
its asynchronous training method, as nnScaler respects the
original training semantics of a model. For TeraPipe, nnScaler
currently lacks access to concrete values in tensors, prevent-
ing it from determining data dependency at the token level
(i.e., tensor masks), a requirement for TeraPipe. In the future,
nnScaler can implement TeraPipe through instrumentation
tools for deep learning models like [21].

Beyond parallelisms, nnScaler also accommodates mem-
ory optimization techniques (e.g., recompute, swap) and the
overlapping of computations and communications. Its sup-
port of recompute relies on a customized algo of op-trans
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Categories Mechanisms Support

SPMD
Parallelism

Data Parallelism [1] ✓
Flexible Tensor Parallel [26, 59, 61] ✓

Transformer Parallelism [50] ✓
DAP [13] ✓

Sequence Parallelism [29] ✓
ZeRO [47] ✓

MPMD
Parallelism

1F1B [18, 50] ✓
GPipe [24] ✓

Chimera [30] ✓
PipeDream (Async) [38] ×

TeraPipe [31] ×

Memory
Optimizations

Gradient Accumulation [60] ✓
Recompute [11] ✓

Chain-recompute [28] ✓
Swap [23] ✓

Overlapping
ByteScheduler [42] ×

All-reduce Overlap [49] ✓∗

Table 8: Supported parallelization plans. ‘*’ requires addi-
tional co-scheduling of computation and communication at
runtime.
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Figure 5: Coshard plan found by nnScaler.

to transform an operator to its recompute version, similar to
torch.utils.checkpoint in PyTorch [6], while deferring
the materialization to the compilation phase. nnScaler does
not support ByteScheduler [42], which overlaps two consecu-
tive mini-batches. This is because the boundary of transforma-
tion and scheduling in nnScaler is a single mini-batch, though
it could potentially be extended to multiple mini-batches.

8.2 Plan Search Results

With the new constraints described in §4.2, nnScaler searches
within each constructed space and discovers three novel par-
allelization plans that show superior training performance.
Coshard. Figure 5 illustrates Coshard, which is used for
models with large tensors like SwinTransformer. It can co-
exist with tensor parallelism to reduce peak memory of acti-
vation tensors. For example, A1 is partitioned into two, placed
on the same device, and executed sequentially. After apply-
ing recompute of A1, the peak activation size of A1 is halved.
Due to the reduced peak memory, tensor parallelism can now
span fewer devices (e.g., from 8-way to 4-way), reducing
communication cost.

Interlaced pipeline. Figure 6 shows the pipeline schedule
searched under the constraints specified in Table 6. The em-
bedding layer is partitioned across four devices using tensor
parallelism. The remaining components (i.e., non-embedding
layers) are separated to distinct device groups following
staged_spmd. During the ordering search, all the layers com-
pose into a schedule that resembles executing embedding
layers and an 1F1B-like schedule following a time-sharing
pattern. There are two columns with 0-th embedding because
the embedding layer is used twice, one at the beginning of
the model and the other at the end. Thanks to the scheduling
search, the pipeline can reach a stable phase with zero bubbles
as shown on the right of the figure.
3F1B pipeline. Figure 2 displays the timeline for the 3F1B
pipeline which has been described in §4.2. The constraints
outlined in Table 7 define how forward and backward passes
interleave in the stable state of the pipeline. The schedule
for the warm-up and cool-down phases remains unspecified.
These phases are tailored through the search process.

8.3 End-to-End Performance

We evaluate the three new parallelization plans on Swin-
Transformer, T5, and AlphaFold2, respectively, with different
model configurations and on varying number of GPUs.

8.3.1 Experimental Setup

Machine configurations. Our evaluation is performed on
DGX-2 clusters with 32 NVIDIA Tesla V100 (32GB) GPUs.
Each server is equipped with 16 GPUs that are connected
via NVLink [4]. Servers are interconnected with 8 Infini-
Band 100 Gbps network adapters. All the servers are in-
stalled with NCCL 2.14 [3] and PyTorch v2.0.1 [43]. As 8 ×
100 Gbps InfiniBand is a high-end hardware configuration,
we also demonstrate the training performance on commodity
hardware that is prevalent in many organizations [8]. Specifi-
cally, we conducted experiments on DGX-1 clusters with 32
NVIDIA Tesla V100 (32GB) GPUs, each equipped with 1
InfiniBand 100 Gbps network adapter in §8.3.5.
Model configurations. Table 9 summarizes the configura-
tions of SwinTransformer, T5, and AlphaFold2, each of which
has four different model configurations ranging from small
models to large ones. For each configuration, we list its num-
ber of parameters, number of layers, hidden dimensions, and
number of heads. For example, <1.8B, 32 layers, hidden size
512, 16 heads> is a configuration for SwinTransformer. The
four small to large configurations for each model run on 4, 8,
16, and 32 GPUs respectively.
Baseline systems. We compared nnScaler with three popular
distributed training systems: 1) Megatron-LM [39] is designed
to train transformer-based models, which hierarchically com-
bines pipeline parallelism with data and tensor parallelism.
For pipeline parallelism, it evenly partitions model layers into
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Figure 6: Interlaced pipeline plan found by nnScaler.

Model SwinTransformer [34]
Param# (B) 1.8 5.0 10 27

Layer# 32 40 48 56
Hidden 512 768 1K 1.5K
Head# 16 24 32 32
Model T5 [45, 62]

Param# (B) 3.9 11 21 47
Layer# 48 64 64 64
Hidden 2K 3K 4K 6K
Head# 32 48 64 96
Model AlphaFold2 [27]

Param# (B) 0.087 0.93 2.4 3.2
Layer# 48 64 96 128
Hidden 256 512 1K 1K
Head# 8 16 32 32

Table 9: Model architecture with the increasing number of
GPUs. K: thousand. B: billion.

pipeline stages, and each stage can be further applied with
data and tensor parallelism. 2) Alpa [65] is an automatic par-
allelization system for deep learning models under the 3D
parallelization space. Its search algorithm and training system
are currently based on TensorFlow. To conduct a side-by-side
comparison, we implemented the Alpa’s search algorithm
as a policy in nnScaler. 3) DeepSpeed [47] is a distributed
training system similar to Megatron-LM. It supports pipeline,
data, and tensor parallelism, Additionally, it incorporates tech-
niques including ZeRO [46] and ZeRO-Offload [48] to opti-
mize GPU memory usage. ZeRO mainly optimizes memory
usage of optimizer states by keeping a single copy in data
parallelism. ZeRO-Offload offloads weights to CPU memory
to reduce the memory pressure of GPU and retrieves them
after they are used. It does not support offloading activation
tensors.

Neither Megatron-LM nor DeepSpeed features automatic
search for parallelization plans in their supported paralleliza-
tion space. Therefore, we manually found the best-performing
plans for them by separately traversing the degrees of pipeline,
tensor, and data parallelism respectively. In all the following
experiments, we applied layer-wise recompute [11] to reduce
the memory consumption of activation tensors. Following the
common practice [29, 65], we used the aggregated effective
TFLOPS as our performance metric.
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Figure 7: End-to-end training throughput of SwinTransformer.
“×” denotes failure due to out of memory.

8.3.2 Results of SwinTransformer

Figure 7 illustrates the end-to-end training throughput of
SwinTransformer on four systems. Both Megatron-LM and
Alpa use pure tensor parallelism for all model configurations
due to the substantial size of activation tensors is huge (e.g.
21GB for the first transformer layer for a 5.0B model), even
with recompute applied. DeepSpeed employs ZeRO-Offload
and ZeRO stage3 to optimize memory usage. Therefore, Deep-
Speed is able to apply 2-way tensor parallelism for the 4
GPUs setting and 4-way tensor parallelism for the remaining
three settings. Data parallelism is further applied to scale out
across all the available GPUs. nnScaler applies Coshard on
the first four layers (Attention+MLP) of SwinTransformer,
because these layers occupy a large proportion of memory
due to activation tensors. nnScaler applies 2-way, 2-way, 4-
way, and 8-way tensor parallelism to the four configurations,
respectively, combined with 2-way, 4-way, 4-way, and 4-way
pipeline parallelism, respectively. Coshard has 6 partitions
sequentially executed on each GPU for the 8 GPUs setting
and 4 partitions for the remaining three settings. As shown
in Figure 7, nnScaler is 1.2×, 1.5×, and 1.5× faster than
DeepSpeed on 8, 16, and 32 GPUs, respectively. Although
with ZeRO stage3 to reduce the degree of tensor parallelism
to control the communication overheads, ZeRO stage3 still
introduces heavy communication costs for weights on the
critical path of forward and backward passes, especially when
it is applied on 32 GPUs, which involves cross-node com-
munication. In contrast, nnScaler applies Coshard to reduce
peak memory, making it possible to use a less degree of tensor
parallelism, which reduces communication costs.

Coshard is also used in the long-context post training of the
Phi-3 series models to reduce the excessive memory usage
due to the long context window [16].
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Figure 8: End-to-end training throughput of T5.

8.3.3 Results of T5

Figure 8 illustrates the end-to-end training throughput of
T5. Megatron-LM uses 2-way tensor parallelism with 2-way
pipeline parallelism for 4 GPUs, and uses pure tensor par-
allelism for 8, 16, 32 GPUs. For 4 GPUs, Alpa uses 3-way
pipeline parallelism with the middle stage applying 2-way
tensor parallelism. It must use pure tensor parallelism for 8,
16, and 32 GPUs due to large memory consumption. As T5 of
3.9B parameters is relatively small, DeepSpeed can use data
parallelism with ZeRO stage3 for 4 GPUs. It applies 4-way
tensor parallelism for 8, 16, and 32 GPUs, with ZeRO-Offload
and ZeRO stage3 applied. Additionally, data parallelism is
further applied to scale out to all the available GPUs. nnScaler
applies the interlaced pipeline. The large embedding layer
uses tensor parallelism on all the available GPUs. The remain-
ing layers apply 4-way pipeline parallelism, with each stage
applied 1-way, 2-way, 4-way, and 8-way tensor parallelism
for 4, 8, 16, and 32 GPUs, respectively.

nnScaler performs 1.5×, 1.6×, and 2.5× better than Deep-
Speed for 8, 16, and 32 GPUs respectively. Megatron-LM and
Alpa have a low performance because the high degrees (e.g.,
32) of tensor parallelism introduces high communication over-
heads, especially when the tensor parallelism spans more than
one node. This is why Megatron-LM performs much worse
with 32 GPUs. As Alpa searches for suitable partition options
for tensor parallelism, many operators (e.g., dropout or layer-
norm) are replicated across nodes to reduce communication
costs, and so it performs better than Megatron-LM. Although
DeepSpeed has a lower degree of tensor parallelism, its per-
formance is only comparable to Alpa because DeepSpeed
uses ZeRO-Offload and ZeRO stage3 to make lower degrees
of tensor parallelism feasible. ZeRO-Offload introduces high
overheads due to the offloading of large embedding weight
(e.g., 12GB in the 21B model). ZeRO stage3 also introduces
high communication costs, such as the online gathering of
(embedding) weights on the critical path. This shows the effec-
tiveness of the proposed interlaced pipeline on models like T5,
compared to conventional approaches like tensor parallelism,
ZeRO-Offload, and ZeRO stage3. Note that to highlight the
advantage of interlaced pipeline, nnScaler tentatively disables
ZeRO in the experiments in Figure 8. And nnScaler still out-
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Figure 9: End-to-end training throughput of AlphaFold2.
“×” denotes failure due to out of memory.

performs others in most cases except for the 4-GPU case
when T5 is small enough to fit-in memory after applying data
parallelism with ZeRO (i.e., DeepSpeed’s plan).

8.3.4 Results of AlphaFold2

Figure 9 shows the end-to-end training throughput of Al-
phaFold2. In this experiment, we compared nnScaler with
two baselines. One is DAP [13], which is a handcrafted ten-
sor parallelism specifically designed for AlphaFold2. We
also applied data parallelism to scale out DAP, referred to
as DAP+DP. For 4 and 8 GPUs, DAP+DP uses pure data
parallelism since the models are small. It uses 4-way tensor
parallelism with 4-way data parallelism for 16 GPUs. The
other baseline is DeepSpeed. As the model sizes are much
smaller than those of SwinTransformer and T5, the applica-
tion of ZeRO-Offload is not necessary. DeepSpeed uses pure
data parallelism for 4, 8, and 16 GPUs with ZeRO stage3, and
uses 2-way tensor parallelism with 16-way data parallelism
for 32 GPUs. nnScaler also uses pure data parallelism for 4
and 8 GPUs. It applies the 3F1B pipeline for 16 and 32 GPUs.
For 16 GPUs, nnScaler uses 4-way pipeline parallelism with
4-way data parallelism, while for 32 GPUs it uses 2-way ten-
sor parallelism with 2-way pipeline parallelism and 8-way
data parallelism.

nnScaler performs 1.5× better than DAP+DP on 16 GPUs
and 1.1× better than DeepSpeed on 32 GPUs. DeepSpeed
performs better than DAP+DP on 16 GPUs, because the ac-
tivation tensors in AlphaFold2 are large, and the communi-
cation of activation tensors using 2-way tensor parallelism
is more efficient than that using 4-way tensor parallelism.
nnScaler performs better than DeepSpeed because the cus-
tomized 3F1B pipeline reduces communication costs. The
training conducted on multiple nodes, which is common for
large model training, amplifies the advantage of pipeline par-
allelism.

8.3.5 Experiments on Less Powerful Hardware

To demonstrate the effectiveness of the new parallelization
plans and understand how different hardware affects training
performance, we evaluate SwinTransformer and AlphaFold2
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in the DGX-1 cluster. As shown in Figure 10a, nnScaler is
1.9× and 3.5× faster than DeepSpeed on 16 and 32 GPUs,
respectively. Compared with data shown in Figure 7, for 32
GPUs, the performance of nnScaler is degraded by 6%, while
that of DeepSpeed, Alpa, and Megatron-LM is degraded by
60%, 82% and 82%, respectively. The degradation of nnScaler
is smaller because the parallelization plan (i.e., Coshard) used
by nnScaler optimizes the communication cost, and thereby
it tolerates the changes in communication bandwidth. Fig-
ure 10b shows the results of AlphaFold2 on DGX-1. The rel-
ative performance gain of nnScaler is also improved to 1.1×
and 1.4× over DeepSpeed on 16 and 32 GPUs, respectively.
The lower bandwidth cross nodes in DGX-1 further amplifies
the advantage of pipeline parallelism, rendering the 3F1B
pipeline much faster than tensor parallelism in DAP+DP and
DeepSpeed. These experiments indicate that with the flexi-
ble customization of parallelization plans and automatic plan
search, nnScaler can adapt more flexibly to changes in hard-
ware.
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Figure 10: End-to-end training throughput on DGX-1.
“×” denotes the failure of training due to out-of-memory.

8.4 Search Efficiency with Constraints

Algorithm 1 suggests that the parallelization plan search cost
in nnScaler consists of: (1) operator transformation and place-
ment cost (i.e., line 1-4 in Algorithm 1), and (2) operator
temporal ordering cost (i.e., line 5 in Algorithm 1). Figure 11
illustrates the end-to-end search cost, as well as the break-
down time of the three customized spaces defined in §4.2 for
different model configurations using the policy illustrated in
§5. The search on SwinTransformer’s space takes less than
150s. The search time increases with the increase of model
size as the number of operators increases. The ordering search
for T5 takes around 150s due to an absence of constraints on
the ordering in T5’s space. There is almost no search cost
of the ordering in SwinTransformer and AlphaFold2. For
SwinTransformer, the order is largely determined by data
dependencies, and for AlphaFold2, the ordering constraints
greatly reduces the space.

Figure 12 further shows the temporal ordering search time
of the 3F1B schedule with and without constraints. The left
figure shows that the search time increases exponentially with
the increase of stage number. However, with constraints ap-
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Figure 11: End-to-end search cost of each model.

3 4 5
Stage Number

0

40

80

120

160

Se
ar

ch
 T

im
e 

(s
)

X

w/o constraints
w/ constraints

0 1 2 3
Constraints Number

0

30

60

90

120

Se
ar

ch
 T

im
e 

(s
)

Figure 12: Search time of the 3F1B schedule with and without
constraints. “×” denotes a search time exceeding one hour.

plied, the search time is kept within 60s, resulting in 11.7×
speedup in finding the efficient temporal ordering for 4 stages.
This is attributed to the temporal ordering constraints in Ta-
ble 7, where the ordering constraints of independent forward
and backward operators from different micro-batches are ex-
plicitly specified, leading to a significantly reduced search
space exposed to the search algorithm (i.e., Tessel). For the
case of 4 stages, the right figure further shows the search time
as each ordering constraints from Table 7 is applied one by
one. The first constraint reduces the search time by 100s. The
second constraint further reduces it by 50% of search time.
This demonstrates the importance of constraints.

9 Related Work

Existing parallelization search spaces. Recently, data, ten-
sor, and pipeline parallelisms [1, 18, 24, 30, 46] have been
widely used in distributed DNN training. Various memory op-
timizations [11,23,28] have also been adopted to exploit large-
scale model training under GPU memory constraints. Systems
such as Megatron-LM [29,39,50], DeepSpeed [47], Piper [54],
Unity [57], and Alpa [65], combine multiple parallelisms and
memory optimizations to accelerate distributed DNN training.
However, these solutions fall short in because they rely on em-
pirical parallelism configurations and have limited execution
scheduling choices. Thus, despite their successful applica-
tions on existing training workloads, they still fail to fully
utilize hardware capabilities. In contrast, nnScaler provides a
different approach to parallelization, supporting the expres-
sion of parallelization sub-spaces with fine-grained transfor-
mation and scheduling primitives. Consequently, nnScaler is
compatible with them as all these solutions can be achieved
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using particular constraints. In additional, nnScaler is able to
support more flexible and efficient parallelization plans that
extend beyond the aforementioned parallelization sub-spaces,
which is considerably crucial for continuously evolving DNN
models.
Explorations on specific parallelization plans. Paralleliza-
tion strategies tailored for specific scenarios play a crucial role
in optimizing the performance of parallel computing frame-
works. For instance, Transformer Parallelism [50], DAP [13],
and Sequence Parallelism [29] are designed for specific model
architectures, showcasing a nuanced approach to paralleliza-
tion. To address the need for optimized pipeline orchestra-
tion, innovative scheduling strategies have been proposed by
GPipe [24], 1F1B [18, 50], and Chimera [30]. Furthermore,
optimizations such as Gradient Accumulation [60], Recom-
pute [11], Chain-recompute [28], Swap [23], and All-reduce
Overlap [49] specifically target improvements in memory or
communication efficiency. These strategies can be seamlessly
incorporated into nnScaler’s plan with appropriate constraints,
eliminating the need for a comprehensive system overhaul
and demonstrating the platform’s adaptability.
Parallelization plan search and others. To improve train-
ing performance with combined parallelisms, DNN sys-
tems [22, 26, 37, 54, 59, 63, 65] use different searching tech-
niques to find efficient parallelism configurations. Most re-
cently, Alpa [65] leverages both integer programming and
dynamic programming solvers, and Tessel [32] enables the
exploration of schedule search in pipeline parallelism, signif-
icantly harnessing performance potential beyond manually
crafted pipeline schedules. nnScaler, as a parallelization plan
engine that emphasizes customizing the parallelization space
through constraints, is complementary to the above algorithms
and can leverage them to speedup the search within a cus-
tomized space.
Kernel fusion and tuning optimizations. Besides efficient
parallelization plans, kernel fusion and tuning [10, 15, 36, 66]
can also improve execution efficiency on a device by fusing
multiple consecutive operators into a single more performant
GPU kernel. For instance, Flash-Attention [15] fuses multiple
operations within the attention layer into a single kernel to
improve performance with reduced I/O. These techniques
are complementary to nnScaler as they can be applied after
nnScaler partitions computation across devices, to further
enhance the local computation efficiency on each device.

10 Conclusions

nnScaler is a framework that enables domain experts
to leverages three primitives, op-trans, op-assign, and
op-order, along with constraints to construct arbitrary search
spaces for parallelization plans given any DNN model. This
approach represents a more general abstraction to describe
both existing parallelization search spaces and new spaces. Ex-
periments show that nnScaler is able to construct new spaces

that lead to the discovery of new parallelization plans for deep
learning training on emerging DNN models as well as main-
stream models, significantly outperforming existing plans.
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Abstract

ML APIs have greatly relieved application developers of
the burden to design and train their own neural network mod-
els—classifying objects in an image can now be as simple as
one line of Python code to call an API. However, these APIs
offer the same pre-trained models regardless of how their out-
put is used by different applications. This can be suboptimal
as not all ML inference errors can cause application failures,
and the distinction between inference errors that can or cannot
cause failures varies greatly across applications.

To tackle this problem, we first study 77 real-world applica-
tions, which collectively use six ML APIs from two providers,
to reveal common patterns of how ML API output affects ap-
plications’ decision processes. Inspired by the findings, we
propose ChameleonAPI, an optimization framework for ML
APIs, which takes effect without changing the application
source code. ChameleonAPI provides application developers
with a parser that automatically analyzes the application to
produce an abstract of its decision process, which is then used
to devise an application-specific loss function that only penal-
izes API output errors critical to the application. Chameleon-
API uses the loss function to efficiently train a neural network
model customized for each application and deploys it to serve
API invocations from the respective application via existing
interface. Compared to a baseline that selects the best-of-all
commercial ML API, we show that ChameleonAPI reduces
incorrect application decisions by 43%.

1 Introduction

The landscape of ML applications has greatly changed, with
the rise of ML APIs significantly lowering the barrier of ML
application developers. Instead of designing and managing
neural network models by themselves via frameworks like
TensorFlow and PyTorch, application developers can now
simply invoke ML APIs, provided by open-source libraries
or commercial cloud service providers, to accomplish com-
mon ML tasks like object detection, facial emotion analy-
sis, etc. This convenience thus gives rise to a variety of ML
applications on smartphones, tablets, sensors, and personal
assistants [9, 29, 50, 65].

Although ML APIs have eased the integration of ML tasks
with applications, they are suboptimal by serving different ap-
plications with the same neural network models. This issue is
particularly striking when applications use the ML API results
to make control-flow decisions (also referred to as applica-
tion decisions in this paper). Different applications may check

the result of the same ML API using different control-flow
code structures and different condition predicates, a process
that we refer to as the application’s decision process (see §2
for the formal definition). Due to the heterogeneity across
applications’ decision processes, we make two observations.

• First, some incorrect ML API outputs may still lead to cor-
rect application decisions, with only certain critical errors
of API output affecting the application’s decision.

• Second, among all possible output errors of an ML API,
which ones are critical vary significantly across applica-
tions that use this API. That is, the same API output error
may have a much greater effect on one application than on
another.

Figure 1 illustrates the decision process of a garbage-
classification application Heapsortcypher [49]. It first in-
vokes Google’s classification API upon a garbage image.
Then, based on the returned labels, a simple logic is used
to make the application decision about which one of the
pre-defined categories (Recycle, Compost, and Donate) or
others the image belongs to. For example, for an input image
whose ground-truth label is “Shirt”, the correct application
decision is Donate, as shown in Figure 1 (b).

For this application, when the classification API fails to
return “Shirt”, the application decision may or may not be
wrong. For example, Figure 1 (c) and (d) show two possible
wrong API output: if the output is “Paper”, the application
will make a wrong decision of Recycle; however, if the out-
put is “Jacket”, the application will make the correct deci-
sion of Donate despite not matching the ground-truth label.
More subtly, if the API returns a list of two labels, “Shirt”
and “Paper”, the application would make a correct decision
if “Shirt” is ordered before “Paper” by the API, but would
make a wrong decision if “Paper” is ordered before “Shirt”.
The reason is that the application logic, the for loop in Fig-
ure 1 (a), checks one API-output label at a time. As we will
see later, there are also other ways that applications check
the API-output list, which will affect application decision
differently.

As we can see, for a specific application, some errors of
an ML API may be critical, like mis-classifying the shirt to
“Paper” in the example above, and yet some errors may be
non-critical, like mis-classifying the shirt image as “Jacket”
or classifying the shirt image as both “Shirt” and “Paper”
in the examples above. Which errors are critical varies, de-
pending on the application’s decision process.

These observations regarding the critical errors specific to
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Recycle = [`Plastic’,`Wood’,`Glass’,`Paper’,`Cardboard’]
Compost = ['Food','Produce','Snack']
Donate = ['Clothing','Jacket’,'Shirt','Pants','Footwear','Shoe’]

response = client.label_detection(Image)
for obj in response.label_annotations:

if obj.name in Recycle:
return ”recycle”

elif obj.name in Compost:
return “compost”

elif obj.name in Donate:
return “donate”

return “It is others.”

(a) Code snippet of app Heapsortcypher
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App App decision: 
“recycle”
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[“J
ack

et”
]

Image

App App decision: 
“Donate”
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(Ground-truth: ”Shirt”)

App
Correct app 
decision
“Donate”

(b) Correct app decision based on input image’s ground-truth label

(c) ML API output error leads to wrong app decision

(d) ML API output error still leads to correct app decision

ML API invocation

Application decisions

Figure 1: An example ML application whose decision depends
on the output of ML API (multi-label classification), but not
all errors of ML API output have the same effect.

each application suggest substantial room for improvement
by customizing the ML API, essentially the neural network
model underneath the API, for individual application’s deci-
sion process. In particular, for a given application, the cus-
tomized model can afford having more errors less critical to
the application for the benefit of having fewer critical errors
that cause wrong application decisions.

Thus, our goal is to allow ML APIs and their underlying
neural network models to be automatically customized for
a given application, so as to minimize incorrect application
decisions without changing the application’s source code or in-
terface between ML API and software exposed to developers.
This way, application developers who do not have the exper-
tise to design and train customized ML models can still enjoy
the accessibility of generic ML APIs while getting closer to
the accuracy of ML models customized for the application.

No prior work shares the same goal as us. The closest line
of prior work specializes DNN models for given queries [7,
8, 36, 37, 43], but they require application developers to use
a domain specific language (e.g., in SQL [36]) instead of
general programming languages, like Java and Python, and
mostly focus on reducing the DNN’s size. In contrast, we keep
both the ML API interface and the application source code
intact while avoiding incorrect decisions for ML applications.

With the aforementioned goal, this paper makes two contri-
butions. First, we run an empirical study over 77 real-world
applications that collectively use six ML APIs to reveal sev-

eral common patterns of how the outputs of ML APIs affect
the application decisions (§2).

Our study identifies two types of ML API output that are
used by applications to make control-flow decisions (categor-
ical labels and sentiment scores), and three types of decision
types (True-False, Multi-Choice, and Multi-Selection) with
different implications regarding which ML API output errors
are critical to the application.

Our study also quantitatively reveals opportunities of model
customization. (1) Although popular image-classification
models are trained to recognize as many as 19.8K differ-
ent labels, the largest number used by any one application for
decision making is only 54. Consequently, mis-classification
among the remaining tens of thousands of labels are com-
pletely irrelevant to an application. (2) More importantly,
applications tend to treat multiple labels (4.7 on average) as
one equivalence class in their decision making, such as labels
Plastic, Wood, Glass, Paper, and Cardboard in Figure 1(a).
Mis-classification among those labels inside one equivalence
class does not matter. (3) Which labels are relevant to an ap-
plication’s decision making vary greatly across applications,
with only 12% of application pairs share any labels used for
their decision making.

Second, inspired by the empirical study, we propose
ChameleonAPI, which customizes and serves ML models be-
hind the ML API for each given application’s decision process,
without any change to the existing ML API or the application
source code (§3). ChameleonAPI works in three steps. First,
it provides a parser that analyzes application source code to
extract information about how ML inference results are used
in the application’s decision process. Based on the analysis
result, ChameleonAPI then constructs the loss function to
reflect which ML model output is more relevant to the given
application as well as the different severity of ML inference
errors on the application decisions. The ML model will be
retrained accordingly using the new loss function. Finally,
when the ML API is invoked by the application at runtime, a
customized ML model will be used to serve this query.

We evaluate ChameleonAPI on 57 real-world open-source
applications that use Google and Amazon’s vision and lan-
guage APIs. We show that ChameleonAPI’s re-trained models
reduce 48% of incorrect decisions compared to the off-the-
shelf ML models and 50% compared to the commercial ML
APIs. Even compared with a baseline that selects the best-
of-all commercial ML API, ChameleonAPI reduces 43% of
incorrect decisions. ChameleonAPI only takes up to 24 min-
utes on a GeForce RTX 3080 GPU to re-train the ML model.

Our code is publicly available at https://github.com/
UChi-JCL/chameleonAPI.

2 Understanding Application Decision Process

We conduct an empirical study to understand how applica-
tions make decisions based on ML APIs (§2.3), and how this
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ML API name ML task Provider # of apps

label_detection Vision::Image classification Google 29
detect_labels Vision::Image classification Amazon 11
object_localization Vision::Object detection Google 8
analyze_sentiment Language::Sentiment analysis Google 14
analyze_entities Language::Entity recognition Google 6
classify_text Language::Text classification Google 9

Table 1: Summary of applications used in our empirical study.

decision making logic implies the different severity of ML
inference errors (§2.4). This study will reveal why and how
to customize the ML API backend for each application. As
a representative sample of ML APIs, this study focuses on
cloud AI services due to their popularity.

2.1 Definitions
Preliminaries: We begin with basic definitions.

• Application decision: the collective control-flow decisions
(i.e., which branch(es) are taken) made by the application
under the influence of a particular ML API output.

• Incorrect ML API output: a situation when the API output
differs from the API input’s human-labeled ground truth.
We refer to such ML API outputs as API output errors.

• Correct decision: the application decision if the API output
is the same as the human-labeled ground-truth of the input.

• Application decision failure: a situation when the appli-
cation decision is different from the correct decision, also
referred to as application failure for short in this paper.

Software decision process: Given these definitions, an ap-
plication’s software decision process (or decision process for
short) is the logic that maps an ML API output to an applica-
tion decision. The code snippet in Figure 1 shows an example
decision process, which maps the output of a classification
ML API on an image to the image’s recycling categorization
specific to this application.
Critical and non-critical errors: For a given decision pro-
cess, some API output errors will still lead to a correct deci-
sion, whereas some API output errors will lead to an incorrect
decision and hence an application failure. We refer to the
former as non-critical errors, and the latter as critical errors.

2.2 Methodology
Our work focuses on applications that use ML API output
to make control-flow decisions. To this end, we look at 77
open-source applications which collectively use six widely
used vision and language APIs [10,65] offered by two popular
cloud AI service providers, as summarized in Table 1.

These applications come from two sources. First, we study
all 50 applications that use vision and language APIs from a
recently published benchmark suite of open-source ML appli-
cations [66]. Second, given the popularity of image classifi-
cation APIs [11, 12], we additionally sample 27 applications

from GitHub that use Google and Amazon image classifica-
tion APIs (16 for the former and 11 for the latter). We obtain
these 27 by checking close to 100 applications that use image
classification APIs and filtering out those that directly print
out or store the API output. Every application in our bench-
mark suite uses exactly one ML API for decision making.
Threats to validity: While many applications use the APIs
listed in Table 1, there are a few other APIs not covered
in our study. A few vision and language-related ML tasks
are not as popular and hence are not covered in our study
(e.g., face recognition and syntax analysis). Speech APIs are
not covered, because their outputs are rarely used to affect
application control flow based on our checking of open-source
applications. Finally, our study does not cover applications
that use ML APIs offered by other cloud or local providers.

2.3 Understanding the decision mechanism
Q1: What types of ML API outputs are typically used by
applications to make decisions?

ML APIs produce output of a variety of types. The sen-
timent analysis API outputs a list of floating-point value
pairs (score and magnitude), describing the sentiment of
the whole document and every individual sentence; the other
five APIs in Table 1 each produces a list of categorical labels
ranked in descending order of their confidence scores, which
is also part of the output. Some APIs’ output also contains
other information, like coordinates of bounding boxes, en-
tity names, links to Wikipedia URLs, and so on. Among all
these, only two types have been used in application decision
processes of our studied application: the floating-point pair
(score and magnitude) and the categorical labels.

For the 63 applications that use categorical-label output
from the five APIs (all except analyze_sentiment in Table
1), they each define one or more label lists and check which
label list(s) an API output label belongs to. The code snippet
of a landmark classification application in Figure 2(a) is an
example of this. It calls the label_detection API with a
sight-seeing image and checks the output labels to see if the
image might contain Landmark, or just ordinary Building,
or Person.

For the 14 applications that use the analyze_sentiment
API, they each define several value ranges and check which
range the sentiment score and/or magnitude falls in. The
code snippet of FoodDelivery [48] in Figure 2(b) is an ex-
ample. This application calls analyze_sentiment with a
restaurant review text, and then checks the returned sentiment
score to judge if the review is negative, positive, or neutral.

Q2: What type of decisions do applications make?
We observe three categories of ML-based decision making,

which we name following common question types in exams:
(1) True-False decision, where a single label list or value

range is defined and one selection is allowed: either the ML
API output belongs to this list/range or not. This type occurs
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(b) FoodDelivery
(Float-point value output, Multi-Choice)

Protein = [”Hamburger”,”Meat”,
“Patty”]

Grain = [“Noodle”,”Pasta”,”Bread”]
Fruit = [“Apple”,”Orange”,”Pear”]
res = client.label_detection(Img)
returned_set = set()
for obj in res.label_annotations:
if obj.name in Protein:
returned_set.add(“protein”)

elif obj.name in Grain:
returned_set.add(“grain”)

elif obj.name in Fruit:
returned_set.add(“fruit”)

return returned_set

(d) The-Coding-Kid
(Label output, Multi-Select)

(a) Aander-ETL
(Label output, Multi-Choice, App-Order)

Landmark = [“Landmark, “Sculpture”] 
Building = [“Building”, “Estate”, 

“Mansion”]
Person = [“Person”, “Lady”] 
res = client.label_detection(Img)
annotations = res.label_annotations
labels = [obj.name for obj in annotations]
if any([l in Landmark for l in labels]):
return ”Landmark”

elif any([l in Building for l in labels]):
return ”Building”

elif any([l in Person for l in labels]):
return ”Person”

else: ## obj.name not in any list
return “It is others.”

text = types.Document(content=Text)
res = client.analyze_sentiment(text)
sentiment = res.document_sentiment
sentiment_score = sentiment.score
if sentiment_score < 0.3:
print(“It's a negative sentence!”)

elif sentiment_score > 0.6:
print(“It's a positive sentence!”)

else: ## between 0.3 and 0.6
print(“It's a neutral sentence!”)

(c) Plant-watcher
(Label output, True-False)

Branch condition that uses API output Structure indicating decision typesInvocation of ML API

Plant = [”Houseplant”,“Bonsai”,
“Plant”, “Flowerpot”]

res = 
client.label_detection(Img)

for obj in
response.label_annotations:
if obj.name in Plant:
return “Plant found!”

return “No plant found.”

Figure 2: Code snippets from five example applications where ML API output affects control flow decisions in different ways.

in about one third of the applications in our study. For exam-
ple, the plant management application Plant-watcher [57]
(Figure 2(c)) checks to see if the image contains plants or not.

(2) Multi-Choice decision, where multiple lists of labels or
value ranges are defined, and one selection is allowed. The
ML API output will be assigned to at most one list or range;
the application’s decision making logic determines which of
these lists/ranges the output belongs to, or determines that the
output belongs to none of them. This type of decision is the
most common, occurring in about 45% of benchmark appli-
cations. The garbage classification application discussed in
§1 makes such a Multi-Choice decision. It decides which one
of the following classes the input image belongs to: Recycle,
Compost, Donate, or none of them.

(3) Multi-Select decision, where multiple label lists or value
ranges are defined, and multiple selections are allowed about
which label lists or value ranges the ML API output belongs
to. This type of decisions occur in close to a quarter of the
applications. Figure 2(d) illustrates such an example from the
nutrition advisor application The-Coding-Kid [62]. This ap-
plication defines three label lists to represent nutrition types:
Protein, Grain, and Fruit, and it checks to find all the nu-
trition types present in the input image.

In the remainder of the paper, we will use target class
to refer to a label list (or a value range) that is used to
match against a categorical label (or a value). For instance,
the code snippet in Figure 2(a) has three label lists as
its target classes ([Landmark, Sculpture], [Building,
Estate, Mansion], and [Person, Lady]), and the code
snippet in Figure 2(b) has three value ranges as its target
classes (<0.3, >0.6, and in between).

Q3: How do applications reach Multi-Choice decisions?
When the ML API outputs multiple labels, the outcome of

a Multi-Choice decision varies depending on which matching
order is used. First, the matching order can be determined by
the API output. For example, the garbage classification appli-
cation (Figure 1) first checks whether the first label in the API
output matches any target class. If so, later API output labels
will be skipped, even if they might match with a different class.
If there is no match for the first label, the second output label

is checked, and so on. These labels are ranked by the API in
the descending order of their associated confidence scores, so
we refer to such a matching order as API-order. It is used by
80% of applications that make Multi-Choice decisions.

The matching order can also be specified by the application,
referred to as App-order. For instance, regardless the API
output, application Aander-ETL [1] (Figure 2(a)) always first
checks if the Landmark class matches with any output label.
If there is a match, the decision is made. Only when it fails
to match Landmark, will it move on to check the next choice,
Building, and so on. This matching order is used by 20% of
applications that make Multi-Choice decisions.

2.4 Understanding the decision implication
Q4: Does an application need ML APIs that can accurately
identify thousands of labels?

ML models behind popular ML APIs are well trained to
support a wide range of applications. For example, Google
and Microsoft’s image-classification APIs are capable of iden-
tifying more than 10000 labels [44], while Amazon’s image-
classification API can identify 2580 labels [3]. However, for
each individual application, its decision making only requires
classifying the input image into a handful of target classes: 7
at most in our benchmark applications. The largest number
of image-classification labels checked by an application is
54, a tiny portion of all the labels an image-classification API
could output.

Clearly, for any application, a customized ML model that
focuses on those target classes used by the application’s de-
cision process has the potentially to out-perform the big and
generic ML model behind ML APIs. How to accomplish the
customization without damaging the accessibility of ML APIs
will be the goal of ChameleonAPI.

Q5: Are there equivalence classes among ML API outputs
in the context of application decision making?

For the 63 applications that make decisions based on API
output of categorical labels, they present 121 target classes in
total, each containing 4.7 labels on average (3 being the me-
dian). Only 35 target classes in 22 applications contain a sin-
gle label. For the 14 applications that make decisions based on
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floating-point sentiment score and magnitude, their target
classes all contain an infinite number of score or magnitude
values. In other word, no class contains just a single value.

Clearly, the wide presence of multi-value target classes
creates equivalence classes among output returned by the
API—errors within one equivalence class are not critical to
the corresponding application. This offers another opportunity
for ML customization.

Q6: How much difference is there between different appli-
cations’ target classes?

Overall, the difference is significant. We have conducted
pair-wise comparison between any two applications in our
benchmark suit, and found that 88% of application pairs share
no common labels in any of their target classes. Similarly,
among the 381 labels that appear in at least one application’s
target classes, 88% of them appear in only one application
(i.e., 335 out of 381 labels).

Clearly, there is little overlap among the target classes of
different applications, again making a case for per-application
customization of the ML models used by the ML APIs.

Q7: Do different decision mechanisms imply different sen-
sitivity to output errors of ML APIs?

Even for two applications that have the same target classes,
if they try to make different types of decisions, they will have
different sensitivity to ML API output errors—some API er-
rors might be critical to one application, but not to the other.
For example, errors that affect the selection of different target
classes are equally critical to Multi-Select decisions. However,
this is not true for Multi-Choice, where only the first matched
target class matters. Furthermore, the matching order of a
Multi-Choice decision affects which errors are critical. When
the API-output order is used (e.g.,HeapsortCypher in Fig-
ure 1), an error on the first label in the API output is more
likely to be critical than an error on other labels in the output.
However, when App-order order is used (e.g.,Aander-ETL in
Figure 2(a)), errors related to labels in the first target class
(e.g.,Landmark) are more likely to be critical than those re-
lated to labels in later target classes (e.g.,Person).

Clearly, to customize ML models for each application, we
need to take into account what is the decision type and what
is the matching order (for Multi-Choice decisions).

3 Design of ChameleonAPI

Inspired by the study of §2, we now present ChameleonAPI
which automatically customizes ML models for applications.

3.1 Problem formulation
Goal: For an application that uses ML APIs, our goal is to
minimize critical errors in the API outputs for this appli-
cation by efficiently re-training the original generic neural
network models underneath these APIs into customized mod-
els; our approach stands in contrast to typical approaches that
minimize all inference errors. In other words, the new ML

App source
code

extraction of decision-
process summary (3.3)

Decision-process
summary

Creation of app-specific
loss function (3.2)

App-specific 
loss function DNN

Output 

Loss
Training DNN using app-specific

loss function

ML API 
backend

Figure 3: The logical steps of how ChameleonAPI customizes
d for individual applications.

model should return outputs that lead the application process
to the same decision as if the ground-truth of the input is
returned by the ML API.

To formally state this objective, we denote how an applica-
tion makes a decision by App(API(x)), where x is the input
to the ML API and API(x) is the API output. Then for a given
application decision process of App(·) and an input set X1,
our goal is to train an ML model DNN(·) such that

min
xi∈X

∣∣∣{xi|App(API(xi)) ̸= App(ÂPI(xi))}
∣∣∣ ,

where API(xi) = F(DNN(xi)) (1)

Here, ÂPI(xi) is a hypothetical API function that always
returns the ground truth of input xi, and F(·) represents the
postprocessing used by the API to translate a DNN output to
an API output. For instance, an image classification model’s
output is a vector of confidence scores between 0 and 1 (each
for a label), but the ML API will use a threshold θ to filter
and return only labels with scores higher than θ, or the top k
labels with the highest confidence scores.

Our goal in Eq 1 differs from the traditional goal of an ML
model, which minimizes any errors in the API output, i.e.,

min
xi∈X

∣∣∣{xi|API(xi) ̸= ÂPI(xi)}
∣∣∣ . (2)

Given that it is hard to obtain a DNN with 100% accuracy,
the difference between the two formulations is crucial, since
not all API output errors in Eq. 2 will cause incorrect applica-
tion decisions in Eq. 1. Thus, compared to optimizing Eq. 2,
optimizing Eq. 1 is more likely to focus the DNN training on
reducing the critical errors for the application.

To train a DNN that optimizes Eq. 1, we need to decide if a
DNN inference output DNN(x) is a critical error or not (i.e.,
App(DNN(x)) ̸= App(ÂPI(x))) at the end of every training
iteration. This decision needs to be made automatically and
efficiently. For example, repeatedly running the entire ML
application after every training iteration would not work, as it
may significantly slow down the training procedure.

1A careful reader might notice that the formulation in Eq. 1 also depends
on the input set. Though the input set should ideally follow the same dis-
tribution of real user inputs of the application, this distribution is hard to
obtain in advance and may also vary over time and across users. Instead, we
focus our discussion on training the ML model to minimize Eq. 1 with an
assumed input distribution. Our evaluation (§5) will test the resulting model’s
performance over different input distributions.
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Logical steps of ChameleonAPI: To customize and deploy
the DNN for an application, ChameleonAPI takes three log-
ical steps (Figure 3). First, ChameleonAPI extracts from an
application’s source code a decision-process summary (ex-
plained shortly), a succinct representation of the application’s
decision process, which will be used to determine if a DNN
inference error is critical (details in §3.3). Second, Chameleon-
API converts a decision-process summary to a loss function,
which can be directly used to train a DNN (details in §3.2).
This loss function only penalizes DNN outputs that lead to
critical errors with respect to a given application. Finally, the
loss function will be used to train a customized DNN for this
particular application’s ML API invocations (§3.4).
A decision-process summary is a succinct abstraction of the
application that contains enough information to determine if
a DNN inference output causes a critical error or not. Specifi-
cally, it includes three pieces of information (defined in §2.3):
• Composition of target classes: the label list or value range

of each target class;
• Decision type: True-False, Multi-Choice, or Multi-Select;
• Matching order: over the target classes, API-order or App-

order, if the application makes a Multi-Choice decision.
For a concrete example, the decision-process summary of the
garbage classification application in Figure 2(a) contains (1)
three label lists representing three target classes: Recycle,
Compost, and Donate; (2) the Multi-Choice type of decision;
and (3) the matching order of API-order.
What is changed, what is not: ChameleonAPI does not
change the ML API or the application source code. Unlike
recent work that aims to shrink the size of DNNs or speed
them up [36, 37, 54], we do not change the DNN architecture
(shape and input/output interface); instead, we train the DNN
to minimize critical errors. That said, deploying Chameleon-
API has two requirements. First, the application developers
need to run ChameleonAPI’s parser script to automatically
extract the decision-process summary. Second, an ML model
needs to be retrained for each application, instead of serving
the same model to all applications.

The remainder of this section will begin with the design
of the application-specific loss function based on decision-
process summary, followed by how to extract the decision-
process summary from the application, and finally, how the
customized ML models are used to serve ML API queries.

3.2 Application-specific loss function
Given Eq 1, ChameleonAPI trains a DNN model with a new
loss function, which only penalizes critical errors of an appli-
cation, rather than all DNN inference errors. Since decision
processes vary greatly across applications (§2.4), we first
explain how to conceptually capture different decision pro-
cesses in a generic description, which allows us to derive the
mathematical form of ChameleonAPI’s loss function later.
Generalization of decision processes: For each application

C1 = [“Landmark, “Sculpture”]
C2 = [“Building”, “Estate”]
res = client.label_detection(Image)
annotations = res.label_annotations
labels = [obj.name for obj in

annotations]
if any([l in C1 for l in labels]):
return ”C1”

elif any([l in C2 for l in labels]):
return ”C2”

(c) Generic description of the decision process
on DNN output 𝑦 = [0.1, 0.2, 0.8, 0.6] & score threshold 𝜃 = 0.3

(a) Application source code

1st check: <[0.8, “Building”],    C1       >  à False (mismatch)

2nd check: <[0.6, “Estate”],        C1       >  à False (mismatch)

3rd check: <[0.2, “Landmark”],    C1       >  à False (score below 𝜃)

4th check: <[0.1, “Sculpture”],  C1       >  à False (score below 𝜃)

5th check: <[0.8, “Building”],    C2       >  à True

6th check: <[0.6, “Building”],    C2       >  à True

7th check: <[0.2, “Landmark”],    C2       >  à False

8th check: <[0.1, “Sculpture”],  C2       >  à False

⟸ EOD

DNN output 𝐲 (score, label) Target class 𝒄(𝒋) Matched? 𝑴(𝒋)

Target classes:
[“Landmark,“Sculpture”]
[“Building”,“Estate”]

Decision type:
Multi-Choice

Matching order: 
App-order

(b) Decision-process summary

Figure 4: The generic description (shown in (c)) of an applica-
tion (whose source code is shown in (a) and decision-process
summary in (b)) on a DNN inference output y.

in our study (§2.2), our insight is that its decision process
can always be viewed as traversing a sequence of conditional
checks until an end-of-decision (EOD) occurs:

1st check: < y,c(1) >→ M(1)

. . .

jth check: < y,c( j) >→ M( j) ⇐ EOD
. . .

where the j-th check takes as input the DNN output y and
one of target classes c( j), and returns a binary M( j) indicating
whether y( j) matches the condition of c( j) and a binary deci-
sion whether this check happens before the EOD. The set of
target classes successfully matched before the EOD will be
those selected by the application.

Figure 4 shows (a) an example application, (b) the decision-
process summary, and (c) the generic description for this
application’s decision process and a DNN output.

This generic description (e.g., the traversal order of the
target classes, how a match is determined in a check, and
when the EOD occurs) will depend on the information in the
decision-process summary and the DNN output y. We stress
that this generic description may not apply to all applications,
but it does apply to all applications in our study (§2.2).
Categorization of critical errors: Importantly, this generic
description helps to categorize critical errors:
• Type-1 Critical Errors: A correct target class c is not

matched before EOD, but will be so if EOD occurs later.
• Type-2 Critical Errors: A correct target class c is never

matched, before or after the EOD.
• Type-3 Critical Errors: An incorrect target class c is

matched before EOD.
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A useful property of this categorization is that any wrong de-
cision (a correct target class not being picked, or an incorrect
target class being picked) falls in a unique category, and non-
critical errors do not belong to any category. In other words,
as long as the loss function penalizes the occurrences of each
category, it will only capture critical errors.
ChameleonAPI’s first attempt of a new loss function: To
understand why it is difficult to penalize critical errors and
critical errors only, we first consider the common practice
of assigning a higher weight to the loss of a DNN output if
the ground-truth of the input will lead to a selection of some
target classes (e.g., [26, 35, 64]). Henceforth, we refer to this
basic design of loss function as ChameleonAPIbasic.

At best, ChameleonAPIbasic might improve the DNN’s
label-wise accuracy on inputs whose ground-truth decision
selects some target classes. However, as elaborated in §2.3,
we also need to consider which labels belong to the same
target class, the decision type, and the matching order of
an application decision process in order to capture the
three types of critical errors. For instance, in the garbage-
classification application (Figure 1), without knowing the
label lists of each target class, ChameleonAPIbasic will give
an equal penalty to a critical error of mis-classifying a Paper
image to Wood and a non-critical error of mis-classifying a
Paper image to Shirt. Similarly, without knowing the match-
ing order, ChameleonAPIbasic will equally penalize the output
of [Plastic, Jacket] and [Jacket, Plastic], but only the
latter leads to correct output because Jacket is matched first.
ChameleonAPI’s loss function: ChameleonAPI leverages
the categorization of critical errors to systematically derive
a loss function that penalizes each type of critical error. To
make it concrete, we explain ChameleonAPI’s loss function of
“label-based API, Multi-Choice type of decision, and App-order”
(e.g., Figure 4). Appendix§B will detail the loss functions of
other decision processes. The loss function of such applica-
tions has three terms, each penalizing one type of critical
error:

L(y) =

Type-1 Critical Errors︷ ︸︸ ︷
Sigmoid

(
min

(
max

l∈∪c<ĉGc

y[l],max
l∈Gĉ

y[l]
)
−θ

)
(3)

+

Type-2 Critical Errors︷ ︸︸ ︷
Sigmoid

(
θ−max

l∈Gĉ

y[l]
)
+

Type-3 Critical Errors︷ ︸︸ ︷
∑
c<ĉ

Sigmoid
(

max
l∈Gc

y[l]−θ

)

Here, y[l] denotes the score of the label l, Gc denotes the set of
labels of target class c, ĉ denotes the correct (i.e., ground-truth)
target class, and the sigmoid function Sigmoid(x) = 1

1+ex will
incur a higher penalty on a greater positive value.

Why does it capture the critical errors? Given this applica-
tion is Multi-Choice, the EOD will occur right after the first
match of a target class, i.e., the first check with a c such that
maxl∈Gc y[l]≥ θ.

• A Type-1 critical error occurs, if (1) the correct target class
ĉ is matched and (2) it is matched after the EOD. First, the
correct target class ĉ is matched, if and only if at least one
of its labels has a score above the confidence threshold,
so maxl∈Gĉ y[l]≥ θ). Second, this match happens after the
break, if and only if some target class c before ĉ (i.e., c < ĉ)
is matched, so maxl∈Gc y[l]≥ θ). Put together, the first term
of Eq 3 penalizes any occurrence of these conditions.

• A Type-2 critical error occurs, if no label in the correct
target class ĉ has a score high enough for ĉ to be matched,
i.e., maxl∈Gĉ y[l]< θ, so the second term of Eq 3 penalizes
any occurrence of this condition.

• A Type-3 critical error occurs, if any incorrect target class
c before ĉ (i.e., c < ĉ) has a label with a score high enough
for c to be matched, i.e., maxl∈Gc y[l]−θ, so the third term
of Eq 3 penalizes any occurrence of this condition.

To train a DNN, the loss function must be differentiable
with respect to the DNN ouput y. Eq 3 uses the max function
several times. Though max is not naturally differentiable, it
can be closely approximated in well-known differentiable
forms provided by PyTorch’s differentiable operators [56]).

3.3 Extracting applications’ decision process
The current prototype of ChameleonAPI program analysis
supports Python applications that make decisions based on
categorical label output or floating point output of ML APIs.
We first discuss how it works for ML APIs with categor-
ical label output, like all the APIs in Table 1 except for
analyze_sentiment. We will then discuss a variant of it
that works for most use cases of analyze_sentiment.

Given application source code, ChameleonAPI first identi-
fies all the invocations of ML APIs. For every invocation I in
a function f , ChameleonAPI then identifies all the branches
whose conditions have a data dependency upon the ML API’s
label output. We will refer to these branches as I-branches. If
there is no such branch in f , ChameleonAPI then checks the
call graph, and analyzes up to 2 levels of callers and up to 5
levels of callees of f until such a branch is identified. If no
such branch is identified after this, ChameleonAPI considers
the ML API invocation I to not affect application decisions
and hence does not consider any optimization for it. If some I-
branches are identified, ChameleonAPI records the top-level
function analyzed, F , and moves on to extract the decision-
process summary in following steps.

What are the target classes? ChameleonAPI figures out all
the target classes and their composition in two steps.

The first step leverages symbolic execution and constraint
solving to identify all the labels that belong to any target
classes. Specifically, ChameleonAPI applies symbolic exe-
cution to function F , treating the parameters of F and the
label output of I as symbolic (i.e., the symbolic execution
skips the ML API invocation I and directly uses I’s symbolic
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output in the remaining execution of F)2. Since applications
typically match only one label in API output at a time (as ob-
served in §2.3), we set the label array returned by I to contain
one element (label) and use a symbolic string to represent
it. Through symbolic execution, ChameleonAPI obtains con-
straints for every path that involves an I-branch, solving which
tells ChameleonAPI which labels need to be in the output of
the ML API in order to execute each unique path, essentially
all the labels that belong to any target class.

One potential concern is that a solver may only output
one instead of all values that satisfy a constraint. Fortu-
nately, the symbolic execution engine used by ChameleonAPI,
NICE [31], turns Python code into an intermediate represen-
tation where each branch is in a simplest form. Take Figure
2(d) as an example, the source-code branch if obj.name in
Protein is transformed into three branches where obj.name
is compared with “Hamburger”, “Meat”, and “Patty” sepa-
rately, allowing us to capture all three labels by solving three
separate path constraints.

The second step groups these labels into target classes by
comparing their respective paths: if two API output, each with
one label, lead the program to follow the same execution path
at the source-code level, these two labels belong to the same
target class. For example, in Figure 2(d), the execution path
is exactly the same when the label_detection API returns
[“Hamburger”], comparing with when it returns [“Meat”],
with all function parameters and other API output fields being
the same. Consequently, we can know that label Hamburger
and label Meat belong to the same target class. To figure out
the path, ChameleonAPI simply executes function F using
each input produced by the constraint solver and traces the
source-code execution path using the Python trace module.

One final challenge is that ChameleonAPI needs to identify
and exclude the path where none of the target classes are
matched (e.g., the “It is others.” path in Figure 2(a)).
We achieve this by carefully setting the default solution in the
constraint solver to be an empty string, which is impossible
to output for any ML APIs in this paper. This way, whenever
this default solution is output, ChameleonAPI knows that the
corresponding path matches no target class.
What is the type of decision? When only one target class is
identified, ChameleonAPI reports a True-False decision type.
Otherwise, ChameleonAPI decides whether the decision type
is Multi-Choice or Multi-Select by checking the source-code ex-
ecution path associated with every target class label obtained
above. If any execution evaluates an I-branch after another
I-branch is already evaluated to be true, ChameleonAPI re-
ports a Multi-Select decision type; otherwise, ChameleonAPI
reports a Multi-Choice decision type.
What is the matching order over the target classes? To tell
whether a Multi-Choice decision is made through API-Order

2Recall that an API output contains several fields not used to influence
control flow in any applications. We set them with pre-defined dummy values.

like in Figure 1 or App-Order like in Figure 2(a), Chameleon-
API first identifies all the for loops that iterate through the la-
bel array output by the ML API and have control-dependency
with I-branches, e.g., the for l in labels in Figure 2(a)
and the for obj in response.label_annotations in
Figure 1.

ChameleonAPI then checks how many such output-
iterating loops there are. If there is only one and this loop is
not inside another loop, like that in Figure 1, ChameleonAPI
considers the matching order to be API-Order, as the appli-
cation only iterates through each output label once, with the
matching order determined by the output array arranged by
the ML API. Otherwise, ChameleonAPI considers the match-
ing order to be App-Order. This is the case for the example
shown in Figure 2(a), where three output-iterating loops are
identified, each of which matches with one target class in
an order determined by the application: the Landmark target
class, followed by the Building, and finally the Person.

How to handle floating-point output of ML APIs? Recall
in §2.3 that some ML APIs, e.g.,analyze_sentiment, have
floating-point output and the application defines several value
ranges to put each floating-point output into one category.
To handle this type of API, ChameleonAPI needs to identify
the value range of each target class, which is not supported
by NICE and other popular constraint solvers. Fortunately,
many applications directly compare API output with constant
values in I-branches, giving ChameleonAPI a chance to in-
fer the value range. For these applications, ChameleonAPI
first extracts those constant values that are compared with
API output in I-branches, e.g., 0.3 and 0.6 in Figure 2(b).
ChameleonAPI then forms tentative value ranges using these
numbers, like -1 – 0.3, 0.3 – 0.6, and 0.6 – 1 for Figure 2(b)
(-1 and 1 are the smallest and biggest possible score output
of analyze_sentiment based on the API manual). To con-
firm these value ranges and figure out the boundary situation,
ChameleonAPI then executes function F with all the bound-
ary values, as well as some values in the middle of each range.
By comparing which values lead to the same execution path,
ChameleonAPI finalizes the value ranges. For the example in
Figure 2(b), after executing with score set to -0.35, 0.3, 0.45,
0.6, and 0.8, ChameleonAPI settles down on the final value
ranges to be: (-1,0.3), [0.3,0.6), and [0.6,1).

Limitation The static analysis in ChameleonAPI does not
handle the iterated object of while loops, unfolded loops, and
recursive functions. For complexity concerns, ChameleonAPI
only checks caller and callee functions with limited levels, and
hence may miss some I-branches far away from the API invo-
cation. ChameleonAPI’s ability of identifying target classes is
limited by the constraint solver. ChameleonAPI assumes dif-
ferent source-code paths correspond to different target classes,
which in theory could be wrong if the application behaves
exactly the same under different execution paths.
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Figure 5: Workflow of ChameleonAPI.

3.4 Putting them together
We put these components together into a ML-as-a-Service
workflow shown in Figure 5.

First, when an application (A) is developed or updated,
the developers run a parser (described in §3.3) provided by
ChameleonAPI on A’s source code to extract the decision-
process summary for A. The developers can then upload the
decision-process summary to ChameleonAPI’s backend to-
gether with a unique application ID3 (which will later be used
to identify queries from the same application).

ChameleonAPI’s backend then uses the received decision-
process summary to construct a new application-specific loss
function (described in §3.2). When a DNN is trained using the
new loss function, its inference results will lead to fewer criti-
cal errors (i.e., incorrect application decisions) for application
A. In our prototype, ChameleonAPI uses the new loss func-
tion to re-train an off-the-shelf pre-trained DNN, a common
practice to save training time (see §5 for quantification). The
DNN re-training uses an application-specific dataset sampled
from the dataset used by the pre-trained generic DNN (see
Table 2 and §4), so that each target/non-target class is selected
by ground-truth decisions of the same number of inputs.

Finally, ChameleonAPI backend maintains a set of DNN
models, each customized for an application and keyed by the
application ID. When application A invokes an ML API at
run time, the ChameleonAPI backend will use the application
ID associated with the API query to identify the DNN model
customized for A, run the DNN on the input, and return the
inference result of the selected model to the application.

Note that, ChameleonAPI can also be used to customize
ML models that run locally behind the ML APIs, instead of
those in the cloud through ML service providers. In this case,
developers run the ChameleonAPI parser on their application

3In many MLaaS offerings [2, 20], a connection between the application
and the MLaaS backend is commonly created before the application issues
any queries. Existing MLaaS already allows applications to specify the
application ID via the connection between the application and backend.

Dataset Generic model
Image Classification OpenImages [44] TResNet-L [6]
Object Detection COCO [14] Faster-RCNN [58]
Sentiment Analysis Amazon review [39] BERT [18]
Text Classification Yahoo [30] BERT [18]
Entity Recognition conll2003 [63] BERT [18]

Table 2: The ML APIs and datasets in evaluation.

and save the parser’s result into a local file. This local file will
then be consumed to help re-train an off-the-shelf DNN into
a customized DNN to serve the application.

4 Implementation

Extractor of decision-process summary: The current pro-
totype of ChameleonAPI is implemented for Python applica-
tions that use Google or Amazon ML APIs. It takes as input
the application source code and returns as output the decision-
process summary in the JSON format. It uses NICE symbolic
execution engine [31] and CVC5 constraint solver [5] to iden-
tify target classes, and uses Python static analysis framework
Pyan [47] and Jedi [24] to identify the decision type and the
matching order. Particularly, it identifies the object that is it-
erated through by a for-loop through the iter expression in
each for-loop header, which is used to distinguish Multi-Choice
and Multi-Select decisions and the matching order.
ML re-training: The re-training module is implemented in
PyTorch v1.10 and CUDA 11.1. It uses a decision-process
summary to construct a new loss function (see §3.2), and then
replaces the builtin loss function in Pytorch with the new
loss function, and uses the common forward and backward
propagation procedure to re-train an off-the-shelf pre-trained
DNN model (explained next).
Generic models: Without access to the models and the
training data used by commercial ML services, we use open-
sourced pre-trained DNNs and their training datasets as a
proxy, which are summarized in Table 2. These DNNs are
trained on the “training” portion of their respective datasets.
They are trained to achieve good accuracy over a wide range
of labels, and we have confirmed that their accuracies in terms
of application decisions are similar to the real ML APIs (§5.2).
Training data: We make sure that the labels included in these
datasets cover the labels used in the decision processes of the
applications in our study. An exception is text classification:
to our best knowledge, there is no open-source dataset that
covers the classes in Google’s text classification API. Instead,
we use the Yahoo Question topic classification dataset [30],
whose classes are similar to those used in the applications.

Instead of training DNNs on all training data, most of
which do not match any target classes of an application, we
create a downsampled training set for ChameleonAPI and
ChameleonAPIbasic. For each application, we randomly sam-
ple (without replacement) its training data such that each
target class and the non-target class (not matching any target
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class) is the correct decision for the same number of training
inputs, which depending on applications, ranges from 12K to
40K. With such training set, ChameleonAPIbasic will be equiv-
alently implemented by training on the downsampled training
set using the conventional loss function (i.e., cross-entropy
loss for classification tasks). Moreover, the downsampled
training set significantly speedups DNN re-training (§5.2).

5 Evaluation

Our evaluation aims to answer following questions: How
much can ChameleonAPI reduce incorrect application de-
cisions? How long does it take ChameleonAPI to cus-
tomize DNN models for applications? and Why does
ChameleonAPI reduce incorrect application decisions where
ChameleonAPIbasic falls short?

5.1 Setup
Applications: We have applied ChameleonAPI on all the 77
applications summarized in Table 1. Due to space constraints,
our discussion below focuses on the 57 applications that in-
volve three popular ML tasks, image-classification, object-
detection, and text-classification, and omits the remaining 20
applications that involve sentiment analysis and entity recogni-
tion. The results of the latter show similar trends of advantage
from ChameleonAPI and are available in Appendix §D.
Metrics: For each scheme (explained shortly) and each ap-
plication, we calculate the incorrect decision rate (IDR): the
fraction of testing inputs whose application decisions do not
match the correct application decisions (i.e., decisions based
on human-annotated ground truth).
Schemes: We compare the results of these schemes:
• Various commercial ML APIs: the results returned by ML

APIs of three service providers (Google [20], Amazon [2]
and Microsoft [51]).

• Best-of-all API*: a hypothetical method that queries ML
APIs from those three service providers on each input and
picks the best output based on the classic definitions of
accuracy: label-wise recall for classification tasks and mean-
square-error of floating-point output for sentiment analysis.
This serves as an idealized reference of recent work [11,12],
which tries to select the best API output with high label-
wise accuracy.

• Generic models: the open-sourced generic model based on
which the next three schemes are re-trained. They serve
as a reference without customization and achieve similar
accuracy as commercial APIs. Their details are explained
in Section 4.

• Categorized models: This scheme pre-trains a number of
specialized models. Each specialized model replaces the
last layer of the generic model so that it outputs the confi-
dence scores for a smaller number of labels representing
a common category (e.g., “dog”, “animal”, “person” and

a few other labels represent the “natural object” category),
and is fine tuned from the generic model accordingly. A sim-
ple parser checks which labels are used by an application.
If all the labels belong to one category, the corresponding
model specialized for this category is used to serve API
calls from this application. If the labels belong to multiple
categories, multiple specialized models will be used, which
we will explain more later. We set up 35 categories for
image classification and 7 categories for object detection
based on the Wikidata knowledge graph [68], as well as
15 categories for text classification based on the inherent
hierarchy in Google text-classification output. More details
of how we have designed these categories are available in
the Appendix §C.

Note that, we have designed this scheme to represent
a middle-point in the design space between the generic
model and the ChameleonAPI approach: on one hand, this
scheme offers some application customization, but not as
much as ChameleonAPI (e.g., which labels belong to the
same target class, what is the decision process, and what is
the matching order used by the application are all ignored);
on the other hand, this scheme requires a simpler parser
compared to ChameleonAPI.

• ChameleonAPIbasic: the model is re-trained with
ChameleonAPI’s training data, which concentrates on
labels used by the application, but with the conventional
loss function. Like Categorized models, this scheme only
needs a simple parser that extracts which labels are used by
the application, and does not make use of other application
information that ChameleonAPI uses. Unlike Categorized
models, this scheme prepares a customized model for
each application, instead of relying on a small number of
categorized models.

• ChameleonAPI (our solution): the model re-trained with
our training data and loss function.

Testing data: For the same application, all schemes are tested
against the same testing input set. The testing set of an ap-
plication is randomly sampled from the “testing” portion of
the dataset associated with the application’s generic model
(Table 2). We make sure that no testing input appears in the
training data. Like the creation of training data of Chameleon-
API (§4), by default, we randomly sample the testing data
such that each target class and the non-target class (not match-
ing any target class) appear as the correct decision for the
same number of testing inputs, which ranges from 1.2K to
4K. This is similar to the testing sets used in related work on
ML API (e.g., [11, 36, 37, 66]). Such data downsampling is
commonly used in ML [19, 46]. Other than Figure 9, we will
use this as the default testing dataset.

Hardware setting: We evaluate ChameleonAPI and other
approaches on a GeForce RTX 3080 GPU, and an Intel(R)
Xeon(R) E5-2667 v4 CPU, with 62GB memory.
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(c) Applications making Multi-Select decisions.

Figure 6: ChameleonAPI reduces the incorrect decision rate (IDR) on the 57 applications that use Google’s or Amazon’s
image-classification, text-classification, and object-detection APIs.

True-False Multi-Choice Multi-Select

Google API 0.29 0.32 0.35
Microsoft API 0.30 0.33 0.32

Amazon API 0.31 0.33 0.36
Best-of-all API* 0.26 0.27 0.31
Generic models 0.29 0.30 0.34

Categorized models 0.24 0.27 0.31
ChameleonAPIbasic 0.19 0.22 0.27

ChameleonAPI 0.13 0.16 0.21

Table 3: Average incorrect decision rate (IDR) among apps
that make different types of decisions. The lower the better.
The top half represents commercial APIs and their idealistic
combinations; the bottom half represents open-source models.

Single-category Multi-category
Generic models 0.32 0.28

Categorized models 0.28 0.27
ChameleonAPIbasic 0.24 0.18

ChameleonAPI 0.17 0.14

Table 4: Average IDR among single-category and multi-
category applications. The lower the better.

5.2 Results

Overall gains: Measured by the average incorrect deci-
sion rate (IDR) across all applications, the most accurate
scheme is ChameleonAPI, with an IDR of 0.16, and the least
accurate scheme is Generic models, with an IDR of 0.31. In
other words, ChameleonAPI successfully reduces the number
of incorrect decisions of its baseline model by almost 50%.
ChameleonAPIbasic (0.22), Categorized models (0.28), and
Best-of-all API* (0.28) have IDR rates in between.

The advantage of ChameleonAPI, and even
ChameleonAPIbasic, over the other schemes is consis-
tent across all three types of applications that make different
types of decisions, as shown in Table 3. In fact, Chameleon-
API offers the highest accuracy by a clear margin for every
single application in our evaluation, as shown in Figure 6.

To better compare the ChameleonAPI approach with Cate-
gorized models, we divide the 57 applications into two types:
(1) 39 single-category applications — each application uses
labels that belong to one category and hence can benefit from
one specialized model in the Categorized models scheme; (2)
18 multi-category applications — each application uses labels
that belong to multiple categories. For these applications, the
Categorized models scheme feeds the API input to multiple
specialized models and combines these models’ output to
form the API output. As shown in Table 4, the Categorized
models scheme does offer improvement from Generic models
by considering which labels belong to an application’s target
classes, particularly for single-category applications. How-
ever, both ChameleonAPI and ChameleonAPIbasic perform
better than Categorized models for both single-category and
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Figure 7: Re-training time for applications in Figure 6(a).

multi-category applications—the per-application customiza-
tion in ChameleonAPI and ChameleonAPIbasic has paid off.

The above advantage of ChameleonAPI over
ChameleonAPIbasic and Categorized models shows that the
static analysis used in ChameleonAPI to extract not only
what labels are used by the application, but also which labels
belong to the same target class, the decision type, and the
matching order, as described in Section 3.3, is worthwhile.
Cost of obtaining customized models: The customization
effort of ChameleonAPI includes two parts (1) extracting
the decision-process summary from application source code,
and (2) re-training the ML model. The first part takes a few
seconds: on an Intel(R) Xeon(R) E5-2667 v4 CPU machine,
our parser extracts the decision-process summary from every
benchmark application within 10 seconds.

The second part takes a few minutes, much faster than
training a neural network from scratch. As shown in Figure 7,
re-training DNNs for the 21 applications in Figure 6(a) on a
single RTX 3080 GPU takes 8 to 24 minutes. Focusing on
a small portion of all possible labels (§2.4), ChameleonAPI
fine-tunes pre-trained models using much less training data
than the generic models and thus needs fewer iterations to
converge.

Considering that a V100 GPU with similar processing
GFLOPS as our RTX 3080 GPU only costs $2.38 per hour
on Google Cloud [21], re-training an ML model for one ap-
plication costs less than $1.
Cost of hosting customized models: For cloud providers,
ChameleonAPI would incur a higher hosting cost than tra-
ditional ML APIs by serving a customized DNN for every
application instead of a generic DNN for all applications.

The extra cost includes more disk space to store cus-
tomized neural network models. For example, each image-
classification model in ChameleonAPI uses 115 MB of disk
space. So, for n applications, 115 ·n MB of disk space may
be needed to store ChameleonAPI customized models.

The extra cost also involves more GPU resources. A naive
design of using one GPU to exclusively serve requests to one
customized neural network model will likely lead to under-
utilization of GPU resources. To serve different applications’
customized models on one GPU, we need to pay attention
to memory working set and performance isolation issues. In
our experiments on an RTX 3080 GPU, loading an image-
classification model from CPU to GPU RAM takes 18 to 40
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Figure 8: Precision-recall trade-off for HeapsortCypher.

ms (inference itself takes 10 to 35 ms with a batch size of
1). Fortunately, modern GPU has sufficiently large RAMs to
host several requests to different customized models simulta-
neously: in our experiments, the peak memory consumption
of one inference request is less than 2GB. Furthermore, the
majority of the model inference memory consumption comes
from intermediate states, instead of the model itself. Con-
sequently, the memory consumption of multiple inference
requests on different models is similar to that on the same
model.

Of course, ChameleonAPI can take advantage of recent
proposals to improve GPU sharing [15, 55, 71, 73] as well as
to reduce the footprint of serving multiple DNNs [33]. These
techniques could be advantageously employed by Chameleon-
API to determine the optimal degree of sharing among cus-
tomized DNNs, and we leave them to future work.

Finally, there is also the extra cost of needing more com-
plex software to manage the DNN serving. For instance,
ChameleonAPI needs to dynamically route each request to a
GPU that serves the DNN of the application (see §3.4).
Precision-recall tradeoffs: Traditionally, for a trained ML
model, it is common to vary the confidence-score thresholds
in order to find the best precision-recall tradeoff of a trained
model. Thus, it is important that ChameleonAPI also achieves
better precision-recall tradeoffs. Figure 8 shows the precision-
recall results in each target class of a particular application, by
varying the detection threshold θ (defined in §3.2) of two base-
lines (real APIs are excluded, because we cannot change their
thresholds and their IDR is not as low as ChameleonAPIbasic).
ChameleonAPI’s tradeoffs are better than both baselines (and
we observe similar results in other applications). Note that
since ChameleonAPI’s loss function uses an assumed θ, we
do not vary the θ when testing it; instead, we re-train five
DNNs of ChameleonAPI, each with a different θ and test
them with their respective thresholds.
Understanding the improvement: ChameleonAPI’s unique
advantage is that it factors in the decision process of an ap-
plication, including not only the target classes but also the
decision type and the matching order. Next, we use two case
studies to further reveal the underlying tradeoffs made by
ChameleonAPI to achieve its improvement on application-
decision accuracy.

First, ChameleonAPI reduces errors related to different
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Figure 9: How the accuracy advantage of ChameleonAPI
changes with different input distribution.

target classes differently depending on their different roles
in the application decision process. This effect is particularly
striking in Multi-Choice applications with the matching order
of App-Order, where the first target class is always matched
against API output. Thus, when the correct target class is
not the first one, falsely including a label that belongs to the
first target class will more likely be a critical error than other
mis-classifications, because it will block the match of other
target classes. To illustrate this, we consider the Multi-Choice
application of Aander-ETL. We increase the percentage of
testing inputs whose correct action is the first target class or
the last target class. Figure 9 shows that increasing the portion
of inputs of the last target class (Person) generally leads
to bigger gains of ChameleonAPI, whereas increasing the
portion of the first target class (Landmark) does the opposite.
This shows the application itself already has good tolerance
to mis-classification on inputs that belong to the first target
class, but not to mis-classification on the inputs that belong
to later target classes, which is exactly where ChameleonAPI
can help.

Second, recall from §3.2 that our loss function helps to min-
imize critical errors, even at the cost of missing labels that do
not affect application decisions (i.e., non-critical errors). To
show this, we define label error rate on an image as the frac-
tion of the image’s ground-truth labels that are missed by the
DNN output (a label list). We consider IoTWor (explained in
Table 5), which similar to Anander-ETL makes Multi-Choice
decisions with App-Order matching order. The average la-
bel missing rate of ChameleonAPI on our testing images is
0.21, which is slightly higher than ChameleonAPIbasic’s 0.18.
This means ChameleonAPI makes more label-level mistakes
than ChameleonAPIbasic. However, our IDR (0.17) is 44%
lower than ChameleonAPIbasic, which means ChameleonAPI
makes far fewer critical errors.

6 Related Work

Due to space constraints, we discuss related papers that have
not been discussed earlier in the paper.
Optimizing storage and throughput of DNN serving: Var-
ious techniques have been proposed to optimize the delay,
throughput, and storage of ML models via model distilla-
tion [40, 54, 61], pruning [26] or cascading [4, 7]. This line of
work explores a different design space than ChameleonAPI:

they design ML models with higher inference speed or smaller
model size with minimum loss in accuracy. ChameleonAPI
focuses on re-training existing ML models such that the rate
of incorrect decisions of a given application is reduced.
Application-side optimization: Recent work also proposes
to change the applications to better leverage existing ML
APIs. One line of work [11, 12, 69] invokes ML APIs from
different service providers to achieve high accuracy within
a query cost budget. Another line of work aims to eliminate
misuse of ML APIs in applications [65, 66]. They require
changes to the application source code (e.g., changing the
API input preparation, switching from image-classification
API to object-detectin API, etc.). They are complementary to
our work, because we customize the ML-API backend DNN
and do not require changes on the application’s source code.
Measurement work on MLaaS: For their rising popularity,
ML-as-a-Service platforms have also attracted many measure-
ment studies to understand accuracy [10], performance [70],
robustness [28], and fairness [41]. However, they have so far
not taken in account the ML applications that use ML APIs,
and is thus different from our empirical study of ML applica-
tions in §2. Previous work that studies ML applications [65]
did not look into the decision making process and how ML
API errors might affect different applications differently.

Finally, a myriad of techniques have been studied to better
manage and schedule GPU resources in ML training/serving
systems (e.g., [13, 16, 17, 22, 25, 27, 32, 42, 45, 53, 59, 60, 67,
72, 74]). They aim for different goals than ChameleonAPI,
but these techniques can be used to help ChameleonAPI train
and serve the application-specific ML models.

7 Conclusion

ML APIs are popular for its accessibility to application de-
velopers who do not have the expertise to design and train
their own ML models. In this paper, we study how the generic
ML models behind ML APIs might affect different applica-
tions’ control-flow decisions in different ways, and how some
ML API output errors may or may not be critical due to the
application decision making logic. Guided by this study, we
have designed ChameleonAPI that offers both the accuracy
advantage of a custom ML model and the accessibility of the
traditional ML API.
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Appendix A Applications

Table 5: The statistics of 77 applications in empirical study. (Multi-Choice-* refer to Multi-Choice (*-Order).)

Application name
(Link to Github repo)

Decision Type
(Matching Order)

# of Target Classes
(# of labels per class)

Branch Conditions
(Class lists or value ranges are separated by semicolons.)

Image Multi-Label Classification (Google label_detection, AWS detect_labels)
2019-iot-ai-workshop Multi-Choice-App 2 (7, 2) [Capuchin monkey, ...]; [Wildlife biologist, ...]
Aander-ETL Multi-Choice-App 3 (9, 6, 5) [Landmark, Sculpture, ...]; [Building, Estate, ...]; [Human, ...]
ArtGuide Multi-Choice-API 2 (6, 3) [Painting, Picture frame, ...]; [Building, Architecture, ...]
AWS_CloudComputing Multi-Select 2 (1, 1) [Hot dog]; [Food]
DoorWatch True-False 1 (6) [Clothing, Person, Human, Furniture, Child, Man]
AWSRekognition Multi-Select 2 (3, 3) [Person, People, Human]; [Art, Drawing, Sketch]
GraduateProject True-False 1 (5) [Orator, Professor, Projection Screen, ...]
Voice-Assistant Multi-Select 3 (5, 3, 1) [Highway, Lane, ...]; [Car, ...]; [Classroom]
callforcode True-False 1 (5) [Water, Waste, Bottle, Plastic, Pollution]
Car-Image-search True-False 1 (6) [Sedan, Mini SUV, Coupe utility, Truck, Van, Convertible]
cloudComputing_project2 Multi-Choice-API 3 (1, 3, 1) [Person]; [Dog, Cat, Mammal]; [Flower]
CSC847_GAE_Proj2 Multi-Choice-API 3 (2, 2, 1) [Mammal, Livestock]; [Human, People]; [Flower]
cutiehack Multi-Select 2 (1, 3) [Banana]; [Lemon, Citrus fruit, Apple]
CycleGAN-tensorflow_pixie Multi-Choice-API 3 (1, 6, 4) [Food]; [Girl, Boy, Man, ...]; [Room, Living room, House, ...]
DisasterRelief True-False 1 (8) [Hurricane, Flood, Tornado, Landslide, Earthquake, Volcano, ...]
Dogecoin_musk True-False 1 (4) [Dog, Mammal, Carnivore, Wolf]
flaskAPI True-False 1 (3) [Food, Recipe, Ingredient]
food-assessment-system Multi-Choice-API 5 (35, 22, 54, 4, 6) [Dessert, ...]; [Grilling, ...]; [Strawberries, ...]; [Cigarette, ...]; ...
Foodier Multi-Select 2 (13, 1) [Building, Logo, Menu, Person, Vehicle, People, ...]; [Food]
Hack-At-Home-II Multi-Choice-API 2 (3, 3) [Food, Junk food, Plastic]; [Drinkware, Wood, Metal]
HeapSortCypher Multi-Choice-API 3 (8, 5, 11) [Food, Food grain, ...]; [Clothing, Shirt, ...]; [Paper bag, ...]
IngredientPrediction Multi-Select 3 (1, 1, 1) [Spaghetti]; [Bean]; [Naan]
FESMKMITL True-False 1 (1) [Face]
milab Multi-Choice-App 3 (1, 1, 1) [Sign]; [Nature]; [Car]
BirdSwe Multi-Choice-API 1 (5) [Smoke, Bird, ...]
ai-server-proto Multi-Choice-API 3 (3, 14) [Eye, Eyeball, Eyes]; [Landmark, Sculpture, Monument, ...]
Pheonix True-False 1 (1) [Fire]
photo_book Multi-Choice-API 3 (10, 10, 2) [Mammal, Bird, Insect, ...]; [Skin, Lip, ...]; [Flower, Plant]
Plant-Watcher True-False 1 (5) [Plant, Flowerpot, Houseplant, Bonsai, Wood]
RecBot Multi-Choice-App 2 (11, 8) [Tin, Paper, Magazine, Carton, ...]; [Food, Bread, Pizza, ...]
roblab-hslu True-False 1 (7) [Raincoat, Coat, Jacket, T-shirt, Trousers, Jeans, Shorts]
senior-project Multi-Choice-API 3 (2, 3, 1) [Landscape, Landmark]; [Self-portrait, Portrait, ...]; [Flower]
smart-can True-False 1 (9) [Paper, Bottle, Plastic, Container, Tin can, Glass, ...]
smart-trash-bin Multi-Choice-API 2 (14, 5) [Aviator sunglass, Beer glass, ...]; [Plastic arts, ...]
smartHamper Multi-Choice-API 3 (7, 4, 3) [Shirt, T-shirt, ...]; [Trousers, Denim, ...]; [Brand, Text, ...]
StudySpaceAvailability True-False 1 (4) [Hardware, Power Drill, Drill, Electronics]
The-Coding-Kid Multi-Select 6 (9, 6, 9, 3, 6, 3) [Noodle, ...]; [Meat, ...]; [Produce, ...]; [Fruit, ...]; [Milk, ...]; ...
Tinyml Multi-Select 3 (4, 6, 5) [Car, Truck, ...]; [Gun, Weapon Violence, ...]; [Cat, Dog, ...]
UofTHacksBackend Multi-Choice-API 4 (3, 3, 7, 4) [T-shirt, ...]; [Outerwear, ...]; [Pants, ...]; [Footwear, ...]
garbage-sort Multi-Choice-API 2 (1, 20) [Food];[Metal, ...];

Image Object Detection (Google object_localization)
equipment-detection-poc Multi-Select 1 (1) [Shoe]
flood_depths Multi-Select 1 (5) [Car, Van, Truck, Boat, Toy vehicle]
SBHacks2021 Multi-Select 1 (1) [Person]
SeeFarBeyond Multi-Select 1 (2) [Spoon, Coin]

( To be continued )
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Table 5: The statistics of 77 applications in empirical study (Continued).

Application Decision Type
(Matching Order)

# of Target Classes
(# of labels per class)

Branch Conditions
(Class lists or value ranges are separated by semicolons.)

shecodes-hack Multi-Select 1 (2) [Dress, Top]
SunHacks2019 Multi-Select 1 (3) [Person, Chair, Table]
thgml Multi-Select 1 (7) [Pizza, Food, Sushi, Baked goods, Snack, Cake, Dessert]
Verlan Multi-Select 1 (2) [Dog, Animal]

Text Sentiment Classification (Google sentiment_detection)
animal-analysis Multi-Choice-API 4 (1, 1, 1, 1) [0.5, 1]; [0, 0.5]; [-0.5, 0]; [-1, -0.5]
calhacksv2 Multi-Choice-API 6 (1, 1, 1, 1, 1, 1) [0.5, 1]; [0.5, 1]; [0.1, 0.5]; [-0.1, 0.1]; [-0.5, -0.1]; [-1, -0.5]
carbon_hack_sentiment Multi-Choice-API 3 (1, 1, 1) [0.3333, 1]; [-0.3333, 0.3333]; [-1, -0.3333]
FoodDelivery Multi-Choice-API 3 (1, 1, 1) [0.6, 1]; [0.3, 0.6]; [-1, 0.3]
devfest Multi-Choice-API 4 (1, 1, 1, 1) [0.6, 1]; [0.4, 0.6]; [0.2, 0.4]; [-1, 0.2]
EC601_twitter_keyword Multi-Choice-API 3 (1, 1, 1) [0.25, 1]; [-0.25, 0.25]; [0.25, 1]
ElectionSentimentAnalysis Multi-Choice-API 3 (1, 1, 1) [0.05, 1]; [0, 0.05]; [-1, 0]
Hapi Multi-Choice-API 2 (1, 1) [-1, 0]; [0, 1]
JournalBot Multi-Choice-API 3 (1, 1, 1) [0.5, 1]; [0, 0.5]; [-1, 0]
Mind_Reading_Journal Multi-Choice-API 4 (1, 1, 1, 1) [0.15, 1]; [0.1, 0.15]; [-0.15, 0.1]; [-1, -0.15]
Sarcatchtic-MakeSPP19 Multi-Choice-API 2 (1, 1) [-0.5, 1]; [-1, -0.5]
stockmine Multi-Choice-API 2 (1, 1) [-1, 0]; [0, 1]
Tone Multi-Choice-API 3 (1, 1, 1) [-1, -0.5]; [-0.5, 0.5]; [0.5, 1]
UOttaHack_2019 Multi-Choice-API 3 (1, 1, 1) [0.25, 1]; [-0.25, 0.25]; [-1, -0.25]

Text Entity Detection (Google entity_detection)
GeoScholar True-False 1 (1) [LOC]
HackThe6ix Multi-Choice-API 7 (1, 1, 1, 1, 1, 1, 1) [PERSON]; [LOC]; [ADD]; [NUM]; [DATE]; [PRICE]; [ORG]
Klassroom Multi-Choice-API 2 (2, 2) [PERSON, PROPER]; [LOC, ORG]
newsChronicle True-False 1 (1) [OTHER]
ocr-contratos True-False 1 (1) [NUM]
uofthacks6 True-False 1 (1) [OTHER]

Text Topic Classification (Google text_classify)
DMnMD True-False 1 (1) [Health]
HLPFL True-False 1 (8) [Public Safety, Law & Government, Emergency Services, News, ...]
MirrorDashboard True-False 1 (7) [Jobs & Education, Law & Government, News, ...]
noteScript True-False 1 (1) [Food]
pennapps_2019f True-False 1 (2) [News/Politics, Investing]
soap Multi-Choice-API 2 (2, 2) [Sensitive Subjects, ...]; [Discrimination & Identity Relations, ...]
SocialEyes Multi-Choice-API 2 (2, 1) [people & society, sensitive subjects]; [adult]
Twitter_Mining_GAE True-False 1 (1) [Sentitive]
vfriendo True-False 1 (1) [Restaurants]
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Appendix B Loss function for other decision-
process summaries

True-False:

L(y) =

Penalize Type-1 Critical Errors︷ ︸︸ ︷
Sigmoid(max

l∈Gĉ
(y)−θ)

+

Penalize Type-1 Critical Errors︷ ︸︸ ︷
Sigmoid(θ−max

l∈Gc
(y)) (4)

Multi-Select:

L(y) =

Penalize Type-1 Critical Errors︷ ︸︸ ︷
∑
c∈T̂

Sigmoid(θ−max
l∈Gc

y[l])

+

Penalize Type-3 Critical Errors︷ ︸︸ ︷
∑

c∈∪cGc\T̂

Sigmoid(max
l∈Gc

y[l]−θ)

(5)

Multi-Choice API-order: Here we explain why this loss
function captures the critical errors:
• A Type-1 error occurs, if (1) the correct target class is

matched, thus at least one of its labels has a score above
the confidence threshold (maxl∈Gĉ y[l] ≥ θ), and (2) it is
matched after the EOD because all of the labels belonging
to the correct target class have scores below the maximum
score of labels in the incorrect target classes.

• A Type-2 error occurs if the maximum score for labels in a
correct target class falls below threshold θ, thus it is never
matched (before or after EOD).

• A Type-3 error occurs if any labels belonging (maxl /∈Gĉ y[l])
to incorrect target classes appears before labels in the cor-
rect target class.

L(y) =

Type-1 Critical Errors︷ ︸︸ ︷
Sigmoid

(
max

l∈∪c̸=ĉGc
y[l]−max

l∈Gĉ
y[l]

)

+

Type-2 Critical Errors︷ ︸︸ ︷
Sigmoid

(
max

l∈∪c̸=ĉGc
y[l]−θ

)

+

Type-3 Critical Errors︷ ︸︸ ︷
∑
c̸=ĉ

Sigmoid
(

max
l∈Gc

y[l]−max
l∈Gĉ

y[l]
)

(6)

Value ranges: As for APIs that output a score y to describe
the input, applications typically define several value ranges
as target classes to make decisions, where the lower bound of
the cth target class is denoted as lc and the upper bound of the
cth target class is denoted as uc.

L(yi) =

Type-1 Critical Errors︷ ︸︸ ︷
Sigmoid(y−uĉ)+Sigmoid(lĉ −y)

+

Type-3 Critical Errors︷ ︸︸ ︷
∑
c ̸=ĉ

Sigmoid(uc −y)+Sigmoid(y− lc)

(7)

where ĉ is the index of the correct target class. A Type-1 error
occurs (i.e., a correct target class is matched after EOD) when
the output score y exceeds the upper bound of the ground-
truth value range (uc), or falls below the lower bound of the
ground-truth value range (lc). A Type-3 error occurs when
the upper bound of an incorrect value range exceeds y and
its lower bound falls below y, leading it to be selected. Type-
2 errors are absent in this application because all the target
classes span the whole output range, thus a target class must
be matched.
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Appendix C Setup of Categorized models

Here, we describe in detail how we construct the label cate-
gories to support the scheme of Categorized models, which
is one of the schemes in comparison with ChameleonAPI
(Section 5).

Image-classification Image-classification APIs typically
contains many thousands of labels without providing their
categorization or hierarchy. Therefore, we create categories
leveraging the Wikidata knowledge graph [68], a widely used
knowledge graph database that has been referred to during the
creation of many popular ML training datasets [23,34,44]. In
this knowledge graph, each node is a named entity, covering
all the labels used in popular image-classification APIs [2,
20, 52], and each edge represents a relationship between two
entities (e.g., “subclass of”, “different from”, “said to be the
same as”).

Extracting “subclass of” edges in Wikidata knowledge
graph, we get a directed acyclic graph (DAG) of label hi-
erarchy. We believe it offers a principled foundation to create
label categories based on two observations: (1) If an entity/n-
ode e is reachable from another entity/node e′ through several
subclass-of edges, e′ is also covered by the category of e (e.g.,
entity “motor vehicle” is directly connected to “land vehicle”,
entity “land vehicle” is directly connected to “vehicle”, so
“motor vehicle” is also covered by the “vehicle” category); (2)
The distance, measured in the number of subclass-of edges,
between an entity/node and the DAG root indicates the speci-
ficity of the concept behind this node, with shorter distance
representing coarser-grained categories. We will refer to a
node that is k edges away from the root as a Level-k node.

Based on these observations, we formally define a set of
categories Ck for all the image-classification labels L at a
specificity level k as follows: Ck is the minimum set of Level-k
nodes such that every label l ∈ L is covered by at least one cat-
egory node ck ∈Ck. We could categorize all the applications
into single-category and multi-category applications using any
level of specificity settings. In this paper, we adopt Level-2
specificity setting, since the number of single-category appli-
cations drops a lot when moving from Level-2 to Level-3,
indicating Level-3 categories may be too fine-grained.

Under Level-2, we set up 35 categorized models that cover
all the image-classification labels. Six of them are used by ap-
plications in our benchmark, including natural object, tempo-
ral entity, artificial entity, system, phenomenon, and continu-
ant. With this categorization, 27 of the 40 image-classification
applications are single-category, and the rest 13 applications
are multi-category.

Object-detection Similar as image-classification API, ev-
ery object-detection API label also corresponds to an entity
node in the Wikidata knowledge graph. Therefore, we use the

same methodology and the same specificity Level-2 to define
categories for object detection labels.

Seven categorized models are set up to cover all object-
detection labels. The object-detection labels used by 8 object-
detection benchmark applications belong to 3 categories:
natural object, artificial entity, and system. Under this set-
ting, there will be 7 single-category applications, and 1 multi-
category applications.

Text-classification The Google text-classification API [20]
offers the hierarchy tree of all its labels. We simply follow
their categorization and get 15 categories to covering all text-
classification labels. Nine categories are used by applications
in our benchmark, including business & industrial, people &
society, health, food & drink, jobs & education, news, sensitive
subjects, adult, and law & government. Under this categoriza-
tion, there are 5 single-category text-classification applica-
tions, and 4 multi-category text-classification applications.

Other types of applications There are two other types of
applications in our benchmark that are not suitable for design-
ing pre-specialized models: sentiment analysis and named
entity recognition.

For sentiment analysis API, the corresponding applications
typically define several value-ranges and determine which
range the API output (a sentiment score) falls into. Since
the API output is a floating point number, there are infinite
ways of defining value-ranges. Therefore, it is impracticable
to create pre-categorized models.

For named entity recognition API, it only has 6 labels:
person, location, organization, number, date, and misc [20].
They are already high-level categories. There is no need to
create pre-categorized models for each category.
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Appendix D Results of other applications

As mentioned in §5.1, the results of the 20 applications that involve sentiment analysis and entity recognition were not included in
the evaluation section. Their results are shown in Figure 10 and 11. As we can see, the advantage of ChameleonAPI is consistent
across these applications, similar to what we presented in§5. Note that, the scheme of Categorized models does not apply to
applications that involve these two types of ML tasks, and hence is not included in Figure 10 and 11.

GeoS Klassr uofth ocrContr nwsChro HackT0.0

0.2

0.4

In
co

rr
ec

t D
ec

is
io

n
 R

at
e 

(ID
R

) 

Pre-trained model
Best-of-all API*

ChameleonAPIbasic
ChameleonAPI

Figure 10: Results on entity-recognition applications.
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Figure 11: Results on sentiment-analysis applications.
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Abstract
This work introduces a new approach to building crash-safe
file systems for persistent memory. We exploit the fact that
Rust’s typestate pattern allows compile-time enforcement of
a specific order of operations. We introduce a novel crash-
consistency mechanism, Synchronous Soft Updates, that boils
down crash safety to enforcing ordering among updates to file-
system metadata. We employ this approach to build SQUIR-
RELFS, a new file system with crash-consistency guarantees
that are checked at compile time. SQUIRRELFS avoids the
need for separate proofs, instead incorporating correctness
guarantees into the typestate itself. Compiling SQUIRRELFS
only takes tens of seconds; successful compilation indicates
crash consistency, while an error provides a starting point for
fixing the bug. We evaluate SQUIRRELFS against state of
the art file systems such as NOVA and WineFS, and find that
SQUIRRELFS achieves similar or better performance on a
wide range of benchmarks and applications.

1 Introduction

One of the most important properties for file systems is to
preserve their integrity and user data in the face of a crash
or a power loss [16, 20, 28, 31, 42, 43, 51]. Unfortunately,
building crash-consistent file systems is challenging; checking
or ensuring crash consistency is even more so [17, 40].

There are two main approaches to building file systems
today, as summarized in Table 1. First, we build file systems
using low-level languages like C, and we use runtime test-
ing to gain some confidence in the correctness of the sys-
tems [36, 37, 41, 46, 47, 59]. Note that this approach is nec-
essarily incomplete; testing can only reveal bugs, not prove
their absence. However, this approach allows rapid develop-
ment, and entire testing ecosystems have sprung up around
this basic approach, like the widely-used xfstests [10] and
Linux Test Project [5].

A different approach to building file systems is to verify
them: we write a high-level specification of correct behavior
(including crash behavior) and then prove that the imple-
mentation matches the specification [17–19, 29, 53]. This

Approach Complete Dev effort Time to check

Testing No Low Medium
Verification Yes High High
This work Yes Medium Low

Table 1: Comparison of different approaches to ensuring crash
consistency in file systems.

approach can prove that the implementation does not have
certain classes of bugs; however, it comes at a high cost. For
each line of code in the implementation, we may need to write
7–13 lines of proof. Writing and maintaining proofs is time-
consuming and requires specialized expertise, constraining
rapid development.

In this work, we seek to find a middle ground between
these two approaches. We would like to verify some aspects
of file systems, but without the burden of having to write and
maintain proofs. In particular, we are interested in crash con-
sistency, a correctness property that is especially difficult to
test for. In order to be crash consistent, systems must ensure
that updates become persistent on storage media in the cor-
rect order; however, hardware or caching layers may reorder
updates to improve performance in unanticipated ways. Ex-
posing crash-consistency bugs thus requires one to find and
reproduce these low-level orderings, which requires special-
ized testing software [36, 37, 41, 46, 47, 59]. Our goal is to
develop lightweight approaches to statically check for crash-
consistency bugs without the overhead of full verification.

We exploit two recent developments to achieve this goal
(§2). First, the Rust programming language has a strong type
system that supports powerful compile-time safety checks.
Our work takes inspiration from Corundum [32], a Rust crate
(library) that uses Rust’s type system to check low-level PM
safety properties. In this work, we observe that Rust’s type
system can also statically enforce that certain operations are
carried out in a given order [27, 38]. Since the root of crash
consistency is ordering updates to storage, if we can encode
those ordering-based invariants in the type system, the com-
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Figure 1: For a soft updates file system to be crash-consistent, directory entries should only point to fully-initialized, durable
inodes. In existing file systems, all persistent inodes have the same type, regardless of whether they are durable or have been
initialized. With typestate, durability and the inode’s contents are reflected in its type.

piler can ensure the invariants hold at compile time.
However, to do so, crash consistency must be derived purely

from ordering-based invariants; some mechanisms such as
journaling use writes to a log to obtain atomicity, which is
harder to encode in the type system. Soft updates achieves
crash consistency purely via ordering [43], but the traditional
soft updates scheme is complex and hard to implement [13,
25].

We observe that the low latency of persistent memory [56,
59] allows file-system operations to be synchronous; all up-
dates to storage media are durable by the time each operation
returns [24, 34, 35, 39, 57]. We take advantage of persistent
memory’s synchronous updates and byte addressability to
develop a new mechanism for crash consistency we term
Synchronous Soft Updates.

Synchronous Soft Updates builds on the classical soft up-
dates mechanism [43], but avoids most of the complexity that
prevented the widespread adoption of soft updates [13]. Two
of the most complicated aspects of soft updates, dependency
structures and cyclic dependency management, arise due to
the need to track ordering requirements between block-sized
updates across asynchronous operations. Synchronous Soft
Updates eliminates these challenges entirely by using fast,
fine-grained storage to back synchronous operations.

We ensure that the ordering invariants of Synchronous Soft
Updates hold by using the Rust compiler. We take advantage
of Rust’s support for the typestate pattern, an API design pat-
tern where an object’s type reflects the operations that have
been performed on it [54]. The legal order of operations is
encoded in function signatures and enforced by Rust’s type-
checker. For example, an uninitialized inode has a different
type than an initialized one; attempting to use one where the
other is expected will result in a compile-time error. Figure 1
illustrates the approach.

We implement Synchronous Soft Updates in a new file
system for PM called SQUIRRELFS and use the typestate pat-
tern in Rust to check that update orderings are implemented

correctly. SQUIRRELFS provides crash-atomic metadata sys-
tem calls, including rename; on the original soft updates, a
crash during rename could result in both the source and des-
tination existing. SQUIRRELFS compiles and typechecks in
seconds, whereas running verification on existing storage sys-
tems takes minutes or hours. Building SQUIRRELFS required
no modifications to the Rust language.

We evaluate SQUIRRELFS by comparing to a number of
file systems meant for persistent memory, such as NOVA [57]
and WineFS [34] (§5). We use Intel’s Optane DC Persistent
Memory Module for our comparison, and find that SQUIR-
RELFS offers comparable or better performance to other PM
file systems across a broad range of workloads. The current
SQUIRRELFS prototype prioritizes simplicity of update order-
ing rules over performance in some areas, leading to relatively
high mount times and memory utilization; however, these are
not fundamental limitations of the design. We also model
the design of SQUIRRELFS using the Alloy model-checking
language [33] to gain confidence in the correctness of its
Synchronous Soft Updates mechanism.

We note that SQUIRRELFS is not fully verified, and thus
does not obtain the strong correctness guarantees of verified
storage systems like FSCQ [19]. Crash-consistency bugs may
still occur in SQUIRRELFS if their root causes are unrelated
to ordering, if the ordering rules enforced by the compiler are
incorrect, or if trusted code in SQUIRRELFS’s implementation
or the Rust compiler are buggy. For example, SQUIRRELFS’s
ordering rules guarantee that inodes are always initialized
before they are linked into the file system tree, but they do not
guarantee that the contents of the inode are correct. SQUIR-
RELFS’s static checks are also limited by the capabilities of
the Rust compiler. For instance, the Rust compiler cannot
check properties about variable-sized sets of data structures,
as checking such properties is undecidable in general.

SQUIRRELFS offers a useful new point in the spectrum
of approaches to building robust storage systems; it provides
weaker guarantees than verified systems, but comes at a lower
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cost. As such, we hope that it proves useful for developers of
storage systems that require strong guarantees, good perfor-
mance, and rapid development.

In summary, this work makes the following contributions:

• Statically-checked crash consistency, an approach where
high-level properties are encoded into the type system
and checked at compile time (§3)

• The Synchronous Soft Updates crash-consistency mech-
anism for persistent-memory file systems (§3.1)

• The SQUIRRELFS prototype, along with a discussion of
lessons learned during its development (§4).

SQUIRRELFS and its Alloy model are publicly available at
https://github.com/utsaslab/squirrelfs.

2 Background and Motivation

2.1 Crash Consistency
A file system is crash consistent if it can recover to a consis-
tent state after a power loss or a crash [16,20,51]. A consistent
file system is one where all the metadata is in sync; for exam-
ple, two files cannot (mistakenly) claim the same data block.
Files present before the crash must exist post-crash, and the
data in files must remain valid.

Crash-consistency mechanisms. Crash consistency is gener-
ally achieved using mechanisms such as journaling [28, 48],
copy-on-write [1, 31, 42], or soft updates [43]. The root of
crash consistency is correctly ordering writes to storage [20];
for example, a data block must be initialized before a file
points to it. Soft updates achieves crash consistency by care-
fully ordering in-place updates to storage such that all possible
crash states are consistent [43]. To enforce ordering, soft up-
dates must track updates across asynchronous operations and
resolve cyclic dependencies when they arise. Though soft up-
dates is used in FreeBSD [44], it has not been widely adopted
due to its high complexity.

Ensuring crash consistency. Ensuring that a given file sys-
tem achieves crash consistency is challenging. There are two
main approaches. The first approach is testing, in which pos-
sible crash states of a file system are explored and checked
for consistency. Obtaining these crash states requires support
from tools like eXplode [59], CrashMonkey [46], Hydra [37],
Chipmunk [41], or Vinter [36]. While such testing tools can
find many bugs, they cannot prove overall correctness or the
absence of crash-consistency bugs.

The second approach is to build verified file systems. A
developer writes a high-level specification of correctness and
a lower-level implementation, and proves that the implementa-
tion satisfies the specification. This approach is stronger than
testing in that it can prove strong correctness properties and
verify that there are no bugs. However, it comes at a high cost:
the developer has to write 7–13 lines of proof for every line of

code. For example, BilbyFS [12] required 13k lines of proof
for 1k lines of implementation code; VeriBetrKV [29] used
45K lines of proof for 6k lines of implementation. Another
verified file system, FSCQ [19], has interleaved proof and
implementation code that is 10× the size of the most similar
unverified system.

This heavy proof burden constrains development in a num-
ber of ways. First, building a verified system requires proof-
writing expertise, which restricts the set of developers who
can work on it. Second, proofs must be written in tandem
with the code that they verify, which extends development
time. Finally, making changes to the system requires corre-
sponding changes to the proofs, making maintenance slow
and preventing rapid updates.

Corundum [32] is a Rust crate for PM systems that, like
SQUIRRELFS, uses the Rust type system to enforce certain
low-level PM safety properties at compile time. For example,
Corundum ensures that every update to PM occurs in a logged
transaction, and prevents the storage of pointers to volatile
memory in durable structures. SQUIRRELFS was inspired by
Corundum and aims to enforce higher-level properties like
file-system crash consistency with Rust.

2.2 The opportunity: Rust and PM

We observe an opportunity to ensure file-system crash consis-
tency in a cheap manner.

First, we note that the Rust programming language can
statically enforce a specific order on operations via its
support for the typestate pattern [9, 27]. Briefly, the typestate
pattern enables an object’s runtime state to be encoded in
its type [54]. This state can be checked at compile time via
typechecking, ensuring that a given operation can only occur
on a specific type. Typestate information is stored in zero-
sized types that incur no runtime overhead.

For example, one consistency rule enforced by soft updates
is that a directory entry should never point to an uninitial-
ized inode. Listing 1 shows how typestate is used to enforce
this rule. To create a new file, we first obtain a free directory
entry and inode. Initially, both objects have typestate Free.
Then, we initialize the directory entry, transitioning its type to
Dentry<Init>. The listing then has a bug in which the direc-
tory entry’s inode number is set by commit_dentry() before
the inode is initialized, breaking the consistency rule. The
Rust compiler catches this bug because the inode’s current
typestate Free does not match the typestate Init expected
by the function.

Since soft updates is entirely built on ordering updates to
file-system objects, we can translate the required partial order
into a set of types and use Rust’s type checking to enforce the
order. Thus, the invariants we want to maintain are translated
into something the type system and compiler can enforce.
We note that we are able to do this with an unmodified Rust
compiler; the new types introduced are no different to the
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1 fn new_file() {
2 // Dentry<Free>
3 let d = Dentry::get_free_dentry();
4 // Inode<Free>
5 let i = Inode::get_free_inode();
6 // Dentry<Init>
7 let d = d.set_name("foo");
8 let d = d.commit_dentry(i);
9 ^ expected ‘Inode<Init>‘,

10 found ‘Inode<Free>‘
11 }

Listing 1: The listing shows the typecheck process throwing
an error when an uninitialized inode is passed to a function
that expects an initialized inode.

compiler from existing types in the codebase.
However, implementing soft updates correctly remains

challenging even with typestate support. With soft updates,
file-system updates are applied to the page cache in DRAM,
and then later written to storage in the right order. Determin-
ing the right order requires tracking complex dependencies
across asynchronous operations. When a single file-system
metadata object (such as an inode or a bitmap) is updated
multiple times, it can lead to cyclic dependencies.

This leads to our second observation: persistent memory
(PM) file systems support synchronous operations thanks to
the low latency of the storage media [56, 58]. These file sys-
tems write updates directly to storage without first caching
them in DRAM [24, 34, 35, 39, 57]. A synchronous imple-
mentation of soft updates for persistent memory eliminates
the complexities of asynchronous dependency management,
greatly simplifying the mechanism and allowing the relevant
invariants to be encoded in Rust’s type system.

3 SquirrelFS

We now present the design and implementation of SQUIR-
RELFS, a novel file system that uses the unmodified Rust
compiler to check its crash consistency. If the compilation
is successful, it indicates that the ordering-based invariants
hold throughout the file system: in other words, the checking
is complete. If compilation fails, the error reported by Rust
is useful in figuring out which operations are out of order.
Compilation takes only seconds, offering quick feedback to
developers.

SQUIRRELFS is built on two key ideas:

• A novel crash-consistency mechanism, Synchronous
Soft Updates, that achieves crash consistency purely via
ordering file-system operations (§3.1)

• Using the Rust typestate pattern to encode ordering in-
variants into the Rust type system (§3.2)

It is important to note that we are not modifying the Rust
compiler in any way. To the Rust compiler, it is no different
from type-checking any other code base; we are merely using
the type checking to ensure that crash consistency holds in
the file system.

We now describe the key ideas in more detail.

3.1 Synchronous Soft Updates

We develop Synchronous Soft Updates (SSU), a novel crash-
consistency mechanism. SSU is based on the traditional soft
updates approach, but differs in two key aspects. First, soft
updates was designed for asynchronous settings, but all op-
erations are synchronous in SSU. Second, soft updates does
not provide atomic rename; a crash during a rename of src to
dst can result in both being present after a crash. SSU fixes
this flaw; renames are atomic, and a crash during rename will
result in either src or dst after recovery.

We now discuss why we developed SSU, its key aspects,
and how renames are atomic in SSU.

Why a new mechanism? To go with our overall approach
of encoding ordering-based invariants into the Rust type sys-
tem, we needed a mechanism that achieves crash consistency
purely via ordering file-system updates. This rules out mecha-
nisms such as journaling and copy-on-write that use writes to
a log or an extra copy to obtain atomicity. Soft updates [43]
obtains crash consistency by enforcing ordering on in-place
persistent updates to file-system objects; thus, it was a good
match. However, traditional soft updates suffered from two
problems that we needed to tackle. The first challenge was
that soft updates had significant complexity arising from need-
ing to track dependencies between asynchronous file-system
operations; the presence of cyclic dependencies also requires
complex roll-back and roll-forward logic. The second chal-
lenge is that soft updates does not provide atomic operations,
particularly rename; atomic rename is a crucial primitive for a
number of POSIX applications [50]. Thus, we need to modify
soft updates to tackle both its high complexity and lack of
atomic operations.

Synchronous operations. We observe that the root of com-
plexity in soft updates (such as cyclic dependencies and
structures for tracking dependencies) is asynchrony. A syn-
chronous implementation of soft updates neatly avoids these
complexities. All updates would be made durable by the end
of each system call, which would eliminate the need to track
cross-operation dependencies. Cyclic dependencies would no
longer arise because there are no pending updates that can
conflict with each other. The SoupFS [23] soft updates file
system for persistent memory eliminated cyclic dependencies
using fine-grained updates, but still required asynchronous
dependency tracking. A synchronous implementation is nec-
essary to overcome both sources of complexity.

A synchronous version of soft updates was not feasible

390    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



until now, as running this on magnetic hard drives or even
solid state drives would be prohibitively slow. However, syn-
chronous soft updates is a good match for persistent memory
(PM) due to its low latency; system calls in many existing
PM file systems are already synchronous [24, 34, 35, 57].

Similar to traditional soft updates, SSU maintains crash con-
sistency by enforcing ordering among updates to file-system
objects. SSU implements the original soft updates rules [26]:

1. Never point to a structure before it has been initialized;

2. Never re-use a resource before nullifying all previous
pointers to it;

3. Never reset the old pointer to a live resource before the
new pointer has been set.

These rules are significantly easier to enforce in a synchronous
setting, as there is no need to track dependencies across asyn-
chronous operations. Like soft updates, SSU focuses on the
integrity of file system metadata and cannot guarantee that
operations on file data are atomic. SSU could be combined
with journaling or copy-on-write to obtain stronger data guar-
antees.

Atomic rename in SSU. SSU ensures renames are atomic
by cleaning up file-system state after a crash. In traditional
soft updates, if there is a rename from src to dst, it is im-
possible to tell after a crash whether src or dst should be
removed. To resolve this, SSU adds an extra field, called the
rename pointer, to directory entries in order to persistently
save enough information to complete the rename operation
after a crash. The rename pointer in the destination directory
entry points to the physical location of the source directory
entry. The rename pointer allows the file system to follow
soft updates rule 3 (never reset the old pointer before the new
one has been set) while also retaining the ability to distinguish
between src and dst after a crash.

Note that this is similar to what journaling-based file sys-
tems do; they write a log entry specifying src and dst so
that the right clean-up action can be performed. In SSU, the
information in this log entry is distributed over the source
and destination inodes; taken together, they provide enough
information to the file system.

Figure 2 illustrates the process. Step 1 shows an exam-
ple system state prior to the rename operation. In 2 , dst’s
rename pointer (dotted line) is set to src. dst is invalid, and
src is still valid. In 3 , we make dst valid; this also logically
invalidates src. This is an atomic point; after this step, the file
system will always complete the rename operation. If the file
system crashes prior to this step, the rename pointer is cleared
on recovery. In 4 , we physically mark src as invalid. In 5 ,
the rename pointer is cleared, and in 6 src is fully deallo-
cated. Each step either modifies metadata that is invisible to
the user (e.g., deallocating an orphaned directory entry) or

Figure 2: The figure shows the steps in atomic soft updates
rename. The dotted lines represent rename pointers and the
solid lines represent inode pointers. src and dst are directory
entries. The labels "v" and "i" indicate whether a directory
entry is valid or invalid.

atomically modifies a single 8-byte value. All modifications
must be durable before proceeding to the next step.

A question that arises is how the file system finds src and
dst. This is an example of how SSU is tailored for PM file
systems. In PM file systems, it is common for the file system
to scan persistent objects to construct indexes in DRAM;
we add the rename-recovery procedure into this scan. Thus,
when building volatile indexes after a crash, the file system
also looks for and completes any partially completed rename
operations.

3.2 Using Rust to enforce ordering
Rust’s typestate pattern can be used to ensure that a set of

functions are always called in certain partial order. A total or-
der is not necessary, as many operations involve independent
updates that can be safely reordered. As we discussed previ-
ously (§2), an object’s typestate is encoded in generic type
parameters in its definition, and the partial order is encoded
in the function signatures of its associated functions.

We encode two states (as different type parameters) in the
types of persistent objects:

• Persistence typestate is a representation of whether an
object’s most recent update(s) have been made durable.
We use three persistence typestates: Dirty, InFlight,
and Clean.

• Operational typestate represents the operations that have
been performed on an object and is used to determine
what operations can happen next.

Persistence and operational typestate are separate to capture
the fact that most storage devices do not synchronously flush
updates. For example, in persistent memory, updates go to
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1 impl Inode<Clean, Free> {
2 fn init_inode(self, ino: u64, ...)
3 -> Inode<Dirty, Init> {...}
4 }
5 impl Dentry<Clean, Alloc> {
6 fn commit_dentry(
7 self,
8 inode: Inode<Clean, Init>
9 ) -> Dentry<Dirty, Committed> {...}

10 }
11 impl<S> Inode<Dirty, S> {
12 fn flush(self) ->
13 Inode<InFlight, S> {...}
14 }
15 impl<S> Inode<InFlight, S> {
16 fn fence(self) ->
17 Inode<Clean, S> {...}
18 }

Listing 2: Pseudocode implementations of file system ob-
jects with persistence and operational typestate. Typestate
arguments are shown in bold.

the CPU caches first, and must be explicitly flushed to the
persistent media.

Listing 2 shows implementations of several methods of
persistent Inode and Dentry types with persistence and op-
erational typestate as generic type parameters. The methods
flush and fence invoke a cache line write back and store
fence respectively and are generic with respect to operational
typestate. These methods must be used to ensure updates are
persistent before continuing; for example, commit_dentry()
requires an Inode<Clean, Init> to ensure the inode’s ini-
tialization cannot be transparently reordered with the directory
entry updates.

This formulation of persistence typestate has several perfor-
mance benefits. First, because the flush and fence methods
can only be called on an object whose typestate indicates it is
not yet persistent, typechecking will prevent redundant persis-
tence operations (thereby improving performance). Second,
developers can wait to flush updates until it is strictly neces-
sary and can write additional transitions to enable multiple
updates to share a single fence.

Why Rust? In order to obtain useful compiler-checked guar-
antees from the typestate pattern, each object must have ex-
actly one typestate [54]. Thus, languages with unrestricted
aliasing (e.g., C) cannot support the typestate pattern, as dif-
ferent aliases for the same value can have different types. Rust
supports the pattern via its ownership type system, which en-
sures that each value has exactly one owner (and thus exactly
one type).

Figure 3: The figure shows the persistent updates and corre-
sponding dependencies made during mkdir. Inodes are dark
gray and directory entries are white. Each object is labeled
with its operational typestate and its outline indicates whether
it is clean (solid) or dirty (dotted).

3.3 Example: mkdir
We use mkdir to illustrate the typestates and dependency rules
used in SSU. To be crash consistent, an SSU implementation
of mkdir must ensure (1) that a structure never points to an
uninitialized resource, and (2) that each inode’s link count is
greater than or equal to its actual number of links. Both rules
prevent dangling links in the event of a crash.

Figure 3 illustrates the dependencies in a mkdir opera-
tion. During mkdir, three file-system objects are modified:
an inode for the new directory, a directory entry for the new
directory, and the inode of the parent directory. Note that all
three can be modified at the same time in a concurrent fash-
ion, and can share a single store fence at the end (not shown).
SQUIRRELFS uses volatile allocation structures, so they are
not persisted during mkdir.

The system first finds the parent inode and obtains a free
directory entry in one of the parent’s pages as well as a free
inode. The inode is then initialized (i.e., setting its inode
number, link count, timestamps), the directory entry’s name
is set, and the parent inode’s link count is incremented.

Next, we commit the directory entry by setting its inode
number. This makes the directory entry valid and connects
the inode to the file system tree. Directory entry commit
is dependent on inode and directory entry initialization and
parent link increment. Committing the directory entry before
initializing the inode can result in a directory entry pointing to
a garbage inode; committing before incrementing the parent’s
link count can lead to dangling links.

3.4 Implementation
We implemented SQUIRRELFS in Rust with 7500 LOC. It
uses bindings from the Rust for Linux project [8] to con-
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Figure 4: The figure shows the main components of SQUIR-
RELFS. Each CPU has its own pool of pages and private page
allocator. The inode allocator is shared between all CPUs.
Volatile indexes are stored in VFS data structures.

nect to the Linux Virtual File System (VFS) layer. Figure 4
shows SQUIRRELFS’s architecture. We also built a model of
SQUIRRELFS in the model-checking language Alloy [33] to
check its design for crash consistency issues. We describe our
experience developing SQUIRRELFS in §4.

Overview. The design of SQUIRRELFS combines aspects of
FreeBSD’s FFS [44] and PM file systems such as NOVA [57]
and WineFS [35]. Like FFS, it has a simple on-storage layout,
and uses soft updates. Like other PM file systems, SQUIR-
RELFS uses volatile index structures that are built when the
file system is mounted.

SQUIRRELFS’s design was primarily influenced by two
factors. First, we wanted to keep dependencies as simple as
possible and avoid nested persistent structures that are diffi-
cult to represent in typestate. Second, we assume the x86 PM
persistence model in which only aligned updates of 8 bytes (or
smaller) are crash atomic [24]. Under the x86 model, persis-
tent addresses can be accessed via regular memory stores, but
the corresponding cache line must be flushed before updates
become persistent; a memory barrier like a store fence must
also be invoked to correctly order stores [52]. Durable struc-
tures may also be updated via cache-bypassing non-temporal
store instructions, which still require a store fence for per-
sistence ordering. This programming model influences the
structure of persistent objects and restricts the set of legal
orderings.

All system calls in SQUIRRELFS are synchronous, mean-
ing that updates to durable structures made by each system
call are durable by the time the system call returns. As such,
fsync is a no-op in SQUIRRELFS. Metadata-related opera-
tions are also crash-atomic. Data-related operations are not
atomic in the current SQUIRRELFS prototype, which matches
the default behavior of other PM file systems like NOVA [57].
These operations could be made atomic by using copy-on-
write to update file contents.

Persistent layout. SQUIRRELFS uses a simple layout to re-
duce the complexity of update dependencies. SQUIRRELFS
splits the storage device into four sections: the superblock,
the inode table, the page descriptor table, and the data pages.
The inode table is an array of all of the inodes in the system.
SQUIRRELFS reserves enough space for approximately one
inode for every 16KB of data (four pages), the same ratio
used by the Linux Ext4 file system.

The page descriptor array contains page metadata. Rather
than having inodes point to the pages they own, each page
descriptor contains a backpointer to its owner (similar to
NoFS [21]) and stores its own metadata (e.g., its offset in the
file). This approach simplifies dependency rules for updates
involving page allocation and deallocation. All remaining
space after the page descriptor table is used for data and/or
directory pages.

Volatile structures. SQUIRRELFS’s persistent layout sim-
plifies typestate and update dependency rules, but it is not
amenable to fast lookups. Therefore, SQUIRRELFS uses in-
dexes in DRAM to speed up lookup and read operations. Each
inode in the VFS inode cache has a private index for the re-
sources it owns; index data for uncached nodes is stored in
the VFS superblock.

Like many other PM file systems, SQUIRRELFS uses
volatile allocators: allocation information is not stored in a
persistent manner, but rather rebuilt each time the file system
is mounted. It uses a per-CPU page allocator and a single
shared inode allocator (which could be converted to a per-
CPU allocator to improve scalability). The allocators use free
lists backed by kernel RB-trees.

SQUIRRELFS’s indexes and allocators are rebuilt by scan-
ning the file system when SQUIRRELFS is mounted. An
inode, directory entry, or page descriptor is considered allo-
cated if any of its bytes are non-zero. Directory entries and
page descriptors are only valid if their inode numbers are
set; inodes are valid only if they are reachable from the root.
Thus, updates that allocate new structures and set non-inode
metadata fields need not be crash-atomic.

Synchronous Soft Updates. SQUIRRELFS uses an imple-
mentation of SSU for crash consistency. As shown in Fig-
ure 3, operations that involve creation of new objects must
first durably allocate and initialize resources before linking
them into the file system (setting the directory entry’s inode
in the example) to enforce rule 1 (never point to a structure be-
fore it has been initialized). Deallocation proceeds in reverse;
links are first cleared, then the object itself is deallocated by
zeroing all of its bytes. SQUIRRELFS enforces rule 2 of soft
updates (never re-use a resource before nullifying all previous
pointers to it) by treating durable objects that are not com-
pletely zeroed out as allocated and by ensuring via typestate
that pointers to the object are cleared before the object can be
zeroed.

Typestate transition functions. SQUIRRELFS updates the
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typestate of objects via typestate transition functions. These
functions take ownership of the original object, modify it, and
return it to the caller with the new typestate. These functions
are defined only on certain typestates to ensure they are called
in a safe order. For example, the typestate transition function
commit_dentry(), shown in Listing 2, is only defined for di-
rectory entries with type Dentry<Clean, Alloc>, and also
takes ownership of an inode of type Inode<Clean, Init>.
Calling commit_dentry() out of order – e.g., on a directory
entry that has not yet been persistently allocated – is a poten-
tial crash-consistency bug and results in a compiler error.

Concurrency. SQUIRRELFS supports concurrent file-system
operations. It relies on VFS-level locking on durable resources
like inodes. This locking, together with Rust’s type system,
ensures that each resource has only one owner – and only one
type – at any time, enabling strong typestate-based compile-
time checking. SQUIRRELFS uses internal locks to protect its
allocators and indexes.

Building a model with Alloy. While the typestate pattern
can enforce a given operation order, it cannot verify that
this order is crash consistent. To gain more confidence that
SQUIRRELFS’s design is crash consistent, we built a model
of SQUIRRELFS in the Alloy model checking language [33].

Alloy provides a language for specifying transition systems
and a model checker to explore possible sequences of states
(traces) of these systems. Alloy’s implementation is based
on a logic of relations; each system is composed of a set of
constraints that define a set of structures and the relations
between them, and the model checker uses constraint solving
to find traces.

In SQUIRRELFS, there is roughly a one-to-one mapping
between typestate transitions in the Rust implementation and
the next-state predicates in the Alloy model. Each next-state
predicate specifies the states in which the transition may occur
and the changes it makes to the model’s state.

The model includes next-state predicates for typestate tran-
sitions and persistent updates. It also includes transitions
that model crashes and recovery, which let us check SQUIR-
RELFS’s design for crash-consistency bugs.

Each persistent structure in SQUIRRELFS is represented
by a corresponding structure, also called a signature, in Alloy.
The model also includes a Volatile signature that is used to
model volatile aspects of the file system like its indexes. Each
typestate is represented by a signature, and instances of per-
sistent structures are mapped to their current typestate. Each
file system operation is also represented by a signature, and
relations map system calls to instances of persistent objects
they are operating on as well as other volatile state (e.g., the
locks held by that operation). We use this to model concurrent
file-system operations.

3.5 Limitations of the approach

It is important to note that the typestate-based approach used
in SQUIRRELFS is not as powerful as full verification. Fully-
verified systems, such as the FSCQ file system [19], use theo-
rem provers that can prove a wide variety of complex proper-
ties. For example, a developer could prove, if required, that
the system only uses even-numbered inodes for files.

In contrast, our typestate-based approach can only check
ordering-based invariants. Our approach could be used to
verify that functions are called in a specific order; for example,
our approach can ensure that a file is not linked into the file-
system tree before it is allocated. However, it does not verify
the implementation of each function that is called.

Thus, full verification is significantly more powerful and
general, but it pays a cost in terms of complexity and develop-
ment time. Our approach is more targeted and ordering-based,
but allows quick feedback and incremental development.

We believe this approach is a valuable addition to the reper-
toire of tools we have for building correct file systems. This
approach should be used alongside runtime testing and model-
checking approaches.

3.6 Relevance beyond PM

While we have designed SQUIRRELFS for persistent memory,
SQUIRRELFS would be relevant for any storage technology
with byte-addressability and low latency. The Compute Ex-
press Link [2] standard will support attached memory devices,
including PM, via the Type 3 (CXL.mem) protocol. These
CXL-attached PM devices will have the same interface and
persistence semantics as current NVDIMMs, though perfor-
mance will be lower [14].

SQUIRRELFS, and SSU file systems in general, could be
used on CXL-attached memory. As SQUIRRELFS’s mount
performance and memory footprint are tied to the size of the
device, they may worsen with significantly larger-capacity
devices. Further work will be required to optimize file systems
based on our approach for such devices.

4 Experience developing SQUIRRELFS

We now describe our experience with designing, developing,
and testing SQUIRRELFS. We also discuss the challenges we
faced during this process.

4.1 Development process

Designing SQUIRRELFS. Our initial design closely followed
that of BSD FFS [43], but most aspects eventually diverged
due to differences between storage hardware and typestate
considerations. We found that some data structures and crash-
consistency properties were better suited for use with the
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typestate pattern than others. For example, we chose SQUIR-
RELFS’s backpointer-based page management approach be-
cause it simplifies update dependency rules when allocating
or deallocating pages. With backpointers, these operations
involve a constant number of persistent updates and involve
no additional durable structures. In contrast, tree or log-based
approaches need extra persistent metadata and may require
additional updates to balance the tree or free log space, both of
which complicate dependencies and typestate management.

An important design decision we had to make was how
granular typestate would be. One option was to use specific
typestates to represent each fine-grained operation; e.g., have
one typestate for initializing an inode’s link count, another for
setting its flags, etc. Another was to make each typestate more
general, with transition functions potentially performing mul-
tiple persistent updates. More general typestates may sacrifice
some bug-finding power, but they make the system easier to
understand and develop. In SQUIRRELFS, we aimed to strike
a balance by representing only operations that require a spe-
cific ordering with typestate. For example, when initializing
an inode in SQUIRRELFS, the order in which the values of
most fields are set is not relevant to crash consistency, as the
contents of the inode are not visible until it is linked into the
file system tree. Therefore, SQUIRRELFS uses only a single
typestate (Init) to represent inode initialization, and another
(Committed) to indicate when it has been added to the tree.

Parallel model and system implementation. We developed
the Alloy model alongside SQUIRRELFS. This created a use-
ful feedback loop in which the model supported the Rust im-
plementation, and questions or changes to the implementation
could be quickly reflected and checked in the model. We used
an incremental development process, incorporating feedback
from the Rust compiler and the model immediately as we
implemented the system. Many transitions in the model could
be translated directly into Rust typestate transitions, making
the model a valuable guide for implementing file system op-
erations. When we made mistakes translating the model into
Rust, typestate checking quickly caught these issues.

Alloy also includes a graphical user interface for visual-
izing traces of operations on the model. This was useful for
both investigating invariant violations and seeing the set of
transitions that occur in a given file system operation, which
could be translated directly into system call handler imple-
mentations. It also demonstrated locations where multiple
updates could safely share a single store fence, which helped
us avoid redundant fences.

4.2 Finding bugs

While developing SQUIRRELFS, we used a combination of
typestate checking, model checking in Alloy, and dynamic
testing to find bugs.

Typestate checking. Typestate checking in the implementa-

tion was successful at quickly catching both missing persis-
tence primitives and higher-level ordering bugs; we provide
an example of each.

• Missing persistence primitives. Our initial implementa-
tion of write was missing flush and fence calls after
setting the backpointer of a newly-allocated page. This
bug was immediately highlighted as an error by the com-
piler. Had this bug made it into the implementation, a
crash could cause a file to have a size larger than the
number of pages associated with it, causing errors when
trying to read the file.

• Incorrect ordering. Our initial rename implementation
mistakenly decremented an inode’s link count before
clearing the corresponding directory entry. A crash could
result in a link count that is lower than the true number
of links, leading to a dangling link if the inode is subse-
quently deleted.

Although we did not specifically check execution paths
without crashes, the crash-consistency invariants encoded in
typestate were general enough to detect some bugs in this
code. For example, the compiler caught a bug where pages
were not fully deallocated during unlink, which did not re-
quire a crash to manifest. Typestate-related compiler errors
were relatively uncommon overall, since using the model as a
guide for implementation helped us get ordering right early.
However, it provided a crucial safety net to prevent subtle
bugs when we did make mistakes.

Model checking with Alloy. The Alloy model found several
high-level issues in SQUIRRELFS’s design that would have
otherwise been difficult to detect and time-consuming to fix,
including the following examples.

• We initially believed that crash recovery would not be
needed other than to fix space leaks. Alloy found an
instance of the model where a crash during rename fol-
lowed by deallocation of the destination directory entry
could cause an invalid directory entry to reappear. Fixing
this required the addition of recovery transitions.

• Early designs for SQUIRRELFS stored . and .. direc-
tory entries durably. We discovered via model checking
that our original dependency rules for handling these
directory entries during more complicated operations
like rename were not correct. Ultimately, we decided to
not store these entries, since they can be constructed at
runtime using indexed information.

Testing. Neither the typestate pattern nor the Alloy model
eliminated the need to test SQUIRRELFS. Our primary goal
was to check crash-consistency, and we did not check any
invariants that only impact regular, non-crash execution. We
used handwritten tests and the xfstests suite [10] to test these
unchecked parts of the code.
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All bugs found through testing were in parts of SQUIR-
RELFS that were not checked by typestate or directly modeled
in Alloy. Most bugs were related to updating volatile indexes
or VFS inodes, e.g., failing to remove a deallocated object
from an index or setting the wrong value in the VFS inode.
There were also bugs in the implementations of typestate tran-
sitions, which are not themselves verified; for example, the
transition that wrote new file data to a page did not always
calculate the offset for non-aligned writes correctly. Imple-
menting bug fixes was quick since we did not need to modify
the typestate-restricted interface to objects and there were no
proofs to update.

4.3 Challenges encountered

Challenges with typestate. It is easier to write typestate-
checked code than it is to write verified code, but this comes at
the cost of less powerful compile-time checking. For example,
checking universally-quantified formulas (e.g., all pages in
a file are allocated) is undecidable, and unlike verification-
aware languages, the Rust compiler has no heuristics to at-
tempt to solve them. As a result, we cannot ensure invariants
such as “all objects in a set are in a certain typestate”; specifi-
cally, we can’t encode this in typestate because the number
of objects in the set is not known at compile time.

This became a problem when implementing file-system
operations like unlink, where we would like to e.g., check
that the backpointers of all pages belonging to the file are
cleared before deallocating the inode. Such a check ensures
that the system always follows soft updates rule 2 (never re-
use a resource before nullifying all previous pointers to it);
by clearing all of the page backpointers before deleting the
inode, we ensure that none remain when the inode is eventu-
ally reused. However, it is impossible to check this property
on arbitrary sets of pages if each page has its own typestate.
We experimented with several workarounds, including forc-
ing write operations to update no more than one page at
a time (which was prohibitively slow and did not solve the
problem for unlink), and storing typestate in page structures
at runtime and manually adding assertions (which also im-
pacted performance and lost the benefit of static checking).
Ultimately, we decided to use a single piece of typestate to
represent ranges of pages (e.g., all of the pages in a file or a
contiguous subsection). Each typestate operation on such a
range performs the operation on all pages in the range. This
moved some logic into the typestate transitions, making the
transition functions themselves more complicated but mak-
ing page-management logic more centralized and easier to
manually audit.

Challenges with Alloy. As SQUIRRELFS grew in complex-
ity, it became harder to maintain the model and get useful
feedback quickly. The model checker uses a SAT solver to
check invariants, and the formulas representing a large model

can take days or weeks to solve. We checked that traces with
multiple concurrent operations were crash consistent, which
increased the size of the problem further. To get faster feed-
back, we built a custom utility to run multiple independent
instances of the model checker in parallel and split larger
predicates into smaller, more concrete sub-checks.

It could also be difficult to determine whether a reported
failure was a false positive. A particular challenge was dealing
with frame conditions, predicates that specify what should
not change in a given transition. Alloy is free to arbitrarily
change any state that the current transition does not explic-
itly mention, so frame conditions are crucial to constrain the
model to real traces. This behavior helps Alloy find corner-
case bugs, but it also leads to false positives. To overcome
this challenge, we built a syntax-based checker that parses
the model using Alloy’s API and checks that each transition
explicitly mentions all mutable structures in the model. The
current version of the checker cannot detect all issues, but it
detected many missing conditions that would have otherwise
taken hours to catch via model checking.

4.4 Typestate beyond SQUIRRELFS

Costs and benefits of typestate. We do not have equivalent
verified or unverified systems to compare with SQUIRRELFS
in terms of development and debugging effort; however, in
the authors’ experience, designing and implementing SQUIR-
RELFS required more effort than a typical unverified system,
but far less effort than a verified storage system.1 We believe
that debugging SQUIRRELFS was faster and easier than de-
bugging an equivalent unverified system, as following the
typestate-enforced ordering rules made it easier to implement
the system correctly in the first place and reduced the number
of bugs overall.

Using the typestate pattern for crash consistency represents
a useful new point in the tradeoff space between runtime
testing and full verification. While it comes at the cost of
additional development effort compared to unverified systems
to determine correct ordering rules and does not gain the same
correctness guarantees as verified systems, it does eliminate
an entire class of crash consistency bugs that are otherwise
difficult to find and fix [37,41,46]. Furthermore, as the pattern
builds ordering rules directly into a system’s implementation,
the rules will stay up to date and continue to prevent crash-
consistency bugs as the system is developed further [30, 49].

Broader applicablity. As the typestate pattern is a general
approach for statically checking the order of updates to data
structures, it is useful in a broad variety of contexts, several
of which are described below.

1For example, author LeBlanc recently worked on a durable log imple-
mented in a verification-aware programming language, which took about 3
months of full-time work.
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• Volatile data structures: SQUIRRELFS does not use type-
state to manage updates to volatile data structures, but
prior work on typestate verification has focused entirely
on such use cases [11, 54].

• Other types of storage systems: The typestate pattern
could be used to enforce ordering invariants on durable
updates in other types of storage systems (e.g., key-value
stores) with different crash-consistency mechanisms. We
note that crash-consistency mechanisms like journaling
and copy-on-write do not achieve consistency entirely
through ordering and would require auxiliary techniques
to check properties like atomicity.

• Durable layout: SQUIRRELFS’s on-storage layout is tai-
lored to reduce the number of durable updates per file-
system operation and to simplify ordering rules. Other
layouts could also be used in typestate-checked storage
systems, although the complexity of the ordering rules
would increase.

• Asynchrony: The typestate pattern is compatible with
asynchronous systems, although the ordering rules to
enforce are much more complicated in such systems, as
updates from different operations may be interleaved.

5 Evaluation

We seek to answer the following questions in our evaluation
of SQUIRRELFS:

1. What is the latency of different file-system operations
on SQUIRRELFS? (§5.2)

2. How does SQUIRRELFS perform on macrobenchmarks?
(§5.3)

3. How does SQUIRRELFS perform on real applications?
(§5.4)

4. How long does SQUIRRELFS take to mount and recover
from crashes? (§5.5)

5. What compilation, memory, and CPU overheads does
SQUIRRELFS incur? (§5.6)

6. Is SQUIRRELFS correct? (§5.7)

5.1 Experimental setup
We evaluate SQUIRRELFS on a two-socket, 32 core machine
with 128GB of memory and one 128GB Intel Optane DC
Persistent Memory Module. The evaluation machine runs
Debian Bookworm and Linux 6.3.

We compare SQUIRRELFS against ext4-DAX [3], NOVA
[57], and WineFS [34]. We configure all three systems to pro-
vide metadata consistency but not data consistency to match
SQUIRRELFS’s guarantees. We cannot compare SQUIR-
RELFS to SoupFS [23], the only other soft updates PM file

system, as it is not open source. Due to time constraints, we
were unable to compare against the recent ArckFS [60] file
system. We hope to do so in the future. All reported results are
the average of multiple trials. The red errors bars in Figure 5
indicate the minimum and maximum values recorded over all
trials.

5.2 Microbenchmarks
We compare each system’s latency by testing several file
system operations: appending and reading 1KB and 16KB to
a file, file creation, directory creation, renaming a directory,
and unlinking a 16KB file. None of the tests call fsync.

The average latency over 10 trials of the tested operations
are shown in Figure 5(a). The lowest latency file system in
each test is either WineFS or SQUIRRELFS. Ext4-DAX has
the highest latency on many operations because it interacts
with the Linux kernel block layer for tasks like block alloca-
tion, which incurs additional software overhead. It achieves
similar performance to the other systems on operations that
do not go through the block layer (e.g., unlink). NOVA has
higher latency on mkdir and rename than WineFS and Squir-
relFS because operations that update multiple inodes require
journaling in NOVA.

5.3 Macrobenchmarks
We evaluate SQUIRRELFS on the Filebench [4] storage bench-
mark suite. We run four workloads from the suite – fileserver,
varmail, webserver, and webproxy – in their default configu-
rations. Fileserver performs mostly writes with some whole
file reads; varmail is half appends and half reads; webproxy
appends to each file and reads from it several times; and
webserver reads and occasionally appends to a log file. Fig-
ure 5(b) shows the average throughput in kops/sec for each
file system on each workload. SQUIRRELFS achieves slightly
better throughput than the next fastest system on fileserver
and varmail (8% and 13% better, respectively) and within
10% of the fastest system on both webserver and webproxy.
Fileserver and varmail perform many small appends, which
SQUIRRELFS performs well on due to its lack of journal-
ing. Webserver and webproxy are more read-heavy, which all
systems perform roughly equally on. Ext4-DAX does not go
through the block layer on reads and it benefits from data con-
tiguity awareness, making its performance similar or better
than the other systems on these workloads.

5.4 Applications

YCSB on RocksDB. We evaluate the four systems on
RocksDB [7] using YCSB workloads [22]. We run all work-
loads on a 25GB database with 25M records, 25M operations,
and 8 threads. All workloads are run using standard workload
configurations and the default settings of YCSB, which uses
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Figure 5: This figure shows the performance of the evaluated file systems on different benchmarks and applications. (a) shows
absolute latency of different file system operations; (b), (c), and (d) show the relative throughput in kops/s of each system relative
to Ext4-DAX on filebench, YCSB on RocksDB, and LMDB respectively.

system calls for all operations. Figure 5(c) shows throughput
in kops/second relative to Ext4-DAX on each tested workload.

SQUIRRELFS outperforms the other systems on Loads
A and E, which are 100% small inserts. As seen on the
other benchmarks, SQUIRRELFS performs particularly well
on small appends due to its lack of journaling or logging.
Writes that require page allocation are particularly expensive
in the other systems, as journaling/logging the new metadata
incurs an additional 2-3us in NOVA and WineFS and 3-4us
in Ext4-DAX. Ext4-DAX and NOVA both also journal or log
metadata on every append, spending roughly 30% of each
non-allocating call (approx 1-1.5us) managing journals/logs.

All file systems are within 10% of Ext4-DAX’s throughput
on Runs B, C, and D. All of these workloads are at least 95%
small (4KB) reads, which all four systems achieve similar
performance on.

SQUIRRELFS achieves the best throughput on Runs A
and F, which are 50% reads and 50% updates (Run A) or
read-modify-write operations (Run F). Ext4-DAX, NOVA,
and WineFS all incur logging/journaling on these workloads;
Ext4-DAX outperforms NOVA and WineFS because it has
less journaling overhead for in-place updates and is more

aware of data contiguity on reads.
Ext4-DAX achieves the best performance on Run E, which

is 95% range scans and 5% inserts. Ext4-DAX’s contiguity-
awareness and better fragmentation-prevention mechanisms
help it outperform the other systems on larger read operations.

LMDB. We also run LMDB [6], a memory-mapped database,
using db_bench’s fillseqbatch, fillrandbatch, and
fillrand workloads. Each experiment uses 100M keys on
an empty file system. Figure 5(d) shows the throughput in
kops/sec for each file system on each workload. Each file
system has throughput with 12% of the other systems. Most
updates are done to memory-mapped files, so differences in
the performance of system calls and metadata management
designs have a reduced impact.

Git. We also evaluate the performance of SQUIRRELFS by
performing git checkout of major Linux kernel versions.
The time to check out a given version in each file system is
within 8% of the other systems.

5.5 Mount time
SQUIRRELFS takes longer to mount than other PM file sys-
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System state Mount time (s)

Normal
mount

mkfs 5.80
Empty 5.51
Full 30.50

Recovery
mount

Empty 5.76
Full 55.50

Table 2: Time in seconds to mount SQUIRRELFS file system
images in differrent states. Times in the recovery mount col-
umn come from mounting a cleanly-unmounted file system
that runs a recovery scan in addition to normal rebuild scans.

tems because it must rebuild volatile indices for the entire file
system. Table 2 shows how long it takes to mount SQUIR-
RELFS on a 128GB PM device with different contents. The
≈ 5.5 seconds it takes to initialize or mount an empty system
is the overhead of zeroing or scanning the metadata tables
and creating volatile allocators. We also measure the time to
mount a system with 100% data and inode utilization. Most
of this time is spent allocating space for and managing the
volatile indexes and allocators.

If SQUIRRELFS detects that it was not unmounted cleanly,
it constructs additional structures to keep track of orphaned
objects and the true link count of each inode. It fills in these
structures during the regular rebuild scan and uses them to free
orphans and correct link counts at the end of the mount pro-
cess. SQUIRRELFS also checks each directory entry for non-
null rename pointers and either rolls back or completes any
interrupted renames. Table 2 reports the time it takes SQUIR-
RELFS to perform recovery scans on a cleanly-unmounted
device. Mounting with recovery takes longer than a standard
mount because the file system must construct orphan-tracking
structures and do an extra iteration over all directories to
check for rename pointers in addition to building the volatile
indices and allocators.

SQUIRRELFS’s mount time could be improved by paral-
lelizing some of its rebuild and recovery logic. For example,
the inode and page descriptor table scans are completely in-
dependent and could be done in parallel. The file system tree
rebuild logic could also be distributed across multiple threads.

5.6 Resource usage

Compilation. SQUIRRELFS takes approximately 10 seconds
to compile on our test machine, including typestate checking.
This compares well to fully-verified systems; FSCQ [19] takes
about 11 hours to verify, and VeriBetrKV [29] takes 1.8 hours
(10 minutes when parallelized).

SQUIRRELFS also compiles faster than the other tested
systems on the test machine. Table 3 shows the size of each
system in lines of code and how long it takes to compile.
SQUIRRELFS’s more complicated typechecking does not no-

System LOC Compile time (s)

Ext4 45K 38
NOVA 16K 20
WineFS 9K 13
SQUIRRELFS 7.5K 10

Table 3: Time to compile different PM file systems as loadable
kernel modules. Ext4’s line count includes interleaved DAX
and non-DAX code.

ticeably impact its compilation time.

Memory. SQUIRRELFS maintains indexes for fast lookups
of files and directory entries. Each regular file has an index
mapping its inode number (8 bytes) to each of its pages and
their offsets (16 bytes total). Thus, the index entries for a
1MB file use about 4KB of memory. Each directory has a
similar inode to page index (without offsets), plus a mapping
from directory entry names to metadata like their location on
PM and inode number. The current maximum name length
is 110 bytes (which makes directory entries 128 bytes) and
SQUIRRELFS does not currently hash or compress names.
Therefore, each directory entry takes up approximately 250
bytes in the index.

CPU. SQUIRRELFS does not start new threads in any of its
operations. We leave the use of more threads for operations
like freeing pages, running crash recovery, etc. to future work.

5.7 Correctness

Model checking. We check that a correctness invariant al-
ways holds in all traces of our Alloy model. We bound traces
to include two operations (which may be concurrent), 10 per-
sistent objects, and up to 30 steps. The invariant includes both
sanity checks on the model as well as file system consistency
checks. The sanity checks ensure, for example, that objects
will never end up with conflicting typestates. The consistency
checks ensure that 1) objects always have a legal link count, 2)
there are no pointers to uninitialized objects, 3) freed objects
do not contain pointers to other objects, and 4) there are no
cycles of rename pointers and directory entries are pointed to
by at most one rename pointer.

Testing. We test SQUIRRELFS using a set of handwritten
tests and the xfstests [10] test suite. SQUIRRELFS currently
passes all supported tests (67) from xfstests’ generic test
suite. The rest of the tests use system calls or arguments that
are currently not supported by SQUIRRELFS.

Crash consistency. We used Chipmunk [41] to test SQUIR-
RELFS for crash-consistency bugs. We modified Chipmunk’s
test generators to remove several system calls that SQUIR-
RELFS does not currently support but otherwise ran its full
suite of systematically-generated tests and fuzzed the sys-
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tem for approximately 24 hours. Chipmunk did not find any
ordering-related crash-consistency bugs in SQUIRRELFS, pro-
viding evidence that typestate-checked SSU is an effective
mechanism for preventing such bugs. Chipmunk did find four
crash consistency bugs in unchecked parts of SQUIRRELFS
code, three in its rebuilding of volatile data structures and one
in the body of typestate transitions in which a cache line flush
was issued to the wrong address. As these are not caused by
incorrect update ordering, the typestate pattern did not catch
them at compile time. We found that using the typestate pat-
tern in SQUIRRELFS made locating and fixing these bugs
faster and easier, as we could focus on the specific regions
of code that are unchecked and are thus more likely to have
bugs.

5.8 Summary
SQUIRRELFS provides comparable performance to other PM
file systems, while providing strong guarantees about its crash
consistency. Due to the innovative use of typestate checking,
we were able to implement SSU and gain confidence in its
correctness. SQUIRRELFS gains an advantage over other file
systems in write-dominated workloads, since soft updates
avoids writing to a log or to a second copy of the data. The
design of SQUIRRELFS trades off good common-case per-
formance for slightly longer mount times compared to other
file systems; we believe this is acceptable since crashes are
rare. SQUIRRELFS compiles at the same rate as other PM file
systems, despite the strong type checking.

6 Related work

Rust for PM. SQUIRRELFS was inspired by Corundum [32].
Corundum builds data structures whose low-level properties
are checked using Rust’s type system. For example, Corun-
dum ensures that there are no pointers to volatile memory
stored in persistent memory, and that persistent state is only
updated in transactions. It focuses on lower-level persistent
memory programming errors and cannot prevent higher-level
logical bugs. Corundum also requires all updates to PM to be
in transactions, which is overly restrictive for many systems.
In contrast to Corundum, SQUIRRELFS checks high-level
file-system crash-consistency properties using type-checking
without placing constraints on how the file system is used.

Soft updates for PM. Two PM file systems use soft updates
for crash consistency: SoupFS [23] and ArckFS [60]. Unlike
SQUIRRELFS, SoupFS is asynchronous and uses background
threads to flush updates. It uses byte-addressable updates to
eliminate cyclic dependencies. ArckFS is a user-space PM file
system built on the Trio architecture that uses synchronous,
soft-updates-esque updates for simple operations (e.g., cre-
ating a file) and undo journaling in more complicated cases.
Unlike ArckFS, SQUIRRELFS uses only synchronous soft

updates for its crash consistency; the novel way in which
SQUIRRELFS implements atomic rename (without journaling
or copy-on-write) further differentiates it from ArckFS. Both
SoupFS and ArckFS are written in C, and do not use Rust’s
type system to check their crash consistency.

Storage systems in Rust. Bento [45] is a framework for
building in-kernel file systems in Rust. The corresponding
file system from the Bento project, BentoFS, was designed
for block devices. Bento does not utilize the type system of
Rust to check file-system properties.

ShardStore [15] is a Rust key-value store used in Ama-
zon S3 that uses an asynchronous soft-updates-inspired crash-
consistency mechanism. The rules for when something should
be written to storage in ShardStore were checked with Dep-
Synth [55], a tool for synthesizing soft updates dependency
rules. Unlike ShardStore, SQUIRRELFS uses a synchronous
version of soft updates, and provides higher-level primitives
like atomic rename; ShardStore does not utilize the type sys-
tem to perform higher-level checks.

7 Conclusion

This paper presents a new methodology for crash-consistent
file system development. We propose the use of the type-
state pattern in Rust to statically check crash-consistency
invariants with low proof burden. We also introduce a novel
crash-consistency mechanism, synchronous soft updates, that
is well-suited to enforcement with the typestate pattern and
that eliminates many challenges associated with the original
soft updates technique. We develop SQUIRRELFS, a new file
system for persistent memory that uses statically-checked syn-
chronous soft updates for crash consistency. SQUIRRELFS
achieves comparable or better performance than other PM
file systems and required no language modifications or ver-
ification expertise to build. SQUIRRELFS, its Alloy model,
and our Alloy utilities are available at https://github.com/
utsaslab/squirrelfs.
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Abstract

Modern network hardware is able to meet the stringent band-
width demands of applications like GPU-accelerated AI. How-
ever, existing host network stacks offer a hard tradeoff be-
tween performance (in terms of sustained throughput when
compared to network hardware capacity) and flexibility (in
terms of the ability to select, customize, and extend different
network protocols).

This paper explores a clean-slate approach to simulta-
neously offer high performance and flexibility. We present
a co-design of the NIC hardware and the software stack to
achieve this. The key idea in our design is the physical sep-
aration of the data path (payload transfer between network
and application buffers) and the control path (header pro-
cessing and transport-layer decisions). The NIC enables a
high-performance zero-copy data path, independent of the
placement of the application (CPU, GPU, FPGA, or other
accelerators). The software stack provides a flexible control
path by enabling the integration of any network protocol, exe-
cuting in any environment (in the kernel, in user space, or in
an accelerator).

We implement and evaluate ZeroNIC, a prototype that com-
bines an FPGA-based NIC with a software stack that inte-
grates the Linux TCP protocol. We demonstrate that ZeroNIC
achieves RDMA-like throughput while maintaining the bene-
fits of robust protocols like TCP under various network per-
turbations. For instance, ZeroNIC enables a single TCP flow
to saturate a 100Gbps link while utilizing only 17% of a sin-
gle CPU core. ZeroNIC improves NCCL and Redis through-
put by 2.66× and 3.71×, respectively, over Linux TCP on
a Mellanox ConnectX-6 NIC, without requiring application
modifications.

∗Work partially done while interning at Enfabrica.
†Affiliated with Amazon Web Services, work done while at Enfabrica.

1 Introduction

Modern datacenter applications, such as artificial intelligence
(AI), data analytics, and distributed storage, are increasingly
reliant on moving massive amounts of data over the network.
As a result, datacenter operators are deploying systems ca-
pable of hundreds of Gbps of host networking. For instance,
the latest NVIDIA DGX-B200 is capable of 3.2T bps of net-
working – 400Gbps for each of the 8 GPUs [26]. As compute,
memory, and link throughput continue to scale, driven by tech-
nologies such as accelerators [5,25,49], the end-host network
stack is rapidly becoming a dominant bottleneck for these ap-
plications [12,13,72,95]. Therefore, the problem of designing
host network stacks has come to the forefront.

Existing host network stacks offer a hard tradeoff between
performance (in terms of sustained throughput when com-
pared to network hardware capacity) and flexibility (in terms
of the ability to select, customize, and extend different net-
work protocols). On the one extreme, RDMA-based host net-
work stacks [8, 34, 38, 54] are able to achieve high perfor-
mance, but provide minimal to no flexibility. With network
protocols baked into the hardware, adapting the protocol to
better suit the needs of emerging applications or deployments
is either not feasible or requires the time-consuming process
of hardware modification. As a result, existing RDMA-based
deployments remain fragile due to the possibility of head-of-
line blocking, deadlocks, congestion spreading, and/or host
congestion [1, 2, 44, 45, 63, 65, 74, 96]. On the other extreme,
the Linux network stack provides flexibility with a variety of
time-tested protocols [4, 11, 14, 39, 47, 68] and mechanisms
that enable the incorporation of new protocols [2, 10, 13]. Un-
fortunately, the current Linux stack falls significantly short
of exploiting the high-throughput capabilities of modern net-
work hardware [12]. Recent host network stacks [72,89] offer
operating points between these two extremes, but suffer from
a similar performance-flexibility tradeoff.

We present a clean-slate co-design of the host network
hardware and the software stack that simultaneously achieves
high performance and flexibility. Our design’s key driving
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idea is the physical separation of the data path (payload trans-
fer between network and application buffers) and the con-
trol path (header processing and transport-layer decisions)
within the host. Specifically, our NIC hardware enables a
high-performance data path between the network and the
application. The NIC splits the headers from the payload,
and directly transfers the payload from/to application buffers,
without requiring any intermediate data copy (zero-copy). Our
software stack enables a flexible control path. Users can plug
in existing transport stacks, which operate on packets (sans
payloads) as before, to make decisions on when to send data
(e.g., congestion and flow control) and notify applications
upon completion (e.g., acknowledging in-order byte streams).
The software control stack orchestrates memory management
and signaling between the NIC, the transport stack, and appli-
cations. Importantly, our design is independent of the location
of application buffers (CPU, GPU, FPGA, or other accelera-
tors) or the transport protocol’s execution environment (in the
kernel, in user space, or even in an accelerator).

The key challenge in realizing the physical separation of
data and control paths is to maintain correct semantics (in-
order, exactly-once data delivery) even in presence of network
perturbations (data corruption, drops, replication, reordering,
etc.). Our hardware implements the bookkeeping needed to
correctly transfer incoming data to their designated memory
destination even in the presence of network perturbations,
while our software stack coordinates across the hardware and
the application layer to maintain correct protocol semantics.

We demonstrate the benefits of our approach using an
end-to-end prototype, ZeroNIC. Our prototype combines an
FPGA-based NIC connecting to CPU and GPU memory, with
a software stack integrating in-kernel Linux TCP. Our pro-
totype realizes two APIs: the libibverbs API [67] used by
current RDMA applications and a streaming API for general-
purpose socket applications. For both APIs, ZeroNIC supports
zero-copy data transfers between the NIC and application
buffers in CPU or GPU memory. We evaluate ZeroNIC across
a variety of workloads and network conditions. ZeroNIC
achieves RDMA-level throughput with low CPU utilization.
For instance, we show that ZeroNIC allows a single TCP
flow to saturate a 100Gbps link while utilizing only 17% of a
single CPU hyperthread. In comparison, the Linux host net-
work stack on a Mellanox ConnectX-6 NIC achieves at most
50Gbps for a single TCP flow at 100% CPU utilization. We
also demonstrate that ZeroNIC enables a high-performance
zero-copy data path between GPU devices, achieving 2.66×
higher throughput in NCCL benchmarks [24], NVIDIA’s core
AI networking library. Finally, we show that ZeroNIC benefits
from the use of robust network protocols such as the TCP
implementation in Linux. ZeroNIC maintains its performance
under drops and fairness across flows.

To the best of our knowledge, our work is the first to support
both send and receive-side zero-copy for reliable protocols
like TCP with no constraints (e.g., MTU alignment, API mod-

ifications). It supports accelerator devices (e.g., GPUs) and
enables protocol termination anywhere (e.g., CPU or control-
plane accelerators) without limiting protocol semantics.

2 Motivation and Background

Our goal is to enable high-performance host networking re-
gardless of the data destination (host or accelerator memory)
and where/how the control plane is implemented. This flexi-
bility allows the development and tuning of network protocols
that improve fabric behavior and overall network efficiency
as applications evolve and systems scale.

2.1 RDMA: Performant but Inflexible

Many network-intensive applications, such as AI training us-
ing GPUs, frequently use RDMA solutions such as InfiniBand
(IB) [6] or RoCE [7]. RDMA solutions bypass the OS network
stack and its CPU overheads by terminating the network pro-
tocol in specialized hardware and firmware in RDMA NICs
(RNICs). RNICs enable high throughput by DMAing network
payloads directly from/to application buffers in CPU or GPU
memory using information encoded in send/receive requests.

The disadvantage of RDMA solutions is the lack of flex-
ibility. To achieve high throughput, RDMA solutions typi-
cally required a lossless fabric such as IB, reliant on certified
(short-distance) cabling and specialized switches. Such net-
works were forced to adopt a restrictive topology, avoiding
over-subscription and adding many redundant paths to avoid
drops [21,93]. To provide a similar quality-of-service on lossy
fabrics, RoCE solutions have increasingly required secondary
mechanisms to eliminate drops in the face of congestion, such
as priority flow control (PFC) [46] and watchdogs [8, 38].
RoCE solutions still suffer from a host of well-documented
challenges, such as end-host congestion [55], major perfor-
mance degradation under unavoidable network perturbations
(e.g., packet drops or reorderings) [44, 103], and excessive
buffer requirements [44]. Addressing these challenges is ar-
duous because RoCE’s control path is explicitly tied to the
implementation of the RNIC, requiring collaboration with
and intervention by RNIC vendors. For example, Microsoft
required support from its RNIC vendor to address livelocks
caused by go-back-0 retransmission [38].

2.2 Kernel Networking: Flexible but Slow

The Linux network stack, built around the TCP/IP protocols,
runs on a vast range of commodity hardware, supports di-
verse topologies, and can adapt to highly-variable network
conditions and failures. Its resiliency stems from the fact that
developers can optimize network protocol parameters includ-
ing the congestion scheme and buffer sizes for the needs of
emerging applications and deployments.
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Figure 1: Throughput and receiver CPU utilization with and
without receive-side (RX) emulated zero-copy. 100% means
that a hyperthread is fully utilized. “CPU sys” refers to the
hyperthread running protocol processing. “CPU soft” refers
to the hyperthread running the application and the software
interrupt handler.
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Figure 2: CPU breakdown for the TCP receiver with and with-
out emulated RX zero-copy, normalized to the CPU utilization
needed to achieve 100Gbps of throughput.

Unfortunately, the Linux stack cannot achieve high through-
put (≥ 100Gbps) as single-thread CPU performance is a
key bottleneck [12]. Specifically, receive-side data copies
from kernel to application buffers dominate end-to-end perfor-
mance, limiting a single TCP flow even after major optimiza-
tions (e.g., TSO/GRO, jumbo frames, and packet steering).

We built a proof-of-concept experiment to showcase the
single-flow performance potential of removing the data copy.
We modified the iperf benchmark [28] to support send-side
zero-copy via the Linux sender ZC API [53]. We emulated
receive-side zero-copy by truncating payloads in the kernel,
avoiding the additional copy to user space 1. We enabled TSO,
GRO, and jumbo frames. We also pinned the iperf process and
steered the receiver flow so that the interrupt handler (soft)
and TCP processing (sys) are located in the two hyperthreads
of the same physical core (sharing the L1 cache).

Figure 1 shows the sustained throughput and CPU utiliza-
tion. Even with send-side zero-copy on, regular kernel net-
working can only achieve 50Gbps for a single flow. Similar
to [12], we observe that CPU utilization is the bottleneck –
specifically the TCP protocol processing receiver core (sys).
Throughput cannot scale and the interrupt handling thread
(soft) is underutilized. Figure 2 shows that the majority of
CPU cycles for TCP processing are spent on data copies. En-

1Code available at https://github.com/enfabrica/iperf

abling receive zero-copy eliminates data copy overheads and
drastically improves throughput, saturating the 100Gbps link.
This experiment suggests that a flexible receiver zero-copy
mechanism that copies data to application buffers in CPU,
GPU, or storage devices can enable a wide range of protocol-
s/stacks, including Linux TCP and other user space or hard-
ware protocols/stacks [32, 48, 51, 72, 76, 77, 90], to meet the
throughput requirements of network-intensive applications.

2.3 Towards Control & Data Path Separation

The core challenge with existing network solutions is the tight
integration of the control and data paths, leading users to either
integrate the data path into the kernel, sacrificing performance,
or embed the control path in hardware, sacrificing flexibility.
We propose the physical separation of these two paths. The
data path provides robust support for zero-copy from NICs
to application buffers on devices like CPUs and GPUs. The
control path supports various transport protocols executing in
software or hardware. This separation allows the control path
to be optimized without overhauling the efficient data path.

There are many implementations of send-side (TX) zero-
copy such as those in RDMA NICs, the MSG_ZEROCOPY
flag in the Linux send system call [27], and the io_uring API
for asynchronous I/O [18]. In contrast, existing receive-side
(RX) zero-copy approaches are severely limited.

The challenge of page alignment. Linux includes a
page-remapping mechanism for RX zero-copy in socket
APIs [17, 59]. It allows the NIC to DMA the entire payload
to a memory location and then remap the payload’s physi-
cal address to the application buffer’s virtual address at page
granularity. This approach requires page-aligned payloads,
making it difficult for applications to transmit arbitrary data
lengths, as they can do with the socket or verbs APIs. The
page-alignment requirement may also be incompatible with
GPUs or flash devices [3], limiting the applicability of this
approach. Moreover, page-remapping incurs high CPU over-
heads due to the need for TLB flushing after altering page
table entries [59, 94].

The challenge of API compatibility. Several propos-
als facilitate RX zero-copy by altering application inter-
faces [9, 50, 79, 101, 102]. They require extensive changes
to applications using common APIs like sockets or IB verbs,
which typically rely on read/write operations from a contigu-
ous buffer. These proposals asynchronously transfer packets
from the NIC to application buffers, either as a linked list
of scattered payloads or with headers and data interleaved
in a buffer, which are released after being processed by the
application. Hence, applications must adapt to handling non-
contiguous data addresses during read operations.

The challenge of packet perturbations. Packet reorder-
ing, drops, and retransmissions disrupt the expected order of
packet arrivals and complicate the correct copying of payloads
into application buffers. A simple solution, employed by many

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    407

https://github.com/enfabrica/iperf


RNICs, is to discard out-of-order packets and default to a
go-back-N retransmission strategy, at the expense of through-
put (§2.1). An alternative is to temporarily buffer out-of-order
packets in the NIC until the missing packets arrive, potentially
through a selective retransmission mechanism. This approach
can quickly exhaust the SRAM capacity of state-of-the-art
NICs [74, 96], especially in large bandwidth-delay-product
(BDP) environments such as hosts with 400Gbps+ network-
ing per GPU, and limits the effective rate at which data is
transferred to the application.

The challenge of reliable protocols. Some systems sac-
rifice reliable transport semantics, directly copying incom-
ing payloads to the next-available application buffer. This
limits RX zero-copy support to unreliable protocols like
UDP [15, 57]. Recent attempts to support reliable connec-
tions (RC) have constrained applicability. SRNIC [96] han-
dles sequential and out-of-order packets via separate fast and
slow data paths. IRN [74] requires the sender to explicitly
define a receiver buffer identifier in the header. 1RMA [91]
requires application involvement for managing ordering and
handling failure recovery. Flor [62] separates the control and
data paths for RDMA transports to reconcile the control path
differences across different RNIC generations. However, Flor
primarily supports unreliable connections (UC). To extend to
reliable semantics, Flor uses an additional reliability sequence
number in the RDMA work request and requires the sender
and the receiver to establish a common chunk size for data
transfers. Flor must dynamically tune the chunk size to trade-
off between high throughput (larger chunks) and managing
congestion, drops, and retransmissions (smaller chunks).

Other related work. Nicmem [80], PayloadPark [36], and
Ribosome [87] have recently explored separating the control
and data paths in distinct contexts from our goals. They focus
primarily on NFV (Network Function Virtualization) work-
loads that do not process payloads, but rather operate only
on metadata to deliver packets to their next destination. To
optimize resource usage such as PCIe traffic, they split packet
headers and payloads and send only the header to the host.
SplitRPC [56] uses a control and data path separation, but it
is limited to unreliable protocols like UDP and use-cases like
end-user requests/responses for AI inference. Our work tack-
les a broader range of applications that continuously process
payloads and benefit from transport layer functionalities.

3 Performant and Flexible Host Networking

We co-design the hardware and software to physically sepa-
rate the data and control paths in host networking, but logi-
cally couple them after separation. The physical separation
enables a high-throughput, zero-copy data path to applica-
tion buffers for payloads, and an independent control path
for header processing. Figure 3 provides a high-level view of
our approach. The data path connects to any endpoint (e.g.,
accelerators, storage, host memory, etc.), and the control path

Application 
Buffers

header

payload
Application

Sent/Received 
notification

Transport 
Protocol

NIC

packet 
split/merge

Figure 3: Host networking with physically separated control
and data paths.
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CPU
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DRAMpayload Redis

Transport Protocol
header

Transport Accelerator

(b) Application buffers in CPU
memory (host DRAM), protocol
in a transport accelerator.

Figure 4: Examples of control and data path separation.

executes arbitrary transport protocols in any execution envi-
ronment (in user or kernel space software on a CPU, in Smart-
NIC software or hardware, or even in a protocol accelerator),
as illustrated by the two examples in Figure 4. The logical
coupling allows the control path to have full control of pro-
tocol semantics, i.e., when data is correctly received or sent,
how to handle events like reorderings and retransmissions,
and when to notify the application – even if the transport
protocol and data live in completely different devices.

The key challenge in providing a zero-copy data path man-
aged by transport protocols external to the NIC is that the NIC
must decide if, when, and where to copy incoming payloads,
prior to the transport protocol addressing out-of-order deliv-
eries and retransmissions. Additionally, regardless of when
data is copied, it should only be exposed to the application
when protocol semantics allow (e.g., in-order delivery).

We begin by reviewing how packets travel throughout our
network stack (§3.1). The NIC (§3.2) splits and merges head-
ers and data to enable zero-copy data transfers directly to
arbitrary devices (e.g. GPUs), even under reorderings, retrans-
missions, and drops. Our software stack is composed of the
control stack and the provider library. The control stack (§3.3),
which can execute in an arbitrary execution environment (e.g.,
in the kernel as a driver) is the coordinator between the NIC,
an arbitrary transport protocol, and the application. The trans-
port protocol acts only on packet headers, while the control
stack proxies its actions to data in remote memory (i.e., NIC
or application buffers). Our provider library implements both
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message and streaming APIs (§3.4) to allow an easy mapping
of popular networking libraries onto our design. Finally, we
discuss how we address various challenges in the host net-
work stack such as retransmissions and compatibility with
current optimizations (§3.5).

3.1 Receive and Send Path Overview
Figure 5 illustrates the receive (RX) and send (TX) paths
through our stack.
Receive path. 1 A receiving application begins by perform-
ing an initialization step using the provider library. As usual,
this step establishes a connection and binds to a network in-
terface. It also allocates application and NIC queues (§3.3)
to coordinate between the control stack, the provider library,
and the NIC hardware. The application also registers shared
memory with the NIC for zero-copy transfers. These memory
buffers can be anywhere in the system (e.g., GPU memory).
Applications can periodically register (and deregister) shared
memory space as needed. 2 After initialization, the applica-
tion invokes receive calls and the provider starts polling for
completions. For every receive call, the provider enqueues
an RX request entry into the application queue. RX request
entries contain the receive call’s buffer location and length.
3 The control stack steers the entry to the appropriate NIC

queue. The NIC parses RX request entries to store application
buffer information into dedicated hardware structures.

4 As packets arrive in the NIC from the sender, the NIC
parses their headers and decides on dropping, buffering, or
accepting each packet (§3.2). When a packet is accepted, the
NIC splits it into the header and the payload. 5 The NIC
identifies the payload’s correct memory location in the desig-
nated device buffer and DMAs it accordingly. 6 The NIC
creates and forwards RX header entries, composed of headers
and metadata, to NIC queues leading to the control stack. 7

NIC
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net port
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payloadheader

Transport Protocol 
Execution Environment
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GPU
HBM MR

MR TableMS List

Flow 
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DMADMA

TX
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payloadheader

Figure 6: NIC hardware block diagram.

When the data DMA completes, the control stack forwards
the headers from each RX header entry to the transport proto-
col. The protocol processes the header, reasoning about data
acknowledgment (e.g., ACKing only in-order data). 8 When
the protocol allows, the control stack posts a completion entry
into the application queue.
Send path. The send path is also designed so that the trans-
port protocol maintains control over data transmission. 1
As with the receive path, the application begins with initial-
ization steps that establish a connection, bind with a network
device, and allocate and bind with the application and NIC
queues needed for coordination. 2 Upon a (non-blocking)
send, the provider library enqueues a TX request entry to the
application queue. The TX request entry contains the applica-
tion buffer’s location and length. 3 The control stack then
forwards the entry to the transport protocol. 4 The transport
protocol creates packet headers and allows progress according
to its flow and congestion control mechanisms. When trans-
mission is allowed, the control stack forwards the constructed
header alongside the TX request entry to the NIC queue.

5 The NIC parses the TX request entries in-order and
DMAs data from the application buffers directly into NIC
memory. 6 The NIC then merges data with headers to form
packets, optionally applying optimizations such as TSO, and
transmits packets over the network. 7 Upon transmission,
the NIC enqueues completion entries back to the NIC queue.
8 The control stack polls for completions and forwards them

to the application queue. 9 Finally, the provider library polls
for entries and notifies the application upon completion.

3.2 NIC Hardware Design
Figure 6 presents the NIC hardware design that implements
key data structures to split (merge) packets, transfer headers
and payloads to (from) the control stack and application, and
track payload placement on a per-flow basis so that data can
be zero-copied to their correct application buffer.
Memory management hardware data structures. The NIC
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implements the data structures shown in Figure 7 to track
application buffers. At initialization, the application registers
a set of Memory Regions (MR) using the provider library. An
MR is a contiguous part of the application’s virtual address
space. The NIC maintains an MR Table entry for each regis-
tered MR. Virtual MR addresses are translated via an IOMMU
in the NIC, which caches translations for efficiency. MRs can
be anywhere in the system reachable by the IOMMU. For ex-
ample, in the context of GPUs, CUDA allocates GPU memory,
associates it to the PCIe address space (PCIe BAR), and maps
it to host application buffers. In this case, our NIC IOMMU
stores CPU to PCIe address space translations. Meanwhile,
the NVIDIA driver translates between PCIe and GPU mem-
ory, as in GPUDirect.

The control stack creates a Memory Segment (MS) for each
send and receive operation. An MS corresponds to a con-
tiguous user buffer and is defined by its MR ID, its offset
within the MR, and its length2. As the application makes
asynchronous send and receive calls, the control stack en-
queues the RX and TX MSs to the NIC into a per-flow MS
List. The MS List is essentially a linked-list containing the
application buffers involved with pending requests. Note that
each flow (and thus MS List) maps to a distinct NIC queue in
the control stack.

2For simplicity of presentation, we assume contiguous Memory Segments,
although MSs may map to more complex data structures.

The Flow Table tracks flow metadata used for incoming
packets. The most important fields in each Flow Table entry
are the flow ID used to index to the flow’s corresponding MS
List, and the flow cursor. The flow cursor is the sequence
number corresponding to the last in-order consumed packet
in the flow. The MS List and the flow cursor are combined to
make decisions over the packet’s payload, as explained below.
Receiving a packet. The hardware structures described above
allow the NIC to map incoming packets to application buffers
for zero-copy DMA, as shown in Figure 6. We focus on the
process of handling reliable protocols. Unreliable protocols
simply land data in the next available MS.

The NIC parses the header of an incoming packet to con-
struct a tuple that indexes the Flow Table (Figure 7), and
obtain the corresponding MS List and flow cursor. The MS
List and flow cursor are combined with the header’s sequence
number to derive the packet’s position in the flow. The NIC
then decides one of four actions: accept, drop, buffer, or defer.

We begin with Case (a) in Figure 8. In the absence of
network perturbations, the arriving packet contains the next
in-order unconsumed payload that the flow is expecting, i.e.,
the data immediately following the flow cursor. The packet
is accepted: the hardware examines the top MS in the flow’s
MS List and uses the MS and MR information to derive the
application address to DMA (zero-copy) the payload. The
cursor is updated to reflect the next unconsumed position. MS
boundaries and the size of the payload do not have to align.
The packet’s payload may consume a fraction of the MS or
may need to span into the next MS in the list. Fully consumed
MSs are retired when the flow cursor passes them.

Case (b) receives a packet with a sequence number that
suggests all the bytes in the payload have been previously
received and ACKed according to the flow cursor. This may
be due to a re-transmission when an ACK is lost or delayed.
This packet is dropped and no further action is taken. Case (c)
receives a packet that includes some bytes that are previously
ACKed and some new bytes. The hardware drops the repeated
part and accepts the rest of the packet as in Case (a).

Case (d) receives a packet beyond the flow cursor (i.e., with
a hole). This may be the result of packet reordering or a drop
of an earlier packet. The hardware will walk the MS List, and
by accumulating MS lengths, it will identify the right segment
for the data. The data will be accepted and DMAed to the
proper application buffer address. Even if future MSs are fully
filled, they will not be retired until the cursor passes them.
The control stack periodically sends the latest acknowledged
byte to the NIC to update the cursor.

Finally, under rare conditions, a packet may not match any
MS (Case (e)). This may be the result of excessive drops
or the receiver posting buffers at a slow pace. We can drop
the packet, buffer it in NIC memory and retry later, or defer
the packet to a non-zero-copy path. We implemented the last
option (defer) in our prototype system (§4). We also use this
approach if a packet arrives for a flow that has no Flow Table
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entry (i.e., the table has reached its capacity limits).
When a packet is accepted, it is passed to the Split/Merge

unit shown in Figure 6, which splits the packet into header
and payload. A DMA engine copies payload data directly to
application memory (e.g., in CPU user space or GPU device
memory). Another DMA engine then forwards headers to the
control path address space (e.g., in CPU kernel memory).

Note that the NIC lands data in application memory before
any transport processing happens. It also allows the overwrite
of future data if a packet is transmitted multiple times since
their MSs are not retired. However, correctness is maintained
because the application is notified when it is safe to use its
buffer by the control path, after protocol processing is done.
Sending a packet. The send hardware path is simple, as
packets are sent in the order of requests. Upon receiving a
header from the control stack, MSs enter the MS List and are
handled by hardware in FIFO order. A DMA engine copies
the payload directly from the corresponding application buffer.
The Split/Merge unit merges the header and payload to form
a packet, which is transmitted over the network.
Hardware requirements for scalability. Maintaining per-
flow state raises scalability concerns. Our design supports
10K high-performance flows with ~10MB of NIC memory.

Most proposed structures have a low memory footprint.
To support 10K flows, the Flow Table and MR Table require
~700KB and ~100KB respectively, to store all necessary meta-
data. MS Lists are the most resource-intensive structures. To
support long, potentially out-of-order, packet runs with low
memory footprint, our NIC does not buffer payloads. Instead,
the NIC DMAs future payloads to their correct memory des-
tination by finding the correct MS. For maximum efficiency,
we allocate a minimum number of MS List entries per flow to
keep the flow pipeline humming, and pull additional MS List
entries as needed (a CIR/PIR – committed/peak information
rate system) [43].

For example, a large bandwidth-delay-product (BDP) of
100Gbps ·0.2ms = 2.5MB would require 2.5MB

4KB = 625 MSs.
Instead of allocating 625 entries for all 10K MS Lists (10K ·
625 · 8B = 50MB), we allocate a minimum of 128 commit-
ted entries to each MS List, while supporting thousands
of peak entries (e.g. 8K) that are allocated to flows on de-
mand from a large entry backing store (e.g. 1M entries). For
10K high-performance flows, the total buffer requirement
is max(1M ·8B,10K ·128 ·8B) = 9.77MB. Downsizing MS
Lists adds the additional requirement to buffer RX NIC re-
quests during the lifetime of their respective MSs. Besides
supporting thousands of zero-copy flows, our design addi-
tionally supports non-zero-copy flows that do not occupy the
newly proposed data structures.

The required hardware resources for our NIC are signifi-
cantly lower than those of most RNICs [96]. Modern Smart-
NICs also require several processor cores, tens of MBs of
processor caches, and external memory like DDR, LPDDR,
or HBM that can handle payload buffering for high BDPs.

3.3 Control Stack Design

The goal of the control stack is to enable an arbitrary trans-
port protocol with our zero-copy data path, while maintaining
efficiency and correctness. The control stack does so by sep-
arating and defining a clean interface between three compo-
nents: a) the application, b) the transport protocol, and c) the
NIC. The control stack maintains connections between each
application and the NIC using two sets of queues.
Application queues. The control stack is co-located with
the transport protocol 3, application queues are allocated in
shared memory between the control stack and the application,
and connect the provider library with the control stack. Each
set of application queues contains a send queue, a receive
queue, and their respective completion queues. TX and RX
requests are enqueued by the provider library into the send and
receive queues, respectively, while the control stack notifies
applications upon completions via the completion queue.
NIC queues. The control stack also establishes a set of NIC
queues for TX and RX requests, incoming RX header entries,
and completions. NIC queues connect the control stack to
the NIC. They are implemented in the control stack and are
accessed by the NIC via DMA. In the send direction, the con-
trol stack enqueues MSs and headers to the NIC, constructed
from TX requests enabled by the transport protocol. In the
receive direction, the control stack sends MSs from RX re-
quests to the NIC. As they are consumed by incoming data,
the corresponding headers are split from incoming packets to
form RX header entries directed to the control stack.
Supporting arbitrary transport protocols. Current solu-
tions that leverage a single queue pair to provide zero-copy
functionality struggle to support protocols not executing in
either end of the queue (in the NIC or in user space). In con-
trast, our control stack uses two separate sets of queues to
interpose the transport protocol between the application and
NIC. The control stack polls the application send queue for
requests and the NIC queue for receive-path headers and in-
vokes the transport protocol to generate send-path headers and
acknowledgments, respectively. The control stack can sup-
port arbitrary transport protocols by translating application
requests to the respective transport API (e.g., TCP sockets).
Enhancing efficiency. In addition to eliminating data copies,
the control stack benefits from reduced system call and inter-
rupt overheads when submitting work and receiving comple-
tions. Specifically, polling on application queues avoids sys-
tem calls, resulting in performance benefits similar to mech-
anisms such as io_uring [18]. Since the control stack is
co-located with the transport protocol, it directly invokes it
without system calls. Similarly, the control stack polls the NIC
for completions and headers, avoiding software interrupts. To
address applications with sparse communication, mechanisms
such as combining polling and doorbells can also be applied.

3We assume the control stack executes as a kernel module; §6 discusses
supporting transport protocols external to the kernel (e.g., in user space).
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Maintaining correctness. Finally, the control stack maintains
correctness by logically coupling the physically separated
control and data paths. On the sender side, the control stack
invokes the protocol’s flow and congestion control to enqueue
control entries in the NIC and to trigger data DMAs. This
is equivalent to the congestion control algorithm acting on
headers physically accompanied by their data. On the receiver
side, payloads are separated from their headers in the NIC
and DMAed directly to application buffers. RX header en-
tries sent to the control stack incorporate information (e.g.
sequence number) to bind to their corresponding data. Data
becomes visible to the user upon consulting the protocol’s
acknowledgment policy (e.g., in-order delivery). Thus, the
transport protocol maintains ownership of the data without
ever touching the data itself, allowing us to reap all the bene-
fits of current transport protocols (robustness, fairness, etc.).

3.4 API Design

The primary goal of our API is to allow current applications
(more precisely, current networking libraries) to use our net-
work stack with minimal effort. Current applications use ei-
ther message-based or streaming semantics. Message seman-
tics (e.g., RDMA verbs) require the network stack to deliver
messages corresponding to contiguous memory buffers. A
message size is well-defined by the side initializing commu-
nication (one- or two- sided). Streaming interfaces (e.g., sock-
ets) allow senders to continuously transmit byte streams of
arbitrary length. The receiver can keep invoking receive calls
to consume data in the stream as the network stack progres-
sively signals reception on a byte-stream basis. The stream
memory layout can be irregular (non-contiguous) and differ-
ent on the sender and receiver sides. Our design explicitly
supports both message-based and streaming semantics. We
implement the libibverbs API [67] and a socket-like interface.
Supporting message interfaces. Most high-performance
applications rely on message semantics [24, 33, 37, 71, 73].
We support their transparent interoperability by implement-
ing the libibverbs API. We dynamically link the libibverbs
verbs_context_ops to our provider library. The provider in
turn connects to our control stack and exposes our application
queues to the user as struct ibv_qp.

Supporting streaming interfaces. Our design also sup-
ports streaming applications by exposing a socket-like API,
with slight modifications to support our software stack. The
application performs initialization similar to libibverbs (find
a device, allocate a protection domain for memory regions,
and initialize queues). Connection is established via the or-
dinary socket API (not requiring our fast data path). The
above structures are wrapped in a struct comm_ctx. send
and recv calls are asynchronous and extended with an argu-
ment containing the comm_ctx. To relieve the responsibility
of registering and de-registering memory regions from the
application, our send and recv calls post their buffer argu-

ment as an MR on their invocation. MRs can reside within
any endpoint.

3.5 Addressing Challenges

Retransmissions. Section 3.2 explains how the NIC chooses
the correct MSs, including when packets are retransmitted.
However, in the presence of potential retransmissions, an al-
ready consumed MS may need to be reused multiple times.
Both TX and RX sides post buffers that ultimately create MSs
which must therefore be carefully retired or replenished.

On the sender side, the control stack clones the socket
buffer (containing only metadata), before sending it to the
transport stack and keeps it alive until the protocol receives an
acknowledgment. If the transport decides on retransmitting
the packet, the socket buffer is cloned again. The hardware
will create the same MS and the retransmission will be ac-
commodated. On the receiver side, the NIC only retires MSs
directly following the flow cursor (§3.2), allowing overwrites
of future retransmitted data. Permitting overwrites simplifies
our retransmission handling logic, especially when arriving
packets contain both new and previously delivered data.
Multiple flows. Multiplexing flows in the same NIC queues or
MS Lists creates significant complexity in tracking which flow
is served on each access. We bypass this issue by assigning
NIC queues on a per-flow basis. Before binding with a NIC
queue, the control stack creates a flow entry rule in the NIC
Flow Table. The unique flow ID is used to index NIC queues
and MS Lists, ensuring exclusivity. Hence, zero-copy flows
are limited to the number of queues supported by the NIC.
Despite this issue, we support large enough flow counts with
moderate resource requirements (§3.2).
Associating messages with application buffers. Our design
supports message semantics with a streaming protocol under-
neath. In contrast to streams, messages do not have to fully
consume a user buffer before using the next one. Thus, there
is no clear signal to determine if an incoming packet is the
continuation of the currently served message (and MS) or
refers to the next message (and MS). We address this issue by
adding a message sequence number within the packet trans-
port header (e.g. in the “options” field for TCP). Combined
with the stream sequence number, we can point to the correct
MS and retire previous MSs that can be consumed even if
they were not fully filled.

Compatibility with offload mechanisms. Popular offload
optimizations such as GRO/LRO (receiver) and TSO (sender)
are compatible with our design. The control stack can trans-
parently support software offload mechanisms like GRO; con-
secutive headers will be merged into a single socket buffer
while their payloads have already been DMAed to consecu-
tive Memory Segments. The user is notified about the latest
in-order data, as usual. Similarly for LRO, headers are com-
bined in the NIC after they are split from their payloads. For
TSO, to support headers corresponding to more than an MSS
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(maximum segment size), the NIC segments them into smaller
headers. The MS in the send request will now serve for multi-
ple DMAs, one for each segmented header.

4 Implementation

We implemented ZeroNIC, an end-to-end prototype of our
proposed design. ZeroNIC consists of an FPGA-based NIC
that implements the key hardware functionality (§3.2), a soft-
ware control stack that uses TCP as the transport protocol
(§3.3), and a provider library exposing the API (§3.4).
NIC. We built a 100Gbps Ethernet NIC prototype using
a commodity Xilinx Virtex UltraScale+ FPGA [97]. The
NIC has three x16 PCIe 3.0 links that connect to an x86
CPU socket and two NVIDIA GPUs (Quadro RTX 4000). In
essence, our NIC also acts as a switch between the CPU and
the GPUs.

The NIC-to-CPU link is controlled by the QDMA IP [99]
from Xilinx that presents the NIC as an endpoint device to
the CPU. The CPU is the PCIe root port device. The QDMA
block allows for DMA transfers in both directions at full PCIe
bandwidth (100Gbps). Each NIC-to-GPU link is controlled
by the Xilinx XDMA IP [98] that presents the NIC as the
root port device to the GPU. The GPU is a PCIe endpoint
device. Unfortunately, under this configuration the XDMA
block supports a limited number of outstanding PCIe transac-
tions. This imposes a hardware limit on the sustained PCIe
bandwidth for DMA transfers between the NIC and the GPU.
When moving data from the GPU to the FPGA (GPU is the
sender), the maximum PCIe bandwidth is 85.0Gbps. When
moving data from the FPGA to the NIC (GPU is the receiver),
the maximum PCIe bandwidth is 38.6Gbps. This limitation
of our FPGA system and IP blocks is not fundamental to our
design. An ASIC implementation of our NIC would saturate
available bandwidth for transfers to GPUs.

Our NIC implements a split/merge unit for the 100Gbps
Ethernet port. We use context-addressable memories to imple-
ment the MR Table and the Flow Table that is addressed by
the 5-tuple from the TCP/IP header (source and destination
addresses and ports, and protocol ID). The split-merge unit
connects to the PCIe ports. The ZeroNIC design is modular
and can be extended to support multiple 100Gbps Ethernet
ports using replicated split/merge units. It can also support
more root-ports in order to connect more than two GPUs.
Control Stack. We implemented the control stack as a Linux
kernel driver, which binds the provider library with the NIC.
The driver directly invokes the unmodified Linux kernel TCP
stack for protocol processing, translating application requests
and NIC queue entries into Linux TCP socket calls. While our
design supports arbitrary protocols and execution locations,
we select the kernel TCP protocol for the first prototype as
it is robust, but challenging to make performant (see §2.2).
Application queues live in shared memory between the kernel
and provider library. NIC queues live in the kernel’s virtual

Table 1: Evaluation system setup.

System TCP / RoCE Baselines ZeroNIC

NIC Mellanox ConnectX-6 Prototype built on
Xilinx Virtex UltraScale+

Topology
2-node direct-conn

100G eth
2-node direct-conn

100G eth (38.6G max for GPU)

Protocol TCP bbr / RoCEv2 RC TCP bbr

Setup
TCP: TSO, LRO, 9K MTU

RoCE: 4K MTU
TSO, GRO, 9K MTU

(always TCP)

CPU
32 core AMD EPYC 7502

L1,L2,L3: 2MB,16MB,128MB
32 core AMD EPYC 7502

L1,L2,L3: 2MB,16MB,128MB

network device. Both are implemented as ring buffers of user-
configurable sized entries.

5 Evaluation

We evaluate the efficiency of our host networking approach
using the ZeroNIC prototype, with the Linux kernel’s TCP
transport in our control stack. We compare the performance of
ZeroNIC against two popular baselines: a TCP baseline that
uses the Linux network stack without our high-performance
data path, and a RoCE baseline that terminates the transport
protocol in the NIC. Both baselines use a Mellanox ConnectX-
6 NIC. We summarize the specific configurations of these
systems in Table 1. All ZeroNIC measurements utilize large-
segment offloading (TSO and GRO) and jumbo frames, unless
otherwise specified. We do not require MTUs to be page-
aligned.

5.1 ZeroNIC Throughput Evaluation

ZeroNIC provides RDMA-level throughput to application
buffers in CPU memory at low CPU utilization. Table 2
shows the throughput achieved by ZeroNIC for a single flow
between a sender and a receiver application using CPU mem-
ory. We compare against the Mellanox RoCE baseline (MLX
RoCE), as well as against kernel TCP using the Mellanox
NIC (MLX TCP) with and without send-side zero-copy (TX
ZC on/off). We enabled send-side zero-copy for Mellanox
TCP as discussed in §2.2. For ZeroNIC and Mellanox TCP,
we pin the protocol processing thread, and either the queue
polling (for ZeroNIC) or the software interrupt handling (for
Mellanox TCP) thread to hyperthreads in the same physical
core to maximize cache locality.

Table 2 breaks down the receiver-side CPU utilization be-
tween the kernel (sys) and other CPU cycles (usr/soft).
sys includes protocol processing and the ZeroNIC driver,
while usr/soft includes the ZeroNIC provider library, inter-
rupts, and the application itself. Note that 100% CPU utiliza-
tion means that a single CPU hyperthread (2 per core) is fully
utilized. RoCE offloads protocol processing to the RNIC and
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Table 2: Throughput and receiver-side CPU utilization for
CPU-to-CPU transfers. “CPU sys” refers to the hyperthread
running protocol processing and ZeroNIC’s driver. “CPU
usr/soft” refers to the hyperthread running the application,
software interrupt handler, and ZeroNIC’s provider library.

System
Throughput

(Gbps)
CPU

sys (%)
CPU

usr/soft (%)
Estimated
max Tput

MLX TCP
TX ZC off 43.89±1.35 94.15±3.45 29.55±2.62 46.61

MLX TCP
TX ZC on 50.63±0.55 100.0±0.00 32.36±0.80 50.63

MLX RoCE 98.03±0.00 N/A 9.58±0.81 N/A

ZeroNIC 96.37±0.60 17.20±1.96 33.50±1.11 560.29

1500 (1024 for RoCE) 4000 (4096 for RoCE) 9000
(no support for RoCE)
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Figure 9: Achieved throughput across multiple MTU sizes.
RoCE only supports power-of-two MTU sizes up to 4096B.

lands data directly into application buffers. Thus, we do not
observe sys CPU utilization. For ZeroNIC and RoCE, the
throughput benchmark polls for completions. We do not in-
clude cycles spent on the polling loop for ZeroNIC and RoCE,
as cycles spent polling do not limit throughput (e.g. the RoCE
application hyperthread shows as 100% utilized).

We observe that Mellanox TCP is constrained by CPU uti-
lization, despite the optimizations used (TSO, LRO, 9K MTU).
The Linux TCP stack uses a single thread for protocol pro-
cessing for each flow. With send-side zero-copy disabled, the
sender-side protocol processing thread saturates (not shown),
while the receiver thread almost reaches full utilization at
43Gbps. Enabling sender zero-copy exposes the receive-side
bottleneck as the receiver thread saturates at 50Gbps.

ZeroNIC copies RX data directly to user space applica-
tion buffers, eliminating the CPU cycles spent on data copy
as shown in Figure 2. This reduces the protocol processing
thread’s CPU utilization from 100% at 50.63Gbps to 17.20%
at 96.37Gbps. ZeroNIC also eliminates the majority of system
calls via the control stack’s polling architecture (§3.3), achiev-
ing an even lower usr/soft utilization than what baseline
TCP is projected to need at 100Gbps (§3.3, Figure 1). This
allows ZeroNIC to reach a throughput comparable to RoCE.
However, ZeroNIC maintains the flexibility of the Linux stack,

Table 3: Achieved throughput and receiver-side CPU utiliza-
tion for communication across different CPU/GPU endpoints.

System
Throughput

(Gbps)
CPU

sys (%)
CPU

usr/soft (%)
Estimated
max Tput

ZeroNIC
CPU-CPU 96.37±0.60 17.20±1.96 33.50±1.11 560.29

ZeroNIC
CPU-GPU 84.78±0.41 4 16.31±0.54 36.33±2.21 519.80

ZeroNIC
GPU-GPU 38.59±0.07 4 9.12±0.21 32.50±2.07 423.14

while RoCE implements its entire control path in the RNIC.
ZeroNIC is now bound by the link capacity. Given addi-

tional or faster links, ZeroNIC can scale beyond 100Gbps.
The last column in Table 2 estimates the maximum through-
put that ZeroNIC can achieve with the kernel TCP stack, by
scaling the protocol processing thread (sys) to saturate CPU
utilization (indeed, as we will see in Table 3, the usr/soft
thread has minor variations for different peak bandwidth set-
tings). ZeroNIC is projected to scale to > 500Gbps for a
single flow of the kernel TCP stack. This is a 11× higher
throughput than the current TCP network stack achieves for a
single flow using the Mellanox NIC.

Finally, Figure 9 demonstrates that ZeroNIC’s benefits hold
across various MTU sizes. For smaller MTUs (1500 or 1024
bytes), throughput on both ZeroNIC and RoCE slightly re-
duces due to higher packets-per-second DMA overheads.

ZeroNIC enables high-throughput data transfers di-
rectly to device (GPU) memory. ZeroNIC is able to extend
zero-copy benefits to arbitrary endpoints, including GPUs.
Hence, ZeroNIC can directly transfer data from and to GPU
HBM, bypassing the host CPU memory, similar to GPUDi-
rect [22]. Table 3 presents ZeroNIC’s single-flow throughput
for CPU-to-CPU, CPU-to-GPU, and GPU-to-GPU commu-
nication. In all cases, the control path uses the Linux TCP
stack. ZeroNIC is able to saturate the bandwidth supported by
the hardware on all paths, given the prototype IP limitations
discussed in Section 4: ~100Gbps for CPU-to-CPU, 85Gbps
for CPU-to-GPU, and 38.6Gbps for GPU-to-GPU transfers.

To validate that the ZeroNIC design scales to higher
throughput in the absence of prototype limitations, Table 3
also reports CPU utilization. As in Table 2, we split CPU
utilization between protocol processing and driver (sys) and
other cycles (usr/soft). As we can see by comparing the
CPU-to-CPU and GPU-to-GPU results, the usr/soft CPU
cycles do not strongly scale with maximum throughput. The
limiting factor for higher throughput for a single flow would
be the protocol processing overheads of the kernel’s TCP

4This is the maximum throughput supported by our hardware prototype
due to FPGA IP limitations (Section 4).
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Figure 10: NCCL throughput using ZeroNIC across different
flow sizes.

stack. Hence, we calculate the maximum throughput ZeroNIC
can reach when the kernel thread saturates (100% utilization)
to be above 400Gbps for CPU-to-CPU, CPU-to-GPU, and
GPU-to-GPU flows, This means that ZeroNIC can replace
the RoCE back-end network in GPU-based AI clusters that
is used to communicate activations and gradients during AI
training [75]. A ZeroNIC-based system with 8 GPUs would
require 8 CPU hyperthreads to support a total of 3.2T bps of
GPU-to-GPU networking, while gaining the benefits of using
any network protocol, such as the robustness of TCP.

5.2 End-to-End Workloads
ZeroNIC supports popular APIs (§ 3.4) that enable application
integration without modifications, simply by linking against
our provider library. We demonstrate this using three impor-
tant workloads; NCCL benchmarks, PyTorch, and Redis.

NCCL. NCCL [24] is the dominant communication library
for distributed AI using GPUs. It implements and optimizes
collective communication primitives that are commonly used
in AI training and multi-GPU inference. Different phases
of inter-node collective communication (all-reduce in data
parallelism, all-to-all in expert parallelism, point-to-point in
pipeline parallelism, etc.) use tens of megabytes as their col-
lective bucket size [58, 64, 85]. The number of flows scales
with the number of nodes (N). For example, NCCL’s tree algo-
rithm, the predominant inter-node collective implementation
algorithm, creates 2 logN flows per node [19]. Exposed com-
munication increases with system size [88], making network
performance critical, especially as cluster sizes increase be-
yond 10,000 GPUs and 1,000 nodes [20]. Improving NCCL
performance directly reduces exposed communication, lead-
ing to faster AI training and inference [41, 70, 82, 100].

We ran the broadcast NCCL benchmark [23]. For 2 nodes,
broadcast sends the full collective size unidirectionally be-
tween two ZeroNIC GPU servers. Since broadcast is the core
primitive used to build other collectives, improved broadcast
throughput directly translates to higher collective throughput
in general. We compare ZeroNIC to a baseline TCP imple-
mentation which uses the ZeroNIC NIC hardware, but always

Table 4: Average training epoch latency (in seconds) for dif-
ferent PyTorch distributed data parallel models using RoCE
GPUDirect and ZeroNIC.

System ResNet50 ResNet101 ResNet152

MLX RoCE 3.52±0.04 6.12±0.07 8.80±0.04

ZeroNIC 3.57±0.02 6.22±0.08 8.83±0.08

forwards the entire packet directly to the unmodified Linux
network stack (no zero-copy).

Figure 10 shows the throughput achieved by NCCL as
we vary the collective size. For small sizes, ZeroNIC and
the baseline deliver the same throughput. The throughput
bottleneck for small collectives is actually NCCL itself. It
implements a higher-level protocol with significant processing
overheads that cannot saturate the link with a single flow for
small collectives, regardless of whether RDMA or TCP is
used. As the collective size increases, the bottleneck becomes
packet processing in the TCP stack. For the baseline TCP
(no zero-copy), NCCL saturates at ~16Gbps for flows beyond
16MB. For large collective sizes, ZeroNIC manages to hit the
maximum throughput allowed by our FPGA prototype, 2.66×
higher than the baseline. If the FPGA limitation is removed,
ZeroNIC will saturate the Ethernet link. These results show
that the ZeroNIC data path is especially powerful for devices
such as GPUs. It eliminates two data copies: a copy from the
kernel buffer to the application buffer and a copy from the
CPU-based application buffer to a GPU buffer.

PyTorch. PyTorch [78] is the most popular AI framework.
For distributed training, PyTorch implements various par-
allelization strategies, leveraging communication backends
such as NCCL. For example, in data parallelism, training data
is partitioned while each node holds a full copy of the model.
During each iteration’s backward pass, all model gradients
are averaged across all ranks using the all-reduce collective.

We trained different sizes of ResNet [42] using PyTorch’s
distributed data parallelism [81] with NCCL. We compared
the average training epoch latency on two ZeroNIC nodes
using TCP, against two Mellanox nodes using RoCE with
GPUDirect [22]. Our baselines, ResNet50, ResNet101, and
ResNet152 are composed of 25.6, 45.5, and 60.2 million pa-
rameters, and require synchronizing 51.2, 91.0, and 120.4
MBs worth of gradients in every iteration, respectively. Each
epoch is composed of 100 iterations. Table 4 shows that
ZeroNIC achieves GPUDirect-level performance, within 2%
of RoCE’s latency.

As NCCL supports the IB verbs API, we ran both the
PyTorch and NCCL experiments on ZeroNIC without any
application/library modifications. These results demonstrate
that our design can be effortlessly used in AI clusters that rely
on high performance, while maintaining the flexibility and
robustness of the Linux network stack.
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Figure 11: Redis throughput across different payload sizes.

Redis. Redis [83] is an in-memory key-value database
widely used for in-memory caching. Redis’ performance is
crucial for a wide range of data-intensive web-scale applica-
tions. We used Redis with the libibverbs API, and we eval-
uated its throughput on ZeroNIC against Mellanox RoCE
(MLX RoCE) and kernel TCP using the Mellanox NIC (MLX
TCP). We ran the redis-benchmark [84] using the SET opera-
tion and varied the payload size from 1KB to 1MB. We used
a total of 4 clients with 10 outstanding requests per client in
order to saturate the Redis server thread.

Figure 11 illustrates that ZeroNIC achieves end-to-end
performance on par with RoCE, averaging 89% of RoCE’s
throughput across all the payload sizes. Compared to Mel-
lanox TCP, ZeroNIC achieved a 3.71× higher throughput on
average, benefiting from the lower CPU overheads. For in-
stance, for the 16KB message size, 71% of CPU cycles are
consumed by networking stack overhead for Mellanox TCP.
In contrast, both ZeroNIC and Mellanox with RoCE allow for
nearly 99% of the cycles to be dedicated to application-level
processing.

5.3 ZeroNIC Robustness Evaluation

While ZeroNIC achieves high throughput, it also gains the
robustness offered by transport protocols such as TCP. To
demonstrate the benefits of a flexible control path, we evaluate
ZeroNIC under various network perturbations and conditions.
ZeroNIC supports interleaved packets across multiple
zero-copy and non-zero-copy flows. To evaluate ZeroNIC’s
ability to handle and scale to multiple flows, we performed
an incast experiment combining 2MB zero-copy flows, and
64KB bidirectional short flows that used the unmodified non-
zero-copy socket API. The receiver ZeroNIC server used a
single core (two hyperthreads) to perform application and
network processing for all zero-copy flows.

Figure 12 shows (a) the throughput and CPU utilization
for the long flows and (b) the p50 latency for the short flows.
ZeroNIC is able to steer interleaved incoming packets to their
correct NIC queues, avoiding flow collision. It maintains fair-
ness across all flows, evenly distributing bandwidth of up to 8

zero-copy flows, the FPGA’s hardware limit. Meanwhile, total
CPU utilization (protocol processing, driver, provider, and ap-
plication) remains approximately constant, and the aggregate
throughput across flows saturates the available bandwidth.
Overall, ZeroNIC achieves high throughput with roughly con-
stant CPU resource demands as the flow count scales. This
result, together with our moderate hardware memory require-
ments to support thousands of high-performance flows (§3.2),
validates our design’s scalability. Additionally, regardless of
the number of high-performance flows, ZeroNIC can still con-
currently support non-zero-copy flows. Figure 12b shows that
their latency is not affected by the number of long flows.
ZeroNIC extends the drop-resistance of TCP to GPU-
direct data paths. A primary motivation for physically sep-
arating the control and data paths is to combine zero-copy
performance with a mature network transport. This experi-
ment examines packet losses, which is a significant problem
for RDMA solutions, like RoCE, that were designed assuming
a lossless fabric (§2.1). We injected packet drops by adding
probabilistic filtering rules at the RX side for both ZeroNIC
and the Mellanox TCP baseline with TX zero-copy. We could
not replicate this experiment for RoCE because none of our
available drop rules [35,66,92] could intercept RDMA traffic.

Figure 13 shows the throughput of a single GPU-to-GPU
flow as we raised the probabilistic drop rate from 0.1% to
10% for the two systems. As expected, both TCP-based sys-
tems perform well at low drop rates. ZeroNIC maintains
near-full throughput even at 1% drops, taking advantage of
TCP’s mechanisms for drop resistance (retransmitting mini-
mal data). RoCE is known to collapse to near-zero through-
put at 1% drops due to the use of go-back-N for retransmis-
sions [69, 103].

Adding drop resistance to GPU-to-GPU traffic is partic-
ularly important for AI clusters. It removes the pressure to
design a perfect congestion control mechanism and to over-
size switch buffers. It also allows switch chips to be config-
ured to use cut-though switching instead of store-and-forward
switching. The latter is forced by the need for forward-error-
correction (FEC) in order to reduce noise-induced packet
losses to zero.

6 Discussion

Zero-copy is critical but is not a panacea. We demonstrated
that a data path with both receive and send-side zero-copy
improves host networking even with mature network proto-
cols. However, as network links scale to 800Gbps and be-
yond for workloads like artificial intelligence, the control path
will become the next bottleneck. Recent proposals to reduce
packet processing overheads include hardware offload [40,60],
system call mitigation [18, 31], extending segmentation of-
fload [16, 29, 52], and cache-aligned reorganization [61]. To
improve metadata I/O between the NIC and software, systems
like Enso [86] and PacketMill [30] introduce optimizations
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for the efficient use of PCIe bandwidth. Our design is well-
positioned to help with and benefit from this evolution.
Our design enables an agile evolution of the data and
control path. Our design creates a triangle between the NIC,
data path devices, and control path devices with well-defined
interfaces and responsibilities. This allows the fast and largely
independent evolution and optimization of control and data
path devices. For example, a host architect can quickly swap
GPUs for other AI accelerators without re-implementing or
re-optimizing the network data path or the control path.

Control path flexibility is equally important. Achieving the
right balance of features and resources integrated in the NIC
is difficult. Unlike RNICs that jointly implement the control
and data paths in inflexible hardware or opaque firmware, our
NIC design implements only a necessary subset of features
to support remotely executed control paths. Via our design,
a system architect may use a different network protocol in
order to improve fabric performance (high utilization, reduced
drops, reduced hot spots, etc.) or use a specialized hardware
component for faster header processing (CPU with special-
ized cores, FPGAs, or specialized accelerator). Our design
facilitates changes in the control path of the triangle with-
out necessitating changes in the performant data path or the
application layer.

The bounds of the maximum bandwidth and minimum la-
tency of communication between the elements of the triangle
are set by the link specifications that connect them. Our pro-
totype uses PCIe links and inherits PCIe’s bandwidth and

latency profiles. As higher throughput and/or lower latency
links, such as CXL and NVLink, gain acceptance in industry,
our design will benefit from their characteristics.

7 Conclusion

Current end-host network stacks inherently couple the control
and data path, resulting in implicit trade-offs between the flex-
ibility and performance of network solutions. In this paper, we
showed that a physical separation of the data and control paths
allows host network stacks to achieve both flexibility and per-
formance. To this end, we presented a co-designed hardware
and software stack, which enables a zero-copy receive and
send data path between the NIC and any device memory, con-
trolled by any arbitrary transport protocol. We showcased
ZeroNIC, a prototype that combines an FPGA-based NIC and
the TCP stack in the Linux kernel as the transport protocol.
Our prototype saturates available network bandwidth on CPU
and GPU benchmarks. It improves TCP-based NCCL and Re-
dis throughput by 2.66× and 3.71×, respectively, over Linux
TCP on a Mellanox ConnectX-6, all while maintaining the
robustness of the TCP transport.
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Abstract
This paper introduces INTOS, an embedded operating sys-

tem and language support for multi-threaded intermittent com-
puting on a battery-less energy-harvesting platform. INTOS
simplifies programming with a traditional “thread” and a
“transaction” with automatic undo-logging of persistent ob-
jects in non-volatile memory. While INTOS allows the use
of volatile memory for performance and energy efficiency,
conventional transactions do not ensure crash consistency
of volatile register and memory states. To address this chal-
lenge, INTOS proposes a novel replay-and-bypass approach,
eliminating the need for users to checkpoint volatile states.
Upon power restoration, INTOS recovers non-volatile states
by undoing the updates of power-interrupted transactions. To
reconstruct volatile states, INTOS restarts each thread by-
passing committed transactions and system calls by returning
recorded results without re-execution. INTOS seeks to build
a persistent, full-fledged embedded OS, supporting priority-
based preemptive multithreading while ensuring crash con-
sistency even if power failure occurs during a system call or
while some threads are blocked. Experiments on a commodity
platform MSP430FR5994 show that when subjected to an ex-
treme power failure frequency of 1 ms, INTOS demonstrated
1.24x lower latency and 1.29x less energy consumption than
prior work leveraging idempotent processing. This trend turns
out to be more pronounced on Apollo 4 Blue Plus.

1 Introduction

Instead of using a battery, energy-harvesting systems [24, 30,
40, 54, 57] capture necessary energy from ambient sources
(e.g., solar [27], radio frequency [35]) and leverage a small ca-
pacitor as energy storage. The ability to offer sustainable and
long-term deployment without the need for battery replace-
ments has unlocked a diverse range of emerging applications
such as body implants [29], wearables [61], wildlife track-
ing [67], road monitoring [26], and satellites [5].

Since the capacitor undergoes cycles of depletion and
recharge, program execution on an energy-harvesting system
is inherently intermittent, involving repetitive power interrup-

tions and resumptions. The nature of intermittent computing
necessitates crash consistency to guarantee correct resumption
throughout frequent power cycles.

An operating system (OS) offers essential services to appli-
cation developers (users), including multi-threading, queues,
semaphores, events, and timers, to assist in creating feature-
rich applications. To illustrate, widely-used embedded OSes
like FreeRTOS [3] have streamlined the development of di-
verse embedded applications. Unfortunately, this level of OS-
/runtime support is absent in intermittent computing envi-
ronments. For instance, ImmortalThreads [65] offers a tiny
runtime supporting (pseudo) threads with cooperative schedul-
ing; however, its capabilities are limited. It lacks a wait-list for
blocking threads. Its event loop is based on polling, wasting
microcontroller (MCU) cycles. Many task-based solutions
such as Ink [64] and CatNap [52] do not support threads.

There arises a growing need for a more robust OS tai-
lored specifically for intermittent computing. Advancements
in hardware technologies, such as ultra-low power microcon-
trollers like TI’s MSP430FR [6] and ARM’s Cortex-M4 [2],
as well as non-volatile memory (NVM) like FRAM [12] and
MRAM [10], have empowered intermittent applications to per-
form more computations. Emerging intermittent applications
are becoming increasingly complex, incorporating features
like multi-threading, communication, synchronization, and
responsiveness to events. We started witnessing machine and
deep learning tasks [16, 28, 39, 48] on energy-harvesting plat-
forms. Despite these advancements, users are compelled to
manage this complexity without adequate OS support.

Unfortunately, the current crash consistency solutions are
hard to adopt or result in inefficient designs when applied to
the development of persistent embedded OS kernels. Some ap-
proaches [22,31,49,52,53,56,64] require users to decompose
applications into a task graph, demanding each task to inher-
ently possess failure-atomicity and idempotence. This poses
considerable challenges for programmers [38, 65]. Breaking
down a kernel system call, such as creating a thread or block-
ing on a full queue, into tasks is not trivial. Other compiler-
based solutions [15, 18, 19, 37, 47, 50, 55, 62] automatically
divide programs (e.g., into idempotent regions) and incor-
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porate checkpoints, requiring little to no user annotations.
Thus, they may be used to build a persistent OS. Yet, many
(except Chinchilla [50]) assume execution solely on NVM,
overlooking potential advantages offered by volatile memory.

This paper introduces INTOS, a new persistent full-fledged
embedded OS accompanied by language support for multi-
threaded intermittent computing (§4). To ease intermittent
application programming, INTOS offers a traditional “thread”
along with a priority-based preemptive scheduler. INTOS also
allows users to define a standard “transaction” with automatic
undo-logging to ensure the crash consistency of persistent
objects residing in NVM, akin to a widely adopted Intel’s Per-
sistent Memory Programming Kit (PMDK) [7]. INTOS places
program stacks, encompassing local variables and function
frames, in volatile memory to improve performance and en-
ergy efficiency. However, their crash consistency in the event
of a power failure is not safeguarded by transactions. The
absence of volatile states (e.g., stacks) makes it impossible to
simply resume from the beginning of a transaction.

To address this challenge, INTOS proposes a new replay-
and-bypass approach (§5). Upon power restoration, INTOS
recovers non-volatile states by undoing the updates of power-
interrupted transactions. To reconstruct volatile states, it then
restarts each thread from the beginning while bypassing com-
mitted transactions and system calls by returning recorded
results without re-execution. This approach is grounded in
the insight that reconstructing the volatile states with replay-
and-bypass is more energy-efficient, compared to alternatives
checkpointing volatile states to NVM—since NVM writes are
the most energy-consuming in the instruction set architecture.

In particular, INTOS provides a programming model based
on Rust, leveraging Rust’s type system to enforce various
programming rules (§6). These rules are designed to ensure
crash consistency: e.g., the prohibition of modifications to
persistent objects outside of transactions. The adaptability
of this programming model has been showcased through the
successful implementation of the INTOS kernel, featuring
multithreading, queues, semaphores, events, and timers.

We evaluate INTOS with three single-threaded and eight
multi-threaded applications, including those ported from
RIoTBench [58], an IoT/Edge stream processing bench-
mark for real city sensing and fitness sensing data, on
MSP430FR5994 [6] and Apollo 4 Blue Plus [1]. We compare
INTOS with Ratchet [62] where compiler-based idempotent
processing is applied in both the INTOS kernel and appli-
cation. On the MSP430FR platform without power failures,
INTOS exhibited 1.65x lower latency and 1.85x less energy,
compared to Ratchet. Even when subjected to an extreme
power failure frequency of 1 ms, INTOS demonstrated 1.24x
lower latency and 1.29x less energy overhead. This trend
became more pronounced on the Apollo 4 platform.

This paper makes the following contributions:
• To the best of our knowledge, INTOS is the first persistent

embedded OS that supports priority-based preemptive mul-

Volatile Memory 
(e.g., SRAM)Regs

Non-Volatile Memory 
(e.g., FRAM)

MCU

CapacitorHarvester

Figure 1: An architecture of energy harvesting platforms (e.g.,
MSP430FR). Registers and SRAM (blue boxes) are volatile.

tithreading and other core features, tailored for intermittent
computing with frequent power failures.

• INTOS combines transactional programming with a new
replay-and-bypass recovery mechanism to ensure whole-
system crash consistency, encompassing both volatile and
non-volatile memory states at both user and kernel levels.

• INTOS introduces a Rust-based programming model en-
suring crash consistency through the proposed transactions
and replay-and-bypass recovery mechanisms.

• INTOS is to our best knowledge the first intermittent system
that is evaluated with multithreaded applications.

2 Background

This section briefly discusses intermittent computing, embed-
ded OS, and transactions.

2.1 Intermittent Computing

Execution on an energy-harvesting platform is intermittent,
i.e., it abruptly halts upon the depletion of the capacitor and
resumes after recharging, typically to the full capacitance.
This implies that the program is often power-interrupted, and
therefore intermittent computing requires to ensure crash con-
sistency for correct recovery across frequent power cycles.

Figure 1 depicts an architecture of energy harvesting plat-
forms available in TI MSP430 [6] or Ambiq Apollo 4 [1].
The energy harvester gathers ambient energy (e.g., solar, RF)
and stores it in a capacitor. Capacitor sizes typically vary
from a few to several hundred microfarads (µF). For refer-
ence, WISP [57] uses 47 µF. The computing components
include an ultra-low power microcontroller (MCU) along
with both volatile memory (e.g., SRAM) and non-volatile
memory (e.g., FRAM [12] or MRAM [10]). For instance,
the MSP430FR5994 features a 16 MHz MCU with 8KB
SRAM and 256KB FRAM. Registers and SRAM states (blue
boxes) are lost upon a power outage. Previous solutions (§3)
have suggested diverse approaches to maintaining the crash
consistency of data stored in registers, volatile memory, and
non-volatile memory across a power cycle.
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Prior Works Crash Consistency Multithreads? Queues? Semaphores? Events? Timers? Prog. Burden? Volatile Mem?

Alpaca [49], Coala [53], MayFly [31] manual task decomposition no (tasks) no no no no high yes
Chain [22] manual task decomposition no (tasks) limitedly no no no high yes
Coati [56], Ink [64] manual task decomposition no (tasks) no no limitedly no high yes
CatNap [52] manual task decomposition no (tasks) limitedly no limitedly no high yes

Ratchet [62], WARio [37] idempotent processing no no no no no none, very low no
Chinchilla [50] ckpt & undo-logging no no no no no none, very low yes
HarvOS [15], RockClimb [19] static energy analysis no no no no no none, very low no
TICS [38] ckpt & undo-logging no no no no no low no
ImmortalThread [65] ckpt & micro-continuation yes (pseudo-stackful) no limitedly limitedly no low no

INTOS (ours) replay & undo-logging yes (stackful) yes yes yes yes medium (transactions) yes (replay)

Table 1: A comparison of the main features of INTOS with prior intermittent computing solutions.

2.2 Embedded Operating Systems
Embedded OSs [3,13,14,25,41,42] are a specialized software
layer that provides essential services for the target embedded
system. They empower users (application developers) to cre-
ate applications with rich features using a conventional thread-
based programming model, even within resource-constrained
environments. For instance, FreeRTOS [3], widely recognized
as one of the most adopted, supports (1) multi-threading with
a priority-based preemptive scheduler; (2) synchronization
(e.g., semaphores) and communication (e.g., queues) among
threads; (3) dynamic memory allocation; and (4) software
timers. An embedded OS is intimately linked with the appli-
cation code and is typically included as part of the firmware
image. Existing embedded OS kernels are not designed to be
crash-consistent and do not support intermittent computing.

2.3 Transactions for Non-volatile Memory
Transactions stand out as a widely adopted programming
model for NVM, as demonstrated by Intel’s PMDK [7] for
Optane memory [4]. Users can allocate a persistent object
using a non-volatile memory allocator. A transaction employs
undo logging (or redo logging) to ensure failure-atomicity
(the “all-or-nothing” semantic) for operations executed during
the transaction. Transactional programming has demonstrated
success in the development of complex software such as per-
sistent memchached [9] and redis [8].

3 Related Work

This section initially emphasizes the absence of essential OS
features in prior solutions (Table 1) and then delves into the
challenges associated with applying existing crash consis-
tency solutions to design persistent OS services.

No OS exists for intermittent computing. As highlighted in
the middle five columns of Table 1, current intermittent pro-
cessing runtimes lack essential features present in modern em-
bedded OSes. ImmortalThreads [65], for example, introduces
(pseudo) multithreading with “non-blocking” spin-locks and
event buffers. Spinning results in inefficient utilization of
MCU cycles. To support “blocking” semaphores, queues,

event groups, and software timers in intermittent computing,
an OS/runtime should maintain a run-queue, wait-queues, and
other relevant kernel metadata in a crash-consistent manner.
ImmortalThreads (its runtime) does not offer them.

We believe ImmortalThreads can be extended to implement
such missing kernel features using its micro-continuation
approach. However, we expect ImmortalThreads would suf-
fer from two fundamental problems. First, ImmortalThreads
would incur high performance overhead. Unlike those
hardware-based roll-forward solutions [17, 21, 36, 51, 66] that
detect impending power failure and save registers to resume
from the failure point, ImmortalThreads does not (cannot)
sense the dying voltage. Thus, it ends up persisting a pro-
gram counter in every store instruction to enable roll-forward
recovery (micro-continuation). Second, micro-continuation
only works for non-volatile memory and excludes volatile
SRAM available in commodity energy harvesting systems,
thereby losing a great opportunity to enable more energy-
efficient intermittent computing. JustDo logging [34], from
which the micro-continuation idea is inspired, also requires
the entire memory hierarchy to be fully persistent. We discuss
ImmortalThreads’ potential high overhead later in §10.

On the other hand, Ink [64], Coati [56], and Catnap [52]
offers partial support for task-based event-driven runtimes, yet
they do not accommodate threads and demand a task-based
programming model, which we explain next.
Manual task decomposition adds programming burden.
For crash consistency, several prior solutions [22,31,49,52,53,
56,64] require users to decompose an application into a graph
of “tasks”. Each task is compelled to inherently guarantee fail-
ure atomicity and idempotence in the face of a power failure,
leading to considerable programming challenges and design
complexities. Some runtime systems employ a cooperative
scheduler to execute multiple tasks. However, the manual
task decomposition shifts the responsibility of ensuring crash
consistency onto users. This has been demonstrated to be a
significant burden for programmers [38, 65]. For example,
breaking down a kernel system call, such as creating a thread
or blocking on a full queue, into tasks is far from trivial.

Within the task-based model, several new features have
been introduced. For example, Alpaca [49] suggests task pri-
vatization, creating a volatile copy of shared non-volatile vari-
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ables before entering each task. A task’s local computation
can run on volatile memory. Upon task completion, updates to
shared variables are committed to NVM in a double-buffered
manner. Chain [22] abstracts inter-task variable passing with
the use of a persistent queue; Ink [64] and Coati [56] sup-
port event-driven programming; and CatNap [52] adaptively
schedules tasks based on task priority, energy consumption,
current energy level, and charging rate.

Automatic checkpointing often does not consider volatile
memory. Several works [15, 19, 37, 47, 50, 55, 62] have intro-
duced compiler support to automatically partition a program
into multiple regions and insert checkpointing at the bound-
aries of these regions. Users require little to no annotations,
so they can be used to build persistent OS services. Our evalu-
ation (§10) includes a comparison against Ratchet [62] idem-
potent processing. However, many compiler-based solutions
assume a program execution solely on non-volatile memory,
foregoing the potential performance and energy efficiency
benefits that volatile memory could provide. Experiments
with MSP430FR5994 (§10.1) show that executing our 11
benchmarks entirely in non-volatile memory (FRAM) results
in 1.11x latency and 1.16x energy overheads compared to run-
ning them entirely in volatile memory (SRAM). In this con-
text, only live-in (volatile) registers necessitate checkpointing
at a region boundary. A notable exception is Chinchilla [50]
which maintains volatile and non-volatile stacks, yet it still
involves frequent checkpoints of stacks to NVM.

Ratchet [62] divides a program into idempotent regions [23,
43, 45, 46] with no write-after-read dependencies within a re-
gion. Chinchilla [50] selectively skips certain checkpoints
based on energy conditions. WARio [37] reduces the num-
ber of idempotent regions by reordering instructions and in-
corporating a loop optimization. Differently, HarvOS [15]
partitions a program into regions where the energy required
to complete that region is less than the energy buffer size.
RockClimb [19] checks the energy level at the region bound-
ary and only proceeds if there is sufficient energy. On the
other hand, TICS [38] and ImmortalThreads [65] leverage a
compiler for checkpoint instrumentation without region par-
titioning. TICS employs stack segmentation, where only a
working stack (and registers) is checkpointed in NVM via a
two-phase commit. ImmortalThreads introduces micro con-
tinuation, which checkpoints every memory update, ensuring
the idempotence of the execution until the next checkpoint
(store).

Other issues Prior works also address data timeliness [31,38,
52,64], event-driven programming model [38,52,56,64], and
others. Surbatovich et al. [59, 60] use Rust’s type systems for
data freshness checking and crash consistency. Hardwawre
support [20, 32, 36, 44, 63, 68] also exists.
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Figure 2: Overview of INTOS

4 Overview of INTOS

Figure 2 shows an overview of INTOS, embedded OS and
language support for multi-threaded intermittent computing.

4.1 Multithreading and Transactions
Threads To ease the aforementioned programming burden
and keep the same embedded application programming model,
INTOS supports a traditional stackful “thread” as a program-
ming unit and a schedulable entity, similar to commodity
embedded OSes (e.g., FreeRTOS1). Users can generate mul-
tiple threads through the system call sys_create_thread
(Table 2). These threads run concurrently. Users can assign
different priorities for threads. The INTOS scheduler em-
ploys a priority-based preemptive scheduling policy, a widely
adopted approach for real-time capabilities. More discussion
on INTOS’s real-time capability will follow in §8.

Transactions To facilitate the utilization of both volatile and
non-volatile memories while simplifying crash-consistent pro-
gramming, INTOS offers a conventional “transaction” with
automatic undo-logging to ensure crash-atomicity of persis-
tent objects. Program stacks, encompassing local variables
and function frames, reside in volatile memory. Users can
either annotate a persistent variable (e.g., globals) or employ
the sys_palloc system call to create a persistent object in
non-volatile memory. Both volatile and persistent objects
can be used inside a transaction. Users do not need manual
undo-logging. INTOS’s transactions ensure that updates on
persistent objects (not volatile ones) within a transaction are
crash-atomic via automatic undo-logging. INTOS leverages
Rust to identify the first writable dereference. As persistent
objects share a base class or trait in Rust, the logging logic is
integrated into the dereference operation within the class/trait.
This approach mirrors PMDK’s undo-logging support for its

1FreeRTOS employs the term “task”, but it is technically a preemptive
thread. For clarity and to distinguish it from the (cooperative) task in manual
task decomposition works (§3), we will refer to it as a (preemptive) thread.
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C++ programs. In §7.3, we discuss an undo logging optimiza-
tion that logs old values only if there is a write-after-read
dependency in a transaction.

Language The Rust type system in INTOS guarantees that
persistent objects are not modified outside transactions (§6).
Conversely, volatile states, such as local variables in program
stacks, can be utilized both outside and inside transactions.

Challenges INTOS allows users to employ volatile variables
for computing, yet INTOS transactions do not protect them.
Consequently, the states of program stacks are susceptible to
loss upon a power failure. A program cannot resume from the
beginning of the failed transaction due to the absence of stack
(and register) states. One solution could involve abstaining
from the use of volatile memory, a proposition we oppose
for energy efficiency reasons. Another approach might be
to checkpoint volatile states to NVM at the onset of each
transaction, but this would be expensive.

4.2 Replay-and-Bypass
To address the above challenge, INTOS proposes a novel
replay-and-bypass approach (§5) to guarantee whole-system
crash consistency across a power cycle. INTOS eliminates
the need for users to checkpoint or create customized crash
consistency solutions for volatile register and memory states.
Upon power restoration, INTOS first recovers non-volatile
states by undoing uncommitted transactions. Then, the thread
is restarted from the beginning, safely resuming with empty
registers and stack states. Throughout the execution, commit-
ted transactions and system calls are replayed and bypassed by
returning the recorded results without re-execution – resulting
in a more energy-efficient recovery process. Volatile states
are reconstructed, enabling the program to resume beyond the
point of power failure.

4.3 Persistent Embedded OS
System Calls INTOS provides comprehensive multithread-
ing features (Table 2), comparable to those found in FreeR-
TOS. For instance, threads can communicate and/or syn-
chronize with each other using the sys_queue_* and
sys_semaphore_* system calls. A thread might block, for
instance, if a queue is either empty or full. Multiple threads
may access a shared persistent object by obtaining its refer-
ence (inside a transaction). Later in §6, we delve into how
INTOS’s programming model ensures the obligatory use of a
mutex for synchronization via Rust’s strong type system.

Kernel Crash Consistency Similar to user threads, INTOS
kernel codes, including system calls, utilize volatile and non-
volatile memories. The INTOS kernel employs the same
undo-logging transactions to ensure crash consistency of per-
sistent kernel objects that undergo updates during system
calls. Table 2 lists the number of transactions and examples

Features System calls TXs Persistent kernel objects

Threads sys_create_thread 2 ready_list, thread_cnt, heap
sys_thread_delay 1 delay_list

Queues
sys_queue_create 1 heap
sys_queue_send_back 2 queue and its waitlist
sys_queue_receive 2 queue and its waitlist

Events
sys_event_group_create 1 heap
sys_event_group_wait 3 event_grp and its waitlist
sys_event_group_set 3 event_grp and its waitlist

Semaphores
sys_create_semaphore 1 heap
sys_semaphore_take 2 semaphore and its waitlist
sys_semaphore_give 2 semaphore and its waitlist

Dyn. memory sys_palloc 1 heap
sys_pfree 1 heap

Timers
sys_timer_create 1 heap
sys_start_timer 2 timer_cmd_q and its waitlit
sys_reset_timer 2 timer_cmd_q and its waitlist

Table 2: INTOS supports full-fledged embedded OS features,
akin to FreeRTOS [3]. Some system calls are not listed.

of persistent kernel data safeguarded by kernel-level trans-
actions. Later in §7.2, we also discuss that the kernel uses
optimized transactions (without undo-logging) for frequently
used linked lists operations (e.g., ready-list, wait-list).
Using the same replay-and-bypass, INTOS provides a crash
consistency guarantee even if a power failure occurs in the
midst of a system call and some threads are blocked.

Energy efficient execution Designing an OS and language
support for intermittent computing requires more than merely
ensuring crash consistency. Both (fail-free) execution and
recovery should be energy-efficient. INTOS provides energy-
efficient execution by: (1) Utilizing both volatile and non-
volatile memories; (2) Avoiding the checkpointing of volatile
states; (3) Optimizing undo-logging for non-volatile states
(§7.3); (4) Offering blocking/waiting system calls, such as
semaphores and events, in contrast to existing approaches like
ImmortalThreads [65], which requires spinning and wastes
MCU cycles; (5) In the absence of events, with a blocking
mechanism, allowing the MCU to enter a deep sleep mode
where only a subset of interrupts are monitored.

Energy efficient recovery INTOS offers energy-efficient re-
covery by: (1) Utilizing replay-and-bypass recovery to avoid
redundant execution (§5); (2) Undoing only the non-volatile
state relevant to the high-priority thread that will resume dur-
ing recovery (§5.2); (3) Introducing loop optimization (§7.1).

4.4 INTOS Program Example
The example presented in Listing 1 illustrates the recognize
program with two transactions. In this example, a queue is
created to enable message passing between two threads, like
a Linux pipe. A thread (recognize) is reading data from the
sensor and sending the data to another thread (not shown)
for processing using the queue. PBox is a smart pointer for a
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1 fn recognize(model: PBox<Model>) {
2 let (q,stats) = transaction::run(|j, t| {
3 // syscall to create a queue
4 let q=sys_queue_create::<Result>(Q_SZ, t).unwrap();
5 // syscall to create a persistent object
6 let stats = PBox::new(Stats::new(), t);
7 ...
8 return (q,stats)
9 });

10 transaction::run(|j, t| {
11 // obtain read only ref, no logging
12 let mdl_ref = model.as_ref(j);
13 // syscall to perform I/O
14 let reading = sys_read(SENSOR_0);
15 // data processing in volatile buffer
16 let mut window = [AccelReading::new(); 3];
17 init_window(&readings);
18 transform(&mut window, j);
19 let feature = featurize(&window);
20 let class = classify(&feature, mdl_ref);
21 // obtain mutable ref, auto. undo logging
22 let mut stats_ref = stats.as_mut(j);
23 stats_ref.cnt[class] += 1;
24 // syscall to send result
25 sys_queue_send_back(q, class, WAIT_TIME, t);
26 });
27 ...
28 }

Listing 1: An example INTOS program with transactions.

persistent object. Users can enclose a program region with the
transaction construct, transaction::run(|j,t|{ ... }),
where j represents the journal object and t is the system call
token. The journal object enforces restrictions, ensuring that
persistent smart pointers like PBox cannot be dereferenced
outside a transaction, while the system call token restricts
system calls to occur exclusively within a transaction. Further
details on this will be provided in §6.

The first transaction (Lines 2-9) involves creating a queue
with a size of Q_SZ. This queue contains objects of type
Result, and a persistent object (stats) that holds counts
(cnt) for each class/result. The transaction returns them af-
ter some processing. The second transaction (Lines 10-26)
reads an ML model using a read-only reference. This elimi-
nates the need for undo-logging. Following I/O, it conducts
data processing (Lines 16-20) such as filtering, normalization,
and classification, notably on a volatile buffer. This strategy
enhances performance and energy efficiency compared to
conducting all intermediate computations on a non-volatile
buffer. Subsequently, the transaction obtains a mutable refer-
ence to a persistent object (stat), created, and passed from
the first transaction, and updates it. As this is the first write
after getting a mutable reference, INTOS automatically ap-
plies undo logging. Finally, the transaction makes a system
call sys_queue_send_back to place the result into the queue,
maintained by INTOS. Another thread (not shown) can then
receive the result from the queue for subsequent processing.
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TX1 syscall

Kernel

(a) Case 1: An execution of Listing 1 without a power failure.
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(d) Case 4: A power failure inside a transaction after a syscall
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(f) Case 6: A power failure during a syscall inside a transaction

Figure 3: Replay-with-bypass recovery examples
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5 Replay-and-Bypass Recovery

The following two sections demonstrate INTOS’s replay-and-
bypass approach. along with examples.

5.1 Single Thread Crash Consistency

Let’s illustrate INTOS’s replay-and-bypass recovery mech-
anism using the recognize example in Listing 1, which in-
volves two user-level transactions, TX1 and TX2. Figure 3a
depicts an execution of recognize without a power failure.
For simplicity, the system calls in the first transaction TX1 are
omitted, and only the system call sys_queue_send_back
(Line 23) made by TX2 is highlighted. Assume that the system
call includes two kernel-level transactions, TX3 and TX4.

In Figure 3b, we consider a scenario where TX1 has been
committed, and then a power failure occurs before TX2 starts
(outside transactions). Upon power recovery, INTOS initiates
a replay of the thread from the beginning (step 1 ), restarting
with empty registers and stack state s0. INTOS’s type system
(§6) ensures that no non-volatile states are updated outside
the transaction. Volatile states are reconstructed during replay.
Since the non-volatile states at sc (before the power failure)
already incorporate the effects of the committed transaction
TX1, re-executing TX1 would be incorrect and non-idempotent.
Therefore, INTOS bypasses the transaction TX1 (step 2 ), sim-
ply returning the logged return value without re-execution.
No system calls are made during bypass, and no kernel-level
recovery is required. INTOS ensures that the program reaches
the same state s1 as sc, from which it can safely resume.

Now, let’s consider a power failure inside a transaction. In
Figure 3c, a power failure occurs inside a user-level trans-
action before a syscall. INTOS’s undo-logging transaction
ensures the failure-atomicity of non-volatile states changed
within the transaction. Upon power recovery, INTOS applies
undo-logging (step 1 ) to roll back the (user-level) non-volatile
states from sc to s1, the state before the transaction begins.
Next, INTOS starts a replay from the beginning state s0 (step
2 ). The committed transaction TX1 is bypassed (step 3 ), and
INTOS reconstructs all volatile states along the way, making
the state s1 (after replay) equivalent to sc (before the failure).

Figure 3d illustrates the actions to be taken if a power
failure occurs after a syscall completes (inside a user-level
transaction). As usual, INTOS applies undo-logging (step 1 )
and initiates a replay (step 2 ). The committed transaction
TX1 is bypassed (step 3 ). Notably, in this scenario, while re-
playing transaction TX2, INTOS also bypasses the completed
system call (step 4 ). Consequently, INTOS avoids the need to
alter kernel states — any changes to kernel-side non-volatile
states made during the original system call (before a power
outage) can remain unchanged. The INTOS kernel caches the
return value of a system call upon its completion (before a
power failure). Then it simply returns the cached value during
replay. From the user thread’s perspective, a system call can

be considered as a nested black-box transaction.
Now, let’s delve into scenarios where a power failure oc-

curs during a system call. As mentioned earlier, INTOS uti-
lizes transactions (TX3 and TX4) to safeguard kernel-side non-
volatile data. If a crash occurs before (or outside) a kernel-side
transaction, as depicted in Figure 3e, the situation is straight-
forward and aligns with the case presented in Figure 3c. There
is no need to undo anything in the kernel. INTOS simply un-
does the user-level transaction that invoked the system call
( 1 ) and initiates the replay-and-bypass recovery mechanism.

On the other hand, if a crash occurs inside a kernel-side
transaction, as illustrated in Figure 3f, INTOS must first undo
transaction TX4 (step 1 ) to roll back the kernel-side state to
s2, followed by undoing transaction TX2 (step 2 ) to roll back
the user-side state to s1. INTOS then employs a replay from
initial s0 (step 3 ), bypassing the committed transactions on
the user side, TX1 (step 4 ), and on the kernel side, TX3 (step
5 ). Note that INTOS rolls back the kernel-side transaction
first (before any aborted user-level transaction). This has cor-
rectness implications in multi-thread scenarios, which will be
discussed in the subsequent section.

5.2 Multi-Threads Crash Consistency

Next, we discuss INTOS’s approach to ensuring crash con-
sistency for multiple threads. Specifically, INTOS employs
priority-based recovery and resumption. Upon power restora-
tion, INTOS always recovers and replays the thread with the
highest priority among those ready.

Figure 4a illustrates a two-thread execution without
a power failure. Initially, high-priority Thread 2 waits,
for example, on a queue. A low-priority Thread 1 uses
sys_queue_send_back to enqueue data, allowing Thread
1 enabled (its waiting condition is satisfied). During the sys-
tem call, the kernel-side transaction TX3 updates the kernel
queue object in NVM. As Thread 1 is awakened and has a
higher priority, the INTOS scheduler preempts Thread 1 and
context-switches to Thread 2 by modifying thread-related per-
sistent linked lists, such as ready-list and wait-list, in
transaction TX4. It is a common pattern for a system call to up-
date a system call-specific kernel data structure (e.g., queue)
in one transaction and to modify schedule-related linked lists
in another transaction. After the context switch, Thread 2 runs,
and Thread 1 remains on the ready-list, awaiting its turn.

Let’s first consider a simple power failure case. If power is
lost during the system call (e.g., during TX3 or TX4 or between
them), it constitutes a single-thread scenario. The recovery
protocol remains the same as the case presented in Figure 3f.

Suppose a power outage occurs while running Thread 2
(after the context switch) as depicted in Figure 4b. This makes
a multi-thread scenario: Threads 1 and 2 are runnable. Upon
power restoration, INTOS recovers and runs Thread 2 — the
thread that was running and experienced a power failure. The
priority-based scheduler always schedules the thread with
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(a) A two-thread execution without a power failure. Initially, a high-
priority Thread 2 is waiting. A low-priority Thread 1 makes it ready.
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(b) A power failure occurs after Thread 2 is scheduled.
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(c) A two-thread execution without a power failure. Initially, a high-
priority Thread 1 runs first and makes a blocking system call, yield-
ing a turn to a low-priority Thread 2.
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(d) A power failure occurs after Thread 2 is scheduled.

Figure 4: Multi-threads recovery examples

the highest priority among ready threads. Thus, recovering
the failed thread implies that when power becomes available,
INTOS runs the ready thread with the highest priority. In this
example, it is Thread 2. INTOS roll-backs transaction TX5
(step 1 ) and replays Thread 2 (step 2 ). On the other hand,

INTOS does not eagerly undo transaction TX2 (step 3 ). Hard-
won energy should not be wasted. A system may not possess
enough energy to run Thread 1 (after Thread 2). High-priority
ready Thread 2 takes precedence over undoing the transaction
TX2 of Thread 1. Sometime later, when Thread 1 is scheduled,
INTOS then rolls back transaction TX2 on demand (step 3 )
and replays Thread 1 (step 4 ).

When managing multiple threads, a blocking system call
warrants detailed discussion. Figure 4c depicts another two-
thread execution without a power failure, distinct from Fig-
ure 4a. In this scenario, Thread 1 possesses high priority, and
even though Thread 2 is ready, it is not scheduled. Suppose
the queue is already full. Assuming the queue is already full,
when Thread 1 employs the sys_queue_send_back system
call to enqueue data, it discovers the queue lacks space and
becomes blocked. Subsequently, the scheduler moves Thread
1 to the wait_list in transaction TX4. In this scenario, it is
crucial to note that TX3 is indeed a null transaction, making
no updates to the queue. An essential invariant established by
the INTOS kernel is that a blocking system call, if it actually
blocks, does not alter the state of system call-specific persis-
tent objects (e.g., queue). The system call is not considered
complete, and no result is cached for bypassing. The impact
of a blocking call is confined to schedule-related linked lists
in TX4. Given that a blocking system call has no substantive
effect on kernel states, it is safe to proceed with the same
recovery and replay of the ready thread with high priority —
Thread 2 in this example. Any processing for the blocked
threads, such as Thread 1, can be deferred, as illustrated in
Figure 4d. When Thread 1 is later scheduled for recovery
and replay, it will re-invoke the system call as if it had not
been issued previously. In the INTOS implementation, those
system calls that may block always first check for a blocking
condition to uphold this invariant.

6 INTOS Programming Model

INTOS’s programming model upholds five rules designed to
guarantee crash consistency.

Rule 1: Persistent objects should not be accessed (both
write and read) outside the transaction and their update
inside the transaction must be logged. Modifications on per-
sistent objects outside transactions are untracked. Therefore,
any update to persistent objects should be confined within
transactions. INTOS also prohibits the reading of persistent
objects outside transactions to prevent potential divergence
in program control flow during replay. When restarting, non-
volatile memory states are not rolled back to the thread’s
outset. For example, in the scenario illustrated in Figure 3c,
replay begins with non-volatile memory states still reflect-
ing the state s1 after TX1. Consequently, control flow outside
transactions should not rely on persistent objects. To precisely
identify a subset of persistent object reads that may influence
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control flows, one can perform static analysis and selectively
prevent them. INTOS, for simplicity, conservatively enforces
the restriction of no reads (and writes) outside transactions.
This approach does not overly constrain programmability
since it is natural to assume that persistent objects are pri-
marily used within transactions. Furthermore, INTOS permits
a transaction to acquire references to persistent objects that
were created or modified by another transaction and subse-
quently update them arbitrarily within the executing transac-
tion, as demonstrated in Listing 1 (Lines 6, 22-23).

Rule 2: References/Pointers to persistent objects should
not escape a transaction as a return value. Rule 2 further
enforces Rule 1. Allowing the return of references would
potentially enable users to directly modify persistent objects
without proper logging. Mutable references should be ac-
quired and dereferenced exclusively within a transaction, as
exemplified in Listing 1 (Lines 22-23).

Rule 3: Persistent objects should not contain references to
volatile objects. Volatile objects are susceptible to data loss
during power failures. Storing their references in persistent
objects is thus unsafe.

Rule 4: System calls (excluding Locks) should only be
made within transactions. There is, in theory, no fundamen-
tal restriction against using a system call outside a transaction
for crash consistency. Yet, INTOS mandates adherence to this
rule to constrain the length of system call replay and bound
memory resources. After a transaction concludes, there is no
necessity to replay any system call within that transaction.
As a result, the upper limit for system calls to be replayed
is determined by the number of system calls in the last un-
committed transaction. INTOS can safely free the system call
replay metadata for committed transactions.

Rule 5: Locks should not be used inside transactions. A
critical section, defined by locks, should be larger than a trans-
action. Suppose two concurrent transactions, TX1 and TX2,
utilize a lock when accessing a shared object X within trans-
actions. TX1 acquires the lock, updates X, releases the lock,
but remains uncommitted. The concurrent TX2 acquires the
lock, reads X, performs some computation, releases the lock,
and eventually commits. If a power failure occurs at this point
while TX1 remains uncommitted, a data consistency issue
arises. This occurs because our transaction lacks “isolation”
among concurrent transactions. Rule 5 is enforced to avoid
this problem. Ultra-low power intermittent computing sys-
tems hardly use multi-cores. Introducing a more intricate yet
efficient solution, such as tracking data dependencies between
transactions and aborting one if a conflict is detected, doesn’t
appear necessary in this context.

Enforcement INTOS employs Rust’s robust type system to
uphold the aforementioned rules, akin to [33] that statically
prevents common persistent memory programming errors
within the realm of server-side (non-energy-harvesting) persis-
tent memory programming. Rules 1-3 resemble those in [33],

with INTOS extending Rule 1 to disallow reading persistent
objects outside transactions to avoid potential control flow
divergence during replay. Rules 4-5 are distinctive to INTOS.
The implementation utilizes Rust’s traits.

7 Optimization

INTOS employs three performance optimizations.

7.1 Loop Optimization
Threads in embedded systems often involve loops, such as
event loops handling sensor readings or loops with numerous
iterations, as seen in matrix multiplication for neural network
machine learning threads. Consider a thread with a loop where
the loop body comprises T transactions, and a power crash oc-
curs on the N-th iteration. While INTOS’s replay-and-bypass
approach can bypass (N −1)∗T transactions (in addition to
any committed transaction in the last iteration), the overall
replay window’s length could potentially be excessively long,
leading to substantial energy consumption during replay.

To address this common scenario, INTOS introduces the
new nv_for_loop! macro, extending the loop construct in
Rust to utilize a non-volatile variable as the iteration counter.
With the non-volatile iteration counter, INTOS can infer com-
pleted iterations (committed transactions therein) during re-
play, enabling a safe and efficient fast-forward to the last
iteration without executing the bypass logics.

INTOS’s Rust language enforces the absence of
loop-carried dependent volatile states to safely employ
nv_for_loop! optimization as it skips iterations during re-
covery. Users are still able to employ volatile variables within
a loop body, provided there is no loop-carried dependency.

7.2 Linked List Optimization
The INTOS kernel extensively utilizes doubly-linked lists to
manage threads and scheduling states. Nearly every system
call involves the manipulation of these linked lists. Notably,
we have identified optimization opportunities, recognizing
that linked list updates within the kernel occur within a critical
section, eliminating the need to account for arbitrary inter-
leaving. Additionally, there are no intermediate volatile hard-
ware buffers (such as store buffer or cache) between registers
and non-volatile memory. Consequently, any store instruction
promptly persists as it retires from the pipeline. With these
factors combined, we can scrutinize the crash non-volatile
state, reason through intermediate linked list update steps, and
precisely identify the power failure point.

INTOS presents crash state analysis-based roll-forward
recovery optimization for linked list transactions. There is
no undo-logging. Instead, INTOS records an operation log
including the type (e.g., insert) and the node (data) — only
one per operation. During recovery, INTOS analyzes the crash
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Figure 5: Crash state analysis to roll forward a list insertion

state remaining in NVM to infer the steps that have been
completed. Then, it rolls forward the rest of the operation.

Consider an insertion transaction, illustrated in Figure 5.
The process of list insertion involves six ordered steps. Ini-
tially, we link the node to its previous and next node (step
1 - 2 ). Then, the backward/forward link between the next
node and the previous node is removed (step 3 - 4 ). Finally,
we insert the new forward/backward link between the pre-
vious/next node and the new node (step 5 - 6 ). Suppose a
power crash occurs before step 4 . During recovery, the opera-
tional log is first retrieved to determine the operation type and
the node involved. It is discovered that the link from the new
node to the previous/next node already exists, indicating that
steps 1 - 2 are completed. It is also found that the forward
link from the previous to the next node is removed, but the
backward link remains intact. This observation suggests that
the crash occurred before step 4 was completed. INTOS can
roll forward the operation by executing steps 4 - 6 .

7.3 Undo-Logging Optimization
The default INTOS transactions automatically perform undo-
logging on every first write (after acquiring a mutable refer-
ence), as in Listing 1 (Lines 22-23). INTOS introduces an-
other smart pointer type, Ptr<T>, providing an option to lever-
age Rust’s type system for the static detection of write-after-
read (WAR) dependencies. A transaction utilizing Ptr<T>
logs an old value only if there is a WAR dependency in
the transaction, resulting in fewer logs. Within a transaction,
users should dereference a persistent object pointer to obtain
a reference. Ptr<T> does not provide users with a raw refer-
ence and imposes restrictions on the access interface, such as
r.read() and r.write(). Consequently, utilizing Ptr<T>
involves some additional coding efforts.

8 Discussion

Transactions for Partial vs. Whole System Persistence
A crucial distinction between PMDK [7] (libpmemobj)
and INTOS transactions lies in their persistence guarantees.
libpmemobj supports “partial” system persistence, only en-
suring the recoverability of non-volatile objects within trans-
actions. Thus resuming program execution often requires
user-defined custom crash-recovery logic to achieve consis-
tent whole system states including volatile ones. In contrast,

INTOS offers “whole” system persistence through the pro-
posed replay-and-bypass mechanism, guaranteeing the recov-
ery of both persistent and volatile states.

Transaction Length To ensure forward progress, INTOS
mandates that a transaction must be able to complete with
a fully charged capacitor. INTOS handles only one ready,
highest-priority thread at a time and employs replay-and-
bypass mechanisms to skip committed transactions and sys-
tem calls, ensuring progress as long as one transaction success-
fully passes each power cycle. INTOS asks users to ensure
this property via profiling. Bounding the size of a program
region is a common requirement for many intermittent com-
puting systems (e.g., an idempotent region, a failure atomic
section, and a transaction in INTOS) to ensure stagnation-free
execution. Consequently, previous solutions including Choi
et al. [19] have proposed various dynamic (profiling) and
static program analysis techniques considering the worst-case
behaviors. INTOS’s kernel transactions are intentionally de-
signed to be brief, considering this constraint. Our evaluation
(§10) reports the maximum number of cycles per transaction
in tested applications is short enough.

Energy-aware Scheduler If hardware provides a capabil-
ity to monitor the remaining energy in the capacitor, one
can design an energy-aware scheduler in INTOS: e.g., not
scheduling a thread if it is soon to stop.

Real-time Capabilities INTOS provides real-time capabili-
ties comparable to FreeRTOS as long as the power is on. Yet,
INTOS does not provide (hard) real-time guarantees due to
the non-deterministic energy nature inherent in intermittent
computing, rendering such assurances impossible.

Rust Rust is chosen for static correctness guarantees. Users
can use C or other languages, provided they adhere to the
programming rules (§6). It is feasible to statically link C
programs with the Rust INTOS kernel since the contract/in-
terface between the kernel and a user program is well-defined.
Using C would require complex static program analysis to
verify adherence to the programming rules. Additional static
analysis should be employed for automatic undo-logging.

9 Implementation

We implement INTOS using the Rust programming language,
leveraging its strong static type system to uphold INTOS’s
programming model (§6) with performance comparable to
C. The initial implementation of the INTOS kernel mirrors
FreeRTOS, having been ported to Rust and extended with
transaction and crash consistency support. User threads are
also crafted in Rust. Presently, INTOS extends support to two
architectures: ARM Cortex-M4 and MSP430. The overall
INTOS implementation, excluding testing and benchmark
code, encompasses approximately 9900 lines of Rust code.
We elaborate on some details below:
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Multithreading The INTOS kernel allocates essential data
structures, such as the thread control blocks, inter-thread com-
munication objects (e.g., queue, semaphore), and scheduling
lists (e.g., ready-list, wait-list) in non-volatile memory. Ta-
ble 2 (last column) lists some examples.

Replay Tables To support replay-and-bypass recovery,
INTOS maintains three per-thread replay tables that cache
the return values of user-level transactions, kernel-level trans-
actions, and system calls. For each table, the tail pointer
indicates the last completed transaction or syscall, and the
current pointer points to the presently executing one. The
transaction tail pointer contains the commit flag, transaction
id, and the pointer to the replay table.

Log Sizes The logged results of system calls generated within
a transaction are garbage-collected upon the completion of
each transaction, thereby bounding the maximum length of
system call logs. Upon the completion of a task, all transaction
logs associated with that task can be cleaned. We assume that
a task entails a finite number of transactions, which is typically
valid given that embedded application tasks often serve as
short event handlers. An exception arises with tasks executing
transactions within a loop, potentially leading to unbounded
logs. This scenario is addressed by the nv_for_loop! op-
timization (§7.1). Transaction result logs from completed
(old) loop iterations can be safely discarded, thus capping the
transaction log size per loop iteration.

10 Evaluation

We evaluate the performance of INTOS on two plat-
forms: MSP430FR5994 [6] and Apollo 4 Blue Plus [1].
MSP430FR5994 features 256KB of non-volatile FRAM and
8KB of volatile SRAM. We configured its MCU to operate at
16MHz. The Apollo 4 Blue Plus is equipped with an ARM
Cortex-M4 processor. It has 384KB of TCM (faster SRAM),
2MB of SRAM, and 2MB of non-volatile MRAM.

The benchmark suite comprises 11 applications. The first
group encompasses three single-thread applications (BC, AR,
MLP), utilized in previous studies [22,38,49,50,53,56,64,65].
The second group comprises four multithreaded applica-
tions (KV, SEN, EM, MQ) designed to evaluate the perfor-
mance of INTOS’s OS features, including locks (semaphores),
timers, events, and queues, respectively. The final macro-
benchmark group comprises four multithreaded applica-
tions (ETL, PRED, STATS, TRAIN), adapted from RIoT-
Bench [58]. Table 3 provides the application name, descrip-
tion, the number of threads, transactions, and system calls.
The last three columns will be discussed later.

We compare the following four configurations:
• SRAM (not crash consistent, baseline): A vanilla appli-

cation and INTOS kernel without crash consistency support
(i.e., no undo-logging, no replay-and-bypass) operate on
volatile SRAM. All the data is in SRAM, while the code is

Figure 6: Latency overhead without power failure on MSP430

stored on FRAM due to space limitations. In the event of a
power outage, both register and SRAM memory states are
lost. This configuration serves as the baseline.

• FRAM (not crash consistent): A vanilla application and
INTOS kernel without crash consistency support (i.e., no
undo-logging, no replay-and-bypass) runs on non-volatile
FRAM. All data resides in FRAM. Volatile registers remain
susceptible to loss. This setup underscores the limitations
of not utilizing SRAM and establishes the lower bound for
existing compiler-based checkpointing solutions assuming
no volatile memory (§3).

• INTOS (crash consistent): This configuration represents
our approach using both SRAM and FRAM. It uses
INTOS’s transaction undo-logging and replay-and-bypass
recovery to ensure whole-system crash consistency.

• Ratchet (crash consistent): Ratchet [62] represents a state-
of-the-art compiler-based idempotent processing solution
that uses non-volatile FRAM only. We used Ratchet com-
piler to transform a vanilla application and INTOS kernel
to idempotent regions — with neither undo-logging nor
replay-and-bypass.

It is worth noting that we were unable to compare INTOS
with ImmortalThreads [65] due to the incomplete nature of
the publicly available code. It offers only the essential logic
for micro-continuations and lacks OS/runtime features re-
quired by the tested benchmarks (e.g., blocking queues). It
was originally evaluated with four simple single-threaded Bit-
count (BC), Cuckoo Filter (CF), Activity Recognition (AR),
and DNN, which do not involve any application-OS inter-
actions. Thus, conducting a fair comparison becomes im-
practical without ImmortalThreads’ supplementary runtime
support. Nonetheless, as discussed in §3, we expect its micro-
continuation would suffer from high runtime overhead. For
example, ImmortalThreads reports (See [65] Table 4 and Fig-
ure 7) that AR incurs 237% overhead with no failure and
300% with 5ms-period power failure. In contrast, we later
show that in INTOS, AR experiences 8% and 15% overheads,
respectively (See Figure 6 and Figure 8).
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App Description Threads TXs Syscalls Max Cycles/TX LoC Add&Mod

BC Count the number of 1s in an integer using multiple algorithms 1 8 1 10676 181 32
MLP Multi-layer perception with two fully connected layers 1 4 2 3488 155 30
AR Train an activity recognition model and analyze the activities 1 3 3 12060 301 33

KV Two threads perform concurrent operations on KV Store with locks 2 9 23 6276 325 102
SEN Periodic Sensing using software timers 2 3 4 6420 107 15
EM One thread monitors events and notifies other threads with event groups 3 6 12 2592 113 29
MQ One thread distribute messages to other threads using queues 4 6 13 2532 166 51

ETL
Extract, Transform and Load dataflow in RIoTBench [58]
(e.g., range filter, bloom filter, interpolation, join, annotation, kv store) 5 10 23 3580 709 148

PRED
Predictive analysis dataflow in RIoTBench [58]
(e.g., average, kalman filter, distinct count, sliding linear reg., kv store) 5 9 26 3808 440 58

STATS
Statistic summerization dataflow in RIoTBench [58]
(e.g., decision tree, multivar linear reg., average, error estimation, kv store) 5 11 27 4884 413 46

TRAIN
Model training dataflow in RIoTBench [58]
(e.g., multivar linear reg. training, decision tree training) 4 20 28 9472 511 132

Table 3: Description for Benchmarks and Statistics

Figure 7: Energy overhead without power failure on MSP430

10.1 Without Power Failures on MSP430

We first measure the performance and energy overhead with-
out power failure on MSP430FR5994.

Figure 6 illustrates the latency overhead of four configura-
tions, normalized to the SRAM baseline. Each bar provides a
breakdown between user-level (top, solid color) and kernel-
level (bottom, light color) execution times. On a geometric
mean, FRAM (the second bar) shows 1.11x latency overhead
compared to SRAM. This highlights the performance loss
when SRAM is not utilized, as in existing compiler-based
checkpointing solutions. This serves as the lower bound for
the latency overhead imposed by such tools. Specifically,
Ratchet (the last bar) incurs a latency overhead ranging from
1.12x to 5.30x, with a geometric mean of 2.14x. Ratchet’s
performance is highly dependent on the precision of static
analysis and application characteristics.

Contrastingly, INTOS (the third bar) demonstrates substan-
tially lower latency overhead, ranging from 1.07x to 1.55x,
with a geometric mean of 1.29x. This showcases the advan-
tages of placing the stack and performing computations on
local variables in SRAM while storing persistent objects in
FRAM. Notably, for AR, SEN, and TRAIN, INTOS demon-
strates comparable or superior performance to FRAM, even

Figure 8: Latency overhead with power failure on MSP430

considering INTOS’s transaction logging overhead.
Regarding the breakdown between user and kernel levels,

simple single-thread BC, MLP, and AR predominantly oper-
ate in the user level, while multi-threaded RIoTBench’s ETL,
PRED, STATS, and TRAIN frequently utilize system calls
for queues, mutexes, etc. The SEN application conducts peri-
odic sensing using software timers. It displays a small kernel
(syscall) time, as the kernel’s timer handler indeed runs as a
thread and is thus counted as user time.

Figure 7 illustrates the energy overhead of four configura-
tions, normalized to the SRAM-only baseline. We measured
the energy consumption for MSP430FR5994 using TI’s Ener-
gyTrace tool [11]. The observed trend aligns generally with
the latency overhead discussed earlier. The FRAM setting
incurs 1.16x (geometric mean) more energy consumption
compared to the SRAM setting. The energy consumption gap
between INTOS and Ratchet widens, with INTOS consum-
ing 1.31x more energy on a geometric mean relative to the
baseline, while Ratchet consumes 2.43x more energy. No-
tably, across various applications, including MLP, AR, KV,
SEN, and TRAIN, INTOS exhibits comparable or superior
performance to the FRAM-only setup, even when factoring
in INTOS’s transaction overhead.
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Figure 9: Energy overhead with power failure on MSP430

Figure 10: Latency with/without optimizations on MSP430

10.2 With Power Failures on MSP430
In this section, we investigate the latency and energy overhead
of INTOS and Ratchet under frequent power failures. We
inject controlled power failure at regular intervals of 10ms,
5ms, and 1ms using a soft reset, following the methodology
employed in previous works [37,38,49,62,64,65]. Intermittent
computing devices continue operation until the energy stored
in the capacitor is depleted, subsequently restarting after the
capacitor is fully recharged. In cases where the capacitor can
recharge during the run, it results in extended run time for
the power cycle. Employing a regular power failure interval
represents the worst-case scenario, where the capacitor cannot
be effectively charged during execution.

To determine and justify the power failure interval, we ran
our benchmarks and used EnergyTrace to measure the aver-
age power consumption of MSP430FR5994 and the number
of MCU cycles spent for each time interval. We considered
the maximum power consumption (among applications) and
calculated the corresponding capacitor size under a 3V volt-
age. To sustain continuous operation for 1ms, where MSP430
MCU can run for about 16,000 cycles, the capacitor size re-
quired is approximately 4 µF, which is ten times smaller than
a typical capacitor size (e.g., WISP [57] utilizes 47 µF). Thus,
the 1ms interval represents an extreme case.

INTOS requires each transaction to be completed with a
fully charged capacitor to guarantee forward progress. The
third last column in Table 3 displays the maximum number of
cycles per user transaction in tested applications, indicating
that an application can be implemented with a (relatively)

short transaction. Should a longer transaction be desired,
INTOS might necessitate a larger capacitor.

Figure 8 depicts the latency overhead under power failures
on MSP430. Moving from left to right, the bars represent the
latency overhead of INTOS in a no-failure scenario, with fail-
ure intervals of 10ms, 5ms, 1ms, and Ratchet – all of which
are normalized to the SRAM setting (baseline). Note that as
an idempotent processing solution, Ratchet exhibits negligible
latency difference between with and without power failures.
Across different applications, we observed 30-900 power

outages with the 1ms failure interval, and 3-60 power failures
with the 10ms interval. As anticipated, the latency overhead
of INTOS increases with the frequency of power failures.
On a geometric mean, INTOS exhibits latency overheads of
1.37x, 1.43x, and 1.73x for 10ms, 5ms, and 1ms intervals, re-
spectively. INTOS’s recovery mechanism involves restoring
volatile states (while bypassing numerous committed trans-
actions and system calls), making its latency sensitive to the
failure frequency. However, for the 10ms, 5ms, and even in
the extreme 1ms failure intervals, INTOS demonstrates sig-
nificantly better performance than Ratchet, particularly when
considering realistic complex applications like RIoTBench’s
ETL, PRED, and STATS, while excluding trivial single-thread
applications like BC and MLP.

The figure also provides a breakdown of the latency over-
head between re-execution (orange bar) and recovery (green
bar). Re-execution overhead involves rerunning an interrupted
program region, representing wasted computation, while by-
passing committed transactions and system calls. Recovery
overhead is incurred by applying undo logging to roll back a
failed transaction and executing other basic recovery checking
codes. The results indicate that INTOS’s latency overhead is
predominantly attributed to re-execution overhead. SEN is
unique in that it uses software timers, so in most cases, it has
no task to run but simply checks for recovery.

Figure 9 illustrates the energy overhead under the same
power failure experiments on MSP430. The energy overhead
follows a similar trend as the latency overhead. INTOS consis-
tently demonstrates a lower energy profile than Ratchet across
all failure intervals, especially when considering realistic ap-
plications ETL, PRED, and STATS. On a geometric mean,
INTOS exhibits energy overheads of 1.47x, 1.55x, and 1.88x
for 10ms, 5ms, and 1ms intervals, respectively. In comparison,
Ratchet incurs an energy overhead of 2.43x.

10.3 Optimization Effectiveness on MSP430

This section investigated the impact of linked list optimiza-
tion (§7.2) and undo logging optimization (§7.3). Each op-
timization was individually enabled, and the execution time
was measured. The results, normalized to INTOS with no
optimizations (the first bar), are presented in Figure 10. The
second bar illustrates the outcomes with only the list optimiza-
tion enabled, while the last bar represents the results with both
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Figure 11: Latency without power failures on Apollo 4

Figure 12: Latency with power failures on Apollo 4

optimizations in use. For applications with frequent system
call usage, the list optimization significantly enhances per-
formance, with improvements exceeding 40%. However, for
simpler single-thread BC, MLP, and AR, which only utilize
memory allocation syscalls, there was marginal improvement.
The effectiveness of the undo-logging optimization is highly
dependent on application characteristics. MLP, KV, SEN, EM,
and MQ have a small fraction of stores with write-after-read
dependencies. Thus the undo logging optimization demon-
strates substantial improvements.

10.4 Experiments with Apollo 4
Now, we transition our experiment to the Apollo 4 Blue Plus,
equipped with an ARM Cortex-M4 MCU, 384KB of TCM
(faster SRAM), 2MB of SRAM, and 2MB of non-volatile
MRAM. However, it is important to acknowledge that the
MRAM in Apollo is presently only byte-readable and not
byte-writable. To overcome this constraint, we simulate the
execution environment by utilizing (fast) TCM as volatile
memory and designating the (slow) SRAM as non-volatile
memory. In our experiment, the SRAM is approximately 2-
3 times slower than TCM for sequential access, which is
bigger than the FRAM-SRAM gap in MSP430. The (simu-
lated) Apollo 4 experiment has two purposes. First, it demon-
strates that INTOS can support different MCU architectures:
MSP430 and ARM Cortex-M4. Second, it illustrates a sce-
nario in which the latency disparity between volatile and non-
volatile memories is more pronounced. The board does not

have an on-board debugger probe that allows us to measure
the energy, so this experiment focuses on latency comparison.

Figure 11 shows the latency overhead of Apollo 4 Blus Plus
without a power failure, normalized to the TCM-only baseline.
The ETL and STATS bars are missing for Ratchet because the
programs instrumented by Ratchet crashes. With the higher
gap between volatile and non-volatile memories (simulated by
TCM and SRAM), the result shows higher latency overheads
than the MSP430 experiments (Figure 6). INTOS and Ratchet
incur 2.07x and 3.44x latency overhead, respectively, where
Ratchet is more penalized by slow non-volatile memory.

Figure 12 shows the latency overhead when considering
power failure intervals of 1ms, 500ns, and 200 ns. The in-
tervals are set to be much smaller than those of MSP430 as
ARM Cortex-M4 in Apollo 4 runs at a much higher clock
frequency. 200 ns allows around 19,000 cycle executions. The
trend again remains the same. Even in the extreme case of
200 ns failure interval, INTOS incurs 2.52x latency overhead
(compared to SRAM). INTOS is 1.37x less than Ratchet.

10.5 INTOS Programming Overhead
The INTOS programming model asks users to allocate persis-
tent objects in NVM and define transactions to ensure crash
consistency of updates on persistent objects. Quantifying pro-
gramming overhead is challenging, but as a proxy, Table 3
presents the lines of source code (LOC) for each application
and the added/modified LOC for persistent object allocation
and transaction codes. Examining four realistic RIoTBench
applications, the table reveals that the extent of modification
varies from 11% (STATS: 46/413) to 26% (TRAIN: 132/511)
of the source code. Although these percentages may seem
large, it is important to note that these changes pertain to per-
sistent object allocation and transaction codes, aspects that
we believe are well-understood and manageable.

11 Conclusion

INTOS is a persistent embedded OS and language support
for multi-threaded intermittent computing. INTOS uses trans-
actions to ensure the crash consistency of non-volatile ob-
jects. Instead of checkpointing volatile states, INTOS pro-
poses a replay-and-bypass recovery mechanism, reconstruct-
ing volatile states without re-executing committed transac-
tions and system calls. Evaluation with MSP430FR and
Apollo 4 shows that INTOS exhibits lower latency and energy
costs compared to compiler-based idempotent processing.
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A Artifact Appendix

Abstract

IntOS is an intermittent multithreaded embedded RTOS based
on FreeRTOS for research. It features transactions with re-
play and bypasses to enable cheap crash consistency. The
kernel and user applications are all written in the Rust pro-
gramming language. The Rust type system is used to enforce
safe programming rules defined by the framework to guar-
antee crash consistency and Persistent Memory safety. Cur-
rently, we support three platforms: QEMU, Apollo 4 Blue
Plus, MSP430FR5994.

Scope

This artifact contains code to build the crash-safe INTOS ker-
nel and benchmark/user app to run on intermittent computing
platforms(e.g. MSP430FR5994). Users can use the artifact

to reproduce the results in the paper. For evaluation of func-
tionality, please just follow the instructions for QEMU. This
artifact is for research purposes only.

Contents
The artifact contains Rust written kernel, user library code,
and the benchmarks used in the paper. The general ker-
nel code is under the src/ directory. The user library is in
src/user. Benchmarking code is under src/benchmarks.
Platform/Architecture-related code is in src/arch and
src/board directory. A simple demo app is hosted under
src/app.

Hosting
The artifact is hosted in https://github.com/yiluwusbu/IntOS.
The branch is master and the commit version is a916c16

Requirements
The OS we use is Ubuntu 22.04. For evaluating the function-
ality and debugging, QEMU(for ARM) is sufficient. For eval-
uating the performance, you need to get the MSP430FR5994
or Apollo 4 Blue Plus development board.

Run with Docker
We provide a docker image for users to run the system with
QEMU. If you use docker, please skip the dependency/-
toolchain installation sections. To build the docker image,
run:
docker build -t rtosdev .
Then, run the docker:
docker run -v $(pwd):/repo -it rtosdev bash

Install System Dependency
sudo apt install curl wget p7zip-full
libncurses5 libncursesw5 build-essential
qemu-system-arm

Install Rust Toolchain
curl --proto ’=https’ -tlsv1.2 -sSf
https://sh.rustup.rs | sh -s -- -y
Set the compiler version:
rustup toolchain add nightly-2022-04-01

Install MSP430 Toolchain
Download and install the msp430-gcc toolchain from TI’s
website. For detailed commands, see README.md in the
github repo.
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Install ARM Toolchain
Install JLink flasher/debugger and the ARM gcc toolchains:

1. Download the Segger JLink tools (v7.92) on your plat-
form from their website

2. Download ARM (arm-none-eabi) toolchain (version
12.3.Rel1) from the official ARM website

Compile INTOS
You can compile the OS and benchmarks/example applica-
tions using the provided Python script:
./compile.py --board [qemu|apollo4bp|msp430fr5994]
--bench [app name] [--run (for qemu)]
Example:
./compile.py --board qemu --bench bc --run

Configuration Parameters
To list all the available benchmarks and custom compilation
flags, you can run:
./compile.py -h
Table 3 describes the benchmarks we use in this work. To
enable timer daemon, you can pass --timer_daemon

Power Failure Injection
To inject soft power failure to the system at a given frequency,
you can use the following command:
./compile.py --board [board name] --bench [app
name] --fail --pf_freq [frequency: e.g. 1ms]
[--run (for qemu)]
Example:
./compile.py --board qemu --bench bc --fail
--pf_freq 1ms --run

Run Demo App
We give a simple example of two tasks communicating us-
ing a Queue (i.e. IPC). The full code can be found in the
app/demo.rs file.
To run the demo:
./compile.py --board qemu --app demo --run

Flash and Run App on MSP430FR5994
You can install the TI’s Uniflash or CCSTUDIO IDE to flash
the application binary (located under target/msp430-none-
elf/release/) onto the board.

The application/OS will print debug/perf related informa-
tion through the UART interface to the host machine. The
default Baud Rate is 115200. To view the printed message,

you can use any Serial Monitor tools to view the printed mes-
sage. For example, on Linux/Win, you can install the Serial
Monitor Plugin. Termite is another handy tool you can use.

Flash and Run App on Apollo4 Blue Plus
Use GDB and JLink to load and run the application.

1. In one terminal, run JLinkGDBServer -if SWD
-device AMA4B2KP-KXR

2. In another terminal run arm-none-eabi-gdb -x
apollo.gdb <path/to/binary>

After the binary is loaded onto the board, enter ’c’ to run.
The application will print message to the gdb interface and
port 2333 (TCP/IP) .
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Data-flow Availability: Achieving Timing Assurance on Autonomous Systems

Ao Li Ning Zhang
Washington University in St. Louis

Abstract
Due to the continuous interaction with the physical world,
autonomous cyber-physical systems (CPS) require both func-
tional and temporal correctness. Despite recent advances in
the theoretical foundation of real-time computing, leveraging
these results efficiently in modern CPS platforms often re-
quires domain expertise, and presents non-trivial challenges
to many developers.

To understand the practical challenges in building real-time
software, we conducted a survey of 189 software issues from
7 representative CPS open-source projects. Through this exer-
cise, we found that most bugs are due to misalignment in time
between cyber and physical states. This inspires us to abstract
three key temporal properties: freshness, consistency, and
stability. Using a newly developed concept, Data-flow Avail-
ability (DFA), which aims to capture temporal/availability
expectation of data flow, we show how these essential prop-
erties can be represented as timing constraints on data flows.
To realize the timing assurance from DFA, we designed and
implemented Kairos, which automatically detects and miti-
gates timing constraint violations. To detect violations, Kairos
translates the policy definition from the API-based annota-
tions into run-time program instrumentation. To mitigate the
violations, it provides an infrastructure to bridge semantic
gaps between schedulers at different abstraction layers to al-
low for coordinated efforts. End-to-end evaluation on three
real-world CPS platforms shows that Kairos improves timing
predictability and safety while introducing a minimal 2.8%
run-time overhead.

1 Introduction

Recent advances in artificial intelligence and robotics have
promoted the integration of various autonomous cyber-
physical systems into society, including self-driving cars [94],
drones [31], and home-service robots [32]. Unlike conven-
tional systems, CPS has to sense the physical world, compute
for the appropriate control actions, and actuate on the phys-
ical world in a timely manner. Therefore, the assurance of

temporal properties in autonomous CPS is fundamental to the
correctness of the system.

System Challenges in Real-time Cyber-physical Systems.
Recognizing its importance, the real-time systems commu-
nity has devoted significant effort to ensuring the timeliness
of computation. However, despite the rich literature on the
theoretical foundation of real-time computing, such as schedu-
lability analysis [70], mixed-criticality scheduling [43], and
compositional scheduling [51, 83], leveraging these results in
the development of CPS software remains quite challenging
for non-experts. Furthermore, recent advances in multi-core
execution and multi-modal sensing also make the problem
challenging even for experts, with plenty of open research
questions that are actively being investigated [66, 70]. A re-
cent industrial survey [29] (Question 23) also indicates that
only a small fraction (9.38%) of systems are designed with
commercial schedulability analysis tools.

Understanding Timing Problems in Real-world CPS. To
gain a better understanding of system challenges in CPS,
we draw inspiration from the recent survey on concurrency
bugs [64,67], and conducted a systematic study of the 189 tim-
ing bugs in 7 mainstream open-source CPS software projects.
Our goal is to understand the categories of timing bugs in
CPS applications, the root causes of each bug category, as
well as the challenges developers face in preventing them.
We found that most of the timing bugs are caused by mis-
alignment in time between cyber states and physical states.
Therefore, building on top of the cyber-physical control loop
abstraction, we extracted three most essential temporal prop-
erties: freshness, consistency, and stability. Furthermore, we
found that many existing mitigations implemented manual
checks for data timestamps, inspiring us to model the problem
from a data-flow perspective.

Our solution - Data-flow Availability. Motivated by the
findings from the timing bug study, we propose Data-flow
Availability, a new concept that achieves timing assurance in
autonomous systems. Building on the observation that data
flow drives cyber-physical control loops in modern CPS, we
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Figure 1: Data-flow Availability in the system stack.

augment data flow with a new temporal dimension, result-
ing in Timed Data-flow Graph (TDFG). Conceptually, each
variable (that captures cyber or physical state) would have a
time attribute (tag), and information flow among them has to
respect the expectation of the software. Therefore, temporal
policy is encoded as timing constraints on the edges of the
graph.

To realize the concept of data-flow availability in system,
we design and develop Kairos, a programming model to en-
able the automatic detection and mitigation of timing con-
straint violations. Kairos consists of a DFA-embedding tool
for detection of timing constraint violation at run-time and a
cross-layer scheduling system for mitigation (as shown in Fig-
ure 1). Using the DFA-embedding tool, developers can either
manually annotate the source code with APIs provided by
Kairos or use the provided dynamic profiler to specify the ex-
pected temporal properties. A compiler extension then takes
the temporal expectation, expressed as data-flow constraints,
and automatically instruments the software to detect timing
constraint violations at run-time. However, detection alone
does not provide timing assurance. Upon timing constraint
violations, actions have to be taken to recover the system. To
do so, Kairos builds on the concept of schedulable entity path
to construct an association of schedulable entities in different
abstraction layers of the operating system for a cyber-physical
data flow. This bridges the semantic gap between the abstrac-
tion layers, and allows for more effective coordination of
schedulers in the system for violation mitigation.

Prototype and Evaluation. To understand the effectiveness
of DFA in mitigating the timing bugs, we analytically studied
how existing bug fixes can be implemented using Kairos, and
found that among the 189 bugs, 111 of them can be mitigated
by Kairos. To understand the performance characteristics of
Kairos, we built a prototype of Kairos, and evaluated it on
three real-world robotic platforms: Autoware [36], Jackal
UGV [59], and Turtlebot3 [89], each with distinct workloads
and computing power requirements. On these three platforms,
we show how TDFG can be constructed and used in Kairos to

mitigate the existing timing issues. At runtime, Kairos intro-
duces an average overhead of 2.8% and shows manageable
performance under scalability analysis. Under high system
overload, Kairos shows a faster and more stable response time
in reacting to timing violations compared to other state-of-
the-art systems – ROS [80], ERDOS [55], and ghOSt [57].
Furthermore, the end-to-end evaluation shows that Kairos can
improve safety under high system overload.

Contributions. We make the following contributions 1:

• Formulation of Data-flow Availability, a new concept for
achieving timing assurance from a data-flow perspective.

• Design and implementation of Kairos, a proof-of-
concept realization of DFA. Kairos detects timing viola-
tions by embedding a temporal property monitor within
the application and mitigates these violations through a
cross-layer scheduling infrastructure.

• Evaluation of DFA and Kairos across three real-world
robotic platforms, each with distinct workloads and op-
erational domains.

2 Background

Real-time Cyber-physical Systems. A unique characteristic
of autonomous cyber-physical systems is their tight connec-
tion to physical world processes. Cyber-physical systems soft-
ware often builds on top of the abstraction of a cyber-physical
control loop, which continuously senses the physical world,
calculates the appropriate control actions, and then actuates
on the system to reach the desired state. The implementation
of this control loop is often realized using multiple tasks (pro-
cesses), where each is modeled as either periodic or sporadic
tasks in the real-time models.

Timeliness Abstraction in Cyber-physical Systems. Due
to their cyber-physical nature, the correctness of autonomous
systems depends on both functional correctness and temporal
correctness. To achieve this, real-time schedulability analy-
sis [77] is conducted on each system based on the real-time
task models. Meeting deadlines is often considered the most
important requirement in real-time systems. Using the task
parameters from the schedulability analysis, the scheduler
of the system enforces temporal isolation among the tasks,
ensuring no task misses its deadline. Based on the ability to
tolerate deadline misses, systems can be hard, firm, or soft
real-time. Due to various practical challenges, such as diffi-
culty in determining a real-time task model, the efficiency
of the processor to achieve system guarantees, and accurate
estimation of worst case execution time, many deployed real-
time systems are soft real-time systems, according to a recent

1The source code, as well as the extended version of this work
with additional analysis and experiments is available at https://
dataflow-availability.github.io/.
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industry survey [29]. Furthermore, timing constraints can
manifest in properties other than deadline misses, including
but not limited to task response time, execution time, release
jitter, and response jitter.

Timeliness Implementation in Cyber-physical Systems.
Modern autonomous systems generally involve multiple ab-
straction layers, as shown in Figure 1. Besides the typical
userspace and kernel-space layers, modern CPS software also
utilizes middleware, such as the robotic operating system
(ROS) [68, 80] to ease programming. Some CPS software
even implements their own userspace scheduler within the
application, resulting in time management across multiple
layers of abstractions. This presents unique challenges for de-
velopers in achieving alignment of cyber events with physical
world events. Furthermore, there is often a combination of
time-driven [33] or event-driven [80] tasks.

3 Real-world Timing Bug Study

Motivation. Real-time theory suggests modeling individual
computations as individual tasks. However, developing a real-
time task model for modern complex data-driven CPS can
be quite challenging for non-experts. Further, the formula-
tion of highly efficient task models often requires deep do-
main expertise in real-time scheduling. A recent industrial
survey [29] (Question 23) also indicates that only a small
fraction (9.38%) of systems are designed with commercial
schedulability analysis tools. Inspired by existing studies on
concurrency bugs [64, 67] that had offered key insights to the
community, we conducted a systematic study of timing bugs
in 7 open-source robotic software. The goal is to gain a better
understanding of the underlying practical challenge faced by
developers. As such, the focus of the study is on timing bugs,
where the bug is caused by non-deterministic timing of data
flow within the cyber-physical system.

Methodology. The seven selected open-source GitHub
robotic software projects are Autoware [53], MoveIt [2],
Google Cartographer [56], Baidu Apollo [37], ORB-
SLAM2/3 [3,4], ROS Navigation [5], and ROS2 rcl [7]. These
projects were selected because they represent important sub-
systems in modern cyber-physical control loops, including
perception, localization, planning, and control. Furthermore,
they have also been widely adopted [1, 35, 52, 75]. To collect
the bugs, a set of keywords (e.g., ‘timing’, ‘sched’, ‘times-
tamp’, ‘temporal’, etc.) was used to filter the issues, resulting
in a list of 189 bugs.

Summary of Systemization. As shown in Table 1, we find
that two categories of root causes account for the majority
(169 out of 189) of the collected timing bugs: insufficient
specification and enforcement of timing constraints. The rest
are design flaws and hardware problems.

Table 1: Timing Bugs in Real-world Applications

Projects

#
bu

gs Timing Constraint Specification Timing Constraint Enforcement

O
th

er
s

Missing
Constraint

False Specification Missing
Constraint

False
EnforcementExpressibility Parameter

Cartographer [47] 34 14 12 1 1 4 2
Apollo [37] 49 11 23 2 3 0 10
MoveIt [2] 23 4 7 2 2 5 3
ORB-SLAM [4] 6 1 1 0 1 2 1
Autoware [53] 16 6 5 0 1 0 4
Navigation [5] 15 3 3 1 2 4 2
ROS rcl [7] 46 3 3 1 3 35 1
Total 189 42 54 7 13 50 23

Scope of This Work ✓ ✓ ✓ ✓

3.1 Timing Specification Bugs

The most common cause of timing assurance failure is incor-
rect specification of timing constraints (103/189 bugs). As
discussed earlier, though real-time theory provides a sound
foundation for assuring timing behavior, there remains a gap
in transitioning the theory into practice for developers without
expertise in real-time computing. Without the formal guaran-
tees provided by real-time theory tools (such as schedulability
analysis), current practice adopted by developers to mitigate
this involves developers tagging data with timestamps when
data is created or transferred, and then using these times-
tamps to check the data’s validity (e.g., freshness) when it is
used. This data-centric approach to timestamp checking for
specifying timing constraints is ubiquitous in the codebases
we investigated. For example, Autoware and Google Cartog-
rapher use timestamp checks in over 340 and 110 places,
respectively, to determine the execution logic. Additionally,
state-of-the-art middleware such as ROS [80], ROS2 [68],
and ERDOS [55] also incorporate built-in timestamps on data
transferred between tasks.

3.1.1 Missing Time Constraints (What to Check)

Figuring out where and how to add the timestamp checks
manually is quite challenging due to the complex dependency
among data from different tasks [8,12,14,17,19–21,23,50,54].
Naively, one can simply add timing checks on all instructions.
However, that will introduce prohibitive overhead to the sys-
tem, leading to adverse physical outcomes.

Implication - It is essential to understand not only which
program statements need to be checked but also which aspects
of temporal properties should be verified, in order to minimize
the performance impact of the protection.

To further dive into the root cause of the problem in a
principled approach, we went back to the basic abstraction
of a cyber-physical control loop to ask the question of what
properties are these timing bugs violating. Through the lens
of physical world impact, three key properties arise during
the analysis of the timing violations.

Freshness - describes the latency between the occurrence of
a physical phenomenon and the consumption of its cyber rep-
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resentation. While data should be as fresh as possible, there
will always be some delay due to sensing and computation.

The key is to ensure that the freshness of the particular data is
acceptable by the control implementation. Figure 2 shows an
example from Cartographer-Pull-153. Cartographer [47] uses
a queue to manage and process sensor data streams from mul-
tiple sources in a coordinated, time-ordered manner. It then
uses the data to construct a robot’s trajectory for localization.
The code snippet checks if the incoming data is older than the
start time of the current trajectory and discards the outdated
data if it is.
    void OrderedMultiQueue::Dispatch() {
      // We take a peek at the time after next data. If it 
      // is not beyond 'common_start_time' we drop it
      std::unique_ptr<Data> next_data = next_q->queue.Pop();
      if (next_q->queue.Peek()->time > common_start_time) {                
        last_dispatched_time_ = next_data->time;
        next->callback(std::move(next_data));
      } 
      // else: drop the data                                                            

1
2
3
3
4
5
6
7
8

Figure 2: Freshness check where outdated data is dropped.
Simplified code snippet from Cartographer-Pull-153.

Consistency - describes the temporal alignment of the phys-
ical world observations in the data flows converging at a
specific statement of the program. Ideally, the physical events
captured by these cyber states should be as synchronized as
possible.

Figure 3 shows an example from ROS Navigation [5]
(Navigation-Pull-1121), where the control task retrieves the
robot pose using the tf_ buffer, which maintains historical
poses. In the original code (highlighted in red in line 1), it
directly uses the latest pose. However, since the tf_ buffer
is dynamically updated by other tasks, the timestamp of the
current map used by the control task (time) might be older
than the latest pose in tf_. This could result in using a pose
that is ahead of the current map in time, causing motion
planning to produce incorrect paths. To fix this, the code
highlighted in green (in line 3) adopts a timestamp-based
check that compares the timestamp of tf_ with the control
task’s timestamp. If time is not newer than the latest in tf_,
the lookupTransform() function is called to interpolate the
pose that temporally aligns with the current map.

   tf_.transform(robot_pose, global_pose, global_frame);                                
    // check if curr_time is less than latest update time of tf_
   if (tf_.canTransform(global_frame, robot_base_frame, curr_time)) {
     // if so, transfomr at the time point of curr_time 
     transform = tf_.lookupTransform(global_frame, 
 robot_base_frame, 
                                    current_time);
     tf2::doTransform(robot_pose, global_pose, transform);
   } else {
     // use the latest otherwise
     tf_.transform(robot_pose, global_pose, global_frame_);
   }                                                                                                                 
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Figure 3: Consistency check detecting temporal alignment
between the data from two tasks (Navigation-Pull-1121).

Stability - describes the variation in freshness. This is similar
to the concept of jitter in the real-time and control domains,
and ideally jitter should be minimized.

Many control algorithms and systems are designed to have
an implicit assumption of not only the boundary of the fresh-
ness but also its variation (often relatively small) from loop
to loop. In essence, it is about the consistency of data flow
in the temporal dimension, as compared to the spatial dimen-
sion (consistency as discussed above). Figure 4 shows a code
snippet from AutowareAuto-Pull-980, where a timer is added
to ensure the stability of control output. The timer checks the
elapsed time in a polling loop to trigger the control output
function at expected intervals.

    NERaptorInterface::NERaptorInterface(. . .){
      /* Use a ROS timer to ensure the stability */
      m_timer = node.create_wall_timer(m_pub_period,           
                                       std::bind(&cmdCallback, this));        
     }                                                          
   
    /* In implementation of ROS timer */                                   
    while (rclcpp::ok()) {                                              
    // Use elasped time to check if timer is ready via a polling loop               
      rcl_timer_get_time_until_next_call(m_timer, &time_until_next_call);
      if (time_until_next_call <= 0)    m_timer->call();                                   
    }                                                                     
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Figure 4: Stability check using a ROS timer to minimize
control jitters (AutowareAuto-Pull-980).

Summary - These three key properties present a unique oppor-
tunity to address a large number of bugs with a small amount
of temporal property checks.

3.1.2 Inadequate Timing Constraints (How to Check)

Even after solving the challenge of what to check, developers
also have to tackle the challenge of how to check. There are 61
bugs caused by inadequate specification of timing constraints;
among these, we found two common causes. The first cat-
egory is that some of the hard-coded time constraints may
not be appropriate for the deployment. This often happens
due to insufficient testing or changing software/hardware [11]
or operating environment [55] of the system. The second
category is less straightforward. In real-time cyber-physical
systems, there are other essential timing dimensions beyond
latency (maps to freshness discussed earlier), such as align-
ment (maps to consistency discussed earlier) and jitter (maps
to stability discussed earlier). For examples, issues can arise
on arrival jitter [10], detection of data loss [24], processing
data time ratios [13, 27], and requests of development of tim-
ing utilities [9, 16]. Figure 5 shows a simplified bug example
from Google Cartographer [47] (Cartographer-Issue-242) that
spans multiple patches before being finally fixed. The code
snippet estimates the robot’s velocity by dividing the differ-
ence in positions between two adjacent frames by the time
interval. In this case, the freshness of data is a problem be-
cause if the incoming LiDAR frame is older than the latest one
(i.e., out-of-order), it causes the time difference (delta_t)
to be negative. The freshness check was added in patch [79]
(highlighted in yellow on line 3 of the figure). However, an-
other problem beyond data freshness persists even if delta_t
is positive. The irregular timing may result in two LiDAR
frames being too close in time, causing delta_t to be too
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short. In such cases, the position difference is divided by a
very small delta_t value, which can significantly magnify
any estimation errors, potentially causing the velocity to be-
come infinitely large. This issue is finally fixed by inserting a
check (on line 8) that the frames with intervals less than 1 ms
are dropped.

   // Estimate the velocity estimate.                                      
   if (time >  common::Time::min()                                     
       && time > last_scan_match_time) {                                                        
     
     // Prevent out-of-order data 
     double delta_t = common::ToSeconds(time - last_scan_match_time);
 
     if (delta_t < 1e-6) return;                                            
     // Prevent too short intervals 
     velocity_estimate_ += (pose_estimate_.translation() -
                           model_prediction.translation()) /
                           delta_t;
   }                                                                                
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Figure 5: Timestamp checking is incomplete in semantic.

Implication - Given the dynamic range of timing expectations
in different platforms and physical environments, it is impor-
tant to develop a mechanism that simplifies the configuration
of these ranges for developers. Ideally, this mechanism should
also enable the automatic discovery of the necessary ranges
to maintain system safety.

3.2 Timing Enforcement Bugs
There are 62 bugs stemming from inadequate enforcement
of timing constraints. Most of these (50/62) are due to con-
ventional software bugs, such as memory corruption in the
enforcement infrastructure with schedulers and timers. An-
other 13 of these bugs are caused by timing constraints not
being delivered to the enforcement mechanisms. These are pri-
marily caused by the fact that the specified timing constraints
are limited to userspace applications and are not propagated
to other scheduling layers. Figure 1 schematically illustrates
the scheduling layers involved in designing and deploying au-
tonomous systems. Due to the inadequate support for deliver-
ing scheduling contexts across schedulers, timing constraints
(or scheduling decisions) specified at one scheduler fail to
propagate to others. This type of problem can be observed in
issues where priorities are inverted across layers [22], leading
to critical tasks not being reliably triggered [26], executing
at varying periods [25], or executing out of order [15]. As a
result, mitigation methods to maintain relative priority at the
user level or middleware alone are often quite challenging if
not impossible.

    void SchedulerChoreography::CreateProcessor() {                                                                                           
      proc->BindContext(ctx);                                                         
      /* Reserve a set of CPU cores for the tasks */                                                    
      SetSchedAffinity(proc->Thread(), pool_cpuset_, pool_affinity_, i);             
      SetSchedPolicy(proc->Thread(), pool_processor_policy_,                 
                     pool_processor_prio_, proc->Tid());                                                   
    }                                                                          

1
2
3
3
4
5
6

Figure 6: Mitigating disconnection across scheduling layers.

Figure 6 is the mechanism adopted to handle Apollo-Issue-

9433. It introduces a new scheduling strategy that reserves
a set of CPU cores for middleware tasks, allowing them to
be directly scheduled on these cores and avoiding disconnec-
tion between layers. However, implementing this scheduling
strategy necessitates a thorough understanding of the tasks,
including their dependencies and execution times.

Implication - Assurance of timing expectations is more effec-
tive when scheduling contexts are visible across all layers of
abstraction.

3.3 Summary

Table 1 shows the timing bugs we studied, and the scope of the
proposed mechanism DFA. Based on the study, we summarize
the opportunities and insights that inform the design of DFA:

• Timing expectations are often added by programmers by
checking the age of data, hinting at the potential to use
information(data)-flow as a mechanism to capture the
programmer’s intention.

• There are three types of key temporal properties we
systematized based on the cyber-physical control loop
abstraction, freshness, consistency, and stability.

• Timing enforcement would often benefit from visibility
across different layers of abstractions in the OS.

4 Data-flow Availability

Motivated by the challenges in Section 3, this paper introduces
Data-Flow Availability (DFA), which approaches the policy
definition of temporal property from a data-flow perspective.

4.1 Timed Data-flow Graph

A Timed Data-flow Graph (TDFG) is a representation of a
DFA-enabled program, extended from the program’s data-
flow graph.

Graph Definition. TDFG is a directed graph G= (V,E,T,C)
constructed from program’s intermediate representation:

• Vertex: Each vertex 𝑣 in the set V corresponds to a statement
in the intermediate representation.

• Edge: Edges E ⊆ V×V represent data dependencies be-
tween vertices. An edge is added if the corresponding state-
ments have a data dependency.

• Timing Tag: A timestamp 𝑡𝑝ℎ𝑦 ⊆ T is generated with def of
memory SSA (Static Single Assignment) in the graph and
propagated along edges at runtime. It includes two types
of timing, either the physical world sensor reading or the
range of a derived value from the timed sensor values.
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Figure 7: Two cases of timing propagation in data flows.

  void EvaluatorManager::DumpCurrentFrameEnv() {
    FrameEnv curr_frame;
    auto obstacles = ContainerManager()->Get(PERCEPTION_OBSTACLES);
    curr_frame.set_timestamp(obstacles->timestamp());      
  }                                                                       

1
2
3
4
5

(a) The timestamp propagates on a single data flow (Apollo-Pull-8503).

   bool Fusion::GenerateMsg(Obstacles* obstacles) {
     common::Header * header;
     header->set_lidar_stamp(lidar_timestamp * 1e9);
     header->set_camera_stamp(camera_timestamp * 1e9);
     header->set_radar_stamp(radar_timestamp * 1e9);                        
    /* Processing */                                                     

1
2
3
4
5
6

(b) The timestamps of multiple data flows merge (Apollo-Pull-5459).

Figure 8: Code examples for timing propagation in data flows.

• Timing Constraints: The edges can be assigned timing con-
straints 𝐶 ∈ C. These constraints define the temporal prop-
erties that the edge is expected to meet within specified
tolerance thresholds. The constraints are evaluated upon
information flow. These temporal properties are defined
by DFA’s metrics, which are detailed in Section 4.2. Note
that some of the temporal properties require analyzing the
statistics of data flows into a vertex over time/iterations.

Timing Information Propagation. Timing tags can be propa-
gated along edges 𝐸 at runtime. There are two forms of timing
tag propagation patterns (shown in Figure 7) that are common
in a cyber-physical system:

• Propagation of Timing Tag in Single Data Flow. The timing
information is propagated along a single data flow (Fig-
ure 7(a)), where edges inherit the timing tag from the prede-
cessor edge, unless the data flow comes from a new sensor
reading. Since the timing tag represents the time when the
physical world observation is made, the data flow within
cyber space does not change the tag. This is the most com-
mon case. In practice, developers programmatically add
the timestamps to the variables according to data received
from the predecessor tasks. Figure 8(a) shows an example
from the Baidu Apollo self-driving car project (Apollo-
Pull-8503). The prediction task inherits the timestamp of
obstacles from the object detection task. The timestamp is
then used to calculate the data age of the currently perceived
environment upon which the prediction is based.

• Merging Timing Tag from Multiple Data Flows. This cate-

gory (Figure 7(b)) involves merging multiple data flows at a
vertex. This is typically required for tasks that fuse informa-
tion from different sensors. In this case, the resulting mem-
ory SSA from the statement inherits the timestamps from
its incoming edges, and maintains 𝑡𝑝ℎ𝑦 = 𝑓𝑣(𝑡1

𝑝ℎ𝑦
, ..., 𝑡𝑛

𝑝ℎ𝑦
),

where 𝑓𝑣 is the merging function for the vertex 𝑣. While the
figure shows only two data flows, there could be more than
two. Note that there is a one-size-fits-all solution in how
timing tags can be merged, since it is effectively merging
observations on the physical world from different time in-
stances. One common approach is to keep the range of the
time tags. The code snippet in Figure 8(b) depicts a fusion
task in Apollo, added in Apollo-Pull-5459. Since this task
fuses detection results from LiDAR, cameras, and radar, it
also incorporates their timestamps to check the temporal
alignment later.

4.2 Timing Constraints in TDFG
Based on the timing bug study, three essential temporal proper-
ties were formulated based on the cyber-physical control loop
abstraction: freshness, consistency, and stability. In the fol-
lowing, we will show how they can be captured using TDFG
in the form of Timing Correctness.

Freshness focuses on the difference between the time when
a physical observation is made and the time when this observa-
tion is used by the control system. In cyber-physical systems,
this difference often has to be bounded, as any latency in-
creases the temporal gap between the cyber and the physical
world, as previously discussed in Section 3. As a result, given
an edge 𝑒 with a maximum tolerable timing threshold � 𝑓 , its
freshness is calculated by:

𝐶 𝑓 = � 𝑓 −(𝑡−− 𝑡phy)) (1)

where 𝑡− is the current time.
Consistency concerns the time differences between the

timing tags from different data flows into a vertex, which intu-
itively indicates the differences in the physical world status at
different times. Generally, the smaller it is, the closer the time
stamps are, and the more consistent the physical world obser-
vations should be. Consider 𝑛 edges that have the same egress
vertex: 𝑇def = ⟨𝑡1

def , . . . , 𝑡
𝑛
def⟩. Their temporal consistency can

be checked by:

𝐶𝑐 = �𝑐 −max
𝑖 , 𝑗≤𝑛

(𝑡 𝑖phy − 𝑡
𝑗

phy) (2)

where �𝑐 is the tolerable threshold (or range).
Stability captures differences in timing characteristics of

data flows into/out of a vertex temporally. Many tasks in real-
time systems are implemented as periodic workloads and thus
some underlying algorithms/models are designed with the
assumption of periodicity, which necessitates periodicity in
data usage, such as input (e.g., sensor input) or output data
(e.g., actuation command) [71]. For 𝑤 edges belonging to a
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Figure 9: Workflow of Kairos.

set of data flows from sequential loops via the same program
point, they have 𝑇 = ⟨𝑡1

phy , . . . , 𝑡
𝑤
phy⟩. One typical way to check

stability is by measuring jitters:

𝐶𝑠 = �𝑠− max
𝑖 , 𝑗≤𝑤−1

|𝐷𝑖−𝐷𝑗 |,𝐷𝑖 =Δ𝑖− 𝐼 ,Δ𝑖 = 𝑡 𝑖+1
phy − 𝑡 𝑖phy. (3)

where Δ represents the interval between two iterations and 𝐼 is
the expected interval. In practice, the form of stability can vary
based on the design of the target systems, with alternatives
potentially being variations of freshness.

An edge 𝑒 is evaluated upon the program’s execution reach-
ing its egress vertex, and it is considered compliant with tim-
ing correctness if all its added metrics meet 𝐶 > 0, namely
(𝐶 𝑓 > 0∧𝐶𝑐 > 0∧𝐶𝑠 > 0).

5 Design and Implementation of Kairos

Kairos is a proof-of-concept realization of Data-flow Avail-
ability. There are two main components, the temporal policy
definition using TDFG and the mitigation of policy violation.
Kairos is composed of a compiler extension and a run-time
system. Figure 9 outlines its key components and workflow.
At compile-time, Kairos leverages program analysis and user
annotation/automatic annotation 1 from profiling to con-
struct the TDFG of the target application 2 ; Utilizing the
TDFG, it instruments code to perform timing information
propagation 3 ; At run-time, tasks update timing information
and evaluate timing correctness 4 ; Upon timing constraint
violation, the task triggers a handler to execute the pre-defined
policy 5 ; The scheduling decisions from handling policy are
then shared with schedulers across different layers 6 .

5.1 DFA-enabled Application
As shown in Figure 10, there are two main steps in the con-
struction of DFA-enabled application, the construction of
TDFG, which defines the temporal properties the applica-
tion has to follow and the instrumentation of the application
to enable detection and mitigation of the property violation.

void proc(sensor* x) {
  freshness(x, 0.5, Abort);
  y = buf.pop();
  consistency(x, y, 1, Abort);
  process();
  log(x, y);
}

1
2
3
4
5
6
7

Annotated Program

Graph Construction

Instrumentation

llvm-ir

llvm-ir

...
%y = call pop
%1 = call i32 @consist_check(-)
... 
call void @abort_job()

Property check

Timing info propagation

DFA-Enabled Executable

Kairos

get annotations

Figure 10: Pipeline of DFA-enabled application construction.

TDFG Construction. TDFG captures the expected temporal
properties of the developers. Upon extraction of value-flow
graph [49, 86], the timing constraints in TDFG are expressed
either manually via developer annotations or automatically
via dynamic profiling.

Table 2: Kairos API

Function
Name

Arguments Description
Targets Tolerance Window Handling

Policy
freshness var

threshold
- abort

prioritize
skip-next

Checks the expected properties.
If violated, triggers the
handling policy function.

consistency var, ... -
stability var size

To facilitate manual annotation, three APIs are provided
for annotating the source code to express timing constraints
over the three key properties (freshness, consistency, and sta-
bility) that were previously discussed in Section 3. As shown
in Table 2, the functions take four types of arguments: target
variables, tolerance threshold, window size (for stability only),
and handling policy. The threshold and window size param-
eters enable the check of timing correctness. The handling
policy argument specifies the function to be invoked if timing
correctness checks fail.

However, manual annotation often requires strong domain
knowledge not only of the physical system but also of the com-
puting stack, which may not always be available. To tackle
this, Kairos also provides an option to extract the timing con-
straint using performance profiles from dynamic analysis. To
do so, Kairos needs two key components: first, an oracle (crite-
ria) to determine if the timing behavior of the software needs
to be corrected or not; second, inputs to instrument the sys-
tem such that all potential behaviors can be observed. For the
oracle, Kairos borrows existing practice in CPS evaluation,
where safety (often measured as control state deviation) is
used as the metric. When physical safety (such as vehicles
crashing into pedestrian or drones falling from the sky) is
compromised by the violation of a specific temporal property,
Kairos considers this temporal property to be essential and
has to be monitored and checked at runtime. Inputs to the
system, i.e., the physical scenarios, to test the system is an
open challenge in CPS testing [72]. In Kairos, in addition
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to relying on the user to supply scenarios that might reveal
temporal property violations, we use the performance inter-
ference tool [65] to probe the system with different potential
timing impacts. To minimize the impact on the timing be-
havior of the software due to the profiling system, hardware
performance monitors and debug functions are used. Among
all flows that cause the same property violation, Kairos only
adds the check on the first occurrence. It is important to note
that dynamic profiling is much more effective in finding the
acceptable range of the constraints rather than finding where
to add the constraint (which has a much larger search space).

TDFG Embedding. Before constructing the TDFG, Kairos
analyzes the source code to identify statements that receive
sensor inputs, and automatically instrument them to extract
timestamps 𝑡𝑝ℎ𝑦 from the sensing or input payloads. To begin
the construction of TDFG, Kairos builds on top of the value-
flow analysis in the SVF [86] tool with LLVM-IR [63], then
uses a set of python scripts to add the timing constraints and
annotation. Additionally, a set of LLVM compiler passes is
also developed to instrument the necessary code for timing
information propagation and checking. Kairos also leverages
several heuristics to reduce the performance overhead. First,
to avoid instrumenting every instruction for timing metadata
propagation, Kairos automatically bypasses the timed data
flows with the same time tag 𝑡𝑝ℎ𝑦 (sensor timestamps). With-
out loss of generality, a vertex is selected to be in the TDFG
based on three criteria: (i) it is either a physical input or phys-
ical output vertex, (ii) it merges multiple data flows, or (iii) it
is annotated with timing constraints as a vertex of interest.

5.2 Timing Constraint Violation Mitigation

Timing Constraint Violation Handler Policies. Mitigation
of timing constraint violations often requires consideration
of the physical components, and there is no one-size-fits-all
solution. Drawing inspiration from our bug study, prior works
in real-time computing [39, 46, 69, 91] and current industrial
practices [29], Kairos offers three policies: abort, prioritize,
and skip-next. More specifically, abort discards the task in-
stances with timing constraint violations. prioritize switches
the system into a different set of task models, often involving
raising the priority of the task. Lastly, skip-next allows the
delayed task to continue but skips its next instance to recover.

It is important to note that individually, these policies may
give rise to further timing constraint violations in a cascading
effect. For example, prioritizing a task that has missed its
deadline might prevent other tasks from making progress,
resulting in subsequent deadline misses. However, if correctly
composed, these policies support existing adaptive real-time
scheduling paradigms, e.g., elastic scheduling [46] and mixed-
criticality scheduling [90].

Under elastic scheduling, task utilizations are decreased
(typically by increasing the periods at which they are invoked)
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Figure 11: An illustrative case of Path across layers.

to avoid deadline misses. Though originally proposed in [46]
as a mechanism to adapt to system overload, elastic schedul-
ing has since evolved as a means by which systems can adapt
to unexpectedly long task execution times [45] or interference
from other tasks [85]. In response to a violation of timing
constraints, Kairos can use the algorithm from [84] to quickly
recompute task periods, then enforce this with multiple pri-
oritize policies to change task priorities or SCHED_DEADLINE
attributes accordingly.

In mixed criticality systems, non-critical task instances may
be dropped in response to timing anomalies in critical tasks.
Earliest-deadline first (EDF) scheduling with virtual dead-
lines (EDF-VD) is an optimal scheduling algorithm for non-
clairvoyant mixed-criticality systems (i.e., those for which
timing anomalies can’t be predicted a priori, but are only iden-
tified when they occur) [39]. Under EDF-VD, each critical
task is prioritized according to its virtual deadline, which is
assigned as a constant parameter. When a critical task over-
runs its expected execution time, instances of non-critical
tasks are dropped to maintain guarantees to critical tasks,
and critical tasks are re-prioritized according to their absolute
deadlines [39]. Kairos’s handler supports this mode switch via
a combination of its abort and prioritize policies (applied to
the non-critical and critical tasks, respectively). While devel-
oping more sophisticated policies presents intriguing research
opportunities, it is left for future exploration.

Implementation. Handlers can be implemented in individual
layers or across multiple layers. In our prototype, we imple-
ment it as a modification to the kernel schedule where the
mitigation mechanism is invoked before the built-in scheduler
for proof-of-concept. For task abort, our prototype instru-
ments code to enable early return. However, it is important to
note that resource deallocation and inconsistent state removal
often require sophisticated management [82]. The skip-next
is demonstrated in the middleware by dropping the next task
invocation message at ROS.
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Cross Layer Scheduling Association. While the handling
policies for timing constraint violation are relatively well un-
derstood under the real-time task problem formulation at the
task level. Existing software ecosystems come with schedu-
lable entities at different layers of architectural abstractions
from I/O layer (such as network packet) and operating sys-
tem (real-time process) to middleware (ROS component) to
application (application-specific schedulers). This presents
non-trivial system challenges in realizing consistency in the
handler policy due to missing semantics across the abstraction
layers.

This problem can be observed in 13 bugs [18, 38] from our
earlier bug study. For example, the handling of a consistency
violation often needs to adjust threads on sensor processing
rather than the fusion process, necessitating the correlation of
a subgraph of TDFG to the corresponding schedulable entities
such that the timing constraint violation handler knows which
one to intervene on [41]. Another example that commonly
occurs in time-sensitive networking is the need to prioritize
specific items in the network queue due to reprioritization of
tasks [95], which can be part of the handling process.

To mitigate this, we propose to bridge the semantic gap by
associating schedulable entities to data flows in TDFG. This
not only allows the handler to know the schedulable entity
to operate on, but also allows the other abstraction layers to
respond to a handling mechanism much more effectively. To
ensure the association is complete, Kairos draws inspiration
from the Path concept from Scout system [73], where Path is
used to track the components a packet travels through (e.g.,
network devices or protocol layers) on network appliance
systems. In Kairos, upon dispatching, Path is updated to reflect
the chain of schedulable entities that leads to execution of the
application along a particular path, as shown in Figure 11.

Implementation. Our prototype modifies the data structure
of native scheduling entities to store the Path to which they
belong. This information is updated in a shared buffer acces-
sible to four layers, i.e. user space, kernel, middleware, and
network stack. The method of incrementing Path varies: in
the kernel and network stack, it occurs where new tasks or
packets are created; while in ROS middleware, it happens as
threads are dispatched to execute callback functions.

6 Evaluation

This section seeks to answer the following questions: (i) What
is the capability of DFA in addressing real-world timing bugs?
– Section 6.1; (ii) What is the cost and efficacy of Kairos? –
Section 6.2; (iii) How do DFA and Kairos improve perfor-
mance/safety in abnormal timing situations? – Section 6.3.

Experimental Setup. The evaluations were performed on
synthetic workloads and the workloads of three real-world au-
tonomous systems: (1) Autoware.Auto [36] – an open-source
full-stack autonomous driving project, which presents a high-

Table 3: Evaluation Platforms

Platforms Software Stack Computing Cores RAM Kernel

Autoware
Autoware.Auto
[36, 61]

AMD 9 3900X
RTX 3070 Ti 12 128GB Linux 5.11

Jackal
Cartographer [47]
& Navigation [5] Intel Nuc 8 4 16GB Linux 5.11

Turtlebot3 Navigation [5] RPi 4B 4 4GB RPi 5.15

Microbenchmark ORB-SLAM3 [4] Intel i9-12900K 12 128GB Linux 5.11

Table 4: Root Cause Analysis of Bug Fix Capability

Category Description Number

Non refactoring Inadequate timing information/constraints/propagation 104
Remove built-in conflict logics 5Fixable Refactoring Adapt with software semantic 7

Hardware-related timing faults 6
Algorithm-related timing bugs 8Out-of-Scope
Infrastructure bugs (e.g., scheduler crash) 41

Concurrency bugs 12

Unfixable

Limited Performance issue 6

end real-time autonomous system. (2) Jackal UGV – an un-
guided ground vehicle that represents mid-end autonomous
system. It uses Google cartographer [47] for vehicle localiza-
tion and ROS navigation [6] for path planning and control.
(3) Turtlebot3 – a low-end indoor robot that relies on ROS
navigation [6] for localization, planning, and control. Given
that the software stacks of each system require distinct com-
puting power, we used three different computing units that
align with (or are similar to) the official recommendations to
better emulate abnormal timing situations. The experimental
hardware settings are listed in Table 3. Autoware and Jackal
UGV were evaluated using hardware-in-the-loop simulations,
while Turtlebot3 was also evaluated using a real robot.

6.1 DFA in Solving Real-world Bugs

A key question to answer in evaluating the efficacy of Kairos
is its ability to address the timing problems. To do so, our
evaluation leverages the collection from the bug study and
analyzes if Kairos can detect the timing problems (through
temporal policy defined in TDFG) and mitigate the timing
problems (using the cross-layer temporal policy violation han-
dler). Due to the need to use physical system or emulation
to exercise the system, most of the results from this evalua-
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Figure 12: Statistics on bug fixability and root causes.
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tion item are acquired through manual inspection by three
cyber-physical system developers with 6, 10, and 17 years
of experience respectively. A bug is considered fixable if all
three developers agree that the mitigation can be expressed us-
ing primitives in Kairos. Furthermore, we’ve also conducted
two case studies to demonstrate that Kairos can be used to
detect and mitigate violations of the key temporal properties.

The results of the manual inspection are shown in Figure 12.
From our earlier case study, there are 189 timing bugs. 116
of them can be detected by DFA, and 23 are not detectable,
because they are caused by underlying infrastructure bugs,
design flaws, or hardware issues (beyond the scope of Kairos).
76 bugs can be mitigated directly using default mitigation
handling policies, while 35 bugs can only be mitigated us-
ing customized temporal violation handlers. 5 bugs cannot
be mitigated even with customized handlers, because they
require adaptation in the underlying design model or algo-
rithms, necessitating a complete software redesign. Table 4
summarizes the reasons on all the bugs that Kairos cannot
address. To further understand how Kairos can be used to
address real-world bugs, we reproduce two bugs violating
stability and consistency respectively, since freshness is often
easier to handle.

Case-1: Abnormal timing of LiDAR Pointcloud in Cartogra-
pher. This case study demonstrates the effectiveness of Kairos
in identifying and mitigating violations of stability timing con-
straint. Specifically, we evaluate Kairos on issue Cartographer-
Issue-242 (code snippet shown in Figure 5) in Cartogra-
pher [56], a widely used localization package. According
to the original issue report, the LiDAR pointcloud data, which
is assumed to arrive at periodic intervals, sometimes arrives
more closely than expected, violating the system’s stability
timing constraints. To reproduce the same impact of the issue,
we modified the driver code to induce the same abnormal
timing patterns, specifically manipulating the time between
two pointclouds to be below 1 ms. Such timing patterns cause
the vehicle to deviate from the baseline at most 10.3 m, as
shown in Figure 13(a). To solve this issue, the patch in the
codebase checks the timestamp of each point and removes
abnormal ones with intervals of less than 1 ms. With this
removal, the produced localization results are comparable to
the baseline (deviation at 0.20 m). With Kairos, we specify
stability timing constraint on ScanMatch() statement which
consumes variable msg in task HandleLaserScanMessage that
receives the point cloud with the annotation API stability().
The tolerance threshold argument in the API, which is set
between 22 and 33 ms, is obtained through dynamic profiling
of the ranges of intervals that do not incur adverse control
outcomes. This process takes 18.3 minutes. We use abort
as the default policy to mitigate the violation. The produced
localization result aligns with the baseline at 0.19 m, which
is comparable to the official patch as shown in Figure 13(a).

Case-2: Latency in Updating Location. This case study show-
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−74 −72 −70 −68 −66
x [m]

−47

−46

−45

−44

−43

−42

y 
[m

]

baseline
w/o Fix
with Fix
DFA

0 20 40 60 80
Time [s]

0

1

De
vi

at
io

n 
[m

]

(b) Autoware case study

Figure 13: Case studies on fixing timing bugs using DFA.

cases the effectiveness of Kairos in detecting and mitigating
violation of consistency timing constraints. Specifically, we
evaluated Kairos on the issue Autoware-Issue-458 in Auto-
ware (code snippet shown in 14). According to the original
issue report, the timestamps of the generated LiDAR data and
odometer data used by the optimization procedure (line 31),
which aims to perform the localization, should be within a
threshold but are sometimes misaligned, violating the sys-
tem consistency timing constraint. Since the mechanism to
trigger the bug was not discussed in the original issue submis-
sion, we inject an intermittent CPU overload at 60 % level
using stress-ng [62] on the cores running localization-related
tasks to introduce inconsistency between LiDAR and odome-
ter data. Such inconsistency causes the vehicle to produce a
trajectory that deviates from the ground truth by 1.88 m, as
indicated in Figure 13(b). To solve this issue, the patch in the
codebase tags the LiDAR and odometry data with timestamps.
It then compares these timestamps. If the difference between
them is more than 1 second, the results are discarded. With
this removal, the produced localization results align with the
baseline at 0.12 m. To solve this problem with Kairos, we
use annotation API consistency() (line 31 in Figure 14) to
specify the consistency timing constraint on transform_tree
and msg_ptr. The tolerance threshold argument in the API,
which is set between 1.2 s, is obtained through dynamic pro-
filing of the difference between timestamps of two variable
generations that do not incur adverse control outcomes. This
process takes 8.5 minutes. We use prioritize as the default pol-
icy to mitigate the timing constraint violation. The produced
localization result aligns with the baseline at 0.091 m, which
is comparable to the official patch.

A Programming Example. We use case-2 (Autoware-Issue-
458) as an example to showcase how Kairos reduces the
effort in programming timing constraints. Figure 14 shows
simplified code snippets from Autoware’s localization compo-
nent. In this component, incoming LiDAR pointclouds, HD
maps, and the transformation tree (extrapolated pose based on
past information) are used jointly, so their timestamps should
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01 void observation_callback(typename ObservationMsgT::ConstSharedPtr msg_ptr){  
02   // Get the timestamp of new coming LiDAR message                            
03   const auto observation_time = get_stamp(*msg_ptr);                          
04   // Get global variable transformation tree                                  
05   const auto & transform_tree = xxx;                                          
06   // Get global variable map                                                  
07   const auto & map = xxx;                                                                
08a  const auto &initial_guess = m_pose_initializer.guess(                                                                     

- 09   initial_guess.header.stamp = transform_tree.stamp;                          
10   if (m_external_pose_available){                                             
11       initial_guess = m_external_pose;                                        

- 12       initial_guess.header.stamp = get_stamp(*msg_ptr);}                      
13   // Assign timestamp                                                         

- 14   const auto message_time = msg.header.stamp;                                 
15   // Validate timestamp (Map shouldn't be newer than a measurement)           

- 16   if (message_time < map.timestamp()){                                        
- 18       return ERROR;}                                                             

20   // Assign timestamp                                                         
- 21   const auto guess_scan_diff = initial_guess.header.stamp - message_time;     
- 22   const auto stamp_tol = m_config.guess_time_tolerance();                     

24   // Validate timestamp (Backwards extrapolation is not supported)            
- 25   if (initial_guess.header.stamp < message_time){                              
- 26       return ERROR;}                                                          

28   // Validate timestamp                                                       
- 29   if (guess_scan_diff.count() > std::abs(stamp_tol.count())){                 
- 30       return ERROR;}                                                          

33   NDT_optimizer.solve(initial_guess, msg, map);...}                           

08b                                  transform_tree, observation_time);            

+ 32  CONSISTENCY(map, msg_ptr, THRESHOLD, ABORT);                                 
+ 31  CONSISTENCY(guess, transform_tree, THRESHOLD, PRIORITIZE);                                 

Figure 14: Simplified code for temporal consistency checks in
Autoware. ‘-’ (red) represent built-in checks, while ‘+’ (green)
are checks via Kairos’s API.

be checked as aligned. The standard checking mechanism
(red lines marked by ’-’) requires developers to identify data
provenance, label timestamps, and verify them before use.
This often involves frequent jumps to other functions in differ-
ent contexts, necessitating a deep understanding of data-flow
relationships, which is both time-consuming and error-prone.
In contrast, by using Kairos’s APIs, users can omit all times-
tamp assignments and checks and simply add two statements
before using the LiDAR point cloud and map (marked by two
green lines with ‘+’ in the figure).

Overall, Kairos eases programming with timing constraints
in three ways. First, it removes the requirement of program-
matically assigning timestamps to variables. Second, it avoids
unnecessary or repeated timestamp checks. Third, it does not
require developers to thoroughly understand the temporal
relationships between different data flows in the source code.

6.2 Cost and Efficacy of Kairos

Runtime Overhead on Real-world Applications. The run-
time overhead of Kairos stems from three aspects: timing
information propagation, timing correctness checking, and
the added logic in schedulers. We separately measured the
overhead for each aspect on five representative tasks (or func-
tions) per platform, averaging execution times over 100 runs.
The results, shown in Figure 15, include original times and
proportional increases.

The largest overheads observed in these tasks are MOTUp-

date in Autoware (4.77%), UpdateVelsPoses in Jackal UGV
(4.69%), and getOdomPose in Turtlebot3 (2.74%). Overall,
the increased percentage of execution time is highly related
to the number of edges in the task dependency graph (TDFG).
Typically, tasks that involve more sensor inputs will introduce
more edges. For example, the MOTUpdate task has a high
overhead percentage because it is the multiple object track-
ing task in Autoware that fuses multiple pointcloud inputs.
Furthermore, the tasks that maintain more historical timing
states will also have a higher overhead. An example is the task
AddImuData in Jackal UGV, which stores hundreds of inertial
data frames in a queue, inducing a 4.21% overhead. Breaking
it down, most of the overhead comes from propagating timing
information along edges which can reach up to 4.39%. We
found that Kairos’s add-on logic on schedulers introduces neg-
ligible overhead, where the largest overhead is 0.84% from
task AddImuData. Besides the individual execution times, we
also measure the end-to-end latency from sensor input read-
ing to actuation output. The overhead on end-to-end latencies
for Autoware, Jackal UGV, and TurtleBot3 are 3.24%, 2.44%,
and 2.75%, respectively.

Scalability Analysis. The sensor reading rate, the number
of edges in TDFG, and the number of timing tags in tim-
ing constraint checking affect the scalability of Kairos. Thus,
we evaluate the scalability of Kairos by measuring the run-
time overhead with respect to these three factors. We create
synthesized workloads with varying scalability impact fac-
tors by modifying the original workload of ORB-SLAM3.
Specifically, (1) to emulate varying sensor reading rates, we
change the replay speed of the recorded sensor data from the
original ORB-SLAM3 workload. (2) To adjust the number
of edges, we duplicate tasks and annotate timing constraints
on their shared data flows. (3) Since only stability performs
timing constraint checks over multiple timestamps, we adjust
its window size to assess the impacts of timing tag size.

Sensor Reading Rate. The sensor reading rate impacts run-
time overhead. Figure 16(c) shows a linear increase in exe-
cution times for updating and checking timing tags as input
frequency rises. The execution time for a single vertex in-
creases from 37.537 �𝑠 at a frequency of 20 to 4087.95 �𝑠
at a frequency of 500Hz, primarily due to timing checks. A
higher sensor reading rate also significantly increases lock
wait times, increasing 100 times from 10 Hz to 500 Hz. Yet,
CPU usage on a single core remains at just 0.23% even under
high input frequency.

Number of Edges in Timing Propagation. We use the number
of Paths created per second as a proxy for the size of TDFG.
Figure 16(b) presents the runtime and memory overheads. The
duplicated tasks are callback workers in the ROS middleware,
thus increasing the number of tasks in the middleware but
not significantly affecting the kernel scheduler. We observe
that middleware scheduling time increases with the number
of tasks. CPU usage on a single core peaks at 0.42% with
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Figure 16: Scalability analysis (16(a), 16(b), and 16(c)) and
control impact of CPU overload 16(d).

5000 Paths, while memory overhead reaches 75 KB, which is
relatively low given that the target platform typically has over
ten GB of RAM.

Number of Timing Tags. Figure 16(a) shows the runtime and
memory overhead induced by a single edge with different
numbers of timing tags used during timing constraint checks.
We can observe that the checking time increases proportion-
ally with the number of timing tags. With a tag size of 100,
the average overhead is 2.945 �𝑠 of runtime and 896 bytes
of memory; increasing to 500, it reaches 9.4 �𝑠 and 4096
bytes, respectively. Given that the number of edges typically
remains below a few hundred, the total overhead is low. The
figure also shows that as the number of timing tags increases,
lock wait time slightly rises but remains below 0.05% of CPU
usage on one core.

Invocation Latency in Delivering Execution Decision. In
this experiment, we compared Kairos’s efficacy to ROS [80],

0.05
0.35
0.65
0.95

ROS
ghOSt

ERDOS
Kairos

0% 20% 40% 60% 80%
CPU Overload (%)

0.00
0.01
0.02
0.03

In
vo

ca
tio

n 
De

la
y 

(m
s)

Figure 17: Invocation delays of handlers in different systems.

ghOSt [57] and ERDOS [55] in delivering scheduling deci-
sions. ROS features the actionLib library [28], which supports
preemptible tasks. ghOSt [57] is a userspace-informed ker-
nel scheduling system that allows scheduling decisions to be
made from userspace. EDROS is a robotic middleware that
provides programming interfaces to deploy deadline miss han-
dlers. We measure the delay from when the decision is made
to the targeted task being executed. The experiments are con-
ducted under different CPU overloads. We use stress-ng [62]
tool to inject overloads, from 0% to 80%, then compare the
increases and variations of latencies in Figure 17.

Under 80% overload, the response times for ROS, ghOSt,
ERDOS, and Kairos are 0.186 ms, 0.72 ms, 0.14 ms, and 0.027
ms, respectively. Kairos has the fastest response time in fulfill-
ing an execution decision, at least 2.16× faster than the others
under high system overload. To be fair, these systems do not
aim to achieve performance under high overload. Kairos has
the cooperation in prioritizing the target task across schedul-
ing layers. In contrast, ROS and ERDOS enforce scheduling
decisions only at the middleware layers. Similarly, ghOSt
enforces them solely through its own scheduler, which is a
sub-scheduler with a lower priority than Linux’s CFS sched-
uler. All four systems have stable invocation times while
CPUs are idle, with variations of 0.095 ms, 0.094 ms, 0.18
ms, and 0.004 ms, respectively. However, we observe that
the invocation latency and variations on ghOSt and ERDOS
increase significantly (up to 0.81 ms under 80 % CPU over-
load) as the system overhead increases. This is because they
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Table 5: DFA on Different Platforms

Platforms Loc #
Inputs

#
Tasks

#
Vertices

Deviation (m) # Collisions

Native DFA Native DFA

Autoware 92 k 8 16 14 0.67 0.13 45 16

Jackal 68 k 4 6 6 0.27 0.09 12 4

Turtlebot3 34 k 3 4 3 0.87 0.21 35 13

are highly affected by Linux’s underlying native scheduler
(CFS). We conclude that Kairos takes faster and more stable
countermeasures when mitigating a timing violation.

6.3 Effectiveness in Improving Safety
This section evaluates the capability of DFA model and Kairos
in improving performance/safety in abnormal timing situa-
tions. We performed dynamic profiling on three platforms to
identify which code regions required annotated timing con-
straints and to determine the expected temporal properties.
Regarding handling policies, they also require understand-
ing the task model and semantics of the target program. To
mitigate the impact of this subjectivity, we employed an auto-
matic strategy to apply three default policies for these timing
constraints accordingly. Specifically, we model the target ap-
plication’s tasks as a directed graph. We adopted the prioritize
policy for tasks on the critical path since aborting them will
significantly increase end-to-end response time. For the tasks
on the non-critical path, we apply the edges with freshness
constraints and the abort policy for the remaining tasks. This
is because violations of consistency and stability often lead
to erroneous computation results, which should be prevented
from propagating to downstream tasks. Table 5 shows the
number of inputs and tasks on the three platforms as well
as the number of edges annotated with timing constraints in
TDFG. In generating the timing thresholds for those timing
constraints, we observed an average variation of 8.82 ms.

We generated 100 trajectories in each scenario (Autoware
in Parking Lot [34], Jackal UGV in Office [48] and Turtlebot3
in House [81] scenarios.)) for the vehicles to follow. During
navigation, we injected CPU overload using the stress-ng
tool [62] to emulate abnormal timings. We selected a 60%
overload, as this condition typically triggers notable degrada-
tion in control performance. Figure 16(d) shows the number
of collisions of Jackal UGV in 100 runs under overloads. We
observed a significant increase in collisions at 60 %. Addi-
tionally, mission time increased with CPU overload because
higher overload often triggered fail-safe, stopping the vehi-
cle during the mission. At 80 % overload, vehicles typically
halted, requiring manual intervention to continue.

Control Performance Improvements. The control perfor-
mance is quantified by metrics (1) the distance vehicles devi-
ate from the reference mission trajectories and (2) the number
of collisions. The results are shown in Table 5. We observe

that Kairos can considerably reduce control deviations across
all three platforms. The lowest improvement of deviation is
2.97× on the Jackal UGV. As to collisions, Kairos reduces the
collision by 64.4%, 83.3%, and 62.9% on Autoware, Jackal
UGV, and Turtlebot3 respectively. Upon further investigation,
the improvement is mainly due to proactively aborting false
computational results to prevent the vehicle from outputting
erroneous actuation commands. However, this approach will
slow down the vehicle, which increases the mission time.
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Figure 18: Comparison of control performance on Jackal
UGV, with the deviation averaged over a window of 10.

Figure 18 plots the localization errors over time of one test
run on Jackal UGV. We see that Kairos’s abnormal timing de-
tection and handling mechanism can significantly reduce the
magnitude of intermittent computational errors, from ∼ 1m
level to ∼ 10cm level. In this case, nearly one-third of the
frames are dropped under high system overload, preventing
the software from using data with abnormal timings and avoid-
ing erroneous computational results. Aborting or skipping
data also slows the robot’s movement, reducing collision risks
but increasing mission time by 56.8%. This policy may not
suit hard real-time systems with strict deadline requirements.
However, it effectively reduces adverse control outcomes in
soft real-time systems.

7 Discussion and Limitation

Expressing Real-time Computing Constructs using DFA.
DFA approaches timing assurance from a data-flow perspec-
tive, providing a more intuitive mechanism to express, de-
tect, and mitigate timing constraint violations. However, to
leverage this system coherently with existing constructions of
real-time systems, DFA has to be able to express traditional
real-time primitives. This will allow developers to build on
top of the extensive advancements in real-time theory from
the past several decades using the DFA-expressed real-time
primitives. There are two categories of real-time computing
primitives. The first category is execution time constraints,
which specify the bounds of the execution period between two
statements in the program. With Kairos, developers can use
the statements freshness(var, delay, abort) and freshness(var,
delay, policy) as firm and soft deadline specifications, where
var is the task’s output and delay is the deadline. The second
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category is synchronization primitives, which specify the or-
der of shared data accesses among multiple real-time threads.
This can be expressed by strictly ordering the timing of two
data flows using statements such as consistency(write_var,
read_var, 0, policy), where read_var and write_var are SSA
variables in read and written by different concurrent threads.
This annotation will ensure that the write operation occurs
before the read operation.
Manual Efforts. While Kairos provides tools for profiling
through dynamic analysis, the search space for where and
what temporal constraints to include is often prohibitively
large. As a result, the automated tool may take a long time to
identify the appropriate temporal policy. Developer guidance
with some manual annotations can quickly narrow down this
search space. Furthermore, once a policy is found, deploying
it in a safety-critical system may require re-validation or even
re-certification of the target system.
Multiple System Components in Violation Handling.
Kairos requires seamless collaboration between the software
instrumentation and multiple components across different
scheduling layers for effective violation mitigation. This inter-
dependency poses two limitations. First one is on reliability,
as failures in one part can affect the entire system. Second
one is maintainability, as migrating to different platforms may
require substantial engineering efforts. However, the modular-
ized design of detection and mitigation of temporal violations
allows Kairos to integrate with other existing detection or
mitigation techniques. Additionally, the infrastructure that
bridges the semantic gap between different abstraction layers
also reduces the engineering effort needed to build cross-layer
timing mitigation.
Generality of DFA. While DFA is designed for cyber-
physical systems, the concept of imposing temporal expecta-
tion on data flow generally applies to broader classes of com-
puting, including conventional cyber-only environments such
as data centers. For example, DFA’s timing constraints on
data usage can be adapted to systems with non-determinism
to ensure logical correctness, such as the order of input events
in distributed systems [74]. It is also possible to leverage DFA
to track computation progress through the lens of data flow in
distributed workloads.

8 Related Work

Timing Semantics in Programming Model. In data stream-
ing systems, there have been efforts that incorporate timing
information into the programming model to represent logical
points, such as logic timestamps or watermarks [30,74,88,92].
This facilitates the coordination of computation among dis-
tributed nodes. Such extension of timing information on data-
flow graphs inspired our design. However, these systems are
designed for massive parallel data processing, rather than the
cyber-physical timing alignment.

In real-time computing, several programming models have
been proposed to react to timing violations [42,44,55,76,87].
In particular, Timed C [76] is a dialect of C that allows the
specification of soft and firm real-time constraints. However,
compared to these works, DFA introduces a design approach
that focuses on the temporal policy on data flows, which
builds on top of the cyber-physical control loop abstraction,
allowing the detection and mitigation of cyber-physical state
(data) misalignment.

Cross-layer Scheduling. There is a large body of work that
focuses on cross-layer scheduling. However, existing works
often target specific hardware [40, 58, 78, 95], such as NICs.
Furthermore, many target server platforms have abundant
computation power, thus these solutions may not translate
well to resource-constrained embedded systems. Notably, sim-
ilar to Kairos, Syrup [60] offers programmable abstractions
and interfaces for custom scheduling policies. However, it
focuses on the rapid deployment of customized schedulers,
rather than on enabling cross-layer scheduling actions.

Cross-layer scheduling has also been studied in the real-
time community in the context of compositional schedul-
ing [51, 83, 93]. However, deployment of these techniques
often requires the target system to be rigorously modeled and
deployed as real-time tasks, which may not always fit some
of the existing software architectures for CPS.

9 Conclusion

In this paper, we presented data-flow availability, a concept
that aims to define temporal policy for data-flow in real-time
safety-critical cyber-physical systems. Through a bug study
of 189 issues over 7 representative CPS software, three key
temporal properties were extracted concerning the alignment
of cyber states and physical states in time. To allow for the
concrete expression of temporal expectation, we augment
data-flow with timing constraints, captured by TDFG. To
realize the concept in system, we design and develop Kairos
that detects temporal violations by embedding the policy as
checks in the application and mitigates them via a cross-layer
scheduling infrastructure. Lastly, the system is evaluated on
three CPS platforms for feasibility.
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Abstract
The virtues of security, reliability, and extensibility have
made state-of-the-art microkernels prevalent in embedded
and safety-critical scenarios. However, they face performance
and compatibility issues when targeting more general scenar-
ios, such as smartphones and smart vehicles.

This paper presents the design and implementation of Hong-
Meng kernel (HM), a commercialized general-purpose mi-
crokernel that preserves most of the virtues of microkernels
while addressing the above challenges. For the sake of com-
mercial practicality, we design HM to be compatible with the
Linux API and ABI to reuse its rich applications and driver
ecosystems. To make it performant despite the constraints
of compatibility and being general-purpose, we re-examine
the traditional microkernel wisdom, including IPC, capability-
based access control, and userspace paging, and retrofit them
accordingly. Specifically, we argue that per-invocation IPC
is not the only concern for performance, but IPC frequency,
state double bookkeeping among OS services, and capabilities
that hide kernel objects contribute to significant performance
degradation. We mitigate them accordingly with a set of tech-
niques, including differentiated isolation classes, flexible com-
position, policy-free kernel paging, and address-token-based
access control.

HM consists of a minimal core kernel and a set of least-
privileged OS services, and it can run complex frameworks
like AOSP and OpenHarmony. HM has been deployed in
production on tens of millions of devices in emerging scenar-
ios, including smart routers, smart vehicles and smartphones,
typically with improved performance and security over their
Linux counterparts.

1 Introduction

Microkernels minimize functionality in the kernel and move
components, such as file systems and device drivers, into well-
isolated and least-privileged OS services, achieving better
reliability, security, and extensibility than monolithic kernels

such as Linux. Thanks to these virtues, state-of-the-art (SOTA)
microkernels have been widely deployed in embedded and
safety-critical scenarios [30, 52, 54].

On the other hand, while monolithic kernels like Linux
dominate in general-purpose scenarios such as servers and
the cloud, there are increasingly emerging scenarios such as
smart vehicles and smartphones that require better security,
reliability, and extensibility in addition to good performance,
where Linux is less suitable. While being general, Linux
evolves more towards servers and the cloud, making other
scenarios less beneficial. For example, it took over 10 years
for the preemptive-RT patch [1] to be partially merged, and its
evolution is still out of the mainstream, let alone other domain-
specific strategies [20, 21]. Moreover, it has been doomed to
be difficult (if possible) for Linux to satisfy high-level industry
certifications required for such scenarios [98, 113].

However, although microkernels have been extensively
studied for decades [16, 28, 30, 46, 49, 52, 52–54, 64, 67, 73,
75, 76, 86], SOTA microkernels mainly target some specific
domains, e.g., embedded and safety-critical ones. They usu-
ally use static resource partitioning and allocation, and lack
general OS functionalities to run commercial off-the-shelf
applications. Below, we summarize the major challenges in
retrofitting a microkernel as a general OS kernel for such
emerging scenarios.

Compatibility: POSIX subset-compliant is not enough. Re-
building the entire software ecosystem is impractical. There-
fore, SOTA microkernels, such as seL4 [67] and Zircon [46],
achieve minimal POSIX subset compliance by providing cus-
tom libraries, e.g., musl-libc [47], that generate inter-process
calls (IPC) to OS services. However, they face deployment
issues [6, 116], e.g., not being binary compatible, and im-
plementation challenges, e.g., fork and poll, in emerging
scenarios. Moreover, they can hardly reuse device drivers
with affordable engineering effort and uncompromised per-
formance, which are crucial for production deployment.

Performance: IPC is not the only concern. Performance is
the top priority in emerging scenarios, directly determining
user experiences. While SOTA microkernels like seL4 [67]
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and recent architectural support [28, 49, 86] have achieved
record-high IPC performance, we observe that they still cause
non-trivial performance overhead because IPC frequency is
significantly increased when microkernels go general (70x
higher in smartphones than routers). Further, we observe
equally severe performance issues caused by state double
bookkeeping due to the multi-server design, which introduces
additional performance overhead (2x slower than Linux) and
memory footprint (35%). Moreover, capability-based access
control, which hides frequently updated kernel objects behind
capabilities, can cause significant overhead due to frequent
invocations. For example, it causes page fault handling to be
3.4x slower than Linux.

We started the HongMeng kernel (HM) project over 7 years
ago to re-examine and retrofit the microkernel into a general
OS kernel for emerging scenarios. To be practical for produc-
tion deployment, HM achieves full Linux API/ABI compat-
ibility and is capable of reusing the Linux applications and
driver ecosystems such that it can run complex frameworks
like AOSP [42] and OpenHarmony [35] with rich peripherals.
Despite the compatibility goal that may constrain its perfor-
mance, HM still puts performance as its primary emphasis.
Therefore, HM respects the design principles of microkernels
but not to the extreme with careful compromises. Specifically,
HM makes the following key design decisions.

Minimal microkernel with least-privileged and well-
isolated OS services. HM retains the minimality principle
by keeping only the necessary functionality in the core kernel,
including thread scheduler, serial/timer drivers, and access
control, and leaving all other components as isolated OS ser-
vices (multi-server) outside the core kernel. In addition, HM
adopts fine-grained access control to preserve the principle of
least privilege for better security. As a result, HM inherits the
security and reliability benefits of microkernels.

Maximizing compatibility by achieving Linux API/ABI-
compliant and performant driver reuse. HM integrates ex-
isting software ecosystems by achieving full Linux API/ABI
compatibility through ABI-compliant shim that identifies and
redirects Linux syscalls to IPCs. Moreover, HM reuses un-
modified Linux drivers via a driver container that provides
Linux runtime atop HM with minor engineering effort, and
eliminates critical path performance degradation by separat-
ing the control plane and the data plane with twin drivers.

Performance first by structural supports. HM prioritizes
performance without violating the architectural principles of
microkernels. Specifically, HM achieves flexible composition
for hierarchically relaxing the isolation between trusted ser-
vices to minimize IPC overhead, and coalesces tightly coupled
services to minimize IPC frequency and eliminate state dou-
ble bookkeeping in performance-demanding scenarios, while
maintaining the ability to separate them in security-critical
scenarios. HM also supplements capabilities with performant
address token-based access control, facilitating efficient co-
operation like policy-free kernel paging.

We have deployed HM on tens of millions of devices, in-
cluding smart routers, smart vehicles, and smartphones, which
provides not only better security and reliability but also bet-
ter performance than their Linux counterparts. The critical
components of HM are semi-formally verified [55] by for-
mally specifying the design and using automated verification
and verification-guided testing to validate the crucial security
properties, such as free of integer and buffer overflow. HM
has been certified with ASIL-D [61] (for safety) and CC EAL
6+ [62] (for security). In routers, HM allows 30% more client
connections by reducing 30% system memory footprint. In
vehicles, HM achieves a 60% faster boot time and a 60%
lower cross-domain latency. In smartphones, HM achieves
17% shorter app startup time and 10% less frame drops.

2 The Case for a General Microkernel

2.1 Microkernel Review
A major hallmark of microkernels is the minimality princi-
ple [73, 76], which minimizes functionality in the core kernel
and moves other functions to userspace services. SOTA mi-
crokernels also adopt capability-based fine-grained access
control [46,52,67,74] to preserve the least privilege principle.
As a result, microkernels are inherently more secure, reliable,
and extensible than monolithic kernels [12, 79].

However, although microkernels have been extensively
studied for decades [16, 30, 52–54, 64, 67, 73, 75, 76, 122],
SOTA microkernels primarily target specific domains, such as
embedded and safety-critical systems. Examples include L4-
embedded in Qualcomm cellular modem chips [30], QNX1

in cars and embedded systems [54], and Zircon (kernel of
Fuchsia) in smart speakers [46]. There has been little study on
how microkernels could be extended as general OS kernels
for emerging scenarios like smart vehicles and smartphones.

The industry adopted hybrid kernels such as Windows
NT [88] and Apple XNU [4], which combine a core microker-
nel, e.g., Mach in XNU, with all other services (as a whole)
in the kernel space, e.g., Executive in NT and BSD in XNU.
Although hybrid kernels also minimize functionality in the
core kernel, they do not inherit many advantages of microker-
nels. For example, OS services in hybrid kernels are not least
privileged and not well isolated. Thus, any compromised or
buggy OS services can corrupt the system [88], potentially
causing severe consequences, such as corrupting user data.

2.2 Demand for a General Microkernel
Emerging scenarios like smart vehicles and smartphones de-
mand rich peripherals and applications. For example, the in-
dustry standard of vehicles has evolved to require richer OS

1While QNX once supported tablets/phones [14] and ran AOSP apps via
virtual machine, QNX discontinued this due to limited compatibility and
performance [15, 110] and has fully transitioned to embedded markets [13].
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functionalities [7]. Meanwhile, emerging scenarios also em-
phasize security and safety. For instance, vehicles require
high reliability for passenger safety, and smartphones require
enhanced security to protect sensitive data. We list the major
differences from domain-specific scenarios below.

Software ecosystem. In domain-specific scenarios, applica-
tions are mostly customized and source-available. Thus, being
POSIX-compliant is believed to be sufficient for application
transplanting (not even true based on our deployment expe-
riences). However, in emerging scenarios like smartphones,
apps and libraries are typically distributed in binary form, and
frameworks require more than POSIX compliance [6], which
mandates Linux ABI compatibility.

Resource management. In domain-specific scenarios,
there are only a few pre-determined applications, and the hard-
ware resources are limited. Therefore, applications mostly
manage resources themselves, and the kernel is primarily re-
sponsible for reserving resources. In emerging scenarios, how-
ever, competing applications require coordinated resource
management. The kernel requires more fledged functionali-
ties such as efficient resource management and fair allocation.

Performance. In domain-specific scenarios, microkernels
prioritize security and strict resource (e.g., timing) isolation
for mostly static applications, where performance is not a pri-
mary concern. In emerging scenarios, however, performance
is also a top priority, which directly determines the user expe-
rience and, thereby, the widespread deployment of the kernel.

The call for integrating both rich software ecosystems and
functionalities, as well as security and reliability, makes it
difficult for existing OS to satisfy them simultaneously. One
approach would be customizing a stock OS such as Linux
for such scenarios, which is unfortunately very expensive to
evolve with upstream (section 2.3). Previous work also pro-
poses various architectures, including unikernel [65, 81, 102],
multikernel [9], exokernel [31], and splitkernel [109]. How-
ever, they primarily target server scenarios with clear resource
separation while lacking support for efficient and coordinated
resource management required in emerging scenarios. More-
over, the synchronization overhead and complexity introduced
by split states make it challenging to achieve compatibility.

Therefore, we believe it is worthwhile to explore another
avenue of evolving the microkernel into a general OS kernel.

2.3 Issues with Linux
Linux has dominated the server and cloud markets and is in-
creasingly penetrating other domains such as PC and embed-
ded. However, it comes at the cost of compromised security,
reliability, and performance, especially in emerging scenarios.

Security and Reliability. Linux modules such as file sys-
tem (FS) and device drivers cover about 80% of its 30 million
line code base. They contribute to the majority of defects and
vulnerabilities (90% of the total 1000 CVE [23] in the last 4
years) and significantly reduce reliability and security [19].

Additionally, about 80% of these CVEs are data leaks that can
be avoided with proper isolation. Therefore, a long line of re-
search [18,25,38,48,56,83,90–92,100,105,106,112,120,123]
aims at isolating the kernel from the modules in a com-
partmentalized manner. However, the inherent tight cou-
pling requires significant engineering effort and even rewrit-
ing [56, 90, 91]. Moreover, the instability of kernel module
APIs and security patches force frequent upgrades, making
them less practical for real-world deployments.

Generality vs. Specialization. While Linux targets general
scenarios, recent patches and features witness that innovations
are primarily driven by servers and the cloud, which even ham-
per the performance of other scenarios [89, 103]. Moreover,
the growing diversity of devices with rich peripherals and
varied scenarios call for specialized strategies to exploit the
performance and energy efficiency headroom, such as allo-
cating resources according to the quality of service [20, 21]
or minimizing space usage [119]. However, such strategies
require significant engineering effort to customize the kernel
due to the inherent tight coupling of kernel modules. While
there is much effort [58, 66, 78, 84, 93] to improve customiz-
ability, it is hard to integrate them into the mainstream kernel.

Customization vs. Evolution. Another issue is evolving
the custom code. Synchronizing with upstream requires sig-
nificant effort to reapply the changes, while not synchronizing
may expose the system to security vulnerabilities. Years of
production experience suggest that it is expensive due to the
frequent changes in kernel internal APIs, and performance
regressions require substantial effort to locate and even re-
design the entire patches. This severely limits customizability
in real-world deployments. Hence, a massive amount of prod-
ucts on the market are still running Linux 2.6 [50, 51, 117],
which reached End-of-Life (EOL) 7 years ago [114] and has
many known security vulnerabilities [24, 117].

3 Revisiting Microkernel for Going General

3.1 Microkernel at Scale
Deploying a microkernel in emerging scenarios poses chal-
lenges in both performance and compatibility. Figure 1
presents the observed characteristics of emerging scenarios
from deploying HM in productions. For routers, we collected
data directly from the production environment. For vehicles
and phones, we replayed a typical usage (lasting 24 hours) de-
rived from recorded massive amount of real-world executions
at scale (anonymous and with user consent).

Observation 1: IPC frequency increases rapidly in
emerging scenarios. Figure 1a shows the IPC frequency
CDF in HM when configuring all OS services to be isolated
in userspace. Smartphones (avg. 41k/s) and vehicles (7k/s)
have a much higher IPC frequency than routers (0.6k/s, more
similar to domain-specific scenarios). Figure 1b, 1e, and 1f
illustrate it by showing the minor (i.e., not from disk/device)
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(c) Syscall dist. and freq. in routers.
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(d) Syscall dist. and freq. in vehicles.
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(e) Syscall dist. and freq. in smartphones.
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Figure 1: Characteristics of emerging scenarios obtained from
the deployment of HM in tens of millions of devices. All OS
services in HM are configured to be well-isolated in userspace.

page faults’ frequency and the distribution and frequency of
syscalls in phones. As shown in the figures, the high IPC
frequency is not only caused by the higher syscall frequency
(61k/s, 13x higher than routers), but also by invoking massive
amounts of file operations (IPC to the FS), and triggering
numerous page faults on memory-mapped files (5k/s), which
requires an additional IPC roundtrip between the memory
manager and the FS. Hence, we should not only optimize IPC
performance but also minimize the IPC frequency.

Observation 2: Distributed multi-server causes state
double bookkeeping. The minimality principle determines
that there is no centralized repository for shared objects, such
as the file descriptor (fd) and page caches, and distributes them
in multiple places. However, as shown in Figure 1c-1e, ap-
plications in emerging scenarios frequently invoke functions
like poll that rely on the centralized management of such
states. Figure 2 further presents the CPU flame graph of appli-
cation startup, which relies heavily on the performance of file
mapping and is crucial to the user experience [45]. As marked
in the figure, 16% of the time is spent on handling page cache
misses, which introduces an additional IPC roundtrip and is
2x slower than Linux. Moreover, the double bookkeeping of
page caches consumes an additional 50MB of memory on top
of the 120MB base (FS+mem) in smartphones.

Observation 3: Capabilities inhibit efficient coopera-
tion. Capabilities, which hide the kernel objects behind them,
introduce significant performance overhead due to the fre-
quent updating of some kernel objects (e.g., the page table)

Capability
Anonymous

Page Fault 4%

State Double
Bookkeeping

Memory Manager File System

Synchronization 
+ IPC 16%

Figure 2: CPU flame graph of smartphone app startup in HM.
Services coalescing and kernel paging are disabled.

managed outside the kernel and inhibit efficient cooperation
between them. For example, this may cause the handling of
anonymous page faults 3.4x slower than Linux, which fre-
quently occurs in smartphones (avg. 27k/s, 80% of minor
page faults in Figure 1b) and adds a non-trivial overhead to
the app startup time (4% in Figure 2).

Observation 4: Eco-compatibility requires more than
POSIX compliance. Many SOTA microkernels achieve a
minimal subset of POSIX compliance by providing custom
runtime libraries [47] that link directly to applications and gen-
erate IPC to OS services. However, it faces deployment issues
of being not binary compatible and requiring a customized
building environment. Moreover, since Linux uses file as a
unified interface, which no longer exists in the microkernel, it
is also challenging to implement efficient fd multiplexing like
poll and vectored syscalls like ioctl, which are frequently
used in emerging scenarios as shown in Figure 1c-1e.

Observation 5: Deployment in emerging scenarios re-
quires efficient driver reuse. When deploying HM on smart-
phones, we observe a massive increase in the number of
drivers required to function correctly. For routers, fewer than
20 drivers are required (primarily maintained in-house), which
increases to more than 700 for vehicles and phones. Our esti-
mates indicate that it would take more than 5,000 person-years
to rewrite those drivers, and it takes time to get mature and
keep evolving. Thus, reusing device drivers is a more reason-
able option. However, previous work, including transplanting
the runtime environment of drivers [3, 17, 32, 41, 118] and
using virtual machines [72], faces compatibility, engineering
effort, and performance challenges (discussed in section 5.2).

3.2 Overview of HongMeng

HM respects the core design principles of microkernels but
not to the extreme, with careful compromises to address the
performance and compatibility challenges in emerging sce-
narios. We summarize HM’s design decisions in Table 1 and
list design principles below. Figure 3 shows HM’s overview.

Principle 1: Retain minimality. The security, reliability,
and extensibility of microkernels derive from three fundamen-
tal architectural design principles, including separating policy
and mechanism, decoupling and isolating OS services, and
enforcing fine-grained access control. Hybrid kernels also en-
force minimality through code decoupling but without proper
isolation. Thus, it fails to inherit the major benefits of mi-
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Table 1: Design decisions of HongMeng.

SOTA Microkernels Hybrid Kernels HongMeng’s Design

Minimality Minimal Kernel Code Decoupling Retained: Minimal microkernel with isolated, least-privileged OS services.
IPC IPC w/ Fastpath Function Call Enhanced: Synchronous RPC addresses resource alloc./exhaustion/acct. issues.
Isolation Userspace Services Coalesce w/ Kernel Flexibilized: Differentiated isolation classes for tailored isolation and performance.
Composition Static Multi-server Static Single Server Flexibilized: Flexible composition to accommodate diverse scenarios.
Access Control Capability-based Object Manager Extended: Address tokens enable efficient kernel objects co-management.
Memory Paging in Userspace Paging in Kernel Enhanced: Centralized management in a service with policy-free paging in kernel.
App Interfaces POSIX-compliant POSIX+BSD/Win Extended: Linux API/ABI compatible via an ABI-compliant shim.
Device Driver Transplanting/VM Native Driver Enhanced: Reusing Linux drivers efficiently via driver container with twin drivers.
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Figure 3: HongMeng overview. (a) and (b) show its composi-
tion in smartphones and routers. Different colors imply different
isolation classes. ❶ coalesces coupled services. Address tokens
enable kernel objects co-management ❷. ABI-compliant shim ❸
enables binary compatibility. Driver container ❹ reuses Linux
drivers efficiently via data/control plane separation ❺.

crokernels. Therefore, while emphasizing compatibility and
performance, HM respects the architectural design principles
of microkernels.

HM keeps only minimal and necessary functionality in
the core kernel, including thread scheduler, serial and timer
drivers, and access control. All other functionality is imple-
mented in isolated OS services, such as process/memory man-
ager, drivers, and FS. Moreover, HM adopts fine-grained ac-
cess control to preserve the least privilege principle. Services
can only access strictly restricted resources (kernel objects)
necessary for functionality. As such, HM inherits the security,
reliability, and extensibility of microkernels.

Retained: Minimal microkernel with well-isolated and least-
privileged OS services.

Principle 2: Prioritize performance. The promising bene-
fits of microkernels are compromised by architecture-inherent
performance issues in emerging scenarios. Therefore, instead
of enforcing uniform but overly strong isolation, HM provides
structural support for assembling the system to satisfy both
the performance and the security requirements. In particular,
besides adopting an RPC-like fastpath that addresses the re-
source allocation/exhaustion/accounting issues (section 4.1),
HM proposes differentiated isolation classes to reduce IPC

overhead by relaxing the isolation between trusted OS ser-
vices (section 4.2). HM also coalesces tightly coupled OS
services (❶ in Figure 3) to minimize the IPC frequency in
performance-demanding scenarios (section 4.3). Moreover,
HM enables efficient kernel objects co-management (❷) by
supplementing capabilities with address tokens (section 4.4),
which facilitates policy-free in-kernel paging of anonymous
memory (section 4.5).

Flexibilized: Prioritize performance by providing structural
supports for flexible assembly to adapt to diverse scenarios.

Principle 3: Maximizing eco-compatibility. HM inte-
grates with existing software ecosystems by achieving Linux
ABI compliance through a shim (❸) that redirects all Linux
syscalls to appropriate OS services and serves as a central
repository to store and translate Linux abstractions (e.g., fd)
to efficiently support functions like poll (section 5.1). More-
over, HM reuses unmodified Linux device drivers via driver
container (❹), which provides the necessary runtime derived
directly from the mainline Linux with minor engineering ef-
fort (section 5.2). HM further improves drivers’ performance
by exploiting control and data plane separation (❺).

Enhanced: Maximize compatibility by achieving Linux
API/ABI-compliant and performant driver reuse.

HM’s Threat Model. HM retains the architectural design
principles of microkernels, thus maintaining a similar threat
model to SOTA microkernels, which prevents malicious appli-
cations and OS services from accessing other’s memory and
ensures the confidentiality, integrity, and availability (CIA)
properties of data, with the following differences.

First, since applications in emerging scenarios require cen-
tralized memory management for compatibility reasons (sec-
tion 4.5), the memory manager (the only exception), including
its coalesced services (only FS in phones on deployment), can
inevitably access applications’ address spaces. Besides, in
safety-critical scenarios where memory is self-managed, HM
does not create such a centralized memory manager.

Moreover, for the sake of performance, there are compro-
mises on additional attack surfaces (section 4.2), different
partitioning of failure domains (section 4.3), and additional
data leakage possibilities on carefully selected objects (will
not corrupt the kernel, section 4.4). The detailed security de-
sign will be discussed in the corresponding section.
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4 Performance Design of HongMeng

4.1 Synchronous RPC-like IPC Fastpath

Microkernels use IPC to invoke OS services. A long line of
research has proposed numerous optimizations to minimize
IPC overhead. However, when applying them to emerging
scenarios, we encountered several severe issues, either pre-
viously neglected or caused by changed assumptions. HM
carefully addresses these issues, as summarized in Table 2.

Table 2: Comparison of IPC in HM.

IPC Fastpath Migration HongMeng IPC
Bypass Scheduling Yes Yes Yes
Reduced Switches N/A Registers Reg./Address Space/Priv.
Resource Allocation Pre-alloc Pre-alloc Pre-bind & Adaptive
Resource Exhaustion Blocked Blocked Reserved for Reclaiming
Resource Accounting Temporal Temporal Temp./Energy/Memory

Synchronous RPC or Asynchronous IPC. IPC typically
assumes symmetric endpoints with the same execution model.
Therefore, previous work suggests that asynchronous IPC
can avoid serialization on multicore [30], allowing both end-
points to continue execution without blocking. However, in
emerging scenarios, we observe that most IPCs are procedure
calls, where the caller and callee can be clearly identified.
Furthermore, OS services are mostly invoked passively rather
than working continuously, and most subsequent operations
of the application depend on the results of the procedure call.
Therefore, synchronous Remote Procedure Call (RPC) is a
more appropriate abstraction for service invocations.

HM adopts an RPC-like thread migration [33, 94] as the
IPC fastpath for service invocations. When sending an IPC,
the core kernel performs a direct switch (bypassing schedul-
ing, similar to prior work [10, 30, 49, 67, 70]) and switches
only the stack/instruction pointer (avoids switching other reg-
isters) as well as the protection domain. Specifically, HM
requires OS services to register a handler function as the
entry point and to prepare an execution stack pool. When
an application invokes a service, the core kernel records the
caller’s stack/instruction pointer in an invocation stack and
switches to the handler function with the prepared execution
stack. On return, HM pops an entry from the invocation stack
and switches to the caller. The IPC arguments are primarily
passed through registers, with additional arguments passed
through shared memory.

Performance gap. Although HM bypasses scheduling and
avoids switching registers, it still faces non-trivial perfor-
mance degradation due to privilege level/address space switch-
ing and cache/TLB pollution [9, 30, 49, 86] (accounts for 50%
of total IPC cost). We further bridge this performance gap
using differentiated isolation classes in section 4.2.

Resource Allocation. The memory footprint of IPC has
been largely neglected by previous work. However, due to the
extremely high IPC frequency and massive number of connec-
tions (>1k threads simultaneously) in emerging scenarios like
smartphones, we find it essential to consider IPC’s memory

footprint in production, as it can cause severe problems such
as out-of-memory (OOM) and even system hangs. Although
each IPC connection in HM requires only an individual exe-
cution stack (rather than a full-fledged thread with all related
data structures), its memory footprint is still non-trivial, given
the massive amount of IPCs.

Previous work pre-allocates a thread/stack pool of a fixed
size and binds it to connections. However, its size is hard
to decide due to the diversity and dynamism of workloads,
including the number of running threads and requirements for
different OS services. A large pool would quickly drain the
memory, while dynamic allocation on connection introduces
runtime overhead on the critical path of IPC. We initially tried
to prepare and bind stacks in each OS service for each thread
on creation. However, we quickly realized that the problem
still exists because some services are barely used by some
threads (wasted), and there exist many IPC chains (to another
OS service) that need another stack.

Therefore, HM strikes a sweet spot by pre-binding stacks
in frequently-used OS services (e.g., process/memory man-
ager and FS) for each thread while still maintaining a stack
pool whose size is adjusted adaptively at runtime. When the
remaining stacks fall below a threshold, the OS service will
allocate more to reduce synchronous allocation. HM further
reduces its memory footprint by reusing the same stack when
calling the same service (e.g., ABA-like call) in an IPC chain.

Resource Exhaustion. IPC can fail due to resource exhaus-
tion. Specifically, when the stack pool runs out while OOM
occurs, OS services cannot allocate a new stack to process the
IPC request. However, apps cannot handle such an error (not
existing in a monolithic kernel). Therefore, such requests are
queued (blocked) in SOTA microkernels, which may cause
severe issues like circular wait and even system hangs.

An intuitive approach is to send another IPC to the memory
manager to reclaim some memory synchronously. However,
we find that under such a scenario (already OOM), the IPC
to the memory manager is likely to fail again. Such a failure
is likely to occur in emerging scenarios where workloads
are non-deterministic and heavy loads occur frequently (e.g.,
opening multiple apps simultaneously).

HM mitigates this by reserving an individual stack pool.
Once OOM occurs, the kernel will synchronously IPC to
the memory manager using the pool for memory reclaim
(repeatedly) until the user’s IPC succeeds. Thus, applications’
IPCs are guaranteed to be handled correctly.

Resource Accounting. IPC assumes a different execution
entity when handling requests, thus attributing the consumed
resource to OS services. However, since competing applica-
tions in emerging scenarios require a clear accounting of re-
sources, the consumed resource should be precisely accounted
to the caller app. Previous work achieves temporal isolation
by inheriting the caller’s scheduling context [70, 80]. How-
ever, emerging scenarios also require an accounting of both
energy and memory consumption. Therefore, HM records the
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Figure 4: Round-trip IPC latency between ICx & ICy (ICxICy) in
Raspberry Pi 4b. IC0 includes the core kernel. IC2 includes user
apps. Zircon cannot run on Pi4b and is several times slower [49].

identity of the user app (root caller in the IPC chain), and
attributes the consumed resources to it when handling IPC.

Decision: Supplement async./sync. IPC with an RPC-like
fastpath for invoking OS services while carefully addressing
the resource allocation/exhaustion/accounting issues.

4.2 Differentiated Isolation Classes
Isolation of OS Services. Placing all OS services in userspace
may improve security, but it fails to meet performance require-
ments in emerging scenarios. We observe that not all services
require the same class of isolation. In particular, mature, veri-
fied, and performance-critical OS services can be subjected to
weaker isolation for optimal performance in practical deploy-
ments. Moreover, rapidly evolving services may frequently
introduce bugs and vulnerabilities, thus requiring more robust
isolation to prevent kernel corruption. OS services with large
codebases and cumbersome features, such as drivers, require
isolation to reduce the trusted computing base (TCB).

Therefore, HM adopts differentiated isolation classes (IC)
to provide tailored isolation and performance for different
OS services. Specifically, isolation classes classify services
and define the isolation between them. Figure 4 shows the
round-trip IPC latency between services at different isolation
classes, compared to seL4 [67] and Fiasco.OC [69].

Isolation Class 0: Core TCB. IC0 applies to carefully
verified, extremely performance-critical, trusted OS services,
such as the ABI-compliant shim (the only IC0 service in
deployment). No isolation is enforced between these services
and the kernel. Therefore, IPCs are all indirect function calls.

IC0 Threat Model: IC0 is part of the core TCB, and any
compromised IC0 services can arbitrarily read and modify
others’ memory. Therefore, placing services at IC0 should be
carefully validated to avoid core kernel corruption.

Isolation Class 1: Mechanism-enforced Isolation. IC1
applies to performance-critical and validated OS services. In-
spired by previous intra-kernel isolation approaches [11, 49,
59,71,112,120], HM places these services in the kernel space
and uses mechanisms to enforce isolation between services.
Specifically, HM carefully divides the kernel address space
into distinct domains and assigns each service a unique do-
main (IC0/core kernel also resides in a unique domain). HM
uses ARM watchpoint [63] and Intel PKS [60] to prevent
cross-domain memory access. Moreover, since IC1 services
run in kernel space, they can execute privileged instructions.
To prevent this, HM adopts binary-scanning and lightweight

control-flow integrity (CFI, leveraging ARM pointer authen-
tication (PA) [77]) to ensure services cannot execute illegal
control flows that contain privileged instructions, and uses a
secure monitor [49, 108] to guard the page table against code
injection, which also traps any privileged instruction through
VM Exits as a complement to CFI.

IPC between IC1 services (or to IC0) will enter a gate in the
core kernel that performs a minimal context switch (switch in-
struction and stack pointers, w/o address space switching and
scheduling) and configures the hardware to switch domains
(take only a few cycles). Such a gate cannot be bypassed since
domain switches require privileged instructions. Therefore,
the IPC overhead is significantly reduced. As shown in Fig-
ure 4, it reduces the IPC latency between IC1 services by 50%
compared to userspace services (IC2IC2).

IC1 Threat Model: IC1’s threat model differs from other
multi-server microkernels by assuming the correctness, sound-
ness, and security of the applied isolation mechanism, which
does expose some additional attack surfaces. For example,
there are new attacks on ARM PA emerged recently [22].
Besides that, IC1 shares the same threat model, which pro-
hibits any compromised service from reading/writing the core
kernel’s memory (and other OS services’) and executing priv-
ileged instructions.

Isolation Class 2: Address Space Isolation. IC2 applies
to non-performance-critical services or those containing third-
party code (e.g., Linux drivers), enforced by address space and
privilege isolation. IPC between IC2 services in HM (IC2IC2)
is slightly slower than in seL4, mainly due to fine-grained
locking, which is essential for scaling to multi-core processes
under real-world loads.

IC2 Threat Model: IC2 shares exactly the same threat
model as other multi-server microkernels.

Although IC1 significantly reduces the IPC overhead, it
also introduces additional attack surfaces and has resource
limitations (e.g., 16 domains in Intel PKS, 4 domains in ARM
Watchpoint). Therefore, only performance-critical and val-
idated OS services are placed at IC1. In addition, HM can
quickly move all services back to IC2 if new attacks emerge.
We further discuss deployment experiences on configuring
isolation classes in section 4.3. Moreover, IC0/1 does not
imply coupling to the kernel. The isolation classes allow for
configurable isolation decisions during deployment rather
than an isolation assumption during development. Different
scenarios use different configurations, as shown in Figure 3.

Decision: Not all OS services require the same class of
isolation. Adopt differentiated isolation classes to relax iso-
lation between trusted services for improved performance.

4.3 Flexible Composition
Partitioning of OS Services. Although intuitively, OS ser-
vices should be well-decoupled, e.g., FS and memory man-
ager, we observe that OS services are asymmetric since some
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functionalities require close cooperation between specific
services. For example, the FS is not the only entrance to ac-
cessing a file. POSIX supports file mapping that reads files
through the memory manager, and it frequently appears on
the critical path and significantly affects the user experience.

The isolation classes enforce the same isolation between
same-class OS services. Therefore, without further structural
support, HM still faces performance degradation compared to
the monolithic kernel. First, the frequently invoked IPCs be-
tween tightly coupled services still cause noticeable overhead
(20% in page fault handling for memory-mapped files) even in
IC1 (kernel space). Moreover, double bookkeeping of shared
states, such as page caches, introduces significant memory
footprint and synchronization overhead. Finally, there is no
global view of page caches to guide resource recycling (e.g.,
Least Recently Used, LRU).

To bridge the performance gap, HM adopts a configurable
approach that allows coalescing tightly coupled OS services
in performance-demanding scenarios, trading off isolation
for better performance, while retaining the ability to separate
them in safety-critical scenarios. When coalesced, no isolation
is enforced, and IPCs between two services become function
calls, while others remain as they are (well-isolated).

Coalescing also enables efficient co-management of page
caches. Instead of maintaining them in both the FS and the
memory manager, they can be co-managed when coalesced. It
eliminates double bookkeeping and synchronization overhead
and provides a global view for efficient recycling. To retain
the ability to separate them, we provide a mechanism to auto-
matically convert accesses of shared page caches into IPCs
when separated. However, it will introduce non-trivial over-
head. Therefore, in deployment, we implement both versions
(sep./shr.) manually and enable them accordingly.

Performance. As shown in Table 3, when coalescing the
FS with the memory manager, replacing the IPC reduces
the latency of handling page faults caused by page cache
misses by 20% (Sep. Cache). It can be further reduced by 30%
(Shr. Cache) and achieves similar performance with Linux
(5.10, detailed in section 6.2) by co-managing the shared page
caches. Coalescing also speeds up the write throughput of
tmpfs by 40%. Moreover, the memory footprint of coalesced
services is reduced by 37% (FS+memory) in smartphones.

Security. The coalesced services are in a single failure do-
main, whose threat model (as a whole) remains the same as
the isolation class in which it resides. Therefore, any failed
or compromised service can only corrupt its coalesced ser-
vices, which is also the primary compromise for performance.
Hence, service coalescing should be carefully evaluated. In
practice, due to the extremely high frequency of file opera-
tions in smartphones (Figure 1e), their performance targets
can only be achieved by coalescing the FS with the memory
manager. However, the security is still improved (isolated
from other services) compared with monolithic kernels.

Deployment Experiences. Together with the differentiated

Table 3: Performance improved by coalescing the FS service and
the memory manager in the big core of Kirin9000 [57].

Separated Coalesced Linux

Page Fault (Cycles) 7092
5290 (Sep. Cache)
3785 (Shr. Cache) 3432

Tmpfs Write (MB/s) 1492 2067 2133
Memory Footprint (MB) 190 120 N/A

Table 4: Address tokens support most operations of capabilities
and allow direct access, except restricting fine-grained operation
and chain revocation.

Capabilities Address Tokens

Token CSlot id Mapped Address
Access Delegate to Kernel Direct(RW)/writev(RO)
Ownership Caps in CNode Mapped Pages
Grant Move to CNode Map Page to VSpace
Revoke Remove from CNode Unmap Page
Chain Revoke Support No support
Security Monitor all operations Restrictions on mapped Obj.

isolation classes, HM enables flexible composition, allowing
the key components to be assembled flexibly (user-space or
kernel-space, separated or coalesced), enabling exploration
of tradeoffs between isolation and performance according to
scenarios’ requirements, and the ability to scale from routers
to smartphones with the same code base. The evolution of
HM witnesses such explorations. Initially, all services were
isolated at IC2. To meet the performance goal, we carefully
assemble the system to retain most security properties by
preserving the following rules.

First, due to the additional attack surfaces, IC1 services
cannot contain any third-party code. Thus, although some
drivers are also performance-critical, we kept them at IC2
and sped up via control/data plane separation (section 5.2).
Second, service coalescing, especially with the memory man-
ager, undeniably weakens isolation and security (though still
improved compared with monolithic kernels). Therefore, we
leave it configurable and only enable it on phones. More-
over, IC0 not only increases the core TCB but also has strict
memory limitations and non-blocking requirements. Thus, in
practice, HM only places the ABI shim (which can be opted
out) in IC0. Section 6.1 details the configurations.

Decision: OS services are asymmetric. Coalesce tightly
coupled OS services and flexibly assemble the system to
meet diverse requirements in various scenarios.

4.4 Address Token-based Access Control
SOTA microkernels make all kernel objects explicit and sub-
ject to capability-based access control [30] to preserve the
principle of least privileged, which is primarily implemented
in a partitioned fashion that keeps a token (typically a slot ID)
in userspace representing the permission to access a kernel
object. However, we encountered severe performance issues
when deploying it in emerging scenarios.

Clear relationship but slow access. Although capabilities
are effective in describing the external relationships of kernel
objects, i.e., the authorization chain, accessing their internal
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contents requires sending the token with the operations to
the core kernel, which introduces non-trivial performance
overhead due to privilege switches and accesses to multiple
metadata tables. Kernel objects are hidden behind the capa-
bilities and are only accessible by the core kernel. However,
due to the minimality principle, the content of some kernel
objects (e.g., page tables) should be frequently updated by
OS services outside the core kernel, for which partitioned
capabilities are no longer efficient.

Some microkernels speed up access by mapping specific
objects to userspace. However, they can only be applied to
few limited objects (e.g., memory objects [30, 67], part of the
thread control block [3, 9, 76], and kernel interface page [76])
for security and lack the ability to synchronize data correctly,
which inhibits the cooperation between the kernel and OS
services. To address these issues, HM proposes a generalized
address token-based approach that can be applied to a broader
range of objects, enabling efficient co-management.

Specifically, as shown in Figure 5, each kernel object is
placed on a unique physical page in HM. Granting a kernel
object to an OS service requires mapping such a page to its
address space (❶). Thus, the mapped address serves as the
token to access the kernel object directly from the hardware
without involving the kernel (unwillingly). Kernel objects can
be granted (mapped) as read-only (RO) or read-write (RW).
OS services can read RO kernel objects without kernel in-
volvement. To update them, a new syscall, writev, should
be used, passing the target address with the updated value,
and the core kernel will verify permissions by referring to the
kernel object’s metadata (❷). For RW kernel objects, once
granted, can be updated by OS services without kernel in-
volvement (❸). Moreover, for objects smaller than a page
with the same property (permission) and a similar life cycle,
HM batches these objects into a single page upon allocation,
allowing them to be granted and revoked collectively.

Functionality. Address tokens support most operations of
capabilities, as shown in Table 4 (compared to seL4 [107],
Zircon has similar functionality [37]), with two exceptions.
First, address tokens cannot restrict fine-grained operations
once granted, which weakens security and exposes additional
attack surfaces. Besides, capabilities store the detailed rela-
tionship, allowing chain revocation, which address tokens do
not support due to implicit ownership. Nevertheless, address
tokens are only used by selected co-managed kernel objects.
The attack surfaces are carefully mitigated (discuss below).
Moreover, due to the centralized resource management, kernel
objects have specific owners (will not be granted to others).
Thus, chain revocation is rarely used.

Security. Once an address token is granted to an OS service,
the kernel cannot monitor the subsequent operations. HM mit-
igates this by restricting the objects mapped to userspace (en-
forced by static analysis). Only kernel objects that exclusively
contain the values of certain variables in kernel-preserved
structures (pointers are not allowed to prevent the time-to-
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check to time-to-use attack) are mapped RW (e.g., PCache
in section 4.5), ensuring they will not corrupt the kernel with
incorrect or inconsistent data. The rest of the kernel’s inter-
nal states (e.g., pointers and reference counters) can only be
mapped RO or not granted at all to prevent it from being
corrupted. HM further applies a sanity check when reading
from RW objects. It does introduce some attack surfaces by
leaking kernel-internal information, which can be mitigated
by hardware encryption like ARM PA.

Synchronization. There are two approaches to sharing data
between OS services and the kernel leveraging address to-
kens. First, OS services and the kernel can exchange messages
asynchronously (message-passing). For example, PCache in
section 4.5 sends pre-allocated pages to the kernel for future
kernel paging. HM uses a lock-free ring buffer to synchronize
the data correctly. Besides, OS services can apply in-place up-
dates to the objects (e.g., VSpace in section 4.5, which stores
the memory layout) that the kernel may read concurrently.
HM adopts fine-grained locking to ensure correctness. How-
ever, it may block the kernel when the service is preempted
while executing critical sections. Therefore, the kernel can
only use the trylock operation on RW-mapped objects. If it
fails, HM will redirect to the OS services (slow path) to finish
the procedure (e.g., paging in section 4.5).

Performance. Figure 6 compares the latency of accessing
kernel objects after applying address tokens. The reading and
writing (to RW) latencies are significantly reduced compared
with capability-based approaches. However, the latency of
writing RO objects is slower than seL4 on RPi4b, mainly
due to the use of AT instruction on ARM to translate the
address and check the permissions, which is slow on RPi4b
(yet optimized in the advanced smartphone chips).

Usage Scenario. For security concerns (see above), ad-
dress tokens are OS-internal abstractions that supplement the
capabilities for efficient co-management with OS services.
Specifically, besides enabling direct updates to kernel objects
managed by services, it allows them to read internal states
(e.g., poll list in section 5.1) without kernel involvement, sim-
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ilar to virtual dynamic shared objects (vDSO) in Linux [82].
It also allows handling performance-critical events (e.g., page
faults in section 4.5) entirely in the kernel without violating
the minimality principle by making policy-driven decisions
in advance (by services) and communicating with the core
kernel through co-managed objects.

Decision: Capabilities that hide kernel objects behind in-
terpose kernel (unwillingly) on the data plane. Supplement
with address tokens for efficient co-management.

4.5 Policy-free Kernel Paging
Centralized Management vs. Distributed Pager. Some
SOTA microkernels (e.g., seL4) delegate memory manage-
ment to applications with individual custom pagers. However,
since competing applications in emerging scenarios require
coordinated and centralized management, we found it difficult
to implement certain features efficiently that require a global
view of memory with decentralized pagers, such as the control
group (cgroup) and memory recycling. Therefore, HM man-
ages the memory through a centralized memory manager. For
minimality, the memory manager is outside the core kernel,
which manages the physical and virtual memory and handles
page faults for all applications and OS services.

Slow userspace paging. We observe a significant perfor-
mance degradation in performance-critical scenarios (e.g., app
startup in Figure 2) due to the slow paging procedure of anony-
mous memory (e.g., stack/heap), which occurs frequently in
smartphones, as shown in Figure 1b. The degradation is pri-
marily due to the extra round-trip from the kernel to the pager.
Specifically, after throwing a page fault exception, the kernel
issues an IPC to the pager, which checks the address and as-
signs a new page, then returns to the kernel to update the page
table before finally returning to the application. Such a round-
trip is inevitable because page fault handling involves a policy
of deciding whether and which physical page to map, which
should be kept out of the kernel [27], while the exceptions are
handled inside the kernel, and the page table is hidden behind
a capability in the kernel.

To improve the performance of handling page faults of
anonymous memory, HM makes policy-driven decisions in
advance, and leaves a policy-free page fault handling mech-
anism in the core kernel. Thus, it eliminates the extra IPC
round-trip on the critical path. Specifically, the memory man-
ager provides the address range of anonymous memory along
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with several pre-allocated physical pages. As shown in Fig-
ure 7, if the page fault is triggered within the range (❶), the
core kernel can map it directly to a pre-allocated physical page
(❷ and ❸), and record an operation log (OPLog, ❹), which
the memory manager will use to asynchronously update its
internal states (e.g., the counter of the mapped anonymous
pages). Otherwise, if the address is outside the specified range
(not performance-critical) or the pre-allocated pages are ex-
hausted, the core kernel will make an IPC to the memory
manager. The involved kernel objects are co-managed by the
memory manager via address tokens, including the page table,
the operation log, the VSpace, which records the layout of
virtual memory space for identifying anonymous memory,
and the PCache, which stores the pre-allocated pages.

Compromises. By making policy-driven decisions in ad-
vance, the policies (whether/which to map) are still kept out-
side the core kernel. The only compromised ability is to
change the policy after being pre-allocated to the PCache,
which reduces flexibility. PCache also introduces some ad-
ditional memory footprints. However, since PCache can be
periodically replenished (off the critical path), its size remains
relatively small, making these tradeoffs acceptable.

Performance. Figure 8 shows the reduced latency of ker-
nel paging (KPF) in HM. HM reduces read/write latency by
72%/33% on Pi4b and 75%/55% on Kirin9000 (little core),
making it even slightly shorter than Linux (6.1 on Pi4b and
5.10 on Kirin9000). seL4 is not included since it requires a
custom pager and does not support demand paging by default.
The round-trip (to the pager) of fault handling takes about
140ns on Pi4b (measured using sel4bench), which makes it
significantly slower than Linux.

Decision: Enable policy-free kernel paging by preempting
policy-driven decisions.

5 Compatibility Design of HongMeng

5.1 Linux ABI Compatibility
Deploying in emerging scenarios requires Linux ABI com-
patibility, which poses challenges in multi-server microker-
nels. K42 [68] achieves Linux ABI compatibility through
trap reflection, which redirects syscalls back to the k42 li-
brary loaded into the application’s address space. However, it
introduces significant performance overhead due to the addi-
tional roundtrip to the kernel [2] and also faces implementa-
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tion challenges [29, 111] due to keeping states in userspace.
FreeBSD [36] and Windows (WSL1 [87]) also achieve partial
Linux ABI compatibility through syscall emulation. How-
ever, since all their OS services reside in kernel space, the
emulation layer can map abstractions like fd directly to their
internal states and efficiently support functions like fork and
poll, which is challenging in multi-server microkernels.

Syscall Redirection. HM achieves Linux ABI compatibil-
ity by placing an ABI-compliant shim in IC0 (kernel space),
which redirects Linux syscalls into IPCs towards appropri-
ate OS services (identified by syscall number, with native
syscalls bypassing the shim), as illustrated in Figure 3a. In
addition, the shim is optional. In scenarios where applica-
tions are predominantly custom, HM replaces the shim with
POSIX-compliant libraries, as shown in Figure 3b.

Centralized States. Apart from binary compatibility, mi-
crokernels no longer have a central repository for global states,
such as the file descriptor (fd) table, making functions like
fd multiplexing (i.e., polling) and syscalls like fork2 chal-
lenging to implement. Specifically, the fd table is usually kept
in the application’s address space (only contains credentials
verified by OS services). Thus, fd multiplexing requires map-
ping all waiting fd to a notification primitive and sending it
to all related services. Moreover, syscalls like fork have to
correctly assemble such distributed states in the userspace. It
introduces significant complexity and performance overhead,
primarily due to passing states from parent to child and the
additional page faults caused by updating these copy-on-write
states [8, 29]. Therefore, SOTA microkernels, including seL4,
Fiasco, and Zircon, do not support fork, while fork in K42
is known to have severe performance issues [29, 111].

Therefore, the ABI-compliant shim in HM also serves as a
central repository for global states like the fd table, enabling
efficient implementation of both fd multiplexing like poll
and syscalls like fork. Specifically, the shim maintains the
fd table, which maps fd to credentials (used by OS services
to identify the user). Therefore, implementing poll only re-
quires maintaining a poll list within the shim, co-managed
with OS services via address tokens. It also avoids copying
the fd table in userspace when executing fork.

Vectored Syscalls. Although most of the syscall transla-
tions are achieved solely in the ABI-compliant shim, there are
vectored syscalls [116] (e.g., ioctl/fcntl) that extend sys-
tem APIs and allow custom extensions (for drivers/modules)
via the file abstraction. HM redirects and handles them in the
FS service (e.g., invoking driver containers in section 5.2).

Deployment Experiences. HM passes all the tests in the
AOSP compatibility and vendor test suite (CTS/VTS [43,44]),
which examines both the kernel functionalities and driver
behavior. Although most binaries can run out of the box, we
observe that some apps rely on unstable/undocumented Linux
behavior and fail to run on HM. For example, an application

2While there have been arguments that fork should be deprecated [8],
popular frameworks like AOSP/OpenHarmony still use fork.

that depends on a specific epoll return order [95] fails to run
on HM (it also fails with different Linux versions).

Decision: Achieve Linux binary compatibility through ABI-
compliant shim.

5.2 Driver Container

Linux undeniably has the richest device driver ecosystem.
Further, some drivers are not source-available, which makes
porting challenging. Therefore, reusing Linux drivers is es-
sential for widespread deployment.

Challenging practical and performant driver reuse. Pre-
vious work, including both transplantation [3, 17, 32, 41, 118]
and VM-based methods [72], face challenges in achieving
high compatibility, reasonable engineering effort, and uncom-
promised performance simultaneously. In particular, trans-
planting the runtime environment requires re-implementing
all kernel APIs (KAPIs) used by drivers. Since some drivers
use a large number of KAPIs, some of which are even con-
stantly evolving, this approach faces challenges of compati-
bility and affordable engineering effort. In addition, reused
drivers (with large untrusted code base) should be enforced
with strict address space isolation for better security and to
avoid license contamination [34], which also degrades per-
formance. Reusing drivers through a virtual machine can
achieve better compatibility with less human effort. How-
ever, it introduces issues including memory double manage-
ment that causes extra memory footprint (crucial in memory-
constrained scenarios like smartphones) and thread double
scheduling that degrades performance due to the frequent use
of asynchronous notifications in drivers.

HM reuses Linux drivers (Figure 9) through a driver con-
tainer, which strikes to find a sweet spot between compatibil-
ity, engineering effort, and critical-path performance.

Compatibility. Inspired by LKL [101], UML [26], and
SawMill [39], the Linux Driver Container (LDC) provides
all necessary Linux KAPIs by reusing the Linux code base
as a userspace runtime, allowing existing Linux drivers
to run without modification. The main difference with
LKL/UML/SawMill is that LDC reuses the driver rather than
components like the file system and network stack. Thus,
drivers should be able to access the hardware devices directly
rather than redirecting to host drivers. Further, the runtime
relies on HM for resource management. Therefore, all related
functionalities, like the thread scheduler, are removed.

HM creates another device manager that manages both
the Linux and the native driver containers (where the native
drivers reside). Besides initializing driver containers, it regis-
ters entries (❶ in Figure 9) in the virtual file system (VFS) so
that driver invocations through VFS (e.g., ioctl ❷) can be
correctly redirected to the appropriate driver container (❸).

Using the LDC, HM has successfully reused over 700 de-
vice drivers from Linux, including all the needed ones for
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smartphones and vehicles to function correctly, such as cam-
era, display, audio, NPU/GPU, and storage. Though most
drivers can directly run out of the box, several exceptions
exist. Since the LDC runs in userspace (IC2), drivers that use
privileged instructions (e.g., smc) will trigger faults. They re-
quire binary rewrites or manual porting (for those frequently
using privileged instructions, e.g., GIC) in the core kernel.

Engineering Effort. The Linux runtime in the LDC is
derived directly from mainline Linux, with minor modifica-
tions to redirect several functionalities to the driver container
base (DC-base in Figure 9) for proper execution. Therefore,
the required engineering effort is minor. Specifically, we pro-
vide a virtual architecture and redirect the kthread/memory
interfaces to HM. To make the drivers work correctly, DC-
base creates a virtual timer and a virtual IRQ chip to provide
the interrupt request and reserves a linear mapped space for
functions like virt_to_phys. Compared to the VM-based
method, which introduces double memory management and
double thread scheduling, the driver container avoids these
issues by redirecting and managing them in HM.

In practice, supporting long-term support (LTS) kernel dis-
tributions is sufficient for reusing most drivers (currently, HM
supports 4.4, 4.19, and 5.10). In addition, since the Linux
interfaces associated with the DC-base are relatively stable,
only minor modifications are required to upgrade the Linux
runtime. Upgrading from 4.19 to 5.10 requires less than 100
changes to the DC-base, most of which are minor modifica-
tions to the procedure names, arguments, and structures.

Critical Path Performance. The LDC is placed in IC2
(userspace) to preserve security (drivers have large untrusted
code bases) and avoid license contamination. However, it
introduces non-trivial overhead in driver-critical scenarios,
such as app startup and camera. Therefore, HM applies control
plane and data plane separation by creating a twin driver
in the native driver container that handles I/O IRQs on the
performance critical path (❹ in Figure 9). The twin driver
rewrites the data handling procedure and can thus be enforced
with weaker isolation (placed at IC1 in kernel space), resulting
in significantly better performance. The control planes, which
contain cumbersome procedures like init/suspend/resume,
remain in the LDC (❺).

The twinned drivers synchronize the states (usually a vari-
able) via IPC. Since the control plane is handled entirely in
the LDC, the twin driver does not modify the states (I/O er-
rors are redirected to the LDC). On initialization, the LDC
passes device information to the native one to create the twin
driver. When handling non-I/O IRQs and errors, the LDC syn-
chronizes the updated states back to the twin driver. Unlike
the transparent integration solely in LDC, which results in
poor performance, the twin driver requires additional engi-
neering effort to split and redirect interrupts and synchronize
states. Therefore, the twin driver is used only for performance-
critical drivers like the Universal Flash Storage (UFS) driver
(others are integrated transparently w/o modification).
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Figure 10: Block I/O throughput on Kirin9000. DC-twin applies
data and control plane separation, while DC-solo does not.

Figure 10 shows the improved throughput in the UFS Block
I/O benchmark. In the experiment, I/O requests are issued
directly from the driver. DC-twin (applied data/control plane
separation) achieves a similar throughput to Linux 5.10 and
outperforms DC-solo (w/o separation) by 140% at 4K size.

Security. The LDC is almost a normal userspace (IC2) OS
service in HM, with an additional ability to create a linear
mapped space whose range is strictly restricted to its allo-
cated memory (by only setting the present bit on the allocated
pages). Thus, it shares the same threat model as IC2 OS ser-
vices and userspace drivers in other microkernels. In addition,
HM uses SMMU [5] to prevent DMA attacks, with its driver
residing in an isolated native driver container.

Decision: Reuse Linux device drivers efficiently through
driver containers with control/data plane separation.

6 HongMeng in the Wild

6.1 Implementation and Deployment
The core kernel of HM is implemented primarily in a confined
subset of C, consisting of 90k lines of code (LoC), which
includes the basic functionalities. All other OS services are
decoupled and can be deployed individually, totaling over 1
million LoC. The HM’s build system can assemble the OS
services based on detailed configurations specified for various
scenarios, such as placing OS services in different isolation
classes or coalescing some OS services.

HM has been deployed in tens of millions of devices in
various emerging scenarios, which share the same code base
but with different configurations. In safety-critical scenar-
ios, such as smart vehicles (dashboard and entertainment sys-
tem) and the trusted execution environment (TEE) of smart-
phones, security and strict isolation are prioritized over per-
formance. In addition, applications are mostly customized
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Table 5: LMbench results.
Benchmark Commands1 Unit Linux HM Norm.2

lat_unix -P 1 µs 10.23 10.39 0.98
lat_tcp -m 16 µs 21.22 17.19 1.23
lat_tcp -m 16K µs 24.54 18.9 1.29
lat_tcp -m 1K (Same Core) µs 21.21 17.19 1.23
lat_tcp -m 1K (Cross core) µs 37.96 25.66 1.47
lat_udp -m 16 µs 17.83 19.48 0.92
lat_udp -m 16K µs 23.63 22.02 1.07
lat_udp -m 1K (Same Core) µs 18.04 19.55 0.92
lat_udp -m 1K (Cross core) µs 34.17 26.84 1.27
bw_tcp -m 10M MB/s 1812 3109 1.71
bw_unix MB/s 7124 8478 1.19
bw_mem 256m bcopy MB/s 17696 17202 1.02
bw_mem 512m frd MB/s 14514 14593 0.99
bw_mem 256m fcp MB/s 17492 15867 0.91
bw_mem 512m fwr MB/s 34771 35318 1.01
bw_file_rd 512M io_only MB/s 8976 9396 1.04
bw_mmap_rd 512M mmap_only MB/s 26073 27520 1.05
lat_mmap 512m µs 3315 3628 0.91
lat_pagefault µs 0.83 0.78 1.06
lat_ctx -s 16 8 µs 4.53 3.41 1.32
bw_pipe MB/s 3808 4127 1.08
lat_pipe µs 9.00 7.88 1.14
lat_proc exec µs 336 1305 0.26
lat_proc fork µs 323 1280 0.25
lat_proc shell µs 2269 4778 0.47
lat_clone (create thread) µs 28.6 54.3 0.52
1 Argument "-P 1" is omitted.
2 Norm. shows the normalized performance. For throughput, use

HM/Linux, for latency, use Linux/HM. The more the better.

and source-available. Therefore, HM places all OS services in
IC2 (userspace) and exposes the POSIX API to applications
through libraries. Moreover, HM achieves fault tolerance by
introducing a driver micro-reboot in the TEE. Drivers in the
TEE can be considered stateless since only re-initialization is
required to recover a corrupted driver. With micro-reboot, the
TEE can recover from driver corruption within hundreds of
milliseconds, whereas a complete system reboot is required
with a monolithic kernel. Fault tolerance for a broader range
of scenarios (e.g., stateful OS services in rich-OS) requires
additional efforts to store states and preserve their consistency,
which we leave for future work.

In performance-demanding scenarios like smartphones,
HM places the performance-critical OS services in IC1 (ker-
nel space), including the process manager, memory manager,
FS, and native driver container, and coalesces FS with the
memory manager. The Linux driver container and other non-
performance-critical OS services, such as CPU frequency
governor and power manager, remain in IC2 (userspace).

6.2 Performance
We present the end-to-end performance comparison between
HM and Linux in emerging scenarios, including smartphones
(using Kirin9000 SoC [57]), smart vehicles, and smart routers,
which existing microkernels fail to support. The compared
Linux 5.10 counterparts are already highly optimized (used
in prior products) rather than vanilla versions.

LMbench. We evaluate the basic OS functionalities using
LMbench [85] on Kirin9000. Table 5 shows the results related
to OS architecture. Compared to Linux (5.10), the context
switching lat_ctx (32%) and networking (avg. 21%) are
faster on HM, mainly due to the simplified handling proce-
dure compared to Linux [89,96]. Memory operations perform

similarly to Linux. Although fork still performs worse than
Linux in the microbenchmark, we observe that the major
overhead of fork in the real-world load comes from copying
virtual memory areas (VMAs). It can be accelerated through
parallelism, which reduces its overhead from 150ms to 60ms
(in typical apps, close to 30ms in Linux). Clone (creating
thread) is also 1x slower than Linux, mainly due to the ad-
ditional IPCs between multiple OS services (especially the
driver container in IC2) and the core kernel.

Geekbench. Figure 11c presents the normalized single-
core results of the CPU-intensive Geekbench 5.3.2 [99]. By
assembling the system to prioritize performance, HM achieves
similar performance with Linux, with minor differences due
to the different CPU frequency altering strategies.

Application Cold Startup Time. App startup time is crit-
ical to the user experience, stressing multiple OS services
(e.g., reading from flash memory and creating threads) with
extensive IPCs. Figure 11a shows the startup time of the top
30 AOSP apps on HM. The framework/app versions are the
same on Linux and HM. As analyzed in section 3.1, the major
overhead of microkernel in such scenarios comes from state
double bookkeeping and slow paging, which HM eliminates.
Therefore, the startup time is even 17% shorter (geometric
mean) than Linux, mainly due to the lighter loads (see below)
and the custom scheduling strategies.

Application Loads. Figure 11b presents the loads in a
period in different scenarios. The loads (number of executed
instructions) are collected using perf, which includes the
executed instructions in OS services (or in Linux kernel).
The load on HM is 19% lighter (geometric mean) than on
Linux. The proposed techniques in HM significantly reduce
the overhead of minimality and fine-grained access control.
Lighter loads also enable HM to achieve better performance
and energy efficiency than Linux.

We further present improvements using custom strategies
in HM, which are challenging to apply in Linux (section 2.3).

Frame Drops. Figure 11d shows the frame drop times
(crucial for user experience) in 20 rounds of running the typi-
cal usage model in section 3.1. Due to the lighter load and a
custom QoS-guided scheduling in HM, frame drops are 10%
less and 20% stabler than Linux.

Interrupt Latencies. Figure 11e and 11f show the latency
CDF of the related interrupts when playing video and audio,
which are essential for user experience. HM reduces their
latencies by 10% (video) and 65% (audio) by using a custom
experience-first strategy that executes all the handling proce-
dures at once, which is handled in another additional interrupt
(due to lazy disable of ARM GIC [40]) in Linux.

Experiences in smart routers and smart vehicles. In
smart routers, HM reduces OS memory footprint by 30%,
allowing 30% more client connections. In smart vehicles, HM
reduces system cold boot time from 1.5s (Linux) to 0.6s (crit-
ical for user experience, e.g., enabling 360-degree surround
view) and reduces cross-domain (dashboard and entertain-
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Figure 11: Performance of HM compared with optimized Linux 5.10 on Kirin9000. (a), (b) and (c) normalized the result for comparison.
Labels in (a) show the startup time in milliseconds on HM. Labels in (b) show the executed instructions on HM.

ment) communication latency from 250µs to 100µs.

7 Lessons and Experiences

Compatible first, then nativize gradually. Compatibility is a
crucial first step for commercial deployment. First, a product
typically prefers a unified code base for various platforms
for cost-efficiency. Second, some third-party apps/drivers are
distributed in binaries. Moreover, even aiming to rebuild a
new software ecosystem, many essential libraries still require
Linux compatibility. Therefore, only by being compatible at
first can a new OS be widely deployed and have a chance to
evolve towards native interfaces for improved performance.
Specification alone is insufficient. Examine compatibility
via large-scale testing. Achieving full compatibility is diffi-
cult (if possible), primarily due to Hyrum’s Law [121], which
reveals that all observable system behaviors will be depended
on. Therefore, rather than satisfying certain specifications, we
examine compatibility through large-scale testing, which is
necessary to uncover hidden compatibility issues.
Deploy first, then optimize continuously. A microkernel is
hard to satisfy all performance goals initially and requires
full-system optimizations (e.g., framework, even hardware).
Without deployment, promoting cooperation among multiple
teams for such optimizations is difficult. Moreover, produc-
tion deployments require time to test reliability. Therefore, de-
ployments should commence early, starting on a small scale.
Use automated verification as much as possible. We found
that complete formal verification (using interactive theorem
proving) is unsustainable due to the rapid growth in code size
and functionalities. Hence, we resort to semi-formal verifi-
cation of critical components and use automated verification
and verification-guided testing to enhance the code quality.
Amplification of hardware failures/bugs due to the scale ef-
fects. We found that some low-probability hardware faults or
bugs are relatively likely to occur when deployed at scale, sig-
nificantly affecting user experience and potentially becoming

fatal in safety-critical scenarios. HM mitigates these issues by
isolating critical drivers in different LDCs, restarting stateless
drivers in TEE, and creating watchdogs for monitoring. HM,
as a microkernel, also provides opportunities to address these
issues through architectural design in future work.
Big kernel lock is not scalable in emerging scenarios. While
it is argued that a big kernel lock is sufficiently scalable
for a microkernel [97], mainly due to the short duration of
most syscalls, we found that it still faces scalability issues on
phones. First, phones have a high syscall frequency (61k/s,
Figure 1f), causing significant contentions. Moreover, emerg-
ing scenarios demand some complex functionality with long
durations. Examples include poll, which requires synchro-
nizing a large number of states within the shim (IC0), and
energy-aware scheduling [115], which involves frequent and
costly calculations of power consumption for each scheduling
decision due to the short-running nature of threads on phones.

8 Conclusion and Future Work

HongMeng is a commercialized general-purpose microkernel
that retains microkernel principles while providing structural
supports to address compatibility and performance challenges
in emerging scenarios. It also facilitates future exploration
of microkernels’ benefits in production. For instance, its flex-
ibility offers opportunities to accommodate the increasing
hardware heterogeneity that Linux fails to address [104], and
to achieve fault tolerance for improving availability.
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Abstract
In this paper, we make a case for providing job completion
time estimates to GPU cluster users, similar to providing the
delivery date of a package or arrival time of a booked ride.
Our analysis reveals that providing predictability can come
at the expense of performance and fairness. Existing GPU
schedulers optimize for extreme points in the trade-off space,
making them either extremely unpredictable or impractical.

To address this challenge, we present PCS, a new schedul-
ing framework that aims to provide predictability while bal-
ancing other traditional objectives. The key idea behind PCS
is to use Weighted-Fair-Queueing (WFQ) and find a suit-
able configuration of different WFQ parameters (e.g., queue
weights) that meets specific goals for predictability. It uses a
simulation-aided search strategy to efficiently discover WFQ
configurations that lie around the Pareto front of the trade-off
space between these objectives. We implement and evalu-
ate PCS in the context of scheduling ML training workloads
on GPUs. Our evaluation, on a small-scale GPU testbed and
larger-scale simulations, shows that PCS can provide accurate
completion time estimates while marginally compromising
on performance and fairness.

1 Introduction

Humans desire predictability in their daily lives [66]: from
knowing how long their home-to-office commute will be to
the arrival time of an Amazon package [80] or an Uber ride [7].
Fortunately, most real world systems (e.g., transportation, e-
commerce, etc) meet this need by providing their users with a
(reliable) prediction (e.g., estimated delivery date). As more
and more of our lives move to the cloud (e.g., Metaverse [39,
73]), it begs the question of whether the cloud can offer similar
predictability. More concretely, when a user submits a “job”
(e.g., train a Machine Learning (ML) model) to the cloud, can
the cloud provide a reliable job completion time prediction?

Such feedback can ensure a seamless experience and ease
user frustration; perhaps more emphatically than simply mak-
ing the cloud faster or fairer, according to studies in human

psychology [22, 43] and systems usage [50]. It can also em-
power users to decide between different cloud platforms and
services within a cloud based on the provided estimate, or
be integrated with emerging inter-cloud brokers (e.g., SkyPi-
lot [97]). In light of this, we advocate for the need to provide
reliable job completion time predictions as a core primitive
in today’s cloud, akin to real world systems we interact with.

Several aspects of the user-cloud ecosystem can impact
the (lack of) predictability of a job’s completion time (e.g.,
failures [49], shared vs. dedicated resources [50], knowledge
of individual job sizes [27, 58], workload characteristics etc.).
The focus of this paper is on understanding the unpredictabil-
ity stemming from the scheduling mechanism used by the
cloud (sub)systems (e.g., FIFO vs. Fair Sharing vs. other poli-
cies). We situate our work in the context of ML workloads run-
ning on multi-tenant GPU clusters (e.g., PAI [89], Philly [49],
etc). This is an important scenario as scheduling delays matter
and can be highly variable due to the ever growing demand
for GPUs by emerging AI applications such as those pow-
ered by Large Language Models (LLMs) [4], while other
sources of unpredictability are minimal (e.g., workloads are
predictable [49, 54, 62, 76]). It is also a challenging scenario
because unlike the public cloud setting where users pay for
dedicated (and hence predictable) GPU resources, these clus-
ters are best-effort and heavily rely on intelligent scheduling
mechanisms to determine how the underlying GPU resources
are to be shared between ML applications or tenants (cluster
users).

Our key observation is that a scheduling policy’s use of
unbounded preemption results in its inability to provide reli-
able Job Completion Time Predictions (JCTpred). Preemption
is a key enabler for existing GPU scheduling proposals that
optimize for metrics like minimizing average and/or tail job
completion times (JCT) (e.g., Tiresias) [37, 76], fairness and
resource efficiency (e.g., Themis) [14,44,62,79,93,105], and
meeting deadlines (e.g., Chronus) [30, 36, 59]. While crucial
for achieving their respective objectives, the extensive use of
preemption leads to unpredictability (i.e., prediction error) in
a job’s completion time due to (repeated) preemptions from
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future jobs. On the other hand, non-preemptive scheduling
policies, such as First-In-First-Out (FIFO), are predictable
(as future arrivals do not impact current jobs) but can result
in extremely poor performance and a lack of fairness due to
Head-Of-Line (HOL) blocking [26, 28, 37, 70].

This observation highlights an inherent trade-off between
offering predictability and optimizing for other metrics, such
as minimizing JCTs. Existing scheduling solutions typically
occupy extreme points on this trade-off spectrum. They are ei-
ther highly unpredictable due to the use of unbounded preemp-
tion or impractical because they do not employ preemption at
all.

In light of these limitations, an important question arises:
Are there intermediate points on this trade-off spectrum that
can provide a balance between predictability and practicality?
Specifically, can these intermediate solutions be achieved by
controlling the extent of preemption used? Furthermore, the
cluster operator may desire to operate at potentially any one
of these intermediate trade-offs depending on their relative
preferences. The trade-off space can be vast, and some points
may be inherently less desirable than others. In such scenarios,
how can we enable operators to express their preferences and
efficiently explore the trade-off space?

To address these questions, we propose a novel scheduling
framework called Predictability-Centric Scheduling (PCS)
that aims to provide reliable JCTpred (predictability) while
balancing other practical goals (flexibility) such as perfor-
mance and fairness. PCS exposes a high level bi-directional
preference interface which allows cloud operators to express
the objectives they are interested in (e.g., avg JCTs vs. avg
prediction error). To facilitate cloud operators in making an
informed choice based on their relative preferences, PCS
provides a set of Pareto-optimal trade-offs. Each Pareto-
optimal trade-off improves one objective (e.g., predictabil-
ity) while marginally sacrificing on other objectives (e.g.,
performance and/or fairness). This is unlike other tunable
schedulers [52, 64, 71] which typically return a single solu-
tion.

At its core, PCS leverages Weighted-Fair-Queuing (WFQ)
as a basic building block [23]. Our use of WFQ is motivated
by the fact that it uses bounded preemption and offers di-
rect control over the extent of preemption used. WFQ maps
incoming jobs to a fixed number of queues, uses FIFO to
schedule jobs within a queue and assigns a guaranteed re-
source share (weights) to each queue. These properties bound
the preemptions and reordering experienced by jobs. Further-
more, the number of queues and their assigned weights are
tunable parameters of the WFQ policy. This allows direct con-
trol over i) predictability (e.g., by creating limited number of
queues), ii) performance (e.g., by assigning a higher weight to
queues with smaller jobs), and iii) fairness (e.g., by assigning
equal weights), motivating its flexibility and ability to achieve
Pareto-optimal trade-offs.

Finding Pareto-optimal WFQ configurations is challeng-

ing because the space of possible configurations is large,
with some trade-offs not feasible (e.g., optimal performance
and maximum predictability) or beneficial (e.g., more unpre-
dictable and unfairer than existing schemes). To address this
challenge, PCS uses a highly-parallel simulation-based search
strategy with an intelligent parameterization of WFQ using
heuristics, to efficiently find suitable and feasible (Pareto-
optimal) WFQ configurations. For example, we use the vari-
ation in job-sizes to determine the number of queues and
thresholds as opposed to trying out arbitrary combinations.
We show that Pareto-optimal trade-offs can be discovered for
realistic workloads in a timely manner (§5.4).

A key benefit of PCS is that it is a generic scheduling
framework, which can accommodate various types of jobs
(e.g., network flows, DNN training jobs), allowing it to be
realized in various multi-tenant scheduling scenarios. It only
requires knowledge of a job’s demand function, which can
either be provided by the user or reliably estimated by the sys-
tem [13, 50, 62]. This requirement is typically satisfiable for
ML workloads and we later discuss the broader applicability
of PCS to other scheduling scenarios in §6. PCS uses these
demand functions to generate a completion time prediction as
well as balance considerations for performance and fairness
(e.g., when dealing with sub-linear scaling jobs) to be com-
petitive with efficiency based schedulers (e.g., AFS [44]), as
we show in §5.

We implement and evaluate PCS for realistic ML training
workloads on a small-scale GPU cluster as well as large scale
simulations. Our evaluation shows that PCS can successfully
discover Pareto-optimal WFQ configurations to meet varying
trade-offs. For example, PCS can reduce the prediction error
by 50-800% while being within 1.1-3.5×of performance and
fairness optimal schemes (§5).

Overall, we make the following contributions:

• We show that state-of-the-art GPU scheduling policies
which optimize for performance and fairness [37, 44, 62]
result in unpredictability. Our analysis shows that these
policies typically lie on extreme points of predictability-
performance or predictability-fairness trade-offs (§2).

• We design PCS, a generic job scheduler, which uses WFQ
in a unique and novel way to achieve predictability and
flexibility (§3.1).

• We provide a simple but expressive bi-directional interface
to be used by cloud operators, enabling them to specify
different high level objectives and giving them the ability to
choose between trade-offs — a property existing scheduling
systems fail to provide (§3.2).

• We implement a prototype of PCS in Ray [67] and evaluate
it on a testbed and in simulations for realistic ML training
workloads (§4 §5).
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PCS is a step in providing predictability in today’s cloud
systems. It opens up important questions which we dis-
cuss in §6. Finally, we build upon and benefit from a
large body of prior work in scheduling systems, which we
discuss in §7. The code for PCS is made available at
https://github.com/TuftsNATLab/PCS.

2 A Case for Predictable Scheduling

In this section we motivate the need for predictable schedul-
ing to be a core primitive in today’s cloud, and show how it is
different from deadline-based scheduling. We provide several
use-cases of predictable scheduling in the context of multi-
tenant GPU clusters and draw analogies between real-world
systems and the cloud. While this discussion has broader
applicability in various scenarios (e.g., CPU scheduling, net-
work bandwidth scheduling), we situate it in the context of
multi-tenant GPU clusters and discuss the opportunities and
challenges in supporting predictable scheduling in that con-
text.

2.1 Why provide JCT predictions (JCTpred)?
A scheduling system that provides JCTpred can have two
broad benefits: (1) Alleviating User frustration. Several stud-
ies on real-world systems (e.g., online retail [78], airlines [11])
show that providing a timeline to users can help ease frustra-
tion in the face of long and variable waiting times [43,45,99].
JCTpred can offer a similar role in the context of multi-tenant
GPU clusters where users can suffer from large and unpre-
dictable delays, inevitably leading to a poor and frustrating
experience [22, 42]. Measurements on Microsoft’s GPU clus-
ter (Philly) show that ML training jobs can face up to 100
hours of queuing and preemption related delays [49], hinting
that organizational GPU clusters are heavily oversubscribed.
Research shows that users are often trying to guess when their
training jobs will complete and that user-driven predictions
can be off by more than 100%, with some users finding it
impossible to make any meaningful predictions [30]. With
the paradigm of AutoML, jobs that spawn hundreds of DNN
trials [57, 62], and LLMs (e.g., GPT4 [4]) becoming main-
stream, these issues will only exacerbate [9]. Additionally,
predictability expectations are higher for users submitting
repetitive jobs [50] and according to one study, 60% of train-
ing jobs exhibit DNN architecture similarity [54], emphasiz-
ing the need to provide JCTpred in such scenarios.

(2) Enabling decision making. In real-world systems, if the
predicted timeline is long, customers may elect to perform
other tasks or seek alternatives [63]. For example, estimated
delivery dates can help shoppers decide between e-commerce
platforms (e.g., Amazon [2] vs Temu [6]) and even between
sellers within a platform. Today’s cloud users have similar
choices to make and JCTpred can enable them to make these
choices in a more informed way. For example, it can help

users decide between different cloud systems to run their
ML workloads on, each option potentially offering a different
cost-JCTpred trade-off. As a forward looking avenue, JCT-
pred can facilitate the growing eco-system around inter-cloud
brokers which orchestrate seamless access to multiple clouds
with low user effort (e.g., SkyPilot [19, 46, 84, 97]). Within a
cloud, JCTpred can facilitate users in selecting between dif-
ferent model variants/pipelines to train, based on the expected
accuracy-JCTpred trade-off [12, 20, 95, 101].

Why are Deadlines not the answer? One may wonder how
the predictability metric is different from deadlines (and the
large body of work on deadline-based scheduling for GPUs
and beyond [16, 17, 30, 56]) where a user provides a deadline
along with their job and the system tries to satisfy it. The
fundamental difference is that in the deadline-based context,
the burden lies on the user to provide a timeline to the system,
with the system deciding the user’s fate. We posit that it should
instead be the system that provides the user with a timeline
(i.e., a JCTpred), empowering them to decide whether it is
acceptable or not. Our approach is analogous to real-world
systems like ride-sharing where most users request a ride,
wanting it ASAP (i.e., no deadline) while the system comes
up with the expected arrival time of the ride.

Even if we try to shoehorn predictability into deadlines, it
will be challenging for two reasons. First, coming up with a
reasonable deadline is hard because the slowdown of a job
is highly dependent on: i) cluster load (which can be highly
variable and bursty at short timescales) and ii) underlying
job-to-resource mapping which is (dynamically) determined
at run time [50] and can result in significant variation due to
heterogeneity in the underlying resources (e.g., low vs. high
end GPUs [14,71,89], RDMA vs. TCP [31,77], etc.,). Second,
unless there is an inherent difference in user requirements (and
hence deadlines), users have the incentive to specify a small
deadline (i.e., to act greedy), which limits any prioritization
the system can enable. In both the above cases, the lack of
reasonable deadlines will render the system ineffective.

Feasibility of providing JCTpred. Computing JCTpred
requires the knowledge of a job’s size and its demand
function (i.e., how its execution time will change based
on the allocated GPUs). Fortunately, several attributes
of ML workloads allow us to (approximately) estimate
these. (1) Intra-job predictability. DNN training and infer-
ence jobs [37, 49, 62] exhibit intra-job predictability; the time
it takes to run an inference job [38] or train a DNN for a
specified number of epochs is fairly deterministic [62]. By
profiling [44, 71, 74, 79] or modelling [31, 62, 76, 96, 105]
the job’s throughput and combining it with the provided job
information (e.g., total number of epochs, convergence crite-
ria, budget), its size and demand function can be estimated.
(2) Recurring jobs. ML workloads are known to contain re-
curring jobs [24, 54, 90]. This can make history [75] and
sampling [47] based strategies highly effective in estimating
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job sizes.

2.2 Limitations of Existing Schedulers
Reliably predicting the completion time of a user’s job re-
quires the underlying scheduling system to be predictable [30].
In this section, we highlight and analyze why existing sched-
ulers used by GPU clusters today are either not amenable to
reliable completion time predictions or are not practical.

Unbounded Preemption: the Price of Fairness and Per-
formance. Performance and fairness-oriented schedulers fre-
quently utilize unbounded preemption to prioritize and dis-
tribute resources among jobs. Preemption collectively refers
to when some or all of the resources assigned to a job are
reallocated or when its position in the queue is altered because
of another (future) job. Although preemption is essential for
achieving the goals of these schedulers, it can lead to unpre-
dictability in a job’s completion time [50]. Under preemptive
scheduling policies, the arrival of future jobs can affect the
completion times of current jobs by preempting the resources
(e.g., GPUs) they are using.

Preemption manifests in today’s cloud systems in the fol-
lowing ways: (1) Prioritization. When a higher priority job
arrives and needs to be scheduled, running jobs are paused
or waiting jobs are pushed further back in the queue. Sev-
eral schedulers use prioritization to minimize JCTs and meet
deadlines [8, 17, 30, 37, 56, 59, 76]. (2) Elastic Sharing. Jobs
may need to be multiplexed together to achieve fairness and
efficiency [14, 32, 44, 62, 93]. As new jobs arrive, the GPU
share of existing jobs is reduced, stretching their completion
times [50] or the scheduler takes away GPUs from existing
less-efficient jobs and assigns them to new jobs that can utilize
them more efficiently [13, 44].

Takeaway: Unbounded preemption results in unpre-
dictability, making it challenging to provide a reliable JCT-
pred. A scheduler which utilizes bounded preemption will be
more predictable.

Fixed Trade-offs. The other option is to use non-preemptive
schedulers such as First-In-First-Out (FIFO) [86] and reserva-
tion based schemes [49] which are highly predictable as they
guarantee resource allocation throughout the lifetime of a job
— future job arrivals do not impact current jobs in the system.
However, such schemes suffer from well known performance
issues such as Head-Of-Line (HOL) blocking in the case of
FIFO [26, 28, 37, 44, 70] and poor utilization for reservation
based schemes [49, 89, 94]. There is no clear way to tune
these schedulers that lie on extreme ends, to offer different
trade-offs between predictability and other objectives. This
is an issue because different cluster operators may want to
settle for different (intermediate) trade-offs rather than switch
between these two extremes.

Takeaway: Existing schedulers offer a fixed trade-off: pre-
dictable but high/unfair JCTs (non-preemptive) or low/fair but

unreliable JCTs (unbounded preemptive). A scheduler which
offers different trade-offs between these competing objectives
is more practical.

Motivating Example. We use a simple toy example (Fig. 1a)
with four jobs (J1-J4) to demonstrate these limitations. We
analyze the performance of three schedulers — FIFO, Tire-
sias, and Themis — on reducing JCTs, unfairness, and unpre-
dictability. FIFO is the default scheduler used in YARN [86].
Tiresias [37] prioritizes DNN training jobs with smaller re-
maining service times, while Themis [62] strives to mini-
mize peak unfairness.1 Tiresias and Themis are representative
of a large space of policies which either use size based or
fair scheduling, respectively. Unpredictability is captured as
Prederr =

JCTtrue−JCTpred
JCTpred

%, while unfairness is captured as the
additional time it takes for a job to complete compared to its
Fair Finish-Time (FFT) [15,62] in percentage terms. JCTpred
is computed at the time of a job’s submission and is defined
as the time it takes for a submitted job to complete given
a scheduling policy and the current cluster state (i.e., GPU
allocations to existing jobs). We provide a practical way to
compute it for all scheduling policies in §4.

As new jobs arrive (moving left to right in Fig. 1a), both
Tiresias and Themis result in a change in completion times
of previous jobs. For instance, in Tiresias (top row), when J2
and J4 arrive in the system (second and fourth column), there
is an eight time unit increase in J1’s predicted JCT each time.
While Tiresias achieves the minimum average JCT, it results
in the highest average prediction error — 46% Prederr in our
example. Similarly, in Themis (middle row), the scheduler’s
multiplexing of J1 and J2 causes J1’s predicted completion
time to increase by eight time units (second column). While
Themis ensures all jobs finish before their FFT (unfairness of
0) and also avoids HOL blocking, it has an avg Prederr of 24%.
The FIFO scheduler (bottom row) achieves a prediction error
of 0 as it is non-preemptive, but is the most unfair strategy
and has the highest average JCT. Figure 1b summarizes these
outcomes.

We now discuss PCS, a generic resource scheduler that at-
tempts to offer predictability while being flexible in balancing
performance and fairness related objectives.

3 Predictability-Centric Scheduling (PCS)

Requirements. Our analysis in the previous section reveals
that a scheduling policy with no preemption (i.e., FIFO) re-
sults in maximum predictability. However, this comes at a
high cost in terms of performance (i.e., JCTs) and fairness,
which makes it an impractical option. On the other extreme,
there are scheduling policies that have unbounded preemption
(e.g., Fair-Share, Shortest Job First, etc.). In these policies, an
influx of future arrivals can arbitrarily stretch the completion

1We use a lease duration of 1 time unit for Themis and assume job size
information is known for all schedulers
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Figure 1: Toy example with 1 GPU, demonstrating the limitation of existing strategies. (a) shows how the scheduling order changes as jobs
arrive over time under the Tiresias [37], Themis [62], and FIFO [86] schedulers. Time moves from left to right with a new job arriving in
each column. The expected finish times for the current jobs are displayed above the current schedule. Jobs that are finished are grayed out. (b)
summarizes the results for performance, fairness, and predictability for these policies.

time of an existing job, making them unsuitable for providing
predictability.

This insight distills into the following two requirements
that a scheduling policy must satisfy in order to provide pre-
dictability while being practical:

R1 Predictability Requirement: a scheduling policy must
have bounded preemption. This is essential in order to
provide reliable JCT predictions.

R2 Flexibility Requirement: it should be able to approxi-
mate maximum predictability, optimal performance, and
maximum fairness. Most importantly, it should be able
to achieve Pareto-optimal trade-offs between these. This
is essential for practicality.

PCS Overview. Our solution to this end is PCS, a generic
scheduling framework (Fig.2), which captures these require-
ments using a high level preference interface (§3.2), and
meets them by using the well-known Weighted-Fair-Queuing
(WFQ) [23] policy in a novel way. The inherent properties of
WFQ, careful selection of various WFQ parameters (number
of queues, weights, etc) along with how each job is mapped
to a queue and processed within it, allow us to meet our ob-
jectives (§3.1). Specifically, WFQ creates a fixed number of
queues, assigns each of them a guaranteed share of the re-
source capacity (weights) and schedules jobs within a queue
in FIFO order – this allows WFQ to satisfy our predictability
requirement (R1). Similarly, the number of queues, weights,
and how jobs are mapped to each queue are tunable, allowing
it to offer the desired flexibility (R2).

A key component of PCS that enables the above func-
tionality is the preference solver (§3.3), which translates the
specified high level objectives into a set of Pareto-optimal
WFQ configurations using a simulation-based search strategy.

Preference 
selection
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Policy
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Resources
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Figure 2: Key components of PCS: The preference framework can
be used by operators to specify high level objectives. The preference
solver uses a simulation-based search strategy to find Pareto-optimal
WFQ configurations that are then shared with the operator. On the
critical path, users submit their jobs along with the job’s demand
function and are given a JCTpred.

The simulation based search strategy is not on the critical path
of a submitted job; it operates at coarser timescales, aligned
with changes in workloads. Since ML workloads are fairly
stable, expending the time to search for Pareto-optimal WFQ
configurations is feasible. While the space of possible con-
figurations is large, we use an intelligent parameterization of
WFQ (e.g., coefficient of variation of job sizes within a queue)
to navigate it in a feasible manner. Once a particular WFQ
configuration is selected, it can be used to schedule submitted
jobs as they arrive.

An important benefit of PCS is that it is a generic schedul-
ing policy – it operates on the notion of a job which could be a
network flow or a DNN training job etc. To deal with the vary-
ing needs of these different scenarios, in PCS, a job is defined
using a demand function. The demand function is a mapping
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between the job’s execution time and the resources allocated
to it i.e., demand(n) 7→ Texec and has a minimum (demandmin)
and maximum (demandmax) resource allocation bound, denot-
ing the execution time under the lowest and highest possible
allocation. For ML workloads, in particular DNN training,
the demand function is sophisticated, as different models can
have different speedups based on the GPU type and affinity
and is estimated on the users behalf, as discussed in §4. For
scenarios like network (co)flow scheduling [18, 26, 28], the
demand function is simpler, as we discuss in §6.

Finally, the user submits their job, optionally including
its demand function. PCS then computes and returns the
predicted completion time (JCTpred).

We now explain in detail, our choice of using WFQ as
a building block (§3.1), followed by preference solver and
interface.

3.1 WFQ under PCS

We begin by motivating why WFQ is a useful starting point
and then share PCS’s careful usage of WFQ in meeting our
objectives. Our observation is that a lack of preemption, as in
FIFO, and a non-zero guaranteed resource share for jobs is
crucial for predictability. WFQ uses FIFO scheduling within
each queue and across queues the resources are shared ac-
cording to, strictly positive, queue weights, helping us satisfy
the predictability requirement. To highlight the flexibility of
WFQ, we show how it can be configured to optimize for ex-
treme points in the trade-off space of maximum predictability,
performance and fairness.

• Maximum Predictability: WFQ with a single queue is
exactly FIFO scheduling which achieves a prediction error
of 0

• Near-optimal Performance: Shortest Job First (SJF) is
near-optimal in minimizing avg JCT for a single bottle-
neck [83]. WFQ can map each job to its own queue and
give a higher weight to queues with smaller jobs, approxi-
mating SJF as shown by prior work [18, 88].

• Max-Min Fairness: If each job is mapped to its own queue
and each queue gets an equal weight, WFQ can emulate
Max-Min fair allocation which minimizes unfairness for a
single bottleneck [33].

As our analysis in §2 reveals, a combination of these objec-
tives is more practical. WFQ offers the necessary baseline
flexibility in the queue creation, job mapping and weight
assignment strategy. This motivates that we can achieve a
combination of these objectives as well, which leads to PCS’s
preference interface §3.2.

Beyond vanilla WFQ. Our core idea is the novel use of WFQ
to meet our objectives. First, PCS intelligently chooses the
number of queues, weights and the job-to-queue mapping

strategy to find various Pareto-optimal configurations, includ-
ing extreme points, such as FIFO, SJF and Max-Min Fair
Share. In PCS, jobs are mapped to different queues based on
their size and a set of thresholds (t ′i s), while strictly positive
weights (wi’s) dictate the guaranteed resource share for each
queue. For example, jobs with size > tk and ≤ tk+1 will be
mapped to the kth queue.

Second, within a queue, PCS deviates slightly from a strict
FIFO schedule in favor of improving performance and fair-
ness. In PCS, a job’s demand function is used to cap the
resources allocated to it. For example, a job at the head of
its queue may not be assigned all of the guaranteed resource
share of its queue (as in strict FIFO); instead, some of the
resources may be allocated to the jobs behind it. This allows
PCS to handle jobs that exhibits diminishing speedup w.r.t.
increase in allocated resources, such as ML training jobs (§4).

Finally, to ensure work-conservation, any residual alloca-
tion is then redistributed first within a queue in FIFO order
by incrementally relaxing the cap on each job’s demand func-
tion and then across queues proportional to their weights. We
expose the weights, thresholds and the demand capping cri-
teria to the preference solver which searches over the space
of possible choices of these parameters in order to discover
Pareto-optimal configurations (§3.3).

Prederr in PCS. Since PCS is work-conserving, a job may get
a higher resource share compared to its guaranteed share. For
example, if a job arrives when no other job is present, it will
be allocated all the available resources (up to demandmax).
This can lead to prediction errors (Prederr) if in the future,
other jobs arrive and occupy different queues.

In PCS, we bound these errors in a few ways. Firstly, a job’s
worst-case completion time is strictly bounded, irrespective of
the number of future arrivals in other queues or its own queue.
This is possible because each queue is assigned a strictly
positive weight and uses FIFO scheduling (both properties
of WFQ). By bounding the worst-case completion time of a
job, the number of preemption events a job will experience
during its lifetime is bounded, resulting in bounded Prederr.
Second, we exploit the fact that cloud systems are typically
highly loaded [37], and by limiting the queues created we can
reduce the likelihood of sudden and drastic changes in queue
occupancy due to future arrivals. Furthermore, the exact load
of a queue is controlled by the thresholds and weight assign-
ment strategy. These observations guide us in discovering
Pareto-optimal WFQ configurations.

3.2 Preference Interface

PCS exposes a simple yet expressive bi-directional interface
that allows operators to specify high level objectives and
present Pareto-optimal trade-offs (WFQ configurations) to
choose from. This is unlike other tunable systems [52, 64, 71]
which assume operators are aware of the trade-offs involved
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Figure 3: Pareto front of the trade-off between Prederr and nor-
malized average JCT for workload-2 (§5). Better indicates WFQ
configurations that achieve a tight bound on average/tail Prederr
while incurring the smallest possible increase in average JCT.

i.e., PCS actively tries to help the operator in making an in-
formed choice. Our decision to use Pareto-optimal choices,
as a way to support informed decision making, is grounded
in fundamental literature on multi-objective decision mak-
ing [34, 72], which maps neatly to the problem PCS is trying
to address: predictability while being practical.

The preference interface itself, is general enough to be used
in scenarios beyond predictability as well. For example it can
be used to strike a balance between fairness and performance
(e.g., Carbyne [35]) and between minimizing average and tail
JCTs [26, 28, 35, 70]. The preference interface exposes the
following API:

void SetPreference(
Obj1 <Metric , Measure >,
...,
ObjN <Metric , Measure >

);
List <WFQConfig > UpdateParetoFront ();
void SetWFQConfig(WFQConfig config );

The current PCS API supports three Metrics: Performance
(JCT), Fairness (unfairness), and Predictability (Prederr). The
SetPreference() method is used to specify the list of ob-
jectives; repeated entries are allowed to support exploring
trade-offs across different measures of the same metric. For
each objective, avg(.) or a particular percentile(p) needs
to be specified as a Measure.

We envision the following API usage life cycle
from an operators perspective: (1) Upon cluster deploy-
ment or drastic workload changes, the operator uses the
UpdateParetoFront() method to kick-start the preference
solver (§3.3). (2) The preference solver uses the updated work-
load information and preferences to discover the set of Pareto-
optimal WFQ configurations. (3) Once complete, the operator
can choose a specific WFQ configuration (WFQConfig) to be
used by invoking the SetWFQConfig() method.
UpdateParetoFront() requires PCS to passively collect

job size information and maintain a workload history. When
bootstrapping, PCS starts with a default WFQ configuration,

which can be any one of the extreme points in the trade-
off space (e.g., FIFO) described in §3.1. When sufficient
workload information is gathered, the preference solver is
initiated.

We now show how the API is used to target scenarios
covered in our evaluation.

Average JCTs vs. Average Prederr: Minimizing average
JCTs is a popular performance objective and has been a focus
of several scheduling policies [37, 76]. To explore the trade-
off between performance and predictability, one can specify
it as SetPreference(<JCT, avg>, <Prederr, avg>). We
use this for evaluating PCS for workload-1 and workload-2
in §5.

Average JCTs vs. Tail Prederr: Prediction error can be tightly
bound by specifying the tail Prederr (e.g., p99) as a measure
of predictability. In such a case, the objectives would stay
the same as in the above example, however, the measure for
Prederr would change from avg(.) to percentile(99). PCS
uses this specification for workload-3 where low p99 Prederr
is challenging to achieve with other policies.

Pareto Fronts. Figure 3 shows the set of Pareto-optimal
WFQ configurations generated by PCS for two realistic DNN
training workloads.

3.3 Preference Solver
The preference solver is responsible for finding Pareto-
optimal WFQ configurations for the objectives specified. It
uses a multi-objective search algorithm to navigate the space
of possible WFQ configurations. The optimization parame-
ters consist of the (1) number of queues, (2) queue weights,
(3) queue thresholds, and (3) resource allocation cap. These
parameters are deemed relevant as they directly control the
different trade-offs involved between the objectives consid-
ered by PCS. For example, the number of queues influence
the degree of preemption and hence predictability, while the
resource allocation cap influences the overall efficiency and
hence performance. Other common scheduling dimensions,
such as explicit priorities or deadlines, are not considered as
they relate to objectives beyond performance, fairness and
predictability. For example, some systems may want to pri-
oritize a longer running job. This conflicts with the goal of
minimizing JCT; which is rather achieved by assigning a low
priority to such jobs. Catering to such scenarios is beyond the
scope of PCS.

Finding Pareto-optimal configurations is challenging due
to the combinatorial nature of the configuration space. The
solver intelligently parameterizes each configuration to make
the search process feasible. It uses a simulation-based ap-
proach to evaluate the performance, predictability and fair-
ness of a particular WFQ configuration. These are fed to the
search algorithm, which decides the configurations to keep,
try out next, and discard.
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Intelligent Parameterization. To reduce the number of opti-
mization parameters we use the following heuristics:

• Creating Queues and Thresholds: Large variation in job-
sizes within a queue can lead to HOL blocking but creating
too many queues increases preemption events and deteri-
orates predictability. In PCS, queues are created based on
the squared coefficient of variation (C2) in the job-sizes,
as done by prior work [28]. We use a tunable parameter
0 < T <C2

max to ensure that queues are created such that
C2 of job-sizes within each queue is ≤ T , where C2

max is
the C2 of the entire job size distribution. A larger (smaller)
T results in fewer (more) queues created.

• Systematic Weight selection: Higher weights given to
queues with smaller jobs improves performance for most
workloads. On the other hand, a balanced weight assign-
ment strategy may improve fairness instead. Based on this,
we constrain the weight for the ith queue to be wi = e−i×W .
W is a tunable parameter which controls the relative
weights for each queue. A higher (lower) value of W
leads to a greater (lesser) disparity in weights among the
queues. For heterogeneous deployments, containing sev-
eral resource types (e.g., k different GPU types) we use
W1 . . .Wk.

• Finding Demand caps: The resource efficiency of a job
is used to decide its allocation cap and it is computed as
ζ(n) = demandmin

n×demand(n) , where demandmin is a job’s execution
time under its minimum possible allocation (e.g., 1GPU)
and it is a non-increasing function of the allocated resources.
For linear scaling jobs, ζ = 1, while for jobs that scale sub-
linearly, 0 < ζ ≤ 1. Instead of a fine-grained efficiency com-
parison between all jobs, we introduce a tunable threshold
ζmin to be used for all jobs, to reduce the search parameters.
Using this, a job’s resource allocation is capped at k such
that ζ(k) ≥ ζmin. Intuitively, a low (high) ζmin means the
scheduler is more (less) tolerant towards inefficient jobs.
Our evaluation in §5 shows that this heuristic is competitive
compared to the approach taken by other efficiency based
schedulers (e.g., AFS [44], Themis [62]).

Using these heuristics, WFQ(T ,W ,ζmin) becomes the suc-
cinct parameterization of each configuration. Different values
for these parameters results in different trade-offs between
the objectives specified by the operator. For example, setting
(T =C2

max,ζmin = 0) achieves maximum predictability (i.e.,
strict FIFO) as only one queue is created and no allocation
cap is enforced.

Simulation-based Search. We use a simulation based ap-
proach to discover Pareto-optimal WFQ configurations. Our
methodology utilizes a simulator, which accepts a WFQ con-
figuration (denoted by (T ,W ,ζmin)) as input. The simulator
evaluates the provided configuration under a random sample
(≈ 1000 job arrivals) of the collected workload (i.e., size dis-
tribution and average arrival rate) and outputs the resulting

JCT, FFT and JCTpred metrics. The results are then fed to
the search algorithm.

The search algorithm samples the search space of possi-
ble WFQ configurations and interacts with the simulator to
converge to Pareto-optimal solutions. We use SPEA2 as our
choice of the search algorithm. It is based on evolutionary
search and supports optimizing over multiple objectives [106].
Other multi-objective optimization algorithms can also be
used as an alternate, in a plug-and-play fashion. To improve
the robustness of each discovered WFQ configuration, it un-
dergoes multiple evaluations under different random samples
of the workload to increase its likelihood of being Pareto-
optimal.

While we don’t have any theoretical basis for the conver-
gence and optimality properties of our approach, it works well
in practice and can timely (≈ 1hr) discover the Pareto front
for a reasonably sized GPU cluster. Our evaluation confirms
that Pareto-optimal configurations found using simulations
follow the same trade-offs on the testbed experiment (§5.2).
We micro-benchmark the feasibility of the simulation-based
search strategy in §5.4.

4 PCS for GPU Scheduling

We now describe the realization of PCS for DNN scheduling
on GPU clusters, highlighting important differences and how
our abstraction of a job and demand function handles these
differences.

DNN Jobs. A job is either a single DNN training job or
a collection of DNN trials being run as part of a hyper-
parameter tuning task (i.e., AutoML). The demand function
for such workloads can be complicated. Modern DNNs re-
quire distributed training (e.g., data parallelism) on multiple
GPUs. They are known to have sublinear speedup w.r.t to the
(1) number, (2) type and (3) locality of GPUs allocated to
them [44, 62, 71, 79]. PCS relies on existing techniques, such
as throughput modelling and profiling, to estimate a job’s
demand function. As described in §3, the demand function
describes how the job’s execution time changes with different
resource allocations. Since allocations have three dimensions:
locality, GPU type and number of allocated GPUs, the demand
function takes as input different combinations and returns the
corresponding execution time. This is akin to the notion of
bids in Themis [62] and throughput in Gavel [71].

Role of Demand Functions. PCS uses demandmin as a job’s
size to map it to its respective queue. The demand function
is also used to cap the maximum GPU allocation for DNNs
that exhibit sub-linear speedup. Allocating GPUs up to the
maximum demand (demandmax) for such jobs can result in
poor performance. We evaluate this approach and show that
it works for DNN workloads consisting of jobs that scale
sub-linearly (§5.3). As described in §3.3, the allocation cap

494    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



is a tunable parameter for the preference solver and can be
adjusted for different trade-offs and workloads.

Implementation. We implement PCS as a central coordi-
nator in Python and use the Ray cluster manager [67] for
GPU allocation enforcement as well as for general cluster
management tasks such as fault tolerance. Each job is either
a single trial or consists of multiple trials as part of a hyper-
parameter tuning algorithm provided by RayTune [60]. We
use a custom ray_trial_executor to control starting, stop-
ping and preempting individual trials based on the allocations
computed by PCS. To determine the remaining service re-
quirements of running jobs, we use various callbacks (e.g.,
on_step_start) exposed by RayTune to get the exact num-
ber of iterations completed by each job and multiply it with
the profiled time per iteration.

In addition to the central coordinator, PCS consists of an
agent, which uses information about running jobs to provide
a prediction interface. This interface returns a JCTpred in
real time to the user whenever they submit their jobs. The
agent computes JCTpred by “virtually” playing out (i.e., in a
simulated setting) the current snapshot of the cluster state (e.g.,
running jobs, available GPUs etc.), accounting for preemption
overhead and demand functions of other jobs, to determine
the time at which the job will end. This approach is inspired
by prior work [29, 82], which use a simulator to compute a
job’s duration under different resource allocation strategies.

5 Evaluation

We evaluate PCS on a 16 GPU cluster with a realistic Au-
toML style workload to validate our observations. We also
cover additional workloads at a larger scale using an event-
based simulator. Our evaluation covers different application
workloads (e.g., heavy-tailed vs. light-tailed, AutoML apps
vs single DNNs), different scheduling schemes (e.g., Tire-
sias [37], Themis [62]) and different metrics (e.g, avg, p99).

Our evaluation attempts to answer the following key ques-
tions:

• How does PCS perform in terms of Prederr compared
to other schemes? Our testbed results reveal that PCS
configurations achieve significantly lower Prederr (20%)
while being within 10% of high performing schemes on the
performance side.

• Does PCS work well across different workload types?
The flexibility and predictability provided by PCS holds
across different workloads and across preference specifi-
cations. PCS can discover configurations that bound the
tail Prederr to be within 100% compared to AFS [44] and
Tiresias [37] which suffer from ≥ 300% error at the tail.

• Are PCS configurations fair? PCS configurations that are
optimized for the performance vs Prederr trade-off do not

Testbed (16 GPUs) Simulations (64 GPUs)

Workload Workload-1 Workload-2 Workload-3
Job Type AutoML DNN DNN
DNN/job 1-20 1 1

GPUs/DNN 1 1-52 1-8

Table 1: Summary of the settings used to evaluate PCS

necessarily suffer from unfairness because each queue is
guaranteed a GPU share which helps in avoiding starvation.

• Is the search process feasible? Our micro-benchmark re-
veals that the search process can complete within O(hr),
making it practical to use, and PCS configurations discov-
ered using the simulation based search-strategy observe the
same trade-off trends on the testbed.

5.1 Experimental Setup

Testbed. Our testbed cluster consists of 16 1-GPU c240g5 ma-
chines in the Wisconsin Cloudlab cluster [3]. Each machine
has one NVIDIA P100 GPU with 12GB GPU memory.

Simulation. We use an event-based simulator to cover work-
loads that contain jobs requiring O(100) GPUs on a homo-
geneous 64 GPU cluster. We have verified the fidelity of
our simulator with trace results from Microsoft [49] and our
testbed results with the difference being within 5%.

Pareto Search. The Pareto-optimal configurations for our
workloads are discovered by the preference solver §3.3 run-
ning on a cluster of 10 c220g5 machines in the Wisconsin
Cloudlab cluster [3]. It is important to note that these config-
urations are discovered and evaluated on different sampled
subsets of the workload i.e., there exists a notion of training
set vs testing set.

Workloads. Table 1 summarizes the characteristics of our
candidate workloads. We now discuss these workloads in
detail.

• Workload-1: We borrow this workload from Themis [62]
(referred in their work as Workload-1). For our testbed eval-
uation we scale down the maximum number of trials per
app to 20 and the maximum service time to 2 GPU-hours.
The maximum number of GPUs per trial is set to 1. Each
trial tunes a different hyper-parameter (learning rate and
momentum) of popular vision models from the VGG fam-
ily [81].

• Workload-2: We use traces from 6 virtual clusters from
Philly [5] containing the largest number of jobs. In contrast
to other workloads, jobs in these traces exhibit sub-linear
scaling. We use the scaling data shared by Hwang et al.
on Github [1]. More details are in the attached artifact
appendix A.
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• Workload-3: This is borrowed from Gavel [71] (referred
in their work as continuous-multiple). It is a heavy-tailed
workload, with a large number of very small jobs and few
long running jobs. We run this workload at a job arrival rate
of 4 jobs/hr.

A common characteristic of these workloads is that the mini-
mum requirement of any job is 1 GPU i.e., as long as there
is at-least one GPU available, a job can start. This also holds
true for RayTune apps which we use in our testbed evaluation.

Scheduling Policies. We compare PCS against FIFO and
recently proposed GPU scheduling systems (Themis [62],
Tiresias [37], AFS [44]). All scheduling policies considered
in our evaluation are “work-conserving” and elastic i.e., they
redistribute unused GPUs amongst other jobs according to
the policy. For example for FIFO if a job only needs k GPUs
and n are available, where n > k, then n− k are attempted to
be allocated to the next-in-line jobs.

We now describe our implementation of Themis, AFS, and
Tiresias that we use in our evaluation.

• Themis [62]. On every resource change event and lease
duration expiry, in-progress jobs report their fair-finish-time
and we allocate GPUs to jobs in descending order of the
reported number. We do not consider the scenario where
jobs could lie and thus do not require the partial allocation
mechanism. The lease duration is set to 10 minutes as per
the recommendations of the authors.

• Tiresias [37]. Since we assume complete knowledge about
job sizes, here Tiresias emulates the Shortest-Remaining-
Service-First (SRSF) policy.2 As such, GPUs are first allo-
cated to jobs with the lowest remaining service times on
every resource change event.

• AFS [44]. This scheduler tries to minimize avg and tail
JCTs while maximizing resource efficiency. On every re-
source change event we compute each job’s allocation using
the AFS-L algorithm.

PCS Configurations. We use three configurations for PCS:
(1) PCS-pred, (2) PCS-JCT, and (3) PCS-balanced. Each
configuration makes a different trade-off. PCS-pred has the
highest JCT but the lowest Prederr amongst the three. For each
workload and objective the set of WFQ configurations are dif-
ferent and are discovered using the preference specifications
described in §3.2.

Comparison Criteria. We evaluate the merit of PCS on three
fronts:

1. Job Completion Times (JCTs): A commonly used metric
to evaluate the performance of scheduling policies.

2Referred to as Tiresias-G in their paper
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Figure 4: [TESTBED] Distribution of Prederr showcasing three con-
figurations of PCS discovered by PCS — performance oriented,
predictability oriented and balanced compared to other schemes.
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Figure 5: [TESTBED] Zooming into the trade-off between perfor-
mance and predictability. PCS is within 1.1× AFS at p90 JCT, with
significant improvement to predictability.
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Figure 6: [TESTBED] (a) shows the CDF of unfairness showcasing
that PCS does not significantly compromise on fairness compared
to a policy that optimizes for it. (b) highlights the Pareto-optimal
configurations discovered in a simulated environment observe the
same trend on the testbed evaluation.

2. Unpredictability (Prederr): A proxy to capture the error in
JCTpred.

3. Unfairness: It captures the extra time taken by a job to
complete, compared to its fair-finish-time (FFT) and is 0
for jobs that complete before their FFT.

We consider all important statistics such as the average and
tail (e.g., p99 Prederr, avg JCTs) for all objectives. For each
objective, a lower value is better.3

3The testbed result is an average across 3 seeds while simulation results
are an average across 5 seeds
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5.2 Testbed Experiment
For our main experiment we compare three PCS configu-
rations, discovered by the preference solver for workload-1,
against other schemes.

A tight bound on Prederr. Figure 4 shows the CDFs of
Prederr achieved by different scheduling schemes and the
three PCS configurations. We observe that all PCS configura-
tions are able to achieve significantly lower Prederr. At p90,
the difference is an 80% lower error achieved by all config-
urations compared to other schemes. At higher percentiles,
PCS-pred provides the lowest worst-case Prederr of 150%
while other schemes have a long tail. PCS-JCT still has a
lower Prederr up until p95.

Negligible performance sacrifice for high predictability.
Figure 5 zooms into the performance versus predictability
trade-off achieved by PCS-JCT compared to AFS and Tiresias
which aim to minimize JCTs. We see that PCS-JCT achieves
equivalent performance to AFS and Tiresias for the average
JCTs. It is within 1.1× of AFS at p90, however this trade-
off results in significant improvement on the predictability
front, where Tiresias and AFS suffer. Prederr under PCS-JCT
is within 20% for average and p90 Prederr while AFS and
Tiresias have ≥ 40%(≥ 100%) prediction error at the aver-
age (p90). This signifies that PCS-JCT trades off negligible
performance to significantly improve predictability. Another
source of improvement we observe is that since PCS makes
limited use of preemption, overheads associated with preempt-
ing running jobs are reduced compared to other schedulers.
This is the reason behind PCS outperforming performance
oriented schedulers (i.e., AFS and Tiresias).

Unfairness. Figure 6a compares the unfairness for PCS-JCT
compared to AFS, which optimizes for average JCT, and
Themis, which minimizes unfairness. PCS achieves lowest
unfairness till p95 and has the worst-case unfairness ≤ 100%
compared to AFS which has a worst-case unfairness > 200%.
Not surprisingly, Themis offers the tightest bound on the
worst-case unfairness of less than 50%.

Pareto-optimality. Finally, figure 6b shows different PCS
configurations that achieve different trade-off points in the
space of avg JCT vs avg Prederr. As expected, PCS-JCT
has the lowest avg JCT, while PCS-pred achieves the lowest
average Prederr.

5.3 Simulation Experiments
We now consider different workloads at a larger scale in sim-
ulations and show the trade-offs achieved by suitable PCS
configurations compared to performance and fairness optimal
schedulers.

Workload-2. Figure 7 compares the performance and pre-
dictability of PCS with other schedulers for workload-2. For
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Figure 7: [SIM]: PCS for workload-2. a) Most PCS configurations
are within 1.5-4×of the performance optimal policies while b) shows
that they drastically reduce the average and tail Prederr. In b), the bar
height (line) represents average (p99) Prederr and the y-axis follows
a logscale.
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Figure 8: [SIM]: Showing that schemes that optimize for average
JCTs for workload-3 also have a small average error. For such work-
loads, the tail Prederr becomes an important metric.

such workloads, AFS achieves the lowest possible avg JCT
by giving more GPUs to jobs with higher efficiency. Despite
its conservative approach in dealing with sub-linear scaling
jobs, PCS remains within 1.5 to 4× of the optimal scheme
for minimizing avg JCT, while drastically reducing the avg
and tail Prederr. For example, PCS-JCT reduces the average
Prederr from 80% to 1% for Trace #2 and PCS-pred reduces
the p99 Prederr from 900% to 10% for Trace #3.

Workload-3. Figure 8 compares the different schedulers for
workload-3. For this workload, we observe that schedulers
optimized for performance, including PCS-JCT achieve rea-
sonably low average Prederr. This is because for workload-3,
majority of the jobs are small and similar in size. For such
workloads, tail Prederr, becomes important owing to some
jobs being starved under priority schedulers. With the appro-
priate preference specification, PCS discovers configurations
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Figure 9: Feasibility of the simulation-based search strategy. (a)
captures the time to run a single simulation, (b) shows the time it
takes to discover the entire Pareto-front. (c) highlights that intelligent
parameterization helps in discovering more Pareto optimal points
for a given evaluation budget.
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Figure 10: Shows the effects of error in job size and load estimation.
a) compares the average Prederr using PCS and FIFO [86] with
varying job size estimation error. b) compares the avg JCT of PCS
and AFS [44] under the same error. c) shows sensitivity of WFQ
configs to load changes.

that can drastically reduce the p99 Prederr. For example, PCS-
JCT reduces the Prederr from ≥ 300% to ≈ 100% while being
within 1.1× of performance optimal schemes (Fig. 8b).

5.4 Micro-benchmarks

Feasibility of the Search Strategy. Figure 9a shows that PCS
takes O(minutes) to run a single simulation for a given load
(number of jobs) and cluster size (number of GPUs). PCS
extensively leverages the underlying parallelism to discover
the Pareto-front – requires running ≈ 1000 simulations– in
approximately 60 minutes (Fig. 9b). Figure 9c shows that
PCS benefits from the heuristics (discussed in §3.3) to speed
up the search and improve the quality of the Pareto-front
by discovering new points faster than searching on the un-
parameterized search space.

Error in Job Size Estimation. Figure 10 shows the impact
of estimation error in job-sizes on the predictability and per-
formance of PCS. As job-size estimation gets poorer, the
impact on avg Prederr follows the same trend as the Prederr
under FIFO (Fig. 10a). Figure 10b, compares the avg JCTs of
AFS with no error in job-size estimation to PCS with varying
estimation error. PCS is still within 1.05× of AFS. This is
because as long as the job is mapped to the correct queue, the
error in estimating its size has limited impact on performance.

Sensitivity of Pareto-optimal configurations. To evaluate

the sensitivity of Pareto-optimal configurations, we evaluate
configurations discovered for workload-1 assuming 60% load
on a system actually running at 80% load. Figure 10c shows
that while the exact trends do not hold when the estimated
workload is a mismatch, 75% of the configurations are within
10% of the closest Pareto-optimal point.

6 Discussion

Generalizability of PCS. In this paper, we realized PCS
for ML workloads, however, it is designed as a generic job
scheduling framework and the core insights (e.g., utilizing
WFQ to realize multiple trade-off points, bounded preemp-
tion to provide predictability, etc) still hold across differ-
ent scheduling scenarios. We tease apart different aspects
of PCS’s current realization and discuss their broader appli-
cability. (1) Providing JCTpred. JCTpred can be computed
if a job’s demand function or simply put, its size is either
known or can be estimated. There are several scheduling
scenarios, beyond ML, where this requirement holds. Prior
work has looked at estimating job sizes for requests in mi-
croservice deployments [51, 102], network flows [27, 58],
compute tasks in data processing clusters [13, 21, 50] and I/O
requests in storage clusters [40, 41]. In some scenarios, like
network (co)flow scheduling, the demand function is simple:
estimated (co)flow size

allocated bandwidth , while in other scenarios it may be more
complicated and costly to determine. (2) Search process. The
current simulation-aided search process is meant to be trig-
gered on coarser timescales, assuming workloads are stable
and predictable on shorter timescales. This is true for ML
workloads as highlighted in §2 but also for some workloads
beyond ML [48,50]. If workload changes are highly dynamic,
the search process may not be able to keep-up. This opens up
an interesting avenue for future research to tailor the search
process for such workloads.

Resource Heterogeneity. To handle resource heterogeneity
(e.g., different GPU types), PCS can reuse an existing so-
lution: Gavel [71], which makes a GPU scheduling policy
heterogeneity-aware. It supports hierarchical policies with
weighted-fairness across entities and FIFO scheduling within
an entity. The different parameters of WFQ (e.g., number of
queues, weights etc.) map elegantly to these primitives. Once
an operator chooses a WFQ configuration, PCS can convert
it into an optimization problem that Gavel can solve for.

Sophisticated prediction techniques. Using more compli-
cated prediction techniques is orthogonal work. We posit that
future arrivals, the main source of unpredictability, may be
difficult to take into account in the prediction decision given
that various attributes about them are unknown. For instance,
a future job’s demand function and its arrival time cannot be
determined before it actually arrives. Our emphasis is on mak-
ing scheduling predictable and rely on a simple prediction
strategy instead.
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Other use-cases of JCTpred. In addition to the use-cases dis-
cussed in §2, JCTpred can be used to co-design AutoML app
schedulers (e.g., Hyperband [57]) with the underlying system;
based on the predicted completion time, the app scheduler can
decide to prioritize certain DNNs/trials over another. This can
be framed as a bi-level optimization problem where the end
goal is to find the most promising DNN hyper-parameters in
the quickest time. This will require widening the prediction
interface to allow users the option of cancelling and making
shadow reservations. Beyond ML workloads, JCTpred can fa-
cilitate user applications in i) replica selection strategies (e.g.,
MittOS [40]), and ii) optimizing the right parallelism and
placement for network-bound data processing tasks [29, 69].

Deciding between Pareto-optimal choices. Exposing trade-
offs as Pareto-optimal choices can help operators to make
informed choices by narrowing down the possibilities. We
still, however, rely on the operator’s ability to decide between
them. One potential strategy is to elicit user preferences via
surveys and averaging them to come up with a cluster wide
trade-off point. Allowing individual users to pick different
preferences on a per job basis, however, can result in cross-
user conflicts which may be difficult to resolve. We leave
picking preferences on a per-job basis as future work.

7 Related work

Scheduling Systems. A large body of work emphasizes
on intelligent GPU scheduling for DNN workloads, consid-
ering metrics such as minimizing average job completion
times [37,44,55,87,98], maximizing fairness [14,62,93], clus-
ter efficiency [44,55,94] and average DNN accuracy [76,100].
They use preemption based techniques to achieve their objec-
tives; we show in this paper that preemption is detrimental to
predictability.

PCS can benefit from system-level techniques, such as
elastic scaling [44,74], efficient GPU preemption [85,92–94],
DNN throughput profiling [61, 79], job/AutoML app size
estimation [62, 76], and sharing-safety [103] used in these
systems. However, in contrast to them, PCS focuses on pre-
dictability by limited use of preemption and offering flex-
ibility to cluster operators in choosing various trade-off
points between predictability and other traditional objectives.
Gavel [71] also translates different scheduling policies to opti-
mization objectives but does not cover predictability and only
finds a point solution for each objective while PCS allows
operators to choose from a range of Pareto-optimal choices.

Multi-queue Scheduling. A broad category of schedulers
use the idea of queue-based scheduling [10, 18, 25, 26, 28, 37,
68, 70] in different contexts to achieve performance related
goals. We borrow ideas from these techniques. For example,
like 2D [28], we also create queues based job size variation
within a queue. Similarly, our limited use of multiplexing

is inspired by the FIFO-LM scheduler [26]. However, these
techniques opt for a fixed strategy in creating queues, mapping
jobs to queues and assigning weights (e.g., Baraat [26] and
Tiresias [37] only use 2 queues) and will be limited to offering
a fixed trade-off between objectives.

Adaptive Schedulers. There are multiple recent examples of
empirical, adaptive cluster management. For example, Self-
Tune [52] applies reinforcement learning techniques to au-
tomatically update the cluster management policy based on
periodic cluster status updates. Decima [65] uses simulations
to learn optimal scheduling algorithms for data processing.
SWP [104] uses a simulation guided approach to find op-
timal bandwidth scheduling decisions. These works show
the efficacy of using simulated environments to learn system
decisions. Our strategy is inspired by them.

Predictable Scheduling. Predictable scheduling and delay
guarantees has been studied in broader contexts. Weirman
et al [91] classify different scheduling policies based on the
variation in the slowdown experienced by jobs. Other stud-
ies [22, 43] look at the benefits of providing delay informa-
tion to users and understand how much delay is tolerable.
CFQ [15] defines predictability as a job’s FFT, similar to
Themis. However, FFT is prone to variation itself as new jobs
arrive [50].

8 Conclusion

In this paper, we called for providing predictability as a first or-
der consideration in GPU scheduling systems. Our inspiration
comes from real-world systems that provide their users with
predictions (e.g., estimated delivery dates). Our solution, PCS,
provides predictability while balancing other considerations
like performance and fairness. It comprises of a bi-directional
preference interface to empower cloud operators in making
informed trade-offs between multiple objectives. To realize
these trade-offs, PCS uses WFQ in unique way coupled with
a simulation-based strategy to discover Pareto-optimal WFQ
configurations. Our results show the flexibility of PCS in
achieving a wide range of operator objectives, offering a first
step towards predictable scheduling in a practical way.
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A Artifact Appendix

Abstract
We have open sourced our implementation of PCS
at https://github.com/TuftsNATLab/PCS/tree/osdi24-artifact.
The repository contains jupyter notebooks to recreate figures
from the paper as well as scripts to simulate schedulers used
in the paper including PCS, FIFO, Tiresias, Themis, and AFS.
There are also instructions for running the testbed on Cloud-
lab.

Artifact Checklist
• Algorithms: Both the simulator and testbed implement

PCS as well as FIFO, Tiresias, Themis, and AFS.

• Hardware: Experiments on a physical cluster require
16 type c240g5 nodes on CloudLab. The nodes should
be running Ubuntu 22.04.

• Setup Instructions: Setup instructions are available in
TESTBED.md and the system prerequisites and setup
sections of README.md. TESTBED.md provides in-
structions on setting up PCS on a CloudLab cluster as
noted above as well as setting it up locally, provided the
system has CUDA compatible GPUs.

• Runtime The testbed experiments take approximately
a day (multiple hours per configuration) and the simula-
tions take < 1 hr.

Description
Hardware Dependencies

We ran experiments on 16 c240g5 type nodes on CloudLab.
We tested our system on Ubuntu 22.04 with Python 3.10.12
that should be accessilbe with python3. For more details,
see TESTBED.md and the system prerequisites section of
README.md.

Software Dependencies and Hardware Configuration

Software dependencies and hardware configuration can be
installed using a script provided in the artifact. For details,
see TESTBED.md.

Datasets

Experiments use either job workloads to generate traces, or
directly use traces. Workloads consist of a distribution of
arrival times, service times, min/max GPUs, and number of
jobs per application. These are in the workloads and traces
folders respectively. Traces from 6 virtual clusters (vc id’s:
0e4a51, b436b2, 6214e9, 6c71a0, 2869ce, and ee9e8c) from

Philly [49] are used in some simulator experiments. PCS
configurations (PCS-JCT, PCS-bal, PCS-pred) used for each
experiment can be found in the PCS_configs folder.

The testbed experiment train a VGG16 model using the
CIFAR-10 dataset [53] which is automatically downloaded
when the testbed experiment is started.

Experiment workflow
There are two kinds of experiments in the repo - simulation
and testbed. For each of these experiments there are additional
jupyter notebooks for plotting the results and creating the
graphs used in this paper. The data needed to generate graphs
used in the paper can be created with shell scripts described
in the README of the respository.

Simulation experiments are run from a workload that is
generated by a known distribution of job characteristics. We
sample from these distributions and generate a workload that
matches the provided cluster load, number of GPUs, and num-
ber of apps. The workload is then run through the simulator
using a selected scheduling strategy.

The testbed is run on CloudLab using a ray cluster that has
been modified to implement PCS.

Running Additional Simulations
We provide in the artifact the ability to choose and evalu-
ate different PCS configurations, beyond the ones covered
in the paper, for a set of workloads and traces. The user can
also modify different experiment parameters (e.g., number
of GPUs, number of apps, load). For more details, see repro-
duce.py and sim.py.
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Optimizing Resource Allocation in Hyperscale Datacenters:
Scalability, Usability, and Experiences

Neeraj Kumar, Pol Mauri Ruiz, Vijay Menon, Igor Kabiljo, Mayank Pundir,
Andrew Newell, Daniel Lee, Liyuan Wang, and Chunqiang Tang

Meta Platforms

Abstract
Meta’s private cloud uses millions of servers to host tens of
thousands of services that power multiple products for billions
of users. This complex environment has various optimization
problems involving resource allocation, including hardware
placement, server allocation, ML training & inference place-
ment, traffic routing, database & container migration for load
balancing, grouping serverless functions for locality, etc.

The main challenges for a reusable resource-allocation
framework are its usability and scalability. Usability is im-
peded by practitioners struggling to translate real-life poli-
cies into precise mathematical formulas required by formal
optimization methods, while scalability is hampered by NP-
hard problems that cannot be solved efficiently by commer-
cial solvers.

These challenges are addressed by Rebalancer, Meta’s
resource-allocation framework. It has been applied to dozens
of large-scale use cases over the past seven years, demonstrat-
ing its usability, scalability, and generality. At the core of Re-
balancer is an expression graph that enables its optimization
algorithm to run more efficiently than past algorithms. More-
over, Rebalancer offers a high-level specification language to
lower the barrier for adoption by systems practitioners.

1 Introduction
In Meta’s private cloud, millions of servers are deployed to
host tens of thousands of services, powering dozens of prod-
ucts that serve billions of users. In such a complex environ-
ment, we routinely encounter a wide variety of resource allo-
cation problems. The following are some real examples:

• Hardware placement [30]: Decide when and where to add or
remove server racks in a datacenter while balancing compet-
ing goals such as staff work schedule, power budget, spread
across fault domains, and colocation for proximity, e.g., ML
training servers requiring high-bandwidth network.

• Service placement [32]: Decide on the allocation of servers
to services while spreading each service across fault do-
mains and optimizing the matching between services and

server generations, as different services exhibit varying per-
formance across server generations.

• Service sharding [25]: For sharded services like databases,
determine how to migrate data shards both within and across
datacenter regions in response to real-time load changes,
while ensuring spread across fault domains and preventing
too many concurrent changes that could destabilize the
system.

• Traffic routing [5]: Route traffic from billions of users to ge-
ographically distributed datacenters while optimizing net-
work latency and datacenter load.

• Locality groups [35]: Intelligently partition serverless func-
tions into groups, with each server executing functions ex-
clusively within its designated group. The objective is to
enhance locality, maximize hits in the JIT code cache, and
balance CPU and memory usage across servers.

All these problems have a common pattern where we want to
assign a set of objects to a set of bins in a way that optimizes
specific objectives while meeting certain constraints.

Mixed-Integer Programming (MIP) is a well-known tech-
nique that can be used to solve such assignment problems. In
this approach, assignment variables, denoted as vi j, take the
value of 1 if object i is assigned to bin j, and 0 otherwise. A
MIP solver determines optimal values for these variables, op-
timizing the specified objectives while adhering to the given
constraints.

While MIP is conceptually straightforward and has been
explored in systems research [11, 21, 41], reports of its usage
in large-scale production systems are limited. For instance, in
the context of load balancing for sharded services, Google’s
Slicer [2] relies on hand-crafted heuristics, and Azure Service
Fabric [21] unsuccessfully experimented with MIP before
eventually adopting simulated annealing. Meta’s own shard-
ing system, Shard Manager [25], initially used hand-crafted
heuristics for several years, but it became too complex to add
new features. Eventually, it adopted the framework described
in this paper.

The limited adoption of MIP in solving large-scale systems
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problems is primarily due to its two major limitations: usabil-
ity and scalability.

Usability. Despite MIP’s conceptual simplicity, most systems
practitioners lack the training to translate real systems’ com-
plex, and sometimes ad hoc, policies into MIP’s precise math-
ematical formulas. To address this usability gap, DCM [38]
enables developers to express constraints using familiar SQL
statements, while Wrasse [34] employs a domain-specific lan-
guage for the same purpose. However, industry adoption of
these approaches is yet to be reported, and thus, their gener-
ality remains unverified. Moreover, they do not sufficiently
address the scalability challenge described below.

Scalability. Recall that assignment variables vi j represent
whether object i is assigned to bin j. Therefore, an assign-
ment problem has |O|× |B| variables. Here, O is the set of
objects, B is the set of bins, and |O| and |B| are their sizes.
Although one can define assignment variables differently to
reduce their number, the overall input size of a MIP problem
formulation is still O(|O|× |B|); we omit the details here. In
our large-scale private cloud, assignment problems involve up
to several million objects and 100,000 bins. However, even
approximate MIP solvers would struggle with O(1011) as-
signment variables, not to mention that most assignment prob-
lems are NP-hard.

1.1 Overview of Rebalancer
To address the usability and scalability challenges, we have
developed Rebalancer, a generic assignment problem solver.
Over the past seven years, it has been applied to dozens of
diverse use cases, demonstrating usability, scalability, and
generality.

There are three core issues in designing a solver: model
specification, model representation, and model solving. To
address the scalability challenge, Rebalancer represents the
model as a directed acyclic graph (DAG), reducing the model
size from O(|O|× |B|) to O(|O|+ |B|). Moreover, the graph
representation is a fundamental reason why Rebalancer’s op-
timized local search can solve the model more efficiently than
past local search algorithms [1]. To address the usability chal-
lenge, Rebalancer supports declarative model specification
through intuitive APIs, automatically translating high-level
specifications into the graph representation for efficient pro-
cessing. We discuss each of these topics below.

Model specification. To address the usability challenge, Re-
balancer employs a three-step approach to incrementally ele-
vate the level of abstraction for ease of use. First, it introduces
essential modeling constructs, such as dimensions (represent-
ing objects and bins’ attributes like CPU and memory) and
bin scopes (representing server, rack, datacenter, etc). Next, it
provides an expression API to expose commonly used expres-
sions (e.g., Max and Sum) for transformations on these con-
structs, as well as recursively on other expressions. Finally,
leveraging these expressions, it exposes a high-level spec API

implementing dozens of common objectives and constraints.
The high-level spec API enables developers to effortlessly

construct assignment problems (see Figure 1). For example,
CapacitySpec allows developers to specify constraints such
as memory usage on a server with 64GB memory, and Group-
CountSpec can be used to specify that each server rack can
host at most one replica of a database shard, ensuring spread
across fault domains.

If no existing high-level spec meets a developer’s needs,
they can always utilize the expression API to define a new
spec, which can then be exposed for other developers to reuse
in the future. In practice, across dozens of use cases supported
by Rebalancer, 85% of their constraints and objectives are im-
plemented by directly reusing existing specs, without resort-
ing to the expression API. Moreover, we demonstrate that it is
relatively easy to define a new spec using the expression API.

Model representation. After a developer leverages the specs
to define an assignment problem, Rebalancer translates it
into an expression graph G . Each node in G represents an
expression constructed from its child expressions. Due to
careful choices in model constructs and common expressions,
the size of G is scalable, O(|objects|+ |bins|), as opposed to
O(|objects|× |bins|) in the MIP problem formulation.

Model solving. Since the class of assignment problems are
in general NP-hard, our goal is to find a high-quality solution
within a reasonable amount of time. For small problems, Re-
balancer translates the expression graph into a MIP model
and solves it with commercial solvers. However, large prob-
lems at Meta are either too large for commercial solvers or
have tight deadlines, e.g., due to real-time load balancing re-
quirements. To address these limitations, Rebalancer imple-
ments an optimized local search algorithm. The graph rep-
resentation is the fundamental reason why this algorithm is
more efficient than past local search algorithms [1, 29, 33, 34].

Contributions. This paper makes the following contributions.

• First of a kind. To our knowledge, Rebalancer is the first
framework that solves a wide range of assignment problems
and has been extensively validated through production us-
age in hyperscale infrastructure.

• Model specification. Seven years of hands-on experience
with dozens of use cases has allowed us to iteratively im-
prove and arrive at the current modeling constructs and high-
level specification API. Although other usability-enhancing
abstractions have been proposed before, their generality has
not been validated through widespread production usage.

• Model representation. Due to careful choices in model
constructs and expressions, the size of the expression
graph is scalable, O(|objects| + |bins|), as opposed to
O(|objects|× |bins|) in the MIP problem formulation.

• Model solving. The expression graph is also an important
distinction that enables us to design a highly scalable algo-
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rithm for model solving, utilizing optimized local search on
top of the graph.

In subsequent sections, we will describe model specification,
model representation, and model solving, in that order.

2 Model Specification
Rebalancer allows developers to easily specify an assignment
problem as a composition of a predefined set of high-level
specs. Figure 1 shows such an example.

2.1 Modeling Constructs
To ensure reusability of the specs, Rebalancer defines a set of
modeling constructs that can flexibly represent user require-
ments:

• Dimensions. A dimension is a mapping of each object and
bin to a number. For example, the memory dimension of a
server (a bin) specifies the server’s memory capacity, while
the memory dimension of a task (an object) specifies the
amount of memory needed to run the task. Dimensions can
also represent complex relationships. For example, we can
define a prohibitedObjects dimension, where an object takes
a value of 1 or 0, depending on its assignability to a bin.

• Bin hierarchy. Rebalancer uses scopes to represent the hi-
erarchical structure of bins. For example, the datacenter
and rack scopes represent servers in a datacenter or rack. A
scope divides bins into sets called scope items. For exam-
ple, under the rack scope, the scope items rack1 and rack2
represent the set of servers in those specific racks.

• Object hierarchy. Similar to scopes and scope items for
bins, an object partition is an aggregation of objects, which
may not be necessarily disjoint. Each set in the partition is
referred to as a group. For example, in the context of cluster
management, all tasks are partitioned into jobs and a job is
a group of tasks that run the same executable.

As a concrete example of using these constructs, Figure 1
defines two dimensions, CPU and storage, to model resources;
a rack scope as a fault domain; and a job partition where each
group comprises tasks that run the same executable.

2.2 Definition of Utilization
Next, we describe an important concept called utilization of
bins or scope items. It encompasses, but is more general than
the intuitive concept of a server’s CPU or memory utiliza-
tion. Formally, given an object-to-bin assignment and a di-
mension D, the utilization of a bin b j with respect to D, de-
noted util(b j,D), is defined as the sum of dimension values of
all objects assigned to the bin. That is,

util(b j,D) = ∑
oi∈O

D(oi) · vi j, (1)

where D(oi) is the dimension value of object oi, and vi j takes
value 1 if oi is assigned to b j and 0 otherwise.

/ / Do n o t exceed CPU and s t o r a g e c a p a c i t y .
addConstraint ( CapacitySpec (

scope=" s e r v e r " , dimension="CPU" ) )
addConstraint ( CapacitySpec (

scope=" s e r v e r " , dimension=" s t o r a g e " ) )

/ / A r a c k h o s t s no more t h a n one t a s k p e r j o b .
addConstraint ( GroupCountSpec (

scope=" r a c k " , dimension=" Objec tCoun t " ,
partition=" j o b " , limit = 1 ) )

/ / Ba l ance CPU and s t o r a g e usage a c r o s s s e r v e r s .
addObjective ( BalanceSpec (

scope=" s e r v e r " , dimension="CPU" ) )
addObjective ( BalanceSpec (

scope=" s e r v e r " , dimension=" s t o r a g e " ) )

Figure 1: Using Rebalancer’s high-level specs to specify the
objectives and constraints for assigning tasks (objects) to
servers (bins).

For example, a bin’s utilization with respect to the Ob-
jectCount dimension is simply the number of objects as-
signed to it. Note that utilization can also be defined for a
scope item with respect to a group of objects. For exam-
ple, util(rackr, job j,ObjectCount) counts the number of job j’s
tasks deployed on servers in rackr.

Flavors of utilization. The basic definition of utilization in
Eqn 1 is inadequate for certain intricate scenarios. For in-
stance, in the process of migrating a data shard from a source
server to a destination server, it may be necessary to first load
the shard on the destination, ensuring its healthy operation,
before removing it from the source. Throughout this transi-
tion period, which might be prolonged when involving sub-
stantial data copying, the shard consumes resources on both
the source and destination servers. Another scenario involves
modeling system stability requirements, such as restricting
the number of objects moved in and out of a bin.

To accommodate these complexities, we introduce addi-
tional utilization variants. Utilization of bin b j is the sum of
contributions from a set of objects. In Eqn 1, this set consists
of objects currently assigned to bin b j, referred to as AFTER.
Additionally, we define sets like INITIAL, representing the ob-
jects initially assigned to b j, and STAYED= INITIAL∩AFTER,
denoting the initial objects that remained in bin b j. Extending
the notation to include the temporal set of objects contribut-
ing to utilization as util(b j,D,TIME), we refer to it as TIMEutil,
where TIME can be AFTER, STAYED, or INITIAL. Concretely,
expressions like INITIALutil, AFTERutil, and STAYEDutil capture
the utilization by the sets of INITIAL, AFTER, and STAYED
objects, respectively.

Through set operations on these base definitions of util, we
can create derived definitions such as:
• NEWutil = AFTERutil−STAYEDutil which captures the uti-

lization of new objects that moved into bin b j.

• OLDutil = INITIALutil−STAYEDutil which captures the uti-
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lization of old objects that moved out of bin b j.

• ANYutil = INITIALutil + AFTERutil − STAYEDutil which cap-
tures the utilization of objects that were in bin b j at any
point in time. Note that subtracting the STAYED term avoids
double counting for objects that stayed in b j.

These utilization variants help capture complex scenarios. For
instance, ANYutil can model double occupancy, while NEWutil

and OLDutil can model system stability.
Internally, Rebalancer translates these utilization variants

into their mathematical forms. AFTERutil is simply Eqn 1
using vi j determined by the current assignment. INITIALutil

is a constant value that can be pre-computed from Eqn 1
using the initial assignment. To implement STAYEDutil =
util(b j,D,STAYED), a new dimension named Dinit

j is intro-
duced for each bin b j. This dimension takes the value D(oi)
for all objects initially assigned to b j and zero otherwise. We
can again use Eqn 1 with the fact that util(b j,D,STAYED) =
util(b j,Dinit

j ,AFTER).

2.3 Common Specs
Over the past seven years, through the process of supporting
dozens of large-scale use cases, we have iteratively developed
the common specs shown in Table 1. On average, an assign-
ment problem uses seven specs, with a maximum of 14.

Table 1 highlights the reuse of many specs, with six used
only once, suggesting they are developed when needed ini-
tially. The high-level spec API prioritizes ease of use, while
the low-level expression API offers extensibility for new spec
development. It provides different flavors of util expressions,
mathematical operators (Max, Sum) for aggregation, and trans-
formation operators (Step, Ceil, Log, and Power). Besides be-
ing user-friendly, this API enables modeling of non-linear
properties, providing a more convenient alternative to craft-
ing a MIP problem formulation from scratch. Overall, the ex-
pression API facilitates the implementation of simple specs
in dozens of lines of code, and even the most complex specs
can be implemented in a few hundred lines of code.

Consider, for example, the introduction of UtilIncreaseC-
ostSpec to prioritize moves to servers with CPU utiliza-
tion less than a specified threshold T0. When all servers
have CPU utilization over T0, it favors the one with the
least utilization. Using the expressions API, this is modeled
in just 65 lines of code by adding the penalty expression
Power(excessUtili, 2) to the objective for every server i. Here,
excessUtili = Max(0, util(serveri,CPU,AFTER)−T0).

3 Case Studies of Model Specification
In this section, we describe how to model several real world
assignment problems using Rebalancer’s spec language.

3.1 Hardware placement
To provide context, we first outline our infrastructure hierar-
chy: datacenter region�datacenter�suite�main switch board

(MSB)�server row�server rack�server. Globally, there are
tens of datacenter regions and each region has multiple data-
centers within a few miles’ radius. Each datacenter consists
of four large rooms called suites. Each suite has three MSBs,
each supplying power to 10K to 20K servers laid out as rows
of server racks. Each rack hosts tens of servers.

A datacenter undergoes continuous evolution with the addi-
tion of new server racks and the removal of existing racks for
maintenance or decommissioning. The hardware-placement
problem involves computing an optimized weekly schedule
for these operations, considering the staff’s work schedule,
ensuring hardware spread across fault domains, and adhering
to capacity constraints on power, network, etc.

We model racks as objects and (week, position) pairs as
bins, where a position is a physical location in the datacenter.
We introduce scopes, such as MSB and week, where each
scope item is a collection of bins associated with the same
MSB and week respectively. Similarly, an object partition of
racks can be defined, where each group consists of racks of
the same type. In the following, we outline a small subset of
objectives and constraints for hardware placement.

• New racks. Initially, all new racks belong to a special bin
called unassigned. Applying ToFreeSpec on that bin en-
sures that new racks are assigned to certain (week, position).

• Power and network constraints. This is achieved by us-
ing CapacitySpec at different scopes of the infrastructure
hierarchy such as position, MSB, and suite.

• AI Zone. AI server racks must be placed in an AI zone,
which is a special section of the datacenter connected by a
high-bandwidth network. To enforce the placement of AI
racks in the AI zone, we introduce a new dimension AiRack,
which takes the value 1 for AI racks and 0 otherwise. Simi-
larly, this dimension has a limit of 1 for AI zone positions
and 0 otherwise. We then apply CapacitySpec with the
AiRack dimension over the position scope.

• Place certain racks in the same week. This is achieved
by putting those racks into a group and applying Colocate-
GroupSpec to the group over the week scope.

Overall, as rack changes occur incrementally over time and
we compute a solution for each datacenter region separately,
the hardware-placement problem is relatively small in size,
involving hundreds of objects and thousands of bins. For these
small problems, Rebalancer translates the expression graph
into a MIP problem formulation and employs a MIP solver,
instead of a local-search solver, to ensure high-quality results.

3.2 Service Placement
Hardware capacity in datacenters are allocated to teams re-
sponsible for different products in the form of quotas called
reservations. Whole servers or fractions of a server’s re-
sources are assigned to reservations while adhering to all
kinds of constraints. While reservations can be either global
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Spec name Description Usage
count

Lines
of code

CapacitySpec Enforce that the utilization of a scope item is within specified limits. 19 340

GroupCountSpec Restrict utilization by objects of a group placed in the same scope item, commonly used to enforce
the spread of objects across scope items. For instance, a job can have at most one task in a rack. 17 480

AvoidMovingSpec Do not move any of the specified list of objects. 16 120
BalanceSpec Balance utilization across scope items. 12 250

MinimizeMovementSpec Minimize the number of objects that move into or out of a scope item. 12 90
MovesInProgressSpec Objects specified as moving from one bin to another by the previous solver run must finish the move. 10 65

NonAcceptingSpec Specify scope items that are not accepting incoming objects. 9 100
MinimizeBinsSpec Minimize the number of bins utilized. 8 105

AssignmentAffinitiesSpec Indicate that specific objects prefer specific bins. 6 90
ToFreeSpec Free up certain bins. For example, move services out of servers that will be decommissioned. 5 70

ColocateGroupsSpec Place objects of the same group in the same scope item, e.g., placing a job’s tasks in the same rack. 5 100
GroupMoveLimitSpec Limit how many objects of the same group (e.g., a database’s replicas) can move concurrently. 4 95

AvoidAssignmentsSpec Prevent assignments of certain objects to scope items. For example, in hardware placement, an AI
zone in a datacenter only accepts AI server racks. 4 60

GroupDiversitySpec Every scope item must get objects from at least (or at most) K different groups. 4 80

SingleGroupFailureBufferSpec Provide additional buffer objects when a group of objects fails together. Used in service placement
to ensure that services have enough servers even when a fraction of a datacenter fails. 2 145

DrainCapacitySpec Allow draining objects from a faulty bin to other bins while respecting capacity constraints. 1 80
MoveGroupSpec Move objects in the same group together across bins. 1 75

MinimizeNthLargestUtilization Minimizes the utilization of scope items with the n-th largest utilization 1 85
MaximizeAllocationSpec Maximize utilization on a set of scope items 1 65

UtilIncreaseCostSpec Prefer moving objects to underutilized scope items. 1 65
Logical Or/And Specs Perform a logical OR/AND of certain specs. 1 55

Table 1: List of 21 most frequently used specs out of a total of 28 specs currently supported by Rebalancer. Remaining specs are
specific to their respective usecases and their descriptions involve defining concepts beyond the scope of this paper.

or regional, our discussion focuses on regional ones for sim-
plicity. A regional reservation can comprise servers from any
datacenter within the same region but not across regions. Our
cluster management system treats each reservation as a dy-
namic virtual cluster and deploys the owner team’s jobs on it.

In this service-placement problem [32], we model servers
as objects and reservations as bins. Moreover, we group
servers by MSB, rack, and hardware type, which become ob-
ject partitions. Below, we describe some used objectives and
constraints.

• Capacity sufficiency. If a reservation specifies a demand
of X units for a server type Y , we fulfill it by utilizing Ca-
pacitySpec with the count dimension for each server type.
The variability in performance among services on various
server types can be represented as a dimension. Thus, we
can optimize for assigning servers of a specific type to ser-
vices that can extract optimal performance from them.

• Spread. GroupCountSpec ensures that servers allocated to
a reservation are spread across MSB and rack partitions.

• Stability. As new reservation requests emerge or existing
ones are updated, we run the solver to update both old and
new reservations. Recomputing solutions for old reserva-
tions is necessary, as it enables the relocation of servers
from old reservations to new ones, facilitating global op-
timization. However, moving many servers out of an old

reservation, even if those servers are replaced with new ones,
would cause churns to services running on those servers.
We use MinimizeMovementSpec to minimize churns.

• Fault tolerance. For each reservation, we allocate addi-
tional buffer capacity to ensure that in case any single
MSB in a datacenter region goes offline due to failure or
maintenance, there is still sufficient capacity in the reserva-
tion. This requirement is modeled using SingleGroupFail-
ureBufferSpec.

A large service-placement problem involves up to 700K
servers (objects) in a datacenter region and 6K reservations
(bins). We solve one such problem per region every hour. The
solve frequency and associated downstream actions necessi-
tate that Rebalancer must finish solving the problem within
10 minutes. Initially, Rebalancer converted the expression
graph to a MIP problem and solved it with a MIP solver. How-
ever, recently we switched to using the faster local-search
solver due to both the growing problem size and the desire to
reduce the solve time to fulfill capacity change requests faster.
This experience demonstrates one advantage of Rebalancer—
it can take the same problem specification and flexibly decide
which solver to use based on the problem size and time limit.

3.3 Service Sharding
Sharded services, such as databases, are prevalent at Meta
and account for 68% of the total RPC traffic [25, 36]. They
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often host about 100 shards per Linux process for improved
efficiency, and shards are dynamically migrated across these
Linux processes to balance the load. For simplicity, we refer to
each such Linux process as a “server”, assuming one process
per server. To ensure redundancy, each shard has multiple
replicas, which are grouped together using object partitions.
This problem assigns shards (objects) to servers (bins) while
meeting various requirements, some of which are described
below.
• Capacity limit. We use CapacitySpec to ensure that servers

are not overloaded. Given that cross-server shard moves
are not instantaneous, we use ANYutil to account for double
occupancy (§2.2).

• Limit churns. To cap the number of moves per server or
per shard, we use CapacitySpec with ObjectCount as the
dimension and NEWutil and OLDutil as the utilization (§2.2).

• Region preference. Certain shards prefer servers in specific
datacenter regions because the users accessing those shards
are close to those regions. This preference is modeled using
AssignmentAffinitiesSpec with the region scope.

• Load balancing. To ensure that the load is balanced across
servers, we use BalanceSpec with the bin and region scopes
for regional and global load balancing, respectively.

• Fault Tolerance. To ensure that a shard’s replicas are spread
across various fault domains, such as rack and MSB, we
use GroupCountSpec with replica as the partition and rack
or MSB as the scope.

The largest sharding problems involve 1.8M objects and 27K
bins and have a solve time limit of five minutes. Rebalancer’s
local search algorithm has scaled well to produce high-quality
solutions for such large problems.

3.4 Message Queue Placement
Many people use Meta’s messaging products. On the server
side, a message queue is created for each user to store mes-
sages intended for delivery. Placing the message queue in a
datacenter region close to the user reduces latency. This prob-
lem is to assign user queues (objects) to datacenter regions
(bins). However, treating each user as an individual object
is inefficient, so we aggregate users objects with common
properties into a bundle and treat each bundle as an object.
The bundles are computed offline based on properties such
as proximity and connectivity of users within a bundle. The
following are some supported requirements:
• Minimize latency. Every user bundle has a numerical affin-

ity to each datacenter region. The affinity is equal to the
negative of the average network latency to a region for users
in the bundle. Utilizing AssignmentAffinitiesSpec as an ob-
jective with these affinities minimizes the total latency.

• Colocate related user bundles. If two bundles’ users fre-
quently communicate with each other, colocating them in
the same region would reduce both latency and cross-region

traffic. ColocateGroupSpec achieves this purpose, where
each group is a set of related bundles.

• Buffer capacity for disaster recovery. One service level
objective is that any single datacenter region can go offline
without causing disruption to users. For this purpose, a traf-
fic matrix with elements ti j specifies that in the event of re-
gion i failure, a fraction ti j of region i’s traffic will be re-
distributed to region j. Rebalancer must ensure that each
region has enough spare capacity to absorb the incoming
redistributed traffic. This is achieved by using DrainCapaci-
tySpec to enforce that the peak utilization of a bin with the
worst case spillover traffic must be within its capacity limit.

The message-queue problem typically involves tens of thou-
sands of objects and tens of bins, and is solved only once a
week. Because of the small scale and lenient solving dead-
line, Rebalancer translates it into a MIP problem. The traffic-
routing problem described in §1 shares some commonality
with this problem, but it needs to update the global edge-to-
datacenter traffic matrix every few minutes. Hence, it utilizes
local search to achieve a low average runtime of 5 seconds.

3.5 Kubernetes Scheduler
When evaluating the flexibility of Rebalancer’s specs using
the use-case examples above, a question naturally arises: do
the specs inherently cover these examples because they are
designed to support them? To showcase Rebalancer’s flexibil-
ity, we implement Kubernetes’ scheduling policies using Re-
balancer’s existing specs. While Rebalancer handles load bal-
ancing of containers across machines in production, it does
not handle the Kubernetes-like initial container placement in
our fleet. This function was implemented in Meta’s cluster
manager using heuristics similar to those in Kubernetes years
before introducing Rebalancer and is still in active use.

Specifically, to prepare for a direct comparison with
DCM [38] in performance evaluation (§6), we implemented
Kubernetes’ scheduling policies listed in Figure 2 of the DCM
paper. To improve usability, DCM uses SQL statements to ex-
press allocation policies and internally translates these SQL
statements into a constraint satisfaction problem, which is
then solved using the Google OR-tools CP-SAT solver.

In Kubernetes, container pods are scheduled on nodes (ma-
chines). We represent pods as objects and nodes as bins. Sim-
ilar to DCM, our implementation schedules a batch of pods
together. All unscheduled pods of the current batch are placed
in a special unassigned bin, and we impose a ToFreeSpec con-
straint on that bin, forcing Rebalancer to place them on cer-
tain nodes. Resource limits, such as CPU and memory, are en-
forced using CapacitySpec. Affinity of pods for specific nodes
is specified using CapacitySpec with a custom dimension rep-
resenting affinity. Inter-pod anti-affinity for replica groups
is modeled using GroupCountSpec. Fixing certain pods to
nodes is achieved with AvoidMovingSpec, and so forth.

Overall, we are able to model Kubernetes’ scheduling con-
straints using Rebalancer’s existing specs in about 500 lines
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of code, which is comparable to 550 lines of SQL-based spec-
ification in DCM. This demonstrates that Rebalancer is flexi-
ble and its usability is comparable to DCM. We will compare
the performance of DCM and Rebalancer in §6.

3.6 Other Use Cases
In addition to the examples described above, Rebalancer sup-
ports dozens of use cases at Meta, including Linux container
rebalancing across servers [39]; routing traffic from globally
distributed edge datacenters to main datacenters [5]; group-
ing serverless functions to improve locality [35]; balancing
online ML training workloads across regions while consid-
ering the priority of ML workloads; minimizing the number
of replicas for ML inference models or databases deployed
across geo-distributed datacenters, while adhering to latency
SLO and meeting varying user request rates; various shard-
ing systems that have requirements different from the one in
§3.3; assigning work tickets to engineers; and so forth.

4 Model Representation
Once an optimization problem is specified using specs, Re-
balancer materializes them into an expression graph. Recall
that Rebalancer’s expression API supports operators such as
Max and Sum for aggregation, and Step, Ceil, Log, and Power
for transformation. For example, Step(x) evaluates to 1 if x is
positive and 0 otherwise. We translate the specs into a recur-
sive composition of expressions that reuses common expres-
sions to obtain a compact expression graph.

4.1 Translating Specs into Expressions
We use several examples to illustrate how to translate specs
into expressions. CapacitySpec enforces that the utilization
of a resource is within specified limits. For instance, with
a CapacitySpec applied to the scope server and dimension
CPU, Rebalancer creates |B| constraints (one per server) in
the form of util(serveri,CPU,AFTER) ≤ Li, where Li repre-
sents the CPU limit of serveri. To model double occupancy,
CapacitySpec would use ANY instead of AFTER.

MinimizeMovementSpec minimizes the movement of ob-
jects into or out of a scope item. Rebalancer adds the expres-
sion util(Sout,count,NEW)+∑ j util(S j,count,NEW) to the ob-
jective, where Sout represents the set of bins that do not belong
to any scope items, such as the unassigned bin in the hardware-
placement example (§3.1). Note that each moving object is
only counted once. Specifically, the first term captures the ob-
jects that move out of all the scope items, while the second
term captures objects that move within the scope items.

GroupDiversitySpec ensures diversity in the set of objects
assigned to a bin. For example, the servers (objects) assigned
to a service’s global reservation (bin) must come from at least
k datacenter regions so that in the event of a region failure,
there is at least some capacity available for the service. In this
case, assuming objects are partitioned into groups Gi based on
their region, Rebalancer adds |B| constraints (one per service)

in the form of ∑i Step(util(b j,Gi,count)) ≥ k. Note that the
inner Step expression evaluates to 1 if bin b j contains objects
from group Gi and 0 otherwise.

4.2 Reducing Model Size
In the previous section, we discussed how to translate specs
into mathematical formulas using expressions such as util.
However, the direct representation of util as shown in Equa-
tion 1 is inefficient as it would lead to a problem represen-
tation size of Θ(|O|× |B|). To address this scalability chal-
lenge, Rebalancer implements several efficient custom ex-
pressions that help reduce the problem’s model representa-
tion to Θ(|O|+ |B|). Below, we describe one such expression
called Lookup, which is used to efficiently implement util.

Object Lookup. The insight behind Lookup is that, in most
cases, an object’s dimension value remains unaffected by the
bin to which it is assigned. For instance, a task consumes the
same amount of memory irrespective of the server on which it
runs. This allows representations of utilizations for different
bins and scope items to share and reuse these dimension
values, reducing the problem input size by a factor of Θ(|B|),
resulting in an overall input size of Θ(|O|+ |B|).

Specifically, for each such static dimension D, we establish
an object-vector, denoted as VD, representing a mapping from
objects to their dimension values. Given an object-vector VD
and a scope item Si, a Lookup represents an efficient aggrega-
tion operation over the (object, bin) pairs for bins in Si. For ex-
ample, util(Si,D) = Lookup(Si,VD) simply aggregates the uti-
lization across all bins in Si with respect to D through lookup.
Note that the memory usage of Lookup itself is of constant
size since it only keeps references to Si and VD, while the rep-
resentations of Si and VD, with sizes O(|B|) and O(|O|), re-
spectively, are shared and reused across all expressions. This
leads to an overall problem size of Θ(|O|+ |B|).

Expression graph. Since constraints in Rebalancer are in-
equalities in the form of f (·)≤ 0, they can be combined using
the Max expression. For example, although a CapacitySpec
results in |B| constraints (one per bin), it can be simplified
into a single constraint by rewriting it as

Maxi(Lookup(bi,VD)−Li)≤ 0.

As each constraint and objective can be written as a recur-
sive composition of expressions, we can encapsulate an as-
signment problem’s all constraints and objectives in a DAG G .
The nodes of G correspond to expressions, and each objective
or constraint in the problem is a subgraph of G ; see Figure 2
for an example. For a node v ∈ G , we use children(v) to de-
note the set of all nodes w such that v � w is an outgoing edge
from v. The type(v) of a node (e.g., Max) is its mathematical
operator, and children(v) represent its inputs. The DAG G is
obtained from a recursive composition of these operators.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    513



−L1

Sum

−L2

Sum Sum+
Sum+

Sum

Max

Tb

Tc

Lookup2Lookup1

−Sum/2

Figure 2: This expression graph represents a simplified ver-
sion of the task-allocation problem shown in Figure 1. It aims
to balance the CPU utilization across two servers, server1
and server2. It uses BalanceSpec on the CPU dimension as
the objective (subgraph Tb) and CapacitySpec on the CPU di-
mension as the constraint (tree Tc). Nodes in the intersection
of Tb and Tc namely Lookup1 and Lookup2 are reused. Con-
stant nodes are shown in dashed circles. Li is the CPU limit
of serveri, Lookupi represents the lookup for the CPU dimen-
sion on serveri, meaning serveri’s CPU utilization. Sum+ is
a shorthand for max(0,Sum)

5 Model Solving
After representing an assignment problem as an expression
graph G , the next step is to solve the problem. For small prob-
lems, Rebalancer translates it into a MIP problem and solves
it with a MIP solver. For large problems, Rebalancer imple-
ments its own optimized local search. The existence of the
expression graph is a fundamental reason why Rebalancer’s
local search is more efficient than existing local search algo-
rithms.

5.1 Using MIP Solver
To translate an expression graph into a MIP problem, each ex-
pression implements a recursive mipTranslate operation. This
operation, based on the expression’s type, converts it into a lin-
ear combination of binary assignment variables vi j that indi-
cates whether object i is assigned to bin j. Invoking mipTrans-
late on the root nodes of an expression graph yields a MIP
model, which can subsequently be solved using a commercial
solver. Note that the MIP model’s input size is O(|O|× |B|),
which is not scalable. Therefore, we only use the MIP solver
for relatively small problems.

5.2 Graph-Assisted Local Search
In contrast to the MIP solver’s all-or-nothing approach to
finding the optimal solution, local search [1] incrementally
generates a set of object moves that improve upon the initial
assignment but without guaranteeing optimality. Each move

Algorithm 1 Local search using expression graph G
1: while exit-conditions are not met do
2: L ← generate_candidate_moves(G)
3: for local change δ in L do
4: objδ← evaluate_moves(G ,δ)
5: if objδ > 0 then
6: discard δ ▷ violates constraint or worsens objective
7: end if
8: end for
9: δ∗←min δ∈L objδ ▷ best local change

10: apply_moves(G ,δ∗)
11: end while

(oi,bs,bd) corresponds to reassigning object oi from its source
bin bs to its destination bin bd .

Although local search has been applied to assignment prob-
lems before [19, 33], the uniqueness of our approach, as high-
lighted in Algorithm 1, lies in its exploration of the expression
graph for all its main steps: (1) generating candidate moves,
(2) evaluating them, and (3) applying the best moves. In the
rest of this section, we describe the main ideas that enable our
algorithm to scale to millions of objects and bins.

5.2.1 Generating Candidate Moves
Because each object can potentially be moved from its current
bin to any other bin, there are a total of |O|× (|B|−1) candi-
date moves to consider. Obviously, it would be too expensive
to evaluate all of them. There are two natural ways to reduce
the candidate set: (1) restricting the search space to one bin
at a time and finding the best moves involving that bin, or (2)
restricting the search space to one object at a time and finding
the best moves for that object. Rebalancer takes approach (1)
because the number of bins is usually much smaller than the
number of objects. With this settled, we still need to decide in
which order to evaluate bins and, given a bin, how to propose
candidate moves. We discuss these topics below.

Bin selection. Our insight here is to first evaluate hot bins
that potentially can have the biggest impact on the overall
objectives by moving objects into or out of these bins. The
structure of the expression graph already captures what ob-
jectives are affected by which bins and by what amount. In-
tuitively, for example, if there is a directed path from a node
v to a Lookup on bins b1 and b2, moving objects in and out
of these bins will improve node v’s value. The idea is to pro-
cess the leaf nodes of G (such as Lookup) in a greedy order of
their contribution to the objective. This ordering of leaf nodes
gives us a sequence of sets of bins Sv,Sw, . . . ,Sz and we can
use these sets to infer the hottest bin.

Move strategies. After identifying a hot bin, Rebalancer ex-
plores different move strategies to move objects into and out
of it. For example, the SINGLE move strategy considers mov-
ing every object in bs to every other bin bd exhaustively and
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accepts the best move. There are also variants of SINGLE,
such as SINGLE_GREEDY, which accepts the first improving
move, and SINGLE_RANDOM, where bd belongs to a small
sample of randomly chosen bins. A commonly used effective
strategy is to first use SINGLE_RANDOM for some period of
time when opportunities for improvement are abundant and
later switch to using SINGLE_GREEDY when opportunities
for improvement become scarce.

In addition to variants of the SINGLE strategy, Rebalancer
also supports more complex strategies such as swapping ob-
jects between two bins, and using the Kernighan–Lin algo-
rithm to identify the move-destination bin; see details in the
Appendix. Finally, Rebalancer also supports custom strate-
gies that exploit domain knowledge. For example, Shard Man-
ager [25] uses Rebalancer to move shards (objects) across
servers (bins) to balance the load. If a hot server has many
small shards and a few large shards, going through the shards
sequentially may spend most of the time evaluating moving
small shards that have little impact on the objective. Instead,
Rebalancer evaluates large shards earlier, which not only ac-
celerates the search but also reduces the number of shard
moves.

5.2.2 Evaluating and Applying Moves
The remaining components of Rebalancer’s algorithm are
evaluating and applying moves. When given a candidate
move (oi,bs,bd), a naive way to evaluate its impact is to ap-
ply the move to the initial assignment to obtain the new as-
signment. Then, we compute the new assignment’s objectives
from scratch through a full graph traversal. However, since
we already have the value of every graph node under the ini-
tial assignment, few nodes might be affected by applying the
candidate move. We can significantly speed up the computa-
tion by only recomputing the values for these affected nodes.

Bottom-up change propagation. To only recompute the
changed nodes, we preprocess the leaf nodes in the expression
graph to build a map from objects to the leaf nodes that ref-
erence them. Similarly, we build a map from bins to the leaf
nodes that they affect. Given a move candidate, we use the
two maps to identify a set of leaves affected by the change. We
then traverse from those leaves to the roots, and the reached
nodes along the way are the set of nodes whose values need
to be recomputed.

Minimal computation during a node update. When recom-
puting the value of a changed node, iterating over all its child
nodes is often unnecessary, as only a small fraction of them
likely have changed. Depending on the type of the node, we
can store additional information to speed up the recomputa-
tion. Below, we provide an example for the Max node, while
similar optimizations exist for other node types.

For the Max node, we separately compute the maximum
value of its changed child nodes (denoted as z1) and the maxi-
mum value of its unchanged child nodes (denoted as z2). Then,
the new value of the node is simply max(z1,z2). To compute

z2 efficiently, we maintain a sorted list of child nodes ordered
by their decreasing node value. We iterate over this list and
stop at the first child node that is unchanged. This child node’s
value is z2. Note that the runtime of this algorithm is propor-
tional to the number of changed child nodes c instead of the
total number ℓ of child nodes. This algorithm incurs the over-
head of O(c logℓ) to update the sorted child list, but it only
occurs when a move is accepted and applied. In practice, the
number of evaluated but rejected candidate moves often dom-
inates.

Parallelizing Move Evaluations Since move evaluations do
not affect the current state, we can use multiple threads to
evaluate candidate moves in parallel before we pick the best
candidate to apply. This improves the number of evaluations
per second (evals/s) by an order of magnitude enabling lo-
cal search to make faster progress. Although the exact num-
ber depends upon the problem instance, we are able to obtain
roughly 150k evals/s for most large instances. For example,
for a large sharding problem, parallel move evaluations re-
sulted in 170k evals/s and 12k applied moves within the time
limit of 300s. In contrast, sequential move evaluations result
in 25k evals/s and 2k applied moves in the same time limit.
In this case, local search was able to progress six times faster
due to parallelization of move evaluations.

5.3 Identifying Equivalent Objects
In addition to focusing on hot bins to reduce the search space,
for certain commonly used objectives and constraints, we
can identify objects that are equivalent from a modeling per-
spective, thereby effectively reducing the number of objects.
This optimization can be applied to both local search and
MIP solvers. For example, in the problem of placing tasks on
servers, all tasks that belong to the same job are equivalent
since they all affect the constraints and objectives in the same
way. For a set of equivalent objects, we only need to explore
moves with at most one of those equivalent objects, which
reduces the search space. In Rebalancer, we employ a recur-
sive algorithm that exploits the expression graph to compute
sets of equivalent objects. Various additional details about our
solver algorithm can be found in the Appendix.

6 Evaluation
In this section, we evaluate Rebalancer’s scalability and so-
lution quality, and compare it with alternative approaches,
such as DCM [38] and MIP partitioning techniques similar to
POP [31]. Additionally, we assess the efficacy of local search
techniques such as hot bin ordering.

Figure 3 shows the statistics of the problems solved by
Rebalancer in production during a typical week. These tens
of millions of solves span diverse use cases outlined in §3.
The largest cases involve service sharding (1.8M shards, 27k
servers) and service placement (700k servers, 6k reservations).
We will use these application scenarios in evaluation.
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Figure 3: Samples of production problems solved by Rebal-
ancer. The P99 (99th percentile) solve time is 16s with a prob-
lem size of 65k objects and 5k bins.

6.1 Comparison with DCM
In the context of cluster management, DCM [38] uses SQL to
express policies for placing pods on nodes. It translates these
SQL statements into a constraint satisfaction problem, which
is then solved using the Google OR-tools CP-SAT solver.
DCM’s scalability bottleneck is the CP-SAT solver, which
has computational intractability similar to MIP solvers.

We replicated DCM’s implementation of Kubernetes sched-
uler in Rebalancer (§3.5). To stress-test our implementation,
we impose inter-pod anti-affinities for all replica groups, a
condition known to increase scheduling difficulty. Similar to
evaluations in the DCM paper, we use the Azure dataset [27].
All experiments are conducted on a machine with 40 CPU
cores and 256 GB of RAM.

We will quote numbers from the DCM paper instead of con-
ducting measurements on our machines because DCM’s open
source code cannot run on our production machines due to
the security setup of those machines. We also cannot run Re-
balancer on third-party machines due to its dependencies on
tools only available in our production environment. Despite
the inability to directly compare their absolute performance
on the same machine, their scalability trends are evident from
their respective evaluations using the same dataset and imple-
menting the same Kubernetes scheduling algorithm.

We also compare local search’s SINGLE_GREEDY move
type, which evaluates placing an unscheduled pod on every
node, with the SINGLE_RANDOM move type, which ran-
domly selects a fraction f of nodes as targets. If unsuccessful,
it repeats the process with the remaining unexplored nodes.

Scalability. We evaluate Rebalancer under two scales: the
DCM-scale, scheduling 50 pods per batch on clusters with 1k,
5k, and 10k nodes (similar to that in the DCM paper); and the
hyperscale, scheduling 500 to 5k pods per batch on clusters
with 10k, 50k, and 100k nodes. Using larger pod batches in the

hyperscale setup is motivated by the fact that the arrival rate
of pods typically increases with the cluster size. As shown in
Figure 4, the P99 (99th percentile) per-pod scheduling latency
of SINGLE_GREEDY is less than 35 ms for instances up to
10k nodes. However, beyond 10k nodes, SINGLE_GREEDY
becomes progressively slower, while SINGLE_RANDOM con-
tinues to scale well. We have found a sample size of f = 10%
(capped at 1k bins) to offer a good trade-off between solution
quality and runtime.

Overall, Figure 4 demonstrates Rebalancer’s significant
scalability advantage over DCM. Due to inherent scalability
limitations in DCM’s CP-SAT solver, the largest problem
tackled in the DCM paper involved scheduling 50 pods in a
10k node cluster, with close to 30 ms scheduling latency per
pod. In contrast, even with a cluster size of 100k nodes (10
times that of the DCM experiment) and a batch size of 5k
pods (100 times that of the DCM experiment), Rebalancer
with SINGLE_RANDOM achieves a per-pod latency of 14ms.

Solution quality. We compare Rebalancer’s local search with
an optimal MIP solver in an experiment that places 10k pods
from the Azure dataset on 500 nodes, with the objective of
maximizing the number of placed pods. As shown in Table 2,
neither MIP nor local search can place all pods due to their
aggregate resource demand surpassing the capacity of 500
nodes. While SINGLE_RANDOM places 1.4% fewer pods
than MIP when nodes are full, its runtime is 5.2 times faster.

Test case Optimal MIP
solver

SINGLE
GREEDY

SINGLE
RANDOM

Azure dataset 94.6% (31ms) 92.8% (8ms) 93.2% (6ms)
Pathological N=10 100% (209ms) 97.1% (0.6ms) 97.8% (0.9ms)

Pathological N=100
N/A (timed out

after 600s) 97.4% (26.5ms) 97.7% (22.4ms)

Table 2: Percentage of placed pods and the scheduling latency.

To evaluate local search in a scenario where it is unlikely to
perform well, we design a pathological case parameterized by
N, with 31N pods and 50N nodes, each with 32GB memory.
Pod memory requirements follow an exponential distribution
over 5 groups: the first 16N pods with 2GB memory, the next
8N with 4GB, the next 4N with 8GB, the next 2N with 16GB,
and the last N pods with 32GB. The only way to schedule all
pods is when the total used memory on every node is precisely
32GB. Due to the nature of local search, finding this uniquely
optimal solution is unlikely. As shown in Table 2, local search
can place more than 97% of the pods, while being over 200
times faster than MIP. Additionally, as depicted in Figure 5,
Rebalancer finds a solution where the memory usage across
nodes is well balanced.

6.2 Comparison with Partitioned MIP
POP [31] improves scalability by partitioning a large MIP
problem into smaller ones and solving them independently,
coordinating solutions as needed. We have implemented a
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Figure 4: Per-pod scheduling latency of our Kubernetes implementation.
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Figure 5: Memory usage across 50 nodes for
the pathological case.

POP-like partitioned-MIP solver in Rebalancer in addition to
its existing local-search and MIP solvers.

In Table 3, we compare local search with partitioned MIP
on the service placement problem (§3.2) using our production
data. Here, local search uses a combination of move types,
including SINGLE_RANDOM, SINGLE_GREEDY, and SWAP.
Local search is up to four times faster, meeting all the service-
level requirements such as spread and capacity sufficiency,
while its solution quality is less than 0.6% worse than that of
partitioned MIP. Due to local search’s scalability, even though
we used partitioned MIP in production for a period of time,
we eventually switched to local search (§7).

Problem Size
(objects × bins) Local Search Partitioned MIP Relative Gap

700k × 5.7k 184s 376s 0.43%
710k × 4.8k 214s 350s 0.56%
568k × 4.7k 151s 455s 0.21%
645k × 4.5k 146s 557s 0.11%

Table 3: Problem sizes and runtimes of service placement.
The “relative gap” denotes the difference in objective values
between local search and partitioned MIP.

6.3 Local Search’s Individual Techniques
Next, we evaluate local search’s individual techniques.

Expression graph G scales linearly. We validate this using
three production instances of the service sharding problem,
with 71k, 152k, 289k objects each and roughly 1.5-2k bins.
The expression graph’s memory usage grows almost linearly
from 1.7GB to 3.2GB and 6.2GB.

Move evaluations are fast. As can be seen from the pod
scheduling example (Figure 4), evaluating all possible 50k
moves for a pod takes only 100ms. This indicates that Rebal-
ancer can evaluate up to 500k moves per second. The tech-
niques detailed in §5, such as bottom-up traversal of changed
nodes, help achieve this speed; without them, move evalua-
tions would be an order of magnitude slower.

Hot bin ordering is effective. A hot bin is one that con-
tributes the most to the objective, and Rebalancer processes
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Figure 6: Comparing hot bin selection and random bin selec-
tion using service placement and service sharding.

bins in the order of their hotness. As shown in Figure 6, pro-
cessing bins in the order of their hotness reduces the objec-
tive value more quickly. This results in higher solution quality
when the search time is capped for large problems.

7 Experiences and Limitations
In this section, we share some learnings from using Rebal-
ancer and discuss its limitations.

7.1 Alternative Approaches for Optimization
We summarize three categories of approaches to solving opti-
mization problems and make our recommendations.

Approach 1: ad hoc heuristics. This approach directly im-
plements heuristics to support resource-allocation policies
as code. It is the most widely used approach as it is easy to
start with. However, as policies grow in complexity over time,
adding new ones becomes increasingly difficult, and the so-
lution quality tends to decrease due to the intricate balance
required between different policies.

Approach 2: formal problem specification solved by a formal
solver. Systems utilizing MIP, such as Flux [10], belong to
this category, but there are other formal methods as well, such
as network flow optimization. Rebalancer with a MIP solver
in the backend also fits into this category. To address the chal-
lenge that most systems practitioners are unfamiliar with for-
mal problem specification, a higher level of abstractions can
be introduced, for example, DCM [38] using SQL and Rebal-
ancer using a high-level specification language. However, a
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formal method’s solver often lacks scalability, posing a hard
barrier to its application at hyperscale.

Approach 3: formal problem specification solved by a
systematic-heuristics solver. This category includes systems
that formulate problems using MIP but solve them using sim-
ulated annealing or local search. Rebalancer using a local-
search solver in the backend falls under this category. The
usability issue can be solved by raising the level of abstrac-
tion, similar to that for Approach 2. While good scalability
is a strength of this method, its weakness lies in producing
suboptimal solutions compared to formal solvers.

Recommendation: Based on our experiences, we make rec-
ommendations as follows. First, systems requiring short and
predictable latency in resource allocation decisions should
use ad hoc heuristics, even though they are hard to maintain
and evolve. Schedulers for high-throughput, short-lived batch
jobs fall under this category. Second, systems needing high-
quality solutions for small to medium-sized problems should
leverage formal solvers for their optimal solutions. Lastly,
for hyperscale systems not requiring real-time decisions, we
recommend approach 3 over approach 1, because it is much
easier to add or evolve resource-allocation policies with ap-
proach 3. One advantage of Rebalancer is its ability to sup-
port both Approaches 2 and 3 using the same high-level spec-
ification, and seamlessly switch the backend solver as needed,
depending on the problem scale and solve time constraint.

7.2 Experiences with Alternative Approaches
Among the three alternatives described in the previous sec-
tion, our choice for service placement (3.2) evolved from Ap-
proach 2 to Approach 3, while our choice for service sharding
(3.3) evolved from Approach 1 to Approach 3. We discuss
these experiences below.

Service placement. The service-placement problem [32] was
initially modeled using Rebalancer’s high-level specification
language and solved with a MIP solver. This is because ini-
tially the problem size was still manageable for MIP, the 20-
minute solve time service-level objective (SLO) was suffi-
cient, and we were (overly) worried about the solution quality.

However, as more services and machines were added to
the fleet, MIP’s solve time became problematic. Meanwhile,
the solve time SLO was reduced from 20 minutes to 10 min-
utes due to the need for faster reactions to capacity change
requests. We continued optimizing the MIP solver, for exam-
ple, by grouping equivalent objects to reduce the number of
decision variables. These incremental optimizations bought
us some time, but MIP still constantly fell behind on scala-
bility. Other issues included the MIP solver having not only
unpredictable execution times but also occasionally running
into infeasibility due to numerical precision issues. Debug-
ging and fixing these elusive problems in production under
time pressure were recurring pain points for engineers.

To scale MIP, we implemented a POP-like [31] partitioned

MIP solver (§6.2). Initially, it performed well in both solve
time and reliability. Managing hundreds of smaller subprob-
lems meant that a few failing MIP solves would not have a
fleet-wide impact. However, new requirements, such as stack-
ing more services on bigger machines, increased the problem
scale by an order of magnitude. At this point, building a parti-
tioned MIP model, which in the worst case uses |objects|×
|bins| assignment variables, was no longer practical.

This finally forced us to explore local search. With some
tuning, the local search solver achieved both good solution
quality and fast solve times. As shown in Table 3, the solution-
quality difference between local search and partitioned MIP
is less than 0.6%. The lesson for us is that, despite having
the local search technology, our unwavering faith in MIP’s
optimality led us on a lengthy detour to reach our current state.

Service sharding. While service placement started with Ap-
proach 2 and converged to Approach 3, the service sharding
system Shard Manager, went through the opposite direction,
switching from Approach 1 to Approach 3.

When Shard Manager started with ad hoc heuristics more
than a decade ago, Rebalancer did not exist at that time. As
Shard Manager became widely adopted by many applications,
its load-balancing algorithm became overly complicated. For
example, it supported multiple-dimension balancing across
CPU, memory, and storage, enforced rate limiting, and con-
sidered regional and global locality. Unsurprisingly, this com-
plexity led to frequent issues where some servers were over-
loaded while others were underutilized. Shard Manager strug-
gled to balance the load because the heuristics implementing
sometimes conflicting policy requirements were not robust.

The team started rewriting Shard Manager with yet another
heuristic implementation. It represented the topology (region,
datacenter, power domain, rack, server) as a tree and enforced
resource constraints across all levels of the topology. How-
ever, achieving good load balancing proved challenging even
with a clean implementation. Iterative tuning of the heuristics
required constant code changes that might not lead to positive
outcomes and often became dead code later.

Eventually, the heuristic-based new prototype was aban-
doned, and the team switched to exploring Rebalancer with
local search. The usability benefits were immediate, as it was
much easier to experiment with different load-balancing algo-
rithms by changing a few lines of high-level specification in
Rebalancer. The main challenges were solution quality and
scalability when solving problems with millions of objects
and tens of thousands of bins within the five-minute solve
time SLO. These requirements are well met, and in produc-
tion, 90% of the solves actually finish within 10 seconds.

7.3 Experiments with Simulated Annealing
Recall that Rebalancer’s internal architecture decouples prob-
lem representation from problem solving. There is a common
abstraction all solvers (e.g. local search, MIP) inherit from
which can be extended to support experimentation with new
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kinds of solvers. In the past, we experimented with a solver
based on the simulated annealing algorithm. One common
problem faced by local search is finding a locally optimal so-
lution that does not lead to a globally optimal solution. This
happens when there is no sequence of moves which strictly
improve the objective at each step. In order to get out of a lo-
cal optimum, the sequence of moves would have to temporar-
ily decrease the objective quality. This is not contemplated in
local search, but is one of the features of simulated annealing.

However, we found our implementation of simulated an-
nealing to not be practical at all for production-scale prob-
lems. It did not beat the performance of local search in any
experiments, neither in terms of quality nor run time. At our
scale, the number of possible object moves at any point is
large (e.g. O(1011) combinations for a problem with several
million objects and 100k bins), and the vast majority of these
moves are not helpful. We found that it is important to exploit
the structure of the objective function and aggressively pri-
oritize which moves to evaluate. This is primarily done by
the hot bins optimization in local search. Our implementa-
tion of simulated annealing did not exploit this structure, and
blindly evaluated moves with equal probability, regardless of
the shape of the objective. For this reason, we believe that fur-
ther research into heuristics to reduce the search space would
be needed to make simulated annealing practical. This is chal-
lenging because the heuristic would not only have to select
good moves, but also the right bad moves which decrease the
quality but are likely to lead to an improved quality later on.

Recall that to ensure allocation stability, it is often desired
to limit or minimize the number of object moves needed to
improve the assignment. We found this challenging to enforce
in an algorithm such as simulated annealing, which greedily
makes moves that barely improve or even decrease the quality
of the objective. In contrast, local search is able to maximize
the objective improvement at each individual step, finding a
shorter and more optimized sequence of moves.

7.4 Evolution of Rebalancer as a Library
Originally, Rebalancer was designed as a standalone exe-
cutable that took an input file describing the model in a cus-
tom format. This initial design quickly became hard to main-
tain as it required the service invoking Rebalancer to carefully
craft the input. At that point, we decided to create a strongly
typed API for programmatically defining models. As a result,
with the help of the compiler and runtime sanity checks, the
interface-related maintenance overhead drastically reduced.
The implementation of this interface was an inflection point
for the adoption of the project, as it became intuitive enough
to be used by many teams at Meta.

There still remained a question of whether to make Rebal-
ancer a service or a library. We decided to make Rebalancer
a library for two main reasons. First, services invoking Re-
balancer need to collect and feed Rebalancer with potentially
a large amount of input data, which can be done more effi-

ciently via a library API. Second, providing a multi-tenant ser-
vice is difficult, as different Rebalancer use cases can heavily
contend with each other due to their high memory and CPU
usage. Currently, if a particular use case still prefers to oper-
ate Rebalancer as a single-tenant service, they could do so by
wrapping the library with an RPC interface, but we have not
seen that in practice.

Therefore, today Rebalancer is implemented as a library
that gets compiled into each project that depends on it. The
resulting binary has predictable behavior, which does not
change unless it is recompiled with a newer version of the
code. Different usecases have their custom logic to collect the
input and setup an assignment problem using Rebalancer’s
specification language (See Figure 1 for an example). The
usecases then specify the choice of solver (MIP or Local
Search) and invoke the core solver which builds the expression
graph, solves the problem and returns a solution.

7.5 Handling Multiple Objectives
Each objective specifies a weight and a priority. Rebal-
ancer combines all objectives with the same priority using a
weighted sum. Finding appropriate weights for competing ob-
jectives (e.g., objA, objB) is done by first normalizing them so
that their values are comparable and then selecting multiplica-
tive weights based on their relative importance in the problem
domain. Some use cases provide strict priorities for objectives,
and Rebalancer ensures that it does not regress on higher-
priority objectives when solving for lower-priority objectives.

Recall that local search only makes moves that strictly
improve the objective value and is generally more stable.
However, when using MIP, if there are two solutions with
exactly the same objective value, Rebalancer may choose one
of them arbitrarily, causing instability across multiple solves.
In such cases, we typically add a MinimizeMovement goal
that disincentivizes moves which do not strictly improve the
objective.

7.6 Debugging Solver Behavior
The majority of engineering time in setting up a model goes
into debugging the behavior of the solver, which includes
ranking the objectives by their importance, identifying con-
flicting constraints, etc. Without proper tools, this process
requires a deep understanding of the internals of the solver,
which only engineers working on the core of Rebalancer have.
Over time we identified the common questions that helped
modelers understand the solver’s behavior and we built a spe-
cialized UI tool for answering them: Rebalancer-explorer. At
a high level, Rebalancer-explorer can be compared to debug-
ging tools such as Whyline [24] for post-facto analysis.

Under the hood, Rebalancer-explorer loads the expression
graph representation in memory and reuses many of the algo-
rithms mentioned earlier making it extremely fast to evaluate
formulas on demand. At a high level, the UI consists of:
• Table view to inspect objects, bins, their dimensions and
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their membership in partitions and scopes.

• Tree view to inspect the underlying expression (sub)-graph
corresponding to various user provided specs.

• Solution comparison view to inspect the goal and constraint
values for different solutions. By default, it shows a com-
parison of initial and final solutions.

• Timeline navigation view to inspect the sequence of moves
performed by local search at each step and the associated
objective improvements.

One example scenario is to answer questions such as why did
solver not move an object to/from a given bin. We can use
the solution comparison view to compare the goal/constraint
values between the solver-generated solution, and an ad hoc
solution where a specific object is moved to/from the given
bin. In this case, the UI gives real-time feedback of why that
move is not good – perhaps it breaks a constraint, or makes
the goal value worse.

7.7 Limitations of Rebalancer
Some problems can be modeled with MIP but cannot be mod-
eled with Rebalancer because they do not fit the abstraction
of assigning objects to bins. One such example is to assign
network traffic flow to links, where Rebalancer cannot model
a sequence of dependencies in the link topology. However,
Rebalancer ’s low-level expression API and expression graph
are generic enough to support these problems while providing
a significant boost for usability. Consequently, we extended
the expression API and expression graph to create a more
flexible framework, enabling the modeling of MIP problems
beyond assignment problems.

8 Related work
There is a rich body of work in the systems research commu-
nity that uses optimization problem formulations for different
resource allocation settings (e.g. [2–9,11,13,14,16–18,20,22,
25, 28, 32, 34, 37–42]). Among these, Rebalancer shares de-
sign goals with Wrasse [34] and DCM [38] domain-specific
language (DSLs) for resource allocation problems.

Comparison with existing DSLs. Wrasse [34] also uses an
object-bin abstraction but their specification language is lim-
ited to a small set of properties such as resource capacity but
for example does not support many other important proper-
ties listed in Table 1 such as spread, balance, affinities etc.
Moreover, their GPU-based solver is tightly coupled with
these properties making it hard to extend. On the other hand,
DCM [38] allows a user to specify constraints and goals using
SQL-like queries which are then fed into off-the-shelf solvers.
As discussed before, DCM’s ability to scale is limited by the
intractability of underlying constraint solvers.

Other relevant systems. These systems fall in one of two
categories. They either use some hand-crafted heuristics or
use a commercial MIP solver. Examples which use heuris-

tics include cluster management [4, 7, 43], application shard-
ing [2, 25], and container reallocation [33]. The paper [33]
uses variation of local search to move containers across phys-
ical machines but its scalability is limited by the fact that it
uses |O|× |B| decision variables. Examples where commer-
cial MIP solvers are used include capacity reservation [32]
and in cluster managers [11,41]. Rebalancer, through its spec-
ification language and its ability to translate to MIP models
can help set up and solve (using Xpress and Gurobi) a version
of many of the above problems at a comparable scale.

There also has been some recent progress on solving hyper-
scale allocation problems using MIP models. POP [31] pre-
sented a technique to decompose large scale assignment prob-
lems into small ones and combine their solutions to solve the
bigger problem. However, POP requires that resources (ob-
jects) are fungible and clients (bins) should not prefer one ob-
ject over others by a large amount. These do not always hold
for assignments problems we encounter, for instance, in the
case of service placement, it is common for services to request
specific server types. This is the reason why our POP-like par-
titioned MIP solver required some additional techniques.

Work on the machine reassignment problem. A set of rele-
vant work are the papers [12, 19, 26] from the 2012 ROAD-
EF/EURO Challenge [29]. This challenge was designed to
solve a machine reassignment problem, which is about reas-
signing processes to machines to satisfy some goals and con-
straints such as load balancing (see [29] for details). These
papers design heuristics to solve such problems and there are
some broad similarities with the ideas used in Rebalancer’s
local search. However, it is unclear if their techniques gener-
alize beyond the relatively small scale and type of problems
that were used in the contest.

9 Conclusion
In this paper, we discuss the design and implementation of
Rebalancer, a generic framework that solves a diverse set of
hyperscale assignment problems. Rebalancer decouples prob-
lem specification from optimization by defining a compact
graph representation, simplifies problem specification with a
high-level language, and designs a scalable optimization algo-
rithm. Finally, we shared our experiences and lessons learned
from evolving solutions for service placement and service
sharding.
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Appendix A Additional Details on Rebal-
ancer’s Local Search

The input to the local search algorithm that powers Rebal-
ancer is an initial assignment A0 and the compact representa-
tion of goals and constraints as the expression graph G . Fur-
thermore, in the rest of this section, we assume that the fol-
lowing preprocessing steps have been done on G .
• Compute and store current values of each node: This can

be done by a simple recursive algorithm on all the roots
ri ∈ G , where the value of a node Zv is computed using the
values of its children.

• Compute and store the current upper and lower bounds for
each node: This can again be done by a simple recursive
algorithm. For a node v, we use Zub

v and Zlb
v to denote its

upper and lower bounds, respectively.

• Compute and store the potential of each node: The potential
of a node v is the difference between its current value and
its lower bound (i.e., Zv−Zlb

v ). Additionally, for each node
v ∈ G , we maintain a sorted order of its children(v), sorted
by their potentials. We say that a subgraph rooted at v is
optimal if v’s potential is zero.

• Compute and store the affected bins of each node: Recall
that a leaf node ℓ ∈G (such as ObjectLookup) is parameter-
ized by a set of bins Sℓ and changes to contents of Sℓ will
potentially change the value at node ℓ. We refer to the set Sℓ
as affected bins which can be recursively computed for all
v ∈G as Sv = {

⋃
Sw | w ∈ children(v)}. (See also Figure 2).

A.1 Restricting the search space
One important step in any local search algorithm is to gen-
erate a neighboring set of candidate solutions. To get to a
candidate solution, Rebalancer employs the notion of a local
change, denoted δ, which is a set of ordered tuples (oi,bs,bd)
and where each tuple denotes the change in some oi’s assign-
ment from some bs to some other bd (or alternatively, the
“movement" of oi from bs to bd). We refer to each tuple in δ

as a move. So, δ is simply a set of moves. We will use the
term applying the local change to describe the process of up-
dating A with the moves in δ and denote it as A⊕δ.

It is easy to see that given any two assignments A and
A ′, there exists a set of moves δ such that A ′ = A ⊕ δ. So,
now, the question remains as to how we can systematically
generate candidate sets of moves. First, observe that even
if we restrict ourselves to single moves—i.e., local changes
where we explore moving a single object from some source
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to some destination bin—there are O(|O|× |B|) choices. As
discussed before, this is unacceptable for large problems, and
so we must find another way to restrict the search space.

There are two natural ways to do this, i) restrict the search
space to one bin at a time and find the best moves involving
that bin, ii) restrict the search space to one object at a time
and find the best moves for that object. Note that in both these
cases the order in which we explore the bins (resp. objects)
is extremely important or we may spend too much time ex-
ploring moves that yield little improvement. In Rebalancer,
we restrict the search space at the bin scope. This decision
is primarily motivated by the fact that the number of bins is
usually much smaller than the number of objects, so restrict-
ing the search by bins makes faster local progress. Now, even
with the choice of exploring one bin at a time, there still re-
mains two main questions: i) What is the order of bins to con-
sider, ii) Given a choice of bin, how to generate the set of lo-
cal changes. We will answer the second question below and
return to the first one in the next section.

A.1.1 Move Types
Given a bin bs, we can generate local changes that move ob-
jects to and from bs. To methodically generate them, we use
the notion of a move type that describes the semantics of these
changes. For example, a SINGLE move type considers mov-
ing every object in bs to every other bin bd . There can be
other variants of SINGLE such as SINGLE_GREEDY which ac-
cepts the first improving single move, and SINGLE_RANDOM
where bd belongs to a small sample of randomly chosen bins.
Although in our experience just using single move types often
suffices, it is worth noting that the notion of a move type is
highly customizable and can exploit problem-specific domain
knowledge. In the following, we describe this in a greater de-
tail.

Overall, each move type generates a set of local changes L ,
evaluates each of the resulting candidate solutions (i.e., for
each δ ∈ L , evaluates A ′ = A⊕δ), and if it exists, returns the
δ that improves the objective the most. The logic to generate
L varies based on the move type and the following are some
commonly used ones.

• SINGLE: Given a source bin bs, it tries moving every ob-
ject in bs to every other bin bd . That is, L is the set of all
δi,d , where δi,d = {(oi,bs,bd)} is a move set with exactly
one move.

• SINGLE_GREEDY: Similar to SINGLE, but instead of
evaluating moving every object in bs to every other bd , it
considers the objects in some order and only considers the
moves with the subsequent object if no improving move
was found with the previous one.

• SWAP: For a source bin bs and all other destination bins bd ,
it tries swapping every object in bs with every object in bd .

• KL_SEARCH: inspired by Kernighan–Lin algorithm [23].
Given a source bin bs, and for every possible destination

bin bd , construct the KL-move set δk iteratively as follows.
Let δ0 = /0 be an initially empty move set. The move sets
at the end of i-th ieration δi is best of δi−1∪mi where mi is
a single move from bs to bd or from bd to bs. The iteration
stops once moves involving all objects in bs and bd have
been tried. The KL-move set δk is the best of all δi.

In fact, there are more complex move types in Rebalancer,
but we do not go into its details here due to space constraints.

A.1.2 Identifying equivalent objects
In addition to restricting the search space to explorations
from a bin, depending on the set of objectives and constraints,
it might be possible to identify objects that are equivalent
from a modeling perspective. For example, in the TASKS-ON-
SERVERS example, all tasks that belong to the same job are
equivalent, since they all affect the constraints and objectives
in the same way. Observe that if we identify the sets of equiv-
alent objects, then we can cut down the search space even fur-
ther by only exploring moves with at most one object from an
equivalence class. In Rebalancer, we employ a recursive al-
gorithm that exploits the expression graph G to compute sets
of equivalent objects.

Consider again the TASKS-ON-SERVERS example. There
we would ideally want a solver to automatically identify that
all tasks that belong to the same job are equivalent, since
they all affect the objectives and constraints identically. In
fact, such a feature can be quite powerful in further reducing
the search space, since it allows us to discard moves that are
equivalent while exploration (two moves are equivalent if they
both move equivalent objects from a source bin to destination
bin).

In Rebalancer, the intuition described above is formal-
ized using the notion of equivalent objects. Formally, let
A be any feasible solution of the given problem, and for
two objects oi and o j, let A ′ be the assignment obtained by
swapping their bins, i.e., A ′=A \{(oi,A(oi)),(o j,A(o j))}∪
{(oi,A(o j)),(o j,A(oi))}. Then, oi and o j are deemed equiv-
alent if all constraints and objective expressions evaluate to
the same value for both A and A ′. Alternatively, one can also,
slightly informally, think of oi and o j as equivalent if, for ev-
ery bin b and for a problem expressed in native form (i.e., us-
ing assignment variables), the modified problem that results
from replacing every variable of the form vi,c with variable
v j,c is mathematically equivalent to the original problem.

Ideally, we want compute an optimal set of equivalent ob-
jects (i.e., a set P = {I1, · · · , Ik} of minimum size and where
each object is part of one of the I js and each I j is a set of equiv-
alent objects), however this is computationally hard. Hence,
we use a greedy recursive algorithm which once again ex-
ploits the expression graph G . The main component in our
algorithm is for every node in G to maintain some informa-
tion about what sets of objects are equivalent with respect to
it. For example, in the case of ObjectLookup, two objects are
equivalent w.r.t. it if they have the same value in the corre-
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Algorithm 2 Finding sets of equivalent objects
1: P←{O} ▷ initially, all objects are considered equivalent
2: repeat for each node v ∈ G
3: if children(v) is empty then,
4: return set of equivalent objects w.r.t. v
5: end if ▷ every leaf stores sets of objects eq. w.r.t. it
6: for each child w ∈ children(v) do
7: Pw← set of equivalent objects w.r.t. Gw
8: for each set I ∈ Pw, where I /∈ P do
9: E1, . . . ,Ek← sets in P that intersect I

10: Create 2k sets O1, . . . ,Ok and N1, . . . ,Nk,
where Oi = Ei \ I and Ni = Ei∩ I

11: P←{O1, . . . ,Ok,N1, . . . ,Nk,Ek+1, . . . ,E|P|}
12: end for
13: end for
14: until all nodes in G are explored
15: return P

sponding V . Once we have this information for every node in
G , we can then have an algorithm that starts by initially con-
sidering all objects as equivalent, and then recursively splits
this set while ensuring that no two objects that are deemed
non-equivalent by a node is part of the same set. Algorithm 2
describes how to do this. While it is possible to prove that
this algorithm does produce a set of equivalent sets (although
not necessarily of minimum size), a formal proof is beyond
the scope of this paper.

A.2 Computing the hottest bin
While move types help in generating local changes, the more
important question is: what order of bins should one look for
moves from? To answer this, we introduce the notion of hottest
bin. A bin is considered hottest when, given an objective and a
current assignment, moving objects to or from this bin reduces
the objective value the most. At a high-level, during each iter-
ation we find the hottest (a.k.a. most broken) bin and attempt
to fix it by making local changes as dictated by the move types,
and continue the search until no progress can be made. Algo-
rithm 3 describes the high-level local search algorithm used in
Rebalancer. (Timeout handling has been omitted for simplic-
ity.) Observe that there are three performance sensitive com-
ponents in our algorithm, i) finding the hottest bin (line 7), ii)
given a local change, evaluating the objective value (line 12),
and iii) applying a local change (line 17). In the rest of this
section, we describe each of these components in more detail.

Intuitively, the hottest bin is one that can potentially im-
prove the most from local moves, but it is not obvious how to
find such a bin. Prior work explored the concept of bin poten-
tial which, for a bin b, is the difference in the current objective
value and the value of the objective after removing all objects
in b [19]. Although a reasonable metric, it only works for ob-
jectives that can be improved by moving objects out of a bin,
but not when objects need to be moved in, such as what is re-

Algorithm 3 Local Search Algorithm

Input: Objects O, bins B, expression graph G , initial
assignment A0

1: A ← A0 ▷ set current assignment
2: anyProgress← true
3: while anyProgress do
4: anyProgress← false
5: explored← /0

6: while explored ̸= B do
7: bhot← find_hottest_bin(G) ̸∈ explored
8: currProgress← false
9: for moveType in MoveTypes do

10: L ← local changes using bhot and moveType
11: for local change δ ∈ L do
12: objδ← evaluate_changes(G ,δ)
13: remove δ from L if it violates any con-

straint or worsens objective, i.e., objδ > 0
14: end for
15: if L is not empty then
16: δ∗←minδ∈L objδ ▷ best local change
17: apply_changes(G ,δ∗)
18: A ← A⊕δ∗ ▷ update assignment
19: currProgress← true
20: anyProgress← true
21: break
22: end if
23: end for
24: if currProgress is false, then add bhot to ex-

plored
25: end while
26: end while

quired when enforcing minimum capacity. Moreover, finding
a candidate bin can be expensive as it requires computing the
contribution of every bin and taking the maximum.

The bin ranking algorithm used in Rebalancer exploits the
expression graph G and works regardless of whether the ob-
jectives improve by moving objects in or out of them. More-
over, it does not need to compute the contribution of every
bin and terminates as soon as the hottest bin has been estab-
lished. Recall that each node v ∈ G directly (leaf nodes such
as Lookup) or indirectly (internal nodes such as Max) affects
a set Sv of bins. The idea is to process the leaf nodes of G
in a greedy order of their contribution to the objective. This
ordering of leaf nodes gives us a sequence of sets of bins
Sv,Sw, . . . ,Sz and we can use these sets to infer the hottest bin.
Indeed, if each leaf node affected exactly one bin, the hottest
bin would be the one corresponding to the first leaf in this or-
dering. However, leaf nodes such as ObjectLookup may affect
many bins, so we need a way to break ties.

We do this by maintaining an initially empty list of hottest
candidates in a data structure H called incremental priority
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Algorithm 4 find_hottest_bin
1: Incremental priority queue H← /0

2: iter← objective root
3: if valid cache exists, then restore H and iter from cache
4: while iter ̸= end do
5: v← node at iter
6: if H has a unique best element then
7: return top(H) as the hottest bin
8: end if
9: if v is a leaf or does not need expansion then

10: Sv← affected bins at v
11: update(H,Sv) ▷ update queue H

12: end if
13: advance iter to the next node in pre-order
14: end while
15: return top(H) breaking ties at random

queue. The items in H are bins whose priority is defined
using a series of sets of descending priority. Given two bins
b,b′ ∈ H and the series of sets associated with each, b has
a higher priority than b′ if it appears in a set before b′ does.
If both b,b′ appear for the first time in the same set, then
the second set breaks the tie, and if the second is also the
same, then the third is used, and so on. The series of sets
can be fed into the data structure one set S at a time with
update(H,S). One implementation of this data structure is to
maintain a map of bins with the indices of the sets in which
they appear. This map is sorted by a custom compare function
which orders the bins in the right way. For example, if we
had three sets {1: {bp,bq},2: {bp,bq,br},3: {bp,br}}, the
sorted map will be bp : {1,2,3},bq : {1,2},br : {2,3}. In this
case, once all the sets have been processed, bp will be the
hottest bin.

Algorithm 4 describes how we compute the hottest bin by
traversing the expression graph G in pre-order. We start with
the objective root and process children recursively in the or-
der of decreasing potentials and exit as soon as the hottest bin
is found (line 7). We also perform some natural optimizations
to reduce the number of nodes traversed. For example, we do
not recursively expand nodes that have achieved their bound
values, and also do not expand if every node in the subgraph
rooted at it affects the same set of bins (line 9). Observe that
the algorithm saves the progress each time and if possible re-
sumes from a valid cached state. If we invalidate the cache
after applying each local progress, then the ordering of hot
bins is dynamic, otherwise it is static. Indeed dynamic order-
ing often leads to a better solution quality (at the cost of re-
computing the ordering every time), but there are cases when
a static ordering is sufficient.

A.3 Evaluating and applying candidate solu-
tions

The remaining two important components of our local search
algorithm are evaluating and applying a set of moves δ. A
naive way of evaluating or applying a change δ would be
to just recompute the modified assignment A ′ = A ⊕ δ and
recompute the value of all nodes by a full recursive traversal.
Indeed this is quite inefficient as it requires traversing and
recomputing values for all nodes of the graph G when the
number of nodes affected by the change δ is likely quite small.
Since every node of the graph already stores its value w.r.t.
to the current assignment, if we can find a way to identify
the child nodes whose values need to be recomputed and
combine them with values that were not modified, we can
significantly speed up evaluate and apply operations. Observe
that applying of moves updates the internal state of graph G
(namely node values, bounds, ordering of children by their
potential), whereas evaluating moves does not modify the
graph. This distinction is important as it allows us to achieve
even faster running times for evaluate operations. Below, we
describe some ideas that make this possible.

Bottom-up propagation of changes.
Once the expression graph G is built, we can also preprocess
the leaf nodes to build a map Mo from objects to the leaf
nodes that reference them. Similarly, we build a map Mb from
bins to the leaf nodes that they affect. Recall that each local
change δ is a set of moves (o,bs,bd) that denotes moving
object o from bs to bd . Given this, we can iterate over the set
of moves in δ, and use the maps Mo,Mb to compute a set of
leaves L affected by the change δ. Starting from the leaves in
L, we traverse the graph bottom-up (from leaves to the roots)
using the incoming edges at every node. The set of nodes
reachable in this way is precisely the minimal set of nodes
whose values need to be recomputed. (See also Figure 2.)

Minimal computation at a node v.
While recomputing value of a changed node v, iterating over
all the nodes in children(v) can be unnecessarily expensive
especially when only a small number of child nodes may have
been updated. Depending on the type of the expression node,
we can store some additional information that makes these
updates significantly faster. Here we give an example for the
Max node; similar optimizations exist for other node types.
For a Max node, we maintain a sorted list of children by their
value. We first iterate over all the updated child nodes and take
the maximum of their new values; suppose that this value is
z1. Next, we iterate over the list of sorted children nodes and
stop at the first node that was not updated. Let the value of that
node be z2. Now, it is not hard to establish that the updated
value of this Max node is max(z1,z2). Observe that as a result
of this process, updating the value of this node took O(|Z|)
time, where Z ⊆ children is the set of updated children, as
opposed to O(|children(v)|). However, this comes at the cost
of a more expensive apply operation where we will need to
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update the list of sorted children. This trade-off is acceptable
because the number of evaluations is typically several orders
of magnitude larger than the number of apply operations.

A.4 Local search exit conditions
Recall that our local search algorithm terminates when it can
no longer make any progress. In some cases, depending on
the values of the objectives, it might be possible to determine
if any future moves can result in an improvement, and if not
end the search early. Below, we briefly describe the notions
of global and local optimality that are used for this purpose.

Global Optimality
Recall that we had recursively computed the lower bounds
for each node in G . If the current value of the objective root
note has reached its estimated lower bound, we say that the
current assignment is globally optimal and we can terminate
our local search algorithm.

Local Optimailty
Observe that in Algorithm 3, we maintain a list of explored
bins, which are the set of bins for which no improving move
was found. We leverage this information to compute a new
constrained lower bound for each expression. To do this, as-
sume that all the bins in explored are frozen (can neither move
objects in or out) and compute the new value of each expres-
sion. For example, consider a Lookup node v such that all its
affected bins Sv are explored. Since future moves cannot im-
prove the value of this node, we can establish that its con-
strained lower bound is its current value. Once the bound of
all leaf nodes are updated, we can recursively compute the
updated constrained bounds of all the expressions. If we es-
tablish that the value of the objective root node is the same as
its constrained lower bound, then we say that the current as-
signment is locally optimal, and if this happens, then we can
terminate the inner loop of our local search algorithm (lines
6-25 of Algorithm 3).

A.5 Numerical stability of incremental apply
Please refer to the discussion in the main text around incre-
mental application of small changes in local search. Observe
that another challenge that we need to tackle is numerical sta-
bility of apply operations. This is more important for nodes
of the graph G such as Sum that can accumulate numerical er-
rors by performing arithmetic operations on values of children
nodes. For example, let ε be the numerical tolerance for satis-
fying a constraint. That is, two values are considered equal
if they are within ε of each other. Now suppose applying ev-
ery change incurred an error of say ε′ = 10−3ε, we would
accumulate an error of Kε′ after applying K moves. Say if
K = 104, would incur an error of 10ε which is enough to in-
validate a valid constraint. Although some amount of preci-
sion loss is unavoidable, apply operation for expressions in
Rebalancer are designed to minimize precision loss as much
as possible. In some cases, as shown below, there is a trade

off between running time and precision loss and we need to
use a slightly advanced data structure to achieve both.

For example, consider the Sum, where we have two alter-
natives for recomputing its value for a given change δ. Note
that any floating point arithmetic often results in some loss of
precision.
• Case 1 : Slow with small precision loss and numerical sta-

bility. Compute the value dynamically after every change
by summing the values of children. This takes O(|children|)
time. Even though there is some precision loss in this pro-
cess, the resulting value is the same as the values are added
in the same order.

• Case 2: Fast with high precision loss and numerical in-
stability. Let z0 be the current value of the total sum, and
zp,zn respectively be the sum of prior and new values of the
changed children. Then the updated value of this node af-
ter applying the change is z0 + zn− zp. Note that this takes
O(|δ|) time but we would likely accumulate some addi-
tional precision loss by subtracting two approximate num-
bers zn and zp. Moreover, this problem is encountered per
update, and it adds up across many incremental updates. Fi-
nally, this also results in numerical instability because the
result depends on the order of applying updates.
We can address this problem by building and maintaining

segment tree structure over the children values that supports
computing sum of values in a given range as well as value
updates in logarithmic time. Therefore applying the change
δ takes O(|δ| log |children|) time but incurs smaller precision
loss and better numerical stability.

Appendix B Additional Details on Rebal-
ancer’s MIP Based Solver

In the previous section, we described a local search based al-
gorithm for solving assignment problems. However, for prob-
lems that are not too big or where the solution quality is ex-
tremely important, we can use commercial Mixed Integer Pro-
gramming (MIP) solvers such as Gurobi [15] and Xpress [45].
As we will soon describe, here again we use the flexibility
of the expression graph G to translate all or part of the prob-
lem to a MIP model, which in turn enables us to combine the
strengths of MIP solvers with our local search algorithm for
applications that need them.

B.1 On-the-fly translation to a MIP model
Recall that the standard MIP model for an assignment problem
consists of binary assignment variables vi j for every object bin
pair (oi,b j). In Rebalancer, we reuse the notion of equivalent
objects briefly described in Section A.1 to succinctly combine
assignment variables of objects that belong to the same equiva-
lence class. To see how, first, let Od be the collection of equiv-
alent sets of objects; each element Oi

d ∈Od is a set of equiva-
lent objects. Next, we introduce the notion of dynamic bins,
denoted Bd . A bin is dynamic if objects can move in or out of
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it. Note that depending on the constraints, some bins may not
be able to do either (i.e., they are frozen). Given this, the as-
signment variables in our MIP model are defined as follows.
1. For each eq. object set Oi

d and dynamic bin b j ∈Bd , create
an integer variable vi j that represents the number of objects
of type i that are assigned to b j. Set the lower bound of vi j
as 0 and upper bound as |Oi

d |.
2. For each Oi

d , add an object integrality constraint: ∑ j vi j =

|Oi
d | which ensures that all the equivalent objects in a set

are assigned.
Note how the above reduces the number of variables from
O(|O| · |B|) to O(|Od | · |Bd |). In our experience, this opti-
mization can sometimes be the difference between being able
to solve the problem using a MIP solver and otherwise.

Given the assignment variables above, similar to evalu-
ate, and apply operations, every Rebalancer expression im-
plements a mipTranslate operation, which knows how to cor-
rectly translate the expression based on its type into a linear
combination of assignment variables. Below we show a cou-
ple of examples (see [44] for details on translating many other
expressions including some non-linear types).
• For a leaf node v of type Lookup, we can implement the

mipTranslate similar to the native representation of util de-
fined in Equation 1.

• For a node v of type Max, we can use standard techniques
of translating a max function to MIP model. For simplicity,
consider the easy case when v is minimized by some ob-
jective. In that case, we add a new variable z to the model,
for all w∈ children(v), add constraints z≥mipTranslate(w),
and return the expression z.

With mipTranslate operation of each node in place, we can
build the MIP model M for the entire problem by recursively
calling mipTranslate on the objective root objr and all the
constraint roots, ctri

r. Once we have the MIP translation, the
objective in the MIP model is to minimize mipTranslate(obj0)
and the constraints are mipTranslate(ctri

r)≤ 0 for all ctri
r and

the ones that are added during the mipTranslate calls on a
node (like in the case of Max node described above).

B.2 Solving the model
We can use the aforementioned translation algorithm param-
eterized by dynamic bin set Bd to generate the MIP model
and solve using commercial solvers. If the problem is small
enough, we can solve the full problem with Bd = B. Other-
wise, we can use the hottest bin ranking from Algorithm 4 to
select an appropriately sized subset Bd ⊂ B of dynamic bins
and solve only part of the problem. This technique can in turn
be useful if we want to combine our local search algorithm
with MIP solvers.
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Abstract
Internet-scale services can produce a large amount of logs.
Such logs are increasingly appearing in semi-structured for-
mats such as JSON. At Uber, the amount of semi-structured
log data can exceed 10PB/day. It is prohibitively expensive
to store and analyze them. As a result, logs are only kept
searchable for a few days.

This paper proposes µSlope, a system that losslessly com-
presses semi-structured log data, and allows search without
full decompression. It concisely represents the schema struc-
tures, and only keeps this representation stored once per
dataset instead of interspersing it with each record. It further
“structurizes” the semi-structured data by grouping the records
with the same schema structure into the same table, so that
each table is also well structured. Our evaluation shows that
µSlope achieves 21.9:1 to 186.8:1 compression ratio, which is
at least a few times higher than any existing semi-structured
data management systems (SSDMS); The compression ratio
is 2.34x as high as Zstandard and the search speed is 5.77x of
the other SSDMSes.

1 Introduction

In the past two decades we have witnessed an explosive
growth of log data from Internet-scale systems. Convention-
ally, logs were only in the form of unstructured, free text
(e.g., output from printf()). However, they increasingly ap-
pear in semi-structured format, such as JSON [12] or Protocol
Buffers® [9]. 1 These data models have a tree-structure, where
each node (except for the root) is a key-value pair. The value
may include non-primitive data types such as nested values.

Different records may have different schema structures.
This is why they are referred to as semi-structured. For exam-
ple, JSON and YAML [15] formats are schema-less, meaning

1While we do not have global data on the prevalence of the semi-
structured logs versus unstructured ones, in Uber, the size of semi-structured
logs is about 10x of the unstructured. Part of the reason is that, even if some
third-party or legacy applications emit unstructured logs, our log aggregation
tools would wrap them in JSON. This is also a common practice outside
of Uber. For example, Amazon CloudWatch® [1] also wraps unstructured
log outputs in JSON. Grafana Loki® [5] tags unstructured logs essentially
turning them into semi-structured logs for the purposes of search, and so on.

that records may have arbitrarily different schemas. This flex-
ibility allows programmers to easily log common data types
in high-level programming languages, such as C struct, class,
hash table, array, etc. Although Protocol Buffer and other
formats require users to declare a schema to be used on all
records, they allow a field to be optional. As a result, different
records may still have different structures.

The dynamic schema structure imposes challenges for data
management. For example, naively extending conventional
relational databases would require creating one column for
each possible key. This results in a sparse table (i.e., each row
may have many NULL values), and it is challenging to handle
polymorphic typing (the value of the same key might have
different types).

Some existing semi-structured data management systems
(SSDMS) use custom-designed data structures to store the
schema structure of each record [2, 8, 20, 26, 29, 30]. These
systems were initially designed for user-generated data which
is relatively small (and they primarily focused on fast search
speed). For example, most of the published works on SSDM-
Ses use Twitter® datasets (i.e., Tweets in the Twitter data feed
are in JSON) as their primary evaluation target [20,26,29,30].
Twitter reports that in 2023 there are a total of 500 million
Tweets per day [13], which results in 140GB of Tweet data
per day (assuming 280 characters for each Tweet).

In comparison, logs with machine-generated data can be or-
ders of magnitude larger. The size of JSON logs at Uber from
all services exceed 10 Petabytes on a busy day, or 60PB/week,
which is more than 70,000x the size of tweets. Managing
data at this scale with existing SSDMSes is prohibitively ex-
pensive. These systems need to store one schema structure
for each record, resulting in a large amount of duplication
when a large number of records share the same schema. As a
result, even if some systems can efficiently compress the data
content [20, 30], the overall storage size is still large as it is
dominated by the schema structures [20].

At Uber we have repeatedly suffered from scalability issues
as Uber grew. Initially we used Elasticsearch® [21] to manage
our JSON logs. It builds indexes for every word in a JSON
document to support full text search, hence the index size is at
the same order of magnitude as the original data and needs to
be stored on SSD for fast search. The resource cost, together
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with other issues (§2), forced us to migrate away from it
around 2019. Since then we have been using ClickHouse® [4],
a columnar RDBMS with features for handling JSON data.
Its overall compression ratio on our setup is less than 4:1, and
it also requires SSD for fast search. Therefore the resource
cost is still prohibitively expensive.

CLP [27] and LogGrep [31] are able to compress unstruc-
tured logs and allow users to search compressed data without
full decompression. While effective on unstructured logs 2

they are limited on semi-structured logs. Fundamentally, their
storage structure is not designed for the semi-structured for-
mat. For example, CLP parses an unstructured log into three
components: timestamp, log type, and variables. The entire
log dataset can be stored in a table consisting of these three
columns: each log message is stored in one row, and all of
its variable values are stored as a list in the variables column.
Even if we extend CLP’s parser to recognize the key/value
structure (so the schema structure can be treated as the log
type), the values of all the fields are intertwined in the same
variables column of a single table. This hurts compression, but
more importantly, querying any field requires tedious decom-
pression and scan of the entire variables column. Indeed, real-
world users who use CLP to manage JSON logs encounter
poor search performance exactly for these reasons [10]. In
addition, these tools only support a wildcard substring query
model (like grep), but do not provide boolean algebra support
to filter on multiple fields.

We propose µSlope3, an SSDMS for semi-structured log
data. µSlope focuses on storage efficiency by losslessly com-
pressing the logs. And we show that fast search can be
achieved with a careful system design without having to use
an index (which would increase storage overhead). µSlope
does not require any user annotation as it automatically han-
dles the dynamic schema structures.

µSlope incorporates three novel designs. The first is its con-
cise representation of the schema structures. Unlike existing
SSDMSes that store separate schema information for each
record, µSlope proposes (1) a merged parse tree to store the
schema structures generalized for patterns specific to logs, and
(2) a schema map to concisely represent each schema with
a set of leaf nodes in the tree. Each unique schema structure
is stored only once in the schema map, instead of per record,
and it is decoupled from the storage of the value contents.

µSlope then partitions the records into different tables to
store their values, where the records in the same table have the
same schema. Therefore each table is now perfectly structured:
all records have the same number of keys and each value
is of the same type. This allows us to apply well-studied
optimizations designed for relational tables. For example, we
can store and compress each table in a columnar manner that
maximizes the compression ratio and search speed [16].

2CLP is deployed across Uber’s various data and ML platforms to manage
the unstructured logs.

3µSlope: Semi-structured LOg Processing Engine like a micro(µ)-scope.

Finally, µSlope uses a query processing algorithm that lever-
ages the schema information and encoded tables. µSlope first
builds an abstract syntax tree (AST) from the query, and
systematically refines this AST by looking up the merged
parse tree and schema map. This leads to early termination of
queries that do not match any schema structures, and allows
µSlope to decompress and scan data only when necessary.

µSlope’s design was guided by a characterization study of
Uber’s semi-structured logs and queries (§3). We found that
while records do have dynamic schema structures, there is
enormous repetition as most records share a small number of
common schemas. In addition, nearly one third of the queries
that users performed can be terminated without table scanning
because they do not match any of the schema structures.

We evaluate µSlope on a total of 21 semi-structured log
datasets, and compare it with a number of widely used SS-
DMSes. Our result shows that µSlope achieves a compression
ratio of 68.1:1 on average. This is at least 2.6x better any
existing SSDMSes’. The compression ratio is even 2.34x of
Zstandard’s and 1.70x of LZMA’s at the default compression
level, even though they do not support search on compressed
data. µSlope’s search speed is 2.47x of ClickHouse’s, 8.09x
of PostgreSQL’s, and 6.74x of MongoDB®’s.

This paper makes two contributions. First, it proposes
µSlope, a resource efficient archival SSDMS that compresses
semi-structured log data and enables fast search without full
decompression. Second, we present an in-depth analysis of
the characteristics of the semi-structured log data at Uber.

µSlope also has a few limitations. It is designed for semi-
structured text logs, which are highly repetitive, instead of
being a general-purpose SSDMS. If every record uses a dif-
ferent schema structure it won’t work well on µSlope. Fur-
thermore, µSlope uses an index-less design to optimize for
storage efficiency; its search speed, however, may not be as
fast as index-based search tools like Elasticsearch.

2 Background and Related Work

In this section we present the background information and
related work. We explain (1) the semi-structured data model,
(2) how prior SSDMSes manage the semi-structured data, and
(3) commonly used compression algorithms.

2.1 Semi-structured Data Model
Semi-structured data have a tree structure, and its data model
can be defined as follows:

Troot = Tob ject

Tob ject = {key1 : Tvalue1, ...,keyn : Tvaluen}
Tvalue = Tob ject |Tarray|Tprimitive

Tarray = [Tvalue, ...,Tvalue]

Tprimitive = string|number|boolean|null

key = string
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{

  “level”: “error”,

  “message”: “Can’t fetch flow 6, cell_32”,

  “serviceA”: {

      “traceID”: “abc-xyz”

  },

  “error”: “Error404”,

  “request”: {

      “namespace”: “driver_onboarding”

  },

  “timestamp”: “2023-03-16T07:58:02.368”

}

level:str

message:str

serviceA:obj   traceID:str

error:str

request:obj  namespace:str

timestamp:str

root

{

  “level”: “error”,

  “message”: “Can’t fetch flow 8, cell_32”,

  “serviceB”: {

      “traceID”: “def-uvw”

  },

  “request”: “vehicle_compliance”,

  “timestamp”: “2023-03-16T07:58:06.246”

}

level:str

message:str

serviceB:obj   traceID:str

request:str

timestamp:str

root

Figure 1: Two example log records and their schema trees.
 1 level:str

 2 message:str

 3 serviceA:obj     4 traceID:str

 5 error:str

 6 request:obj      7 namespace:str

 8 timestamp:str

 9 serviceB:obj     10 traceID:str

11 request:str

0 root

Figure 2: The merged schema tree of the two records.

Each semi-structured log record, or record for short, cor-
responds to a Troot . Figure 1 shows two sample records. A
log dataset contains a number of such records. The schema
of each record can be represented as a tree [30]. Figure 1
shows the two schema trees. Each node records a field, which
consists of the name of the key and the type of its value.

Only the leaf nodes can have primitive value types in the
schema tree. Any non-leaf nodes would have non-primitive
value types, that is, either object or array.

If two records have the same schema tree, we say they have
the same schema. The two nodes in their respective trees are
considered to be the same if and only if both the key and the
value type are the same. In a schema-less data format like
JSON, a key could have “polymorphic” values, i.e., different
value types in different records. For example, the “request”
field in the two schemas in Figure 1 have different value types.

The schema trees of multiple records can be merged into a
single tree [30]. We call it the merged schema tree, or MST.
Specifically, given node N1 and N2 from two schema trees,
we can merge them if and only if: (1) N1 and N2 have the
same key name; (2) the value type are the same; and (3) all
the predecessor nodes of N1 and N2 in their respective schema
trees can be merged. Figure 2 shows the MST of the two
schema trees in Figure 1.

2.2 Existing SSDMSes
Different semi-structured records may have different schemas,
therefore we cannot naively store them in the RDMS table.

\x16\x00\x00\x00           // size (32-bit): 22 bytes

\x02                       // 0x02 = value type String

hello\x00                  // key name

\x06\x00\x00\x00world\x00  // size of value (6 bytes), value

\x00                       // 0x00 = 'end of object'

Figure 3: The BSON representation of {“hello”: “world”}.

As a result, existing SSDMSes either use natively designed
storage format or extend RDBMS in sophisticated ways.
Native Support for Semi-structured Data. These SSDMSes
use custom data structures to represent the schema structure
of each record. MongoDB uses a concise binary format called
BSON (Binary JSON) [2]. Figure 3 shows the BSON repre-
sentation of a simple JSON record {“hello”: “world”} [3]. It
stores the schema structure, including the type and size of
each key/value pair, interspersed with the record content. The
BSON records can only be stored in a row-oriented manner,
which limits both the compression and search speed because it
has to scan the entire record even when the user only searches
for a specific key. Fast search can only be achieved via creat-
ing external indexes.

PostgreSQL®’s jsonb [8] and Oracle®’s OSON [26] are
two other examples of custom schema structures. The former
is similar to BSON, while the latter stores more metadata
information, such as the number and offsets of nested keys.

Steed [30] proposes both row and column oriented storage
methods. It operates on the merged schema tree (MST). In-
stead of storing the key name with each record, Steed only
needs to store the node ID of the key in the MST. However,
it still keeps one schema structure for each record in its row-
oriented method. Keeping track of the schema structure is
even more complex in its columnar method, as it splits the
datasets into N independent columns where N is the number
of keys, each column stores all the values of that key. Because
the key/value pairs of a single record are now split, assem-
bling the original record’s schema structure requires even
more complex data structures (2 additional columns for each
key) and algorithms (finite state machine).

Scuba [17] is an in-memory SSDMS that keeps records in
a compressed row-oriented format. Records are stored one
after another in a table. Therefore it needs to scan all records
in a table (and all the fields) during search. It stores the string
values in a dictionary, and the dictionary is used as an index
during search. However, unlike CLP, the entire string is stored
as a single entry instead of being parsed into timestamp, log
type, and variable values. It also has some restrictions on the
data model, most notably it prohibits nested keys. Note that
Scuba is designed for general-purpose data storage instead of
narrowly focusing on logs.

Extending RDBMS. Sinew [29] uses a hybrid design that
materializes a subset of the keys as separate columns, and
stores the remainder using a binary format similar to BSON
in a single RDBMS column. JSON Tiles [20] extends the
idea of Sinew, reordering the records to group those with
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similar schemas into disjunct tiles. However, it still needs to
keep a binary schema structure for each record. Although
JSON Tiles applies compression to those separate columns,
the compression ratio is around 1 because the large size of
the per-record schema structure.

Some RDBMSes map semi-structured data into relational
tables. For instance, Argo [19] proposed two methods. The
first stores fields in a single table, while the second splits it to
three where each is used for a primitive value type. However,
the first method will result in sparse tables (many fields with
NULL values). Both methods take up too much storage space
due to repetitive key/values. Liu et al. proposed to store the
entire JSON record in a single RDBMS column [25].
Elasticsearch and ClickHouse: Experiences at Uber. Elas-
ticsearch [21] is a JSON document store that supports search.
It assumes the type of the field will never change by default
and cannot handle fields with dynamic types easily. (By de-
fault, Elasticsearch will drop records if a field has a different
type than in a previous record.) It also struggles to handle the
case where every record has new unique keys (e.g., using a
UUID as a key) [18]. At Uber we used to use Elasticsearch,
but migrated away (to ClickHouse) due to these issues as well
as its excessive resource usage.

ClickHouse is a columnar RDBMS with features for han-
dling JSON data. At Uber we built a layer to transform records
before ingestion into ClickHouse. After experimenting with
different storage formats, we settled on storing a handful of
common fields in dedicated columns, and storing all other
unique key-value pairs that are less than or equal to 3 lev-
els deep in a pair of arrays per type. For instance, string-
type fields were stored in two arrays, “String.names” and
“String.values”. To query a field, we first find the key in the
String.names array, use the index of that key to index the
String.values array, and finally compare the value against
the query. We also keep a _source field that contains raw
JSON and build inverted index on top of it. Finally, to im-
prove query performance for frequently accessed fields, our
abstraction layer temporarily extracts these fields into tempo-
rary dedicated columns (materialized columns). This setup
results in a compression ratio lower than 4:1.

2.3 Compressors
General-purpose compressors like Gzip [23] and Zstan-
dard [22] use a sliding window approach proposed by Lempel
and Ziv [33]. They locate duplicates within a fixed-size slid-
ing window, so they cannot detect duplications if the distance
between the two duplicated patterns is larger than the size
of the sliding window. Therefore storing duplicated patterns
close to each other would maximize the compression ratio.

Searching, unfortunately, requires decompressing the entire
data. These compressors typically encode duplicates in length-
distance pairs [28, 33]. Starting from the current position,
if the next L (length) characters are the same as the ones

starting at D (distance) behind, the next L characters can be
encoded with (D,L). This (D,L) pair is directly embedded in
the compressed data, hence search requires decompression
from the beginning.

Log compression and search. Existing log compression
techniques focus only on unstructured (i.e., free text) logs.
CLP [27] uses a custom-designed log parser to split each
message into three components: timestamp, static text (i.e.,
log type), and variable values, structurizes logs into a table of
three columns. CLP stores the static text and repetitive vari-
able values into respective dictionaries, and the dictionaries
also serve as coarse-grained index during search to minimize
decompression and scan. It then compresses the three-column
table in columnar order.

LogGrep [31] also compresses unstructured logs and al-
lows search. It uses a training phase to identify the com-
mon patterns of messages. LogGrep identifies patterns in
much finer granularity (e.g., a variable can be further divided
into subcomponents if a different subcomponent is repetitive).
Therefore a message is split into a larger number of subcom-
ponents without clear mapping to program semantics, and it
uses tables to store the complex mapping to assemble these
subcomponents into the original log message.

3 Characterizing Semi-structured Log Data

We first provide a characterization study on semi-structured
log data before describing the design of µSlope. While prior
works have characterized semi-structured user-generated
data [30], we are the first to provide an understanding of
machine-generated semi-structured log data.

We collected 16 frequently used log datasets (LogA-LogP)
from Uber and 5 log datasets from open-source software
(Apache Spark™, MongoDB, CockroachDB®, Elasticsearch,
and PostgreSQL). All of these datasets are in JSON for-
mat. We limit each dataset to 1,000,000 log records. We
also provide a characterization of real-world queries on semi-
structured log data by analyzing a total of 23,091 queries
spanning twenty days from Uber; 7665 of them are unique.
Schema Variation. We first study the schema variation.
JSON’s schema-less nature means that the variation of
schemas between records can range from zero (i.e. all records
have the same schema) to 100% (i.e. all schemas are differ-
ent). Recall from §2.1 that the schemas of two log records
are considered the same if and only if their schema trees are
identical. The degree of variation is a critical consideration to
the design of µSlope and prior systems. If there is no variation,
then one can easily store logs in an RDBMS by materializing
one column for every leaf-node node.

Figure 4 shows the unique schemas for each dataset. All
except two datasets have more than 1 unique schemas, with
LogE having the largest variation (6,176 unique schemas).
The median number of unique schemas of all datasets is 40.
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Despite the relatively large degree of variation, there also
exists a large degree of repetition. On average, there are
25,000 records in each dataset with the same schema; if we
increase the sample size, this repetition will be larger. Even
for the most noisy dataset, LogE, there are still an average of
162 records per schema.

To understand the schema variation, we further measure the
variation of individual keys. Figure 4 also shows the number
of unique keys for each dataset. Two keys are considered the
same if and only if their full name and value types are the same.
A key’s full includes all the nested keys (i.e., predecessor
nodes in the schema tree). For example, “serviceA.traceID” is
the full name whereas “traceID” is not. The median number
of unique keys is 138, and it varies greatly. LogM has only 20
unique keys (and it has only 1 schema), whereas Spark logs
have 5,627 unique keys.

This result suggests that the variation in schemas is likely
due to the variation of individual keys instead of their combi-
natorial effect. In theory, a large variation in schemas could
be the result of a small number of keys: n unique keys could
result in 2n different combinations, hence 2n schemas. How-
ever, this is not the case with logs. In fact, in 18 out of 21
datasets the number of unique keys is larger than the number
of schemas, showing the opposite of a combinatorial effect.

To get better understand how keys are distributed within a
dataset, we measure the key frequency (KF). It is defined as

KF(x) =
number o f records that contain key x

total number o f records

Figure 5 takes LogE as an example to show the distribution
of KF. Each bar represents a key. LogE has 6176 schemas and
704 keys. There are a small number (21) of keys that have
KF = 1.0, indicating that they appear in every record. These
are the keys uniformly added by the logging library, such as
“timestamp” and “level”.

On the other hand, there is a long-tail in the KF distribution
of LogE. 83.0% of the keys has a KF <0.1. Most of them are
different data structures in the program that documents the
program state relevant to a specific event. There are also cases
where the variation in schemas is caused by a large variation
in the name of a key, like Spark using the pathname as the
key name, or some datasets using the UUID as the key name.

Type Composition. Next, we break down the value types.
Recall from §2.1, the value type can be an object, array, or
one of the primitive types. We further refine the types as
follows. First, we break down the number type into integer and
float. For strings, we separate single-word values from multi-
word ones (using white space as word delimiter), because
the former is likely a variable (e.g., an identifier) whereas
the latter is free-text log. We call the former variable and the
latter log-text.

Figure 6 shows the breakdown of the value types in each
dataset. On average, 70.8% of the values in each dataset are
variables (i.e. single-word strings). 10.8% are objects, i.e.
non-leaf nodes in the schema tree leading to nested keys. In
comparison, the percentage of boolean, float, null are low,
averaging 1.74%, 1.21%, 0.22%.

The percentage of array fields are also low at 0.79%. In
addition, only 28 of the 7,665 (0.4%) of the unique queries
explicitly search on an array field. Furthermore, these explicit
array searches only match 0.05% of the data on average.

Each log record contains an average of 1.6 log-text keys.
In addition, 41% of the unique queries contain filters on log-
text, so efficient search on log-text is important. In addition, a
record contains 4.0 integer fields on average.
Repetitiveness of Variables. Next, we zoom into variable
fields (i.e., single-word strings), because they dominate the
composition of logs. The question we care about is: Are these
values repetitive? We use the repetition ratio to measure the
repetition of variable fields. It is defined as

repetition ratio =
number o f all variable values

number o f unique variable values

A high repetition ratio means that unique variable values are
much fewer and these fields are repetitive. Figure 6 shows
the repetition ratio. The median repetition ratio is 37.8 and
the average is 58.2 across all datasets. It can be as high as
433.4 (LogD) and even the minimum is still 9.29 (LogC).
This means dictionary deduplication can be effective.

The variable fields are also frequently queried. The average
query contains 3.450 filters with 2.663 of those being vari-
able filters. For example, level:“warn” OR level:“error” is
a query that has two string filters on the level key. The largest
query has 93 string filters. Furthermore, filters that implicitly
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Figure 6: Average number of keys per record, broken down by different value types and repetition ratio of variables.

match all keys – "wildcard keys" – are common in practice.
For example, *:“aUUID” matches any keys as long as its value
is “aUUID”. Of the 7,665 unique queries 2,271 of them con-
tain a wildcard key. These filters are easier to express for
users of search, but pose a significant performance hazard. In
the worst case such filters can impose scans over the entire
record, eliminating much of the benefit of querying structured
data. However, using a dictionary to store the variables would
significantly speed up such queries as we only need to search
the dictionary for matching values.

Importance of Schema Search. Nearly one third (29%) of
the unique queries do not match any of the schema structures.
That is, they can be returned without scanning the values.
Examples include searching for a nonexistent key, the key
exists but the value type does not match, or the conjunction
of keys/value types do not exist. For example, engineers per-
forms such search to regularly verify the nonexistence of
certain error events. However, for existing SSDMSes (such
as MongoDB and PostgreSQL) this opportunity is wasted,
because the schema structure is interspersed with the values.

Summary and Takeaways. Schemas are dynamic, and those
unstructured keys are frequently queried. Therefore simple
extension of RDBMS to only materialize those structured
keys as columns is insufficient, and we need to precisely track
the schema of semi-structured data. On the other hand, a
large number of records have the same schema, presenting
opportunities to group them by the same schema so that each
group is well-structured.

70.8% of the keys are single-word strings. They are highly
repetitive, and commonly queried on. This indicates that stor-
ing them in a variable dictionary would effectively dedupli-
cate them, and at the same time, speedup the search.

Finally, efficiently storing the schema structure and decou-
ple it from the record value data would significantly speedup
the 29% of the queries that can be completed only by querying
the schema structure.

4 Overview of µSlope

µSlope is a resource-efficient SSDMS that we designed from
the ground-up. µSlope has three major designs that are novel
compared to other SSDMSes: (1) Decoupling the storage of
schema metadata from the storage of each record; (2) Group-
ing records by schema to store them into well-structured ta-
bles, and apply efficient encoding; and (3) Optimized schema
metadata lookup to speedup search.

Figure 7 shows µSlope’s architecture. When data is in-
gested, µSlope parses each record and extracts its schema. It
uses two core data structures to track the schema structure: the
merged parse tree (MPT) and the schema map. The MPT and
the schema map are collectively referred as schema metadata.
It is critical to keep the schema metadata as small as possible,
yet still captures the highly repetitive structure of the log.

The MPT is a more general form of the merged schema
tree (MST) as described in §2.1. It has four differences when
compared to MST. First, the MPT can contain special un-
named nodes that mark the truncation of some key value pairs.
Multiple rare keys can be mapped to the same unnamed node
when the key names contain random data, such as UUID
or file path. Including such non-repetitive key names would
bloat the metadata. In contrast, sometimes the value of a key
could be highly repetitive. For example, all the records from
the same application would have the same value under the
application-name key. Therefore, the MPT also allows a node
to include the value (only if the value is highly repetitive).

The third difference is that MPT can encode the structure
of strings with key-value pairs. This allows µSlope to capture
more structural information from strings, improving compres-
sion and search. For instance, given a record {.. “message”:

“.. latency=35, status=OK, type=READ, ...”}, µSlope
would create three nodes for “latency”, “status”, and “type”
respectively as the children of the “message” key. This
requires that schemas contain an ordered region where we
maintain some leaf nodes in a specific order, because the
order of the keys in a string needs to be preserved.

Another difference is that MPT stores more fine-grained
string types. A string value could either be a timestamp, a
single-word string, or a log-text. Storing fine-grained types

534    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



ID         Leaf Nodes 

 0      [1, 2, 4, 5, 7, 8]

 1      [1, 2, 10, 11, 8]

Parsing &
Encoding

Semi-structured Logs

Merged Parse Tree

Schema Map

Compression

Compressed
Archives

Search

Node         1    2    4    5    7    8 

Record 0   ..    ..    ..     ..    ..      ..

Record 1   ..    ..    ..     ..    ..      ..

    ...             ..    ..    ..     ..    ..      ..  

Schema 0

Encoded Record Tables

Archive

Variable

Dictionary

Log Type

Dictionaries

Timestamp

Dictionary

Figure 7: Architecture of µSlope.

enables more filtering opportunities on MPT, resulting in
better search performance.

The schema map stores each unique schema in the log
dataset in a hashmap. We make the observation that a schema
can be unambiguously identified with the list of leaf nodes
in the MPT. For example, the schema map in Figure 7 shows
the two schemas of the two records in Figure 1, where the
node IDs corresponds to the MST shown in Figure 2. (In this
example, the MPT and the MST are the same.)

The MPT and schema map deduplicate the highly repetitive
schema structures. Unlike prior SSDMSes §2.2 that store a
schema structure for every record, each unique schema is
stored only once. In practice, the schema metadata size is
typically less than 0.0001% of the total compressed data size.
This design also enables fast search: the succinct metadata can
be efficiently searched, providing powerful filtering capability.

µSlope uses one table for each schema to store the values.
Therefore each table only stores the values of the records that
have the same schema. As a result, there can be thousands of
tables, one for each schema. The advantage is that each table
is now perfectly structured, as all records have the exact same
keys and value types. µSlope essentially structurizes those
semi-structured data.

The tables are called Encoded Record Tables (ERT), be-
cause instead of storing their raw value, µSlope performs
type-specific encoding. For example, single-word string will
be stored in a variable dictionary, so only an ID is stored
in the ERT. The dictionaries serve two purposes at the same
time: it effectively deduplicates the highly repetitive patterns,
and it serves as coarse-grained index for search so µSlope
only needs to scan the ERT that contains the matching record.

Each ERT is stored and compressed in a columnar order.
This significantly improves both the compression ratio and
search performance [16], because a column groups the se-
mantically similar values together so it maximizes general-
purpose compressors’ ability to find repetitions, and during
search we only need to decompress and scan the columns
whose keys were searched for.

µSlope leverages the efficiency of metadata and dictionary
lookup to optimize the search performance. It uses Kibana
Query Language (KQL) as its query language, which is both
concise and powerful. µSlope transforms a query into an ab-

ID   Log Type

L0   Can’t fetch flow \INT, cell \DICTVAR

ID   Format

T0   yyyy-MM-dd’T’HH:mm:ss’.’SSS

ID   Variable Value

V0   error

V1   cell_32

V2   abc-xyz

V3   Error404

V4   driver_onboarding

V5   def-uvw

V6   vehicle_compliance

 Node   1     2    4  5  7     8  

 Values V0 L0 6,V1 V2 V3 V4  T0 1..8

Schema 0 Encoded Record Table

Schema 1 Encoded Record Table

Variable Dictionary

Timestamp 

Dictionary

Log Type 

Dictionary

 Node   1     2    10  11    8  

 Values V0 L0 8,V1 V5  V6  T0 1..6

Figure 8: How µSlope encodes log records.

stract syntax tree (AST) to perform a number of optimizations,
including determining if the query matches any schema and if
the filter pattern matches any dictionary values. If not, µSlope
will terminate query processing early. Otherwise, only rele-
vant ERTs are finally decompressed and searched through.

Both compression and search are embarrassingly parallel.
During compression, when parsing a new record µSlope ex-
tracts the key-value pairs of each log record. Corresponding
key nodes are added to the MPT, with leaf node IDs collec-
tively representing a schema. Values are encoded by various
methods and are stored in the ERTs. Upon identifying a new
schema, µSlope dynamically creates a new ERT to store the
encoded values. All the ERTs, dictionaries and schema meta-
data will be buffered in the memory. Once the buffer reaches
a certain size, they are compressed using Zstandard before
stored to disk, creating what we call an archive. µSlope then
clears the buffer and dictionaries before compressing newly ar-
rived records. Therefore different archives can be compressed,
searched, and decompressed independently in parallel.

5 Compression

We use simdjson [11] parser to parse the JSON structures.
Other log formats representable by the data model in §2.1
can also be supported by integrating a parser to extract the
key-value pairs from the records.

µSlope uses different encoding techniques on different
value types. Next we describe them in turn.
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Strings. µSlope treats string values differently depending on
whether it is (1) a timestamp, and if not, (2) a variable, i.e. a
single-word string, or (3) log-text. µSlope uses CLP’s parser
to parse a string value. It uses heuristics to detect if the string
is a timestamp. If so, µSlope encodes it into a Unix® epoch
time and stores the format pattern in the timestamp dictionary.
As a result, each timestamp field is encoded into two columns
in the ERT: a timestamp dictionary ID and a Unix epoch time.
The ID column consumes negligible space after compression
because most of the time there is only one timestamp format.

For a log-text, the CLP parser extracts the log type and
variables. The log type is stored in the log type dictionary.
Different types of variable values are encoded differently. Inte-
gers and floating point numbers are directly encoded in binary
format. Other variables are encoded as a variable dictionary
ID after storing them in the variable dictionary. Therefore
a log-text also has two columns: a log type ID, and a list
of encoded variables stored in a single column. We extend
CLP’s log parser [7] to allow users to specify rules to extract
key/value pairs from log-text fields and store them as JSON
fields. Therefore, if the log is in unstructured format (instead
of JSON), or dominated by unstructured text log (i.e. majority
of a record is an unstructured text message field with a few
additional fields containing metadata like hostname, verbosity,
etc.), µSlope essentially falls back to CLP encoding.

µSlope directly stores a single-word string in the variable
dictionary and stores the dictionary ID in the ERT. The dic-
tionary effectively deduplicates the repetitions in variables as
we shown in §3. We use the same variable dictionary used for
the log-text for maximum deduplication.

Figure 8 shows the contents of the dictionaries and encoded
record tables for the example log records in Figure 1. Their
MPT is the same as the MST shown Figure 2, except that the
MPT keeps a fine-grained string type on each string field. The
schemas are shown in Figure 7. We use different prefix and
colors for the different types of dictionary IDs: log type (‘L’),
timestamp (‘T’), and variable (‘V’). For example, consider
the first log record, which is stored in the ERT of schema
0. Four of its keys (“level”, “serviceA.traceID”, “error”, “re-
quest.namespace”) have single-word strings; they have the
MPT node IDs 1, 4, 5, 7 respectively (Figure 2), and their
values are encoded as V0, V2, V3, and V4 which are IDs into
the variable dictionary. The “message” field (node ID 2) is a
log-text. Its first column stores L0, which is the ID into the
log type dictionary, and the second column stores the two
encoded variables. Note that ‘\INT’ and ‘\DICTVAR’ in the
log type are special placeholder bytes for variables (of integer
and dictionary variable types respectively). The “timestamp”
value is stored in the last 2 column (node 8); the value “1..8”
is the encoded timestamp in Unix epoch time.
Integers, floating point, and boolean values are directly
encoded in binary form in the same way as in CLP [27].
Arrays are stored as log-text strings by default, i.e., using
CLP to parse it into a log type and a list of variable values.

AND<schema 0>

4: abc-xyz 5: *404

AND<empty>

10: abc-xyz 5: *404

OR

KQL Query *.traceID: abc-xyz AND error: *404

AND

*.traceID<var>: abc-xyz error<var, log-text, int, float>: *404

After Key
Resolution

Initial AST

AND

5<var>: *404OR

4<var>: abc-xyz 10<var>: abc-xyz

After Schema
Resolution

False
Propagation

Figure 9: Example of query processing.

This means that arrays are typically searched by decoding
and parsing their string representation. This is acceptable as
§3 shows that arrays occur rarely and are seldom searched.
Note that the log type parsed from an array string is stored in
a separate log type dictionary to avoid polluting the regular
log type dictionary for log-text. We also support fully pars-
ing arrays and recording their structure in the MPT under a
non-default configuration. This approach offers performance
benefits for array searches, but typically results in growth in
schema size due to the diverse internal structures of arrays.
Preserving record order. Splitting the records into different
tables means that we lose the order between records of dif-
ferent schemas. Using timestamp to order them is unreliable
because records may have the same timestamp. To preserve
the order, µSlope adds a column in each ERT to store the
order of the record in the original log stream.
Random keys and invariant values. Recall that µSlope trun-
cates the key name from the MPT if it is not repetitive, and
includes values that don’t change into the MPT. The heuristic
we use is that if a key does not appear in more than 1% of the
records of the archive, it will be truncated; whereas a value
will be included in the MPT only if it never changes. We
implement them by keeping counters for the keys and values
as records are parsed and stored in the memory buffer; the
decision to truncate a field or include a value in the MPT is
made when we write the buffered data to disk (into the archive
format). The structures of a truncated field and its successors
(a truncated field may be a non-primitive type, in which case
all the subfields will be recursively truncated) are encoded
in a row-oriented format similar to BSON, and stored in a
column that is mapped to a (special) MPT node located at the
place of the truncated node.

6 Search

µSlope search accepts queries which combine filters on one or
more keys. The key names in the query may contain wildcards
and be of ambiguous underlying type. Search takes advantage
of the MPT, schema map, and dictionaries to evaluate queries
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efficiently. This is a multi-step process, each step performs
refinements and optimizations on a custom Abstract Syntax
Tree (AST) µSlope built from the query. Next, we explain
each step using an example shown in Figure 9.
Step 1: Constructing the initial search AST. Given a query
µSlope transforms it into an AST where each leaf node speci-
fies a filter on some key, and each non-leaf node is a logical
AND or OR. Figure 9 shows an example KQL query. The
query consists of two filters joined by AND. The key name
in first filter contains a wildcard, meaning it can match any
hierarchy of keys that end with “traceID”. The second filter
contains a wildcard in the value pattern.

µSlope parses this query into a search AST shown in Fig-
ure 9. Initially this AST contains two nodes, each maps to a
filter. Each node also stores the possible value types inferred
from the query. The value type of the first filter is unambigu-
ous; it must be single-word string type (i.e., a variable) given
the pattern is surrounded by ‘"’. The second filter, however,
has ambiguous type; it can either be a variable, a log-text, an
integer, or a floating point number.
Step 2: Key resolution further turns each key name into zero
or more MPT leaf nodes by resolving ambiguities. Ambigui-
ties come from two sources: (1) ambiguous key name, i.e. a
key with wildcard can match more than one leaf of the MPT,
and (2) ambiguous value type, when it is polymorphic. In
both cases we replace the corresponding filter with an OR
node where every child of the OR is the same filter with the
key replaced by each of the matching MPT leaf nodes in turn.
The “*.traceID<var>” in Figure 9 is an example of ambigu-
ous key name. It is resolved into two MPT leaf nodes, node
4 and 10, which corresponds to “serviceA.traceID” and “ser-
viceB.traceID” respectively. These two nodes are connected
by OR in the refined AST after the key resolution.

The “error<var,int,float>:*404” node in the initial AST has
potentially ambiguous value type. In our example, because the
only possible type for the “error” key is a variable (i.e., single-
word string), we replace it with a single node “5<var>:*404”.
However, if “error” has polymorphic type, say an integer, in
the dataset, then we need to consider both possibilities and
connect them by an OR.

When a key name matches no leaf nodes in the MPT, that
AST node is eliminated by replacing it as false and propagat-
ing this false up the AST, a process known as false propaga-
tion. This can eliminate part or all of the query.

After key resolution each key in the search AST refers to a
leaf node from the MPT. The one exception is if the searched
key name is a single wildcard ’*’. Expanding such keys would
result in a bloated AST because it can match any key name,
adding combinatorial overhead to the later steps (particularly
if the query specifies multiple filters on ’*’ key). Wildcard
keys are expanded dynamically only at the last step, before
search on an ERT.
Step 3: Schema resolution looks up the schema map to find a
set of schemas that match the record structure implied by the

query. It first transforms the AST into OR of ANDs form (i.e.
sum of products). The key insight is that for an AND to ever
be true, all of its children must exist together in a schema. We
implement this check by performing an intersection between
the set of MPT node IDs of the children of an AND node with
each schema. If the intersection is empty, the entire AND
sub-tree is removed by treating it as false, and we propagate
this false along the AST.

The last AST in Figure 9 shows the AST after schema res-
olution. The rightmost AND expression matches no schemas
and can be removed since MST node 5 and 10 never appear
in the same schema. In this case we are able to narrow down
the ambiguous query to a single schema, schema 0, by only
searching the schema metadata.
Step 4: Search on strings. Next µSlope searches the dictio-
naries on relevant string filters. Search needs to be performed
over the log type dictionary, the variable dictionary, or the
timestamp dictionary. Searches on log-text are handled the
same way as CLP would. The ability of the dictionaries to
reject string queries is critically important for performance.
Consider the query *:<uuid>, which is commonly issued at
Uber. In archives that do not contain this uuid, this query can
be terminated early after searching the variable dictionary,
avoiding any column scan. In general, an empty dictionary
search would result in the AST node being eliminated, and
the false value gets propagated to further simplify the AST.
Step 5: Column decompression and scan is guided by the
remaining nodes in the AST. Specifically, the remaining AST
tells us exactly which ERT(s), and which column(s), should
be scanned. This minimizes the decompression and scan.

Note that we also add a simple timestamp range index at
the archive level. This is used to avoid having to decompress
and scan any data in the archive when there is no overlap with
the time range specified by the query.

7 Implementation

The implementation of µSlope closely follows the design
specified in the previous sections. However, some details not
called out in the design are critical to the overall performance
of the system, so we highlight them here.

We have written a custom JSON serializer in order to im-
prove decompression and search speed. With each schema
precisely defining the structure of a log record, µSlope is
able to generate a bytecode that describes how to reconstruct
records in terms of the columns they have been split into.
Unlike JSON serializers designed for dynamic objects, our
serializer doesn’t require the creation or traversal of mutable
in-memory data structures during serialization. Instead, it uses
the bytecode generated at the table granularity to directly ap-
pend the values to the serialization buffer. This approach has
proven several times faster than conventional JSON serializers
based on our experience.
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Given that µSlope can sometimes produce archives contain-
ing many small ERTs, minimizing the overhead of storing and
loading ERTs is crucial. In µSlope, ERTs are concatenated
together into a single file, with a metadata file that describes
the location of each ERT within the file and the number of log
records within each ERT, which reduces I/O overhead. During
search, µSlope scans the AST to determine which ERTs need
loading, and then loads them following the storage order, thus
eliminating random I/O. Additionally, it optimizes bytecode
generation by only producing bytecode for serializing records
from an ERT after finding at least one matching record.

8 Evaluation

We implement µSlope with about 18k lines of C++ code. We
evaluate the performance of µSlope on both Uber logs and
public logs. Specifically, we focus on the following aspects:
(1) the compression ratio and speed; (2) the query perfor-
mance; (3) worst case performance on synthetic logs; (4) the
scalability of µSlope on large-scale logs.

8.1 Experiment Setup
Overall we conduct the experiments in two setups: (1) single-
thread, single-process experiments on smaller datasets (re-
ferred as single-thread experiments), and (2) parallel setups
on larger scale Uber’s logs. For (1) we compare µSlope with
a number of other SSDMSes. The logs are from the same
services as described in §3, except that here we increased
the data size. In addition, we include logs from five public
software, which are generated by running HiBench [24] and
YCSB [14] benchmarks. Table 1 shows the size and the num-
ber of records of each log dataset. These datasets are relatively
small because (1) we had problems to ingest larger data to
some of the tools we compare with (for example the inges-
tion throughput for Elasticsearch is 5MB/s), and (2) µSlope is
embarrassingly parallel, therefore its single-threaded perfor-
mance is the most critical. We also evaluate µSlope on larger
Uber’s datasets in §8.5.

Single-thread experiments were performed on a Linux
server with Intel Xeon E5-2630v3 processor and 128GB of
DDR4 memory. Both the uncompressed and compressed logs
are stored in a distributed file system (MooseFS) running on
multiple 7200RPM SATA HDDs.

We compare µSlope with SSDMSes including CLP 0.0.2,
MongoDB 6.0.5, PostgreSQL 15.2, ClickHouse 23.3.1.2823,
Elasticsearch 8.6.2, Zstandard 1.4.9 and XZ Utils (for LZMA
compression) 5.2.2. (we were informed that Steed [30]’s ar-
tifact isn’t yet available upon contacting the authors). Mon-
goDB and PostgreSQL have native JSON support (i.e. BSON
and jsonb data type respectively). For ClickHouse, we explore
three setups to store JSON records: (1) in pair-wise arrays
which was described in §2.2. Here we only use two arrays and
do not differentiate types of the values. (2) in a single string

Name Uncompressed
Size

Number of
Records

Uber
Logs

LogA 30.0GB 22,996,492
LogB 47.1GB 16,606,964
LogC 60.4GB 15,306,125
LogD 50.7GB 58,309,754
LogE 91.8GB 22,345,071
LogF 102.9GB 17,251,752
LogG 30.9GB 3,046,845
LogH 30.8GB 11,461,221
LogI 39.7GB 27,209,375
LogJ 36.0GB 13,605,274
LogK 30.2GB 57,919,224
LogL 37.1GB 45,827,554
LogM 36.5GB 42,206,452
LogN 38.0GB 22,307,407
LogO 38.6GB 4,438,786
LogP 38.3GB 34,840,347

Public
Logs

Spark 2.0GB 1,011,651
MongoDB 64.8GB 186,287,600

CockroachDB 9.8GB 16,520,377
elasticsearch 8.0GB 140,012,234
PostgreSQL 392.8MB 1,000,000

Table 1: Log datasets used in our experiments.

field, which can be parsed by ClickHouse functions. Both
setups are commonly used in practice for JSON management.
(3) in a single JSON field, which is a new experimental data
type introduced in v22.3. It can infer the schema of a JSON
record and store every field in a separate file automatically.

For these systems we do not create any index for a fair
comparison with µSlope, because µSlope is designed to be
an archival SSDMS and does not have any external index.
MongoDB automatically builds an index on the default key
_id and we exclude the size of the index when calculating
compression ratio.

We also compare µSlope with two general-purpose com-
pressors Zstandard and LZMA. Zstandard is the underlying
compression method for µSlope and LZMA is known for its
high compression ratio.

We do not evaluate search on CLP because wildcard
queries (which CLP supports) are incompatible with semi-
structured data model. For example, a KQL query error:

“*404” searches for the “error” field whose value ends with
“404”; but CLP could return records like {“error”: “0”, “keyx”:
“404”}, because ‘*’ could match an arbitrary amount of text.
We do not evaluate search on Elasticsearch because we cannot
ingest the three datasets where we designed query benchmarks
on into Elasticsearch. Nevertheless, as we will show that Elas-
ticsearch consumes too much storage space that cannot be
used as an archival SSDMS.
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Figure 10: Compression ratio of µSlope and other tools on different JSON datasets. A "×" means the dataset cannot be ingested by the tool.

8.2 Compression Ratio and Speed

Figure 10 shows the compression ratio of µSlope and other
tools on different datasets. The compression level of Zstan-
dard is set to 3 (default) for µSlope. For a fair comparison, we
use the same compression method and level for CLP, Click-
House and MongoDB. PostgreSQL and Elasticsearch do not
support Zstandard compression, so we use lz4 [32] instead.
For LZMA, we use the default compression level 6.

Note that out of 21 datasets, ClickHouse-JSON can only
ingest 10 and Elasticsearch can only ingest 9. The most com-
mon reason is that they cannot accept fields with the same
key name but different types. Additionally, MongoDB and
PostgreSQL cannot ingest one dataset because of the escape
character. For the average compression ratio and speed com-
parison, we only include the datasets that are successfully
ingested by these systems.

µSlope achieves the highest compression ratio on all JSON
datasets. The average compression ratio of µSlope is 68.1:1,
ranging from 21.9:1 (LogK) to 186.8:1 (MongoDB). On av-
erage, µSlope’s compression ratio is 2.75x of ClickHouse-
String’s, 2.62x of ClickHouse-Pairwise Array’s, 1.34x of
ClickHouse-JSON’s, 6.10x of MongoDB’s, 16.50x of Pos-
greSQL’s, and 15.71x of Elasticsearch’s. It surpasses Zstan-
dard’s, LZMA’s, and CLP’s compression ratios by factors of
2.34x, 1.70x, and 1.50x respectively. but it is only 4.8% on
average, which still makes µSlope’s compression ratio the
best among all.

We delve into the breakdown of compressed data size
in µSlope, using LogP as an example. Out of the 710 MB
total compressed data, the MPT and schema map only oc-
cupy 3.6KB and 1.9KB, respectively. Dictionaries account
for 26.3% of the storage space, with the remaining 73.7%
attributed to compressed columns of ERTs.

Figure 11 shows the average ingestion speed on all datasets.
µSlope’s ingestion speed is slower than ClickHouse-String
and ClickHouse-Pairwise Array because ClickHouse-String
directly store the raw JSON string and does not parse it, while
ClickHouse-Pairwise Array only parses the top-level fields.
In comparison, µSlope parses every field of the entire JSON
record. µSlope’s ingestion is slighter slower than CLP and
faster than all other fully-parsed JSON tools, outperforming

2 4 8 16 32 64 128 256 512
ingestion speed (MB/s)

µSlope
CLP

Zstandard
LZMA

ClickHouse-String
ClickHouse-Pairwise Array

ClickHouse-JSON
MongoDB

PostgreSQL
Elasticsearch

Figure 11: Average ingestion speed (log scale).

ClickHouse-JSON, MongoDB, PostgreSQL and Elasticsearch
by 19.3%, 186.7%, 419.8%, 1127.3% respectively. Addition-
ally, it exceeds LZMA’s performance by 814.8%.

8.3 Search Performance
We use 15 queries to evaluate the search performance of
µSlope and other tools on Uber LogF, LogO and MongoDB
logs. For queries on LogF and LogO, they are the top queries
performed in Uber (with repetitive patterns removed). For
queries on MongoDB, we try to cover different possible pat-
terns. Table 2 shows the queries in KQL [6]. For ClickHouse
and PostgreSQL, we convert KQL queries to SQL queries
with their built-in functions and operators. For MongoDB, we
use their own query language.

Query B is a special case. It does not specify any search
key, but searches for all fields for the matched UUID. Other
tools does not natively support this kind of query so we have
to convert it to a full-text search instead. It works for Query B,
but may get incorrect results for other queries that span across
keys and values. MongoDB is required to have a text index
on that table to do a full-text search. However, after running
for 196 seconds, it reports an error.

We clear the OS buffer cache before every run. This is
to simulate search on archival storage. However, by default
MongoDB uses about half of the memory (63.5G in our ma-
chine) to cache uncompressed data and the cache cannot be
cleared, while others use only a minimum amount (or even
no) or the cache can be cleared. For a fair comparison, we test
MongoDB with the minimum cache size.

Figure 12 shows the query latency of those 15 queries on
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Queries for LogF
A zone:... AND NOT @reserved.collector.filename:stdout AND runtime_env:staging
B *: "d...-...-...-...-...9"
C level: error AND message: d...*
D timestamp >date("2022-04-14T08:00:00.000") AND timestamp <date("2022-04-14T08:15:00.000")

Queries for LogO
E headers.x-tenancy:testing* AND NOT headers.x-tenancy: testing/.../4...-...-...-...6d AND headers.caller-procedure:"fareEstimateV2" AND headers.x-source:public
F headers.x-region-name:... AND headers.x-tenancy:"production" AND caller:*create*
G level: error AND NOT @reserved.collector.filename: executor AND runtime_env:production AND partition: compute-... AND instance: 3...5 AND mesos_executor_id: t...5-6
H level: error AND message: "Error handling inbound request."
I glue.handler.method: get_ranked_products AND env: production AND level: error

Queries for MongoDB logs (public dataset)
J attr.tickets: *
K id: 22419
L attr.message.msg: log_release* AND attr.message.session_name: connection
M ctx: initandlisten AND (NOT msg: "WiredTiger message" OR attr.message.msg: log_remove*)
N c: WTWRTLOG AND attr.message.ts_sec >1679490000
O ctx: FlowControlRefresher and attr.numTrimmed: 0

Table 2: Queries used in our experiments. “...” is used to anonymize (part) of the actual values.
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Figure 12: Query latency of µSlope and other tools (log scale).

different tools. It includes both the search time and the time
to write results to the disk. On average, the speed of µSlope
is 2.47x of the fastest setup of ClickHouse (ClickHouse-Pair
Array), 8.09x of PostgreSQL’s, and 6.74x of MongoDB’s.

µSlope outperforms all other tools on 14 queries. The fast
search performance comes from its use of metadata (MPT
and schema map). For example, µSlope outperforms all other
tools by at least 116x on Query J. This query checks the
existence of a key and returns all the records containing that
key. In this case, there are only a small number of schemas
that contain this key, so after µSlope checks its MPT and
schema map, it only needs to decompress a small number of
ERTs. For other tools, they will have to scan nearly the entire
dataset. Query L, N, O are also similar as there are only a
small number of matching schemas and µSlope only needs
to decompress small ERTs. Note that even for these queries,
the schema metadata lookup is not the bottleneck. For Query
J, for example, searching the MPT, schema map and ERTs
only accounts for 5.5% of the total query time and loading
dictionaries accounts for 73.0%. An even more extreme case
is that µSlope can return no-match right after the MPT and
schema map search, because, say, the query searches for a key
that doesn’t exist. In fact, our query benchmark does not even
contain such best-case scenario for µSlope.

For Query B, µSlope is slower than ClickHouse-String and
ClickHouse-Pairwise Array because µSlope needs to scan all
the ERTs and decode them. , while the two ClickHouse setups
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Figure 13: Compression ratio of µSlope against Zstandard on syn-
thetic logs. The number enclosed in brackets within the legend
represents the repetition ratio of variable values.

can perform a full-text search on the raw JSON string values,
without the need to decode them.

8.4 Synthetic Evaluation

The efficiency of µSlope relies on the repetitiveness of
schemas and variable values. To demonstrate the boundaries
of µSlope’s capabilities, we evaluate its compression and
search performance on a corpus of synthetic log data, which
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Figure 14: Query latency of µSlope for needle-in-haystack wildcard
queries on synthetic logs.

varies in both repetitiveness of schemas and variable values.
Each synthetic dataset contains 1GB of data, consisting

of 670K records. Each record has 20 fields. Every key and
value is a UUID. We use UUIDs because they are one of the
most common source of noises (i.e. non-repetitiveness) in
the real logs. To vary the repetitiveness of variable values,
the logs are generated with repetition ratios (§3) of variable
values ranging from 1 to 1000, achieved by randomly drawing
values from a uniform distribution. Specifically, we use four
repetition ratios: 1, 10, 100, and 1000.

To vary the repetitiveness of schemas, we draw schemas
from a power law distribution. Specifically, the n-th most
frequent schema appears in P×(1−P)n of the records (where
n starts from 0). P is a value within the range of (0,1], and
it is a constant within one dataset. For example, the most
frequent schema (n = 0) appears in P of the records, the next
most frequent schema (n = 1) appears on P× (1−P) of the
records, and so on. We use a total of 7 different P values
as shown in Figure 13. The degree of schema repetitiveness
increases with P. When P is the smallest every log record has
a unique schema; when it increases to 1, all records have the
same schema.

In total, we generate 28 (4 different repetition ratios com-
bined with 7 different P values) synthetic datasets each with
a different combination of schema repetitiveness and repe-
tition ratio of the variable values. Figure 13 illustrates the
interplay among compression ratio, schema repetitiveness,
and repetition ratio of variable values. In all scenarios, µSlope
outperforms Zstandard, with the compression ratio increasing
as the repetition ratio of variable values increases. In the ex-
treme case where P approaches 0, the compression ratio drops
notably. This is attributed to each log record having a unique
schema. The small tables and extra metadata overheads lead
to a significant reduction in the compression ratio. However,
the compression ratio quickly increases as P increases to the
next smallest value (10−4) and remains relatively stable.

We evaluate the search performance using a needle in the
haystack query. One variable value is replaced with a fixed
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Figure 15: Compression ratio distribution of 1378 datasets in Uber’s
production logs.

UUID value known as the “needle”, so we can benchmark the
query *: "needle-value". The performance of this query
is influenced by both the repetition ratio of variable values and
schema repetitiveness. Lower repetition ratio leads to larger
variable dictionaries, which are required to be loaded before
decompression and scan, introducing a constant overhead
before any results can be returned. This explains the consistent
gap between each curve in Figure 14. As a result µSlope
sometimes struggles to achieve low response time for datasets
with a low repetition ratio, although this challenge can be
partially addressed in practice by generating smaller archives.

Figure 14 shows a significant decline in query performance
as P approaches 0. This is because in this extreme case where
each record has a unique schema, we have a large number of
small Encoded Record Tables where each has only one record.
This significantly slows down the decompression and scan as
we need to load a large number of small tables, and each table
is decompressed using a different Zstandard stream.

8.5 Scalability Evaluation

We evaluate µSlope on 434TB of production logs from Uber
representing 1,378 datasets, and select a 26.2TB subset from
Uber’s LogF to evaluate search scalability. This production
dataset achieves an average compression ratio of 30.5:1, Fig-
ure 15 shows the compression ratio for each of the 1378
dataset in sorted order. The outliers with low compression
ratio typically contain large amounts of random non-repeating
binary data such as base64 encoded binary data and UUIDs.
For example the index with the worst compression ratio has a
column which appears to contain several megabytes of base64
encoded binary data in each log message.

To evaluate the scalability of search we run queries A-G
from Table 2 on 26.2TB of Uber’s LogF data with increas-
ing amounts of parallelism. Values in the queries have been
changed to match this dataset where appropriate. Results for
query F have been omitted because its characteristics are
identical to query E on this dataset.

Experiments are run across 8 containers, each has access to
96 cores, 2TB of network attached SSD, and 32GB of RAM.
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Figure 16: Query completion time and response time of µSlope
(log scale) using 4, 8, 16 and 32 workers per container. The number
of matching records for each query is indicated at the bottom.

There are a total of 2,155 archives after compression. These
archives are evenly distributed across the 8 containers. The
maximum skew between any two containers is 11% in both
data size and in number of archives.

The searches are run using 4, 8, 16, and 32 workers per
container. Each archive is processed by a single worker pro-
cess. We show two results: (1) end-to-end completion time
including marshalling all matching records, and (2) time to get
the first matching record, i.e. response time. This experiment
was conducted before we implemented our optimizations for
JSON marshalling, so archives which contain many matching
results can have an outsized impact on overall query perfor-
mance. Figure 16 shows how the search performance scales
with the increase of number of workers per container.

All of the queries scale well to 16 workers but have limited
scalability to 32 workers. This limit is imposed by different
kinds of skew in the dataset. For example in Query A a single
archive becomes a bottleneck for completion time because
it returns 5.9x more results than average, and in Query D all
19 archives with matching results happen to be allocated to
the same container. Query E is extremely fast because it only
needs to consult the MPT before terminating.

In practice, we manage this sort of skew within a dataset
by producing smaller archives.

9 Limitations and Future Work

µSlope is a system designed for storing and searching archival
semi-structured log data. It is not suitable for data that can
be updated or deleted. Since µSlope leverages the repetitive
nature of logs to achieve a high compression ratio, if the
data has too many different schema structures or values are
unique overall, µSlope may not be able to achieve a high
compression.

As for search, µSlope provides support for basic queries,
including term search, field search, wildcard search, and range
search. However, currently it lacks support for more complex
queries like joins. Besides, µSlope may struggle with queries

that necessitate scanning the entire dataset and generating a
large number of results.

The current implementation of µSlope compresses each
table into its own Zstandard stream. We plan to implement
optimizations to combine small tables into fewer streams (to
improve compression ratio and amortize the cost of decom-
pressing each small table), and split large tables into several
streams by columns (to avoid decompressing columns in large
tables not being searched on unless necessary). We also plan
to improve scan performance and support more aggregation
operators in the future.

10 Concluding Remarks

This paper presents µSlope, a resource efficient system for
semi-structured log management that losslessly compresses
the log data, and enables search without full decompression.
Its design is guided by a careful analysis on the characteris-
tics of real-world semi-structured logs and their query pat-
terns. µSlope does not require any user annotation, and can
automatically handle the dynamic schema structures. Our
evaluation shows that µSlope achieves unprecedented com-
pression ratio of up to 186.8:1, and its search speed is at least
2.47x of the fastest existing SSDMSes. µSlope is available at
https://github.com/y-scope/clp.

Acknowledgements

We thank our shepherd, Andrew Warfield, and the anony-
mous reviewers for their insightful feedback and comments.
Michael Stumm and Ashvin Goel have provided valuable
feedback on an early draft of the paper. Devin Gibson has
been partially supported by an NSERC Alliance Missions
grant and a QEII-GSST scholarship.

References

[1] Amazon CloudWatch: Observe and monitor resources
and applications on AWS, on premises, and on other
clouds. https://aws.amazon.com/cloudwatch/,
2024.

[2] BSON. https://bsonspec.org, 2024.

[3] BSON example: How BSON is stored in MongoDB
database. https://www.mongodb.com/basics/bson,
2024.

[4] Clickhouse. https://clickhouse.com, 2024.

[5] Grafana Loki. https://grafana.com/oss/loki/,
2024.

542    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/y-scope/clp
https://aws.amazon.com/cloudwatch/
https://bsonspec.org
https://www.mongodb.com/basics/bson
https://clickhouse.com
https://grafana.com/oss/loki/


[6] KQL: Kibana Query Language. https:
//www.elastic.co/guide/en/kibana/current/
kuery-query.html, 2024.

[7] Log-surgeon: a performant log parsing library. https:
//github.com/y-scope/log-surgeon, 2024.

[8] PostgrSQL JSON Types. https://www.postgresql.
org/docs/current/datatype-json.html, 2024.

[9] Protocol Buffers - Google’s data interchange for-
mat. https://github.com/protocolbuffers/
protobuf, 2024.

[10] Search taking a lot of time using CLP. https://
github.com/y-scope/clp/issues/154, 2024.

[11] simdjson. https://github.com/simdjson/
simdjson, 2024.

[12] The JSON Data Interchange Standard. https://www.
json.org/json-en.html, 2024.

[13] The Number of tweets per day in 2022. https://www.
dsayce.com/social-media/tweets-day/, 2024.

[14] Yahoo! Cloud Serving Benchmark. https://ycsb.
site/, 2024.

[15] YAML: YAML Ain’t Markup Language. https://
yaml.org/, 2024.

[16] Daniel Abadi, Samuel Madden, and Miguel Ferreira. In-
tegrating compression and execution in column-oriented
database systems. In Proceedings of the 2006 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’06, page 671–682. ACM, 2006.

[17] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak
Borkar, Bhuwan Chopra, Ciprian Gerea, Daniel Merl,
Josh Metzler, David Reiss, Subbu Subramanian, et al.
Scuba: Diving into data at facebook. Proceedings of the
VLDB Endowment, 6(11):1057–1067, 2013.

[18] Konrad Beiske. Six Ways to Crash Elas-
ticsearch, September 2014. https://www.
elastic.co/blog/found-crash-elasticsearch#
mapping-explosion.

[19] Craig Chasseur, Yinan Li, and Jignesh M Patel. Enabling
json document stores in relational systems. In WebDB,
volume 13, pages 14–15, 2013.

[20] Dominik Durner, Viktor Leis, and Thomas Neumann.
Json tiles: Fast analytics on semi-structured data. In Pro-
ceedings of the 2021 International Conference on Man-
agement of Data, SIGMOD ’21, page 445–458. ACM,
2021.

[21] Elasticsearch B.V. Elasticsearch, 2024. https:
//www.elastic.co/guide/en/elasticsearch/
reference/8.7/index.html.

[22] Facebook, Inc. Zstandard, 2024. https://facebook.
github.io/zstd/.

[23] Free Software Foundation, Inc. GNU Gzip, August
2024. https://www.gnu.org/software/gzip/.

[24] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie,
and Bo Huang. The hibench benchmark suite: Charac-
terization of the mapreduce-based data analysis. In 2010
IEEE 26th International conference on data engineering
workshops (ICDEW 2010), pages 41–51. IEEE, 2010.

[25] Zhen Hua Liu, Beda Hammerschmidt, and Doug McMa-
hon. Json data management: Supporting schema-less
development in rdbms. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, page 1247–1258. ACM, 2014.

[26] Zhen Hua Liu, Beda Hammerschmidt, Doug McMahon,
Ying Liu, and Hui Joe Chang. Closing the functional and
performance gap between sql and nosql. In Proceedings
of the 2016 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’16, page 227–238.
ACM, 2016.

[27] Kirk Rodrigues, Yu Luo, and Ding Yuan. CLP: Efficient
and scalable search on compressed text logs. In 15th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’ 21), pages 183–198. USENIX,
July 2021.

[28] James A Storer and Thomas G Szymanski. Data com-
pression via textual substitution. Journal of the ACM
(JACM), 29(4):928–951, 1982.

[29] Daniel Tahara, Thaddeus Diamond, and Daniel J Abadi.
Sinew: a SQL system for multi-structured data. In Pro-
ceedings of the 2014 International Conference on Man-
agement of Data, SIGMOD ’14, pages 815–826. ACM,
2014.

[30] Zhiyi Wang and Shimin Chen. Exploiting common
patterns for tree-structured data. In Proceedings of the
2017 ACM International Conference on Management of
Data, SIGMOD ’17, page 883–896. ACM, 2017.

[31] Junyu Wei, Guangyan Zhang, Junchao Chen, Yang
Wang, Weimin Zheng, Tingtao Sun, Jiesheng Wu, and
Jiangwei Jiang. Loggrep: Fast and cheap cloud log
storage by exploiting both static and runtime patterns.
In Proceedings of the 18th European Conference on
Computer Systems (EuroSys’ 23). ACM, 2024.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    543

https://www.elastic.co/guide/en/kibana/current/kuery-query.html
https://www.elastic.co/guide/en/kibana/current/kuery-query.html
https://www.elastic.co/guide/en/kibana/current/kuery-query.html
https://github.com/y-scope/log-surgeon
https://github.com/y-scope/log-surgeon
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/current/datatype-json.html
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://github.com/y-scope/clp/issues/154
https://github.com/y-scope/clp/issues/154
https://github.com/simdjson/simdjson
https://github.com/simdjson/simdjson
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.dsayce.com/social-media/tweets-day/
https://www.dsayce.com/social-media/tweets-day/
https://ycsb.site/
https://ycsb.site/
https://yaml.org/
https://yaml.org/
https://www.elastic.co/blog/found-crash-elasticsearch#mapping-explosion
https://www.elastic.co/blog/found-crash-elasticsearch#mapping-explosion
https://www.elastic.co/blog/found-crash-elasticsearch#mapping-explosion
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.7/index.html
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://www.gnu.org/software/gzip/


[32] Yann Collet. LZ4, 2024. http://lz4.github.io/
lz4/.

[33] Jacob Ziv and Abraham Lempel. A Universal Algorithm
for Sequential Data Compression. IEEE Transactions
on Information Theory, 23(3):337–343, 1977.

544    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://lz4.github.io/lz4/
http://lz4.github.io/lz4/


ServiceLab: Preventing Tiny Performance Regressions at Hyperscale

through Pre-Production Testing

Mike Chow1, Yang Wang1 ², William Wang1, Ayichew Hailu1, Rohan Bopardikar1,

Bin Zhang1, Jialiang Qu1, David Meisner1, Santosh Sonawane1, Yunqi Zhang1,

Rodrigo Paim1, Mack Ward1, Ivor Huang1, Matt McNally1, Daniel Hodges1,

Zoltan Farkas1, Caner Gocmen1, Elvis Huang1, and Chunqiang Tang1

1 Meta Platforms
² The Ohio State University

Abstract
This paper presents ServiceLab, a large-scale performance

testing platform developed at Meta. Currently, the diverse set

of applications and ML models it tests consumes millions

of machines in production, and each year it detects perfor-

mance regressions that could otherwise lead to the wastage

of millions of machines. A major challenge for ServiceLab

is to detect small performance regressions, sometimes as tiny

as 0.01%. These minor regressions matter due to our large

fleet size and their potential to accumulate over time. For in-

stance, the median regression detected by ServiceLab for our

large serverless platform, running on more than half a mil-

lion machines, is only 0.14%. Another challenge is running

performance tests in our private cloud, which, like the public

cloud, is a noisy environment that exhibits inherent perfor-

mance variances even for machines of the same instance type.

To address these challenges, we conduct a large-scale study

with millions of performance experiments to identify machine

factors, such as the kernel, CPU, and datacenter location, that

introduce variance to test results. Moreover, we present statis-

tical analysis methods to robustly identify small regressions.

Finally, we share our seven years of operational experience in

dealing with a diverse set of applications.

1 Introduction

In our hyperscale private cloud, tens of thousands of services

run on millions of machines to serve billions of users, and

engineers make thousands of code changes to these services

daily. Performance or resource usage regressions caused by

these changes may impact user experiences or even cause a

site outage. Therefore, engineers critically rely on automated

performance testing to catch regressions early.

Consider, for example, the frontend serverless platform

called FrontFaaS. More than ten thousand engineers write

code on this platform, with thousands of code changes com-

mitted daily and a new version released into production every

Contributions: Yang wrote the majority of the paper, followed by Mike and

Chunqiang. Mike led the development of ServiceLab for multiple years, and

other authors also made major contributions to its development.

three hours. If a code change causes even just a 0.01% regres-

sion in the platform’s overall CPU usage, an alarm is raised.

To our knowledge, strict thresholds of this level have not been

studied before. We use this strict threshold because Front-

FaaS consumes more than half a million machines and 0.01%

would mean more than 50 machines. Moreover, if left unde-

tected, many small regressions would accumulate over time.

Each year, we catch regressions in FrontFaaS that amount to

the capacity of more than one million machines.

This paper presents our performance testing platform called

ServiceLab. It currently tests about one thousand diverse ser-

vices and ML models, which, in aggregate, consume millions

of machines in production. Although performance testing is

widely used, there is no detailed report of its usage at hyper-

scale. Specifically, we have encountered several challenges

that have not been studied before:

1. How to run tests on heterogeneous machines provided by

the cloud while still ensuring comparable results?

2. How to detect regressions as small as 0.01%?

3. How to support hundreds of diverse services with one

uniform testing platform?

We elaborate on each of these challenges below.

Use heterogeneous cloud machines. To detect small regres-

sions, we must conduct numerous trials for an experiment

and then apply statistical analysis. Since running these trials

sequentially on one machine can take a long time (a trial takes

over one hour on average), a natural solution is to run them

in parallel on many machines. Ideally, these machines should

be identical to reduce performance variance.

However, when a test workload is launched on a cloud,

the cloud chooses machines to run the workload and even

machines of the same instance type exhibit varying perfor-

mance [47], due to differences in SSD wearing, memory chips

from different vendors, and varying frequencies of CPU’s

uncore components like memory controller, etc. This phe-

nomenon not only exists in public clouds but also in our

private cloud that we use to run testing workloads. Note that
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our private cloud runs workloads on Linux containers instead

of virtual machines (VMs) so there are no performance vari-

ances caused by VMs.

Although it is theoretically possible to reduce performance

variance by maintaining our own dedicated pool of identical

physical machines for testing, it is impractical for two main

reasons: (1) testing workloads are spiky, and running them

as on-demand workloads in the cloud is more cost-effective,

and (2) maintaining a dedicated pool of tens of thousands

of machines for testing requires an operations team that we

cannot afford, which is exactly the problem that clouds aim

to solve anyway.

Like in a public cloud, we can provision a batch of ma-

chines, keep a subset of ªnearly identical machinesº to run

test workloads, and return the rest. The key question is how

to select ªnearly identical machines.º Specifically, among

the factors affecting a machine’s performance, which are cru-

cial for machine selection, and which can be ignored and

addressed through statistical analysis?

To answer this question, we conducted a large-scale study

with millions of performance experiments on various ma-

chines, using both microbenchmarks and real-world applica-

tions. We find that the performance variance on two machines

is comparable to that on a single machine if the two machines

share the same instance type, CPU architecture (e.g., Intel

Cooper Lake), and kernel version, are located in the same

datacenter region, and have CPU turbo disabled. An interest-

ing observation is that the datacenter location matters, while

other factors such as RAM vendor and RAM speed are less

important. We will delve into this in §4.

Detect small regressions. For large services that consume

tens of thousands of machines, we need to detect regressions

as small as 0.01% while maintaining a low false positive rate.

A high false positive rate not only wastes engineers’ time in

unnecessary debugging but also leads to engineers distrust-

ing and ignoring the warnings even when they are correct.

Our experience indicates that there is no one-size-fits-all sta-

tistical model that can accurately detect regressions for all

services, due to the different outlier patterns of these services.

To address this issue, we leverage multiple statistical models

simultaneously and evaluate their false negatives and false

positives on historical data to select the best model for each

service. Although this ensemble approach may seem concep-

tually simple, we will discuss the intricacies of applying it at

scale in highly noisy production environments.

Support diverse services. Our private cloud runs numerous

services with intricate interdependencies, a complexity shared

with other hyperscalers [30, 38, 48]. A single testing solution

capable of covering all these services likely does not exist.

Can we achieve the next best thing, i.e., having a single so-

lution to cover the majority of code changes submitted by

engineers? ServiceLab indeed accomplishes this. Currently,

as a general-purpose testing platform, it covers more than half

of the total code changes, surpassing the combined coverage

of other specialized testing platforms.

ServiceLab takes the record-and-replay approach for test-

ing, with three key distinctions. First, unlike past solutions

that emphasize deterministic replay [8,20,24,62], ServiceLab

replays requests captured from a production system (PS) to a

system under test (SUT) without expecting the SUT to exhibit

the same behavior as the PS. In fact, due to testing changed

code, it is anticipated that the SUT may make outgoing calls

to downstream services that differ from those made by the

PS. Therefore, ServiceLab does not replay the responses from

downstream services to the SUT.

Second, ServiceLab allows the SUT to call downstream

services running in production, provided there are no adverse

side effects. Although users can set up a group of interdepen-

dent services in ServiceLab to create a self-contained testing

environment without relying on the production environment,

this approach is not consistently implemented due to practical

reasons. For instance, making a per-test replica of certain mas-

sive datasets accessed by the SUT, such as the social graph

for billions of users, is economically impractical.

In ServiceLab, the SUT can call downstream production

services, and most of those calls do not incur side effects, as

they are read-only or idempotent. If a SUT’s call to a down-

stream service does cause side effects, ServiceLab provides

a mock framework to assist the SUT in mitigating it. For ex-

ample, instead of writing to a production database, the writes

can be redirected to a test database.

Third, due to the complexity of hyperscale services, Ser-

viceLab does not attempt to provide a simple but inflexible

solution that requires no involvement from service owners,

because such a solution would only work for a small fraction

of services. Instead, ServiceLab allows and encourages the

service owner’s participation. For example, when testing a

sharded stateful service, it is the service owner’s responsibility

to populate the necessary states before the test starts.

With the three key distinctions above, while ServiceLab’s

record-and-replay approach may necessitate occasional in-

volvement from the service owner and does not extend to

certain complex services, it effectively covers the majority of

code changes submitted by engineers.

Contributions. We make the following contributions:

• We address the performance variance issue arising from

running tests in the cloud. Specifically, we conducted mil-

lions of experiments to identify the factors that contribute

most significantly to performance variance across machines.

Such a large-scale study has not been reported before.

• We develop statistical analysis methods to robustly identify

performance regression as small as 0.01%, even when tests

do not use identical machines. This represents a significant

refinement of existing methods, as no prior research has

achieved this level of a low threshold.

• This is the first holistic report of a hyperscale testing plat-
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form, including its design and our seven years of operational

experience in dealing with a diverse set of applications.

2 ServiceLab from a User’s Perspective

Before presenting the internals of ServiceLab, we first de-

scribe its usage from a user’s perspective. ServiceLab can be

used in different testing modes. The efficiency mode tests a

code or configuration change’s impact on key metrics such

as latency or CPU/memory usage. The capacity mode tests

a code or configuration change’s impact on the maximum

throughput that can be achieved, which affects the amount

of capacity needed to run the service. The hardware mode

compares the performance of different hardware running the

same code. Below, we focus on the efficiency mode.

2.1 ServiceLab in the Development Workflow

Figure 1 depicts our development workflow, where Service-

Lab is involved in the review-time test, commit test, deploy-

ment test, and config test. We elaborate on them below.

Meta uses the monorepo approach [12] to store code for

all projects in one repository. When developing a new feature

for an application, the developer clones the repository and

makes local changes without affecting others. Once the code

is ready, they submit the change, referred to as a diff, for peer

review. Both functional and performance tests are automati-

cally executed for the diff. The peer reviewer examines the

code and test results, requesting changes as needed before

approving the diff. Upon approval, the developer commits the

diff, triggering post-commit tests.

On a set schedule, the continuous-deployment tool com-

piles a new executable for the application and creates a re-

lease candidate (RC). It conducts tests to compare the RC

with the executable running in production. The RC is aban-

doned if a regression is identified. Otherwise, it is deployed

into production in stages, and the application’s health metrics,

including performance metrics, are monitored continuously.

If any health issue is detected, the deployment is reverted.

A common practice is to use a configuration parameter

known as a gate to control access to the new code path. Ini-

tially, the gate is disabled so that the application continues

to execute the old code path even after the new release is

deployed. Then, the developer makes a remote configuration

change to toggle the gate, enabling the application to execute

the new code path. If any issues arise, the gate can be instantly

disabled to revert back to the old code path without requiring

a new code release.

2.2 Setting Up Tests with ServiceLab

To register a system-under-test (SUT) with ServiceLab, the

application owner provides the following information:

• The selection criteria for code or configuration changes to

trigger a test (note that it may not be necessary to run tests

on every change);

• A container manifest that specifies the executable to test

and how to set up Linux containers to run the executable;

• The metrics to be aggregated at the end of a test run, and

the condition to fail the test;

• A traffic-recording configuration that instructs the RPC

system how to sample production traffic for later replay;

• The rate at which the recorded traffic will be replayed during

a test run.

ServiceLab supports both synthetic and record-and-replay

traffic for testing, but primarily relies on the latter because

it more accurately represents the production system. This

approach records live production traffic and then replays it

on a separate application instance in the testing environment,

which may run modified code. It is the application owner’s re-

sponsibility to ensure that a replay in the testing environment

does not cause undesirable side effects on the production sys-

tem. Moreover, a stateful application needs to set up its state

properly so that it can handle the replayed traffic.

Once a SUT is registered at ServiceLab, it undergoes tests

in four phases. The build phase compiles all required code into

a package. The allocation phase acquires necessary machines

from the cloud. The running phase initiates the target appli-

cation on the allocated machines and replays the recorded

workload. The analysis phase conducts statistical analysis on

the results to draw a conclusion.

3 Applications Tested by ServiceLab

Currently, ServiceLab tests about one thousand diverse ser-

vices and ML models, and their collective capacity consump-

tion in production amounts to millions of machines. We de-

scribe several representative and large workloads below.

3.1 FrontFaaS Serverless Platform

FrontFaaS is one of the most complex software ecosys-

tems in our private cloud. It is a serverless function-as-a-

service (FaaS) platform that runs on more than half a million

machines and has tens of thousands of developers making

changes to its code base, with thousands of code commits

every workday. ServiceLab tests FrontFaaS to detect CPU us-

age regression as small as 0.01%. It holistically tests different

aspects of FrontFaaS: its PHP runtime called HHVM [27],

the FaaS code written by tens of thousands of developers, and

that code’s impact on downstream services like databases.

Testing the language runtime. HHVM performs just-in-time

(JIT) compilation for efficient execution. The HHVM team

relies on ServiceLab to collect performance signals on com-

piler optimizations, monitoring metrics such as instructions

per cycle, execution time, and cache misses. In addition to

the core code written by the HHVM team, HHVM links with

many libraries developed by other teams, any of which may

cause regressions. HHVM tests compare the code running

in production with the code in the trunk (i.e., the latest code

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    547



Write code Code review
Merge with 

trunk

Cut Release 

Candidate
Deployment

Launch 

(config)

Run perf tests Commit test
Deployment 

test
Health checks Config test

Feedback on code

Figure 1: Code change workflow. In this figure, tests refer to both functional and performance tests, but this paper focuses on

performance tests.

in the monorepo shared by all developers), enabling devel-

opers to catch regressions before a new release candidate is

created. If a regression is detected, ServiceLab uses bisection

to identify the root cause.

Selecting diffs to test. In addition to testing HHVM, Ser-

viceLab also tests FrontFaaS’ application-level FaaS code.

FrontFaaS is the primary entry point for user-facing traffic for

our products and runs thousands of unique application end-

points. With thousands of FaaS code changes (diffs) occurring

every workday, it is not cost-effective to test every change.

Moreover, since a change is unlikely to affect all thousands

of application endpoints, it is unnecessary to replay the traffic

for all those endpoints during a test.

A ServiceLab component called DiffSuggester selects

which diffs to test based on a calculated impact score and also

determines the traffic for which endpoints to replay during

a test. DiffSuggester traverses the compiler’s abstract syntax

tree to identify functions modified by the diff. It calculates

an impact score for each modified function by leveraging a

profiling dataset of FrontFaaS’ execution in production to

estimate the global cost of the function, considering both its

execution frequency and resource consumption per invoca-

tion. The diff’s impact score is simply the sum of the impact

scores for all impacted functions. If a diff’s impact score is

above a threshold, ServiceLab will run experiments for it.

The threshold is statically chosen based on the number of

machines available to run experiments and the distribution of

diffs’ impact scores. Moreover, DiffSuggester also uses the

production profiling data to infer which application endpoints

are impacted by the diff and selectively replay traffic for those

endpoints with the right proportion.

Dealing with side effects. Because of the complexity of

FrontFaaS, it is too costly to set up an entirely isolated test-

ing environment for it. It invokes hundreds of downstream

services, which recursively have their own dependencies. All

these are hard to replicate in a testing environment and keep

them faithful to the production environment. Moreover, given

numerous concurrent tests, it is economically impractical to

make a per-test copy of certain massive datasets accessed by

FrontFaaS, such as the social graph for billions of users.

Therefore, ServiceLab allows a test instance of FrontFaaS

to call downstream services running in production and care-

fully manages any adverse side effects. The non-functional

side effects, such as test-induced load on downstream pro-

duction systems, is not a concern because that test load is

negligible compared to the production traffic from billions of

users. The functional side effects, such as writing to a produc-

tion database, is the main concern and is managed carefully.

By default, FrontFaaS’ writes to databases, caches, and

data warehouses are automatically dropped via a shim layer

in the client libraries, while reads to these production systems

are allowed. Unlike data stores where differences between

read and write can be easily identified, for generic RPC calls,

ServiceLab and the RPC system cannot easily infer whether

an RPC method has undesirable side effects or not. Therefore,

the RPC system drops calls to downstream production sys-

tems by default to ensure safety, while users can provide a

list of specific RPC calls that are allowed to proceed. How-

ever, this method may prevent certain code paths from being

executed and result in ServiceLab missing the opportunity

to detect regressions on those code paths. If the owners of

certain FrontFaaS endpoints really want to cover those code

paths, it is their responsibility to modify the code’s behavior

so that it can run in ServiceLab to exercise those code paths

without causing adverse side effects to production systems.

We will delve into this in §5.3.

Testing performance impact on downstream services. A

FrontFaaS diff may not cause regressions in the resource

usage of FrontFaas itself but may regress in the load it im-

poses on downstream services. Specifically, the social graph

database (TAO [11]) is one of the most important downstream

services for FrontFaaS, and ServiceLab also detects increased

reads to TAO. During a test, ServiceLab monitors the number

of read requests that FrontFaaS issues to TAO when process-

ing a replayed end-user request. Statistics are gathered at the

granularity of each type of end-user request because the num-

ber of reads to TAO may vary widely depending on the type

of the end-user request. Similar to reporting regressions on

FrontFaaS’ own metrics, ServiceLab also reports regressions

in reads to TAO.
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3.2 Sharded and Stateful Services

LASER is a low-latency key-value store that is frequently

accessed by FrontFaaS on the critical path of serving user

requests. LASER primarily serves as an indexing service for

data in the data warehouse. Its index can be updated either

by real-time stream processing that extracts data from data

streams or by running daily MapReduce computation to build

the index and then performing a bulk load into the key-value

store. LASER is sharded and managed by a shared, central

control plane similar to ShardManager [36] and Slicer [4],

which dynamically assigns shards to different LASER servers.

Testing LASER faces several challenges. First, to bring

up a LASER instance in the isolated test environment, we

have to disconnect it from the central shard control plane and

specifically instruct it to load certain shards, instead of relying

on the control plane’s dynamic shard assignment. Second,

we allow LASER to perform read-only accesses to the data

warehouse to set up its stateful index for testing. Finally, in

production, requests routed to a specific LASER shard have

an RPC header with the shard ID that matches with the shard;

otherwise, the requests would be rejected. LASER uses record-

and-replay for testing, which broadly samples requests for

different shards. When requests are replayed, ServiceLab

dynamically adds an RPC request header that matches with

the shard ID of the LASER server under test.

LASER uses three major metrics for regression detection.

These metrics and their regression thresholds are CPU usage

(2%), anonymous memory usage (5%), and SSD storage usage

(5%).

3.3 ML Prediction

MLPredictor is a shared ML deployment platform used by

ML engineers to effortlessly deploy and manage thousands

of ML models without the need for an understanding of the

underlying infrastructure. This ªserverlessº approach con-

ceals the operational complexities of large-scale distributed

systems, which are often unfamiliar to ML engineers.

MLPredictor uses record-and-replay, along with Service-

Lab’s capacity mode, to test performance under varying load

levels. ServiceLab incrementally increases the load level of

the replayed traffic until MLPredictor breaches its service

level objective (SLO), helping identify both the maximum

throughput and potential capacity regressions. Initially, we

recorded traffic for different models using uniform sampling,

leading to an overwhelming number of samples from high-

traffic models. Later, we switched to interval-based reservoir

sampling [5,57], capping the number of samples for a popular

model at a constant per time interval.

MLPredictor uses the maximum requests rate for regression

detection, with a threshold of 5%.

3.4 Data Aggregation

DataAggregator is a CPU-intensive backend service that han-

dles all news feed rankings. It is invoked by FrontFaaS upon a

user request, and its role is to collect all relevant information

about posts and analyze all the features (e.g., how many peo-

ple have liked this post previously) to predict the posts’ values

to the user. New releases of DataAggregator are deployed to

production multiple times throughout the day, and it primarily

uses ServiceLab for release-time testing.

Instead of using record-and-replay, it uses a forker service

to duplicate live production traffic and send it to the testing

environment in ServiceLab. The forker sends the production

system’s responses back to users but drops the test instance’s

responses so that they will not affect users. DataAggrega-

tor prefers testing with shadow production traffic instead of

recorded traffic because the setup is straightforward for them,

and the existence of the forker even predates ServiceLab.

DataAggregator uses 68 key metrics for regression detec-

tion. Examples of the key metrics and their regression thresh-

olds include container-level CPU usage (1.25%), process-

level CPU usage (0.6%), and p99 memory usage (3%). Some

metrics are related to the application logic, e.g., log error or

warning counts (5%), no stories returned (2%), and latency to

process all stories in the ranking service (30%).

3.5 XFinder

XFinder is a large service performing ads aggregation and

ranking. Upon receiving a user request, it fans out requests to

many leaf services, aggregates, and ranks the results before

returning them to the user. XFinder uses record-and-replay,

but to obtain accurate results, it requires near real-time traffic

recorded from production within the past hour. Each week,

it conducts over 3,000 and 1,000 experiments on code and

configuration changes, respectively. To understand the impact

of a change more precisely, instead of A/B tests, it runs 3-sided

experiments: (1) the version currently running in production;

(2) the latest version before this change; and (3) the new

version with the change to be tested.

XFinder uses 65 key metrics for regression detection. These

key metrics all use a regression threshold of 0.5%. The key

metrics include total CPU time, log error or warning counts,

count of ads returned, number of calls to downstream services,

and failure rates of these calls.

3.6 Ranker

Ranker executes a graph of rules for ranking. A diverse set of

application clients calls Ranker with different rules to provide

ranking for their specific purposes, and these rules impact

Ranker’s performance. Ranker relies on record-and-replay to

capture these rules. Requests from each application client are

sampled on the client side and stored in the data warehouse.

Each major client corresponds to a different shard of Ranker

deployment, and these different shards run the same Ranker

executable but serve different clients. Previously, Ranker cre-

ated a mix of requests when replaying them for testing in Ser-

viceLab. However, maintaining the correct ratio of requests

in the mix became a burdensome process, and an incorrect
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ratio would lead to missed regressions. As a result, Ranker

now runs separate experiments to replay traffic from different

major clients.

Ranker uses 30 key metrics for regression detection. The

key metrics and thresholds include container-level CPU us-

age (9%), container-level memory usage (7%), CPU MIPS

busy (5%), and application metrics such as different types of

candidates fetched (20%).

3.7 Applications not Using ServiceLab

ServiceLab tests now cover more than half of the total code

changes at Meta. The remaining applications choose other

testing methodologies for various reasons as described below.

A common theme among them is that setting up a service for

testing in ServiceLab requires effort, and sometimes a simpler

alternative exists.

First, Meta’s continuous deployment tool, Conveyor [22],

and its in-production detection tool, FBDetect, can catch per-

formance regressions either during the staged deployment

process or during steady-state execution in production. De-

spite the higher risk of catching issues in production, these

tools work sufficiently well for some services, leading those

services to skip pre-production testing in ServiceLab.

Second, some services have complex interdependencies,

and services like Meta’s cluster manager ecosystem [42, 54]

even depend on the physical data center environment. These

complex services have their own sophisticated ways of set-

ting up their testing environments, which are often overly

complicated to migrate to ServiceLab.

Third, some stateful services require a massive amount of

data for effective testing. It is too slow to populate such data

in newly allocated containers during each ServiceLab test run.

Therefore, these services maintain their own dedicated and

persistent test environments with prepopulated data, without

relying on ServiceLab.

Fourth, some services do not consume significant capacity

and do not have stringent performance requirements. As a

result, thorough performance testing is not a priority for them.

Their developers often prefer simpler ad-hoc testing methods,

as opposed to the burden of setting up and maintaining their

service setup in ServiceLab.

Finally, in a large organization with tens of thousands of

developers, our experience indicates that achieving universal

adoption of a technology is challenging unless it becomes a

company priority, as demonstrated by the Push4Push program

driving the universal adoption of the continuous deployment

tool at Meta [22]. So far, ServiceLab has relied entirely on

organic, bottom-up adoption without top-down push.

4 Taming Performance Variance

A key challenge in designing any testing platform is managing

variance in testing data to separate signals from noises. To set

the stage for the discussion, we first define some terminology.

Assessing a code change’s performance impact uses an A/B

test to compare two test runs, one with the change and one

without. A trial is a singular A/B test, and an experiment

comprises multiple such trials. An A/A test compares two

runs of the same code.

Performance differences may stem from (a) accidental vari-

ance caused by code’s random factors such as the timing of

lock contention; (b) environment variance, stemming from

testing environment differences like CPU generation and ker-

nel version; and (c) true regression in the code change. Our

goal is to minimize the impact of accidental and environment

variance to identify true regression.

To detect true regressions as small as 0.01%, we must ag-

gressively reduce both accidental and environmental variance,

as they could conceal small regressions. To reduce acciden-

tal variance, we collect a large amount of test data and then

apply statistical analysis. To reduce environmental variance,

we always acquire entire machines from our private cloud to

run tests, avoiding the ªnoisy neighborº problem. However,

sequentially executing all test runs on one machine, while

minimizing environmental variance, leads to prolonged test

times and a slowdown in the iteration speed of software de-

velopment.

One fundamental decision we have made is to run tests con-

currently on different machines to expedite testing. Initially,

the ServiceLab team operated its own dedicated machine pool

and meticulously configured the machines to be nearly identi-

cal to reduce environment variance across machines. However,

as the pool size expanded, maintaining it became uneconomi-

cal, leading us to switch to using our private cloud’s shared

machine pool. Moreover, the cloud allows ServiceLab to use

temporarily reclaimed resources called ªElastic Serversº, akin

to Spot Instances in AWS, for testing. Since Elastic Servers

can be revoked, our cloud employs predictive models to infer

the availability of Elastic Servers and run tests correspond-

ingly. When Elastic Servers are revoked unexpectedly, Ser-

viceLab simply re-runs the interrupted tests.

When acquiring machines from the cloud, ServiceLab can

specify a certain coarse-grained configuration such as CPU

cores and memory, but cannot control other details, such as

memory chip or kernel version. Note that the cloud automati-

cally updates kernels at its own schedule to ensure security

compliance. ServiceLab can provision a batch of machines,

retain a subset of ªnearly identical machinesº to run test work-

loads, and return the rest. We do not require machines to be

identical in every aspect as finding a sufficient number of such

machines is difficult. Next, we discuss how to select ªnearly

identical machinesº by using factors that impact a machine’s

performance most.

4.1 Machine Factors Impacting Performance

We analyze millions of test records to identify key factors im-

pacting a machine’s performance. Our analysis involves two

large datasets. The Release to Production (RTP) dataset com-

prises 21.5 million records, each executing a CPU or memory
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benchmark. The ServiceLab dataset contains 186K records,

each testing a real production application. Each record in

both datasets specifies the test result alongside the used hard-

ware and software configuration. Leveraging both datasets is

crucial as they complement each other. The RTP dataset pro-

vides diverse hardware results, though its benchmarks are less

complex. Conversely, the ServiceLab dataset contains real

application results, but the machines used are less diverse.

We use the ANOVA method [52] to identify factors that

best explain the variance in the data. ANOVA is similar to

linear regression but operates on categorical data. Its output,

the coefficient of determination (R2), represents the proportion

of the variance in the dependent variable (performance metrics

in our case) that is predictable from the independent variables

(e.g., CPU generation or kernel version). Our goal is to find a

minimal subset of key machine factors (independent variables)

that can explain as much variance as using many factors.

This allows us to use these key factors for machine selection.

Otherwise, a large number of factors would make it hard to

find matching machines due to overly aggressive filtering. To

achieve our goal, we first use many factors to establish an

approximate upper bound for R2, and then explore different

subsets of factors to approach the upper limit.

To set the stage for discussion, we will first describe how

physical machines are classified with three levels of granu-

larity. At the most coarse level, machines are classified into

tens of ServerTypes. Examples of ServerTypes include single-

CPU general-purpose machine, two-CPU general-purpose

machine, GPU training machine, GPU inference machine, etc.

The median granularity, known as ServerSubType, takes into

account more hardware information, such as RAM size and

CPU architecture (e.g., Intel Skylake, Cooper Lake, etc.). The

finest granularity, referred to as ServerModel, includes the

model names of all major components, such as CPU, RAM,

NIC, disk, etc. Typically, users specify ServerType when re-

questing machines from our private cloud. While specifying

ServerSubType is allowed, it is discouraged because it limits

flexibility for the cloud to choose machines. Users are not

allowed to specify specific ServerModel. Concretely, our pri-

vate cloud uses O(10) ServerTypes, O(100) ServerSubTypes,

and more than 10,000 ServerModels. They are equipped with

O(100) CPU models, O(100) RAM models, O(1000) disk

models, and O(100) NIC models.

To approximate the upper bound of R2, we use ServerModel

as one factor since it includes almost all hardware information

and add non-hardware factors like the kernel release version.

We first report our results on the RTP dataset. These factors

can achieve an R2 of 0.89 for the CPU benchmark and an R2

of 0.97 for the memory benchmark. In the remainder of this

section, we will focus on the CPU benchmark as the memory

benchmark exhibits much less variance.

We explore various factor subsets to determine if a small

combination can achieve an R2 close to the upper limit. Us-

ing three factorsÐServerType, CPU architecture, and kernel

releaseÐwe attain an R2 of 0.87 on the CPU benchmark,

closely approaching the upper bound. In practice, we observe

that the cloud can generally provide matching machines based

on these three factors. Note that this subset is not the only vi-

able option. As hardware factors are correlated, some factors

can be replaced by others. Additionally, we find that certain

factors, such as RAM speed and RAM vendor, have minimal

impact, even in memory benchmarks.

Analyzing the ServiceLab dataset reveals two additional

important factors: CPU turbo and the datacenter region where

the test was executed. Their impact varies across applications,

and adding these factors can increase R2 by up to 0.23. In

comparison, in the RTP dataset, adding these factors only

increases R2 by 0.01 for the CPU benchmark. The influence

of CPU turbo, previously reported in research [40], manifests

only in the ServiceLab dataset, not in the RTP dataset. This

difference arises due to constant CPU activity in the RTP

benchmarks. The datacenter region is significant for real ap-

plications tested in the ServiceLab dataset because many of

them have external dependencies. For example, if the test

instance of an application reads from a production database in

the region, the test result would be affected by the database’s

performance, which tends to vary across regions. In contrast,

the RTP benchmarks have no external dependencies.

While the key factors account for 87% of the variance,

the remaining 13% is attributed to other smaller factors. For

example, in machines with CPUs of the same model, the

frequency of their uncore components, such as cache and

memory controller, can vary, resulting in approximately a 2%

performance difference across tests. However, these factors

cannot be used for selecting machines from the cloud as they

are not exposed by the cloud.

Our analysis further reveals that certain CPU models and

kernel versions contribute significantly more variance than

others. Like prior works [40], we use Coefficient of Variance

(CoV), defined as the ratio of the standard deviation to the

mean, to compute the variance of a set of values. Specifically,

regarding CPU models, Intel Xeon E5-2680 v4 @ 2.40GHz

has the highest CoV at 42%, while AMD EPYC 7D13 36-

Core Processor has the lowest CoV at 5.6%, with an overall

P50 at 19%. Regarding the kernel, version 5.6.13-0 has the

highest CoV at 52%, and 5.2.0-240 has the lowest CoV at

9.5%, with the overall P50 at 36%. While investigating the

root cause of CoV is beyond the scope of this paper, Service-

Lab avoids using CPUs or kernel versions with high variance.

In summary, the strategy we use is to select similar ma-

chines with matching kernel versions, ServerTypes, CPU ar-

chitecture, and datacenter regions, while disabling CPU turbo.

To assess whether performance variance within the similar

machines selected by our criteria is comparable to that for

a single machine, we compare their CoVs. The comparison

is conducted using the RTP dataset with turbo disabled. The

CoVs for same-machine tests are 5.9% at P50 (50 percentile)

and 28% at P99, while for similar-machine tests, they are
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5.7% at P50 and 38% at P99. The P50 values are nearly iden-

tical, with a higher difference at P99. Overall, the difference

is deemed acceptable, considering the advantage of running

tests in parallel.

Applicability to public cloud. To implement our machine

selection method in a public cloud, we recommend using

bare metal instances, which are offered by all major cloud

providers, rather than the more commonly used virtual ma-

chine instances. Although it is reported that lightweight hy-

pervisors like AWS Nitro System can match the performance

of bare metal machines [34], they may still introduce greater

performance variability than bare metal machines. We have

not validated our method in virtualized environments.

4.2 Statistical Methods

Despite using matching machines, experiments still exhibit

variance. We conduct experiments multiple times and employ

statistical methods to determine the level of regression with

a confidence interval. In general, we observe that there is no

one-size-fits-all model due to the diverse requirements and

varying performance-data distribution of different services.

Therefore, ServiceLab incorporates multiple models with a

mechanism to learn the best model for each service based on

historical data.

Recall that a trial is a singular A/B test, and an experiment

comprises multiple trials. An A/A test compares two runs of

the same code. A test may generate multiple data points. For

example, a test may measure CPU utilization for an hour and

generate a CPU-utilization data point per minute.

A model used by ServiceLab is a combination of a statisti-

cal test method and a data preprocessing method. ServiceLab

uses the following statistical test methods:

• Student’s t-test [17]. If an experiment only contains a

single trial, we use the student’s t-test to determine whether

there is a significant difference between the means of the A

side and the B side.

• Permutation test [6]. If an experiment includes multiple tri-

als, for each trial, we first compute the difference in means

between the A side and the B side. This step results in a

vector of m values called M⃗, where m is the number of trials.

Then we posit the null hypothesis H0: µ∆ = 0, where µ∆ is

the mean of M⃗. We apply a permutation test for this hypoth-

esis as follows. We generate a large number of permuted

samples from M⃗ and calculate the mean for each. Then we

derive the p-value from the proportion of permuted sam-

ple means that are as extreme as or more extreme than the

observed mean of M⃗.

• Confidence interval test. The above tests infer the distri-

bution of the data from the experimental data. Since we can

only run a limited number of trials within an experiment

and some tests may incur outliers, such inference may not

be accurate. The confidence interval test builds the data

distribution from historical data. Specifically, it leverages

A/A tests from the past two weeks to build the distribution

of mean(A′)−mean(A), and further computes the confi-

dence interval given the p-value, i.e., the probability of the

observed difference of means being smaller than the confi-

dence interval is larger than 1− p. Then, for an experiment,

it can test whether the B side follows the same distribution

as the A side by determining whether mean(B)−mean(A)
is smaller than the confidence interval.

ServiceLab uses the following data preprocessing methods:

• Square root transformations. An important preprocessing

step involves square root transformations. This is motivated

by recognizing significant heterogeneity in the cost of re-

quests, with certain requests disproportionately impacting

mean metric values. Such disparities are exacerbated across

multiple trials, leading to skewed aggregations. The square

root transformation mitigates this, ensuring a more uniform

contribution from each request to the trial’s mean metric

value. This adjustment has been empirically validated to

enhance detection accuracy, especially for high-demand

services.

• Outlier detection. We use conventional outlier mitigation

methods, such as winsorization [18], which are particularly

effective in moderating the elevated variance observed when

services operate under strenuous conditions. Specifically,

we either delete data points that are above a certain per-

centile (called outlier-elim) or cap those data points at the

percentile value (called outlier-cap).

Out of all possible combinations of statistical test meth-

ods and data preprocessing methods, currently ServiceLab

uses seven combinations: t-test-none, t-test-sqrt, t-test-outlier-

elim, t-test-outlier-cap, permutation-test-none, permutation-

test-sqrt, and confidence-interval-none, as well as some

service-specific models.

ServiceLab uses an adaptive method to determine the best

model for each <service, metric> combination. It conducts

periodic A/A experiments and artificial A/B experiments (i.e.,

A/A experiments with injected regression on one side) to gen-

erate a ªground truth.º Then, ServiceLab tests each model on

the results of these experiments to obtain the model’s false

positive rate (from the A/A experiments), the false negative

rate (from the artificial A/B experiments), and the detectabil-

ity [10] (from the A/A experiments). ServiceLab then selects

the model with the highest score, which is a linear combi-

nation of the false positive rate, false negative rate, and de-

tectability, under the constraint that its false positive rate is

below a threshold. ServiceLab runs this model selection al-

gorithm periodically to adapt to changes in existing services

and accommodate new services and metrics.

In our production, 51% of the services have adopted the

confidence-interval-none model, 21% have adopted the t-test-

sqrt model, 21% have adopted the adaptive method, 5% have

adopted the t-test-none model, and 1% have adopted the
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permutation-test-none model. Not all services use the adaptive

method, either because they find a fixed model always works

well or because they have not tried the recently introduced

adaptive method.

The breakdown of the models chosen by the adaptive

method is as follows: confidence-interval-none (49%), t-

test-none (19%), t-test-outlier-cap (10%), t-test-outlier-elim

(9%), permutation-test-none model (5%), t-test-sqrt (4%), and

permutation-test-sqrt (3%). Over a 90-day period, for services

using the adaptive method, more than 50% of them have

changed models at least once, and more than 10% of them

have changed models at least four times. This indicates that

the best model for a service can change as the service’s code

and characteristics evolve.

Next, we discuss our journey to arrive at the current set of

models. Initially, ServiceLab only supported single-trial exper-

iments and thus used the student t-test with outliers handled by

winsorization. When working with services requiring multiple

trials, we found that the t-test did not work well. Outliers in

both trials and requests within a trial affected the experiment

results, showing up as either false positives or missed regres-

sions due to excluding outliers. Consequently, for multiple-

trial experiments, we added the permutation-test-none and

permutation-test-sqrt models. The confidence-interval test

was added to handle noisy metrics or ones that are not contin-

uous like CPU or memory. We found that for these metrics,

looking at the historical data to find the regression threshold

would work better than dealing with a t-distribution (as the

t-test and other variants do). Finally, motivated by the ob-

servation that different metrics follow different distribution

patterns and such patterns may change over time, we added

the adaptive method to help users find the best model.

Finally, we describe two optimizations that improve the

accuracy of the statistical methods.

Test warm up time. Identifying and excluding initial warm-

up periods in service operations is crucial for isolating steady-

state performance metrics. We employ an algorithm using

exponential moving averages to determine the point at which

a time series reaches approximate stationarity. Observations

before this point are discarded. As the duration of the warm-

up phase depends on the test environment, this determination

is made on an individual trial basis, ensuring that only matured

performance data undergoes further analysis.

Periodic A/A experiments. ServiceLab conducts periodic

A/A tests, and aggregates the results into a user dashboard, en-

abling users to monitor the false positive rate and detectability.

This dashboard aids users in modifying workload settings to

enhance the statistical signal of their experiment. For instance,

users can adjust parameters such as increasing the number of

trials, extending experiment duration, removing noisy metrics,

or changing the aggregation method.

5 ServiceLab Design

This section presents the design of ServiceLab, utilizing the

architecture diagram shown in Figure 2 in our discussion.

5.1 Experiment Lifecycle

During an experiment’s lifecycle, it transitions through sev-

eral phases: queued�build�allocation�running�analysis.

An experiment begins when a user or an automation tool sub-

mits a request via the Windtunnel API, which enqueues the

request into a DurableQ (durable queue) and creates an entry

in the Windtunnel DB to represent the experiment, setting its

phase as queued. The phase transition of an experiment is

managed by a processor, and multiple processors can work

independently to manage different experiments. When a pro-

cessor determines it can take on additional work, it polls the

DurableQ to claim a queued experiment and locks the corre-

sponding Windtunnel DB entry to prevent other processors

from performing duplicate work.

After some input validation and preprocessing, the proces-

sor transitions the experiment to the build phase, where the

experiment’s executables are created. The processor does not

compile the executables directly but instead sends a request

to a separate build service, which acts as a caching layer to

prevent duplicate builds.

Once all executables are built, the experiment enters the al-

location phase. Each team is configured with a certain testing-

machine quota that they are allowed to use. The processor

tracks the already used portion of the quota and determines

when to allocate machines for experiments, enforcing priority

and fairness. An experiment may need to run multiple jobs,

such as one for the A side of the A/B test and another for

the B side. As all jobs of an experiment must be allocated

from the same datacenter region to minimize variance (§4.1),

the processor decides from which region to allocate the jobs

based on the remaining quotas in different regions. Addition-

ally, the processor filters machines based on ServerType, CPU

architecture, and kernel version to minimize variance across

the selected machines (§4.1).

In addition to allocating the system-under-test (SUT) jobs,

the processor also allocates a traffic-replay job and a test-

harness job. The test-harness job drives the experiment and

monitors the test’s status. Depending on the experiment’s

purpose, different test-harness jobs can be used. For example,

to measure the maximum throughput that the SUT can sus-

tain, the capacity test harness can gradually increase the test

throughput until the SUT violates its SLOs, such as response

time, error rate, or CPU utilization exceeding a threshold.

Once all the necessary jobs are allocated, the experiment

enters the running phase. If the experiment is testing a

configuration change, the corresponding configuration ca-

nary [13,15,53] is set up correctly on the test machines. Subse-

quently, the traffic-replay job loads the previously recorded re-

quests that will be replayed during the experiment. Finally, the

processor instructs the test harness to start the test. Through-
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Figure 2: ServiceLab architecture. Windtunnel is the orchestration engine and Treadmill replays traffic and runs tests.

out the experiment, the test harness monitors the health checks

of all jobs and fails the experiment if any job fails its health

check. Meanwhile, the SUT exports performance metrics to

monitoring databases during the experiment.

After the test finishes, the processor deallocates all jobs and

transitions the experiment to the analysis phase. Aggregation

and statistical analysis of performance metrics are performed

by a service called Experiment Store (ES). The results are

written to the Windtunnel DB, which users can view from

a UI. These results can also trigger certain actions, such as

blocking a service from being released into production.

5.2 Traffic Record-and-Replay

At Meta, all services use the Thrift [49] RPC protocol, which

is leveraged by ServiceLab to record production traffic trans-

parently. The user specifies the Linux containers where RPC

traffic should be recorded. Upon receiving a request on these

containers, the Thrift server’s recording module flips a coin to

decide whether to sample the request. To minimize the impact

on RPC latency, the recorded data is written asynchronously.

The user configures the request sampling rate, and by default,

requests are sampled uniformly. For a service with a highly

variable request rate, reservoir sampling [5, 57] ensures that

sampled requests are evenly spread over time, with at most K

samples during each T time interval. In practice, the median

sampling rate is 0.03%, and above that, 22% of services set

sampling rate to 1%.

By default, ServiceLab assumes that RPC requests are

independentÐmeaning the execution of one request does

not depend on the execution of the previous request. How-

ever, this assumption may not hold for some services. In these

cases, the service can record all requests, and then during

replay, all recorded requests are replayed in order. For some

services, request dependencies are encoded at the RPC layer

and can thus be recorded accurately and transparently.

For sharded services, since sharding is done at the applica-

tion layer and is invisible to the RPC layer, ServiceLab relies

on the service owner to specify the set of Linux containers to

capture requests for all shards.

ServiceLab leverages the open-source load testing plat-

form Treadmill [61] to replay requests. Treadmill employs an

open-control loop to send requests at a fixed rate. We have im-

plemented several modifications to Treadmill, extending it to

load recorded requests from a datastore and replay Thrift RPC

requests. In support of A/B experiments, we further enhanced

Treadmill to ensure consistent pacing and request rates for

both sides. A single Treadmill instance loads an identical set

of requests to be dispatched to both SUTs, synchronizing the

sending of requests to ensure simultaneous receipt on both

sides. For the capacity mode, a control loop in the test har-

ness monitors the SUT and instructs Treadmill to dynamically

adjust the request rate.

Additionally, services may have a warm-up period during

which performance measurements should not be taken until

the service reaches a steady-state behavior. ServiceLab can

be configured to enable a warm-up phase, allowing a lower

request rate to be set during this phase to gradually increase

the load on the service. The service exports a counter to

indicate whether it has reached warm-up. Treadmill waits

for both sides to be warmed up before synchronizing and

sending requests once again for steady-state performance

measurement. For example, HHVM employs a JIT compiler,

and steady-state performance measurements should start after

JIT compilation is sufficiently warmed up.

Finally, services with high variability in request process-

ing time due to diverse request types are harder to handle.

FrontFaaS is one such example. We can reduce variability

by testing only with request types relevant to a specific code

change, as opposed to all request types.

5.3 Handling Service Dependencies

Meta products are built out of tens of thousands of services

with intricate interdependencies, akin to those documented in

prior research [30, 38, 48]. For example, FrontFaaS invokes

hundreds of downstream services. Consequently, testing a ser-

vice in isolation is challenging due to these interdependencies.

ServiceLab tackles this issue through various approaches.

First, users can set up a group of interdependent services

together in ServiceLab, creating a self-contained testing en-

vironment. While theoretically possible, this approach is not

consistently implemented in practice due to various reasons.

For instance, replicating the massive datasets accessed by
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services, like the social graph for billions of users, is often

economically impractical.

Second, ServiceLab allows a system under test (SUT) to

invoke certain services in the production environment, pro-

vided there are no adverse side effects. In ServiceLab, most

calls to downstream production services do not incur side ef-

fects because they are read-only or idempotent. Moreover, the

testing load imposed on these downstream services is often

negligible compared to their ample capacity to serve billions

of users. However, as these downstream services often exhibit

performance variance across datacenter regions, meaningful

comparisons can only be drawn from tests conducted in the

same region (§4.1).

Third, for a SUT that potentially can cause side effects

on downstream production services, ServiceLab requires the

service owner to modify the SUT’s behavior to prevent those

side effects. For example, the SUT may use a mock interface

of a database so that it writes data to a test database instead

of the production database. Moreover, to prevent a SUT from

accidentally accessing a production service, the RPC layer can

be instructed to block all traffic to production services except

those on an allowed list. Mocking or blocking traffic can result

in certain code paths not being executed, potentially causing

false negatives in testing results. However, § 6.1 shows that

the false negative rate of ServiceLab is acceptable.

Fourth, the business and performance metrics logged by

the SUT are kept separately from those generated by its coun-

terpart in production. This ensures that the analytics for these

metrics do not interfere with each other.

In summary, ServiceLab provides tools to assist service

owners in managing service dependencies during test envi-

ronment setup but does not offer complete isolation out of the

box. As a result, some complex services (e.g., MySQL) are

not tested in ServiceLab. They either use a specialized test

environment or conduct canary tests directly in production

by deploying new code to some instances of the production

service and comparing those instances with the rest. Despite

its limitations, ServiceLab is successful as a general-purpose

testing platform, covering more than half of the total code

changes by all services and surpassing the combined coverage

of all other specialized testing platforms.

6 Production Experience

During its steady state, ServiceLab constantly leverages tens

of thousands of machines to test hundreds of services and

hundreds of ML models. We use production data to answer

the following questions:

1. What are the statistics for different use cases (e.g., regres-

sion thresholds, number of trials, etc.)?

2. What are the false positive and false negative rates of

ServiceLab?

3. How much regression did actually ServiceLab prevent?

6.1 Testing FrontFaaS

As FrontFaaS is our largest programming platform and has

more code changes than other services, we report its statistics

separately. ServiceLab has been running for FrontFaaS for

over 5 years in production. It has a regression threshold as

low as 0.01%, and by default, it runs 25 trials in each experi-

ment. On average, developers made over 100,000 FrontFaaS

changes per month. ServiceLab ran at least one experiment

on 23% of those changes during that period. Leaving out 77%

showcases the importance of ServiceLab’s DiffSuggester in

reducing the machine capacity needed for testing. For the

code changes tested by ServiceLab, ServiceLab signaled per-

formance regressions on 0.3% (5,560) of those changes.

ServiceLab assigns regression tickets to developers, and

we calculate ServiceLab’s accuracy based on the developers’

actions in these tickets. We classify a signaled regression as

a true positive if the developer fixed the issue or marked the

issue as ªexpected,º perhaps due to a new product feature re-

quiring more resources. We classify it as a false positive if the

developer identified it as such. If the developer did not provide

a clear answer, we classify the regression as unknown. Among

all signaled regressions, 57% (3,173) are true positives, 15%

(823) are false positives, and 28% (1,564) are unknown. As-

suming the unknowns have the same false positive rate as

others, the overall false positive rate is about 21%.

Although the false positive rate of 21% may seem high

initially, it actually signifies a significant success of Service-

Lab because FrontFaaS uses a very low regression threshold,

0.01%. Out of all FrontFaaS diffs submitted by developers,

only 0.014% experience a false positive flagged by Service-

Lab, calculated as 23%×0.3%×21% = 0.014%. Assuming

a developer writes one diff per day, they will experience a

false positive about once every 20 years! While promoting

the adoption of ServiceLab, we learned that the per-developer

experience significantly affects whether developers ignore the

regression tickets assigned by ServiceLab. If a developer fre-

quently receives false-positive tickets, they are likely to ignore

them after repeated futile investigations. Conversely, if they

receive a false-positive ticket only once every 20 years, they

will likely always take ServiceLab regression tickets seriously

and investigate them. The good developer experience even at

a very low regression threshold of 0.01% demonstrates the

robustness of ServiceLab’s statistical methods.

Figure 3 shows the distribution of the level of regression of

those true positive cases. The median value (p50) is 0.14%,

p90 is 1.7%, and p99 is 38.7%. Summing them together, they

account for 12284% of regression over five years. Since very

large regressions are often caused by experimental purposes,

if we only sum those causing less than 1% regression, they

account for 545% of regression, which translates to over 2

million machines (i.e., 545% × the number of machines used

by FrontFaaS). This shows that ignoring small regressions

is not acceptable, as they will accumulate to a large number

over time. That is why FrontFaaS uses a strict threshold.
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Figure 3: Cumulative distribution of regressions detected by

ServiceLab for FrontFaaS.

Figure 4: Number of experiments completed each day.

To approximate the false negative rate, we rely on re-

ports from in-production monitoring of performance changes.

FrontFaaS has a production monitoring system that exam-

ines the per-function CPU usage of functions and raises a

signal if it detects a performance regression. It then attempts

to triage the performance regression to a code change. Out

of all changes, 0.02% (2038) of changes were found to cause

regressions but have been missed by ServiceLab, leading to

a false negative rate of 32%, calculated as 2038
2038+5560×(1−21%) .

However, this number should be viewed with caveats because

1) there are potential performance regressions that cannot be

root-caused to their original changes, which are not included

in this number, and 2) there is no guarantee that the production

monitoring system is fully accurate.

In summary, despite FrontFaaS’ low threshold of 0.01%,

ServiceLab achieves a reasonable false positive rate and false

negative rate, and helps us prevent a significant amount of

regressions, which could accumulate over years.

6.2 Testing Other Services

While FrontFaaS is reported in its own category, in this sec-

tion, we report the aggregate statistics for all non-FrontFaaS

services in one category. Figure 4 shows the number of Ser-

viceLab experiments completed each day for non-FrontFaaS

services. The majority of completed experiments are run au-

tomatically as part of code changes, configuration configs, or

service releases. ServiceLab supports a total of 483 distinct

Figure 5: Thresholds and number of trials. The size of the

circle represents the count of use cases with the same setting.

use cases, and their breakdown is shown below. Note that

ServiceLab also tests hundreds of distinct ML models, which

are counted as a single use case.

• 44% (N=211) of the use cases have experiments that auto-

matically run on code diffs.

• 15% (N=74) run automatically on code commits.

• 21% (N=100) run automatically on configuration changes.

• 22% (N=107) run as part of their release process.

The distribution of the number of trials in experiments is as

follows: p50=1, p90=10, p99=10, and p100=25. The distribu-

tion of the execution time of trials is as follows: p50= 2,820

seconds, p90= 4,200 seconds, p99=p100=259,200 seconds.

Among the 483 use cases, 413 have defined a relative thresh-

old on some metric; 5 have defined an absolute threshold on

some metric; the remaining ones do not define any threshold.

We focus on the 413 cases with a relative threshold in the

following discussion.

Each use case may contain multiple metrics with different

thresholds. Since the number of trials and trial duration are

usually determined by the strictest threshold, we define the

threshold of a use case as the smallest threshold among all

its metrics. 23% of the use cases have a threshold smaller

than 1%, while p50=5%, p90=10%, and p99=20%. This, once

again, emphasizes the importance of using small thresholds.

Figure 5 plots the threshold and the number of trials used

by different use cases. A circle in this figure represents the

count of use cases using a specific setting. This figure shows

that a large number of use cases use a relaxed threshold of 5%

or 10% with only one trial, but a small number of use cases

use a very small threshold with up to 25 trials. This small

subset includes many of the largest services.

Services often run preliminary experiments with a large

number of trials to determine how many trials are needed to

achieve a certain confidence interval in regression detection.

Specifically, they run multiple trials of A/A tests, compute

the difference between each pair of A/A test (i.e., A′
−A
A

), and

then determine the confidence interval (i.e., 95% within two

standard deviations assuming normal distribution). Figure 6
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Figure 6: The number of trials required for detecting small

regressions.

shows, for one service, how the confidence interval decreases

with more trials. Users can then decide the number of trials

according to their required confidence interval.

We examine how often ServiceLab signals a regression on

code changes during the 54 day period shown in Figure 4.

During this time, 15,058 code changes were tested and Ser-

viceLab signaled on 2,742 (18.5%) of those code changes

with at least one metric crossing its configured threshold. For

non-FrontFaaS services, ServiceLab reports on a diverse set

of metrics. Across these code changes, 2,714 different metrics

were considered as significant. 80% of the signaled metrics

had a threshold of less than 2%. Unlike the uniform Front-

FaaS platform used by over ten thousand developers, for these

413 diverse use cases, there are no uniform tools and hence

no clear marking about whether a reported regression is a true

or false positive. In subsequent sections, we will present some

examples with these use cases to understand their impact.

6.2.1 Example of True Positives

ServiceLab helps non-performance experts understand the

performance implications of their code. For example, con-

sider one case where ServiceLab successfully detected and

prevented a CPU performance regression in XFinder (§3.5)

before the change landed in production.

In the change, the developer inadvertently copied a large

data structure when introducing a new function. The Ser-

viceLab experiment that ran for this change detected a sig-

nificant CPU regression of around 20%. ServiceLab flagged

this change to both the developer and performance engineers

working on XFinder. The developer was working on a product

feature across multiple services, and was neither familiar with

the XFinder codebase nor C++. After ServiceLab flagged the

regression, the developer applied a fix by adding const when

passing the parameter to the function, eliminating the memory

copy of the data structure.

In another incident involving the Ranker service (§3.6), a

change increased the service’s memory usage by 50%. The

change involved enabling a new ranking library that increased

memory usage due to loading additional ranking configu-

rations. The increase in memory was expected due to the

additional functionality; however, the amount of increased

memory was not. ServiceLab detected the memory regression

before a release deployment. In this case, the developer who

included the additional ranking library knew that there would

be an added resource cost. However, ServiceLab helped the

developer and service owners understand the resource cost of

the regression before deployment. The developer reverted the

change and found optimizations to minimize the use of the

ranking library by excluding unused ranking configurations.

6.2.2 Example of False Positives

In another incident, a ranking service using ServiceLab occa-

sionally experienced high rates of false positives due to a pro-

duction issue with a downstream dependency. A production

misconfiguration led to imbalanced load among the machines

in the downstream service. During experiments, some of the

SUTs would send requests to these overloaded instances of

the downstream service. The queuing resulting from those

overloaded downstream instances affected the performance

measurement in ServiceLab, resulting in false positives. To

remediate this issue, the production routing configuration that

led to the imbalanced load was fixed. This remediated the

load imbalance issue in production and also eliminated the

false positives in ServiceLab.

6.2.3 Examples of False Negatives

False negatives are incidents where ServiceLab does not re-

port a regression but a regression actually occurs. These cases

are often reported by service owners. In one incident with

XFinder (§3.5), a developer was implementing a new feature

to read from an online classifier instead of an offline classifier.

The change introduced a new function call making use of the

new classifier to better classify the type of ads to return. The

change resulted in an increase of 0.62% in the total capacity

used by XFinder. ServiceLab failed to report a regression for

this change since this regression only applied to a subset of

request types, and those types were not represented in the set

of requests replayed in the experiment. Those request types

were newly added after the request trace was captured.

6.2.4 Summary

In our experience, the top reason for false positives is that

another event, such as another test or deployment either in the

SUT or in the downstream services, is happening concurrently

with a ServiceLab test, which will disrupt the result of the

ServiceLab test. The top reason for false negatives is that a

newly introduced feature is not tested since the requests for

replaying were recorded when this feature does not exist.

6.3 False Positive in A/A Experiments

As described in § 4.2, periodic A/A experiments provide an

empirical measurement of whether a metric would be con-

sidered significant with the same experiment inputs. Periodic

A/A experiments run every two hours and test for statisti-

cally significant differences without considering any signal-
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ing thresholds. Over a two-month period, we examined 6,783

metrics from A/A experiments where signaling was enabled.

Among these 6,783 metrics, the p50, p90, and p99 metric

had a false positive rate of 0.6%, 40%, and 64%, respectively.

This signifies the inherent variance in the services and the

test environment. It also emphasizes the importance of our

method of using results from A/A experiments to help select

the best statistical model for each service (§4.2).

6.4 Key Takeaways

We have learned several key lessons from our experience of

operating ServiceLab over seven years. Initially, the Service-

Lab team maintained a dedicated pool of identical physical

machines for testing to reduce performance variance. How-

ever, as ServiceLab adoption increased, we had to switch to

using heterogeneous cloud machines. This change was driven

by the high maintenance burden of a dedicated machine pool

and the lower cost of running some tests using the cloud’s

elastic capacity.

Testing a wide range of services is a key design goal for

ServiceLab. To achieve this, unlike traditional systems that

aim for completely isolated and reproducible environments,

ServiceLab allows Systems Under Test to call external depen-

dent services that handle live production traffic. This approach

significantly broadens the scope of services that ServiceLab

can test, accommodating those with complex interdependen-

cies that are too intricate or costly to replicate fully in a test

environment. Moreover, ServiceLab is extensible and allows

for developer customizations, recognizing that a one-size-fits-

all approach would fall short in supporting diverse services.

For example, while traffic record-and-replay simplifies test

setup, some services face strict time constraints for replay,

and others choose to use synthetic traffic.

7 Related Work

Performance Variance. Performance variance is a well-

known issue for performance experiments and reproducibility,

especially when the performance of two versions to com-

pare is close. There are multiple lines of work in this direc-

tion: 1) some works mitigate the problems by re-designing

systems [9, 16, 21, 25, 45, 51, 60], tuning configuration pa-

rameters [37, 39, 59, 64], or changing hardware [40, 58, 63].

2) Some works try to detect machines that are significantly

slower than others [19, 23, 28, 29, 43], so as to exclude such

outlier machines from performance experiments. We also

run routine performance tests to filter those outlier machines.

3) Some works propose statistical methods for performance

comparison [26, 31, 40].

The closest work is the study by Maricq et al. on perfor-

mance variance in CloudLab [40]. ServiceLab differs from

the CloudLab study in several ways. First, the CloudLab study

assumes repeated experiments are run on the same or identi-

cal machines, whereas ServiceLab identifies heterogeneous

machines with comparable performance to run experiments

in parallel. Second, the CloudLab study focuses on the num-

ber of experiments needed to achieve a certain confidence

interval, whereas ServiceLab addresses the problem more

holistically, using an ensemble of statistical models, A/A tests,

and artificial A/B tests. Finally, the CloudLab study only runs

microbenchmarks in a single-machine environment, whereas

ServiceLab must be robust enough to work in real-world sce-

narios with full services and complex interdependencies.

Performance Testing. Synthetic benchmark [14, 41, 46, 50,

55] and record-and-replay [1±3] are two primary methods

for performance evaluation. ServiceLab supports both but

primarily uses record-and-replay due to its high fidelity in

testing real applications.

Treadmill [61] and TailBench [32] overcome several com-

mon pitfalls of performance testing frameworks with synthetic

traffic, allowing them to precisely measure at microsecond-

scale. Lancet [33] incorporates online statistical tests to ensure

the obtained measurements are statistically sound. Primorac

et. al. leverage kernel-bypass networking and advanced NIC

features to further improve the precision of microsecond-scale

tail latency measurements [44].

Performance data from Google’s gmail [7] shows that work-

loads change constantly, both QPS and response size. Hence

we need to do real production traffic record and replay. Re-

cent studies including Kraken [56] and WSMeter [35] directly

utilize production traffic to carry out the performance tests,

to address the limitation of synthetic benchmarking in how

accurately they can reproduce the complex production envi-

ronment. Similarly, deterministic record and replay are com-

monly leveraged to reduce the non-determinism to simplify

multiprocessor software development and testing, which can

be done at multiple levels (e.g., virtual machine-level [20],

OS-level [8], and library-level [24]).

8 Conclusion

We have presented ServiceLab, which tests a large, diverse set

of applications to catch small performance regressions. It se-

lects similar but non-identical machines for testing and learns

the best statistical model for each service. During seven years

of production, ServiceLab has helped us prevent a significant

amount of regression, which could accumulate over time if

not detected promptly.
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Abstract
In public clouds, users must manually select a datacen-

ter region to upload their ML training data and launch ML
training workloads in the same region to ensure data and
computation colocation. Unfortunately, isolated decisions by
individual users can lead to a mismatch between workload de-
mand and hardware supply across regions, hurting the cloud
provider’s hardware utilization and profitability. To address
this problem in Meta’s hyperscale private cloud, we provide
a global-scheduling abstraction to all ML training workloads.
Users simply submit their training workloads to MAST, our
global scheduler, and rely on it to intelligently place both data
and training workloads to different regions. We describe three
design principles that enable MAST to schedule complex ML
training workloads at a global scale: temporal decoupling,
scope decoupling, and exhaustive search. MAST successfully
balances the load across global regions. Before MAST, the
most overloaded region had a GPU demand-to-supply ratio of
2.63 for high-priority workloads. With MAST, this ratio has
been reduced to 0.98, effectively eliminating the overload.

1 Introduction
The success of ML applications [8, 46] has resulted in ML
training becoming the fastest-growing datacenter workload.
Public cloud providers run ML training workloads in multiple
geo-distributed datacenter regions [3,4,15] to ensure sufficient
capacity. Accordingly, users need to manually select a region
to upload their ML training data and then launch training
workloads in the same region to ensure colocation of data
and computation. Unfortunately, such manual selection can
lead to a regional mismatch between workload demand and
hardware supply. For instance, one region may exhaust its
capacity, accumulating a long queue of pending jobs, while
another region has surplus capacity remaining idle.

Contributions: Chunqiang, Kutta, and Tuomas initiated the MAST project
in 2020. In terms of paper writing, Yang wrote the majority of the paper,
followed by Chunqiang. In terms of coding, Arnab, Kutta, and Tuomas led
the project’s development at different times. All other authors also made
major contributions to the project’s development.

Meta’s private cloud used to experience this load imbalance.
It comprised tens of datacenter regions, millions of machines,
and tens of thousands of GPUs. Similar to public clouds,
users initially had to manually select regions to store train-
ing data and launch workloads. Users’ suboptimal decisions
previously led to an imbalance in the GPU demand-to-supply
ratio, reaching as high as 2.63 in certain regions for high-
priority workloads, which was later reduced to 0.98 through
optimizations described in this paper.

While much research has been conducted on scheduling
ML workloads in a single cluster [1, 2, 5–7, 9, 13, 17, 21, 23–
25, 30, 31, 33–35, 39, 40, 45, 49, 51–54, 57, 59], there has been
little effort to address the issue of regional mismatch between
workload demand and hardware supply. To address this chal-
lenge, our private cloud has introduced the global-scheduling
abstraction that shields users from the complexity of regions.
With the global-scheduling abstraction, users simply submit
their ML training workloads to our global scheduler called
MAST (short for ML Application Scheduler on Twine [44])
and rely on it to intelligently place both training data and
workloads into different regions.

To provide the global-scheduling abstraction, MAST faces
two major challenges:

• Data-GPU colocation: Without careful coordination, there
is a risk of location mismatch between GPUs and data. For
instance, one region may have the necessary training data
but run out of available GPUs, while another region may
have available GPUs but lack the required training data.
Due to the massive volume of training data and the limited
cross-region network bandwidth, on-demand cross-region
data migration can be both costly and time-consuming.

• Scalability: MAST allocates not only GPU machines
for training but also CPU machines for data preprocess-
ing [58]. As CPU machines may be dynamically reas-
signed across ML and non-ML workloads based on de-
mand, conceptually, MAST needs to find machines to run
ML workloads out of millions of machines spread across
tens of regions. Global resource allocation at this scale
has not been studied before.
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We leverage three principles to address these challenges: tem-
poral decoupling, scope decoupling, and exhaustive search.
We elaborate on these principles below.

Temporal decoupling. We divide the scheduling responsibili-
ties into two paths: a fast path for real-time job scheduling and
a slow path that continually optimizes data and machine as-
signment in the background. The slow path intelligently repli-
cates ML training data across regions, enabling the fast path
to more easily colocate computation with data. Despite the
relaxed timing, cross-region data placement remains very chal-
lenging. It requires continuous optimization of the placement
of billions of data partitions across tens of geo-distributed
regions, considering per-region capacity constraints and the
data access pattern of millions of daily ML training jobs and
analytics jobs from Spark [55] and Presto [42].

We model data placement as a mixed integer programming
(MIP) problem, and the scarcity of GPUs drives novel de-
cisions in our solution. Due to the high cost and demand
of GPUs, we target maximizing GPU utilization. Imposing a
hard constraint in the MIP problem that GPU demand must be
lower than GPU supply in every region, as in prior work [20]
for CPU and storage, often renders the problem unsolvable. In-
stead, MAST allows GPU oversubscription and preempts low-
priority jobs as needed. This approach mandates a reassess-
ment of the objective function and constraints in the MIP
problem, not only for GPU-related terms but also for other
resources that GPUs depend on. We share insights gained
from multiple iterations refining the MIP problem through
production experience (§3).

To tackle the scalability challenge, as illustrated in Figure 1,
MAST adopts a three-level scheduling hierarchy: Global ML
Scheduler (GMS)�Regional ML Scheduler (RMS)�Cluster
Manager (CM). In addition to managing data placement, the
slow path also helps scale RMS by constraining its search
for available machines. It dynamically pre-assigns machines
to dynamic clusters, allowing RMS to only search through
machines within the ML dynamic clusters and disregard non-
ML dynamic clusters.

Scope decoupling. A job scheduling system has three main
responsibilities. First, it manages the job queue, which entails
queuing and prioritizing jobs when there are insufficient re-
sources to run all jobs. Second, it handles resource allocation,
which involves computing bin-packing-like solutions by mod-
eling machines as bins and tasks as objects. Third, it manages
container orchestration, which executes the bin-packing plan,
runs containers, and monitors their health. Traditional sys-
tems [19, 47, 48, 56] handle all these responsibilities within
the same scope, i.e., within a cluster.

Our key insight is that sharing the same scope for all three
responsibilities unnecessarily limits scalability, reducing the
potentially larger scopes of job queue management and re-
source allocation to the minimal scope of container orches-
tration. Note that container orchestration is the least scalable

due to its heavy duties and, consequently, has the smallest
scope.

In contrast, as shown in Figure 1, our scope-decoupling
principle allows the three responsibilities to operate at differ-
ent scopes: (1) the job queue is managed by GMS at the global
scope, covering all pending jobs for all regions; (2) resource
allocation is managed by RMS at the regional scope, taking
into account all machines in a region’s ML dynamic clus-
ters; and (3) container orchestration is managed by the CM
at the smallest dynamic-cluster scope. This approach allows
job queue management and resource allocation to operate at
bigger scopes to minimize stranded resources and optimize
job placement. A key challenge is to make GMS and RMS
sufficiently scalable to operate at their bigger scopes, which
is further discussed in §4.2.1 and §4.3.1.

Exhaustive search. Existing systems [10, 20, 28] often adopt
the federation approach to scale out. When a new job arrives,
the Federation Manager employs simple heuristics to assign
the job to the least loaded cluster, and then its cluster manager
manages all subsequent operations, including job queuing,
resource allocation, and container orchestration. However, as
ML training clusters are almost always fully utilized, schedul-
ing a new job often requires a complex decision to preempting
existing lower-priority jobs. This complexity makes the sim-
plistic federation approach less effective.

Our key insight is that, unlike short-lived analytics jobs [10,
38, 41, 50], ML training jobs often run for extended periods
on expensive GPUs. Therefore, instead of searching just one
cluster to allocate resources hastily, it is beneficial to conduct
an exhaustive search across all relevant clusters for higher
quality placement. As depicted in Figure 1, MAST’s multiple
RMSs can concurrently compute resource allocation plans for
one job in different regions, with the optimal plan determined
through a final auction process. A key hurdle is ensuring the
scalability of RMS, which is discussed in §4.3.1.

Contributions. We make the following contributions.

• We propose the global-scheduling abstraction to shield
users from the complexity of geo-distributed datacenters
and improve hardware utilization through joint placement
of data and training workloads across regions.

• We propose three principles–temporal decoupling, scope
decoupling, and exhaustive search–to achieve high-quality
data and computation placement in a scalable manner.

• We demonstrate the effectiveness of global ML scheduling
through our hyperscale deployment of MAST and validate
its design using production data.

2 Background of ML Training at Meta
In this section, we provide the necessary background to set
the stage for future discussions.

Datacenter and hardware. Our private cloud comprises
tens of regions and millions of machines. A region comprises
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Figure 1: Conceptual architecture of MAST. Global ML Scheduler (GMS), Regional ML Schedule (RMS), and Cluster Manager
(CM) handle different scheduling responsibilities at different scopes: global, regional, and cluster, respectively.

multiple datacenters that are close to one aother. The cross-
region network bandwidth is about 10 times lower than the bi-
section bandwidth between datacenters within a region. Parts
of a datacenter are occupied by ML training clusters, with
machines equipped with multiple GPUs and connected by
both 8x200Gbps RoCE network and 4x100Gbps Ethernet.

ML training is data intensive and prefers colocating the
compute and data of a training workload. For tasks that belong
to an ML training workload, we prefer to place them in the
same rack, cluster, datacenter, and region, in that order. Sepa-
rating the compute and data across regions or placing tasks in
different regions would result in unacceptable performance.

Historically, datacenter hardware has been procured incre-
mentally depending on the specific needs at different times,
resulting in uneven distribution of hardware types across re-
gions. This is discussed in Flux [11] and also shown in Fig-
ure 2. This disparity makes colocation of data and compute
difficult, requiring global optimization. For example, since
Region6 is short of GPUs, it is better to place data used by
CPU-based analytics jobs in Region6. If a few GPU-based
ML training workloads share the same data as those analytics
jobs, we should schedule them in Region6 as well. However,
if there are too many such ML workloads, we will have to
replicate their data to other regions and execute them there.

Dynamic clusters. As shown in Figure 1, a slow-path com-
ponent called RAS pre-assigns machines to dynamic clusters,
which are known as “reservations” in the RAS paper [36].
This enables the Regional ML Scheduler (RMS) to scale by
searching only through machines that are within the ML dy-
namic clusters. Typically, an ML dynamic cluster comprises
both GPU and CPU machines. To update dynamic clusters,
RAS takes as inputs all machines in a region and the new
or updated specification for each dynamic cluster’s intended
size and preference for certain hardware types. RAS formu-

lates a MIP problem to allocate machines to dynamic clusters.
MAST consumes the outputs of RAS (i.e., the dynamic clus-
ters created by RAS), and MAST’s scheduling decisions do
not influence or feed back into RAS.

We provide a brief summary of RAS and refer readers to
the RAS paper [36] for details. RAS ensures that the total
machine capacity allocated to a dynamic cluster meets the
requirements specified by administrators and includes suffi-
cient buffers to handle both random and correlated machine
failures. Correlated failures, such as power outages in large
fault domains within a datacenter, can render tens of thou-
sands of machines unavailable. RAS distributes a dynamic
cluster’s machines across different fault domains to ensure
that sufficient healthy machines remain available when a large
fault domain fails. Additionally, RAS reduces unnecessary
cross-datacenter communication by ensuring a proper ratio
of compute machines to storage machines in each datacenter.
Finally, RAS reruns its optimization periodically (e.g., every
30 minutes) to adapt to changes. For example, when new dat-
acenters are brought online, RAS can reduce the buffer size
needed for handling correlated failures by further spreading
out a dynamic cluster’s machines into these new datacenters.

ML training workload. A training workload comprises
multiple heterogeneous jobs, each job comprises multiple
homogeneous tasks, and a task is mapped to a Linux container.
Therefore, the hierarchy is workload�job�task. For example,
a training workload may comprise (1) a training job that
executes back-propagation training; (2) a data-preprocessing
job [58]; (3) a parameter-server job; and (4) an evaluator job
that evaluates the generated model. A workload’s all tasks
need gang scheduling, i.e., they must be allocated together.
If a training job uses less than a full GPU, in theory, the
GPU can be shared by multiple jobs using Multi-Instance
GPU (MIG) [37] or other software approaches. In practice,
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Figure 2: Uneven distribution of hardware across regions.
Storage is normalized by capacity, and GPU and CPU are
normalized by server count.

Figure 3: Hotness of data partitions, measured by the number
of distinct ML workloads accessing each partition.

however, all our training jobs use at least one full GPU due to
the large amount of training data.

Data warehouse. Our data warehouse stores exabytes of data
in a three-level hierarchy: hundreds of namespaces�millions
of tables� billions of data partitions. A partition is immutable
once created, but new partitions can be added to an existing
table. For example, every day, the “user_activity” table can
add a new partition to record user activities in the past 24
hours. Some data partitions are simultaneously used by ML
training and data analytics, such as Spark [55] and Presto [42].
We have developed a system called Tetris, which optimizes
data placement across regions, taking into account the data-
access patterns of Spark, Presto, and ML training jobs.

Sharing of data partitions by workloads. Figure 3 shows
that data partitions are often shared by multiple ML work-
loads. At the P50, P90, and P99 percentiles, a data partition
is shared by 3, 17, and 45 distinct workloads, respectively.
Data sharing complicates the problem of data placement, as
migrating one data partition across regions may require the
migration of multiple workloads dependent on the partition.
Furthermore, it is necessary to replicate the hottest partitions
across multiple regions to prevent load imbalance, as a large
number of workloads dependent on those partitions will oth-
erwise be forced to run in a small number of regions.

Long execution time of ML training jobs. ML training
is resource intensive and can take a long time to finish. At
Meta, ML training workloads often take 10 times longer to

finish than Spark [55] analytics jobs. Therefore, a subopti-
mal placement decision has a bigger negative impact on ML
training. This motivates the exhaustive search principle de-
scribed in §1. Moreover, when workloads run longer on a
larger number of machines, the workload scheduling through-
put decreases. Therefore, as shown in Figure 1, it is feasible
to manage the job queue and resource allocation at the global
and regional scope, respectively, rather than at the smaller
cluster scope that leads to more fragmentation.

Quota and job preemption. Training workloads with differ-
ent priorities are assigned capacity quotas per priority level.
If a team’s capacity usage is within their quota, MAST guaran-
tees starting their training workloads within a certain latency.
Once a team exceeds their quota, they can still submit work-
loads to run opportunistically at the lowest priority, subject
to preemption when a higher-priority workload arrives. Con-
sequently, training clusters are always fully utilized due to
low-priority workloads for experimental purposes. Schedul-
ing a new workload often involves a complex decision to
preempt lower-priority jobs. This complexity renders a sim-
ple Federation Manager less effective.

Checkpoint for recovery. A training workload periodically
checkpoints its state. When a machine fails, the cluster man-
ager restarts its workload on a replacement machine, allowing
it to recover its state from the checkpoint and resume execu-
tion. Before preempting a low-priority workload for a high-
priority one, it also saves a checkpoint for later restoration. As
we continuously reduce the time needed to save a checkpoint,
we are moving towards more frequent checkpoints to mini-
mize the amount of lost work between two checkpoints during
recovery. This has become increasingly important as the size
of training workloads for large-language models keeps grow-
ing, and recovery becomes more costly.

Separate application-level schedulers for ML and non-ML
workloads. As depicted in Figure 1, ML and non-ML work-
loads are managed by distinct schedulers. The extensible
architecture of Twine [44] allows all workloads to share a
common cluster manager for machine and container manage-
ment, while employing different application-level schedulers
for specific workloads. For instance, MAST is used for ML
training workloads, Shard Manager [29] for stateful databases,
Turbine [32] for stream processing, and Chronos for analytics
jobs. Each of these application-level schedulers is optimized
for a specific purpose. Shard Manager, for example, is opti-
mized for high database availability, Chronos for high schedul-
ing throughput of short-lived analytics jobs, and MAST for
high-quality decisions and data-GPU colocation.

3 Slow-path Data Placement
To enable global ML scheduling, it is crucial to have both the
necessary hardware and training data for an ML workload
available in certain datacenter regions simultaneously. Fol-
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lowing the temporal-decoupling principle, MAST optimizes
cross-region data placement on a daily basis using a slow-
path component called Tetris, which determines data place-
ment and replication for the underlying storage system. Given
that data analytics (e.g., Spark [55] and Presto [42]) and ML
training can concurrently access the same data, Tetris jointly
optimizes data placement for them. The entities accessing the
data, such as Presto queries, Spark jobs, and ML workloads,
are collectively referred to as “jobs” for simplicity.

3.1 Context of Data Placement
Recall that our data warehouse uses a three-level hierarchy:
hundreds of namespaces�millions of tables�billions of data
partitions. The large number of data partitions presents a sig-
nificant scalability challenge for data placement. To improve
scalability, Tetris determines data placement in two steps: first
by placing tables to regions, which means that all partitions
of a table must reside in the same region; and then by plac-
ing partitions to data centers within each region. Since the
algorithms for both steps are similar, we mainly present the
table-to-region placement algorithm.

Each table has a home datacenter region, which is where
its new data is generated. Subsequently, the table may be
replicated to other regions for various purposes. If an ML
job takes a table as input, then at least one of the table’s
regions should have the types of GPUs required by the job.
We refer to this property as “data-GPU collocation.” Due to
the large size of our data warehouse (exabytes) and limited
cross-region network bandwidth, replicating data takes time.
Consequently, a table’s replicas in other regions are more
stale compared to those in the home region. Therefore, high-
priority jobs requiring fresh data must run in the home regions
of their input tables, and these home regions must have the
types of GPUs required by those jobs. We call this property
“training-at-home-region.” For low-priority jobs, training-at-
home-region is preferred but not required.

Tetris first determines the home region of each table and
then determines replica regions. We are still evaluating the
feasibility of determining both simultaneously. While it may
result in improved placement, currently we find its computa-
tional cost to be too high.

To plan data placement, Tetris requires the usage informa-
tion of each job’s input tables, hardware needs, and estimated
runtime. High-priority training jobs, with trained models de-
ployed for immediate production use, are typically retrained
daily or more frequently with updated data. The usage infor-
mation of such recurring jobs rarely changes, so Tetris can
derive this information from their historical data. Tetris does
not predict usage information for new training jobs that show
up for the first time. Instead, MAST’s fast-path online schedul-
ing manages first-time jobs upon submission. If no region has
both the necessary data and hardware to run a first-time job,
MAST will initiate data movement and wait for its comple-
tion before scheduling the job. However, many first-time jobs

benefit directly from data placement plans for recurring jobs
and will not be blocked on data replication, as jobs from the
same team frequently share input tables and require the same
types of hardware. For instance, multiple one-time experi-
mental jobs are often submitted to fine-tune a parameter of
a production recurring job. Our production data in §5 shows
that although about 70% of the jobs are first-time jobs, only
a small fraction of them trigger on-demand data movement.
Note that on-demand data movement may also be triggered
due to failures or in rare cases where a recurring job changes
its input tables or hardware needs.

3.2 Problem Formulation Overview
We formulate home-region placement as the mixed-integer
programming (MIP) problem shown in Figure 4. While MIP
has been applied in resource allocation [11, 20], the key in-
sights often lie in the details of a specific problem formulation.
In Tetris, we need to carefully evaluate various approaches for
resource allocations:

• The hard-quota approach mandates that resource demand
must stay below supply in every region.

• The hard-balance approach does not enforce hard-quota
but mandates that the overload situation (i.e., demand
above supply) must not deteriorate for any region due
to a new placement.

• The soft-balance approach does not enforce hard-quota
or hard-balance but instead aims to balance the demand-
to-supply ratio across all regions as much as possible.

After iteratively improving Tetris based on production experi-
ences, we have learned that different resource types require
different approaches. For GPUs, imposing hard constraints
in the MIP problem, as in previous work for CPU and stor-
age [20], often renders the problem unsolvable due to the
scarcity of GPUs. Hence, we adopt the soft-balance approach
and preempt low-priority jobs to accommodate high-priority
jobs as needed. Specifically, we introduce a penalty if a re-
gion’s GPU demand deviates from the ideal case where all
regions’ GPU demand-to-supply ratios are the same. In our
initial implementation, the situations of overload and under-
load were penalized equally. However, in practice, overload
is more problematic as it causes longer wait times for the
impacted jobs. Therefore, our current implementation more
severely penalizes overload.

For storage space, the hard-quota approach is necessary
because we cannot delete data when demand exceeds supply.
However, hard-quota alone is insufficient, as an imbalanced
data distribution across regions may occur, leading to GPUs in
some regions being bottlenecked on I/O bandwidth to access
the data. Therefore, we also apply soft-balance to storage. In
the past, we also experimented with using hard-balance, but it
proved ineffective as it completely prevents moving data from
a region to another region with a higher demand-to-supply
rate, which is sometimes necessary for other goals.
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Concretely, our MIP problem formulation aims to achieve
the following soft goals:

1. Minimize cross-region traffic for reading data during train-
ing (Expression 1).

2. Balances the demand and supply of GPUs across regions
(Expression 2).

3. Balances the demand and supply of storage space across
regions (Expression 3).

In addition, it aims to meet the following hard constraints:
4. Each region has sufficient storage space for the tables it

stores (Expression 4).

5. Each application’s CPU usage does not exceed its quota
(Expression 5). Here, applications refer to those generating
data for or sharing data with ML training, such as analytics
jobs. An application may comprise multiple jobs.

6. The demand of jobs satisfying the training-at-home-region
property remains above a certain threshold (Expression 6).

3.3 Problem Formulation Details
This section can be safely skipped during the initial reading,
as it mainly details the problem formulation.

Minimize:
w1 ∑

job j

∑
tablei∈job j

size(tablei) [1− I(R(job j),R(tablei))] (1)

+w2 ∑
regioni

∑
GPU j

∑
Pk

wpk σ1(Demandregioni
GPU j ,Pk

,Supplyregioni
GPU j

) (2)

+w3 ∑
regioni

σ2(Demandregioni
storage,Supplyregioni

storage) (3)

Subject to:
∀region r

∑
tablei

size(tablei) I(R(tablei), regionr)< storage_capacity(r) (4)

∀app ∑
job j∈app

CPU(job j) I(R(job j), regionr)< CPU_capacity(app,r) (5)

∑
high-priority job j

GPU(job j)I(GPU-Typejob j
,R(job j))≥ threshold (6)

Where:

σ1(Demandregioni
GPU j ,Pk

,Supplyregioni
GPU j

) = Demandregioni
GPU j ,Pk

∑
regioni

Demandregioni
GPU j ,Pk

−
Supplyregioni

GPU j

∑
regioni

Supplyregioni
GPU j


2

(7)

× sigmoid(max(0,Demandregioni
GPU j

−Supplyregioni
GPU j

) (8)

σ2(Demandregioni
storage,Supplyregioni

storage) = Demandregioni
storage

∑
regioni

Demandregioni
storage

−
Supplyregioni

storage

∑
regioni

Supplyregioni
storage


2

(9)

Figure 4: Formulation of the data placement problem.
Among the expressions in Figure 4, R(tablei) is the only

decision variable, which determines the home region of tablei.
The region in which job j is placed is represented by R(job j),
which is not a decision variable and is inferred from the place-
ment of tables. A job may access multiple tables. For Spark
or Presto jobs, the home region of the majority of the tables
accessed by the job determines R(job j). For an ML training
job j, if the home regions of all tables accessed by the job are
the same, then their home region determines R(job j). Other-
wise, Tetris sets R(job j) to NULL temporarily, and will fix
it at a later stage by replicating tables to ensure that at least
one region has all these tables (§3.5). Note that while a Presto
or Spark job can read some of its input tables across regions,
an ML job must read all its input tables from the local re-
gion. This difference is due to the fact that GPUs used by
ML jobs are much more costly and should not be stalled on
reading data during execution. Further note that R(job j) is
an auxiliary variable used when determining R(tablei). After
the completion of table placement on the slow path, MAST’s
real-time job scheduling on the fast path (§4) has the freedom
to place the job in a region different from R(job j), depending
on the available resources and table replicas at the scheduling
time. Similarly, all the Demand variables are also auxiliary
variables, inferred from R(tablei) and R(job j).

Other symbols are defined as follows: size(tablei) (size
of a table), CPU(job j) (CPU hours required by a job),
GPU(job j) (GPU hours required by a job), and GPU-Typejob j

(types of GPUs required by a job) are estimated from the
past history of the tables and jobs. storage_capacity(r),
CPU_capacity(app,r), and Supply, are set by the adminis-
trator. The weights, w1, w2, w3, wpk , and wjob j , can be tuned
by the administrator to prioritize certain terms or jobs.

I(a,b) is a binary operator that evaluates to 1 if its two
operands meet certain conditions and 0 otherwise. Specifi-
cally, I(R(job j),R(tablei)) checks if the job and the table are
in the same region. I(R(job j), regionr) checks if the job is
placed in region r. I(R(tablei), regionr) checks if the table is
placed in region r. I(GPU-Typejob j

,R(job j)) checks if job j’s
region has the needed type of GPUs to run the job.

Expression 1 aims to minimize the total size of tables that
are read across regions, i.e., when job j needs to access tablei
but they are not in the same region. The notation tablei ∈ job j
denotes the tables accessed by job j. For an ML training job j,
if its home region R(job j) is NULL (i.e., the home regions of
the tables accessed by the job are not the same), Expression 1
will assume that all of these tables are accessed across regions.

Expression 2 soft-balances the supply and demand of GPUs
across regions. GPU j is a specific type of GPU and Pk is a
job priority level. Demandregioni

GPU j ,Pk
is the demand for GPU j at

regioni at priority level Pk. Supplyregioni
GPU j

is the supply for GPU j
at regioni. Demands and supplies are measured in GPU hours.
Expression 7 minimizes the imbalance of supply and demand
across regions. If the load is perfectly balanced, Expression 7
is zero. Expression 8 minimizes region oveload. Without
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overload, Expression 8 is a constant, sigmoid(0) = 0.5. As
the region becomes more severely overloaded (i.e., demand
above supply), Expression 8 approaches 1, and the attempt to
minimize Expression 8 would lead to reducing overload.

Expressions 3 and 9 soft-balance the supply and demand of
storage space across regions. However, there is no term similar
to Expression 8 to minimize storage space overload, as it is
disallowed to allocate more space than available, enforced
by Expression 4. Similarly, Equation 5 ensures that every
region’s CPU demand is below supply. Note that there is no
such hard constraint for GPUs, as it would often lead to an
unsolvable problem due to GPU scarcity.

Expression 6 only applies to time-sensitive high-priority
jobs, ensuring that most of these jobs are trained in their home
regions, i.e., satisfying the training-at-home-region property.
Moreover, we empirically validate but do not mandate that
the number of jobs satisfying this property does not decrease
over time.

3.4 Efficient Approximate Solution
The MIP problem in Figure 4 is NP-hard. Tetris uses a hill-
climbing algorithm [26] to compute an efficient approximate
solution. Starting from the current placement, Tetris goes over
each table and finds the best region for it out of different home
region choices. The best region should have the lowest cost
(Expressions 1-3) and can satisfy all constraints (Expressions
4-6). If the best region differs from the current home region
of the table, the table is added to a move queue. The queue is
ordered by the gain of table moves, i.e., the initial cost before
the move minus the new cost after the move.

After determining the new home region for all tables, Tetris
iterates over the queue to move tables, starting from the ta-
ble with the highest move gain. Before moving a table, it
recalculates its best region because moving tables in prior
iterations may have changed the cost of moving this table.
The moves continue until either the queue becomes empty
or a daily move quota is reached due to limited cross-region
network bandwidth. Tetris runs this algorithm daily which
takes about five hours to complete, although the actual data
replication may take much longer to finish.

To move a table, Tetris replicates the table to the new home
region before deleting its data in the old home region. A
data-migration service schedules and executes cross-region
data replication. Tetris can set a soft deadline for a migration
operation, and the migration service allocates the necessary
bandwidth accordingly. Our network’s cross-region traffic
receives differentiated quality of service to ensure that back-
ground bulk data replication does not affect latency-sensitive
services. As for the data-replication size, the P50 (50th per-
centile) is 565MB, the P90 is 103GB, and the P99 is 7.5TB.
In terms of data transfer time, the P50 is 2.1 hours, the P90 is
3.7 hours, and the P99 percentile is 4.9 hours.

It is possible that the new home region becomes suboptimal
during the move due to various reasons. Typically, the next

day’s rerun of Tetris will correct the problem. However, if
MAST needs to schedule the corresponding job before the
rerun, it can use heuristics to determine whether on-demand
data movement is needed to temporarily fix the issue.

In addition to the hill-climbing algorithm, we have evalu-
ated other solutions such as commercial MIP solvers [12, 18],
but a comprehensive comparison with local-search alterna-
tives is yet to be conducted. We chose hill-climbing for several
reasons. Firstly, it offers greater scalability than other solu-
tions we have explored. Secondly, hill-climbing simplifies
the definition of the MIP problem formulation. As mentioned
in §3.3, R(tablei) is the sole decision variable, with R(job j)
inferred from R(tablei), and GPU and storage demands per
region further inferred from R(job j). In traditional MIP for-
mulas, R(job j) must also be declared as a decision variable
constrained by R(tablei), and the same must be done for all
demand requirements. This would lead to mathematical for-
mulas much more complex than those shown in §3.3. In
contrast, with hill-climbing, we can compute R(job j) and de-
mand requirements from R(tablei) using code, which offers
more flexibility. Lastly, the outputs of hill-climbing are inter-
pretable and easy to debug, as we understand the exact reasons
to migrate tables in each iteration. Given that hyperscale ML
training is still relatively new and the problem formulation
continues to evolve, the interpretability and debuggability of
hill-climbing present significant advantages.

3.5 Creating Extra Table Replicas
In addition to a table’s home region, it may have replicas in
other regions for various reasons. For disaster recovery (DR)
purposes, each table has a replica outside of its home region.
The region that stores the DR replica is selected based on
a DR policy, which takes into account factors such as the
probability of correlated regional failures and the availability
of hardware to handle increased load after a disaster.

After the hill-climbing algorithm finishes, some ML jobs
may not be able to run in any region, because their home
region R(job j) is NULL or does not have the type of GPUs
needed by the job. The DR copy may fix some of these jobs,
and for the remaining ones, Tetris creates additional replicas
of the tables accessed by them in other regions, allowing them
to be scheduled there. For example, suppose tablei is accessed
by job1 and job2, which require GPU1 and GPU2, respectively.
However, GPU1 and GPU2 are not available together in any
region. Thus, Tetris may set R(tablei) to be a region that has
GPU1 to run job1 and then create a replica of the table in a
region that has GPU2 to run job2. If multiple regions have
GPU2, Tetris selects the region with the highest supply.

A small fraction of tables, known as hot tables, are accessed
by a large number of jobs (Figure 3). If these tables are repli-
cated to only a few regions, it may create a significant load
imbalance, as a large number of jobs dependent on these ta-
bles will be forced to run in a few regions. To address this
problem, Tetris widely replicates hot tables per GPU type.
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Scope of job queue management
Cluster Regional Global

Scope of
resource

allocation

Cluster
(1) Borg, Hydra,

Yugong (2) (3)

Regional (4) ✗ (5) (6) MAST
Global (7) ✗ (8) ✗ (9) “Ideal”

Table 1: Design space partitioned by the scheduling scope.
The symbol ✗ indicates invalid solutions.

For each region and each GPU j, Tetris computes the region’s
storage quota for GPU j based on the supply of GPU j. Tetris
sorts tables accessed by jobs using GPU j based on the tables’
hotness, and replicates as many hot tables as possible until it
reaches the storage quota for GPU j.

Extra table replicas provide MAST’s fast path with greater
flexibility to choose the region for hosting a job at runtime.
However, replicating a massive amount of data across regions
could take hours, delaying the start of some time-sensitive
jobs. To address this problem, Tetris takes a combination of
measures. First, Expression 6 enforces that sufficient jobs are
trained in their home regions. Second, instead of replicating
the whole table, Tetris can be configured to only replicate the
partitions needed by the training job. Finally, Tetris prioritizes
first replicating data needed by high-priority jobs to meet their
deadlines.

Overall, the additional table replicas created by Tetris in-
crease storage consumption by approximately 75% to 125%.
However, given the high cost of GPUs, we deem this a justifi-
able trade-off.

4 Fast-path Job Scheduling
While the slow path asynchronously prepares data for ML
training, the fast path schedules ML workloads in real-time.
Before presenting MAST’s scheduling solution, we explore
the design space to understand its rationale.

4.1 Exploring the Scheduling Design Space
Traditionally, the federation approach [10, 20, 28] employs
early binding, dispatching a new job to a cluster based on
the current estimated cluster load, even if the cluster has no
available resources to run the job immediately. In contrast,
MAST adopts late binding, dispatching a job to a cluster only
when certain that the cluster has available resources to run the
job immediately.

Moreover, traditional scheduling systems handle all
scheduling functions at the cluster scope: job queue manage-
ment, resource allocation, and container orchestration. Below,
we explore solutions that manage job queues and resource
allocation at the regional or global scope.

Comparing solutions. Table 1 shows the solution space.
Solution (1) is the traditional approach, with Borg [48] as an
example, where job queue, resource allocation, and container
orchestration are all managed at the cluster scope. Solution (6)

is our approach, where the job queue is managed at the global
scope and resource allocation is managed at the regional scope.
Solution (9) is the “ideal” approach, where both the job queue
and resource allocation are managed at the global scope. With
a global view of all jobs and machines, theoretically, it can
achieve optimal job placement, but the limited scalability of
this approach is a main shortcoming.

For ML training workloads, it can be proven that among
algorithms that schedule one job at a time, MAST achieves
the same optimal job placement as (9) due to several rea-
sons. First, all tasks of a training workload must be allocated
to the same region for locality, simplifying resource alloca-
tion calculations to within regions. Moreover, following the
exhaustive-search principle, MAST computes a resource al-
location plan for the workload in every region with training
data, and then chooses the best plan for execution. As a result,
it can achieve optimal placement for individual workloads.
However, solution (9) has an advantage over MAST in jointly
optimizing the placement of a set of workloads. For instance,
after MAST places workload 1 in region X , it may discover
that no region can accommodate workload 2. In contrast, so-
lution (9) may intentionally place workload 1 in region Y and
leave region X to handle workload 2.

Solutions (2), (3), and (5) improve upon solution (1) as
they can either better balance the load or manage allocation
at a larger scope, but they still cannot provide the same level
of scheduling quality as (6). Solutions (4), (7), and (8) are
invalid as their scope of resource allocation is bigger than
their scope of job queue management. Among the solutions
in Table 1, assuming (9) is not scalable, our preference is
(6) > (3) > (5) > (2) > (1).

Federated systems. Hydra [10] and Yugong [20] use the
federated approach. Both fall under solution (1) as they em-
ploy early binding of a job to a cluster, and then manage the
job queue and resource allocation with the cluster. This ap-
proach aligns well with the nature of lightweight analytics
jobs, the focus of Hydra and Yugong. Such jobs demand high
scheduling throughput but typically do not involve complex
decisions like job preemption.

4.2 Global ML Scheduler (GMS)
Adhering to the scope-decoupling principle and as illus-
trated in Figure 1, MAST splits the scheduling responsibil-
ities among different components: the Global ML Sched-
uler (GMS) manages the global job queue, the Regional ML
Scheduler (RMS) allocates regional resources, and the Cluster
Manager (CM) is responsible for container orchestration.

The main responsibility of GMS is to select the next work-
load to schedule among all pending workloads in the global
job queue. For each pending workload, GMS calculates a
<priority,credit> tuple. It schedules the workload with the
highest priority and, in case of a tie, selects the one with the
highest credit for scheduling.

The priority is affected by quota usage. Each workload
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belongs to a tenant, i.e., a team. Tenants are assigned a priority
level and a quota for running their workloads. The quota
specifies the maximum number of GPUs and CPUs that a
tenant can use simultaneously. Workloads from a tenant that
has not exhausted its quota are assigned the tenant’s priority,
categorized as within-quota workloads. Conversely, when
a tenant has used up its quota, its workloads are assigned
the lowest priority and categorized as over-quota workloads.
These workloads run opportunistically and can be preempted
when a higher priority workload arrives. Tenant priorities
are manually assigned based on business priorities. The strict
adherence to these priorities does result in preemption, which
is the intended effect. Currently, MAST uses seven priority
levels. The distribution of workloads across these priorities
(from highest to lowest) is as follows: 3%, 20%, 16%, 54%,
0.2%, 0.5%, and 0.02%. The remaining 6% of workloads
do not specify a priority and are consequently treated as the
lowest priority.

The credit of a workload is calculated as follows. Intu-
itively, a workload W has a higher credit if it has been waiting
longer (Expression 10) or belongs to a tenant that has used
fewer resources than others (Expression 11).

credit(L) = wworkload_age ×min(L.age,Cage_cap) (10)

+wfair_share × (1− window_avg(L.tenant.resources_used)
window_avg(all_tenants.resource_used)

(11)

Here, L represents a workload, Cage_cap is a constant, and
wworkload_age and wfair_share are tunable weights.

To determine the <priority,credit> tuple for a workload,
GMS calculates each workload’s credit and sorts pending
workloads based on it. It scans them to assess if they can
be scheduled within their tenant’s quota. GMS maintains a
resource_used variable for each tenant, initialized to include
resources used by the tenant’s running workloads. When scan-
ning a pending workload W , GMS checks if adding W ’s re-
source requirement to resource_used would exceed the ten-
ant’s quota. If so, W is assigned the lowest priority level;
otherwise, W inherits its tenant’s priority level, and GMS
updates the tenant’s resource_used to include W ’s resources.

Periodically, GMS executes a GMS-scan pass to update
<priority,credit> tuples for all pending workloads. This ap-
proach is chosen because the state change of one workload
may impact others’ <priority,credit>. Specifically, a work-
load’s credit is influenced by other tenants’ resource usage
(Equation 11). Additionally, a workload’s priority is tied to its
tenant’s other workloads’ resource usage. This updating-all-
workloads strategy enables MAST to implement sophisticated
quota and priority management policies. The scalability of
GMS with this approach depends on the frequency and dura-
tion of the GMS-scan pass.

4.2.1 Scalability of GMS
In practice, GMS scales well for ML workloads due to several
factors. First, ML training workloads, running for extended
periods on many machines, necessitate higher-quality schedul-
ing decisions but lower scheduling throughput compared to

short-lived batch jobs [10, 38, 41, 50]. Second, GMS has min-
imal responsibilities, calculating <priority,credit> for each
pending workload and storing it in the job-queue database.
Placement plans are computed by RMS, not GMS. Third,
our evaluation in §5.4 indicates that the current GMS imple-
mentation can support workload growth by a factor of 8.8.
Finally, currently implemented in Python for simplicity, if it
becomes a bottleneck, we plan to scale it further by a factor
of 10-100 by switching to C++ and parallelizing computation
for different tenants.

4.3 Regional ML Scheduler (RMS)
RMSs perform auctions in a distributed manner to schedule
ML workloads. Each RMS constantly checks the job-queue
database maintained by GMS, and attempts to schedule the
ML workload with the highest <priority,credit>.

To schedule a workload, an RMS consults a real-time com-
ponent of Tetris to check whether its local region has the
required data and necessary hardware types. If not, the RMS
abandons the auction. If all RMSs abandon the auction, poten-
tially occurring with the first-time execution of a new work-
load, MAST will start data replication, waiting for its comple-
tion to ensure some regions have both the necessary data and
hardware.

Typically, due to Tetris, multiple regions have the required
data and hardware types for the workload. Following the
exhaustive-search principle, in each such region, RMS calcu-
lates a placement plan for the workload along with a corre-
sponding placement-quality score (Pscore). RMSs engage in
an auction to identify the RMS with the highest Pscore, which
will execute the workload. If no region can generate an imme-
diate placement plan for the workload, it enters the waiting
state.

A region may have multiple ML dynamic clusters, and the
workload can comprise multiple jobs, each assignable to a
different cluster. Adhering to the exhaustive-search principle,
for each job in the workload, RMS calculates a placement
plan and Pscore for every ML dynamic cluster in the region. It
chooses the cluster with the highest Pscore to host the job. The
overall Pscore for the workload is determined by summing up
the Pscore for each job in the workload.

When comparing two placement plans for a job, the one
with a higher Pscore wins. A plan has a higher score if it uses
available resources to run the new job without preempting
any running jobs. If preemption is necessary, a higher score is
achieved by preempting jobs with lower priority, fewer jobs,
or those running for a longer duration. The last condition
implies refraining from preempting newly started jobs.

To generate a placement plan for a job in an ML dynamic
cluster, RMS checks if it can allocate the job using available
resources without preempting running jobs. For enhanced
task locality within the same job, RMS sorts available ma-
chines based on rack IDs, allocating machines in the same or
nearby racks in batches. While scanning, RMS aims to use
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the minimum number of machines by prioritizing those with
the highest available CPU/GPU resources.

If preemption is necessary, RMS prioritizes preempting
lower-priority jobs. It sorts all running jobs based on priority
and running time, initiating the scan with the job having the
lowest priority and longest running time. The scanning pro-
cess continues until sufficient resources are found to execute
the new job, combining available resources with those to be
released through preemption.

RMS minimizes preempted jobs. For example, if a new
job needs 10 GPUs and the scan reveals options of 4, 5, and
12 GPUs by preempting job1, job2, and job3 respectively, the
optimal choice is preempting job3 without affecting job1 or
job2. To achieve this, RMS re-sorts preempted jobs by size,
prioritizing larger jobs first.

Multiple optimizations improve RMS performance, with
the most effective being the use of a negative cache. When
RMS cannot allocate resources for a job, it saves the decision
in the cache. If it later attempts to allocate a job of the same
or larger size, the cache signals that the allocation will fail.
Specifically, the negative cache is initialized at the start of
every GMS-scan pass that examines all pending jobs, and is
cleared after the GMS-scan pass finishes. It is implemented
as a hashtable that stores the scheduling properties of the jobs
that could not be scheduled during the GMS-scan pass. These
scheduling properties encompass the number of GPUs and
CPU cores requested by the job, memory, hardware type, and
so on. Such information consumes little memory, and there is
no need for cache eviction during a GMS-scan pass. Overall,
the negative cache is highly effective as unsuccessful place-
ment attempts far outnumber successful ones due to nearly
constant full resource allocation. It filters out the majority of
these unsuccessful attempts early on, thanks to a cache hit
rate of about 80% in practice.

4.3.1 Scalability of RMS
RMS demonstrates sufficient scalability, as evidenced by the
analysis below. Scalability is examined concerning the num-
ber of regions (r) and the amount of ML hardware per region
(h). Adding more regions does not increase the computation
load of RMS, as it schedules workloads only for data stored
in the respective region. When h remains constant, the num-
ber of such workloads also remains unchanged. However,
linear growth in h results in quadratic growth in RMS’s com-
putation load. The complexity of RMS’s exhaustive search
is E(h) = O(D(h)× J(h)), where D is the number of ML
dynamic clusters and J is the number of jobs scheduled on
these clusters. As both D and J are proportional to h, E(h)
experiences quadratic growth.

Our evaluation in §5.4 demonstrates that RMS can handle
a 12x increase in h compared to our current production load.
This scalability is likely sufficient even for the long run, given
that the growth of h is constrained by the fixed electricity
supply of a datacenter region. Currently, the largest RMS

manages around 20 dynamic clusters, comprising a total of
64,000 CPU machines and 20,000 GPUs. In the improbable
scenario of RMS becoming a bottleneck, we plan to paral-
lelize scheduling for non-conflicting workloads with training
data in non-overlapping regions. Additionally, if needed, RMS
can be sharded to scale out, with each shard handling a subset
of ML dynamic clusters.

4.4 Cluster Manager
Our cluster manager (CM), Twine [44], has the distinguishing
feature of managing a dynamic cluster whose machine mem-
bership may be continuously updated by RAS [36]. The CM
instances managing ML and non-ML clusters are separate and
do not interfere with each other, while RAS can dynamically
move machines between them to avoid stranded capacity.

We choose not to use a single, generic cluster to handle
mixed ML and non-ML workloads, as it is suboptimal for
our large-scale operations. Our large fleet size necessitates
partitioning machines into independent clusters for effective
management. Combining ML and non-ML workloads in a
cluster compromises optimization for either type, whereas
our scale benefits significantly from workload-specific opti-
mization. For instance, online services prefer spreading across
fault domains, whereas ML training workloads prefer not to be
spread widely for better network performance. Furthermore,
as gang jobs, ML training workloads prefer, for example, 10
out of 100 jobs to fail entirely while the remaining 90 jobs
continue, as opposed to each job experiencing a 10% task
termination. Optimizing for spread would lead to the latter
undesirable situation. Previously, CM handled these complex
differences between ML and non-ML workloads on the fast
path of real-time job scheduling, often resulting in subopti-
mal choices due to limited computation time. Consequently,
we adopted the strategy of RAS running on the slow path to
pre-built separate ML and non-ML dynamic clusters that are
deeply optimized for respective workloads, while simplifying
the responsibilities of CM on the fast path.

CM and RMS collaborate in managing workloads. For ex-
ample, when new machines are added to an ML dynamic
cluster, the corresponding CM notifies RMS of this change.
With complete information cached in its memory, RMS can
efficiently compute placement plans. When a region’s place-
ment plan is selected as the best plan for execution, its RMS
directs the corresponding clusters’ CMs to execute the plan
and run the relevant jobs. This may require preempting run-
ning jobs and checkpointing their current status, initializing
containers for the new jobs, and restoring their job states if
they were previously preempted.

4.5 Fault Tolerance
GMS, RMS, and CM are fault-tolerant and highly available,
operating in a leader-follower mode. Specifically, two in-
stances of GMS run in different regions, two instances of
RMS operate in the same region, and three instances of CM
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serve the same cluster. They all follow a stateless design, stor-
ing their persistent state in a shared and replicated database.
In the event of a leader failure, the follower can reconstruct its
state from the database and the lower-level component (i.e.,
GMS from RMS and RMS from CM).

4.6 Limitations
In our hyperscale production environment, we prioritize im-
plementation simplicity and robustness, leading to some im-
plementation limitations rather than inherent design flaws.
One such limitation is the inability to distribute a job’s tasks
across different clusters, despite the capability to allocate
workload jobs to various dynamic clusters. RMS can compute
a placement plan for distributing a job’s tasks across different
clusters by leveraging its comprehensive view of all resources
in the ML clusters within the region. However, the integration
with our cluster manager [44]’s “virtual job” feature, crucial
for effectively managing scattered tasks as one virtual job, is
not yet implemented.

Another implementation limitation is that currently, RMS
schedules only one ML workload at a time. While it par-
allelizes the computation of placing multiple jobs from
one workload into different clusters, it does not commence
scheduling the next workload until a decision has been made
for the current one. This simple approach is used because it is
adequate and still has headroom to support further growth, as
discussed in §5.4. However, if a bottleneck arises in the future,
we are prepared to transition to scheduling multiple work-
loads in parallel. Moreover, scheduling multiple workloads
simultaneously presents opportunities for enhancing schedul-
ing quality. Note that although the current implementation
schedules one ML workload at a time, different workloads
can still run in parallel. Once a workload X is dispatched to
run, without waiting for X to finish execution, the scheduler
immediately schedules the next workload Y.

5 Evaluation
Our evaluation attempts to answer the following questions:

1. What are the important ML workload statistics?

2. Can MAST achieve a high resource allocation rate?

3. Is Tetris effective in ensuring colocation of data and com-
pute resources?

4. Are GMS and RMS sufficiently scalable?

5. How long does it take to schedule a workload?

6. How does MAST compare with alternative solutions?

5.1 ML Training Workload Statistics
Currently, MAST is scheduling tens of thousands of ML
training workloads daily across tens of regions, consuming
O(100,000) GPUs and O(100,000) CPU machines. About
70% of the workloads use GPUs for training, while the remain-
ing use CPUs for training. About 30% of the workloads are
recurring, while the remaining are first-time workloads. On
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Figure 5: GPU allocation rate.

average, each workload gets preempted once, which leads to
about 100,000 scheduling attempts daily. High-priority work-
loads may never get preempted and low-priority workloads
may get preempted multiple times.

In terms of the number of machines utilized by a work-
load, the values for the 50th, 90th, and 99th percentiles are
72, 180, and 205, respectively. As for the number of GPUs
used by GPU-consuming workloads, the 50th, 90th, and 99th
percentiles are 16, 64, and 128, respectively, and the largest
workload today, LLM pre-training, uses tens of thousands of
GPUs. We measure the duration of workloads in terms of
their execution time until the subsequent preemption, as it is
more pertinent for a scheduling system. For GPU workloads,
the 50th, 90th, and 99th percentiles of the duration are 20
minutes, 6.7 hours, and 66 hours, respectively. As for CPU
workloads, the corresponding percentiles are 38 minutes, 7.9
hours, and 38 hours. Overall, training workloads run on many
machines for an extended period. Therefore, it is worthwhile
to spend time computing high-quality scheduling decisions.

5.2 Effectiveness of Global ML Scheduling
Thanks to the flexibility of placing both data and workloads
globally, MAST has achieved a high average allocation rate
of 98% for its GPU machines, as shown in Figure 5. The
2% loss is due to factors such as the overhead of preemption,
inherent latency of scheduling, and imbalanced data and GPU
distribution across regions. The allocation rate is determined
by dividing the total hardware hours allocated to workloads
by the total available hardware hours. Note that the GPU allo-
cation rate differs from GPU utilization because even if some
GPUs are allocated to a workload, they may be underutilized
due to various factors, such as the workload’s internal commu-
nication bottlenecks. We use the allocation rate as the metric
because it is more relevant for a scheduling system, which is
the primary focus of this paper, while GPU utilization is more
pertinent for the ML training framework.

In comparison, the allocation rate for CPU machines is
lower. Dedicated CPU machines for ML workloads have an
allocation rate of 87%, while elastic CPU machines, which
are borrowed temporarily from non-ML workloads, have an
allocation rate of 72%. The lower allocation rate for CPU ma-
chines is largely due to slight overprovisioning to guarantee
that costly GPU machines are never left idle due to a lack of
available CPU machines to work with.
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Figure 6: Percentage of workloads that have to wait for data.

Figure 7: Cumulative distribution of candidate and executing
regions per workload over 30 days.

5.3 Effectiveness of Data Placement
Figure 6 shows the percentage of workloads that cannot sat-
isfy the data-GPU-collocation property (§3.1) and thus have
to wait for on-demand data movement to complete. The non-
collocation rate is usually below 0.1%, demonstrating the
effectiveness of Tetris. Although Tetris creates extra table repli-
cas to increase the collocation rate (§3.5), non-collocation
may still occur due to a workload appearing for the first time
or due to machine maintenance rendering certain data or
hardware unavailable. Considering 70% of our workloads are
first-time ones, this figure shows most of them can still benefit
from the data placement planned for recurring workloads.

Thanks to Tetris, often multiple regions can host the same
workload, which gives MAST the flexibility to migrate the
workload across regions on different days. In Figure 7, the
“candidate regions” have the required training data and hard-
ware types to host a workload, while the “executing regions”
have actually hosted the workload on different days. As shown
in the figure, the majority of workloads have two or more can-
didate regions, and approximately 40% of them have four
or more. The number of executing regions per workload is
smaller; roughly 30% of the workloads have more than one
executing region, indicating they are relocated across regions
during this period. This demonstrates that global ML schedul-
ing indeed works as intended to dynamically optimize work-
load placement across regions.

Figure 8 shows the amount of data that Tetris move daily.
The spikes in the planned movement are due to onboarding
a new workload, which caused a large amount of data to be
moved across regions. However, the data migration service
has a limit on the maximum amount of data moved per day.

Figure 8: Daily data movement by Tetris.

Figure 9: The latency of a GMS-scan pass in GMS (each data
point is the average latency within one hour).

Therefore, the actual amount of data moved per day is flat-
ter. This figure shows that Tetris proactively moves hundreds
of petabytes of data across regions daily. This enables the
fast path to more easily colocate computation with data, and
achieve the high GPU allocation rate of 98%.

Tetris’s hill climbing algorithm runs daily on a single ma-
chine and it typically takes about five hours to finish. Although
its CPU utilization is not very high, it spends a significant
amount of time on I/Os to fetch various metadata necessary
for computing the data placement plan. Currently, the perfor-
mance of Tetris is not a major bottleneck, and can be further
optimized as needed.

5.4 Scalability of GMS and RMS
Scalability of GMS. GMS periodically computes the
<priority,credit> tuples for all workloads (§4.2). We re-
fer to one round of such computation as a GMS-scan pass.
The scalability of GMS depends on the frequency and latency
of the GMS-scan pass. Although its theoretical complexity
is O(N logN) due to sorting, where N is the number of work-
loads, its actual execution time is approximately O(N), dom-
inated by the sequential computation of <priority,credit>
for each workload. Figure 9 shows the average latency of
the GMS-scan pass. On average, it takes approximately 34
seconds for GMS to rank 6,000-10,000 workloads. Our eval-
uation shows that running the GMS-scan pass once every 5
minutes still produces high-quality scheduling. This implies
that GMS can support 5 minutes

34 seconds = 8.8 times more workloads.
As described in §4.2.1, if needed, we can scale the GMS by
another factor of 10-100 by switching from Python to C++
and parallelizing its computation for different tenants.
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Figure 10: Average latency of scheduling a workload at the
slowest RMS. It is computed by taking the maximum of the
average latencies computed at each RMS every minute.

Scalability of RMS. Since our current RMS implementa-
tion does not initiate scheduling of the next workload until a
decision has been made for the current one (§4.6), the maxi-
mum throughput of RMS can be estimated from its latency
to schedule a single workload. As shown in Figure 10, the
slowest RMS takes approximately 1.3ms and 5.5ms to sched-
ule a workload without and with preemption, respectively.
Even assuming that all scheduling requires preemption, the
RMS can schedule 24*3600*1000/5.5=15 million workloads
per day. Considering the current throughput of about 100K
scheduling attempts per day and the quadratic growth of the
computation load caused by exhaustive search (§4.3.1), the
RMS can support approximately

√
15M
100K =12x more workloads

and 12x more ML hardware. See §4.3.1 for a discussion on
how to further scale RMS.

5.5 Scheduling Latency

Figures 11(a) and (b) show the average and P95 latency, re-
spectively, for pending workloads to enter the running state,
including queuing delay, scheduling-algorithm run time, and
preemption time but not workload execution time. The pre-
emption time is a major factor in the total delay. If workload
A preempts B, rescheduling B counts as a new scheduling
event in these figures, starting from the time B is preempted
to the time B runs again. The preemption time of B counts
towards A’s latency as A needs to wait for the preemption
to finish. One primary service level objective for MAST is
P95 latency. These figures show that MAST has maintained
consistently low latency for within-quota workloads. How-
ever, for over-quota workloads, the latency can occasionally
be erratic, depending on the workload mix. This emphasizes
the importance of distinguishing between within-quota and
over-quota workloads.

To start a workload, MAST needs to acquire containers from
the cluster manager and set up all containers. The P50 latency
of this step is 150 seconds, while the P90 is 278 seconds, and
the P99 is 449 seconds. For massive LLM jobs, the whole
process could take 10 minutes or longer.

(a) Average (b) P95

Figure 11: Latency for a pending workload to start running.

5.6 Comparison with Alternative Solutions
Tetris. The closest work to Tetris is Alibaba’s Yugong [20],
which uses MIP to place data for analytics jobs based on CPU
(but not GPU), storage, and network constraints. It enforces
hard quotas and would not produce a solution when resources
are insufficient. However, as GPUs are scarce in our envi-
ronment with consistently higher demand than supply (§3.2),
Yugong would never provide a solution.

Since Yugong is not comparable to Tetris, we evaluate
Tetris’s different versions to demonstrate the importance of its
key features. In the initial stage (V0) of MAST, users manu-
ally selected regions for table placement, and tables could not
migrate across regions. In 2022, V1 was developed, which
automated data placement, aligning with the approach in Sec-
tion 3, albeit with key distinctions. V1 was a major improve-
ment over V0, reducing the GPU demand-over-supply ratio
for high-priority jobs in the most overloaded region from 2.63
to 0.98, with the standard deviation dropping from 0.76 to
0.30. Moreover, it boosts the training-at-home-region rate
from 90.82% to 93.02%.

Despite V1’s success, various limitations prompted the
development of V2. As described in § 3.3, key differences
include V2 penalizing GPU overload more than penalizing
underload, and incorporating soft-balance alongside hard-
quota for storage. Additionally, V1 defined the collocation
rate uniformly for all workloads, treating small and large, high-
priority and low-priority workloads alike. Recognizing the
practical importance of large high-priority workloads, V2 has
revised this definition to be the demand (i.e., GPU hours) of
high-priority workloads that can satisfy colocation. With these
enhancements, V2 significantly increased the collocation rate
under the new definition from 78% to 96% compared to V1.

Fast-path Scheduler. We built a simulator to evaluate differ-
ent scheduling algorithms of the fast path. The simulator takes
a trace of past workloads as input, and follows the same logic
of MAST’s fast-path scheduler, excepts that it does not actu-
ally execute a workload, but instead assumes its running time
is the same as recorded in the trace. For comparison, we mod-
ified the simulator to implement a federated approach, which
dispatches a workload to the region with the lowest demand
over supply rate of the required GPU type. When playing an
8-hour trace to the simulator, we find that for MAST, the rate
of workloads violating SLOs stays below 1.3% all the time.
For the federated approach, however, the SLO violating rate
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is much higher, especially when load is high. High-priority
workloads suffer more, reaching a 50% SLO violating rate
during busy hours. This is because high-priority workloads
often need to preempt low-priority ones to guarantee SLOs,
but with a simple heuristic, the federated approach may not be
able to dispatch a high-priority workload to the right region
where it can preempt others.

6 Discussions
Solutions suitable for smaller organizations. While MAST
is designed for hyperscalers, some of its principles can be
applied to smaller organizations. If a small organization only
needs to run training workloads in a single cluster, implying
one region, then it does not need any of MAST’s advanced
capabilities. However, in the event of a power or network
outage affecting the region, it would be unable to run any ML
training jobs due to the lack of disaster-recovery capability.

If an organization’s infrastructure operates in at least two
regions to be disaster ready, then it can leverage the key ideas
in MAST. Without MAST, they would default to solution (1)
in Table 1, leading to suboptimal resource allocation due to
the isolated operation of the two regions. With insights from
MAST, if the scale of their infrastructure is small enough to
be handled by a single resource allocator, they could adopt
solution (9), yielding optimal placement results. If they do
not want to significantly modify their cluster manager like
Kubernetes [27], they could at least adopt solution (3), which
involves a relatively minor change to use a global job queue
but still offers significant benefits in balancing the load across
regions. Furthermore, if they cannot afford to replicate ev-
ery table across every region, they would need a component
similar to Tetris to intelligently determine data placement.

Future work. Currently, Tetris considers storage quota and
network bandwidth as hard constraints. It is valuable to under-
stand the impact of adding storage and cross-region network
bandwidth to better utilize expensive GPUs.

For scalability, Tetris currently determines home regions
(§3.2 to §3.4) and creates additional table replicas (§3.5) in
separate steps. We plan to explore whether there exists an
efficient MIP problem formulation that can simultaneously
determine the optimal number of replicas and the home region
for each table. It is important that such a problem formulation
can be solved in a scalable manner.

Finally, we plan to leverage the fact that the slow path
(Tetris) not only determines data placement but also, as a
byproduct, calculates the placement of recurring jobs. The lat-
ter is currently overlooked by the fast path when placing jobs.
Because unexpected one-time jobs may make some of the
slow path’s job placement decisions unfeasible or suboptimal,
future research is needed to better connect the fast and slow
paths. This would allow us to benefit from the job-placement
decisions that the slow path has more time to compute.

7 Related Work
Scheduling within a cluster. There are many prior works
about scheduling within a single cluster, including general-
purpose schedulers [14,16,19,22,38,47,56] and those specific
to ML training [1,2,5–7,9,13,17,21,23–25,30,31,33–35,39,
40, 45, 49, 51–54, 57, 59]. The latter often considers specific
characteristics of ML training, such as model accuracy, gang
scheduling, sensitivity to network topology, heterogeneity of
compute resources, elasticity, etc. Cluster-level scheduling is
largely orthogonal to the design principles of MAST, though
some of their ideas may be applicable in the cluster-level
placement algorithm of MAST.

Scheduling across clusters. Among existing systems, Yu-
gong [20] and Hydra [10] are the closest to MAST as they
can schedule jobs across cluster or datacenters, but they still
differ from MAST since 1) they perform early-binding at clus-
ter scope (§4.1), 2) they don’t take GPU into consideration
(§1 and §3), and 3) they rely on simple heuristics to dispatch
jobs to clusters. Finally, in the data warehouse hierarchy (hun-
dreds of namespaces→millions of tables→ billions of data
partitions), Yugong places data at the namespace level (called
“projects” in the paper), whereas Tetris places data at the parti-
tion level, which provides more opportunities for fine-grained
optimization. However, Tetris’ fine-grained placement makes
the optimization problem about 106 times larger.

Singularity [43] is the only ML-specific global-scale sched-
uler we are aware of. However, the article does not disclose
details about the scheduling part, but focuses more on how to
provide elasticity to ML training jobs, and thus it’s impossible
for us to provide a concrete comparison.

8 Conclusion
This paper demonstrates that by utilizing the three design
principles of temporal decoupling, scope decoupling, and ex-
haustive search, we can build a global ML training scheduler
that can 1) scale to tens of regions and hundreds of thou-
sands of machines and 2) provide high-quality data and job
placement to achieve almost 100% allocation of GPUs.
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Automatically Reasoning About How Systems Code Uses the CPU Cache
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Abstract
We present a technique, called CFAR, that developers can

use to reason precisely about how their code, as well as third-
party code, uses the CPU cache. Given a piece of systems
code P, CFAR employs program analysis and binary instru-
mentation to automatically “distill” how P accesses memory,
and uses “projectors” on top of the extracted distillates to an-
swer specific questions about P’s cache usage. CFAR comes
with three example projectors that report (1) how P’s cache
footprint scales across unseen inputs; (2) the cache hits and
misses incurred by P for each class of inputs; and (3) poten-
tial vulnerabilities in cryptographic code caused by secret-
dependent cache-access patterns.

We implemented CFAR in an eponymous tool with which
we analyze a performance-critical subset of four TCP stacks—
two versions of the Linux stack, a stack used by the IX kernel-
bypass OS, and the lwIP TCP stack for embedded systems—
as well as 7 algorithm implementations from the OpenSSL
cryptographic library, all 51 system calls of the Hyperkernel,
and 2 hash-table implementations. We show how CFAR en-
ables developers to not only identify performance bugs and
security vulnerabilities in their own code but also understand
the performance impact of incorporating third-party code into
their systems without doing elaborate benchmarking.

CFAR is open-source and freely available at [58].

1 Introduction
System performance is important yet often poorly understood.
Hence the recently proposed notion of a performance inter-
face [30, 31, 47], defined by analogy to semantic interfaces
(e.g., abstract classes, specifications, documentation) that have
been used for many decades to succinctly describe a pro-
gram’s functionality. A performance interface describes a sys-
tem’s performance behavior in a manner that is simultane-
ously succinct, precise, and human-readable. The goal of per-
formance interfaces is to help developers efficiently reason
about the performance behavior of both their own and third-
party code without having to delve into the code’s implemen-
tation details—just like semantic interfaces help developers
reason about functionality today.

Low-level systems code (e.g., operating system kernels,
device drivers, network stacks, hypervisors) is special, be-
cause performance often critically depends on how the code
interacts with the underlying micro-architecture. As a result,
system developers spend a lot of time trying to understand

this interaction, e.g., trying to understand whether the code’s
memory-access patterns are cache-friendly [2, 12–14, 50, 70]
or whether the code’s working set fits in cache [19, 23, 45, 67,
68, 77]. Not understanding this interaction can lead to per-
formance bugs that are hard to diagnose, and can also result
in unexpected performance behavior when using third-party
code. For instance, a recent patch showed how the fast path of
the Linux TCP stack had been experiencing a bloated cache
footprint for over a decade, incurring slowdowns of up to
45% [42]; prior work has shown that applications may run up
to 4× slower after calling into third-party code (e.g., a syscall)
due to the callee’s micro-architectural footprint [66, 74].

The goal of this work is to help system developers answer
key questions about how their code and third-party code in-
teracts with the underlying micro-architecture. We focus on
interactions with the CPU caches (both data and instruction
caches), since these often play a critical role in the perfor-
mance of systems code [12–14, 19, 23, 38, 45, 57, 67, 68, 70,
77, 78]. We seek to answer frequently-asked questions about
cache usage such as: “How does the code’s cache usage scale
as a function of the workload?” [6, 19, 23, 67, 68] and “Which
workloads make the code’s working set exceed the cache
size?” [38, 57] without requiring developers to delve into the
code’s details or run elaborate, time-consuming benchmarks.

Answering the above questions requires visibility into how
the code processes an abstract workload, so we look for ab-
stractions that capture (in a succinct, precise, and human-
readable manner) how the code interacts with the caches as a
function of the workload. Our approach is in contrast to exist-
ing performance-analysis tools like profilers [10, 43, 59, 69]
and cycle-accurate simulators [7, 9]: such tools can only pro-
vide insights into cache usage for the concrete workloads with
which the code is profiled or simulated; they cannot provide
visibility into how the code would behave for arbitrary, previ-
ously unseen workloads. As a result, when using these tools,
developers are forced to manually reverse-engineer the an-
swer to their questions. This process is both time-consuming
and error-prone [29], particularly for code that the developers
did not write themselves.

We present Cache Footprint AnalyzeR (CFAR), a technique
for processing a piece of systems code into answers to devel-
opers’ questions about how that code uses the cache. This pro-
cessing consists of two phases: In the first phase, CFAR takes
as input the target code and extracts from it an abstract repre-
sentation (a “distillate”) of how the code accesses memory. In
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the second phase, CFAR uses simple programs (“projectors”)
to transform the distillate into answers to specific questions
about the code’s cache usage. Since the distillate is a precise
abstraction of the code’s memory usage (i.e., it contains all
the information relevant to how the code accesses memory),
developers can use projectors to answer diverse questions
about the code’s cache usage. The eponymous tool that imple-
ments the CFAR technique relies on a combination of static
analysis, symbolic execution, and binary instrumentation to
automatically extract distillates. We chose these particular
program-analysis techniques because, despite their scalability
limitations (discussed in §4.3), they enable precisely the level
of visibility a developer seeks, enabling her to reason about
how the code processes an abstract workload.

The current CFAR prototype comes with three projectors
that answer frequently-asked questions about cache usage:
(1) Pscale computes how the amount of data the code brings
into the cache (in bytes) varies as a function of the workload;
(2) Ph/m computes, as a function of workload, whether mem-
ory accesses will hit or miss in the cache; and (3) Pcrypt flags
cryptographic code that branches on, or accesses memory in
a way that depends on secret inputs, thereby flagging poten-
tial security vulnerabilities or proving their absence. Pcrypt is
an example that demonstrates the flexibility of CFAR’s two-
phased process: since the distillate contains all information
relevant to how the code accesses memory, developers can
write projectors to analyze more than just standard perfor-
mance properties. We envision developers contributing more
such projectors to the CFAR tool, making it more useful over
time. In stable state, developers will likely just use whatever
ships with CFAR, extending it only when they cannot get the
answers they seek.

We use CFAR to analyze a performance-critical subset of
the transport layer of 4 TCP stacks—2 versions of Linux’s
stack (i.e., before and after the recent reorganization for cache
efficiency [42]), a TCP stack used by the IX kernel-bypass
OS [6], and the lwIP TCP stack for embedded systems [20]—
as well as 2 hash-table implementations [60, 73], all 51 of the
Hyperkernel’s system calls [51], and 7 algorithm implemen-
tations from the OpenSSL cryptographic library [54]. We use
the results to demonstrate how distillates and projectors en-
able developers to understand the cache usage of both their
own and others’ code, for unseen workloads, without run-
ning elaborate benchmark suites. As part of the evaluation,
we also uncover a cache-inefficient data layout in the kernel-
bypass TCP stack, an error path in the Hyperkernel mmap()
system call (which, despite looking innocuous, inadvertently
pollutes 40% of the L1 d-cache), and a constant-time viola-
tion in OpenSSL 3.0’s implementation of AES. For all the
above code, CFAR’s analysis completes in minutes, which
means that extraction and analysis of distillates can be feasi-
bly integrated into a real-world software-development cycle.

The rest of this paper is organized as follows: We first
motivate CFAR using examples of cache-usage questions that

existing tools cannot answer (§2), then provide an overview
of the CFAR approach (§3) and detail its design (§4). We then
evaluate the CFAR prototype experimentally (§5), discuss
related work (§6), and conclude (§7).

2 Motivation
In this section, we give an example of the kind of ques-
tions that system developers ask about their code’s cache us-
age (§2.1), and then describe why existing tools cannot an-
swer such questions (§2.2).

2.1 Example
Consider a developer, Alice, who is building an in-memory
key-value store that has to be fast. The key-value store uses a
hash table to store the key-value pairs and runs atop a user-
space, kernel-bypass transport stack. Alice has modified an
existing hash-table implementation to suit her needs, and thus
understands that part of the code well. However, she is using
an off-the-shelf transport stack [20, 34, 75], of which she un-
derstands little beyond the semantic interface it exposes.

In such a system, throughput is often bottlenecked by the
number of last-level cache (LLC) misses per request [41, 67,
79]; hence, to optimize throughput, Alice needs to know how
the different parts of her code use the cache and how they
affect the LLC misses as a function of the workload. For
example, if her system fails to reach the expected throughput
due to persistent LLC misses, what is the predominant cause?
Is it that the hash table code touches too many cache lines
per put() or get() request? Or is it that the transport stack’s
buffer-management code touches too many cache lines per
connection [6]? In the former case, Alice should spend her
time optimizing the memory layout of the hash table [12–14],
whereas, in the latter, she should port her code to alternative
stacks with smaller memory footprints [20, 67]. Finally, if
both codebases were already highly optimized, she should
avoid wasting time on code optimizations and replicate her
key-value store across multiple machines [4].

2.2 Existing Tools Are Insufficient
Existing tools like profilers [10,43,59,69] and cycle-accurate
simulators [7, 9] are fundamentally ill-suited to answering
Alice’s questions. This is because profilers and simulators are
designed to reason about what the code does to the micro-
architecture for a given workload, whereas answering Alice’s
questions requires reasoning about what the code does to
the micro-architecture as a function of workload. So, while
profilers and simulators can provide visibility into the code’s
cache usage for a given workload, they do not have predictive
power, and thus cannot provide Alice with visibility into cache
usage for workloads beyond the ones that she herself provided
to the tools.

As a result, developers like Alice are forced to guess the an-
swers to their questions based on (incomplete) information de-
rived from profiling. Between cycle-accurate simulators and

582    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



profilers, performance engineers typically prefer profilers be-
cause they are orders of magnitude faster, even if less precise.
So, Alice would typically profile her system with many work-
loads to measure micro-architectural events and then guess the
predominant cause of LLC misses. In particular, she would try
to identify the properties of workloads that led to low through-
put: were they those that led to a large number of put() or
get() accesses per request? Or those that led to a large number
of concurrent connections? This is similar to what developers
in industry do to answer such questions: they run their code
for multiple workloads, use profilers to count the total num-
ber of unique cache lines touched, and then manually extrapo-
late how workload affects their code’s cache footprint [5, 42].

Reasoning about cache usage in such a manner is not only
time consuming but also error prone, particularly for third-
party code. For instance, Alice (who knows little about the im-
plementation of the transport stack) may not even think about
running workloads that lead to different numbers of concur-
rent connections. In general, performance profiling suffers
from the “large input problem” [48, 53]: unexpected perfor-
mance behavior often manifests only when input size (e.g.,
the number of concurrent connections) exceeds some thresh-
old that may seem arbitrary to those who are not intimately fa-
miliar with the code. So, designing a test suite that completely
“covers” a system’s performance behaviors is hard, and de-
velopers do not even have metrics for performance coverage.
While line coverage is used as a proxy for what fraction of the
code’s semantic behaviors is covered by tests, performance
profiling does not have even such an imperfect metric.

As a result, developers like Alice often fail to identify work-
load properties that significantly impact cache usage, causing
performance cliffs to manifest in production. For instance,
developers from Google recently showed that the fast path
of the Linux TCP stack had been accessing 50% more cache
lines than it needed to, for over a decade, which was leading
to performance degradation of up to 45% [42]. Similarly, ini-
tial work on predicting the working set of network functions
ignored the impact of different packet sizes [19], and a study
of Linux’s system-call performance showed how a newly in-
troduced configuration parameter can destroy spatial locality
and lead to increased LLC misses [62]. In practice, develop-
ers like Alice often use incomplete performance profiling to
guesstimate their system’s cache usage, and then they over-
provision resources for their system, to mitigate unexpected
performance degradation [24]. This leads to lower system ef-
ficiency and inflated costs, and is not always effective.

Summary. Existing tools like profilers and cycle-accurate
simulators are ill-suited to answering frequently-asked ques-
tions about cache usage, because they do not have predictive
power across the space of possible workloads. As a result, de-
velopers are forced to estimate the answers to their questions
using incomplete information obtained via profiling. This pro-
cess is not only time consuming but also error prone, particu-
larly when applied to third-party code.

PdistP

Pproj

Pproj

…

Pa

Pb

…

Projection phaseDistillation phase

CFAR

Automated 
analysis

a

b

Figure 1: The CFAR workflow. P denotes a unit of systems code,
Pdist denotes the corresponding distillate, Pi denotes the different
projectors, and Pi

proj denotes the corresponding projections that pro-
vide answers to developers’ questions about P’s cache usage.

3 CFAR Overview
Answering questions about cache usage requires reasoning
about the code. We therefore look for abstractions that pre-
cisely capture what the code does to memory (and thus the
cache) as a function of its input (workload).

With this in mind, we propose two abstractions: distillates
and projections. Let P be any well-defined part of a system
that can be invoked individually, such as a system call in an
OS kernel or a function in a library, or even a standalone
program. A distillate Pdist is a program that specifies precisely
and completely how P accesses memory. A projection P π

proj
is a much simpler program that answers a specific question π

about P’s cache usage. For any given P, there exists a unique
distillate Pdist, but there can be as many projections as there
are questions about P’s cache usage.

We represent distillates and projections as programs—
as opposed to denser, more mathematical representa-
tions (e.g., [22])—for two reasons. First, programs provide
developers with a representation that they are familiar with,
allowing them to quickly read and understand the answers to
questions about cache usage. Second, programs can be exe-
cuted, which makes it possible for tools to leverage distillates
and projections for automated performance analysis; in §4 we
show how CFAR executes a distillate against a cache model
to reason about cache hits and misses.

Fig. 1 illustrates CFAR’s workflow, which consists of two
phases: The first phase takes as input a module P of a sys-
tem’s code and automatically extracts P’s distillate. The sec-
ond phase relies on simple programs (“projectors”) that trans-
form the distillate into projections that answer specific ques-
tions about P’s cache usage, such as “How many unique cache
lines does P touch as a function of the workload?” and “How
does P’s cache hit/miss profile vary as a function of the work-
load?” CFAR currently provides three such projectors, and
we envision developers contributing more over time.

The two-phased workflow provides CFAR with the flexi-
bility needed to answer diverse questions about cache usage.
Since the distillate captures all information relevant to how
the code accesses memory, it can always be transformed—
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1 int sys_create(int fd, fn_t fn, uint64
ftype , uint64 value , uint64 omode) {

2
3 if (ftype == FD_NONE)
4 return -EINVAL;
5 if (! is_fd_valid(fd))
6 return -EBADF;
7 if (& proc_tbl[pid]->ofile[fd] != 0)
8 return -EINVAL;
9 if (! is_fn_valid(fn))

10 return -EINVAL;
11
12 struct file = get_file(fn);
13 if (file ->refcnt != 0)
14 return -EINVAL;
15 file ->type = ftype;
16 file ->value = value;
17 file ->omode = omode;
18 file ->refcnt = file ->offset = 0;
19 set_fd(pid , fd, fn);
20 return 0;
21 }

1 def sys_create_dcache(fd, fn, ftype , value , omode):
2 # State: pid , proc_tbl , file_tbl
3
4 if ftype == FD_NONE: #6 accesses
5 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,rsp -8)]
6
7 if not(fd >=0 and fd < NOFILE): #6 accesses
8 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,rsp -8)]
9

10 if [proc_tbl +256* pid +64+8* fd]: #7 accesses
11 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd) ,..,(r,rsp -8)]
12
13 if not(fn >=0 and fn < NOFILE): #7 accesses
14 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd) ,..,(r,rsp -8)]
15
16 if [file_tbl +40*fn+8]: #9 accesses
17 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd)..,(r,file_tbl +40*

fn+8) ,..,(r,rsp -8)]
18
19 # Succesful create. 17 accesses
20 return [(w,rsp -8) ,(w,rsp -16) ,..,(r,proc_tbl +256* pid +64+8* fd) ,..,(r,file_tbl +40*fn

+8) ,(w,file_tbl +40*fn),(w,file_tbl +40*fn+16) ,..,(w,proc_tbl +256* pid +64+8* fd)
,..,(r,rsp -8)]

Figure 2: Example program on left (Hyperkernel sys_create system call that creates a new file) and the corresponding data-accesses distillate.

1 def sys_create_icache(fd, fn, ftype , value , omode):
2 # State: pid , proc_tbl , file_tbl
3 # sys_create abbreviated as s
4
5 if ftype == FD_NONE: # 10 instructions
6 return [(r,s) ,..,(r,s+168) ,..,(r,s+176)]
7
8 # Error paths elided for presentation clarity
9 ......

10
11 # Succesful create. 45 instructions
12 return [(r,s),(r,s+8) ,..,(r,s+160) ,(r,s+168) ,(r,s+176)]

Figure 3: Instruction-accesses distillate for sys_create.

using a suitable projector—into a projection that answers a
specific question about the code’s cache usage. We demon-
strate this flexibility by building a projector (Pcrypt) that goes
beyond standard performance analysis and uses the distillate
to identify potential cache-based security vulnerabilities.

CFAR does not make any assumptions about the kind of
code that it takes as input. That said, in this work, we focus on
systems code (e.g., operating systems, device drivers, network
stacks, hypervisors), since it is code for which cache usage
has a significant impact on performance.

We now define the three key components of CFAR, namely
distillates (§3.1), projectors (§3.2), and projections (§3.3).
Table 1 summarizes these definitions.

Notation Description

P
A unit of code that can be invoked individually (e.g., system call, library
function, standalone program). It takes as input I and has initial state S0.

Ω An ordered sequence of memory accesses (to symbolic addresses).
Pπ A projector. It is a program that defines a function/property π(Ω) related

to cache usage.

Pdist
The unique distillate of P. It is a program that takes as input I and computes
Ω as a function of I and S0, where Ω is P’s memory-access sequence.

P π
proj

A projection of P. It is a program that takes as input I and computes π(Ω)
as a function of I and S0, where Ω is P’s memory-access sequence and
π(Ω) is defined by a projector Pπ.

Table 1: Glossary.

3.1 Distillates
Consider a program (or function, or method) P, with input(s)
I, and state S0 at the time of invocation. S0 consists of the
values of P’s objects in the heap and the stack up to %rsp.

P’s distillate Pdist is another (typically simpler) program

that takes the same input(s) I, and computes P’s sequence of
memory accesses Ω as a function of I and S0. Since accessing
data vs. instructions exhibits distinct patterns, we distinguish
between a data-accesses distillate Pdata

dist and an instruction-
accesses distillate Pinstr

dist . The former computes the sequence
of data-memory accesses that would be observed if executing
P with input I starting from state S0, while Pinstr

dist computes
the corresponding instruction-memory accesses.

We illustrate what a distillate looks like with the exam-
ple of the sys_create system call (Fig. 2, left) in the Hy-
perkernel [51]. First, each memory access in Ω is a tuple
<type,addr >, where type can be read (r), write (w) or read-
modify-write (rmw), and addr is a memory address. In a data-
accesses distillate (Fig. 2, right), each memory address is a
function of standard state components (e.g., the stack pointer
%rsp), as well as components that are specific to P. For ex-
ample, line 11 in the distillate describes accesses that are a
function of proc_tbl, pid, and fd, which arise from executing
line 7 in sys_create. If a memory address is independent of I
and S0 (e.g., the address of a struct allocated by P in the heap
and then freed before returning), it is represented as a named
constant (e.g., mallocRetVal@file.c:342). In an instruction-
accesses distillate (Fig. 3), each memory address is repre-
sented as an aligned offset relative to the address of the first in-
struction in P. In our particular example, the compiler inlines
all helper functions, hence there is only one base address s.

The distillate Pdist is a precise and complete representation
of P’s memory usage. It is precise because it provides the
exact sequence of memory accesses for any execution of P.
The symbolic expressions for data- and instruction-memory
accesses as a function of I and S0 are precise by construction,
and therefore correct for any concrete instantiation of I and
S0. The distillate is complete in that it contains all information
on P’s memory accesses that can be found in P. No matter
what the concrete values of I and S0, how the address space is
randomized [1], or where in memory the code is loaded, Pdist
will always be able to produce the exact sequence of memory
accesses that P makes when executing from S0 with input I.
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3.2 Projectors

A projector Pπ is a program that defines a function π(Ω, ...)
related to cache usage. For example, a projector may define
π(Ω) = |Ω|, i.e., the number of memory accesses in Ω, while
another projector may define π(Ω) = |{λ(r) = br/64c : r ∈
Ω}|, i.e., the number of unique 64-byte cache lines accessed
by Ω.

We think of a function π as a question about cache usage
(e.g., “How many memory accesses does this piece of code
perform?” or “How many unique cache lines does the code
access?”). CFAR enables developers to write their own pro-
jectors, such that they can formulate their own questions.

A key property of projectors is that they are code-agnostic:
A function π(Ω, ...) defined by projector Pπ is independent
of the semantics of the code that produced Ω (or any of the
other arguments). This code-agnostic nature makes projectors
easy to express; for example, a developer can write the simple
projector that defines π(Ω) = |Ω| (mentioned above) to query
the number of memory accesses performed by any P, without
having to understand P’s details.

The function π may take inputs beyond just Ω. For example,
it may take as additional input a cache model, and compute the
number of hits and misses incurred by Ω in the L1 data cache
given that particular cache model. Since Ω is independent of
where and how the code that produced it was executed, such a
generalized function π can precisely characterize the impact
of running a piece of code on different micro-architectures
and/or with different OS configurations (e.g., for different
memory-page sizes that P may use).

3.3 Projections

A projection P π
proj of P is another (typically simpler) program

that takes the same input(s) I as P, and computes the value of
function π for P, as a function of I and S0. Said differently, if
we think of π as a specific question about cache usage, then
P π

proj is a program that provides the answer to that question for
P. Fig. 4 shows a projection of sys_create that computes the
number of data memory accesses performed by the system
call as a function of its input and the OS state. CFAR produces
P π

proj by applying the projector Pπ to P’s distillate Pdist.

1 def sys_create_dcache_num_accesses(fd, fn, ftype , value , omode):
2 # State: pid , proc_tbl , file_tbl
3
4 if ftype == FD_NONE:
5 return 6
6
7 if not(fd >=0 and fd < NOFILE):
8 return 6
9

10 if [proc_tbl +256* pid +64+8* fd]:
11 return 7
12
13 if not(fn >=0 and fn < NOFILE):
14 return 7
15
16 if [file_tbl +40*fn+8]:
17 return 9
18
19 # Succesful create.
20 return 17

Figure 4: Projection of sys_create that describes the number of
data memory accesses.

Summary. CFAR provides abstractions to reason about
what a program does to the memory hierarchy. If a program
is a function P: < I,So>→ semantic outputs, we say that the
distillate is a function Pdist: < I,So>→Ω that abstracts away
everything that has to do with program semantics and pre-
serves information about memory accesses. The projection
is a function P π

proj: < I,So>→ π(Ω) that computes an answer
and abstracts away all unrelated information. This is a pro-
gression of abstraction steps, starting from the original pro-
gram and arriving at the final projection. Each step takes the
same arguments < I,So>, but returns a result that is increas-
ingly more focused on the cache-usage question at hand.

4 CFAR Design
We now provide more details on the two phases of CFAR:
distillation (§4.1) and projection (§4.2).

4.1 Phase #1: Distillation
CFAR automatically distills an input program P into its cor-
responding distillate Pdist using a four-step process, shown
in Fig. 5: it 1© enumerates all feasible executions paths in P
using automated program analysis; then 2© obtains a binary
execution trace for each such path; then 3© based on the re-
sults of these two steps, prepares an execution tree for the dis-
tillate; and lastly 4© optimizes this tree and produces Pdist.

Source 
code DistillatePath 

enumeration

Binary 
replay

Exec tree
synthesis

path constraints, 
symbolic addresses

concrete
input

  exec
trace

Binary

Code 
synthesis

 Distillation

              

       

 1

 2

 3         4

Figure 5: The four steps in CFAR’s distillation process.

Our use of context-sensitive program analysis and binary
replay ensures that CFAR can extract a precise distillate with-
out requiring any effort on the part of the developer, but this
also imposes limitations. Most notably, CFAR is subject to
the scalability limitations of such program analysis and is thus
not ideal for reasoning about multi-threaded code or about
code with loops whose bounds cannot be statically computed.
Additionally, CFAR is also limited by the proprietary nature
of modern hardware. For instance, since the exact algorithms
used to schedule instructions in an out-of-order processor are
not publicly available, CFAR cannot reason about specula-
tive memory accesses. We describe CFAR’s limitations in de-
tail in §4.3, but we note here that, despite these limitations,
CFAR is able to provide valuable information about cache us-
age that is otherwise unavailable, and do so for a wide variety
of systems code (§5).

4.1.1 Step 1©: Path enumeration

To enumerate all the paths in P, CFAR uses exhaustive sym-
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bolic execution [11, 26, 36, 65]. This is a context-sensitive
program-analysis technique that automatically traverses the
feasible execution paths of a body of code, enabling a com-
prehensive analysis of its control flow. The technique is pow-
erful but also faces challenges related to loops and pointers,
which we discuss in §4.3. We use an exhaustive form of this
technique, which yields all feasible paths in P.

For each enumerated path α, CFAR saves four key pieces of
information: (1) the precise path constraint Cα that uniquely
defines this path, i.e., the conjunction of the predicates of each
conditional along α; (2) a concrete input Iα that exercises this
path, obtained by asking an SMT constraint solver [18] for a
satisfying assignment to the free variables in Cα; (3) the sym-
bolic expression corresponding to the address of each data/in-
struction memory location accessed along the path, expressed
as a function of P’s inputs and/or state; and (4) a correspond-
ing file:linenum identifier for each memory operation, to be
used later. The sequence of these symbolic expressions is ωα.

Our CFAR prototype uses KLEE [11] to perform the sym-
bolic execution. KLEE, like many other symbolic-execution
engines, analyzes the code at the IR level, which in KLEE’s
case is LLVM [16]. CFAR can therefore handle any code
that is compiled to LLVM and can be handled by KLEE. Our
KLEE modifications and additions total ∼1,500 lines of C++.

4.1.2 Step 2©: Binary replay

What actually executes on the hardware is not the source code
or the IR. Compiler optimizations, such as link-time optimiza-
tion, cause the executing machine code to not directly corre-
spond to what is in the IR. Furthermore, many IRs are Static
Single Assignment (SSA), in which each variable is assigned
exactly once. This makes the data flow and dependencies
among variables more explicit and easier for the compiler to
analyze, but also implies an infinite register file. Processors do
not have infinite register files so, during an actual execution,
register values often need to be spilled to the stack. Since these
pushes and pops to/from the stack are not present in an SSA
IR, and thus not captured when analyzing P in its IR form,
the corresponding memory accesses will not appear in ωα.

Therefore, CFAR replays an instrumented version of the P
binary for each Iα, to obtain a corresponding execution trace
Xα for each path α in P. For each machine instruction exe-
cuted in Xα, CFAR saves the program counter, the instruction
opcode (e.g., mov, push, pop), the concrete memory addresses
accessed, and the corresponding file:linenum debug infor-
mation inserted into the binary by the instrumentation.

We deliberately split the CFAR analysis into a source-based
and a binary-based step. On the one hand, it is easier to extract
symbolic expressions for memory operations by analyzing the
source code or the IR. On the other hand, analyzing the binary
enables CFAR to be fully precise with respect to compiler
optimizations and which instructions lead to memory accesses
and do not merely manipulate CPU registers. In theory, these
two steps could be combined into a single one by directly

executing the binary symbolically (e.g., with S2E [15]). To
answer with certainty whether this is possible, one would need
to assess how CFAR is affected by the loss of type information
when going from source code to binaries.

The CFAR prototype uses Intel PIN [46] to instrument
binaries. Our Pintool consists of ∼350 lines of C++.

4.1.3 Step 3©: Execution tree synthesis for Pdist

In this step, CFAR combines the information extracted in the
previous two steps. For each path α in P, it combines the sym-
bolic memory trace ωα with the corresponding binary execu-
tion trace Xα. To produce a data-access trace, CFAR takes the
sequence of concrete addresses from Xα and replaces (using
debug information) all input- and state-dependent accesses
with the corresponding symbolic expressions from ωα, result-
ing in Ωdata

α . To produce an instruction-access trace, CFAR
uses the program-counter values and the call stack in Xα to
compute the symbolic offset of each instruction from the start
of P (e.g., from its entry point, if P is a function or a system
call) to produce Ωinstr

α . The call stack gives CFAR informa-
tion on which function the instruction belongs to, so that it
can compute the function-specific offset.

Next, CFAR assembles an execution tree using the path
constraints Cα. It arranges all the paths into a tree based on
their common prefixes; for every path α there exists a path
from root to leaf in the tree, and vice-versa. Each internal node
of the tree contains the predicate corresponding to the original
branch in P. The conjunction of the predicates for all internal
nodes along a root-to-leaf path forms the corresponding path
constraint Cα.

4.1.4 Step 4©: Synthesis of the Pdist distillate

The final step in CFAR’s distillation process consists of sum-
marizing loop-related memory access patterns, along with
other improvements for human readability of Pdist. Symbolic
execution, by default, unrolls loops and thus produces a sep-
arate execution path for each loop iteration. This leads to
bloated distillates that are hard to read and contain redundant
information, particularly if the code’s memory-access pattern
does not change meaningfully across loop iterations.

Summarizing a loop entails representing the effects of that
loop without representing all its iterations explicitly. Concep-
tually, the goal of this step is to eliminate from the execution
tree the subtrees induced by loop unrolling. This step does
not elide or lose any information contained in the distillate—
it only optimizes the distillate’s control flow for human read-
ability. By definition, any projection derived from Pdist will
retain P’s control flow, as reflected in the distillate.

While automatically summarizing loops in general is un-
decidable [25], studies have shown that there exist four com-
mon categories of loops that relate to data locality issues in
systems code [35]. Therefore, CFAR contains loop-summary
templates for these four categories of loops—two that tra-
verse array-like data structures, and two that traverse pointer-

586    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



chasing data structures (e.g., linked lists, trees). All four cat-
egories require the loop body to not branch on the specific
value of the iteration counter, and require the loop to have a
maximum of two termination predicates, one in the loop defi-
nition and at most one break in the body. Each loop template
has a corresponding loop summary.

For loops that do not match a template, the distillate
presents them in unrolled form—still correct, just less human-
readable. We thus call this “best-effort” loop summarization.

After loop summarization and a few other optimizations for
readability, CFAR transforms the tree into a program that rep-
resents Pdist. This program takes the same input as P. Every
internal tree node generates an if statement in the program,
branching on the predicate contained in that node. Each path
through the program ends with a return of the corresponding
Ωα. Depending on the memory-type of the distillate, the re-
turned symbolic memory-access trace is either Ωinstr

α or Ωdata
α .

Fig. 6 shows a snippet for the Pdata
dist distillate of the memcmp

function in the C standard library. Our CFAR prototype uses
Python to represent distillates, because it is one of the most
widely used languages [52] and has an easy-to-understand
syntax. The example illustrates CFAR’s loop summarization
for a loop that belongs to the first category of loops mentioned
above. CFAR uses first-order logic to summarize loops with
primitives from Z3’s Python API [72]. The predicate that
starts on line 3 identifies the smallest index i (bounded by
len) at which the two strings differ. The distillate shows that
the memory accessed by memcmp corresponds to every element
of the two arrays up to i.

1 def memcmp_dcache(s1,s2,len):
2
3 if Exists(i,And(0<=i<len ,[s1+i]!=[s2+i],
4 ForAll(j, Implies (0<=j<i),[s1+j]==[s2+j]))):
5
6 return ForAll(k, Implies (0<=k<=i) ,[(r,s1+k),(r,s2+k)])
7 return ForAll(k, Implies (0<=k<=len) ,[(r,s1+k),(r,s2+k)])

Figure 6: Pdata
dist for memcmp showing CFAR’s loop summarization.

4.2 Phase #2: Projection
The distillate produced by the previous phase contains all the
information on P’s memory-access behavior. The answer to
a developers’ cache-usage question can therefore be found
in the distillate, but it is buried among details that may not
be relevant to that question. The projection phase turns distil-
lates into focused, actionable answers that are not clouded by
details irrelevant to the question being asked.

4.2.1 General overview

Developers write projectors in the form of programs that
take as input a tuple < Ω,C >, along with possibly other
projector-specific parameters, such as the cache model men-
tioned in §3.2. Ω is a symbolic memory-access trace, and C
is a constraint on the variables that appear in the symbolic ad-
dresses of Ω, in the form of a first-order logic expression.

We expect most projectors to ignore C and implement a
function of just Ω, like π(Ω) = |{λ(r) = br/64c : r ∈Ω}|. We
therefore did not mention the C parameter in §3.2, for clar-
ity of presentation, but, to answer all cache-usage questions,
the more general function π(Ω,C) is sometimes needed. For
example, determining if all memory accesses are cache-line-
aligned requires, in the general case, both Ω and C. The ori-
gin of this constraint C is the path constraint that causes the
original program to execute the memory accesses in Ω. The
branch predicates in distillates are such constraints. The con-
straint can be simple, like 0≤idx<128, or more sophisticated,
stating for example that the value stored at a particular mem-
ory location is non-zero: [file_tbl+40*fn+8] 6=0. In our pro-
totype, Ω and C are Python lists of Z3 expressions [72].

To produce a projection, CFAR takes a projector program
Pπ and a distillate Pdist, and synthesizes a new program P π

proj.
For each branch in Pdist, the P π

proj program has the same branch
as Pdist but, instead of returning Ω (as the distillate does), it
returns the value of invoking Pπ (Ω,C, ...). In other words, the
projection P π

proj has the same control flow as the distillate but,
instead of calculating a memory-access trace, it calculates a
specific cache-usage property of that trace.

4.2.2 Example projectors: Pscale, Ph/m, and Pcrypt

Our CFAR prototype comes with three example projectors:
(1) Pscale computes how the cache footprint (in bytes) varies
across an entire range of previously unseen inputs (e.g., how
it scales with the number of active network connections);
(2) Ph/m computes the cache hit and miss profiles per class
of inputs, as opposed to per specific, concrete input; and
(3) Pcrypt flags cryptographic code that accesses the cache in a
way that depends on secret inputs. This projector can be used
to find potential security vulnerabilities or prove their absence.

While the questions answered by these projectors are non-
trivial, the projectors themselves are straightforward to write.
For example, we express the functionality of both Pscale and
Pcrypt in less than 100 lines of Python. While Ph/m requires
∼800 lines, almost 600 of those are a Python translation of
the cache model from the gem5 cycle-accurate simulator [7].
In §5.2, we show how a simple 5-line projector helped us
identify a performance bug in a TCP stack used by IX [6].

Pscale computes cache footprint based on the symbolic Ω

for a given input class. Pscale first determines which addresses
in Ω change if the value of the input changes. It then uses an
SMT solver to check the alignment of these addresses and de-
termine the number of unique bytes touched by the accesses to
those addresses, and produces the result as a human-readable
formula. For instance, applying Pscale to the sys_create distil-
late in Fig. 2, for the input class that corresponds to successful
creation (line 20), yields the formula 8*fd + 32*fn. This for-
mula says that, in a sequence of successful sys_create calls,
the cache footprint will increase by 8 bytes for each distinct
fd argument value and by 32 bytes per distinct fn argument
value. This is how fd and fn influence the cache footprint,
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and this is exactly the information that Alice wanted to know
for keys and network connections in §2. Pscale can be used,
for instance, to quickly determine when the code’s working
set will overflow the cache.

Ph/m is more sophisticated and takes four projector-specific
parameters: a workload size W , an input set cardinality N, a
probability mass function PMF, and a cache model. Its goal
is to compute the number of hits and misses experienced by
a workload of W inputs that can take on any of N distinct
types, distributed within the workload according to the PMF,
when using a cache that works according to the model. In the
scenario we will explore in §5 for a TCP network stack, W
would be the number of packets in a trace, and N the number
of unique connections—what distinguishes packet types is
which connection they belong to. The PMF would be the
relative distribution of packets among the N connections.

Ph/m first produces a workload of W symbolic inputs satis-
fying the PMF. For example, if W=5 and N=2 and the PMF
is < 0.4,0.6 >, the workload would be < λ1,λ2,λ1,λ2,λ2 > or
some other variant that satisfies the PMF. Then, for each sym-
bolic input in the workload, Ph/m iterates through Ω and sends
each memory access to the cache model; the access may be a
function of the λi symbolic input, or independent of it. Ph/m
records, for each access, whether it is a hit or a miss.

Since there are multiple workload variants that satisfy the
PMF, the process above repeats, with alternate variants, until
the resulting hits/misses counts are statistically significant.

Ph/m can be thought of as a symbolic, trace-based cache
simulator. A major challenge is, when dealing with symbolic
addresses, Ph/m cannot compute set-associativity conflicts
precisely. Instead, Ph/m approximates them by allocating an
unconstrained, symbolic memory address (typically the base
of a data structure) randomly to a set in the cache, and then
mapping all relative addresses as offsets from that base. For
example, if the address γ is randomly mapped to set µ, then
the address γ+64 would be deterministically mapped to set
(µ+1) mod # of sets in the cache. In §5 we will see that this
approximation works well when compared to real hardware.

By default, Ph/m provides a 3-level inclusive cache with
a next-line prefetcher whose size and set associativity at
each level is configurable. The default PMF is uniform, and
W=100N. Ph/m assumes that the memory trace Ω does not
update initial program state S0 that influences addresses in Ω.

Pcrypt is an example of a projector that also takes the path
constraint C into account. Its goal is to answer the question of
whether there are any data accesses to secret-dependent mem-
ory addresses or secret-dependent branches, both of which
are known sources of side channels [3]. Pcrypt takes, as a
projector-specific input, a list of program inputs that consti-
tute secrets. It then uses an SMT solver to determine which (if
any) of the memory addresses in Ω are influenced by secrets.
It then checks whether any of the secrets appear in the path
constraint C. If it finds any, then Pcrypt returns file:linenum

debug information for the corresponding branch or memory
access, as well as the path constraint that leads to it. If none
found, then Pcrypt states that the code does not have secret-
dependent branch instructions or data accesses.

Pcrypt cannot check for all types of cache-based leakage.
For example, leakages due to speculatively executed instruc-
tions [44] are out of scope for Pcrypt.

4.3 Limitations and Assumptions
Scalability limitations of symbolic execution: CFAR’s re-
liance on symbolic execution (SE) makes it subject to SE’s
own limitations. Depending on which SE engine is used, cer-
tain kinds of loops, or symbolic pointers, or multi-threading
could prevent CFAR from obtaining all execution paths [8].
However, there is active research on this topic, and recent SE
engines have brought various enhancements that overcome
these challenges, such as state merging [39], loop-extended
symbolic execution [64], loop summaries [27, 71], loop in-
variants [33], and symbolic abstract transformers [37].

Any CFAR prototype will ultimately inherit the power
of its underlying SE engine. Since our prototype relies on
KLEE [11], code whose loops do not have statically com-
putable bounds, or that is multi-threaded, or that has arbitrary
symbolic pointers is not an ideal match, because path explo-
ration may take too long. This makes our current prototype
a poor fit for analyzing entire systems, like the Memcached
or Redis key-value stores. Nevertheless, we show in §5 that
CFAR extracts useful distillates for key components of com-
plex systems code (e.g., for data structures whose cache foot-
print is a common source of performance problems).

Using CFAR for code that is not amenable to exhaustive
symbolic execution: CFAR’s reliance on exhaustive sym-
bolic execution means that automatically extracting complete
distillates is not always feasible. We now discuss how devel-
opers can obtain useful results with CFAR even in such cases.

A simple approach is to constrain the input space, e.g., con-
strain CFAR to inputs that trigger the “fast path” through the
code, since that is a common target of performance analysis.
For instance, if the code of interest is an IP-packet forwarding
function, it is reasonable to constrain the distillate to pack-
ets without IP options. This dramatically reduces both the
size of the distillate and the time required to obtain it (since it
eliminates the part of the code that loops through the variable-
length IP options), while still yielding practically useful re-
sults (since performance-sensitive traffic typically does not
carry IP options). Focusing on the cache usage of the fast
path is common practice today; for instance, the recent re-
organization of the Linux TCP stack was based entirely on
the requirements of the TCP fast path [42].

For constraining the input space, CFAR provides an inter-
face similar to KLEE’s [11], with which developers can pro-
vide constraints on arbitrary program variables. In our evalua-
tion, we use this approach to analyze code that is not amenable
to exhaustive symbolic execution (e.g., the Linux TCP stack),
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and the results are compelling despite the constrained input
space. Constraining the input space requires the developer to
have some knowledge of, for instance, what typical/fast-path
inputs look like. However, it does not require knowledge of
the code’s internal details, because these are explored auto-
matically by CFAR.

An alternate approach is to run CFAR with a specified time
budget. When the time limit is reached, CFAR outputs a par-
tial distillate that returns the exact sequence of symbolic mem-
ory accesses performed by the code along the explored exe-
cution paths. While this approach does not require developer
knowledge, the downside is that CFAR may not explore all
meaningful execution paths in the given time budget. The
CFAR prototype offers this time-budget feature, but we did
not use it in any of the experiments in our evaluation.

Prototype cannot aggregate across input classes: In the
current projection model (§4.2), a projector instance gets to
see only the Ω corresponding to one input class. Our CFAR
prototype does not yet support sharing state across different
instances of projectors, and thus does not support aggregating
measures across multiple input classes. This support is simple
to add, we just have not encountered the need for it yet.

Cannot account for inter-process interactions: Projectors
cannot answer questions that span multiple processes. Also,
we assume that P is small enough to not have its execution
interrupted by preemption. The distillate Pdist is always cor-
rect with respect to P, but the predictions made based on this
distillate alone will miss cache accesses performed by code
other than P during a preemption. In other words, if the pe-
riod of interest includes a preemption, when a projector looks
at Ω, it does not get the full picture, because P is not the only
code that interacts with the micro-architecture.

Limitations due to proprietary hardware details: CFAR
employs binary instrumentation to obtain an execution trace.
Such instrumentation can only reveal instructions that the pro-
cessor retires (i.e., finishes executing); it does not reveal in-
structions that were executed as a result of incorrect specula-
tion, such as a mispredicted branch. Speculated instructions
nevertheless could impact the cache, even if their semantic
effects are undone. Since CFAR does not see those accesses,
the answers computed by projectors may not be fully accu-
rate. We are not aware of any tool that can precisely report
such mis-speculated instructions during an execution, since
the scheduling algorithms used in the out-of-order pipelines
of commercial processors are proprietary.

5 Evaluation
In this section, we evaluate the CFAR prototype by answering
two main questions:

• Does CFAR work? We show that CFAR extracts 100%-
accurate data- and instruction-accesses distillates, and
that this extraction completes in minutes for various
kinds of systems code (§5.1).

• Is CFAR useful to system developers? We describe four
use cases that demonstrate how CFAR provides develop-
ers with visibility into cache usage in a way that profil-
ers and simulators cannot (§5.2).

Evaluation targets. We used CFAR to analyze the fast path
of the transport layer of 4 TCP stacks: 2 versions of Linux’s
stack (before and after the recent reorganization for cache
efficiency [42]), a TCP stack used by the IX kernel-bypass
OS [6], and the lwIP TCP stack for embedded systems [20].
We also analyzed 2 hash-table implementations [60, 73], all
51 system calls in the Hyperkernel [51], and 7 algorithm im-
plementations in OpenSSL 3.0.0 [54]. For the Linux TCP
stack, we analyzed the stable versions before and after the re-
organization (v6.5 and v6.8). For all other code, we analyzed
the latest stable version. IX uses the lwIP stack as a starting
point, but heavily modifies the internal data structures and
timer management [6].

We demonstrate that CFAR provides actionable cache-
usage information for a broad spectrum of systems code. At
one end of the spectrum are the Hyperkernel and OpenSSL,
both of which are amenable to automated program analysis.
The hash-table implementations occupy the middle, since
they are both amenable to manual (but not automated) pro-
gram analysis. At the other end of the spectrum are the four
transport-layer implementations, which were not written to
be amenable to any form of program analysis.

Setup. All experiments ran on an Intel Xeon E5-2690 v2
CPU at 3.30GHz with 25.6MB of LLC and 252GB of DRAM,
with Ubuntu 22.04 and Linux kernel v5.4. The CFAR proto-
type incorporates a modified version of KLEE 2.1.

5.1 Does CFAR Work?

There are two key aspects to this question: does CFAR obtain
an accurate abstract representation of performance from the
code (§5.1.1), and does it do so in reasonable time (§5.1.2).

5.1.1 Accuracy of distillates

To measure the accuracy of our prototype’s distillates, we
randomly picked half the execution paths of each target, con-
structed inputs that exercised each path, counted the number
of instructions and memory accesses executed while running
with each concrete input, and then compared this number to
the one predicted by the target’s distillates.

The error was always zero, across all programs and inputs.
That is, the number of instructions counted during real exe-
cution always equaled the number of memory accesses pre-
dicted by the instruction-accesses distillate for the given input,
and the number of memory accesses counted during real exe-
cution always equaled the number of memory accesses pre-
dicted by the data-accesses distillate for that input. Addition-
ally, CFAR’s distillates correctly predicted every instruction-
memory and data-memory address accessed by the code.
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5.1.2 Time to extract distillates

Table 2 shows how long CFAR takes to extract distillates: for
all programs, the analysis completes in less than 30 min. The
longest times are for the Vigor hash table and the echde key-
generation algorithm in OpenSSL; they are the only ones that
take more than 15 min. This is because, for these programs,
symbolic execution needs to unroll long loops that iterate over
the hash map and that compute co-prime numbers, respec-
tively. For all programs, the binary replay, execution-tree syn-
thesis, and code synthesis take approximately 2-3 min in total.
The dominant component of CFAR’s analysis time—and the
one that varies across programs—is symbolic execution.

Program Pdist extraction time

Linux TCP ingress 11 min
Linux TCP egress 14 min
IX TCP ingress 5 min
IX TCP egress 7 min
lwIP TCP ingress 4 min
lwIP TCP egress 5 min
Hyperkernel syscalls (51 total) Avg: 4 min / Max: 7 min
OpenSSL primitives (7 total) Avg: 9 min / Max: 22 min
Vigor hash table 28 min
Klint hash table 12 min

Table 2: Time taken by CFAR to extract distillates.

5.2 Is CFAR Useful for System Developers?
We demonstrate CFAR’s usefulness by presenting four cases
of CFAR answering important questions that developer Alice
cannot readily answer with the state of the art: How does my
code’s working set vary with the workload (§5.2.1)? I want to
use a third-party data-structure library, but how does it interact
with my cache (§5.2.2)? Does my code lead to inefficient
memory-access patterns (§5.2.3)? Can I prove/disprove the
absence of secret-dependent memory accesses (§5.2.4)?

5.2.1 How does the working set vary with workload?

We used the Pscale and Ph/m projectors to analyze the cache
usage of the fast path of the transport layer of the four TCP
stacks. Recall that this is the question that Alice wanted to
answer in §2, but could not.

We constrain the input space as discussed in §4.3: focus the
analysis solely on packets processed in the TCP fast path, i.e.,
packets that belong to an established TCP connection, are re-
ceived in order, and do not suffer hash collisions with packets
from other connections. We pick this particular class of pack-
ets because it represents a large fraction of packets processed
by the TCP stack, on the path for which performance matters
the most. The recent re-organization of the Linux TCP stack
was focused entirely on this fast path [42].

First, we used Pscale to figure out the number of unique
cache lines touched by the TCP fast path, for symbolic packet
contents. The answer was 4, 5, 8, and 12 unique cache lines

for the lwIP, kernel-bypass, Linux stack v6.8 and v6.5, respec-
tively. Pscale provides this information automatically, whereas
benchmarking or code inspection would have a hard time pro-
ducing it, because it cannot be gleaned merely by observing
the size of the connection-specific struct. For example, in
Linux, the struct tcp_sock occupies 42 cache lines in total,
but only a fraction of them are accessed on the fast path.

We then passed this information to Ph/m and used it to pre-
dict when incoming packets were likely to suffer consistent
cache misses due to the working set overflowing the LLC. The
answer was that this would occur at approximately 91K, 76K,
47K, and 28K concurrent connections for the lwIP, kernel-
bypass, Linux stack v6.8 and v6.5, respectively. The small
differences between these predictions and simple capacity-
based calculations (e.g., 25.6M LLC / (64*4) = 100K con-
nections for lwIP) are due to Ph/m being able to account for
conflict misses in addition to capacity misses.

To verify these predictions, we ran a set of experiments
where the transport layer receives and sends packets from/to a
fixed set of established connections, and we varied the number
of connections. To isolate just the transport layer (which is the
code we analyzed), we wrote simple shims for the application
and IP layers ourselves. In each experiment, we measured the
average latency incurred by packets within the transport layer.

Fig. 7 plots packet-processing latency as a function of the
number of connections. For each of the four stacks, there is
a clear shift around the number of connections predicted by
Ph/m. For instance, the latency for the Linux stack v6.5 in-
creases by only 64ns from 1K to 26K connections, but in-
creases by 211ns from 26K to 52K connections. Likewise, al-
though less visible in the graph due to Linux’s higher latency,
the latency for the lwIP stack increases by only 13ns from
1K to 86K connections, and it increases by 50ns from 86K to
125K connections. The shift does not occur exactly at the pre-
dicted number of connections, but very close to it: compared
to the predicted values of 28K, 47K, 76K, and 91K, we ob-
served the shifts at 26K, 44K, 72K, and 86K, respectively. This
difference is expected, because of Ph/m’s set-associativity con-
flict approximation (§4.2.2) and because cache-mapping poli-
cies are proprietary, so Ph/m’s cache model is imprecise.
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Figure 7: Measured latency for TCP packet processing as a func-
tion of the number of connections. CFAR predicted consistent LLC
misses to start occurring at 28K, 47K, 76K and 91K connections
for the Linux TCP stack v6.5, Linux TCP stack v6.8, the kernel-
bypass (KB) stack and the lwIP stack, respectively.
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Conclusion. Based on these results, we conclude that CFAR’s
Pscale and Ph/m projectors enable developers to accurately
identify how the working set of third-party code or their own
code changes as a function of the workload, without requir-
ing them to run elaborate benchmarks. Given that CFAR can
extract distillates in under 30 minutes, such extraction and
analysis of distillates can become part of the regular devel-
opment cycle (e.g., be made part of a continuous-integration
pipeline), enabling developers to identify surprising perfor-
mance behavior early and with relatively little effort.

5.2.2 How does third-party data-structure library code
interact with my cache?

System developers often want to use third-party data-structure
implementations, but are anxious about how that code will
interfere with their own usage of the cache. We used the
Pscale and Ph/m projectors to show how one can get cache-
usage information for the hash-table implementations from
Vigor [73] and Klint [60]. The analysis we show here can
drive the choice between using one library vs. the other. We
did not write the two libraries, but we read their code and
thought we understood it fairly well.

For the CFAR analysis, we constrained the input space by
fixing the maximum capacity of the hash tables to 64K en-
tries. The resulting distillates had a different branch for each
possible number of hash collisions, which is bound by the
maximum capacity (thus, 64K cases). The conclusion of the
CFAR analysis is therefore formally correct only for this max-
imum capacity. However, both hash-table implementations
take the capacity as a configurable parameter, and the result-
ing memory-access pattern is independent of table capacity.
We validated this through code inspection, we just cannot
prove it formally using symbolic execution. Thus, like a de-
veloper, we proceeded to use Pscale and Ph/m assuming that
the distillates for the two hash tables provide valid predictions
for any capacity, as long as the number of collisions does not
exceed 64K. (The experiments validated this assumption.)

The projections proved our expectations about the perfor-
mance of the two hash tables wrong. The two hash tables or-
ganize keys, values, and 4 metadata fields in slightly differ-
ent ways: Vigor stores them as 6 distinct arrays, while Klint
packs all 6 fields into a single 64B struct and maintains a
single array with elements of this struct type. At first glance,
it appears that the latter always leads to better locality and
thus improved performance. However, it turned out that this
is not always true.

Applying Pscale and Ph/m to the put(), get(), and delete()

operations of the two implementations predicts the following:
For a put() or get(), both implementations bring 64B of data
into the cache, but Klint does so in 1 cache line, while Vigor
does so across 6 cache lines. When the table does not fit in
the LLC, Klint suffers 1 LLC miss, while Vigor suffers 6.
On the other hand, for a delete() call, both implementations
touch the same 32B. However, Klint packs them together

with other fields into a cache-line-aligned 64B struct, so it
must bring the full 64B into the LLC, then update the 32B
for invalidating the entry; the remaining 32B belonging to the
deleted entry will never be reused. For Vigor, even though it
brings a full 64B into the LLC, the other 32B belong to a still-
valid entry and are likely to be reused, and thus the cost is
amortized. As a result, for a range of table occupancies, Klint
overflows the LLC and suffers 1 miss, while Vigor fits in the
LLC and suffers none. Ph/m predicts that this range begins at
approximately 400K keys and ends at approximately 800K
keys, at which point both implementations overflow the LLC.

To verify these predictions, we measured the latency and
LLC misses incurred by the put() and delete() calls of the
two implementations. We configured a capacity of 2M entries
for both hash tables. Fig. 8 plots Vigor’s latency overhead rel-
ative to Klint, as a function of table occupancy. As predicted,
Klint put() is consistently faster, due to better locality. Yet,
for occupancies of 400K-800K keys, Klint delete() has 30%
worse latency than Vigor. As predicted, Vigor incurs no misses
in this range, while Klint incurs 1 per delete() call. There was
one discrepancy between Ph/m predictions and the outcome of
our experiments: for occupancies above 860K, Ph/m predicted
3 misses per delete() for Vigor, whereas we measured only 1
per call. We believe this to be due to Intel’s stride prefetcher,
which our current cache model does not take into account.
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Relative latency of Vigor's hash table w.r.t Klint's for put()
Relative latency of Vigor's hash table w.r.t Klint's for delete()

Figure 8: Relative latency (measured) of the Vigor hash table as
compared to Klint’s, for put() and delete() calls. Positive num-
bers indicate that the Vigor table is slower, and vice-versa.

Conclusion. Data-structure libraries often tailor their mem-
ory layout to different workloads [12–14]. Those who use the
data structures need to understand these choices and the differ-
ences between different implementations. Using benchmarks
can be tedious (e.g., in the present example, measuring the
performance of put() and delete() for hash-table sizes up
to 2M). Instead, CFAR projectors can quickly reveal the dif-
ferences between how the implementations affect the cache
across the entire range of inputs, allowing developers to pick
the implementation best suited for their expected workload.

5.2.3 Does my code lead to inefficient access patterns?

We now describe how CFAR’s projections helped us uncover
two inefficient cache access patterns in the kernel-bypass TCP
stack and the Hyperkernel’s mmap() system call.
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Kernel-bypass (KB) TCP stack: Motivated by the recent
re-organization of the Linux TCP stack for cache efficiency—
in particular, the struct that stores connection-specific data—
we decided to check if CFAR’s projections could help us
improve the performance of the kernel-bypass stack as well.
To understand how the fast path of the kernel-bypass stack was
accessing different fields of the connection-specific struct

(named struct pcb in this stack), we wrote a simple projector
that returned the offset (in cache lines) of each access within
the struct pcb from the base address of the struct (Fig. 9).

1 def pcb_offset(seq):
2 pcb = sympy.Symbol(’pcb’)
3 # if address is an offset from only the pcb
4 # return (address -pcb)/64
5 return [(x-pcb)//64 for x in seq
6 if sympy.is_constant(x-pcb)]

Figure 9: Projector to compute the offset within the pcb structure.

Applying this projector to the fast path’s rcv() and snd()

calls revealed that there was only a single access to the 5th

cache line in the struct pcb. Fig. 10 shows the list of cache-
line accesses returned for rcv() and snd(), respectively.

# Receive fast path: KB stack
# Only one access to 5th cache line
[1,1,0,0,2,2,3,4,1,2,2,3]
# Send fast path: KB stack
# No access to 5th cache line
[2,3,3,1,1,3,3,3,3,1,2,3,2,2,1,1,1,1,0,0,2,1,2,2,1,0,2]

Figure 10: Cache-line accesses for rcv() and snd() on fast path.

Using the file:linenum information that CFAR logs during
symbolic execution (§4.1.1), we realized that the field being
accessed was keep_cnt_sent, which was being updated on
the rcv() path to indicate that the connection was still live.
To optimize this, we re-organized the struct pcb by moving
keep_cnt_sent into the first 4 cache lines and moved some
of the timer fields (primarily used during retransmissions) to
the 5th line. Fig. 11 shows the list returned by the pcb-offset
projector after this change, which confirmed that the fast path
only accessed the first 4 cache lines.

# Receive fast path: KB stack
# No access to 5th cache line
[0,0,0,0,1,1,2,1,0,1,1,2]
# Send fast path: KB stack (updated)
# No access to 5th cache line
[1,2,2,0,0,2,2,2,2,0,1,2,1,1,3,3,3,3,3,3,1,3,1,1,0,0,1]

Figure 11: Cache-line accesses after our pcb optimization.

We evaluated the impact of this change by running the same
experiment we ran in §5.2.1, where we measured the latency
of the fast path as a function of the number of connections.
Fig. 12 shows the results. Our optimization has a significant
impact on the fast path’s connection scalability: touching
one less cache line enables the TCP stack to support 88K

concurrent connections (instead of only 72K) before suffering
from a latency increase due to LLC misses.
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Figure 12: Before-and-after optimization: Latency as a function of
the number of connections, for the kernel-bypass (KB) TCP stack.

Hyperkernel mmap(): CFAR enabled us to uncover and fix
a subtle performance issue in Hyperkernel’s mmap() imple-
mentation: The mmap() code performs a four-level page walk,
checking for permissions only before it allocates the final
page. So, if it is called with invalid permissions, it performs
significant unnecessary work (allocates and zeroes out up to
3 new page-table pages, depending on where the walk stops),
even if it does not exhibit incorrect behavior (i.e., does not al-
locate the final page). This brings up to 12KB of data into the
L1 cache, which is more than 37% of the 32KB L1 cache in a
modern server, so doing this unnecessarily pollutes the cache.

Fig. 13 shows part of the projection for mmap() resulting
from a π(Ω) = |{λ(r) = br/64c : r ∈ Ω}| projector. Line 6
corresponds to the scenario where the permissions are invalid,
and the walk fails at level 1 (i.e., no page-table page is allo-
cated at that level for the target address). Line 12 corresponds
to the scenario where the permissions are valid, and the walk
fails at level 2. In the former case, the code touches 201 cache
lines, whereas in the latter it touches 202. So, even though the
code need not allocate any pages in the former case, it touches
almost identical numbers of cache lines in both cases.

1 def mmap_dcache_num_cache_lines(va,perm):
2 #State: pid , proc_tbl , pages
3
4 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>39) &511)]:
5 if not (perm & PTE_PERM_MASK):
6 return 201
7 return 265
8
9 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>30) &511)]:

10 if not (perm & PTE_PERM_MASK):
11 return 138
12 return 202
13 ....

Figure 13: Unique data cache lines accessed by mmap().

We fixed the code and ran CFAR again. Fig. 14 shows the
new projection: in the invalid-permissions scenario (line 4),
the code now touches 3 (instead of >200) cache lines.

Conclusion. The results show that the CFAR distillate, cou-
pled with simple projectors, enables developers to efficiently
(i.e., without benchmarking) inspect systems code and iden-
tify performance bugs that are otherwise hard to diagnose.
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1 def mmap_optimized_dcache_num_cache_lines(va,perm):
2 #State: pid , proc_tbl , pages
3
4 if not (perm & PTE_PERM_MASK):
5 return 3
6 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>39) &511)]:
7 return 265
8 if [pages + [proc_tbl +320* pid +16]*4096 + 8*((va >>30) &511)]:
9 return 202

10 ...

Figure 14: mmap projection after fix.

5.2.4 Can I prove/disprove the absence of side channels
caused by secret-dependent memory accesses?

Finally, we used CFAR’s Pcrypt projector to analyze the 8
OpenSSL algorithms listed in Table 3. The first 7 are the ones
mentioned in the beginning of §5, while the last one is from a
previous version of OpenSSL (v1.1). We included the latter
because it is known to exhibit cache-based leakage (CVE-
2018-0737 [55]), and we wanted to test CFAR’s ability to
identify this behavior (none of the algorithms we analyzed in
the latest version of OpenSSL exhibit it). The Pcrypt projector
indeed confirmed the cache-based leakage in OpenSSL v1.1.

Program Results

OpenSSL 3.0 AES Identified previously unknown branch-based leak

OpenSSL 3.0 ChaCha Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 ECDHE Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 MD5 Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 MD4 Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 Poly1305 Proved absence of secret-dependent branches/mem accesses

OpenSSL 3.0 SHA-256 Proved absence of secret-dependent branches/mem accesses

OpenSSL 1.1 RSA Reproduced known cache-based leak (CVE-2018-0737)

Table 3: OpenSSL programs analyzed using CFAR’s Pcrypt.

We also uncovered a previously-unknown branch-based
side channel in OpenSSL v3.0.0. The Pcrypt projection re-
vealed that the cipher-block unpadding function used by AES
had secret input in the path constraint. To further investigate,
we wrote another projector that counts the number of exe-
cuted instructions. This revealed (Fig. 15) that the number of
instructions executed by the function in question depends on
the length of the input buffer’s padding, making the code vul-
nerable to padding oracles.

1 def ossl_cipher_unpadblock_num_insns(buf , buf_len , block_size):
2
3 if buf.padding_len == 0:
4 return 44
5 if buf.padding_len > block_size:
6 return 48
7 return 57 + 19*buf.padding_len

Figure 15: Instruction-count projection reveals that the number of
instructions executed by AES’s cipher unpadding is influenced by
buffer.padding_length, which is a secret input.

We reported this to the maintainers, who confirmed it [56].
We submitted a fix, which has undergone multiple rounds of
review and is now in the final stages of getting merged.

The instruction-count projection after the fix shows that the
number of instructions is now independent of input (Fig. 15),

thus proving that it achieves constant-time execution [3].

1 def ossl_cipher_unpadblock_num_insns(buf , buf_len , block_size):
2 return 2985

Figure 16: AES instruction count after our fix.

Our experience with OpenSSL suggests that incorporating
CFAR and its projectors into the development cycle would be
beneficial. As it turns out, the side channel we found had been
latent in OpenSSL since v1.1.1, which was released in 2019.
It persisted despite the thorough code reviews that OpenSSL
undergoes. Yet, a quick glance at the projection before the
fix would have immediately revealed the problem. Perhaps,
if distillates and projections were extracted regularly, e.g., as
part of continuous integration, more side channels could be
detected before making their way into production.
Conclusion. Since the distillate captures all information rel-
evant to how a piece of code accesses memory, CFAR can
help developers efficiently reason about more than just perfor-
mance properties. Pcrypt helps identify both branch- and cache-
based leakage in cryptographic code (or prove their absence).

Evaluation summary. CFAR-extracted distillates are 100%
accurate. They are useful to system developers because, to-
gether with projectors, they give visibility into cache usage
in a way that profilers and simulators cannot. Our evaluation
shows four concrete instances of such visibility and shows
how CFAR enables developers to (1) reason precisely about
the cache usage of code they or others wrote, without hav-
ing to run elaborate benchmarks; (2) quickly identify cache-
inefficient access patterns that are otherwise hard to diagnose;
and (3) analyze code not only for performance bugs but also
for cache-based security vulnerabilities.

6 Related Work
Performance interfaces. CFAR is part of an ongoing ef-
fort to augment systems with performance interfaces [30–
32, 47]; these are meant to enable developers to efficiently
reason about performance, just like semantic interfaces (ab-
stract classes, specifications, documentation) enable reasoning
about functionality. Some of this work [30, 31] provides visi-
bility into the latency of software network functions, assum-
ing a simple cache model that is appropriate for that particu-
lar domain. By providing visibility into the usage of shared
micro-architectural structures (namely, the data and instruc-
tion caches), CFAR goes a step further: it enables developers
to reason about the performance of a broader class of systems
code, but also about the performance side-effects that a callee
can have on a caller due to shared micro-architecture.

CFAR leverages two key ideas from prior work on perfor-
mance interfaces, particularly PIX [30]. First, just like PIX
(and Freud [63]), CFAR represents performance properties as
programs that are both human-readable and executable. Sec-
ond, CFAR’s two-phased approach is similar to the separation
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between the PIX front- and back-end, which separates the per-
formance properties of the code from the environment it runs
in. PIX’s two-phased approach has also been used by other
recent work: ltc [47] uses it to provide visibility into the per-
formance of hardware accelerators, while Performal [76] uses
a similar approach to verify the performance of distributed
systems. That said, CFAR’s key technical contributions are
the abstractions of the distillates and projections, which are
specific to CFAR’s focus on cache usage.

Using automated program analysis to reason about per-
formance properties of systems code. Given the recent ad-
vances in automated program analysis techniques [27, 33, 37,
39,64,71], there is work that leverages such analysis to reason
about various performance-related properties of systems code.
Violet [28] uses it to find configuration bugs in large cloud ap-
plications, Bolt [31] and Castan [57] use it to analyze the la-
tency of software network functions, and Clara [61] proposes
using it to analyze the performance impact of offloading pro-
grams onto SmartNICs. However, in each of these cases, sym-
bolic execution is coupled with an analysis framework that is
specific to the property of interest. In CFAR, we use symbolic
execution to extract all the information about how a piece of
code uses memory, and we enable developers to write projec-
tors that transform this information into the answers that the
developers need.

Understanding the cache usage of systems code. Given the
ever growing gap between processor and memory speeds,
understanding how systems code uses the cache has been
extensively studied. However, we are not aware of any tool
that, like CFAR, possesses predictive power across unseen
workloads. All prior tools we know of are limited to providing
insights about the specific workloads that the tool was run on.

We drew significant inspiration from work in the 90s on
abstract execution [40] and memory tracing [21]. Both these
efforts aimed to replay the memory trace of a piece of systems
code (just like CFAR’s distillates), but only for concrete inputs.
This is because their goal was to avoid having to store large
memory traces required for computer architecture simulations,
so they sought to generate this trace on the fly instead. CFAR’s
distillate thus represents a generalized version of their work,
and builds on advances in automated program analysis.

More recent work has focused on building better profil-
ers [10,17,35,43,49,59,69] to help developers fix performance
issues that are caused by poor cache utilization. Such systems
involve a fundamental trade-off between ease of use, perfor-
mance overhead, and the level of detail at which they can an-
alyze the execution of the given input workload. The most de-
tailed memory profiler we know of is Memspy [49]: It uses a
system simulator to execute an application, which allows it to
interpose on all memory accesses and build a complete map
of the cache. Thus, it can account for and explain every sin-
gle cache miss and—using a processor-accurate model—can
approximate memory-access latencies. However, Memspy re-

quires porting applications to its simulator, which can be a
painstaking task. Additionally, its high performance overhead
restricts it to profiling a limited number of input workloads.
At the other end of the spectrum are profilers like DMon [35]:
These work off-the-shelf for almost any systems code, and
have low enough overhead to run continuously in production.
Their downside is that they can only be used to monitor a spe-
cific subset of events and cannot provide the visibility that
MemSpy does.

We see profilers as complementary to CFAR. Distillates
and projectors allow developers to quickly understand which
workloads might be of interest and cause unexpected cache
behavior. Once they narrow this search space, they can use
state-of-the-art profilers to study these workloads in greater
detail for specific, concrete inputs.

7 Conclusion
Developers need better abstractions to reason precisely about
the expected performance behavior of their systems. Develop-
ers today are forced to manually inspect or profile the system
implementation directly, which is both time-consuming and
error-prone, since most systems today rely on a lot of third-
party code. This is in contrast to how developers reason about
functionality, where abstractions such as specifications, inter-
faces and documentation have been widely used for decades.

In this work, we focused on helping developers reason pre-
cisely about how systems code interacts with the underly-
ing micro-architecture, specifically the CPU cache. We pre-
sented CFAR, a technique that introduces an abstraction that
precisely captures what a piece of code does to the micro-
architecture as a function of its inputs (the distillate) and pro-
vides a simple means of “querying” this abstraction, to help
developers efficiently answer diverse questions about cache
usage of their own, as well as third-party code, without having
to delve into the code’s details or run time-consuming bench-
marks. We see CFAR as a key step towards augmenting sys-
tems with performance interfaces that describe the system’s
performance behavior in a manner that is simultaneously suc-
cinct, precise, and human-readable, just like semantic inter-
faces describe functionality.

We used CFAR to analyze different types of systems code
and demonstrated that it can help developers identify perfor-
mance bugs and security vulnerabilities, as well as understand
the performance impact of using third-party code in their sys-
tems. CFAR’s analysis completes in minutes, making it feasi-
ble to integrate CFAR into the software development cycle.

CFAR is publicly available as open-source software at [58].
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Abstract
Hardware vendors have introduced confidential VM archi-

tectures (e.g., AMD SEV-SNP, Intel TDX and Arm CCA) in

recent years. They eliminate the trust in the hypervisor and

lead to the need for security modules such as AMD Secure

VM Service Module (SVSM). These security modules aim

to provide a guest with security features that previously were

offered by the hypervisor. Since the security of such modules

is critical, Rust is used to implement them for its known mem-

ory safety features. However, using Rust for implementation

does not guarantee correctness, and the use of unsafe Rust

compromises the memory safety guarantee.

In this paper, we introduce VERISMO, the first verified

security module for confidential VMs on AMD SEV-SNP.

VERISMO is fully functional and provides security features

such as code integrity, runtime measurement, and secret man-

agement. More importantly, as a Rust-based implementation,

VERISMO is fully verified for functional correctness, secure

information flow, and VM confidentiality and integrity. The

key challenge in verifying VERISMO is that the untrusted

hypervisor can interrupt VERISMO’s execution and modify

the hardware state at any time. We address this challenge by

dividing verification into two layers. The upper layer handles

the concurrent hypervisor execution, while the lower layer

handles VERISMO’s own concurrent execution. When com-

pared with a C-based implementation, VERISMO achieves

similar performance. When verifying VERISMO, we identi-

fied a subtle requirement for VM confidentiality and found

that it was overlooked by AMD SVSM. This demonstrates

the necessity for formal verification.

1 Introduction

Confidential computing has been adopted by major cloud

providers with the aim of removing the cloud provider out

of the Trusted Computing Base (TCB). This is achieved by

leveraging hardware-based Trusted Execution Environments

(TEEs), which are encrypted and isolated from the rest of

Trusted Hardware/Firmware

VMPL1-3

VM-1
VM-0

VM-k

VMPL1-3

Hypervisor

VERISMO
(VMPL0)

VERISMO
(VMPL0)

CPU-0 CPU-1

Untrusted

Verified to be 
secure and trusted

Trusted

Software-hardware
interaction

Figure 1: VERISMO in AMD SEV-SNP architecture

the software stack managed by the cloud provider. In recent

years, hardware vendors have introduced confidential VM

architectures (e.g., AMD SEV-SNP [1], Intel TDX [19], and

Arm CCA [6]) that can run a full VM inside a TEE.

While a confidential VM’s confidentiality and integrity are

protected from the untrusted hypervisor, it also means that a

confidential VM cannot use security features that previously

were offered by the hypervisor. To fill this gap, security mod-

ules such as AMD Secure VM Service Module (SVSM) were

introduced to provide the missing security features in a privi-

leged layer inside a confidential VM. Given the importance

of the security of such modules [4, 39], Rust is used to imple-

ment them for its known memory safety features. However,

using Rust for implementation does not guarantee correctness,

and the use of unsafe Rust compromises the memory safety

guarantee.

In this paper, we present VERISMO1, the first verified secu-

rity module for confidential VMs on AMD SEV-SNP. Similar

to other security modules like AMD SVSM [2], VERISMO

is a privileged software layer that runs inside a confidential

VM and provides security features such as code integrity,

runtime measurement, and secret management. The isola-

tion between the security module and the guest OS is based

on a new privilege dimension called Virtual Machine Privi-

1VERISMO is derived from realism in the arts, particularly late 19th-

century Italian opera. Its pronunciation reflects its small size.
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lege Levels (VMPLs) on AMD SEV-SNP. VERISMO runs at

the highest-privileged VMPL. Unlike other security modules,

VERISMO is fully verified for functional correctness, secure

information flow, and memory safety. Specifically, VERISMO

is implemented in Rust and verified using Verus [22], a pro-

gram verificaton tool designed for Rust.

AMD SEV-SNP provides confidential VMs with confiden-

tiality and integrity. The former is achieved by encrypting the

memory of a confidential VM and the latter is achieved by

tracking the ownership of memory pages based on a new

mechanism called the Reverse Map Table (RMP). While

VERISMO can directly control memory encryption, it has

to interact with the hypervisor to maintain the integrity of

memory pages. This is because the hypervisor controls the

nested page table and the owernship of memory pages in the

RMP, while VERISMO is responsible for updating the RMP

to validate memory pages assigned to a confidential VM.

The key challenge in verifying VERISMO is that the un-

trusted hypervisor can interrupt VERISMO’s execution and

modify the hardware state at any time. This concurrent in-

terference makes it unwieldy to use standard Floyd-Hoare

reasoning when verifying that VERISMO enforces the confi-

dentiality and integrity of the VMs. To address this challenge,

we divide verification into two layers. The upper layer handles

the concurrent hypervisor execution, while the lower layer

handles the VERISMO implementation, which is itself concur-

rent. This allows us to reason about these two different forms

of concurrency (hypervisor interference and VERISMO’s in-

ternal concurrency) using two different techniques:

1. For the upper layer, which we call the “machine-model

layer”, we define an abstract machine model that repre-

sents various physical hardware resources and hypervi-

sor operations. We then prove that steps taken by this ab-

stract machine preserve the confidentiality and integrity

of the VMs.

2. For the lower layer, which we call the “implementation

layer”, we use Rust’s ownership checking and Verus’s

permissions to reason about VERISMO’s internal re-

sources as the resources are accessed concurrently by

different CPUs.

The interaction between the two layers is managed by pre-

conditions that the VERISMO implementation must satisfy

when performing hardware operations and postconditions that

the VERISMO implementation can assume after hardware

operations. For example VERISMO must satisfy a particular

precondition when writing to a page table, and VERISMO can

assume a postcondition about a memory page after executing

the pvalidate instruction on the page. The upper layer can

assume that the preconditions are satisfied, so that we can

use these preconditions to verify that the abstract machine

preserves the confidentiality and integrity of the VMs.

To make the implementation layer’s verification scalable,

especially with concurrent CPU access, we adopt permission-

based reasoning, as suggested by previous research [8, 22, 31,

37]. This method combines ideas from Linear Logic [13] and

Separation Logic [36], using access permissions as abstract

capabilities for operations like reading and writing. Our ap-

proach applies these permissions to create type-safe interfaces

for hardware resources, ensuring consistent maintenance of

correct permissions during software interactions with these

resources. Moreover, these interfaces, verified at the machine

model level, guarantee memory safety and operational cor-

rectness in concurrent environments.

To enforce security information flow, we introduce a secu-

rity type that carries possible value sets and security labels for

each primitive type. The key concept here is to track a security

level to each variable at every privilege level and ensure the

proper relationship between the security level in value and

the proper access permission in memory.

We built VERISMO mostly from the ground up, with the

exception of integrating a verified cryptographic library [35],

which we trust completely to avoid unnecessary duplication of

verification efforts. We compared VERISMO with a C-based

implementation and observed similar performance. It takes

roughly 6 minutes to verify VERISMO on a 32-core machine,

which shows the efficient proof time achieved through our

optimized verification design and the use of Verus which is

highly optimized for SMT solving.

In summary, our work makes the following contributions:

• VERISMO is the first verified security module operating

within a confidential VM.

• We demonstrate how to verify VM integrity and confiden-

tiality in the presence of a potentially malicious concurrent

hypervisor, decomposing the verification into two layers to

handle two levels of concurrency.

• We utilize the state-of-the-art Rust-based verification frame-

work, showcasing the feasibility of constructing a verified

real-world system using permission-based reasoning in

Rust.

• We encode security flow policies using a type system

and define safe casting to ensure the confidentiality of se-

cret data while allowing all flexible accesses to secrets.

(Section 8.4.1).

2 Background

2.1 AMD Confidential VMs
AMD Secure Encrypted Virtualization (SEV) is a confidential

VM architecture. The latest version of AMD SEV, known

as SEV-SNP, offers enhanced integrity and confidentiality

protections for VMs.

Memory Encryption AMD SEV-SNP encrypts memory

using a VM-specific encryption key, and secures the virtual
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CPU (vCPU) state by encrypting and storing it in a VM

Saving Area (VMSA) when the vCPU is trapped into the

hypervisor. To support communication with the outside world

(hypervisor or traditional IO devices), SEV allows VMs to

selectively control encryption for memory pages by either

setting an encryption bit in the guest page table or configuring

a special MSR called vTOM.

Reverse Map Table AMD SEV-SNP introduces the Re-

verse Map Table (RMP) for memory integrity. It is located

in the reserved system memory and is updated only with

special CPU instructions – rmpupdate by the hypervisor or

rmpadjust and pvalidate by the VM. The RMP is indexed

by System Physical Addresses (SPAs), and each entry in-

cludes a Guest Physical Address (GPA) (as the reverse map-

ping of the nested page table), the assigned security domain

(the hypervisor or a VM), as well as a validation bit to indi-

cate whether the VM has accepted the memory assignment

via pvalidate. To ensure the memory confidentiality and

integrity, a confidential VM must correctly manage its page

tables and the RMP.

VM Privilege Levels SEV-SNP introduces VM Privilege

Levels (VMPLs) to isolate software running within a confiden-

tial VM. VERISMO runs in highest-privilege level—VMPL0,

and we use VMPL3 to denote the level for running other soft-

wares inside the VM. A vCPU’s VMPL is stored in its VMSA.

Different VMPLs share the same guest physical memory but

have different permissions. By default, only VMPL0 has full

permissions enabled to all guest memory pages. A VMPL can

grant a subset of its permissions to a lower-privileged VMPL

via the rmpadjust instruction. Those permissions are stored

in the RMP and are part of the RMP check.

VM Platform Communication Key In AMD SEV-SNP,

confidential VMs rely on the hypervisor to forward their

messages to the Platform Security Processor (PSP) for tasks

such as deriving new keys and generating attestation reports.

To prevent attacks from a malicious hypervisor, The PSP

uses VM Platform Communication Keys (VMPCKs) to es-

tablish secure channels with a confidential VM. These keys

are passed to a confidential VM at launch time. VMPL0 has

access to all keys and can choose to release some keys to

other VMPLs.

VM Secure Interrupts A malicious hypervisor may inject

arbitrary interrupts to change the data/control flow of the VM.

Without secure interrupts, shared memory might be exploited

by the hypervisor to leak sensitive data. For example, a re-

cent research [38] demonstrates that #VC interrupts can leak

sensitive data via the shared guest-hypervisor communica-

tion block (GHCB). To prevent the hypervisor from injecting

arbitrary interrupts into a VM, AMD SEV-SNP introduces

two secure interrupt injection modes: restricted interrupts and

alternative interrupts. Each VMPL can have its own inter-

rupt mode specified in the VMSA. When restricted interrupts

are enabled, the hypervisor can only inject one interrupt type

introduced by AMD called #HV. When a #HV arrives at a

VMPL, the guest code at that VMPL can refer to a shared #HV

doorbell page to check the interrupt type instead of directly

jumping to an arbitrary interrupt handler. When alternative

interrupts are enabled, the hypervisor cannot inject any inter-

rupts into the VMPL, and the interrupts are always controlled

by a higher-privileged VMPL. Thus, VMPL0 must use the

restricted interrupt mode for security, while other VMPLs can

use either the restricted or alternative interrupt mode.

2.2 Rust and Verus
Rust is a modern programming language that offers high

performance and memory safety without requiring a garbage

collector. Rust’s ownership system enforces memory safety

in a way conceptually similar to linear logic or separation

logic. Rust is safe by default, meaning the compiler enforces

memory safety guarantees. However, for scenarios where

assembly code or direct control of memory is needed, Rust

provides ‘unsafe’ blocks, which can cause bugs and memory

safety issues [28].

Verus [22] is a verification tool designed for Rust. Verus

extends Rust with verification features such as preconditions,

postconditions, and loop invariants. For specifying and prov-

ing properties of Rust programs, Verus allows Rust devel-

opers to define three types of variables—executable, ghost,

and tracked variables as well as three types of functions—

executable, proof, and specification (spec) functions. The non-

executable functions and variables are used by Verus during

verification but are erased during compilation.

Ghost variables, which are used in proofs to represent math-

ematical abstractions such as sets or maps, are not checked by

Rust’s ownership checker. Tracked variables (referred to as

“proof variables” in earlier versions of Verus [22]), on the other

hand, are used to represent owned resources or permissions,

and are checked by Rust’s ownership checker. VERISMO uses

tracked variables to represent permissions to access hardware

resources such as memory and registers, in a style similar

to separation logic or linear logic, but checked with Rust’s

ownership checker rather than with a dedicated separation

logic or linear logic checker.

3 System Design

In this section, we present the system design of VERISMO.

3.1 Threat Model
VERISMO follows the threat model assumed by confidential

computing. It only trusts the CPU and assumes that every-
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Figure 2: VERISMO work flow

thing outside of a confidential VM is entirely controlled by an

adversary, including the hypervisor. Although the hypervisor

can interrupt a VM at any time, it can only inject the #HV

interrupts because VERISMO uses the restricted interrupt

mode to prevent malicious interrupt injections. Furthermore,

VERISMO does not trust the guest OS running in the con-

fidential VM. Denial-of-service attacks are possible, as the

untrusted hypervisor manages the host and can either shut

down the physical machine or opt not to schedule a vCPU for

VERISMO to run. Physical attacks are out of scope, as they

are orthogonal to our work.

3.2 Architecture
VERISMO runs in VMPL0, while the guest operating system

runs in VMPL3 (VMPL1 or VMPL2 could also be used, but

we choose VMPL3 in this paper). Both VERISMO and the

guest run in the retricted interrupt mode 2, and are thus not

vulnerable to the interrupt injection attacks (e.g., [38]).

The work flow of VERISMO is shown in Figure 2. When

a confidential VM is launched, VERISMO executes first. It

reserves private memory for itself and then launches the guest

OS. Afterwards, VERISMO runs in a loop on each processor,

waiting for calls from the guest OS.

3.3 Guest-VERISMO Communication
VERISMO and the guest OS running on a processor can tran-

sition execution to each other by issuing a hypercall to the

hypervisor. Furthermore, a per-CPU memory page is shared

between VERISMO and the guest OS so that they can commu-

nicate with each other. The hypervisor does not have access

to this memory page.

3.4 VERISMO Guest APIs
The guest OS in VMPL3 must rely on VERISMO to wake

up its application processors (APs) and to validate memory

2The mainstream Linux (v6.8) does not support restricted interrupt in-

jection in either KVM or the guest. We used the Hyper-V hypervisor and

our modified guest Linux to enable restricted interrupts with #HV doorbell

implementation.

pages, as it lacks these capabilities. Additionally, the guest

OS can use VERISMO-provided security features.

Waking up APs. During the boot time, the guest OS on the

bootstrap processor (BSP) calls VERISMO to activate APs.

Upon receiving the request, VERISMO’s code running on

the BSP notifies code running on APs. Once receiving the

notification, VERISMO’s code running on an AP sets up a per-

CPU VMSA page for the guest OS and transitions execution

to the guest OS.

Guest Memory Management. While both VERISMO and

the guest OS are capable of sharing memory pages with the

hypervisor, only VERISMO can make memory pages pri-

vate by validating them in the RMP. To track the state of

memory pages (e.g., private/validated or shared/invalidated),

VERISMO requires the guest OS to use VERISMO-provided

APIs to share memory pages with the hypervisor. If the guest

OS chooses not to follow this requirement, these shared pages

will not be validated by VERISMO anymore.

Guest Kernel Code Integrity. To assist the guest OS in

preventing unauthorized code execution in kernel mode,

VERISMO offers the LockKernel API. The guest OS can

invoke this API with a list of memory ranges corresponding to

its kernel-mode code. VERISMO will then remove from the

guest OS the write permission to the kernel code pages and

the supervisor-execution permission to other memory pages.

VERISMO also ensures that this API can be called only once.

Runtime Measurement. To facilitate runtime measure-

ment for the guest OS, VERISMO provides two APIs,

ExtendPCR and Attest, based on a hash chain. The hash

chain’s initial value is set to the measurement of the guest

OS’s starting code and configuration. The guest OS can invoke

ExtendPCR to extend the hash chain and call Attest with a

nonce to request an attestation report. VERISMO assembles

the attestation report to include a hardware-attested report for

VERISMO’s identity and a VERISMO-attested report for the

hash chain.
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Secret Management. VERISMO provides three APIs to

support the guest OS for secret management: DeriveKey,

Encrypt, and Decrypt. DeriveKey generates an encryption

key derived from the current guest runtime measurement. This

key is kept in VERISMO and is never discloses to the guest

OS. The guest OS can invoke Encrypt or Decrypt to use

this derived key to encrypt or decrypt data.

4 Verification Overview

4.1 Motivation
Traditional software testing can only partially check correct-

ness for certain inputs and cannot formally ensure correctness.

Formal verification is the only solution that provides a formal

guarantee for the correctness. Below, we demonstrate the need

for formally verifying three properties: functional correctness,

secure information flow, and VM confidentiality and integrity.

Functional Correctness. Functional correctness defines

the desired outcome (i.e., the postcondition) of a function

when an input meets certain requirements (i.e., the precondi-

tion). In the following code, a key generation function con-

tains a bug that results in a violation of the desired specifica-

tion.

Listing 1: Incorrect functionality

1 fn GenPrivKey() -> (key: Key)
2 ensures key.is_random()
3 {
4 return 123; // a constant is not random
5 }

Secure Information Flow. Secure Information Flow de-

fines a safety problem by considering whether the information

flow in a system is managed in a way that prevents unautho-

rized access or leakage of sensitive data. A program is said

to be secure if and only if its memory trace and the values of

low-security variables are independent of the initial values

of its high-security variables. For example, the codes below

show the security violation via data flow (left) and control

flow (right).

low = high % 2 if high % 2 == 1 {a()} else {b()}

VM Confidentiality and Integrity. When a program P
operating at a certain privilege level accesses memory M on a

CPU, it is possible that M is concurrently accessed by P on a

different CPU, or by another program at a different privilege

level (e.g., the hypervisor). It is important to note that con-

fidentiality and integrity violations within a program P can

be eliminated through verification of P itself. However, the

unexpected memory value due to concurrent updates from un-

trusted programs cannot be prevented. Thus, strict correctness

cannot be verified against a specification relying on values

from mutable shared memory, which is concurrently accessi-

ble by the hypervisor or other VMPLs.
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Listing 2 illustrates an example where an incorrect modi-

fication of the page table can lead to the leakage of secrets

to the untrusted hypervisor (confidentiality violation) and

leave unintended effect in the software (integrity violation).

Listing 3 shows a similar violation due to an incorrect RMP

change.

Listing 2: Integrity/confidentiality violation via page table

change

1 page_table_set_encryption(a_addr, false);
2 *a = ret_sensitive(); // Leaked result;
3 do_critical(&a); // Unintended result;

Listing 3: Integrity/confidentiality violation via RMP change

1 rmp_adjust(a_addr, READ, VMPL3);
2 *a = ret_sensitive(); // Leaked result;
3 rmp_adjust(a_addr, WRITE, VMPL3);
4 do_critical(&a); // Unintended result;

4.2 Verification Design
While we can adapt existing verification techniques to verify

functional correctness and secure information flow, verifying

VM confidentiality and integrity has its own challenge. The

challenge comes from the fact that the untrusted hypervisor

can interrupt VERISMO’s execution and modify the hardware

state at any time. This concurrent interference makes it hard

to verify that VERISMO enforces VM confidentiality and

integrity. Furthermore, there is another source of concurrency:

VERISMO itself is a concurrent program. To handle these

two different forms of concurrency separately, we divide ver-

ification into two layers: the machine-model layer and the

implementation layer (see Figure 3).

In the machine-model layer, we define an abstract ma-

chine model that represents various hardware resources. Then

we prove that steps taken by this abstract machine preserve

VERISMO’s confidentiality and integrity. In the implemen-

tation layer, we use Rust’s ownership checking and Verus’s

permissions to reason about VERISMO’s internal resources
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as the resources are accessed concurrently by different CPUs.

The interaction between the two layers is managed by precon-

ditions that the VERISMO implementation must satisfy when

performing hardware operations and postconditions that it

can assume after hardware operations.

5 Machine-Model Layer

In this section, we describe the verification process at the

machine-model layer. The goal of this layer is to prove that

steps taken by an abstract machine ensures VERISMO’s con-

fidentiality and integrity. Specifically, we need to ensure the

following security properties required by VERISMO.

(1) Ensuring the integrity and confidentiality of VM data

in private memory. The hypervisor is unable to alter

or explicitly read VM-private memory in the hardware

through any sequence of operations by the hypervisor

entity.

(2) Maintaining VMPL isolation. VMPL3 is unable to ex-

plicitly read VMPL0-private data, and whenever VMPL0

reads its own private data, it obtains the correct data, not

data tampered with by VMPL3.

5.1 Abstract Machine Model
Our abstract machine model, Ψ, represents the contents and at-

tributes of hardware resources such as registers, memory, page

tables, and the RMP. This model is updated through some

transition operations initiated by different entities. Since the

model defines the interactions between these entities, we can

formally check the preconditions for each operation required

for ensuring the desired security properties.

5.1.1 Entities

Our abstract machine model has three entities.

E0 represents VERISMO executing at VMPL0.

E3 represents the guest OS running at VMPL3. E0 and E3
share the same memory encryption key.

Ehv represents the hypervisor running in the hypervisor mode.

Ehv does not have access to the memory encryption key

of a confidential VM. Sibling guest VMs are ignored

because the hypervisor’s capabilities are their super set.

Both Ehv and E3 are untrusted and can execute arbitrary

code. Therefore, the value read out of the memory shared

with Ehv or E3 is treated as unconstrained.

5.1.2 Primitive Operations

Our abstract machine model defines a set of primitive opera-

tions (see Figure 3) that can be initiated by different entities to

read or modify hardware resources. Each operation represents

a single machine instruction, and its behavior is formally de-

fined based on the AMD manual [3]. For instance, we define

how the hardware model returns a memory value after nested

page table walks and RMP checks.

For each operation, we define a trusted exec function with

a single line of unsafe assembly in Rust with its pre- and

post-condition. The postcondition reflects the operations’s

effect and are fully trusted. For instance, the postcondition

for pvalidate is that the RMP entry is marked as validated.

The preconditions of trusted functions are checked in the veri-

fication process to prove that, by enforcing the preconditions,

the abstract machine state ensures the security properties

when E0’s operation is constrained by the preconditions. The

completeness of the operation model is important to our veri-

fication. Since VERISMO is not as large as a guest OS, we

currently only model critical memory and cache operations

under some assumptions. For example, VERISMO directly

uses the guest-hypervisor communication to replace code that

may trigger #VC, and always forces a VM termination when

a #VC or other unexpected interrupt is triggered. Thus, we do

not need to model the potential #VC events when accessing a

memory.

5.2 Top-level Security Property Specifications
When proving the security properties (1) and (2), we prove

both the confidentiality and integrity theorem outlined in

Listing 4 and Listing 5.

Listing 4: VMPL0 confidentiality

1 proof fn proof_confidentiality(Ψ: Machine, e0: Entity,
e: Entity, va1: Addr, va2: Addr)

2 requires
3 E0.contains(e0), e0 �= e,
4 m_inv(Ψ),
5 m_read(Ψ, va1, e0).is_Ok(),
6 m_read_ret(Ψ, va1, e0).is_Secret(),
7 m_to_spa(Ψ, va1, e0) ≡ m_to_spa(Ψ, va2, e),
8 m_read(Ψ, va2, e).is_Ok(),
9 ensures

10 m_read_ret(Ψ, va2, e).is_Encrypted();

Listing 5: VMPL0 integrity

1 proof fn proof_integrity(Ψ: Machine, Ψ′: Machine, e0:
Entity, va: Addr)

2 requires
3 E0.contains(e0),
4 m_inv(Ψ, e0),
5 attack_model(Ψ, Ψ′),
6 m_read(Ψ, va, E0).is_Ok(),
7 m_read(Ψ′, va, E0).is_Ok(),
8 ensures
9 m_read_ret(Ψ, va, e0) ≡ m_read_ret(Ψ′, va, e0);

To prove confidentiality, a critical specification is the SNP

machine invariant (m_inv) representing whether a machine

state is valid. For the integrity proof, we additionally rely on a
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specification (model_attack) that determines whether a state

Ψ′ is reachable from Ψ under attack. Thus, it is necessary to

prove the correctness of both the machine invariant specifica-

tion (Listing 6) and the attack model specification (Listing 7).

This entails consideration of machine model modifications

stemming from all possible operations, where only E0’s oper-

ation is constrained by preconditions (Op::sw_requires).

Listing 6: Correctness of machine state invariant

1 proof fn proof_machine_inv(Ψ: Machine, Ψ′: Machine, op:
Op, e0: Entity, e: Entity)

2 requires
3 E0.contains(e0),
4 (e0 ≡ e) =⇒ Op::sw_requires(e, op),
5 Ψ′ ≡ m_op(Ψ, e, op),
6 m_inv(Ψ, e0),
7 ensures
8 m_inv(Ψ′, e0);

Listing 7: Correctness of attack model

1 proof fn proof_attack_model(Ψ: Machine, Ψ′: Machine,
Ψ′′: Machine, op: Op, e0: Entity, e: Entity)

2 requires
3 E0.contains(e0), e �= e0,
4 m_inv(Ψ, e0),
5 ensures
6 Ψ′ ≡ Machine:op(Ψ, e, op) =⇒ attack_model(e0, Ψ,

Ψ′),
7 (attack_model(e0, Ψ, Ψ′) && Ψ′′ ≡ m_op(Ψ′, e, op))

=⇒ attack_model(e0, Ψ, Ψ′′);

5.3 Security Property Proof Sketches
In this section, we describe five critical lemmas and provide a

sketch of their proofs, in order to prove the two top theorems

and the correctness of critical specifications. It is worth noting

that they are fully proved with Verus.

In VERISMO, we classify the guest memory into three sets:

VMPL0-Private , VMPL3-Private, and Hypervisor-Shared.

The divided memory sets allow us define the security proper-

ties for different memory types.

5.3.1 VM-Private Memory

Lemma 1. Let Ψ represent a machine state in which M is a
guest physical memory block that stores value D. Suppose Ψ′
is a future state reachable through modifications made by Ehv.
Then, if M is VM-private in Ψ, VM’s read operation on M in
Ψ′ either fails or returns the original value D.

A key invariant property of the RMP is that, once a RMP

entry is validated by a VM for a VM-private memory page,

the guest physical address (GPA) of this memory page will

be either bound to the system physical address (SPA) of the

RMP entry or nothing at all, regardless of any operations

by Ehv, as long as E0 does not validate the GPA again. It

is straightforward to prove this property. If Ehv makes any

changes to the RMP entry, the entry will become invalidated,

thus the GPA is not bound to any SPA. If Ehv does not change

the RMP entry, then the GPA remains bound to the same SPA

as long as E0 does not validate the GPA again.

With this property, we can prove the Lemma 1. If M is

VM-private and validated in Ψ, then the GPA of M is bound

to an SPA. This implies that the read operation on M by either

E0 or E3 in Ψ′ either returns the original value D or fails.

This lemma essentially requires that a valid state of Ψ will

always ensure the VM-private M has unique bound from a

GPA to an SPA no matter how the hypervisor changes the

nested page mapping, as we discussed in Section 2.1. Such

invariant property requires that E0 does not validate a GPA

when it is validated and bound to an SPA in the RMP.

Lemma 2. Given a machine state Ψ, if a guest physical
memory block in VM-private is mapped to a system phys-
ical memory M that stores a VM’s secret S, then in any future
hypervisor-reachable machine state Ψ′, Ehv’s read operation
on M will return an encrypted version of S.

At first glance, one may assume that the VM-private mem-

ory page requires both the encryption bit in the guest page

table and the validation bit in the RMP. However, our verifi-

cation indicates that the validation bit in the RMP cannot be

reliably guaranteed. When proving the lemma, we confirmed

that holding the validation bit in the hardware state is not

necessary. This implies that a requirement for a ‘C’ bit in the

page table suffices to prove the lemma.

5.3.2 VMPL0-Private Memory

Lemma 3. Let Ψ represent a machine state in which M is
a VMPL0-private guest physical memory block that stores
value D. Suppose Ψ′ is a future reachable state through mod-
ifications made by Ehv and E3. Then the E0’s read operation
on M in Ψ′ either fails or returns the original value D, and
M cannot be read by E3.

Since VMPL0-private memory is a subset of VM-private

memory, Lemma 1 and Lemma 2 implies that Ehv cannot

read it or tamper its value. Here we focus on E3. An RMP

entry contains access permissions for each VMPL. These

permissions control whether a VMPL can read, write, and

execute on the memory. Furthermore, the hardware restricts

E3 from modifying access permissions for its own VMPL.

To ensure that E3 cannot access VMPL0-private memory, the

verification process requires a precondition to rmpadjust that

E0 cannot grant access permission to VMPL3 if the memory

is in VMPL0-private.

5.3.3 Correct Guest Address Translation

In addition to RMP updates, updating the page table is also

critical for safe memory translation. We must ensure the in-

tegrity of the memory translation by considering all possible
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changes from all entities. We verify it by proving the follow-

ing lemma. The correctness of our guest address translation

helps to prove the top theorem when considering accesses via

guest virtual addresses instead of guest physical addresses.

Lemma 4. Let Ψ represent a machine state in which a guest
virtual address GVA is successfully translated to a system
physical address SPA by a VMPL0’s memory access. Suppose
Ψ′ is a future state reachable through modifications made by
Ehv and E3. Then, in Ψ′, VMPL0’s access to the GVA succeeds
with the same translation to SPA or fails.

Lemma 3 establishes that a GPA for VMPL0-private mem-

ory is either bound to a specific SPA or not bound to any

SPA. When a GVA is successfully translated to a SPA in Ψ,

it implies that the GPA that the GVA is mapped to is bound

to the SPA. Therefore, in Ψ′, the GPA is either still bound

to the same SPA or not bound to any SPA. Since Ehv and E3
cannot change E0’s page table, the translation from the GVA

to the GPA remains the same. This guarantees that the GVA

is either translated to the same SPA or fails.

To simply the implementation layer verification, we also

prove the following lemma to ensure the mapping from GVAs

to SPAs is one-to-one.

Lemma 5. For each reachable Ψ, the mapping from a guest
virtual address to a system physical address is a one-to-one
mapping.

Since Lemma 3 implies that the mapping from GPAs to

SPAs for VM-private memory is one-to-one, we only need

to ensure that the mapping from GVAs to GPAs is one-to-

one. We prove it by separating memory writes into two cat-

egories: normal memory (mem_write) and page table mem-

ory (pt_write). To simplify the proof, we set aside a set

of guest physical pages for E0’s page table (referred to as

the PT memory), and enforce that the PT memory is always

VMPL0-Private (by updating the precondition to rmpadjust).

This allows us to define a precondition for mem_write and

pt_write to check that a memory write falls into their re-

spective categories.

A trusted initial assumption we make is that the initial page

table for E0 at launch time is correct in the sense that the page

table pages are in the PT memory and the page table enforces

a one-to-one mapping from GVAs to GPAs. Then to prove

it is true for any reachable Ψ, we prove that any pt_write
operation preserves this property by adding a precondition to

check that the memory write would keep the page table pages

in the PT memory and the one-to-one mapping from GVAs to

GPAs.

5.3.4 Connecting Machine Model to Implementation

The confidentiality and integrity of the VM-private and

VMPL0-private memory, together with the correct page table

translation, ensure that the memory content accessed by E0

through a guest virtual address remains consistent with the

content stored in the hardware state. This consistency allows

the implementation layer verification to focus on the software-

tracked state, eliminating the complexity of having to worry

about the actual hardware state. To convert preconditions for

primitive operations from hardware-based to software-based

in implementation verification, we prove that if an operation

succeeds and the operation’s software-based constraint is true,

the corresponding hardware-based one must be true.

6 Implementation Verification

In this section, we describe the verification at the implementa-

tion layer. For simplicity, software in this section refers to the

implementation of VERISMO. We first describe how we use

permission-based verification to handle concurrency and scale

verification to a large codebase. We then describe how we use

information-flow verification to prevent secret leakage.

6.1 Permission-based Verification
In VERISMO, we incorporate the software constraints de-

rived from the machine model verification into “tracked” per-

missions defined by Verus[22]. Each resource permission in-

cludes an identifier and multiple fields that represent the value

or attributes of the resource. To ease the proof process across

various memory access scenarios, we opt for implementing

fine-grained memory permissions. This approach helps avoid

the complexities tied to a single large-size global state (e.g.,

the hardware abstract model used in Section 5), and simplify

the concurrency reasoning using ownership. Moreover, to aid

in safe memory sharing, we introduce a lock permission for

shared memory. To ensure safe register access, we establish

register permissions in accordance with their definitions.

6.1.1 Memory Access Permission

Object-based Memory Permission. We extend the defi-

nition of a basic memory permission described in Verus to

make all memory access safe in the context of AMD SEV-

SNP VMs. A memory permission is defined as a tracked
variable (SnpPointsTo) without the ability to be copied or

constructed. By incorporating an appropriate initial assump-

tion to ensure the initial uniqueness of all memory permis-

sions, we can guarantee the uniqueness of each permission

throughout the program.

As shown in Listing 8, our extended SNP memory per-

mission consists of three elements: the guest virtual address

(addr) as the permission identifier, the value stored at that

address by the software, and the memory attributes (swattr
and hwattr) as seen by both software and hardware. These

memory attributes include RMP (rmp) and page table (pte)

values tied to the memory. Furthermore, considering the spe-

cific use of page tables, we have added an attribute (is_pt) to
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denote whether the memory serves as a page table. These im-

provements facilitate efficient management and enforcement

of memory safety within the SEV-SNP VM context.

Listing 8: SNP object-based memory permission definition

1 pub ghost struct SnpMemAttr
2 { rmp: RmpEntry, pte: PTAttr, is_pt: bool}
3

4 pub ghost struct SnpPointsToData<T> {
5 addr: int, value: Option<T>,
6 swattr: SnpMemAttr, hwattr: SnpMemAttr,
7 }
8

9 pub tracked struct SnpPointsTo<V>
10 { _p: marker::PhantomData<V>, _ncopy: NoCopy }
11

12 impl<T> SnpPointsTo<T>
13 { pub spec fn view(&self) -> SnpPointsToData<T>; }

Raw Memory Permission While object-based access per-

missions provide a user-friendly approach to object-oriented

programming, VERISMO operates as a low-level security

module, involving a significant number of raw memory oper-

ations.

To effectively support raw memory, it is necessary to es-

tablish additional foundational information concerning size,

value casting, memory splitting, and merging. This essen-

tial ground-truth information is not provided by Verus and is

defined by VERISMO as trusted specifications or axioms:

Object Size Specification. We assume that an object’s size

is equivalent to its actual memory usage. The precise

size value should only matter when an operation has a

specific size requirement (e.g., pvalidate requires page-

sized) or when size comparisons are necessary (e.g.,

memory splitting or joining).

Casting between Objects and Bytes. Our trusted proof for

casting aims to enforce unique bindings and ensure con-

sistent sizing between objects and their corresponding

byte representations.

Raw Memory Split and Merging. During memory split-

ting and merging operations, byte values and memory

ranges are divided or combined, respectively, while mem-

ory attributes remain consistent with the original state.

Examples to Convert Unsafe Rust to Safe Verus. To il-

lustrate how to use memory permission to convert Rust’s

unsafe memory access into Verus’s safe memory access oper-

ation, we provide two dummy examples using memory primi-

tive functions defined in Listing 9. The examples demonstrate

how unsafe accesses can be identified through either verifica-

tion (�) or Rust’s borrow checker (
⊗

).

The first example (in Listing 10) takes a memory per-

mission reference pointing to a VMPL0-private memory at

0x1000, and thus it can borrow a value at address 0x1000.

However, Line 8 cannot change content, since the permission

is borrowed as immutable; Line 9 cannot access raw memory

at 0x2000 due to the mismatched memory identifier.

Another example provided in Listing 11 demonstrates how

the verification process detects unsafe RMP updates, ensuring

the valid memory state. It initializes an non-validated mem-

ory permission and then assign it to VMPL1 at the end to

render the memory accessible to VMPL0. After pvalidate,

the memory permission remains not ready for other RMP

memory operations until the operation is confirmed and the

memory content is cleared. The strict requirement leads to

a failed assertion at Line 6. Additionally, Line 11 fails since

the pvalidate primitive function requires no double validation.

Listing 9: A selective primitive memory-related functions

1 fn borrow<’a>(vaddr: usize, Tracked(mperm): Tracked<&’a
SnpPointsTo<V>>) -> (v: &’a V)

2 requires
3 mperm@.wf_borrow(vaddr as int),
4 ensures
5 mperm@.spec_read_rel(*v),
6 {...}
7 fn replace(vaddr: usize, in_v: V, Tracked(mperm):

Tracked<&mut SnpPointsTo<V>>)
8 requires
9 old(mperm)@.wf_replace(vaddr as int, in_v),

10 ensures
11 mperm@.spec_write_rel(old(mperm)@, Some(in_v)),
12 {...}
13 fn pvalidate(vaddr: u64, psize: u64, val: bool, rflags:

&mut u64, Tracked(mperm): Tracked<&mut
SnpPointsToRaw>) -> (ret: u64)

14 requires
15 spec_pval_requires(vaddr as int, psize, val, old(

mperm)@),
16 ensures
17 spec_arch_pval(vaddr as int, psize, val, old(mperm)@,

mperm@, *old(rflags), *rflags, ret),
18 {...}
19 fn rmpadjust(vaddr: u64, psize: u64, attr: RmpAttr,

Tracked(mperm): Tracked<&mut SnpPointsToRaw>) -> (
ret: u64)

20 requires
21 spec_rmpadjust_requires(vaddr as int, psize as int,

attr, old(mperm)@),
22 ensures
23 spec_arch_rmpadjust(old(mperm)@, mperm@, vaddr as int

, psize as int, attr),
24 {...}

Listing 10: Secure access to memory

1 fn access_private(Tracked(mperm): Tracked<&SnpPointsTo<
u64>>)

2 requires
3 mperm@.wf_not_null_at(0x1000),
4 mperm@.is_vmpl0_private() {
5 �let val1 = *borrow(0x1000, Tracked(mperm));
6 �let val2 = *borrow(0x1000, Tracked(mperm));
7 �assert(val2 == val1);
8

⊗
replace(0x1000, 0x1234, Tracked(mperm));

9 � let _val3 = *borrow(0x2000, Tracked(mperm));
10 }
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Listing 11: Safe RMP table updates

1 pub fn init_page(Tracked(mperm): Tracked<SnpPointsToRaw
>)

2 requires
3 mperm@.wf_range((0x1000, PAGE_SIZE)) && mperm@.

is_init() {
4 let mut u64 rflags = 0;
5 �let ret = pvalidate(0x1000, 0, 1, &mut rflags,

Tracked(&mut mperm));
6 � assert(mperm@.wf());
7 if ret == 0 && rflags != 0 { return false; }
8 �mem_set(0x1000, PAGE_SIZE, 0, Tracked(&mut mperm));
9 �assert(mperm@.wf());

10 � pvalidate(0x1000, 0, 1, &mut rflags, Tracked(&mut
mperm));

11 let rmpattr = RmpAttr::empty().set_vmpl(1).set_read
(1).set_write(1);

12 �rmpadjust(0x1000, 0, rmpattr, Tracked(&mut mperm));
13 if ret != 0 { return false; }
14 �assert(!mperm@.is_vmpl0_private());
15 return true;
16 }

6.1.2 Lock Access Permission

The memory permission we previously described does not

entirely address the issue of concurrency reasoning. This chal-

lenge emerges because memory permissions, in their current

form, do not inherently facilitate the shared write permission

for concurrent access. For example, when CPU-A moves a

memory permission to CPU-B, CPU-A subsequently loses

access to that memory. How to retrieve the memory permis-

sion back is unclear without introducing locking or atomic

permission mechanisms.

To enable safe concurrent memory access in a relaxed

memory model, we choose to implement locking permissions

since much of our code relies on locks to protect shared re-

sources without directly using atomic operations. Each shared

resource starts with a lock permission which stores a memory

permission. When the software acquires a lock, the lock per-

mission is converted to a locked state and returns the stored

memory permission so the software can use the memory

permission to access the shared resource. When the lock is

released, the memory permission is returned back to the lock

permission whose state is converted back to an unlock state.

Shared objects typically require an invariant to constrain

their values. Without proving the invariant, for all verifications

necessitating such a constraint, programmers may incur extra

execution costs to check if the value meets the requirements.

To maintain the invariant for values read after acquiring a

lock, we have introduced a precondition in the release API.

This precondition mandates that the object associated with

the memory permission upholds the invariant whenever the

release method is invoked. As a result, the value of the global

variable read by a CPU is always in compliance with the in-

variant. The lock mechanism in VERISMO extends beyond

shared memory (see Section 7.2). Listing 12 shows an exam-

ple to use lock to protect a global variable gvar while keeping

Share via 
PT/RMP updates

Proper PT/ RMP updates

Write

Copy to 
Private

Memory-Safe Exec codes

Lock

Unlock

Locked VMPL0-privateUnlocked VMPL0-private

Locked VMPL0-private
Unknown content

Locked non-privateUnlocked non-private

?

?

Lock

Unlock

Figure 4: Safe memory access under concurrency

its invariant (spec_gvar_inv). The verified code guarantees

that the data borrowed satisfies invariant (Line 12) after ac-

quiring the lock, although the data could be different in two

lock transactions (Line 13). Our trusted lock APIs can detect

the violation of invariant for gvar since it fails the invariant

at Line 15.

Listing 12: Lock protection

1 spec fn spec_gvar_inv() -> spec_fn(u64) -> bool
2 { |v: u64| 0 <= v <= 0xff_ffff}
3

4 fn access_global(Tracked(core): Tracked(SnpCore),
Tracked(lperm): Tracked(LockPerm<u64>))

5 requires
6 lperm.is_unlocked(spec_gvar) {
7 �let (vaddr, Tracked(pt_mperm)) = gvar().acquire(

Tracked(&mut lperm), Tracked(&core));
8 �let val1 = borrow(vaddr, Tracked(&pt_mperm));
9 �gvar().release(Tracked(&mut lperm), Tracked(&core),

Tracked(pt_mperm));
10 �let (_, Tracked(pt_mperm)) = gvar().acquire(Tracked(&

mut lperm), Tracked(&core));
11 �let val2 = borrow(vaddr, Tracked(&pt_mperm));
12 �assert(spec_gvar_inv()(val1) && spec_gvar_inv()(val2)

);
13 � assert(val1 == val2);
14 �replace(vaddr, 0x1000_0000, Tracked(&pt_mperm));
15 � gvar().release(Tracked(&mut lperm), Tracked(&core),

Tracked(pt_mperm));
16 }

6.1.3 VMPL0’s Memory Safety

By utilizing the memory permission and the lock permis-

sion reasoning, we ensure that our implementation always

has safe memory access. Here we describe ownership for

VERISMO at a high level utilizing the permissions we de-

scribed in Section 6.1.1 and Section 6.1.2.

Figure 4 illustrates safe operations for handling memory

and lock permissions. When VMPL0-private memory is

locked by the software on a CPU, no other entity can concur-

rently modify it. Therefore, the memory can be considered

as private to VMPL0, and the acquire operation will safely

grant a memory permission for unrestricted memory access.

For memory shared with either the hypervisor or the guest

OS, the memory permission obtained upon locking only per-

mits copying and writing, but not borrowing references. For

unrestricted operations, developers must either copy the mem-
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ory to VMPL0-private memory or use rmpadjust/pvalidate

operations to transition it to VMPL0-private memory.

6.1.4 Register Access Permission

Similar to memory permissions, we define register permis-

sions for registers. Most registers are privately controlled by

the software and thus we usually can maintain a stable invari-

ant property after proper booting steps. Since a CPU has a

fixed number of registers, each CPU uses a single permission

representing all the CPU’s registers together. Some registers

need special permission designs.

In the SEV-SNP VM environment, the GHCB MSR differs

from other registers. While all other registers are owned by

the VM, the GHCB can be read and written by the hypervisor.

To handle this difference, we introduce a "share" attribute

for such registers, treating the values read from these shared

registers as unconstrained.

For registers like IDTR and GDTR, which hold pointers to

memory segments, we guarantee that memory ownership is

transferred to the hardware upon writing to these registers.

Certain registers, such as the instruction pointer (RIP) and

stack pointer (SP), pose a risk of inadvertently influencing

software behavior in dangerous ways. We prevent explicit use

of these registers by removing permissions to access them.

CR3 points to the top-level page table. A write operation

to CR3 is required to have tracked mutable permissions for

both the page table and all usable virtual memory addresses.

This safeguards against incorrect modifications to CR3, as

consolidating all memory permissions used by the CPU is

complex. VERISMO does not have a user mode, and has a

single page table for its kernel mode code. Therefore its CR3

register is only updated once at the boot time.

6.2 Information-Flow Verification
In addition to guaranteeing safe memory access, it is im-

portant to prevent secret leakage through explicit or implicit

information flows. In VERISMO, we define a precise tracking

policy to maintain secure information flow by monitoring

potential secret guessing spaces for variables.

Types carrying secret guessing space. We define security

types to match Rust’s primitive types. Each security type

includes a value and a set of possible values (valset) that

an entity can guess from. If the set is complete, the variable

is considered a secret to the entity; if the set is singleton, the

variable is public to the entity.

VERISMO only takes three kinds of secrets: the VM com-

munication keys generated by the hardware (Section 2.1),

VERISMO’s own private/public key pair (Section 3.4), and

symmetric encryption keys for the guest OS (Section 3.4).

Since these secrets are exclusively used by trusted crypto-

graphic functions in VERISMO, we only encounter a lim-

ited number of proofs about the set size when invoking cryp-

tograhic functions. With a trusted and formally verified crypto

library, our security checking is highly simplified to check

whether a variable is fully public or confidential to an entity,

similar to taint tracking without over/under-tainting concerns.

We define a security trait that assigns security levels to

different data types based on the size of their possible value

sets. Primitive types in Rust have security levels equivalent

to constants. To use security types like primitive types, we

implement standard operator traits and ensure the correct

propagation of the guessing space by applying the relevant

set operations to the possible value sets. For example, each

binary operation ‘op’ performed between variables a and b
ensures the following constraints for the returned result.

(a op b).valset ≡
{

val|∃(v,u) :
v ∈ valseta ∧

u ∈ valsetb ∧val ≡ a op b

}

∧(a op b).val ≡ (a.val op b.val)

A comparison operation may lead to secret leakage via

control flow. Therefore, the comparison operator includes a

precondition that requires both variables to be public to all

entities. We support the secret downgrade through a trusted

function when needed. After a downgrade, a variable’s pos-

sible value set becomes a singleton and thus can no longer

be used as a secret. For instance, if a downgrade operation is

applied to a secret key, the key no longer meets a precondition

for trusted cryptographic functions, which requires crypto-

graphic key to be a high-security variable, i.e., the possible

value set if full.

Re-visit the memory permission for confidentiality. To

maintain the confidentiality of secret variables, we impose

a requirement that the software must not share them with

other entities. To enforce this property, we ensure that every

valid memory permission maintains a consistent relationship

between the memory’s confidentiality attribute (defined by

the page table and the RMP) and the security level of the

value it carries, as shown below:

∀ entity ¬memperm.swattr.is_confidential_to(entity)

=⇒ memperm.val.is_constant_to(entity)

In addition, we cannot use secret data as address for mem-

ory access; otherwise, the hypervisor can use control flow to

infer the secret. We enforce this precondition for all trusted

functions related to memory access.

7 Implementation

We implemented VERISMO in Rust and verified it with Verus,

ensuring that the trusted functions are always used safely,

and our implementation is correct. Our implementation is

available at https://github.com/microsoft/verismo.
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7.1 TCB in VERISMO

VERISMO fully trusts a small number of primitive functions,

ground-truth axioms, the hardware model specification, the

model-based specification defining the safety properties, as

well as the specification for functional correctness. These

trusted functions wrap unsafe code for interacting with the

hardware for calling trusted external libraries (e.g., Rust core,

HACL[35]). The size of the trusted code will be reported in

the evaluation section. Additionally, VERISMO places trust

in Verus and the Rust compiler.

7.2 An example with simplified verification

The permission-based verification not only guarantees mem-

ory confidentiality and integrity but also ensures correctness

for certain functionalities without introducing additional spec-

ifications. Here, we use an example in VERISMO to explain

how a lock can automatically protect associated resources and

how memory permissions automate functional correctness for

a Guest-VERISMO call to update a memory page’s attributes.

VERISMO assigns certain memory ranges to VMPL3

and stores their ranges (for execution) along with a zero-

sized tracked permission map (for proof) in a global variable

(OSMEM). The OSMEM is shared by multiple cores and is pro-

tected by a lock that guards an invariant, ensuring that a mem-

ory page has its tracked permission inside the map if and only

if the page is within the memory ranges.

Extended lock protection. When VMPL3 sends a re-

quest to VERISMO to grant or revoke permission for a page,

VERISMO needs to acquire the lock to access the tracked

permission from OSMEM. This automatically prevents concur-

rent changes to the RMP table for VMPL3’s memory without

introducing new locks. Here, a single lock protects both the

OSMEM variable and the memory assigned to VMPL3.

Extended Functional Correctness. Additionally, since

the tracked map only stores page permissions from the OSMEM-

defined ranges, VERISMO must check whether the requested

page is within the range to obtain the page permission re-

quired for updating the memory’s attributes. This automati-

cally ensures that a correct handler will conduct the necessary

checks before any update happens.

8 Evaluation

Our performance evaluation is based on the Hyper-V hyper-

visor. Our experimental machine has an AMD EPYC 7543P

32-Core Processor, which supports SEV-SNP features. We

allocated 8 dedicated cores to the host domain using minroot

Hyper-V, allowing the hypervisor to assign the remaining 24

CPUs to VMs. This setup prevents unpredictable competition

for CPU resources between different domains.
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Figure 5: Unix benchmark results

8.1 Performance
To measure the performance of guest-VERISMO APIs, we

created a kernel driver that sends these requests to VERISMO.

We ran each call 100 times and recorded the average cost per

call in Table 1.

Table 1: Microbenchmarking guest-VERISMO APIs

Request Cycle (*1k) Time (ms) STD (ms)

Switch 34 0.012 0.002

ExtendPCR 37 0.013 0.002

SetPageShared 77 0.027 0.002

SetPagePrivate 82 0.029 0.002

AttestPCR 17633 6.298 4.270

LockKernel(8GiB) 4260969 1522 151

LockKernel(4GiB) 2201565 786 58

The Switch call serves as a test to complete a switch

(VMPL3 → hypervisor → VMPL0 → hypervisor →
VMPL3), and its cost prevails over some less expensive

GVCA calls. The operation to extend a measurement

(ExtendPCR) is quick, as it only involves adding a value

from VMPL3 to the previous one and updating it with a

cryptographic hash. SetPageShared is relatively more ex-

pensive since VERISMO needs to invalidate it and call the

hypervisor to make a page shared which triggers additional

context switch. SetPagePrivate is marginally more expen-

sive than SetPageShared, as the former requires an addi-

tional rmp change via rmpadjust. Attestation is much more

resource-intensive than others due to the need for hardware-

based cryptograhic signing. Kernel code integrity protec-

tion (LockKernel), operating on all guest memory, is costly,

but it is performed only once per VM session.

8.2 Performance Impact on Guest OS
We used UnixBench to measure the performance of a Linux

kernel running with the VERISMO security module at

VMPL3. The benchmarking results are presented in Figure 5.

The security module introduces almost zero overhead. In con-

trast, Hecate [12], a compatibility-oriented L1 hypervisor in
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Table 2: Lines of code.

Exec Spec Proof Axiom Trusted

Verus 906 1361 2388 803 101

Model 0 2194 3188 67 0

HACL 107 7 0 0 90

Macro 2093 - - - -

Common 606 603 2101 55 10

RawMem 640 635 324 105 11

Reg 341 162 22 0 12

Lock 183 145 105 0 7

PageTable 354 261 330 0 1

Alloc 386 164 1003 24 30

Core 3205 1013 3884 14 0

VMPL0, can incur up to a 40% slowdown. This is because our

security module does not trap any guest OS’s #VC Exception.

In some case, formal verification can be simplified in a

less-efficient implementation or with extra runtime checks.

Here, we compared VERISMO with two additional proto-

types that we implemented, demonstrating no performance

trade-off introduced by verification. While those prototypes—

‘linux-sm’ (a modified Linux kernel as security module) and

‘c-sm’ (C-based security module)—only supports WakeUpAP,

SetPageShared, and SetPagePrivate APIs, they serve as

baselines for the fully-featured VERISMO. The comparable

performance of VERISMO demonstrates that we did not sac-

rifice performance for the sake of verification.

8.3 Verification Size and Performance

Table 2 shows the number of lines of codes for all used li-

braries and modules in our code. ‘Verus’ represents modules

VERISMO used from Verus’s basic library, ‘HACL’ wraps

3 functions for encryption and hashing from an external

formally verified HACL crate written in C and assembly.

‘Core’ represents code for VERISMO’s core functionalities.

The trusted executable code (majorly unsafe code) are from

three categories. We only used 31 LOC unsafe Rust for hard-

ware primitive operations. ‘RawMem’, ‘Reg’, ‘Lock’ and

‘PageTable’ include the trusted primitive operations for mem-

ory and registers. ‘HACL’, ‘Common’ includes external safe

functions with a trusted postcondition. ‘Alloc’ includes 1 un-

safe block to trust the global allocator interface. Although

this allocator interface must be trusted, as the Rust compiler

depends on it, we have verified the correctness of the im-

plementation of our global allocator. On average, the proof

and specification annotations are approximately twice the

size of the executable code for the implementation layer. The

machine-model layer is reusable if we do not change primi-

tive functions. Verification of both model and implementation

layers takes around 6 minutes with a multi-threaded Verus

backed by Z3-4.11.2 as the solver running on our test machine

with 32 cores. The verification efficiency is due to Verus’s

optmization for Z3 solver, Rust’s ownership checking for au-

tomated memory reasoning, and the modularity of our proof

code with Verus.

8.4 Security Improvement
Concurrently with our project, AMD SVSM [4] which is

now replaced by COCONUT SVSM [39], is an ongoing Rust

project to provide a security module in VMPL0 for AMD

SEV-SNP VMs. However, they do not apply formal verifica-

tion and heavily use unsafe Rust features. COCONUT uses

235 unsafe blocks, and AMD SVSM uses 150 unsafe blocks.

In contrast, VERISMO uses only 32 unsafe blocks. We did not

compare our performance with them since VERISMO runs

on a different hypervisor. Since they share the same hardware

model as VERISMO, our verification design can potentially

be applied to their code.

8.4.1 An Example Bug Detected in VERISMO

Here, we showcase the importance of formal verification, us-

ing an unsafe memory update in Listing 13 that we detected

via verification. This code handles the SetPageShared re-

quest from VMPL3. Before modifying the RMP entry for a

memory page used by VMPL3, a traditional approach is to

check the security of the change by examining whether the

content carried in the guest physical page can be released ex-

ternally. It uses a lock to protect VMPL3’s memory to prevent

concurrent updates. However, these measures are not suffi-

cient for ensuring VERISMO’s confidentiality when taking

into account a malicious hypervisor.

Listing 13: Handling a memory state change request

1 fn SetPagePrivate(gpn: u64, attr: RmpAttr, lperm:
Tracked<LockPerm>) -> Tracked<LockPerm> {

2 let gpn = vn_to_pn(gvn);
3 let tracked mut lperm = lperm;
4 �let osmem = OSMEM.acquire(Tracked(&mut lperm));
5 �match osmem_check(osmem, gpn, attr) {
6 Ok(i) => {
7 let Tracked(mut pperms) = osmem[i].pperms;
8 �let tracked mut pperm = pperms.tracked_remove(gvn);
9 �pvalidate(gvn, true, Tracked(&mut pperm), ..);

10 � rmpadjust(gvn, 1, attr, Tracked(&mut pperm), ..);

Consider two system physical memory pages: SPN0 and

SPN3. SPN0 is mapped to GPN0, while SPN3 is mapped

to GPN3. The memory at SPN0 holds VMPL0’s secret key,

which must remain confidential to VMPL3 and the hypervisor.

Meanwhile, the memory at GPN3 is allocated to VMPL3, and

thus its access permissions can be adjusted upon VMPL3’s

requests. VMPL3 could gain access to the secret key at SPN0

using the following steps (with the hypervisor’s help):

1. VMPL3 requests VERISMO to transition GPN3 to a

shared status. VERISMO fulfills the request by invalidat-

ing the target memory and recording that GPN3 is now

invalidated since it is assigned to VMPL3.
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2. To perform the attack, a malicious hypervisor binds

SPN0 with GPN3 by executing rmpupdate and updating

the nested page table to map GPN3 to SPN0.

3. When VMPL3 asks VERISMO to revert GPN3 back to

private, VERISMO validates the memory page at GPN3

and adjusts permissions to permit VMPL3 access to the

memory. This occurs because VERISMO incorrectly

assumes that GPN3 was shared and does not contain

VMPL0’s secret.

As a result of the attack, VMPL3 obtains access to SPN0

via GPN3, which violates VERISMO’s confidentiality. The

hardware’s failed-to-be-secure design only detects the attack

when there is an attempt to access the memory at GPN0, as

the memory binding for GPN0 becomes invalid.

Without verification, detecting such a security vulnerability

can be challenging. Its solution is straightforward: simply

clear a memory page after validating it but before assigning it

to VMPL3.

We reported this vulnerability to AMD in early May 2023,

which resulted in a security fix [5]. However, COCONUT

SVSM [39], which reuses a significant amount of code from

AMD SVSM, still had the old buggy code at its early stage.

9 Related Work

Trusted execution environments. Traditional hypervisor-

enforced VM isolation no longer meets the minimal trust

requirements. This has led to a recent trend of adding an ex-

tra software layer as a trusted security monitor to deal with

hypervisor-based attacks. Examples include Keystone [23],

Komodo [11], and the Intel TDX module [18], which enforce

enclave isolation and provide security features. Arm CCA [6]

goes a step further by relying on two external layers for VMs:

a Realm Management Monitor (RMM) for managing realms

and a separate monitor for facilitating interactions between

the RMM and the hypervisor. However, the issue of sepa-

rating security domains within an enclave remains largely

unaddressed. Different from these solutions, the security mod-

ule [2, 4, 39] for AMD SEV VM [1] is isolated from both

hypervisor and other in-TEE softwares in a VM.

Model checking. Formal methods can be applied to both

model-level (i.e., model checking) and implementation-

level verification. Model checking tools (e.g., SPIN[17],

Tamarin[30]) formally checks some properties based on an

abstract model of a system design (e.g., [15, 20]) to prove the

correctness. Consequently, the correctness is proved without

directly connecting to the implementation itself.

Software verification. Software projects (e.g., [11, 16, 29,

35, 40]) can be implemented in verification-friendly lan-

guages, such as Dafny [25] and F*[34], to enable end-to-end

verification for both model and implementation. Many OS

projects (such as [7, 10, 14, 21, 24, 26, 32]), based on un-

safe assembly or C , are verified in proof languages. The

implementation-level verification is made possible through a

trusted language transformer from unsafe C. Due to the na-

ture of unsafe C, however, their memory safety proofs require

more effort than proofs about Rust. A recent study [9] uses

verification to check secure information flow for confidential

computing but assumes memory safety by requiring no unsafe

Rust in code, which is not applicable to OS-level code.

Security model for verified OS. OS-level verification ef-

forts ([7, 11, 14, 21, 26, 33]) typically focus on the traditional

security model, either with a trusted hypervisor or without

one. Some recent efforts, such as [27], have verified the secu-

rity of the Arm CCA, ensuring the proper implementation of

the RMM firmware for isolating multiple enclaves or VMs.

Different from those works, We use the permission-based

method to verify proper memory access, encoding both the

state of the memory and the security level of its content. This

approach simplifies our proof and streamlines our verification

process, eliminating the need for additional abstract layers for

proving concurrency and information flow. In addition, we

verify memory accesses without extra proof efforts for the

safe portion of the Rust code.

10 Conclusion

We developed and implemented VERISMO, the first verified

security module for confidential VMs enabled by AMD SEV-

SNP. Operating at the highest privilege level, the security

module provides protection to the guest while maintaining

its own confidentiality and integrity, even in the presence of

an untrusted concurrent hypervisor. Our verification process

validated the security and correctness of the security module

software, building upon our specifications of the AMD hard-

ware primitives. Utilizing Rust’s ownership and borrowing,

the verification showcased the application of concepts from

Verus’s permission model on a large scale, encompassing

thousands of lines of verified concurrent executable code. Our

evaluation demonstrated that our security module is efficient

and our verification is scalable.
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Abstract
This paper introduces state embedding, a novel and highly
effective technique for validating the correctness of the eBPF
verifier, a critical component for Linux kernel security. To
check whether a program is safe to execute, the verifier must
track over-approximated program states along each poten-
tial control-flow path; any concrete state not contained in the
tracked approximation may invalidate the verifier’s conclu-
sion. Our key insight is that one can effectively detect logic
bugs in the verifier by embedding a program with certain
approximation-correctness checks expected to be validated
by the verifier. Indeed, for a program deemed safe by the veri-
fier, our approach embeds concrete states via eBPF program
constructs as correctness checks. By construction, the result-
ing state-embedded program allows the verifier to validate
whether the embedded concrete states are correctly approxi-
mated by itself; any validation failure therefore reveals a logic
bug in the verifier. We realize state embedding as a practical
tool and apply it to test the eBPF verifier. Our evaluation re-
sults highlight its effectiveness. Despite the extensive scrutiny
and testing undertaken on the eBPF verifier, our approach,
within one month, uncovered 15 previously unknown logic
bugs, 10 of which have already been fixed. Many of the de-
tected bugs are severe, e.g., two are exploitable and can lead
to local privilege escalation.

1 Introduction

The Extended Berkeley Package Filter (eBPF) [32, 37] al-
lows untrusted user space extensions to be executed in kernel
space. This mechanism has been broadly adopted by mod-
ern operating system kernels to flexibly implement various
specialized tasks, including filtering [43], profiling [28], and
security monitoring [15], among others [23, 54]. To ensure
the safety of the untrusted extensions, a static checker [8]
(verifier) is utilized to rigorously validate their integrity. In
this work, our primary focus is on the eBPF verifier in the
Linux kernel, which is mature and has successfully been ap-
plied in various contexts. The eBPF verifier employs abstract

interpretation [20], a process where it traverses the program
and gathers approximations across different abstract domains
to identify potentially invalid behaviors. Due to its intricate
checking mechanism, the verifier has evolved into one of the
most complex components within the eBPF subsystem.

The correctness of the eBPF verifier is of utmost signifi-
cance. The eBPF subsystem provides extensibility by grant-
ing restricted kernel space code execution capability to user
space, which is enforced by the verifier. These restrictions
are crucial as they limit memory access and control flow in
programs, thereby preventing the kernel from being impacted
by potentially harmful extensions. However, logic bugs in the
verifier can compromise these restrictions, leading to unsafe
programs being loaded. Indeed, the verifier’s vulnerabilities
are attractive to attackers as these bugs have a higher like-
lihood of being exploited to inject malicious programs into
the kernel [1–3]. We will demonstrate, in Section 2.2, the
exploitation of one such bug we found, a simple incorrect
type cast in the verifier, to achieve local privilege escalation.
Therefore, detecting and rectifying logic bugs in the eBPF
verifier is critical to the overall kernel security.

Given its importance, existing work applies formal veri-
fication to several components of the verifier. For example,
Agni [45] generates verification conditions for the range anal-
ysis of the verifier, and other work [44, 52] aims to verify the
tnum domain [35]. These efforts have provided strong guaran-
tees for the correctly verified components. Nevertheless, given
its complexity, obtaining specifications, either manually or
automatically, is intrinsically challenging even for a portion of
the verifier [18]. Consequently, these checked specifications
may be incomplete [9] or diverge from the implementation [4],
e.g., we still uncovered logic bugs in the verified range analy-
sis. Moreover, these components are relatively small, and the
verifier is constantly evolving with new algorithmic enhance-
ments and features. Previous work has also applied automatic
testing on eBPF [25, 26, 42]. For instance, Syzkaller [47] has
been incorporated into the eBPF upstream and has identified
many memory errors in the eBPF system call. Yet, they en-
counter challenges in detecting logic bugs due to the lack of
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effective test oracles [24], namely methods to automatically
determine whether a program should be accepted or rejected
by the verifier.

Observation. In essence, the verifier checks eBPF programs
by tracking states at different locations along each possible ex-
ecution path within its abstract domains, i.e., the verifier state
(approximation). The checking procedure on each execution
path can be modeled as verifier state transitions:

A0→ A1→ ...→ An−1→ An

The verifier state transition corresponds to a set of concrete
state transitions on the corresponding execution path:

S0→ S1→ ...→ Sn−1→ Sn

Each concrete state Si must be contained in the corresponding
approximation Ai; otherwise, it is a verifier bug since attackers
can manipulate such a concrete state, thereby breaking the
verifier’s conclusion. The key observation is that, to ensure
the conclusion is correct, the verifier must over-approximate
all possible concrete states at each program point. In other
words, any concrete state not contained in the approximation
can invalidate the conclusion. The property is fundamental
and can be harnessed as an effective test oracle to validate
the correctness of the verifier without requiring specifications.
The ensuing challenge is how to determine whether or not
concrete states are contained in the approximation.

State Embedding. This paper introduces state embedding,
a novel and effective mechanism for validating the eBPF
verifier. Our key insight is: one can effectively detect logic
bugs by embedding a program with the aforementioned
approximation-correctness checks that are expected to be val-
idated by the verifier itself. State embedding contrasts pairs
of programs, P and P′. Initially, a program P, accepted by the
verifier, is executed to profile its concrete states. Next, P′ is
crafted by embedding sinks that contradict these observed
states into P, challenging the verifier to validate it. A correct
verifier should reject P′ since a valid approximation must in-
clude the observed concrete states, thus accepting P′ reveals a
logic bug. More concretely, given an accepted program P and
a profiled concrete state S. Corresponding to S is a variable
A representing the verifier’s approximation. P′ is constructed
by embedding the following program construct:

if S ∈ A then verifier_sink()

The condition directs the verifier to check if the concrete
state S is indeed contained within its approximation A, and
verifier_sink() refers to any incorrect operation; encountering
this during validation signals an error, indicating that S is cor-
rectly contained in A. One can easily realize the construct by
utilizing the if-condition statement with equality comparison;
we defer to Section 3.1 for concrete examples. Thus, P′ can be
applied to validate the verifier V: P →{safe,unsafe}, where

marking P′ as unsafe due to the triggered sink confirms the
inclusion of S in A; conversely, deeming P′ safe indicates a
failure in capturing S within A, i.e., a verifier’s logic bug.

Realization. We realized state embedding as a practical tool,
which we call SEV, and applied it in validating the eBPF
verifier. First, for an eBPF program accepted by the verifier,
SEV executes and profiles the program to gather its register
states at each basic block. Second, to efficiently embed each
state, we utilize the following optimization (which will be
further elaborated in Section 3.1). At each basic block, a fold-
ing function is generated to fold the corresponding concrete
register states into a global variable. A state-embedded pro-
gram is synthesized by inserting the folding functions and
embedding the concrete values of the global variables. Fi-
nally, the resulting program is used to validate the verifier;
indeed, any failure to detect the sink indicates a logic bug in
the verifier. Our evaluation results show that state embedding
is highly effective. Within one month, we discovered 15 logic
bugs exclusively in the verifier. This is a significant result
considering that the verifier is primarily around 20,000 lines
of code and, as aforementioned, has been partially verified.
In addition, the verifier has gone through extensive security
scrutiny and testing [7,46]. Moreover, most of the bugs found
are critical. For instance, two bugs are exploitable, where one
allows users with CAP_BPF [41] to obtain root privilege and
has existed for four years, and the other enables users with
CAP_PERFMON [19] to obtain root privilege, both affecting
kernel v5.10.33 and later.

State embedding significantly complements existing work.
In comparison, our approach has several distinct advantages:
(1) SEV treats the verifier as a grey-box rather than a black-
box by inspecting the verifier states, which allows fine-grained
detection of logic bugs; (2) by transforming and taking the
state-embedded programs as input, the verifier automatically
checks if the concrete states are contained, thus the approach
requires little domain knowledge and is practical; (3) in gen-
eral, one can easily embed rich concrete states, yet to detect all
the sinks, the verifier must correctly collect approximations
encompassing all the embedded states, thus being effective;
and (4) state embedding can detect diverse logic bugs that lead
to discrepancies between concrete states and approximations,
e.g., the bugs we found are located in various components
including range analysis, stack access validation, etc. The key
contributions of our work are:

• We propose state embedding, a novel and highly effective
mechanism for detecting logic bugs in the eBPF verifier.

• We present SEV, a practical realization of state embed-
ding, and apply it to stress test the eBPF verifier.

• We demonstrate state embedding’s effectiveness by un-
covering 15 previously unknown logic bugs in the eBPF
verifier with 10 already fixed and many being critical.
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0: *(u64*) (r10 -40) = -1 

1: r1 = *(u64*)(r10 -40) 

2: r2 = 1 

3: if r1 < 0 goto +1 

4: r2 = 0 

5: exit

Accepted Program

R1 = -1 R2 = 1

Register States

0: fp-40 = 0xffffffff 

1: r1 = 0xffffffff 

2: r1 = 0 

3: r1 = 0 

4: r1 = 1 

5: r1 = -8 

6: fp-8 = ptr 

… 

7: fp-8 = ptr 

8: r2 = ptr 

Verifier States
0: fp-40 = 0xffffffffffffffff 

1: r1 = 0xffffffffffffffff 

2: r1 = 0xffffffff 

3: r1 = 1 

4: r1 = 2 

5: r1 = -16 

6: fp-8 = ptr 

… 

7: fp-8 = malicious_ptr 

8: r2 = malicious_ptr 

Runtime States

0: *(u64*) (r10 -40) = -1 

1: r1 = *(u64*)(r10 -40) 

2: r1 >>= 32 

3: r1 &= 1 

4: r1 += 1 

5: r1 *= -8 

6: *(u64*)(r10 - 8) = ptr 

; use r1 control offset 

7: call load_bytes 

8: r2 = *(u64*)(r10-8)

POC
0: r9 = 0 

1: *(u64*) (r10 -40) = -1 

2: r1 = *(u64*)(r10 -40) 

3: r2 = 1 

4: if r1 < 0 goto+1 

5: r2 = 0 

6: r9 += r1 

7: r9 *= r2 

8: if r9 != -1 goto+1  

9: verifier_sink() 

10: exit

State-embedded Program

Figure 1: SEV performs state embedding by (1) profiling the concrete states of registers at each basic block, e.g., R1 and R2; (2)
folding R1 and R2 to R9 (#6 and #7); (3) embedding the concrete state of R9 (#8) and the verifier sink (#9). The instructions #8
and #9 implement the program construct and are the approximation-correctness check. The verifier interprets the if-condition #8
by validating if the runtime value -1 is within the approximation of R9, i.e., determining if R9 could be -1, in which case the sink
would be reported; otherwise, the verifier jumps from #8 to #10 and skips the sink. During validating the state-embedded program,
the verifier skips the sink due to the logic bug. The root cause is sign information loss at #1. The POC program manipulates the
state of R1 (#2 and #3), making the verifier believe R1 equals zero, whereas at runtime, it equals one. Consequently, the program
overwrites the valid pointer stored on the stack with a malicious pointer (#6 and #7), thereby achieving arbitrary access.

2 Background and Illustrative Example

2.1 eBPF

eBPF is a register-based virtual machine that enables user
space to extend the kernel dynamically. The user space first
writes programs consisting of a sequence of eBPF instructions
and loads the program with the bpf() system call. Programs
operate on 11 registers (R0 to R10) and a fixed-size stack with
four major types of instructions, namely load, store, arithmetic,
and branch. An example program is presented in Figure 1.
eBPF is adopted across different privilege levels, from unpriv-
ileged users [13] to those with certain capabilities [19, 41],
and to fully privileged users. For instance, the CAP_BPF ca-
pability allows using eBPF with minimal privilege, widely
applied in container scenarios. Consequently, the extensions
are untrusted and a verifier is employed to validate their safety.

In a nutshell, the verifier traverses each execution path,
interpreting every instruction in its abstract domains. Pro-
grams exhibiting any form of invalid behaviors, such as infi-
nite loops and out-of-bounds access, are rejected. To strive
for both soundness and precision, the verifier employs so-
phisticated algorithms to track program states. For instance,
it gathers pointer types, register liveness, scalar ranges, etc.
Scalar ranges are tracked using five abstract domains: four
interval domains for different signs and bit-sizes, and the
tristate number (tnum) domain [35] to model bit-wise oper-
ations. Scalar ranges are derived by combining information
across these domains. The verifier models pointers based on
region types and offsets, categorizing the former into more

than twenty types, while tracking the latter using a variable.
Furthermore, the verifier undergoes continuous updates by
maintainers with new features and algorithms. The above fea-
tures make the verifier the most complex component within
the eBPF subsystem.

2.2 Illustrative Example

The key idea of our approach is to embed concrete states
in programs such that when taking the state-embedded pro-
grams as input, we leverage the verifier to check whether the
concrete states are contained in the approximation, thereby
detecting logic bugs. In this section, we use an example to
showcase how state embedding enables the detection of a
subtle logic bug caused by a simple incorrect type cast. We
also demonstrate the exploitation of the bug to highlight the
significance of the verifier’s correctness.

The Bug. The left segment of Figure 1 shows a valid eBPF
program accepted by the verifier. Without effective test or-
acles, existing approaches would simply drop the case and
proceed to the next iteration, since the program does not con-
tain invalid behaviors. In comparison, SEV further utilizes
state embedding to validate the verifier’s approximation of
the program, thereby uncovering this bug. Figure 2 shows the
root cause and the patch proposed by us to fix the bug.

eBPF programs can spill registers or immediate values to
the stack, and the verifier tracks the state of the stack accord-
ingly. For the instruction *(u64*)(r10-40)=-1 shown in the
accepted program, the verifier marks the state of the accessed
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diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c 
index 857d76694517..44af69ce1301 100644 
--- a/kernel/bpf/verifier.c 
+++ b/kernel/bpf/verifier.c 
@@ -4674,7 +4674,7 @@ static int check_stack_write_fixed_off(…) 
      insn->imm != 0 && env->bpf_capable) { 
   struct bpf_reg_state fake_reg = {}; 
  
-  __mark_reg_known(&fake_reg, (u32)insn->imm); 
+  __mark_reg_known(&fake_reg, insn->imm); 
   fake_reg.type = SCALAR_VALUE; 
   save_register_state(state, spi, &fake_reg, size); 
  } else if (reg && is_spillable_regtype(reg->type)) { 

Figure 2: A logic bug detected by SEV. During spilling im-
mediate values on the stack, the verifier incorrectly casts
the i32 immediate value to u32 type, thus losing sign in-
formation. We proposed this patch to drop the cast, since
__mark_reg_known() accepts u64 type, the compiler would
correctly promote integer type and propagate sign information.
The patch has been accepted in the upstream and back-ported
to the stable kernels.

stack slot as a known scalar value. However, during this pro-
cess, the verifier incorrectly casts the immediate value from
i32 to u32 and then sets the state of the stack slot, which is
u64, to the casted value, causing lost sign information and
the state of the stack slot being updated to an incorrect value.
As depicted in Figure 1, when storing -1 to the stack, the
verifier incorrectly marks the corresponding stack slot as a
value whose higher 32 bits are all zero, i.e., losing sign infor-
mation. Subsequently, when loading the same stack slot back,
the verifier state of the destination register does not match the
original register, i.e., the concrete value -1 is not contained in
the approximation. Figure 2 demonstrates the patch to fix the
bug, which has been merged to the upstream and back-ported
to the stable kernels, given its security impact.

In general, detecting logic bugs in the verifier poses signifi-
cant challenges due to the following characteristics:

• Hard to notice: The abstract domains utilized by the
verifier are complex and challenging to comprehend thor-
oughly, and the cyclomatic complexity of its tracking
logic is high. To pinpoint logic bugs, one needs to pre-
cisely understand the verifier states and inspect them
following the tracking logic. Conducting such a process
is difficult, e.g., the aforementioned incorrect type cast
is likely to be overlooked.

• Hard to detect: Existing work treats the program under
testing as a black-box, yet logic bugs of the verifier are
likely to be silent errors. For instance, the behavior of the
program demonstrated is correct, which simply accesses
the stack within bounds and operates the registers, and
in this sense, the verifier’s conclusion seems justified.
However, as shown by our approach, the verifier’s ap-
proximation contains a subtle flaw, which is challenging
for existing approaches to detect.

State Embedding. To enforce the safety of the program, the
verifier must track the over-approximation of program states
on each execution path, yet a concrete state not contained
in the approximation can invalidate the conclusion. Based
on the observation, our approach systematically transforms
the program to embed concrete states within certain program
constructs and utilizes the verifier to validate whether the
aforementioned property holds during the checking process.

Step 1: The first step of state embedding is to profile con-
crete states, as illustrated in Figure 1. For a program accepted
by the verifier, we execute and profile concrete states at each
basic block of the execution path. Since the if-condition at #3
holds at runtime, the program jumps to #5, where we collect
the concrete states of registers. The concrete states of R1 and
R2 must be contained in the verifier’s approximation.

Step 2: The second step performs state embedding. In prac-
tice, the collected state information is rich, and directly em-
bedding each state makes the verifier fork and explore paths
multiple times, potentially leading to redundant checks. We
adopt folding to efficiently conduct state embedding. First,
we initialize R9 (#0), a reserved register that holds the folded
concrete state. Then, we generate a folding function at each
basic block, which consists of arithmetic instructions that fold
the collected states into the single register R9. The folding
function in Figure 1 has two instructions #6 and #7, which
fold R1 and R2 into R9. The value of R9 is calculated dur-
ing the generation by evaluating those arithmetic instructions
with the concrete states, which, in the example, equals -1.
Finally, the instruction #8 and #9 implement the program
construct, which embeds the folded concrete state with the if-
condition instruction that compares R9 with its value -1 and
the verifier sink. The condition makes the verifier compare the
folded state with its approximation of R9. The sink would be
detected if the verifier deems -1 is within the approximation.

Step 3: Subsequently, we can take the state-embedded pro-
gram as input to the verifier to detect the logic bug. During the
checking process, the verifier initially collects the program
states from #0 to #4, where it incorrectly tracks the approxi-
mation of R1 (#1 and #2). Such an issue would be captured
as the concrete state of R1 is folded into R9. Since the verifier
determines r1<0 not hold, it proceeds from #4 to #5. At #6
and #7, the verifier folds R1 and R2 into R9, where it erro-
neously concludes that the only concrete value within the
approximation of R9 is zero. Therefore, the folded concrete
state -1 would not be contained in the approximation of R9,
causing the verifier to skip the sink at #9. Consequently, we
have found the logic bug in the verifier.

Our approach embeds concrete states within certain pro-
gram constructs and utilizes the verifier to validate the approx-
imations. State embedding provides two distinct advantages:

• Fine-grained: State embedding views the verifier as a
grey-box rather than a black-box since it performs fine-
grained validation on the verifier states. For the afore-
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mentioned example, which is overlooked by the existing
approaches and even by the experienced maintainers, our
approach further validates the approximations with the
profiled concrete states.

• Practical: Our approach validates if the aforementioned
property holds by embedding concrete states and uti-
lizing the verifier to compare the states against the ap-
proximations. Therefore, state embedding requires little
domain knowledge and is more practical.

The Exploit. The right segment of Figure 1 depicts a proof-of-
concept (POC) that exploits the bug to obtain root privilege.
In essence, the POC uses the bug to manipulate the verifier’s
knowledge about the program. Since the verifier incorrectly
believes that the higher 32 bits of R1 are zero, which are
in fact all one at runtime, the POC first constructs an evil
register by right-shift and logic AND operations (#2 and #3).
These operations make the verifier conclude R1 equals zero,
while at runtime it equals one. Then, the POC stores a valid
pointer on the stack and invokes a helper function that allows
eBPF programs to load user space data to their stack. By
using the evil register as the length parameter, the POC makes
the verifier think that only 8 bytes are stored on the stack,
while in fact it stores 16 bytes, thus overwriting the pointer
with the user-controlled pointer. Finally, the POC achieves
arbitrary access with the malicious pointer, while the verifier
erroneously believes the program is operating the original
valid pointer.

Since eBPF programs are executed in kernel space, the POC
can perform various malicious operations, e.g., overwriting
credentials of the current task struct for privilege escalation.
Our full POC enables users with CAP_BPF to achieve root
access, and kernels v5.10.33 and later are affected. After we
submitted the patches that fix the bug, we also received posi-
tive feedback from the maintainers of the eBPF subsystem:

“...I owe you a big thanks as well since this helps
with our internal process. So thank you in ad-
vance!”

It is important to highlight that the aforementioned exploit
accomplishes all the malicious operations through the subtle
bug, a simple incorrect type cast in one line of the verifier’s
code. In addition to the presented bug, we also found another
exploitable bug allowing users with CAP_PERFMON to obtain
root privilege, arising from incorrect tracking of memory ac-
cesses with variable offsets. The capability mechanism in
Linux grants users the minimum privileges for specialized
tasks, yet these bugs undermine this rule, posing significant
security concerns. Notably, in the POC programs for both
bugs, the number of instructions used to manipulate the ver-
ifier’s knowledge is less than ten, further demonstrating the
severity of the bugs found. This illustrates that our approach
can detect critical logic bugs by leveraging the verifier to
perform fine-grained validations on its approximations.
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A1 A′ 0

A′ 1 . . .
Approximations

∈

∈

∈

S0

S2

S1

Execution

Figure 3: The verifier tracks program states on each possible
path as shown in the right part, and the runtime execution
corresponds to one of the paths. Each concrete state Si must
be contained in the approximation Ai; otherwise, operations
on the non-contained states could be unsafe, i.e., a logic bug.

Concrete
States

Program
Construct

State-embedded
Program

VerifierIn Approximation?

Figure 4: Our approach validates whether concrete states are
contained in the approximation for logic bug detection by
(1) embedding the concrete states in the program with the
construct; (2) taking the state-embedded program as input
to the verifier; and (3) leveraging the verifier to validate the
states against the approximation.

3 State Embedding and SEV

In this section, we introduce state embedding, a folded variant,
and describe our implementation of SEV.

3.1 State Embedding
State embedding is based on one fundamental observation:
the concrete states must be contained in the corresponding
approximations of the verifier, as shown in Figure 3. The
goal of state embedding is to validate if this property holds
during validation. As depicted in Figure 4, to achieve this,
the approach executes and profiles an accepted program P,
lacking inputs and external interactions, to collect concrete
states, which remain consistent across multiple executions.
Since those states are profiled from a real execution, they
establish the ground truth that the corresponding approxima-
tions must properly contain them. Next, P is transformed to
P′ by embedding sinks that contradict those observed states.
When taking P′ as input, the verifier, following the same path
as the real execution, compares the embedded concrete states
against the approximations, thereby automatically validating
its own correctness.

At the conceptual level, given a program P, a concrete state
S, and the variable A holding the state (the approximation
from the verifier’s perspective), a state-embedded program P′
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is synthesized by embedding the following program construct
at the corresponding program location:

if S ∈ A then verifier_sink()

The ∈ in the program construct is an abstraction of the opera-
tors in the program, for which the verifier interprets to check
whether the concrete state S is contained in the approxima-
tion A or not. The verifier_sink() represents the operations,
where the verifier reports errors. By embedding the program
construct and taking P′ as input, the verifier interprets the
construct to check if the embedded state S is within A prop-
erly. The verifier sink in the construct is an indicator for the
containment of the concrete state S.

Proposition 3.1 State embedding does not introduce any in-
valid operations except for the sink.

The aforementioned program construct does not introduce in-
correct operations to the original accepted program except for
the verifier sink. When interpreting the embedded construct,
the verifier state Ai would be split into two states A j and Ak,
where the former follows the branch-taking path of the if-
condition thus detecting the sink, and the latter continues the
original execution path. Since the original program is consid-
ered safe under the approximation of Ai and Ai = A j∪Ak, i.e.,
Ai is a superset of both A j and Ak, the program is also con-
sidered safe with Ak. Therefore, the sink is the only expected
error for a state-embedded program.

Corollary 3.1 Failure to detect the sink indicates a logic bug
in the verifier.

More concretely, for a verifier V: P →{safe,unsafe}, since
the original program P is considered safe by the verifier,
V(P′) = unsafe with the sink being reported implies that the
verifier correctly deems S is within the approximation A; on
the contrary, V(P′) = safe, i.e., failure to detect the sink, indi-
cates the concrete state S being missed from the approxima-
tion A, i.e., a verifier logic bug.

Here we demonstrate the semantics of each part in the
program construct with an example. In general, the verifier
interprets concrete operators in the program in its abstract
domain. Many concrete operators are available to implement
the abstraction ∈. For instance, as shown in Listing 1, one
can utilize the if-statement with an == comparison to real-
ize the construct; other comparisons, such as greater-equal
(>=) or less-equal (<=), are also feasible, as per the imple-
mentation. The instruction writing to the read-only register
R10 is an instance of the verifier sink in eBPF programs, and
assertion failure can be used in other scenarios. After embed-
ding, the verifier interprets the if-statement by validating if S
is within the approximation of A to determine if the branch
should be taken, in which case the sink would be reported.

...original program

The verifier checks if S is within A, when

interpreting the following if-statement.

if (S == A)
verifier_sink();

...

Listing 1: Example of the program construct.

Folded Variant. A straightforward realization of state embed-
ding is by profiling the program to collect concrete states and
subsequently embedding the states with the corresponding
program construct multiple times. However, directly embed-
ding each state encounters two challenges: (1) the verifier
may halt early at the first detected sink, leaving other sinks
unchecked; and (2) the inserted sinks make the verifier fork
exploring paths, introducing redundant checks. We propose
a folded variant to embed the states in conjunction with one
sink efficiently. For each concrete state in an execution:

S0→ S1→ ...→ Sn−1→ Sn

we do not directly embed each Si into the program. Instead, we
generate a folding function fi for each of them, which consists
of simple computation operations, e.g., ALU operations in
eBPF programs, and hold the folded concrete state Ŝ in a
global variable Â:

Ŝ1 = f1(Ŝ0, S1)→ ...→ Ŝn = fn(Ŝn−1, Sn)

Finally, we embed the folded state Ŝn once with the following
program construct:

if Ŝn ∈ Â then verifier_sink()

Since only the folded state is embedded, the verifier forks
once. The bug-detecting capability of this variant is equivalent
to the original form since incorrect approximations are likely
to be propagated to the approximation of the global variable
during the continuous testing campaign. The variant provides
further benefits, e.g., to detect the sink, the verifier needs to
not only correctly track states for the original program, but
also properly simulate the folding functions.

3.2 The SEV Implementation
We applied state embedding to detect logic bugs in the eBPF
verifier. Algorithm 1 illustrates the major workflow. In each
testing iteration, SEV first utilizes the program generator that
we developed to obtain eBPF programs accepted by the ver-
ifier (lines 4-6), and then executes and profiles the program
to collect the register states at each basic block (line 7). We
follow established compiler testing methodologies [31] by
utilizing deterministic, closed eBPF programs that require
only a single round of profiling and the profiled states are
consistent across executions. Based on the concrete states,
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Algorithm 1: Workflow of SEV

1 Procedure Validate():
2 LogicBugs← /0

3 while not terminate do
4 P← NextProg()
5 if Verify(P) = reject then
6 continue

// Profile states at basic block
7 S← Profile(P)

// Embed the concrete states
8 P′← StateEmbedding(P, S)

// Validate the eBPF verifier
9 if Verify(P′) = accept then

10 LogicBugs← LogicBugs∪P′

SEV transforms the program to inject folding functions at
each basic block and embed the folded concrete state (line 8).
Finally, the state-embedded program is used as input to the
verifier (line 9), and a logic bug is detected if the program is
accepted (lines 10-11), i.e., the verifier is incapable of detect-
ing the sink. The aforementioned loop continuously tests the
verifier with state-embedded programs.

SEV first needs to obtain eBPF programs that can pass
the verifier. We devise a program generator to facilitate state
embedding, adhering to the established program generation
approaches [50]. First, we ensure the instruction encoding and
the control flow of a generated program are valid by following
the instruction specification [6] and representing a program
as a structured graph, thereby avoiding being rejected early.
Next, we synthesize the program by combining several basic
structures, e.g., if-else block and back-edge, and leveraging
lightweight global state information, such as register and stack
slot states, to generate instructions reflecting realistic usage
patterns. We categorize a register state into several types, in-
cluding uninitialized, scalar value, and pointer, and synthesize
operations accordingly, e.g., generating pointer accesses or
offset operations if a register stores a pointer. The generator
continuously provides programs for the testing campaign.

We implemented a tracer based on the existing kernel in-
frastructures to profile programs. The tracer intercepts the
execution of programs at each basic block and captures the
instruction index and the register states, which are appended
into an internal state buffer. The tracer interface is exposed
via a virtual device so that the user space can utilize the func-
tionality flexibly and access the buffer via mmap() for shared
memory. For each accepted program, SEV executes it with
the tracer enabled and decodes the buffer in user space.

Algorithm 2 presents SEV’s implementation of state em-
bedding. The inputs are the accepted program and the con-
crete states at each basic block collected with the tracer. We
first initialize the folded state (line 2), and R9 is reserved to

Algorithm 2: State Embedding

1 Function StateEmbedding(Program P, States S):
2 FoldedState← Initialize()

// Basic block to folding function map
3 FoldingFns← /0

4 foreach BB, Regs ∈ S do
5 F ← FoldingFns[BB]
6 if F not exists then

// Generate folding function
7 foreach Reg ∈ Regs do
8 F ← GenALU(F, Reg)

// Update Folded State
9 FoldedState← F(Regs, FoldedState)

// Insert the folding functions
10 P′← InsertFoldingFns(P, FoldingFns)

// Embed the folded state
11 P′← EmbedFoldedState(P′, FoldedState)
12 return P′

ensure its availability for storing this value. The algorithm
maintains a map associating each basic block with its folding
function (line 3). The collected states are essentially a basic
block trace in conjunction with the states, where the basic
block could appear multiple times due to loops. By using the
map, the algorithm ensures the folding function is generated
once for each basic block. The folding function is generated
by synthesizing various eBPF arithmetic instructions for each
collected register (lines 6-8). We consider all the ALU instruc-
tions the verifier can accurately track, excluding the division
and all unary operations. Folding functions are generated by
randomly selecting those operations applied to non-zero reg-
isters, preventing the state from being easily reduced to zero.
The folded state is updated by calculating the folding function
with the concrete states (line 9). Finally, the state-embedded
program is generated by inserting each folding function in
the corresponding basic block and embedding the folded state
with the instructions (lines 10-11), as shown in Listing 2.

if r9 != FoldedState goto+1
r10 = 0

Listing 2: The instructions used for embedding the folded
state and the verifier sink in eBPF programs.

The first instruction in Listing 2 makes the verifier validate
whether the folded state is contained in the approximation
of R9. The second instruction is the verifier sink, an illegal
operation where the verifier reports a "writing to the read-only
register R10" error. The sink is skipped if the folded state is
not contained, indicating a logic bug. The state-embedded
program can thus be used for validating the verifier.
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4 Evaluation

In this section, we evaluate the effectiveness of state embed-
ding by applying SEV to detect logic bugs in the eBPF verifier.
Highlights of our results are as follows:

• Considerable bugs: We have found 15 previously un-
known logic bugs solely in the eBPF verifier.

• Diverse bug types: The root causes of the bugs are vari-
ous and located in different components of the verifier.

• Critical severity: Most of the bugs found by SEV are
critical, posing various security implications.

We believe that the quantity and quality of the bugs found by
our prototype SEV have demonstrated the effectiveness of
state embedding in uncovering logic bugs in the verifier.

4.1 Evaluation Setup
Environment. All the bug-finding experiments were con-
ducted on a Linux server with a 64-core AMD Ryzen Thread-
ripper 3990X Processor, where each core has two threads,
and the memory size of the server is 256 GiB. The version
of the host Linux kernel is v5.15. To ensure that these ex-
periments did not affect the host system, we conducted our
testing within multiple virtual machine instances. These in-
stances were created using QEMU version 6.2.0, with KVM
employed to provide acceleration. The guest environment in
each instance consisted of a minimal Debian distribution disk
image, and the system was booted using the compiled kernels.
In addition to incorporating common kernel configurations,
we also enabled the eBPF subsystem-related options [5].

Kernel Version. We chose the eBPF upstream repository
for testing, and the reasons are as follows: (1) the uncovered
logic bugs in the upstream are likely to be previously known,
and thus should be fixed immediately; (2) testing upstream
enables the detection of bugs that may impact various past
stable versions; and (3) testing the upstream kernel prevents
newly introduced bugs being merged into subsequent releases.
In addition to the built configuration previously mentioned,
we also patched the kernel and enabled related options since
we modified the eBPF interpreter bpf/core.c to intercept
the execution of eBPF programs for state tracing.

Testing Process. SEV is designed to automatically execute
the entire testing process. Initially, after configuring the disk
image and the kernel for testing, SEV determines the appro-
priate QEMU command line and subsequently initiates the
virtual machine using the specified kernel. Upon successful
booting of the virtual machine, SEV proceeds to the testing
phase. This involves the generation of eBPF programs and
the validation of the verifier using state-embedded programs.
A shared directory is established to transfer the testing results

between the host and the guest. Subsequently, SEV checks
the liveness of the virtual machine and restarts the whole cam-
paign if it detects the system is not alive. We utilized SEV
to test the eBPF upstream with the aforementioned testing
process for one month.

Bug Triage. We triage and deduplicate all the bugs found
based on their root causes. In principle, any failure to detect
the sink in the state-embedded programs indicates a logic bug
in the verifier. When SEV reports such a case, we further in-
spect it to locate the root cause. During the testing campaign,
SEV retains the original program, the captured runtime states,
and the corresponding state-embedded program when a logic
bug is identified. We inspect the programs to pinpoint the in-
struction where the approximation of the verifier mismatches
the runtime states, and then analyze the preceding instructions
to collect related operations that produce the operands for the
culprit instruction. The culprit instruction in conjunction with
related operations enables us to locate the incorrect verifier
logic. Finally, one can look into those parts of the verifier and
analyze the root cause.

4.2 Quantitative Results

Bug Number. We applied SEV to test the eBPF verifier for
one month and triaged the discovered bugs based on their
root causes as mentioned in Section 4.1. Note that we only
reported unique bugs to the eBPF mailing list, and only bugs
with different root causes are counted in our evaluation. As
a result, we have found 15 unique logic bugs in the eBPF
verifier within one month, of which 10 have been fixed at the
time of paper submission. The number of found bugs is sig-
nificant considering: (1) the codebase of the eBPF verifier is
relatively small compared to other subsystems, e.g., it mainly
contains 20,000 lines of code; (2) the verifier has undergone
thorough security scrutiny by the community and is one of
the most extensively tested components in the kernel, e.g.,
eBPF self-tests [7] contain a large set of programs covering
different corner cases to test the verifier; and (3) previous
research efforts have applied verification on parts of the eBPF
verifier [44, 45, 52]. The aforementioned results demonstrate
that our approach is highly effective in uncovering logic bugs.

Furthermore, compared to manual testing, which requires
substantial effort to keep up with the development of eBPF,
our approach can continuously test the eBPF verifier along
with its frequent updates and modifications. Existing testing
tools like Syzkaller can uncover memory issues in the eBPF
subsystem, yet they encounter difficulties in logic bug detec-
tion due to the lack of effective test oracles. While formal
verification provides a strong guarantee, synthesizing specifi-
cations for the verifier is inherently complex, whereas SEV
utilizes state embedding to automatically uncover logic bugs
in the verifier without requiring specifications. Therefore,
state embedding uniquely complements existing approaches.
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Table 1: Number of bugs found by SEV in different locations.

Bug
Location

Range
Analysis

Memory
Access

State
Prune

CFG
Check Other

# 6 3 2 2 2

Bug Types. In general, logic bugs in the verifier can be clas-
sified into two categories: (1) incorrectly accepting unsafe
programs, i.e., soundness bugs, and (2) incorrectly rejecting
safe, correct programs, i.e., completeness bugs. The former
introduces potential security issues, e.g., allowing malicious
programs to be loaded, while the latter forces developers to
heavily refactor their programs to mitigate the verifier’s im-
precision. Overall, we have found 12 soundness bugs and
three completeness bugs. Table 1 shows the bug details.

Our approach can detect various soundness bugs in the
verifier for the following reasons. eBPF supports four major
types of instructions, including load, store, ALU, and jump
operations. For ALU and jump, the eBPF verifier mainly per-
forms range analysis and pointer arithmetic checks. Since
these operations are conducted on the registers, logic bugs
in those components mainly result in incorrect approxima-
tion of register states. SEV can directly detect those logic
bugs because our approach validates if the concrete states are
contained in the approximation. For example, six of the bugs
found are related to range analysis. For logic bugs in load
and store checks, although we do not profile all the memory
accessible to eBPF programs, SEV can still detect bugs in
these areas because incorrect tracking on those states can be
propagated to the approximation of registers. For instance,
three of the bugs found are related to memory access valida-
tion, including the incorrect stack spill checking illustrated in
Figure 1. Furthermore, we also uncovered logic bugs in other
components, e.g., the state pruning procedure.

SEV can also uncover completeness bugs as an additional
design benefit. As detailed in Section 3, state embedding does
not introduce any incorrect operations except for the sink. If
the verifier rejects state-embedded programs for reasons other
than the sink, it indicates the presence of a completeness bug.
More broadly, the idea of state embedding can be specifi-
cally tailored for completeness bug detection. For example,
replacing the sink with valid operations in the transformed
programs would ensure their correctness, thereby highlighting
any inaccuracies in the verifier’s rejection of these programs.
Completeness bugs not only interfere with development but
also reflect potential implementation issues in the verifier.
SEV uncovered three such bugs, where two are related to con-
trol flow graph checking, and the other is inconsistent stack
access validation. While these bugs may not directly pose se-
curity issues, they significantly impact the usability of eBPF.
For instance, one bug we discovered causes the verifier to
erroneously reject a set of programs due to a specific control

flow pattern, despite these programs being correct.
These results underscore the effectiveness of state embed-

ding in identifying a diverse array of logic bugs, and generally,
state embedding can detect logic bugs that result in a diver-
gence between the approximations and the concrete states.

Bug Impact. Logic bugs within the eBPF verifier hold critical
implications. All of the 15 bugs found by SEV are located
within the verifier, specifically in verifier.c, and most of
them are critical. We have demonstrated that two of the found
bugs are exploitable, and each can be exploited to achieve
local privilege escalation. Beyond these, other uncovered bugs
have diverse implications. For example, some bugs in the
range analysis can circumvent the verifier’s enforcement that
the return values of certain programs must be within specified
ranges, thereby potentially affecting the caller. The bugs in
the state pruning procedure can be used to load programs
containing infinite loops, leading to system hangs.

4.3 Assorted Bug Samples Found by SEV
To further demonstrate the characteristics of the uncovered
bugs, we highlight several examples in this section.

Figure 5a: The range analysis is an important component
of the verifier since it is the foundation for various safety
checks, e.g., memory access check and control flow validation.
Figure 5a shows a logic bug found by SEV in the range
analysis, where the verifier incorrectly tracks registers’ states
after simulating the fall-through path of the branch condition.
The root cause is the verifier’s inability to correctly handle
the JSLE instruction when comparing a range with a non-
overlapping constant. More concretely, R9 is initialized at
first and updated subsequently, and the range of R8 and the
value of R4 are non-overlap at #6, after which the verifier
incorrectly marks R8 and R9 as constant values. After the
arithmetic operations (#7 and #8), the runtime value of R9 is
one at #9, which differs from the verifier’s approximation, a
constant zero. The bug can break the verifier’s restriction. For
instance, the verifier enforces that the return value of certain
program types can only be zero to not modify the caller states,
yet the bug leads to programs with arbitrary return values
being loaded. After we reported the bug, the maintainers also
enhanced the return value-checking logic in the verifier.

Figure 5b: The verifier allows privileged users to load pro-
grams with back-edges and detects and rejects infinite loops
during checking. SEV uncovered a logic bug in the verifier
that incorrectly rejects programs with well-defined structures.
For the program shown in Figure 5b, the verifier rejects it,
reporting an incorrect back-edge from #3 to #4. However,
such an error is not accurate, since #3 to #4 is not a back-edge.
Furthermore, the behavior of the program is correct as the
loop in the program is bounded. The root cause is that the
control flow-checking procedure of the verifier is incapable
of handling the structure pattern of the program. The bug
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0: (b7) r9 = -2                   ; R9=-2
1: (37) r9 /= 1                   ; R9=scalar()
2: (bf) r8 = r9                   ; R9=scalar(id=1) R8_w=scalar(id=1)
3: (56) if w8 != 0xfffffffe goto pc+4 ; R8=scalar(var_off=(0xfffffffe; 
                                       0xffffffff00000000))
4: (65) if r8 s> 0xd goto pc+3    ; R8=scalar(smax=13)
5: (b7) r4 = 2                    ; R4=2
6: (dd) if r8 s<= r4 goto pc+1    ; R4=2 R8_w=0xfffffffe
7: (cc) w8 s>>= w9                ; R9=0xfffffffe R8=scalar()
8: (77) r9 >>= 32                 ; R9=0
9: (57) r9 &= 1                   ; R9=0
10: (95) exit

(a) A bug in the verifier’s range analysis.

0: (b7) r4 = 0x35

1: (b7) r8 = r4

2: (05) goto+2

3: (1f) r9 -= r4

4: (1f) r9 -= r8

5: (0f) r8 += r4

6: (a6) if r8 < 0x64 goto-4

7: (bf) r0 = r9

8: (95) exit

(b) A bug in the CFG checking.
0: (bf) r0 = r10              ; R0=fp0

3: (18) r5 = 0x1d00000025     ; R5= 0x1d00000025

2: (bc) w9 = w0               ; R9=scalar(var_off=(0x0; 0xffffffff)

3: (47) r9 |= -12             ; R9=scalar(var_off=(…; 0xb))

4: (0f) r9 += r0              ; R9=fp(off=0, u32_min=-12)

5: (76) if w5 s>= 0xfffffff6 goto pc+16  ; R5=0x1d00000025

6: (72) *(u8 *)(r9 -221) = -19    ; stack_depth=221

7: (95) exit

(c) A bug in the stack depth tacking.

0: (18) r4 = map_ptr 

1: (18) r1 = 0x1d                 

2: (55) if r4 != 0x0 goto pc+4

3: (1c) w1 -= w1                     

4: (18) r9 = 0x32

   (00) reserved_code

5: (56) if w9 != 0xfffffff4 goto pc-2

6: (95) exit

(d) A bug in the jump target checking.
Figure 5: Assorted eBPF programs that trigger logic bugs. The left part of each sub-figure shows the eBPF instructions and the
content after each semicolon presents the verifier’s approximations, illustrating the bug cause. scalar() and fp() show that the
tracked value is a scalar and stack pointer, var_off() is the tnum domain, and stack_depth is the tracked depth of used stack.

causes all the correct programs with this structure pattern to
be rejected, thus requiring heavy code refactoring to mitigate
the verifier’s bug. The inserted folding functions triggered the
bug, demonstrating the additional advantages of the folded
variant of state embedding. The bug has been fixed and the
patch was back-ported to the stable kernels.

Figure 5c: The verifier tracks the stack depth of the program
and uses this information to subsequently allocate the stack
area before execution, thus the correctness of the calculated
stack depth is important. However, SEV uncovered that the
verifier incorrectly overlooks the variable offset in stack ac-
cesses, leading to the collected stack depth being smaller than
the size that the program may access at runtime. As illustrated
in Figure 5c, at first, R9 is a scalar with a minimum value of
-12, and the tracked range information is correct. The instruc-
tion #4 adds the stack pointer to R9, thereby making R9 a
stack pointer with a variable offset. The verifier incorrectly
marks the stack depth of the program as 221 at the stack writ-
ing instruction #6 without considering the variable offset of
R9, i.e., its possible minimum value. The bug has existed for
four years and is exploitable for privilege escalation.

Figure 5d: Most instructions of eBPF adopt basic encoding
with an eight-byte length, while a special kind of load in-
struction uses the wide instruction encoding and appends a
second eight-byte immediate, the code of the second part is
the reserved code. The target of jump instructions in eBPF
programs must be within bounds and be a valid instruction.
However, SEV detected a logic bug in the verifier that reports
programs containing invalid jump targets with an incorrect

0: (18) r9 = 0x00000018        ; R9= 0x18
1: (85) call get_cgroup_id#123 ; R0=scalar()
2: (5c) w9 &= w0               ; R9=var_off(…;0x18)
3: (b5) if r0 <= 0xfffffffb goto pc+3 

                    ; R0=var_off(…;0x3)
4: (5d) if r9 != r0 goto pc+2  ; R0=-4 R9=-4
5: (c7) r9 s>>= 23             ; R9=-1
6: (95) exit

Figure 6: A logic bug in the verifier.

reason. As depicted in the figure, the instruction #4 is a spe-
cial load that uses the wide instruction encoding and its sec-
ond part contains the reserved code. The program incorrectly
jumps from #5 to the second part of #4, i.e., jumping into
the reserved code, yet the verifier incorrectly reports that the
program contains an invalid load instruction. The root cause
of the bug is that the verifier overlooks the special case while
checking the jump target.

Figure 6: SEV also uncovered that the range analysis of the
verifier is incapable of correctly handling equality comparison
when the ranges of two operands do not overlap. This issue is
exemplified in Figure 6. At #2 the mask of R9 is 0x18, and
the verifier determines all the bits of R9 are known to be zero
except for the fourth, and the fifth bit (unknown). The mask of
R3 is 0x3, where only the lower two bits are unknown and all
the other bits are one, and thus the range of R9 and R3 are non-
overlap. However, the verifier erroneously assigns both R0
and R9 as -4 after the if-condition with equality comparison
at #4, where the runtime value of R9 consistently remains
0x18, i.e., a logic bug in the verifier.
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4.4 Throughput Impact
SEV synthesizes state-embedded programs by profiling run-
time states using the tracer mentioned in Section 3 and subse-
quently integrating the generated folding functions and em-
bedding the folded concrete state. In this section, we evaluate
the performance impact of SEV on three key aspects: the
influence of profiling on program execution speed, the effect
of state embedding on the verification time, and the overall
impact on testing throughput.

The evaluation procedure is as follows. First, SEV is uti-
lized to continuously generate programs. For accepted pro-
grams, we execute them both with and without the tracer and
compare the execution times in both scenarios to determine
the impact of the profiling. Subsequently, we embed the con-
crete states and measure the difference in verification time
between the state-embedded program and the original pro-
gram. To account for any nondeterministic factors, the above
process is repeated multiple times for each program. Finally,
to ascertain the impact on testing throughput, we run SEV
with and without the profiling and state embedding. All the
comparisons are carried out over a 24-hour period, and the
average results are compiled and reported.

The evaluation results show that the average impact of pro-
filing on program execution is 5.3%. This relatively minor
impact is primarily due to the profiling being performed at
the basic block level, where the tracer efficiently appends the
states to a shared buffer. In terms of the verification time, the
impact of state embedding results in an average increase of
17.2%. The minimal complexity added to the original program
by state embedding, which involves arithmetic operations and
a single embedding of the sink, contributes to this increase.
Notably, the overall impact on testing throughput is only 1.6%.
This lower impact, compared to program execution and veri-
fication time, is because state embedding is conducted only
after programs are accepted, an infrequent event. In addition,
the embedding constitutes a small part of the entire testing
campaign, which also includes the generation, test case per-
sistence, etc. In summary, we conclude that state embedding
imposes a reasonable overhead and the impact is well within
expectations, given its ability to uncover logic bugs.

4.5 Discussion
Coverage Impact. Coverage in our context involves two
aspects: (1) in the generated programs (raw coverage), and
(2) in the verifier (induced coverage), where the former may
affect the profiling stage and the latter is related to the testing
sufficiency. To ensure a stable raw coverage, we adopt closed
eBPF programs as mentioned in Section 3.2 that require only
a single round of profiling. For the induced coverage, we cover
the verifier’s functionality with the program generator, and
optimizing the induced coverage is orthogonal to this work.

False Positives/False Negatives. As illustrated in Section 3,

in principle, state embedding does not introduce any invalid
operations to the original program except for the embedded
sink. In practice, our approach has not resulted in any false
positives, e.g., the found bugs pose certain security implica-
tions. Being a testing technique, our approach can suffer from
false negatives. The major reason is that state embedding
requires programs accepted by the verifier, yet the genera-
tor may not be able to explore a diverse, thorough search
space. Our main goal in this work is to detect a wide range
of logic bugs with the principled idea, i.e., concrete states
being contained in the approximation. In addition, the in-
serted arithmetic instructions may hinder some non-contained
states, albeit with a low likelihood. SEV operates within a
continuous testing loop, which therefore inherently enhances
the detection of such anomalies over time, even if a specific
combination of state values momentarily evades detection.

Verifier Changes. The eBPF subsystem is undergoing con-
tinuous updates, incorporating new features as it develops.
Despite these changes, state embedding remains widely ap-
plicable and is not limited to specific static checkers. Our
implementation, importantly, does not depend on the internal
workings of the verifier. This is because SEV mainly trans-
forms the accepted programs to embed concrete states, after
which the program is delivered to the verifier for validation.
Changes within the verifier, such as new abstract domains,
primarily affect how the state-embedded program is validated,
while the transformation remains unaffected.

State Pruning. The state pruning procedure [12] in the veri-
fier evaluates the current state against the known safe states to
determine redundancy, thereby pruning explored paths. How-
ever, this technique cannot be applied to eliminate extra paths
for direct embedding. When comparing states, the verifier
performs a detailed analysis of registers marked as precise.
The registers of inserted sinks are marked precise, yet their
value ranges vary between the branch-taken and fall-through
paths, making them unprunable. Folding addresses this by
embedding the folded state once at the end of the program.

5 Related Work

eBPF Verification. Existing work [16] applies formal verifica-
tion to several components of the eBPF verifier, significantly
advancing the verifier’s correctness. For instance, recent ef-
forts [52] have proved the soundness of the implementation
of the tristate number in the verifier, and we did not detect
any bugs in the corresponding location, i.e., tnum.c in the
kernel. However, tnum is a small component of the verifier,
which mainly contains 200 lines of code. Agni [45] is more
ambitious, aiming to verify the range analysis of the verifier,
which consists of 2,100 lines of code. The tool automatically
converts the C source code to SMT formulas and utilizes SMT
solvers to detect discrepancies between the specification and
the implementation. The work concludes that the tool proved
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the soundness of range analysis in Linux v5.19, the latest
version when the work was conducted. Beyond reasoning
about the correctness of the verifier, Jitterbug [34] applies
automated verification on the eBPF JIT compiler.

Nevertheless, devising specifications for the eBPF verifier
automatically or manually is challenging and requires deep do-
main knowledge. Consequently, the synthesized specifications
can be incomplete or inconsistent with the implementation.
For example, while Agni aims to perform verification on the
verifier’s range analysis, the generated verification conditions
are incomplete [4, 9, 10, 14]. Indeed, we identified logic bugs
in this component within the same kernel version. In compar-
ison, state embedding has the following unique advantages:
(1) our approach does not require predefined specifications,
but utilizes state embedding to perform fine-grained checks
for logic bug detection; (2) state embedding is capable of test-
ing various components not just the range analysis, e.g., SEV
also uncovered bugs in the memory access validation; and (3)
since we leverage the verifier to check whether the concrete
states are contained in the approximation, our approach is
agnostic to the verifier’s internal and can be applied along
with its fast changes. Therefore, our approach significantly
complements the existing work.

Static Analyzer Testing. Some work [27, 53] proposes to
detect bugs in static analyzers by collecting the information
of both analyzers and programs and directly comparing them.
For example, Wu et al. [49] propose to profile pointer alias at
runtime and compare the information directly with the knowl-
edge from the alias analysis algorithm. Similarly, Buzzer [26]
extracts the verifier log, conducts an offline comparison be-
tween the log information and the collected map value, and
uncovered one logic bug. However, this direct comparison
approach requires: (1) collecting and parsing both the runtime
information and the analyzers’ states, and (2) correctly con-
ducting the comparison, which requires substantial domain
knowledge to interpret the verifier states and is coupled with
concrete implementations. In comparison, SEV only profiles
program states at each basic block and utilizes state-embedded
programs to enable the verifier to conduct the validation, thus
being efficient and agnostic to verifiers. In addition, Bugariu
et al. [17] propose to test abstract domains by interactively
invoking operations and using the mathematical properties
of the domains as test oracles. However, applying this ap-
proach in the eBPF verifier is challenging: (1) the verifier is
integrated into the kernel and does not support interactively
invoking its internal operations, and (2) the eBPF verifier
does not provide a specification and mixes up the abstract
operators in one domain with the refining operations [45],
thus the mathematical properties summarized are not directly
applicable in this context.

Differential Testing. α-Diff [29] conducts differential test-
ing between several static analyzers to identify logic bugs in
them. However, this approach hinges on the precondition that

the precision of static checkers is comparably high and that
reference implementations are well-established. Except for
the verifier in Linux, Gershuni et al. [22] propose a potential
reference verifier. Yet, it lacks support for some important
features, e.g., various modes of basic ALU instructions, and
experiences precision issues [11]. Therefore, using the tool
for differential testing would be ineffective in detecting logic
bugs in the kernel verifier. Furthermore, our approach dif-
fers significantly from differential testing methods and is an
instance of metamorphic testing. α-Diff relies on multiple
checkers and does not provide ground truth for each variant it
produces. In contrast, state-embedded programs contain the
ground truth by construction, eliminating the need for other
reference verifiers.

Assertion Generation. Existing work aims to automatically
generate assert statements to detect logic bugs [48, 51], es-
tablishing input-output relationships using program analysis
or deep learning. In contrast, our approach does not aim to
assert input-output relations, which is nontrivial for the veri-
fier’s logic bug detection, but to validate a core property: the
concrete states must align with the verifier’s approximations.
It embeds concrete states into the program, leveraging the
verifier to conduct the containment checks. Therefore, state
embedding fundamentally differs from assertion generation,
in terms of both intent and methodology.

Kernel Fuzzing. Fuzz testing [21, 30, 38] is an effective ap-
proach and has been applied in kernel scenarios. For instance,
Syzkaller [47] is capable of testing the eBPF subsystem by
invoking the bpf() system call with random arguments. It has
been integrated into upstream testing and has uncovered many
memory errors [46]. Similarly, another work by iovisor [25]
employs libfuzzer [36] to generate random byte sequences for
testing the verifier. BVF [42] captures memory errors in eBPF
programs with sanitation to indirectly detect correctness bugs.
Nevertheless, existing fuzzers [33] highly rely on sanitizers
to capture bugs [39, 40], and they experience difficulties in
the verifier’s logic bug detection. Therefore, our approach
complements the existing fuzzing work and state embedding
can be utilized for direct logic bug detection.

6 Conclusion

In this paper, we have introduced state embedding, a novel
and effective technique for logic bug detection in the eBPF
verifier. Our approach systematically transforms the program
to embed concrete states. The state-embedded program can
subsequently be used to test the verifier by validating whether
or not concrete states are contained in the approximation of
the verifier. By applying state embedding in testing the eBPF
verifier, our prototype SEV has successfully uncovered 15
logic bugs—many are critical, and two are exploitable for
local privilege escalation—demonstrating the effectiveness
of our approach.
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Abstract
RefFS is the first concurrent file system that guarantees

both liveness and safety, backed by a machine-checkable
proof. Unlike earlier concurrent file systems, RefFS prov-
ably avoids termination bugs such as livelocks and deadlocks,
through the dynamically layered definite releases specifica-
tion. This specification enables handling of general block-
ing scenarios (including ad-hoc synchronization), facilitates
modular reasoning for nested blocking, and eliminates the
possibility of circular blocking.

The methodology underlying the aforementioned specifi-
cation is integrated into a framework called MoLi (Modular
Liveness Verification). This framework helps developers ver-
ify concurrent file systems. We further validate the correctness
of the locking scheme for the Linux Virtual File System (VFS).
Remarkably, even without conducting code proofs, we uncov-
ered a critical flaw in a recent version of the locking scheme,
which may lead to deadlocks of the entire OS (confirmed
by Linux maintainers). RefFS achieves better overall perfor-
mance than AtomFS, a state-of-the-art, verified concurrent
file system without the liveness guarantee.

1 Introduction

This paper presents RefFS, a concurrent file system with a
mechanized proof of both safety and liveness properties. Live-
ness means that each operation of RefFS provably terminates
under the assumption of fair scheduling. The proof rules out a
wide range of bugs that occur in concurrent file systems [67],
such as deadlocks, livelocks, and infinite loops.

Proving the absence of termination bugs is important, be-
cause they are too subtle to be correctly handled by developers.
For instance [5], a task might not deadlock with another task
via a direct ABBA1 pattern, but instead through a complex
circular dependency chain involving multiple tasks. A wide
range of other termination bugs [54] occur, posing a threat to
the software system. Once triggered, these bugs can lead to
serious consequences, such as a system hang [16].

Testing and program analysis techniques (see §2 for more
detail) have been used to detect (a subclass of) termination
bugs. Although effective in practice, they cannot cover all
possible cases. Formal verification is a promising approach.
Researchers have made tremendous progress in concurrent

1One acquires locks in the order of AB while another in the order of BA.

file system verification [20, 101] and liveness verification [43,
56, 74]. Yet, modular liveness verification (focusing on one
operation or one line of code at a time) of concurrent file
systems remains an open problem.

In principle, proving liveness requires a well-foundedness
argument [2, 60], i.e., within a finite number of steps, some
progress event happens. For a sequential program, a well-
founded metric such as the remaining steps of the program
measures its progress [46, 66]. With each step, the metric
must decrease, but not infinitely. Hence, the program provably
terminates after running out the metric.

Unfortunately, proving liveness for a concurrent file sys-
tem still faces the following challenges. First, the approach
should support general blocking scenarios. A thread that is
blocked in a busy waiting loop (e.g., to acquire a lock) cannot
achieve progress by its own steps, but relies on the steps of
other threads (e.g., the thread owning the lock). We aim for
general busy waiting loops. This should be distinguished from
work [12, 48] that supports only lock primitives, ignoring ad-
hoc synchronization, which is common in file systems (see
§2).

Furthermore, it is important to support modular reasoning,
even though nested blocking causes progress dependencies
between threads. Consider the following case. An unlink
operation owns parent and requests child. Thread t1 that
tries to acquire parent is blocked by unlink, which itself
is blocked by another thread t2 that owns child. A metric
for t1’s progress towards acquiring parent would include
not only unlink’s steps to release parent, but also t2’s steps
to release child. The latter contributes to t1’s progress in-
directly. Explicitly considering such indirect steps hampers
modularity. This issue becomes more pronounced with more
threads chained by nested blocking.

Last but not least, the approach should prevent circular
nested blocking. While an intuitive approach might specify a
static order for nested blocking, the complexity of file systems
introduces diverse and dynamic blocking order. On the one
hand, file systems exhibit diverse nested blocking scenarios,
with different blocking orders and concurrently executed by
multiple threads. On the other hand, these nested blocking
scenarios exhibit dynamic order, i.e., the exact rank of some
specific blocking event cannot be known statically. For in-
stance, the parent-child nested blocking of unlink refers to
a dynamic set of inode pairs as a file system evolves. Two
inodes with parent-child relation may swap their positions, ex-
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hibiting opposite orders in unlink. In rename, the blocking
order of old and new parents is also unknown in advance. To
avoid circular dependency, formally capturing the blocking
order is essential but extremely challenging.

To meet such challenges, this paper makes the following
contributions:

• A methodology for proving liveness, based on an acyclic
waits-for graph. A vertex refers to an action waited by a
blocked thread. The blocking thread must definitely fulfill
the action. A directed edge represents a waits-for depen-
dency between actions. To avoid circular dependencies,
the waits-for graph must be acyclic.

• The dynamically layered definite releases (DLDR) specifi-
cation, which supports modular liveness reasoning about
concurrent file systems, with the following key ideas. (1)
Definite release specifies that an acquired lock will always
be released. (2) It proves termination of ad-hoc busy wait-
ing lock loop based on a metric-decreasing idea. (3) We
assign each definite release a layer, and allow a definite
release to wait for only a higher-numbered one. Acquiring
a lock waits only for the definite release of the lock (direct
steps); layers decouple dependencies between definite re-
leases (indirect steps), achieving modular reasoning. (4)
The layering has two components: one follows the file
system hierarchy (a parent may wait for a child), which is
acyclic by definition; a temporary dependency models the
non-deterministic blocking order in rename, and ensures
acyclicity by construction.

• A protocol-level proof of Linux VFS’s locking scheme
based on an extension of the DLDR specification. The
proof follows the Linux directory locking documenta-
tion [29]. We found a serious deadlock flaw; it was con-
firmed and fixed (we prove the fix correct).

• The MoLi framework for verifying termination and func-
tional correctness of concurrent file systems. MoLi sup-
ports (1) definite releases with dynamic layers to achieve
modular termination reasoning, and (2) non-atomic ab-
stract operations to model non-atomic implementations.
The framework is mechanized in Coq to ensure the relia-
bility of the verification. Currently, MoLi does not support
crash safety. MoLi’s soundness has been formally proved
on paper (a mechanized Coq proof is left as future work).

• The RefFS file system, the first modularly-verified con-
current file system with termination guarantees. RefFS
supports highly concurrent path traversal using reference
counting (refcount) [30]. Users are not bothered by the
more fine-grained behaviors because the abstraction of
RefFS hides refcounts, locks, and internal data structures,
and exhibits atomic directory lookups.

The rest of this paper is organized as follows. §2 motivates
this work with a study of termination bugs. §3 explains the

MoLi methodology. §4 introduces the DLDR specification
and its extension to directory locking in Linux. §5 describes
the MoLi framework. §6 presents RefFS’s design and veri-
fication. §7 evaluates RefFS and MoLi. §8 relates MoLi to
previous work. §9 concludes.

2 Motivation

2.1 Study of Termination Bugs

Termination bugs cover a wide range, from non-concurrent
ones (such as infinite loops) to concurrent ones (such as dead-
locks and livelocks). A recent survey [16] on security vul-
nerabilities in file systems shows that about 7% of CVEs are
related to non-termination. A prior study [67] on file system
patches reveals that up to 40% of concurrency bugs are due to
deadlocks. Deadlock-related semantic bugs are hard to diag-
nose, e.g., misuse of the GFP_KERNEL flag [70], and may hurt
the system for years.

From a verification perspective, this raises several impor-
tant questions: (1) How can one classify these bugs based on
the challenges they pose for verification? (2) What are the
primary classes of termination bugs? (3) What makes these
bugs dominant and challenging to avoid? Answering these
questions can help focus our verification efforts. Therefore,
we performed a comprehensive study of termination bugs in
Linux file systems (from 2020 to 2023). We collected 213
bugs in total by reading commit messages of patches [54]. We
make the following observations.

Bug classification. Termination bugs can be classified based
on whether they are concurrency bugs or not. 18% of termina-
tion bugs are non-concurrent. They include infinite loops
or recursion, due mainly to logic mistakes (e.g., missing
checks [82]) or generic errors (e.g., inappropriate trunca-
tion [42] or overflow [94]). 82% of termination bugs are
concurrent. Within concurrent bugs, 95% of them are dead-
locks and 5% are livelocks. Deadlock occurs when a thread
becomes blocked, waiting for a specific action that never hap-
pens, and none of the involved threads can make progress.
In livelock, a thread is constantly delayed, resulting in an
inability to make progress.

Let us now look into deadlocks to understand the underly-
ing factors contributing to their prevalence.

Ad-hoc synchronization. 46% of deadlocks (all percentages
hereafter are relative to deadlocks) involve ad-hoc synchro-
nization, where a thread is waiting for a specific event, such
as transaction completion [11], flushing of dirty inodes [9],
or other custom synchronization points [76, 90]. Deadlock
analysis tools commonly focus on well-known and structured
synchronization patterns, e.g., lock acquisition and release,
but ad-hoc synchronization often lacks such patterns, which
makes it challenging to analyze and detect.

Nested blocking. 21% of deadlocks are of type AA, where
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a thread is blocked by itself [25, 72]. The remaining 79%
involve nested blocking. Nested blocking occurs when a task
that is blocking another task, gets blocked itself. For instance,
nested acquisition of locks may cause nested blocking. 42%
of deadlocks involve both nested blocking and ad-hoc syn-
chronization [1, 24]. 23% of deadlocks involve at least three
concurrent tasks [4, 7]. To prevent such bugs, it is necessary
to examine, not only the local blocking order, but also the
absence of global, circular dependencies within the system.
However, existing approaches often fail to present a global
order of dependencies, hampering the ability to detect such
deadlocks effectively.

Dynamic order. 8% of deadlocks exhibit a dynamic block-
ing order, where the exact order between two blocking
events cannot be predetermined. For instance, object removal
(unlink/rmdir) acquires inode locks in a parent-child order,
with the definitions of “parent” and “child” based on the cur-
rent state of the file tree. As the file tree evolves, the set of
inode pairs that satisfy this parent-child relationship dynami-
cally changes. Similarly, many other data structures, such as
the forest structure in BTRFS and various list implementa-
tions, also exhibit dynamic blocking order. These scenarios
further contribute to the complexity of the issue. Even for ex-
perts in the domain, mistakes still occur [10,86,87], highlight-
ing the difficulty of effectively managing these complexities.

To summarize, this paper focuses primarily on addressing
the deadlock-related challenges in file systems, i.e., ad-hoc
synchronization (§4.1), nested blocking (§4.2), and dynamic
order (§4.3). We briefly discuss the support for livelocks
(§4.5) and non-concurrent bugs (§5.3).

2.2 Limitations of Previous Work
There are a number of program-analysis-based techniques that
aim at detecting deadlock [51, 91], livelock [13] or infinite
loop [15,17] respectively. Although effective in practice, their
common problem is false positives. Programmers still have
to manually confirm or reproduce the bug.

Various fuzzing-based testing tools [38, 50] can also re-
veal termination bugs. However, they and previous program-
analysis tools cannot avoid false negatives.

For instance, the Linux kernel has a runtime validator to
check locking correctness [31]. Users inform the validator of
the hierarchy (a fixed order) between lock objects. This has
the following drawbacks. First, the validator does not recog-
nize ad-hoc synchronization. Second, it does not provide a
general principle on how to handle dynamic locking order,
whose hierarchy cannot be predetermined. Third, the annota-
tions by developers may be wrong or insufficient, giving rise
to both false positives [95] and false negatives.

Some efforts support deadlock-freedom (DF) verifica-
tion [12, 48, 62, 93]. They track dependencies between block-
ing primitives to prevent circular blocking. This approach
treats deadlock-freedom as a safety property, and does not
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Figure 1: The MoLi methodology for proving termina-
tion. Waits-for graph consists of definite actions (vertices)
and waits-for dependencies (edges). In (c), the dependencies
between D1 and D2 are different at different states.

prevent livelocks or non-termination of critical sections. They
often assume known lock primitives, and do not apply to
ad-hoc synchronization.

Some of these DF efforts [14,61] also have limited support
for dynamic lock orders. They consider only situations where
a lock order change has local effects, i.e., it suffices to locally
check some ordering constraints of the current operation to
ensure acyclicity, without considering concurrent operations.
For instance, for a rotation of a balanced tree, it suffices to
check only the relations between the moved nodes, to ensure
a global tree-based partial order. However, in a file system,
it is necessary to check the absence of circular dependen-
cies globally after the order change, which requires nontrivial
concurrency reasoning (see §4.3 for more detail).

There is theoretical work [32, 64] to help reason about gen-
eral blocking scenarios. LiLi [64] proposes a program logic
to support the verification of starvation freedom and deadlock
freedom. But LiLi does not support layered reasoning (see
§4.2), and thus does not allow modular reasoning over nested
blocking (i.e., verifying each line of code independently).
TaDA Live [32] introduces layers to capture blocking orders,
but it does not support layer changes caused by concurrent
operations. Neither TaDA Live nor LiLi has a mechanical
framework or an executable implementation.

3 The MoLi Methodology

Our approach to proving liveness is to exhibit an acyclic waits-
for graph. A vertex is an action that a blocked thread is waiting
for. A directed edge represents a waits-for dependency be-
tween actions. The waits-for graph shrinks as follows (we will
discuss its growth in §4.5). Vertices with out-degree zero (not
waiting for anything) must be unblocked to be removed from
the graph. New vertices become leaves and are unblocked.
Consequently, all waited actions eventually happen, creating
progress for the blocked threads. Below, we discuss how this
approach handles the challenges of file systems.

To support general blocking scenarios, MoLi borrows ideas
from previous work [64]: a thread t is blocked when another
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thread does not fulfill the unblocking action that t is waiting
for (e.g., releasing the lock or finishing the transaction); thus,
the specification should describe actions that one thread will
definitely fulfill (Fig. 1a). All such definite actions should be
specified by proof authors, and constitute the vertices of the
waits-for graph (Fig. 1c).

In nested blocking, a definite action, e.g., releasing lock L1
by thread t, gets blocked and waits for another definite action,
e.g., releasing lock L2 by another thread. We represent this
waits-for dependency as a directed edge. To capture acyclic-
ity, MoLi requires proof authors to layer vertices so that a
vertex only waits for a higher-numbered vertex (Fig. 1b). For
instance, proof authors can define the layers as the reverse
topological order of the waits-for graph.

To capture the dynamic order of nested blocking, MoLi
allows to define layers dynamically according to the system
state. For instance (Fig. 1c), definite action D1 waits for D2
in one state, while this dependency may be the opposite in a
different state. The layers reflect the waits-for dependencies
of the current state.

To ensure acyclicity despite layer changes, MoLi enforces a
dependency condition on layers: for any ongoing dependency
between definite actions, their layer relation represents this
dependency and stays unchanged despite state changes. For
instance, as long as definite action D1 waits for D2, the layer
of D1 must remain less than D2 despite state changes. Be-
cause all ongoing dependencies are immune to state changes,
the system is never in danger of circular dependency.

We now explain in more detail how to apply this methodol-
ogy to a concurrent file system.

4 Dynamically Layered Definite Releases

Directory locking refers to the locking scheme used for di-
rectory operations. Ensuring its correctness is important yet
challenging. We tackle the challenges by introducing the dy-
namically layered definite releases specification (§4.1-4.3).
Then, we apply the specification to the Linux Virtual File
System (VFS) (§4.4) and discuss how to support delay (§4.5).

4.1 Definite Release

The rule for concurrent access in a Linux FS is to protect each
inode with its own associated, fine-grained lock. A thread t
acquiring a lock may be blocked by another thread holding
the lock. To prove t’s termination, we need to show that t will
eventually become unblocked. Consider the code snippet in
Fig. 2a2. The code traverses from the cur directory and looks
up the name path[i] to find the next inode. The lookup is
protected by holding the lock on cur, and the lock is released
afterward. Assume all threads only execute this piece of code.

2This simplified version is incorrect because it omits reference counting;
we will fix this in §6

// Pre: no lock owned
while(path[i]!=NULL)
lock(cur);
next=lookup(cur,path[i]);
if (next==NULL) {
unlock(cur); return;}

unlock(cur);
cur=next; i++;

}
(a) traversal loop.

def lock(cur):
int i;
i=getAndInc(cur.next);
while(i!=cur.owner){}

def unlock(cur):
cur.owner=cur.owner+1;

(b) ticket lock.

Figure 2: Single locking in path traversal. Termination of
lock(cur) relies on other threads releasing the lock by in-
creasing cur.owner.

A fair lock, such as a ticket lock (Fig. 2b), is used to ensure
termination; every thread lines up for the lock by getting a
ticket. A thread acquires the lock if its ticket equals owner,
and releases the lock by increasing the owner. The question
is why the lock(cur) statement would terminate.

Blocking is caused by the absence of environmental be-
havior, e.g., not releasing the lock. To prove termination, the
specification should describe the certainty of some state tran-
sition. For lock-based blocking, we propose a domain-specific
specification called definite release.
Definition 1 (Definite Release)

Definite release says, for some thread t and lock, if t
owns the lock, t will eventually release the lock.

Definite release is inspired by the definite action notion
proposed by LiLi [64], which can characterize an action that
will definitely happen. However, one key difference is that
definite action in LiLi does not support layered reasoning,
and thus cannot modularly handle nested locking (see §4.2).

Specifically, definite release (D) specifies a state transition:
“t owns the lock” ; “t releases the lock”, where, informally,
the notation ; states that the state transition eventually hap-
pens. Definite release supports busy-waiting lock loops (not
just lock primitives). For instance, definite release of a ticket
lock can be formalized as (owner= t.i); (owner= t.i+1),
where t.i means the local variable i of thread t.

Rely-guarantee style reasoning. Definite release establishes
a protocol that helps reason about the termination of locks as
follows. First, once acquired, the release of a lock must be
guaranteed by each thread. Second, to prove the termination
of a lock, a thread may rely on some other thread releasing
the lock. However, the above protocol does not avoid circular
reasoning, which is usually unsound in proving termination.
For instance, in a deadlock, each thread relies on the other
to release, but this is circular and will never happen. LiLi’s
approach fixes this by requiring that each thread fulfills a
definite release without waiting itself for any definite release.

Definite release achieves thread-modular verification of
Fig. 2, focusing on one thread at a time, rather than explicitly
considering steps of concurrent threads. Rely: if thread t is
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1 // Pre: no lock owned
2 lock(parent);
3 child=lookup(parent,name);
4 lock(child);

5 // Perform checks and
6 // do unlink/rmdir
7 ...
8 unlock(parent);

Figure 3: Code snippet for nested locking in
unlink/rmdir. The release of parent may be blocked by
the acquisition of child. Code for error handling omitted.

blocked, spinning inside the while loop of lock, t relies on
definite release, i.e., the increase of owner by lock holder;
t can acquire the lock, because it needs to wait for a finite
number of definite releases only. Guarantee: once t acquires
the lock of cur, assuming that lookup terminates, t guarantees
to fulfill the release without waiting for any definite release.

4.2 Hierarchical Layering
Some file system operations require nested locking (holding
one lock and requesting another). For instance, consider the
algorithm for removing an inode (in unlink or rmdir) in
Fig. 3. The algorithm acquires parent to look up child.
The lock on parent does not protect its children. To check
whether child can be removed, we acquire child. When the
operation finishes, it releases parent.

Unfortunately, in such nested locking, the release of the
first lock may be blocked waiting for the release of the second
lock. Hence, the guarantee of the first lock’s definite release
no longer holds.

If we stick to LiLi’s approach in §4.1, we cannot prove
the first lock by using its definite release, but have to specify
more fine-grained actions that can definitely happen without
waiting for any actions. For instance, acquiring parent may
have to wait for (1) the release of child if the thread that owns
parent is blocked requesting child, and (2) the release of
parent if the thread that owns parent is not blocked. As a
result, the proof for lock(parent) explicitly considers how
lock(child) would be unblocked first, which is not modular.
A modular approach would verify each line of code separately.
The evaluation in §7.2 shows that LiLi’s approach may cost 7
times the proof effort (measured in the lines of Coq) than our
modular approach presented below.

We define lock dependency as below.
Definition 2 (Lock Dependency)

For nested locking in order of A and B, the definite release
of lock A may depend on the definite release of lock B. This
defines the lock dependency relation from A to B.

Intuition on termination. Lock dependency coincides with
waits-for dependency (§3). Fig. 4a shows the possible lock
dependencies in a file system as a waits-for graph. There is a
lock dependency from a parent to its child, as shown by the
directed edge. The dependencies extend transitively to the par-
ent’s descendants. For example, root has a lock dependency

(a)  hierarchical layering

/

BA

lock(rename_mutex); 

lock(A); // to lock(B)

(b)  dynamic layering

C

B

/

A

Lock dependency Dynamic lock dependency

Layer-0

Layer-1

Layer-2

Layer-1

Layer-0

Layer-1 Layer-2

Figure 4: Waits-for graphs and layerings. Hierarchical lay-
ering accounts for parent-child lock dependencies. Dynamic
layering captures the dynamic lock dependencies in rename.

on B, which has a lock dependency on C. If the waits-for graph
ever contains a cycle, the system is deadlocked.

The good news is that this waits-for graph so far follows
the file system tree, so the dependency chain ends at the leaf
inodes. The definite release of a leaf inode does not wait for
anything. The definite releases of other inodes in the chain
occur one by one in the leaf-to-root direction. Consequently,
the definite release of all inodes must happen, ensuring that
the parent-child nested locking terminates.

Hierarchical layering for definite releases. It is not harmful
for definite releases to have dependencies as long as the de-
pendencies are not circular. To formalize this intuition, we
choose to assign a layer to each definite release, and allow a
definite release to wait only for a higher-numbered one. In
a file system, we use hierarchical layering — the layer of
an inode’s definite release (an inode’s layer in short) is the
length of the path from root. For instance, in Fig. 4a, root
is assigned 0, and after each hop, the layer increases by one.

More formally, hierarchical layering can be represented as
below. A layer function H L takes the inode number inum
and file system state FS to return inum’s layer under FS. If
inum is reachable from the root, distance computes the length
of path (with type Nat) from the root to inum under FS. The
layer is undefined otherwise.

H L(inum,FS)
def
= distance(root(FS),inum,FS) if defined

For a well-formed FS, each inode is reachable from the
root following a unique path, i.e., each inode has a uniquely
determined layer. Hence, inodes are totally ordered, and de-
pendencies are not circular for any well-formed FS (assume FS
does not change for now). Users specify the well-formedness
of FS as invariants (e.g., each child has only one parent), and
prove that invariants always hold.

Modular reasoning with layering. Each thread should still
guarantee to release an acquired lock. But its fulfillment
can wait for a higher-numbered definite release. Hierarchical
layering ensures the wait is not circular. A thread proves
the termination of a lock statement independently by only
relying on definite release of the lock.
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def lock_rename(d1,d2):
1 if(d1==d2){
2 lock(d1);return;}
3 lock(rename_mutex);
4 if(ancestor(d2,d1)){
5 lock(d2);

6 lock(d1);
7 return;
8 }

9 lock(d1); TDep:=(d1,d2)

10 lock(d2); TDep:=None

11 return;

Figure 5: Nested locking in lock_rename. The lock-
ing order is dynamic, e.g., lock_rename(d1,d2) and
lock_rename(d2,d1) may acquire d1 and d2 in an opposite
order. Code in gray boxes captures the dynamic order using
ghost state. These locks are released when rename exits.

Layering decouples the dependency between definite re-
leases and enables modular reasoning for Fig. 3. When
t is blocked inside lock(parent), t relies on definite re-
lease of parent, and proves termination by considering
only parent’s internal waiting queue, without looking into
other code. t proves lock(child) similarly. After t acquires
parent, its definite release requires to prove parent’s layer
is less than child, which is true by definition of layers.

4.3 Dynamic Layering

The rename operation moves an inode (more precisely, the
subtree with the inode as root) from its old parent to a new par-
ent. It needs to acquire the locks of both directories to ensure
atomicity. The function lock_rename in Fig. 5 is a simplified
version of the implementation of Linux VFS (ignore the code
in gray boxes for now). If the two directories are the same, it
only needs to acquire one lock. To avoid concurrent issues,
VFS requires a cross-directory rename to acquire the global
per-filesystem lock rename_mutex. Holding rename_mutex
prevents another cross-directory rename from changing the
ancestry relationship. Furthermore, to not conflict with the
parent-child order, if one directory is the ancestor to another,
it acquires the ancestor first. If not, the locking order does not
matter, so the code chooses a default order, i.e., old parent
first (d1 before d2).

Dynamic lock dependency. In contrast to the parent-child
lock dependency, the lock dependency in lock_rename
cannot be predetermined. Specifically, prior to acquiring
rename_mutex, the lock dependency between d1 and d2 is
not stable since other threads might dynamically alter it. Once
rename_mutex is acquired, the lock dependency becomes
fixed. If d2 is an ancestor to d1, the lock dependency is from
d2 to d1 as shown in lines 5-6. Otherwise, it is from d1 to
d2 as shown in lines 9-10. Furthermore, after lines 6 and 10
where the code has acquired the respective locks for d1 and
d2, we can remove the dependency between them, because
one of them no longer waits for the other.

Intuition on termination. The waits-for graph remains acyclic
during lock_rename, which ensures termination. Before

lock_rename executes, the graph is tree-shaped. Then there
is a dynamic lock dependency between d1 and d2. According
to the locking rules in lock_rename, this dynamic lock de-
pendency is not from a child to its ancestor, and thus does not
form a cycle with existing parent-child dependencies. Finally,
removing the dynamic lock dependency will not introduce a
cycle. The acyclicity of the waits-for graph ensures that defi-
nite releases happen in order, despite dynamically-changing
lock dependencies. The code terminates, because all definite
releases are guaranteed to be satisfied.
Dynamic layering. We propose dynamic layering to capture
the lock dependency in lock_rename. The layer for each in-
ode is defined as the length of the longest path from the root
in the waits-for graph. For instance, after the introduced dy-
namic lock dependency (drawn as a dashed arrow) in Fig. 4b,
the longest path from root to B is root-A-B, so the layer for
B is now 2.

To encode dynamic layers, we leverage ghost state [75], a
commonly used verification technique. Ghost state is added
by users in the abstract model to assist the proof, which does
not influence (or exist in) the concrete program. We intro-
duce a temporary dependency TDep, a globally unique value
that tracks the lock dependency introduced by lock_rename.
TDep is an option type of a pair of inums, i.e., either None or
(inum1,inum2) representing there is a lock dependency from
inum1 to inum2.

Dynamic layering DL is defined below. DL takes inum
to return its layer under full state S, where S includes file
system state FS and ghost state TDep. The root inode has
layer 0. If there is no dynamic dependency to inum, i.e., inum
does not equal the second item in TDep (written TDep.inum2
for simplicity), inum’s layer is one plus its parent’s layer. If
inum equals TDep.inum2, its layer is one plus the larger layer
between the hierarchical layers (as defined in §4.2) of its
parent and TDep.inum1. Otherwise, the layer is undefined.

S= (FS,TDep)

DL(inum,S)
def
=

0 if inum= root(FS)
DL(par,S)+1 if ∃par,parent(par,inum,FS)

∧inum 6= TDep.inum2
max{H L(TDep.inum1,FS),

H L(par,FS)}+1
if ∃par,parent(par,inum,FS)

∧inum= TDep.inum2
undefined otherwise

This definition focuses on inode locks. For the per-
filesystem lock rename_mutex, we also specify a definite
release, whose layer is a special minimum value so it can
depend on all other definite releases.

The code in gray boxes (Fig. 5) presents feasible updates
to TDep. Only the thread that holds rename_mutex can set
TDep, and TDep is None when no thread holds rename_mutex.
TDep is set to (d1,d2) after lock(d1) in line 9 to represent
the upcoming lock dependency from d1 to d2. Note that we
do not need to set TDep after lock(d2) in line 5 because the

634    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



lock dependency from d2 to d1 is already present in the waits-
for graph due to transitive parent-child dependencies. We set
TDep to None after line 10 to remove the lock dependency.

Reasoning with dynamic layering. Each lock statement still
enjoys a modular proof by relying on its definite release. The
guarantee of definite release can wait for a higher-numbered
definite release. Now, taking state changes into consideration,
we must further prove that the dependency relation (i.e., layer
relation) stays unchanged during the wait. We call this the
dependency condition.

The dependency condition is vital to acyclicity. Note that a
circular dependency can happen only if a state change intro-
duces a direct or indirect dependency opposite to an existing
dependency. However, the dependency condition forbids this,
by requiring the dependency relation to be stable.

Let’s prove the dependency condition for Fig. 3. When
a thread has acquired parent, and gets blocked by
lock(child) at line 4, parent’s definite release waits for
that of child. The dependency condition requires to show that
parent is lower-numbered than child, even in the presence
of concurrent operations modifying file-system state. This
is the case because (1) the current thread holding parent
prevents a concurrent unlink/rmdir/rename from removing
child and (2) according to the definition of DL , child’s
layer is greater than or equals parent’s layer +1.

4.4 Directory Locking in Linux VFS
To understand whether dynamic layering scales to more di-
rectory locking orders in VFS, we extend dynamic layering
to cover all the nested locking scenarios mentioned in the
Linux documentation [29]. The extra lock dependencies that
have not been discussed yet are the following: (1) the dir-to-
non-dir dependency, from a directory to a non-directory, and
(2) the inode-pointer (i.e., inode address) dependency, from
a non-directory to a non-directory with larger inode pointer.
For instance, (1) link creation locks the parent and then the
non-directory source, or (2) rename locks the source and the
target when they are non-directories.

To capture these dependencies, a layer could either be (Dir,
nat) for a directory with its dynamic layer (DL defined in
§4.3), or (NonDir, addr) for a non-directory with its inode
address. Comparison rules are:

• (Dir, nat) < (NonDir, addr) for the dir-to-non-dir depen-
dency;

• (NonDir, addr1) < (NonDir, addr2) iff addr1 < addr2
for the inode-pointer dependency;

• (Dir, n1) < (Dir, n2) iff n1 < n2.

These rules give a total order of layers, because a direc-
tory is always acquired before a non-directory and the two
groups are ordered by dynamic layers and inode pointers,
respectively.

/

A B

C

t1:rename(/A, /B) t2: rmdir(B,C)

t3: rename(/A/X, /B/C/Y)

X

Figure 6: A deadlock bug in Linux VFS. Locking order
according to increasing inode pointer order is (C, A, B), which
conflicts with parent-child order (B, C).

When layers do not change, deadlocks will not happen if
the code acquires locks in this total order (this can be easily
verified). When considering layer changes, one proves the
dependency condition to prevent circular dependency. We
have shown the reasoning for the most challenging case, i.e.,
rename in §4.3. Proof of all other cases is provided in [99].

Doing the proofs helped us uncover a flaw in a recent
version of the locking scheme (commit 28ecee [53]). Apart
from locking the two parents, rename may also need to lock
the source inode (under the old parent) to be renamed, and the
target inode (under the new parent) if it already exists. The
locking rules before commit 28ecee used to be:

• locking the source if it is a non-directory;

• locking the target if it exists;

• (if one need to lock both) locking them following the order
mentioned above, i.e., directory before non-directory, and
non-directories in inode pointer order.

However, commit 28ecee additionally locks the source even
when it is a directory, for the purpose of updating its pointer
to the new parent. For a non-cross-directory rename, this in-
troduces a new, dynamic order between source and target
subdirectories that is not protected by rename_mutex. Com-
mit 28ecee takes it for granted that locking source and target
subdirectories (and also two parents) in inode pointer order
would be enough to establish a total order between directories.

However, the problem is that inode pointer order is not
transitive with parent-child order, as shown in Fig. 6. Specif-
ically, assume the inode pointer order is C < A < B (all are
directories) and assume three operations have finished path-
name lookups. t3 owns rename_mutex and C, and requests A.
t1 owns root and A, and requests B. t1 owns B, and requests C.
Now, there is a deadlock. The maintainer confirmed this [98].

The fix [87] is to acquire the source subdirectory only in the
cross-directory rename case, because a non-cross-directory
rename does not change the parent of the source. The locking
of source and target subdirectories is now protected under
rename_mutex, and we can capture this order by constructing
a dynamic layering (see [99] for details).
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We found this flaw when we failed to define the dynamic
layering specification for the scheme. Indeed, having a formal
specification that effectively captures lock dependencies is
crucial. Such a specification not only aids in conducting for-
mal proofs, but also enhances our fundamental understanding
of the system. Interestingly, even without engaging in code
proofs, the specification itself can help uncover practical bugs
and vulnerabilities.

4.5 Discussion about Support for Delay
A thread will not terminate if it is infinitely delayed in an
infinite loop. For example, when a thread requests an unfair
lock, e.g., test-and-set lock, other threads repeatedly preempt
the lock first. Delays are benign as long as there is whole-
system progress, e.g., the thread that preempts the lock can
make progress. To allow benign delays, while preventing infi-
nite delay without whole-system progress, previous work [64]
proposed the concept of token transfer. The basic premise is
that each thread is assigned a finite number of tokens. When
a thread causes delays for other threads, it should either show
progress itself or consume its tokens.

Let us go back to the discussion in §3. The waits-for graph
grows due to normal execution or delay; either case has a de-
creasing metric that shows progress. When a thread normally
executes, although it may get blocked by a while loop, its code
size decreases. We assume a fixed but arbitrary number of
threads to ensure the waits-for graph does not grow infinitely.
In the delay case, a thread is made to execute more steps and
may get blocked, but the delaying thread shows progress or
consumes its tokens.

The mechanism for delay is necessary for proving the ab-
sence of livelock, where a thread is constantly delayed in
infinite loops. This pattern does not appear in RefFS. For the
sake of simplicity in presentation, we will omit these details.

5 The MoLi Framework

5.1 Overview
The MoLi framework verifies the functional correctness and
termination of file systems based upon the following ideas.

• MoLi expresses correctness with termination-preserving
refinement [66], which means that all observable events
(e.g., output and termination events) from the implemen-
tation (i.e., concrete data structures and operations) must
also be produced from the abstraction (i.e., logical lay-
outs and abstract operations over them). Hence, func-
tional correctness and termination of implementation is
ensured, provided the abstraction is correct in these aspects.
Termination-preserving refinement also helps build proofs
in a layered way, i.e., low-level code can be replaced by its
abstraction in a higher-layer proof. For instance, the proof
of applications can use the abstraction of file systems.

Termination-

preserving refinement

C impl (Coq)

Spec Proof in MoLiCoq

exeC implInference rules

Figure 7: The MoLi workflow. Users provide a specification.
MoLi helps users develop code proofs with inference rules.

• MoLi supports compositional concurrency reasoning with
rely and guarantee conditions [35, 49]. A rely condition
specifies the interference that a thread will accept from
the other threads. A guarantee condition specifies the tran-
sitions that a thread will make. If the rely condition of
a thread is implied by the guarantee of all other threads,
and each thread is individually correct, then the concurrent
system is correct.

MoLi supports modular liveness reasoning with layered
definite actions. Fig. 7 shows the workflow of MoLi. MoLi is
a framework built on Coq. MoLi supports the verification of
C language (the Coq model of C language follows an existing
framework [101]). Users specify the specification (§5.2), and
then follow the inference rules provided by MoLi to manually
perform the Hoare-style verification (§5.3). The framework is
sound, which ensures that the proof implies the termination-
preserving refinement.

5.2 Specification in MoLi

A specification includes the abstraction, rely-guarantee con-
ditions, invariants, definite actions, and the layer function, as
defined next.

Abstraction. The abstraction includes the abstract represen-
tation of the concrete state and abstract operations (Aop) on
it. An abstraction can hide implementation details, which is
easier to check and less error-prone than the concrete imple-
mentation. MoLi provides a specification language, which
allows users to write non-atomic abstract operations. The lan-
guage has standard commands such as while and if, and is
suitable for expressing abstract operations: (1) the language’s
state includes the abstract state and a local abstract stack,
which maps variables to abstract values, e.g., lists; (2) the
language supports user-supplied primitives that model atomic
transitions of abstract state; (3) it also supports atomic block
〈C〉 where C executes atomically (see §6.1 for an example).

State. In MoLi, state includes not only the concrete state
accessed by the implementation, but also several auxiliary
parts, i.e., the specfication language’s state, tokens, and ghost
state. MoLi uses tokens as local state to ensure termination
(as explained in §5.3). Users may also introduce ghost state,
which exists only in the abstract model, to assist verification.

Rely/guarantee conditions (R/G) and invariants (I). R and G
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Figure 8: Logic for termination of a while loop. Users spec-
ify the number of tokens and a well-founded metric ♦. In
the non-blocking case, tokens strictly decrease for each iter-
ation. In the blocking case, ♦ strictly decreases whenever a
waited definite action (D ′) executes. When ♦ decreases to its
minimum, the thread is no longer blocked. The dependency
condition enforces an enabled definite action (D) waits only
for a higher-numbered one (D ′).

define the allowed state transitions and are checked at each
step: one checks that (1) the current thread’s state transitions
satisfy G, (2) the pre-/post-conditions of a command stay true,
even when a concurrent thread changes the state, as long as
this change is allowed by R, and (3) I specifies an invariant on
state, which must remain true under all transitions. R/G and I
define the concurrency protocol. Previous efforts [35, 101]
provide more detail.

Definite action and layer function. A definite action describes
a state transition, written P ; Q, which means that, once
assertion P is true, (1) Q will eventually hold, and (2) P is
preserved by both current and environmental thread until Q
holds. The second condition ensures that P may not become
false until the definite action is fulfilled. A definite action
is called enabled when P holds. A layer function L takes a
definite action and a state S to return a layer if defined.

5.3 Verification in MoLi
The judgement L ,D,R,G, I ` {P∧Aop}C{Q∧skip}means
(1) starting from the precondition P, the operation C must
terminate to reach the postcondition Q, and meanwhile (2)
an abstract operation terminates (from Aop to skip), simu-
lating the concrete operation C. Here, both P and Q imply
the invariant I and specify the consistency relation between
the concrete and abstract state. MoLi provides inference rules
to help users prove the judgement holds. A top-level rule,
called the OBJECT rule, proves the well-formedness of the
specification and the judgement for each method of the object.
The OBJECT rule establishes termination of the implementa-
tion and abstraction, and a termination-preserving refinement
between them. To verify each method, users follow inference
rules of C language statements to step through the program.

Most rules for C language, e.g., sequence and if rules, are
standard and similar to previous work [35, 101]. We explain
the WHILE rule (see Fig. 8 and the simplified rule below).

Termination of a while loop. The WHILE rule requires estab-
lishing the judgement of the loop body (see the first line of
the rule). Assuming the loop body can terminate, we check
whether the loop is blocked by other threads. Based on that,
the logic uses different strategies to ensure termination, i.e.,
consumption of tokens in the non-blocking case and decrease
of metric by executing definite actions in the blocking case.

L ,D,R,G, I ` {P∧B}C{P}
if not blocked, consume tokens
if blocked, prove conditions 1©- 4©
(see 1©- 4© in the text and Fig. 8)

L ,D,R,G, I ` {P}while (B){C}{P∧¬B} (WHILE)

If the while loop is not blocked, we must show the while
loop can iterate for only a finite number of rounds. Follow-
ing previous efforts [46, 64], we require that each iteration
consumes resources called tokens. Users specify the number
of tokens before the while loop. The loop terminates after
exhausting its tokens. For instance, the traversal while loop
in Fig. 2a can iterate only a finite number of rounds, bounded
by the length of path, which specifies the number of tokens.

In contrast, if a thread t is blocked, its termination relies on
definite actions of other threads. Users define a well-found
metric (i.e., that cannot infinitely decrease) for the while loop.
Whenever a definite action happens, the metric must decrease.
When the metric decreases to its minimum, the thread is no
longer blocked. Specifically, users prove the following.

1© Blocked condition: if t is blocked, t must be waiting for
some definite action D ′ (to be specified) to happen, which
is enabled on another thread.

2© Dependency condition: if t has an enabled definite action
D, its layer must stay less than that of D ′ until D ′ is
fulfilled.

3© Metric decrease: whenever D ′ is fulfilled, the metric
decreases.

4© Metric non-increase: the metric never increases.

Let us prove the termination of ticket lock in Fig. 2b under
the above conditions. Suppose a thread t is blocked in the
while loop of lock(cur). A precondition is that t does not
own cur. Then we can prove 1© t waits for the definite release
of cur, which is enabled on another thread. If t has enabled
definite actions, e.g., t has acquired other locks, the layer
function must have captured these lock dependencies. With
the layer function, users prove 2© the layers of owned locks
are stably less than cur until t’s ticket equals cur.owner.
One can specify the well-founded metric as t.i-cur.owner,
which measures the distance from t’s ticket to the current
owner. 3© The metric decreases whenever an environment
thread increases cur.owner, and 4© never increases. When
the metric decreases to zero, the loop terminates.
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Lock abstraction. We can prove the termination of lock im-
plementations with the WHILE rule. But MoLi follows recent
work [65], and provides a specialized inference rule for fair
locks (e.g., ticket lock) to ease the burden. The abstract state
of a lock is an integer L, whose value is either 0 when available
or t when owned by thread t.

The reasoning of a lock operation is similar to the WHILE
rule, only with a different metric non-increase condition: the
metric never increases under transitions where the lock keeps
being unavailable. We allow the metric to increase when the
lock is available, because a fair lock guarantees that, if the
lock becomes available for a finite number of times, a thread
will eventually become the first to the lock.

Definiteness of definite actions. The WHILE rule assumes
that a definite action will be fulfilled once enabled. To meet
this assumption, the OBJECT rule checks two things.

• Well-formedness: all steps preserve an enabled definite
action of some thread except that the thread itself may
fulfill the definite action.

• Postcondition restriction: the postcondition of an opera-
tion implies no enabled definite actions.

MoLi requires an enabled definite action to be fulfilled
because the following conditions hold.

• When an operation terminates, it must be fulfilled accord-
ing to the postcondition restriction.

• Whenever the thread is blocked in a while loop, the proof
of while loop ensures the termination by only relying on
higher-layer definite actions according to the dependency
condition; intuitively, this will not introduce unsound cir-
cular dependencies, so those higher-layer definite actions
can indeed be fulfilled.

• The thread is proved to terminate, and thus fulfills the
definite action itself due to well-formedness.

Soundness. After users prove each operation by following
the inference rules, the framework constructs an overall ter-
mination metric for each thread, and shows that the overall
metric strictly decreases. The overall metric combines several
metrics that users have provided in their proofs.

• The totally ordered layering of definite actions ensures
that the waits-for graph shrinks until the thread’s waited
definite action is not blocked.

• The well-founded metric for a while loop measures the
progress from the execution of the waited definite action,
until the while loop is not blocked.

• The while loop tokens count down the iterations.

We have formally proved the following main theorem
(see [100] for the full pen-and-paper proof).

// Error handling omitted
// Def of Inode omitted
struct inodelock{
Inode *inode;
int refcount;
lock lk;

}

def getilock(ilock):
〈ilock->refcount++〉

def putilock(ilock):
〈ilock->refcount--;
if(ilock->refcount==0){
free(ilock);

}〉

def traversal(cur,path):
local i=0, ret;
getilock(cur);
while(path[i]){
ret=lookup(cur,path[i]);
cur=ret;i++;}

return cur;

def lookup(par,name):
local child;
lock(par);
child=find(par,name);
getilock(child);
unlock(par);
putilock(par);
return child;

Figure 9: Reference counting and traversal in RefFS. By
holding a refcount in hand, lookup requests par without
worrying par has been freed.

Theorem 1 (Main Theorem)
Given the implementation and abstraction, if there exist

rely/guarantee conditions, an invariant, definite actions
and a layer function, such that for each operation C of
the implementation and corresponding abstract operation
Aop, the judgment (L ,D,R,G, I ` {P∧Aop}C{Q∧skip})
holds w.r.t. the pre-/post-conditions by applying inference
rules, then the implementation ensures termination and is a
termination-preserving refinement of the abstraction.

6 Design and Verification of RefFS

RefFS is a concurrent in-memory file system running on
FUSE. We verify its interfaces that manipulate the file system
structure (e.g., mkdir/mknod, rmdir/unlink and rename),
and that perform input and output to files (e.g., open, read,
write and close). This covers most common operations.

6.1 Implementation and Abstraction
RefFS reuses code from a previously verified concurrent file
system, AtomFS [101], e.g., the internal functions that op-
erate on directories and files. However, RefFS uses refer-
ence counting (refcounting) for traversal, which is more fine-
grained and provides better performance than lock coupling
used by AtomFS. Consequently, the rename implementation,
file-descriptor-based interfaces and abstraction of RefFS are
different from AtomFS, as explained below. We also prove
liveness guarantee of RefFS.

Refcounting. In Fig. 9, struct inodelock wraps over an in-
ode with a lock for protecting the struct, and a reference
count for resource reclamation. The refcount field counts
the references to the struct. getilock increases refcount
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by one. putilock decreases refcount by one and frees
the struct when refcount becomes zero. In other words,
refcount can prevent use-after-free as long as a thread still
holds a refcount that other threads may not decrease (i.e.,
refcount>0). We use the atomic block notation 〈C〉 to rep-
resent that command C executes atomically. This is achieved
with locks (not shown in the code).

To correctly implement refcounting, RefFS takes care of
the following aspects.

1© Initialization: when allocated, an inode’s refcount is
initialized to 1, marking that there is one reference in
its parent’s directory entry; this refcount is decreased
when the inode is removed from its parent (the root’s
initial reference cannot be decreased).

2© Reference increase: a thread can increase the refcount
of an inode when it already holds its refcount (a thread
can directly increase the refcount of root).

3© Reference decrease: a thread can decrease a refcount
that belongs to the thread, e.g., the thread has increased
the refcount previously.

4© Reference counting: each thread decreases the refcount
that it no longer needs, and the value of refcount equals
the number of all references combined.

3© is the key to stablizing refcount>0 and preventing use-
after-free, because if a thread has increased a refcount, other
threads may not arbitrarily decrease it. The above refcounting
protocols are formalized as rely/guarantee conditions and
invariants, and proved for RefFS.

Let us see how the traversal function in Fig. 9 obeys and
leverages the above protocols. The precondition specifies that
either cur is root, or the current thread holds a reference to
cur, so that traversal can increase the refcount of cur
( 2©). The code invokes lookup for each item of the path.
lookup can request par’s lock without worrying that par
is freed, because the code holds par’s refcount ( 3©). After
having found the child in par, the thread holds a reference
to child, due to owning the directory entry of child in par.
Therefore, it can increase the refcount of child ( 2©). It then
releases par’s lock and refcount ( 3© and 4©).

Refcounting provides the following performance benefits.

• During path traversal, there are intervals where an oper-
ation has searched the parent directory and is about to
lookup the child directory. The operation does not need
to nestedly lock parent and child to protect the child from
being freed during the interval. Instead, traversal pre-
vents use-after-free by holding a refcount of child. This
creates more parallelism because concurrent operations
can bypass each other during path traversal.

• Some operations use a file descriptor (FD) to directly
access an inode, and leverage refcounting to prevent use-
after-free. For instance, open increases the refcount of

def rename(src,sn,dst,dn):
1 ... //Traverse common
path of src and dst

2 rel=pathrel(src,dst);
3 if(rel!=0){
4 lock(rename_mutex);}
5 ... //Traverse to get
src and dst directories

6 if (rel==0){
7 lock(sdir);
8 } else if(rel==1){
9 lock(sdir);

10 lock(ddir);
11 } else {
12 lock(ddir);

13 TDep:=(ddir,sdir)

14 lock(sdir); }
15 ...
16 //If dn exists in ddir

17 TDep:=(sdir,dchild)

18 lock(dchild);
19 TDep:=None

20 ...

Figure 10: Highlighting lock acquisitions of RefFS
rename. pathrel(src,dst) returns 0 if src equals dst,
returns 1 if src is a proper prefix of dst, and returns -1 in
other cases. Depending on the result, the code decides whether
to acquire rename_mutex after traversing the common path
of src and dst. Code in gray boxes updates ghost state.

the target inode, and returns the inum as FD, thereafter,
read and write operations can directly access the inode.

Refcounting brings challenges for liveness reasoning be-
cause we need to consider more intricate lock dependencies
of FS operations. Specifically, when using lock coupling (con-
current operations cannot bypass each other), an operation
that starts the traversal first would not be blocked. This is
not the case with refcounting: an operation may be blocked
by another operation that bypasses it, or by a file-descriptor-
based operation. Nevertheless, MoLi’s modular verification
approach effectively manages the complexities.

Rename implementation. In Fig. 10 (ignore the code in gray
boxes for now), src/dst is the path to the old/new parent, and
sn/dn is the name of source/target. rename first traverses the
common path of src and dst (using traversal in Fig. 9).
After getting the reference of their least common ancestor, the
algorithm decides whether this is a cross-directory rename
by comparing src and dst. If they are not equal (or cross-
directory), the code acquires rename_mutex. The code then
traverses the remaining path to get the references of the old
and new parents. Holding rename_mutex ensures that the rel-
ative position between the two directories will not be changed
by concurrent renames. Therefore, one may use the path argu-
ments to know whether they are ancestors to each other, e.g.,
if src is a proper prefix of dst, this means that sdir is an
ancestor to ddir. The code acquires the lock of the ancestor
first. Otherwise, it will acquire them in a default order. If the
target (i.e., dchild) already exists, the code acquires its lock.

Non-atomic abstraction. The abstraction of RefFS consists of
abstract file system state and abstract operations. The abstract
file system, called AFS, is a mapping of inode number (inum)
to an abstract inode. An abstract inode is either a file (a list
of bytes) or a directory (a mapping of name to inum).

For an operation that needs path traversal, the correspond-
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def MKDIR(path,n):
1 local cur=root,tmp,i=0;
2 while(path[i]){
3 〈tmp=lookup(cur,path[i]);

4 if(tmp==NULL){
5 return -1;}
6 cur=tmp;i++〉}
7 ret do_mkdir(cur,n);

Figure 11: Abstract operation MKDIR of RefFS. MKDIR
consists of a series of atomic directory lookups (line 3-6) and
an atomic critical section (line 7).

ing abstract operation hides as much implementation detail as
possible (e.g., hiding refcount, locks and internal data struc-
ture), and guarantees atomic directory lookups and an atomic
fulfillment of the operation after locating the target inodes.
Fig. 11 shows the abstract operation MKDIR. lookup and
do_mkdir primitives model atomic transitions of the abstract
file system. We simplify the abstract operation by grouping
the loop body (lines 3-6) into an atomic block.

6.2 Verification of RefFS

We use ghost state, the temporary dependency TDep, to assist
the proof, as introduced in §4.3. In Fig. 10, code in gray
boxes updates it. TDep is set to (ddir, sdir) before line 14
to represent the upcoming lock dependency between them.
TDep may be updated to (sdir,dchild) before line 18 to
establish the lock dependency from sdir to dchild. TDep is
reset to None after line 18.

The termination proofs include the checks in the OBJECT
rule and the termination proof of locks and while loops. Since
while loops are not blocked in RefFS, their proofs are trivial.

Definiteness check. The well-formedness of definite releases
holds because once a thread holds a lock, all steps keep the
fact true until the thread releases the lock itself. The post-
condition of each operation specifies that the thread does not
own any lock, so it must be the case that definite releases are
fulfilled before the thread reaches the end.

Proof for locks. When thread t is blocked in lock(L), t waits
for the definite release of L (specified as D ′ ). The metric is 0
when L is available and 1 otherwise. The following holds. (1)
Blocked condition: some thread t’ holds L, so D ′ is enabled on
t’. (2) Dependency condition: the dynamic layering ensures
that for any lock that t owns, its layer is stably lower than L.
(3) Metric decrease: when L is released, the metric decreases.
(4) Metric non-increase for the lock: when L is not available,
the metric stays 1 and never increases.

7 Evaluation

This section empirically answers several questions:

• Can RefFS provide good performance for real-world
applications, and does reference-counting perform better
compared with lock-coupling (§7.1)?
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Figure 12: Applications. The figure shows the running time of
different applications, i.e., git, make and cp. Largefile operates
on a big file with 10MB. Smallfile operates on 10K files with
1KB size.

• Compared with previous work, how modular are the
termination proofs using MoLi (§7.2)?

• How much is the verification effort (§7.3)?

• Can MoLi help eliminate bugs in practice (§7.4)?

7.1 Performance Evaluation

Experimental setup. We run all of the experiments on a
server machine (AWS EC2 i3.metal instance) with 72 cores
(2.3GHz), 512GB DRAM, and a local 15,200GB SSD (8
disks) running Linux 5.15.8. We limit our experiments to one
36-core socket to avoid variability. We compare the perfor-
mance of RefFS to the widely-used disk file system ext4 [84],
the verified concurrent file system AtomFS [101], the verified
concurrent NFS server DaisyNFS [20], and an in-memory file
system tmpfs. All the file systems use in-memory storage.

Application performance. RefFS is complete enough to run
many kinds of realistic software, including Vim [85] and
GCC [37]. To evaluate application performance, we select
two microbenchmarks and three application workloads: LFS
microbenchmark [71, 77], cloning the git repository of xv6-
public, compiling the sources of the xv6 file system with a
makefile and copying the source code of qemu. These work-
loads are also used by previous verified file systems [22, 101].
The application workloads use only a single core.

In Fig. 12, RefFS achieves similar results to AtomFS, and
better performance than DaisyNFS in most cases, due to the
network I/O overhead of DaisyNFS. The worse performance
of RefFS compared with tmpfs and ext4 is due mainly to
the lack of fine-grained optimizations, e.g., highly optimized
path traversals and optimized structures for data and metadata.
Running RefFS with FUSE also introduces overhead. These
issues can be overcome by more engineering.

File system scalability. We adopt two commonly used work-
loads in Filebench [36], Fileserver and Webproxy, to measure
the scalability of RefFS. We evaluate with 16 cores and in-
crease the number of threads used in the workloads. We do
not evaluate DaisyNFS because its in-memory disk can only
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Figure 13: Scalability of RefFS. The overall scalability of
RefFS is similar to AtomFS.
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Figure 14: Speedup of RefFS over AtomFS. RefFS achieves
higher speedup over AtomFS as the directory depth increases
in LargeFile benchmarks.

support about 400MB of space, while the scalability tests
consume more than 3GB in many cases.

The speedup results are in Fig. 13. RefFS can scale up
to 9 cores. AtomFS shows a similar scalability, but the ac-
tual throughput (not shown in figure) of RefFS is better than
AtomFS at all loads (1.08–1.43x higher in Fileserver and 1.03–
1.32x higher in Webproxy). RefFS’s performance is worse
than ext4 and tmpfs, as expected.

Other benefits of reference counting. AtomFS uses lock cou-
pling to traverse the path even for read and write operations.
In RefFS, reference counting allows read and write to directly
access the inode because open has increased the inode’s ref-
erence. To show the benefit of this, we evaluate RefFS and
AtomFS using LargeFile benchmarks under different depths
of directories. In Fig. 14, with the depth increase, the speedup
of RefFS over AtomFS becomes higher in both seq-write and
seq-read tests in LargeFile.

Table 1: Lines of Coq proof for verifying RefFS.

Component LOC Component LOC
Abstraction and aops .1K Invariant .7K
Rely/guarantee .4K Code .4K
Layered definite releases .1K Proof 32K
Total 33.7K

7.2 Modularity of Termination Proofs

Dynamically layered definite releases allow to verify each
lock separately, and reuse the termination proofs for all each
lock statement. To evaluate the benefits, we also use the non-
layered definite actions (LiLi’s approach in §4.1) to verify
the termination of a lock statement in RefFS. The crucial
difference is that the non-layered approach has to reason
globally about the dependency chain.

Suppose there is a lock dependency chain of root → B
→ C as shown in Fig. 4a, where each thread in the chain
owns a lock and requests the next lock except the last thread.
Now suppose t wants to acquire root’s lock. To prove t’s
progress, LiLi’s non-layered approach needs to prove how
the chain gets shorter until t can acquire root. The following
complexities exist.

In LiLi’s approach, one must specify actions that can defi-
nitely happen on their own. In this case, t first waits for the
lock release of C. Defining the action needs following the
dependency chain, which requires a proof that the chain is
free of cycles. Proving this fact in a general situation requires
establishing global invariants, adding to the proof burden. The
resulting definite action is very fine-grained and less intuitive.

Furthermore, to show the progress created by the fine-
grained definite action, one should define a decreasing metric.
However, the definition of the metric is unavoidably complex.
Defining it as the length of the dependency chain does not
work. Because after lock C is released, the thread that owns B
acquires C, and may go on requesting other locks, thus getting
involved in a even longer dependency chain. As a result, defin-
ing this metric requires considering a thread’s local progress
(e.g., its remaining steps), and the length of the dependency
chain, with the former prioritized before the latter (we omit
further detail). This poses a significant proof burden in the
metric-decrease and metric-non-increase proofs.

By contrast, the specification and termination proof for a
lock statement with our layered approach (see §6.2) focus
only on the lock. The extra proof burden is the dependency
condition, which requires to show any owned locks are lower-
numbered than the lock to acquire. This proof is usually trivial
with dynamic layering. Code proofs in Coq have confirmed
the analysis—the non-layered approach needs 3K LOC while
the layered approach requires less than 0.4K LOC.

7.3 Verification Evaluation

Verification effort. MoLi reuses the code from CRL-H [101]
framework, including the support for C language and con-
currency reasoning. MoLi’s extension mainly devotes to the
logic for termination and the model of non-atomic abstract
operations, which is about 3K LOC. Table 1 shows the lines
of proof for verifying RefFS. RefFS also reuses AtomFS’s
internal functions inside the critical section and their proofs,
except that now we also verify termination.
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Trusted computing base and tests. Our work has some trusted
parts. The abstraction of RefFS is trusted. VFS, FUSE, C
compiler, C implementation of a lock and memory allocator of
glibc are trusted. Termination proof assumes a fair scheduler
and a sequentially consistent hardware model. We also test
RefFS with xfstests, a comprehensive file system testing suite,
which reports no bugs.

Limitations. Our prototypes of MoLi and RefFS still have
limitations. Currently, RefFS is an in-memory file system
and does not consider crashes. In general, the reasoning for
termination is orthogonal to crashes because the recovery
procedure will restore the state to re-execute the code. Hence,
the termination proof still applies to the non-crash setting.
When a crash happens in the middle of a program, what MoLi
does not consider is the termination of the recovery procedure,
whose precondition is the crashed state. To support crash
safety, one may combine the techniques in DaisyNFS [18–20].

MoLi does not support reasoning about termination in the
presence of interrupts or exceptions. Similar to crash safety,
supporting them requires considering intermediate states.

RefFS has simplified read access to use exclusive locks.
Nevertheless, we can use read-write locks in RefFS and reason
with their implementations in MoLi.

7.4 Bug Discussion
We discuss whether MoLi can help find practical bugs. Non-
concurrent termination bugs such as logic and low level pro-
gramming errors [59, 83] will fail the proof, because one
cannot define a well-founded metric that decreases for each
iteration. In AA-deadlocks [25,58,72], when a thread requests
for a lock again, the layer of the waited action (definite re-
lease of the lock by other threads) is not larger than that of
enabled action (definite release of the lock by the current
thread), which will violate the dependency condition. In dead-
locks caused by nested blocking [6, 23, 39, 97], proof authors
either fail to define the layers, or define the wrong layers, later
finding that the layers cannot pass the dependency condition
proof.

For deadlocks with dynamic orders [3, 8, 55, 96], MoLi
allows defining state-dependent dynamic layers to precisely
represent such orders. Therefore, such bugs can be discovered
during proofs. For deadlocks that involve ad-hoc synchroniza-
tion [24,52,69], MoLi’s general notion of definite actions can
specify and verify them, similar to the bug types above.

These bug patterns also exist in other domains, e.g., mem-
ory management [27] and network [45] subsystems in an OS,
database and web applications [68]. Therefore, we believe
MoLi is also applicable to these domains.

8 Related Work

Starting from the seminal work of seL4 [57], these years
have witnessed tremendous progress on the verification of

systems, including operating systems [40, 73, 80], distributed
systems [43, 78, 92], file systems [21, 22, 47, 79] and many
others [26, 28, 63, 81, 88, 89]. Yet, only few of them guarantee
systems’ liveness, and none of the proposed frameworks could
be used for concurrent file systems.

VSync [74] relies on a special await loops shown in lock
implementations, and proposes await model checking to auto-
matically verify the termination of lock primitives, even under
weak memory models. It does not support general while loops.
VSync relies on a specific client library for correctness; the
client library may still not cover all corner cases, especially
for large-scale systems such as file systems.

CCAL [41] has been used to verify the termination of an
MCS lock [56] by organizing the implementation into layers.
However, it does not provide a program logic to guide the
proofs, so it is unclear how CCAL can be used to prove the
termination of concurrent file systems.

Ironfleet [43] verifies distributed systems with a blend of
TLA and Hoare style automated verification. However, this
methodology does not have the power for concurrency and
termination verification in file systems. Ironfleet’s reduction
approach for concurrency verification relies on implementa-
tion being atomic, but file systems, e.g., RefFS, are not atomic.
On termination, Ironfleet does not consider blocking and dy-
namic lock dependencies as shown in file systems.

Reference counting, a widely used technique in Linux, has
also caused many severe bugs [44]. Various methods (e.g.,
invariant-based [33,34] and anti-pattern based [44]) have been
proposed to detect these bugs. Although effective in practice,
they still suffer from false positives and false negatives. Our
work verifies the correctness of refcounting by showing the
implementation using it can refine an abstraction where its
details are hidden.

9 Conclusion

This paper has presented MoLi for verifying concurrent file
systems. It supports the dynamically layered definite releases
specification, with which we verify RefFS, the first modularly
verified concurrent file system with termination guarantee. We
also for the first time formally prove the correctness of direc-
tory locking scheme in Linux VFS. The formal specification
has helped us uncover real Linux bugs in practice.
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Abstract
Modern clouds depend crucially on an extensible ecosystem
of thousands of controllers, each managing critical systems
(e.g., a ZooKeeper cluster). A controller continuously recon-
ciles the current state of the system to a desired state accord-
ing to a declarative description. However, controllers have
bugs that make them never achieve the desired state, due to
concurrency, asynchrony, and failures; there are cases where
after an inopportune failure, a controller can make no further
progress. Formal verification is promising for avoiding bugs
in distributed systems, but most work so far focused on safety,
whereas reconciliation is fundamentally not a safety property.

This paper develops the first tool to apply formal verifica-
tion to the problem of controller correctness, with a general
specification we call eventually stable reconciliation, writ-
ten as a concise temporal logic liveness property. We present
Anvil, a framework for developing controller implementations
in Rust and verifying that the controllers correctly implement
eventually stable reconciliation. We use Anvil to verify three
Kubernetes controllers for managing ZooKeeper, RabbitMQ,
and FluentBit, which can readily be deployed in Kubernetes
platforms and are comparable in terms of features and perfor-
mance to widely used unverified controllers.

1 Introduction
Modern clouds are powered by cluster managers such as Ku-
bernetes [12], Borg [89], ECS [73] and Twine [87]. These
systems manage large-scale cluster resources and all appli-
cations running atop them. Architecturally, these systems
comprise a collection of controllers that implement all the
cluster-management logic based on the state reconciliation
principle [4, 30]. Controllers are loosely coupled microser-
vices, each monitoring the cluster state and continuously rec-
onciling the current cluster state to match a desired state. In
Kubernetes for example, controllers manage everything from
system resources (e.g., pods, data volumes, networking, and
stateful services) to application lifecycles (e.g., provision-
ing, upgrades, and scaling). There is a thriving ecosystem of
thousands of domain-specific controllers that extend Kuber-
netes [46, 47, 60, 81, 84]. All these controllers perform critical
operations, making their correctness paramount.

Implementing correct controllers is immensely challenging,

due to the enormity of cluster state space and the complexity
of failure events (e.g., node crashes, network interruptions,
and asynchrony issues). Recent automated controller testing
tools [44,85] found many bugs with severe consequences such
as system outages, data loss, and resource leaks in popular
Kubernetes controllers. Buggy controllers have caused many
production incidents [45, 57, 71, 74].

This paper addresses the controller correctness challenge
with two major contributions: (1) eventually stable reconcili-
ation, a general specification for controller correctness which
we develop as a liveness property, and (2) Anvil, a framework
for implementing practical controllers and formally verifying
that a controller implements eventually stable reconciliation.
We have developed and verified practical Kubernetes con-
trollers for managing critical systems using Anvil.

Challenges and contributions. Addressing controller cor-
rectness with formal verification poses several challenges.
The first challenge is to define a correctness specification that
is generally applicable to diverse controllers, powerful enough
to preclude a broad range of bugs, and concise enough for
manual inspection, together with appropriate assumptions that
make it possible to implement the specification. The second
challenge lies in proving that the controller implements this
specification: controllers are complex, feature-rich real-world
systems that do not have pen-and-paper proofs that we can
reference. This problem is exacerbated by the fact that con-
trollers run in a complex and dynamic environment, where
the controller must handle unexpected faults, asynchrony, and
conflicts when interacting with other controllers.

We present Eventually Stable Reconciliation (ESR) as a
general specification of controller correctness (§3). ESR is a
liveness property, which states that a controller should even-
tually reconcile the cluster to a desired state, and then always
keep the cluster in the desired state. ESR captures the es-
sential functionality that controllers should provide in a pre-
cise language, and it precludes a broad range of bugs caused
by factors like inopportune failures and conflicts with other
controllers. ESR is also realistic and captures the necessary
premise to reach the desired state. We formalize ESR as a
concise Temporal Logic of Actions (TLA) [58] formula.

A common challenge in proving liveness is that the proof
depends on subtle fairness assumptions, including assump-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    649



tions about possible faults. Overly strong assumptions (e.g.,
the controller can crash at most once) lead to weak correctness
guarantees, and overly weak assumptions (e.g., the controller
can keep crashing forever) make liveness verification unten-
able. Anvil employs an assumption that covers a broad range
of fault scenarios—an arbitrary number of faults can hap-
pen, but eventually faults stop happening. This assumption is
similar in spirit to partial synchrony [40] but for faults.

To prove that a controller satisfies ESR, one must consider
the controller’s interactions with the environment in which
it runs. Anvil models this environment, including the shared
cluster state, asynchronous network, other controllers, and
a realistic fault model (§4.3). The environment model also
encodes assumptions on fair scheduling and faults. Anvil ab-
stracts general liveness reasoning patterns in the environment
into reusable lemmas to reduce proof effort (§4.4).

With the reusable models and lemmas provided by Anvil,
developers can prove that the controller makes progress from
any cluster state towards potential desired states in the pres-
ence of asynchrony, faults, and conflicts with other controllers.
We present a proof strategy to disentangle the challenges of
proving ESR (§5), which divides the proof into two lemmas:
(1) starting from any possible state resulting from potential
interleaving of previous execution and faults, the controller
progresses towards the desired state in a stable environment,
and (2) the environment eventually becomes stable. Both lem-
mas can be proven using the temporal proof rules that Anvil
provides (under the fairness assumptions). We have applied
this proof strategy to verify three controllers using Anvil.
Implementation. We implemented Anvil for verifying Ku-
bernetes controllers on top of Verus [61], an SMT-based de-
ductive verification tool for Rust. With Verus, developers can
implement controllers in Rust and formally verify their imple-
mentations. Verus does not support temporal logic reasoning,
so Anvil provides a TLA embedding on top of first-order logic
(§4.2) to enable TLA-style temporal reasoning.

We used Anvil to implement three practical Kubernetes con-
trollers for managing ZooKeeper, RabbitMQ, and FluentBit
(§6). These controllers can readily be deployed in real-world
Kubernetes platforms; they provide feature parity and com-
petitive performance w.r.t. existing mature, widely used (but
unverified) controllers. The verification effort is manageable,
with the proof-to-code ratio ranging from 4.5 to 7.4 across
the controllers. The verification process exposed deep bugs
in both our early implementations and unverified reference
controllers. Although Anvil is primarily designed for live-
ness verification, it also supports safety verification; we prove
a safety property specific to the RabbitMQ controller: the
controller never performs unsafe scaling operations.
Summary. This paper makes the following contributions:

• Eventually stable reconciliation (ESR), a general specifica-
tion for controller correctness as a liveness property;

• Anvil, a framework for developing practical controllers

and formally verifying that the controller implementations
satisfy correctness properties such as ESR;

• three representative and practical Kubernetes controllers
verified using Anvil; and

• an evaluation of the end-to-end correctness and perfor-
mance of the three verified controllers.

Anvil and the verified controllers are available at https://
github.com/vmware-research/verifiable-controllers.

2 Implementing Controllers
Controllers follow the state reconciliation principle: each con-
troller runs a control loop that continuously reconciles the
cluster’s current state to the desired state [4, 8]. At each loop
iteration, a reconciliation procedure checks whether the cur-
rent cluster state matches the desired state; if not, it performs
corrective operations to move the cluster towards the desired
state (e.g., launching new replicas in an ensemble of servers
when existing replicas fail). The operations query or update
the cluster state, represented by shared data objects. These
state objects are exposed by REST-based API servers and are
stored in a logically centralized data store like etcd [1]. The
desired cluster state is described declaratively and can be dy-
namically updated during the lifecycle of a running controller.
The reconciliation procedure is typically implemented in a
reconcile() function, which is invoked whenever the desired
state description (or its relevant cluster states) is changed.

Figure 1 exemplifies the reconciliation process of a Ku-
bernetes controller for managing ZooKeeper. To create a
ZooKeeper cluster, the controller takes three steps to create:
1 a networked service (a Kubernetes service object [17]), 2
a ZooKeeper configuration (a config map object [14]), and
3 a stateful application (a stateful set object [18]) with three
replicas. Each step is performed by creating a new state object
of the corresponding resources via the Kubernetes API, which
then triggers Kubernetes built-in controllers, e.g., the State-
fulSet controller will create three sets of pods and volumes
to run containerized ZooKeeper nodes. In the end, the clus-
ter state matches the desired state. Later, if the desired state
changes (e.g., its replicas is increased), the ZooKeeper con-
troller will start a new iteration of reconciliation that updates
the stateful set object to scale up the ZooKeeper cluster.

Correctness challenges. A bug in a controller’s reconcili-
ation can result in the controller never being able to match
the desired state, even when reconcile() is called repeat-
edly. Controllers are expected to be level-triggered [53]:
reconcile() can be called from any current cluster state
to match any given desired state, with no guarantee that
the controller has seen the entire history of cluster state
changes [86]. In addition, controllers must tolerate unex-
pected failures and asynchrony while running reconcile(),
which leads to a state-space explosion that makes testing con-
trollers difficult. Figure 1 shows one of many bug patterns
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# Desired State
service: {port: 2181}
configMap: {...}
replicas: 3
...

1 2 3

1 3

if !server_service_exists() {
create_service();
create_configMap();

}
create_statefulset();

1
2
3

Liveness violation:
ConfigMap never created!

Su
cc
es
s

Fa
ilu
re

// Code snippet of reconcile()

Figure 1: An example of state reconciliation of an unverified
ZooKeeper controller. A liveness bug is triggered by a crash during
reconciliation. The bug pattern is common in real-world Kubernetes
controllers (known as intermediate-state bugs [85]).

1 pub trait Controller {
2 type D; // desired cluster state description
3 type S; // local state in the state machine
4

5 /// Returns the initial local state (in the state
6 /// machine) of every reconcile()
7 fn initial_state() -> S;
8

9 /// Returns S: next local state in state machine
10 /// Req: external request (e.g. to Kubernetes)
11 /// # Arguments
12 /// * d: the desired cluster-state description
13 /// * r: response to the request from last step
14 /// * s: current local state in state machine
15 fn step(d: &D, r: Resp, s: S) -> (S, Req);
16

17 /// Returns true if all steps are done
18 fn done(s: &S) -> bool;
19

20 /// Returns true for error states
21 fn error(s: &S) -> bool;
22 } // other advanced APIs are omitted

Figure 2: Anvil’s basic Controller API. To implement a controller,
developers implement the Controller trait.

of controllers [35, 44, 54, 64, 85]. If the controller crashes be-
tween steps 1 and 2 during an execution of reconcile(),
Kubernetes will reboot the controller. The freshly invoked
reconcile() call now faces the intermediate state created by
the previous failed execution ( 1 ). However, in this case, the
controller would never perform 2 due to a buggy predicate,
which only checks whether the networked service exists, but
not whether the config map also exists. As a result, the cluster
state would never match the desired state—a liveness viola-
tion. Such liveness violations are notoriously hard to detect
by testing or model checking [55].

Implementing controllers with Anvil. In Anvil, developers
implement a controller using a state machine; this style is
common practice in unverified controllers as well [2, 6], and
in Anvil it enables TLA-style verification. Figure 2 shows a
snippet of the Anvil Controller API specified using a Rust
trait: it involves defining the initial state and the transitions of
a state machine. Anvil’s reconcile() uses the state machine
as shown in Figure 3: it starts from the initial state and in-
vokes step() iteratively until all steps are done or if any step
encounters an error. Each iteration of step() returns the next

1 pub fn reconcile <C>(d: C::D) -> Result<Action, Error>
2 where C: Controller {
3 let mut s = C::initial_state();
4 let mut resp = None;
5 loop { // exercise the state machine
6 if C::error(&s) {
7 return Err(ErrorNeedsRequeue);
8 } else if C::done(&s) {
9 return Ok(requeue(timeout));

10 }
11 let (next_s, req) = C::step(&d, resp, s);
12 resp = send_external_request::<C>(req);
13 s = next_s;
14 }
15 } // details like validity checks are omitted

Figure 3: Anvil code that assembles reconcile() using the
Controller API in Figure 2.

1 fn step(d: &ZKD, r: Resp, s: ZKS) -> (ZKS, Req) {
2 match s {
3 CheckService => { // if the service exists
4 let service_get_req = KubeGet { ... }
5 return (ReconcileService , service_get_req);
6 }
7 ReconcileService => {
8 /// create/update the service based on response r
9 if r.is_ok() {

10 let service_update_req = ...;
11 return (CheckConfigMap , service_update_req);
12 } else if r.is_not_found() {
13 let service_create_req = ...;
14 return (CheckConfigMap , service_create_req);
15 } else {
16 return (Error, Noop); // restart reconcile()
17 }
18 }
19 CheckConfigMap => { ... }
20 ReconcileConfigMap => { ... }
21 CheckStatefulSet => { ... }
22 ReconcileStatefulSet => { ... }
23 ...
24 } // more step branches are omitted
25 }

Figure 4: A simplified implementation of step() using Anvil
for creating a ZooKeeper cluster. Proof-related code is omitted.

state in the state machine, together with an external request.
The external request is typically a REST call to Kubernetes
APIs, but can also be extended to non-Kubernetes APIs (§6.1).
The response to the external request is passed as an argument
to the next iteration of step(). Note that the API enforces
no more than one external request per step(), making the
state-machine transition atomic with respect to cluster-state
changes. Anvil’s reconcile() interfaces a trusted Kubernetes
client library (kube-rs [11]) which invokes reconcile() upon
changes, handles its output, and requeues the next invocation.

Figure 4 shows the step() implementation of a ZooKeeper
controller (Figure 1). The step() function takes the desired
state description of the ZooKeeper cluster (d), the response
(r) to the request from last step (if any), and the current lo-
cal state (s), and deterministically returns the next local state
and the external request. The state machine starts from the
CheckService state, where it returns a request to read the ser-
vice object [17] from the Kubernetes API (service_get_req)
and the next state to transition to ReconcileService. The
reconcile method (Figure 3) fetches the service object us-
ing the Kubernetes API, and moves on to the next iteration
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of step(), bringing the state machine to ReconcileService
branch. The controller proceeds to create or update the service
based on the response of service_get_req. In this way, the
controller progressively reconciles each cluster-state object
and eventually matches the desired state declared by ZKD.

Next, we present a general controller correctness specifica-
tion, termed eventually stable reconciliation, in §3, and then
explain how to verify it using Anvil in §4 and §5.

3 Eventually Stable Reconciliation (ESR)
Controllers reconcile the cluster state to match the desired
state. While the details vary between controllers, and some
controllers may have additional correctness guarantees, we
formalize a general property called eventually stable reconcil-
iation (ESR) that captures this ubiquitous pattern.

ESR captures two key properties of any controller’s state
reconciliation behavior: (1) progress: given a desired state de-
scription, the controller must eventually make the cluster state
match that desired state (unless the desired state changes),
and (2) stability: if the controller successfully brought the
cluster to the desired state, it must keep the cluster in that
state (unless the desired state changes).

To make our specification general, we do not wish to com-
mit to any particular bound on the time or number of opera-
tions the controller takes to bring the cluster to the desired
state. So, we want to talk about guaranteed eventualities. Such
unbounded eventualities are naturally described using tempo-
ral logics [80]. We use TLA (temporal logic of actions) [58],
a linear-time temporal logic well-suited to our needs. TLA
is designed for reasoning about a system described as a state
machine. The behavior of the state machine is captured by
its set of traces, infinite sequences of system states where the
first state is a valid initial state and each subsequent state is
obtained via a valid transition from the previous state.

We formalize ESR as a TLA formula that should hold for
all traces of the system’s execution, where the system includes
both the controller and its environment, under all possibili-
ties for asynchrony, concurrency, and faults (e.g., controller
crashes). We use d to denote a state description, desire(d)
to denote whether d is the current description of the desired
state, match(d) to denote whether the current cluster state
matches the description d. Our definition of ESR is given by
the following formula:

∀d.2
(
2desire(d)⇒32match(d)

)
. (1)

Informally, ESR asserts that if at some point the desired state
stops changing, then the cluster will eventually reach a state
that matches it, and stay that way forever. The temporal op-
erators 3 (eventually) and 2 (always) are used in temporal
logics to reason about the future of an execution trace. If a
predicate P talks about the current state, then 2P says that
P holds in the current state and all future states, while 3P
says that P holds in the current or some future state. Temporal
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Figure 5: Executions that violate or satisfy ESR.

logics such as TLA also allow nesting of temporal operators;
for example, 32P means that eventually we get to a point
such that from that point onwards, P always holds.

The formalization of ESR is a key contribution of this paper
in that it captures the key correctness properties shared by
virtually all controllers: progress and stability. We elaborate
on this with a detailed dissection of eq. (1).

The innermost conclusion of the formula is 32match(d),
which states that eventually (3) the controller matches the
desired state (progress), and from then on, it always (2) keeps
the cluster state at the desired state (stability). In front of this
expression, 2desire(d) is a realistic and necessary premise
for the controller to match the desired state—if the desired
state description keeps changing forever, the controller will
keep chasing a moving target forever, and nothing can be
guaranteed as we do not wish to assume a bound on how long
state reconciliation takes. The outer 2 in eq. (1) says that
2desire(d)⇒32match(d) always holds, meaning that the
controller continuously reconciles the cluster state regardless
of its past execution. Finally, the ∀d states that the controller
reconciles all desired state descriptions.

Figure 5 illustrates the ESR definition in some examples,
some that satisfy the definition and others that do not: (a)
violates progress because the cluster state never matches d,
(b) violates stability because the cluster state first matches
d but then deviates from d, (c) satisfies ESR because the
cluster state eventually matches and always matches d2, and
(d) vacuously satisfies ESR because the desired state never
stops changing, so 2desire(d) does not hold for any fixed d.

The verification goal for each controller is to prove that
the controller satisfies ESR—all possible executions of the
controller satisfy ESR. We use model to describe all possible
executions of the controller that runs in an environment with
asynchrony, concurrency and faults. We use ; (leads-to)
notation to simplify the presentation of the ESR property,
where P ; Q means 2(P ⇒ 3Q). Then the statement that
the controller satisfies ESR is formalized as:

model |= ∀d.2desire(d);2match(d). (2)

652    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



The power of ESR. Strictly speaking, ESR (eq. (1)) only
guarantees one successful state reconciliation—the one that
happens after the desired state stops changing forever. How-
ever, in practice the controller has no way of knowing if the
desired state will change in the future or not. Therefore, we
can expect that a controller that satisfies ESR will bring the
cluster to match the desired state (and keep it like that) for any
desired state that remains unchanged for long enough. ESR
achieves this without getting into the gory details of defining
exactly how long is long enough. Note further that because of
the outermost 2 in eq. (1), a controller that satisfies ESR will
deliver multiple successful state reconciliations, assuming that
the desired state goes through a series of slow changes.

Our analysis shows that ESR can ensure the absence of
a broad range of controller bugs [44, 64, 85]. For example,
recent testing tools [44,85] detected 70 bugs across 16 popular
controllers that the controller never matches the desired state
due to improper handling of corner-case state descriptions,
inopportune failures and concurrency issues, which consist of
69% of all the detected bugs. All such bugs are precluded by
ESR. Prior work [64] also reported failure patterns where the
cluster state, after matching a desired state, then deviates due
to conflicting interactions with other controllers. Such bugs,
as stability violations, are also precluded by ESR.

4 Anvil
Anvil is a framework for developing controllers and mechani-
cally proving that they implement correctness specifications
like ESR. Anvil is built on top of Verus [61], an SMT-based
deductive verification tool for Rust backed by Z3 [39], in simi-
lar spirit to Dafny [62]; it offers a Hoare-logic [52] framework
for reasoning modularly about imperative code in Rust.

Figure 6 shows the workflow of using Anvil to verify a
controller. The developer first provides A a controller model
(an abstract state machine) and then proves two theorems: B
the Controller trait implementation (Figure 4) conforms to the
controller model and C the controller model, together with a
model of the environment (e.g., the network, other controllers,
faults), satisfies specifications like ESR (eq. (2)).

Writing the controller model and verifying the implementa-
tion conforms to the model are straightforward. The controller
model is an abstract state machine with the same structure
as the implementation state machine. To prove conformance,
developers prove that each step in the implementation corre-
sponds to exactly one step in the model using standard Floyd-
Hoare style reasoning (§4.1). Note: the controller model is
written in Verus’ specification language to enable verification.

Verifying the model entails ESR is more challenging: de-
velopers need to apply temporal logic reasoning on the inter-
action between the controller and its environment (including
faults) at the model level to prove ESR. To reduce developers’
burden on specification and proof, Anvil provides (1) a TLA
embedding (§4.2) that defines temporal logic operators on top
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Figure 6: An overview of Anvil’s workflow.

of first-order logic to enable specification and proof in tempo-
ral logic (Verus does not support temporal logic), (2) a model
of the controller environment (§4.3), including components
that a controller interacts with, faults that a controller must
tolerate, and reasonable assumptions on fair scheduling and
faults that controller liveness depends on, and (3) reusable
lemmas (§4.4) that encode temporal proof rules and liveness
and safety properties of the interactions between a controller
and the environment; these lemmas can be directly assembled
into developers’ ESR proofs.

In this section, we explain how Anvil supports the veri-
fication of controllers and then present a general, effective
strategy for developing proofs to verify ESR in §5.

Assumptions. Anvil relies on the following assumptions: (1)
The TLA embedding correctly defines TLA concepts [58].
(2) The controller environment model correctly describes the
interactions between the controller and its environment. (3)
The specification of the unverified APIs for querying and
updating the cluster state correctly describes the behavior of
these APIs. (4) The verifier (Verus and Z3), the Rust compiler,
and the underlying operating system are correct.

4.1 Controller Model
To verify controller correctness, developers first write a con-
troller model and prove the controller implementation con-
forms to this model, similar to prior work [49, 51]. The con-
troller model is a mathematical, state-machine representation
of the imperative controller implementation, which abstracts
the data types in the implementation and enables TLA-style
verification. Given the proof of implementation-model con-
formance, the model is not assumed to be correct in Anvil’s
overall verification guarantee.

Anvil provides an API for developers to write the controller
model, shown in Figure 7. This API defines a state machine
and is similar to the Controller API in Figure 2, except that all
the methods and variables are written in ghost code [61, 62].
Ghost code is auxiliary code that describes properties of pro-
grams and is used for verification only—the code is erased
before compilation and thus poses no runtime overhead. Con-
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cretely, in the controller model, all the methods are Verus’
spec functions which are purely functional, and all the vari-
ables are ghost types that represent an abstract view of the
variables in the implementation, e.g., a heap-allocated Rust
Vec is represented as a mathematical sequence (Verus’ Seq).

1 pub trait ControllerModel {
2 type DV; // view of the desired state description
3 type SV; // view of local state in the state machine
4 spec fn m_initial_state() -> SV;
5 spec fn m_step(d: DV, r: RespV, s: SV) -> (SV, ReqV);
6 spec fn m_done(s: SV) -> bool;
7 spec fn m_error(s: SV) -> bool;
8 } // other advanced APIs are omitted

Figure 7: Anvil’s ControllerModel API. Developers use the API
to write the controller model (an abstract state machine). It mirrors
the implementation trait (Figure 2) but is written in ghost code.

Given a controller implementation, writing the controller
model is straightforward. Given a step() implementation in
the Controller API (Figure 2), developers write a correspond-
ing m_step() using the ControllerModel API (Figure 7). If the
implementation’s step() returns a Kubernetes-API request,
the model’s m_step() correspondingly returns a ghost-type
request (ReqV) that queries the Kubernetes API model (§4.3.1).
The other trait methods are largely identical to their counter-
parts in the implementation except for the data types.

For each implementation data type defined by developers,
such as the types for the desired state description and the state
machine’s local state (e.g., D and S in Figure 2), developers
need to define a corresponding ghost type (e.g., DV and SV),
typically by replacing implementation data types with corre-
sponding ghost types. For example, if D has a field of Rust
Vec type, DV will have a field of Verus Seq type. Developers
also need to define a view() function that converts an imple-
mentation object to the corresponding ghost-type object.

Implementation-model conformance. Developers need to
prove that the implementation state machine has the same ini-
tial state, transitions and termination conditions as the model
state machine through view(). Figure 8 shows the theorem
to prove conformance for the ZooKeeper controller’s step()
in Figure 4. This theorem states that the model’s m_step()
produces the same output (in ghost types), given the same
input (in ghost types) of the implementation’s step().

1 fn step(d: &ZKD, r: Resp, s: ZKS) -> (res: (ZKS, Req))
2 ensures res@ == ZKControllerModel::m_step(d@, r@, s@)
3 { ... } // implementation body is omitted

Figure 8: The conformance theorem written as a postcondition
of step. The step function is executable (part of the controller
implementation). The symbol @ is a shorthand for .view() in Verus,
which converts an implementation type into a ghost type.

The key challenge in enabling and automating the confor-
mance proof is to reason about data types defined in external,
unverified libraries. For example, the controller implemen-
tation needs to use data types that define Kubernetes state
objects from the kube-rs [11] library, but Verus cannot di-

rectly reason about definitions from unverified libraries. So,
Anvil defines wrappers that translate every Kubernetes state-
object type to its corresponding ghost type. These wrappers
are straightforward to implement and are trusted; Anvil in-
cludes unit tests that cover all the trusted wrapper methods.

The controller implementation uses the wrapper types in-
stead of raw types from kube-rs, and the model uses the cor-
responding ghost types. For verification, Verus automatically
tracks the wrapper’s view (view()) through the postconditions
of the wrapper methods used in the controller implementation.
Verus compares the object’s view to the ghost object used in
the controller model to check the conformance proof; e.g., to
prove the theorem in Figure 8, Verus compares the returned
request’s view and its counterpart in the model.

With this design, the conformance proof is done by standard
Floyd-Hoare style reasoning [52] and is largely automated by
Verus. Most of the manual proof effort is the requirement to
ask Verus to prove two objects are equal if they have the same
properties, e.g., to prove a Vec’s view (in the implementation)
and the corresponding Seq (in the model) are equal.

4.2 TLA Embedding
To enable liveness reasoning on top of Verus, Anvil develops
a TLA embedding that models important concepts in TLA.
Anvil follows IronFleet [51] and models three major concepts
as follows: (1) an execution is an infinite sequence of system
states encoded as a mapping from natural numbers to states,
(2) a temporal predicate is a boolean predicate on executions,
and (3) a temporal operator (e.g., 3, 2 and ;) is a function
that transforms one temporal predicate into another. Every
temporal operator is defined using only first-order quantifiers
on executions. Suppose P is a temporal predicate and ex is
an execution, eventually(P) (resp. always(P)) is a temporal
predicate that holds true of ex if P is true on some (resp. all)
suffixes of ex, that is, at some (resp. all) future time.

With the TLA embedding, developers can specify the theo-
rem that the controller satisfies ESR (eq. (2)) as in Figure 9.
The definition of desire is typically reused among controllers
but can also be extended if more premises are required for live-
ness. The definition of match varies across controllers; e.g.,
the match(d) for the ZooKeeper controller in Figure 4 checks
if the service, config map and stateful set exist in the data
store and match the desired state description d (Figure 10).

1 // model |= ∀d.2desire(d);2match(d)
2 model.entails(
3 forall(|d: DV|
4 always(desire(d)).leads_to(always(match(d)))
5 ))

Figure 9: The ESR theorem specified using the TLA embedding.

In the style of specifying systems [59], Anvil diligently
abstracts away executions: developers model components at
the levels of state and action (transition between states), then
complete liveness proofs with temporal operators. Essentially,
Anvil encourages developers to express concepts as state
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1 spec fn match(d: ZKDV) -> TemporalPredicate {
2 lift(|s: ClusterState| { // lift a state predicate
3 let store = s.state_object_data_store;
4 store.contains(service_name(d))
5 && store.contains(config_map_name(d))
6 && store.contains(stateful_set_name(d))
7 && store[stateful_set_name(d)].replicas == d.size
8 && ... // more statements are omitted
9 })

10 }

Figure 10: The definition of the ZooKeeper controller’s match.
The temporal predicate, when applied to an execution, checks the
first state to see if the state objects exist in store and match d. ZKDV
is the view of the ZooKeeper desired state description (ZKD).

predicates over individual states or action predicates over in-
dividual transitions. Developers can convert a state predicate
to a temporal predicate using a lift function [59]: an execu-
tion satisfies the lifted predicate if its first state satisfies the
state predicate; lifting an action predicate likewise applies the
predicate to the first two states of an execution. For example,
the temporal predicate match(d) is defined by lifting a state
predicate as shown in Figure 10. In this way, developers focus
on reasoning about individual states and actions when proving
invariants and lift them to temporal predicates when apply-
ing temporal proof rules (§4.4.1). This differs from IronFleet
which interacts directly with instantiated executions through-
out the liveness proof. We present Anvil’s temporal reasoning
style in detail in §5.2.

4.3 Modeling Controller Environment
To reason about interactions between a controller and its envi-
ronment, Anvil models the controller environment. The goal
is to describe the external behavior of different components
in the environment and capture the factors that affect a con-
troller’s correctness, including asynchrony, concurrency and
faults. To this end, Anvil models the environment as a com-
pound state machine, consisting of individual state machines
that depict the behavior of different components, such as the
network and the API server, as well as faults. The environ-
ment model also comes with reasonable assumptions on fair
scheduling and faults that liveness depends on.

4.3.1 Modeling Environment Components
Anvil models the environment as a compound state machine
with each inner individual state machine modeling one com-
ponent that a controller interacts with, including:

• an asynchronous network that delivers messages among
components with no ordering guarantees;

• the cluster-state data store and the API server; the cluster
state is stored in the logically centralized data store (e.g.,
etcd [1]) and exposed by the API server which handles the
controller’s query or update requests;

• other controllers in the environment that might interact with
the to-be-verified controller; and

• clients that request desired cluster states; clients can update
the desired cluster state at any time.

Anvil embeds the controller model in the compound state ma-
chine to reason through the interaction between the controller
and its environment. The compound state machine, in each
step, chooses one individual state machine and invokes one
step of that state machine. All the steps are atomic regard-
ing how the cluster state advances (e.g., the API server only
handles one request to update the cluster state in each step).

The compound state machine model naturally captures
asynchrony and concurrency challenges for controllers. For
example, time-of-check to time-of-use (TOCTOU) issues can
happen when the cluster state has changed since the last time
the controller queried it, but the controller issues an update
based on its stale view of the cluster state.

A model of Kubernetes environment. Anvil models the
Kubernetes cluster-state data store as a map that stores state
objects. Anvil models Kubernetes API servers’ mechanisms
for validating and coordinating controller requests, including
its multi-version concurrency control mechanism wherein
each object is versioned. Requests from the controllers must
be validated with a version check to take effect.

Anvil models Kubernetes built-in controllers that interact
with other controllers, including (1) the garbage collector [16]
which deletes a state object if all of its listed owners have been
deleted, (2) the StatefulSet controller [18] which manages
stateful applications, and (3) the DaemonSet controller [15]
which manages daemons (e.g., for monitoring) on every node.

4.3.2 Modeling Faults
Anvil models common faults that happen in modern clusters
as actions in the compound state machine; the compound state
machine in each step chooses to either let one component take
one step or let one fault happen. Anvil models two types
of faults: (1) controller crash: the controller can crash and
reboot an arbitrary number of times. Each crash makes the
controller stay offline for an arbitrary number of steps before
it is rebooted. After a crash, the controller loses its internal
(in-memory) state and has to start over from the beginning of
its reconciliation procedure. (2) request failures: any request
sent by the controller can fail at any point due to network
timeouts or the API server being busy.

4.3.3 Specifying Liveness Assumptions
Liveness verification needs careful assumptions. In a concur-
rent, asynchronous system, fairness assumptions are needed
to prove that something eventually happens as it relies on
the system and its environment getting a chance to take cer-
tain actions—a property that is expected to hold in practice
but must be nonetheless explicitly incorporated in our formal
assumptions. This problem is especially pronounced for con-
troller liveness: a controller’s reconciliation (1) relies on other
components’ actions to complete, and (2) can be interrupted
by faults or conflicting actions from other controllers. Anvil
makes assumptions that the environment eventually allows
the controller to make progress.
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Weak fairness assumptions on actions. Applying the weak
fairness [58] assumption is effective to make the liveness
property hold, without assuming any specific fair scheduling.
A weak fairness assumption states that if an action A remains
“enabled” (i.e., the action can possibly occur), the action even-
tually occurs: 2enabled(A); A. The predicate enabled(A)
is true, if for S (the first state of the execution), there exists a
next state S′ such that A(S,S′) is true; that is, it is possible for
A to occur and transition to S′.

We include fairness assumptions in the model by assum-
ing weak fairness on the actions of the controller and other
components in the environment.
Assumptions on faults. Controller liveness also needs as-
sumptions on faults. If the compound state machine chooses
to reboot the controller in every step, the controller will never
get a chance to finish reconciliation. However, overly strong
assumptions like “the controller crashes only once” lead to
weak correctness guarantees. To strike a balance, we assume
that faults can happen an arbitrary number of times but even-
tually stop happening, in the spirit of partial synchrony [40].

To incorporate this assumption, we add a “disable-fault”
action for each type of fault to the compound state machine.
We then add the weak fairness assumption to disable-fault
actions. That is, the disable-fault action eventually happens,
after which the corresponding type of fault no longer happens.
Assumptions on other controllers. Controllers share the
cluster state and thus can conflict with each other. A con-
troller’s liveness relies on conflicts being eventually resolved,
which mandates assumptions on other controllers. In Kuber-
netes as an example, the built-in StatefulSet controller can
compete with the target controller forever. Suppose the con-
troller uses a stateful set to manage a stateful application and
updates the stateful set to match the desired state descrip-
tion. At the same time, the StatefulSet controller continuously
updates the stateful set to publish the current status of each
running node. When the two controllers are updating the same
object concurrently, only one can succeed [13]. Thus, the en-
vironment model can adversarially keep letting the target
controller lose the race and never reach the desired state.

Anvil assumes that the StatefulSet controller eventually
stops updating the stateful set until the target controller up-
dates the stateful set again. Similar to the fault assumption, we
add to our model an action (with weak fairness) that disables
the built-in StatefulSet controller’s updates on a stateful set;
the target controller’s successful update to this stateful set
will enable the StatefulSet controller again. Anvil makes the
same assumption on how the built-in DaemonSet controller
updates daemon sets.

4.4 Reusable Lemmas
Proving ESR requires applying temporal proof rules to reason
about the controller’s interaction with the environment. This
is challenging in two ways: (1) temporal reasoning does not
have good automation because SMT solvers like Z3 lack deci-

1 proof fn leads_to_transitive(
2 model, P, Q, R: TemporalPredicate
3 )
4 requires
5 model.entails(P.leads_to(Q)),
6 model.entails(Q.leads_to(R))
7 ensures model.entails(P.leads_to(R))
8 { ... } // proof body is omitted

Figure 11: The leads-to transitivity lemma.

sion procedures for temporal operators, and (2) the interaction
between the controller and the environment is complex and is
subject to asynchrony and faults. To reduce developers’ proof
effort, Anvil provides a library of reusable lemmas that en-
code (1) commonly used temporal proof rules and (2) generic
reasoning patterns in the controller environment.

4.4.1 Temporal Reasoning Lemmas
Anvil provides temporal reasoning lemmas that encode com-
monly used proof rules to improve temporal reasoning au-
tomation. These lemmas are useful for proving liveness for
any controller. One example is the leads-to transitivity lemma
(Figure 11). It shows that if P;Q and Q;R, then P;R, all
under the same assumption model. The proof of this lemma
involves using the temporal logic definitions, reasoning about
an arbitrary time in an execution where P holds, and showing
there exists a corresponding time where R eventually holds
(using an intermediate time when Q holds, as guaranteed by
the preconditions). In return, the developer can easily invoke
the lemma without reference to execution or specific indices
(these are hidden in the temporal logic lemmas). The leads-to
transitivity lemma is frequently used for chaining leads-to for-
mulas to deduce ESR: in our controllers used as case studies,
the lemma is used over 50 times. So far, Anvil includes state-
ments and proofs of 70+ such temporal reasoning lemmas,
representing a broad range of temporal reasoning patterns.

4.4.2 Environment Reasoning Lemmas
Environment reasoning lemmas prove liveness and safety
properties of the interaction between a controller and the envi-
ronment. We have developed 60 such lemmas. These lemmas
are generic to all controllers, and developers can assemble the
lemmas into their proofs. We present a representative lemma
derived from Anvil’s Kubernetes environment model.

Example lemma on the garbage collector (GC). Develop-
ers need to reason about their controller’s interaction with the
built-in GC (§4.3.1). The GC’s job is to delete orphan objects
whose owner [21] no longer exists: e.g., a stateful set owns a
set of pods, thus deleting the stateful set orphans these pods.
The GC can conflict with the controller: (1) after the con-
troller updates the owner of an orphan object, the GC deletes
the object due to its stale view [86], and (2) the controller
attempts to update an object that was deleted by the GC.

To prove ESR, developers need to prove that eventually
the GC stops racing with the controller on the object. To
help developers prove that eventually the GC stops trying to
delete an object x (as x has an existing owner), Anvil provides
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a lemma with the precondition that any request from the
controller that tries to (re)create or update x sets x’s owner
to an existing object, and the postcondition that eventually
if x exists, it has an existing owner (Figure 12). This lemma
saves developers the trouble of reasoning about a long chain
of the GC execution, including that the GC eventually sends a
request to delete x (if it is an orphan), the network eventually
delivers the request, and the API server eventually handles
the deletion. This lemma takes 200+ lines of proof code and
is used in verifying all of the controllers in §6.

1 proof fn eventually_always_has_an_existing_owner(
2 model: TemporalPredicate , x: ObjectKey
3 )
4 requires model.entails(
5 always(each_req_sets_an_existing_owner(x))),
6 ... // some preconditions on fairness are omitted
7 ensures model.entails(
8 eventually(always(has_an_existing_owner(x))))
9 { ... } // proof body is omitted

Figure 12: The garbage collector lemma. If each request that
tries to create or update x sets x’s owner to an existing object, then
eventually it is always true that if x exists, it has an existing owner.

5 Proving the ESR Theorem
Proving the ESR theorem requires developers to reason about
how the controller makes progress starting from any cluster
state towards any desired state. We leverage the opportunity
that all controllers follow the state-reconciliation principle
and develop a proof strategy for ESR. The proof strategy is
realized by temporal reasoning using Anvil’s TLA embed-
ding and lemmas. We present the proof strategy for ESR and
temporal reasoning with Anvil in detail.

5.1 Proof Strategy for ESR
The key idea of our proof strategy is to divide the proof into
two main lemmas by separation of concerns: (1) proving
that the environment eventually gets stable, and (2) proving
that the controller, starting from any state (any_state()) re-
sulted from arbitrary previous executions and faults, eventu-
ally achieves the desired state in this stable environment. Here
an environment is stable if (1) the controller does not conflict
with the other controllers, (2) faults do not happen, and (3)
the desired state description remains unchanged. The ESR
theorem is finally proved by combining the two lemmas using
temporal proof rules (e.g., leads-to transitivity). Figure 13
shows the high-level proof structure.

5.1.1 Environment is Eventually Stable
Proving that the environment is eventually stable is straight-
forward and is largely automated by Anvil’s lemmas. For ex-
ample, developers can directly invoke Anvil’s lemma which
proves that faults eventually stop happening based on Anvil’s
assumption of faults (§4.3.3). However, proving that the con-
troller eventually stops conflicting with the other controllers
still requires certain controller-specific reasoning. Take the
garbage collector (GC) as an example, developers can use

1 proof fn ESR_proof()
2 ensures model.entails(forall(|d: DV|
3 always(desire(d)).leads_to(always(match(d)))
4 )) /* the ESR theorem */ {
5 // (1) prove ∀d.model |=2desire(d); stable_model(d)
6 env_is_eventually_stable();
7 // (2) prove ∀d.stable_model(d) |= any_state();2match(d)
8 liveness_in_stable_env();
9 // (3) prove model |= ∀d.2desire(d);2match(d)

10 ...
11 leads_to_transitive(...);
12 }
13

14 proof fn env_is_eventually_stable() // lemma 1
15 ensures forall |d| model.entails(
16 always(desire(d)).leads_to(stable_model(d))) {...}
17

18 proof fn liveness_in_stable_env() // lemma 2
19 ensures forall |d| stable_model(d).entails(
20 any_state().leads_to(always(match(d)))) {...}

Figure 13: High-level structure of the ESR proof. model de-
scribes the original environment in §4.3. stable_model(d) de-
scribes the stable environment: faults and conflicts stop, and the
desired state d is stable.

Anvil’s lemma on the GC (Figure 12) to prove that the GC
eventually stops racing with the controller on any object, after
they prove that the controller correctly sets the owner of the
target objects (required by the GC lemma).

A notable corner case emerges due to asynchrony: even
if the desired state description remains unchanged, the con-
troller could still be affected by an older version of the desired
state. Consider an execution where the controller crashes right
after sending a request to match d1, then the desired state de-
scription is updated to d2 and remains unchanged from then,
but the old request for d1 is still pending in the network. After
the restarted controller sends a new request to match d2, the
two requests will conflict with each other—the two requests
try to make the cluster state match two different versions of
the desired state. To address this problem, we prove that after
the desired state description eventually stabilizes, any con-
troller request for any previous version of the desired state
will eventually leave the network.

5.1.2 Liveness in a Stable Environment
Within the stable environment, developers focus on proving
that the controller reaches the desired state through each rec-
onciliation step, without considering faults or conflicts.

The main challenge is to prove liveness starting from any
possible state. The state here includes both the shared cluster
state and the controller’s internal state: the cluster state can
result from any possible interleaving between the controller’s
previous execution and arbitrary faults, and the controller
internally can be running any reconciliation step.

It is tedious to reason about different executions starting
from every internal state. For the ZooKeeper controller in Fig-
ure 4, it would require reasoning about controller executions
starting from CheckService, ReconcileService and all other
branches in step(), respectively. To reduce proof burden,
we organize the proof in three stages (Figure 14). First, we
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Reconciliation terminates

Reconciliation restarts

Query service

Create service Update service

Query config map

① The current reconciliation 
eventually terminates.

②A new reconciliation 
eventually restarts.

③ From the initial internal 
state, the controller eventually 
realizes the desired state.

…

…

Figure 14: Proving liveness in a stable environment.

prove a termination property: the controller’s current recon-
ciliation (the current invocation of reconcile() in Figure 3)
eventually terminates regardless of its current internal state.
This is done by reasoning about internal states backward, e.g.,
CheckService leads to termination if all its successor states
lead to termination. Second, we prove that a new reconcilia-
tion eventually starts after the previous one terminates. This
holds as Anvil requeues the next invocation of reconcile()
when the current terminates (Figure 3). Lastly, we only need
to reason about the controller execution starting from its initial
internal state in the new reconciliation (e.g., CheckService in
Figure 4) to prove that the controller eventually creates and
updates all the state objects to match the desired state.

To reason about the controller execution starting from its
initial internal state, we need to reason about how the con-
troller manages each state object. We observe that controllers
often employ similar workflow for managing different objects,
which can be leveraged to develop general lemmas to further
reduce proof burden. For example, the ZooKeeper controller
in Figure 4 manages its service, config map and stateful set
with a similar pattern: (1) querying the object and (2) cre-
ating or updating the object depending on the query result.
We develop a lemma parameterized by state objects which
proves that, from the step that the controller queries the object,
eventually the object always exists and matches the desired
state. The lemma internally reasons about how the controller
creates or updates the object to match the desired state.

5.2 Temporal Reasoning with Anvil
The proof strategy for ESR is realized by temporal reason-
ing. With Anvil, developers perform temporal reasoning by
focusing on reasoning about state and action predicates using
Anvil’s TLA embedding and lemmas. We use the example in
Figure 15 to demonstrate temporal reasoning with Anvil.

Developers perform temporal reasoning to prove that all
possible executions allowed by a model satisfy a property
Prop (model |= Prop). A model is defined as the initial state

1 // model≜ init∧2next∧fairness(...)
2 let model = lift(init).and(always(lift(next))
3 .and(fairness(...)));
4

5 // (1) prove model |= P; Q
6 // if P holds, P or Q will hold in the next state
7 assert forall |s, s’| P(s) && next(s, s’)
8 implies P(s’) || Q(s’) by { ... }
9 // if P holds, running A makes Q hold in the next state

10 assert forall |s, s’| P(s) && next(s, s’) && A(s, s’)
11 implies Q(s’) by { ... }
12 // if P holds, A is enabled (A can possibly occur)
13 assert forall |s| P(s) implies enabled(A)(s) by { ... }
14 wf1(model, next, A, P, Q);
15

16 // (2) prove model |= Q; R
17 ...
18 wf1(model, next, A, Q, R);
19

20 // (3) prove model |= P; R
21 leads_to_transitive(model, lift(P), lift(Q), lift(R));
22

23 // (4) prove model |= P;2R
24 assert forall |s, s’| R(s) && next(s, s’)
25 implies R(s’) by { ... }
26 leads_to_stable(model, lift(next), lift(P), lift(R));
27

28 // (5) prove model |=2Inv
29 assert forall |s| init(s) implies Inv(s) by { ... }
30 assert forall |s, s’| Inv(s) && next(s, s’)
31 implies Inv(s’) by { ... }
32 invariant_by_induction(model, init, next, Inv);

Figure 15: Temporal reasoning with Anvil. Developers focus on
reasoning about states and actions and applying TLA proof rules.

(init), all possible next-state actions (next), and fairness as-
sumptions (line 2-3). Fairness assumptions are only used for
proving liveness properties such as ESR.

Proving ESR often involves proving that if condition P
holds then eventually Q holds (i.e., P ; Q). For example, if
the controller sends a request, then eventually the request is
received and handled by the API server. Proving P ; Q is
typically done by applying the WF1 rule [58]. WF1 states
that “Action A makes P lead to Q” with four requirements (1)
running any action in a state satisfying P makes either P or
Q hold in the next state, (2) running A in a state satisfying P
makes Q hold in the next state, (3) P implies that A is enabled
(i.e., A can possibly occur) and (4) A has the weak fairness
assumption. To apply Anvil’s wf1 lemma (line 14), developers
focus on proving (1)-(3) by reasoning about P, Q, A and all
other actions allowed by the model (line 7-13), and (4) is
automatically proved by the definition of the model.

Proving ESR requires reasoning about a sequence of ac-
tions. For example, the controller sends a request, the API
server handles the request, and the controller receives the
response and continues to send the next request. To prove
that the controller makes progress through multiple actions,
developers apply the leads_to_transitive lemma (line 21)
to combine multiple leads-to properties into one (P ; R).

To reason about stability (if P ; R, then P ;2R), devel-
opers need to demonstrate that R is preserved by all possible
actions (if R holds, then it will hold in the next state) and
apply the leads_to_stable lemma (line 24-26).

Proving ESR (or other properties) often requires invariant
reasoning by induction (line 29-31). For example, to prove
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that a state object x always exists, developers need to prove an
invariant that the controller never deletes x. Such invariants
are often required when applying wf1 and leads_to_stable.

6 Case Studies
We use Anvil to build three verified Kubernetes controllers
for managing different applications and services (ZooKeeper,
RabbitMQ, and FluentBit). For each controller, we use a ma-
ture, widely used controller as a reference (either the official
Kubernetes controller of the applications or from companies
that offer related products). We verify ESR for all three con-
trollers, and a safety property of the RabbitMQ controller.

Feature parity. We aim to implement verified controllers that
are feature rich with production quality. For the ZooKeeper
and RabbitMQ controllers, we implement key features of-
fered by the reference controllers [20, 23] including scaling,
version upgrading, resource allocation, pod placement, and
configurations, as well as network and storage management.
For the FluentBit controller, we implement all the features
offered by the reference controller [19]. We also implement
important features missing in the reference controllers. For
the ZooKeeper controller, we implement a feature that the
controller automatically restarts each ZooKeeper server to
load the new configuration once the configuration changes.
For the FluentBit controller, we implement a feature that the
controller allows users to customize how a load balancer dis-
covers FluentBit daemons. All the verified controllers can
readily be deployed in real-world Kubernetes platforms and
manage their respective applications.

Experience. Anvil’s Controller API (Figure 2) is expressive
to implement all the features of the controllers. For verifica-
tion, we spent around two person-months on verifying ESR
for the ZooKeeper controller, during which we developed
the proof strategy (§5). We took much less time (around two
person-weeks) to verify the other two controllers using the
same proof strategy and similar invariants. We find Anvil’s
ability to formally verify a controller’s implementation invalu-
able. We discovered deep bugs via verification. Some of them
also exist in the reference controllers but were not detected
by testing [44, 85].

6.1 ZooKeeper Controller
We implement and verify a full-fledged ZooKeeper controller,
using the controller [23] from Pravega [22] as the reference.
Figure 4 is a simplified version of our ZooKeeper controller.
We discuss two challenges of verifying the controller.

Supporting non-Kubernetes APIs. We extended Anvil
to support non-Kubernetes APIs to implement features like
scaling. To scale a ZooKeeper cluster, the controller needs
to change ZooKeeper membership by invoking ZooKeeper
APIs. We implement procedures to invoke ZooKeeper APIs as
callbacks invoked by reconcile() (Figure 3); Anvil decides
whether to invoke Kubernetes APIs or ZooKeeper APIs based

on the request object returned by the controller step().
Invoking ZooKeeper APIs needs new specifications beyond

what Anvil supplies. Hence, we write a trusted model (an
abstract state machine) of the ZooKeeper APIs used by our
controller and register it with the extensible compound state
machine. To prove liveness, we assume weak fairness on the
ZooKeeper API model: if the controller sends a request to a
deployed ZooKeeper cluster, it eventually receives a response.

Reasoning about dependencies between state objects. To
prove ESR, we need to reason about dependencies between
state objects—the desired state of one object depends on
the current state of another object. For example, to support
reconfiguration, our controller attaches the version number
of the config map to the stateful set as an annotation [7].
To ensure the ZooKeeper servers managed by the stateful
set use the updated configuration, the desired state of the
stateful set should contain the current version number of the
config map as an annotation. To verify the correctness of
reconfiguration, in ESR, match asserts that each state object
matches the desired state description (as in Figure 10), and
the annotation in the stateful set matches the current version
of the config map. We prove that the config map’s version
eventually becomes stable and thus the annotation eventually
matches the version.

Bugs precluded. We found and fixed two liveness bugs when
verifying our ZooKeeper controller. The first bug occurs when
the controller crashes between the steps of scaling ZooKeeper
and cannot continue reconciliation after restart, similar to
Figure 1. This led us to find a similar bug in the reference con-
troller we reported in [26]. Recent work [85] applied extensive
fault-injection testing on this controller but failed to find this
bug, because the bug only manifests in specific timing under
specific workloads (not covered by tests).

The second bug was caused by the controller trying to up-
date immutable fields in a stateful set. Kubernetes always
rejects the update, so the controller never finishes its recon-
ciliation. Our environment model captures how Kubernetes
validates each request (§4.3), which helped us find this bug.

6.2 RabbitMQ Controller
We implement and verify a full-fledged controller for Rab-
bitMQ, a widely used message broker [24]. We use the official
RabbitMQ controller as the reference [20].

Verifying safety. Besides ESR, we verify a safety property
for our controller. The official RabbitMQ controller disallows
scaling down a RabbitMQ cluster by reducing the stateful set’s
replicas due to data loss concerns [25]. The recommended
practice is to export the data, redeploy RabbitMQ with fewer
replicas, and import the data back. So, our controller prevents
reducing replicas count. We prove a safety property stating
that the replica count never decreases using Anvil. The safety
proof is done by standard inductive proof. For example, we
first prove invariants like “no request in the network reduces
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replicas,” and conclude the replicas in the data store never
decreases using the invariants.

Bugs precluded. We found a safety bug and a liveness bug
via verification. The safety bug was caused by a concurrency
issue involving the RabbitMQ controller and the Kubernetes
garbage collector (GC). Initially, we restricted that replicas
never decreases in desired state descriptions using Kubernetes’
validation rule [5]. However, safety can still be violated, be-
cause the GC may not immediately remove orphan stateful
sets. If the stateful set updated by the controller was created
by an old (already deleted) desired state description that set a
larger replicas (r1) than the current one (r2), the controller
would in fact decrease the stateful set’s replicas (r1 → r2).
We fixed the bug by enforcing the controller to wait for the
GC to delete orphan stateful sets.

The liveness bug was caused by a naming rule we inherited
from the reference controller. The bug causes the controller
to assign the same name for service objects from different
RabbitMQ clusters. In this case, the desired state descriptions
of two RabbitMQ clusters drive the controller to change each
other’s service object back and forth, thus neither can reach
desired states stably. We caught this bug because the oscil-
lation behavior prevented us from proving the cluster state
eventually always matches the desired state description in the
presence of another conflicting description. We fixed the bug
by changing the naming schema. The same bug also exists in
the reference controller.

6.3 FluentBit Controller
We implement and verify a controller for FluentBit, a popular
logging and metrics service [9]. FluentBit is deployed as a
group of daemons collecting and processing data on different
nodes in a cluster. We use the official FluentBit controller as
the reference [19] and implement all its features.

Incremental verification. To evaluate the efforts of maintain-
ing an evolving controller, we first implemented and verified a
basic version of the controller that deploys FluentBit daemons,
and then added new features incrementally, including version
upgrading, daemon placement, reconfiguration. We repaired
the proof every time when a new feature was added. We find
the efforts of evolving a verified controller manageable (§7.1).

7 Evaluation
We evaluate Anvil along the dimensions of verification effort
(§7.1), controller correctness (§7.2) and performance (§7.3).
Our evaluation shows that it is pragmatic to implement, verify
and evolve practical Kubernetes controllers with Anvil.

7.1 Verification Effort
Table 1 shows the details of each verified controller we built
using Anvil. Verifying each controller takes under 3 minutes
in real time on a 6-core 16 GB laptop with 11 parallel threads.

Trusted Exec Proof Time to Verify
(lines of source code) (seconds)

ZooKeeper controller §6.1
Liveness (ESR) 94 – 7245 511
Conformance 5 – 172 9
Controller model – – 935 –
Controller implementation – 1134 – –
Trusted wrapper 514 – – –
Trusted ZooKeeper API 318 – – –
Trusted entry point 19 – – –
Total 950 1134 8352 520 (154)

RabbitMQ controller §6.2
Liveness (ESR) 144 – 5211 278
Safety 22 – 358 45
Conformance 5 – 290 18
Controller model – – 1369 –
Controller implementation – 1598 – –
Trusted wrapper 358 – – –
Trusted entry point 19 – – –
Total 548 1598 7228 341 (151)

FluentBit controller §6.3
Liveness (ESR) 115 – 7079 337
Conformance 10 – 201 10
Controller model – – 1115 –
Controller implementation – 1208 – –
Trusted wrapper 679 – – –
Trusted entry point 24 – – –
Total 828 1208 8395 347 (96)

Total (all) 2326 3940 23975 1208 (401)

Table 1: Code sizes and verification time of the controllers veri-
fied using Anvil. Trusted includes the (verified) theorems, trusted
assumptions and unverified implementation. Time in brackets is ob-
tained by running the verifier in parallel (11 threads on 6 cores).

87% of proof functions verify in under ten CPU seconds, and
the slowest of them takes 120 CPU seconds.

Implementing and verifying each controller takes around
2.5 person-months. The proof-to-code ratio ranges from 4.5
to 7.4 across three controllers. We attribute the relatively low
ratio to Anvil’s reusable lemmas (§4.4) and our proof strategy
(§5). For example, the ESR proof of the RabbitMQ controller
uses the same set of leads-to reasoning lemmas to prove nine
different state objects eventually match the desired state.

The ESR proof mainly consists of proving invariants and
applying temporal proof rules. Proving invariants takes about
40% of the proof, which can potentially benefit from research
on inductive invariant inference [42, 48, 68, 69, 78, 79, 91, 93].
All our temporal logic reasoning is done by applying Anvil’s
temporal logic lemmas without unfolding the definition of
executions and temporal logic operators.

The verified controllers have a large portion of unverified
(trusted) components: 67% of the trusted code is for defin-
ing wrapper types of Kubernetes custom objects (used for
describing desired states) to integrate kube-rs, and their views
to enable verification (§4.1). The ZooKeeper controller also
relies on the trusted ZooKeeper API: 180 lines for specifying
the ZooKeeper API and 138 lines for implementing the call-
backs for Anvil to invoke the ZooKeeper API during runtime.
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Controller Functional testing Crash testing
# Tests # Bugs # Tests # Bugs

ZooKeeper 239 1 212 0
RabbitMQ 197 0 158 0
FluentBit 557 0 484 0

Table 2: Testing results of the three verified controllers. The tests
cover all the features of the controller under test.

Evolving controllers with Anvil. We measure the efforts to
evolve the FluentBit controller with Anvil by incrementally
adding features and updating its proof. We first implemented
and verified a basic FluentBit controller for deploying Fluent-
Bit daemons, then added 28 new features including version
upgrading, daemon placement, and various configurations. On
average, implementing a feature took less than a day and 47
lines of changes, including 19 lines in the proof. Among them,
implementing metrics_port required the most changes (403
lines in total and 211 in the proof); it added a new service
that routes traffic to the metrics port of each daemon, and we
proved the service eventually matches the desired state.

Effort to build Anvil. As a reference, the Anvil framework
consists of 5353 lines of reusable lemmas and 7817 lines
of trusted code, including the TLA embedding (85 lines),
the environment model (1846 lines) and the integration with
Kubernetes (5886 lines); 89% of the integration is for defining
wrapper types and views of Kubernetes built-in objects (§4.1).
All the lemmas are verified in under one minute.

7.2 Controller Correctness
We run extensive end-to-end functional tests on the verified
controllers using Acto [44]. Acto generates different desired
state descriptions to exercise controller reconciliation under
various scenarios. We also run extensive crash tests to check
if the verified controllers can recover from random crashes
during their reconciliation. The crashes are injected using an
implementation of Sieve [85] for Rust controllers.

Table 2 shows the testing results. The crash tests did not
find any bug—the verified controllers correctly recovered
from all the injected crashes and successfully reconciled the
cluster to the desired state. The functional tests found a bug in
the ZooKeeper controller (no bug found in other controllers).

The bug is caused by an incomplete specification of a
trusted ZooKeeper API that did not cover ZooKeeper mis-
configurations. If a misconfiguration results in partial fail-
ures (ZooKeeper is still running but cannot serve write re-
quests [67]), the controller fails to update the membership
and thus blocks the subsequent reconciliation steps. We fixed
this bug by adding configuration validation in the implemen-
tation, enhancing the specification, and updating the proofs.

7.3 Controller Performance
The verified controllers have comparable performance to the
reference controllers. We use Acto [44] to generate many
different desired state descriptions, triggering a sequence of

Controller Verified (Anvil) Reference (unverified)
Mean (ms) Max (ms) Mean (ms) Max (ms)

ZooKeeper 439 696 212 413
RabbitMQ 439 725 690 1531
FluentBit 195 303 221 464

Table 3: Comparison of reconcile() execution time (in mil-
liseconds) between the verified controllers and their references.

reconciliations. For each desired state, we measure (1) exe-
cution times for the target controllers’ reconcile() methods
(Figure 1), and (2) the time it takes for the system to be fully
reconciled (e.g., after the controller issues a rolling update).
The experiments are run on CloudLab Clemson c6420 ma-
chines with dual Intel Xeon Gold 6142 processors, 384GB
DRAM, and a 6Gb/s HDD running Ubuntu 20.04 LTS.

Table 3 shows that the verified and reference controllers
have comparable execution times. The verified ZooKeeper
controller’s execution time is about twice that of the reference
which implements optimizations to conditionally skip state
updates. None of the controllers are latency critical. On aver-
age, reconcile()’s execution time takes less than 1% of the
overall system reconciliation time, most of which is out of the
control of the controller (e.g., container restart time).

We also evaluate if the verified controllers introduce more
load on the data store which is often the bottleneck for Ku-
bernetes scalability [28, 87]. We measure the disk I/O of etcd
and the verified controllers do not cause noticeably more
loads—the verified FluentBit controller causes only 0.44%
load increase compared to the reference; the other two verified
controllers do not cause load increase.

8 Related Work
Anvil is the first effort for building formally verified cluster
management controllers. We discuss related work in controller
correctness, systems verification and liveness verification.

Controller correctness. Liu et al. [65] use model checking to
find if controllers in a specific deployment have conflicting in-
teractions that violate user-supplied policies at the model level
(not executables). In contrast, Anvil verifies controller imple-
mentations against ESR, a general controller-correctness spec-
ification. Automated testing techniques [44, 85] have found
bugs in controller implementations. Anvil precludes such bugs
by verifying that the controller implementation satisfies ESR
for all executions. It has also revealed bugs that were missed
by these automated testing techniques (§6).

Systems verification. Despite the rich literature, most sys-
tems verification efforts so far focus on safety rather than
liveness [31–34, 36, 37, 49, 50, 56, 63, 66, 75, 82, 83, 88, 90, 94].
A notable exception is IronFleet [51], which also verifies
liveness of system implementations.

Anvil differs from IronFleet in the objective and proof tech-
nique. Regarding objective, IronFleet verifies a Paxos-based
replicated state machine and a sharded key-value store, with
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system-specific specification (e.g., “if the network is fair then
the reliable-transmission component eventually delivers each
message”). Differently, Anvil formalizes ESR as a general
specification that captures the essence of state reconciliation
and verifies multiple controllers against ESR. Anvil shares
IronFleet’s methodology of using TLA embedding on first-
order logic. Different from many IronFleet’s liveness proof
statements that interact directly with instantiated executions
by indexing (Figure 16), Anvil abstracts away executions to
let developers model components, at the level of state and ac-
tion, and complete liveness proofs exclusively with temporal
operators (Figure 15).

1 lemma Lemma_PacketSentEventuallyReceivedAndNotDiscarded
2 (b:Behavior <LSHT_State >, send_step:int, ...)
3 returns (received_step:int, ...)
4 requires 0 <= send_step;
5 requires SendSingleValid(b[send_step], ...);
6 requires ... // other preconditions are omitted
7 ensures send_step <= received_step;
8 ensures b[received_step].hosts[dst_idx].host.
9 receivedPacket == Some(Packet(msg, ...));

10 { ... } // proof body is omitted

Figure 16: A representative liveness lemma example from Iron-
Fleet (written in Dafny) [10]. The lemma counts steps in one
instantiated execution (Behavior) to prove that if the packet is sent
at b[send_step], it will be received at b[received_step]. This
lemma, if written in Anvil, will have a postcondition in the form of
model.entails(sent.leads_to(received))without taking or
returning any execution instances or indices.

Liveness verification. Ivy [72, 78] incorporates a technique
for proving liveness of distributed protocols using first-order
logic [76,77]. Compared to Anvil, Ivy obtains a higher degree
of proof automation at the expense of a more restricted mod-
eling logic; we are exploring the potential to leverage some
of Ivy’s techniques in Anvil. LVR [92] proves liveness of
distributed protocols by automatically synthesizing ranking
functions with limited manual guidance. LVR is complemen-
tary to Anvil and might be able to synthesize ESR proofs for
controller implementations. The Alloy analyzer has recently
been extended to support linear temporal logic [3, 29, 70],
which enables modeling liveness properties of protocols and
system abstractions; but only finite instances can be checked
and the analyzed abstractions are not formally linked to ex-
ecutable code. More broadly, the rich literature on liveness
verification includes program termination [38] and liveness
of concurrent programs [27, 41, 43]. These techniques tar-
get other systems and their liveness specifications, whereas
Anvil’s contribution specifically targets controller correctness
and connects liveness proofs to an executable implementation.

9 Discussion and Future Work
The correctness of controllers verified by Anvil is not absolute.
Anvil relies on trusted components, including the model of
the environment, the shim layer, trusted external APIs, and the
verifier, compiler, and OS. We indeed found a bug caused by
an incomplete trusted assumption (§7.2). We believe that the

bug does not diminish the value of Anvil. Anvil formally veri-
fies reconciliation – the core of a controller – and reduces the
code one needs to look for bugs in to the trusted assumptions.

Note that ESR does not preclude all possible controller
bugs. For example, ESR may not rule out all potential safety
violations. Unlike ESR as a general correctness specification,
safety properties are often controller-specific; e.g., the safety
property we verified in §6.2 that the replicas number never
decreases is specific to the RabbitMQ controller.

We choose to focus on verifying ESR because ESR is a
general, reusable property that precludes a broad range of
bugs, and it is straightforward for developers to specify ESR.
Some bugs precluded by ESR may be precluded by some
safety properties as well, but these safety properties may be
more difficult for developers to specify. For example, the bug
in Figure 1 could be precluded by a safety property saying
“irrecoverable intermediate states never happen.” However,
specifying such safety properties requires knowledge of the
nature of the bugs (e.g., what kind of intermediate states the
controller cannot recover from?) [55]. In contrast, specifying
ESR only requires knowledge of desired states.

We expect verified controllers to be deployed on real-
world Kubernetes platforms, running alongside unverified
controllers. If the unverified controllers are custom controllers
not modeled in Anvil (§4.3.1), Anvil cannot reason about their
interactions with verified controllers, and hence cannot rule
out bugs caused by conflicting interactions.

In future work, we aim to gradually replace existing (unver-
ified) controllers with verified controllers using Anvil, includ-
ing both custom and built-in ones. We plan to extend Anvil
to admit multiple verified controllers and verify the interac-
tions among them in a modular way. We also plan to ensure
the quality of the trusted model of the environment, the shim
layer, and external APIs using lightweight formal methods.

10 Concluding Remarks
This paper presents Anvil, a framework for developing and
verifying cluster-management controllers, and ESR, a general
specification for controller correctness. We have implemented
and verified three Kubernetes controllers using Anvil. Our
work shows that it is not only feasible but also pragmatic
to implement, verify, and maintain practical Kubernetes con-
trollers. We hope that Anvil and ESR lead to a practical path
towards provably correct cloud infrastructures.
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Abstract
Data centers increasingly host mutually distrustful users on
shared infrastructure. A powerful tool to safeguard such users
are digital signatures. Digital signatures have revolutionized
Internet-scale applications, but current signatures are too slow
for the growing genre of microsecond-scale systems in mod-
ern data centers. We propose DSig, the first digital signature
system to achieve single-digit microsecond latency to sign,
transmit, and verify signatures in data center systems. DSig
is based on the observation that, in many data center applica-
tions, the signer of a message knows most of the time who
will verify its signature. We introduce a new hybrid signature
scheme that combines cheap single-use hash-based signa-
tures verified in the foreground with traditional signatures
pre-verified in the background. Compared to prior state-of-
the-art signatures, DSig reduces signing time from 18.9 to
0.7 µs and verification time from 35.6 to 5.1 µs, while keeping
signature transmission time below 2.5 µs. Moreover, DSig
achieves 2.5× higher signing throughput and 6.9× higher
verification throughput than the state of the art. We use DSig
to (a) bring auditability to two key-value stores (HERD and
Redis) and a financial trading system (based on Liquibook)
for 86% lower added latency than the state of the art, and
(b) replace signatures in BFT broadcast and BFT replication,
reducing their latency by 73% and 69%, respectively.

1 Introduction

Digital signatures are used in many distributed protocols that
have revolutionized the Internet through many use cases, such
as enabling digital certificates [83], bootstrapping authen-
tication protocols [30, 89], securing and auditing transac-
tions [22,71], tolerating Byzantine failures [4,6,18], and veri-
fying software authenticity [28,57]. Signatures are irrefutable
proofs that someone produced a message, and these proofs
can be verified by third parties. This property distinguishes
signatures from message authentication codes (MACs) and
authenticated symmetric encryption (e.g., SSL/TLS) [54]. To-
day’s signatures are however too expensive for the growing
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BFT Replication

Non-crypto EdDSA DSig

Figure 1: Median latency breakdown of an auditable key-
value store (based on HERD [51], §6), a BFT broadcast prim-
itive (CTB [3], §6), and a BFT replication system (uBFT [3],
§6) when processing small requests using either EdDSA [50]
(state of the art) or DSig. DSig reduces the cryptographic
overhead by 86%, 82%, and 87%, respectively, and reduces
the overall latency by 83%, 73%, and 69%, respectively.

genre of microsecond-scale systems in data centers. Even
the fastest signature scheme, EdDSA [17, 50], accounts for
79–95.6% of the latency of applications such as auditable key-
value stores, BFT broadcast, and BFT replication (Figure 1).

We propose DSig, the first digital signature system to
achieve single-digit microsecond performance for data cen-
ters. A key insight underlying the design of DSig is that, in
many data center applications, signatures are issued and veri-
fied by parties known a priori in the common case, so signers
and verifiers can exchange useful information beforehand and
do part of the computation before knowing the messages to
be signed, thereby reducing the latency of subsequent signa-
ture generation and verification. We use this observation to
introduce a new hybrid online-offline signature system [37].
Hybrid schemes combine a traditional signature scheme that
is slow but can sign many messages, with a hash-based sig-
nature scheme (HBSS) that is fast but can sign only one or a
few messages. The traditional signature is used to validate a
batch of HBSS key pairs, each of which signs one or a few
messages. Hybrid signatures have been studied extensively
in theory, but practical work has focused only on improving
throughput for low-compute devices with limited bandwidth,
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Table 1: Comparison of EdDSA and DSig in terms of latency
to sign, transmit (tx) and verify; per-core sign and verify
throughput; signature size; and background network traffic
per signature with a single verifier.

Latency (µs) Tput (Kops) Sig size Bg Net
Sign Tx Verify Sign Verify (B) (B/Sig)

EdDSA 18.9 1.1 35.6 53 28 64 0
DSig 0.7 2.0 5.1 131 193 1,584 33

on low-security signatures, or on tiny messages (§9).
Using hybrid signatures to achieve low latency and high

throughput in data centers poses a number of challenges. First,
the traditional part of hybrid signatures is compute-heavy
and can impact latency. Second, hybrid signatures involve
frequent key pair generation, which can exhaust compute re-
sources and impact throughput. Third, the actual performance
of hybrid signatures deviates from their theoretical models, as
real performance requires careful consideration of microarchi-
tectural effects (e.g., caching, prefetching) rather than simply
the amount of computation. Fourth, to perform well, hybrid
signatures need to be configured with an appropriate HBSS
whose thousands of parameter combinations provide complex
trade-offs between number of hash computations, signature
size, and frequency of key pair generation; most parameter
choices exceed our performance goals, the available network
bandwidth, the computational resources, or all of the above.

We address these challenges as follows. First, we use hints
about who will verify a message in the common case to pre-
process the compute-heavy traditional signatures. Second,
we use traditional signatures to sign and verify batches of
HBSS public keys, thus amortizing the cost of their authenti-
cation, while hiding the latency introduced by batching from
the critical path. Third, we study the real performance of
HBSSs to determine the best schemes to use, and we discover
non-intuitive cases where fewer hash computations actually
harm performance. Fourth, we identify two promising HBSSs
to use in DSig, W-OTS+ [46] and HORS [84], and we ex-
plore their parameters in depth to understand how they affect
latency, throughput, and resource usage; we give a recom-
mended configuration of DSig that strikes a good trade-off.

We integrate DSig with five applications: two key-value
stores (HERD [51] and Redis [87]), a financial trading sys-
tem (based on Liquibook [73]), a BFT broadcast primitive
(CTB [3]), and a BFT replication system (uBFT [3]). We use
DSig to provide auditability through a signed security log in
HERD, Redis, and Liquibook; and to replace the signatures
used in CTB and uBFT to thwart Byzantine behavior.

We evaluate DSig and its applications. We find that DSig
can sign, transmit, and verify a signature in 7.7 µs total, which
is 7.2× faster than EdDSA [50], the fastest traditional signa-
ture scheme [17] (Table 1). DSig achieves 2.5× and 6.9×
higher throughput than EdDSA for signing and verifying.

DSig benefits applications significantly. In HERD, Redis, and
Liquibook, DSig brings auditability with an added latency of
less than 8 µs per operation, a reduction of 86% in overhead
compared to EdDSA. In CTB, DSig reduces the broadcast
latency by 73%, from 123 µs to 34 µs. In uBFT, DSig reduces
the replication latency by 69%, from 221 µs to 69 µs.

The price for using DSig is as follows. First, to get the best
performance, DSig needs a priori knowledge of where and
when signatures are verified (DSig still works without such
knowledge, but it is slower). Second, DSig requires extra
bandwidth and space to transmit and store its larger ≈1.5 KiB
signatures. This is a small cost in data-center systems, which
have low-latency high-bandwidth networks and abundant stor-
age, but DSig could be ill-suited for other settings, such as
some wide-area systems.

In summary, our contributions are the following:
• We propose DSig, a new digital signature system tar-

geted at microsecond-scale applications in data centers.
DSig combines hash-based signatures, traditional sig-
natures, and novel techniques to reduce latency in the
critical path while achieving high throughput.

• We analyze and evaluate DSig’s large parameter space
for low latency at high throughput, and identify a config-
uration that best fits most scenarios.

• We implement DSig and integrate it into several applica-
tions: two key-value stores, a financial trading system,
BFT broadcast, and a BFT replication system.

• We evaluate DSig and its applications. DSig significantly
improves signature performance compared to EdDSA,
the state of the art. These enhancements directly benefit
the applications by providing better end-to-end latency
and throughput, and by bringing auditability to the mi-
crosecond scale.

DSig is open source, available at https://github.com/
LPD-EPFL/dsig.

2 Setting and Goals

Setting. We target microsecond-scale applications [2, 3, 11,
19, 31, 41, 76, 80–82] with a few tens of servers within the
same data center—a scale that addresses the computing needs
of many enterprises. These systems have a network with low
latency (≈1 µs) and high bandwidth (100s of Gbps or even
Tbps [74]).

Goals. Our goal is to achieve faster digital signatures to
broaden their usability. We do not seek general-purpose sig-
natures for all settings (wide area networks, mobile networks,
embedded systems), but rather seek schemes that provide the
right trade-offs in modern data centers. We seek signatures
that provide the industry-standard level of security (128 bits).

Digital signatures are important because they are trans-
ferable: if Alice signs a message to Bob, Bob can prove to
Carol that Alice indeed signed it (§3). This property makes
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signatures more powerful than mechanisms such as SSL/TLS
or MACs, which provide only symmetric authenticated chan-
nels between Alice and Bob [54], which do not suffice for
the applications we consider (§6). Signatures help tackle dis-
trustful parties in distributed protocols for a wide variety of
use cases: securing transactions, enabling digital certificates,
bootstrapping authentication of users and services [30, 89],
verifying software authenticity [28, 57], providing integrity
of audit logs [22, 71], tolerating Byzantine failures [4, 6, 18],
etc. Many of these use cases apply to microsecond-scale
applications, as such systems increasingly bring together mu-
tually distrustful users on shared infrastructure [48, 88]. For
example, microservices can benefit from Byzantine fault tol-
erance [3]; signed transactions can provide auditability in
high-frequency trading systems; and signed logs can provide
a legal trail in high-stakes settings.

Threat model. Our threat model is standard for digital sig-
natures [54]. Malicious entities can intercept, store, inject,
delay, and alter messages. We assume the security of stan-
dard cryptography building blocks: traditional digital signa-
ture schemes (Ed25519 [50]), hash-based signature schemes
(W-OTS+ [46] and HORS [84]), and cryptographic hashes
(SHA256 [77], Haraka (v2) [55], and BLAKE3 [75]).

3 Background

3.1 Digital Signature Schemes

A digital signature scheme (DSS) has a key pair consisting
of a public key PK and a secret key SK. A signer s uses SK
to sign a message m, producing a signature σ for m. The
signature σ allows a party who knows PK (and knows that
PK belongs to s) to verify that m was signed by s.

DSSs provide authenticity, integrity, public verifiability
and non-repudiation of messages [54]. Authenticity means
that a party with a message and its signature can verify the
identity of the message’s signer. Integrity means that the party
can verify that the message matches the message that was
signed. Public verifiability means that only m, σ, and PK are
needed to verify the authenticity and integrity of m. Signatures
are transferable: a party can use σ and m to convince anyone
who knows PK that m is authentic (and typically PK is pub-
lished, so everyone knows PK). This property differentiates
digital signatures from other mechanisms, such as message
authentication codes (MACs), vectors of MACs, authenti-
cated channels (e.g., SSL/TLS), and symmetric encryption
(e.g., AES). Non-repudiation means that s cannot deny the
signing of m once its signature σ is known. Non-repudiation
implies that signatures are non-forgeable: without knowing
SK, it is computationally infeasible to produce a signature σ

which passes verification with PK.

3.2 The Cryptographic Barrier

After DSSs were proposed [33], many schemes followed:
RSA [85], ECDSA [49], EdDSA [50], etc. These schemes
rely on the hardness of certain problems (factoring, discrete
logarithms) under sophisticated arithmetic (e.g., modular on
elliptic curves). They seek to provide strong security and
small time to sign and verify. For example, the state-of-the-
art 128-bit-secure EdDSA takes 19 µs to sign and 36 µs to
verify a small message on modern CPUs (Table 1).

State-of-the-art DSSs are too slow for modern data centers:
even the fastest schemes are an order of magnitude slower
than network latencies [17] due to the use of sophisticated
arithmetic, which consumes CPU and cannot be parallelized.
This slowness makes traditional DSSs prohibitive for dis-
tributed protocols, microservices, and applications that run at
the microsecond scale, which need to check the signatures of
messages before acting upon them. For example, signature-
based BFT protocols must check signatures before taking
safety-critical steps such as computing a quorum intersection,
voting, vouching for a message, deciding on a majority value,
etc; similarly, auditable applications must check signatures
before executing requests to provide auditability (§6).

Signing or verifying messages in batches can improve the
throughput of DSSs, but batching further increases latency
and is thus ill-suited for latency-critical applications.

3.3 Hash-Based and Hybrid Signatures

Hash-based signature schemes (HBSSs) were proposed by
Lamport [59]. They are DSSs that avoid advanced arithmetic
by using only cryptographic hashes. Hashes are advantageous
because they can be computed quickly: modern algorithms
(e.g., Haraka [55] and BLAKE3 [75]) can hash a small mes-
sage in less than 100 ns on modern CPUs. In some HBSSs
(e.g., HORS [84], W-OTS+ [46]), signature generation and
verification execute at the microsecond scale, as they require
few hash computations.

To explain HBSSs, we overview the HORS scheme (Fig-
ure 2), which, whilst simple, illustrates the key ideas of HB-
SSs. The secret key SK for signing is an array of t random
secrets (t is a parameter), while the public key PK for verify-
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Figure 2: The HORS hash-based signature scheme. Solid
lines convey the path taken to sign a message, while dashed
lines convey the path to verify a signature. Hollow arrows
indicate cryptographic hashes.
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ing is the concatenation of the hash of each secret in SK. To
sign a message, the signer hashes it with a salt into a string
m, splits m into k substrings (k is a parameter), treats each
substring as an index into SK, and concatenates the indexed
secrets to obtain the signature σ. A verifier hashes the mes-
sage with the salt and uses the substrings to index into PK.
Then, the verifier hashes each secret in σ and checks that they
match the indexed elements of PK. This scheme is secure
because it is hard to (1) find messages that index the same
secrets or (2) reveal secrets without being the signer. Other
fast HBSSs, such as W-OTS+ [46], are similar to HORS in
that they sign by revealing a subset of the private key; as a
result, they are limited to signing one or a few messages.

To overcome this limitation and sign an unlimited number
of messages, hybrid signature schemes [37] combine HBSSs
with traditional schemes. To sign a message m, a hybrid
scheme concatenates an HBSS signature on m with the HBSS
public key signed using a traditional signature. To verify a
signature, the scheme verifies the HBSS signature of m and
the traditional signature of the HBSS public key.

3.4 Challenges
Hybrid signatures were studied extensively in theory, but
their application focused either on improving throughput in
low-compute low-bandwidth devices, or on low-security sig-
natures, or on tiny messages with only a few bits (§9). To
use them in a high-performance data center setting, we must
tackle several challenges.

Efficient signature verification. To verify a hybrid signature,
we must check both its HBSS signature and its traditional sig-
nature. Traditional signatures, however, have high verification
latency. We need new mechanisms to avoid the traditional
signature verification in the critical path.

Frequent key generation. Because an HBSS key pair can
be used only once or a few times, hybrid schemes need to
frequently generate and sign new HBSS key pairs. This can
become a bottleneck as it impairs signature throughput and,
ultimately, its latency. We need new techniques to improve
throughput while minimizing latency on the critical path.

Practical performance. We evaluate the performance of hy-
brid schemes and find that it does not match their theoretical
analysis. The latter is based on simple metrics, namely the
size of signatures and the number of hash calculations in the
critical path. However, due to microarchitectural effects (e.g.,
CPU cache size, prefetching), optimal configurations in the-
ory perform suboptimally in practice, and optimizations that
target solely the theoretical metrics sometimes do not work.

Large parameter space. Hybrid signature schemes have
many configuration options: the choice of the traditional
scheme, choice of the HBSS, and their respective parameters.
As a result, we are faced with thousands of options that pro-
vide different trade-offs in network bandwidth, computational
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Figure 3: Architecture of DSig.

resources, throughput, and latency characteristics.

4 Design of DSig

We present the architecture of DSig (short for “Data center
Signatures”), highlighting its extended interface and comput-
ing planes (§4.1). We then describe DSig’s hybrid signature
scheme (§4.2), its security (§4.3), and throughput optimiza-
tions (§4.4).

4.1 Architecture
Figure 3 depicts the architecture of DSig. Each process has
a public-private key pair of a traditional signature scheme,
where the public key is made available to other parties via a
public key infrastructure (PKI). For the traditional signature
scheme, we choose EdDSA [50] because it is the fastest such
scheme [17]. The PKI can be as simple as an administrator
pre-installing the keys, or it can be a full-fledged system.

DSig augments the interface of digital signatures (sign and
verify functions) in two ways. First, sign takes a hint with
the set of processes that will likely verify the signature. The
hint is optional: if omitted, it defaults to all known processes.
The hint does not restrict who can verify a signature—parties
not indicated in the hint can still verify the signature, albeit at
a lower performance. Second, a new canVerifyFast function
returns whether verification of a given signature will be fast.
This function can mitigate denial-of-service attacks by letting
applications prioritize the handling of fast signatures (§6).

Internally, DSig has two planes: foreground and back-
ground. The foreground plane provides the user library with a
synchronous API to sign and verify messages, while the back-
ground plane asynchronously pre-generates and propagates
new HBSS keys to be used by the foreground plane. DSig’s
general design can be used with a wide range of HBSSs (e.g.,
Lamport’s [59], HORS [84], W-OTS [34], W-OTS+ [46]).
We provide a specific recommendation based on an extensive
performance study (§5).
Foreground plane. To sign a message, the signer uses a fresh
HBSS key pair and returns to the application a DSig signa-
ture, which includes the resulting HBSS signature and the
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Algorithm 1: Signers’ Pseudocode
1 # Signer’s setup
2 verifier_groups = { ... } # Provided
3 for group in verifier_groups:
4 signed_keypairs[group] = Queue()

6 # Signer’s background plane
7 whenever ∃ group | signed_keypairs[group].size < S:
8 sk, pk = hbss.generate_keypair()
9 pkσ = {pk: pk, sig: eddsa.sign(pk)}

10 multicast <HBSS_PUBKEY, pkσ> to group
11 signed_keypairs[group].push((sk, pkσ))

13 # Signer’s foreground plane
14 def sign(msg, hint):
15 group = smallest group containing hint
16 sk, pkσ = signed_keypairs[group].pop()
17 hbss_sig = hbss.sign(msg, sk)
18 return <SIG, hbss_sig, pkσ>

corresponding HBSS public key signed with EdDSA. Signing
with EdDSA is slow, so the HBSS public key is pre-signed in
the background plane. On the other side, the verifier checks
the authenticity of the message using the HBSS signature and
the included HBSS public key. The authenticity of the HBSS
public key is checked by the background plane.

Background plane. The signer generates HBSS key pairs and
EdDSA-signs them before forwarding them to the foreground
plane. It also sends the EdDSA-signed HBSS public keys to
the background plane of the likely verifiers. The latter verifies
the authenticity of the HBSS public keys.

The background plane hides the latency of two slow steps:
(1) HBSS key pair generation, and (2) EdDSA-signing and
EdDSA-verifying the HBSS public keys.

Note that DSig preserves the transferability of signatures ir-
respective of the background plane. Because DSig hybrid sig-
natures are self-standing (as they include the EdDSA-signed
HBSS public key), the only requirement for signature verifi-
cation is knowledge of the signer’s EdDSA public key. The
background plane merely boosts performance when a hint is
correct, by letting a verifier pre-check an HBSS public key
before it receives a signature that includes it.

4.2 Signing and Verifying in DSig
The logic of a DSig signer is shown in Algorithm 1. Each

signer is configured with a list of verifier groups—groups of
processes that are likely to verify the same signatures on their
critical path (line 2). This list has a default group that contains
all the processes in the system, but is otherwise application-
dependent. In the applications we examined (§6), the list
was small and obvious (e.g., individual groups containing
one process each). Each verifier group is associated with a
key-pair queue (lines 3–4).

In the background plane, whenever a group’s queue size
is below a threshold S (line 7), the signer generates a new

Algorithm 2: Verifiers’ Pseudocode
19 # Verifier’s setup
20 verified_pks = Cache()

22 # Verifier’s background plane
23 upon deliver <HBSS_PUBKEY, pkσ> from process p:
24 if eddsa.verify(pkσ, eddsa_pk_of(p)):
25 verified_pks.add((pkσ, p))

27 # Verifier’s foreground plane
28 def verify(msg, <SIG, hbss_sig, pkσ>, p):
29 if (pkσ, p) not in verified_pks:
30 if not eddsa.verify(pkσ, eddsa_pk_of(p)): # Slow
31 return false
32 return hbss.verify(msg, hbss_sig, pkσ.pk)

34 def canVerifyFast(<SIG, _, pkσ>, p):
35 return (pkσ, p) in verified_pks

HBSS key pair (line 8), and signs the public key using EdDSA
(line 9). Empirically, we found that S=512 works well while
consuming only 3 MiB of memory per group. Then, the signer
multicasts the signed public key to the processes in the group
(line 10). The signer next appends the private key with the
EdDSA-signed public key to the queue for consumption in
the foreground plane (line 11).

To sign a message, the signer chooses the verifier group
that matches the hint; if no group matches the hint, the signer
picks the smallest group containing the hint (line 15). Then,
it gets a new HBSS key pair from this group’s queue (line 16).
Next, the signer computes an HBSS signature of the message
using the private key obtained from the queue (line 17). The
DSig signature comprises the HBSS signature of the message
together with its EdDSA-signed HBSS public key (line 18).

The logic of a DSig verifier is shown in Algorithm 2. In
the background plane, the verifier receives EdDSA-signed
HBSS public keys (line 23), which it verifies (line 24) and
stores in a cache (line 25). In our applications, we found that
having the cache store the latest 2×S=1024 HBSS public
keys from each signer worked well while consuming only
100 KiB of memory per signer. In the foreground plane, the
verifier first consults its cache to see if it has a verified entry
for the HBSS public key (line 29). If so, the verifier proceeds
with checking the HBSS signature using the HBSS public key.
In this code path, the verifier checks signatures as fast as the
underlying HBSS verify (line 32), which is fast. Otherwise,
the verifier also checks the EdDSA signature of the HBSS
public key (line 30), so the verifier can operate even without
the background plane. The verifier’s canVerifyFast function
(§4.1) simply checks whether a signed HBSS public key has
already been verified (lines 34–35).

As with other signature schemes, DSig can support key
revocation through revocation lists that applications check
prior to signing or verifying messages [54].
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4.3 Security
For preciseness of argument, we show the security of our
recommended DSig configuration, which uses W-OTS+ [46]
as its underlying HBSS (§5). Specifically, we show that
this configuration of DSig is Existentially Unforgeable under
Chosen-Message Attacks (EUF-CMA) [39] and that it pro-
vides 128-bit security, which is safe by today’s standards [7].
EUF-CMA security. We consider Chosen-Message Attacks
(CMA) in which the attacker can query the target to sign
arbitrary messages. More precisely, we consider adaptive
CMA in which the attacker can query the target based on
public key(s) and previously obtained signatures. We consider
Existential Unforgeability (EUF), which means it should be
computationally infeasible for an attacker to forge a signature
on any message, except for messages that have already been
signed by the target.
DSig is as secure as its parts. To forge a signature in DSig, an
attacker must find a combination of message (not previously
signed), W-OTS+ public key, EdDSA signature, and W-OTS+

signature that passes the verify function (Algorithm 2). We
assume that EdDSA provides EUF-CMA security, as proved
by Brendel et al. [20], and show how DSig’s security reduces
to the security of W-OTS+:

1. The verifier’s background plane caches only correctly
EdDSA-signed public keys (Alg. 2 lines 23–25). From
the EUF-CMA security of EdDSA, and since a correct
signer EdDSA-signs only its own public keys, (Alg. 1
lines 8–9), for any correct signer s, the verifier caches
only the W-OTS+ public keys s generates.

2. If a public key is not cached, the verifier EdDSA-verifies
it on the critical path (Alg. 2 lines 29–31). As in (1) above,
for any correct signer s, this verification only succeeds
for public keys s generates. Thus, for any correct signer
s, verify cannot return true for public keys s does not
generate.

3. Since, for any correct signer s, an attacker can only use
a W-OTS+ public key generated by s, forging a DSig
signature reduces to forging a W-OTS+ signature.

W-OTS+ with Haraka and BLAKE3. Hülsing proved that
W-OTS+ is EUF-CMA-secure when using a hash-function
family that is second-preimage resistant, undetectable, and
one-way [46]. Like SPHINCS+ [16], we pick the Haraka [55]
hash-function family which satisfies those properties and re-
lies on the battle-tested AES round function. Similarly to
SPHINCS+, we reduce the signed messages to 128-bit di-
gests by hashing them salted with the W-OTS+ public key
and a random nonce. We do so using the well-established
BLAKE3 [75] hashes. Finally, we tune W-OTS+’s parame-
ters to provide 128 bits of security when signing said 128-bit
digests. More precisely, we set the size of secrets and public

key elements to 144 bits, which, together with a W-OTS+

depth of 4 (§5), provides a security level of 133.9 bits [46].

DSig’s security level. Breaking DSig can be reduced to break-
ing either EdDSA, W-OTS+, Haraka, or BLAKE3. The Ed-
DSA signature scheme Ed25519 provides 128-bit security
under practical attacks [14], and our configuration of W-OTS+

provides 133-bit security. The security of both Haraka and
BLAKE3 relies on well-studied components [7, 55] and to
date, no attack has compromised their security.

4.4 Optimizing Throughput
DSig has a few throughput optimizations that do not signifi-
cantly impact latency.

Speeding up key pair generation. Generating an HBSS key
pair requires producing hundreds to thousands of secrets for
the private key, and then hashing each secret for the public key.
To produce secrets quickly, DSig collects entropy from the
hardware at startup to get a truly random 256-bit seed, which
DSig then salts with the key index and hashes using BLAKE3
to generate a digest with the size of the private key. To produce
the public key quickly, DSig hashes the secrets using Haraka,
which has a high-throughput implementation that optimizes
instruction pipelining to compute multiple hashes efficiently.

Amortizing the cost of EdDSA signatures. EdDSA-signing
every HBSS public key is slow and becomes a throughput
bottleneck as each EdDSA sign-verify computation takes
≈55 µs [17]. DSig EdDSA-signs batches of HBSS public
keys [86]. However, batching naively would increase the size
of signatures, since the entire batch of HBSS public keys
should be included in every DSig signature to make their
EdDSA signature self-standing. DSig addresses this issue
by arranging the batch of HBSS public keys into a Merkle
tree [67] and EdDSA-signing its root. As a result, a DSig
signature is composed of an HBSS signature, an HBSS public
key, a Merkle inclusion proof, and the EdDSA signature of
the Merkle root. The Merkle proof is a space-efficient way
of proving that the included HBSS public key is part of the
EdDSA-signed batch. As Merkle proofs require collision-
resistant hashes, we use (the efficient) BLAKE3. The space
efficiency of Merkle proofs comes at the computational cost
of generating and verifying them. DSig moves most of this
cost to the background plane of both signers and verifiers,
which precompute and cache the full Merkle tree associated
with a batch. Then, on the critical path, signing a key merely
requires copying the subset of the tree that constitutes the
Merkle proof, while verifying the Merkle proof consists of
simple string comparisons. The efficiency of this scheme
depends on the batch size, which we determine in §8.7.

Speeding up bulk verification. Verifying many signatures
with no assistance from the background plane (e.g., when
checking an audit log) requires checking the same EdDSA
signatures many times. To speed up this process, EdDSA
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signatures verified in the foreground plane are cached. A
cache entry takes only ≈33 bytes, a tiny overhead, but saves
≈36 µs of computation on our hardware (Table 3).

Reducing background bandwidth. Sending signed public
keys both ahead of time and within signatures consumes sig-
nificant networking bandwidth. To nearly halve the bandwidth
usage, DSig batches, EdDSA-signs, and sends only BLAKE3
digests of the public keys in the background plane. This op-
timization requires computing the public key digest during
signature verification, which adds only ≈1.3 µs of latency.

5 Choice of HBSS

DSig can be used with many HBSSs, but its performance
heavily depends on the actual HBSS used and how this HBSS
is configured. In this section, we explain which HBSS we
choose for DSig and how we configure it.

5.1 HBSS Requirements
Our choice of HBSS is guided by the following requirements.

Security. To provide 128-bit security, DSig needs an HBSS
with the same or stronger security.

Low sign and verify latency. DSig executes HBSS sign and
verify operations on the critical path. These operations must
have microsecond-scale latency. This latency depends on the
choice of the hash function, on the number of hashes they
involve, and on microarchitectural effects.

Short signatures. At the microsecond scale, signatures can-
not exceed a few KiB in length, as larger signatures incur
significant transmission latency: we experimentally find that
when sending small messages each extra KiB takes approxi-
mately an extra microsecond on a 100 Gbps network. Further-
more, large signatures significantly increase the bandwidth
consumption when applications send small messages.

Compressible public keys. Recall that DSig signatures must
include an HBSS public key in order to be self-standing (§4.2).
However, the combination of an HBSS signature and its pub-
lic key can be in the KiB range, which is undesirable. We thus
seek HBSSs for which this combination can be compressed,
leading to smaller DSig signatures.

Lightweight key generation. HBSS key generation mainly
involves hash computations, the number of which depends on
the HBSS and can bottleneck DSig’s throughput. HBSS that
use few hashes for key generation are thus desirable.

5.2 Analysis
HBSSs can be grouped in two classes: HBSSs with keys that
can sign only one or a few messages [34, 46, 59, 84], and
HBSSs with keys that can sign many messages [9, 15, 16, 21,
47, 58]. Only the first class provides low latency (the second

focuses on quantum resistance). Within that class, we focus
on the fastest HBSSs: HORS [84] and W-OTS+ [46].

HORS. Recall that a HORS signature reveals a subset of its
private key secrets determined by the message being signed
(§3.3). Verifying a signature requires hashing the revealed
secrets, checking that they match the public key, and checking
that all the secrets mandated by the signed message were
revealed. HORS has two parameters: the number k of secrets
revealed in a signature and the number of times r that a key
pair can be used. The size of HORS keys is proportional to r,
so picking r≥2 presents no benefits and we set r=1. Smaller
values of k, however, lead to fewer hash computations, and
thus to lower latency in theory, but they require larger HORS
public keys for the same security level. Large HORS public
keys require compression to fit our signature size budget. We
thus devise two compression techniques, described next.

The first technique shortens the embedded HORS public
key by removing the elements that can be deduced from the
HORS signature (top of Figure 4). We analyze this approach
in the first part of Table 2, which shows that configurations
with few hashes (k<32) have large signatures (tens of KiB)
that exceed our budget.

To use HORS signatures with small k while staying within
our signature size budget, we devise another compression
technique inspired by SPHINCS [15]. This technique is based
on the observation that verifying a HORS signature merely re-
quires checking that the few revealed secrets match the public
key; knowledge of the full public key is unnecessary. We en-
able such checks using Merkle inclusion proofs: we arrange
all public key elements in a Merkle forest, and EdDSA-sign
its roots. Such DSig signatures replace their HORS public

Table 2: Analytical comparison of a DSig signature using
either HORS or W-OTS+ as its HBSS for various configura-
tions with EdDSA batches of 128 public keys.

Conf # Critical Signature # BG BG Traffic
Hashes Size (B) Hashes (B/Verifier)

Using HORS with factorized PKs
k=8 8 8Mi 512Ki 33
k=16 16 64Ki 4Ki 33
k=32 32 8,552 512 33
k=64 64 4,456 256 33

Using HORS with merklified PKs
k=8 8 4,712 1Mi 8Mi
k=16 16 4,968 8Ki 64Ki
k=32 32 5,480 1Ki 8Ki
k=64 64 6,504 510 4Ki

Using W-OTS+

d=2 ≈68 2,808 136 33
d=4 ≈102 1,584 204 33
d=8 ≈161 1,188 322 33
d=16 ≈263 990 525 33
d=32 ≈434 864 868 33
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WOTS+ signature Batch inclusion 
proof + EdDSA sig.

DSig signature 
with WOTS+ 

Figure 5: Layout of DSig signatures when using W-OTS+.

key with the forest roots and the inclusion proofs of the re-
vealed secrets (bottom of Figure 4). To avoid the overhead
of checking Merkle proofs (i.e., computing around a hundred
BLAKE3 hashes) on the critical path, we use a latency-hiding
technique similar to the one in §4.4: signers send their com-
plete public keys ahead of time to verifiers (by disabling back-
ground bandwidth reduction (§4.4)); verifiers precompute
Merkle forests in their background plane, so Merkle proof
verification on the critical path becomes mere string compar-
isons. We analyze this approach in the second part of Table 2,
which shows that configurations with very few hashes (k≤16)
have tractable signature sizes, but come at the expense of
significant background traffic and many background hashes.

W-OTS+. W-OTS+ differs from HORS in two main ways.
First, W-OTS+ secrets are hashed d−1 times to obtain the
public key, where d is a depth parameter. Second, to sign,
each secret is hashed a different number of times, as deter-
mined by the message to be signed, before being included in
the signature. We lower sign latency by caching these hashes
upon computation of the public key so that signing reduces to
string copying. To verify a signature, we hash each element
the required number of times to get to depth d, as determined
by the signed message, and verify that the obtained results
match the public key. Note that W-OTS+ does not require
embedding the public key in the DSig signature (Figure 5). A
downside of W-OTS+ versus HORS is that W-OTS+ needs
many more hashes on the critical path.

We analyze W-OTS+ within DSig in the last part of Ta-
ble 2, which shows that W-OTS+ configurations with small
d satisfy our requirements regarding signature size, back-
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ground processing, and bandwidth consumption. Moreover,
although they all require more hashes than HORS on the criti-
cal path, their signatures are smaller than the smallest HORS
ones. Note that as d gets bigger, the gain in signature size is
outweighed by the drastic increase in hash computations.

Conclusion. Our analysis points to three general configura-
tions for further experimental evaluation: (1) HORS with
factorized PK and k close to 64, (2) HORS with merklified
PK and k close to 16, and (3) W-OTS+ with d close to 4.

5.3 Evaluation
We measure the latency of signing an 8 B message, transmit-
ting it along with its DSig signature, and verifying the signa-
ture for the sensible HBSS configurations presented in §5.2.
Our experimental setup is detailed in §8. We consider three
hash functions: SHA256 [77] (the slowest), BLAKE3 [75],
and Haraka [55] (the fastest). Figure 6 shows the results for
SHA256 and Haraka (BLAKE3 stands in between).

When using Haraka (bottom of Figure 6), HORS with
factorized public keys (denoted HORS F) achieves its best
end-to-end latency for k=64. For k<64, its latency increases
in spite of having fewer hashes on the critical path due to the
transmission time of larger signatures.

Surprisingly, HORS with merklified public keys (HORS
M) signs and verifies only marginally faster despite its far
lower number of hashes. This disappointing performance is
a microarchitectural effect of the size of the Merkle forests.
Indeed, for the assembly and verification of precomputed
Merkle proofs to be fast, the relevant elements of their associ-
ated Merkle forest should be present in local cache (L1/L2).
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However, CPU prefetching is inefficient due to the inherent
randomness of Merkle proofs.

To demonstrate the benefit of having the Merkle proofs
in the local cache, we modify DSig to prefetch public and
private keys into the processor cache right before signing and
verifying. The modified system (HORS M+) achieves an end-
to-end latency of as little as 5.6 µs (signing in 0.9 µs, verifying
in 1.5 µs and transmitting in 3.3 µs) for k=16. For smaller
k, the keys do not entirely fit in the local cache, hence the
performance degradation.

W-OTS+ achieves its best latency of 7.7 µs for d=4 (sign-
ing in 0.7 µs, verifying in 5.1 µs and transmitting in 2.0 µs)
where it strikes a good balance between few hashes (low d)
and short signatures (high d). We omit prefetching W-OTS+

keys, as it has negligible latency benefit (not shown).
When using SHA256 (a slower hash function, top of Fig-

ure 6), HORS with factorized public keys (HORS F) sees
its verification time vastly increase for large k, while small
k still has long transmission time. HORS with merklified
public keys (HORS M) has better latency for smaller k, which
differs from HORS M with Haraka. Indeed, it is preferable
to have fewer SHA256 computations (small k) than smaller
Merkle forests (large k) since SHA256 is considerably more
expensive than cache misses, which is not the case of Haraka.
Finally, the large number of hashes (68 in expectation) of
W-OTS+ makes it perform worse than the best configuration
of each presented HORS variant.

5.4 Recommended Configuration
From our analytical (§5.2) and experimental (§5.3) studies,
we recommend using W-OTS+ with d=4 and Haraka. This
configuration offers single-digit sign-transmit-verify latency,
tractable 1,584 B signatures, and requires little background
computation and networking. Although HORS with merkli-
fied keys can achieve lower latency, it is too costly (in com-
pute, bandwidth, and CPU cache pollution) and its superior
performance requires modifying applications to prefetch keys
into the processor cache, which can be impractical. Note,
however, that the choice of HBSS depends on the relative
performance of hardware and software: in the future, if cache
misses become cheaper and hashing becomes relatively more
expensive, low-k HORS configurations could be appealing.

6 Applications

We apply DSig to key-value stores, a financial trading system,
BFT broadcast, and BFT replication.
Key-value stores (HERD [51] and Redis [87]). State-of-the-
art key-value stores provide microsecond-level performance
and form the backbone of many data center applications, mi-
croservices, and cloud services. Key-value stores are used
to keep security-sensitive information such as service con-
figuration, session management data, cached queries, access

control data, chat sessions, etc. Yet, most key-value stores
lack auditability—the ability for a third-party to check a log
of all operations (reads and writes) executed on the key-value
store. More precisely, in an auditable key-value store, the
server keeps a log of executed operation such that, for any
operation op in the log, the server can prove to a third party
that op’s client requested its execution. For example, the third
party may be a forensics specialist or a prosecutor, who wants
proof that a client requested access or modification to some
data. The threat model is that clients may wish to bypass the
audit (i.e., execute an operation undetected), while the server
is honest. The proofs provided by the server are operations
signed by clients and the key-value store must ensure that (a)
if an operation signed by client C is in the audit log, then it
was executed by the key-value store for client C, and (b) if an
operation is executed by the key-value store for client C, then
it appears in the audit log as an operation signed by C.

To provide auditability, a key-value store requires all re-
quests to be signed by clients and logged by the server. The
server must check the client signature before executing a re-
quest (otherwise a client could send a request with a bogus
signature, which the server would execute without later being
able to prove it), so traditional digital signatures significantly
increase the latency of microsecond-scale key-value stores.

We use DSig to add auditability to two key-value stores:
HERD and Redis. HERD is highly optimized for the RDMA
networks present in data centers, while Redis is popular
among web application developers. HERD provides sim-
ple GET and PUT operations on key-value pairs, while Redis
also provides higher-level operations on common data struc-
tures, such as lists, maps, sets, etc. We modify both systems
so that clients use DSig to sign all operations, and servers
log and verify the signed operations before executing them.
This logging requires 1.5 KiB of storage per operation due to
DSig’s signatures. Key-value stores have predictable signing
and verifying processes: clients simply set their signatures
hints to the server process. Logs can be persisted at the mi-
crosecond scale using persistent memory. This is not currently
implemented due to lack of hardware, but data from Yang et
al. [91] indicate that persistence would take less than 4 µs,
and this latency can be masked by storing in parallel with
signature verification. Vanilla HERD takes ≈2.5 µs to GET or
PUT a key-value pair, while vanilla Redis takes ≈12 µs.
Financial trading system (Liquibook [73]). Liquibook pro-
vides an order-matching engine for financial trading—it
matches buy and sell limit orders from clients. We consider
a trading system built using Liquibook and RDMA for fast
client-server communication. We use DSig to enhance the
system and provide auditability, as we did for key-value stores.
Signature hints are identical to key-value stores. Without au-
ditability, the trading system takes ≈3.6 µs to process orders,
of which ≈2 µs are spent on communication.
BFT broadcast (CTB [3]). Byzantine Fault Tolerance (BFT)
is becoming more relevant in data centers, due to the need
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Table 3: Configuration details of machines.

CPU 2× 8c/16t Intel Xeon Gold 6244 @ 3.60GHz
NIC/Switch Mlnx CX-6 MT28908 / MSB7700 EDR 100 Gbps

Software Linux 5.4.0-167-generic / Mlnx OFED 5.3-1.0.0.1

to tolerate failures beyond simple crashes [42, 44, 45, 69, 70].
Consistent broadcast is a core BFT primitive that prevents
equivocation [23] and has many uses, as in money trans-
fer [27, 40], consensus [1, 13, 25], multi-party computa-
tion [10] and decentralized learning [35, 38] protocols. We
consider uBFT’s state-of-the-art implementation of Consis-
tent Tail Broadcast (CTB) and replace its signatures with
DSig’s to improve performance. Signing hints are simple, as
each signature is verified by all processes running the proto-
col.

BFT replication (uBFT [3]). State machine replication
(SMR) is the standard approach for fault-tolerance [2, 18, 66].
We consider uBFT, a microsecond-scale BFT SMR system
for data centers. BFT SMR protocols, including uBFT, often
employ signed messages to guard against Byzantine repli-
cas. uBFT recognizes the high cost of digital signatures and
follows a fast/slow path approach. The fast path avoids signa-
tures and has a latency of 5 µs. The slow path uses signatures,
with a latency of ≈220 µs. The slow path is triggered even
without Byzantine behavior (e.g., due to process slowness),
leading to latency fluctuations between its two modes of oper-
ation. We use DSig to replace the digital signatures in uBFT
and improve its performance. Signing hints are simple, as
each signature is verified by all processes running the proto-
col. Moreover, we use DSig’s DoS-mitigation mechanism
(§4) to prevent a malicious attack from triggering superfluous
EdDSA verifications. More precisely, because uBFT is a
quorum system, it can make progress with n− f responses (n
is the number of replicas, f is the maximum number that can
be Byzantine). We make a small modification to uBFT to use
the canVerifyFast function to prioritize handling of messages
that do not incur the EdDSA signature check. As a process
gets at least n− f messages from non-Byzantine processes, it
ignores the slow-to-check messages from Byzantine players.

7 Implementation

Our implementation of DSig has 3,019 lines of C++17
(CLOC [32]). We use our own implementation of
HORS [84] and W-OTS+ [46], the official implementations of
BLAKE3 [75] and Haraka [55], and Dalek’s implementation
of EdDSA (Ed25519 [65]). BLAKE3 and Dalek’s EdDSA use
AVX2 for high performance. We use uBFT’s framework [3],
which provides fast point-to-point communication.
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Figure 7: End-to-end latency of different applications using
Sodium, Dalek or DSig for signatures. Printed values show
the median latency; whiskers show the 10th and 90th %-iles.

8 Evaluation

We evaluate the performance of DSig and verify its suitability
as a microsecond-scale signature system. We aim to answer
the following:

• How do microsecond-scale applications that use signa-
tures benefit from DSig’s low latency (§8.1)?

• How does DSig’s signing and verification latency com-
pare to traditional signatures (§8.2, §8.3)?

• What is the throughput of DSig (§8.4)?
• How do DSig’s higher bandwidth requirements impact

its scalability (§8.5, §8.6)?
• How do we set DSig’s EdDSA batch size (§8.7)?

Testbed. Our testbed is a cluster with 4 servers configured as
shown in Table 3. The dual-socket machines have an RDMA
NIC attached to the first socket. Our experiments execute on
cores of the first socket using local NUMA memory. We accu-
rately measure time using the TSC [43] via clock_gettime

with the CLOCK_MONOTONIC parameter.

DSig configuration. We configure DSig per §5: in all ex-
periments, we use W-OTS+ with a depth d=4 as its HBSS.
We dedicate a single core to DSig’s background plane, which
provides a high-enough throughput for our applications (§8.4).
Unless specified otherwise, we use an EdDSA batch size of
128 (§8.7) and provide correct verifier hints when signing.

Baselines. We compare DSig against two well-known signa-
ture libraries: Sodium [8] (written in C) and Dalek [65] (writ-
ten in Rust). Both implement the EdDSA signature scheme
Ed25519—the fastest traditional scheme to date [17].

8.1 Application Latency
We configure applications with different signature schemes
(Sodium, Dalek, DSig) and measure their latency. For the
key-value stores, we use 16 B keys and 32 B values, 20% of
PUT requests and 80% of GETs, where 90% of GETs return a
value. For Liquibook, 50% of the requests are SELLs and 50%
are BUYs. For CTB, we broadcast 8 B messages. Finally, for
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uBFT, we consider SMR operations of 8 B. We issue 10,000
requests one at a time to each application, measure the end-to-
end latency, and report the 10th-, 50th-, and 90th-percentiles.

Figure 7 shows the results. For the three applications on the
left, DSig provides auditability for a small cost: an increase
of less than 7.9 µs in end-to-end latency. Sodium and Dalek
add ≈79 µs and ≈55 µs, respectively, which is 10× and 7.0×
DSig’s overhead. In CTB, replacing Sodium (resp. Dalek)
with DSig reduces the median cryptographic overhead by
87% (resp. 82%), and reduces the median end-to-end latency
by 80% (resp. 73%). In uBFT, DSig reduces the median
cryptographic overhead by 91% (resp. 87%), and reduces the
median end-to-end latency by 78% (resp. 69%) compared to
Sodium (resp. Dalek). DSig provides similar latency gains
at the 90th percentile. In summary, across the tested appli-
cations, DSig significantly reduces cryptographic overheads
and improves latency over the state of the art.

8.2 Latency of DSig

We study the latency to sign a message, transmit a signa-
ture, and verify a signature using DSig. We also consider
the latency of incorrectly hinted DSig signatures for which
EdDSA signatures are verified on the critical path. This rep-
resents the worst-case scenario for DSig. In each experiment,
a process signs an 8 B message and transmits the signed mes-
sage to a second process, which verifies the signature. We
run each experiment 10,000 times for each signature scheme.
The signature transmission latency is the incremental cost
of adding the signature to a message, computed as the dif-
ference between transmitting a message with and without a
signature. We estimate message transmission time as half of
the round-trip time for ping-ponging the message.

Figure 8 shows the results. All signature schemes have
stable latency up to the 99.9th percentile. Sodium and Dalek
have similar signing median latency of 20.6 µs and 18.9 µs,
respectively. While Sodium verifies in 58.3 µs, Dalek verifies
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Figure 9: (Left) Latency to sign, transmit, and verify the
signature of various-size messages using Sodium, Dalek and
DSig with correct hints. (Right) Median latency breakdown
for 8 KiB messages. Transmission overhead is invisible.

in only 35.6 µs (39% faster) thanks to the use of AVX2 instruc-
tions. The (incremental) network latency is less than 100 ns
for both since their signatures are merely 64 B. With correct
hints, DSig takes 0.7 µs to sign and 5.1 µs to verify. This is
27× and 7.0× faster than Dalek, respectively. Interestingly,
even though DSig’s larger signatures lead to a 1.0 µs transmis-
sion overhead (more than 10× Dalek’s), it has limited impact
on its latency which is dominated by verification. Overall,
DSig is 8.2× faster than Dalek. With incorrect hints, DSig’s
signature verification requires verifying both HBSS and Ed-
DSA signatures, so verification latency increases to 39.9 µs
(4.3 µs more than Dalek’s). Signature generation, however,
is not impacted as signers still benefit from background Ed-
DSA precomputation and the total latency, although rising to
41.5 µs, is still 24% lower than Dalek’s. Even with incorrect
hints, DSig has much lower combined sign-transmit-verify
latency than the state of the art.

8.3 Effect of Message Size on Latency

We study the effect of message size on the latency of DSig by
running the experiments of §8.2 with varying message sizes.

Figure 9 (left) shows the results. With larger messages,
DSig’s total latency increases gradually but remains below
15 µs. Sodium’s and Dalek’s latencies are much higher. They
also increase faster because they use a slower hash function
than DSig (SHA256).1 Figure 9 (right) shows the latency
breakdown for the largest size (the breakdown for the smallest
size is in §8.2). In all schemes, the split is about half-half to
sign and verify, with negligible transmission time.

8.4 Throughput

We study DSig’s throughput. In an experiment, a process
signs small 8 B messages repeatedly with either a constant or

1Most signature schemes hash the input to operate on a fixed-size string.
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Figure 10: Latency-throughput graphs for Sodium, Dalek
and DSig. Signatures are issued at constant or exponentially
distributed intervals. All three use two cores on both sides;
DSig dedicates one of them to its background plane.

an exponentially distributed random interval between signa-
tures. The signer transmits the signature over the network to
the verifier, which verifies it. We measure the total latency
(sign plus transmit plus verify) and throughput of DSig, and
compare it against Sodium’s and Dalek’s. In all experiments,
the signer and the verifier use two cores each. DSig dedicates
one core to each of its planes so that background events mini-
mally impact foreground operations, while Sodium and Dalek
use all cores to handle multiple messages in parallel.

Figure 10 shows the results as latency-throughput graphs
with median latency and average throughput. With constant
signature interval, all three systems exhibit stable latency until
reaching maximum throughput. Sodium maintains a latency
of ≈80 µs up to a throughput of 34 kSig/s where it is bottle-
necked by verification time (58 µs). Dalek maintains a latency
of ≈56 µs up to a throughput of 56 kSig/s where it is also
bottlenecked by verification time (36 µs). DSig maintains a
latency of ≈7.8 µs up to a throughput of 137 kSig/s where it
is bottlenecked by the signer’s background plane, which takes
7.4 µs to generate a new public key. We separately measured
the verifier’s background plane; it achieves a throughput of
3.6 MSig/s, so it is not a bottleneck. With a random signing in-
terval, queuing occurs gradually, so the respective bottlenecks
are less abrupt, causing a smoother latency degradation.

We run another experiment to measure the per-core through-
put of DSig by running both of its planes on one core, and
compare it to the per-core throughput of Dalek. While Dalek
achieves 53 kSig/s signature generations (resp. 28 kSig/s veri-
fications) per core, DSig achieves 131 kSig/s signature gener-
ations (resp. 193 kSig/s verifications) per core.

In summary, DSig sustains significantly higher throughput
at much lower latency than EdDSA-based systems.

8.5 One-to-Many, Many-to-One Performance
We now study DSig’s scalability and bottlenecks in one-to-
many and many-to-one scenarios. In one-to-many, one signer
signs a message and sends the signature to many verifiers; this
pattern is common in distributed protocols. In many-to-one,
many signers sign different messages and send them to the
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Figure 11: (Left) DSig’s throughput with a signer sending the
same signature to multiple verifiers. (Right) DSig’s through-
put with a verifier receiving different signatures from multiple
signers. The NICs’ bandwidth is limited to 10 Gbps.

same verifier; this pattern is common in client-server applica-
tions. We run experiments where the signer(s) and verifier(s)
use one foreground and one background core to work as fast as
possible. We measure the aggregate verification throughput,
and report the average. We consider a scenario where most
of the network bandwidth (≈90%) is consumed by other ac-
tivities, by limiting our NICs’ bandwidth to 10 Gbps. This of
course makes it harder for DSig to operate since it consumes
more network bandwidth than other schemes. We compare
the scalability of DSig to a two-core system based on Dalek.

Figure 11 shows the results. In one-to-many (left of figure),
DSig’s throughput increases until 577 kSig/s with 5 verifiers;
at this point, the signer saturates its link to the verifiers, with
the 1,584 B signatures and their 33 B background data ac-
counting for ≈7 Gbps. Dalek scales more slowly than DSig
with the number of verifiers, but it is not affected by band-
width, as it continues to scale beyond 11 verifiers, at which
point it surpasses DSig’s throughput with 603 kSig/s using
merely ≈300 Mbps to transmit 64 B signatures.

In many-to-one (right of figure), two signers are enough to
achieve DSig’s maximum throughput of 190 kSig/s as they
saturate the verifier’s foreground plane, which we set to run
on a single core. As signing with Dalek is faster than veri-
fying, Dalek does not scale beyond 1 verifier and achieves a
maximum throughput of 53 kSig/s.

Overall, DSig’s main scalability bottleneck compared to
Dalek is its larger signatures.

8.6 Effect of Larger Signatures

We study how DSig’s larger signatures affect application per-
formance. In each experiment, we run a synthetic application
where a server receives signed requests of a given size, checks
their signature, spends some given processing time, and sends
a 16 B unsigned reply. Similarly to §8.5, we limit the NICs’
bandwidth to 10 Gbps, and compare the same application
when using DSig or EdDSA. For fairness, EdDSA uses Dalek
and pre-hashes messages with BLAKE3. In addition, we run
an experiment with signatures disabled. The application runs
with 4 cores: DSig uses 1 core for the background plane and
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Figure 12: Request throughput of an application using signa-
tures when NICs’ bandwidth is constrained to 10 Gbps, for
different request sizes and request processing times.

3 cores to handle requests, while the others use 4 cores to
handle requests. We run enough clients to saturate the server.
We consider 7 request sizes (32 B, 128 B, 512 B, 2 KiB, 8 KiB,
32 KiB and 128 KiB) and 2 processing times (1 µs and 15 µs).

Figure 12 shows the results. For both processing times,
DSig outperforms EdDSA up to 8 KiB, after which it performs
similarly to EdDSA. For small messages (32 B–512 B), the
limited bandwidth has no impact on either scheme, so DSig
significantly outperforms EdDSA thanks to its lower compu-
tational cost. With 2 KiB messages and 1 µs processing time,
bandwidth impacts DSig while EdDSA is almost unaffected.
Relative to 512 B messages, DSig’s throughput decreases by
22%, while EdDSA’s decreases by only 1.9%. Higher pro-
cessing time offsets DSig’s bandwidth bottleneck closer to
8 KiB messages. Beyond these points, the throughput of both
DSig and EdDSA converges to that of the application that
does not use signatures, as network bandwidth bottlenecks all
three systems, making the overhead of signatures negligible.

In summary, DSig’s higher per-core throughput lets appli-
cations reach higher throughput than with EdDSA even with
limited network bandwidth, up to moderate-size messages.

8.7 EdDSA Batch Size
To set the size of EdDSA-signed key batches (§4.4), we run
the same experiment as in §8.2 for different batch sizes, and
we measure the latency and the per-core throughput. To take
into account the impact of larger batches on low-end networks,
we limit our NICs’ bandwidth to 10 Gbps, as in §8.5 and §8.6.

Figure 13 shows the results, where a batch size of 1 means
no batching. We see that batch sizes do not affect latency
much (left of figure).2 Throughput is different (right of fig-
ure): initially, batching improves throughput a lot for both
signing and verifying. The gain dwindles when the amortized
EdDSA cost per signature becomes a diminishing fraction of
the overall computation as batches get larger. The best sign-
ing throughput is 135 kSig/s for batches of 32 keys, while the
best verifying throughput is 206 kSig/s for batches of 4,096
keys. We pick a batch size of 128 as a balance.

2The transmission latency differs from §8.2 due to the 10 Gbps NIC limit.
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Figure 13: (Left) Median latency to sign, transmit, and verify
a signature on an 8 B message with DSig for different EdDSA
batch sizes. (Right) Single-core throughput of signing and
verifying for different EdDSA batch sizes.

9 Related Work

HBSSs. HBSSs are well studied and prior work has proposed
different implementations of them, many of which are vari-
ants of HORS [60,63,72,90]. Li et al. [63] proposed a variant
targeted at smart grids with limited storage that reduces key
and signature size but increases computation costs. Wang
et al. [90] proposed a scheme with small signatures and mi-
crosecond performance, but it is limited to providing low
≈ 50-bit security. HORSE [72] reduces the cost of few-time
signatures by repeatedly hashing the private key secrets, cre-
ating a matrix whose last row is the public key; however,
it restricts the order in which applications can reveal public
keys. W-OTS+ [46] was proposed by Hülsing as a variant of
W-OTS [34] with reduced signature and key sizes.
Online/offline signature schemes. The concept of online/of-
fline digital signatures, in which heavy computation is done
prior to knowing the message to sign, was first introduced
by Even et al. [37]. So far, practical applications of the the-
oretical concept (including hybrid signature schemes) have
targeted low-compute devices and/or wide area networks,
with a focus on improving signature throughput or reducing
bandwidth [53, 62, 64, 78, 92, 93]. Recently, Esiner et al. [36]
also recognized the importance of low-latency signatures, yet
their solution is tailored for industrial control systems with
tiny messages (25 bits), and does not provide self-standing
signatures. No prior work addresses hybrid signatures in data
centers with microsecond-scale performance.
Merkle-based signatures. Prior work proposes schemes that
rely exclusively on HBSSs to sign (virtually) infinitely many
messages, with the goal of attaining quantum resistance. Most
of this work is based on XMSS [21], such as SPHINCS [15]
and variants [16,47,58]. Instead of distributing keys regularly,
these schemes efficiently pack an infinitude of one-time public
keys using Merkle inclusion proofs [68]. These proofs need
to be checked during signature verification, thus making the
performance of such schemes be in the milliseconds.
Signature-like schemes. The cost of signatures has fueled
alternatives for different scenarios. Message authentication
codes (MACs) provide authentication and integrity of mes-
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sages, but lack transferability, as parties use a shared se-
cret to communicate. While MACs are widely used in net-
worked systems to provide authenticated channels between
two parties, they are not substitutes for signatures, as they
provide weaker properties, they are harder to use, and they
are more susceptible to protocol mistakes. In particular, us-
ing MAC-based mechanisms in BFT protocols has several
drawbacks: (1) These mechanisms are ad-hoc and highly
dependent on the protocol: some require MAC vectors [24]
others require MAC matrices [5]; others explicitly prefer or
mandate signatures over MACs for critical messages [3,4,26].
(2) These mechanisms add complexity to the BFT protocols,
e.g., by requiring a fast-slow path approach where the fast
path avoids signatures but the slow path (or view change) still
uses them [3,4,24,26,29,56]; this added complexity increases
their attack surface [26]. (3) These mechanisms often add
messages and roundtrips to the protocols [5, 29, 79], and/or
lower their resilience to failures [5, 79].

Some systems make extra assumptions to provide MAC
with some form of transferability. TESLA [79] assumes clock
synchrony and has time windows during which MACs are
generated and transmitted; afterward, the MAC secrets are
revealed to check previously seen MACs. This idea provides
only a limited form of transferability and increases the latency
of verification. Using trusted hardware [12, 52, 61], such
as trusted execution environments (TEEs), one can provide
MACs with transferability by hiding the secret and computing
the MACs in the TEE so that every TEE owner can verify the
MACs but only a designated TEE can create them.

10 Conclusion

DSig is the first digital signature system for microsecond-
scale applications. DSig achieves single-digit microsecond
latency for signing and verifying messages—27× and 7×
faster than the prior state of the art—while achieving higher
throughput. To achieve that, DSig introduces a new hybrid
signature scheme that uses knowledge of where signatures are
issued and verified in the common case. DSig can bring au-
ditability to latency-critical applications with a small latency
overhead, or replace other signature schemes in applications
that use them. Ultimately, we believe that DSig makes digital
signatures fast enough to broaden their use in data centers as
a powerful security building block.
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Abstract
In this paper, we focus on building a ransomware detec-

tion and recovery system for cloud block stores. We start by
discussing the possibility of directly using existing methods
or porting one to our scenario with modifications. These
attempts, though failed, led us to identify the unique IO
characteristics of ransomware, and further drove us to build
DeftPunk, a block-level ransomware detection and recov-
ery system. DeftPunk uses a two-layer classifier for fast
and accurate detection, creates pre-/post-attack snapshots to
avoid data loss, and leverages log-structured support for low
overhead recovery. Our large-scale benchmark shows that
DeftPunk can achieve nearly 100% recall across 13 types of
ransomware and low runtime overhead.

1 Introduction
Ransomware has become increasingly prevalent in recent
years, posing a major threat to data security. Recent reports
show that ransomware attacks have caused billions of dollars
in losses to individuals and organizations [27, 29]. Typically,
attackers exploit system vulnerabilities to access and encrypt
users’ data for ransom.

Cloud services are also facing increasingly aggressive ran-
somware threats. In ALIBABA cloud, our cloud block store
(a.k.a., Elastic Block Storage, or EBS) has been under con-
stant attacks. In Q3 of 2022 alone, we have received nearly
one thousand reports from our EBS Virtual Disk (VD) users,
yielding a 118% increase over the entire year of 2021.

To combat ransomware, practitioners have proposed vari-
ous detection and recovery methods. At the application layer,
users can use antivirus software and firewalls [21, 24, 31] to
identify suspicious behaviors by monitoring file access and
checking malware signatures. At the OS layer, recent works
have demonstrated their ability to detect ransomware activ-
ities via behavioral analysis [33, 41, 45, 57]. Third, at the
hardware layer, prior works have shown that, with hardware-
assistance from customizable devices, the log-structured de-
sign of SSDs can be leveraged to detect and roll back ran-
somware activities [34, 35, 43].

Unfortunately, these traditional methods cannot be directly
applied for our EBS. First, the application/OS layer methods

*Equal contributions.
†Corresponding author.

require strong user cooperation. As a cloud vendor, we are
unable to enforce our users to use specific software and/or OS.
In addition, field statistics suggest that tenants may not always
keep the software up to date, leaving potential vulnerabilities.
Second, cloud providers usually use commodity hardware for
cost efficiency and portability. Thus, it is impractical for us
to build protection that only works on specialized devices.
Third, certain vendors, including us, have already provided
(periodical) VD snapshot for data recovery. Simply relying
on such mechanisms may not be favorable for users, as they
may lose the data between two snapshots due the hour-level
interval and high CapEx led by the extra storage space

Existing solutions, while failing to work directly, inspire
us to use the IO characteristics of ransomware (e.g., exces-
sive Write-After-Read access) for detection, and leverage the
garbage collection (GC) of log-structured design for recovery.
This is because the block store service, by default, can moni-
tor and analyze the block-level IO traffic. Moreover, our EBS
is built on an append-only distributed file system (DFS), and
thus supports similar mechanism to roll back data that have
not been reclaimed by GC (such as SSD). The benefits of such
design are two-fold. First, it does not rely on certain software
or hardware support. Second, it can be easily deployed with
little extra overhead imposed.

Therefore, we started exploring the possibility of building
this solution. However, real world data show that such a pre-
liminary attempt fails to deliver satisfactory accuracy in detec-
tion. We assume the main reason is that the existing detection
algorithms—bounded by their prerequisites (e.g., need to use
SSD’s weak SoC) and lack of real-world access/analysis—
can not effectively and efficiently distinguish ransomware
traffic from normal IOs. Additionally, we find that the exist-
ing recovery methods can not always guarantee lossless data
recovery due to the limited time of multi-version support.

In this paper, we propose DeftPunk, a block-level ran-
somware detection and recovery system for the cloud. Based
on extensive comparisons between ransomware and normal
workloads, DeftPunk constructs a rich set of features and
uses a two-layer classifier for fast and accurate ransomware
detection. To avoid data loss, DeftPunk creates pre- and post-
attack snapshots to “lock in” the effects of the attack, and
persists all modifications in between. For recovery, DeftPunk
follows a “undo-redo” strategy to roll back the data to the
pre-attack state and only redo the users’ writes.
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Specifically, we first assemble a large-scale ransomware
dataset by collecting more than 140 hours of block-level IO
traces from 13 mainstream ransomware (e.g., Wannacry [30]
and Mallox [18]) and 16 types of real-world workloads from
our EBS. The comprehensive comparison shows that, apart
from the well-known Write-After-Read (WAR) pattern, ran-
somware also exhibits other characteristics, such as read to
write ratio, access offset distribution and frequent access on
the system disk. These observations help us to extend the fea-
ture set of DeftPunk by including IO statistics, dependency,
working set size, offset and certain LBA spatial access.

The above extended features help DeftPunk to achieve
higher accuracy. But, for deployment efficiency under the
sheer volume of VDs and their IOs, we also need to consider
the runtime overhead. Therefore, DeftPunk adopts a two-
layer model. The first layer, focusing on eliminating false
positives (i.e., filtering normal IOs), uses a straightforward
decision tree algorithm with simple features (only requiring
O(1) computation). The positive cases classified by the first
layer will be further sent to the second layer for a double
check. The second layer emphasizes on exposing all ran-
somware cases, and thus uses a more sophisticated algorithm
(i.e., XGBoost [38]) with the complete set of features.

Based on the output of the two-layer model, DeftPunk
can create a pair of snapshots right before and after the at-
tack. Moreover, with multi-version support by the EBS log-
structured design and GC pausing, DeftPunk can persist all
data modifications during the attack. For recovery, DeftPunk
follows a “undo-redo” strategy to roll back the data to the
pre-attack state, and, based on a rule-based model, only redo
the writes made by the users.

Based on our assembled dataset, we benchmark DeftPunk

with a set of state-of-the-art ransomware detection methods.
The results show that DeftPunk can always achieve nearly
100% recall with 95.8% precision, outperforming all other
peers. Moreover, DeftPunk only uses 7 vCPU cores for
processing 1 million IOPS for detection and can recover valid
data at 4.62 GB per second. We have deployed DeftPunk in
our EBS service for a few invited users, and it has successfully
prevented 2 attacks with data fully recovered.

The contributions of this paper are summarized as follows:
• We assemble and release a large-scale ransomware bench-

mark with real-world traces1.
• We build DeftPunk, a practical ransomware detection and

recovery system for the cloud EBS.
• We extensively evaluate DeftPunk and the results show that
DeftPunk outperforms peers by up to 95.77% in precision
and nearly 100% in recall.
The rest of the paper is organized as follows. §2 gives a

brief overview of our EBS and background of ransomware. §3
discusses the existing solutions and related work. §4 identifies
the goals and challenges. §5 presents the design of DeftPunk

1The dataset is at: https://tianchi.aliyun.com/dataset/177511?lang=en-us
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Figure 1: Overview of EBS Architecture. VD: Virtual Disk; LSBD:
Log-Structured Block Device. GC: Garbage Collection.

and §6 shows the evaluation of DeftPunk in depth. We end
this paper with a discussion on DeftPunk’s limitations in §7
and a short conclusion in §8.

2 Background

2.1 EBS in ALIBABA Cloud

Elastic Block Storage (EBS) serves as a cornerstone in to-
day’s cloud. To provide virtual block devices to users with
high flexibility and availability, our EBS, similar to other
vendors’ architecture [9–11,17], follows a “compute-to-store”
philosophy. With this setup, the storage clusters are physically
disaggregated—interconnected by data center network—from
the compute servers (and subsequently the virtual machines
running on them).

Figure 1 illustrates an overview of the EBS architecture.
On the compute end, each server can host multiple Virtual
Disks (VDs) and also embeds a client within the hypervisor
to forward VD’s requests to backend storage clusters. Once
the Block Proxies receive the VDs’ requests, they will then
persist/fetch the data to/from the corresponding file in the
distributed file system (DFS).

Like Google [49], Azure [37], and Alibaba Cloud [48],
we too adopt a log-structured distributed file system (DFS)
as the storage backend. The Block Proxy employs a Log-
Structured Block Device (LSBD) to transform VDs’ IO to
an appending-only DataFile provided by the underlying DFS.
One key functionality is to register the mapping (i.e., from VD
LBA to location in DataFile) in a per-VD IndexMap to track
latest location of data in the DataFile. Also, this requires a
garbage collection (GC) for reclaiming space from stale data.
In addition, we also set up a Snapshot Worker to allow users
to create snapshots of their VDs and store them as binaries.
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Layer Mechanism Schemes

App. Anti-virus
real-time scan

Fortinet [24], Kaspersky [21],
Windows defender [31]

OS File system
behavioral analysis

CM&CB [33], UNVEIL [45],
WaybackVisor [41], Towards. [57]

HyperV. Scheduled snapshot AWS [3], HUAWEI [4]

HW. Detection with
real-time rollback

FlashGuard [43], SSD-insider [34],
SSD-insider++ [35], RSSD [53]

Table 1: Common protections against ransomware. App.: Applica-
tion; HyperV.: Hypervisor; HW.: Hardware.

2.2 Ransomware
Ransomware, such as WannaCry [30], has been rampantly
spreading across the globe, leading to billions of dollars fi-
nancial losses. The typical procedure of a ransomware at-
tack has three steps: (1) the attacker infects the victim’s
machine via weak password and/or system vulnerabilities;
(2) the ransomware encrypts the victim’s data; (3) the vic-
tim is instructed to pay a certain amount of ransom (e.g.,
cryptocurrency) for decryption.

Both industry and academia have been working on ran-
somware detection and protection. In Table 1, we summa-
rize the commonly used methods by layers. First, at the
Application layer, users can install antivirus software and
firewalls [21,24,31] to monitor the suspicious behaviors (e.g.,
frequent access to unauthorized files and encryption) or match
the signatures in the viruses database. Second, by intercepting
system calls and file access patterns within the OS, recent
studies have also proposed to detect ransomware activities
via behavioral analysis [33, 41, 45, 57]. Third, users or ven-
dors could ask the hypervisor to take snapshots of the whole
runtime to directly recover the data. This method is widely
available by major cloud service providers [3, 4]. Finally,
many prior works have shown that the log-structured design
of SSDs can be leveraged to detect and rollback ransomware
activities [34, 35, 43]. The key idea is that valid data which
are overwritten and encrypted by the ransomware will be
marked as stale. But, the Flash Translation Layer (FTL) usu-
ally would not immediately reclaim their space, providing an
opportunity to recover users’ data before garbage collection.

3 Motivation and Related Work
The cloud is no stranger to ransomware attacks, especially
when an increasing number of users are migrating their sen-
sitive data to the public cloud [5–7, 13, 14, 26–29]. A recent
report by Zscaler cloud [7] states that ransom attacks have
increased by 38% from April 2022 to April 2023, and they
predict that attackers are likely to develop new types of ran-
somware and campaigns optimized for targeting cloud ser-
vices and workflows. Sophos report [27] also indicates that
the average ransom has increased from $812,380 in 2022 to
$1,542,333 in 2023, not to mention the cost of the data recov-
ery process and the losses due to downtime. In our cloud, we
have also been witnessing a growing number of ransomware

attacks on users. In just one quarter (2022 Q3), our cloud has
recorded nearly one thousand ransom incidents, leading to an
increase of 118% compared to the previous year.

One might wonder, with all the protection approaches avail-
able (see Table 1) and vendors’ high emphasis on data security,
why ransomware attacks are still so prevalent in the cloud.
Here, we summarize the key reasons and challenges based on
our observations and statistics from the field.

Human mistakes. User awareness is the first, and often the
weakest, line of defense against ransomware attacks. To be
human is to err, so it is not uncommon for users to fall vic-
tims to phishing or malicious emails and other malware. A
recent survey by Fortinet [28] reports that phishing remains
the top ransom tactic (56%). Other ransomware reports, such
as those from Sophos [27] and SpyCloud [29], have likewise
emphasized the vulnerability of humans in ransomware de-
fense. Similarly, in our cloud, we discover that nearly all
ransomware attacks start with a negligence being exploited
(e.g., outdated software and weak password).

Lack of protection in VM. Normally, with antivirus software
properly installed and security patches regularly updated, VM
should be able to operate safely even under the threats of
ransomware. However, in the cloud, VMs, can often run in
an under-protected environment due to the following reasons.

First, only a small fraction of VMs are under sufficient
antivirus software protection. For instance, Zscaler [2] re-
ports that 17% of organizations are running workloads on
unprotected virtual machines which is consistent with our
observations from the field. Even for ones who have, they
can still be at risks of latest attacks as 28% of VMs attacked
by ransomware are running with vulnerable outdated OS and
software. Third, while we provide OS images with built-in
security support and automatic updates, only 19.4% of users
opt in. One main reason, after discussion with multiple users,
is that they tend to reuse their own OS images for consistency
and compatibility after migrating to cloud.

Snapshot protection is expensive and coarse-grained. Our
EBS allows users to persist the Virtual Disk (VD) as a snap-
shot and later use it to restore to a certain point in time. By
taking periodical snapshots, users can conveniently recover
from a ransomware attack by simply restoring the VD to the
most recent checkpoint before the attack. However, in prac-
tice, this is not the case. First, the snapshot-based protection
can be expensive. Even with our latest incremental snapshot
service, the cost incurred from snapshots can easily 2.5 times
more than the monthly rental of the VD, assuming VD is
under normal traffic and snapshots are taken on hourly basis.
Moreover, even if users are willing to pay the price, recovery
by periodical checkpoint is still coarse-grained in the cloud
EBS. For example, the highest specification VD in our cloud
can achieve a throughput of 4000 MB/s and 100M IOPS. In
this case, even if we use minute-level periodic snapshots, it
would still result in a significant amount of data loss.
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Hardware-based protection is impractical. Academia
have proposed multiple approaches for defending against
ransomware attacks via hardware assistance [34, 35, 43, 53].
However, these attempts would fall short for large-scale cloud
deployment, such as EBS. First, previous works are based on
specialized and/or prototype hardware, such as Open-Channel
SSDs [34] or FPGAs, yielding a small chance for large-scale
deployment. In addition, even if manufacturers manage to
produce such hardware, it is still impractical as ransomware
evolves rapidly. At the same time, frequently updating the
firmware or providing backward compatibility for legacy de-
vices would be a huge challenge.

4 Goals, Opportunities and Challenges
To this end, we have shown that the existing ransomware pro-
tection mechanisms can not be shoehorned to cloud services
such as EBS. In this section, we first list the design goals of
an ideal ransomware protection mechanism for EBS. Then,
we discuss the potential opportunities for a practical detection
approach based on intrinsic properties of EBS and the ran-
somware attack patterns. Finally, we present the insights we
gained and challenges we faced from building and exploring
this preliminary design.

4.1 Design Goals
The role of a cloud vendor profoundly limits our ability and
choices in applying existing techniques. Therefore, to de-
velop a practical ransomware detection for EBS, we start by
identifying the key requirements.
• No data lost/tainted after recovery. The most fundamental

requirement for ransomware protection is to ensure that,
once detected, no ransomed data is lost during recovery. In
other words, all user issued IOs—before, during and after
the attack—should be preserved and no tainted data left.
On top of that, we need recover data in a timely manner
with minimal effort from users.

• Transparent to users. The monitoring and detection should
not rely on users’ awareness or cooperation with the ven-
dor, such as installing certain softwares, using specific OS,
or updating patches under certain schedules. In addition,
to obey privacy and security protocols, we also cannot di-
rectly control the VMs and/or insert (kernel) modules to
proactively defend ransomware attacks.

• Hardware independent to vendors. As a cloud vendor, our
solution should be based on commodity products, instead
of depending on features only provided by specialized hard-
ware (e.g., customizable Open-Channel SSDs) or prototype
devices (e.g., FPGAs). Moreover, even for the commodity
products, the ideal solution should provide backward com-
patibility, meaning that it can support legacy devices such
as early models of SSDs or even HDDs.

• Low runtime overhead. The proposed solution should run
with low resource consumption (e.g., CPU, memory, space,
and network bandwidth). This is because, given the destruc-

tive impacts and the increasing prevalence of ransomware,
the occurrence—compared to the massive volumes of VDs—
is still rare in the wild. For example, on average, less
than 0.001% of the VDs in our cloud are subjected to ran-
somware attacks on a daily basis. Hence, the high CapEx
led by high resource consumption would not be acceptable
to vendors or tenants.

4.2 Opportunities
While previous ransomware prevention techniques fail to
work directly in EBS, we discover that the log-structured
block device (LSBD) design bears great similarities with
SSD internals. This motivates us to explore the possibility of
borrowing ideas from the existing hardware-based methods.
Next, we discuss the two similar opportunities our EBS shares
with the hardware-based ransomware protection.
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Figure 2: Comparation of LBA access frequency between ran-
somware and regular applications

Block-level ransomware access pattern. Ransomware usu-
ally follows a read-encrypt-write procedure on users’ data.
For example, a recent survey indicates that up to 76% of
ransomware employed encryption-based attack mode [27].
Previous studies have shown that this access pattern holds
across different ransomware families and can be caught at
file system level (e.g., directory traversal, file type change, ac-
cess frequency, etc [46, 54]) and device (i.e., SSD) level (e.g.,
statistics of erasure IO in [34, 35]). As Block Proxies handle
VD requests in the format of Logical Block Address (LBA),
we further explore the possibility of detecting ransomware
attacks at the block level.

We start with the spatial and temporal patterns of typical
ransomware. For the spatial pattern, Figure 2 (a)(c)(e) and
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(c) Babuk [12].

Figure 3: Write-After-Read IO ratio by time on ransom attack

(b)(d)(f) respectively illustrate the LBA access patterns of a
VD under ransom attacks and normal workloads. The x-axis
represents the normalized LBA, and the y-axis shows the
frequency of access within 10 minutes. By comparing the
two, we can see an outstanding difference. The ransomware
tends to have a similar amount of reads and writes to the
same LBA. This is consistent with observations from previous
studies [34, 35]. Namely, the "read, encrypt, and write back"
pattern of ransomware is manifested as erasure IO (i.e., EIO)
or Write-After-Read IO (i.e., WAR IO) at the block-level.

We then examine the temporal pattern of ransomware at-
tack. Figure 3 shows the variations in the WAR ratio (i.e.,
the ratio of WAR IO to the total write requests) of three VMs
(each with five VDs) under various ransomware attack. In
each VM, the five VDs consist of one system drive and four
data drives loaded with different types of data.

For example, Figure 3(a) illustrates the variations in the
WAR ratio of the VM when it is under a BeijingCrypt attack.
The WAR ratio of the system drive rapidly rises from 0 to
100% around 60s and maintains a relative high level until the
attack ceases at 1370s, at which point the WAR ratio falls
back to 0 rapidly. A similar pattern of “climb-maintain-drop”
in the WAR ratio can be observed on other data drives, albeit
with variations in the start or end time. Figure 3 (b) and (c)
illustrate the WAR ratio dynamics for the VM during attacks
by Globeimposter and Babuk, respectively, revealing patterns
similar to those depicted in Figure 3(a). Hence, we can con-
clude that cloud-based ransomware also exhibit a distinct
pattern of WAR IO at the block level, which is consistent with
insights from ransomware detection on hardware level.

To sum up, we can conclude that ransomware attacks at the
block level exhibit distinct patterns that can be detected by
analyzing the LBA access records.

Method Precision Recall F1-score
SSD-insider++ 63.05% 87.53% 73.26%

RanSAP 84.83% 94.37% 89.23%
WaybackVisor 71.36% 93.06% 80.66%

Combine Model 90.74% 92.10% 91.42%

Table 2: Comparison of four ransomware detection algorithms.

Multi-version nature of LSBD. Recall that one key feature
of EBS is adopting the log-structured block device (LSBD)
in the Block Proxy (See §2.1). In this setup, all writes from
the front-end VDs are appended to the end of the log, and the
Block Proxy maintains a mapping table—called IndexMap—
to track the latest metadata of data. Periodically, Block Proxy
reclaims the space with garbage collection (GC).

This design is similar to the SSD’s append-only internal
architecture, which serves as one of the prerequisites for
hardware-based ransomware protection. The knack here is
that, in both EBS and SSD, the stale data are usually not
immediately reclaimed by GC and overwritten with new data.
Instead, it can survive for a certain period of time which
essentially enables multiple versions of data to co-exist. As
a result, in the face of ransomware attacks, we can leverage
this multi-version nature to conveniently roll back to early
versions by altering the IndexMap.

4.3 A Preliminary Exploration
Based on the above two opportunities, a potential design
for ransomware protection in EBS arises. In short, we can
actively monitor all incoming IO from each VD and check
whether the LBA access matches the ransomware patterns. If
detected, we can conveniently roll back the data to a previous
clean version. The benefits of this design are that: (1) it only
relies on block-level IO records, thereby being transparent
to users and hardware independent; (2) it can leverage the
multi-version nature of LSBD, hence no extra storage space
is required.

In this prototype, there are mainly three components. (1)
IO Trace Collector: Collect the block-level IO records from
Block Proxy including the operation code (read, write or trim),
LBA, and length; (2) Ransomware Monitor: Periodically
analyzing the IO records of all VDs to determine if any are
targeted by ransomware attacks. The monitor essentially
functions as a feature extractor combined with a classifier.
The former extracts handcrafted features from IO records,
while the latter is a machine learning-based classifier; (3)
Data Recovery: Upon detection of an attack, the data recovery
mechanism is activated, restoring the data to a pre-attack state
by changing the IndexMap.

To validate the effectiveness, we test this prototype on
our benchmark, which includes around 150 hours of Block
IO traces from 13 common ransomware and 16 types of
real-world workloads (see §6.1). In addition, we have im-
plemented four variations by adopting three state-of-the-
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art detection methods from previous work including SSD-
insider++ [35], RanSAP [40] and WayBackVisor [42], and
a combined one (i.e., all features included). Table 2 demon-
strates the precision, recall, and F1-score results of the four
methods. From the results, we can observe that all four left
room for improvement and combining features certainly help
(i.e., highest F1-score).

Such solutions still do not meet our goals as they incur data
loss or leave tainted data unhandled. First, false negatives is
unacceptable as the valid copies of data may be lost during
later GC. Second, having a less satisfied precision (i.e., identi-
fying normal activity as ransomware) is also consequential as
users’ normal IO can be wrongly interrupted and rolled back.

4.4 Challenges

!! !" !# !$ !% !& !' !( !)

Pre-attack During-attack Post-attack
Detected End User-aware

…

Rollback

Figure 4: A typical process of ransomware attack, detection, and
recovery.

Insufficient features. The straightforward design is based on
the SSD and thus bounded by its limited on-chip resources
(e.g., computational power and memory space). As a result,
the feature extraction and classification algorithms become
inherently straightforward (e.g., simple statistics of erasure
IO in [35]), thereby yielding low accuracy. This also applies
to the solutions based on kernel modules as they, too, need to
be lightweight to avoid interfering with normal IO activities.

In EBS, the Block Proxies can have much more resources
at hand. In addition, we can also set a standalone machine
to run the detection module. Therefore, it is possible for
our solution to include more features and adopt complex
models for improvement. However, introducing features is
helpful only when they reflect the unique characteristics of
ransomware attacks, which requires careful analysis on the
traces. Moreover, though EBS may have more computational
power, spending too many resources on ransomware detection
is still not economically acceptable due to the relatively low
occurrence rate of ransomware attacks. In summary, we
need to strike a balance between accuracy and overhead by
identifying the unique characteristics and including them for
feature construction.

Impermanent multi-version support vs. data loss. Even
if we can achieve a high-accuracy model through the above
endeavors, it is unlikely such a solution can always detect
the exact timing of the ransomware attacks with no false
positives/negatives. Hence, we may still run into data loss
when rolling back is wrongly invoked.

Here, we use Figure 4 to illustrate a rundown on typical
cases that might lead to data loss. In the figure, each rectangle
represents a sample, and the background color indicates the
three phases of the attack: pre-, during-, and post-attack.
Assume that ransomware initiates an attack at the t4 window
(as indicated by the dashed line) and continues until t7 window
(also indicated by the dashed line). The detection model
identifies the attack at t5 and rolls back the data to t4.

First, if the proposed solution fails to detect the attack at t5
(i.e., false negatives), the user’s data may become irretrievable
if garbage collection (GC) has already kicked in. Note that
data recovery can only issued by users but users may not be
aware of the attack in time. Second, if the detection model
wrongly labels normal IO as ransomware attack (i.e., false
positives), it might cause user panic and even lead to incorrect
data rollback. Third, even if the ransomware attack is alarmed,
the user fails to stop normal IO until tn which might be several
hours after attack, the rollback-based recovery would result
in greater data loss that all the user’s normal IO during- and
post-attack would be reverted.

To solve above issues, the easiest way is to provide the
multi-version support for all data modifications permanently.
However, this is not feasible as it would quickly deplete the
user’s purchased disk space within months or even days due
to the constant accumulation of data. The same reason also
applies to vendors. Therefore, we need to find a solution
that can efficiently persist all IO records from right before a
ransomware attack until the end of it.

5 DeftPunk Design
We now introduce the design of DeftPunk, a practical ran-
somware detection and data recovery framework for cloud
EBS. DeftPunk does not require users’ cooperation, des-
ignated software support or customization on hardware in
detection, and can guarantee no data loss during the recovery.
The key to DeftPunk success is employing a two-layer ma-
chine learning model to efficiently detect attacks and create
snapshots. Then, DeftPunk can notify the user and perform
the subsequent data recovery. In this section, §5.1 presents an
overview of the framework and workflow of DeftPunk, fol-
lowed by a detailed discussion on the three main components:
the feature engineering (§5.2), two-layer classifier (§5.3) and
data recovery (§5.4).

5.1 Overview

Data preprocessing. Figure 5 demonstrates the high-
level procedures and interactions between components in
DeftPunk. First, the IO Tracer, embedded in the Block Prox-
ies (BP), constantly monitors all incoming IO record (i.e., for-
matted as <timestamp, offset, length, operation>)
and group them as IO records by VDs. Then, IO tracer gen-
erates samples with a sliding window of 10 seconds. For
example, assume a BP that serves three VDs. For a minute
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Figure 5: Overview of DeftPunk.

of monitoring, IO Tracer would generate 6 samples of IO
records for each VD.

Ransomware detection. Upon receiving the IO record sam-
ples, DeftPunk first uses the Layer-1 Classifier, based on
simple features (e.g., IO count) and a decision tree, to per-
form fast scanning with an emphasis on high recall and low
computational cost. If the sample fails to pass the first layer
(i.e., suspicious of a ransom attack), it will be further checked
by the Layer-2 Classifier. The second model uses a superset
of Layer-1’s features by including more complex ones, (e.g.,
statistics of entropy, Working Set Size, and IO offset), and
employs a more sophisticated model (i.e., XGBoost), aiming
at high precision. If the sample is again labeled as positive,
DeftPunk would trigger snapshot generations.

Creating snapshots. When a positive sample arrives, the
snapshot worker would first create a Pre-attack Snapshot and
a Post-attack Snapshot at the beginning and the end of it,
respectively. As a ransom attack may span across multiple
10-second samples, the snapshot worker continues to create
new Post-attack Snapshot to replace the previous one until
the incoming sample becomes negative. Meanwhile, during
the attack, DeftPunk would also pause the EBS garbage
collection for this VD to prevent the accidental deletion of
the valid data until the post-attack snapshot is finalized.

Data recovery. When the user has been notified of the at-
tack (e.g., via our alert message or discovering certain data
become inaccessible), one needs to issue a recovery request.
DeftPunk would follow a three-step recovery process. (i)
checking: DeftPunk first checks and lists all tainted LBAs
(i.e., 4KB long each) during the attack. If a LBA is further
modified (by the user) after the post-attack snapshot, then data
in that LBA would not be recovered. (ii) undo: DeftPunk

would revert all data in tainted LBAs to the version of the
pre-attack snapshot. redo: DeftPunk would run another rule-

based model to identify IOs made by the users and redo them.

5.2 Feature Engineering
In §4.4, we mentioned that one key reason for suboptimal
performance of existing solutions is the insufficient feature
engineering. To construct features for DeftPunk, we first
conduct an extensive study on real-world VDs’ IO traces to
identify the fundamental differences between ransomware
and normal user behaviors (§5.2.1). Based on the insights,
we then devise the extended features for the two-layer model.

5.2.1 Characterizing IO Behavior
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Figure 6: Opportunities of detecting ransomware at block-level.

We first reason why typical features used in existing works,
such as offset entropy in [40,42] and WAR IO count in [34,35],
can be ineffective. In Figure 6(a), we present the probability
density function (PDF) of the offset entropy for samples in
our dataset. “Rsw” indicates the PDF of all ransomware sam-
ples. “BigData” and “Storage” represent two different types
of common workloads. We can observe a distinct difference
in the PDF of offset entropy between Rsw and Storage, while
there exists large PDF overlap between BigData and Rsw.
Figure 6 (b) exhibits a similar pattern on Bigdata and Rsw.

This comparison clearly shows that normal workloads can
be easily mislabeled (or the other way around) if we solely
rely on a selected few simple features. We believe that one ma-
jor root cause is that previous work mostly focus on positive
samples (i.e., ransom attack IOs) without noticing or studying
the similarities they share with normal traffic. Hence, we
study both the patterns of ransomware and normal I/O behav-
iors and propose three patterns for better feature engineering.

• Pattern 1. Ransomware typically exhibits nearly equal
amounts of read and write in bytes, whereas the read-to-
write ratio of normal IOs is often skewed. Figure 7(a)
presents the cumulative probability density (CDF) of the
read-ratio (i.e., the proportion of read requests to total re-
quests). We can see a notable gap between the CDF of
normal workloads (Norm.) and ransomware (Rsw), with
the average value for Norm. being X and the average value
for Rsw being Y.

• Pattern 2. The IO offsets of ransomware are distributed
more broadly across the LBA space, and each offset is typi-
cally accessed only once. In contrast, the IO offsets under
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Figure 7: Three unique patterns that can distinguish between ran-
somware and normal workloads.

normal workloads tend to be concentrated. Figure 7(b)
shows the CDF of the working set size (WSS) for the two
categories of samples, and we can similarly observe a sig-
nificant difference between Norm. and Rsw.

• Pattern 3. Ransomware displays obvious WAR on the sys-
tem disk, particularly in the Master Boot Record (MBR)
region at the beginning of the LBA, whereas such opera-
tions are rarely performed by normal users. Figure 7(c)
displays the IOPS (Input/Output Operations Per Second)
for the two categories of samples within the first 100MB
and the first 1GB of the LBA.

5.2.2 DeftPunk Feature Engineering
Based on the findings above, we construct the following as
DeftPunk’s enhanced feature engineering for ransomware
detection. Table 3 presents the 43 features we employed along
with their corresponding meanings. For ease of understanding,
we categorize these features into 5 classes, which include:
• IO Dependency. This set of features characterizes the

behavior of adjacent I/O operations in a temporal context.
In addition to including Write-After-Read (WAR), which
has been adopted by other works [34, 35], we also incor-
porate three other types of read-write sequences, such as
Read-After-Write (RAW), Read-After-Read (RAW), and
Write-After-Write (WAW).

• IO Statistics. This part constitutes the basic statistics of
VD IO, including the IO count, total bytes, and IO size.
Here, features are made separately for read (R), write (W),
and the sum of read and write (RW). The design of this
feature set is inspired by Pattern 1.

• Working Set Size (WSS). Inspired by Pattern 2, we track
the working set size (WSS) for 6 types of I/O. Here, WSS
refers to the proportion of the LBA space that is accessed
by a specific type of IO.

• Offset Statistics. Compared to WSS, this category of fea-

tures characterizes the distribution of I/O across the LBA
at a finer spatial granularity, such as the mean, variance,
standard deviation, coefficient of variation (CoV) [32], and
entropy [56] of the IO offset. The design of this type of
feature is also inspired by Pattern 2.

• Access on LBA Head Region. As mentioned in Pattern 3,
ransomware may tamper with data in the head region of the
LBA. Bearing this in mind, we conduct statistics on IO that
fall within the first 100MB and 1GB of the LBA, including
the I/O count and total bytes.
In Table 3, we also list the computational complexity (in

Big O notation) for each class. Note that the traditional defi-
nition of Write-After-Read (WAR) is to check whether there
are sequential read and write requests accessing the same
LBA offset. However, we extend the definition of WAR by
relying on both the offset and the length to decide whether the
LBA accessed by the sequential read and write requests are
overlapped. Therefore, our check for WAR requires a time
complexity of O(logn) rather than O(1). The reason to do this
is that we find that ransomware can read a large volume of
data and then writes it in smaller chunks, exhibiting the be-
havior of “read-write-...-write”. According to the traditional
definition of WAR, this behavior would be characterized as 1
WAR and 2 WAWs, which can be similar to normal user IO.
However, our definition of WAR would describe this behavior
as 3 WARs and 2 WAWs, thereby distinguishing it from the
I/O behavior of normal users.

5.3 Two-layer Model
The enhanced feature engineering can improve the preci-
sion/recall of the detection. However, simply building a
classifier based on the entire set of features would not be
practical for production deployment. This is because certain
features such as IO dependency, offset entropy, and WSS
would have high computational complexity and thus yield a
high overhead in detection. For example, given a VD with 1
million IO records, the processing time for IO dependency
can be 14 seconds for one thread. In this case, blindly ap-
plying the entire set of features would consume nearly 56
virtual CPU cores for 1 million IOPS online only for feature
calculation.

Therefore we propose a two-layer model to balance the
trade-off between overhead and detection accuracy. First,
we use a simple feature set in the first-layer model for fast
filtering the majority of non-ransom activities. We apply the
complex feature set with second classifier to scrutinize the
suspected cases labeled by the first model. Specifically, the
two-layer classifier is implemented as follows.
Layer-1: Fast and Broad Filtering. This layer aims to
achieve a high recall and rapid initial scanning of ransomware
using features with O(1) complexity. Hence, we evaluate the
detection performance of three commonly-used simple clas-
sifiers, including k-Nearest Neighbors (kNN) [39], Logistic
Regression (LR) [50], and Decision Trees (DT) [51], with
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Type Description Complexity #Features
IO Dependency on Block IO count / Bytes of (RAW / WAR / RAR / WAW) IO O(logn) 8

IO Statistics IO count / Bytes / Size / Bps of (R / W / RW) IO O(1) 11
Working Set Size (WSS) WSS of (R / W / RAW / WAR / RAR / WAW) IO O(logn) 6

IO Offset Statistics Var / CoV of (RW) IO O(1) 2
Entropy of (R / W / RAW / WAR / RAR / WAW) IO O(logn) 6

Access on LBA Head Region IO count / Bytes on first (100M / 1G) of (R / W) IO O(1) 8

Table 3: Feature engineering of DeftPunk. In the second column “Description”, the bold text separated by slashes (“/”) represents different
metrics, while the parts within parentheses separated by slashes represent different IO types. For example, the meaning of the first row is to
calculate the IO count and Bytes for each of the four IO types: RAW (Read-After-Write), WAR, RAR, and WAW. Therefore, there are a total of
2⇥4 = 8 features. R, W and RW IO refers to read, write, and read-write, respectively.. Var: variance; WSS: working set size; CoV: coefficient
of variance.

Layer Model Precsion Recall F1-score

Layer-1
KNN 73.1 82.5 77.5
LR 32.7 91.1 48.1
DT 87.5 95.9 91.5

Layer-2

RF 96.2 97.6 96.9
lightGBM 95.1 97.1 96.1
CatBoost 95.4 98.5 96.9
XGBoost 95.8 98.6 97.1

Table 4: Two-tier model selection. KNN: k-nearest neighbors; LR:
logistic regression; DT: decision tree; RF: random forest.

the results depicted in Table 4. We choose the Decision Tree
(DT) as the classifier for layer-1 as it achieves the highest
recall (95.9%).

Layer-2: Accurate Double Check. Suspected cases from
layer-1 are passed to the layer-2, which employs computation-
ally expensive features that can better distinguish between
ransomware and normal behavior. Here, we add all the fea-
tures mentioned in Table 3 to the model, and similar to layer-1,
we test the performance of four commonly-used complex clas-
sifiers, including Random Forest (RF) [36], LightGBM [44],
CatBoost [52], and XGBoost [38], with the results presented
in Table 4. The results indicate that XGBoost achieves the
highest F1-score (97.1%) and thus is chosen as our layer-2
classifier. Our further experiments in §6.6 demonstrate that
the two-layer model maintains the same detection perfor-
mance as single-layer model but with much less computation
needed.

5.4 Creating Snapshots
Once an attack is detected, DeftPunk generates a pair of
snapshots, called pre-/post-attack snapshots. The goal is to
“lock in” the effects of the ransomware to make sure all data
modification during the period are recorded and recoverable.
Then, inspired by the “undo-redo” mechanism in database,
DeftPunk reverts all the LBAs modified by the ransomware.
We also employ another rule-based model to identify the
LBAs modified by the user and redo them.

Creating pre-attack snapshot. Once notified by the two-
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Figure 8: DeftPunk’s timeline for lossless data recovery.

layer classifier, the snapshot worker checkpoints the In-
dexMap and data of the VD at the time of beginning of the
labeled batch window. This is enabled by the multi-version
nature of LSBD, which allows the snapshot worker work back-
wards as long as the previous changes have not been garbage
collected. This is guaranteed by setting up the length of a
sample to be 1 minute and configuring the GC to only collect
stale data that are at least older than 30 minutes. Meanwhile,
we also pause the GC on this VD.

Creating post-attack snapshot. Generating the post-attack
snapshot is different. As a ransomware attack might be longer
than a single sample, DeftPunk waits until the two-layer clas-
sifier labels an incoming as negative. Then, the snapshot
worker creates a post-attack snapshot at the end of last la-
beled sample and resume GC. In addition, we also record all
the writes, including data and LBA, between two snapshots
as a write log. Note that the writes between pre-snapshot
and detection time can be obtained due to the multi-version
support. Plus, the modifications after the detection time can
be recorded as we have paused the GC. Finally, we compare
the IndexMaps between the two snapshots to only keep data
pre-snapshot that are modified during the attack and drop
others for space efficiency.

5.5 Data Recovery
To this end, we have acquired three pieces of data, including
a pre-attack snapshot (i.e., data, LBA and versions at t3 in
Figure 8), a post-attack snapshot (i.e., LBA and versions at
t8), and a write log (i.e., data and LBA between t1 and t5).
Now, DeftPunk follows three steps to recover the data.
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Figure 9: Five cases of LBA data recovery by DeftPunk.

Identifying the tainted LBAs. Once the user has been no-
tified of the ransomware attack, they can initiate the request
for data recovery. DeftPunk would first check if the LBAs
listed in the post-attack snapshot are modified by the users
after the attack. DeftPunk would not try to recover data from
such LBAs as they are deemed valid by the users (i.e., LBA-1
and LBA-5 in Figure 9).

Undo. Executing undo is straightforward. DeftPunk would
revert all involved LBAs (i.e., only modified during the attack
but not after) to the version of the pre-attack snapshot.

Redo. Ransomware usually skips files that are already opened
(e.g., LBA-2) for writes or kills the user’s writing process
(e.g., LBA-1) to ensure data integrity of the encrypted files.
Still, it is possible that the user’s IO exists in the tainted LBAs
such as LBA-3 (i.e., user overwrites encrypted LBA block)
and LBA-4 (i.e., user’s writing is not immediately stopped).

To avoid data loss, DeftPunk needs to redo these users’
IOs. First, DeftPunk employs a rule-based model, which
checks the in-place write-after-read (WAR) patterns, to deter-
mine whether an IO is indeed modified by the ransomware.
Note that, in this case, simply checking the WAR pattern can
effectively single out the ransomware IOs because these LBAs
have already been filtered by the two-layer model. In other
words, the chance of a user’s IO coincidentally matching the
ransomware’s IO pattern is extremely low. We further discuss
how to handle such a corner case in §5.6. Then, DeftPunk
would drop the tainted IOs and apply the normal ones in order.

5.6 Corner cases.

Missing the start/end. The ransomware might start or end
right around the 10-second sliding window splitting. Hence,
a few IOs made by the ransomware might evade the two-layer
model checking and taint the users data. In this case, we
further include IOs from one more sample before and after
the labeled sample to the write log to avoid data loss.

Mislabeled writes. During the attack, the users might co-
incidentally write to the LBAs with the similar pattern as
the ransomware, e.g., encrypting or rewrite the files. Con-
sequently, the rule-based model may incorrectly mark the
behaviors as ransomware and revert them. Note that experi-
encing this type of mislabeling is rather unlikely in practice.

This is because all known ransomware would choose to ter-
minate the user’s writing process targeting the same LBAs or
simply avoid these addresses (i.e., files) to ensure the integrity
of ransomed data. So far, we have not observed any such
cases in the field.

Nevertheless, we employ a manual checking process if the
user is unsatisfied with the automatic undo and redo. We
provide the users with a tool to associate files to LBAs. Then,
for the files (and their corresponding LBAs) that are mistak-
enly reverted, the users can choose to drop/apply the writes
on an individual basis. Note that simply using this tool and
asking the users to manually check all the LBAs would be
impractical given the sheer volume of IOs during runtime.
Data inconsistency. DeftPunk is a block-level solution and
hence does not provide file/application-level consistency guar-
antees. It is possible that recovery process can lead to data
inconsistency. For example, applying a user’s overwrites on
the encrypted data may result in a corrupted file (i.e., LBA-3).
To resolve this, restoring to the pre-attack snapshot guaran-
tees a clean start. In addition, users can again use our manual
checking tool for a finer control of what IOs to apply or drop
on tainted LBAs.
Multiple attacks. As the data recovery is only triggered by
the user after the notification, it is rare but still possible that
the same LBAs have been attacked multiple times. Now, we
further discuss the case of two consecutive attacks. The anal-
ysis and solution shall apply to the case of multiple attacks
(e.g., three or more). Depending on the distance between the
two attacks, we can have the following cases:
• One pair of snapshots. When the the second attack closely

follows the first one (i.e., within 2 samples), DeftPunk
would treat the two as a single attack as the post-attack
snapshot would include an extra sample (see corner case 1).
Then, DeftPunk performs data recovery as usual. If there
is a user’s IO between the two attacks, DeftPunk can use
the rule-base model to check and only redo user’s IOs.

• Two pairs of snapshots. If the two attacks are far apart (e.g.,
one day away), DeftPunk creates a pair of snapshots for
each attack. Then, DeftPunk performs data recovery on
each attack separately in time order. In this case, the user’s
IOs between the two attacks would not be affected as the
two are treated as independent attacks.

5.7 Runtime Modes
To avoid mislabeling, DeftPunk runs in a per-batch mode
in the field. Specifically, a batch is 10-minute long and thus
includes 60 10-second records. DeftPunk labels a batch as
positive as long as one sample has been flagged.

Further, users can enable/disable Deftpunk on a Viritual
Disk (VD) basis. For example, if a user has mounted multiple
VDs, the user can choose to only protect important VDs
(e.g., data drives) with Deftpunk but not ones for caching.
In addition, we initially allowed system administrators to
use only a part of the feature set or just Layer-1 of the two-
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App. #Batch #IO(1e5) App. #Batch #IO(1e5)
Prometheus 980 893.5 MongoDB 128 197.2

Storage 938 277.6 Postgress 100 48.4
MsSQL 921 459.2 Oracle 77 112.7
MySQL 900 949.6 RabbitMQ 55 82.1
WebAPP 739 159.5 ElasticSearch 40 32.2

Redis 435 70.1 etcd 29 7.4
MessageBus 370 90.6 influxDB 6 0.9

BigData 220 749.0 Kafka 5 18.1

Table 5: Negative samples in DeftPunk benchmark.

Config Content #Types

Ransom
family

loki [22], BeijingCrypt [19], makop [20]
Sodinokibi [25], babuk [12], VoidCrypt [15]
phobos [8], GlobeImposter [16]
wannacry [30], mallox [18]

13

OS
version

WinServer 64-bit 2016, 2019,
2022 (w/ and w/o container), CentOS 6

App. Copying, Massive Write, Massive Read,
ZIP CRYPT, MySQL 5

Table 6: Configurations of simulated ransomware attack.

layer model to achieve lightweight detection. However, we
later found that such a trade-off is not efficient as it leads
to a significant drop in detection performance with minor
reduction in overhead. We present an experiment on this in
§6.6. We recommend that users enable the full feature set and
adopt the complete two-layer model.

6 Evaluation
Our evaluations intend to answer the following questions:
• What is the composition of the benchmark? (§6.1)
• How does DeftPunk perform against other methods on a

per-sample basis? (§6.2)
• How does DeftPunk perform in zero-shot scenario? (§6.3)
• How does DeftPunk perform in per-batch setup? (§6.4)
• Does the feature engineering work? (§6.5)
• What is DeftPunk’s runtime overhead? (§6.6)
• How is DeftPunk in deployment? (§6.7)

6.1 Ransomware Benchmark
The dataset is composed of two parts:

Negative samples (normal IO). Benign samples consist of
I/O records from EBS virtual disks (VDs) running real-world
workloads from the field. Table 5 shows the types of work-
loads, the number of batches, and the volume of IO records.
Note that each batch refers a group of IO records of a VD
within a 10-minute span. Each IO record is quadruple, format-
ted as <timestamp, offset, length, operation>. To
generate negative samples, we reuse the sliding window
mechanism. Therefore, a 10-minute batch can generate 55
1-minute long negative samples. In total, we have gathered

nearly 2 million samples.

Postive samples (ransomed IO). We generate positive sam-
ples by simulating ransomware attacks atop the normal IOs.
Specifically, we follow a “ransomware-OS-application” con-
figuration to generate batches. For each configuration, as
shown in Table 6 we mix and match the ransomware families
(1 in 13), operating systems (1 in 6), and background appli-
cations (1 in 5). Each generated batch is around 10 minutes
long and we use the same sliding window methodology to
generate positive samples. Note that a ransomware attack
can be shorter than 10 minutes. Therefore, we also discard
samples that do not have any ransom activities (i.e., samples
before/after the ransomware in the generated batch). In total,
we have 52 thousands positive samples.

Metric. Ransomware detection is a typical binary classifier,
determining whether a sample is positive (i.e., ransomed)
or not. Therefore, we use precision (i.e., the proportion of
positive identifications that are actually correct), recall (i.e.,
the proportion of actual positives that are correctly identified),
and the F1-score (i.e., the harmonic mean of precision and
recall) for measurement.

6.2 Per-Sample Test
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Figure 10: Overall performance of DeftPunk.

We compare DeftPunk with three other ransomware de-
tection methods including SSD-insider++ [35], WaybackVi-
sor [42] and RanSAP [40]. We split the dataset as 90% for
training and 10% for testing. We use 10-fold cross-validation
which means we train and test the models 10 times and each
time with a different 10% as test set.

We calculate the average recall, precision, and F1-score of
each candidate from the 10 tests. In Figure 10, we can observe
that DeftPunk clearly outperforms all others with a 98.6%
in recall, 95.8% in precision, and 97.1% in F1-score. This
validates the effectiveness of DeftPunk’s feature engineering
and two-layer model.

We further analyze the false positive/negative cases. First,
it is possible DeftPunk incorrectly flags normal IOs as ran-
somware activities (i.e., precision is not 100%). Normally
this is because users’ IOs exhibit the same write-after-read
patterns as ransomware activities, such as data encryption,
in-place compression, and format conversion (e.g., changing
a mp4 video file to a mkv one). DeftPunk alleviates this issue
by leveraging multiple patterns instead of just write-and-read
for detection. Still such coincidences may occur and lead
to the mislabeling. Note that having a few false positives
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is acceptable. Recall that DeftPunk follows a detect-notify-
rollback process. Therefore, if DeftPunk mislabels normal
activities, the notified users can just ignore the alerts, and
inform us to delete these snapshots. No rollback would be
executed unless the users confirm an attack has occurred.

Second, it is possible DeftPunk misses some ransomware
activities (i.e., recall is not 100%). In the per-sample test,
the main reason is that the ransomware attack, which usually
lasts several minutes, can span multiple samples. Certain
samples (e.g., the very first or last one) may not contain
enough ransomware activities to be successfully identified,
thereby lowering the recall. Note that, in practice, DeftPunk
is deployed in a per-batch manner (i.e., 10-minute window),
where the recall is near 100% (see §6.4).

6.3 Zero-shot Detection Performance
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Figure 11: Zero-shot performance of DeftPunk.

Given that ransomware can be fast evolving, we further
measure DeftPunk’s detection performance on “unseen” ran-
somware. Each time, we remove one type of the 13 ran-
somware families from the training dataset but still keep
samples from that family in the testing set (i.e., zero-shot).

Figure 11 displays the results where each group of three
bars show the performance of a specific ransomware fam-
ily were removed from the training set. We can see that
DeftPunk is capable of effectively detecting most unseen
ransomware, maintaining at least 95% recall and 90% preci-
sion. This indicates that our feature engineering captures the
common characteristics of ransomware.

The only exception is Wannacry. Further analysis suggests
that Wannacry is intentionally slowing down its operation
(e.g., CPU utilization is below 25%, and disk throughput is
below 10%) to evade detection. Similar to the aforementioned
discussion on false negatives, the lower recall is caused by
the scant amount of ransomware activities in some samples
due to the intentionally diluted IOs. Note that such an evasion
strategy—while useful in the per-sample test—is not effective
in our deployment scenario (i.e., per-batch experiment, see
§6.4) for more details.

6.4 Per-Batch Experiment
Note that in the previous two experiments we calculate the
performance on a per-sample basis. While they validate the
overall designs of DeftPunk in a microbenchmark fashion,
DeftPunk in practice is deployed on a per-batch checking
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(a) Overall performance
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Figure 12: Per-batch performance of DeftPunk.

basis (see §5.4). In other words, as long as one sample within
a 10-minute batch is marked as positive, the entire batch is
marked as positive. Note that per-batch testing is closer to
real-world setup due to the streaming of IOs.

In Figure 12, we rerun the experiments in §6.2 and §6.3
but with a per-batch basis. We can see that DeftPunk can
always achieve near 100% recall across all situations with a
minor (around 2% on average) decrease in precision. Surpris-
ingly, with per-batch detection, DeftPunk can even success-
fully identify Wannacry ransomware in zero-shot experiment
which intentionally dilutes its IO for evasion. On stark con-
trast, other methods while also have an increasing recall, can
experience considerable precision loss, yielding low practi-
cality (i.e., frequently issuing false alarms).

Obviously, compared to experiments in §6.2 and §6.3, the
precision and recall in per-batch experiments are much higher.
This is because the per-batch test reduces the chances of misla-
beling by taking multiple samples (i.e., 1 batch = 55 samples)
into consideration. Nevertheless, DeftPunk may still fail to
identify certain ransomware activities. One representative
case is the Babuk ransomware (i.e., the 12th in Figure 12(b)
being undetected in a VD with mostly text files. Further anal-
ysis reveals that Babuk is designed to not encrypt text files,
thus being latent (i.e., not encrypting files) and avoiding the
detection.)

6.5 Effectiveness of Features
Now, we measure the effectiveness of DeftPunk’s feature
engineering. Specifically, from only one type of features,
we add on another set of features and evaluate the overall
performance of DeftPunk on both per-sample and per-batch
basis. In Figure 13, we can see that DeftPunk’s performance
steadily increases with the addition of more features. This
validates the effectiveness of DeftPunk’s feature engineering.

6.6 Runtime Overhead
Monitoring and preprocessing in DeftPunk incur negligible
overhead as the IO Tracer only checks and packs the quadru-
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Figure 13: Ablation study of DeftPunk’s feature engineering. In
the figure, the Type 1 features corresponds to all features associated
with the 1st row (IO Dependency on Block) in Table 3, with Type 2
through Type 4 following in a similar fashion.

Model Precision Recall F1-score Time (s)
Layer-1 Only 87.3% 95.9% 91.5% 3.72
Layer-2 Only 94.9% 98.6% 96.7% 56

DeftPunk 95.8% 98.6% 97.1% 4.85

Table 7: Comparison of DeftPunk v.s. Layer-1/2 only.

ple metadata in an asynchronous fashion (i.e., non-blocking).
For detection, we evaluate the speedup made by the two-

layer model by comparing it against the Layer-2 only model.
Table 7 shows that, on processing 1 million IOs with one
thread, the two-layer model only takes 4.85 seconds, yielding
a 11.5⇥ speedup over the Layer-2 only model. Including
the overhead for detection, as well as data processing and
transfer, we are able to process data at 140,000 IOPS using
a 2.7GHz vCPU, which means that on processing 1 million
IOs per second we need around 7 vCPUs.

We can enforce DeftPunk to run with only Layer-1 enabled
for lower overhead. In Table 7, we can see that, with only
first layer, DeftPunk can speed up 24.3% (i.e., from 4.85 to
3.72 seconds). However, both precision and recall decrease
significantly (e.g., from 95.8% to 87.3% in precision). By
weighing the trade-off between performance and speedup, we
believe the two-layer model is the best choice for DeftPunk.

For recovery, DeftPunk introduces additional storage
space because of the snapshots and write logs. For a typ-
ical 100GB VD under ransom attack, our experiments show
that the storage overhead is around 150MB on average, much
less than the periodical snapshots.

6.7 Deployment
Currently, we have deployed DeftPunk in our EBS service
for limited internal users. For each internal EBS cluster (host-
ing more than 30K VDs), we deploy one machine (8 vir-

tual CPU(2.7 GHz), 32 GiB Memory) to run DeftPunk’s
detection and recovery components. DeftPunk has already
successfully prevented two attacks with data fully recovered
within 240 minutes after internal users issued reports. We ex-
pect to release DeftPunk for public review in the near future.

7 Potential Limitations
7.1 EBS-specific Solution
The success to DeftPunk is based on two properties of AL-
IBABA EBS, the log-structured design and block-level IO
support. However, this does not mean DeftPunk can only
be applied to ALIBABA EBS. First, the log-structured de-
sign is widely adopted in many cloud storage systems (e.g.,
HDFS [55]) and file systems (e.g., F2FS [47]). Practitioners
can also leverage the multi-version support, snapshots and
GC pausing to secure a full-copy of data modifications dur-
ing attack. Second, block-level IO monitoring and analysis
can be achievable for cloud vendors and system administra-
tors. Moreover, with our open dataset and users’ own traces,
they can also train their own models to detect ransomware
activities following our feature engineering practice.

7.2 Effectiveness on Unknown Ransomware
In this paper, DeftPunk shows its effectiveness on 13 types
of well-known ransomware. There can be others that are not
covered or even still under development. However, we believe
this does not pose a great threat to DeftPunk’s validity. First,
the zero-shot experiments show that the features of DeftPunk
can generalize well to unseen types of ransomware. Second,
DeftPunk can be quickly adapted to new ransomware by
introducing new features and deployed to production systems
as it is a pure software solution.

7.3 Threats of Mimicry Attacks
The features of DeftPunk arise from the three ransomware IO
characteristics (i.e., Pattern 1-3 in §5.2.1). First, to encrypt,
ransomware exhibit unique in-place write-after-read LBA
patterns. Second, to quickly attack multiple files, ransomware
would touch many files and encrypt a small proportion in each
of them, yielding a wide range of sporadic LBA accessing.
Third, to increase the impacts, ransomware would especially
favor important areas (e.g., head region).

It is possible that future attackers may choose to evade
DeftPunk detection by avoiding the above behaviors in their
ransomware. However, we believe such efforts can be in-
effective or even against the interests of ransomware (i.e.,
becoming less stealthy or unprofitable). First, using different
access patterns (e.g., Wannacry slowdown) can still be caught
by DeftPunk even under zero-shot setup (see §6.4). More-
over, further slowing down the IOs can backfire as it takes
much longer time to finish file encryptions and can easily
alert the users. Additionally, countermeasures for this slow-
down attack in DeftPunk is straightforward—condensing the
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workloads (e.g., include a set of features to treat 10-minute
workloads as 1-minute ones).

Second, we have seen "pseudo-ransomware" (e.g., wiper-
ware [1]) choose not to encrypt but to directly destroy data
(e.g., filling zeroes), thereby not showing write-after-read pat-
terns (only writes, no read). But, they are no longer active as
few victims would pay the ransom and current ransomware
usually allows victims to decrypt a small proportion of data to
show validity. In addition, we notice certain early ransomware
(e.g., Gpcode.ak) do not follow in-place write-after-read but
to delete original files and create new ones with encryption.
However, they, too, soon have died out due to showing un-
usual patterns (i.e., frequent file deletion) and excessive IO
traffic (creating a mass amount of files), which can be easily
singled out and restored (e.g., PhotoRec for Gpcode.ak [23]).

Third, we can see that even if ransomware avoid Pattern
2 and 3 (i.e., "Only Type 1" in Figure 13), DeftPunk still
shows high recall (98.8%). But, by doing this, ransomware
would impact less files and/or target less important ones, thus
being unattractive to the attackers.

In other words, Patterns 1-3 persist across all 13 families
of ransomware are as a result of such patterns reflecting the
fundamental nature of ransomware, especially after gener-
ations of evolutions. Admittedly, future attacks may evade
detection in a different fashion or combine multiple strategies
together. For example, ransomware can encrypt a selected set
of important files with a more “diluted” pattern to minimize
footprint.

To sum up, two lessons we have drawn from the above
analysis are: (1) Closely monitoring the latest development.
Propagation of new ransomware, while fast, still takes time
to spread, which renders a window for us to analyze. (2)
Building adaptive solutions. The security "arms race" is often
inevitable and never-ending. One important advantage of
DeftPunk is software-based and thus offers high flexibility,
which further enables us to quickly adapt to emerging threats.

8 Conclusion
In this paper, we revisit a pressing problem in data secu-
rity: defending against ransomware attacks. With a large-
scale study on the IO characteristics of ransomware, we iden-
tify a rich set of features and leverages the log-structured
multi-version properties to build DeftPunk, a block-level
ransomware detection and recovery system. Our extensive
evaluation shows that DeftPunk can achieve nearly 100%
recall with 95.8% precision with minor overhead.
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Abstract
End-to-end encrypted messaging applications ensure that
an attacker cannot read a user’s message history without
their decryption keys. While this provides strong privacy,
it creates a usability problem: if a user loses their devices
and cannot access their decryption keys, they can no longer
access their message history. To solve this usability problem,
users should be able to back up their decryption keys with the
messaging provider. For privacy, the provider should not have
access to users’ decryption keys. To solve this problem, we
present Secure Value Recovery 3 (SVR3), a secret key recovery
system that distributes trust across different types of hardware
enclaves run by different cloud providers in order to protect
users’ decryption keys. SVR3 is the first deployed secret key
recovery system to split trust across heterogeneous enclaves
managed by different cloud providers: this design ensures that
a single type of enclave does not become a central point of
attack. SVR3 protects decryption keys via rollback protection
and fault tolerance techniques tailored to the enclaves’ security
guarantees. SVR3 costs $0.0025/user/year and takes 365ms
for a user to recover their key, which is a rare operation. A
part of SVR3 has been rolled out to millions of real users
in a deployment with capacity for over 500 million users,
demonstrating the ability to operate at scale.

1 Introduction

End-to-end encrypted messaging applications like Signal [85],
WhatsApp [24], and Messenger [58] are used by hundreds
of millions to billions of users. They provide end-to-end en-
cryption: user devices (the “ends”) encrypt user messages so
application servers receive only encrypted messages without
decryption keys. Only the users in a conversation can decrypt
the messages locally on their devices. This paradigm pro-
tects user messages even if the application provider or cloud
infrastructure is compromised.

*Equal contribution.

To provide this guarantee, end-to-end encrypted messaging
application providers must ensure that their users’ secret keys
are protected against a wide range of attacks by malicious
employees, cloud provider administrators, or other privileged
agents. Unfortunately, this creates a usability problem: if a
user loses their secret keys, for example by losing their devices,
the user loses access to their account and message history
because these keys are necessary to decrypt the user’s chat
history and metadata (e.g., address book, social graph). The
application provider cannot directly store user secret keys
because it could then decrypt user messages, violating the
core principle of end-to-end encryption. Therefore, users who
lose their devices should be able to recover their secret keys
without the provider getting access to their secret keys.

Shortcomings of many existing key recovery systems. A
potential strawman is to allow the user to download their secret
keys (e.g., print them on a piece of paper) and store them
in a safe place [40, 46, 59], but this places extra burden on
the user [76]. A more user-friendly approach to this problem
is to allow a user to use a password or a PIN to encrypt
their key [33]. Unfortunately, these are often vulnerable to
brute-force dictionary attacks [82, 83]. Furthermore, standard
safeguards (e.g., forcing the attack to be performed online)
can easily be circumvented by the application provider.

Current deployed systems [4, 43, 51, 88, 96, 98] prevent
brute-force attacks by using secure hardware to limit the
number of PIN guesses. This approach provides a strong
protection against service provider administrators and cloud
providers. While these systems all represent significant ad-
vances in password-based key recovery, they rely on the secu-
rity guarantees of a single type of secure hardware. Although
secure hardware is a powerful tool for enhancing the secu-
rity of systems, it can eventually be subverted—attackers
have extracted user secrets from secure hardware in the
past [12, 14, 31, 35, 62, 75, 79, 87, 90, 91, 94, 95]. In these
systems, compromising just one type of secure hardware en-
ables an attacker to recover many users’ secret keys, which is
a catastrophic scenario for any popular encrypted system.
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Figure 1: System architecture for n = 3 enclave clusters, with each
cluster using a different type of hardware enclave.

Key recovery without a single point of security failure.
In this paper, we contribute Secure Value Recovery 31, a
PIN-based secret key recovery system that prevents any one
type of enclave or cloud provider from becoming a central
point of attack. Our security properties are informed by the
observation that many vulnerabilities are quickly patched, and
so it is challenging for an attacker to find vulnerabilities simul-
taneously on different enclave architectures. SVR3 proposes
a layered architecture, illustrated in Figure 1, consisting of
a tailored cryptographic multi-server key recovery protocol
that distributes trust across three different enclaves from three
distinct hardware vendors on three major clouds: Intel SGX
in Microsoft Azure, AMD SEV-SNP in Google Cloud, and
Nitro in AWS. SVR3 ensures that even if an attacker simul-
taneously compromises two of these enclave types and the
respective clouds, the attacker cannot reconstruct the user’s
secrets due to the cryptographic protocol. The attacker needs
to simultaneously compromise the security of all of the clouds
and all of the enclave types to reach user secrets.

We implemented SVR3 as a production-ready system em-
bedded in Signal Messenger [85], an end-to-end encrypted
messaging application with tens of millions of users. We have
already deployed an initial version of SVR3’s implementation
to millions of users globally, and the fully featured system is in
the process of deployment at the time of publication. A third-
party auditor, NCC Group, audited the deployment of Signal’s
SVR2, a predecessor system currently in production and using
SVR3’s consensus protocol on a single trust domain. SVR3 is

1This is the third generation of Signal’s SVR service and succeeds
SVR1 [51], which did not distribute trust across multiple types of secure
hardware. (SVR2 was a transition system consisting of a partial SVR3 design.)

open source [84] and can be used by any end-to-end encrypted
system that needs secret key recovery (e.g., encrypted mes-
saging [24, 85], email [72, 74], or storage [99]). To the best
of our knowledge, SVR3 is the first deployed cross-enclave,
cross-cloud secret key recovery system. The servers for SVR3
cost only $0.0025/user/year and it takes 365ms for a user to
recover their key, which is a rare operation.
Design decisions. Our design choices were guided by the goal
of developing a real-world PIN-based key recovery system that
prevents dictionary attacks, is easy and affordable to maintain,
and provides security even if a particular enclave or cloud
provider is vulnerable. We summarize the key decisions below.
A layered security architecture (§2–§3). We aim to protect
users’ secrets against three major classes of attackers: cloud
attackers, an internal application provider attacker, and exter-
nal hackers. To achieve this, one strawman is to distribute
trust across multiple organizations. However, finding reliable
and trustworthy such organizations is difficult and expen-
sive [21, 50]. Instead, we introduce an architecture that layers
cryptographic security on top of hardware security by using
different types of enclaves in different clouds. The hardware
enclaves enable creating three separate trust domains, and the
cryptographic tools split secret keys across the trust domains.
PPSS to distribute trust (§4). Password Protected Secret
Sharing (PPSS) [5] provides password-based key recovery
while distributing trust across multiple backends and limiting
attackers to online dictionary attacks. Different PPSS schemes
have different deployment consequences, and we select the
construction by Jarecki et al. [37] primarily because it requires
no cross-trust domain communication and the server design
enables clients to use different secret sharing schemes if they
wish. We use this protocol to construct our one-round key
recovery protocol, where the servers receive no information
about whether the PIN guess was correct, and the servers
unconditionally delete key material after a fixed number of
PIN guesses (which can be refreshed by the clients). This is in
contrast to existing works [85,88,98], which rely on password-
based authentication and require multiple communication
rounds.
Rollback protection through enclave memory and consen-
sus (§5). Like Signal’s original SVR1 system [85], SVR3
protects against software rollback attacks by keeping all data
(e.g., guess counts) inside enclave memory. In order to prevent
data loss, we replicate data across multiple enclaves in the
same cloud. SVR1 uses the original Raft consensus proto-
col [66], which is not safe under physical rollback attacks. In
principle, an attacker with physical access (e.g., a DIMM in-
terposer [89]) to a single server in a vanilla Raft replica group
could take control of the group and roll back log entries. To
defend against such attacks, we develop a modified Raft [66]
protocol, Raft", that provides safety under physical rollback
attacks, as specified in §3.2. We prove its safety under a formal
TLA+ [45] model in the face of physical rollback attacks.
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Secure code updates via auditing (§6). To enable code
updates while providing strong security, we allow clients to
audit the deployed code and explicitly disallow sharing of data
between different (server) binary versions. Data migration
between binary versions flows through the client, and clients
can determine whether or not to store their secret value on
each version of the binary.
Limitations. SVR3 relies on the underlying security guaran-
tees of the enclaves it employs; supporting a new enclave or
a new version of an existing enclave would require carefully
reasoning about how it fits into the threat model. Splitting in-
frastructure across multiple cloud providers also incurs higher
monetary costs than deploying on a single provider, but offers
stronger security assurances. Finally, SVR3 does not support
recovering the user PIN that is used in secret key recovery
(i.e., if a user forgets their PIN, they cannot recover their key).
We mitigate this in practice by periodically prompting the
user to re-enter their PIN on the messaging client to prevent
permanent lockout.

2 System overview

2.1 System architecture
Figure 1 shows the system architecture for an SVR3 deploy-
ment with three cloud providers, with the following entities:
Enclave clusters. The application owner deploys n enclave
clusters (in our deployment, n = 3). To strengthen security,
each enclave cluster should run on a different type of enclave
in a different cloud environment (see §3). We will refer to each
enclave cluster running on different hardware in a different
cloud as a trust domain. Enclave clusters maintain replicated
storage and respond to messages from clients. Each enclave
cluster consists of a load balancer, a discovery service, and a
geographically distributed replica group.
Authentication server. The authentication server establishes
authenticated channels between clients and enclave clusters.
The authentication server prevents malicious clients from
exhausting PIN attempts for honest users because a client
needs to authenticate to the authentication server (e.g., via an
SMS code) before interacting with the enclave clusters.
Clients. Clients (e.g., mobile phones or laptops) interact with
the authentication server and nodes in the enclave clusters in
order to back up and recover their secret keys.
Application provider. The application provider will update
the software and run monitoring and maintenance to ensure
that the system is available and healthy.

2.2 System API
As shown in Figure 1, SVR3 exposes the following client API:
• Auth(client id,client cred) → auth token: Establishes au-

thenticated channel between client and server.

Type IIType III

Intel SGXNitro AMD SEV-SNP
SVR3 SVR3 SVR3

Intel SGX

Type I

Figure 2: Types of attackers SVR3 protects against.

• StoreSecret(client id,auth token,val,pin): Backs up a
value val for an authenticated client using a human-
memorable PIN value pin and an authentication token
auth token.

• RecoverSecret(client id,auth token,pin) → {secret,⊥}:
Recovers the value secret for client if (and only if)

– auth token is valid for client id,
– pin matches the PIN provided at StoreSecret time for

client id, and
– the number of unsuccessfulRecoverSecret attempts for

client id does not exceed a set guess limit.
Otherwise, outputs ⊥.

The client can use their recovered secret to locate, authorize
access to, and decrypt their encrypted backup.

We describe how the developer updates SVR3 in §6.

3 Threat model and guarantees

SVR3’s goal is to protect users’s secrets. SVR3 provides
different security guarantees against three types of server
attackers, shown in Figure 2:
• Type I (Internal). This attacker compromises the organi-

zation deploying SVR3 (e.g., a malicious employee). This
attacker does not have physical access to the cloud deploy-
ment, but can freely spin up and bring down machines and
modify the software being run.

• Type II (Cloud). This attacker represents an entity with
control over the physical infrastructure SVR3 is deployed
on (e.g., a single cloud provider). While this attacker does
not have the same degree of access to the entire multi-cloud
system deployment, it can leverage physical access and
tamper with the hardware running SVR3.

• Type III (External). This attacker is external to the deploy-
ment of SVR3 (e.g., a hacker), and attacks all parts of an
organization’s surface.
We express SVR3’s security guarantees at two levels: (1)

at the level of trust domains (§3.1), defining security in terms
of which trust domains are not compromised, and (2) at the
level of enclaves inside a trust domain (§3.2), specifying the
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conditions under which a trust domain is not compromised.
Like other end-to-end encrypted systems [72,74,98], if a

user’s device is compromised, SVR3 provides no guarantees
to that user. For an uncompromised user device, we rely on the
trustworthiness of client code released by Signal; we enable
the community to scrutinize the client code and build trust in
it by making it open-source [55–57].

SVR3 does not hide the identity of clients or the timing of
backup and recovery requests.

3.1 Security across trust domains
SVR3 protects users’ secret keys if at most t out of n trust
domains are compromised. We assume that the odds of an
attacker identifying and exploiting vulnerabilities simultane-
ously across > t trust domains is low, which motivates our
threat model. By simultaneous, we mean within the time
period it takes to become aware of a vulnerability and replace
the enclaves in the trust domain impacted by that vulnerability.

In our deployment of SVR3, we set t = 2 and n = 3, so we
ensure security as long as at least one trust domain is not
compromised. We limit PIN guesses by selecting a parameter
u , a server usage limit.

Theorem 1 (Informal). In an SVR3 deployment configured
withn trust domains, threshold t , and a usage limitu , assuming
a password-protected secret sharing scheme (defined in §4.2),
if an attacker compromises ≤ t trust domains, then SVR3
ensures that, for each secret key, the attacker only has

⌊ nu
t+1

⌋
PIN attempts and, after that, cannot recover the secret key.

We describe how SVR3 achieves Theorem 1 in §4.2.

3.2 Security within a trust domain
We now describe the threat model we consider when instan-
tiating the trust domains assumed in §3.1. Recall that each
trust domain consists of an enclave cluster and that each trust
domain should use a different type of enclave.

3.2.1 Enclave threat model

SVR3’s design is not tied to some specific enclave imple-
mentations. Different enclaves vary in design, so we abstract
out the security properties that we require from the enclaves
employed for SVR3’s security guarantees (§3.2.2) to hold. An
uncompromised enclave must provide:
(E1) Application-level attestation. The enclave can prove that

certain code is running before other systems interact
with it.

(E2) Access control. Enclave memory is encrypted,and access
control is hardware-enforced to prevent all non-enclave
access.

(E3) Page-level rollback granularity. The attacker can replace
pages of data in the enclave’s memory with older pages
from the same physical location and can mix and match
old and new pages, thus violating global memory in-
tegrity. We assume that an attacker cannot mount these
attacks at a sub-page granularity (e.g., address level) ei-
ther because the enclave protects this or other protection
mechanisms are used in the enclave (see below).

Deviations from enclave threat model. We describe the
properties of different enclaves and how they fit our threat
model in §A of the full version [17]. Some recent enclaves use
AES-XTS, which encrypts in 16B increments [15]. While our
design currently targets enclaves that can only be rolled back
at the page-level granularity (E3), we can implement atomic
regions (regions that are guaranteed to run without interruption
by an attacker) by utilizing the interrupt handler introduced
by AEX-Notify [18]. We describe how to do so in §5.3.
Given the changing landscape of enclave implementations
and the possibility that enclaves may not adhere to (E1)–(E3)
in the future, we assume that alternative mechanisms like
AEX-Notify can be developed to address such discrepancies
between real-world enclaves and our enclave threat model.
Attacks on enclaves. Enclaves are susceptible to attacks. We
list four categories here and then discuss when SVR3 hardens
a trust domain against them.
(A1) Memory access pattern attacks. Enclaves do not hide

memory access patterns, enabling a large class of side-
channel attacks, including but not limited to cache at-
tacks [9,32,61,80], branch prediction [48], paging-based
attacks [93, 100], and memory bus snooping [47].

(A2) Software rollback attacks. Enclaves are also susceptible
to rollback attacks, also referred to as freshness or replay
attacks [69]. Software rollbackattacks occur from rolling
back persisted state outside of the enclave’s memory
(Type I attacker).

(A3) Hardware rollback attacks. An attacker with physical
access to the system bus can roll back enclave memory
at the page level without detection (Type II attacker),
for example, using a DIMM interposer [89].

(A4) Other attacks. Certain physical attacks allow an attacker
to break guarantees (E1)–(E3) of enclaves (e.g., leakage
due to power consumption [14, 62, 87] or denial-of-
service attacks due to memory corruptions [31, 35]).
Transient execution attacks [12, 75, 79, 90, 91, 94, 95]
exploit speculative execution to leak secret data.

3.2.2 Security guarantees

SVR3 hardens a trust domain against a set of attacks, rendering
the trust domain uncompromised despite those attacks. We
describe the conditions below:
(H1) SVR3’s memory-access patterns do not depend on user

secret content, and hiding which user is recovering their

706    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



key is a non-goal for SVR3, so it does not suffer from
memory-access patterns side-channel attacks (A1).

(H2) SVR3 defends against software rollback attacks (A2).
(H3) SVR3 defends against hardware rollback attacks (A3)

as long as ≤ s nodes in each cluster are simultaneously
rolled back, where s is a fault-tolerance (“supermajor-
ity”) parameter defined in §5.2.5. In our production
deployment, we set s = 2.

(H4) Within a trust domain, SVR3 does not guarantee pro-
tection against other attacks (A4), which could render
the trust domain compromised. In this case, SVR3 still
offers the cross-trust domain security guarantees in §3.1.

3.3 Availability
Like other end-to-end encrypted systems [72, 98], Signal
prioritizes security over availability of secret key recovery
because users’ secret keys are extremely sensitive and crucial
to safeguard in an end-to-end encrypted system. Nevertheless,
SVR3 provides availability to clients when at least t +1 trust
domains are operating correctly. By correct operation, we
mean that enclaves in the trust domain are online and none of
the enclaves in the trust domain are under attack. Therefore,
we expect the system to be available under normal operation.

SVR3 also does not defend against denial-of-service (DoS)
attacks from a Type I attacker (since this is the organization
that deploys SVR3 itself) or the authentication server.

SVR3 ensures that a malicious client cannot deny availabil-
ity for an honest user (e.g., by exhausting the number of PIN
attempts allowed) assuming that the attacker did not compro-
mise the client credentials or the authentication server (used
to Auth in Figure 1), and it did not otherwise compromise the
servers beyond the availability threshold above.

It is important to consider what users would experience if
trust domain(s) were to fail, leading to secret value loss. While
this is a significant event when viewed from the perspective of
the application provider, it will not lead to secret value loss for
the majority of clients in practice: clients cache their SVR3-
protected secret, and so clients can simply create a backup
at the new deployment. Thus data loss is only a concern for
users who lose their devices after the old deployment fails and
before migration to the new deployment completes.

4 Secret key backup and recovery protocols

We now describe the cryptographic protocols in SVR3.

4.1 Establishing enclave sessions
To interact with the SVR3 servers, the client must first au-
thenticate with the authentication server. If the user has lost
their devices, then the authentication server sends the client

an SMS code, and then the user enters the SMS code to re-
ceive a token. This process allows the authentication server
to prevent malicious clients from denying service to honest
users by exhausting all of their PIN attempts. Notably though,
the authentication server does not have any information about
user PINs. The client then uses this token to establish a se-
cure channel with a replica in each trust domain. As part of
the process of establishing a secure channel, the client runs
remote attestation [16] with the enclaves to ensure that it is
communicating with the expected enclaves.

4.2 PIN-protected secret sharing
In existing deployed PIN-based backup systems [43,51,96,98],
a secure hardware device has access to users’ secret keys and
PINs or PIN-derived information in order to authenticate users.
This design means that an attacker that compromises the secure
hardware can, either directly or via a brute-force attack, learn
user PINs. This property is particularly problematic when we
consider the fact that many users re-use PINs across services.

As a result, when designing our cross-enclave cross-cloud
solution, we cannot simply instantiate the above mechanism
in each trust domain. Any one compromised trust domain
would have access to the PIN, enabling the attacker to recover
the user’s secret key. Instead, we leverage the class of crypto-
graphic protocols called password-protected secret sharing
(PPSS) [5] protocols, which ensure that:
• An attacker that compromises ≤ t trust domains is still

limited to an online dictionary attack.
• If an attacker fully compromises > t trust domains, the

attacker does not immediately learn client secrets. The
attacker still must perform an offline dictionary attack on
user PINs.

Identifying a suitable PPSS scheme for SVR3. Different
PPSS schemes have different tradeoffs [1, 5, 36–38], so we
worked to identify the most suitable scheme for SVR3 and
then tailor it to our setting. Some prior work optimizes for
metrics that are not important to our deployment, but sacrifices
properties that are important to us.

For example, many of these works aim to reduce the number
of exponentiations to improve efficiency [1, 36–38]. However,
the number of exponentiations is not a bottleneck in our setting,
especially because the number of trust domains (3) is small.
The scheme with the fewest exponentiations [38] also requires
coordinated server initialization and necessitates choosing
secret sharing parameters at deployment time. Coordinated
initialization could require us to redeploy all trust domains
every time a single trust domain requires a security upgrade,
and cross-trust-domain communication with security against
Type I attackers is difficult. Choosing a secret sharing scheme
at deployment time tightly couples PPSS parameters with
clients and servers, removing the flexibility to modify client
PPSS parameters without also changing the servers.
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With these priorities in mind, we identified the PPSS from
Jarecki et al. [37] as the most suitable because it is particularly
simple: each backend generates a new secret key for a client
when the client creates a new backup and then uses this key
to evaluate an oblivious pseudorandom function (OPRF) [28]
during secret reconstruction. Informally, a pseudorandom
function (PRF) is a keyed function Fk (·) that, for a randomly
chosen key k , appears to be random (indistinguishable from a
function chosen uniformly at random from all functions with
the same domain and range), even though it is deterministic
and efficiently computable. An oblivious PRF is a two-party
protocol where the server holds k and the client holds some
input x . The protocol enables the client to learn Fk (x ) without
the server learning anything about x or Fk (x ).

This PPSS scheme has several properties that are appealing
for a real-world deployment:
• The protocol is one-round and concretely efficient.
• Different trust domains do not communicate with each other.
• Servers need minimal configuration. In particular they do

not need any information about the threshold scheme being
used, and different clients can use the same server with
different threshold schemes.

• The protocol can use a standards-track OPRF with optional
verifiability [23].
We note that the WhatsApp key recovery system uses a

password-authenticated key agreement (PAKE) scheme [24,
98], and SVR3 does not. While PAKE protocols are a com-
monly cited application for PPSS schemes, we do not need to
establish a session between our client and a server. We only
need to recover a secret key, which is a simpler problem. Since
branching while fetching secret shares is not sensitive, we do
not need to layer oblivious data retrieval on top [22, 60].
Augmenting PPSS with usage limiting. Limiting attackers
to a fixed number of password guesses is a core requirement
for SVR3. While the application provider can use an authen-
tication server for access control and rate limiting, this only
restricts external users. SVR3 must limit powerful attackers
with full administrative and physical access to the servers to
the same finite number of guesses.

We solve this by leveraging our distributed-trust setting
to enforce a usage quota on OPRF evaluations. A standard
OPRF [28] allows a server with a PRF key to evaluate a PRF
on a client input without learning the input. SVR3 allows the
client to set a usage limit, u , at registration time, and each
honest trust domain will delete that client’s OPRF key after
u OPRF evaluations. In order to instantiate an honest trust
domain, we use enclaves to ensure that the server enforces
the usage limit. Note that the security guarantees provided by
PPSS and the heterogeneous enclaves are tightly coupled: the
enclaves are critical for instantiating trust domains, and PPSS
enables splitting a secret value across different trust domains.

In the below proposition, we bound the number of total
OPRF evaluations based on the threshold t and trust domains

n , providing the protection described in Theorem 1.

Proposition 1. For a (t ,n) instance of PPSS [37] with a
usage-limited OPRF configured to allow u evaluations, an
adversary has at most

⌊ nu
t+1

⌋
PIN attempts before the secret

cannot be recovered.

Proof. Only nu OPRF evaluations are possible in the system.
t +1 evaluations are needed to perform one PIN attempt. After⌊ nu

t+1
⌋

PIN attempts, (t + 1)
⌊ nu
t+1

⌋
OPRF evaluations have

been used. Only (t +1){nu/(t +1)} < t +1 more evaluations
are possible, where {} denotes the fractional part, that is,
{x } = x − ⌊x ⌋. This is not enough to reconstruct the secret. □

5 Building a SVR3 backend

We now describe SVR3’s system design within one trust
domain. Per our threat model in §3, each uncompromised
SVR3 trust domain consists of a cluster of machines, which we
assume behave correctly except for possible physical rollback
attacks and crash failures within a specified bound.

5.1 Design decisions
We first provide an overview of the design decisions behind
SVR3’s design to ensure fault tolerance and the security
guarantees in §3.2.2.
Use of enclaves. In order to protect server secrets and allow
clients to check the code that is processing their data, we run
the core part of the service in an attested, confidential enclave.
In-memory database to avoid sealing. Data sealing is a
mechanism whereby an enclave can encrypt internal state
with a key that is unique to the platform and enclave, persist
the encrypted data to disk, and then recover it if the enclave
is torn down and restarted. As noted in prior work [26, 97],
applications in commercially available enclaves that use data
sealing to store state externally and recover from crashes are
vulnerable to simple, software-based rollback attacks. Since
a core function of SVR3 is to faithfully maintain a per-user
OPRF evaluation count, rollback attacks would undermine the
system and could allow an attacker unlimited online password
guesses. To prevent this and achieve (H2), the enclave that
stores the database of client secrets and usage counters is kept
entirely in enclave-protected memory; it is never sealed and
written to untrusted memory or disk. We show that the database
fits entirely in memory without sharding users in §8.1.
Distributedconsensus. Without a data persistence mechanism
(e.g., data sealing), the servers cannot recover from crashes,
and data in any failed server will be lost. To ensure that data is
not lost, we build the service as a geographically distributed
database. To ensure split-brain or other attacks do not allow
excess PIN guesses, we use a distributed consensus protocol,
modified from Raft [66]. We give a high-level overview of
vanilla Raft in §5.2.1. Our modified Raft protocol, Raft",
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which we describe in §5.2.3, hardens vanilla Raft against
physical rollback attacks and ensures that client requests and
usage count changes are committed before responding to client
queries. We describe in §5.3 how we use Raft" to achieve
global integrity across the database when assuming page-level
rollback granularity of enclaves (E3), achieving (H3).

5.2 Rollback-resistant consensus protocol
SVR3 already protects against the class of rollback attacks
that arise from storing state outside of the enclave by keeping
all state in memory. However, as discussed, machines can fail,
and so in order to tolerate failures without losing data, we
use Raft", a modified version of vanilla Raft across enclaves
from a cloud provider. A full TLA+ description of Raft" is
available in §E of the full version [17], and we provide a proof
of safety based on the TLA+ specification in §D.

In this paper, we use n to refer to the number of trust
domains and m to refer to the number of replica machines
within a trust domain.

5.2.1 Vanilla Raft background

Raft [66] is a consensus algorithm that manages a replicated
log across multiple nodes (replicas). It elects a single leader
replica that receives and replicates log entries to the other
follower replicas. The leader handles all client requests by
appending new log entries and sending an AppendEntriesRe-
quest to each follower for the duration of its term. Follower
replicas respond to requests from the leader to replicate log
entries. If the leader fails, a new leader is elected through a
leader election process. Log entries are identified by <index,
term>, where index is the log position and term is the cur-
rent term number. There is at most one leader in any given
term. A leader forces the followers’ logs to duplicate its own:
conflicting entries in follower logs (with some term t) will be
overwritten with entries from the leader’s log if the leader’s
term t ′ is ≥ t . For f crash failures, Vanilla Raft requires
m ≥ 2f +1 replicas in order to provide safety and liveness.

5.2.2 The physical rollback problem

While keeping the database in memory protects against soft-
ware rollback attacks, an attacker with physical access to
the system bus could roll back enclave memory at the page
level. Since such an attack is more expensive to perform than
software-based rollback attacks, we can significantly improve
security by requiring an attacker to perform these attacks si-
multaneously on multiple enclave replicas. With this context,
we note that the vanilla Raft protocol [66], as specified, will
allow an attacker who can roll back a Raft leader to make an
unlimited number of PIN attempts: the Raft protocol does not
look at log contents, so if a leader is rolled back and sends an
AppendEntriesRequest for a new <index, term> log entry

at an old log index, followers will accept it and allow the leader
to commit.

Prior work [26,97] has addressed a problem close to this
one, but with important differences. First, they are designed for
data-sealing rollbacks, which do not affect SVR3 because we
do not use data sealing. Second, Raft" also defends against
physical rollback attacks, which prior works do not consider in
their threat model. Physical rollback attacks are more difficult
to detect than data-sealing rollback attacks: after a crash
recovery, the new enclave has to execute code that decrypts
the sealed data to rebuild the internal state and every data-
sealing rollback needs to have the enclave go through this code
path. The RR protocol [26] takes advantage of this process to
detect data-sealing rollback attacks. Finally, existing protocols
aim to ensure liveness in the face of rollback attacks, and this
is an explicit non-goal for SVR3 as mentioned in §3.3.

5.2.3 Rollback prevention in Raft"

Together, the following additions to the Raft protocol enable
us to prove safety of Raft" in the presence of an attacker who
can simultaneously mount physical rollback attacks against
≤ s nodes. For m Raft" servers in a trust domain, s must be
strictly smaller than m to ensure safety (§5.2.4). However, to
ensure fault tolerance and liveness in the face of crash failures,
s should be even smaller (§5.2.5).
Hash chain. Instead of using <index, term>
to identify a log entry, as in Raft, we use
<index, term, hashindex> where hashindex =

Hash(entrydata, index, term, hashindex-1),
entrydata is the contents of the log entry, and Hash
is a cryptographic hash function. When a follower receives an
AppendEntriesRequest, it computes the expected hash chain
value and verifies that it matches the value in the request. If
the values do not match, the follower rejects the request.

This prevents the simple rollback attack on Raft described
in §5.2.1. However, it is still possible for an attacker who can
roll back one server to gain unlimited password guesses by
triggering an election with a quorum of servers that did not
see the log entry for the first client request.
Supermajority. To ensure that an attacker capable of rolling
back a single server cannot gain extra password guesses by trig-
gering an election, we require quorums to have a supermajority
of replicas so that the intersection of any two quorums contains
more than s replicas, where s is a configurable parameter that
is included in the server’s attestation. This allows clients to
be certain of the value of s used by the service and decide
whether to accept it. We prove that an attacker must be able
to roll back more than s enclaves to roll back a log entry that
was committed by this Raft". This supermajority parameter
is comparable to PBFT’s Byzantine nodes value [10].
Promise round. We add a promise round to the protocol. We
discuss reasoning for why we add a promise round in the full
version [17]. Once a quorum of servers acknowledges seeing
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a log entry, the leader will “promise" this entry by advancing
its promise idx to the index of this entry. A promised entry
is not committed, but no replica will delete an entry that has
been promised. This completes the first round.

The leader now sends its promise idx to all followers in
its next AppendEntriesRequest, and followers will update their
own promise idx to match the leader’s when they process the
message. From this point, these followers have promised the
log entry and will not delete it. The followers send their current
promise idx with each AppendEntriesResponse. Once a
quorum of replicas has promised an entry, it is committed.

5.2.4 Safety

In order to achieve safety, the number of machines in the
enclave cluster must be larger than the number of rollback
attacks we want to tolerate (m > s). As liveness under rollback
attacks is a non-goal for SVR3 (an attacker with physical access
can easily deny service), we decouple the constraints on m
with respect to rollback attacks (s) and crash failures (fc). We
describe how s impacts liveness under crash failures in §5.2.5.
We prove that Raft" is safe under a bounded number (s) of
physical rollback attacks within a trust domain.

Theorem 2 (Informal). Let MR be the maximum number of
machines in an enclave cluster that can be rolled back and
s be our supermajority configuration parameter. If MR ≤ s ,
then under standard cryptographic assumptions, for every log
entry <index, term, hashindex> that has been applied to
the state machine of a server i , server i will never apply a
different log entry at this index.

Proof sketch. The argument follows the proof of safety in
Ongaro [65] and relies on the observation that any two quorums
will have an intersection that includes at least one server that
has not been rolled back. We must address the fact that in the
presence of rollbacks, Lemma 3 in Ongaro [65] does not hold.
This poses a significant challenge, and forces us to introduce
a new concept of live committed entries that is subtly different
from the prior notion of committed [65]. With our definition,
future leaders may not have a live committed entry in their
log, but if they do not then they will be unable to commit new
entries, so we retain safety at the expense of liveness. The
major point where the argument from Ongaro [65] breaks
down in our setting is in points 7.c.ii.B and 7.c.iii.B in the
proof of their Lemma 8. Our argument uses the hash chain and
promise index to show that there is a voter in the intersection
of two quorums that has not been rolled back and will not
replace the log entry. The complete proof of safety is in §D of
the full version [17].

5.2.5 Liveness

We do not provide liveness for a trust domain under the
setting of an attacker mounting physical rollback attacks, as

Working page

Guess 
database

Raft⟲ logLog entry ✔

Database row ✔

Log app counter ✔

Merkle root

Merkle tree

Figure 3: Integrity across database. In order to achieve global integrity,
updates are only applied when all state on the working page validates
under the same Merkle tree root.

the attacker could trivially deny client requests by taking
the entire enclave cluster offline. When assuming no attacks
within a trust domain, Raft" requires fc ≤ ⌊(m − s)/2⌋ crash
failures to be live under normal connectivity conditions, where
m denotes the number of replicas in a trust domain (enclave
cluster) and s denotes the supermajority parameter described
in §5.2.3. This is due to the quorum size being ⌊(m + s)/2⌋ +1
enclaves. It remains an open problem to prove liveness of Raft
in this setting (e.g., by formal verification [34]). Nevertheless,
as discussed in §3.3, SVR3 still provides availability to clients
when at least t +1 trust domains are operating correctly.

5.2.6 Self-healing for simple maintenance

We implement the process for replica group membership
changes described in the Raft paper [65] and add a layer of
automation. In Raft", a replica group has a configured target
number of voting members. For a healthy configuration, a
replica group in our system will have this number of voting
members as well as several non-voting members that stay up
to date and service client requests. If some voting member is
not seen by the leader after a configurable timeout, the leader
will initiate a membership change that demotes the missing
replica to non-voting status. After an additional timeout, it
will remove the replica from the group entirely.

Furthermore, whenever the number of voting members is
below the configured target, the leader will check to see if
a non-voting member is present and initiate a membership
change promoting a non-voting member to voting status.

With these mechanisms in place, administrators simply
need to launch new instances and direct them to the discovery
service with group information. The new server will then
request to join the group, be brought up to date by a peer, and
become a non-voting member. As needed, the voting members
may then promote this new replica to voting status.

5.3 Integrity across the database
Raft" provides protection against rollback attacks on the
contents of the log. However, our threat model (§3) assumes
page-level rollback granularity on memory inside the enclave,
which means that the attacker can replace pages of data in the
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enclave’s memory with older pages from the same physical
location and can mix and match old and new pages, thus
violating global memory integrity.

In order to protect against rollback attacks on the backing
in-memory database, SVR3 keeps a Merkle tree across the
Raft" log, database, and log application counter.

5.3.1 Merkle tree

The log application counter keeps track of the latest log
entry that has been applied to the database. The Merkle tree
contains every database row, the hashchain of the most recently
committed log entry, and the log application counter. The
hashchain of the last committed log entry, as described in
§5.2.3, can be used to verify this entry and earlier entries in
the log. As shown in Figure 3, the Merkle leaves for database
rows and log application counter are updated each time the
underlying object changes, and the update only succeeds if the
current state of the Merkle tree is consistent with the previous
value of that data.

5.3.2 Applying committed log entries

We describe how we process committed log entries in Algo-
rithm 1. The executing thread holds a lock on the database,
log, and log application counter throughout execution, so no
honest process will have a thread outside this process change
the Merkle tree during that execution. When applying a com-
mitted log to the local database, a replica will begin by reading
the log application counter lac, the log entry at that index entry,
and the database row row referenced by that log entry onto
a single memory page, which we will call the working page.
When reading each of these items, it will verify its Merkle
proof (Πlac,Πentry,Πrow) and also copy the root of the Merkle
tree for each read onto the working page. After copying this
data, we verify that the Merkle roots associated with each
read are equal, determine whether the number of uses of this
row has surpassed the configured maximum, and update the
row by incrementing the usage count and deleting the OPRF
secret if the maximum usage count has been exceeded. We
then update the row in the database and increment the log
application counter, updating the Merkle tree entries for both,
then proceed with evaluating the OPRF, if the key is present,
and finally respond to the client.

If the attacker rolls back the database row to the contents
of a previous timestep, it first has to roll back every entry
from the row to the Merkle tree root. However, the root also
covers the log entries and log application counter, which
are modified when a database row is modified (how SVR3
achieves atomicity of this operation is described above). Thus,
the attacker will have to roll back the log as well; rolling back
the log is exactly what Raft" protects against.
Atomic regions. Because all of our working memory fits
on a single page, operations are atomic with respect to the

attacker’s ability to rollback memory at the page granularity. In
order to support more modern enclaves that only have cache
line granularity (e.g., 16B), we need to implement atomic
regions that are guaranteed to run without interruption by
an attacker. We describe in detail how to implement atomic
regions on SGX and SEV-SNP in §C of the full version [17]
by utilizing the interrupt handler in AEX-Notify [18]. AEX-
Notify mitigates SGX-Step, an attack framework that makes
it possible to single-step enclave programs [92]. It does so by
introducing an instruction set architecture extension to support
a custom handler on interrupt. The SGX-Step mitigation
leverages this handler to speed up the next instruction so that
the attacker is statistically unlikely to ‘hit’ the next instruction’s
execution with an APIC timer. This mechanism also allows us
to implement atomic regions, in a similar fashion to restartable
sequences [8]. At a high level, we set a flag in a fixed register
when an interrupt occurs, and we check this flag at the end of
the atomic region to determine whether to restart the atomic
region. If the flag is set, we restart and retry until it runs
without any interrupt. We leave optimizing this approach in a
secure manner to future work.

Algorithm 1 Applying a committed log entry. We describe in
text how we process committed log entries in §5.3.2.

1: workspaceR← (lac,Πlac,entry,Πentry, row,Πrow)

Atomic region.

⊲ Abort on any Verify failure.
2: failure← 0
3: Verify(Πlac.root

?
= Πentry .root

?
= Πrow .root)

4: Verify(entry.clientid ?
= row.clientid)

5: Verify(lac,Πlac);Verify(entry,Πentry);
Verify(row,Πrow)

6: if row.guess cnt < max guesses then
7: evaluated← OPRFEval(row.sk,blinded)
8: row.guess cnt← row.guess cnt+1
9: else

10: failure← 1
11: row.sk← 0, row.guess cnt← UINT MAX
12: end if
13: workspaceW ← (row,UpdatePrf (row,Πrow))

14: Π′row← UpdatePrf (row);Π′lac← UpdatePrf (lac)
15: Check that leaves on path in Π′row,Π

′
lac match Πrow,Πlac.

16: if failure then return MISSING
17: else return (OK,evaluated)
18: end if
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6 Operations

Production systems need upgrades. This is a challenge for us
because we want to defend against malicious administrators: a
secure system can become completely insecure if a malicious
administrator can push arbitrary code to the system. At a high
level, we defend against malicious code updates by ensuring
that users can audit the code that is running; the code is open
source, and enclaves attest to the security-relevant server code
and configurations running.

Adding new servers. When a new server is launched in a trust
domain, it connects to a discovery service and registers a new
group if no replica group is registered. If there is an existing
replica group, the new server will select a peer in that group,
validate that its enclave measurements match, and create an
attested connection with that peer. By checking that enclave
measurements match, SVR3 ensures that an administrator
cannot add a server running different code. The new server
then requests to join the group, and the existing server transfers
all log entries and database rows to the new server. This is
done over a Noise protocol [71] channel with key resetting and
hybrid post-quantum forward secrecy [70] to provide robust
forward secrecy. Once the transfer is complete, the replica
group goes through the membership change process to add
the new server (which requires a quorum).

Sometimes security-required microcode updates need to be
applied to all servers. Since all data is kept in volatile enclave
memory, there is no way to reboot the machine without losing
all replica data. In this situation, all members of the cluster
must be replaced. This can be done by sequentially adding new
servers on patched hardware, then terminating old servers.

Clients. Android, iOS, and desktop clients are deployed
through app stores with auditable, open-source code. Each
client contains hard-coded information about which enclave
measurements (for remote attestation), platform versions, and
cluster configurations to accept. If a client attempts to connect
to a SVR3 cluster and finds unexpected measurements or
configuration, it will abort the connection.

Service upgrades and data migration. Since server enclaves
can only communicate with peers that share the same enclave
measurements, there is no mechanism to migrate data directly
from an old version of an enclave-backed service to a new
one. Instead, data migration flows through the client. To
accomplish this, when a new version of a client is released
that contains measurements for the new enclave, this client
will recover its secret from the old servers (if it is not cached
in local storage), and then it will back up its secret to the next
version of the service. It takes approximately 90 days for a
new client software release to fully reach the user base, so
the new enclave-backed service must run alongside the older
version during this 90-day window.

Figure 4: Average latency vs. throughput.

7 Implementation

We implemented SVR3 in ∼8,800 lines of C++ for the enclave
and ∼5,300 lines of Go for the untrusted host. For the SGX
deployment we use the OpenEnclave framework v0.19 [67]
and Intel SGX v2.22. For the Nitro deployment we use the
Nitro Security Module library v0.4 [63]. We use a Noise pro-
tocol [71] channel on top of TCP for communication between
replicas and websockets for communication with clients. We
use protobuf [73] to define formats for all wire messages. In
addition to handling client and peer requests, the host offers a
control interface for administration as well as sophisticated
metrics collection that is integrated with our internal moni-
toring and reporting systems. Our implementation assumes
enclave page-level integrity, and we estimate overheads for
supporting 16B-level rollback granularity in §8.1. The imple-
mentation is open source and the consensus system is already
in production use. The full system is being deployed to produc-
tion at the time of publication. Production deployments use 7
geographically distributed servers and a supermajority param-
eter of 2. Further details about the production deployment are
in §B of the full version [17].

8 Evaluation

We investigate the overheads of running SVR3 (§8.1) and the
performance perceived by the end user (§8.2).
Evaluation setup. For the purposes of this paper, we evaluate
end-to-end performance on our organization’s staging system,
configured to handle 10 million users. This limit is due to
available enclave memory, not compute. Staging clusters are
configured with a supermajority parameter of 1 and consist of
3 environments (trust domains), each with 5 replicas deployed
in the same region:
• AWS Nitro: m5.xlarge instances with 2 cores and 10 GB

RAM per enclave ($142/month/server).
• Intel SGX at Azure: DC2s v3 instances with 2 cores and 8

GB EPC RAM per enclave ($140/month/server).
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(a) StoreSecret (b) RecoverSecret

Figure 5: Request latency CDF for AWS Nitro,
varying number of client threads, 10M users.

(a) StoreSecret (b) RecoverSecret

Figure 6: Request latency CDF for Intel SGX,
10M users.

(a) StoreSecret (b) RecoverSecret

Figure 7: Request latency CDF for AMD SEV-
SNP, 10M users.

(a) StoreSecret (b) RecoverSecret

Figure 8: Request latency for AMD SEV-SNP, 100M users.

(a) Request latency CDF. (b) Request latency breakdown. HS
= Noise handshake, Serial = serializ-
ing/deserializing protobufs, Apply =
applying log entry (§5.3.2).

Figure 9: SVR3 performance without network latency from Raft".

Enclave Network (B/user)
StoreSecret RecoverSecret

C↔ S S↔ S C↔ S S↔ S

SGX 20,717 288–1,276 20,717 224–1,212
SEV-SNP 4,406 288–1,276 4,406 224–1,212

Nitro 4,593 288–1,276 4,593 224–1,212

Table 10: Network usage for a single client request to a 3-replica
cluster. S=server, C=client. C↔ S for SEV-SNP is an estimate.

(a) Request (StoreSecret) latency
CDF.

(b) Client request latency break-
down.

Figure 11: End-to-end performance.

• AMD SEV-SNP at GCP: 2 n2d-standard-2 instances
per enclave (one “confidential” and one for the un-
trusted host) with 2 cores and 8 GB RAM (2 · ($70) =
$140/month/server).

In total, the staging cluster costs $2,110/month to run
($0.0025/user/year). For microbenchmarking, we evaluate
on a testing cluster with the same machine types as our staging
cluster but with 3 replicas per trust domain instead of 5 and a
supermajority parameter of 0 instead of 1.

Our production infrastructure has more replicas (with more
cores and RAM per replica) and is set up to handle over 500
million users (more details in §B of the full version [17]).
We provision for 1 req/s/1M users and ∼256B of RAM/user.
Our experience operating this system gives us confidence that
evaluating on the staging infrastructure is meaningful and
that SVR3 scales gracefully. To validate this claim, we also
evaluate on an AMD SEV-SNP cluster with 100 million users
using n2d-standard-4 instances (4 cores and 16 GB RAM).

8.1 Microbenchmarks

Throughput. We plot an average latency vs. throughput curve
for write and recovery requests in Figure 4. We generate each
point by varying the number of client threads and measuring
the average latency and throughput of requests. Requests are
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spread out across all 3 servers. For the 10M-user deployments,
the throughput of recovery requests levels off around 1,700
req/s for Nitro, 1,000 req/s for SGX, and 3,300 req/s for
SEV-SNP (for both 10M-user and 100M-user deployments).

Latency. We plot CDFs of the latency of write and recovery
requests in Figure 5, Figure 6, and Figure 7 for Nitro, SGX,
and SEV-SNP, respectively. Within each figure, we plot the
latency when requests are sent only to the leader,when requests
are sent only to followers, and when requests are sent to all
3 servers. Requests sent to followers are forwarded to the
leader, so the average latency of requests at followers is higher
than at the leader. The latency distribution of requests when
sending requests to all 3 servers improves compared to sending
requests to only followers. The latency distribution is better
than sending requests to only the leader for Nitro and SGX,
and the tail latency is worse than sending requests to only the
leader for SEV-SNP. At 100 client threads, the average latency
for requests sent to all servers for key recovery is 56.9ms for
Nitro, 98.3ms for SGX, and 32.3ms for SEV-SNP. We also
plot the CDFs of recovery request latency for the 100M-user
SEV-SNP deployment in Figure 8. The latency distribution
of the 100M-user deployment is very similar to the 10M-user
deployment and the average latency of the requests sent to all
3 servers for key recovery is 30.9ms.

We note that a majority of the latency is due to network
latency when appending to the Raft" log, which we validate
in Figure 9. We run the same experiment as above, but with 1
client thread and 1 SGX node (effectively disabling the network
requests of Raft"). We plot the CDF of request latencies under
this regime in Figure 9a, and the average latency of these
requests is 1.47ms. We also profile the server and plot the
percentage of CPU ticks in Figure 9b. On average, the Noise
handshake is about 35%, applying the log entry is about 21%,
and 13% is encrypting peer messages for Raft". The yellow
spikes are due to periodic updating of environment statistics,
which also contributes to the long tail request latencies in
SGX (Figure 6).

Impact of supporting 16B-granularity. Informed by latency
measurements, we can upper-bound the impact of latency
from achieving page-level integrity from 16B-granularity
using atomic regions (§5.3.2). Applying the log entry (which
we will conservatively make an entire atomic region) takes
1.47 ·0.21= 0.3ms. We could be interrupted by the APIC timer,
the end of a thread scheduling quantum, or by a page fault from
a memory access, of which there are 5 · log2 (100,000,000) =
120 (from the Merkle tree accesses in Algorithm 1). In the
worst case, we would repeat execution of the atomic region 122
times, resulting in a worst-case additional latency of 36.6ms.
Note that this is a (very) loose upper bound and is still below
user perceptibility.

Network usage. We measure the network usage of SVR3 run-
ning on each enclave type for a 3-replica cluster in Table 10.
There is a range of network usage for Server↔ Server because

it depends on how many requests have been batched into a
single Raft" append request. The network usage between
servers also depends on the number of servers in the cluster,
growing proportionally to m −1 for m servers. From a deploy-
ment perspective, we are more concerned with the Client↔
Server bandwidth, which is under 20KB for all enclave types.
This is because exchanging more data between the client and
the server can become a usability issue for users with limited
data plans.
Memory usage. We measured the memory usage of SVR3 on
SGX, varying the number of users in the system. Note that we
expect the memory usage to be similar for all enclave types,
since they are storing the same amount of data for each user.
We find that memory usage grows by ∼450B/user until we
start truncating the log at 100MB and then settles into a steady
170B/user added. At 100 million users, SVR3 uses 18.5GB of
memory on each server, which is 185B/user/server.

8.2 End-to-end performance
We measure the end-to-end performance of SVR3 by
running a client that stores its secret key by sending
a (sequential) request to a server in each enclave clus-
ter. For a more representative deployment, we geograph-
ically distribute the SGX cluster (centralus, eastus,
eastus2, southcentralus, westus), the SEV-SNP clus-
ter (us-central1, europe-west3, asia-southeast1,
europe-west4, europe-west3), and the Nitro clus-
ter (us-east-1, us-east-2, us-west-1, us-west-2,
eu-north-1). The performance for recovering a key is al-
most identical to the performance for storing a key, so we only
report the performance for storing a key. We plot the CDF
of the latency of these requests in Figure 11a. The average
end-to-end latency is 365ms, which is reasonable for a user
to wait for a key recovery or key backup request. We plot
the breakdown of the latency in Figure 11b. The majority of
the latency is from waiting for servers to respond (69.3%),
followed by remote attestation with the servers (29.9%).

9 Related work

Secret recovery systems. A number of companies have de-
ployed secret recovery systems using secure hardware: Apple
protects user iCloud data using hardware security modules
(HSMs) [4, 43], Google protects Android backups using se-
cure microcontrollers [96], and WhatsApp protects message
histories using HSMs [98]. WhatsApp runs vanilla Raft [65]
on a geographically distributed cluster of HSMs and uses
OPAQUE [39] for key recovery. WhatsApp’s consensus only
requires one round trip between the leader and the replicas
while SVR3 requires an extra round of communication (to
guarantee safety in the face of rollbacks). Davies et al. analyzed
the security of the WhatsApp encrypted backup protocol [24].
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Like SVR3, all of these systems use secure hardware to allow
a user to recover a cryptographic secret using a low-entropy
secret (e.g., a 4-digit PIN). Unlike SVR3, they rely on a sin-
gle type of secure hardware: the compromise of one secure
hardware device can compromise many users’ secrets.

Juicebox [88] is a key recovery protocol that distributes trust
across one type of secure hardware and multiple trust domains
in the traditional manner (across organizations). SVR3 has
a simpler protocol that is not a multi-round PAKE as our
servers never learn whether the PIN is guessed correctly or
not (keys are deleted unconditionally when guesses run out).
Secret shares are also stored directly on the servers in Juicebox.
Thus, to prevent an attacker who compromises a threshold
number of trust domains from reconstructing all the secrets
without needing to mount a dictionary attack, they must mix
the reconstructed secret with the PIN to create an encryption
key that is then used to encrypt the target secret.

SafetyPin [20] is a PIN-based end-to-end encrypted backup
system that defends against an attacker that can adaptively
compromise some percent of HSMs. While SafetyPin pro-
tects against a more powerful attacker model, it requires a
comparatively large number of HSMs.

Tutamen [78], Acsesor [11], and CanDID [52] split trust
across multiple entities to allow users to recover their secrets
(among other operations). Chen et al. [13] use cloud storage
for secret recovery. These systems do not use secure hardware;
the use of enclaves in SVR3 provides additional security and
requires us to design for their limitations (e.g., rollback attacks).
CALYPSO [42] also shards user secrets across different entities
but, unlike SVR3, uses a blockchain. PreVeil [72] shards secret
keys across other peers in a social or work graph, but requires
manual setup from the user.

Another line of work has taken a more theoretical approach
to the problem of secret key backups. Benhamouda et al. [7] use
a proof-of-stake blockchain to allow users to store secrets while
protecting against an attacker that can adaptively compromise
a percent of the stake. Subsequent work improves efficiency
in this model via batching [30].

Orisini et al. [68] also describe a scheme for end-to-end
encrypted backups, but in their scheme, the user does not need
to remember a PIN or something similar. Instead, users con-
tinuously monitor for illegitimate recovery attempts, allowing
an honest user to thwart malicious recovery attempts but later
recover their backup. While this approach is appealing in that
it eliminates the PIN, it does not work for our setting where
clients may go offline for extended periods of time.
Multi-party computation and secure hardware. Cryptocur-
rency wallets protect user secrets by distributing them across
hardware enclaves or HSMs [27, 29, 41, 77, 81]. Cryptocur-
rency wallets are designed to avoid materializing the key in a
single location rather than to enable users to recover secrets.
Myst provides security by splitting trust across many hardware
devices and operations like signing and decryption [54]. More
broadly, prior work has examined composing multi-party com-

putation and secure hardware for efficiency [6, 25, 44, 64].
Our use of secure hardware with multi-party computation is
tailored to encrypted backups and, while this line of work uses
secure hardware to reduce the costs of multi-party computa-
tion, we use it to augment the security of the system. In prior
work [21], we observed that heterogeneous secure hardware
hosted by different clouds can be useful for deploying systems
that split user secrets, including encrypted backups, but we
had not yet worked through and built out such a deployment.
Rollback prevention in enclaves. There has been a rich line
of work on preventing rollback attacks in enclaves. Mem-
oir [69] and Ariadne [86] store a small amount of state inside
non-volatile memory (NVRAM) and use that to reconstruct
application state during recovery. Both approaches are scoped
to single machines, and do not provide availability in the event
of a machine permanently failing. ROTE [53] uses a broadcast
algorithm across enclaves to maintain a distributed counter,
but requires NVRAM to update group membership, whereas
we use our Raft" log to update membership. Additionally,
the abstraction that ROTE offers is one of a counter instead of
generic log entries. Engraft [97] examines the safety issues of
running off-the-shelf consensus inside enclaves. They use an
underlying broadcast protocol similar to ROTE to maintain a
distributed counter and introduce additional mechanisms to
support node recoverability. However, in our setting, we can
simply start a new node in the event of a node failure, so we
do not need to support node recoverability.

Nimble [3] is a lightweight replication protocol that provides
a freshness-guaranteed ledger. The ledger can be used to keep
track of the state of untrusted storage, enabling applications
that run on enclaves to persist their state to external (untrusted)
storage and detect potential rollbacks on that storage. Note that
our system is already protected against the class of rollback
attacks on external storage described in §1 of [3] because all
data is stored and maintained in memory. Nimble’s threat
model does not include physical rollback attacks on the enclave
(both endorser and application). However, minimizing SVR3’s
trusted computing base (TCB) is an interesting and important
future direction, and we discuss potential design decisions
and open challenges in §10.

TrInc [49] shows that a secure log can be implemented
with a secure counter. However, realizing a secure counter
on enclaves is difficult. We cannot write PCRs to the TPM
from inside an SGX enclave, and additionally, TPMs can limit
the speed of counter updates (§6.1.1, [86]). CPU registers are
written to the SSA, which can be rolled back. On SGX there is
no CPU register where only an enclave can write to it. We are
unaware of an (efficient) secure counter primitive on newer
enclaves after consulting with Intel.
Consensus protocols. As Dinis et al. [26] point out, rollback
behavior can be considered a subset of Byzantine behavior,
so the Byzantine fault tolerant (BFT) model is stronger than
necessary for our setting. Consequently, Raft" is lighter
weight than BFT flavors of Raft protocols like Tangoroa [19]
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which requires O (m2) communication scaling in the number
of replicas. The supermajority parameter in Raft", which
increases the quorum size, is comparable to PBFT’s [10]
Byzantine nodes value. Engraft [97] and RR (TEEMS) [26]
address data-sealing (software) rollback attacks. SVR3 not
only defends against these data-sealing rollback attacks, but
also defends against physical rollback attacks.

10 Discussion

Consensus in the enclave. Nimble [3] is able to maintain a
secure log while removing the consensus mechanism from the
TCB, and an important future direction for SVR3 would be to
similarly minimize its TCB. However, it is not entirely straight-
forward, and there are interesting design and engineering
challenges to address. First, Nimble will need to be hardened
against physical rollback attacks, which seems straightforward
to do. More significant is that since this log—which contains
OPRF secrets—will be held in untrusted storage, it must be
encrypted. This has important consequences for our system
as we describe below, and addressing them may result in
significant additional complexity (and thus increase the TCB).

First, we note that we will need enclaves similar to the ones
we have today to handle client requests. These enclaves will
now need to share a common encryption key to encrypt and
decrypt these log messages. This shared key becomes a new
single point of failure for the system. To maintain the forward
secrecy we have today due to our use of Noise protocol [71]
channels with rekeying between enclaves, it seems the enclaves
will need to participate in some sort of continuous group key
agreement (CGKA) [2] to rotate the key periodically and on
membership changes.

Second, if this new system aims to keep the TCB small
by maintaining the database state outside of the enclave, as
with Juicebox [88] or WhatsApp [98], then the encryption
key for the database becomes another single point of failure,
but in this case it is not clear how we can achieve forward
secrecy without periodically re-encrypting the entire database.
If, on the other hand, we maintain the database in enclave
memory, as we do now, then the use of CGKA to protect the
encrypted log means that new members of a replica group will
not be able to read old log messages to construct the database
state. While we have a state transfer mechanism in our current
system to handle truncated logs, we will need to refine it to
ensure that new members are correctly initialized.

Taken together, we see removal of the consensus mecha-
nism from the TCB as a project that requires careful design
and analysis and significant engineering work that adds its
own complexity. We note that the consensus protocol is a
relatively small (1,541 LOC in C++) and well-understood part
of our current codebase, so we need—and hope to find—clear
rationale for its removal.
In-memory vs. disk-based storage. While disk-based storage

solutions are cheaper than keeping the entire database of
key recovery shares in memory, they are more susceptible to
rollback attacks because the secrets are taken out of the enclave,
and even enable rollback attacks that are software-based and
can be performed without physical access.
Data privacy compliance. In general, a multi-cloud deploy-
ment may complicate compliance with data privacy laws. The
design of SVR3, however, keeps compliance simple since by
preventing any user data from being processed by our servers
and blocking our administrators from accessing sensitive keys.
Malicious clients. SVR3 provides security guarantees for
users using our clients, which we assume are well-behaved.
Our client code is open source [55–57], and scrutinized by the
community. If the user’s client is compromised and malicious
(e.g., the user has malware), it can affect the security of that
user, but not the security or experience of other users with
uncompromised clients.
Honest cloud providers? If we could assume that most cloud
operators are honest, then that could change the parameteriza-
tion of SVR3 (e.g., setting the number of trust domains that
can be compromised t to 1), though this would also require
assuming that the enclaves were not susceptible to any future
vulnerabilities that could be exploited remotely. We would
still use enclaves to prevent malicious system administrators
from running arbitrary server code.

11 Conclusion

SVR3 demonstrates the potential of systems that provide se-
curity through a combination of cryptography and a diverse
set of hardware enclaves, without putting trust in any single
hardware component. Using different types of enclaves leads
to an array of deployment challenges stemming from hetero-
geneous and shifting attacker models. SVR3 is a powerful
defense against the evolving landscape of enclave security: by
distributing trust across enclaves, even if a new threat arises in
one type of enclave, user secrets are still secure. SVR3 costs
$0.0025/user/year and takes 365ms for a user to recover their
key, which is a rare operation.
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Abstract
Recent years have exhibited an increase in applications that
distribute trust across n servers to protect user data from a
central point of attack. However, these deployments remain
limited due to a core obstacle: establishing n distinct trust do-
mains. An application provider, a single trust domain, cannot
directly deploy multiple trust domains. As a result, application
providers forge business relationships to enlist third-parties
as trust domains, which is a manual, lengthy, and expensive
process, inaccessible to many application developers.

We introduce the on-demand distributed-trust architecture
that enables an application provider to deploy distributed
trust automatically and immediately without controlling the
other trust domains. The insight lies in reversing the deploy-
ment method such that each user’s client drives deployment
instead of the application provider. While at a first glance,
this approach appears infeasible due to cost, performance,
and resource abuse concerns, our system Flock resolves these
challenges. We implement and evaluate Flock on 3 major
cloud providers and 8 distributed-trust applications. On av-
erage, Flock achieves 1.05x the latency and 0.68-2.27x the
cloud cost of a traditional distributed-trust deployment, with-
out reliance on third-party relationships.

1 Introduction

Existing systems typically suffer from a central point of at-
tack: an application provider holding many users’ private
data becomes the target of data breaches [117]. As a result,
an increasing number of applications are using distributed
trust [35,38,46,47,66,67,72,77,108,161,177–179,195,198].
This powerful paradigm avoids a central point of attack by
distributing the users’ sensitive data among n parties to pro-
tect its confidentiality or integrity. A typical requirement is
that these n parties are in different trust domains, each of
which corresponds to a distinct organization to ensure that
they are controlled by different entities. Fig. 1 illustrates
the stakeholders of this setting: the application provider, its
users, and n− 1 other trust domains. Even if n− 1 out of
n parties are compromised, the sensitive data remains se-
cure: an attacker would have to breach all n parties to com-

*Equal contribution

?

distribute 
trustApplication

Provider
Application
Provider

Figure 1: Secret-sharing data over 3 trust domains: breaching
2 trust domains reveals nothing.

promise the sensitive data. Various cryptographic tools rely
on distributed trust, such as secure multi-party computation
(MPC) [112, 128, 147, 163, 164, 202, 213, 219] and two-party
private information retrieval (PIR) [105, 116, 124, 146].

Recent years have exhibited an increased adoption of dis-
tributed trust by application providers who aim to protect
their users’ data [161] (§6), including Signal [178,179], Coin-
base [35, 177], Fireblocks [46], Google [108], Apple [108],
Meta [198], and J.P. Morgan [195]. For example, Signal’s
secure value recovery project aims to enable users to securely
back up their private keys through distributed trust [178, 179].
Likewise, MPC wallets [35, 38, 42, 46, 47, 66, 72, 77, 97, 134,
177], including Coinbase [35,177] and Fireblocks [46], secure
billions of dollars by distributing their users’ private keys and
using MPC for signing [196].

The deployment challenge. Despite this interest, the adop-
tion of distributed-trust applications remains limited. Recent
works [130, 178, 198] discuss a core challenge: the difficulty
of deploying n distinct trust domains. Indeed, the application
provider must find n− 1 organizations in different trust do-
mains, who are willing to run the provider’s workload while
restricting access to anyone, including the provider itself.
These organizations must offer sufficient availability, secu-
rity, fault tolerance, logging, swift recovery, and must have a
credible reputation in the user community—criteria that have
empirically been challenging to satisfy [178]. Moreover, such
business relationships are costly and require both time and
manual effort to set up. While large corporations were able to
forge such partnerships [108,198], this is a barrier to entry for
application developers [178] who lack the same resources.

For clarity, consider the running example of digital asset
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(a) Traditional Distributed Trust: The application provider forms
manual, costly relationships with third-parties, who deploy code.
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(b) On-Demand Distributed Trust: The user’s client automatically
deploys code to n−1 clouds, which also have other user deployments.

Figure 2: Deployment workflow in traditional vs. on-demand distributed trust.

custody (although our work applies to a wide range of appli-
cations, as discussed in §4). Cryptocurrency [119, 189] users
exchange digital assets by signing transactions with their pri-
vate keys. A compromised private key can be used to steal
any assets in the user’s wallet [101, 118, 142, 184, 203]. This
is why wallets like Coinbase [35, 177] and Fireblocks [46]
secret-share the private key among n different parties. When
Alice initiates a transaction, the n parties engage in MPC,
inside which they reconstruct her key and sign the transac-
tion. Although their desired design is to secret-share among
multiple entities, many wallets only secret-share between the
application provider and the client due to the difficulty of
setting up other trust domains [178].

More generally, many academic papers on distributed trust
simply assume the presence of n servers in different trust do-
mains [126,127,131,132,138,149,165,211], but do not offer
guidance on how to establish such deployments in practice. In
this paper, we address the following systems challenge with
deploying distributed trust:

How can an application provider, which is inherently a
single trust domain, deploy a multi-trust-domain system?

To address this challenge, we propose the on-demand
distributed-trust architecture, which enables an application
provider to offer distributed-trust services to its users automat-
ically, immediately, and without requiring third-parties. This
is the first architecture that removes the burden of setting up
cumbersome, manual business relationships with n−1 parties.
We provide an intuition and overview in §1.1. Our second
contribution is the design and implementation of Flock,1 a sys-
tem that realizes our on-demand distributed-trust architecture
across major cloud providers. Flock enables an application
provider to setup n−1 trust domains on n−1 cloud providers
without the application provider being able to control the de-
ployment. A straightforward instantiation of the on-demand
architecture suffers from significant scalability and security
issues. Flock overcomes these challenges with two additional
technical contributions that are reusable beyond Flock: the
Flock Relay and a three-tier authentication protocol, both
overviewed in §1.2.

1Multi-species bird flocks may not always trust each other, but flock to-
gether among the clouds to increase the likelihood of detecting predators [62].

1.1 On-Demand Distributed Trust

To understand our approach and its challenges, first consider
a natural strawman of using n reputable cloud providers
as trust domains. Recent years have exhibited a spike in
multi-cloud services [4, 11, 63, 94] and multi-cloud applica-
tions [12,135,153,156,193,204,218]. While accounts within
a single cloud can be accessed by the cloud’s administrators,
distinct cloud providers have their own data centers, stor-
age, compute resources, networking solutions, and, crucially,
administrators. While the clouds are indeed distinct trust do-
mains, this approach suffers from a central point of attack: the
application provider that deploys VMs to each cloud controls
them all, reducing the system to a single trust domain. As we
discuss in §6, some proposals attempt to approximate trust
domains with hardware enclaves [130, 179], but enclaves are
vulnerable to side-channel attacks [115, 175, 188, 209] that
allow the application provider to once again fully control the
deployment. Hence, we seek an approach to deploying n−1
trust domains that the application provider cannot control,
without depending on trusted hardware.

The primary insight of on-demand distributed trust is a
paradigm shift in the deployment approach: Instead of the
application provider deploying the n parties to distinct clouds,
each user drives the deployment for their own data. At a
first glance, this approach appears infeasible with respect
to ease-of-use and cost because every user has a separate
deployment. From a security standpoint, though, it is fitting:
a user Alice is the trusted owner of her own sensitive data.
Hence, she can deploy VMs across n−1 major clouds, with
the application provider as the n-th party. Alice can secret-
share her sensitive data—for example, her private key for
digital asset custody—across these n VMs because no other
party can control all of them, not even the application provider.
Fig. 2 compares the deployment workflow of traditional and
on-demand distributed trust.

The on-demand architecture enables a wide range of
distributed-trust applications, but not all of them:

Flock can support all applications where every distributed-
trust computation takes as input only data that is owned by
exactly one user or is public.
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We show that Flock can support 8 types of distributed-trust
applications, including secret key recovery for end-to-end
encrypted systems (as in Signal [179]), password managers,
digital asset custody (as in Coinbase [35], Fireblocks [46]
and other MPC wallets [38, 42, 47, 66, 72, 77, 97, 134, 177]),
certificate authority signing, code signing, two-server private
information retrieval, and data rollback protection. These ap-
plications demonstrate different aspects of Flock’s expres-
sivity: they enable 5 major cryptographic modules, which
showcase protection for data confidentiality, data integrity,
data-sharing, or query privacy on a public database. An exam-
ple of an application that Flock does not support is privately
training a machine learning model over all users’ private data
because the input to the training process is the combined data
of all users that no individual user owns and is not public.

1.2 Summary of Techniques

We now summarize Flock’s techniques. A careful reader
may be concerned about the cost of the on-demand approach.
Continuously running one VM per user per cloud would be
prohibitively expensive and shutting them off intermittently
would introduce significant startup time.

We identify serverless computing [18, 24, 52, 102] as the
most fitting paradigm (§3.1) for Flock. Their “pay-as-you-
go” model means that we can invoke a serverless instance
exclusively when the user runs an operation, and incur no cost
when the user is idle. For example, in the digital asset cus-
tody application, Alice’s serverless instances only run when
Alice wants to perform a transaction. Further, executing a
serverless instance on-demand is fast, unlike typical VM boot
times. Thus, Flock offers a cross-cloud serverless system for
secure computation (§3.1), which runs sophisticated cryp-
tographic libraries in serverless across clouds. A challenge
is that serverless offerings cannot innately form peer-to-peer
connections [150, 214] because they are publicly inaccessi-
ble and ephemeral. To enable end-to-end secure cross-cloud
serverless networking, we design a relay that leverages the ap-
plication provider to connect the serverless instances without
trusting the provider with the contents of the communication.
To achieve this, we introduce a two-phase TLS establish-
ment protocol that only requires a single TCP connection per
serverless instance, which is used for both authentication and
end-to-end TLS. By reducing secure message-forwarding to
copying bytes across sockets, the relay achieves 27x higher
throughput (Table 4) than the current best potential approach.
We expect the relay to have independent utility in any ap-
plication that requires end-to-end secure cross-domain (e.g.
cross-cloud, cross-region) serverless communication.

Flock’s automatic deployment mechanism (§3.4) empow-
ers regular users to automatically setup cross-cloud accounts
and serverless deployments without being exposed to under-
lying cloud-level intricacies. First, each user’s Flock client
automates multi-cloud account creation by filling in the corre-

sponding forms for the user through the webpage automation
framework Playwright [65]. Second, the Flock client conducts
programmatic deployment through cloud-provided APIs. The
user experience of a Flock application is comparable to that of
a regular application. Users will not have to conduct manual
cloud registration or serverless deployment per cloud, and
the only difference is that users may need to complete n−1
authentication steps for cloud registration (e.g. SMS, email).

To secure this deployment, Flock contributes a three-tier
authentication protocol (§3.2), which safeguards against the
impersonation of a user Alice, her deployments, or the applica-
tion provider. Our new setting of user-driven distributed-trust
deployment introduced new attack vectors, requiring a novel
design for authentication: How can an application provider se-
cure a deployment they do not control? We first identified the
required security “checkpoints” across three tiers—cloud, net-
work, and application—leading us to design a unified protocol
spanning these layers. At the cloud level, fine-grained access
keys prevent unauthorized users from invoking Alice’s server-
less instances. At the network level, a secure deployment
protocol guards the communication amongst Alice and her
“flock.” At the application level, Alice’s “flock” must authen-
ticate her before conducting operations on her sensitive data.
However, it is onerous for each user to authenticate n times,
once per party. To avoid this, we identify MPCAuth [206] as
particularly well-suited in this scenario. MPCAuth enables a
user to perform the usual work of authenticating to a single
“logical” server—which is an MPC of the n servers—with the
same security as authenticating to n servers independently.

User-centered deployment introduces a new axis of chal-
lenges: Flock should allow the provider to manage billing
without controlling users’ cloud instances (§3.3) or ex-
posing the provider to resource abuse. We use cloud billing
infrastructure to prevent malicious users from draining ap-
plication provider funds and cloud access keys to prevent an
attacker from wasting serverless compute resources before
they are detected by application-level authentication.

1.3 Evaluation Summary

We implement and evaluate Flock (§5) across three major
cloud providers: Amazon Web Services, Azure, and Google
Cloud Platform. We have also successfully deployed Flock
to IBM Code Engine. When compared to the traditional
distributed-trust setup (Fig. 2a), Flock has 1.05x latency and
0.68-2.27x the cloud cost, averaged over all 5 modules. This
value does not account for the traditional method’s additional
cost of business relationships with the n−1 third-party organi-
zations (e.g. employee salaries, operational costs)—expenses
that do not exist in Flock. Moreover, Flock achieves this with-
out the manual and time-consuming process of identifying
and setting up other organizations as trust domains. By re-
moving this deployment barrier, we believe that Flock can
foster a new wave of adoption for distributed trust.
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2 Threat Model & Security Guarantees

System model. An application provider seeking to offer
distributed-trust security to its users invokes the Flock API in
its client and server code. Users install an application client
on their device. The application provider runs the application
server, which we consider to be a logical server (even if it
comprises of multiple physical servers). We refer to the n dis-
tinct trust domains that execute the distributed-trust modules
as parties. The application provider constitutes one party, and
the n−1 clouds constitute the other n−1 parties.

Security guarantees. Flock is not a specific cryptographic
scheme or application, but a system for deploying distributed
trust across the clouds for a variety of applications with differ-
ent threat models. The guarantee of the on-demand distributed-
trust architecture is that each of the n parties are deployed
independently of each other, without any one party being able
to control the others. Hence, none of these parties are a central
point of attack, and crucially, the application provider cannot
control the deployments in the n−1 clouds. To provide this
guarantee, Flock relies on the security mechanisms of each
cloud in a black-box manner. As long as cloud i upholds its
guarantees, party i stands as an uncompromised trust domain
in the Flock deployment.

When running a distributed-trust application App using
Flock, the resulting security guarantees are a combination of
the guarantees of App and Flock, and often, the weaker of
the two. The Flock system and modules provide the strong
guarantee of malicious security against n−1 out of n compro-
mised parties. In particular, an attacker cannot see any secret
data distributed across the parties or tamper with the integrity
of sensitive operations. Hence, if App also provides malicious
security, so does the overall App-Flock deployment. If, on the
other hand, App provides the weaker semi-honest security, so
does the overall App-Flock deployment.2

Availability. While the application provider is not trusted
with confidentiality and integrity, it is trusted for availability
because it is the entity that wishes to provide this service. We
also assume that the clouds are available given their service-
level agreements [20, 51, 78]. In each cloud, Flock uses cloud
services that are fault-tolerant. If, despite this, the provider or
a cloud are not available, Flock does not offer availability.

Application code. Like prominent end-to-end encrypted
applications [69,79,86,95,98] and blockchains [111,119,189],
Flock assumes that the application client code is not compro-
mised and that it is open source and community-scrutinized.
Likewise, Flock is open source (§5.1). Flock’s focus is to
protect against attacks to the application servers. Application
servers are a prolific target of attack because they aggregate
data across all users. They can also read user data and al-
ter server execution unchecked, which is more difficult to

2The on-demand distributed-trust architecture also supports applications
with t out of n security for a threshold t < n, but our current implementation
only supports t = n.
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perform with openly scrutinized client code.

Compromised client devices of a user do not affect the
security of another user in Flock. For the same user, If Alice’s
device is compromised during an active Flock session, Flock
does not provide security guarantees for Alice. This is not
specific to Flock, and is the case for many distributed-trust
applications. For example, Signal’s SVR [79, 179] saves Al-
ice’s private keys on her device and distributes them among
parties for the purpose of backup. However, if Alice is logged
out (and thus not in an active session) during the compromise
of her device, Flock’s security guarantees remain. Many apps,
like password managers and digital wallets, log users out after
sessions to bolster security upon a device compromise. Flock
implements sessions and removes each user’s sensitive key
material from the client when the user is logged out.

Authentication (§3.2). Users in Flock authenticate through
multiple factors, e.g. with email and SMS on cloud accounts,
or PIN and U2F for MPCAuth. Naturally, Flock only protects
the data of users with uncompromised authentication factors.

Resource protection (§3.3) in Flock prevents malicious
users from draining compute resources and cloud funds from
the application provider or denying its service.

3 Flock’s System Design

Architecting an on-demand distributed-trust system poses
several challenges along the dimensions of cost-efficiency,
networking, authentication, resource protection, deployment,
and registration. In this section, we describe how we address
each challenge in building Flock. Fig. 4 illustrates the Flock
system architecture.
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3.1 Serverless Architecture

As discussed in §1.1, the straightforward method of imple-
menting on-demand distributed trust is having each user de-
ploy one always-on VM on each of n−1 clouds. Despite the
infrequency of operations like secret recovery due to device
loss, the clouds will charge constantly for each VM. A natural
strawman is to have the user turn off each VM upon operation
completion and reactivate them as needed. Unfortunately, the
user would incur minutes of additional latency for VMs to
boot per operation. This delay is prohibitive for applications
like password managers, where users frequently invoke Flock.

We observe that the serverless computing paradigm [102,
176, 180] alleviates this problem by charging only for ac-
tive use with a “pay-as-you-go” model [176]. Developers
upload code that exclusively consumes resources at execu-
tion [102, 180]. Serverless instances are event-driven, so they
can be triggered with minimal start-up time through a pro-
grammable HTTPS interface [176]. The most common server-
less compute offerings are serverless functions [18, 24, 50],
where a client triggers an API query, it is validated by the
cloud provider, and a previously deployed function is invoked
in an isolated environment [73–75, 176, 182]. However, basic
serverless functions [24, 50] do not naturally support multi-
language codebases or runtimes for programming languages
that are commonly used to implement cryptographic tools,
such as C++. This makes them inconvenient for porting ex-
isting cryptographic frameworks and codebases in Flock. In-
stead, we turn to serverless containers, which are light-weight,
standalone executable software packages that include the
code, runtime, and system libraries. Containers can support
multi-language codebases and any runtime, and are offered
by AWS Lambda [18] and Google Cloud Run [52].

MPC requires high interactivity, often with one party await-
ing another’s response. Unfortunately, serverless instances
commonly communicate via services like cloud storage,
which is prohibitively slower and pricier than direct network-
ing [107, 150]. The challenge is that serverless instances pos-
sess private IPs under unique network address translations
(NATs), so they cannot accept incoming network connections.
Serverless offerings that expose public IP addresses [16, 22]
are intended for long-running workloads, and therefore suffer
significant coldstart delays [3], and even charge for a minute-
long minimum runtime for AWS Fargate [16].

Several works employ NAT traversal and hole-punching
to facilitate serverless communication [137, 139, 186, 214],
but this method is not robust since it relies on a cloud
provider’s NAT configurations, which are prone to change.
Both Lambda and Google Cloud Run only support cross-
cloud hole-punching through NAT gateways and virtual pri-
vate clouds [29] with impractical per-user cost. Instead, prior
systems have facilitated serverless communication through a
central relay [140, 141, 210], but do not consider security. A
secure relay-based approach for connecting publicly inacces-

sible endpoints is Wireguard [96] over Tailscale DERP relay
servers [37]. As we show in §5.4, this setup incurs significant
overhead since Wireguard conducts per-packet encryption and
must redundantly layer TLS over Wireguard to supplement it
with mutual authentication. Also, Wireguard does not use a
federally approved encryption protocol [5], unlike TLS.

3.1.1 Secure Cross-Cloud Serverless Networking

To resolve this challenge, we architect a NAT-independent
Flock Relay protocol for secure serverless networking at the
transport layer (L4). To deploy the relay, we employ the help
of the application provider for availability without trusting it
otherwise. The application provider runs a multi-user relay
that connects serverless instances by accepting their incoming
connections, then securely routes messages between them
with authentication and end-to-end encryption. The relay ob-
serves only message lengths, which do not reveal the private
user inputs because of the oblivious nature of MPC. Hence,
the provider, though capable of barring the availability of the
relay, cannot compromise data confidentiality or integrity.

To facilitate secure serverless-to-serverless communication,
the Flock Relay must authenticate each serverless instance to
ensure that the correct endpoints connect to one another, and
facilitate their communication without serving as a central
point of attack. While standard TLS connections are estab-
lished between two endpoints directly, the Flock Relay needs
to facilitate end-to-end TLS establishment between two au-
thenticated endpoints.

An insecure strawman for establishing serverless-to-
serverless TLS is the following: (1) After a serverless instance
initiates a serverless-to-relay connection, the relay verifies
the serverless instance and provides it with an authentication
token. In future connections, the token will inform the re-
lay that it has previously authorized the serverless endpoint.
(2) The serverless instance sends the token to the relay to
authorize the end-to-end serverless establishment. Crucially,
however, the second step would require the token to be sent
in plaintext. A passive network eavesdropper could use the
token to impersonate valid connections in the future.

Two-phase connection establishment. To ameliorate this
issue, we architect our relay to connect serverless instances
with the same sockets that were already authorized. The Flock
Relay executes two phases of TLS establishment to form a
single end-to-end TLS session, as we show in Fig. 4.
(1) Serverless-to-relay (S2R): Every pair of serverless in-
stances s1 and s2 each initiate an independent TLS connection
with the relay. The relay needs to maintain access control to
ensure that only the instances within a single user’s “flock”
can connect to one other. Thus, the TLS handshake in this
phase authenticates the serverless instances. Over the S2R
TLS session, each instance notifies the relay of the ID of the
serverless instances it wishes to connect to, which hides these
IDs from the public Internet. Next, the relay downgrades its
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TLS connection with s1 and s2 to TCP, and begins forwarding
messages between the two TCP sockets.
(2) Serverless-to-serverless (S2S): Every pair of serverless
instances in a user’s “flock” performs a TLS handshake over
the TCP connection obtained after the S2R phase, setting up
the S2S TLS session between them. To send a message to s2,
s1 sends the relay a TLS-protected message under the S2S
session, which the relay forwards to s2.

For both S2R and S2S, we use mTLS (Mutual TLS), which
enables mutual authentication. We also use the relay to con-
nect serverless instances to the application provider (as if it
were another serverless instance), for ease of implementation.
We assume the user’s application client obtains the relay’s
destination from the application provider.

3.1.2 Flock Relay Certificate Issuance

We now discuss how Flock sets up TLS certificates to ensure
all communication occurs with intended parties. The client
maintains hardcoded public keys for the application server and
relay. For the serverless instances to verify each other in S2S
sessions, an observation is that a user Alice is trusted within
her “flock” and can therefore serve as its certificate authority.
Alice’s client creates a public-private keypair for each party in
her deployment (serverless instances and application provider)
and signs a certificate for each of their public keys. Each party
stores its certificate and Alice’s public key, allowing parties
to mutually verify one another.

S2R sessions enlist the application provider as a certificate
authority. Indeed, this phase of TLS only exchanges informa-
tion about message recipients, which must be hidden from
the public Internet, but visible to the relay. Overall, the Flock
Relay is responsible for managing a public-private keypair for
signing, engaging in a setup protocol for certificate issuance
for each user, verifying these certificates per-invocation, and
facilitating message-forwarding between serverless instances.

For client-to-serverless connections, upon invocation, Al-
ice’s client contacts each Flock instance and the application
provider via HTTPS. Alice provides parameters including
the IP address and port of the relay, as well as query-specific
input, so the provider can redeploy or load-balance the relay
without requiring Alice to redeploy her instances. Google
Cloud Run [52] and AWS Lambda [18] URLs offer HTTPS
with trusted CAs, so Alice knows that she is contacting the
intended instances.

Reissuance. To prevent an attacker that steals Alice’s de-
vice from issuing certificates, Alice deletes her certificate
issuance secret key post-deployment. Because reissuance is
uncommon, she can reauthenticate to each cloud, regenerate
keypairs (including her own), and reissue. If the relay updates
its public-private keypair, it must reissue a certificate for each
user. The application client will be updated with this new
relay public key and certificate.

The convenient aspect is that Alice can update her par-

ties’ certificates and public keys (both her own and the re-
lay’s) without redeploying the entire codebase because they
are stored in cloud-provided secret managers [34, 91]. This
process is more lightweight than a full-fledged application
software update, which necessitates serverless redeployment.
For a consistent certificate keypair, one can use Flock’s secret
recovery (§4.1) or signing (§4.2) to store Alice’s secret key.

3.1.3 Flock Relay Protocol

We now detail the Flock Relay protocol, shown in Fig. 4. For
simplicity, we only list parameters in certificates or message
tuples that are specific to our protocol, but a deployment must
contain all the other standard parameters and defenses.

Per-Relay Setup:

1: The application provider generates a keypair (PKr,SKr),
which is used to self-sign a certificate for the relay
RelayCertr = GenerateCert(SKr;r,PKr).

2: The application provider deploys the relay with
(PKr,SKr,RelayCertr).

3: Relay listens for new users at RelayUserTarget and for
serverless connections at RelayTarget.

Per-User Setup:

1: Alice generates (PKu,SKu).
2: For each party i ∈ {1, . . . ,n}, Alice generates (PKi,SKi)

and certificate E2ECerti = GenerateCert(SKu; i,PKi).
3: Alice locally deletes SKu.
4: Alice sends each PKi to the relay at RelayUserTarget.
5: Relay generates the relay-specific user certificate

RelayCerti = GenerateCert(SKr; “Alice”.i,PKi).
6: Relay sends (PKr,RelayCerti) to Alice for each party i.
7: In each serverless deployment for party i, Alice embeds:

(PKu,PKr,E2ECerti,RelayCerti,PKi,SKi, i).

Per-Invocation Protocol (Fig. 4):

1: Alice invokes each si using HTTPS, with the parameters
{PartyID : i,RelayTarget : (IP,Port)}.

2: Each si loads (PKi,SKi,PKr,RelayCerti,PKu,E2ECerti).
3: To establish an S2R session, each si performs an mTLS

handshake with the relay, in which PKr is used to verify
RelayCertr is from the intended relay and RelayCerti is
from Alice’s i-th party.

4: Over S2R, s1 sends the relay “2” as its intended destina-
tion and s2 sends the relay “1”.

5: Over S2R, the relay arbitrarily assigns s1 as “TLS Server”
and s2 as “TLS Client,” declaring the assignment to both.

6: Over S2R, the relay sends s1 (TLS Server) an
SSL_shutdown OpenSSL message to close the SSL con-
nection. s1 confirms completion and starts listening on
the same socket for a future TLS connection request.
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7: Over S2R, the relay sends s2 (TLS Client) an
SSL_shutdown message. When s2 confirms, the relay
establishes s1-s2 forwarding over the pair of sockets.

8: To establish S2S, s2 sends s1 a TLS connection request
through the relay. s1 and s2 engage in an mTLS hand-
shake, in which they verify the other’s E2ECerti with
PKu. s1 and s2 now share an end-to-end TLS connection.

Hence, the Flock Relay only requires a single TCP connec-
tion per serverless instance, which is used for both authenti-
cation (S2R) and end-to-end TLS (S2S). By reducing secure
message-forwarding to merely copying bytes across sockets,
the relay achieves high throughput, as we show in §5.

3.2 Three-Tier Authentication
Authentication in Flock differs from a traditional system be-
cause of the three-layered nature of Flock’s design: Alice must
authenticate to her cloud deployments, their network sessions,
and their running application to be able to execute sensitive
operations. We have already described Flock’s network-level
authentication via certificates in §3.1.2. We now present the
application-level and cloud-level authentication in Flock.

3.2.1 MPCAuth for Application-level Authentication

To perform a sensitive operation, Alice needs to authenticate
to her serverless instances and the application provider. The
natural approach is for her to run multi-factor authentication
with each one of these parties. In an application with m au-
thentication factors, Alice must authenticate m times for each
party, which is burdensome. For example, Alice must input
her password n = 3 times, perform 3 U2F authentications or
lookup 3 emails with security codes, amounting to n×m total
authentications. For applications like cryptocurrency transac-
tion signing (§4.2) or password retrieval during web browsing

(§4.1), such repetitive tasks are on the critical path.
Instead, we employ a recent cryptographic protocol, MP-

CAuth [206], as a black box. MPCAuth enables users to
authenticate once, achieving the security of n distinct authen-
tications. At a high level, MPCAuth performs an MPC com-
putation between the n parties to simulate a “trusted server
inside MPC” to which the user authenticates. This imaginary
server, an amalgamation of the n parties, ensures that as long
as one server remains honest, authentication proceeds cor-
rectly. A user seeking to trigger an operation will authenticate
to the n serverless containers using their m pre-configured
authentication factors. If the user successfully authenticates,
the sensitive task is executed. The user’s experience is un-
changed: Alice authenticates to one logical server, when in
fact, she is authenticating to all n servers via MPCAuth.

Any factors supported by MPCAuth can be integrated into
Flock, including PIN, passcode, U2F, email, SMS, server-side
biometrics, and security questions. Distributed-trust applica-
tions like Signal’s SVR employ PIN because it does not rely
on an outside provider like email or SMS. U2F keys are also
a common choice because the authentication secret resides on
separate hardware. Flock currently integrates U2F, PIN, and
passcode. MPCAuth does not require cloud support because
it is embedded directly in the Flock deployment.

Supplementing MPCAuth. We remark that using MP-
CAuth alone is insufficient: it does not offer protections for
the cloud tier or our more complex network tier because in
MPCAuth, the n servers are fixed and known. Supporting
n ephemeral, cross-cloud, user-owned instances introduces
attack vectors at the cloud and network layers. To secure
these layers, Flock ensures serverless instances are invoked
by authorized users (§3.2.2) and have authorized network
connections (§3.1.2) per invocation.

Rate-limiting is essential for thwarting brute force at-
tacks in distributed-trust applications, particularly those using
low-entropy PINs. Flock supplements MPCAuth with a rate-
limiting protocol that tracks two parameters at each party:
a counter for remaining attempts and a timestamp for the
last failed attempt. Upon a failed authentication, the counter
decreases. If it hits zero and the time since the last attempt
is less than a set lockout period, further attempts are halted.
Successful authentication resets this counter. Even if n− 1
instances are malicious, a single honest instance preserves
the rate-limit’s integrity by locking out malicious users even-
tually. While this framework provides a solid rate-limiting
foundation, it is also flexible, allowing integration of sophis-
ticated mechanisms tailored to application needs, including
serverless product offerings [17, 70, 71].

3.2.2 Access Keys for Cloud-level Authentication.

An attacker might continually invoke other users’ serverless
instances, depleting application provider funds. Upon invo-
cation, the serverless instances run MPCAuth, preventing
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the attacker from authenticating and executing a sensitive
operation. However, executing MPCAuth incurred a charge.
Further, if rate-limiting is in place, the attacker can even lock
the legitimate user out of their account.

To address this, Flock ensures that only pre-approved users
can activate their serverless containers. In each cloud, we
leverage specialized cloud access keys for local device storage,
configured with fine-grained IAM permissions [9, 25, 32].
Without these, an attacker cannot invoke a user’s instances.
The owner and authorized users of the instances (see data-
sharing applications in §4) store access keys locally. Even if
an attacker compromises a user’s device, the keys do not grant
access to the user’s secrets, but only to the invocation of the
serverless instances. In the unlikely scenario that a user loses
their device with the serverless URLs and cloud access keys,
the user can manually authenticate with the cloud providers
to retrieve them for a new client installation.

3.3 Resource Protection & Billing

Billing is challenging because the provider must pay for user
storage and compute without being able to access them. At the
same time, even though the provider relinquishes its deploy-
ment control to the users, malicious users should not be able
to deplete the provider’s funds. As we outline in §3.2.2, in-
vocation access keys prevent an attacker from invoking other
users’ parties and draining the provider’s funds. Now, we must
ensure that a user cannot abuse provider resources through its
own deployment, especially since attackers can also create
user accounts. Hence, in Flock, application providers set a
maximum spending limit per user.

To enforce this spending limit, we first discuss what cloud
providers offer in this direction, and then describe a solution
based on virtual cards. Prominent cloud tools like AWS Or-
ganizations [19, 215] and GCP Projects [53] allow a billing
account to pay for other accounts’ resources without hav-
ing access to them. AWS Budgets [14] and GCP Budgets
& Alerts [48] grant providers policies which trigger alerts
and halt spending [30, 45] if a user’s spending surpasses a
limit. While these services provide what we need, they are
not foolproof because cloud providers have not previously
operated in the model of strictly preventing a billing account
from accessing the accounts it funds. Hence, it is likely that
the billing account can gain access in a case-by-case basis to
the paid-for account, e.g. by calling a cloud admin for support.
However, the fact that these mechanisms already exist suggest
that it would be a small change for these clouds to turn this
into a strict enforcement, which we advocate for.

Meanwhile, Flock can use virtual cards, which render Flock
fully functional today with existing tools. Virtual card services
such as Karta offer credit cards with set monthly limits for
Azure, AWS, and GCP [159], and AWS also accepts pre-paid
cards [93]. These providers can issue capped digital cards
to users, replenishing funds as needed. Payment platforms

create_acc(user_info, module, auth_policy)
(cloud_auth)
Create user account: programmatic registration & deployment.
deploy(user_info, module, auth_policy)
Called in create_acc & for application & Flock updates.
setup_module(module, auth_policy, new_state)
Authenticates the client & sets sensitive data for the parties.
execute(module_inputs, auth_inputs)
Authenticates the client & executes a sensitive module.

Table 1: Flock API

like Stripe offer APIs to issue standard cards with spending
limits [84], which only incur a few cents per user.

3.4 Programmatic Registration & Deployment

Table 1 presents the Flock API used by application developers.
A key feature of Flock is that we automate the user experience
for clients, so that it is similar to a regular application. The
main difference from the standard experience is that the user’s
application client may surface n−1 interactive authentication
steps, one for each cloud. However, the Flock API ensures
that the user does not bear the burden of manually registering
for n−1 cloud accounts or interfacing directly with the clouds
to deploy the serverless instances.

3.4.1 Registration

When registering for an application, the user’s client needs to
create n−1 cloud accounts. To ensure that the user does not
manually perform this work, Flock utilizes Playwright [65],
a webpage automation framework [65, 76]. Users input their
details (name, password, email) in the UI of the application
only once at account setup, as they typically do. Flock then
automatically populates these details across the n−1 cloud
registration forms, deriving unique passcodes from the user’s
provided passcode. Flock inputs application-provided data
without user intervention.

Cloud registration requires multi-step user interactions
like SMS, email, or CAPTCHAs. To handle these, the
create_acc function (Table 1) takes the initial user_info
input that can be automatically populated. Next, the function
returns the interactive cloud_auth object, which surfaces
the steps that necessitate user intervention during registra-
tion. For example, AWS registration [109] (1) sends an email
with a code to input, (2) asks for contact information, (3)
requests billing data, and (4) sends an SMS with a code to
input. Thus, Flock anticipates user_info to initially collect
an email, contact information, billing data, and phone number.
This data is held in-memory and fed programmatically into
each cloud form as registration proceeds, while cloud_auth
surfaces mid-registration interactive user input requests (e.g.
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SMS codes or CAPTCHAs) to the application UI, transferring
the resulting input to the cloud frontends.

3.4.2 Deployment

Once all cloud accounts are instantiated, create_acc calls
deploy (Table 1), which deploys the serverless containers
corresponding to the module. This deletes any previous de-
ployments, and performs the setup for the cryptographic
module and auth_policy authentication factors by calling
setup_module (Table 2). Upon deployment, the client device
locally stores cloud access keys (§3.2.2).

4 Applications & Cryptographic Modules

Flock enables a diversity of applications where every
distributed-trust computation only takes input data from a
single owner or from public sources. Some applications natu-
rally meet this criteria because sensitive data often equates to
user-owned secret values. Other applications might initially
appear as if they do not fit the on-demand distributed-trust
model (e.g. data-sharing, private information retrieval). By
reframing these applications to the Flock setting, we demon-
strate how they, too, can benefit from on-demand deployment.
We show how Flock can enable 8 types of distributed-trust
applications, based on 5 fundamental cryptographic modules.
Across these applications, Flock enables data confidentiality
and integrity, private queries on public data, and data-sharing.
Table 2 summarizes how each module is encapsulated by the
Flock API functions setup_module and execute.

4.1 Secret Recovery
Secret recovery applications allows a user to back up her
secret key k in the form of n secret-shares {k1, . . . ,kn} [202],
each one stored at each party. Even if an attacker compromises
n− 1 parties, it cannot reconstruct the key k without the n-
th share. The user retrieves all shares to reconstruct k. For
integrity, the client initially stores a salted hash of k at each
party and confirms the hash of the reconstructed key matches.

Secure key recovery for end-to-end encryption (E2EE)
applications [56, 69, 79, 86, 95, 98] has been a long-standing
issue. If a user loses their private key k (e.g. by losing their
device), they lose access to their data. However, backing up
the key on the application server breaks the guarantees of
E2EE by introducing a central point of attack. To avoid this,
application providers like Signal secret-share user keys [179].
The user can authenticate to the n servers using a PIN [200]
to retrieve the shares of k. One honest party prevents brute
force attacks through PIN rate-limiting and allows the client
to detect if the recovered key is incorrect.

Password managers [6, 7, 26, 59, 60, 83, 205] store en-
crypted or hashed versions of user passwords in the cloud.
When a single cloud or cloud account is compromised as in

the recent high-profile LastPass hack [133], an attacker can
brute-force passwords [190]. Flock secret-shares passwords
across n parties, and allows the user to reconstruct the pass-
words locally upon use. If up to n−1 parties are compromised,
the attacker cannot brute-force the passwords.

4.2 Signing
Signing applications secret-share a signing key k among n
parties. Later, the client authenticates to the parties, who run
MPC to sign the client’s message m with the secret key k.
The secret key is never materialized, and the MPC produces
the signature. Flock uses a maliciously-secure multi-party
signature generation protocol [143].3

Digital asset custody is offered by MPC wallets [35, 38,
42, 46, 47, 66, 72, 77, 97, 134, 177], who secure billions [101,
196]. While these wallets typically secret-share between the
the client and the application server, Flock enables them to
achieve their roadmapped objective of increasing the number
of trust domains to n > 2 [178]. To send assets to Bob, Alice’s
client formulates a message tx and invokes the parties, who
reconstruct her key within MPC to sign tx.

Certificate authorities [39, 43, 49, 61] routinely sign cer-
tificates that bind digital identities to cryptographic keys.
Breached signing keys have led to fraudulent certificates that
green-light malware and impersonate trusted websites [216].
Flock enables certificate issuance without ever materializing
the signing key on one server, providing a more cost-effective
alternative to hardware security modules [15, 23].

Code signing services [2,33,39,49,57,68,87,92] allow or-
ganizations who provide critical software to sign code updates.
With Flock, the attacker cannot endorse malicious software
unless all n parties are breached.

4.3 Decryption
Using Flock, Alice can secret-share an encryption key kAlice
among her n parties. An authorized user, say Bob, can provide
a ciphertext c to the parties, who will reconstruct kAlice within
MPC and decrypt c for Bob. Unlike secret recovery, Bob
cannot obtain kAlice, but can use it to perform decryptions that
satisfy a certain access policy, as exemplified below. Flock
uses a maliciously-secure AES-in-MPC protocol [41, 129],
guaranteeing the decryption’s integrity.

4.4 Data-sharing in Hierarchical File Systems
End-to-end encryption systems [21, 28, 36, 56, 67, 81, 85, 88]
typically operate hierarchically: a user or group key encrypts
a directory key, which then encrypts a group of file keys, each
of which encrypts a file. If Alice, for instance, is unavailable,
and Bob urgently needs a file F encrypted with kF under

3While an attack for the GG18 [143] and GG20 [144] protocols was re-
cently discovered [181], the patch was integrated into the library we use [89].
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setup_module execute
Secret Recovery Shard k as k1 . . .kn, cloudi stores ki. cloudi sends ki to client, who reconstructs k from k1 . . .kn.
Signing Clouds gen. k1 . . .kn in MPC, each store ki. Client sends m. Clouds retrieve ki, sign m in MPC.
Decryption Shard AES key as k1 . . .kn, cloudi stores ki. Clouds retrieve ki, AES decrypt ciphertext in MPC.
PIR No client setup. Send clouds DPF requests, reconstruct d[i] via responses.
Freshness Store file k in cloud1, h = H(k) in cloud2. Client retrieves k and h, and checks h = H(k).

Table 2: Setup & execution specification for Flock modules.

Alice’s key kAlice, he should be able to access the file based
on an access policy (e.g. a period of inactivity, signatures
from users with authority), but without learning the key kAlice,
which would grant him excessive access. During setup, Alice
shares her invocation access keys with Bob and configures her
parties with the access policy and the authentication factors
to verify from Bob (e.g. Bob’s U2F) (§3.2.2). Bob can then
authenticate, supply the encrypted kF to Alice’s n parties,
which, after policy verification, allow Bob to decrypt kF .

4.5 Private Information Retrieval

Private information retrieval (PIR) [113, 116, 124, 125, 146,
152, 169] enables users to query a public database at index i,
without the servers learning i, and has many use cases [27,105,
106, 110, 148, 149, 157, 158, 166, 174, 191, 197, 201, 211, 212].

The integration of two-party PIR in Flock showcases a
different type of sensitive data access compared to aforemen-
tioned modules. Instead of storing a user-specific secret at the
parties, we have a public dataset accessed by all the users and
the sensitive data of each user is their query. In a traditional
deployment, each PIR server stores the database. In Flock,
we observe that the user’s parties can serve as PIR parties
since the data is public. However, the cost of storing the entire
database in each user’s cloud would compound. Instead, the
database owner can place a public database copy in each of
the n cloud providers, accessible by any Flock user deploy-
ment. For instance, if Alice queries index i from her Flock
deployment in AWS, she would only need to access the AWS
database copy, eliminating cross-cloud latency and egress. We
port an existing PIR implementation [10] to Flock.

To introduce malicious security, a trusted database owner
can store each entry with a signature of the entry, which the
client can verify upon reconstruction. If one party tampers
with the signature and the other is honest, all queries will
fail. In contrast, adding malicious security to single-server
PIR exhibits significant costs [125]. Public databases are
community-scrutinized to prevent the database owner from
tampering with the database. However, a known approach
of encoding MAC key into DPF keys can remove this trust
assumption from the database owner [125, 132].

4.6 Data Freshness

Data freshness applications often power rollback protection
and file integrity, which are long-standing obstacles in systems
where the application provider has control over stored user
data [104, 155, 160, 167, 183]. Flock utilizes a hash-based
freshness module based on Verena [160]. This application
demonstrates that Flock’s sensitive data does not need to be
secret data; rather, the sensitive data is the integrity of the
file system. In Flock, the application provider acts as the file
storage server, while a hash server is deployed by the user
via Flock. Users safeguard against tampered or outdated file
versions by storing a hash of their latest file in the hash server,
allowing users to guarantee their own file integrity. When a
file is stored, its latest hash is saved and signed by the hash
server for client verification. During retrieval, the hash server
sends the client a signed hash, confirming the file’s latest
version. Flock’s freshness module also incorporates access
control. The deploying user retains ownership, granting read
and write permissions so other users can view or update the
latest file hash. Signatures from the hash server guarantee the
integrity of the file.

5 Evaluation

In this section, we answer: How do the performance and cost
of Flock compare to traditional distributed trust?

5.1 Implementation

We implemented Flock using ∼2,000 lines of Go (signature
protocol, relay), ∼2,000 lines of Python (freshness proto-
col, client, deployment, storage, server-side “frontend”), and
∼2,000 lines of C++ (passcode, decryption, PIR, relay client).
We used cloud SDKs and black-boxed foundational crypto-
graphic libraries: tss-lib [89] for the Multi-Party Thresh-
old Signature Scheme [143], emp-agmpc [41] for Global-
Scale Secure Multi-Party Computation [213], and Google’s
implementation [10] of incremental distributed point func-
tions [113]. For the relay, we used OpenSSL [64] and its
Go bindings4 for the SSL_shutdown [82] procedure (§3.1).

4We fork and adapt github.com/spacemonkeygo/openssl.
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Breakdown (ms) End-to-End (ms)
Module System Client Server Mean (µ) SD (σ)

Secret Recovery: Baseline 80.50 252.74 356.05 20.03
setup_module Flock 84.51 260.21 409.09 35.73
Secret Recovery: Baseline 77.45 201.91 302.33 18.13
execute Flock 77.52 208.82 340.48 19.75
Signing: Baseline 2.49 4,537.43 4,574.12 19.55
setup_module Flock 2.75 4,718.79 4,776.36 21.84
Signing: Baseline 2.60 1,031.31 1,053.44 8.55
execute Flock 2.81 1,322.75 1,360.35 23.72
Decryption: Baseline 1.33 200.11 213.82 7.74
setup_module Flock 3.05 171.67 231.65 7.76
Decryption: Baseline 3.36 21,767.18 21,786.63 489.57
execute Flock 3.33 21,926.81 21,974.29 626.51
PIR: Baseline 12.25 202.54 227.20 6.19
execute In-memory 12.25 10.62 35.28 3.29

Flock 12.24 131.02 170.22 8.85
Freshness: Baseline 14.87 218.55 252.47 23.65
setup_module Flock 5.05 209.79 244.63 10.80
Freshness: Baseline 4.77 189.27 205.90 14.04
execute Flock 4.99 188.48 222.76 8.10

Authentication Factor

U2F Baseline 7.12 527.28 595.88 32.85
Flock 8.74 515.16 646.85 18.77

PIN Baseline 13.40 909.48 988.60 28.44
Flock 12.96 1,268.09 1,341.47 35.45
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Figure 5: End-to-end latency of cryptographic modules
across varying input sizes: number of database entries
(Entries) for PIR, bits (b) for decryption, bytes (B) for
all other modules.

Table 3: Latency of modules & authentication factors. We fix 210

as the input size for brevity.

Our implementation is open-sourced at github.com/flock-
org/flock.

5.2 Experiment Setup

The baseline is a traditional distributed-trust setup consisting
of three VMs in the three major clouds. We use 2 vCPU,
8 GB memory servers in California for AWS (m5.large,
$80.64/month), Azure (Standard_D2as_v4, $80.64/month),
and GCP (n2-standard-2, $85.16/month). Selecting servers
in close proximity minimizes network delays, in-line with
typical MPC deployments. The client is an AWS m5.large.
This setup is comparable to that of traditional distributed-trust
systems in prior literature (§6).

In Flock, application providers typically run one party and
users deploy n−1 parties (§1.1). It is more cost-efficient for
an application provider to run their party on a single VM be-
cause they can amortize costs among many users without halt-
ing the instance [154]. The application server is in Azure and
has the same configuration as the baseline’s application server
in Azure. The client and the regions for the parties are also
like in the baseline. We use an Azure Standard_B2s VM (2
vCPU, 4 GB, $36/month) for the Flock Relay. For the server-
less containers of signing, decryption, and PIR, we used 2
vCPU AWS Lambda [18] (3,538 MB memory, $0.0000575/s)

and Google Cloud Run [52] (512 MB, $0.00006895/s) in-
stances. For secret recovery and freshness which primarily
conduct cloud storage operations rather than server-side com-
pute, we use smaller serverless instances: 0.5 vCPU AWS
Lambda (895 MB memory, $0.0000144/s) and 0.75 vCPU
Google Cloud Run (512 MB, $0.00002695/s). We selected
the smallest available memory size for serverless instances.

5.3 Latency

We evaluate the latency of the baseline and Flock for each
cryptographic module (described in §4), scaling with their
respective input sizes: the secret size for secret recovery, mes-
sage size for signing, plaintext size for decryption, number
of database entries for PIR, and file size for freshness checks.
We chose sizes reflective of typical workloads (e.g. size of
a cryptocurrency transaction, certificate, or encryption key).
For PIR, input size is the number of database entries of size
128 B. For decryption, input size is the number of bits since
our suggested application only requires efficient file key en-
cryption. For all others, input size is the byte count. Latency
benchmarks were averaged over 10 runs. For the two-party
modules (PIR and freshness), we use the application provider
server and the Lambda.

Fig. 5 depicts the latency-input size relationship for both
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baseline and Flock. Table 3 breaks down latency results for
an input size of 210 into client, server, and end-to-end times,
with the latter also accounting for client-server network time.
We also break down the latency of MPCAuth authentica-
tion factors PIN (standard 4-digit format) and U2F. The PIN
implementation also supports long passcodes. The function-
independent phase in the decryption and PIN circuits can
be executed offline to further reduce latency. Utilizing Flock
for PIR necessitates streaming and deserializing the database
from cloud storage for each request; in a traditional two-server
PIR, databases can be held in-memory so we also evaluate a
version of our baseline with an in-memory database.

As evidenced in Table 3 and Fig. 5, Flock does not sig-
nificantly impact the latency of the 5 major cryptographic
modules and their MPCAuth factors. More modules exhibit
slightly higher standard deviation in Flock, which is expected
due to the burstiness of serverless computing. The relay is
used in decryption, signing, and PIN: While decryption is
1.01x the latency of the baseline since it is more compute-
heavy, signing is 1.28x since it is communication-heavy and
the relay slightly impacts performance, as we will concretize
in §5.4. As anticipated, Flock exhibits considerably higher
latency that the PIR in-memory baseline variant. In exchange,
Flock PIR deployments reap the benefits of automatic trust
domains and practical malicious security (§4.5). For consis-
tency between Flock and the baseline, as well as between the
modules, we use the S3 storage PIR baseline for the remain-
der of experiments and calculations. Flock-enabled PIR can
be enhanced by employing latency-optimized cloud storage
services at an extra cost [8] or by parallelizing computation
while streaming the remainder of the database.

Averaged over all modules, Flock has a 1.05x latency over-
head compared to the S3 baselines. As expected, most cryp-
tographic modules exhibit higher latency with greater input
size. Signing remains constant since the protocol [143] signs
a hash of the message. Freshness is also constant since it is
bottlenecked by reads and writes to cloud storage, which are
fast at this file size.

Serverless coldstart & deployment latency are factors in
Flock, unlike traditional distributed trust. We opted for server-
less containers with low coldstart [18, 52, 58] over those with
high coldstart [3, 16, 22] and designed lean Docker contain-
ers (634 MB pre-compression, 225 MB post-compression).
Containers are stored in the application provider’s Elastic
Container Registry on each cloud, so that users need not build
containers. Deployment latency averaged 16.13s for AWS
Lambda and 15.88s for Google Cloud Run across 10 tests. For
coldstart measurements, we used AWS CloudWatch’s X-Ray
and invoked Google Cloud Run after idle periods, resulting
in 1.02s (AWS Lambda) and 2.10s (Google Cloud Run), av-
eraged over 10 runs. Providers can minimize (or eliminate)
coldstart times by keeping containers warm through periodic
polling [1]. Applications can also deploy smaller containers
with only necessary module dependencies, not all 5.

Per-Conn. Setup Latency (ms) Concurrent Users
Gb/s S2R Total Sign Decrypt

Baseline 1.94 – 24.48 – –
Flock 1.72 20.66 49.72 11,700 1,900
Wireguard 0.063 25.5 78.43 – –

Table 4: Single connection throughput & establishment la-
tency, and number of concurrent users supported by the relay.
S2R includes steps 1-7 of the per-invocation protocol (§3.1.3).

5.4 Relay Evaluation

Per-connection latency & throughput. Table 4 compares the
setup latency of the Per-Invocation protocol (§3.1.3) and the
throughput5 of a Flock Relay TLS connection to the baseline’s
direct TLS connection. We use our Azure and GCP VMs as
endpoints, with the relay hosted in the AWS VM. Averaged
over 50 runs, a Flock connection’s throughput is 0.89x that of
a direct TLS connection since all traffic is forwarded through
the relay. The setup latency is 2x that of a direct connection
due to the additional S2R handshake.

We also benchmark the method used by Tailscale
DERP [37], which connects Wireguard [96] endpoints with a
relay that re-encrypts Wireguard packets into TLS messages.
The Wireguard setup is significantly less performant than
the Flock Relay at 0.03x the per-connection throughput of
the baseline. As we explain in §3.1, the Wireguard setup in-
curs significant overhead from encrypting packets at the more
granular IP layer, decrypting and re-encrypting all traffic us-
ing TLS at the relay, and redundantly TLS-encrypting the
Wireguard packets at the endpoints. Setting up Wireguard in-
terfaces and iptable routes introduces 3.2x the setup latency of
the baseline. Therefore, Flock Relay connections outperform
prior work and nearly match the efficiency of direct TLS.

Cross-user throughput. To evaluate the maximum capac-
ity of the relay, we measure its concurrent user throughput,
independent of external factors like application server per-
formance and the compute of cryptographic modules. By
emulating traffic patterns for the signing and decryption mod-
ules from multiple threads, we saturated the CPU utilization
of the relay VM. Results in Table 4 show it can handle 11,700
concurrent signing or 1,900 decryption requests, using 1.9
GB memory. The application provider can further scale the
relay deployment based on user demand. We remark that
these values represent a worst-case scenario where all users
invoke Flock, generating traffic patterns in a burst without
compute-induced delay. Typically, the Flock Relay can sup-
port additional users when they spend intermittent time on
compute tasks.

5We use github.com/udhos/goben/ for throughput measurements.
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Figure 6: Maximum requests/min. of Flock (F), normalized
over the baseline (B). (Secret Recovery: F-1376, B-1384;
Signing: F-66, B-69; Decryption: F-5, B-5; PIR: F-1195, B-
1196; Freshness: F-1162, B-1169)

5.5 Throughput & Cost

System throughput. Flock achieves throughput comparable
to the baseline, as illustrated in Fig. 6. We demonstrate this
by fixing an input size of 210 and invoking as many Flock
requests as possible.We verify that the CPU utilization of
the VM(s) in both Flock and the baseline is 100% at the
maximum load, which is the threshold at which additional
threads cannot further increase the number of successfully
completed requests per minute.

Cost. We use this experiment to calculate the cloud cost
estimates for the baseline and Flock in the worst case (Ta-
ble 5) and across varying server utilization rates (Fig. 7).
For each module, we use the baseline’s request-per-minute
from Fig. 6 to calculate the cost-per-request by dividing the
monthly server cost by the number of monthly requests. We
then measure Flock’s cost-per-request using the per-second
vCPU and memory costs, and the same method as the baseline
to calculate the application provider’s server cost. Finally, we
aggregate all cloud expenses to get the total computational
cost per operation. We measure the bytes of network traffic
transferred by each protocol. AWS, GCP, and Azure charge a
network egress fee of $0.09/GB, $0.085/GB, and $0.087/GB,
respectively, which we use to calculate the cross-cloud and
cloud-to-client data transfer fees. Each module also includes
a persistently stored state. For one month, AWS, GCP, and
Azure charge $0.026/GB, $0.023/GB, and $0.021/GB, respec-
tively. We include the resulting bandwidth, storage, network,
and compute cost per invocation in Table 5.

Averaging across modules, Flock is 2.27x the worst-case
cost of the baseline. Table 5 assumes server load is saturated,
yielding the lowest possible cost-per-user. However, applica-
tion providers rarely operate at full server capacity and often
provision excessive resources to handle spikes in usage. Fig.
7 shows Flock and the baseline’s module average of the per-

invocation cost, varying the server utilization from 5-100%
of the maximum requests-per-minute. For operating at 50%
utilization, the cost of Flock is only 23% more. Flock is ac-
tually less expensive on average than the baseline when the
monthly requests completed are up to 20% of the baseline’s
maximum capacity, because of the serverless compute model.

Finally, we emphasize that the baseline has additional costs
beyond the cloud cost, which do not exist in Flock (§1.1). First,
the application provider must compensate its business partners
(who have employees or seek profit). Second, the hidden price
of the traditional setup is the manual, time-consuming, and
difficult challenges of finding suitable business relationships
to setup distributed trust.

6 Related Work

Traditional distributed-trust deployments have exhibited a
host of obstacles [178] for industry-leading teams, including
Signal [79], ISRG [54], and Coinbase [177]. Prio has been
employed for private analytics in COVID-19 exposure notifi-
cations and Firefox telemetry [100, 108, 126, 136], but ISRG
encountered difficulties with cross-organizational inconsisten-
cies in testing and debugging [99, 145, 178]. Signal struggled
to deploy traditional distributed trust for its secret recovery
application [179], citing reliance on third-parties for security,
constant up-time, and user trust [79, 178]. Meta’s Private Lift
leverages MPC for private advertising, yet advertiser onboard-
ing is time-consuming [187, 198]. Astran [12] has attempted
secret-sharing user data across clouds, but their servers see the
plaintext data and are therefore a central point of attack [13].
Thus, while the cryptographic guarantees of distributed trust
have been instrumental in securing several impactful applica-
tions, deployment has been a central challenge.

MPC [112, 128, 147, 162–164, 213, 219] and PIR [40, 105,
113, 116, 125, 146, 152, 169] applications are growing in rele-
vance. MPC applications include private analytics [114, 126]
and MPC wallets [35,38,42,46,47,66,72,77,97,101,134,177].
PIR applications include private contact discovery [158], cre-
dential reporting [174, 191, 207, 212], blocklist lookups [166],
and media delivery [149]. Both primitives have been used
for private search [131, 132, 151, 194, 197, 211], private ad-
vertising [110, 148, 157, 187, 201], and anonymous messag-
ing [105, 106, 123, 127, 138, 170, 171, 217]. Data freshness
is important for preventing rollback attacks, e.g. in trusted
execution environments [104,167,183]. Prior work introduces
hash servers for file integrity [155, 160]. Flock’s contribution
is orthogonal and focuses on deploying such systems. Many
of the systems that Flock supports can be mapped to our base-
line setup in §5, and use an underlying cryptographic module
that we benchmark. Another line of work [172] aids in the
deployment of non-cryptographic distributed trust by offering
different privileges to each trust domain; our work instead
focuses on offering a deployment mechanism for distributed
trust based on strong cryptographic guarantees.
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Module Bandwidth (KB) Storage Network Compute Total Compute Total

Secret Recovery 25.83 0.0000 0.0002 0.0004 0.0006 0.0016 0.0018
Signing 67.38 0.0000 0.0006 0.0083 0.0089 0.0213 0.0219
Decryption 59,763 0.0000 0.5219 0.1141 0.6360 0.3340 0.8559
PIR 1.38 0.0009 0.0000 0.0005 0.0014 0.0024 0.0033
Freshness 2.89 0.0000 0.0000 0.0005 0.0005 0.0011 0.0011

Table 5: Worst-case cost per one user invocation (USD cents). We show the maximum number of requests per minute that the
baseline can handle, bandwidth (KB), storage cost, networking cost, and the compute cost for each a single invocation in the
baseline and Flock.
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Figure 7: Average per-invocation cost (¢) across all modules
for Flock and the baseline, between 5-100% utilization of the
maximum baseline capacity.

Serverless networking is a longstanding limitation [107,
150] of serverless computing. While service meshes [31, 55]
and proxies [44] can connect services by abstracting network
connections, they do not handle private endpoints. As we dis-
cuss in §3.1, a line of work employs NAT traversal and hole-
punching for serverless communication [137, 139, 186, 214],
but requires costly per-user services like private clouds or
NAT gateways. Recent systems use a relay to enable server-
less networking [140, 141, 210], but do not consider secu-
rity. Some works conduct TLS over multi-step network con-
nections [80, 208], but cannot handle publicly inaccessible
endpoints. Wireguard [96] and Tailscale DERP relays [37]
securely connect private endpoints, but are unsuitable for
serverless as we explained in §3.1. We build upon the the
relay-based technique in the literature to architect the first
end-to-end encrypted relay which has negligible detriment to
performance.

Hardware enclaves have been proposed [130, 179] as
a replacement to deploying n − 1 trust domains to safe-
guard secrets and execution from the application provider.
However, enclaves are vulnerable to side-channel attacks

that compromise remote attestation, including leaks through
SGAxe [209], Plundervolt [188], AEPic Leak [115], and CI-
PHERLEAKS [175]. With root access to deployment servers,
application providers can exploit such side-channels to access
secrets. Hence, while enclaves are often utilized as a supple-
mentary defense alongside cryptography, applications often
opt for cryptography as the primary security measure [178].
In contrast, Flock sets up distributed trust on n major clouds
without relying on trusted hardware.

User-centric deployment has been validated in traditional
systems work [90, 103, 120–122, 168, 173, 185, 192, 199] in
which users deploy components of the applications to retain
privacy from a provider. Users sandbox and isolate compo-
nents of their application to enforce user control. Unlike Flock,
these methods do not utilize distributed trust, and thus posi-
tion a cloud, device, or server as a central point of attack.
Flock draws from the underlying principles of user-centric
deployment by applying this framework to distributed trust.

7 Conclusion

This work introduces the on-demand distributed-trust architec-
ture, which enables application providers to automatically de-
ploy distributed-trust applications, thus surpassing the cumber-
some, manual, and time-consuming process of setting up busi-
ness relationships. To reverse the deployment from provider
to users, our platform Flock consists of a cost-effective cross-
cloud serverless framework supporting a variety of distributed-
trust applications. We hope that Flock catalyzes an increase
in the deployment of distributed trust.
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Abstract

Datacenters need to reduce embodied carbon emissions,
particularly for flash, which accounts for 40% of embodied
carbon in servers. However, decreasing flash’s embodied emis-
sions is challenging due to flash’s limited write endurance,
which more than halves with each generation of denser flash.
Reducing embodied emissions requires extending flash life-
time, stressing its limited write endurance even further. The
legacy Logical Block-Addressable Device (LBAD) inter-
face exacerbates the problem by forcing devices to perform
garbage collection, leading to even more writes.

Flash-based caches in particular write frequently, limiting
the lifetimes and densities of the devices they use. These
flash caches illustrate the need to break away from LBAD
and switch to the new Write-Read-Erase iNterfaces (WREN)
now coming to market. WREN affords applications con-
trol over data placement and garbage collection. We present
FairyWREN1, a flash cache designed for WREN. FairyWREN
reduces writes by co-designing caching policies and flash
garbage collection. FairyWREN provides a 12.5× write re-
duction over state-of-the-art LBAD caches. This decrease in
writes allows flash devices to last longer, decreasing flash cost
by 35% and flash carbon emissions by 33%.

1 Introduction

DATACENTER CARBON EMISSIONS are a topic of grow-
ing concern. At current emission rates, datacenters’

share of global emissions are projected to rise to 20% by
2038 [48] and 33% by 2050 [53]. In the next few decades,
many companies — including Amazon [1], Google [2],
Meta [11], Microsoft [71] — are looking to achieve Net Zero,
i.e., greenhouse gas emissions close to zero. To achieve this
goal, many datacenters are adopting renewable energy sources
such as solar and wind [11, 39, 64, 71]. Google, AWS, and
Microsoft are expected to complete their transition to renew-
able energy by 2030 [30, 49, 59]. However, this switch in
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), and “minimum writes” ( )—an idealized cache
with no extra writes—over a 6-year lifetime for a production Twit-
ter trace and a target 30% miss ratio. Compared to Kangaroo,
FairyWREN reduces carbon emissions by 33% and cost by 35%.

energy source does not reduce datacenters’ embodied emis-
sions, the emissions produced by the manufacture, transport,
and disposal of datacenter components. Embodied emissions
will account for more than 80% of datacenter emissions once
datacenters move to renewable energy [39].

Embodied emissions are produced by one-time lifecycle
events. Datacenters can reduce these emissions by: (i) re-
placing hardware with less carbon-intensive alternatives, and
(ii) extending the lifetime of components to amortize embod-
ied emissions over a longer period. Recent work has studied
embodied emissions in processor design [24, 38, 39, 85], but
considerably less attention has been paid to memory and
storage, even though they constitute 46% and 40% of server
emissions, respectively [64]. It is therefore crucial to both
move from carbon-intensive technologies like DRAM to flash,
which has 12× less embodied carbon per bit [38], and to ex-
tend flash lifetimes to amortize flash’s embodied carbon.

However, flash introduces a new challenge: limited write en-
durance. A flash device can only be written a limited number
of times before it wears out. Each new generation of flash has
lower write endurance as a result of manufacturers packing
more bits into each cell. This packing, however, does improve
sustainability by storing more capacity in the same silicon
(i.e., less carbon per bit). To realize the benefits of denser
flash, applications must write to flash much less frequently.
The write-rate budgets that applications must operate under to
achieve longer lifetimes are tiny: to achieve a six-year lifetime
on a 2 TB QLC drive, the application can write only 14 MB/s,
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or 0.09% of available write bandwidth (Sec. 2).

Reducing carbon from caching. Hence, write-intensive
flash applications present a major challenge in reducing over-
all datacenter emissions. This paper focuses on reducing car-
bon from flash caching, an increasingly popular use of flash in
the datacenter [3,16,21,22,35,36,83]. We aim to demonstrate,
through caching, how to leverage emerging flash interfaces
to reduce writes, in particular by re-purposing garbage col-
lection to do useful work.

Caching is fundamentally write-intensive, as new objects
must be frequently admitted to maintain hit rates [15,18]. Dat-
acenter caches also store many small objects [16,67], which is
particularly problematic because flash can only be written at a
coarse granularity. Because of this mismatch, admitting small
objects to the cache can lead to significant write amplification:
i.e., more bytes are written to the underlying flash device than
requested by the application.

Most current flash devices are Logical Block-Addressable
Devices (LBAD) that present the same block device abstrac-
tion used by hard disks. This abstraction hides significant
details about how SSDs work. In particular, while the inter-
face allows reading and writing 4KB blocks, the underlying
flash device can only erase large (MB to GB) regions. To
implement the LBAD interface, the flash firmware performs
garbage collection, copying blocks of valid data and erasing
entire regions to make room for new writes. Current flash
caches have a limited ability to optimize these internal writes,
which can amplify the total bytes written by 2× to 10× [67].

Opportunity: WREN. New flash SSD interfaces, such as
ZNS [19] and FDP [66], allow closer integration of host-level
software and flash management. The key difference between
these interfaces and LBAD is that these interfaces include
Erase as a first-order operation, allowing the cache to con-
trol garbage collection. We use the name Write-Read-Erase
iNterfaces (WREN) to collectively refer to such interfaces,
and we describe the necessary and sufficient operations for
flash caches to minimize write rate. However, we also show
that merely porting existing flash caches to WREN does not
reduce flash writes. Flash caches must be re-designed to lever-
age the additional control provided by WREN.

Our solution: FairyWREN. We design and implement
FairyWREN, a flash cache that harnesses WREN to reduce
writes. The main insight in FairyWREN is that every flash
write, whether from the application or from garbage collec-
tion, is an opportunity to admit objects to the cache. When
flash is written during garbage collection, FairyWREN can ad-
mit objects “for free”. This idea cannot be realized on LBAD,
since these devices offer no control over garbage collection.
FairyWREN uses the features of WREN to perform a “nest
packing” algorithm on every write, unifying cache admission
and garbage collection in a single algorithm. FairyWREN
also leverages WREN to enable large-small object separation
and hot-cold set-partitioning, further reducing writes.

Summary of results. We find that, without major changes to
flash interfaces and cache designs, deploying denser flash will
not reduce the carbon emissions of flash caches. For current
caching systems, the reduced write endurance of denser flash
outweighs the gains in density. Only by changing the flash
interface and optimizing the cache to this new interface can
we realize the significant emissions savings of denser flash.

To illustrate this point, we implement FairyWREN as a flash
cache module within CacheLib [16]. We evaluate FairyWREN
on production traces from Meta and Twitter using both simula-
tion and a real ZNS SSD. FairyWREN reduces flash writes by
12.5× vs. the research state-of-the-art. By enabling caching
on denser flash, FairyWREN reduces flash’s carbon emissions
by 33% vs. the research state-of-the-art (Fig. 1). FairyWREN
performs close to an idealized, minimum-write cache on both
carbon emissions and cost.

Contributions. This paper contributes the following:
• Flash trends (Sec. 2): By studying flash trends, we identify

opportunities for more sustainable flash caching as well as
challenges that prevent current flash caches from realizing
these benefits (Sec. 3).

• Critical elements of flash interfaces (Sec. 4): We identify the
Erase operation and control over garbage collection as the
essential features of emerging flash interfaces. We describe
tradeoffs and fundamental constraints of flash interfaces,
showing that some features are, contrary to prior work,
unhelpful for caching.

• FairyWREN (Sec. 5): FairyWREN’s key insight is to lever-
age emerging flash interfaces to unify garbage collection
and cache admission as one operation, greatly reducing
overall flash writes. FairyWREN further reduces writes by
partitioning objects by size and popularity (hot vs. cold).

• Analysis of flash emissions (Sec. 6): We develop a model
to analyze carbon emissions from flash. We show that
FairyWREN’s write reduction allows flash caches to im-
prove sustainability using denser flash for longer lifetimes.

2 Opportunities in flash caching
Flash is an increasingly attractive option for caching [16,

21,22,35,57,67,68,83]. In this section, we discuss how trends
in the design of flash devices present growing opportunities
to reduce the cost and carbon emissions of caching.

Opportunity 1: Flash is less carbon-intensive than DRAM,
so caches are more sustainable with less DRAM.

DRAM often makes up 40% to 50% of server cost [58,
79, 82] and is no longer scaling (Fig. 2). DRAM also has a
large embodied carbon footprint and has large operational
emissions due to requiring up to half of system power [38].

Flash is cheaper per-bit, embodies 12× less carbon, and re-
quires less power per-bit than DRAM [38]. Thus, datacenters
should use flash over DRAM whenever possible [37], even
for traditionally DRAM workloads, such as caching [16, 35,
67, 68] or machine learning [95].
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Fig. 2: Cost for flash and DRAM over the last 10 years [4, 6]. Flash
prices have decreased over 14×, while DRAM prices have only
decreased by ≈2×.

Opportunity 2: Flash caches should use denser flash where
possible to reduce emissions.

Flash is becoming denser, moving from single-level cells
(SLC), which store 1 bit/cell, to tri-level cells (TLC), which
store 3 bits/cell. Flash SSDs will soon use quad-level cells
(QLC) and penta-level cells (PLC) [73]. Denser flash is
cheaper; e.g., PLC is forecast to be 40% cheaper per-bit than
TLC [9]. Denser flash also reduces carbon emissions, since
more bits are packed onto roughly the same silicon.

Opportunity 3: Lengthening device lifetime is an effective
way to improve datacenter sustainability.

Traditionally, datacenter hardware replacement cycles have
been around three years [64] due to the rate of improvement
in hardware performance and energy efficiency. Today, data-
centers deploy devices for longer. Longer replacement cycles
have become common due to their cost advantages and the
slowing of Moore’s Law. For example, Microsoft Azure in-
creased the depreciable lifetime of servers from four to six
years [42, 65], and Meta recently started planning for servers
to last 5.5 years [12]. Additionally, hyperscalers are finding
that servers do not fail quickly: failure rates at Azure have
little evidence of increasing before eight years [17, 64].

Moving to longer lifetimes amortizes both cost and em-
bodied carbon. As datacenters shift to renewable energy,
they are rapidly reducing operational carbon. As a result,
embodied carbon now dominates datacenter carbon emis-
sions [12, 38, 39, 84]. The major challenge, though, is how to
extend flash lifetime, given its limited write endurance.

3 Challenges in flash caching
Flash SSDs have limited write endurance and are war-

rantied only for a stated write budget [10]. Exceeding this
write budget can cause the device to fail. Hence, while flash
caching presents carbon-saving opportunities (Sec. 2), caches
must severely limit the amount they write. Here, we discuss
the challenges of flash caching in detail and describe how
current systems fail to address these challenges.

3.1 Wherefore device write amplification?
Flash devices cannot write new values without first eras-

ing a large region of the device. To support random writes,
devices must read all live data in a region, erase the region,

and then write the live data back to the drive along with any
new data. As a result, flash SSDs perform more writes than
requested by the application. The device-level write amplifi-
cation (DLWA) [23, 35, 41, 54, 57, 62, 83] captures this relative
increase in bytes actually written to flash vs. bytes written by
an application. (If an SSD writes 3GB to serve 1GB of appli-
cation writes, then DLWA is 3×.) DLWA can be large: a factor
of 2× to 10× is common [67]. DLWA causes write-intensive
applications to quickly wear out flash devices, increasing their
replacement frequency and embodied emissions over time.
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Fig. 3: The internal arrangement of flash devices into planes, blocks,
pages, and EUs. Each EU has blocks in multiple pages. EU 0 is a
partially full, EU 1 is entirely full, and EU N has just been erased.

DLWA is primarily caused by the physical limitations of
flash storage. Flash devices are organized in a physical hier-
archy (Fig. 3). The smallest unit is the page, usually 4 KB.
Flash can be written at page granularity, but a page must be
erased before it can be rewritten. To avoid electrical inter-
ference during erasure, pages are grouped into flash blocks
[13, 19, 20, 41, 63]. A flash block is the minimum erase size.
In practice, however, flash drives stripe writes across blocks
to improve bandwidth and error correction. Striping increases
the effective erase unit (EU) size to gigabytes [19].

The mismatch between the granularity of writes and erases
is the root cause of DLWA. To maintain the 4 KB read/write
block interface, flash devices garbage collect (GC), moving
live pages from partially empty EUs (such as EU 0 in Fig. 3)
to a writable EU (such as EU N) before erasing the EU and
freeing dead pages. The less the available capacity on the
device, the more frequently it has to GC, introducing a tradeoff
between flash utilization and flash writes.

One might hope that technological advances would de-
crease EU sizes, closing the gap between write and erase
granularities. However, flash EU sizes have gotten larger as
flash has gotten denser. Effective block sizes on an SLC flash
device were 128 KB [86], MLC and TLC flash devices are
around 20 MB [81], and QLC devices will be 48 MB [80].
Striping these blocks with hundreds of 3D-stacked layers [80]
results EUs in the gigabyte range [19, 69].

Lesson for flash caches: Write amplification is caused by
the size mismatch between writes and erases in flash. This
mismatch will keep increasing.
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3.2 Denser flash has lower write endurance
As flash becomes denser, its write endurance drops signifi-

cantly. For example, while PLC flash is up to 40% denser than
TLC, PLC is forecast to have only 16% of TLC’s writes [9].
Additionally, because denser flash has to differentiate between
more voltage levels, even small voltage changes can make
data unreadable. TLC uses two-phase writes and more fre-
quent refresh to prevent data loss [70]. Two-phase writes
require the device to have enough RAM and capacitance to
remember all in-flight writes, limiting the number of EUs that
can be “active” (i.e., writable) at any point in time, often to
less than ten. Writing to more EUs than this requires closing
an active EU, incurring more internal device writes.

Fig. 4 models how write rate affects both emissions and cost
when varying lifetimes and flash density. Each line shows a
device of a different lifetime, and shaded regions show which
flash density is best for a given write rate. The model calcu-
lates how much capacity must be provisioned for each tech-
nology to achieve the desired lifetime at a given write rate.
For example, a device lasting 7 years (green) has lower annu-
alized carbon emissions than one lasting 3 or 5 years, and it
should use dense flash (e.g., TLC) only at write rates below
two device-writes-per-day.Motivation Graphs

PLC QLC TLC

MLC

PLC QLC TLC

MLC

(a) Carbon emissions.

Motivation Graphs

PLC QLC TLC

MLC

PLC QLC TLC

MLC

(b) Cost.

Fig. 4: The annual carbon emissions and cost of flash depending on
the required average write rate and desired lifetime.

Lesson for flash caches: Device lifetime is the most impor-
tant factor in reducing carbon emissions. Moreover, denser
flash can improve sustainability, but only if flash write rate is
very small — much less than one device-write per day.

3.3 Shortcomings of existing solutions
To limit embodied emissions, sustainable flash caches must

minimize (i) idle flash space — which incurs emissions for
no benefit; (ii) DRAM usage for object metadata — which
can add up to tens of GBs [35, 67]; and (iii) flash write rates
— which wear out the device, reducing lifetime. No prior
flash-cache design meets these criteria (Table 1). In particular,
although caches must admit new objects to maintain hit rates,
flash caches must be designed to minimize application- and
device-level write amplification to extend device lifetime.

Flash caches 6= DRAM caches. Both flash caches and
DRAM caches try to reduce misses, but flash caches must also
contend with flash’s limited write endurance, leading to much

Flash caches should minimize ...
Unused flash DRAM ALWA DLWA

Key-value stores 7 3 3 3
Log-structured caches 3 7 3 3
Set-associative caches 7 3 7 7
Kangaroo [67] 3 3 3 7
FairyWREN 3 3 3 3

Table 1: Comparison of FairyWREN vs. prior cache designs.
FairyWREN is the only design to minimize all important overheads.

different designs. Flash caches are designed to achieve low
end-to-end write amplification, i.e., the product of application-
level write amplification (ALWA) (e.g., from having to write
4KB to flash to admit a 100B object) and DLWA.

Flash caches 6= key-value stores. KV stores [5,7,33,55,60,
75, 90] support a similar read-write interface as caches and
likewise minimize flash writes and DRAM overhead. How-
ever, flash caches have significantly different design goals.

The main difference is that delete operations are uncom-
mon in KV stores, but very frequent in caches. Caches fre-
quently evict objects and must reclaim space immediately
to admit new objects [67]. Most KV stores do not support
deleting objects quickly enough to implement cache eviction
policies. Specifically, standard KV store data structures like
LSM trees [5, 7, 31, 32, 60, 75, 90] will not work well for
caching unless the KV store is massively overprovisioned,
often by more than 2× the cache capacity [21, 22, 83].

Moreover, KV stores do not exploit a cache’s biggest advan-
tage: caches are free to evict objects whenever it is convenient.
Evicting objects opportunistically can greatly reduce writes
and maximize space utilization, but KV stores are not built to
exploit this cache-specific optimization.

Existing flash caches do not address DLWA. Because of
the unique challenges of flash caching, there is a growing
body of work devoted to improving flash cache designs. Prior
flash caches generally fall under three categories (Fig. 5):
log-structured, set-associative, and hierarchical.

Log-structured caches. To minimize writes, many flash
caches are log-structured [16,27,35,83]. These caches append
objects to an on-flash log (Fig. 5a), locating objects through a
DRAM index and evicting objects in large groups. The log
allows large sequential writes to flash and thus achieves nearly
ideal write amplification.

While log-structured caches work well for larger objects,
the DRAM index becomes prohibitively large for small ob-
jects, even if it is highly optimized [67], significantly increas-
ing overall emissions and cost (see Fig. 11). Flash caches are
thus often partitioned, using a log-structured cache for large
objects and a different design for small objects [16].

Set-associative caches. Set-associative caches, such as the
Small Object Cache in Meta’s CacheLib [16], replace the
DRAM index with a hash function that maps each object to a
unique set (usually a 4 KB page) on flash (Fig. 5b).
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Fig. 5: Designs of prior flash caches: (a) Log-structured caches write objects segments to flash sequentially, (b) Set-associative cache write
objects to a set based on the key’s hash, and (c) Kangaroo is a hierarchical design that combines a log-structured and a set-associative cache.

The downside of these caches is that they cause signifi-
cantly more writes. When a set-associative cache admits a
small object (say, 100 B), it must write at least one flash page
(4 KB), resulting in large ALWA (40×). Even worse, these
caches perform random writes, leading to DLWA of 2× to
10× [67]. Since write amplification (WA) is the product of
ALWA and DLWA, a set-associative cache’s WA easily exceeds
100×. To mitigate this, Meta’s flash caches use only 50% of
the drive [16], increasing miss ratio and carbon emissions.

Hierarchical. FairyWREN builds on Kangaroo [67, 68], a
hierarchical flash cache for small objects that combines a
small log-structured cache (KLog) and a large set-associative
cache (KSet) (Fig. 5c). Kangaroo uses KLog to reduce ALWA
and KSet to reduce DRAM. Objects are first buffered in KLog
and then admitted in batches to KSet, amortizing its ALWA
across several admitted objects. KSet comprises more than
90% of the cache capacity, limiting the DRAM needed to
index KLog. Kangaroo also includes a selective admission
policy to reduce flash writes and a partitioned index data
structure to reduce DRAM. Due to its low DRAM overhead,
Kangaroo achieves large emission reductions over a memory-
optimized log-structured cache, Flashield [35], for workloads
with many small objects (Fig. 11 in Sec. 6.2).

While Kangaroo optimizes both DRAM and ALWA, it still
has too many writes because Kangaroo does not address
device-level write amplification. KSet performs random 4 KB
writes, the worst case for DLWA. As a result, Kangaroo’s emis-
sions do not reduce with denser flash. Fig. 4 shows that, for a
10-year lifetime, QLC requires fewer than 0.37 device-writes
per day (DWPD) and PLC requires fewer than 0.16 DWPD,
whereas Kangaroo performs 1.46 DWPD in our evaluation.

4 Write-Read-Erase iNterfaces (WREN)
Prior flash caches incur excessive DLWA (Sec. 3). The root

causes are the mismatch between write and erase granularities
and a legacy LBAD interface that hides this mismatch from
software. This section discusses recent Write-Read-Erase iN-
terfaces (WREN), such as ZNS [19] and FDP [66], that include
Erase as a first-order operation. We show that WREN is nec-
essary but insufficient: a new flash interface does not reduce
writes by itself, changes to the cache design are required.

4.1 Today’s interface is LBAD
Most flash SSDs today are logical block addressable de-

vices (LBAD), sharing the same interface as disks. LBAD
presents the flash device as a linear address space of fixed-

size blocks2 that can be independently read or written.
LBAD eased the transition from HDDs to SSDs, but does

not expose the erase granularity of flash (Sec. 3). As a result,
the LBAD device firmware must perform garbage collection
(GC) that can cause high DLWA and tail latency. Although
there has been work to decrease DLWA [40, 41, 44, 56, 89, 91],
LBAD devices still hide erase units and GC from applications,
preventing co-optimization to minimize overall flash writes.

4.2 Challenges of new interface design
While a variety of flash interfaces have been proposed [20,

44, 51, 52, 72, 78, 88, 96], none have gained widespread adop-
tion. Two proposals, Multi-streamed SSDs and Open-Channel
SSDs, illustrate the pitfalls of designing a new flash interface.

Multi-streamed SSDs [51, 52] allow users to direct writes
to different streams. Streams provide isolation between work-
loads: different streams write to different EUs. When objects
with similar lifetimes are grouped into the same stream, GC
is more efficient. However, because the application does not
control GC directly, DLWA remains a significant issue.

Open-Channel SSDs [20] remove all flash-device logic and
force applications to handle all of flash’s complexities, even
beyond those described in Sec. 3. While the hope was to
develop layers of abstraction in software to hide some of this
complexity, this software was never widely deployed.

Lesson for flash caches: An ideal flash interface for caching
would allow the cache to control all writes, including GC, but
still present a simple abstraction to application developers.

4.3 What makes an interface WREN?
We call interfaces that delegate Erase commands and

garbage collection to the host Write-Read-Erase iNterfaces
(WREN). WREN is defined by three main features:

1) WREN operations. WREN devices must let applications
control which EU their data is placed in and when that EU
is erased. Specifically, WREN devices must, at least, have
Write, Read, and Erase operations.

These operations can be implemented differently. For ex-
ample, Zoned Namespaces (ZNS) [19] and Flexible Data
Placement (FDP) [66] are both WREN. Both interfaces are
NVMe standards with strong support from industry and pro-
vide an abstraction for writing to an EU3. However, they have
different philosophies, which can be seen, for instance, in their
Write operations. ZNS provides either sequential writes to
an EU or nameless writes through Zone Append [96]. FDP

2These fixed-size blocks correspond to pages, not flash blocks (Sec. 3)
3This abstraction is called a zone in ZNS and a reclaim unit in FDP.
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provides random writes within an EU as long as the applica-
tion tracks that the number of pages written is less than the
EU size. Despite these differences, both provide the control
over data placement into EUs required by WREN.

Moreover, the aforementioned Open-Channel interface is
also WREN. But Open-Channel SSDs expose the full com-
plexity of the device to the host, which is additional complex-
ity not required to reduce a cache’s DLWA.

2) The Erase requirement. Unlike LBAD, WREN devices
do not move live data from an EU before erasing it. Applica-
tions are responsible for implementing GC to track and move
live data before calling Erase. Erase is different from a tra-
ditional trim because Erase targets an entire EU rather than
individual pages. Failure to perform correct and timely GC
is subject to implementation-specific error handling by the
device. A major difference between FDP and ZNS is how they
treat violations of Erase semantics, but this error behavior is
inessential to reducing DLWA and thus beyond WREN.

3) Multiple, but limited, active EUs. An active EU is one
that can be written to without being erased. WREN devices
support a few active EUs at one time. Since an active EU typi-
cally requires a device buffer for the EU’s data, the maximum
number of active EUs is implementation-specific. FairyWREN
requires four simultaneously active EUs, which we expect will
be supported in the vast majority of WREN devices.

4.4 WREN alone is not a cure for WA

WREN devices make it easy to perform large, sequential
writes with no WA. When writing sequentially, the user can
maintain a single active EU and fill the EU completely before
activating the next EU. Furthermore, if all writes are large
and sequential, it is generally easy to find an EU consisting
of invalid data when GC is required, resulting in low WA.

Set-associative flash caches also want low WA for small, ran-
dom writes, which incur high DLWA on LBAD devices. One
might hope that WREN devices can achieve lower WA. A rea-
sonable first attempt at implementing a set-associative cache
on WREN is to treat each set as an object in a log-structured
store, allowing the cache to write updates sequentially to a
single active EU. We find that this naive approach does not
reduce WA because it just moves the GC from the device to
the cache.

The impact of smaller EUs. One idea for mitigating WA un-
der small, random writes is to reduce the EU size, e.g., from
a GB to tens of MB, by removing error correction between
flash blocks, which caches can tolerate. Prior systems liter-
ature uses smaller EUs to minimize GC [14, 69] because,
intuitively, lowering the number of sets per EU creates more
EUs that are either mostly invalid (good candidates for GC)
or mostly valid (bad candidates for GC that are skipped).
However, other prior work that analyzes the WA of FIFO GC
policies [34, 46] has largely ignored the effect of EU size. In
fact, this modeling work assumes that changing the EU size

will not change the WA from GC. To remedy this discrepancy
in prior work, we model the WA of a FIFO GC policy for a
set-associative cache, capturing the effect of EU size.

Following the approach of [46], we approximate the dis-
tribution of the number of live pages in the EU at the tail
of a log-structured store (see Appendix A for details). Our
approximation shows that when EU sizes are small, FIFO is
more likely to find EUs that are mostly invalid or completely
valid. To quantify this effect, we approximate the long-run
average WA under FIFO. Our approximation (Fig. 6) matches
simulation results, with a R2 value of 0.9996.

16KB 256KB 4MB 64MB 1GB
Size of EU

0

2

4

6

8

W
A

Simulation
Model

Fig. 6: The DLWA for a set-
associative cache running
on WREN with 7% overpro-
visioning. EUs have to be
less than 128 KB to signifi-
cantly reduce DLWA.

Lesson for flash caches: We find that reducing EU size only
improves WA for very small EU sizes. To realize a significant
reduction in WA, the EU size must be tens of KBs, but that is
unachievable in current devices (Sec. 3). Hence, we conclude
that WREN alone does not reduce WA for caches. To reduce
WA, we must also re-design the cache.

5 FairyWREN Overview and Design
FairyWREN uses WREN to substantially reduce WA by uni-

fying cache admission with garbage collection. The resulting
reduction in overall writes lets FairyWREN use denser flash
while extending device lifetime to improve sustainability.

5.1 Overview
How FairyWREN reduces writes. FairyWREN uses
WREN’s control over data placement and garbage collection
to reduce writes in two main ways. First, FairyWREN
introduces nest packing to combine garbage collection with
cache admission and eviction. When live data is rewritten
during GC, FairyWREN has an opportunity to evict unpopular
objects and admit new objects in their place. In LBAD, by
contrast, these objects would have to be rewritten separately
for GC and admission/eviction.

Second, FairyWREN groups data with similar lifetimes into
the same EU, separating data that in prior caching systems
would have been in the same page. If all of the data in each EU
has roughly the same lifetime, EUs will either consist mostly
of live data or mostly of dead data. FairyWREN can then GC
the mostly dead EUs with few additional writes. FairyWREN
leverages two main techniques to enable this grouping: large-
small object separation and hot-cold set partitioning.

Architecture of FairyWREN. FairyWREN partitions its ca-
pacity into a large-object cache (LOC) and a small-object
cache (SOC), as seen in Fig. 7. Incoming requests first check
the LOC and then check the SOC.
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The large-object cache (Sec. 5.2) stores objects larger than
2 KB and uses a simple log-structured design, since it can
tolerate higher per-object DRAM overhead.

The small-object cache (Sec. 5.3) uses a hierarchical de-
sign based on Kangaroo [67]. The SOC contains two levels:
FWLog and FWSets. FWLog is a log-structured cache with a
relatively high per-object DRAM overhead. The main func-
tion of FWLog is to buffer objects so they can be written effi-
ciently to FWSets. Therefore, FWLog can have a fairly low
capacity (≈ 5%), keeping its DRAM overhead low. FWSets
is a set-associative cache, but, since WREN does not sup-
port random writes, the sets are kept in a log-structured store.
FWSets stores sets, not individual objects, in the log to mini-
mize DRAM. When this log-structured store is garbage col-
lected, objects are opportunistically moved from FWLog into
FWSets. Finally, each set in FWSets is further partitioned
into hot (frequently accessed, long-lived) objects and cold
(recently admitted, short-lived) objects (Sec. 5.4).

5.2 The LOC

The LOC is a log-structured cache. Adapting log-structured
caches to WREN is straightforward, since they only perform
large, sequential writes. The LOC is broken into large seg-
ments, each the size of an EU. Segments can then be evicted in
LRU or FIFO order with minimal WA. The LOC uses DRAM
in two ways: (i) an in-memory, EU-sized buffer for log inser-
tions, and (ii) an in-memory index tracking object locations
on flash. Because the LOC stores large objects, it contains
relatively few objects and needs little DRAM. Besides the
segment buffer, all LOC objects are stored on flash.

Insertions. Objects are first inserted into an in-memory seg-
ment buffer and added to the in-memory log index. Once the
segment buffer is full, it is written to an empty EU in the log.

Lookup. Reads look up the object’s key in the log index. If
found, the cache reads the object from the indicated EU.

Eviction. Eventually, the log will fill up and LOC will evict a
log segment based on the eviction policy. Since log segments
are aligned to EUs, eviction simply Erases an EU, evicting
those objects from the cache. This design does not rewrite
any objects, incurring minimum WA of 1×.

5.3 The SOC
The focus of FairyWREN is the SOC. Log-structured

caches are impractical for caching small objects because a
large flash cache can fit billions of small objects, requiring a
large DRAM index to track them all (Sec. 3.3). FairyWREN’s
SOC is based on Kangaroo [67], a recent flash cache designed
for small objects with low DRAM overhead and low ALWA.
The SOC is a hierarchy of two levels: FWLog, a small log-
structured cache, and FWSets, a large set-associative cache.
FWLog contains about 5% of the SOC’s capacity, with the
remaining 95% for FWSets. We describe FWLog and FWSets
individually, and then how they work together.

FWLog design. FWLog’s goal is to buffer new small objects
for insertion into FWSets. Like the LOC, FWLog is a log-
structured cache that uses an in-memory segment buffer and
an in-memory index to track objects in the FWLog. All other
objects in the FWLog are stored on flash.

FWSets design. FWSets is a set-associative cache that maps
each object to a unique set by hashing its key. When admitting
an object, FWSets evicts old objects from the object’s set then
overwrites it. However, overwriting is impossible in WREN,
so FWSets stores the sets themselves as objects in a log-
structured store. FWSets uses an in-memory index to track the
location of each set on flash, but, unlike prior work [56,61,78],
it does not track individual objects, since this would incur too
much DRAM overhead. The index’s DRAM overhead is low
because a set is at least 4 KB, whereas objects can be just 10s
of bytes. (Larger sets reduce the size of FWSets’s DRAM
index, but increase average read latency.)

When FWSets’s log-structured store is close to full, it must
garbage collect in order to admit new objects to the cache.
The simplest scheme would be to erase the EU at the tail of
the log, evicting all sets — and thus their objects — mapped
to this segment4. However, since each set contains a mix-
ture of popular and unpopular objects, throwing away entire
sets would significantly increase miss ratio. Instead, FWSets
rewrites live sets during GC before erasing the EU.

SOC operation. FWLog and FWSets operate as a hierarchy:

Lookup. Lookups first check FWLog for the object. If not
found, FWSets hashes the object’s id and looks up the set’s
location. The set is read and scanned for the object.

Insertion. FairyWREN first inserts objects into FWLog. When
FWLog is full, objects are evicted from FWLog and in-
serted into FWSets, as described next. Similarly, inserting
into FWSets can cause cascading eviction from FWSets.

Eviction (nest packing). If either FWLog or FWSets is run-
ning out of space, FairyWREN needs to perform nest packing
(Fig. 8). FairyWREN’s SOC chooses an EU for eviction from
FWLog or FWSets, depending on which is full. If both logs
are full, FWSets is chosen because FWSets must have space

4In this scenario, FWSets would be on a log-structured cache.
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Fig. 8: Nest packing in FairyWREN’s small-object cache.

to receive objects evicted from FWLog.
The victim EU is first read into memory. If evicting from

FWLog, each object in the EU hashes to a victim set. Oth-
erwise, when evicting from FWSets, each set in the EU is
a victim set. Then, 1 FairyWREN rewrites each victim set
by: 2 finding all objects in FWLog that map to a given set,
forming a new set containing these objects (evicting objects
as necessary), and 3 rewriting the set by appending it to
FWSets’s log. Finally, 4 FairyWREN erases the victim EU.

SOC design rationale. Prior flash caches relied on LBAD
GC to reclaim flash space from evicted sets, causing DLWA.
The key difference of FairyWREN from prior flash caches is its
coordination of cache insertion and eviction with flash GC.

FairyWREN’s nest packing algorithm combines previously
distinct processes. LBAD caches pay for eviction as ALWA
and for garbage collection as DLWA. In the worst case, a set is
copied by garbage collection and then is immediately rewrit-
ten to admit objects from FWLog. It is impossible to merge
these flash writes in LBAD. FairyWREN leverages WREN
to eliminate unnecessary writes by aligning the eviction and
garbage collection cadences of FWLog and FWSets.

5.4 Optimizing the SOC
The SOC is the main source of DRAM overhead and WA in

FairyWREN. We employ a variety of optimizations to improve
the memory and write efficiency of the SOC.

Reducing flash writes by separating hot and cold objects.
Even after using nesting to decrease writes, FWSets is still the
primary source of flash writes in FairyWREN. FairyWREN
further reduces writes by separating objects by popularity, as
determined by a modified RRIP algorithm [45,67]. Instead of
a set being one unit that is written every insertion, each set in
FWSets is split in twain, into a subset for popular objects and
a subset for unpopular objects, each backed by its own log-
structured store. Each subset is at least a page. Paradoxically,
since the unpopular objects are most likely to be evicted,
the subsets with unpopular objects correspond to hot (i.e.,
frequently written) pages on flash. Hence, we refer to the
subsets with unpopular objects as hot subsets and we refer to
the subsets with popular objects as cold subsets.

With hot and cold subsets enabled, objects evicted from
FWLog are inserted into the hot subset. The cold subset is
not typically written during insertion. Every n nest packing
operations on a subset, both the hot and cold subsets are read.
In memory, these subsets are merged and redivided by object
popularity, as seen in Fig. 9. Any popular objects found in the
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Fig. 9: FWSets is split in two: hot subsets with cold objects and cold
subsets with hot objects. Most of the time objects are inserted into
the hot subset. However, every n subset updates, both subsets are
read, merged, split by object popularity, and then both rewritten.

hot subset are moved into the cold subset, since these objects
are likely to remain in the cache for longer and do not need to
be rewritten as frequently. The least popular objects found in
the cold subset are moved into the hot subset so that FWSets
can evict them if they remain sufficiently unpopular.

Hot-cold object separation can nearly halve FWSets’s write
amplification. If n is 5 and sets are 8 KB (two 4 KB subsets),
FairyWREN without hot-cold object separation would have to
write all 8 KB on each insertion to a set. With hot-cold object
separation, FairyWREN writes 4 KB for the hot subset on
every insertion, but only has to write 4 KB for cold subset on
every fifth insertion. Thus, FWSets writes only 24 KB instead
of 40 KB every five inserts to a set, a 40% reduction.

Theoretically, FairyWREN could further reduce writes by
further dividing sets. However, there are some practical lim-
itations to this, namely that WREN devices only support a
limited number of active EUs, often less than 10. FairyWREN
currently needs 4 active EUs: 1 for LOC, 1 for FWLog, and
2 for FWSets. Using only 4 active EUs allows FairyWREN
to run concurrently with other programs on the flash without
interference and ensures compatibility with a wide range of
WREN devices while still achieving low write rates.

Moreover, separating objects by popularity yields dimin-
ishing returns since it increases miss ratio, which will then
require more cache capacity to reduce the miss ratio. Wrong
object-popularity predictions, which are frequent since very
few bits of metadata are used to track each object’s popular-
ity, can lead to increases in both writes and miss ratio. The
miss ratio will increase if popular objects are placed in hot
subsets and evicted prematurely. This type of error becomes
more frequent as one tries to separate objects by popularity
at finer ganularity. In fact, even our single layer of hot-cold
separations causes a modest increase in miss ratio (Sec. 6.5).

Minimizing DRAM in FWLog by slicing. Like Kanga-
roo [67, 68], FWLog is implemented as 64 slices, i.e., 64
independent log-structured caches that operate in parallel
over subsets of the keyspace. This is done to save log2 64 = 6
bits per flash pointer in the DRAM index.

A naïve implementation of slicing on WREN would require
one active EU for each slice. Many WREN devices do not
permit 64 simultaneously active EUs due to the prohibitively
large DRAM overhead this would impose on the flash device.
Instead, FWLog uses a single active EU and shares segments
among all 64 slices, giving each slice an equal static share of
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Fig. 10: FWLog uses partitioning to minimize memory and overflow
buffers to ensure the log segments are full.

each segment (Fig. 10a). The downside of sharing FWLog
segments is that one slice could fill up its share of the segment
before the others. In the worst case, one slice fills before the
others contain any objects, causing internal fragmentation in
FWLog. This fragmentation reduces FWLog’s ability to min-
imize WA in FWSets. Via simulation and stochastic models,
we found that fragmentation could exceed 20%.

FWLog reduces fragmentation via double buffering
(Fig. 10b). On insertion, FWLog 1 attempts to insert an object
into its slice in the “primary” segment buffer. If the primary
is full, 2 the object is inserted into its slice in the secondary,
“overflow” segment buffer. 3 When any slice in the overflow
buffer becomes more than half full, FWLog writes the primary
buffer to flash. The overflow buffer then becomes the new
primary buffer and vice versa. Double buffering increases the
number of objects seen before a buffer is written, reducing
the variance in the number of objects in each slice. Using
balls-and-bins [74] to approximate the maximum objects in
a slice, we find that this optimization limits the capacity loss
from fragmentation to <1%, even for small (16 MB) buffers.

Minimizing DRAM in FWSets by slicing. Like FWLog,
FWSets also slices the log-structured store to reduce DRAM
overhead, sharing segments to minimize active EUs and seg-
ment buffers. However, since sets are much larger than indi-
vidual objects, FWSets is more susceptible to internal frag-
mentation than FWLog. FWSets therefore uses only 8 slices.

Reducing DRAM in FWSets by using larger sets. Finally,
FWSets further reduces DRAM by using sets larger than
4 KB, reducing the number of sets that need to be tracked
proportionally. Naïvely, one might expect that increasing set
size would increase flash writes. In a pure set-associative
cache, this would be true. However, FWLog buffers objects,
and the number of objects that hash to a set also increases
proportionally with set size, so FWSets’s writes are roughly
independent of set size. We see only a 5% increase in WA
when going from 8 KB to 16 KB sets with a 4 KB hot subset
and a 12 KB cold subset.

DRAM overhead breakdown. Compared to a LBAD set-
associative cache, FWSets requires additional DRAM to track

sets. Hot-cold object separation compounds this effect, dou-
bling the number of (sub)sets to track.

Component Kangaroo Naïve SOC SOC

Log total 48 bits/obj 48 bits/obj 48 bits/obj

Set index – ≈ 3.1 b ≈ 1.4 b
Sets (other) 4 b 4 b 4 b
Sets total 4 bits/obj 7.1 bits/obj 5.4 bits/obj

Log metadata ≈ 0.8 b ≈ 0.8 b ≈ 0.8 b
Log size 5% = 2.4 b 5% = 2.4 b 5% = 2.4 b
Set size 95% = 3.8 b 95% = 6.7 b 95% = 5.1 b
Total 7.0 bits/obj 9.9 bits/obj 8.3 bits/obj

Table 2: Kangaroo and FairyWREN’s SOC’s DRAM overhead for
a 2 TB small-object cache with a 5% log. Despite tracking sets,
FairyWREN’s SOC still needs fewer than 10 bits per object.

Table 2 shows the per-object DRAM overhead for Kanga-
roo and FairyWREN’s SOC. Due to partitioning and double
buffering, FairyWREN achieves the same log overhead as Kan-
garoo. FairyWREN’s added overhead shows up in FWSets.
Naïvely, when FairyWREN has 4 KB subsets and 200 B ob-
jects, each set would need 8 bytes, for 3.1 bits/obj. However,
since FairyWREN uses 8 KB subsets and slices FWSets in
eighths, FWSets needs just 1.4 bits/obj to track sets.

FairyWREN uses 19% more DRAM than Kangaroo, a
1.5 GB DRAM overhead increase for a 2 TB cache. How-
ever, FairyWREN’s DRAM overhead is still much lower than
a log-structured cache, and this modest DRAM increase al-
lows FairyWREN to greatly decrease flash writes (by 12.5×),
netting large savings in carbon emissions and cost.

6 Evaluation
We compare FairyWREN to prior flash caches and find that:

(1) FairyWREN reduces flash writes by 92% over the research
state-of-the-art Kangaroo, leading to a 33% carbon reduction
and a 35% cost reduction, (2) FairyWREN is within 11% of
the minimum write rate, and (3) FairyWREN is the first cache
design to actually benefit from QLC.

6.1 Experimental setup and model
Implementation. We implement FairyWREN in C++ as a
module in CacheLib [16]. All experiments were run on two
16-core Intel Xeon CPU E5-2698 servers running Ubuntu
18.04 with 64 GB of DRAM, using Linux kernel 5.15. For
WREN experiments, we use a Western Digital Ultrastar DC
ZNS540 1 TB ZNS SSD, using the LOC and ZNS library

Parameter FairyWREN Kangaroo

Interface WREN (ZNS) LBAD
Flash capacity 400 GB 400 GB

Usable flash capacity 383 GB 376 GB
LOC size 10% of flash 10% of flash

SOC log size 5% of SOC 5% of SOC
SOC set size 4 KB hot, 4 KB cold 4 KB

Hot-set write frequency every 5 cold set writes
Set over-provisioning 5%

Table 3: FairyWREN and Kangaroo experiment parameters.
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SLC MLC TLC QLC PLC

Write endurance 4.4× 4× 1× 0.32× 0.16×
Capacity discount 3× 1.5× 1× 0.75× 0.6×

Table 4: Scaling factors for different flash densities. We optimistically
assume that increasing the bits per cell does not affect emissions or
cost.

written by Western Digital [50]. The ZNS SSD has a zone
(EU) capacity of 1077 MiB. The devices support 3.5 device
writes per day for an expected 5-year lifetime.

We compare to Kangaroo [67] over the first ≈2.5 days of
a production trace from Meta. FairyWREN uses a ZNS SSD
and Kangaroo uses an equivalent LBAD SSD with similar
parameters (Table 3). Both caches use 400 GB of flash capac-
ity and achieve similar miss ratios as Kangaroo’s production
experiments [67]. We overprovision FWSets by 5% to en-
sure forward progress during nest packing, giving several free
EUs to the FWSets log-structured store. Thus, FairyWREN
effectively uses 383 GB. This idle capacity should decrease in
larger flash devices. Kangaroo only uses 376 GB of capacity
due to device-level overprovisioning. We approximate Kan-
garoo’s DLWA based on results in the Kangaroo paper [67].

Simulation. In addition to flash experiments, we imple-
mented a simulator to compare a much wider range of possi-
ble configurations for FairyWREN. The simulator replays a
scaled-down trace to measure writes and misses from each
level of the cache, including the LOC, FWLog, and FWSets.

We evaluate our cache in simulation on a 21-day trace from
Meta [16] and a 7-day trace from Twitter [92]. The Meta trace
accesses 6 TB of unique bytes with a 13.8% compulsory miss
ratio and an average object size of 395 bytes. Small objects
(<2 KB) are 95.2% of requests, and these requests account
for 60.2% of bytes requested. The Twitter trace accesses 3.5
TB of unique bytes, has a 17.2% compulsory miss ratio, and
an average object size of 265 bytes. Small objects are >99%
of requests, and these requests account for >99% of bytes
requested. Both of these traces are higher fidelity than the
open-source traces [16, 92]. We present results for the last 2
days of the trace.

Carbon emissions and cost model. We evaluate carbon
emissions and cost while varying cache configuration, flash
density, and device lifetime. We assume that a flash device
will have the same caching workload for its entire lifetime
and that flash write endurance is the main lifetime constraint.
We normalize all results based on device lifetime and we as-
sume that all required flash is purchased at the beginning of
deployment.

We estimate emissions and cost from the total flash needed
to cover both the cache’s capacity and its writes over the
desired lifetime. For example, a 2 TB cache with a 6-year
lifetime will require at least 2 TBs of flash, but it may require
2.5 TB of flash to accommodate the cache’s write rate over 6
years. LBAD devices use 7% overprovisioning, the standard

on datacenter drives [8].
We base our write endurance and cost projections on Mi-

cron 7300 NVMe U.2 TLC SSDs. For other densities, we
multiply the TLC write endurance by the write-endurance fac-
tors in Table 4, based on [9]. For cost, we interpolate linearly
between flash capacities and include power as the operational
expense. Cost is normalized to Kangaroo with a 30% miss
ratio for the Twitter trace and 20% for Meta. We optimisti-
cally assume that different flash densities will have the same
cost and emissions per cell; e.g., 1 TB of PLC has the same
emissions as 600 GB of TLC (5:3 ratio). Our model can in-
corporate more data on denser flash if it becomes available.

We use the ACT model [38] to estimate operational and em-
bodied emissions from CPUs, DDR4 DRAM, and flash. We
assume the grid is a 50/50 mix of wind and solar, a common
renewable-energy mix [12].

6.2 Carbon emissions of flash caches
We first examine the carbon emissions of different flash

caches for a 6-year deployment. Fig. 11 compares FairyWREN
to three systems: Minimum Writes, Kangaroo, and a Flashield-
like log-structured cache [35]. Minimum Writes is an un-
achievable, idealized cache with WA of 1× and no DRAM
overhead. Flashield also assumes a WA of 1×, but requires
a DRAM:SSD capacity ratio of 1:10, as originally proposed.
Since we cannot faithfully replicate Flashield’s ML eviction
policy (and no working implementation is available), we as-
sume that Flashield achieves FairyWREN’s miss ratios.

0 5 10 15 20 25 30 35

Emissions (kg CO2 / yea )

  

  

   

 CPU

DRAM

Flash
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Fig. 11: Yearly carbon emissions for 4 caching systems: mini-
mum writes ( ) with a write amplification of 1 with no additional
DRAM, FairyWREN (
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), Kangaroo ( ), and a Flashield-like log-
structured cache ( ). Our results include the embodied and opera-
tional (hatched) emissions from CPU, DRAM, and flash.

Takeaway 0: Sustainable flash caches must use much less
DRAM than log-structured cache designs.

Although we optimistically assumed that Flashield incurs
no write amplification, Flashield’s overall carbon emissions
are 1.7× higher than Kangaroo’s. These emissions are due
to its high DRAM overhead, despite several optimizations in
Flashield designed to save DRAM. High DRAM overhead is
unfortunately inherent in the design of a log-structured cache.

Kangaroo reduces DRAM overhead through its hierarchical
design. Unfortunately, Kangaroo also incurs a far higher write
rate than a log-structured cache. Kangaroo accounts for its
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(c) Meta Carbon Emissions
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Fig. 13: The emissions and cost over six years for Kangaroo ( ), FairyWREN (
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), Min. Writes ( ), and Physical Sep. ( ).

increased writes by overprovisioning flash capacity, increas-
ing embodied carbon emissions. While Kangaroo is far more
sustainable than Flashield, it leaves room for improvement.

FairyWREN maintains Kangaroo’s low memory overhead
while greatly reducing the flash write rate. Consequently,
FairyWREN reduces overall carbon emissions by 21.2% com-
pared to Kangaroo. As this improvement comes from reducing
flash emissions, we focus on flash emissions for the remainder
of the evaluation.

6.3 On-flash experiments
To study how FairyWREN reduces flash writes, we evaluate

FairyWREN on real flash drives using the setup in Sec. 6.1.
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(a) Write rate (Mean: FairyWREN ≈7.8MB/s, Kangaroo ≈97 MB/s)
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Fig. 12: The miss ratio and write rate for Kangaroo and FairyWREN.

Takeaway 1: FairyWREN greatly reduces flash writes while
maintaining a slightly better miss ratio than Kangaroo.

Fig. 12 plots the flash write rate and miss ratio over time for
Kangaroo and FairyWREN. The figure shows small write rate
spikes in FairyWREN. This is because FairyWREN performs
nest packing at the granularity of an EU, ≈1 GB. Kangaroo’s
write rate appears smooth as it flushes more frequently, at
256 KB granularity.

The main goal of FairyWREN is to reduce writes, enabling

the use of denser flash. In Fig. 12a, FairyWREN reduces writes
by 12.5× over Kangaroo, from 97 MB/s to 7.8 MB/s. To
achieve this, FairyWREN leverages WREN to combine cache
logic and GC and to separate writes of different lifetimes.

However, reducing writes must not increase misses.
Fig. 12b shows that, in fact, FairyWREN and Kangaroo have
very similar miss ratios: on average, 0.575 for FairyWREN
vs 0.594 for Kangaroo. FairyWREN’s small advantage comes
from reducing idle capacity due to overprovisioning.

We see very similar results for write amplification: a 12.2×
reduction, from 23× in Kangaroo to 1.89× in FairyWREN.
The slight difference between the write rate and WA comes
from FairyWREN’s slightly better miss ratio.

Takeaway 2: FairyWREN outperforms Kangaroo for both
throughput and read latency at peak load.

While the primary performance metric for caches is miss
ratio, FairyWREN must provide enough throughput that it does
not require more servers — and thus more carbon emissions
— to handle the same load. In our experiments, FairyWREN’s
throughput is 104 KOps/s whereas Kangaroo’s is 40.5 KOps/s.
FairyWREN’s significant throughput increase is mostly due to
lower write rate, but also due to better engineering that moved
work off the critical path for lookups and inserts.

Similarly, we find that FairyWREN’s and Kangaroo’s 99th-
percentile latencies are 170 µs and 1,370 µs, respectively. But
note that, in practice, the overall tail latency is set by the
backing store, not the flash cache.

6.4 FairyWREN reduces carbon emissions
We now evaluate carbon emissions and cost via simula-

tion, comparing FairyWREN (
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), Kangaroo ( ), Minimum
Writes ( ), and Physical Separation ( ). Physical Separation
represents Kangaroo on WREN, where each cache component
(e.g., LOC, KLog, KSet) is placed in its own EU to separate
traffic and thereby allow LOC and KLog to have WA of 1×.

Takeaway 3: FairyWREN’s reduced writes translate into re-
duced carbon emissions and reduced cost across miss ratios.

Fig. 13 plots emissions and cost for a 6-year lifetime vs.
miss ratio over a wide range of cache configurations. Each
point is labeled with the flash density used (e.g., TLC).
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(b) Impact of lifetime (on QLC)
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(c) Impact of lifetime (on best flash density)

Fig. 14: The carbon emissions to achieve a 30% miss ratio on Twitter trace or 20% miss ratio on Meta trace for (a) 6 years on SLC (darkest) to
PLC (lightest), (b) different lifetimes with QLC flash, and (c) different lifetimes with any flash density. For (b) and (c), the darker part of each
bar represents emissions due to overprovisioning.

For the Twitter traces (Fig. 13a, Fig. 13b), Kangaroo is
limited to either MLC or TLC due to its high write rate, and
likewise for Physical Separation because it does not reduce
writes by much (Sec. 6.5). Meanwhile, FairyWREN leverages
its low WA to use mostly QLC across miss ratios, giving
it large carbon and cost reductions vs. Kangaroo. However,
FairyWREN still has too many writes to use PLC. While the
gap between Minimum Writes and FairyWREN grows at low
miss ratios, there is only a 10.1% difference in their emissions
at 20% miss ratio and a 7.7% difference in cost.

The Meta traces (Fig. 13c, Fig. 13d) are less write-intensive.
However, even here we see that FairyWREN reduces cache
emissions and cost compared to both Kangaroo and Physical
Separation. In this case, FairyWREN is able to lower the write
rate sufficiently to use QLC and PLC. As a result, FairyWREN
performs close to Minimum Writes, even at low miss ratios.

Takeaway 4: FairyWREN benefits from using denser flash
when Kangaroo cannot.

Flash devices are becoming denser over time (Sec. 2).
Fig. 14a shows the carbon-optimal cache configurations over
a 6-year lifetime at a target miss ratio of 30% for Twitter
and 20% for Meta, varying flash density from SLC (left) to
PLC (right). Kangaroo performs best when using TLC on
the Twitter trace and QLC on the Meta trace. Using PLC
increases Kangaroo’s emissions due to the excessive over-
provisioning needed to compensate for PLC’s lower write
endurance. FairyWREN’s lower write rate enables it to use
QLC for Twitter and PLC for Meta, reducing emissions and
cost. Since Twitter’s trace is more write-intensive, using PLC
increases carbon emissions by 24% due to overprovisioning.

For Minimum Writes on Twitter, emissions decrease by
17% going from TLC to QLC and by 8% from QLC to PLC.
On Meta, emissions reduce by 18% and 15%. While these
numbers show that denser flash reduces emissions, they sug-
gest diminishing returns even for an optimal cache.

Takeaway 5: FairyWREN’s low WA allows it to avoid massive
overprovisioning on dense flash as lifetime is increased.

To explore the trend of increasing device lifetime (Sec. 2),
Fig. 14b considers the emissions for caches on QLC devices,
showing emissions from overprovisioning in a darker shade.

For a 6-year lifetime, Kangaroo requires 2.2× the emis-
sions of FairyWREN on Twitter and 1.17× on Meta. At 12
years, the gap increases to 2.6× and 1.54×. Due to the DLWA
in LBAD devices, Kangaroo’s emissions are lowest when it
has some amount of overprovisioning. FairyWREN does not
need this overprovisioning due to its lower WA.

Takeaway 6: Increasing flash density does not necessarily
improve sustainability, as lifetime matters more than density.

To minimize emissions, we need to optimize both lifetime
and flash density. Fig. 14c shows each system’s emissions
for all lifetimes, with the best density displayed on each bar.
Kangaroo usually prefers MLC and TLC because, to provide
enough write endurance, QLC and PLC require too much over-
provisioning. FairyWREN has fewer emissions than Kangaroo
at all lifetimes and stays within 30% of Minimum Writes.

The best flash density decreases for longer lifetimes.
FairyWREN prefers PLC on Twitter over 3 years, but TLC
over 9 years. At these long lifetimes, the reduced write en-
durance of denser flash outweighs its sustainability benefits,
and extending lifetime is more important than using denser
flash.

Takeaway 7: For a given flash device, FairyWREN extends
lifetime by at least a couple of years.

So far, we have evaluated emissions when deploying the
optimal drive for a given lifetime and flash density. However,
flash deployments are often constrained to specific devices
with a pre-determined capacity and density. In these situations,
emissions reductions come from extending lifetime. Fig. 15
evaluates device lifetime for a 3.6 TB drive at different miss
ratios. Compared to Kangaroo, FairyWREN is able to extend
the device’s lifetime by at least 2 years and by over 5 years
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on the Meta trace. By contrast, Physical Separation barely
improves lifetime vs. Kangaroo.
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Fig. 15: The lifetimes for a 3.6 TB cache for Kangaroo ( ),
FairyWREN (
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6.5 Where are benefits coming from?
We next explore how FairyWREN’s optimizations con-

tribute to its write rate reduction. Fig. 16 shows the write
rate on the Twitter trace starting with Kangaroo on LBAD
(Log + Sets). We then add the optimizations of FairyWREN
incrementally. First, we port Kangaroo naively to WREN
(+WREN), then we physically separate the large and small
objects into different erase units (+Physical Sep.). Then we
add nest packing (+Nest Packing), and, finally, hot-cold ob-
ject separation (+Hot-Cold) to realize FairyWREN. We first
present the write rates for the different systems across differ-
ent capacities and miss ratios, showing the emissions-optimal
flash density for one capacity. We then show how the lifetimes
of each design would vary if deployed on a QLC drive.

25 30 35 40 45
Miss Ratio

101

102

103

W
rit

e 
Ra

te
 (M

B/
s)Log + Sets

    (=Kangaroo)
+ WREN
+ Physical Sep.
+ Nest Packing
+ Hot-Cold
    (= FW)

 0

1

2

3

4

5

Lif
et

im
e 

(y
ea

rs
)

Fig. 16: Write rate (log-scale) and lifetime breakdown on the Twitter
trace, incrementally adding optimizations to go from Kangaroo to
FairyWREN.

Takeaway 8: Caches on optimal LBAD devices cannot
achieve the same write rate as FairyWREN.

Three of the lines in Fig. 16 are achievable with LBAD
devices: Log + Sets, +WREN, and +Physical Sep. Log + Sets
represents the current Kangroo implementation on LBAD.
+WREN is a naive port of Kangaroo to WREN devices that
redirects all cache writes to a single log-structured store using
FIFO garbage collection. This naïve port does not attempt
any separation of objects by expected lifetime, and we as-
sume it has the same WA as Kangaroo. However, current
LBAD devices do try to separate objects belonging to dif-
ferent, concurrent streams, so one would expect an LBAD
device to perform, in practice, somewhere between +WREN
and +Physical Sep. But even in the best case, Physical Sep.
still incurs far too many writes, limiting the lifetime of a QLC

device to less than half a year.

Takeaway 9: Both nest packing and hot-cold object separa-
tion are essential to FairyWREN’s write reduction.

The other two systems we compare in this breakdown are
+Nest packing and +Hot-Cold (i.e., FairyWREN with all opti-
mizations). Nest packing reduces writes by at least 3.7× and
hot-cold object separation reduces writes by another 3.4×.
We also observe that, while hot-cold separation can increase
miss ratios, the reduction in write rate outweighs this increase,
leading to a 33× increase in QLC lifetime over the Kangaroo
baseline and a 13× increase over +Physical Sep.

6.6 Operating on a fixed flash device
We now compare Kangaroo and FairyWREN with respect

to miss ratio given a fixed flash capacity. We enforce the
same constraints of a 6-year flash lifetime, TLC flash density,
and 32 GB of DRAM for both systems. Unlike prior figures
where we minimize emissions, FairyWREN cannot not gain
an advantage for using denser flash, and Kangaroo cannot
increase write endurance by using less-dense flash. We show
that FairyWREN under the same capacity constraints, and
thus write rate constraints, improves miss ratio over Kangaroo
through its reduction in writes allowing it to more effectively
use the capacity.
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Fig. 17: Pareto curve of cache miss ratio at different flash device
sizes and the corresponding write rate and write amplification of
these points. The DRAM capacity is limited to 32 GB, the desired
lifetime is 6 years, and the caches use TLC flash.

Takeaway 10: FairyWREN achieves the same miss ratio at
lower flash capacities than Kangaroo.

Fig. 17 shows the effects of changing the flash capacity
on miss ratio for both traces. For each flash capacity, we
also plot the write rate and WA of both systems. We find
that FairyWREN needs less flash capacity than Kangaroo to
achieve a given miss ratio. FairyWREN also requires less over-
provisioning due to its lower write rate. This trend is more
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prominent in the Twitter trace than the Meta trace, which is
less write-intensive. For the Twitter trace, Kangaroo’s use of
TLC prevents it from achieving higher miss ratios. Kanga-
roo’s higher write rate requires much more overprovisioning,
increasing the overall flash capacity needed to survive 6 years
above 3.6 TB.

We also see that flash capacity sets the write budget for
the flash device, defining the write rate that the system can
tolerate for a desired lifetime. One might expect a similar
relationship for write amplification. However, the systems
have different miss ratios, causing Kangaroo to need to have
a lower WA through massive overprovisioning.

Takeaway 11: FairyWREN maintains its advantage under a
DRAM constraint.

We investigated how DRAM restrictions affect Kangaroo
and FairyWREN when both caches use 3.6 TB of TLC flash for
a 6-year lifetime. FairyWREN maintains a constant miss ratio
advantage over Kangaroo from 16 GB to 64 GB of DRAM for
both traces. FairyWREN’s miss ratio only begins to increase
when DRAM falls to 8 GB on the Twitter trace. However,
Kangaroo cannot handle the Twitter workload for 6 years with
only 8 GB of DRAM. Hence, FairyWREN always outperforms
Kangaroo in these experiments.

7 Related Work
This section discusses additional related work with similar

techniques and goals to FairyWREN.

Hot-cold objects and deathtime. In caching, hot objects are
the most popular objects. Caches use eviction policies to
retain popular objects [15, 45, 47, 83]. FairyWREN adapts
Kangaroo’s RRIP-based eviction policy [45, 67].

Popularity is different than deathtime, the time when an
object will be deleted [41]. To minimize GC, many stor-
age systems will physically separate objects by their death-
time [26, 28, 41, 54, 76, 94]. Grouping objects with similar
deathtimes reduces WA. Hence, accurately predicting death-
times is vital for minimizing write amplification within LBAD.
Recent work uses ML to make these predictions [26,94]. Un-
fortunately, ML solutions require additional hardware that
can increase emissions and cost.

Caches have more control over deathtimes than storage
systems. Deathtimes are set by the eviction policy, and thus
determining an object’s deathtime is more straightforward.
For instance, in caches that evict based on TTLs, the TTLs
can be used to group objects [93]. FairyWREN leverages its
eviction policy’s popularity rankings and the WREN interface
to physically group objects by deathtime.

Eviction and garbage collection. Prior flash caches have
attempted to reduce in-device garbage collection. Many log-
structured caches [27, 35, 56, 61] group objects into large
segments and trim these segments during eviction to mini-
mize garbage collection. These systems attempt to evict seg-
ments before device-level GC rewrites them. Unfortunately,

this does not ensure GC is prevented on LBAD devices, so
some work has proposed leveraging newer interfaces to guar-
antee alignment. DidaCache [78], for example, uses an Open-
Channel SSD [20] to guarantee its segments will align with
erase units. Other proposals to use more expressive interfaces
re-implement LBAD-like GC on top of a ZNS SSD [29], pro-
hibiting optimizations like FairyWREN’s nest packing. All of
these log-structured approaches suffer from high DRAM over-
heads and cannot evict individual objects without additional
writes.

Grouping by object size. FairyWREN separates objects
into two object size classes, large and small, similar to
Kangaroo [68] and CacheLib [16]. This grouping is used
to minimize memory overhead. Allocating memory using
size-based slab classes is often used to reduce fragmenta-
tion [25, 43, 77, 78, 93]. Introducing additional object size
classes in FairyWREN would result in additional flash ac-
cesses, since FairyWREN does not index the size classes to
save memory. Instead, FairyWREN reduces fragmentation
by grouping objects into either large segments in the LOC
or sets in FWSets. These segments and sets are periodically
rearranged to prevent fragmentation.

8 Conclusion
FairyWREN reduces flash’s carbon emissions and cost by

integrating flash management with cache policies. Doing so
requires redesigning the cache to transition from old LBAD
flash interfaces to a WREN interface. Experiments show that
FairyWREN decreases flash writes by 12.5× vs. the state-
of-the-art, allowing longer flash lifetimes that reduce carbon
emissions by 33% and cost by 35%.
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Appendix A Modeling of DLWA Under Ran-
dom Writes

Our goal is to model the effect of EU size on DLWA. Specif-
ically, we want to analyze the performance of the FIFO+ GC
policy, which selects EUs for garbage collection in FIFO or-
der and skips EUs which contain only valid data. Several prior
papers [34,46,87] have noted that DLWA can be approximated
using W Lambert functions, but this prior work tend to focus
on the level of device overprovisioning rather than on the EU
size. We use an approach similar to that of [46] to model the
relationship between EU size and DLWA under FIFO+.

We define X to be the random variable representing the
number of invalid pages an EU that is targeted for garbage
collection. Because FIFO+ will erase an EU only if it contains
invalid pages, our goal is to approximate E [X |X > 0]. This
tells us the number of new pages that can be written every
time GC is performed. Hence, if we let b be the number of
pages in an EU, we can compute the DLWA as

DLWA =
b

E [X |X > 0]
. (1)

Our approximation makes two simplifying assumptions.
First, we assume that each of the b pages in the target

EU is invalid independently with probability p. This is rea-
sonable when writes are random and the total number of
pages in the device is large. This assumption implies that
X ∼ Binomial(b, p). To approximate the expectation of X ,
we must approximate p.

Second, we assume that an EU is targeted for GC every k
writes, where k is a constant. Specifically, we define t to be
the total number of EUs in the device and assume k = tE [X ].
This is a reasonable approximation because k is the expected
number of writes that occur between GC operations on a given
EU and the total number of EUs, t is large. A particular page
will be invalid if at least one of the k writes targets the page.
Hence, the probability p that a page is invalid is

p = 1−
(

1− 1
ub

)k

where u is the number of EUs available to store valid user
data. Note that u is typically smaller than t, and t

u represents
the amount of overprovisioning in the device.

Combining these assumptions yields

E [X ]≈ b · p≈ b

(
1−
(

1− 1
ub

)k
)

(2)

≈ b

(
1−
(

1− 1
ub

)tE[X ]
)
. (3)

We can rewrite (3) using the W Lambert function to get the
following approximation for E [X ]:

E [X ] = b−
W (bt

(
1− 1

ub

)tb
ln
(
1− 1

ub

)
)

t ln
(
1− 1

ub

) .

To compute E [X | X > 0], we note that

E [X | X > 0] =
b

∑
i=1

i · P(X = i)
P(X > 0)

=
1

P(X > 0)

b

∑
i=0

i ·P(X = i)

and thus

E [X | X > 0] =
E [X ]

P(X > 0)
=

E [X ]

1− (1− p)k .

Hence, we now have an approximation that allows us to write
DLWA as defined in (1) in terms of the device parameters t, u,
and b. This approximation is validated against simulation in
Figure 6.
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Abstract
Multi-version concurrency control can avoid most read-write
conflicts in OLTP workloads. However, multi-versioned sys-
tems often have higher complexity and overheads compared
to single-versioned systems due to the need for allocating,
searching and garbage collecting versions. Consequently,
single-versioned systems can often dramatically outperform
multi-versioned systems.

We introduce Epic, the first multi-versioned GPU-based
deterministic OLTP database. Epic utilizes a batched execu-
tion scheme, performing concurrency control initialization for
a batch of transactions before executing the transactions de-
terministically. By leveraging the predetermined ordering of
transactions, Epic eliminates version search entirely and sig-
nificantly reduces version allocation and garbage collection
overheads. Our approach utilizes the computational power
of the GPU architecture to accelerate Epic’s concurrency
control initialization and efficiently parallelize batched trans-
action execution, while ensuring low latency. Our evaluation
demonstrates that Epic achieves comparable performance un-
der low contention and consistently higher performance under
medium to high contention versus state-of-the-art single and
multi-versioned systems.

1 Introduction

There has been a growing need for high-throughput online
transaction processing (OLTP) systems capable of execut-
ing tens of thousands of transactions per second. In-memory
database systems, specifically designed for workloads with
datasets that fit entirely in DRAM memory and provide dura-
bility and high availability via logging and replication, have
been developed to address this demand. Although these sys-
tems offer considerable performance advantages over tradi-
tional disk-based systems, they suffer under contention, lead-
ing to low performance and limited scalability across cores.

Multi-versioning offers a promising solution for contended
and read-heavy workloads. Multi-version systems maintain
recent past versions of each record, enabling concurrent reads
and writes to the same record; reads do not block writes
because writes can safely create new versions while reads
are accessing the old versions. Consequently, transactions
can be serialized in ways unattainable in single-version de-
signs, thereby enabling greater parallelism. Previous work
has shown that multi-version systems can outperform single-
version systems under high contention [17].

However, current multi-version designs have several draw-
backs, including increased overheads during transaction pro-
cessing, data storage, allocation and garbage collection. These
designs store record versions in linked lists, introducing an
additional layer of indirection and necessitating list traver-
sal to locate the appropriate version. Accessing the versions
results in a larger working set, leading to higher cache miss
rates and performance degradation. Multiple versions also
lead to higher memory requirements. To reduce the memory
footprint, versions are frequently garbage collected, which
incurs additional overheads. As a result, a previous study
that compared carefully tuned, state-of-the-art multi-version
and single-version systems demonstrated that under low con-
tention, a multi-version system has roughly half the through-
put of single-version systems [14].

Current multi-version designs allocate versions dynami-
cally because transactions may write and thus create versions
at any time. Thus, versions are stored in linked lists, reads re-
quire searching for versions, and garbage collecting versions
has poor locality and requires expensive synchronization.

Our key insight is that deterministic databases employing
transaction batching and known transaction read-write sets
can avoid most of these multi-versioning costs, thus enabling
good performance for all workloads. The transaction batching
and known read-write sets requirements are commonly met
by most deterministic databases [11, 12, 18, 19, 26, 28, 31, 35].

We introduce Epic, the first multi-versioned, GPU-based
deterministic transaction-processing database. Epic batches
transactions into epochs and establishes a serial ordering of
transactions within a batch before transaction execution, simi-
lar to other deterministic databases.

Transaction batching enables splitting an epoch into an
initialization phase during which concurrency control oper-
ations are initialized using the read-write sets, followed by
an execution phase during which transactions are executed
concurrently and synchronized to ensure the deterministic
ordering. During the initialization phase, Epic allocates ver-
sions based on the write set. These allocation operations are
performed efficiently because they do not interfere with trans-
action execution. In addition, Epic calculates the version lo-
cation of each read/write operation based on the ordering of
transactions and the known read-write sets. This approach
enables transactions to access versions directly during the
execution phase, without requiring any version search.

Epic’s epoch-based design enables efficient garbage collec-
tion as well. Since transactions in the next epoch are serialized
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after all transactions in the current epoch, only the final write
to a record is visible to the transactions in the next epoch.
Thus all versions except the last one become obsolete when
an epoch ends. Epic stores all intermediate record versions
separately from the last version and reclaims them efficiently
at the end of an epoch.

The challenge is that Epic’s initialization phase is ex-
pensive, requiring both significant computation and memory
bandwidth. Fortunately, Epic’s initialization phase is highly
parallelizable. With the rapid commoditization of general-
purpose GPU computing, Epic harnesses the thread paral-
lelism offered by modern GPU architectures to significantly
accelerate the initialization phase.

Modern GPUs are well suited for Epic’s execution phase as
well because they offer high-bandwidth memory for memory-
bound workloads. In addition, they perform zero-overhead
context switching between thread contexts, which allows hid-
ing memory access latency. These advantages help to counter
the increased memory footprint and lower cache utilization
commonly associated with multi-version systems. Conse-
quently, Epic achieves high throughput and ensures low trans-
action latency even with its epoch-based execution scheme.

While GPU transaction execution performs well, it is lim-
ited by datasets that fit in GPU memory. Thus, Epic also sup-
ports larger datasets with a CPU execution model in which
the initialization phase runs on the GPU while the execution
phase runs on the CPU.

To demonstrate the effectiveness of Epic’s design, we con-
duct extensive evaluation using the TPC-C and YCSB bench-
marks and show that Epic significantly outperforms recent
single- and multi-version systems on most workloads.

2 Background

This work builds on a rich body of research on multi-
version concurrency control, deterministic databases, and
GPU-accelerated computation, as discussed below.

2.1 Multi-versioned Concurrency Control

Multi-version concurrency control (MVCC) has a long his-
tory [29, 30], with early work evaluating its performance [8],
ensuring snapshot isolation [5], providing serializable snap-
shot isolation [7], using dynamic timestamp assignment [20]
and enabling efficient indexing [32], for disk-based databases.

With the advent of machines equipped with high core
counts and terabytes of DRAM memory, much work has fo-
cused on in-memory database designs, and several MVCC
schemes optimized for them have been proposed [15, 16, 22].
MVCC schemes are popular because they provide robust
performance under a wide range of workloads. As a re-
sult, many commercial in-memory databases implement
MVCC [10, 24, 25, 34].

Wu et al. conduct a detailed study of the costs associated
with concurrency control, version storage, garbage collec-
tion, and index management in various in-memory MVCC
schemes [37]. Cicada [17] outperforms previous MVCC
schemes with several optimizations, including optimistic
multi-versioning, contention regulation, version inlining, and
rapid garbage collection. However, a study comparing state-
of-the art multi-version and single-version systems showed
that while MVCC outperforms OCC under high contention,
its throughput is significantly lower under low contention [14].
Epic aims to minimize multi-versioning costs associated with
version storage, lookup and garbage collection.

2.2 Deterministic Database Systems

Deterministic databases have gained increasing attention in
recent years, driven by the need for efficient replication and
improved scalability for distributed transactions [35]. These
systems execute transactions deterministically by ensuring
that the serial ordering of operations remains consistent
across different runs. Determinism enables efficient repli-
cation [27, 31, 33] and live migration [18, 19] since all repli-
cas execute transactions independently without coordination.
Furthermore, deterministic systems reduce the need for two-
phase commit, helping scale the performance of distributed
transactions [35]. They can also effectively handle skewed
and contended accesses, e.g., orders for popular items [28].

Deterministic systems typically batch transactions into
epochs to perform deterministic concurrency control before
execution [11, 12, 28, 35]. Thus these system require the read
and write sets of transactions to be known before execution.
When they are not fully known, they can be determined us-
ing reconnaissance queries [35]. Calvin [35] and PWV [12]
are single versioned, while Bohm [11] and Caracal [28] uti-
lize MVCC. Calvin uses a centralized lock manager, while
PWV employs a more-scalable per-core dependency analysis
for concurrency control. Bohm and Caracal allocate versions
scalably during the concurrency control initialization phase,
but Bohm performs partitioned initialization, while Caracal
performs shared memory initialization. Bohm partitions the
records in a table across cores. During the initialization phase,
all partitions analyze each transaction’s write set and insert
placeholder versions in a linked list for the records they own.
During execution, a read operation traverses the list to find
the correct version based on its total order ID. Then, it syn-
chronizes with a write operation that fills the corresponding
placeholder version. Caracal uses shared-memory initializa-
tion, which enables better handling of skewed workloads. It
scales version allocation for contended records by batching
the allocations. It stores versions as sorted arrays and uses
binary search to reduce version lookup costs during execu-
tion. Epic performs shared-memory initialization similar to
Caracal. However, Epic avoids any version lookup costs and
minimizes version storage and garbage collection overheads.
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2.3 GPU Accelerated OLTP Databases

General-Purpose computing on Graphics Processing Units
(GPGPU) has become popular with the rapid commoditization
of GPUs, the advent of user-friendly programming models
and frameworks like CUDA and OpenCL, and the growing
demand for high-performance computing on large datasets.
Modern GPUs contain an array of streaming multiproces-
sors (SMs), each of which contains many CUDA cores or
stream processors, allowing execution of thousands of active
threads concurrently. GPUs uses the Single Program, Multiple
Data (SPMD) parallel programming model in which multiple
threads execute the same program on different data elements.

GPU-based databases are an active area of research, but
most work has focused on accelerating Online Analytical
Processing (OLAP) workloads since typical OLAP operators,
such as join and sort, are a good fit for parallelization using
the GPU’s SPMD execution model.

GPU-based transaction processing is relatively unexplored
because transactional workloads comprise short-lived trans-
actions with random accesses, and atomicity and isolation re-
quire significant synchronization. These requirements makes
it hard to exploit the parallelism available in GPUs.

Previously, two GPU-based transaction processing systems,
GPUTx [13] and GaccO [6], have been proposed. Similar to
Epic, both batch transactions and use epoch-based concur-
rency control initialization and execution. GPUTx, an early
attempt at executing OLTP workloads on GPUs, uses de-
pendency tracking to group transactions into sets; transac-
tions within each set are conflict-free and can execute with-
out synchronization. However, we found that their efficient
dependency tracking algorithm, K-Set, does not ensure that
transactions in a set are conflict-free, thereby failing to guar-
antee correctness. GaccO is a deterministic database that uses
single-version, deterministic locking, similar to Calvin. We
describe Gacco in detail and compare it with Epic in Section 5.

3 Design

Epic is a GPU-accelerated, in-memory deterministic database
that employs a novel multi-versioned concurrency control
protocol. Epic assumes that transactions are one-shot and
use stored procedures, similar to other high-performance in-
memory databases [36].

Figure 1 shows the Epic architecture. Epic batches transac-
tions into epochs and splits each epoch into indexing, initial-
ization and execution phases. The transaction inputs, consist-
ing of read-set and write-set keys and other transaction data,
are batched on the CPU and then transferred to the GPU for
indexing (shown as “txn param” in Figure 1). During index-
ing, the keys are used to retrieve and store the corresponding
record IDs in a per-transaction data structure (shown as “in-
dexed txn” in Figure 1). These record IDs are used during
initialization and used as indices for accessing the record ta-

index initialization execution

batch

indexed txn exec plan

txn param
CPU
GPU

(a) GPU Execution Model

index initialization

executionbatch

indexed txn exec plan

txn param
CPU
GPU

(b) CPU Execution Model

Figure 1: Epic Architecture

bles during transaction execution. The initialization phase
performs multi-versioned concurrency control and generates
a per-transaction execution plan, which consists of the loca-
tions of the record versions that a transaction then directly
accesses during execution.

While indexing and initialization are always run on the
GPU, Epic can execute transactions on the GPU (Figure 1a)
or the CPU (Figure 1b). CPU execution is used to support
databases larger than GPU memory. In this case, the GPU
serves as an accelerator for indexing and initialization.

Sometimes a transaction’s read and write sets are not fully
known before the indexing phase. For example the TPC-C
order-status transaction requires a secondary index to locate a
customer’s latest order. For these transactions, Epic runs an
optional read-write set identification phase on the GPU before
the indexing phase. The transaction inputs to the identification
phase only contain the read-write keys that are known at
transaction generation time. This phase runs reconnaissance
queries [35] that use these partial transaction inputs to identify
the remaining read-write keys.

The following sections describe Epic’s storage scheme and
then Epic’s initialization and execution phases.

3.1 Epic storage scheme
Epic’s storage scheme separates temporary versions created
within an epoch from versions that exist across epochs. All
writes to a record within an epoch, except the last one, are
only read by other transactions within the epoch. This is
because transactions from a later epoch are serialized after
all transactions in the current epoch and thus can only read
the last version of each record. We call the versions that are
read by transactions within an epoch temporary versions. The
final write to a record within an epoch may be read in later
epochs and so this last version is saved across epochs.

Figure 2 shows an example of Epic’s storage scheme with
transactions T1 to T8 reading and writing Record 1 at Epoch
3. Epic places all temporary versions in a scratchpad area.
During an epoch, the write transactions on a record, except
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Figure 2: Epic Storage Scheme

the last one, fill these versions, and reads synchronize with the
writes to ensure RAW dependencies are satisfied. At the end
of an epoch, when all the reads for the temporary versions are
done, the scratchpad is reclaimed and used in the next epoch,
completely eliminating per-version garbage collection.

The final versions of each record are placed in a dense table
area and do not require garbage collection. The last write in
an epoch to each record updates the value in the table directly,
leading to potential race conditions when transactions in the
current epoch need to read data from the previous epoch.
Epic addresses this problem by storing two versions for each
record in the table: the previous version (prevVer) and the
current version (currVer), as shown in Figure 2. In each epoch,
prevVer holds the data from the previous epoch (original
version). The last write (Txn 7) within an epoch updates
currVer to avoid overwriting the original version. This write
is performed directly on the table, so all temporary versions
can be easily collected after an epoch. Reads after the last
write to a record (Txn 8) read from currVer.

The locations of prevVer and currVer in each record depend
on transaction history, as their positions only change when a
record is written during an epoch. Therefore, Epic stores an
epoch ID in each version, which helps distinguish the version
from previous epochs (prevVer) from the version that should
be updated in the current epoch (currVer). Algorithm 1 is used
by transactions to distinguish between prevVer and currVer.
In an epoch, before any write has happened to currVer, Epic
ensures that the version with a larger epoch ID contains the
more up-to-date value and should be used as prevVer (Lines
9–12). During the last write, the writer will update the epoch
ID of currVer to the current epoch’s ID (current_eid ), after
which currVer will have a larger epoch ID, but it is still dis-
tinguishable since its epoch ID matches the current epoch ID
(Lines 4–7). The epoch ID is also used for synchronization
between reads and writes, as discussed later in Section 3.3.

The record tables and the scratchpad memory are stored
in GPU memory for the GPU execution model and in CPU
memory for the CPU execution model.

Algorithm 1: Determining the prevVer and currVer
// Takes the two table versions of a record

1 Function GetTableVersions (V[2]):
2 eid0← atomicRead(V[0].eid)
3 eid1← atomicRead(V[1].eid)

// current_eid is the current epoch’s ID
4 if eid0 = current_eid then
5 prevVer← V[1]; currVer← V[0]
6 else if eid1 = current_eid then
7 prevVer← V[0]; currVer← V[1]
8 else
9 if eid0 > eid1 then

10 prevVer← V[0]; currVer← V[1]
11 else
12 prevVer← V[1]; currVer← V[0]

13 return {prevVer,currVer}

3.2 Multi-Version Initialization

During the initialization phase, Epic uses the ordering of trans-
actions and the knowledge of their read-write sets to allocate
versions for all writes performed in the epoch. To avoid the
expensive version search required in previous multi-versioned
systems, Epic calculates the read-write version locations for
each transaction in the epoch before any transactions exe-
cute. These operations are parallelizable because they are
performed in a phase separate from transaction execution.

As shown in Algorithm 2, Epic employs a parallel GPU-
based algorithm to perform concurrency control initializa-
tion efficiently. Figure 3 provides an example of this algo-
rithm. The initialization phase starts by collecting all the read
and write operations within the epoch (Step 1). Each entry
in the all_ops operations array contains the record_id and
the txn_id associated with the operation, the operation’s in-
dex within the transaction (op_id), and the operation type
(read/write). This operation is parallelizable because the or-
der of operations does not matter for the next step, which sorts
the operations array by record_id and txn_id (Step 2).

Then, Epic counts the number of write operations to each
record that occur before and after each operation. Since the
operations are already grouped by record_id, these operations
use parallel prefix and postfix sum by key (Steps 3–4). Next,
GetOpType in Algorithm 3 calculates the read-write location
type for each operation (Step 5). A write operation writes
to currVer for the last write to the record or else to tempVer.
A read operation will read from the version written by the
previous write as follows: prevVer if there is no preceding
write preceding, currVer if there is no succeeding write, and
tempVer otherwise.

The number of tempVer variables created in an epoch is
equal to the number of tempVer writes. Thus, Epic places
the tempVer variables in the scratchpad area in the same
order as the tempVer write operations in the sorted opera-
tions array. To calculate the tempVer locations, Epic performs
a parallel prefix sum over all operations, counting tempVer
writes before each operation (Step 6). With this information,
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Algorithm 2: Multi-Version Initialization Phase
1 Function Initialize (txns[NUM_TXN]):
2 all_ops // all read-write operations in the epoch,

// contains tuples: {record_id, txn_id,op_id, read_write}
// All local variables are arrays of size equal to all_ops size

// Step 1: submit operations
3 parallel foreach txn ∈ txns do
4 op_id = 0
5 foreach record_id ∈ txn.read_record_ids do
6 op_id++
7 all_ops.pushback({record_id, txn.id, op_id, Read})
8 foreach record_id ∈ txn.write_record_ids do
9 op_id++

10 all_ops.pushback({record_id, txn.id, op_id, Write})

// Step 2: sort first by record_id then by txn_id
11 sorted_ops = Sort(all_ops, key = {record_id, txn_id})

// Steps 3-4: count writes before/after each op on same record
12 writes_before = PrefixSumByKey(sorted_ops,
13 key = record_id,
14 value = Write ? 1 : 0)
15 writes_after = PostfixSumByKey(sorted_ops, key = record_id,
16 value = Write ? 1 : 0)

// Step 5: get operation type, can be:
// prevVer read, currVer read/write, tempVer read/write

17 op_types = GetOpType(sorted_ops, writes_before,
18 writes_after)

// Step 6: count tempVer writes before each op in the epoch
19 tw_before = PrefixSum(op_types, value=tempVerWrite?1 : 0)

// Step 7: get read/write location for all ops
20 rw_loc = GetRWLocation(op_types, tw_before)

// Step 8: scatter rw_loc back to transactions
21 parallel for i = 0 to sorted_ops.size do
22 txn_id = sorted_ops[i].txn_id
23 op_id = sorted_ops[i].op_id
24 txns[txn_id].locations[op_id] = rw_loc[i]

GetRWLocation in Algorithm 4 calculates the read-write lo-
cations for all operations (Step 7). The ith tempVer write
updates the ith tempVer in the scratchpad area. A read from
tempVer reads the previous write in the sorted operations
array. Finally, the read-write locations are scattered back to
each transaction to be used in the execution phase (Step 8).

3.3 Transaction Execution

Epic’s execution phase is considerably simpler than the initial-
ization phase. A transaction accesses versions directly using
the locations calculated during initialization, eliminating any
version lookup during execution. Due to multi-versioning,
write-after-read (WAR) and write-after-write (WAW) depen-
dencies do not require explicit coordination. Epic uses the
epoch ID associated with each version to synchronize read-
after-write (RAW) dependencies between transactions.

Algorithm 5 shows Epic’s transaction execution phase. The
transactions in an epoch are scheduled in their predetermined
serial order as thread resources become available, as explained
further in Section 4.4. The RunTxn function shows an ex-
ample of a transaction. The transaction accesses the versions
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Figure 3: Example of Epic’s Initialization Phase

directly using the location information calculated in the ini-
tialization phase (lines 11–25 for reads and lines 26–34 for
writes). A transaction read waits for a version to be written
by an earlier transaction by spinning on the epoch ID of the
version until it matches the current epoch ID (lines 21–22).
However, reads from prevVer do not need any synchroniza-
tion since this version was updated in a previous epoch. A
transaction writes to the data of the version before updating
the version’s epoch ID (lines 32–34). The GPU weak memory
consistency model requires a memory fence between the data
write and the epoch ID update to ensure that the data is visible
to other threads before the updated version.

CPU-side Execution Epic can also execute transactions
on the CPU, which is particularly useful when the database
size exceeds GPU memory capacity. In this case, Epic trans-
fers the output of indexing (read and write record IDs) and
the initialization phase (read-write locations) to the CPU, as
shown in Figure 1. CPU-side execution utilizes the same
synchronization mechanism as GPU execution.

Handling Inserts and Deletes Epic treats record insertions
and deletions the same way as updates. Both insert and delete
operations are considered write operations, so they create
a new version of the record, similar to an update. For each
version, Epic uses a valid flag to mark whether it contains
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Algorithm 3: Calculate Read/Write Type
1 Function GetOpType (sorted_ops, writes_before, writes_after):
2 op_types[sorted_ops.size] // type of operations
3 parallel for i = 0 to sorted_ops.size do
4 if sorted_ops[i].read_write == Write then
5 if writes_after[i] == 0 then
6 op_types[i] = currVerWrite
7 else
8 op_types[i] = tempVerWrite

9 else // read operation
10 if writes_before[i] == 0 then
11 op_types[i] = prevVerRead
12 else if writes_after[i] == 0 then
13 op_types[i] = currVerRead
14 else
15 op_types[i] = tempVerRead

16 return op_types

Algorithm 4: Calculate Read/Write Locations
1 Function GetRWLocation (op_types, tw_before):
2 rw_loc[op_types.size] // locations of read/write operations
3 parallel for i = 0 to sorted_ops.size do
4 if op_types[i] ∈ {currVerRead,currVerWrite} then
5 rw_loc[i] = currVer
6 else if op_types[i] == prevVerRead then
7 rw_loc[i] = prevVer
8 else // tempVer read/write, return tempVer index
9 if op_types[i] == tempVerRead then

// index is zero-based
10 rw_loc[i] = {tempVer, index=tw_before[i]−1}
11 else
12 rw_loc[i] = {tempVer, index=tw_before[i]}

13 return rw_loc

valid (V) data, as shown in Figure 2. An update or insert sets
and a delete unsets the valid flag of the corresponding version.
Read operations use the valid flag to determine if the record
exists at the timestamp of the read, preventing transactions
from reading invalid data (Algorithm 5, lines 23–24).

Deletion of records can happen at any point within an
epoch, and a later write operation to a deleted record will re-
insert it. Consequently, the record should be freed only when
the last write operation to a record in an epoch is a delete.
Epic tracks records that are deleted in an epoch by setting a
per-record deleted flag when deletions occur to currVer. At
the end of the epoch, these flags are scanned to generate a list
of deleted records that are subsequently freed, as described
later in Section 4.2. A full scan after each epoch is acceptable
because the flag is one bit per record and parallel scans are
efficient on GPUs.

Handling Aborts Epic eliminates concurrency-control re-
lated aborts because transactions are serialized in a predeter-
mined order, similar to other deterministic databases. Epic
allows application-level aborts (e.g., constraint violations) be-
fore any writes are performed to the database. Transactions

Algorithm 5: Transaction Execution Phase
1 Function Execute (txns[NUM_TXN]):
2 parallel for i = 0 to txns.size do
3 RunTxn(txns[i])

4 Function RunTxn (txn):
5 value1 = ReadFromTable(txn.record_id1, txn.read_loc1)
6 value2 = ReadFromTable(txn.record_id2, txn.read_loc2)

// perform transaction logic
7 if value1 is None or value2 is None then
8 abort()

9 result = SomeOperation(value1,value2)
// no aborts can happen beyond this point

10 WriteToTable(txn.result_record_id, txn.write_loc, result)

11 Function ReadFromTable (rec_id, read_loc):
12 if rec_id = INVALID_RECORD then
13 return None

14 prevVer,currVer = GetTableVersions(table[rec_id])
15 if read_loc == prevVer then
16 read_ver = prevVer
17 else if read_loc == currVer then
18 read_ver = currVer
19 else // tempVer read
20 read_ver = tempVers[read_loc.index]

21 while read_loc ̸= prevVer and
atomicRead(read_ver.eid) ̸= current_eid do

22 Spin() // Wait until version is ready

23 if not read_ver.is_valid then
24 return None

25 return read_ver.data

26 Function writeToTable (rec_id, write_loc, data):
27 prevVer,currVer = GetTableVersions(table[rec_id])
28 if write_loc == currVer then
29 write_ver = currVer
30 else // tempVer write
31 write_ver = tempVers[write_loc.index]

32 PerformWrite(write_ver.data, data)
33 __threadfence()
34 atomicWrite(write_ver.eid, current_eid)

are expected to perform their reads, buffer writes and issue
aborts before any database writes. Since aborts do not occur
after the first write, the writes of a transaction are made visible
immediately [12].

In previous multi-versioned systems, a sentinel value is
used to indicate an aborted version. Subsequent reads skip
such versions and read the previous non-aborted version. This
approach is not suitable for Epic since there is no version
search. Instead, the aborted write operations must copy the
previous version to the current version. Thus, for transactions
that may abort, Epic also calculates the read location (i.e., of
the previous version) for write operations during initialization.

3.4 Field Splitting

Database records often consist of multiple fields. Since Epic
eliminates version search, each version of a record must con-
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tain a full copy of all of its fields. This approach adds copying
overhead when a transaction updates only a few fields of a
record since all of its fields must be copied from the previous
version. In addition, it introduces unnecessary dependencies
because every field update becomes a read-modify-write op-
eration for the record.

Epic implements a field splitting optimization by storing
different fields of a record separately. Each version now com-
prises only a single field. As a result, a write to a field does
not require copying other fields and introduces no additional
dependencies. However, the field splitting optimization adds
overhead for full record operations, which need to be split
into multiple per-field operations, leading to increased initial-
ization and synchronization costs.

3.5 Recovery
Currently, Epic does not support recovery and replica-
tion. However, it can provide durability and high availabil-
ity by using techniques similar to previous deterministic
databases [35]. In each epoch, transaction inputs can be
logged to storage on the CPU side concurrently with transac-
tion execution. Once all inputs are logged, transaction results
can be made externally visible to applications. Currently, Epic
returns these results conservatively at the end of the epoch,
which enables handling certain problematic transaction logic,
such as infinite loops, by aborting the relevant transaction and
its dependent transactions [12].

For recovery, the transaction inputs are used to replay all
transactions deterministically until the last logged epoch. The
replay uses the same mechanism as normal transaction pro-
cessing. To reduce recovery time, Epic’s two-version tables
allow checkpoints to be created efficiently. The checkpointing
process can run in parallel with an epoch and create a consis-
tent database snapshot by copying the prevVer of each record
to a different memory area (e.g., CPU memory). However, the
next epoch must start after the checkpointing completes or
else the resulting snapshot may be inconsistent. After creating
a copy of the tables, they can be transferred to persistent stor-
age in the background. The index and allocation information
also needs to be checkpointed or rebuilt during recovery.

4 Implementation

This section describes Epic’s GPU-based implementation of
indexing, initialization and transaction execution phases.

4.1 Transaction Batching and Ordering
Currently, Epic batches transactions when they are generated
and serially orders them by assigning a transaction ID to each
transaction. In practice, the batching and ordering process
can be performed without contention by batching transac-
tions separately on each core and ordering them using a local

counter. Before an epoch starts, transactions from all cores
can be serialized based on the core ID and the local counter
value. This method is similar to Calvin [35].

4.2 Indexing and Allocation
Epic is capable of executing tens of millions of transactions
per second. Its index needs to handle hundreds of millions of
operations per second, and so we use GPU-based indexing.
Epic uses a hash table index to map keys to record IDs. When
needed, range queries are performed in the read-write set
identification phase using a range index to obtain all the keys
for the read and write sets. The keys are then used to look
up the record IDs in the hash table index. Epic implements
indexing using CuCollection [23], a GPU-based concurrent
hash table. Epic uses a modified version of a GPU B-tree [2,4]
for the range index.

Since Epic’s indexing operates in parallel, we ensure that
read operations see all previously inserted records by perform-
ing insert operations before any indexing operations, which
also prevents phantom reads. Epic does not distinguish be-
tween insert and write operations, and so it first indexes all
write operations in an epoch to find the keys to be inserted
(keys that are in the write set but are not found in the hash
table). To allocate a record for each to-be-inserted key, Epic
maintains a ring buffer of free record IDs on the GPU. To
ease allocation, these keys are uniquified. Then, Epic allo-
cates record IDs for them by removing the same number of
record IDs from the ring buffer. The key-record ID mappings
are then inserted in the hash table. Next, Epic indexes all
read and write operations. For read operations, if a key is not
found, Epic marks the read as invalid by returning a sentinel
invalid_read value for the record ID. This value is treated
as any other record ID during initialization, and then reads
detect it during execution (Algorithm 5, lines 12–13). Since
Epic performs inserts before read operations, a read of a non-
existing record may see an index entry from a later write. A
read operation detects this version as invalid during execution
(see Section 3.3).

At the end of an epoch, Epic’s execution phase returns the
deleted record IDs (see Section 3.3). Epic garbage collects
these records by appending them to the ring buffer. To free
the index entries for these records, Epic also keeps a back-link
array that maps record IDs to keys. The hash table and the
back-link are stored in GPU memory and are only accessed
by the GPU during indexing.

4.3 Multi-Version Initialization
Epic’s multi-version concurrency control initialization is im-
plemented using the CUB and Thrust parallel algorithms li-
brary. As shown in Algorithm 2, all operations, such as sort-
ing and prefix sum, are highly parallelizable. Epic performs
initialization for each table separately for ease of implementa-
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tion. Each operation’s record ID, transaction ID, operation ID
and read-write type are stored in a 64 bit integer for efficient
sorting. It is possible to prefix the record ID with a table ID
and perform initialization for all tables together.

We implemented an optimized CPU-based initialization
phase using Intel’s TBB library but its performance was at
least an order of magnitude slower than the GPU implemen-
tation, motivating our GPU-based approach.

4.4 Transaction Execution

After the concurrency control initialization phase, Epic ex-
ecutes the entire batch of transactions concurrently on the
GPU using warp-cooperative execution, an approach moti-
vated by previous work on GPU-based concurrent data struc-
tures [1, 3, 39]. Next, we provide some background on GPUs
to motivate our execution approach.

GPUs provide an array of multi-threaded Streaming Mul-
tiprocessors (SMs), with each SM containing simple cores
(typically 64–128 per SM). The GPU executes instructions
from a group of threads, called a warp, in a Single Instruction,
Multiple Threads (SIMT) lockstep manner on the cores of an
SM, with threads executing the same instruction on different
data elements. A warp typically consists of a fixed number of
threads, such as 32 threads in Nvidia GPUs.

The warp-based execution model makes branch divergence
an important aspect of GPU algorithm design. Branch diver-
gence occurs when thread execution diverges due to control
flow statements, such as branches, for threads within a warp.
In this case, the GPU serializes the execution of the divergent
paths, causing longer execution times per warp.

Instead of running a different transaction on each thread of
a warp, Epic’s warp-cooperative execution model uses all the
threads in a warp to cooperatively execute a single transaction,
which avoids branch divergence altogether. The threads in a
warp read and write versions by accessing consecutive loca-
tions of a record. The GPU can coalesce (or combine) these
contiguous memory accesses into a single request, which
improves memory bandwidth utilization and is especially ben-
eficial when transactions access large records. For example,
32 threads in a warp running the same instruction can access
128 contiguous bytes in parallel from global memory.

Although warp-cooperative execution can lead to reduced
concurrency, the amount of parallelism available on modern
GPUs is more than sufficient for Epic’s transaction process-
ing requirements. For example, Nvidia’s A6000 GPU has 84
SMs, each capable of scheduling 1536 threads (48 warps) at
a time. With the warp-cooperative execution scheme, Epic
can execute 84× 48 = 4032 transactions concurrently. We
believe that transaction execution will not benefit from higher
concurrency due to dependencies between transactions. There-
fore, the benefits of avoiding branch divergence and coalesced
memory access outweigh the reduced concurrency.

GPU Transaction Scheduling The GPU hardware sched-
uler dispatches threads on an SM at the granularity of a group
of threads called a thread block. While the GPU does not
provide control over the scheduling order of thread blocks
(or threads within a thread block), it guarantees that an active
thread runs to completion without being preempted.

Since Epic assigns a serial order to each transaction be-
fore execution, transactions must be scheduled based on their
serial order. Otherwise, a later transaction may depend on
an earlier transaction, which never gets to run because the
later transaction holds the hardware resources. Epic sched-
ules transactions in serial order by dynamically assigning
transactions to threads when they become active. To do so,
it uses a next-transaction global counter, that it increments
once per block to allocate transactions for all warps within a
block. Threads within the block then distribute the allocated
transactions using a local counter.

4.5 Other Optimizations
Epic exploits parallelism within a transaction by splitting
transactions, when possible, into multiple independent pieces.
Due to its deterministic nature, these pieces can be executed
concurrently while still ensuring isolation [12, 28].

Epic aims to overlap data transfer and computation on the
GPU whenever possible by launching asynchronous tasks on
different non-blocking CUDA streams. This approach effec-
tively hides the latency associated with transferring transac-
tion parameters and data. As shown in Figure 1, Epic transfers
transaction parameters to the GPU. This transfer is overlapped
with the execution of the previous batch of transactions. With
CPU-side execution, Epic overlaps the transfer of the indexed
transactions to the CPU with the initialization phase.

It is possible to pipeline Epic’s CPU-side execution with
GPU indexing and initialization. However, this approach com-
plicates the index garbage collection mechanism. If a record
is deleted in epoch N, its index information cannot be garbage
collected until epoch N + 2 because the indexing in epoch
N +1 runs concurrently with the execution of epoch N. How-
ever, the same key may be re-inserted in epoch N +1. In this
case, the index information for the record deleted in epoch N
cannot be garbage collected. This issue can be resolved by
tracking the epoch ID in an index entry when it is created.
Epic currently does not implement this pipelined execution.

5 Evaluation

We compare the overall performance of Epic with several
state-of-the-art in-memory transaction processing databases
using the TPC-C, TPC-C NP and the YCSB benchmarks.
Then, we provide a more detailed analysis of Epic’s design.

All experiments are run on cloud server with a 32-core
Epyc CPU and 512GB of memory. For all the CPU-based
databases except Aria, we use 1 thread per core for a total of

772    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



32 threads. For Aria, we use the default 12 worker threads
because this configuration achieves the highest throughput.
We use the Nvidia A6000 GPU with 10752 CUDA cores
and 48GB GDDR6 memory. The operating system is Ubuntu
22.04. All experiments are compiled with NVCC 12.0 with
CUDA run time version 12.0.

5.1 Database Systems Comparison

We compare Epic against four state-of-the-art in-memory
databases: STOv2 [14], Caracal [28], GaccO [6] and Aria [21].
We use the publicly available implementations of Caracal,
STOv2 and Aria. Since GaccO’s implementation is not pub-
licly available, we implemented GaccO’s GPU-side transac-
tion execution based on the description in their paper. We
use the default epoch sizes of 500 for Aria, 100K for Cara-
cal, and 32768 for GaccO as specified in their papers for all
experiments except for the latency experiment in Section 5.7.
We use an epoch size of 100K transactions for Epic because
throughput improvements become smaller beyond this epoch
size, which balances throughput and latency.

STOv2 is a state-of-art in-memory CPU database. STOv2
implements and compares three concurrency control mecha-
nisms: OCC-based Silo [36], timestamp-based TicToc [38],
and a variant of MVCC-based Cicada [17]. These mechanisms
are called OSTO, TSTO, and MSTO respectively. STOv2’s
implementations of TicToc and Cicada perform well thanks to
careful attention to implementation choices. We enable both
the timestamp splitting and deferred updates optimizations
in STOv2. Timestamp splitting behaves similar to our field
splitting optimization.

Caracal is a multi-versioned, deterministic CPU in-
memory database. Similar to Epic, Caracal batches transac-
tions and splits each epoch into an initialization phase and an
execution phase. Caracal uses a version array to implement
multi-version concurrency control (MVCC). Each record con-
tains an array of versions that are created during the initial-
ization phase and read during the execution phase. Caracal
performs well under contention due to transaction batching
and MVCC. However, Caracal’s concurrency control mecha-
nism keeps the version array sorted by the version ID, which
imposes overhead during the initialization phase, and read
operations need to perform a binary search through the ver-
sion arrays. Additionally, the version array requires expensive
garbage collection.

GaccO is a single-version, deterministic GPU database that
uses lock-based concurrency control [6]. To support databases
larger than GPU memory, GaccO proposes running transac-
tions on both the GPU and the CPU. This CPU-GPU co-
execution model requires keeping copies of CPU memory
tables in GPU memory when the tables are accessed by GPU-
side transactions, synchronizing updates to the tables at epoch
boundaries, and delaying CPU-side transactions that conflict
with GPU-side transactions.

We only compare with GaccO’s GPU-based execution,
so no synchronization with the CPU is needed. Similar to
Epic, GaccO requires transactions’ read-write sets in advance.
GaccO initializes an epoch by creating a per-record lock ta-
ble. For each record, all operations are sorted based on the
serial ID of the transactions. The corresponding serial IDs
are stored in the lock table, representing the order of lock
acquisition. During the execution phase, transactions acquire
locks on records deterministically by checking the lock table
and waiting until the lock value matches the transaction’s ID.
Upon release, the lock value is advanced to match the next
transaction that accesses the record. However, this lock-based
concurrency control does not permit readers to share locks.

GaccO executes a transaction per thread and batches trans-
actions by type (e.g., NewOrder in TPC-C) within an epoch
to minimize warp divergence (see Section 4.4). This batching
also enables GaccO to use a commutative optimization when
highly-contended items are accessed commutatively. If an
operation updates a data item commutatively then the order
of performing such updates is flexible, provided the data item
is not otherwise observed by its transaction and there are no
other conflicting operations on the item. For instance, a trans-
action that increments a counter in the database row but never
reads the value of the counter can implement the update using
atomic instructions, without using the deterministic locking
protocol. Since GaccO batches transactions by type, conflicts
do not occur with other types of transactions.

However, due to this batching of transactions by type, we
do not implement the full TPC-C benchmark for GaccO. For
the OrderStatus and StockLevel transactions, batching by type
would cause these transactions to execute on a snapshot of
the database and return the same results within an epoch.
Therefore, we only evaluate GaccO on the TPC-C NP and
YCSB benchmarks.1

Aria is a deterministic database that does not require ad-
vance knowledge of read-write sets [21]. It achieves deter-
minism by executing all transactions in a batch against a
database snapshot from the previous epoch, while buffering
writes and delaying commit until the end of the epoch. After
all transactions have executed, Aria deterministically aborts
transactions that conflict with an earlier transaction based on
transaction ID ordering, and it uses a deterministic reordering
optimization to reorder transactions in a batch to reduce the
number of aborts. Aria assumes that the read-write sets of
transactions are known after the execution phase, and uses
Calvin’s deterministic locking as a fallback strategy to rerun
the aborted transactions after the execution phase.

Aria only implements TPC-C NP. We evaluate the vari-
ant with the fallback strategy since their paper reports that it
performs better than without the fallback strategy under all
contention levels on TPC-C NP.

1The GaccO paper also evaluates TPC-C NP on the GPU.
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5.2 TPC-C

We use the TPC-C OLTP benchmark to evaluate Epic. The
TPC-C benchmark simulates an OLTP workload for a ware-
house management system. It consists of five transactions:
NewOrder, Payment, OrderStatus, Delivery, and StockLevel.

The NewOrder transaction creates a new order for a cus-
tomer by incrementing the nextOrderID field in the District
table to obtain the order ID. This makes the write-set of
NewOrder dependent on the execution-time value of the order
ID. OrderStatus retrieves the status of the last order placed
by a customer; StockLevel checks the stock level of items
ordered in the last 20 transactions in a district; and Delivery
processes the oldest undelivered order in a district.

To identify the read-set and write-set keys of these transac-
tions, Epic runs the read-write set identification phase before
the indexing phase. Initially, the order ID used by NewOrder
is calculated using a per-district counter, which also helps
determine the latest order ID for OrderStatus and StockLevel.
Then, for each NewOrder transaction, the order information
is inserted into a secondary index. The secondary index uses
a range index keyed by the customer ID and the order ID.
The secondary index also stores the items ordered in each
order. OrderStatus performs a backward range scan using
the customer ID and the latest order ID in the district as the
key to find the last order ID for a customer. StockLevel uses
the latest order ID to lookup the ordered item information to
check for stock levels. Lastly, Delivery uses a per-warehouse
counter to find the oldest undelivered order.

During execution, transactions can validate the read-write
sets determined by the identification phase and abort trans-
actions if they do not match the keys that would be accessed
during the execution phase [35]. However, since Epic does not
cause any concurrency-control related aborts, the read-write
sets always match in TPC-C and so no aborts occur [11].

Furthermore, the Payment and OrderStatus transactions in
the original TPC-C benchmark can be provided with a cus-
tomer ID or the customer’s last name. In the latter case, the
customer ID is retrieved by scanning a read-only index of
customers. Since existing GPU range indexes do not support
variable length keys needed for scanning the last name, we
simplified Payment and OrderStatus to only use the customer
ID for all the databases. Other than this change, the behavior
and contention level of Epic’s TPC-C implementation con-
forms to the TPC-C specification.

TPC-C has low contention when each warehouse is as-
signed a separate CPU core. We vary the number of ware-
houses to evaluate performance under different contention
levels. With a single warehouse, TPC-C becomes highly con-
tended due to the per-warehouse Warehouse, District, and
Stock tables.

STOv2 and Caracal implement the TPC-C benchmark and
we compare Epic against them. Figure 4 shows the throughput
of the systems. Epic outperforms the other systems under all

contention levels. Under low contention, Epic benefits from
the high memory bandwidth and parallelism offered by the
GPU, enabling it to outperform all other systems. The two
multi-versioned CPU systems, MSTO and Caracal, perform
poorly under low contention due to the high overhead of
MVCC. However, they perform better under high contention
compared to the single version systems. As expected, Epic’s
performance degrades under high contention. However, due
to the deterministic ordering of transactions and its efficient
multi-versioning implementation, Epic outperforms the other
systems under high contention as well.

5.3 TPC-C NP

The TPC-C NP benchmark is a subset of the TPC-C bench-
mark that consists of 50% NewOrder and 50% Payment trans-
actions. We use this benchmark to compare with GaccO and
Aria as well. The left graph in Figure 5 shows the throughput
of the GPU and then the CPU systems for TPC-C NP.

The Epic, STOv2 and Caracal TPC-C NP results are quali-
tatively similar to TPC-C results. These databases have higher
throughput on TPC-C NP under low contention because TPC-
C NP has shorter transactions than TPC-C. However, they
have lower throughput on TPC-C NP under high contention
because TPC-C NP has higher contention than TPC-C. Cara-
cal and Aria have lower throughput than other CPU based
databases, but they also support distributed operation.

GaccO performs poorly under all contention levels because
it batches transactions by type. For the Payment transaction,
updates on the warehouse table require GaccO to serialize
all transactions. Also, GaccO cannot run NewOrder transac-
tions concurrently with Payment transactions, resulting in the
GPU being underutilized. Additionally, GaccO’s lock-based
concurrency control has high overhead under contention.

Epic’s performance under low contention for TPC-C NP is
much higher than for TPC-C for two reasons. First, TPC-C
NP does not require scanning for the latest order of a cus-
tomer and lookup for ordered items and so the overhead of
read-write identification is significantly lower. Second, and
more importantly, TPC-C NP has short transactions that can
be scheduled on GPU thread blocks (see Section 4.4) more
efficiently. With TPC-C’s mix of short and long transactions,
a block needs to wait for the longest transaction to complete.
We plan to explore scheduling strategies that co-locate long
read-only transactions within blocks.

To implement GaccO’s commutative optimization for TPC-
C NP, we changed the NewOrder transaction to use atomic
CAS instructions to update the District and Stock tables, and
we changed the Payment transaction to use atomicAdd to
increment the balances of the warehouse, district, and cus-
tomers tables. Since the updated values are not used after the
update or read by other transactions, the order of updates is
flexible. The right graph in Figure 5 shows that GaccO with
this optimization outperforms all systems. The throughput
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Figure 5: TPC-C NP Throughput

drops slightly with more warehouses due to decreased cache
locality. This optimization eliminates concurrency control in
TPC-C NP since both the NewOrder and the Payment trans-
actions do not hold any locks. However, this optimization is
not general-purpose, e.g., it doesn’t allow reading the District
table to validate the order ID in the NewOrder transaction.

5.4 YCSB

Next, we conduct experiments using the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [9]. For the experimental setup, we
use a single table consisting of 1,000,000 records. We used
the standard record size in YCSB, where each record is 1000
bytes and consists of ten 100 byte fields. We performed ex-
periments using four YCSB workloads, as shown in Figure 6.
In all workloads, a read operation reads the entire record. An
update operation replaces the value of one randomly chosen
field. A read-modify-write (RMW) operation reads a record
and updates a randomly chosen field. For our evaluation, we
group 10 operations to form a transaction. We vary the Zipfian
skew factor θ from 0 to 0.99 to vary contention levels.

Figure 7 shows the throughput of the six databases for the
four YCSB workloads with increasing contention levels. Epic
outperforms all other databases for all workloads. In YCSB-A,
Epic’s performance drops significantly under high contention.
Epic performs a read-modify-write operation for each update
operation. Even when an update only writes to a part of the

Workload Description Operations

YCSB-A Update heavy Read: 50%, Update: 50%
YCSB-B Read heavy Read: 95%, Update: 5%
YCSB-C Read only Read: 100%
YCSB-F Read-modify-write Read: 50%, RMW: 50%

Figure 6: YCSB Workload Configurations

record, the entire record needs to be copied from the previous
version. As a result, the read-modify-write operations form
long dependency chains under high contention. In the YCSB-
B benchmark, where the write ratio is low, Epic’s performance
drops more gently under high contention. In the read-only
YCSB-C benchmark, Epic achieves high throughput due to
the high memory bandwidth of GPUs. Finally, in the YCSB-F
benchmark, Epic shows a similar trend as YCSB-A, where
performance drops significantly under high contention be-
cause Epic performs the same read-modify-write operations
for both YCSB-A and YCSB-F. In some workloads, Epic’s
throughput increases slightly from low to medium contention
level (skew factor 0.0 to 0.5) due to better cache locality that
improves GPU indexing performance. The execution phase
in Epic also benefits from this better cache locality, especially
for read-only YCSB-C.

We also evaluate the performance of Epic with field split-
ting, as described in Section 3.4. In this case, each record is
divided into ten fields, and each field is treated as a separate
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Figure 7: YCSB Throughput

data item from the perspective of concurrency control. As a
result, each full-record read operation needs to perform 10
field reads, each requiring separate synchronization. As a re-
sult, the number of read operations in the initialization phase
increases by 10x, and read performance decreases. On the
other hand, since each field is treated separately, an update
operation on a single field does not require copying the rest
of the fields from the previous versions, improving update
performance. As shown in Figure 7, Epic with field splitting
performs better than default Epic under YCSB-A with high
contention. However, Epic’s performance is lower in YCSB-
B, YCSB-C, and YCSB-F, where the read ratio is higher.

GaccO shows similar trends under all workloads, perform-
ing well under low contention, but its performance drops
significantly under high contention due to its lock-based con-
currency control. GaccO’s initialization phase is simpler and
faster than Epic’s MVCC initialization but its lock-based con-
currency control does not allow readers to share locks, causing
its performance to drop significantly under contention, even
under a read-only workload. GaccO’s assigns each transaction
to a single GPU thread, which causes non-coalesced memory
accesses that reduce memory bandwidth utilization. As a re-
sult, GaccO’s performance decreases when the ratio of read
operations increases (YCSB-A and YCSB-B) because read
operations retrieve the entire record. GaccO’s commutative
operation optimization cannot be applied to YCSB workloads
(except YCSB-C) because other transactions read the values
of the data items updated. Therefore, we did not implement
this optimization for the YCSB workloads.

Both multi-versioned systems (MSTO and Caracal) suffer
from the same extra dependency as Epic in YCSB-A. There-
fore, they exhibit similar trends for YCSB-A and YCSB-F.
OSTO and TSTO perform well under low contention, but
their performance drops significantly under high contention
with write-heavy workloads (YCSB-A and YCSB-F). This is
due to increased aborts resulting from a high conflict rate. In

read-heavy workloads (YCSB-B and YCSB-C), OSTO and
TSTO outperform MSTO and Caracal due to their lightweight
concurrency control mechanisms. However, Caracal achieves
higher throughput than OSTO and TSTO in YCSB-A and
YCSB-F under high contention because its MVCC-based con-
currency control allows readers to run in parallel with writers.

5.5 CPU-side Execution

Next, we evaluate the performance of Epic’s CPU-side exe-
cution using the same setup for the TPC-C, TPC-C NP and
YCSB benchmarks. As mentioned in Section 3.3, the GPU
performs indexing and initialization for the epoch and then
transfers the execution plan to the CPU. This data transfer
takes roughly 4 ms for the TPC-C NP and YCSB benchmarks
and 6 ms for TPC-C, which contains long running queries
with more operations. The transactions are then executed on
the CPU. The throughput reported in Figure 8 includes the
time for indexing, initialization, data transfer and execution
because Epic currently does not implement pipelining.

With TPC-C and TPC-C NP, CPU-side execution achieves
higher throughput than GPU-side execution with a single
warehouse. We believe that the contended Payment transac-
tion limits Epic from utilizing the parallelism of the GPU ef-
fectively. On the CPU, Epic’s execution time synchronization
is more efficient as the atomic flags can be directly commu-
nicated through the CPU cache. However, with more ware-
houses, GPU-side execution achieves higher throughput due
to the higher parallelism and memory bandwidth of the GPU.

With CPU-side execution, Epic achieves lower throughput
in TPC-C than TPC-C NP under low contention due to the
longer data transfer time. However, Epic performs better for
TPC-C with a single warehouse because TPC-C has lower
contention than TPC-C NP.

With YCSB, each transaction reads several records, and so
CPU-side execution is limited by memory bandwidth and la-
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Figure 8: Throughput with CPU-side Execution

tency. For read-only YCSB-C, CPU-side execution has much
lower throughput than GPU-side execution. Throughput in-
creases slightly under contention due to cache locality. For
YCSB-F, CPU-side execution throughput is bottlenecked by
memory bandwidth at low contention and achieves similar
throughput as GPU-side execution under high contention.
YCSB-A and YCSB-B show similar trends so we omit them.

For all the three benchmarks, Epic’s CPU-side execution
achieves comparable throughput to OSTO and TSTO un-
der low contention because Epic’s GPU initialization is ef-
ficient. Under high contention, Epic outperforms OSTO by
6.2x and TSTO by 7.9x for TPC-C single warehouse and
both by 3.2x for YCSB-F with a 0.99 skew factor due to its
multi-versioning. Epic-CPU outperforms both multi-version
systems, MSTO and Caracal, under all workloads because
Epic’s MVCC initialization is efficient and, unlike MSTO and
Caracal, Epic’s CPU-side execution runs without performing
expensive version search.

5.6 Run Time Breakdown

Figure 9 shows the breakdown of per-epoch run time for Epic
running TPC-C with the CPU- and GPU-execution model.
The figure shows that the initialization time is similar for both
low and high contention levels because Epic’s initialization
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Figure 9: Epic Run Time Breakdown

phase is unaffected by the contention level. The GPU execu-
tion time is significantly longer under high contention because
transaction dependencies reduce GPU utilization.

For CPU execution, the indexed transactions and the trans-
action execution plans need to be transferred from the GPU
to the CPU. Depending on the complexity of the transaction,
the data transfer time can vary but is a significant portion of
the total run time. Pipelining the GPU and CPU phases will
help reduce the epoch run time.

5.7 Latency

In this experiment, we evaluate Epic’s throughput and latency
for different epoch sizes by comparing against the GaccO,
Caracal, and Aria deterministic databases. We show TPC-
C NP results because our GaccO implementation and Aria
implement TPC-C NP. We also show YCSB-F results (but not
for Aria, which doesn’t implement it). For both workloads,
we show results under low and high contention. Epic’s results
for TPC-C are not shown but they are similar to TPC-C NP.

We vary the epoch size from 500 to 200K transac-
tions/epoch. Epic batches transactions during the previous
epoch and the benchmarks do not cause aborts, so Epic’s
average transaction latency is 1.5× the epoch run time.

Figure 10 shows the throughput and average latency of the
four systems. Each point on a line represents an epoch size.
The lines start at 5000 for Caracal (which crashes at lower
epoch sizes) and 500 for all other systems. The lines also show
some key epoch sizes, e.g., at maximum throughput and at
the knee of the curve. In all workloads, Epic achieves higher
throughput with increasing epoch size. Intuitively, a larger
epoch enables higher parallelism and amortizes overheads at
the cost of transaction latency. Similarly, Caracal’s throughput
increases with larger epoch sizes.
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GaccO’s throughput increases with larger epoch sizes ini-
tially but then decreases. We believe that GaccO’s lock-based
scheduling performance degrades with increasing number of
concurrent transactions. We plan to investigate this issue.

Aria’s throughput decreases with larger epoch sizes under
low contention because more transactions are deterministi-
cally aborted. However, Aria benefits from a larger epoch
size under high contention. In this case, Aria’s deterministic
scheduling mechanism aborts a majority of transactions. The
aborted transactions are rerun using the deterministic locking
fallback strategy, which is more efficient at larger epoch sizes.

Overall, Epic achieves comparable latency to other systems
at small epoch sizes. Epic has higher latency than GaccO
at small epoch sizes because its multi-version initialization
phase is slower and the small epoch size does not allow it to
amortize this overhead. However, beyond roughly 2 ms aver-
age transaction latency, Epic outperforms all other systems.

5.8 Impact of Aborts

To evaluate the impact of aborts on Epic’s performance, we
run a micro-benchmark where each transaction reads and up-
dates 10 records. The keys are generated using a Zipfian dis-
tribution with θ = 0.8 for medium contention. Transactions
abort when the read-set or the write-set is predicted incor-
rectly, and aborted transactions are rerun in the next epoch.
We vary the abort rate for the experiments. We assume that the
read-set and write-set are known after a transaction executes,
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Figure 11: Impact of Abort Rate

and so an aborted transaction will not abort again when rerun,
similar to Aria’s assumption for its fallback strategy [21].

Figure 11 shows Epic’s throughput and average latency.
As the abort rate increases, Epic’s throughput decreases and
latency increases roughly linearly. Aborted transactions are
rerun in the next epoch, which increases their latency and
requires additional work.

6 Conclusions

Multi-versioning schemes for transaction processing sys-
tems have traditionally been popular because they provide
good performance for a range of workloads, including for
long-running transactions and contended workloads. With
in-memory databases increasingly being used for applica-
tions requiring high-throughput transaction processing, sev-
eral multi-version schemes have been proposed for in-memory
databases. However, these schemes have significant costs as-
sociated with version search and storage, garbage collection,
index management.

This work proposes a novel design for multi-versioning
that takes advantage of the predetermined ordering of trans-
actions and known read-write sets in deterministic databases
to eliminate version search by efficiently pre-calculating the
version location of each read/write operation. Our batching
design helps reduce version allocation, garbage collection and
indexing overheads as well. Our design is parallelizable and
so we explore accelerating transaction processing on GPUs.
Our evaluation shows that our multi-versioned, GPU database
performs well under both low and high contention workloads
and significantly outperforms state-of-the-art systems.
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A Artifact Appendix

Abstract
We implement Epic, the first multi-versioned GPU-based de-
terministic OLTP database. Epic batches transactions into
epochs and establishes a serial ordering of transactions within
a batch before transaction execution. Epic performs concur-
rency control initialization for a batch of transactions before
execution, avoiding version search and reducing version al-
location and garbage collection overheads. Epic runs on the
GPU to accelerate concurrency control initialization and par-
allelize batched transaction execution. In addition, Epic sup-
ports larger datasets with a CPU execution model. We evaluate
Epic using the TPC-C and YCSB benchmarks and compare
it with state-of-the-art systems: STOv2, Caracal, Gacco, and
Aria.

Scope
The artifact allows reproduction of the results of the paper, in-
cluding the performance evaluation of Epic using the TPC-C
and YCSB benchmarks, the latency and throughput compar-
ison, and the performance evaluation of Epic with varying
abort rates.

All the experiments except the runtime breakdown in Fig-
ure 9 can be reproduced using the artifact. The runtime break-
down is created by retrieving the runtime information manu-
ally, and we do not have a script to automate this process.

Additionally, the artifact cannot perform the performance
evaluation for Aria due to the conflict of dependencies. There-
fore, the Aria results in Figure 5 and Figure 7 are not repro-
ducible using the artifact.

Contents
The artifact repository contains the source code of Epic,
STOv2, and Caracal as separate submodules. We used our
best-effort implementation of Gacco, and the source code is in-
cluded in the Epic submodule. The repository contains scripts
to run the experiments and generate the figures in the paper.
The repository also contains scripts to install the necessary
dependencies and set up the experiment environment. The
README file in the repository provides detailed instructions
on how to run the artifact.

Hosting
Our artifact repository is hosted on GitHub at https:
//github.com/ShujianQian/epic-artifact/commit/
9303f4d2b1fa8368de0dbdc24bcd798585ceb920.

More details on how to set up the experiment environment,
run the experiments, and reproduce the results are provided
in the README file in the repository.

Requirements
Our experiments require running on servers equipped with
GPUs. We used FluidStack to host on-demand virtual GPU
servers. Our artifact repository contains instructions on how
to set up the virtual servers and run the experiments.

Alternatively, the experiments can be run on machines with
NVIDIA GPUs. The artifact repository is tested for machines
with more than 32 CPU cores, 128GB of RAM, and NVIDIA
GPUs of compute capability 8.6 and GPU memory of 48GB.
The artifact repository contains scripts to install the necessary
dependencies and run the experiments.
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Abstract
Cloud block storage (CBS) is a key pillar of public clouds.
Today’s CBS distinguishes itself from physical counterparts
(e.g., SSDs) by offering unique burst capability as well as
enhanced throughput, capacity, and availability. We conduct
an initial characterization of our CBS product, a globally de-
ployed cloud block storage service at public cloud provider
Alibaba Cloud. A key observation is that the storage agent
(SA) running on a data processing unit (DPU) which connects
user VMs to the backend storage is the major source of perfor-
mance fluctuation with burst capability provided. In this paper,
we propose a hardware-software co-designed I/O scheduling
system BurstCBS to address load imbalance and tenant inter-
ference at SA. BurstCBS exploits high-performance queue
scaling to achieve near-perfect load balancing at line rate. To
mitigate tenant interference, we design a novel burstable I/O
scheduler that prioritizes resource allocation for base-level us-
age while supporting bursts. We employ a vectorized I/O cost
estimator for comprehensive measurements of the consumed
resources of different types of I/Os. Our evaluation shows that
BurstCBS reduces average latency by up to 85% and provides
up to 5× throughput for base-level tenants under congestion
with minimal overhead. We verify the benefits brought by
BurstCBS with a database service that internally relies on
CBS, and show that up to 83% latency reduction is observed
on customer workloads.

1 Introduction

Cloud Block Storage (CBS) is a fundamental storage service
on public clouds. It provides virtualized block-level storage
volumes that can be dynamically provisioned and attached to
compute instances. Beyond what an SSD can already offer, a
CBS disk can provide additional benefits, including millions
of IOPS, tens of terabytes capacity, higher durability with data
replication, and out-of-box encryption support [1–4].

CBS adopts storage disaggregation to achieve better elastic-
ity [5–9]. The disaggregated architecture of CBS empowers

public clouds to independently scale storage and compute
resources. Block storage volumes can be created, resized, and
destroyed on demand without disrupting compute instances.
Such agility and flexibility allow enterprises to right-size stor-
age for different workloads in the cloud.

Due to the wide adoption of storage disaggregation, re-
searchers have studied various technical aspects of it, includ-
ing SSD co-optimization [10–12], kernel improvement [13,
14], kernel bypassing [7, 8, 10–12], storage-oriented net-
work [5–8], performance analysis [15], and applications [16].
The performance of disaggregated storage is rapidly improv-
ing with the aforementioned system advances as well as the
adoption of faster network/storage devices.

Through our analysis of the operational statistics of our
production clusters and characterization of the storage agent
(SA) which connects user VMs to the backend storage, we
draw three key insights of CBS at Alibaba Cloud.

First, the bottleneck is shifted to compute nodes. Many
existing systems target the bottleneck of SSDs [10, 11, 17].
We show that the distributed nature of cloud storage back-
end design and the over-provisioning tendency of cloud users
result in relatively low utilization of storage servers and de-
vices in terms of throughput. These characteristics of CBS
have shifted performance bottleneck from the backend to the
compute nodes. While backend traffic is well balanced by
design and enjoys the benefit of the law of large numbers,
compute nodes experience frequent traffic fluctuation due to
unpredictable usage patterns of users.

Second, the burst capability of cloud block storage am-
plifies the chance of congestion. Cloud providers offer on-
demand access to extra CPU and storage resources for running
instances [18–20]. User VMs are provided with a base-level
performance and the burst capability allows them to handle
temporary traffic bursts above the base level. However, it can
put a strain on the underlying server and cause performance
degradation. When a single VM bursts to an extremely high
throughput or multiple VMs on the same server burst con-
currently, VMs compete for the limited available resources,
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Figure 1: CBS architecture.

which leads to congestion. Moreover, heavy bursting VMs
can crowd out other VMs running at a steady state.

Third, lack of resource scheduling at data processing units
(DPUs) is the root cause of performance interference. To-
day, DPUs have become a standard component on compute
nodes in the cloud [21–25]. A DPU runs hypervisor and net-
work/storage functions freeing up host CPUs for customer
usage. However, handling bursts on a DPU is extremely chal-
lenging for SA, as a DPU only possesses limited processing
capability. Therefore, SA must strive for high resource utiliza-
tion and provide performance isolation under congestion.

With a brief summary, there are two extra implicit require-
ments for CBS when supporting burst. (i) Comprehensive
resource utilization: SA should fully leverage the available
processing capacity of the DPU to support higher bursts and
avoid congestion in the first place. (ii) Base-level performance
guarantee: SLOs must not be violated for a tenant who does
not exceed its base-level provisioning.

However, the existing SA meets neither of the goals by
default. First, SA maps user queues statically to I/O threads
running on DPU cores. An I/O thread can become congested
while other threads are still idle when a certain user queue
starts bursting. Second, an I/O thread serves I/Os in a First-
Come-First-Serve (FCFS) manner as long as a VM is within
its burst limit. VMs running at a steady state suffer high
queuing delay as a result when other VMs are bursting.

In this paper, to overcome load imbalance and tenant inter-
ference induced by bursts, we present BurstCBS, a storage
I/O scheduling system that leverages the hardware features
of our custom xDPU and software characteristics of our SA.
The design of BurstCBS offers a number of benefits. First, it
equally distributes I/Os to all I/O threads. Second, it allows
high bursts, while providing guarantees on base-level perfor-
mance per VM. Third, it detects different types of bottlenecks
on xDPU, avoiding triggering false congestion control. Fi-
nally, BurstCBS achieves the above benefits while keeping
high resource utilization and minimal scheduling delay.

BurstCBS integrates three key techniques to realize the
aforementioned benefits. First, considering the significant
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Figure 2: CDF of IOPS and BPS (bits per second) utilization
in a production cluster. 100% IOPS utilization is defined as
the maximum IOPS a node can saturate on a 4KB random
I/O workload and 100% BPS utilization is defined as the
maximum bandwidth that a node can saturate on a 128KB
sequential I/O workload.

overhead introduced by inter-thread messaging, we leverage
hardware capability and extensively optimize SA to imple-
ment I/O-granularity load balancing at line rate. With limited
DPU memory, we design a two-tier memory pool that dynam-
ically adjusts shared and queue-dedicated memory to achieve
high I/O performance and memory efficiency. Second, we de-
sign a novel burstable I/O scheduler that is aware of the base-
level/burst provisioning of each tenant. Rather than achieving
high resource utilization with a work-conserving scheduler
or guaranteeing strong performance isolation among multiple
tenants, it dynamically attempts to provide burst capability
to tenants that have excessive demand while monitoring and
protecting base-level performance for other tenants in real
time. Third, we design a vectorized I/O cost estimator that de-
couples potential resource bottlenecks that SA may encounter
on xDPU. It vectorizes I/O cost and adjusts its estimation with
a delay-based approach to allow the scheduling algorithm to
react to resource contention effectively.

We implement BurstCBS as a standalone system package
running on xDPU, and integrate it into the existing I/O work-
flow of SA. We conduct a comprehensive evaluation with
various types of workloads and show that BurstCBS effec-
tively protects base-level tenants while incurring a negligible
overhead. Overall, BurstCBS reduces average latency by up to
85% and achieves up to 5× throughput for base-level tenants
under congestion. A database service that internally relies on
CBS reports that up to 83% reduction of SQL query average
latency is observed with BurstCBS deployed.

2 Background

CBS architecture. Figure 1 shows the three-layer architec-
ture of CBS at Alibaba Cloud. User VMs are hosted in the
compute cluster, and all I/Os generated by VMs are forwarded
to the partitioning cluster for further processing. The parti-
tioning cluster controls data placement and failover, hiding
the complexity from the compute cluster [5, 9]. The persis-
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Figure 3: I/O workflow on xDPU.

tence cluster has tens of SSDs equipped on each node and
is responsible for data persistence. Nodes in different layers
are fully connected through a proprietary storage-optimized
protocol to achieve load balancing at the backend clusters
(i.e., partitioning cluster and persistence cluster).

CBS characteristics. A virtualized user disk is divided into
multiple segments which are then distributed among all parti-
tioning nodes. A partitioning node again divides each segment
into smaller chunks which are evenly stored and replicated
among persistence nodes. With this two-layer load-balancing
design, storage I/Os are evenly distributed among all partition-
ing nodes and persistence nodes. An interesting phenomenon
in the backend clusters is the asymmetry between IOPS/BPS
utilization and disk capacity utilization. Figure 2 shows the
distribution of IOPS/BPS per backend node in one of our most
active production clusters in a peak hour. Storage accesses are
balanced among all backend nodes resulting in low IOPS/BPS
utilization on them while 78% disk capacity is utilized.

xDPU. At Alibaba Cloud, we design and build xDPU, an SoC
that offloads infrastructure services from CPUs of compute
nodes. It consists of its own compute resources (CPU, mem-
ory), programmable hardware accelerators (FPGA), network
interfaces, and a DMA engine that can directly access guest
VM memory over PCIe. The latest version of xDPU integrates
eight 2.0GHz cores which are shared among storage, network,
and administration functions. There are two 100Gbps net-
work Ethernet ports available for use, and the DMA engine
has about the same data movement throughput.

Storage agent. A storage agent (SA) is installed on an xDPU.
It abstracts virtualized storage for VMs and connects the back-
end storage. SA consists of a control plane and a data plane.
The SA control plane runs in wimpy cores of xDPU in user
space. Among all cores, 2–4 of them are dedicated to SA
control threads. The SA datapath logic is burned into FPGA,
which moves data with the assistance of the DMA engine.
A total of 100Gbps NIC/PCIe bandwidth is made available
for SA. In Figure 3, we take NVMe WRITE operation as an
example to explain how an I/O is processed by SA on xDPU.
When a VM issues an NVMe WRITE command, the com-
mand is directly forwarded to FPGA on xDPU. The control

Table 1: Block storage burst capability of public clouds.

CloudA CloudB Alibaba Cloud

Burst support ✓ ✓ ✓
Credit-based burst ✓ ✓ ✓

Paid burst ✗ ✓ ✓
Max burst IOPS 3k 30k 1000k

Max burst BPS (MB/s) N/A 1000 4096
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Figure 4: CDF of base-level throughput utilization in a pro-
duction cluster.

threads of SA keep polling FPGA for new I/Os. When a con-
trol thread receives a new I/O, it splits the I/O into packets
and constructs headers for them. Meanwhile, FPGA fetches
the actual data via DMA. Once the header and body are ready,
FPGA sends the packet to the backend via fabric.

We adopt an FPGA-CPU cooperative SA design instead
of a fully FPGA-offloaded solution for three reasons. First,
there is complex branching in I/O splitting and packet encap-
sulation for cloud block storage, which can hardly utilize the
parallelism provided by FPGA. The wimpy CPU cores on
xDPU yet have a much higher clock speed than FPGA, which
makes CPU cores the right place to handle that part of logic.
Second, SA must maintain a significant amount of states in-
cluding thousands of connections to the distributed backend.
The FPGA on xDPU does not have that much memory, while
FPGA with more memory does not justify the cost. Third,
from an engineering perspective, development and testing of
FPGA code require much more effort which prevents us from
rolling out new features quickly. We only consider offloading
a software feature when it becomes mature enough.

3 Key Observations and Implications

We explain why the partitioning and persistence clusters are
not the bottleneck in §2. In this section, we share two obser-
vations on the compute nodes of production CBS at Alibaba
Cloud and reveal the corresponding challenges of providing
predictable performance for cloud block storage.

Observation 1: The Burst capability of CBS makes com-
pute nodes a common bottleneck. Conventionally, cloud
providers provision VMs with fixed CPU, memory, and I/O
resources to customers. However, a fixed amount of resources
can barely match the dynamic workload faced by cloud users.
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Figure 5: An incident of tenant interference under burst.

To bridge this gap, public clouds provide burstable
VMs [26–29] as an option. Essentially, burstable VMs pro-
vide a base level of resources with the ability to burst above
that when needed. Burstable VMs often come with a credit
system. A VM accumulates credits when running below its
base-level throughput while spending them to burst when it
needs extra resources to saturate its demand.

Making block storage burstable is crucial for delivering
burstable VMs because many workloads are bottlenecked on
storage I/Os. In Table 1, we compare the burst capability of
three widely used public clouds. All three cloud providers
support credit-based burst which accumulates tokens for a
user that does not use all of its base-level throughput. These
tokens allow a user to burst when its desired throughput is
beyond its provisioning. CloudB and Alibaba Cloud further
allow users to burst on demand and pay for the extra through-
put. What makes our case unique is that we allow a disk to
burst up to 1 million IOPS and 4GB/s read/write BPS (subject
to VM instance types and configurations).

We decide to allow this extreme burst capability for two rea-
sons. First, it is a substantial requirement of our customers, as
some of our CBS users have extremely bursty traffic. Figure 4
shows the distribution of base-level throughput utilization per
disk in a production cluster. Some disk bursts over 300% of
its base-level throughput. Second, fulfilling the burst require-
ment can further improve the overall resource utilization as
well. The majority of our users over-provision their base-level
throughput. In Figure 4, over 80% of disks use less than half of
their base-level throughput. This is not a unique phenomenon
at Alibaba Cloud. There is also previous work that reports the
over-provisioning tendency of cloud users [30].

Although credit-based burst is attractive, it raises a strong
challenge for us to provide predictable performance. Because
users keep accumulating tokens as long as they are below
base-level throughput, many VMs may possess tokens and
start to burst at the same time. When it happens, every tenant
on the impacted compute node observes higher latency and
lower throughput due to congestion.
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Figure 6: Impact of imbalanced load.

Our existing system addresses this problem by limiting the
number of co-located VMs. Under a simplified model, assume
a VM has the probability p to burst in a time interval, and we
have N VMs on the compute node. We know that VMs will
experience performance interference if k out of N VMs burst
concurrently. The chance of performance interference is:

P(X ≥ k) = 1−
k−1

∑
i=0

(
N
i

)
(1− p)N−i pi (1)

If we want to limit this probability to a small number, we
have to limit the number of VMs that can co-locate on a
compute node, which hurts the overall resource utilization.
In production, over 95% of the compute nodes have 32 or
fewer VMs allocated, which helps us maintain our SLA dur-
ing 99% of the time. Indeed, although we have made this
number small enough, we still observe performance interfer-
ence occasionally. Figure 5 shows one such incident. During
half an hour, multiple tenants were bursting and the software
limit on xDPU was frequently triggered resulting in throttling.
Although Victim1 and Victim2 ran below their base-level BPS
steadily, they both observed many unexpected millisecond-
scale average latency spikes during that time.

Observation 2: Inter-thread load imbalance and intra-
thread resource contention are the major sources of per-
formance interference on xDPU. In a VM, each vCPU cor-
responds to a queue pair. These queue pairs are mapped to
an SA control thread in a round-robin manner by FPGA on
xDPU. However, this mapping cannot adapt to dynamic work-
load in real time and is prone to cause load imbalance among
SA control threads. Figure 6 gives an example. CPU 1-1 of
VM 1 and CPU 2-2 of VM 2 are both mapped to SA control
thread 1. When CPU 1-1 is creating a burst I/O stream, control
thread 1 becomes congested. I/Os from CPU 2-2 experience
a high queuing delay even if other control threads are idle. In
short, uneven I/O intensity per vCPU created by users and
static vCPU to SA control thread mapping through FPGA
together lead to inter-thread load imbalance.

Bursting from a single thread in a VM is a common pattern
of many I/O intensive applications because they are generally
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Table 2: Parallel execution support of popular databases. Non-
modifying ops refer to operations that do not change any
database records.

PE support Enabled by default

Oracle ✓ ✗
MySQL ✗ ✗

SQL server non-modifying ops ✓
PostgreSQL non-modifying ops ✓
MongoDB ✓ ✓

Redis ✗ ✗
Elasticsearch ✓ ✓

Db2 ✓ ✗
SQLite non-modifying ops ✗
Access ✗ ✗

built under the assumption that host CPU is not the bottleneck.
In Table 2, we surveyed parallel execution support of the top
10 database management systems in terms of popularity [31].
Relational databases either do not fully support parallel sub-
queries on multiple CPUs or do not enable parallel execution
by default. Redis is also known for its single-threaded design.

Our online experience also confirms this phenomenon. Fig-
ure 7 shows the I/O intensity per vCPU for 1000 randomly
sampled 4-core VMs in a minute in a production cluster. Over
80% of the total I/Os are from the most I/O-intensive core.

Besides inter-thread load imbalance, intra-thread resource
contention is another cause of unexpected performance degra-
dation. Processing an I/O consumes CPU cycles in the SA
control plane to construct the packet header and interconnect
bandwidth in the SA data plane to transmit the actual data.
When there is a resource contention, an I/O has to wait in
queues until the resources are available.

We observe there are two typical cases that an I/O stream
is impacted as an undesired result. First, a burst tenant with
a high I/O parallelism has a significantly better chance of
acquiring the resources than a base-level tenant. In Figure 8a,
when we increase the I/O parallelism of a burst tenant which
creates a mixture of 4KB to 128KB I/Os in the background,
serial write I/Os from the base-level tenant are also queued up
and average latency increases sharply due to HoL blocking.

Second, various CBS product offerings are available to
customers. Through our measurement and analysis, different
CBS product offerings differ in their capability on compet-
ing SA resources since they have significantly different I/O
processing pipelines. For example, in Figure 8b, we start a
ProductA disk and let it burst in the background, and no mat-
ter how much I/O parallelism we add to the ProductB disk, it
cannot reach a similar level of throughput to ProductA.

Summary of implications. Based on our observations, we
draw a few important implications for designing BurstCBS:

• The performance bottleneck is generally on compute
nodes rather than backend servers and devices.

• The burst capability of cloud block storage that we must
support is a main trigger of this bottleneck.

1st - 80.51 %
2nd - 13.77 %
3rd - 3.27 %
4th - 2.45 %

Figure 7: Distribution of I/Os from each vCPU of 4-core VMs
(1st is the busiest core, 4th is the least busy core).
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Figure 8: Resource competition on a control thread.

• The root causes are load imbalance among control
threads and resource competition within a thread.

4 BurstCBS Overview

BurstCBS is designed and implemented as a standalone sys-
tem package on xDPU (Figure 9). BurstCBS consists of three
key components: high-performance queue scaling, burstable
I/O scheduler, and vectorized I/O cost estimator.

High-performance queue scaling (§5.1). We rely on xDPU
hardware features to balance I/O distribution among SA con-
trol threads. However, it creates an extra challenge for SA
control threads to achieve high-performance I/O processing.
We propose a two-tier memory pool where BurstCBS moves
free buffers between the shared pool and queue-dedicated
pools for efficient use of the limited memory.

Burstable I/O scheduler (§5.2). Burst capability with perfor-
mance isolation requires non-uniform and dynamic resource
allocation among multiple co-located tenants. We design a
burst-capable I/O scheduler that periodically runs on every SA
control thread for resource allocation. It allows each tenant to
burst when possible while keeping performance interference
among tenants within an acceptable range.

Vectorized I/O cost estimator (§5.3). The key to allocating
the right amount of resources to tenants is an accurate estima-
tion of the resource consumption of each I/O. SA manages
multiple resources including CPU cycles and interconnect
bandwidth. Any of these resources can become the bottleneck
under various I/O patterns. We design a vectorized I/O cost
estimator that decouples the estimation of each resource.
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5 BurstCBS Design

The goal of BurstCBS is to address the two aforementioned
issues: (i) lack of load balancing among control threads; (ii)
lack of resource scheduling among tenants. In this section, we
describe the design choices we make for each system module,
as well as the considerations behind them.

5.1 High-Performance Queue Scaling
When we design the queue scaling mechanism among threads,
there are two key requirements. First, load balancing must
be achieved with low overhead to avoid hurting latency and
throughput. Second, the mechanism should provide near-
perfect load balancing to avoid further thread synchronization.

Today’s DPUs are in the early stages and evolving fast.
Unlike NICs supporting Receive Side Scaling (RSS) [32],
there are no ASIC-based scaling solutions between host and
DPU cores. Instead, DPUs provide programmable hardware
on the datapath so that users can implement custom logic. For
example, NVIDIA BlueField-3 consists of a set of embedded
RISC-V cores named datapath accelerator (DPA) [23], and
our xDPU has FPGA as the equivalent. FPGA is capable of
performing lookup operations at a very high rate, which re-
sembles a programmable switch that controls packets through
match-action tables, making it an attractive candidate for of-
floading logic such as load balancing and rate control [33].

Evolution of load balancing on xDPU. Due to the limitation
of FPGA resources on early versions of xDPU, it does not
support load balancing by any means. We first make a com-
promise on the software side by creating one egress queue for
every ingress queue, and equally assign the egress queues to
all the SA control threads (Figure 10a). Assuming we have
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Figure 11: Throughput comparison of different approaches.
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Figure 12: Two-tier memory pool.

many ingress queues (one ingress queue per vCPU) and the
throughput of each ingress queue only varies in a narrow
range, we expect to see near-perfect load balancing.

This design works relatively well with our non-bursting
CBS product types. After we launch burstable disks, we start
to observe frequent load imbalance between control threads.
Although we can dynamically adjust queue binding, it takes a
few seconds to drain inflight I/Os and reconfigure I/O queues,
making it impossible to handle transient bursts.

For early versions of xDPU, we have explored two potential
software-based approaches to mitigate this issue: (i) designat-
ing a thread as a centralized dispatcher [34] and (ii) allowing
idle threads to steal I/Os from others [14, 35]. However, both
approaches create additional overhead that we cannot bear.
They require intensive messaging between threads, which
occupies a significant amount of time on wimpy cores. Fig-
ure 11 shows a 35% throughput loss if we switch to a work
stealing prototype which we develop using DPDK’s lockless
ring buffer [36] with a reasonable level of batching.

The newest version of xDPU adds support for load bal-
ancing by allowing mapping one ingress queue to multiple
egress queues (Figure 10b). We leverage this capability to
realize queue scaling to multiple threads. Although no sys-
tem assumptions are broken with multiple egress queues, it
significantly changes how we manage DPU memory.

Two-tier memory pool for fast I/O processing. In the early
years of SA development, we kept a shared pool of buffers
for I/O processing because DPU memory was very limited.
When an I/O arrives, I/O metadata which is required for
packet header generation is written to a buffer retrieved from
the memory pool. When we take the leap to support mil-
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Figure 13: Lack of burst support for BaseCBS.

lions of IOPS per node, we discover that a lot of CPU cycles
are wasted on writing disk/queue specific metadata into the
buffers. To achieve the best I/O performance (i.e., latency and
maximum IOPS), we make a design choice to let each queue
maintain its own memory pool, so every memory buffer can
be prefilled and will not be overwritten.

Adding extra queues makes each memory pool have even
fewer buffers, which means that the number of inflight I/Os a
queue can support becomes very limited. Not having enough
buffers diminishes the burst maximum we can support for
a disk. To remedy this loss, we move to a two-tier memory
pool design (Figure 12). Each queue still keeps its own mem-
ory pool with a few dedicated buffers, but we add a global
shared pool. When a queue experiences increased I/O depth,
it acquires extra buffers on demand from the global pool and
prefills them with its disk/queue specific metadata. It keeps
the extra buffers in its own memory pool and only returns
them when the burst terminates. With this design, we avoid
slow I/Os caused by repetitive metadata filling to the buffers
but keep memory allocation flexible enough.

5.2 Burstable I/O Scheduler

With load imbalance among threads addressed, we next focus
on resource scheduling within a thread. There are two essen-
tial requirements guiding our design of the scheduler. First, a
tenant should be able to use its base-level provisioning (i.e.,
base-level IOPS and BPS) with bounded latency no matter
how other co-located tenants behave. Second, a tenant should
be able to burst, but not exceed its burst provisioning. Every
tenant should have an equal chance and ability to burst when
they share the same burst provisioning and I/O pattern. Note
that providing each tenant an equal fraction of the resources
is a non-requirement for BurstCBS.

Base-level performance guarantee. Achieving base-level
performance consists of two implications: (i) a tenant can
achieve base-level IOPS/BPS with enough I/O parallelism;
(ii) average read/write latency is bounded for a tenant if it is
within its base-level IOPS/BPS. The latency guarantee is par-
ticularly important because it also determines the maximum
throughput that an application can achieve if synchronous
system calls are mostly used. In Figure 8a, we show that the
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latency of a victim tenant starts increasing dramatically with
more parallelism of other tenants on a compute node. The
reason is that a large amount of queuing delay is added when
a hardware/software bottleneck is hit.

These two requirements intuitively translate to a group of
rate controllers that limit the admission rate to prevent con-
gestion, which resembles Gimbal [11]. We call this design
BaseCBS, which provides performance isolation for base-
level performance. There are two major differences between
BaseCBS and Gimbal. First, Gimbal strives for black-box
SSD congestion avoidance, so it limits the number of in-
flight I/Os. On the contrary, we try to avoid congestion on
DPU. When an inflight I/O is being processed by the backend
servers and devices, it does not consume any resources on
DPU. Therefore, BaseCBS limits the I/O admission rate in-
stead. Second, Gimbal enforces strict fair sharing of resources
among tenants to achieve absolute fairness while we need
each tenant to get a share in proportion to its purchased base-
level provisioning as a cloud provider.

Bounded burst support. Although BaseCBS provides a
strong base-level performance guarantee, it does not provide
burst support because each tenant has a static throughput
limit. In Figure 13, even if VM3 is completely idle with no
incoming I/O, and admitting an additional I/O will not result
in congestion, VM2 is only allowed to process one I/O per
window. To this end, BaseCBS is only applied to some of the
legacy non-burstable CBS disks.

An easy modification that lets this design work is to as-
sign only part of the total resource Resbase to BaseCBS while
keeping the rest Resburst in a shared pool for potential bursts.
However, this design does not work out for CBS products.
On the one hand, this design limits the burst capability we
can provide on a compute node to Resburst . On the other hand,
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keeping separate and smaller resource pools directly leads to
lower resource utilization, which would force us to provide
CBS products at a higher price.

As Figure 4 shows, many of the tenants run way below their
base-level IOPS/BPS. An ideal design is to harvest the idle
base-level resources to support bursts and return the resources
when they are needed. Therefore, bounded burst support es-
sentially requires a work-conserving fair queuing scheduler
with a per-tenant rate limiter which enforces provisioning lim-
its (WildCBS). To this end, we use a weighted round-robin
(WRR) scheduler, a classic work-conserving fair queuing
scheduler that iterates through all ingress queues and pro-
cesses requests in proportion to their weights.

Figure 14 shows an example of three tenants that are provi-
sioned 1 base IOPS and 3 burst IOPS. 1 base IOPS per tenant
is achieved by having a global rate limiter of 3 IOPS and
each tenant is weighted equally in WRR scheduling. In this
example, VM1 runs at base-level usage, VM2 tries to burst
to 3 IOPS, and VM3 is completely idle. Due to the work-
conserving nature of WRR, WildCBS is able to fully utilize
idle resources from VM3, and the base-level IOPS of VM1
is still guaranteed. WildCBS is integrated into the existing
version of SA to enable burst capability in production.

However, a side effect of WildCBS is that a VM that runs
at or below base-level usage observes a significantly higher
latency while the bursting VM is barely impacted. We observe
that if some VMs dispatch I/Os at a much higher rate than
others, they can quickly consume all the resource budget,
leaving the rest of the VMs to wait until the next window. In
Figure 14, VM2 causes all I/Os from a base-level tenant VM1
to delay by a time window. It becomes very common when
the bursting VMs employ an extremely high I/O parallelism.

Burstable I/O scheduler. To remedy inadequacies of
BaseCBS and WildCBS, we leverage resource usage history
to instruct dynamic rate limiting. Figure 15 shows the design
of our burstable I/O scheduler (BIOS). BIOS actively col-
lects usage data and allocates resources in proportion to user
demands. It provides strong protection on base-level perfor-
mance by (i) enforcing the total resource allocation limit and
(ii) resuming base-level provisioning as soon as it discovers
insufficient resource allocation to under-utilizing tenants.

Algorithm 1 BIOS algorithm
1: procedure RUN_SCHEDULING( )
2: unused = total_alloc− reserved
3: for all tenants i = 1..n do
4: if statusi = burst or throttlei > 0 then
5: alloci← res_basei
6: else
7: alloci← alloc_histi×α

8: unused← unused−alloci

9: for all tenants i = 1..n do
10: wi =

usagei+throttlei×weight_throttle
∑usagei+∑ throttlei×weight_throttle

11: alloci← min(alloci +unused×wi,res_bursti)
12: if alloci > res_basei then
13: burst_tenants.append(tenanti)
14: function THROTTLE_IO(tenantk, io)
15: if allock ≥cost(io) then
16: allock← allock−cost(io)
17: else
18: tenantb←power_of_two_choices(burst_tenants)
19: if allocb ≥cost(io) then
20: allocb← allocb−cost(io)
21: else if reserved≥cost(io) then
22: reserved←reserved−cost(io)
23: else
24: return true
25: return false

Algorithm 1 depicts how resources are allocated. The al-
gorithm first allocates base-level provisioning to all tenants
unless they were below base-level and did not consume all
resources in the last window (lines 4-5). Otherwise, the algo-
rithm tries to lower their allocated resources to allow others
to burst (line 7). In the second round of allocation, it allo-
cates the remaining resources in proportion to the weighted
sum of consumed and throttled I/Os in the last window, but
it cannot exceed burst provisioning (lines 10-11). We add a
higher weight to throttled I/Os because they may have more
follow-up I/Os. The running time of this algorithm only in-
creases linearly with the number of tenants. This is important
because (i) there is not enough headroom on wimpy cores
for a complex algorithm, and (ii) we may have hundreds of
tenants running on the same compute node in extreme cases.

Fast base-level performance recovery. A scheduling algo-
rithm that relies on historical statistics needs to tolerate bad
predictions. The consequence of harvesting idle base-level
resources is that if a tenant suddenly starts dispatching I/Os
after being idle for a long time, it may observe high queuing
delay and inadequate IOPS, which breaks our commitment
on base-level performance guarantee.

A fast recovery mechanism is added as compensation be-
fore the algorithm catches its mis-prediction in the next
scheduling cycle. As shown in Algorithm 1 lines 18-20, a
base-level tenant that runs out of resources first tries to re-
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Figure 16: Scalar cost vs. vectorized cost.

claim the extra resources from bursting tenants. Ideally, we
should reclaim resources from the tenant with the most re-
maining resources, which involves sorting all bursting tenants.
However, applying sorting on a per-I/O basis hurts I/O per-
formance significantly. We adopt power of two choices as an
alternative to eliminate sorting on the I/O processing path.

This mechanism could fail to take effect if bursting tenants
quickly consume all the allocated resources, leaving noth-
ing left for a base-level tenant to reclaim. Therefore, we add
another layer of protection of a shared resource pool (Algo-
rithm 1 lines 21-22). The intuition behind this optimization is
that, through our online measurements, it is unlikely multiple
base-level tenants would resume their usage at the same time.
So we reserve a small amount of pooled resources that are
just enough for two tenants to resume base-level provisioning.
It diminishes a little of burst maximum we can support, but
greatly helps us guarantee base-level performance.

5.3 Vectorized I/O Cost Estimator
BIOS is a proper framework for serving a mixture of base-
level and burst tenants. A key assumption of BIOS is that
consumed resource per I/O is known. However, IOPS and BPS
that an SA control thread on DPU can saturate are dynamic
subject to hardware specification, software implementation,
system configuration, and I/O pattern. To avoid overloading
SA, it is necessary to estimate the I/O cost accurately. Previous
storage systems focus on I/O cost estimation of SSDs [10,
11, 17]. Because manufacturers of SSDs reveal limited design
details of their products, existing work estimates SSD I/O cost
by profiling each device with synthetic workloads.

For CBS, the bottlenecks are on xDPU and SA, rather than
SSDs. Based on our online measurement, we identify three
major bottlenecks in xDPU and SA. (i) CPU: it takes a few
microseconds to process an I/O on an SA control thread on
average, so a control thread can handle a few hundreds of
thousands of IOs per second at maximum. (ii) Interconnect:
SA is able to use 100Gbps NIC bandwidth and ∼100Gbps
DMA bandwidth. (iii) Software: the read/write bandwidth
of SA is also constrained by a software rate limiter which
protects other non-storage services from resource starvation.
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Figure 17: Normalized CPU cost estimation of four I/O types.

Table 3: Effectiveness of estimation adjustment.

WildCBS BurstCBS
w/o adjustment

BurstCBS
with adjustment

Read Lat (us) 1096.89 848.57 248.97
Write Lat (us) 868.79 749.57 270.49

Furthermore, the relative ratios across consumed resources
are divergent on a per I/O basis. Our experiments show that a
4KB write I/O consumes 8× higher CPU time per byte com-
pared to a 128KB write I/O, while they always consume the
same egress bandwidth per byte. Therefore, the bottlenecks
are CPU and egress bandwidth for 4KB and 128KB write
I/Os respectively. This result implies that it is necessary to
model the cost of different I/O types independently.

If we describe I/O cost as a scalar, it creates resource under-
utilization. In Figure 16, a scalar cost must be given the value
of the most consumed resource, which unnecessarily leaves
other resources idle, limiting our ability to burst. In contrast,
if we decouple the costs of different resource types, higher
resource utilization can be achieved without breaching the
latency target. Therefore, we describe the cost of an I/O as a
vector of 4 dimensions: CPU time, ingress, egress, and soft-
ware limit. Ingress, egress, and software limits are shared
among all threads. We simply divide the global limit by the
number of threads to get the per-thread limit. Out of them,
only CPU time requires profiling. We derive the CPU time
of (product_type, rw, size) tuple from the maximum IOPS it
can achieve. We only profile I/O sizes from 4KB to 16KB, be-
cause the bottleneck is no longer on CPU beyond 16KB. We
fit the observed values into a linear model so that we can esti-
mate CPU time for all sizes. Figure 17 shows the normalized
estimation of different I/O types on the newest xDPU. Pro-
ductA and ProductB are both burstable CBS product classes.
Compared to ProductB, ProductA is further optimized for
higher throughput and lower latency by adopting advanced
hardware features and optimized software implementation.

Unpredictable misestimation handling. Although vector-
ized cost estimator accurately reflects I/O cost in common
cases, there are many circumstances that we cannot foresee
and integrate into our cost model in advance. A typical mis-
estimation happens when SA takes a different path for I/O
processing when the FPGA of xDPU experiences transient
hardware failures. During uncommon failures, SA enters a
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Figure 18: Effectiveness and overhead of FPGA-based load balancing with high-performance queue scaling.
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Figure 19: I/O latency (I/O depth=1) with a BPS-intensive burst VM in the background.
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Figure 20: I/O latency (I/O depth=1) with an IOPS-intensive burst VM in the background.

heavy error handling branch which retries failed I/Os multiple
times until they reach the configured timeout and generates
error logs for further investigation. Doing so at a per I/O basis
consumes more CPU resources and bandwidth than a nor-
mal code path usually does. Based on our observation, the
amortized cost per successful I/O can be doubled when SA
experiences such unexpected failures.

To alleviate this impact, we introduce a delay-based cost
adjustment mechanism. BurstCBS is anchored to a target de-
lay. When the target delay is breached, we gradually increase
the cost. And we reduce the cost when the delay drops be-
low the target. Note that backend time is excluded from this
delay. The reason is that SSD is notorious for its high tail
latency [37–39], which may wrongly trigger the cost adjust-
ment mechanism. To allow the cost adjustment mechanism to
react quickly with only a few data points, irrelevant outliers
should be avoided. In Table 3, we show a case that SA keeps
detecting FPGA failures. BurstCBS without the cost adjust-
ment mechanism mis-estimates I/O cost and admits more I/Os
than its capacity, which results in high latency on the base-

level tenant. Adding cost estimation adjustment significantly
reduces the latency by admitting the right amount of I/Os.

6 Evaluation

In this section, we evaluate the performance of BurstCBS. Our
main baseline is WildCBS which combines WRR schedul-
ing and per-tenant rate limiters. Currently, WildCBS is the
most widely deployed version in our production clusters. We
also compare BurstCBS with BaseCBS which is a variant of
Gimbal and provides strong performance isolation between
tenants. All of the experiments are conducted on a compute
node with the newest version of xDPU.

Our experiments run two different FIO [40] workloads
which we typically use at Alibaba Cloud to make sure our
products can adapt to different usage patterns. One is IOPS-
intensive and contains a mix of 4KB-16KB I/Os. This work-
load consists of small I/Os which resembles the I/O pattern
of many transactional databases. The other is BPS-intensive
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Figure 21: IOPS with a BPS-intensive burst VM (I/O depth=64) in the background.
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Figure 22: IOPS with a IOPS-intensive burst VM (I/O depth=128) in the background.

and contains a mix of 4KB-128KB I/Os. Most of the I/Os are
within this range in our production environment. We include
both ProductA and ProductB I/Os in each workload.

We mainly evaluate three aspects of BurstCBS: thread load
balancing with high-performance queue scaling (§6.1), la-
tency (§6.2) and IOPS (§6.3) of base-level tenants with burst-
ing neighbors, and overall resource utilization at burst (§6.4).
We also evaluate effectiveness of the fast base-level through-
put recovery mechanism (§6.5) and the scalability of
BIOS (§6.6). At last, we perform a set of database experi-
ments to evaluate how BurstCBS performs under real use
cases (§6.7), and collect results from a node that serves an
internal database service (§6.8).

6.1 Inter-thread Load Balancing

We first evaluate inter-thread load balancing to understand the
effectiveness and overhead of FPGA-based load balancing
with high-performance queue scaling. Figure 18a shows the
maximum write IOPS that a tenant can achieve with one
or two SA control threads behind the FPGA load balancer.
We observe near-linear scaling on pure 4KB workload and
IOPS-intensive workload because the bottleneck is on the SA
control threads which run on CPU cores when a large amount
of small I/Os are being processed. Scaling on BPS-intensive
workload and pure 128KB workload is limited because the
NIC is already congested while the SA control threads are
not fully occupied. In Figure 18b, we repeat the experiment
with I/O depth unchanged and compare average latency, from
which we can draw a similar conclusion.

To show how well the load is balanced among multi-
ple threads, in Figure 18c, we compare BurstCBS with the
case that a user intentionally dispatches I/Os equally to each
ingress queue (by using multiple vCPUs which are mapped
to different queues) through FIO. We start six SA control
threads in total and take the ratio of maximum to minimum
values of throughput across threads to reflect uniformity. The
results demonstrate that they are almost equivalent in terms
of inter-thread load balancing.

6.2 Base-level Tenant Latency
A main goal of BurstCBS is to keep average latency under
SLO for tenants running below their base-level IOPS/BPS.
In this experiment, we run an I/O stream with different I/O
depths from a background VM. While the background VM is
running, we start a 4KB I/O stream of depth 1 on the victim
VM and observe its average latency. In Figure 19, we use
a read/write BPS-intensive I/O workload in the background
VM with I/O depths from 1 to 64, and we record the average
latency of four types of I/Os. We evaluate both read and write
I/Os from two burstable CBS product classes, ProductA and
ProductB. With the current implementation, ProductA is faster
than ProductB, and write is faster than read. Overall, average
latency is reduced by 68%–85% compared to WildCBS, and
is very close to BaseCBS which shows the ideal latency we
can possibly achieve with strong isolation.

Figure 20 shows the results on the IOPS-intensive workload
in the background. The latency reduction ranges from 40%
to 66% which is slightly less than that of the BPS-intensive
workload. This difference is because the IOPS-intensive work-
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Figure 23: Overall resource utilization during a burst.
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Figure 24: Responsiveness to sudden tenant activation.

load shifts bottleneck to the CPU cores. When the CPU cores
are congested, the performance gap between BaseCBS and
WildCBS is not as significant.

6.3 Base-level Tenant Throughput

Another critical requirement for BurstCBS is that a tenant
should be able to reach its base-level IOPS with a relatively
small I/O depth. In this experiment, we set the base-level IOPS
of the victim VM to 20k, and we expect it to reach that IOPS
on a 4KB I/O stream within I/O depth 8. We again validate the
effectiveness of BurstCBS on both BPS-intensive workload
and IOPS-intensive workload with all four different I/O types.
Figure 21 and Figure 22 show that BurstCBS can achieve the
desired IOPS for all the cases, while WildCBS at I/O depth
8 fails to meet our goal for seven out of eight cases, and the
IOPS is as low as 4,000. Similar to §6.2, there is a smaller
performance gap between BaseCBS and WildCBS on the
IOPS-intensive workload, which leaves limited space for us to
optimize. And ProductB read I/O is the most costly operation
out of the four I/O types, so BurstCBS barely reaches 20k
IOPS in Figure 22d, which is the lowest.

6.4 Burst Resource Utilization

Although protecting base-level performance is our first prior-
ity, we also seek for high resource utilization during bursts. In
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Figure 25: Scheduler scalability with number of VMs.

this experiment, the available bandwidth is limited to 3GB/s,
which is the maximum that an SA control thread can handle.
We start two VMs and let one VM burst as much as possible
while keeping the other VM running at I/O depth 2 which
produces an I/O stream below its base-level provisioning. In
Figure 23, the results demonstrate that BurstCBS loses about
5%–8% throughput compared to WildCBS, which meets our
expectation because we keep 5% of the total resources in the
shared pool for fast recovery. BaseCBS enforces fair resource
distribution at all times, which limits the resources that the
burst VM can use to half of the limit. Note that the maxi-
mum bandwidth cannot be achieved with the IOPS-intensive
workload due to the extra CPU overhead incurred by small
I/Os. And mixing ProductA and ProductB I/Os slightly im-
proves resource utilization because ProductA and ProductB
use different polling loops and idle loops waste CPU cycles.

6.5 Responsiveness to Sudden Activation

We next evaluate the fast base-level provisioning recovery
mechanism. A tenant should be able to recover its base-level
provisioning seamlessly even when the resources are lent to
other tenants. In this experiment, we create a VM with base-
level provisioning of 45k IOPS. We run I/O streams of depths
1-16 on this VM. Before we run each stream, we let the VM
stay idle for a few seconds to make sure that its resource
allocation drops to zero. When we run an I/O stream, the
metric we record is the number of throttled I/Os. We expect
to see no throttled I/Os when an I/O stream is within the
base-level provisioning. In Figure 24, we do not observe any
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Figure 26: Completion time of 100k DB operations.

throttled I/Os until we kick off a 60k IOPS stream which
already makes the VM a burst tenant.

6.6 Scalability
Scalability of the scheduler is also our concern because if
the periodic scheduler runs for too long, successive I/Os will
experience high latency and it will also hurt overall throughput
by occupying too many CPU cycles. In this experiment, we
solely run the scheduler on xDPU and vary the number of
VMs from 4 to 1024. 1024 is the theoretical maximum number
of VMs on a compute node in any near future. In Figure 25,
the scheduling time increases linearly with the number of
VMs and is always below 100µs. We introduce an additional
optimization that removes a VM from scheduling after it
becomes idle for a while. We run the experiment again with
64 active VMs at maximum. It takes less than 5µs to run the
scheduler once no matter how many VMs are there in total.

6.7 Application Performance
Transactional databases are one of the targeted use cases
of burstable CBS. We evaluate both a SQL database
(MySQL [41]) and a NoSQL database (RocksDB [42]) to
validate its improvement on real-world use cases. Following
our production specification, we provision 16 I/O-burstable
VMs with 100k base-level IOPS and 200k burst IOPS on a
compute node. The corresponding base-level BPS and burst
BPS we provision are 1400MB/s and 2800MB/s respectively.
Each VM has 8 vCPUs, 16GB memory, a 40GB ProductB
virtual disk as the OS disk, and another 1TB ProductB virtual
disk as the database data disk.

We first evaluate the latency of DB operations. For the
MySQL experiment, we install MySQL 8.0 on one of the
VMs. We develop a simple C program that connects to the
MySQL database, executes each type of operation 100k times,
and records the execution time. For RocksDB, we write a C++
program and again run put/get/delete 100k times with the
sync flag enabled to force an immediate disk I/O per write
request. When we execute the programs, we let the other
15 VMs burst by starting a BPS-intensive workload of I/O
depth 32 on each of them. In Figure 26, for all write operations
(insert, update, put, and delete), we observe about 60% latency
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Figure 27: YCSB throughput.

reduction. Databases extensively use cache for read operations
(select and get). Therefore, we do not observe significant
improvement on read operations in this experiment.

We next evaluate the performance improvement brought by
burst capability. In this experiment, we focus on YCSB [43]
over RocksDB which creates higher throughput than MySQL
with the same compute power. We leave the other 15 VMs idle
and set up eight RocksDB instances to better leverage burst
capability. For each DB instance, we create 10 million 1KB
entries and execute 1 million operations. As shown in Fig-
ure 27, 2× burst on BurstCBS results in 1.7×-2.5× through-
put improvement on various workloads over BaseCBS, and
the results are close to those of WildCBS.

6.8 Practical Benefits

We last confirm that BurstCBS improves our database user
experience. Here, we deploy BurstCBS to a production com-
pute node that serves the internal Relational Database Ser-
vice (RDS) and evaluate performance. RDS creates VM in-
stances with CBS disks and manages databases on the VMs
for users. A typical RDS VM instance comes with two data
disks: one ProductB disk as the main storage, and one Pro-
ductA disk as a buffer pool extension. Previously, RDS has
noticed neighbor interference and informed us.

In this experiment, an RDS VM instance is started and
preloaded with 100 tables of 10 million rows. Another VM is
used to connect to the RDS instance through a virtual private
network and run single-threaded sysbench [44]. In Figure 28,
8 or 16 burst tenants of I/O depth 32 run in the background.
The distribution of I/O sizes and the read/write ratio follow
the same pattern in production [7]. The results show that
average query latency is reduced by up to 83%. Note that
RDS read operations can also trigger disk writes because the
ProductA disk is used as a buffer pool extension.

This experiment is also run against a more fluctuant trace
for 30 minutes. A 30-minute second-scale monitoring his-
tory of a burst disk in production is amplified to the scale of
10GB/s to generate the I/O trace. The trace is replayed in the
background, and sysbench is used to record average query
latency. In Figure 29, while WildCBS creates latency spikes
of 20-50ms, BurstCBS is able to keep it under 10ms.
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7 Discussion

We discuss a number of future improvements on our roadmap
that will further enhance BurstCBS.

Co-optimization with user OS kernel. Rate control at SA
requires a significant amount of DPU memory to buffer the
requests and may eventually cause out-of-memory. Limiting
I/O rate on the user side can mitigate this issue. Furthermore,
newer Linux kernel supports NVMe WRR [45], a feature that
allows a user to prioritize certain I/Os, which helps protect
the performance of critical I/Os when SA is congested.

Automated cost profiling. We currently maintain three differ-
ent versions of xDPU and many more system configurations
in our production environment. It brings a heavy operational
burden if we need to manually profile I/O cost every time we
make a software/configuration update. Instead, we are devel-
oping an automated I/O cost profiler which profiles I/O cost
offline at system bootstrap and adjusts cost adaptively online.

Inter-server scheduling. The best way to handle congestion
is always to avoid it in the first place. Once we detect multiple
co-located VMs often burst at the same time, we can signal the
control plane of VM instances to migrate them when possible.
Because the time to migrate a VM ranges from a few seconds
to several minutes and it causes temporary unavailability, we
still rely on BurstCBS to handle short-term congestion.

8 Related Work

Cloud storage systems. There is a large body of work on
cloud storage systems [5–9, 16, 17, 46–52]. Despite the differ-
ent interfaces these systems expose (e.g., block store, object
store), most of them are distributed systems to meet the scale
of cloud. Existing research mainly focuses on the backend
system design. Tectonic [51] and Pangu [52] provide unified
backend storage for a large number of tenants and different use
cases. To overcome the inefficiency of traditional in-kernel
network stacks, RDMA [5, 6, 48] and other kernel bypassing
network stacks [7, 8] are deployed. BurstCBS instead focuses
on burst capability support of cloud block storage. We reveal
and tackle the major challenges to achieve both extreme burst
and base-level performance protection.
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Figure 29: RDS query latency with replayed production back-
ground traffic.

Resource sharing for storage systems. Previous work has ex-
plored how to achieve work-conserving scheduling and/or fair
sharing for storage systems [11,17,53–62]. Many of them also
involve estimating per I/O cost for efficient resource schedul-
ing. However, previous work mainly targets the bottleneck of
storage media (e.g., HDD and SSD), while the bottleneck we
encounter is on DPU. A highly related system is Gimbal [11]
which designs a fair queuing scheduler for performance isola-
tion on the server side of disaggregated storage with DPUs.
BurstCBS distinguishes itself by supporting dynamic bursts
and addressing unique challenges (i.e., load imbalance and
cost estimation) on client-side DPUs.

9 Conclusion

This paper presents BurstCBS, a hardware-software co-
designed storage I/O scheduling system that achieves inter-
thread load balancing and intra-thread resource schedul-
ing. BurstCBS applies three techniques: a high-performance
queue scaling mechanism, a burstable I/O scheduler, and a
vectorized I/O cost estimator. We implement and evaluate
BurstCBS on xDPU-based servers. We show that BurstCBS
provides base-level performance protection while allowing
tenants to burst as much as possible.
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Abstract
In modern datacenters, memory disaggregation unpacks
monolithic servers to build network-connected distributed
compute and memory pools to improve resource utilization
and deliver high performance. The compute pool leverages
distributed transactions to access remote data in the mem-
ory pool to provide atomicity and strong consistency. Ex-
isting single-versioning designs have been constrained due
to limited system concurrency and high logging overheads.
Although the multi-versioning design in the conventional
monolithic servers is promising to offer high concurrency and
reduce logging overheads, which however fails to work in the
disaggregated memory. In order to bridge the gap between the
multi-versioning design and the disaggregated memory, we
propose Motor that holistically redesigns the version struc-
ture and transaction protocol to enable multi-versioning for
fast distributed transaction processing on the disaggregated
memory. To efficiently organize different versions of data in
the memory pool, Motor leverages a new consecutive ver-
sion tuple (CVT) structure to store the versions together in a
continuous manner, which allows the compute pool to obtain
the target version in a single network round trip. On top of
CVT, Motor leverages a fully one-sided RDMA-based MVCC
protocol to support fast distributed transactions with flexible
isolation levels. Experimental results demonstrate that Motor
improves the throughput by up to 98.1% and reduces the la-
tency by up to 55.8% compared with state-of-the-art systems.

1 Introduction
Memory disaggregation in modern datacenters receives ex-
tensive attentions [2, 3, 35, 46, 53, 62]. Specifically, memory
disaggregation decouples the compute and memory resources
from traditional monolithic servers to build independent and
scalable compute and memory pools. These pools are con-
nected via fast network (e.g., RDMA [75] or CXL [7]). A
compute pool contains many powerful compute units to run
tasks and small DRAM-based memory to maintain metadata.
Moreover, a memory pool consists of substantial memory
modules to store application data and a small number of weak

compute units only for memory allocations and network in-
terconnections [84, 86]. With the aid of efficient resource
pooling, memory disaggregation significantly improves the
resource utilization, elasticity, and failure isolation [65, 72].

To provide atomicity and strong consistency guarantees for
applications on the disaggregated memory, the compute pool
leverages distributed transactions to access remote data in the
memory pool. A recent design, i.e., FORD [84], is able to
run distributed transactions on the disaggregated memory. To
simplify the data store in the memory pool, FORD maintains
one version of each data. However, this single-versioning
design limits the concurrency since the reads need to wait
for the writes to become visible during transaction commit.
Moreover, to guarantee atomicity, FORD writes many undo
logs to back up the old data, which consumes the network
bandwidth and decreases throughput.

Enabling multi-versioning is expected to efficiently address
the above limitations. By storing multiple versions of each
data in the memory pool, the read requests are able to fetch
existing versions of data rather than waiting for the writes to
complete, thus improving the concurrency. Moreover, with
multi-versioning, the old versions of data are retained to pro-
vide the atomicity, thus eliminating the need of writing undo
logs. Prior multi-versioning based distributed transaction pro-
cessing systems have been proposed in the traditional mono-
lithic architecture [57, 64, 76]. Unfortunately, these systems
are difficult to work on the new disaggregated memory archi-
tecture due to two challenges, as presented below.

1) Incompatible Transaction Protocol. Prior systems
working on monolithic architecture assume that each server
has strong CPUs to execute compute tasks in the transaction
protocol, e.g., locking [64], validation [57], and timestamp
calculation [76]. In general, a single task is not computa-
tionally expensive. However, when the number of requests
increases, these tasks become substantial and frequent. The
CPU in a memory pool is too weak to frequently poll massive
tasks and execute them [45, 46, 66, 69, 75, 84, 86]. Therefore,
legacy multi-versioning based transaction protocols are not
compatible with the disaggregated memory pool.
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2) Inefficient Version Structure. To store different ver-
sions of data, existing schemes leverage pointer-based struc-
tures to dynamically link the versions, called linked chains in
this paper. In general, there are two types of the linked chains.
(1) The old-to-new chain links the versions from the oldest
to the newest version [10, 25, 38, 76], as shown in Fig. 1a. (2)
The new-to-old chain links the versions from the newest to the
oldest version [9,32,57,64,81], as shown in Fig. 1b. To read a
specific version, CPU performs chain walking that leverages
the pointers to fetch the versions one by one until the target
version. In fact, the linked chains work well in monolithic
servers, since each server contains enough CPUs to quickly
perform chain walking in its local memory. However, the
linked chains become inefficient in disaggregated memory,
since all the application data are stored in the remote memory
pool, which does not contain powerful CPU to execute the
chain walking. As a result, the compute pool has to perform
the chain walking by consuming multiple network round trips
to fetch remote versions one after another until the target
version, leading to high overheads. Fig. 1c shows that when
increasing the number of steps in the chain walking from 1 to
20, the RDMA read latency significantly increases by 24.8×
in our testbed (§ 7.1). Moreover, to prevent long chains, the
garbage collection (GC) is required to delete the obsolete
versions that are no longer used by any transaction [16]. How-
ever, when using linked chains, GC is difficult to carry out
on disaggregated memory, since the compute pool needs to
frequently track the oldest transaction and reclaim the un-
used versions. Such tracking consumes many round trips for
synchronizations and wastes the compute power.

To address the above challenges, we propose Motor, which
holistically redesigns the version structure and transaction
protocol to enable multi-versioning for distributed transaction
processing on the disaggregated memory. Instead of using
linked chains, Motor leverages a new consecutive version
tuple (CVT) structure to efficiently organize multiple versions
of one data in the memory pool. CVT consecutively stores
several versions together to fill in continuous address space. In
this way, the compute pool is able to fetch all the versions of
the same data by reading a CVT in a single round trip, instead
of fetching the remote versions one by one, thus reducing the
networking overheads to achieve low latency. When the CVT
is filled up, Motor leverages a lightweight coordinator-active
garbage collection (GC) scheme that reclaims the old versions
in a preemptive manner without tracing transaction states. In
the presence of GC, Motor also enables the applications to
easily identify the consistency between the data value and its
version in CVT to guarantee the correctness.

On top of the CVT structure, Motor designs a fast multi-
version concurrency control (MVCC) based transaction proto-
col. This protocol fully leverages one-sided RDMA to bypass
the weak compute units in the memory pool. Our protocol
allows the reads not to be blocked by writes, and avoids writ-
ing logs, thus improving the concurrency and saving network
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Figure 1: The linked chain based version structures (a, b), and
the latency of using RDMA READ for chain walking (c).

bandwidth. Moreover, our protocol supports various isolation
levels (e.g., serializability and snapshot isolation) to flexibly
meet the requirements of different OLTP applications.

In summary, this paper makes the following contributions:
• We propose Motor that enables multi-versioning for dis-

tributed transactions on the disaggregated memory.
• Motor designs a new consecutive version tuple (CVT)

structure to efficiently organize multiple versions of data in
the memory pool. CVT enables the compute pool to obtain
the target version in one round trip, and provides lightweight
garbage collection without the overhead of tracking (§ 4).

• Motor leverages a fast MVCC transaction protocol that
fully exploits one-sided RDMA and CVT to meet the CPU-
less memory pool with various isolation-level supports (§ 5).

• We implement1 Motor and compare it with two state-of-
the-art systems [64,84]. The experimental results demonstrate
that Motor significantly improves the transaction throughput
by up to 98.1% and reduces the latency by up to 55.8%.

2 Background and Motivation
2.1 Memory Disaggregation
Traditional datacenters consist of many monolithic servers,
each of which contains a set of compute and memory units.
However, this monolithic architecture suffers from low re-
source utilization and coarse failure domain [65, 72]. Specif-
ically, even if a user only needs more compute power, we
have to add more entire servers in which the memory modules
are wasted. Moreover, if a CPU is broken, the whole server
becomes unusable, which expands the failure domain.

To improve resource utilization and failure isolation, mem-
ory disaggregation [20, 35, 46, 50, 51] becomes a promising
solution, which decouples the compute and memory resources
from a monolithic server to build separate resource pools.
These pools are connected via fast network, e.g., RDMA [29]
or CXL [7]. A compute pool contains many strong CPUs to
intensively execute computing tasks. There are small amounts
of DRAM in the compute pool to cache some metadata. More-
over, a memory pool consists of substantial memory modules
to store the large-volume application data. The memory pool
does not contain strong compute capability [46,65,69,72,75],
but have some low-power compute units only for memory
allocation and network interconnection [84, 86]. By efficient
resource pooling, datacenters are able to provide appropriate
amounts of compute and memory units to meet the require-
ments of different applications in an on-demand manner, thus

1 Source code is available at https://github.com/minghust/motor.
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improving the resource utilization and reducing costs [48].
Moreover, even if a CPU fails in the compute pool, the decou-
pled memory modules in the memory pool are not affected
due to the separate architecture, thus narrowing the failure
domain. Therefore, memory disaggregation is a promising
solution for modern datacenters and cloud providers. Without
loss of generality, this paper considers that the compute pool
leverages one-sided RDMA verbs (including READ, WRITE,
and atomics such as CAS an FAA) to access the application
data in the memory pool to bypass remote CPUs like existing
studies [53, 66, 75, 84].

2.2 Transactions on Disaggregated Memory
System Model. To provide atomicity and strong consistency
for applications on the disaggregated memory, the compute
pool is required to employ distributed transactions to access
remote data in the memory pool [84]. Specifically, the CPU
threads in a compute pool run many coordinators, which exe-
cute a transaction protocol to read data, handle conflicts, and
commit updates. The compute pool does not store applica-
tion data, but contains a small amount of DRAM to buffer
some metadata (e.g., remote data addresses). The memory
pool stores all the application data without running compute
tasks. Each data is replicated into multiple replicas for high
availability. In practice, the fail-stop failure [36] could occur
at any time to cause the data in the memory pool inacces-
sible2 [27]. To tolerate such failures, we adopt the ( f + 1)-
way primary-backup replication [42] to generate 1 primary
replica and f backup replicas for each data in the memory
pool. Each replica can be accessed by multiple coordinators.
During transaction processing, coordinators in compute pool
read/write remote replicas via network at the byte granularity,
and the compute units in memory pool are not involved. Since
the coordinators and replicas are fully separated by network,
all transactions become distributed in our system model.
Limitations of Single-Versioning. Recently, FORD [84] sup-
ports distributed transactions on the disaggregated memory
and stores the latest version of each data in the memory pool.
This single-versioning design simplifies the memory store but
incurs two limitations. (1) Low concurrency. During transac-
tion commit, the data being updated cannot be read. FORD
makes these data invisible until completing the write, thus
blocking the read operations; (2) High logging overheads.
FORD writes the undo logs to all replicas to guarantee atom-
icity. These undo logs consume the network bandwidth, and
the coordinator needs to wait for all ACKs of the logging
requests before committing the updates to remote replicas.

2.3 Enabling Multi-Versioning
To address the limitations of single-versioning, we adopt a
multi-versioning methodology to store multiple versions of
each data in the memory pool. By doing so, the writes do not

2 In line with existing studies [27, 38, 39, 64, 77, 84], we currently do not
consider the byzantine failures [37].
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Figure 2: The system overview of Motor.

block reads, since the read request obtains an existing ver-
sion of data, instead of waiting for the update operation, thus
improving the concurrency. Moreover, the multi-versioning
design does not need to additionally write logs to back up
data in replicas, since the old versions naturally act as “undo
logs” to guarantee atomicity. In this way, we eliminate the
logging overheads to accelerate transaction commit.
Challenges. Existing studies have adopted multi-versioning
in transaction processing [16, 43, 57, 64, 76]. However, as an-
alyzed in § 1, these studies do not fit the new disaggregated
memory architecture due to two reasons. (1) Their transac-
tion protocols target on traditional monolithic servers, which
requires powerful CPUs in each server to execute substantial
compute tasks [57, 64, 76]. However, in the disaggregated
memory architecture, the compute units in the memory pool
are too weak to frequently handle compute tasks [75, 84, 86].
(2) The version structures of new-to-old and old-to-new linked
chains incur substantial RDMA round trips for chain walking
and high overheads for garbage collection.

To address the above challenges, we propose Motor to effi-
ciently enable multi-versioning for fast distributed transaction
processing on the disaggregated memory.

3 Motor Overview
Fig. 2 illustrates the system overview of Motor, which con-
tains two parts working in harmony. First, the Motor memory
store (§ 4) efficiently organizes multiple versions of data in
the memory pool. Second, the Motor transaction protocol
(§ 5) handles multi-versioning based distributed transactions
in the compute pool.
Workflow. We outline the workflow of Motor. ❶ The client
initially leverages the CPUs in the memory pool to allocate
memory to load the application data into relational database
(DB) tables. These tables are organized by our consecutive
version tuple (CVT) structure, as described in § 4.1. The
CVTs can be quickly accessed using indexes, e.g., hash ta-
ble [86] or B+tree [75]. ❷ We establish RDMA connections
between the compute and memory pools. Moreover, the mem-
ory pool sends some metadata (e.g., the address of the RDMA
memory region and descriptions of indexes) to the compute
pool. These metadata help coordinators locate the remote data
at runtime. ❸ The clients issue transactions to the compute
pool to be executed. ❹ The compute pool uses CPU threads
to simultaneously run many coordinators, which leverage our
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transaction protocol to process transactions. In general, the
coordinators fetch and lock remote data, and then execute the
transaction logic. After execution, the coordinators validate
that the data versions are not changed. Finally, the coordina-
tors commit the updates to remote memory pool and unlock
data. Our protocol enables coordinators to fully use one-sided
RDMA to bypass the weak CPUs in memory pool during
transaction processing.

4 Motor Memory Store
4.1 Consecutive Version Tuple
Key Idea. Motor proposes a consecutive version tuple (CVT)
structure to maintain different versions of data in the memory
pool. Unlike the linked chains using pointers to link versions,
CVT consecutively stores the versions together to fill in con-
tinuous address space. By using CVT, the coordinator is able
to fetch multiple versions in a single RDMA READ, instead
of performing the chain walking to read remote versions one
by one until the target version. After fetching the CVT, the
coordinator locally searches for the target version, which is
fast due to not involving any network I/O.
Structure. Fig. 3 shows the structure of the memory store in
the memory pool, which is organized by CVTs. All the CVTs
form a CVT region. A CVT consists of a header and several
version cells (Vcells). In a header, TableID indicates the DB
table this record belongs to. A record is a row of user data,
containing the key and value, in a DB table. Moreover, Key
is the unique identifier of this record, and Lock is used for
concurrency control in transaction processing (§ 5.1). The
AttrBarPtr points to an attribute bar in the value region. An
attribute bar stores the modified attributes of different versions
of a record’s value, as described in § 4.2. The VpkgPtr points
to a value package (Vpkg) in value region. A Vpkg contains
the actual data value, which is wrapped by a VpkgSA and a
VpkgEA to indicate whether the value is completely written,
as explained in § 4.4. Moreover, in a Vcell, the VcellSA
and VcellEA work with the VpkgSA and VpkgEA to check
the consistency between a version and its value (§ 4.4). The
Valid indicates whether this version of value is available,
and the Version represents a version number. In addition, the
Bitmap indicates the modified attributes at the current version,
and the StartOffset represents the offset of attributes stored
in the attribute bar (more details are presented in § 4.2).
Number of Versions in CVT. Motor needs to configure the
number of versions (VNum) to hold in CVT. Considering
that the memory pool does not contain powerful CPU to dy-
namically adjust VNum in transaction processing, Motor sets
VNum to be fixed, i.e., a record has a fixed maximum number
of versions. In fact, it is challenging to determine an effi-
cient VNum due to the tradeoff among read latency, memory
footprint, and transaction abort rate. Specifically, if VNum
is too small, the CVT size becomes small, which decreases
the RDMA transmission payload to decrease the read latency,
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Figure 3: The structure of the Motor memory store, which is
organized by CVTs in the disaggregated memory pool.

and also reduces the memory footprint in memory pool. How-
ever, due to limited available versions in CVT, the garbage
collection (§ 4.3) can be frequently triggered, and this may
increase transaction aborts to hamper the throughput when the
contention is high. In contrast, if VNum is too large, it helps
mitigate transaction aborts, but would waste memory in read-
intensive workloads that do not require many versions of data.
Moreover, since an entire CVT is read at a time, a large CVT
increases the payload to lengthen the RDMA read latency.
We explore such tradeoff in § 7.2 and § 7.6, and observe that
a suitable VNum significantly depends on the characteristics
of workloads (e.g., the access contention and the number of
records to read in a transaction). In general, setting VNum to 2
is sufficient for low-contention workloads with short-running
transactions (e.g., TATP [1]). For high-contention workloads
with long-running transactions (e.g., TPCC [13]), a slightly
larger VNum (e.g., 4) efficiently reduces transaction aborts
without heavy memory footprint and high read latency.
Indexes Supports. Motor provides unified interfaces for coor-
dinators to quickly access remote CVTs by leveraging indexes
(e.g., hash table [86] and B+tree [75]). Motor stores CVTs
within the index. For example, when using B+tree indexes,
CVTs are stored in leaf nodes, and the internal pointer nodes
are cached in compute pool to reduce remote tree traverses.
When using hashing indexes, CVTs are stored in hash tables
by hashing Keys. Therefore, writing CVTs simultaneously
modifies the index. Without loss of generality, our paper con-
siders to use the hash table as a case in point to present the de-
tails of indexing remote data like existing studies [26, 78, 84].
To address hash collisions, Motor reserves multiple slots in a
hash bucket [86]. Each slot stores one CVT. Given a key (e.g.,
K0) of a record, the coordinator hashes K0 to obtain the ID of
hash bucket and calculate the remote address of this bucket.
The coordinator then reads the bucket and locally traverses
slots to search for the target CVT whose Key is equal to K0.
CVT Address Cache. In practice, it is expensive to fetch an
entire hash bucket each time when reading a CVT. To address
this issue, Motor enables each coordinator to leverage a small
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private CVT address cache in the compute pool to store the
remote addresses of CVTs. When reading the same CVTs next
time, the coordinator can quickly use the cached addresses
to directly read the CVTs instead of hash buckets. However,
if the Key of fetched CVT mismatches the queried key, the
cached address becomes stale. The coordinator addresses this
issue by re-reading the hash bucket to confirm the existence
of the target CVT, and then updates its address cache. To store
millions of addresses (each one is 8B), an address cache only
consumes several MBs of DRAM space, which is acceptable
for the compute pool [65, 84].

4.2 Separate Value Region
Some prior studies like FORD [84] and Silo [71] store the
value together with its version, so that coordinators can fetch
the value and version in one read. However, this design be-
comes inefficient in our context, because storing the value
together with its version significantly increases the CVT size,
leading to high read latency and network bandwidth waste
(all values are transmitted but only one is needed). Such draw-
backs become even worse when the value size gets larger.

To tackle the above challenge, Motor separates the CVTs
from data values in memory pool. The coordinator first reads
a CVT to determine the target version, and then reads the
corresponding value. In this way, the CVT size is not affected
by the value size to achieve stable low read latency, and only
one data value is transmitted to mitigate bandwidth wastes.
Reducing Memory Overhead. In the value region, storing a
full-sized data value for each version simplifies the data store
but wastes memory space. To alleviate the memory overhead,
we have two observations. (1) The records in a relational
DB table follow the same schema, which defines the num-
ber of attributes of the value and the size of each attribute.
(2) When updating a record, a transaction can modify only
one or several attributes. For example, in TPCC, the value
of a record in DISTRICT table contains 9 attributes (100B in
total), but in NEW_ORDER transaction only one attribute is mod-
ified, i.e., D_NEXT_O_ID (4B). Based on these observations,
Motor stores the variable-sized modified attributes, instead
of full-sized values, to maintain different versions of values
for any record, thus reducing the memory overhead. Fig. 3
shows that the value region contains a full-value area plus
a delta area. The full-value area stores the newest version
of full-sized values, and the delta area stores old attributes
being modified by transactions (like “undo logs”). Therefore,
an updated record has only one full value and different ver-
sions of variable-sized attributes that are actually modified.
To construct an old-version value, we only need to apply the
attributes at the old target version into the newest full value.
Attribute Bar. In the delta area, Motor leverages a new struc-
ture, called attribute bar, to consecutively and compactly store
the modified attributes of a record across transactions, as il-
lustrated in Fig. 3. Motor uses the following metadata in CVT
to efficiently manage attributes bars.

1) AttrBarPtr in Header. When a record is updated for
the first time, the coordinator allocates an attribute bar in the
delta area, and keeps the remote address of the attribute bar
(i.e., AttrBarPtr) in the CVT’s header.

2) Bitmap in Vcell. The coordinator uses a bitmap in Vcell
to represent the modified attributes at the current version. For
example, if a value has 8 attributes and the 1st, 2nd, and 4th
attributes are modified by a transaction, the coordinator writes
a bitmap of “00001011” (the rightmost bit represents the first
attribute, i.e., the little-endian style) into the Vcell. The length
of bitmap depends on the number of attributes.

3) StartOffset in Vcell. This is used to represent the
offset of a group of modified attributes at the current ver-
sion inside the attribute bar. The initial StartOffset is 0.
The coordinator calculates a new StartOffset by using the
last-written Vcell’s StartOffset and Bitmap. Specifically,
according to the positions of “1” in the last-written bitmap,
the coordinator accumulates the total size of attributes in
the last write, and adds this total size with the last-written
StartOffset to obtain a new StartOffset.
Attribute Bar Size. A coordinator needs to allocate a proper-
sized attribute bar to hold modified attributes to alleviate mem-
ory wastes. By sampling transaction execution, we observe
that for records in a DB table, the total sizes of attributes be-
ing updated per transaction (called TotAttrSizes) are different
but occur at specific frequencies. For example, in TPCC’s
CUSTOMER table, the TotAttrSize can be 512B, 12B, and 4B,
respectively occurring at frequencies of 10%, 88%, and 2%
across transactions. This is because in OLTP scenarios, the
transaction logic specifies the attributes to update, and dif-
ferent transactions follow the standard execution ratio in the
transaction mix [1, 4, 13]. According to the frequencies of
different TotAttrSizes, Motor reserves corresponding propor-
tions of space in the attribute bar to hold these attributes of
VNum versions (i.e., if some attributes are more frequently up-
dated, Motor reserves more space for these attributes). Hence,
Motor approximately estimates the attribute bar size (ABS) =
∑

n
i=1(max(V Num×Frequencyi,1)×TotAttrSizei), where n

is the number of TotAttrSizes. For example, when VNum = 4,
the ABS of records in CUSTOMER table is: 1×512B + 3×12B +
1×4B = 552B, which is sufficient to hold modified attributes
of different versions without wasting memory. Note that even
if all attributes of a value are modified at some versions (i.e.,
TotAttrSize = full-value size), the attribute bar can still store
all these attributes, since in this case the calculated ABS is
guaranteed to be larger than the full-value size.
Mitigating Contentions on Allocating Attribute Bars.
When coordinators simultaneously allocate attribute bars, they
will compete for the free space in delta area, leading to high
contentions. To avoid this, Motor pre-assigns a small MB-
scale delta space with proper size (based on ABS) in the delta
area to each coordinator. In this way, the coordinator allocates
attribute bars in its own delta space without competing with
others. The AttrBarPtr is globally visible to all coordinators
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after completing the update operation, so that a coordinator is
able to append attributes to the attribute bars created by other
coordinators. In rare cases the delta space is exhausted, the
coordinator informs remote CPU to allocate larger space.
One RTT for Reading/Writing Values. Though the full
value and attributes are separated, Motor consumes only one
round-trip time (RTT) to read/write a value at target version.
(1) Read. A coordinator selects the target version (e.g., V 0)
in a CVT. The selection scheme is presented in § 5.1. If V 0
is the newest version, the coordinator reads the full value
using RDMA READ in one RTT. Otherwise, the coordinator
calculates remote addresses of the required old attributes by
using AttrBarPtr in CVT header and StartOffset as well
as Bitmap in the Vcells whose Version is larger than V 0.
The coordinator then uses batched RDMA READs to read the
full value and old attributes together in one RTT and locally
constructs an old version of value. (2) Write. The coordinator
uses batched RDMA WRITEs to update the full value and
appends old attributes to the attribute bar together in one RTT.

4.3 Coordinator-Active Garbage Collection
If there is no empty Vcell when updating data, we need a
garbage collection (GC) mechanism to reclaim the obsolete
versions. Legacy GC schemes track the oldest running trans-
actions and delete the versions that are no longer used [16,64].
However, since the compute unit in the memory pool is not
aware of transaction states, it is difficult to apply tracking
in the memory pool. On the other hand, if the compute pool
performs tracking, the coordinators need to confirm which
versions are unused among all the in-flight transactions. This
increases the network round trips for synchronizations and
wastes the compute power.

In order to avoid the overhead of tracking, Motor proposes
a coordinator-active GC scheme. The idea is that, if there
is no empty Vcell, Motor allows the coordinator to actively
select a victim version to be overwritten by the new version to
complete GC. This scheme is lightweight due to eliminating
the need of tracking the oldest running transaction.

To select the victim version, Fig. 4a shows a baseline
scheme that skips the versions being read in a CVT, and
selects the oldest version in the remaining versions. A read
queue is reserved in each CVT to store the timestamps of trans-
actions that are reading the CVT. Other coordinators check
the read queue and skip the in-use versions. However, for read
operations, since the coordinator does not know the current
position of the queue’s tail, it has to use RDMA FetchAndAdd
to atomically move the tail, and then use RDMA WRITE to
insert a timestamp to the read queue. Such extra RTTs in each
read significantly increase the latency.

We observe that the oldest version in CVT has the smallest
probability to be used, given that RDMA significantly acceler-
ates transactions [26, 78]. Hence, Motor enables coordinators
to preemptively select the oldest version in CVT as the vic-
tim, as shown in Fig. 4b. This GC scheme avoids the RTT

Header V1 V3 V5 V7

Header V9 V3 V5 V7

Header V1 V3 V5 V7

Header V1 V3 V9 V7

Txn2

Txn4

Read queue

(b) Overwriting the oldest version(a) Skipping the versions being read

Being read Preemptive 
selection

Figure 4: Different garbage collection schemes for CVT.

overhead in the baseline method. The tradeoff is that some
long-running transactions would be aborted if their previously
read data are quickly reclaimed. Nevertheless, the experimen-
tal results in § 7.2 show that reserving a proper number of
versions in CVT efficiently mitigates such aborts. Overwrit-
ing old versions will make the versions in CVT unsorted, but
the correctness is not affected, since the coordinator locally
traverses all the versions in CVT to locate the target one.

Note that if the attribute bar does not have enough space,
the coordinator reclaims old attributes from the start of the
attribute bar to write newly modified attributes. In this proce-
dure, the coordinator checks which Vcells correspond to the
reclaimed attributes, and sets the Valid in these Vcells to 0 to
delete these versions. Since Motor appropriately configures
the size of attribute bar to store attributes of multiple versions,
reclaiming the old attributes does not invalidate many Vcells.

4.4 Anchor-Assisted Read
To obtain a data value, the coordinator reads a CVT to select
the target version, and then reads the full value and necessary
attributes. As shown in Fig. 5a, coordinator C1 reads a CVT
and needs the value at version V 1 (ValueV 1). C1 reads the full
value (ValueV 7) and old attributes to reconstruct ValueV 1. At
this point, another coordinator C2 is performing GC to reclaim
version V 1 and write ValueV 9. As a result, there are two incor-
rect results for C1. (1) C1 reads a corrupted full value due to
being partially updated by C2. (2) C1 reads ValueV 9 but mis-
takenly regards it as ValueV 7, thus reconstructing an incorrect
ValueV 1. The root cause of this issue is that the version and
data value are separately stored, which prevents coordinators
from “atomically” reading a value and its version.

To address the above challenge, Motor proposes an anchor-
assisted read scheme to help coordinators identify the consis-
tency between the version and value. As shown in Fig. 5b, this
scheme uses two anchors at the start and end of a Vcell, called
VcellSA (i.e., Vcell’s Start Anchor) and VcellEA (i.e., Vcell’s
End Anchor). Similarly, in a Vpkg, two anchors (VpkgSA
and VpkgEA) are used to wrap the full value. An anchor is 1
byte. A pair of SA and EA and the content they wrap are im-
plemented in a C++ struct, allowing a coordinator to access
them together using a single RDMA READ or WRITE.

To make anchors efficiently work, coordinators follow two
rules. (1) Write. A coordinator increases the anchor value by
1 for all the four anchors (i.e., VpkgSA, VpkgEA, VcellSA,
and VcellEA) to make them equal. The coordinator writes
the Vpkg first, then the modified attributes, and finally the
Vcell. (2) Read. A coordinator reads a CVT and then fetches
the Vpkg and necessary attributes. Since the full value region
stores the newest value, the VpkgSA and VpkgEA are also
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Figure 5: The anchor-assisted read scheme.

the newest. Hence, the coordinator checks whether the newest
VcellSA and VcellEA in CVT are equal to VpkgSA and
VpkgEA. If the four anchors are equal, the full value and
attributes are not modified since the last read. The coordinator
then safely reconstructs the target-version value by copying
the fetched old attributes into the newest full value. However,
if any of the two anchors are not equal, the coordinator aborts
the transaction due to detecting partial updates or a conflicting
in-flight GC procedure. In essence, the four anchors assist the
coordinator to read a version and the corresponding value in
an “atomic” manner. Unlike Silo [71] that reads the version
twice to confirm consistency, our scheme only needs to read
once and compares the four anchors to identify consistency.
Guaranteeing Write Order. The correctness of the anchor-
assisted read scheme is based on that all the written data are
installed into the memory pool in the correct order, which has
two requirements. [R1] Vpkg → modified attributes → Vcell.
[R2] Inside a Vpkg (or Vcell): start anchor → content →
end anchor. In practice, the two requirements are satisfied in
network and at remote RDMA NIC (RNIC), because (1) the
reliable connection mode for one-sided RDMA guarantees
that the transmitted messages are not lost or reordered [6], and
(2) when the request reaches the remote RNIC, the RNIC en-
sures that the RDMA WRITEs are totally ordered with regard
to each other [61], i.e., these write requests are sent to the
on-chip integrated memory controller (iMC) in order. How-
ever, the two requirements can be then violated due to DDIO
(i.e., Data Direct I/O [8]). If DDIO is enabled, iMC sends the
written data to the L3 CPU cache. Due to unpredictable cache
behavior, the data in L3 cache could be evicted to memory
out of order to break R1 and R2. In fact, DDIO aims to im-
prove the cache locality, which benefits the CPU execution
in traditional monolithic servers, but becomes useless in the
disaggregated memory, since the weak CPU in memory pool
is not involved during transaction processing. Hence, Motor
disables DDIO in the memory pool, so that iMC directly sends
writes from its internal first-come-first-serve write pending
queue to the main memory. In this way, the writes are installed
into remote memory in the correct order to satisfy R1 and R2.

5 Motor Transaction Protocol
We present the Motor transaction protocol. Our protocol
works in a widely-recognized transaction processing frame-
work, which includes reading data, handling conflicts, and
writing data back. The main difference from existing stud-
ies [27,39,64,77,78,84] is that our protocol fully exploits the
CVT structure and pure one-sided RDMA to support MVCC
based distributed transactions on the disaggregated memory.

Timestamp Generation. Motor leverages sequential numbers
as transaction timestamps (i.e., 1, 2, 3 ...), which are also
adopted as data versions. In fact, the timestamp generation is
orthogonal to our designs. Existing studies propose scalable
timestamp generation schemes [24, 38, 64, 76], which can be
applied to the compute pool as the timestamp service to assign
strictly and monotonically increasing timestamps. Our paper
does not focus on optimizing the timestamp generation, and
we assume that a scalable timestamp service is efficiently
leveraged in the compute pool to serve for all coordinators.
Overview. In the memory pool, each table is replicated to 1
primary and f backups, and the weak CPUs are not involved
during transaction processing. In the compute pool, the co-
ordinators leverage our protocol to execute transactions and
access remote data through one-sided RDMA.
5.1 Processing Phases
Fig. 6 shows the procedure of handling a read-write trans-
action (e.g., T0) with serializability guarantee. All requests
in the same RTT are issued in parallel. The read-write set is
{A, B} and the read-only set is {C}. In Motor, the write set is
included in the read set, since (1) for Updates and Deletions,
the coordinator reads remote CVTs before writing data back,
and (2) for Insertions, the coordinator reads remote buckets
to obtain empty CVTs before inserting data. The detailed
processing phases are presented below.

Phase 1. Execution. The coordinator obtains a start times-
tamp (Tstart ) from the timestamp service. For each read-only
(RO) or read-write (RW) data, the coordinator looks up its
local CVT address cache. (1) If the address has been cached
(e.g., A and C), for the RO data (e.g., C), the coordinator uses
RDMA READ to fetch their CVTs from the primaries; for
the RW data (e.g., A), the coordinator uses doorbell-batched
RDMA CAS+READ to respectively lock and read the CVTs
from the primaries. The locking request prevents other con-
flicting transactions from modifying the same CVT at the
same time. If the locking request fails, the coordinator aborts
the transaction, instead of waiting, to avoid deadlocks. (2)
If the address is not cached (e.g., B), the coordinator uses
RDMA READ to fetch a hash bucket and then locally search
for a Key-matched CVT. After obtaining the CVT, the coordi-
nator selects a target version V 0, which is the largest version
among all the versions that are smaller than Tstart .
Early Abort. If the coordinator observes a version (e.g., V 1)
larger than Tstart in the CVT, it means that another transaction
T1, has committed after T0’s Tstart . In this case, the coordina-
tor can early abort T0 to guarantee serializability. The reason
is that, even if using Tstart to select V 0 for execution, T0 will
be aborted in the next Validation phase, in which T0 will ob-
tain a larger commit timestamp than T1. That is, T0 with a
larger commit timestamp should have used T1’s update, i.e.,
V 1, for execution, but T0 used V 0. Hence, the coordinator
early aborts T0. Note that the early abort is unnecessary in the
snapshot isolation, since it is sufficient for T0 to read a snap-
shot at Tstart , even if the snapshot becomes slightly stale [76].
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Figure 6: The distributed transaction protocol of Motor.

After version selection, the coordinator uses batched
RDMA READs to read the Vpkgs and any required old at-
tributes to construct the target-version value (§ 4.2). Note that
for RW data that have not been locked (e.g., B), the coordina-
tor additionally batches RDMA CAS with READs to lock and
re-read their CVTs when reading Vpkgs. After fetching all the
data, the coordinator performs three checks for correctness:
(1) if any locking fails, T0 is aborted; (2) if a newer version
larger than V 0 occurs in the re-read CVT, T0 is aborted, since
another transaction has updated this data; (3) if the four an-
chors are not equal, T0 is aborted, because the version and
value are inconsistent. If passing all checks, the coordinator
safely uses the data value inside the Vpkg to execute the trans-
action logic. Though Motor uses two RTTs to read the CVT
and data value, the network payload is significantly reduced
due to not transmitting unnecessary data values.

Phase 2. Validation. After all the remote CVTs of the RW
data are successfully locked, the coordinator obtains a commit
timestamp (Tcommit ) from the timestamp service. Note that if
the read-write transaction does not contain any RO data, the
following operations can be skipped to reduce latency, since
all the RW data have been already locked. However, if the
transaction contains RO data, the coordinator needs to validate
that the versions of RO data are not changed from Tstart to
Tcommit to provide serializability. To this end, the coordinator
re-reads the CVT of each RO data from remote primaries
and uses Tcommit to select a version V ′, which is the largest
version among all the versions that are smaller than Tcommit .
The coordinator checks whether any of the two cases occur:
(1) the CVT is locked by another coordinator, or (2) V ′ ̸=V 0.
In the first case, it is possible that another transaction with
a lower Tcommit is committing a new version. The second
case means that another transaction with a lower Tcommit has
committed a new version. If either case occurs, the validation
fails, because T0 with a higher Tcommit should read the new
version but fails to do so in the Execution phase. As a result,
T0 is aborted to ensure serializability. In short, the validation
succeeds only if the CVT is not locked and V ′ =V 0.

Phase 3. Commit. When the validation succeeds, a coordi-
nator commits the updates to all remote replicas together in a
single RTT. The coordinator locally prepares the data to be
written, which can be interpreted in three scenarios. (1) Up-
date. If the record is updated for the first time, the coordinator
allocates an attribute bar in its own pre-assigned delta space.
The coordinator then finds an empty Vcell (i.e., Valid is 0)

in the fetched CVT, sets the Valid to 1, fills the Version
using Tcommit , sets the Bitmap of the updated attributes, calcu-
lates the StartOffset inside the attribute bar, and configures
both of VcellSA and VcellEA to be equal to a new number.
If there is no empty Vcell or the StartOffset exceeds the
length of attribute bar, the coordinator actively performs GC
to reclaim old versions. Moreover, the coordinator collects
the modified attributes that will be written to the attribute bar.
The coordinator then prepares a new Vpkg by filling the new
data value, and setting both of VpkgSA and VpkgEA to be
equal to VcellSA. (2) Insert. Apart from preparing the Vpkg
and Vcell like the Update operation, the coordinator prepares
a new header and fills the TableID, Key, and VpkgPtr. The
TableID and Key come from applications. The coordinator
allocates the VpkgPtr in its delta space, i.e., Motor allows the
newly inserted data to share the delta area with attribute bars
to improve the space efficiency. (3) Delete. The coordinator
sets the Valid of V 0 to 0, so that subsequent transactions with
larger timestamps cannot use the deleted version. The delete
operation needs to set the full value in remote memory pool to
an old-version value. To this end, the coordinator copies the
old attributes fetched in Execution phase into the full value.

After these local preparations, the coordinator leverages
doorbell-batched RDMA WRITEs to write the prepared data
to all replicas and unlocks primaries in one RTT. When re-
ceiving all ACKs from all replicas, the coordinator reports
“committed” to the application.
Processing Read-Only Transactions. A coordinator obtains
a read timestamp (Tstart ) and reads the required CVTs from the
primaries. The coordinator uses Tstart to determine the target
version, and then fetches the Vpkgs and any required old
attributes from primaries to construct the value at the target
version. If the four anchors are equal, the transaction commits,
and otherwise aborts. Note that in single-versioning designs,
the read-only transactions require validation [27, 39, 77, 84].
However, with multi-versioning, the read-only transactions do
not require validation [57] due to obtaining a stable version
snapshot at Tstart (more details are discussed in § 5.2).

5.2 Flexible Support of Isolation Levels
By using our protocol, Motor supports two widely-used isola-
tion levels, i.e., serializability (SR) [11] and snapshot isolation
(SI) [12], to flexibly meet the requirements of different OLTP
applications. With SR, the concurrent transactions appear to
be executed one by one. Moreover, with SI, the transaction
reads data from a snapshot at a time, which does not reflect
changes made by other in-flight transactions.
Supporting SR. (1) For read-write transactions, they are seri-
alizable at the point of Tcommit if guaranteeing that all the target
versions selected at Tstart are equal to those at Tcommit . This
property allows the transactions to be considered as executing
at their Tcommit one after another. Motor ensures this property
by using locks and validations. i) If a transaction obtains all
the locks of CVTs at Tstart , the versions of read-write data
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cannot be changed by other transactions until Tcommit . Hence,
the versions of read-write data at Tstart are equal to those at
Tcommit . ii) During validation, if a transaction detects that the
remote CVT is locked or a new version appears at Tcommit ,
the validation fails and the transaction aborts, since the previ-
ously fetched versions of read-only data become stale. If the
validation succeeds, the versions of read-only data at Tstart
are equal to those at Tcommit . (2) For read-only transactions,
they do not have a commit timestamp due to not making data
changes. In the multi-versioning design, since read-only trans-
actions only observe a snapshot, the start time of read-only
transactions can be considered to be “movable” in order to
find a serializable execution order [57], i.e., the read-only
transactions can be placed among other read-write transac-
tions to make all the transactions appear to execute one by
one. In summary, the write-write and read-write conflicts be-
tween transactions are respectively addressed by using locks
and validations, which ensure that the precedence graphs [5]
of all the transaction schedules do not contain cycles, thus
guaranteeing serializability [68].
Supporting SI. To support SI, Motor disables the version
validation for the read-only data in read-write transactions,
i.e., these transactions are allowed to use a stale snapshot by
using Tstart . Note that the locking is still required to resolve
the write-write conflicts. SI is weaker than SR, but achieves
higher performance (as demonstrated in § 7.7) and has been
adopted by multiple popular systems, e.g., MySQL [56], Post-
greSQL [60], Oracle [59], and SQL Server [63].
ACID Guarantee. Motor guarantees ACID for transactions.
(1) Atomicity. Motor maintains multiple versions of data, and
the old versions act as “undo logs” to preserve the atomicity.
(2) Consistency. The data versions in memory pool are in a
consistent state before a transaction starts and after it commits.
(3) Isolation. Motor supports serializability and snapshot iso-
lation. (4) Durability. Motor stores f +1 replicas of each data
against data loss, and can employ UPS-backed DRAM [27] or
persistent memory [84] in the memory pool to durably store
the committed updates even if a power failure occurs.
5.3 Fault Tolerance
Replica Failures in Memory Pool. By enabling data repli-
cation, Motor is able to tolerate replica failures in the mem-
ory pool. The replica failures can be quickly detected using
RDMA [27]. If any replica fails before commit, the coor-
dinator discards all the fetched data, unlocks remote locks,
and aborts the transactions. If a primary fails during com-
mit, Motor promotes a backup as the new primary to retain
the committed updates, because the backups have the same
updates as primary. The new primary is not visible to coordi-
nators until the updates are installed into alive replicas. When
the new primary becomes visible and subsequent coordinators
can grab locks on the new primary, the updates of previous
transactions have been already committed, thus guaranteeing
serializability. Moreover, if a backup fails during commit,
the coordinator selects another memory node to add a new

backup. Adding a backup requires data migration, in which
Motor enables memory nodes to use RDMA WRITE to quickly
transmit application data. Subsequent transactions involving
failed replicas hang up until the replicas are recovered. The
( f +1)-way replication tolerates at most f replica failures.
Coordinator Failures in Compute Pool. In line with existing
studies [27, 78], Motor supports to use leases [31] to detect
coordinator failures. Motor enables the coordinators to write
small-sized operation logs in local memory to record the oper-
ations (e.g., the keys that will be locked or committed) during
execution. The operation logs are stored in UPS-backed mem-
ory and are not lost [27]. If a coordinator fails, Motor employs
a new one to use the operation logs to resume the in-flight
commit and unlock keys for recovery. For example, the new
coordinator uses RDMA CAS to unlock the recorded keys, i.e.,
if the CAS succeeds, the previous lock is released to avoid
starvation, and otherwise the key is actually not locked.
Network Failures. A network failure causes the network par-
tition. In practice, it is hard to distinguish network failure
from server failure. Like uKharon [34], we assume that the
network partitions are discovered and resolved by datacenter
administrators. If a network partition occurs, either availabil-
ity or consistency cannot be fully guaranteed according to the
CAP theorem [18,30]. In the context of OLTP applications,
offering consistency is more important to satisfy the ACID
requirements. Hence, Motor weakens the availability by only
allowing the major partition [17] to serve requests.

6 Implementations
We present some important implementation details including
the transaction interfaces and execution framework.
Easy-to-Use Transaction Interfaces. Motor provides the
following interfaces for applications to easily run MVCC
based distributed transactions on the disaggregated memory.

• TxnBegin(): Start a transaction and record its ID.
• GetTS(): Get a timestamp from the timestamp service.
• AddObject(): Add a read-only (or read-write) object to

the read-only (or read-write) set.
• FetchAll(): Obtain remote CVTs and target-version

data values. The remote CVTs are simultaneously locked.
• Validate(): Validate the versions of read-only data.
• TxnCommit(): Commit the transaction by writing the

updates back to remote replicas and unlocking the primaries.
Execution Framework. In the compute pool, Motor uses the
CPU cores to spawn massive threads to execute transactions in
parallel. However, if using a thread as a coordinator, the CPU
core will become idle when waiting for RDMA ACKs, which
decreases the throughput. To saturate the compute power of
a CPU core, Motor generates multiple coroutines in a CPU
thread to execute in a pipeline manner [39,77,84]. In a thread,
one coroutine polls the RDMA ACKs, and each of the other
coroutines acts as a transaction coordinator. Therefore, Mo-
tor enables substantial coordinators to concurrently execute
transactions in the compute pool.
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7 Performance Evaluation
7.1 Experimental Setup
Testbed. We configure four servers connected through a Mel-
lanox SB7890 100Gbps InfiniBand (IB) Switch. Each server
contains a 100Gbps Mellanox ConnectX-5 IB RNIC. One
server containing Intel Xeon Gold 6330 CPUs is configured as
the compute pool to run coordinators. Other three servers form
the memory pool, and each server contains 192GB DRAM.
Benchmarks. We leverage a key-value store (KVS) as a micro-
benchmark. KVS stores 10M key-value pairs in one database
(DB) table. The key is 8B and the value is 40B [39, 84]. In
KVS, each transaction performs a read or an update operation
to a 48B KV pair with skewed accesses following the Zipfian
distribution [23]. We enable the skewness and the ratio of
read-write transactions in the transaction mix of KVS to be
configurable to facilitate comprehensive evaluation. Further-
more, we leverage three widely-used OLTP benchmarks, i.e.,
TATP [1], SmallBank [4], and TPCC [13], to evaluate the end-
to-end transaction throughput and latency. Specifically, TATP
shows a telecom application, which includes 4 DB tables and
80% of the transactions are read-only. TATP contains 2M sub-
scribers and the record size is up to 48B. SmallBank models
a banking application, which contains 2 DB tables and 85%
of transactions are read-write. SmallBank has 10M accounts
and the record size is 16B. TPCC models a complex ordering
system, which contains 9 DB tables and 92% of transactions
are read-write. TPCC contains 24 warehouses and the record
size is up to 672B. Moreover, for all benchmarks, each DB
table is replicated to three memory nodes to maintain a 3-way
replication, i.e., 1 primary and 2 backups.
Comparisons. We compare our Motor with two state-of-the-
art systems, i.e., FaRMv2 [64] and FORD [84]. FaRMv2 sup-
ports multi-versioning for transactions on monolithic servers,
and uses the new-to-old chains to link versions [64]. To make
FaRMv2 compatible with disaggregated memory (DM), we
use one-sided RDMA to implement its transaction protocol,
which is referred to as FaRMv2-DM in the rest of this paper.
Moreover, FORD supports single-versioning for transactions
on the disaggregated memory, and we run its open-source
code. Though FORD leverages persistent memory, its one-
sided RDMA designs on transaction protocol are also com-
patible with DRAM. Note that Motor targets on the disaggre-
gated architecture, which is not comparable with the systems
running on the monolithic architecture [39, 57, 76].
Performance Metrics. We report the transaction throughput
by counting the number of committed transactions per second.
Moreover, we report the 50th and 99th percentile latencies of
committed transactions as the transaction latency.

7.2 Number of Versions in CVT
We explore how the number of versions (VNum) in CVT
affects the performance of Motor. For each benchmark, we
vary VNum from 2 to 15. The ratio of read-write transactions
in KVS is 80%. Fig. 8 and 9 show that as VNum increases,
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Figure 9: The transaction throughput on TPCC, SmallBank,
and TATP benchmarks when varying VNum.

the transaction throughput generally first increases and then
decreases. The reason is that, when VNum gets larger, the
abort rate of read-only transactions is reduced to increase the
throughput. For example, in TPCC, the abort rate of a long-
running read-only transaction STOCK_LEVEL decreases from
32.1% (VNum = 2) to 3.8% (VNum = 4). However, after
reaching the peak transaction throughput, increasing VNum
no longer significantly reduces aborts, but the CVT size con-
tinues to increase, which enlarges the payload size to increase
RDMA read latency, as shown in Fig. 7. The increased read
overhead overwhelms the benefit of reducing aborts, thus
decreasing the performance. Besides, large VNums also con-
sume more memory space, as presented in § 7.6. Fig. 8 shows
that at skewness 0.7, KVS reaches the peak throughput ear-
lier than 0.99, since a larger skewness incurs higher access
contention and requires more versions to reduce aborts.

We observe that, as VNum increases after the peak through-
put, the throughput degradation of TPCC (up to 49.6%) is heav-
ier than other workloads. This is because one transaction in
TPCC can access hundreds of records, which is much larger
than other benchmarks, e.g., one transaction in SmallBank
(or TATP) only accesses 1–3 (or 1–4) records. Therefore, the
overall read overhead (considered as CVT size × number
of records) of TPCC transactions is more sensitive to VNum,
leading to sharper performance decrease. SmallBank is write-
intensive, but its transactions are short, and maintaining 3
versions reaches the peak performance. TATP only requires
2 versions for a record to achieve the peak throughput, since
80% of transactions in TATP are read-only and short-running
with low contentions. As VNum grows, the high read over-
head leads to continuous throughput degradation in TATP.

In summary, determining a suitable VNum significantly
depends on the characteristics of workloads, including the
access contention and the number of accessed records in a
transaction. When the contention is low (e.g., TATP), setting
a small VNum is enough. If the contention is high, more
versions are needed to allow higher concurrency, especially
for the long-running transactions. We also need to consider
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Figure 10: The transaction throughput of different version
structures on KVS benchmark.

the number of records accessed per transaction to avoid large
CVTs incurring high overall read overhead. According to
these results, we respectively set the suitable VNum in TPCC,
TATP, SmallBank, and KVS to 4, 2, 3, and 4.

7.3 Performance of Version Structures
We compare the performance of our CVT and traditional
linked-chain version structures, i.e., old-to-new (O2N) and
new-to-old (N2O), upon the KVS benchmark. We configure
the access skewness as 0.7 and 0.99, and vary the ratio of
read-write transactions (RW-ratio) from 20% to 80% in the
transaction mix of KVS. Based on the results in Fig. 8, we
change the maximum number of versions to hold for all struc-
tures to 3 for skewness 0.7, and 4 for skewness 0.99.

Fig. 10 shows that CVT respectively improves the through-
put by 1.7–2.4× and 1.3–1.6× compared with O2N and N2O.
The reason is that, CVT enables the transaction to fetch the tar-
get version in a single round trip, while O2N and N2O require
multiple round trips for chain walking. When increasing the
RW-ratio, the throughputs of three structures decrease, since
the write conflicts increase and read-write transactions require
more round trips to commit. When the skewness is high (e.g.,
0.99) and RW-ratio is low (e.g., 20%), the throughput gap
between N2O and CVT becomes small, because the access is
more concentrated and many read-only transactions quickly
obtain new values from the chain head of N2O. However, such
performance gap between O2N and CVT becomes larger at
high skewness since the new versions in O2N are placed in the
chain tail, which increases the read overhead. Moreover, CVT
respectively reduces the 50th (and 99th) percentile latencies
by 59.8%/30.8% (and 67.9%/47.7%) on average compared
with O2N/N2O at skewness 0.99 due to the same reasons
above. We have also examined that when further increasing
the maximum number of versions to hold, CVT can deliver
more performance benefits over O2N and N2O.

7.4 End-to-End Performance
We leverage TATP, TPCC, and SmallBank to evaluate the end-
to-end performance of Motor, FORD, and FaRMv2-DM. All
systems guarantee serializability. We configure the maximum
number of versions in FaRMv2-DM’s version chain to be
the same as our CVT for fair comparisons. Fig. 11 illustrates
the transaction throughput and latency. To plot a throughput-
latency curve, we increase the request load by running 10–40
threads and 2–8 coroutines per thread, i.e., 10–280 concurrent
coordinators. Each thread executes 1M transactions following
the standard transaction mix of each benchmark [1, 4, 13].
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Figure 11: The transaction throughput and latency of all the
systems on TATP, TPCC, and SmallBank benchmarks.

Compared with FORD, Motor respectively improves
the transaction throughput by 14.4% on TATP, 98.1% on
TPCC, and 65.4% on SmallBank. FORD adopts the single-
versioning design, which limits the throughput, since reads
are blocked by writes during commit, and the undo logs con-
sume network bandwidth. Unlike FORD, Motor allows to read
existing versions in CVTs, and does not need to write undo
logs to remote replicas by maintaining old versions of val-
ues. Hence, Motor improves the throughput over FORD. The
improvements are higher in TPCC and SmallBank, because
(1) they are write-intensive workloads in which Motor avoids
many undo logs, and (2) Motor reserves multiple versions
to reduces aborts for read-only transactions, especially long-
running ones, e.g., STOCK_LEVEL in TPCC. FORD delivers the
lowest 50th percentile latency in TATP, since the two trans-
actions, i.e., GET_SUBSCRIBER_DATA and GET_ACCESS_DATA,
occupy 70% of the transaction mix, and both of them only read
one object. In this case, FORD only uses one RTT to read data,
while Motor requires two RTTs to separately read the CVT
and data value. However, the 99th percentile latency of Motor
on TATP is close to FORD when the transaction becomes com-
plex. Furthermore, Motor reduces the 50th percentile latency
by 55.8%/26.2% on TPCC/SmallBank compared with FORD.

Compared with FaRMv2-DM, Motor respectively improves
the transaction throughput by 18.9%/44.3%/29.5%, and re-
duces the 50th (99th) percentile latencies by 8.6% (39.1%) /
52.1% (35.6%) / 43.6% (34.5%), on TATP/TPCC/SmallBank.
Motor achieves these improvements due to three reasons.
(1) FaRMv2 uses the linked chain to store different versions,
which increases network round trips to perform chain walking
to obtain the target version. Unlike FaRMv2, Motor uses CVT
to fetch the versions together in one round trip. Motor shows
the highest improvement over FaRMv2-DM in TPCC, since
TPCC requires more versions and the transactions read many
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Figure 12: The space consumption in memory pool of all
systems at two scales of benchmarks.

records, which exacerbates the chain walking in FaRMv2-
DM to cause high overheads. (2) The design of FaRMv2
consumes a dedicated RTT to lock the read-write data, but
Motor enables to batch the locking and CVT/value read re-
quests to save RTTs. (3) The design of FaRMv2 uses two
RTTs to commit the backups and primaries, while Motor up-
dates all replicas together in one RTT. Moreover, FORD can
also achieve lower latency than FaRMv2-DM by alleviating
the read overhead, but FaRMv2-DM allows more concurrency
in multi-versioning to improve the throughput.

7.5 Memory Overhead
We present the memory overheads of all systems in the mem-
ory pool using two different scales of benchmarks. Scale-1 (or
Scale-2): TPCC contains 24 (or 48) warehouses; TATP has 2M
(or 4M) subscribers; SmallBank has 10M (or 20M) accounts;
KVS stores 10M (or 20M) KV pairs with skewness 0.99 and
RW-ratio 80%. Scale-1 is the default configuration in § 7.1.

As shown in Fig. 12, FORD exhibits the lowest memory
overhead by storing only one version of data. Due to support-
ing multi-versioning, Motor and FaRMv2-DM consume larger
memory space than FORD. Nevertheless, Motor saves mem-
ory space in three aspects: (1) maintaining the actually mod-
ified attributes rather than full values for different versions;
(2) appropriately estimating the size of attribute bar without
wasting space; and (3) configuring suitable VNums for dif-
ferent workloads without storing unnecessary versions. For
example, Motor supports 4 versions of data in TPCC, but only
consumes 1.45×, instead of 4×, of memory space over FORD.
Such memory saving is also shown in other benchmarks. In
TATP, Motor only incurs 17.3% higher memory overhead than
FORD, since only 16% of transactions perform updates and
the modified attributes are small. In SmallBank and KVS,
Motor respectively consumes 32.7% and 37.7% higher mem-
ory space than FORD, since SmallBank and KVS are write-
intensive and require more versions than TATP. FaRMv2-DM
suffers from 14.6%-22.8% higher memory overhead than
Motor due to two reasons. First, FaRMv2 stores a full-sized
value for each version, while Motor only stores the modified
attributes of values. Second, FaRMv2 requires pointers to link
old versions in its version chain, while Motor does not need
such pointers since our CVT structure consecutively stores all
the versions. Moreover, Fig. 12b shows that when the bench-
mark scale increases, the gap of space consumption between
Motor and FORD generally keeps stable in all benchmarks.
This demonstrates that our reduction of memory overhead
still works even if the workload scale becomes larger. In
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Figure 13: The comparisons of transaction throughput when
varying Motor memory footprint by changing VNum.
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Figure 14: The transaction throughput of Motor when varying
the memory footprint by changing ABS.

summary, Motor trades some extra memory space to achieve
better performance than the single-versioning design, while
also reducing the memory overhead as much as possible.

7.6 Varying Motor Memory Footprint
We study how Motor performs when varying the memory foot-
print based on the benchmark Scale-1 (§ 7.5). In the memory
pool, since the full values always exist to provide complete
user data, we vary Motor memory footprint by changing the
number of versions (VNum) and the attribute bar size (ABS).
As Motor has significantly reduced the memory overhead, the
room to further decrease memory footprint is limited. For ex-
ample, Motor only reserves 2 versions of data in TATP. This is
the minimal number of versions for multi-versioning. Hence,
in TATP, we increase VNum up to 8 to increase memory foot-
prints. For other benchmarks, since their suitable VNums are
larger than 2, we decrease (and increase) VNum from the
suitable VNum to 2 (and 8) to vary memory footprints. When
changing VNum (2–8), the corresponding ABS is estimated
using the formula in § 4.2. Moreover, to vary ABS, we fix
VNum to the suitable VNum in each benchmark, and (1) in-
crease ABS to 2–6× of the estimated ABS using the suitable
VNum, and (2) decrease ABS to 1× of the sum of different
TotAttrSizes per transaction. Fig. 13–16 show the transaction
throughput and latency of Motor when varying memory foot-
prints. We also report the performance and memory footprints
of FORD and FaRMv2-DM for comparisons.
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Figure 15: The comparisons of the 50th percentile latency
when varying Motor memory footprint by changing VNum.
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Figure 16: The comparisons of the 99th percentile latency
when varying Motor memory footprint by changing VNum.

As shown in Fig. 13, when decreasing VNum from the suit-
able value, the memory footprints of Motor are reduced by up
to 22.8% and are close to FORD on many workloads. Through
reducing the memory footprint to contain less versions, Motor
still achieves higher throughput than FORD and FaRMv2-DM.
The reason is that compared with FORD, (1) Motor reserves
more than one version to avoid blocking reads and reduce
transaction aborts; (2) Motor does not need to additionally
write undo logs and the read-only transactions do not need to
validate versions with multi-versioning. Moreover, compared
with FaRMv2-DM, (1) our CVT structure avoids chain walk-
ing to reduce latency; (2) our MVCC protocol saves RTTs
via efficient request batching (§ 7.4). When slightly increas-
ing VNum (e.g., from 4 to 6 in KVS), Motor still consumes
less memory than FaRMv2-DM thanks to only storing neces-
sary modifications in the delta area. Hence, compared with
FaRMv2-DM, Motor can store more versions using a smaller
amount of memory. In fact, when VNum increases from 2
to 8 (4×), the Motor memory footprint only increases by
1.4×/2.1×/2×/1.9× on TPCC/SmallBank/TATP/KVS. Fig. 14
shows that when fixing VNum and reducing ABS from the
suitable ABS, the throughput decreases, since a small-sized
attribute bar would result in more than one Vcells being in-
validated in garbage collection to increase aborts. However,
when increasing ABS from the suitable ABS, the throughput
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Figure 17: The transaction throughput and latency on TATP
and TPCC benchmarks when using different isolation levels.

generally keeps stable, since the transaction aborts are hardly
reduced. This demonstrates the efficiency of our estimation
on ABS, i.e., reserving an exact and sufficient size for the at-
tribute bar without wasting memory. Fig. 15 and 16 show that
the latency of Motor grows when increasing VNum to enlarge
the memory footprint, since large-sized CVTs increase the
transmission latency. Nevertheless, Motor still exhibits lower
latency than FaRMv2-DM by using the CVT to obtain all
versions in a single read. In TATP, FORD achieves the lowest
latency due to consuming less RTTs to fetch data, as ana-
lyzed in § 7.4. But in other benchmarks, Motor shows lower
latency than FORD at suitable VNums due to eliminating the
overheads of writing logs for read-write transactions and vali-
dating versions for read-only transactions. In summary, these
results demonstrate the benefits of Motor over state-of-the-art
systems when varying Motor memory footprint.

7.7 Performance of Different Isolation Levels
Motor supports two isolation levels, i.e., serializability (SR)
and snapshot isolation (SI). Fig. 17 show that Motor-SI gener-
ally achieves lower latency and higher throughput than Motor-
SR on both read-intensive (TATP) and write-intensive (TPCC)
workloads by eliminating the validation phase for read-write
transactions. Compared with TATP, Motor-SI shows higher
throughput improvement in TPCC, since TPCC accesses more
read-only data per transaction and features higher read-write
contentions, thus allowing more throughput improvement
when relaxing the isolation requirement.

7.8 Using PM in Memory Pool
Both DRAM and persistent memory (PM) can be used in a
memory pool [69, 86]. We leverage six 128GB Intel Optane
PM modules in each memory node to evaluate the perfor-
mance of Motor on TPCC. We use RDMA READ-after-WRITE
to flush the written data from remote RNIC to PM for re-
mote data persistency [84]. Fig. 18 shows that the throughput
only decreases by 13.1% on PM due to the limited PM band-
width [80, 84]. The results demonstrate that Motor efficiently
works on both DRAM and PM, thus offering good portability
for applications to run on different types of memory devices.
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Figure 18: The transaction throughput and latency on TPCC
benchmark when using DRAM and PM in the memory pool.

7.9 Fault Tolerance
We leverage TPCC to show the resilience of Motor under coor-
dinator failures in compute pool and replica failures in mem-
ory pool. We report the instantaneous transaction throughput
in 1 ms interval over time (the crash occurs at time 0).

Fig. 19a shows the throughput timeline of recovering co-
ordinators. We run 84 coordinators and 60 of them fail at the
same time. Motor then generates 60 new coordinators and
establishes network connections, which consumes about 170
ms. Afterwards, the new coordinators take over the remaining
tasks. In Motor, each coordinator writes local operation logs
to record the operations during execution. These operation
logs consume very small space (up to 556B per transaction)
and the log space can be reused across transactions. The new
coordinators use the operation logs of failed ones to resume
in-flight commits and unlock CVTs to avoid starvation. After
recovery, Motor regains peak throughput.

Fig. 19b shows the results of recovering replicas. Consid-
ering that the CUSTOMER table is frequently used, we respec-
tively allow the primary and one backup of CUSTOMER to fail,
i.e., cannot be accessed. A small portion of transactions that
do not access the failed replicas are normally executed, and
hence the throughput does not become 0. Motor handles the
primary failure by promoting a backup as the new primary and
adding a backup. Motor tolerates the backup failure by adding
a backup. Recovering the primary consumes more time, since
Motor needs to change the view of primaries for coordina-
tors, and the new primary is not visible until the updates are
committed into alive replicas. Adding a backup requires data
migration, during which Motor allows a memory node to use
RDMA WRITE to transmit DB tables, CVTs, and attribute
bars to another memory node. Write requests to the replicas
involved in migration are blocked to guarantee the data con-
sistency among replicas. Since the CUSTOMER table is large,
the migration consumes nearly 200 ms. We also examine that
if a small DISTRICT table fails, the migration consumes only
1.1 ms. Further optimization on migration is out of our scope.
In practice, our ms-scale recovery is acceptable given that
prior systems [27, 64, 66] also provide ms-scale recovery.

8 Related Work
Fast Distributed Transactions. Fast distributed transaction
processing is a key pillar in distributed systems. Many systems
use RDMA to process transactions [22, 26, 27, 39, 41, 58, 64,
77, 78]. Some studies transform a distributed transaction to a
local one to reduce the communication overheads [19, 40, 52].
Some protocols on concurrency control [55, 74, 79, 82] and
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Figure 19: The Motor’s transaction throughput on TPCC over
time under (a) coordinator failures and (b) replica failures.
data replication [83] are proposed to improve the performance.
The above systems work on the monolithic architecture, while
our Motor targets on the disaggregated architecture.
Memory Disaggregation. Memory disaggregation improves
the resource utilization. Existing studies explore memory
disaggregation in many areas, such as hardware designs [35,
50,51], operating systems [65], indexes [53,75,86], key-value
stores [45,49,66,69], networking [29,67], erasure coding [47,
85], swapping [15,20,33,62], and memory managements [14,
46, 48, 54, 70, 72, 73]. In fact, Motor focuses on transaction
processing, which is orthogonal to the above systems. Though
FORD [84] supports transactions on disaggregated memory,
it adopts single-versioning, which limits the concurrency and
incurs high logging overheads. Unlike FORD, Motor enables
multi-versioning to address these limitations.
Multi-Versioning Schemes. Multi-versioning schemes have
been adopted to support distributed transactions. They focus
on high-performance MVCC protocols [28, 43, 57, 64], times-
tamp generations [38,76,81], garbage collections [16,44], and
verifications [21]. These systems are designed for traditional
monolithic servers, which do not fit the disaggregated mem-
ory. Unlike these studies, our CVT structure and distributed
transaction protocol efficiently support multi-versioning on
the disaggregated memory.
9 Conclusion
This paper proposes Motor, an efficient distributed transac-
tion processing system for multi-versioning in the context of
disaggregated memory. Motor proposes a new consecutive
version tuple structure to efficiently organize multiple ver-
sions of data in memory pool. On top of this, Motor designs a
fully one-sided RDMA-oriented MVCC protocol to acceler-
ate transactions. Extensive experimental results demonstrate
that Motor significantly improves the transaction throughput
and reduces the latency with moderate memory overhead.
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Abstract
Database management systems (DBMSs) are crucial for

storing and fetching data. To improve the reliability of such
systems, approaches have been proposed to detect logic bugs
that cause DBMSs to process data incorrectly. These ap-
proaches manipulate queries and check whether the query
results produced by DBMSs follow the expectations. How-
ever, such query-level manipulation cannot handle complex
query semantics and thus needs to limit the patterns of gener-
ated queries, degrading testing effectiveness.

In this paper, we tackle the problem using a fine-grained
methodology—expression-level manipulation—which em-
powers the proposed approach to be applicable to arbitrary
queries. To find logic bugs in DBMSs, we design a novel
and general approach, equivalent expression transformation
(EET). Our core idea is that manipulating expressions of a
query in a semantic-preserving manner also preserves the
semantics of the entire query and is independent of query
patterns. EET validates DBMSs by checking whether the
transformed queries still produce the same results as the cor-
responding original queries. We realize our approach and
evaluate it on 5 widely used and extensively tested DBMSs:
MySQL, PostgreSQL, SQLite, ClickHouse, and TiDB. In to-
tal, EET found 66 unique bugs, 35 of which are logic bugs.
We expect the generality and effectiveness of EET to inspire
follow-up research and benefit the reliability of many DBMSs.

1 Introduction

Database management systems (DBMSs) are critical systems
software and play important roles in modern data-driven ap-
plications and provide essential functionalities such as data
storage and fetching [8, 12, 39]. Like other large-scale sys-
tems, DBMSs involve complicated code logic and various
functionalities, and thus bugs are easily introduced during
their development and maintenance [1, 13, 15]. One of the
most critical kinds of bugs is logic bugs—the bugs silently
cause DBMSs to produce incorrect query results [25–27]. To

detect logic bugs, existing approaches generate SQL queries
to test DBMSs and check whether the produced results fol-
low the expectations [11, 25–27, 29, 35]. To do so, they either
construct customized queries and validate the rows fetched by
these queries [27], or transform the given queries and check
whether the execution results of the transformed queries are
consistent with the original ones [11, 25, 26, 29, 35].

However, all existing approaches have limited generality as
they require the generated queries to follow specific patterns.
Their generated queries cannot support SQL features that vio-
late their designed query patterns, as shown in Figure 1. For
example, PQS [27] requires that the results of the generated
queries can be predicted by its manually implemented inter-
preter, and thus it is difficult for PQS to support advanced
SQL features involving complicated calculations (e.g., win-
dow functions). TLP [26] requires that the queries must con-
tain predicates in WHERE or HAVING clauses for partitioning,
while bug-triggering queries may not contain such clauses. In
addition, TLP does not support advanced features like window
functions and subqueries. DQE [29] limits its queries to only
use common SQL features supported by SELECT, UPDATE,
and DELETE statements, while any features (e.g., JOIN oper-
ations and aggregate functions) supported by only one kind
of statements are absent. Table 1 provides detailed informa-
tion on whether existing approaches support specific SQL
features. Except for our approach, none of the existing ones
can encompass all the listed SQL features. Due to their lim-
ited support of general SQL queries, existing approaches miss
many logic bugs (e.g., the logic bug triggered by the query
shown in Figure 2, which incorporate correlated subqueries
and join operations).

The lack of generality in existing approaches is caused by
the inherent limitations of their coarse-grained methodology,
namely query-level manipulation. To construct customized
queries or transform existing ones to other related queries,
these approaches need to understand the semantics of the ma-
nipulated queries to guarantee the results produced by these
queries follow their expectations. However, SQL queries are
designed to be flexible [34], and can contain abundant and
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Figure 1: Limitations of existing approaches.

Table 1: Supported SQL features of existing approaches

Approach Subquery Join Window Group DML

PQS
NoREC
TLP
TQS
Pinolo
DQE
EET

Window: window functions; Group: GROUP BY clauses; DML: data
manipulation language (e.g., UPDATE statements); : TQS [35] and
Pinolo [11] support simple but not correlated subqueries. PQS [27]
and Pinolo support only parts of join operations.

complex semantics [13, 14, 16, 28, 37] supported by DBMSs.
Existing approaches cannot be applied to complex queries
because it is difficult to fully understand the complicated
semantics contained by such queries (e.g., the queries in Fig-
ure 2). Due to these challenges, existing approaches have to
limit the patterns of their generated queries to constrain the
query semantics. Therefore, these approaches cannot utilize
general queries that fall outside their expected query patterns.

To address the inherent limitations of existing approaches,
we propose to approach the logic-bug-detection problem us-
ing a new and fine-grained methodology—expression-level
manipulation. Expressions are the essential units of SQL
queries. They can be functions, operations, column variables,
constant values, or subqueries, etc. By manipulating expres-
sions, we can focus on the fine-grained semantics of queries,
i.e., expression semantics, and correspondingly manipulate
queries without the need to understand their overall query-
level semantics. For example, we can easily construct a new
query for oracle checking by manipulating the expressions t2
.c2 and t2.c3 of the original query in Figure 2, even though
the query is complex. In this way, we do not need to limit
query patterns to ones with simple semantics.

Based on this fine-grained methodology, we propose a
novel and general approach, equivalent expression transfor-
mation (EET), which applies to arbitrary queries and can
effectively find logic bugs in DBMSs. Given an arbitrary
query, EET traverses its abstract syntax tree (AST) to iterate

--- Statements for database generation
CREATE TABLE t0 (c0 TEXT);
CREATE TABLE t1 (c0 TEXT);
CREATE TABLE t2 (c0 INT4, c1 INT4, c2 TEXT,

c3 TEXT, c4 TEXT, c5 TEXT);
INSERT INTO t0 values ('');
INSERT INTO t1 values ('');
INSERT INTO t2 values (1, 2, 'a', 'a', 'a', 'a'),

(0, 1, '', '', 'a', 'L');

--- Original query , result set: 0

SELECT t2.c0 FROM t2
WHERE (t2.c1 >= t2.c0) <> (t2.c5 = (

SELECT t2.c4 AS c_0
FROM (t1 AS ref_0 INNER JOIN t0 AS ref_1

ON (ref_0.c0 = ref_1.c0))
WHERE t2.c3 = t2.c2
ORDER BY c_0 DESC LIMIT 1));

--- Transformed query , result set: empty

SELECT t2.c0 FROM t2
WHERE (t2.c1 >= t2.c0) <> (t2.c5 = (

SELECT t2.c4 AS c_0
FROM (t1 AS ref_0 INNER JOIN t0 AS ref_1

ON (ref_0.c0 = ref_1.c0))
WHERE (CASE WHEN (((ref_0.c0 LIKE 'z~%')

AND (NOT (ref_0.c0 LIKE 'z~%')))
AND ((ref_0.c0 LIKE 'z~%') IS NOT NULL))

THEN t2.c3 ELSE t2.c3 END) =
(CASE WHEN (((ref_1.c0 NOT LIKE '_%%')

AND (NOT (ref_1.c0 NOT LIKE '_%%')))
AND ((ref_1.c0 NOT LIKE '_%%') IS NOT NULL))

THEN t2.c4 ELSE t2.c2 END)
ORDER BY c_0 DESC LIMIT 1));

Figure 2: Queries exposing an ancient logic bug (20 years
old) in PostgreSQL.

over the expressions used in this query. For each expression,
EET transforms it to another semantically equivalent one
based on logical equivalences [5, 19] and SQL branch struc-
tures [34]. In the end, EET compares the execution results of
the transformed query (i.e., the query whose expressions have
been transformed) and the original query, and any observed
discrepancy indicates a logic bug. For example, EET trans-
forms expressions t2.c2 and t2.c3 of the original query
in Figure 2 into two semantically equivalent CASE WHEN ex-
pressions of the transformed query, and validate the tested
DBMS by checking whether the results of these two queries
are identical. The key intuition of what makes this approach
effective is that the transformed expressions can lead DBMSs
to exercise different code logic for the manipulated queries.
Such different query executions cross-check each other as
they are expected to produce the same results.

We implemented our approach as a practical DBMS testing
tool and evaluate it on 5 widely-used and extensively-tested
DBMSs, MySQL [20], SQLite [32], PostgreSQL [24], Click-
House [3], and TiDB [36]. In total, EET found 66 unique bugs,
including 16 in MySQL, 10 in SQLite, 9 in PostgreSQL, 21
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in ClickHouse, and 10 in TiDB. Among these bugs, 65 are
confirmed and 37 are fixed. 35 bugs are logic bugs, and many
are long latent. These results demonstrate the effectiveness of
EET in finding logic bugs in DBMSs.

Overall, we make the following contributions:

• We propose a fine-grained methodology, expression-level
manipulation, which can operate on arbitrary queries with-
out limiting query patterns.

• We propose a novel and general approach, equivalent ex-
pression transformation (EET), which can effectively find
logic bugs in DBMSs using transformation rules based on
logical equivalences and SQL branch structures.

• We implement the approach as an automatic DBMS testing
tool and evaluate it on 5 widely used DBMSs. In total,
we found 66 bugs, 35 of which are logic bugs. To further
facilitate research on DBMS testing, we open-source the
tool at https://github.com/JZuming/EET.

2 Motivation

In this section, we illustrate queries that trigger an ancient
logic bug, analyze the limitations of existing approaches, and
present our solution based on a fine-grained methodology.

2.1 Illustrative Example

Figure 2 shows the queries that trigger a very ancient logic
bug caused by incorrect hash-join mechanisms. The bug ex-
isted for 20 years in PostgreSQL until EET found it. The
bug-triggering queries consist of three parts. The first part
contains several statements (e.g., CREATE and INSERT) for
setting up a database for later querying. The second part is
a randomly generated query, termed as original query, and
the third part is the query transformed from the original query
by our approach, term as transformed query. The expres-
sions t2.c3 and t2.c2 in the original query are transformed
into two semantically equivalent CASE WHEN expressions in
the transformed query. The transformed query preserves the
semantics of the original query, and thus these two queries
should produce the same results. However, their results dif-
fered, indicating a logic bug had been triggered.

The bug-triggering queries have been minimized but are
still very complex. Specifically, the transformed query con-
tains a subquery in its WHERE clause. The subquery is a corre-
lated subquery that references value (i.e., the columns of table
t2) from the outer query. The subquery uses INNER JOIN
tables in its FROM clause and uses ORDER BY and LIMIT to
constrain its returned value. PostgreSQL is expected to return
a row {0} for the transformed query. However, it returns an
empty set because the predicate inside the subquery triggers a
logic bug. The detailed root cause is discussed in Section 5.3.

2.2 Limitations of Existing Approaches

Several approaches have been proposed to detect logic bugs in
DBMSs [11, 25–27, 29, 35]. PQS [27] synthesizes a query in
a way that the query is expected to fetch a specific row. If the
row is not fetched, a logic bug is triggered. TLP [26] partitions
a given query into three separated queries by decomposing
the predicate in the WHERE or HAVING clause. The union of
the results of these three queries should be consistent with the
original one, otherwise, a logic bug is found. Pinolo [11] ma-
nipulates the query predicate in its WHERE clause to construct
a new query whose results are the superset or subset of the
results of the original query.

All these approaches are trapped in query-level manipu-
lation, which is a coarse-grained methodology for logic-bug
detection in DBMSs. To guarantee the correct manipulation,
this methodology inherently requires the approaches to under-
stand the semantics of the manipulated queries. For example,
PQS needs to interpret its synthesized queries to predict their
expected results. However, SQL is a flexible query language,
providing various features (e.g., subquery, join) to manipulate
data [34]. Under specific demands, SQL queries (e.g., analyti-
cal queries) can be very complex [16, 28, 37]. In these cases,
query-level manipulation cannot work effectively because it
cannot handle the complicated semantics of these queries.

For the example query in Figure 2, PQS cannot infer its ex-
pected fetched row because it cannot predict the results of the
complex predicates involving correlated subquery with join ta-
bles. TLP cannot partition the predicates inside the subqueries,
because predicate effects propagating from subqueries to the
outer query are implicit and complicated. Partitioning predi-
cates in subqueries cannot guarantee the consistency between
the results of its unioned queries and its original query. Simi-
larly, Pinolo cannot guarantee the superset or subset relation-
ships between the manipulated queries because the logical
effects inside the subqueries are difficult to predict.

To avoid such inapplicable cases from happening in their
generated queries, existing approaches limit the query pat-
terns to constrain the semantics of their generated query. As a
result, many important SQL features cannot be supported by
existing approaches, as shown in Table 1. For example, PQS
and Pinolo support only parts of join operations, and none
of the existing approaches supports correlated subqueries,
because their semantics are complex. Therefore, these ap-
proaches miss many logic bugs that are not covered by their
limited query patterns, such as the 20-year-old logic bug of
PostgreSQL in Figure 2.

2.3 Our Solution

To propose a general approach that is applicable to arbitrary
queries, we need to tackle the logic-bug-detection problem
using a new methodology instead of query-level manipula-
tion. In this paper, we propose a fine-grained methodology—
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expression-level manipulation, which shifts our focus from
the semantics of a whole query to the semantics of a single ex-
pression of the query, empowering the potential and flexibility
of manipulation. We can manipulate queries by processing
their fine-grained elements, expressions, without the necessity
to analyze the semantics of the whole query, and thus do not
need to limit the query patterns to simplify query semantics.

Based on this methodology, we propose equivalent expres-
sion transformation (EET), which is applicable to arbitrary
queries to find logic bugs in DBMSs. Given a SQL query,
EET iterates all expressions of the query and transforms them
into semantically equivalent expressions. EET validates the
DBMSs by checking whether the query with transformed ex-
pressions produces the same results as the original query. In
this paper, we use logical equivalences [5,19] and SQL branch
structures [34] to perform semantic-preserving transforma-
tion. For example, in Figure 2, EET transform the expressions
t2.c3 and t2.c2 in the original query to two CASE WHEN
expressions in the transformed query. CASE WHEN expres-
sions are SQL-style conditional branch structures. Depend-
ing on the results of the conditional expressions following
WHEN keywords, the returned values of the CASE WHEN ex-
pressions are determined by the expression following either
the THEN keywords (i.e., TRUE branches) or ELSE keywords
(i.e., FALSE branches). Both the branch conditions of the two
CASE WHEN are unsatisfiable and can only be evaluated to
FALSE. Therefore, these two CASE WHEN are semantically
equivalent to t2.c3 and t2.c2, respectively, which are the
expressions used in the original query. Therefore, the original
query and the transformed query should produce the same
results. However, the original query outputs 1 row {0}, while
the transformed query outputs empty, exposing a logic bug.

EET is effective because the transformed expression can
result in different execution logic of the tested DBMSs. For
the example in Figure 2, the transformed expressions (i.e.,
the two CASE WHEN) lead the PostgreSQL server to invoke
its buggy hash-join mechanism, while the original one does
not. Such execution differences make PostgreSQL produce
different results for the two queries and indicate at least one
of the queries triggers bugs.

3 Equivalent Expression Transformation

In this section, we present the formalization and overview
of EET, the two kinds of expression transformations that we
propose in this paper, and the properties of this approach.

3.1 Overview

We formalize the core idea of equivalent expression transfor-
mation (EET) as the following formula, where Q represents
an arbitrary query, E represents expressions contained in Q,

SQL Query

AST Traversing Expression Transformation

Determined
Boolean Expressions

Redundant
Branch Structures

Transformed SQL Query

Expression

Transformed Expression

Results Comparison

Same
Different

Figure 3: Approach overview of EET.

and DB(Q) is the result the tested DBMS produces for Q:

E ≡ E ′ ⇒ DB(Q)≡ DB(Q′),where Q′ = QJE ′/EK (1)

The idea is simple: given an arbitrary query Q with expres-
sions E, construct a query Q′ = QJE ′/EK by replacing all oc-
currences of E in Q with semantically equivalent expressions
E ′. Q′ and Q are semantically equivalent by construction, and
a DBMS should produce identical results on them.

Figure 3 shows the overview of EET. EET traverses the
AST presentation of the query to iterate over expressions
and transforms these expressions into semantically equivalent
ones. After all the expressions have been transformed, the
EET constructs a semantically equivalent query and validates
the tested DBMS by comparing the results of the transformed
query and the original query. In this paper, we propose de-
termined boolean expressions (Section 3.2.1) and redundant
branch structures (Section 3.2.2) to instantiate the expression
transformations that satisfy E ≡ E ′ in Eq. 1.

3.2 Expression Transformation
SQL queries contain various expressions, whose types can be
categorized into two classes: boolean expressions and non-
boolean expressions. For boolean expressions, we can trans-
form them leveraging the logical equivalences [5,19] in math-
ematical logic, which have been well studied and generally
recognized. For non-boolean expressions, it is difficult to pro-
pose general transformation, because these SQL expressions
can be numeric (e.g., integer, floating point), string, or times-
tamp, etc. Their execution rules are different. To generally
support these types, we leverage SQL branch structures [34],
which operate on expressions of various types and provide
flexibility for transformation.

To this end, we propose two kinds of expression transforma-
tion, determined boolean expressions and redundant branch
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structures. Table 2 shows the details of each transformation,
including its applied expressions and transformation rules.
EET is extensible for additional expression transformations,
and we expect that more kinds of effective transformation can
be proposed in the future, as discussed in Section 3.3.

3.2.1 Determined Boolean Expressions

For each boolean expression, we can transform it using logical
operations, such as AND and OR. We leverage 5 laws of logical
equivalences [5, 19] for an arbitrary boolean expression p:

⊤∨ p ≡⊤

⊥∧ p ≡⊥

⊤∧ p ≡ p

⊥∨ p ≡ p

p∨q ≡ q∨ p, p∧q ≡ q∧ p

We interpret them to corresponding SQL equations:

TRUE OR p ≡ TRUE (2)

FALSE AND p ≡ FALSE (3)

TRUE AND p ≡ p (4)

FALSE OR p ≡ p (5)

p OR q ≡ q OR p, p AND q ≡ q AND p (6)

As the values of SQL boolean expressions can only be
either TRUE, FALSE, or NULL [26], one of the expressions, p,
NOT p, and p IS NULL must be TRUE, where p is an arbitrary
boolean expression. Therefore, p OR (NOT p )OR ( p IS
NULL) must be TRUE according to Eq. 2. Similarly, one of the
expressions, p, NOT p, and p IS NOT NULL must be FALSE,
so p AND (NOT p )AND ( p IS NOT NULL) must be FALSE
according to Eq. 3. The equations are shown below:

p OR (NOT p) OR (p IS NULL)≡ TRUE (7)

p AND (NOT p) AND (p IS NOT NULL)≡ FALSE (8)

We use true_expr and false_expr to represent the expres-
sions on the left-hand side of Eq. 7 and Eq. 8:

true_expr(p) = p OR (NOT p) OR (p IS NULL) (9)

false_expr(p) = p AND (NOT p) AND (p IS NOT NULL) (10)

Note that the operands of OR/AND can be randomly disor-
dered according to Eq. 6 (e.g., p and NOT p can switch their
positions). Combining Eq. 4 with Eq. 7 and 9, Eq. 5 with
Eq. 8 and 10, respectively, we get the following equations,
where p and p′ can be arbitrary boolean expressions:

true_expr(p′) AND p ≡ p (11)

false_expr(p′) OR p ≡ p (12)

Based on Eq. 11 and Eq. 12, we can transform an arbi-
trary boolean expression p by adding a structured expression
containing a randomly generated boolean expression p′. We
accordingly propose two transformation rules shown in rows
No.1 and 2 in Table 2. Both of these transformation rules are
guaranteed to preserve the semantics of original expressions.
The queries shown in Figure 6 and Figure 7 (discussed in
Section 5.3) are transformed by these rules.

3.2.2 Redundant Branch Structures

To transform non-boolean expressions, we propose to leverage
CASE WHEN expressions, which are SQL-style conditional
branch structures and support various SQL types. These ex-
pressions execute the following if-else logic:

C(p,expr1,expr2) = CASE WHEN p THEN expr1

ELSE expr2 END

C(p,expr1,expr2) =

{
expr1 if p is TRUE
expr2 if p is FALSE or NULL

(13)

We can determine the execution logic of CASE WHEN ex-
pressions by fixing the predicate p to be TRUE or FALSE.
Furthermore, we can use Eq. 9 and Eq. 10 to replace the TRUE
and FALSE values, making the transformed expression more
complex. In the end, we get the following equations:

C(true_expr(p),expr,expr′)≡ expr (14)

C(false_expr(p),expr′,expr)≡ expr (15)

Based on Eq. 14 and Eq. 15, we can transform an expres-
sion to a designed CASE WHEN expression, which involves
randomly generated expressions p and expr′ but still preserves
the semantics of the original expression expr. We accordingly
propose 2 transformation rules shown in rows No.3 and 4
of Table 2. Note that the type of expr′ should be the same
as the type of expr, otherwise ambiguous behaviors may be
triggered in some DBMSs [20, 24, 32]. The query shown in
Figure 2 is transformed by these rules.

Besides fixing the predicate p to be TRUE or FALSE to de-
termine the return value of a CASE WHEN expression, we can
also manipulate the expression in TRUE or FALSE branch. If
the expressions in the TRUE and FALSE branch are semanti-
cally equivalent to each other, the CASE WHEN expression is
determined to be the expression in the TRUE/FALSE branch,
no matter how the predicate p is evaluated. Formally, we get
the following equation by making expr1 ≡ expr2 in Eq. 13:

expr1 ≡ expr2 ⇒C(p,expr1,expr2)≡ expr1 ≡ expr2 (16)

Based on Eq. 16, we propose 2 transformation rules shown
in rows No.5 and 6 of Table 2. In these rules, we deeply copy
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Table 2: Transformation rules of EET

No. Expression Transformation Applied Expression Transformation Rule

1 Determined Boolean Expressions bool_expr: boolean bool_expr → false_expr3OR bool_expr
2 Determined Boolean Expressions bool_expr: boolean bool_expr → true_expr4AND bool_expr
3 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN false_expr

THEN rand_expr(type(expr))1, 2

ELSE expr END
4 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN true_expr

THEN expr
ELSE rand_expr(type(expr)) END

5 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN rand_expr(boolean)
THEN copy_expr(expr)5

ELSE expr END
6 Redundant Branch Structures expr: CASE-WHEN applicable expr → CASE WHEN rand_expr(boolean)

THEN expr
ELSE copy_expr(expr) END

7 Origin expr: non boolean expr → expr
CASE-WHEN inapplicable

1 type(e): the type of the return value of expression e.
2 rand_expr(t): randomly generated expression that returns a value with type t.
3 false_expr → p AND (NOT p )AND ( p IS NOT NULL) | p → rand_expr(boolean)
4 true_expr → p OR (NOT p )OR ( p IS NULL) | p → rand_expr(boolean)
5 copy_expr(e): an expression deeply copied from expression e

the original expression expr (i.e., the expression itself and
its subexpressions) to another expression, namely copy_expr.
The expressions expr and copy_expr are semantically equiv-
alent because they are the same. We distribute these expres-
sions in TRUE and FALSE branches of a CASE WHEN expres-
sion, and randomly generate a predicate. Eq. 16 guarantees
that such a CASE WHEN expression is semantically equiva-
lent to the original expression. The query shown in Figure 8
(discussed in Section 5.3) is transformed by these rules.

3.2.3 Choosing Transformation Rules

CASE WHEN expressions can be applied for the majority types
of SQL expressions, including numeric types, string types,
timestamp types, e.t.c. EET randomly chooses one of the
rules No.3 to 6 to transform the expression belonging to these
types. Boolean types also support CASE WHEN, so EET ran-
domly applies one of the rules No.1 to 6 for each boolean
expression. However, some types of expressions are CASE-
WHEN inapplicable, and thus none of the rules No.1 to 6 are
available. The table expressions t0 and t1 in Figure 2 are the
examples. When we replace them with CASE WHEN expres-
sion, the query will trigger syntactic errors. To address this
problem, EET conservatively transforms these expressions to
themselves, as shown in rule No.7 of Table 2.

3.3 Properties

Soundness. EET follows the formally-proved equations in
Section 3.2, and thus is guaranteed to preserve the semantics
of the original queries. If the execution results of the original
queries are determined (i.e., excluding SQL features involving
randomness), the transformed queries must produce the same
execution results as the original ones, otherwise logic bugs
are triggered. Therefore, EET is sound and produces no false
positives in logic-bug detection.

Generality. EET can be generally applied to various SQL
queries because it works at the expression level instead of the
query level. Existing approaches, which work at the query
level, inherently require the generated queries to follow speci-
fied query patterns. Otherwise, these approaches cannot infer
the oracle results to validate the execution of their generated
queries. Such limitations make existing approaches not gen-
eral because they cannot be applied to arbitrary queries (e.g.,
the queries violated their patterns). In contrast, EET can be
applied to validate arbitrary queries because it works at the ex-
pression level. Given an arbitrary query that is not limited to
any query patterns, EET can generally transform it by trans-
forming its expressions, and use the results of the transformed
query to validate the results of the given query. In this sense,
EET is general in validating arbitrary SQL queries.

While the high-level idea of EET works generally, its im-
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plementation for different SQL dialects can vary, depending
on their branching structure syntax. For example, the function
DECODE in Oracle [21] can return different values accord-
ing to the comparison of its operands. This function can be
implemented in the redundant branch structures of EET to
transform queries written in Oracle-style SQL. In this pa-
per, for redundant branch structures, we use only CASE WHEN
expressions, which are supported by all the tested DBMSs.
Extensibility. In this paper, we propose two kinds of expres-
sion transformations for finding logic bugs to demonstrate the
effectiveness of EET. Besides these two, we expect that more
transformations are possible to enhance the approach. For
example, a new transformation can be proposed to process
table expressions (e.g., t0 and t1 in Figure 2) by joining the
original table with other tables while keeping the join results
the same as the original one. EET can be easily extended to
support new transformations as we only need to specify the
transformation rules and the applied expression types. In our
implementation, we used less than 200 lines of code for the
proposed two kinds of expression transformations.
Black-Box Testing. EET is a pure black-box technique,
which does not rely on the internal implementation of the
tested DBMSs. Such a property makes our approach portable
and can be easily deployed for testing various DBMSs, even
the ones whose source code is unavailable.

4 Implementation

We implemented EET into a fully automatic tool on top of
SQLsmith [33], which we mainly use for generating databases
and complex queries. The overall codebase of the tool is 14k
lines of C/C++ code, 2k of which is used to implement our
approach. Figure 4 shows its architecture. The following
describes the important implementation details.
Test-Case Generation. EET generates databases and queries
randomly. To generate a query, the tool incrementally builds

Transformed
query

Original
query

Stage 1

Original
query

Transformed
query

Transformed
query Stage 2

Reduced test case

Figure 5: Two-stage reduction of EET.

an AST tree according to the grammar of SQL [27, 34, 38].
When constructing a node of the AST, EET updates and
records the available variables (e.g., relations, columns), and
fills the node with a randomly generated expression referenc-
ing the available variables. After the AST tree is completed, a
new query is generated and can be fed to the tested DBMS.

Expression Transformation. EET leverages the AST rep-
resentation of the query to iterate each expression. For each
expression, EET checks its type and randomly chooses one of
the suitable transformation rules, as discussed in Section 3.2.3.
During transformation, EET may need to generate additional
expressions (e.g., an additional boolean expression is required
in rules No.1 to 6 in Table 2). In this case, EET reuses the
information (e.g., available variables in corresponding AST
nodes) used in test-case generation to randomly generate ad-
ditional expressions with specific types.

Result Comparison. EET compares the execution results of
the transformed query and the original query, including their
query output and database changes caused by these queries.
Any discrepancy indicates that logic bugs are triggered.

Test-case Reduction. To trigger a logic bug, EET may per-
form transformations on a large query (e.g., hundreds of lines
of SQL), and all its expressions are transformed. However,
the same bug might be triggered using parts of the large query
and couples of transformed expressions. To ease the burden
of developers, we need to reduce the bug-triggering queries
before reporting the bugs. We customize two-stage reduction
for EET to reduce the bug-triggering queries automatically.
Figure 5 shows the workflow of this reduction procedure.

In the first stage, EET reduces both the original query and
the transformed query. Each time the parts (e.g., an expres-
sion) of an original query are reduced, the corresponding parts
(e.g., the transformed expression) in the transformed query
are also reduced to make these two queries consistent. For ex-
ample, in Figure 2, when the expression t2.c3 of the original
query is reduced to a constant value NULL, the corresponding
CASE WHEN expression in the transformed query should also
be replaced by NULL. EET checks whether these two queries
still produce different results. If so, the bug still exists and
the reduction is effective. Otherwise, EET recovers the re-
duced parts and tries to reduce other parts of these two queries.
When no part can be reduced, EET enters the second stage.

In the second stage, EET tries to incrementally disable the

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    827



transformation for each expression in the transformed queries.
After one transformation for an expression is disabled, if the
execution results of the transformed queries are still different
from the original, EET keeps this expression not transformed.
Otherwise, EET recovers the expression to the transformed
version. When no transformation can be disabled in the trans-
formed query, this stage ends.

5 Evaluation

Our evaluation aims to answer the following questions to
demonstrate the effectiveness of EET:
Q1 Can EET find real logic bugs in widely used and exten-

sively tested DBMSs? (Section 5.2)
Q2 How diverse are the logic bugs found by EET? (Sec-

tion 5.3)
Q3 Can EET find logic bugs that are missed by existing

approaches? (Section 5.4)

5.1 Experimental Setup

We focused on testing open-source DBMSs for transparent
and convenient bug reporting. We chose MySQL [20], Post-
greSQL [24], SQLite [32], ClickHouse [3], and TiDB [36]
because they are popular and extensively tested. At the time
of paper writing, MySQL, PostgreSQL, and SQLite rank 1st,
2nd, and 6th, respectively, among the open-source DBMSs
according to their popularity in DB-Engines Ranking [6].
ClickHouse and TiDB are relatively new DBMSs but very
popular on GitHub [10]. They have gained over 31K and
35K stars, respectively, demonstrating their popularity. All
of these DBMSs have been extensively tested by existing ap-
proaches for finding logic bugs [4,11,25–27,29,35] and crash
bugs [13, 33, 38]. Finding new bugs in these DBMSs is very
challenging and can demonstrate the effectiveness of EET.

We use EET to test the latest version of each DBMS. When
the code of a DBMS is updated, we start a new test for the
updated version. Specifically, we started to test MySQL from
version 8.0.34, PostgreSQL from commit 3f1aaaa, SQLite
from commit 20e09ba, ClickHouse from commit 30464b9,
and TiDB from commit f5ca27e. All the DBMS code is
cloned from their official GitHub repositories. We intermit-
tently deployed EET to test these DBMSs. We stopped and
restarted the testing when we implemented new features in
EET. The overall testing duration is three months. We evalu-
ate EET on Ubuntu 20.04 with a 64-core AMD Epyc 7742
CPU at 2.25G Hz and 256GB RAM.

5.2 Bug Detection

As shown in Table 3, we reported 66 unique DBMS bugs
found by EET, including 16 in MySQL, 9 in PostgreSQL, 10
in SQLite, 21 in ClickHouse, and 10 in TiDB. 65 of these

Table 3: Status of the bugs found by EET

DBMS Reported Confirmed Fixed

MySQL 16 16 2
PostgreSQL 9 9 8
SQLite 10 10 10
ClickHouse 21 20 15
TiDB 10 10 2

Total 66 65 37

Table 4: Bug classification

DBMS Logic Crash Error

MySQL 10 6 0
PostgreSQL 3 3 3
SQLite 9 0 1
ClickHouse 11 3 7
TiDB 2 7 1

Total 35 19 12

bugs have been confirmed, and 37 have been fixed. None of
these bugs are marked as duplicates by developers.
Bug Classification. We classify the bugs EET found into the
three following types:

Logic bugs. The tested DBMSs incorrectly execute the SQL
queries and produce wrong results (e.g., select or update incor-
rect rows). These bugs were exposed because they incurred
discrepancies between the results of the original queries and
the transformed queries generated by EET.

Crash bugs. These bugs cause the tested DBMSs to crash or
panic when specific queries are processed. Their root causes
may be (1) memory corruption like null-pointer dereference;
(2) assertion failures and (3) unexpected memory exhaustion.

Abnormal errors. The tested DBMSs report unexpected
errors (e.g., "database disk image is malformed" in SQLite)
when processing syntactically and semantically valid queries.

As shown in Table 4, 35 bugs (52% of the bugs EET found)
are logic bugs, which are the most interesting and hard-to-
find bugs. The three logic bugs in PostgreSQL are exciting
because PostgreSQL is a well-known hard nut for DBMS
testing [13, 25, 27], where SQLancer [30], the DBMS testing
tool integrating three logic bug detection techniques [25–27],
found only one logic bug [31]. EET also found 19 crash bugs
and 11 abnormal errors. These results demonstrate that EET
is effective in finding bugs in DBMSs, especially logic bugs.
Bug Importance. We collect the severity information of the
bugs we reported to MySQL and TiDB. PostgreSQL, SQLite,
and ClickHouse do not provide the severity of each reported
bug. All the crash bugs we reported to MySQL were identified
as confidential, among which 2 have been assigned CVEs.
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Among the 10 logic bugs in MySQL, 7 were recognized as
serious bugs, and 3 were non-critical. Among the 10 bugs
reported to TiDB, developers marked 6 as major, 1 as minor,
and 3 as moderate.

The developers appreciated our effort in finding real bugs
in their DBMSs. Particularly, PostgreSQL developers recog-
nized our contribution to the reliability of PostgreSQL and
sent us their commemorative coin [23]. ClickHouse and Post-
greSQL developers provided their testimonials:

ClickHouse: This tool has proven its value, and we want
to integrate it into our CI and use it continuously. Thanks
to @xxx for running it and reporting the findings!

PostgreSQL: Thanks for your efforts! I thought about the
generation of self-join tests for about a year, and it would
be interesting to read about your approach. Could you
send me a copy of the paper after release? Or the name of
the conference to participate and see it offline.

Throughput. We count the number of tests (each one consists
of one original query and one transformed query) performed
by EET per second during testing the 5 DBMSs. On average,
a single EET instance performs 3.39 tests per second (293k
tests per day), which is lower than existing approaches. It
is reasonable because EET supports complex queries, and
DBMSs spend much more time executing complex queries
than simple queries [13], making most CPU time spent on
query execution (94.18% in our statistic results). We believe
this throughput is practical considering (1) DBMS testing
typically persists for several months [25–27, 29], and thus a
sufficient number of tests can be executed and (2) setting up
multiple testing instances can significantly improve the test
efficiency of EET.

5.3 Bug Diversity

For the 35 logic bugs, we investigate their diversity from three
aspects: (1) the diversity of bug-triggering queries involving
multiple SQL features, (2) the diversity of the root causes of
why DBMS produces incorrect results, and (3) the diversity
of bug manifestation during testing DBMSs.

SQL Features. Table 5 lists the SQL features used in the 35
queries triggering logic bugs. The columns Subquery, Join,
Window, and Group show whether the queries contain sub-
queries, join operations, window functions, and GROUP BY
clauses, respectively. The column DML shows whether the
bug-triggering queries are DML statements (e.g., UPDATE and
DELETE) instead of DQL (e.g., SELECT).

Among the 35 bug-triggering queries, 18 contain sub-
queries (8 of them involve correlated subqueries), 18 use
join operations (e.g., inner join, outer join, and cross join), 4

Table 5: SQL features of the 35 queries triggering logic bugs

ID DBMS Subquery Join Window Group DML

1 MySQL
2 MySQL
3 MySQL
4 MySQL
5 MySQL
6 MySQL
7 MySQL
8 MySQL
9 MySQL

10 MySQL
11 PostgreSQL
12 PostgreSQL
13 PostgreSQL
14 SQLite
15 SQLite
16 SQLite
17 SQLite
18 SQLite
19 SQLite
20 SQLite
21 SQLite
22 SQLite
23 ClickHouse
24 ClickHouse
25 ClickHouse
26 ClickHouse
27 ClickHouse
28 ClickHouse
29 ClickHouse
30 ClickHouse
31 ClickHouse
32 ClickHouse
33 ClickHouse
34 TiDB
35 TiDB

invoke window functions (e.g., DENSE_RANK, FIRST_VALUE
), 3 involve GROUP BY clauses, and 2 are DML statements.
We investigated the 10 bugs not involving these 5 features
and found that all of them used SQL functions (e.g., ACOS,
HEX, and UNIX_TIMESTAMP) to perform complicated value
calculations, string manipulation, and timestamp controlling.
These results indicate that EET can find logic bugs triggered
by various SQL queries.

The combined results in Table 1 and Table 5 demonstrate
that EET can find many logic bugs missed by existing ap-
proaches because EET can support more various SQL fea-
tures. For example, PQS [27], TLP [26], and NoREC [25]
cannot find the 18 logic bugs related to subqueries, which are
not supported by these approaches. Lacking support for join
operations, DQE [29] cannot find the 18 join-related logic
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--- Statements for database generation
CREATE TABLE t0 (c0 INT , c1 INT, c2 INT);
INSERT INTO t0 VALUES(2,1,-20);
INSERT INTO t0 VALUES(2,2,NULL);
INSERT INTO t0 VALUES(2,3,0);
INSERT INTO t0 VALUES(8,4,95);

--- Original query , delete 4 rows

DELETE FROM t0 WHERE TRUE;

--- Transformed query , delete 3 rows

DELETE FROM t0 WHERE
((((t0.c0 <= t0.c2) AND

(t0.c0 <> (SELECT c0 FROM t0 ORDER BY c0 LIMIT 1
OFFSET 2))) IS NULL) OR

((t0.c0 <= t0.c2) AND
(t0.c0 <> (SELECT c0 FROM t0 ORDER BY c0 LIMIT 1
OFFSET 2))) OR

NOT ((t0.c0 <= t0.c2) AND
(t0.c0 <> (SELECT c0 FROM t0 ORDER BY c0 LIMIT 1
OFFSET 2))))AND TRUE;

Figure 6: Queries triggering a logic bug in the one-pass opti-
mization of SQLite.

bugs. Notably, none of the existing approaches could find
the 8 logic bugs related to correlated subqueries, as they can-
not support semantically complex features. EET, benefiting
from expression-level manipulation, is not limited to specific
query patterns and can generally support all the listed features.
Therefore, EET can find many bugs beyond the capabilities
of existing approaches.
Root Cause Analysis. We investigated the 19 fixed logic
bugs, whose patches and developer feedback are visible. They
consist of 9 bugs in SQLite, 3 in PostgreSQL, and 7 in Click-
House. We found that 12 bugs are caused by incorrect op-
timization. It is expected because EET supports logic bug
detection for complex queries, which has huge potential to be
optimized and thus can cover many optimization mechanisms
in the tested DBMSs. 11 bugs are related to JOIN operations.
Indeed, existing approaches could not systematically test the
DBMS components related to JOIN operations until TQS was
proposed [35], and thus many bugs remain unexposed. These
results indicate that EET can also be used to effectively test
the JOIN mechanism implemented in the tested DBMSs (e.g.,
the hash-join bug shown in Figure 2). Different from TQS,
EET can also detect bugs in other DBMS components, such
as a bug in the JIT components used for expression compi-
lation in ClickHouse. The following shows three interesting
bug examples caused by different root causes.
Example 1: Optimization bug in SQLite. Figure 6 shows the
queries triggering a logic bug in the one-pass optimization
of SQLite. The original query is a simple DELETE statement
with a predicate TRUE, which removes 4 rows in the table t0.
EET transforms this query by applying rule No.2 in Table 2
to the predicate TRUE, which is semantic preserving. The
transformed query should also remove 4 rows in t0, but only
3 rows are removed, indicating a logic bug triggered. The root

--- Statements for database generation
CREATE TABLE t0 (c0 UInt32, c1 UInt32,

PRIMARY KEY (c0)) ENGINE = MergeTree;
INSERT INTO t0 VALUES (2, 2);

--- Original query , result set: {FALSE}

SELECT FALSE FROM t0;

--- Transformed query , result set: {TRUE}

SELECT (acos(c0) <> atan(c1)) AND
(NOT (acos(c0) <> atan(c1))) AND
((acos(c0) <> atan(c1)) IS NOT NULL)

OR FALSE from t0;

Figure 7: Queries triggering a logic bug in the JIT compilation
of ClickHouse.

cause is that the transformed query triggered the one-pass
optimization in SQLite, which passes the target table only one
time. For each row, SQLite evaluates whether it satisfies the
predicate. If so, SQLite deletes the row. Because the subquery
in the WHERE clause is behind a short-circuit operator (i.e.,
AND operation), SQLite evaluates it after one or more rows
have already been deleted, and SQLite thus produces a wrong
result for the subquery, which at the end makes a row in table
t0 not deleted. SQLite developers fix this bug by disabling
the one-pass optimization when the processed query contains
a subquery in its WHERE clause.

Example 2: JOIN bug in PostgreSQL. Figure 2 shows the
query triggering an ancient logic bug in the hash-join imple-
mentation of PostgreSQL. Specifically, PostgreSQL built a
hash table for the INNER JOIN tables (i.e., t1 and t0) in the
FROM clause. Their hash table was affected by a PostgreSQL
data structure, Param, a parameter used for passing values
into and out of subqueries or from nested loop joins to their
inner scans. PostgreSQL must rebuild the hash table when
specific Param values are updated. However, in some cases,
the inner hash-key expressions for the hash table reference
some Params whose changes are unexpectedly missed by
PostgreSQL. The transformed query in Figure 2 updated such
Params while PostgreSQL did not perceive the changes of
these Params, as a result of which PostgreSQL incorrectly
reused the outdated hash table and produced wrong results.
PostgreSQL developers fixed this bug by invoking specific
functions to take the missed Params into account.

Example 3: JIT bug in ClickHouse. Figure 7 shows the query
triggering a logic bug in the JIT compilation of ClickHouse.
The original query is a simple SELECT statement. EET trans-
forms the FALSE expression in the SELECT clause, applying
rule No.1 in Table 2. The transformed query trigger the JIT
compilation of ClickHouse because the query repeatedly uses
the expression acos(c0)<> atan(c1). To speed up the
query execution, ClickHouse compiles this expression into
machine code that can be executed by CPUs directly. How-
ever, the JIT compiler incorrectly compiled the non-equal op-
eration (i.e., <>), and thus the machine code produced wrong
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--- Statements for database generation
CREATE TABLE t0 (c0 INT, c1 INT);
CREATE TABLE t1 (c0 INT, c1 INT, c2 REAL,

c3 REAL, c4 INT);
INSERT INTO t0 VALUES(14, 24000);
INSERT INTO t1 VALUES(85, 95000, 97.87, 0.0, 0);

--- Original query , result set: {1}

SELECT DISTINCT 1 AS c1
FROM ((t1 AS ref_0 RIGHT OUTER JOIN t0 AS ref_1

ON ref_0.c4 = ref_1.c0)
LEFT OUTER JOIN

(t1 AS ref_2 LEFT OUTER JOIN t0 AS ref_3
ON ref_2.c1 = ref_3.c0)

ON (((SELECT c1 FROM t0 ORDER BY c1 LIMIT 1) IN (
SELECT ref_4.c0 AS c0 FROM t1 AS ref_4)) IS TRUE))

WHERE ref_2.c3 <= ref_2.c2;

--- Transformed query , result set: empty

SELECT DISTINCT 1 AS c1
FROM ((t1 AS ref_0 RIGHT OUTER JOIN t0 AS ref_1

ON ref_0.c4 = ref_1.c0)
LEFT OUTER JOIN

(t1 AS ref_2 LEFT OUTER JOIN t0 AS ref_3
ON ref_2.c1 = ref_3.c0)

ON (((SELECT c1 FROM t0 ORDER BY c1 LIMIT 1) IN (
SELECT ref_4.c0 AS c0 FROM t1 AS ref_4)) IS TRUE))

WHERE CASE WHEN TRUE THEN ref_2.c3 <= ref_2.c2
ELSE ref_2.c3 <= ref_2.c2 END;

Figure 8: SQLite logic bug triggered by the original query.

results when comparing the NaN value returned from acos
(c0). Therefore, the transformed query produces an unrea-
sonable result. The developers fix this bug by repairing the
function responsible for compiling the non-equal operation.
Bug Manifestations. While analyzing the 19 fixed logic bugs,
we found another interesting phenomenon: a logic bug can be
triggered by either the transformed query, the original query,
or both of them. Specifically, 10 of the 19 bugs are triggered
by the transformed queries (e.g., Example 1-3), while 8 bugs
are triggered by the original queries (e.g., Example 4). Inter-
estingly, EET found a logic bug triggered by both the trans-
formed query and the original query (i.e., Example 5), whose
results are different. These results demonstrate that EET can
catch a logic bug if any discrepancy is incurred between their
result, independently of which query is the culprit.
Example 4: Bug triggered in the original queries. Figure 8
shows a case where the original query triggers a bug in SQLite.
The original query contains the DISTINCT keyword, and its
FROM clause consists of multiple join tables with many join
conditions specified in the corresponding ON clauses, while
the predicate in the WHERE clause is a simple comparison
expression. In this case, SQLite applies the omit-outer-join
optimization, which can reduce the useless join tables (e.g.,
ref_3) that are not referenced outside their JOIN expressions.
However, this optimization did not work well when SQLite
also flattened the subqueries in the JOIN expressions (e.g.,
the two subqueries in the last ON clause). As a result, SQLite
incorrectly reduced the tables consisting of the flattened sub-

--- Statements for database generation
CREATE TABLE t0 (c0 TEXT);
CREATE TABLE t1 (c0 INT4, c1 INT4, c2 TEXT,

c3 INT4, c4 FLOAT8, c5 INT4);
CREATE TABLE t2 (c0 TEXT, c1 TIMESTAMP);
CREATE VIEW t3 AS
SELECT '1' AS c_0
FROM ((SELECT ref_0.c0 AS c_0 FROM t0 ref_0

GROUP BY ref_0.c0) subq_0
FULL JOIN t2 ref_1 ON (subq_0.c_0 = ref_1.c0))

WHERE ref_1.c1 > ref_1.c1;
CREATE VIEW t4 AS
SELECT ref_1.c5 AS c_2, ref_1.c4 AS c_3,

ref_1.c1 AS c_4, 1 AS c_6, ref_1.c3 AS c_9
FROM (t3 ref_0 RIGHT JOIN t1 ref_1

ON (ref_0.c_0 = ref_1.c2));
INSERT INTO t1 VALUES (11000, 0, null, 0, 0.0, 15);

--- Original query , result set: {0}

SELECT COUNT(*) AS c_6
FROM (t1 AS ref_0 LEFT OUTER JOIN t4 AS ref_1

ON (ref_0.c0 = ref_1.c_2))
WHERE ref_1.c_3 =

DCBRT(CASE WHEN ref_0.c2 LIKE '7%z'
THEN ref_1.c_6 ELSE ref_0.c4 END);

--- Transformed query , result set: {1}

SELECT COUNT(*) AS c_6
FROM (t1 AS ref_0 LEFT OUTER JOIN t4 AS ref_1

ON (ref_0.c0 = ref_1.c_2))
WHERE (CASE WHEN ((ref_1.c_9 >= ref_1.c_4)

OR (NOT (ref_1.c_9 >= ref_1.c_4))
OR ((ref_1.c_9 >= ref_1.c_4) IS NULL))

THEN ref_1.c_3 ELSE ref_1.c_3 END) =
DCBRT(CASE WHEN ref_0.c2 LIKE '7%z'

THEN ref_1.c_6 ELSE ref_0.c4 END);

Figure 9: PostgreSQL logic bug triggered by both the original
query and the transformed query.

queries and thus produced wrong results for the original query.
EET transforms the predicate in the WHERE clause of the orig-
inal query to a CASE WHEN expression. Such transformation
makes the predicate complex and blocks the buggy omit-outer-
join optimization, and thus SQLite produced correct results
for the transformed query. SQLite developers fix this bug by
adding restrictions for applying omit-outer-join optimization.

Example 5: Bug triggered in both two queries. Figure 9 shows
the test case where both the original query and the transformed
query trigger the same logic bug in PostgreSQL. EET trans-
forms the expression ref_1.c_3 in the WHERE clause of the
original query to a CASE WHEN expression, which unexpect-
edly makes the transformed query return different results. We
reported the test case to PostgreSQL developers, who con-
firmed that both the two queries in the test case triggered a
bug according to their query plans. Figure 10 shows their
query plans. Their query plans are nearly the same, and the
only difference is that the original query used a hash join,
while the transformed query used a hash right join. Both
query plans are problematic because they lose join filters,
which are responsible for filtering the rows that satisfy the
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QUERY PLAN: Original Query / Transformed Query
Aggregate
|-- Hash Join / Hash Right Join

Hash Cond: (ref_1.c5 = ref_0.c0)

MISSING: Join Filter: (ref_1.c4 / CASE... = dcbrt(...))

|-- Nested Loop Left Join
Join Filter: ('1'::text = ref_1.c2)

|-- Seq Scan on t1 ref_1
|-- Materialize

|-- Seq Scan on t2 ref_1_1
Filter: (c1 > c1)

|-- Hash
|-- Seq Scan on t1 ref_0

Figure 10: Query plans of the original query (using hash join)
and the transformed query (using hash right join) in Figure 9.

predicate in the WHERE clauses. The root cause of this logic
bug is that PostgreSQL removed some unnecessary LEFT
JOIN tables that are underneath other LEFT JOIN but failed
to clean the data structures referencing the removed tables,
causing PostgreSQL to consider that the join filters affected
by such data structures are unreasonable and drop them. After
the bug is fixed, the query plans of both the origin query and
the transformed query contain their corresponding join filters.

5.4 Comparative Study

To check whether EET can find logic bugs missed by existing
approaches, we investigate the earliest bug-inducing versions
of the 35 logic bugs EET found and check whether these
versions are before the existing approaches got published.
We would conclude that EET can find logic bugs missed by
existing approaches if some long-latent bugs are found by
EET. This comparison is reasonable and objective because:
(1) all logic bugs found by EET are not marked as duplicates
by developers, meaning that no approach found these bugs
until EET found them; (2) all the 5 DBMSs in our evaluation
have been extensively tested by existing approaches [4,11,25–
27, 29, 35], meaning that the existing approaches did not find
the long-latent bugs found by EET during their evaluation.

We classify the existing approaches according to the years
they got published, resulting in 2 classes: 2020 (PQS [27],
TLP [26], NoREC [25]) and 2023 (TQS [35], Pinolo [11],
DQE [29]). Therefore, we check whether the versions induc-
ing the logic bugs found by EET are before 2020 and 2023.
Table 6 shows the results.

Among 35 logic bugs found by EET, 13 already existed
before 2020 (i.e., bugs were involved in 2019 or earlier), in-
dicating that all the existing approaches miss these 13 logic
bugs in their extensive evaluation, as all these approaches
are proposed in or after 2020. In addition, 11 logic bugs
can be triggered between 2020 and 2022, while none of the
three approaches (i.e., TQS, Pinolo, and DQE) published in
2023 found these bugs. These results indicate that existing

Table 6: Latency of the logic bugs found by EET

DBMS Found
Bug-involved year

Longest latency
< 2023 < 2020

MySQL 10 9 6 6 years
PostgreSQL 3 1 1 20 years
SQLite 9 5 4 8 years
ClickHouse 11 7 2 4 years
TiDB 2 2 0 3 years

Total 35 24 13 20 years

approaches indeed miss many long-latent logic bugs. Due to
the inherent limitations of query-level manipulation, these ap-
proaches have to limit the patterns of their generated queries
and thus cannot be applied to complex queries (e.g., the bug-
triggering queries in Figure 2), while many DBMS bugs can
be triggered only by complex queries [13]. Empowered by
expression-level manipulation, EET can be easily applied to
complex queries and thus successfully found many logic bugs
missed by existing approaches.

We investigate the longest latency of the logic bugs found
by EET for each tested DBMS. The result is shown in Table 6.
Interestingly, for each tested DBMS, EET can find at least
one bug whose latency is longer than 3 years. The bug with
the longest latency, i.e., 20 years, is found in PostgreSQL,
which is shown in Figure 2. These results demonstrate that
EET can effectively find long-latent bugs.

While EET can find many logic bugs missed by existing ap-
proaches, it may inherently miss some bugs that can be found
by existing approaches. For example, if a logic bug makes
both the original query and the transformed query produce
the same incorrect results, EET will miss this bug. However,
approaches like PQS [27] can help detect such missed bugs
by inferring the expected query results. One interesting future
work is to integrate EET and existing approaches into a test-
ing framework that can efficiently schedule these approaches
during testing DBMSs.

6 Related Work

Logic Bug Detection in DBMSs. Several approaches have
been proposed to detect logic bugs in DBMSs [11, 25–27, 29,
35]. PQS [27] synthesizes a query that guarantees to return
a specific row using its manually implemented interpreter.
If the tested DBMS fails to fetch the row, PQS identifies
a logic bug. NoREC [25] generates a query with a predi-
cate and transforms this query by moving its predicates from
its WHERE clause to its SELECT clause. NoREC identifies a
logic bug if the moved predicate produces different results.
TLP [26] partitions an original query into three separated
queries by decomposing its predicate. The union of the re-
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sults of these separated queries should be consistent with
the result of the original one, otherwise, a logic bug is trig-
gered. SQLancer [30] integrates the above three techniques
and has been deployed to test various DBMSs. In addition,
DQE [29] generates different types of queries (e.g., SELECT,
UPDATE, and DELETE) with the same predicates. These differ-
ent queries should operate the same rows, otherwise, a logic
bug is triggered. Pinolo [11] modifies the predicate of a query,
making its constraints looser/stricter. Therefore, the modified
query should return a superset/subset of the results of the orig-
inal query, otherwise, Pinolo identifies a logic bug. TQS [35]
applies schema normalization [7, 22] to slit a wide table into
multiple tables and construct a customized query using join
tables, whose ground truth results can be inferred from the
original wide table. Based on these ground truth results, TQS
finds many logic bugs related to JOIN operations.

As discussed in Section 1 and 2, all these approaches are
based on query-level manipulation, which requires the ap-
proaches to understand the semantics of the manipulated
queries. Therefore, existing approaches cannot be applied to
complex queries whose semantics are complicated. Different
from existing approaches, EET is based on expression-level
manipulation, which operates on expressions and has no ne-
cessity to understand the query semantics. Therefore, EET
does not need to limit the query patterns and thus can be
applied to various queries.
DBMS Test-Case Generation. Without focusing on logic
bugs, some approaches [9, 13, 17, 33, 38] are proposed to gen-
erate more diverse test cases for DBMSs. SQLsmith [33] is a
grammar-based DBMS fuzzer, which embeds the AST rules
of SQL language and can generate complex SQL statements.
SQUIRREL [38] proposes a new intermediate representation
to model SQL queries and infers the dependencies between
statements. In this way, SQUIRREL can generate queries
that contain multiple SQL statements. Griffin [9] performs
grammar-free mutation to test DBMSs by summarizing the
DBMS state information into its metadata graph and mutat-
ing SQL queries according to the graph to prevent semantic
errors. DynSQL [13] performs dynamic query interaction
to capture the latest DBMS state information and incremen-
tally generate complex and valid queries. In addition, some
approaches [2, 18] are proposed to improve the test-case gen-
eration for logic bug detection. SQLRight [18] enables code
coverage feedback, which gives the supported test oracles
more chance to find logic bugs in rarely executed DBMS
code. QPG [2] records the covered query plans during testing
DBMSs and prioritizes mutating the queries that trigger new
query plans, which is more likely to expose a new logic bug.

These approaches and EET can complement each other. On
one hand, the high-quality and diverse queries generated by
these approaches can help EET find more logic bugs hidden
in the corner logic of DBMSs. On the other hand, the general
test oracle provided by EET can enable these approaches to
catch more various bugs.

7 Conclusion

In this paper, we propose a new and fine-grained method-
ology, expression-level manipulation, for approaching logic-
bug-detection problems in DBMSs without limiting the query
patterns. Based on this methodology, we propose a novel
and general approach, equivalent expression transformation
(EET), which can effectively find logic bugs using two trans-
formations: determined boolean expressions and redundant
branch structures. We evaluate EET on 5 widely used DBMSs.
In total, EET found 66 bugs, 35 of which are logic bugs. Many
of these logic bugs have long latency and are missed by exist-
ing approaches. We believe the generality and effectiveness of
EET can inspire more follow-up research on DBMS testing.
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Abstract
Proving the correctness of a distributed protocol is a chal-
lenging endeavor. Central to this task is finding an inductive
invariant for the protocol. Currently, automated invariant in-
ference algorithms require developers to describe protocols
using a restricted logic. If the developer wants to prove a pro-
tocol expressed without these restrictions, they must devise
an inductive invariant manually.

We propose an approach that simplifies and partially auto-
mates finding the inductive invariant of a distributed protocol,
as well as proving that it really is an invariant. The key insight
is to identify an invariant taxonomy that divides invariants
into Regular Invariants, which have one of a few simple low-
level structures, and Protocol Invariants, which capture the
higher-level host relationships that make the protocol work.

Building on the insight of this taxonomy, we describe the
Kondo methodology for proving the correctness of a dis-
tributed protocol modeled as a state machine. The developer
first manually devises the Protocol Invariants by proving a
synchronous version of the protocol correct. In this simpler
version, sends and receives are replaced with atomic variable
assignments. The Kondo tool then automatically generates the
asynchronous protocol description, Regular Invariants, and
proofs that the Regular Invariants are inductive on their own.
Finally, Kondo combines these with the synchronous proof
into a draft proof of the asynchronous protocol, which may
then require a small amount of user effort to complete. Our
evaluation shows that Kondo reduces developer effort for a
wide variety of distributed protocols.

1 Introduction

Distributed protocols are notoriously difficult to reason about.
Because they underpin critical applications and infrastructure,
any bugs can have severe consequences. Hence, in recent
years, both researchers [14,20,25,37,38,41,45] and practition-
ers [2, 30, 46] have turned to formal verification to rigorously
prove the correctness of distributed systems and protocols.

At the core of a formal distributed protocol safety proof
is an inductive invariant, which implies that a desired safety
property holds throughout a system’s execution. As argued
in previous work [13, 26, 43, 44], manually deriving induc-
tive invariants is a creative challenge. For example, the Iron-
Fleet [14, 15] authors reported spending months to identify
and prove an inductive invariant for Paxos [22, 23].

Unsurprisingly, this challenge spurred a new category of
algorithms and tools to automatically find the inductive invari-
ants of distributed protocols [10,13,17–19,26,33,43,44]. For
instance, DuoAI [43] finds an inductive invariant for Paxos in
minutes, without any user guidance.

However, automated invariant inference has its own
Achilles’ heel—it limits how developers may express their
protocols. State-of-the-art tools like DuoAI only work when
the problem of checking the correctness of inductive invari-
ants is a decidable one. Thus, they apply only to protocols
that operate within the confines of a first-order logic fragment
known as effectively propositional reasoning (EPR [34]). As
an example of its limited expressivity, EPR does not permit
arithmetic, requiring developers to use creative abstractions
to encode common systems primitives such as epoch numbers
and vote counting. As detailed by Padon et al. [31], expressing
a protocol such as Paxos in EPR is quite challenging.

In summary, the current state of the art is a landscape of two
extremes: the developer has to choose between 1) expressing
the protocol naturally using standard programming primitives
such as arithmetic, but manually find the inductive invariant,
or 2) abstracting the protocol into the restrictive confines of
EPR so as to apply automated invariant finding tools.

In this work, we present a new approach to bridge this gap.
Our key insight is that there is an invariant taxonomy in the
clauses within an inductive invariant. This taxonomy can be
used to modularize invariants and proofs into strata of varying
difficulty. Furthermore, we observe that all but the most diffi-
cult stratum can be derived almost fully automatically, even
in a non-EPR setting that permits intuitive programming con-
structs such as arithmetic. Interestingly, proving the top-most
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stratum is often equivalent to proving the safety of a simpler,
synchronous version of the protocol.

In this taxonomy, we identify a class of Regular Invariants
with simple, regular structure that stem from recurring fea-
tures and patterns in asynchronous message-passing systems.
These invariants relate messages to their sending or receiv-
ing hosts (dubbed Message Invariants), assert the monotonic
nature of common data structures (Monotonicity Invariants),
and govern the ownership of unique resources (Ownership
Invariants). As we will detail in subsequent sections, these
invariants are not only easy to derive, but also easy to prove.

On the other hand, there is a separate class of Protocol In-
variants that deal with the global relationships between hosts
in the system. These capture the macro-level operation of the
particular protocol, reflecting the structure of its design, and
thus may require careful developer thought. Such invariants
might state, for example, that a decision is made only when a
majority of the nodes agree on it, or that all replicas of a log
must have agreeing entries.

This taxonomy is not merely conceptual, but has significant
practical implications. First, it enables a streamlined, system-
atic approach to finding and proving inductive invariants. The
developer can easily dispatch Regular Invariants, before using
them as building blocks for proving Protocol Invariants. Such
an approach modularizes the derivation and proof of invari-
ants into distinct components, with the most challenging part,
Protocol Invariants, neatly contained. This is in contrast to
monolithic proofs of the past, where developers have written
invariants that intertwine complex protocol logic with simple
local-level reasoning, thereby proliferating the difficulty of
Protocol Invariants across the entire proof.

More importantly, Regular Invariants are sufficiently sys-
tematic that they can be derived from the protocol description
with a few hints from the user, and then proven automat-
ically, even in a general purpose verification tool such as
Dafny [24]. Although our proposed taxonomy does not cover
the space of all possible invariants, we observe that these
derived Regular Invariants, in conjunction with a set of user
crafted Protocol Invariants, often suffice to prove a wide vari-
ety of distributed protocols. In fact, these Protocol Invariants
are typically (although not always) the same set needed to
prove a synchronous version of the protocol; i.e., in a model
without a network, where a sender sends a message and the
receiver receives it in one atomic step.

Leveraging these insights, we design Kondo, a methodol-
ogy and tool that lets developers harness the structure afforded
by the invariant taxonomy. Using Kondo, the developer fo-
cuses their efforts on proving the correctness of a simpler,
synchronous version of the protocol. Kondo then generates
the asynchronous protocol from the synchronous description,
and automatically devises and proves Regular Invariants for
the asynchronous protocol with a few simple hints from the
user. In addition, Kondo carries over Protocol Invariants from
the synchronous proof, and combines them with Regular In-

states satisfying
safety property 

reachable
states

states satisfying
inductive invariant 

all states

Figure 1: Venn diagram of states in a distributed system. The
dots and arrows represent example states and transitions.

variants to create a draft proof of the asynchronous protocol.
Sometimes, this draft proof is complete and constitutes the
final proof; otherwise, the user helps complete the proof by
adding some proof annotations to the draft.

Overall, we make the following contributions.

1. We identify an invariant taxonomy that distinguishes be-
tween Regular Invariants and Protocol Invariants, and de-
fine three sub-classes of Regular Invariants (Section 3).

2. We propose the Kondo approach to help developers lever-
age the structure afforded by the invariant taxonomy, and
implement the Kondo tool [1] as a new feature in the
Dafny compiler. The user begins by proving a simpler,
synchronous protocol. Kondo then aids in lifting that proof
to a fully asynchronous setting (Sections 4 and 5).

3. We evaluate the effectiveness of Kondo on a range of dis-
tributed protocols that span different application domains,
from consensus to mutual exclusion. We show that Kondo
can simplify finding and proving the inductive invariants
of these protocols, and identify areas in which Kondo may
be less effective (Section 6).

2 The Challenge of Inductive Invariants

Manually proving the correctness of an asynchronous dis-
tributed protocol is widely regarded as a challenging task. Its
difficulty is compounded by the lack of principled techniques
for structuring the invariants that a developer must derive for
the proof. This results in invariants that entangle complex
protocol logic with otherwise standard network semantics.
Such invariants are hard to reason about and can complicate
the entire proof.

Background. A correctness proof of a protocol involves
showing that a desired safety property ϕ is an invariant that is
true in all reachable states of the system. However, ϕ itself is
usually too weak to support an inductive argument; i.e., there
exist states satisfying ϕ that can transition to an unsafe state
(Figure 1). As a result, the developer must devise an inductive
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1: datatype Vote = Yes | No
2: datatype Decision = Abort | Commit
3: datatype Message =
4: VOTEREQMSG

5: | VOTEMSG(v: Vote, src: nat)
6: | DECIDEMSG(d: Decision)

7: datatype Option<T> = None | Some(v: T)

8: datatype Coordinator = Variables(
9: numParticipants: nat, // some constant N

10: decision: Option<Decision>, // initially None
11: yesVotes: set<nat>, // initially empty
12: noVotes: set<nat> // initially empty
13: )

14: datatype Participant = Variables(
15: hostId: nat, // unique identifier ∈ [0,N)

16: preference: Vote, // non-deterministic constant
17: decision: Option<Decision>, // initially None
18: )

Figure 2: Hosts and message states of the Two-Phase Com-
mit protocol, written in Dafny. Note that Vote, Decision and
Message are sum types.

invariant I = I1 ∧ ·· · ∧ In, composed of several individual
invariants Ik. I needs to both imply ϕ and be inductive, i.e., it
should hold in all initial states of the system, and be closed
under system transitions—if I holds for a state s, it also holds
for the next state s′ after any transition from s. If an individual
conjunct Ik is itself inductive (even if it does not imply ϕ) we
refer to it as self-inductive.

Coming up with an inductive invariant is a creative chal-
lenge because it must be strong enough to be inductive, yet
weak enough to encompass all the reachable states of the sys-
tem. For distributed protocols, this challenge is exacerbated
by the presence of an asynchronous network that may arbitrar-
ily delay, drop, duplicate, or re-order messages. In addition to
considering the local states of each host, the developer must
also contend with the state of the network and its interaction
with hosts. As a result, proofs of distributed protocols require
complex inductive invariants involving many clauses that si-
multaneously juggle host and network states [14, 28, 31].

2.1 Case Study: Two-Phase Commit

To highlight the challenge in finding inductive invariants, we
use the classic Two-Phase Commit protocol. It is parame-
terized by an arbitrary number of participants, and it has a
single coordinator (Figure 2). Participants are initialized with
some preference of Yes or No that they communicate to the
coordinator, which then makes a decision, using the protocol
listed in Figure 3. The safety specification we target in this

1. Coordinator broadcasts VOTEREQMSG.

2. Upon receiving VOTEREQMSG, a participant p replies
VOTEMSG(p. preference, p. hostId).

3. Upon receiving VOTEMSG(v, src), the coordinator adds
src to its yesVotes or noVotes set based on v.

4. The coordinator waits to receive votes from every partici-
pant. Then, if the coordinator has |noVotes|> 0, it sets its lo-
cal decision to Abort and broadcasts DECIDEMSG(Abort).
Otherwise, if |yesVotes|= numParticipants, it sets its deci-
sion to Commit and broadcasts DECIDEMSG(Commit).

5. Upon receiving DECIDEMSG(d), a participant sets its local
decision to d.

Figure 3: Two-Phase Commit protocol description.

example is that if any participant reaches a Commit decision,
then every participant’s local preference must be Yes:

∀ id : participants[id].decision = Some(Commit)

=⇒
(
∀ id ′ : participants[id ′].preference = Yes

)
(2PC-Safety)

Unfortunately, outside the context of EPR, there is no es-
tablished methodology one can follow in finding an inductive
invariant for this specification. Instead, they must rely solely
on wit and will, in a journey of intuition-guided trial and er-
ror. In particular, the developer devises a candidate list of
other protocol properties that when taken in conjunction with
2PC-Safety, they suspect, will form an inductive invariant.

An example of an invariant one may come up with is:

“if there is a DECIDEMSG(Commit) in the network,
then every VOTEMSG from each participant must
contain Yes.”

Despite its apparent correctness, proving this invariant re-
quires non-trivial supporting invariants. The developer will
find that the proof requires host-level reasoning about how the
coordinator processes votes, how it decides based on its local
vote tally, and how it avoids sending conflicting messages.
Overall, this leads to a proof that tightly intertwines host and
network reasoning.

In this work, we argue that such monolithic invariants need
not be the norm. Rather, they can be structured into forms
that are more tractable. The idea of using simple invariants as
building blocks for proving more complex ones is not a new
one [3,4]. However, we propose a systematic way of applying
this idea to distributed protocols and derive invariants in layers
of increasing complexity.

3 The Invariant Taxonomy

We present an invariant taxonomy designed to help developers
tease apart host-level invariants from low-level invariants (e.g.,
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Figure 4: The invariant taxonomy.

invariants about the network). This taxonomy has two distinct
categories—an upper stratum of Protocol Invariants, and a
lower stratum of Regular Invariants, illustrated in Figure 4.
Regular Invariants are easy to devise mechanically, and thus
they can be assumed while discovering Protocol Invariants
(which we show in Section 4 can even be discovered while
completely ignoring the network). Using this taxonomy, the
developer can contain host-level Protocol Invariants—the por-
tion that demands user creativity—inside a well-demarcated
portion of the proof. In turn, the Regular Invariants supporting
those invariants are uncontaminated by host-level logic.

Note that these categories do not cover the space of all
invariants. For a given protocol, there can exist invariants
that are neither Regular Invariants nor Protocol Invariants.
However, we find that our categorization is comprehensive
enough to encompass all the invariants needed to prove a wide
variety of distributed protocols (Section 6).

3.1 Regular Invariants
Regular Invariants are structurally simple and can be derived
without requiring an understanding of why the protocol works.
They concern low-level properties that follow from network
semantics, the monotonicity of data like certain counters and
sets, and the syntactic structure of protocol steps. They are
also often self-inductive, which makes them easy to prove,
and are even amenable to automation (Sections 4 and 5).

We identify three subcategories of Regular Invariants,
namely Message Invariants, Monotonicity Invariants and
Ownership Invariants, depicted by the hierarchy in Figure 4.

Message Invariants. These relate the state of the network
to the state of hosts. In this way, they act as the logical bridge
for proving invariants about relationships between host states
when the hosts are separated by a network medium. Message
Invariants come in two flavors:

1. Send Invariants assert that a message m is in the network
only if it was sent by a host. They also describe, for
each message variant, some relationship p between the
message contents and the state of its sender:

∀m ∈ network : p(m, hosts[m.src])

2. Receive Invariants assert that if some condition q is met
at some host h, then there must exist some message m in
the network that was received by that host and has some
relationship r with the host:

∀h : q(hosts[h]) =⇒(
∃m : m ∈ network ∧ h = m.dst ∧ r(hosts[h], m)

)
Monotonicity Invariants. Monotonic data types are a com-
mon primitive in distributed protocols [38]. Widely-used
structures include grow-only epoch counters to filter stale
messages, and add-only sets to collect votes from partici-
pant nodes. Monotonicity Invariants capture the monotonic
properties of these data types, by asserting how the state of
individual hosts may evolve as the system transitions:

∀σ, σ
′ : lteq(σ, σ

′)

Here, σ and σ′ are respectively the prior and current states
of a host, and lteq represents some ordering relation on the
values of local variables between the states.

Monotonicity Invariants require referencing the past states
of hosts, which are typically not part of the distributed system
model. In Section 4.2, we describe our history-preservation
technique that enables us to systematically transform a proto-
col into one that preserves information about state histories.
The protocol augmented with history information supports
stating and proving Monotonicity Invariants, and using them
in the proofs of higher-level Protocol Invariants.

Ownership Invariants. Many distributed protocols also
require reasoning about uniquely owned resources. For exam-
ple, at most one client can hold a unique lock in a distributed
lock system, or at most one host can hold a unique key in a
sharded key-value store.

Ownership Invariants capture the semantics of such re-
sources. Specifically, they say that for each unique resource γ,
at most one node can ‘own’ γ at any point in time, and if γ is
in transit in the network, then no nodes can have ownership
of γ. These properties are common to protocols that deal with
resource ownership.

3.2 Protocol Invariants
Protocol Invariants describe a relationship ℓ among hosts, and
do not mention the network. That is, they have the form

∀h1, . . . ,hn : ℓ(hosts[h1], . . . ,hosts[hn])
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As such, Protocol Invariants are ignorant of the complica-
tions arising from network asynchrony. Instead, they focus
on the higher-level reasoning of how host behaviors culmi-
nate in the overall correctness of the protocol, thus capturing
properties that require insight into why the protocol is correct.

In addition, observe that given an asynchronous distributed
protocol P , any Protocol Invariant in P must also be an in-
variant in the synchronous version of the protocol Psync. This
version, Psync, is one in which messages are delivered instan-
taneously between hosts—a sender sending a message and
the receiver receiving it occurs as one atomic step, without a
network delay. In practice, we observe that invariants used in
proving the safety property in Psync tend to be helpful Protocol
Invariants in P . Moreover, in all the protocols we evaluated,
these Protocol Invariants, in conjunction with a set of auto-
matically derived Regular Invariants, are all that is needed to
prove P (Section 6.2).

3.3 Streamlining Proofs Using the Taxonomy
The invariant taxonomy mirrors the unique roles played by
the network and the protocol logic. The network, while an
inevitable part of reasoning about distributed systems, does
not contribute to the underlying logic of the protocol—it
simply serves as a medium to carry information between
hosts. Instead, it is the interplay of host actions that affects
the outcome of the protocol.

Respecting this natural division is key to writing a modular
and efficient proof. By confining creativity-demanding invari-
ants to exclusively describe hosts, Protocol Invariants ensure
that user creativity is called upon only when needed, while the
remaining mundane Regular Invariants are dispatched with
minimal effort.

Two-Phase Commit Revisited. We revisit the Two-Phase
Commit example from Section 2.1 to demonstrate how one
can use the invariant taxonomy to bring order and simplicity
to their proof. Figure 5 lists a set of invariants for Two-Phase
Commit. The conjunction of these invariants and 2PC-Safety
forms an inductive invariant that proves 2PC-Safety.

Of the six invariants, only A5 and A6 are Protocol Invariants.
Discovering them involves protocol-level insight about how
the states of different hosts are related. On the other hand, the
remaining invariants are Regular Invariants. They arise from
the individual steps where messages are sent or received, and
describe what that particular step says about the network. For
instance, A3 stems directly from protocol step 4. Likewise,
A4 follows from step 5. They are also self-inductive—each
invariant is preserved by the step that it directly relates to and
is trivially preserved by other steps. For example, A1 relates
directly to protocol step 2, which is the only step that adds a
VOTEMSG to the network.

Armed with this insight, the developer can employ the fol-
lowing proof strategy. They can first write down the Regular

A1 For each VOTEMSG(v, src) in the network, src is a valid
participant identifier.

A2 For each VOTEMSG(v, src) in the network, v reflects the
preference of the participant identified by src.

A3 For each DECIDEMSG(d) in the network, d reflects the
local decision at the coordinator.

A4 For each participant that decided Commit, DE-
CIDEMSG(Commit) must be a message in the network.

A5 For each id in yesVotes at the coordinator, the participant
identified by id must have the corresponding preference.

A6 If the coordinator decided Commit, then every participant’s
preference must be Yes.

Figure 5: Two-Phase Commit protocol invariants structured
using the invariant taxonomy. The conjunction of these, to-
gether with 2PC-Safety, forms the inductive invariant of the
protocol. A5 and A6 are Protocol Invariants, while the rest are
Message Invariants.

Invariants A1, A2, A3 and A4 without any thought about over-
all protocol correctness. This is easy because these invariants
are apparent just from looking at individual, local protocol
steps. Their self-inductive nature also allows the developer to
quickly check if the invariants they wrote are correct. Finally,
with these Regular Invariants effortlessly in place, the devel-
oper then devises the crowning jewels A5 and A6 as Protocol
Invariants, the one part of the proof that requires creativity.

4 Finding Invariants the Kondo Way

We now present the Kondo methodology and tool to help de-
velopers leverage the regularity afforded by the invariant tax-
onomy. In contrast to EPR-based approaches, Kondo targets
general protocol models where determining the inductiveness
of an invariant is an undecidable problem.

Kondo is based on two core observations. First, the system-
atic structure of Regular Invariants makes both deriving and
proving these invariants amenable to automation, even in an
undecidable setting that permits higher-order logic.

More surprisingly, we observe that Protocol Invariants can
be devised and proven in a synchronous version of the proto-
col Psync and used directly in the asynchronous protocol. Be-
cause messages are delivered instantaneously between hosts
in Psync, it is much easier to iteratively devise an invariant
and prove inductiveness. In all the distributed protocols in our
evaluation (Section 6.2), the Protocol Invariants taken from
Psync, in conjunction with the set of derived Regular Invariants
for the asynchronous protocol, are sufficient to form an induc-
tive invariant for each protocol’s safety property (although
this may not always be the case; see Section 6.5).
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These observations inform the Kondo methodology. Using
Kondo, the developer first writes and proves a synchronous
version of the protocol. Then, Kondo automatically generates

1. a history-preserving asynchronous protocol Phist. In ad-
dition to modeling an asynchronous network, Phist main-
tains a history of host states that aid in expressing Mes-
sage and Monotonicity Invariants;

2. a set of Regular Invariants (sometimes with the help of
user-supplied hints), along with their proofs of inductive-
ness; and

3. a draft proof of correctness of Phist. This draft may con-
stitute the final proof, or may require modest effort from
the developer to complete.

4.1 Overview
Figure 6 shows an overview of how a developer uses the
Kondo methodology and tool to prove the safety of a protocol.

Step ➊: The user begins by writing a synchronous version
of the protocol, denoted as Psync, together with a safety speci-
fication ϕ. This synchronous execution model does not have
a network component. Instead, the overall system is simply a
collection of host states that communicate atomically.

Step ➋: The user proves that Psync satisfies ϕ by devising an
inductive invariant Isync that implies ϕ. Because we operate
in a general setting in which checking the inductiveness of
Isync is undecidable, the user may also need to write a set of
lemmas to convince the verifier that Isync is indeed inductive.

Step ➌: Given Psync, the Kondo tool automatically gen-
erates a history-preserving asynchronous protocol Phist. It
shares the same safety property ϕ as Psync.

Step ➍: Kondo generates a set of Regular Invariants for
Phist, together with lemmas that prove their inductiveness. We
denote the conjunction of all Regular Invariants as R. Note that
to generate Receive, Monotonicity and Ownership Invariants,
Kondo requires small hints from the user. The nature of these
hints is detailed in Section 5.1.

Step ➎: From the user-written proof of Psync, Kondo gen-
erates a draft proof of Phist. This draft uses the conjunction
Isync ∧R as the inductive invariant. It lifts lemmas written
for the Psync proof to the new asynchronous context, while
leaving gaps in places where the translation fails. Section 5.2
describes this process. Notably, code generated by Kondo is
human-readable.

Step ➏: The user runs the verifier on the draft proof. In
some cases, the draft suffices as the final proof. Otherwise,
particular lemmas in the draft may be incomplete. The user
then manually completes the proof of Phist by filling in gaps
in the bodies of these lemmas. Notably, no new lemmas need
to be constructed, and the logical line of reasoning is identical
to Psync. However, the user may need to write additional proof
annotations to convince the verifier that the lemmas still hold
in the asynchronous protocol.

4.2 Protocol Models

Like prior work [13, 14, 26, 43, 44], we use the temporal logic
of actions (TLA [21]) to model a protocol as a state machine
described by non-deterministic transition relations. This state
machine in turn contains one or more sets of hosts. For ex-
ample, the Paxos system has three sets of Proposer, Acceptor
and Learner hosts respectively.
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Hosts are themselves modeled as event-driven state ma-
chines that communicate via messages. A host can 1) take a
spontaneous action that may or may not send a message, 2)
take an action given some received message as input, or 3)
crash for an indefinite amount of time.

Formally, a host is defined by a HOSTINIT(h: Host) predi-
cate and a HOSTNEXT(h: Host, h′: Host) relation. HOSTINIT
circumscribes the initial states of the host, while HOSTNEXT
describes the host’s state transition relation.

In the Kondo methodology, the developer works with two
versions of a distributed protocol, Psync and Phist, that differ by
their network model. Psync is initially written by the developer,
whereas Phist is derived automatically.

Synchronous Protocol Psync. The global state of Psync is
S := (σ1, . . . ,σn), an n-tuple of host states. Its initial states
are defined by the predicate

SYNCINIT(S) := (HOSTINIT(σ1), . . . ,HOSTINIT(σn))

asserting that hosts satisfy their respective initial conditions.
The system transitions are defined through the relation

SYNCNEXT(S, S′) :=
ACTION1(S, S′)∨·· ·∨ACTIONK(S, S′)

where each action disjunct represents an atomic transition
that the system may take. Each action also falls in one of two
categories. First, one non-deterministically chosen host may
take a local action, i.e., one that doesn’t send or receive any
data. Second, a non-deterministically chosen pair of sender
and recipient hosts may take a corresponding send and receive
action simultaneously; i.e., the sender transmits a message
that is received instantaneously by the recipient.

Note that a consequence of tightly coupling sender and
recipient pairs is that one host cannot both receive and send
messages within a single action, as that would allow an ar-
bitrary chain of hosts taking steps at once. This limitation
does not sacrifice generality, as an action that receives and
sends may always be modeled as two consecutive actions,
with the first receiving the message and the second sending its
response. It is, however, an additional restriction over the host
model in prior work [14,15], and may increase proof complex-
ity. Nevertheless, our evaluation shows that even with such a
restriction, Kondo allows users to write simpler proofs than
previous state of the art (see Paxos discussion in Section 6.3).

History-Preserving Asynchronous Protocol Phist. Given
the synchronous protocol Psync, Kondo automatically gener-
ates a history-preserving asynchronous protocol Phist. This
model adds to the synchronous model an asynchronous net-
work that may arbitrarily delay, drop, duplicate, or re-order
messages. Like prior work [14,15,45], we model this network
as a monotonically increasing set of sent messages. When a

host sends a message, the message is added to this set. When
a host calls receive, it retrieves from this set some message
addressed to it.

Unique to Kondo is the history-preserving aspect of Phist.
It maintains a sequence history of host snapshots, enabling us
to express monotonicity properties. Formally, let history :=[
S0, . . . ,Sm

]
be a sequence of host state n-tuples. Each entry

in history is a snapshot of all hosts in the system. Then the
global state of Phist is Shist := (history, N). The latest entry in
history represents the current state of the hosts, while N is the
set of messages representing the network’s latest state.

The initial states of the system are defined by

INIT(Shist) := len(Shist.history) = 1
∧ SYNCINIT(Shist.history[0]) ∧ Shist.N = /0

The system transitions are given by the relation

NEXT(Shist, S′hist) :=
∧ len(Shist.history)≥ 1
∧ Shist.history = trunc(S′hist.history)

∧ SYNCNEXT(curr(Shist), curr(S′hist))

Here, trunc(s) yields s with the last item removed. Meanwhile,
curr(Shist) gives the current state of the system, namely the
tuple (last(Shist. history), Shist.N), where last(s) returns the
last item in a sequence s.

4.3 Case Study: Echo Server
To illustrate the Kondo methodology, we apply it to a simple
Echo Server protocol. It comprises an arbitrary number of
clients and a single server. Each client maintains a constant
set of requests that are defined by unique client and request
identifiers.

Clients send their requests to the server. Upon receiving a
request, the server responds by echoing the request back to
the sender. When a client receives a response, it stores it in
a local responses set. The safety specification is that clients
do not receive rogue responses; i.e. for each client c, every
element in c.responses matches a request in c.requests:

∀ client : client. responses ⊆ client. requests (ES-Safety)

We now show how the developer applies the Kondo method-
ology to proving this protocol.

Step ➊. The user starts by writing a synchronous version of
the Echo Server protocol, Psync. They define the states of hosts
(Figure 7), and the transitions that they can make (Figure 8).

They then define Psync as the collection of a group of clients
and a server. Here, SYNCINIT asserts that every host satisfies
their respective initialization predicates:

SYNCINIT(S) :=
∧SERVERINIT(S.server)
∧∀ 0 ≤ id < |S.clients| : CLIENTINIT(S.clients[id], id)

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    843



1: datatype Request = Req(clientId: nat, reqId: nat)

2: datatype Message =
3: SUBMITREQ(req: Request)
4: | RESPONSE(req: Request)

5: datatype Client = Variables(
6: clientId: nat, // unique identifier
7: requests: MonotonicSet<Request>,
8: responses: set<Request>
9: )

10: datatype Server =
11: Variables(currentRequest: Option<Request>)

12: predicate CLIENTINIT(v: Client, id: nat)
13: ∧ v.clientId = id
14: ∧ v. responses = /0

15: ∧ (∀ req ∈ v. requests : req.clientId = id)
16:
17: predicate SERVERINIT(v: Server)
18: currentRequest = None
19:

Figure 7: Client and server states of the Echo Server pro-
tocol, written in Dafny. The MonotonicSet type is wrapper
around Dafny’s built-in set type and implemented in Kondo’s
monotonic type library. It indicates to Kondo that the sets are
non-decreasing. Meanwhile, CLIENTINIT does not constrain
the size of a client’s requests set, but ensures that every item
in requests is marked with the client’s unique clientId.

Meanwhile, SYNCNEXT is a disjunction of two system-
level atomic actions:

SYNCNEXT(S, S′) := ACTION1(S, S′)∨ACTION2(S, S′)

In ACTION1, a client-server pair performs CLIENTREQUEST-
STEP and SERVERRECEIVESTEP respectively, where the
client sends a request to the server, and the model ensures that
the server instantaneously receives the request. In ACTION2,
a server-client pair performs SERVERRESPONSESTEP and
CLIENTRECEIVESTEP, with the server sending its response
and the client receiving it.

Step ➋. Next, the developer writes an inductive proof that
Psync satisfies its safety specification. Here, the inductive in-
variant is simple. It is the conjunction of ES-Safety with a
single predicate asserting that the server’s currentRequest
belongs in the requests set of its sender:

∀ req : server.currentRequest = Some(req)

=⇒ req ∈ clients[req.clientId]. requests (1)

Step ➌. Given Psync written in step ➊, Kondo produces a
history-preserving asynchronous version of the Echo Server
protocol, Phist.

1: step CLIENTREQUESTSTEP(

2: v: Client, v′: Client, send: Message)
3: ∧ v′ = v // client state unchanged
4: ∧ send.SUBMITREQ?
5: ∧ send. req ∈ v. requests // send SUBMITREQ(req)
6:
7: step CLIENTRECEIVESTEP(

8: v: Client, v′: Client, recv: Message)
9: // client receives RESPONSE

10:
11: step SERVERRECEIVESTEP(

12: v: Server, v′: Client, recv: Message)
13: // server receives REQUEST

14:
15: step SERVERRESPONSESTEP(

16: v: Server, v′: Server, send: Message)
17: ∧ v. currentRequest. Some? // enabling condition
18: ∧ v′. currentRequest = None
19: ∧ send = RESPONSE(v. currentRequest)
20:

Figure 8: Client and server transition relations from state v to
v′, with the bodies of CLIENTRECEIVESTEP and SERVER-
RECEIVESTEP omitted for brevity. The argument send is a
new message sent into the network, and recv is a message
received from the network. Note that the ‘?’ syntax is used to
assert if a value is of a particular type or variant.

Step ➍. Together with Phist, Kondo also derives a set of
Regular Invariants, along with their proof of correctness in
Phist. In this example, the only hint required from the user is to
label the client’s requests set as a MonotonicSet type, shown
in Figure 7. Note that the client’s responses set does not need
to be labeled as a MonotonicSet, because even though it is
monotonic, such a property is not relevant to proving safety.
The generated Regular Invariants are:

• A Message Invariant stating that every RESPONSE(req) is
such that req was once processed by the server:

∀ RESPONSE(req) ∈ network :
∃ i : history[i].server.currentRequest = Some(req) (2)

• A Message Invariant stating that every SUBMITREQ(req)
is such that req is in the requests set of the sender:

∀ SUBMITREQ(req) ∈ network :
∃ i : req ∈ history[i].clients[req.clientId]. requests (3)

• A Monotonicity Invariant stating that the requests set at
each client is non-decreasing:

∀ i ≤ j, clientId :
history[i].clients[clientId]. requests
⊆ history[ j].clients[clientId]. requests (4)
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Step ➎. The final step is to prove that Phist satisfies the
safety property. To this end, Kondo generates a draft proof of
Phist by combining the synchronous proof written in step ➊
with the generated Regular Invariants from step ➍. It derives
from Equation (1) the history-preserving analogue

∀ i, req : history[i].server.currentRequest = Some(req)

=⇒ req ∈ history[i].clients[req.clientId]. requests (5)

It then uses the conjunction of Equations (2) to (5) as the
protocol’s inductive invariant I.

Step ➏. In this example, the draft proof suffices as the
final proof for the asynchronous Echo Server protocol, and
no additional effort is required from the user.

4.4 Why History Preservation is Important
The Echo Server example also underscores the importance
of our history-preservation technique. First, the history-
preserving property of Phist makes deriving and proving Reg-
ular Invariants amenable to automation. For instance, observe
that for any RESPONSE(req), its presence in the network im-
plies that the sender of the message performed a SERVERRE-
SPONSESTEP at some point in its execution history, during
which req was its currentRequest value (Figure 8 line 19).
This can be expressed as

∀ msg : msg.RESPONSE? ∧ msg ∈ network

=⇒ ∃ i : SERVERRESPONSESTEP(

history[i].clients[msg.src],
history[i+1].clients[msg.src],
msg) (6)

Equation (6) is easy to derive mechanically because it does
not contain explicit references to internal host state, yet it
implies all the properties that such a step entails, such as
Equation (2).

Beyond making Message Invariants easy to derive, history
preservation is what allows the invariant taxonomy to apply
cleanly to a wide variety of protocols. Consider how the in-
ductive invariant derived in step ➎ of Echo Server proves
ES-Safety. First, Equation (2) allows us to relate RESPONSE
messages directly to the state of their sender (i.e., the server).
Equation (5) then connects the server’s state to a prior state
of the respective client. Finally, Equation (4) relates that prior
state to the current state to imply ES-Safety.

Without preserving history, Monotonicity Invariants such as
Equation (4) would be impossible to express. Moreover, any
previous values of server.currentRequest are overwritten and
erased from the system, hence preventing us from expressing
simple Message Invariants such as Equation (2). Instead, the
developer would have to resort to the alternative statement

∀ RESPONSE(req) ∈ network :
SUBMITREQ(req) ∈ network

which mixes the protocol logic of how the server processes
requests together with network reasoning, and is neither a
Protocol Invariant nor a Regular Invariant. As explained in
Section 2.1, this would result in proofs that are less tractable.

5 Automation in Kondo

Given a file describing a synchronous protocol Psync,
Kondo generates the asynchronous protocol Phist, and human-
readable files stating the derived Regular Invariants together
with the proof that they are indeed invariants in Phist. Kondo
also produces a draft proof of Phist by combining the user-
written synchronous proof with the derived Regular Invari-
ants. In this section, we describe how Kondo derives and
proves Regular Invariants with minimal user guidance, and
how Kondo generates the draft proof of Phist.

We use the Dafny language and verifier [24] to specify
and verify our protocols. We also implement Kondo as a new
feature [1] inside the Dafny compiler.

5.1 Automating Regular Invariants
Message Invariants. In Kondo, we use the special sum type
Message to define the messages of the system (e.g., Figure 7
line 2). We also require that messages be tagged with the
unique identifier of their source host, accessed via msg.src.
Without loss of generality, we assume that for each message
variant α, there is exactly one host step Tα that sends that
message. If there is more than one, α can simply be split into
multiple variants, one for each host step that sends α.

Recall that Message Invariants relate the state of hosts
to the state of the network via Send Invariants and Receive
Invariants (Section 3.1). Kondo derives Send Invariants as-
serting that for each message in the network, its sender must
have performed the action that sent that message. To do so,
Kondo enumerates over Message variants. For each variant
α, Kondo produces the statement that for each α message,
mα, in the network, there is some index i in the execution
history when the source host of mα performed the step Tα that
sent mα (exemplified by Equation (6)). Such statements yield
two critical pieces of information—one, the enabling condi-
tion of step Tα (i.e., the preconditions required for step Tα to
be taken) was satisfied at time i; and two, the state at time
i+ 1 is in accordance with the transition. When combined
with Monotonicity Invariants, they provide information on
the current state of the system.

On the other hand, Receive Invariants derived by Kondo
assert that if some witness condition qα is met at a host state σ,
then there must be a message of variant α in the network that
made qα(σ) true. More formally, if a host satisfies qα at index
j in its execution history, then there must be an earlier index
i < j and message mα such that qα is satisfied at index i+1
but not i, and this step involved the receipt of mα. An example
of a witness condition and the derived Receive Invariant for
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// User-provided witness for PROMISE messages in Paxos
1: predicate PROMISEQ(v: ProposerHost, acc: AcceptorId)
2: acc ∈ v. promisesSet
3:

// Generated Receive Invariant
4: predicate RECVPROMISEVALIDITY(s: GlobalState)
5: ∀ ℓ, j, acc :
6: PROMISEQ(s. history[j]. proposers[ℓ], acc)
7: =⇒
8:

(
∃ i, msg : i < j

9: ∧ ¬ PROMISEQ(s. history[i]. proposers[ℓ], acc)
10: ∧ PROMISEQ(s. history[i+1]. proposers[ℓ], acc)
11: ∧ RECVPROMISESTEP(

12: s. history[i]. proposers[ℓ],
13: s. history[i+1]. proposers[ℓ],
14: msg )

)
15:

Figure 9: PROMISEQ is an example of a witness condition
for the Paxos protocol. From this definition Kondo generates
a corresponding Receive Invariant.

the Paxos protocol is listed in Figure 9. Receive Invariants
inform the state of the network given the state of recipient
hosts. When combined with Send Invariants, they bridge the
relationship between senders and recipients.

Presently, Kondo requires the user to manually write the
witness conditions. Kondo then generates one Receive Invari-
ant for each condition. In practice, these are simple conditions
that do not require much creativity. For instance, a representa-
tive condition is PROMISEQ in the Paxos protocol (Figure 9),
which hints that any acceptor’s ID in the promises set of a
proposer host must have arrived via a message. The fact that
specific fields in the host state are designed to track informa-
tion received from messages must already be known by the
developer at the time the protocol is conceived.

Monotonicity Invariants. These assert the monotonic poli-
cies of common data fields in local host state, such as round
numbers and write-once variables used to store consensus
decisions. In Kondo, we implement a library of common data
types, each of which has a partial order relation, less-than-
or-equal-to (lteq). The library includes write-once option
types, grow-only numeric types, and append-only sets and
sequences. Developers can easily expand this library with
custom data types that implement the lteq interface.

Whenever the developer uses a monotonic type, Kondo
produces an invariant stating that at any point in history, a
value of that type must be lteq any future value. Equation (4) is
one example, where lteq is the ⊆ relation for sets. Importantly,
the verifier enforces that these types are used correctly.

// User-provided label
1: predicate HOSTOWNSRESOURCE(v: Host)
2: v. hasLock // boolean flag
3:

// User-provided label
4: predicate INFLIGHTFORHOST(v: Host, msg: Message)
5: msg. dst = v. hostId ∧ v. epoch < msg. epoch
6:

// Generated Ownership Invariant
7: predicate ATMOSTONEOWNERPERRESOURCE(

8: s: GlobalState)
9: ∀ h1, h2 :

(
10: ∧ HOSTOWNSRESOURCE(s.hosts[h1])

11: ∧ HOSTOWNSRESOURCE(s.hosts[h2])

12: =⇒ h1 = h2
)

13:
// Generated Ownership Invariant
// RESOURCEINFLIGHTBYMSG is auto-generated wrapper
// around INFLIGHTFORHOST

14: predicate ATMOSTONEINFLIGHT(s: GlobalState)
15: ∀ m1, m2 :

(
16: ∧ RESOURCEINFLIGHTBYMSG(s, m1)

17: ∧ RESOURCEINFLIGHTBYMSG(s, m2)

18: =⇒ m1 = m2
)

19:
// Generated Ownership Invariant
// RESOURCEINFLIGHT is auto-generated wrapper
// around INFLIGHTFORHOST

20: predicate HOSTOWNSRESOURCEIMPLIESNOTINFLIGHT(

21: s: GlobalState)
22: RESOURCEINFLIGHT(s)
23: =⇒ NOHOSTOWNSRESOURCE(s)
24:

Figure 10: Example of user-provided ownership labels and the
Ownership Invariants that Kondo generates for the Distributed
Lock protocol.

Ownership Invariants. Many distributed protocols, such
as lock services and sharded stores, revolve around owner-
ship of exclusive resources. Though resources vary greatly
in function and behavior, the semantics of what it means for
the resource to be uniquely-owned is common. Figure 10
shows an example for how Ownership Invariants work in the
Distributed Lock protocol [14], where hosts pass around a
unique lock in a ring configuration.

For Kondo to generate Ownership Invariants, the user la-
bels a data type as a uniquely-owned resource and describes
its ownership semantics. This is done by defining two pred-
icates under special names. First, HOSTOWNSRESOURCE
states what it means for the host to own the lock. Second,
INFLIGHTFORHOST describes the enabling condition for a
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host to receive a lock that is in-flight, meaning that the lock
is in transit as a network message and can be received by
the destination host. In Distributed Lock, HOSTOWNSRE-
SOURCE says that a host owns the lock when its hasLock field
is true, and INFLIGHTFORHOST evaluates to true when the
message’s epoch value is larger than that of the host.

We emphasize that these labeled conditions are not new
concepts that a user must invent for Kondo. Instead, these are
formulas that they must inevitably write for any ownership-
based protocol. Kondo just requires them to be named in a
standardized format.

Using the two predicates, Kondo generates invariants to
cover the semantics of a uniquely owned resource. They as-
sert that at most one host can own the resource, at most one
copy of the resource can be in-flight, and that if the resource
is in-flight then no one can own the resource in the meantime
(respectively, ATMOSTONEOWNERPERRESOURCE, ATMO-
STONEINFLIGHT, and HOSTOWNSRESOURCEIMPLIESNOT-
INFLIGHT).

Inductive Proofs of Regular Invariants. All of the Regu-
lar Invariants generated by Kondo come with verified Dafny
lemmas proving that they are indeed invariants. The system-
atic structure of Regular Invariants ensures that these lemmas
can be derived through simple syntax-driven rules. These in-
variants are such that every individual Message Invariant and
Monotonicity Invariant is self-inductive, while the conjunc-
tion of Ownership Invariants is inductive.

5.2 Automating the Draft Proof

The final goal is to prove that the history-preserving asyn-
chronous protocol Phist satisfies its safety property. To aid the
user in doing so, Kondo generates a draft proof based on the
proof of the synchronous version Psync.

First, Kondo lifts the inductive invariants of Psync to
the history-preserving asynchronous world using the fol-
lowing mechanical transformation. Given a Psync invari-
ant I(S), its history-preserving analogue is I′(Shist) := ∀ i :
I(Shist.history[i]), which simply states that I is true at all
points in the history of Shist. An example of this is the trans-
formation of Equation (1) into Equation (5).

Second, Kondo also lifts lemmas for Psync into lemmas for
Phist. It converts inductive proofs of synchronous invariants
to those of their history-preserving analogues by adding quan-
tifiers over histories and choosing the appropriate elements in
the histories as arguments to functions such as I.

One important detail is how Kondo handles triggers [29].
Triggers are syntactic patterns involving quantified variables
that tell the Dafny verifier when to consider concrete instan-
tiations of the quantifiers. For each quantified formula, the
user may either manually supply its triggers or rely on Dafny
to infer them automatically. In both these cases, Kondo lifts

the triggers used in the synchronous invariants into their asyn-
chronous counterparts. This ensures that the Dafny verifier
triggers on the same terms in the draft proof as in the syn-
chronous proof, such that lemmas that pass the verifier for
Psync are also likely to pass for Phist.

Overall, Kondo’s generated draft proof is a best-effort
syntax-guided translation. As such, it may contain lemmas
that do not pass the Dafny verifier. Failing lemmas fall into
one of two categories. First, the lemma’s body contains Psync-
specific constructs, namely the concrete instantiation of syn-
chronous actions that cannot be easily translated into the Phist
context. In these cases, Kondo removes these lines from the
Phist proof, and requires the user to complete the translation.
Second, Dafny simply needs more proof annotations to guide
the verifier in exploring Phist’s more complex state space. In
both these cases, the user embellishes the lemma body with
more proof code, and may additionally call upon the gener-
ated Regular Invariants. With the candidate inductive invariant
already in place, however, the effort demanded in this step is
mechanical, and the bulk of user creativity is confined to the
initial Psync proof. We quantify this effort in Section 6.4.

6 Evaluation

We evaluate the Kondo methodology and tool by applying
it to a wide range of distributed protocols. Informed by our
experience in building and verifying distributed systems, this
selection seeks to cover the space of common protocols as
much as possible. The result is the list of protocols in Table 1,
which concern a variety of application domains, ranging from
consensus to mutual exclusion and concurrency control. We
used Two-Phase Commit, Ring Leader Election, and Lock
Server to develop and refine the Kondo approach. We then
applied the Kondo approach to the remaining protocols.

Our evaluation determines whether Kondo is effective in
helping developers prove the correctness of their distributed
protocols. In doing so, we answer the following questions.

1. How applicable is the Kondo methodology in finding
the inductive invariants of various distributed protocols?
(Section 6.2)

2. How effective is Kondo in reducing the number of invari-
ants a user must derive manually? (Section 6.3)

3. How burdensome is writing proof annotations when using
Kondo? (Section 6.4)

4. Are there cases in which the Kondo methodology fails?
(Section 6.5)

6.1 Evaluation Methodology
Each protocol in Table 1 is described as a state machine
in Dafny following the IronFleet style [14], together with
an associated safety property. For each protocol, the desired
output is a theorem checked by Dafny which shows that the
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Invariant Clauses Lines of Proof Code
Psync LoC No Kondo Sync Owner Mono Msg No Kondo Sync Mods

Echo Server 260 5 1 0 1 3 93 40 0
Ring Leader Election [5] 183 6 1 0 0 2 191 56 0
Simplified Leader Election [39] 255 7 3 0 1 2 136 94 0
Two-Phase Commit 400 8 4 0 1 3 184 133 19
Paxos [23] 631 27 20 0 5 6 856 557 220
Flexible Paxos [16] 633 27 20 0 5 6 856 554 226
Distributed Lock [14] 194 2 0 3 0 0 64 31 0
ShardedKV 213 2 0 3 0 0 172 61 7
ShardedKV-Batched 225 2 0 3 0 0 172 31 0
Lock Server [26] 287 7 1 6 0 0 267 44 15

Table 1: Summary of proof effort using Kondo. Column ‘Psync LoC’ is the lines of code of the Psync protocol description. Under
‘Invariant Clauses’, ‘No Kondo’ is the number of invariants a user writes to prove the asynchronous protocol when not using
Kondo, while ‘Sync’ is the number of Protocol Invariants the user writes in completing the synchronous proof when using Kondo.
The columns ‘Owner’, ‘Mono’ and ‘Msg’ count the Ownership, Monotonicity and Message Invariants Kondo generates.
Under ‘Lines of Proof Code’, ‘No Kondo’ is the amount of code a user writes to prove the asynchronous protocol when not using
Kondo. Meanwhile, ‘Sync’ is the amount of user-written code to prove Psync in Kondo, and ‘Mods’ represent the total size of
lemmas that the user had to modify in completing the draft proof generated by Kondo.

protocol’s safety property is an invariant. In particular, we
note that every protocol and its respective inductive invariant
is outside of EPR.

To obtain the proof of each protocol, we apply the Kondo
methodology by first finding and proving the inductive in-
variant for a synchronous version of the protocol Psync. From
Psync and its proof, the Kondo tool generates the asynchronous
protocol Phist, a set of Regular Invariants, and a draft proof of
Phist. Finally, we manually fill in any gaps in the draft proof
to complete the final output.

6.2 Applicability of Kondo and the Invariant
Taxonomy

We report that the Kondo methodology succeeds in producing
inductive invariants for all 10 protocols. Table 1 tallies how
the invariant clauses in each inductive invariant are classified
in the invariant taxonomy. We note that the Regular Invariant
columns in Table 1 only counts those that are useful in the fi-
nal inductive invariant; i.e., removing such an invariant causes
the proof to fail. In all of the examples we tested, the number
of extraneous Regular Invariants generated by Kondo is small
(at most 2). Hence, there is little threat of the developer being
overwhelmed by a deluge of unneeded invariants.

Overall, this result demonstrates the applicability of Kondo
along three fronts. First, it shows that the taxonomy is compre-
hensive in the properties that it covers. Using only invariants
that fall within the taxonomic categories, we are able to ex-
press all the properties needed to form the inductive invariants
of an extensive set of distributed protocols.

Second, the result shows that the inductive invariant for
each of these protocols can be formulated in way that respects
the classification between Protocol Invariants and Regular
Invariants, where host-level reasoning is cleanly confined to
Protocol Invariants. This supports the main hypothesis of the
invariant taxonomy—it is the well-delineated core of Protocol
Invariants that capture the deeper intuitions of the system
design. Beyond this core, a set of easily derivable Regular
Invariants completes the rest of the proof.

Third, the result supports the conclusion that Kondo is a
viable strategy and tool for proof developers. By using only
Protocol Invariants derived from Psync in conjunction with the
Regular Invariants generated using Kondo, we are able to find
inductive invariants for a wide selection of protocols.

6.3 Reducing the Invariant-Finding Burden

In this study, we investigate the degree to which Kondo alle-
viates the developer’s burden through reducing the number of
invariant clauses they need to find manually for a protocol. In
the case of Kondo, manually-derived invariants are the Proto-
col Invariants listed under ‘Sync’ in Table 1. We compare this
to the number of invariants one must devise using the conven-
tional IronFleet approach, listed under ‘No Kondo’—these
numbers are obtained from performing fully manual proofs
of the asynchronous but non-history-preserving versions of
the protocols, which represent the conventional way to write
these protocols [14, 15].

In most cases, the number of manual invariants is drastically
reduced when using Kondo, e.g., by up to 6x for Ring Leader
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Election. Surprisingly, for Distributed Lock, ShardedKV and
ShardedKV-Batched, the user need not write any invariants
at all when using Kondo. This is because these protocols are
about managing unique resource ownership, a problem that is
trivial in the synchronous model where resources are passed
atomically between hosts and there is no need to guard against
duplication that may occur in an asynchronous network. In the
asynchronous model, Ownership reasoning is in turn handled
automatically by Kondo’s Ownership Invariants.

For Paxos and Flexible Paxos, we observe that the reduction
is less drastic, from 27 to 20 in both cases. An experimental
factor contributes to the smaller difference. In the non-history-
preserving version of these protocols (used to obtain the ‘No
Kondo’ numbers), we used a simpler state machine for the
proposer hosts. In particular, they include a step that received
a message and sent the response in the same step, a simplifi-
cation that made the proofs more tractable. Kondo, however,
does not allow steps that perform both a send and a receive
(see “Synchronous Protocol” in Section 4.2). Hence, we ap-
plied Kondo to a modified proposer state machine where that
step was decomposed into two separate steps. Indeed, the
fact that Kondo required fewer manual invariants despite this
added complication highlights the usefulness of Kondo.

Furthermore, these numbers do not fully reflect the quali-
tative relief Kondo gives to the developer. Because Protocol
Invariants are derived from the synchronous protocol model
Psync, the developer can ignore the complications caused
by network asynchrony when conceiving them. This luxury
makes deriving Protocol Invariants qualitatively easier than
the invariants in the traditional setting that is tarnished by the
asynchronous network.

Overall, we find that Kondo allows the developer to be
responsible for both fewer and simpler invariants across a
variety of protocols.

6.4 Proof Experience

Because our protocols are not expressed in a decidable logic
such as EPR, the user is inevitably tasked with writing proof
annotations to convince the verifier of the correctness of the
inductive invariant. In the Dafny language, these proof annota-
tions come in the form of lemmas that resemble a hand-written
inductiveness proof. Using the Kondo methodology, the user
is responsible for writing proof annotations in two steps of
the process (steps ➋ and ➏ in Figure 6, respectively):

1. Prove that the conjunction of Protocol Invariants is an
inductive invariant of the synchronous protocol Psync.

2. Complete the draft proof of the asynchronous protocol,
if it is not already complete. This involves adding proof
annotations to the bodies of lemmas that fail to verify. No-
tably, the user need not introduce new lemmas, or modify
the pre- and post-conditions of existing lemmas.

The columns ‘Sync’ and ‘Mods’ in Table 1 under the head-
ing ‘Lines of Proof Code’ quantify the above efforts respec-
tively, using lines of code as a proxy. They are in contrast
to the ‘No Kondo’ column, which represents the amount of
proof a user writes when not using Kondo.

Note that in the ‘Mods’ column, the numbers represent the
total lines of lemmas that required additional proof annota-
tions. In other words, even if just one line had to be added
to the lemma, the lines of the entire lemma definition are
counted. This is to include conservatively the effort the user
may spend reading the lemma in order to complete the proof.

Finally, we emphasize that completing the asynchronous
draft proof is a mechanical process once the developer has the
synchronous proof in place. In particular, in the asynchronous
proof, the developer uses exactly those lemmas already de-
fined in the sync-proof, and the logical reasoning behind why
the lemmas are true remains identical. The developer sim-
ply adds more assertions in the proof to guide the verifier in
exploring a larger state space.

6.5 Limitations

Kondo targets safety proofs of crash fault tolerant distributed
protocols. As such, liveness proofs are beyond its scope. More-
over, Kondo is not applicable in a Byzantine fault model, as it
is not safe to relate a message to the state of a Byzantine-faulty
sender or receiver.

Next, Kondo is not guaranteed to be complete, in that it may
not work for every protocol or safety property. First, Protocol
Invariants derived based on the synchronous protocol may not
be correct invariants in the asynchronous model. For instance,
the property “there is at least one node holding the lock” is an
invariant in the synchronous version of Distributed Lock, but
not the asynchronous one where the lock can be in-flight and
not held by any node. In our evaluation, however, we have not
encountered any safety properties where such invariants were
required.

Second, even when the Protocol Invariants derived in
the synchronous protocol are correct invariants in the asyn-
chronous version, it is not theoretically guaranteed that their
conjunction with Kondo-generated Regular Invariants must be
an inductive invariant of the asynchronous protocol. However,
we did not come across any such examples.

Ultimately, unlike EPR-based techniques, Kondo is in-
tended to augment, rather than replace, general verification
frameworks. In cases where Kondo fails to apply, it is always
possible to fall back to the general verification framework, al-
beit giving up on the full benefits of using Kondo’s structured
invariants. It is also possible that new invariant categories
and techniques may be needed as we apply Kondo to more
diverse protocols. In this sense, Kondo comprises a toolkit
of techniques that is general enough to cover a useful set of
protocols, and it may grow to accommodate new classes of
problems as they arise.
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7 Related Work

Verification of distributed systems has received substantial
attention, with proposed solutions falling along a spectrum of
automation with differing trade-offs.

Manual Proofs. IronFleet’s proof of Paxos [14] and Verdi’s
proof of Raft [42] both use general-purpose theorem provers
to tackle their respective correctness proofs. They require en-
tirely handwritten invariants and proofs, cumulating in 4,581
lines of Dafny for IronFleet and 50,000 lines of Coq for Verdi.
However, they both accomplish the feat of verifying not just
the protocol in the abstract, but an entire executable imple-
mentation, whereas Kondo is concerned with the protocol.

Automated Invariant Inference. To reduce the substan-
tial effort needed for these proofs, considerable work has
focused on automating the process. Ivy [32] makes use of the
effectively propositional logic fragment (EPR [34]), which
makes inductiveness-checking decidable and efficient in prac-
tice. Building on this, several algorithms aim to automate the
construction of invariants wholesale; these include I4 [26],
SWISS [13], DistAI [44], IC3PO [11], DuoAI [43], Primal-
Dual Houdini [33], and P-FOL-IC3 [19].

However, EPR restricts how developers can express their
protocols. In invariant inference, this restriction applies to
the protocol description and its inductive invariant. For exam-
ple, to handle Paxos, Padon et al. [31] develop abstractions
that transform the verification conditions into EPR, a creative
process aided by knowing the invariants in advance. Mean-
while, most approaches that can automatically infer invariants
for Paxos (e.g., SWISS) require the protocol to already be
transformed. Kondo, however, is not limited to EPR, so it
does not share these restrictions. This is possible because it is
not a fully automatic approach, instead allowing some human
intervention. As a result, our solution to Paxos uses a natural,
non-transformed protocol description.

Other works that infer invariants outside of EPR include
a paper [12] targeting Paxos and the endive tool [36], which
verifies a Raft-based protocol using the expressive language
of TLA+. Being outside EPR, they cannot check invariants
automatically in the unbounded domain, similar to Kondo.
The endive authors report providing human guidance but did
not quantify such effort.

Leveraging the Structure of Distributed Systems. Like
Kondo, some work has used the observation that synchronous
systems are easier to reason about than asynchronous ones.
Pretend Synchrony [40], for example, rewrites asynchronous
protocols into synchronous ones with much simpler invari-
ants. However, it requires protocols to obey a restriction called
“round non-interference” which precludes certain optimiza-
tions that save state between rounds, as in Multi-Paxos.

Some work introduces reasoning principles for the round-
based Heard-Of model [6], including PSync [9], the CL
logic [8], and ConsL [27]. Of course, these frameworks are
only applicable to protocols that operate in rounds. Other
work in this area [7] makes use of the communication-closure
property of some protocols, but may not apply to protocols
that do not have this property, such as the Echo Server.

Like Kondo, the work on message chains [28] identifies a
class of useful invariants based on an insight into the structure
of distributed systems. It proposes message-chain invariants
that accumulate history inside network messages, explicitly
mixing host and network state. In contrast, Kondo aims to
isolate these two concerns.

Leveraging Ownership. Frameworks such as Aneris [20]
and Grove [38] use separation logic [35] to reason about
distributed systems. Separation logic is particularly good at
reasoning about resource ownership, a concept also captured
by Kondo’s Ownership Invariants. Separation logic is very
expressive, but it also requires the developer to come up with
invariants (a process that is hard to automate), and it often
requires significant technical expertise to use effectively.

8 Conclusion

This paper presents an invariant taxonomy that identifies struc-
ture in the inductive invariants of distributed protocols. The
taxonomy classifies invariants into Regular Invariants (with
regular structure that follows from the protocol description)
and Protocol Invariants (which capture protocol-specific rea-
sons why the protocol is correct). Building on this insight,
the Kondo methodology gives developers a workflow and
tool for coming up with an inductive invariant and proving
inductiveness. They identify the Protocol Invariants on a syn-
chronous version of the protocol; then use the Kondo tool to
get an asynchronous protocol description and Regular Invari-
ants; and finally, prove the inductiveness of the conjunction
of Protocol and Regular Invariants, by completing the draft
proof generated by Kondo.
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Abstract
Designing and building a system that reaps the performance

benefits of hardware accelerators is challenging, because ac-
celerators provide little concrete visibility into their expected
performance. Developers must invest many person-months
into benchmarking to determine if their system would indeed
benefit from using a particular accelerator. This must be done
carefully, because accelerators can actually hurt performance
for some classes of inputs, even if they help for others [53].

We demonstrate that it is possible for hardware accelerators
to ship with performance interfaces that provide actionable
visibility into their performance, just like semantic interfaces
do for functionality. We propose an intermediate representa-
tion (IR) for accelerator performance that precisely captures
all performance-relevant details of the accelerator while ab-
stracting away all other information, including functionality.
We develop a toolchain (ltc) that, based on the proposed IR,
automatically produces human-readable performance inter-
faces that help developers make informed design decisions.
ltc can also automatically produce formal proofs of perfor-
mance properties of the accelerator, and can act as a fast per-
formance simulator for concrete workloads.

We evaluate our approach on accelerators used for deep
learning, serialization of RPC messages, JPEG image decod-
ing, genome sequence alignment, and on an RMT pipeline
used in programmable network switches. We demonstrate that
the performance IR provides an accurate and complete repre-
sentation of performance behavior, and we describe a variety
of use cases for ltc and the resulting performance interfaces.

The code for ltc is open-source and freely available at [68].

1 Introduction
From datacenters to hand-held devices, modern systems in-
creasingly rely on hardware accelerators to speed up a variety
of tasks, such as machine learning [4, 48, 49, 64], video pro-
cessing [28, 73], compression, encryption [17, 40], communi-
cation [29, 53], and even system infrastructure tasks [5, 32].

However, building a system that uses accelerators
correctly—i.e., that fully extracts their performance benefits—
remains a challenging task, because software engineers have
little to no visibility into an accelerator’s expected perfor-
mance behavior. Every accelerator bakes design choices into
silicon, such as specific throughput-vs-latency trade-offs [70]
or assumptions about the workload [53], and if the software
is a poor fit for these choices, acceleration will offer few ben-

efits or even make performance worse [55, 59, 60].
This lack of visibility into expected performance hampers

system developers in all three stages of system development:
design, implementation, and deployment.

First, during the design stage, what functionality (if any) to
offload, and which accelerators to use, is not obvious. Con-
sider the offloading of (parts of) an RPC stack to an acceler-
ator, where the candidates are RPC serializers/deserializers
like ProtoAcc [53] and Optimus Prime [70], or one of several
SmartNICs. Software engineers need to know what latency
and throughput they can expect from each candidate accel-
erator, given their code and workload. Then they can decide
which one offers the best price–performance ratio, before in-
vesting in thousands of new chips and refactoring the RPC
stack. To answer these questions today, one needs to purchase
every candidate accelerator, port the code, and benchmark
them together—performance depends not only on the acceler-
ator but also on the code and workload. For example, Optimus
Prime is best suited for small data objects (≤300B), while Pro-
toAcc is best suited for larger data objects (≥4KB) [53], but
this does not transpire at all from vendors’ datasheets. Blindly
offloading to any accelerator is not an option either, because
this can end up degrading system performance. For instance,
for workloads comprising long strings, ProtoAcc can perform
worse than a regular Xeon server, because the accelerator is
bottlenecked by memory-intensive operations [53].

Second, in the implementation stage, software engineers
want to know how they can best optimize their code for the
chosen accelerator. Ideally, tools like compilers should an-
swer such questions quickly and automatically, but compilers
too are hampered by the lack of visibility into accelerator per-
formance. For instance, the TVM compiler [15]—a widely
used compiler for deep learning models—takes several hours
to optimize code for a target accelerator [16, 58]. This is be-
cause the compiler cannot figure out quickly and accurately
what latency can be expected when running a specific se-
quence of instructions on the accelerator. So it generates mul-
tiple variants of the code and profiles them on the accelerator
itself (or on slower cycle-accurate simulators [7] when the ac-
celerator is not available) to pick the optimal one. This makes
optimizing code for accelerators challenging [16, 58], given
the large space of candidate code sequences, the fact that pro-
viding an accelerator for each compilation run is costly, and
that engineering teams often optimize for the next generation
of accelerators even before the hardware is available.

Third, when deploying a system, engineers often need guar-
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antees on performance properties. Consider an autonomous-
vehicle driving system that integrates accelerators for real-
time image decoding, object detection, and object recognition.
To guarantee safe navigation in all operating conditions, engi-
neers must be able to precisely know, for example, the upper
bound on image decoding latency. There exists no good way
to “verify” the performance of third-party accelerators today.
The state of the art is blackbox testing, which is rarely suffi-
cient, so system designers typically rely on heuristics and ac-
cumulated wisdom [35]. Given that accelerators are expected
to become ubiquitous [63, 79], this status quo must change.

We argue that hardware accelerators should come with stan-
dardized performance interfaces [42, 43, 45] that summarize
performance behavior just like semantic interfaces summarize
functionality. Software engineers routinely use semantic in-
terfaces such as code documentation or header files to quickly
find answers to questions like what a system call does, or
which library is best suited for their requirements, or how in-
corporating a library will affect their system’s functionality as
a whole. Since an accelerator’s raison d’être is performance
(after all, its functionality could come just as well from soft-
ware running on a general-purpose processor), performance
interfaces are as integral to the correct use of accelerators as
are semantic interfaces. As explained above, using an acceler-
ator without a performance interface can fail to deliver on the
acceleration promise, or even make performance worse.

We propose a new abstraction for representing accelerator
performance that makes performance interfaces possible for
hardware accelerators; we call this abstraction a Latency Petri
Net (LPN). An LPN distills only the performance-relevant
details of a circuit and excludes all other information, such
as functionality. This distillation enables LPNs to serve as
a high-fidelity intermediate representation (IR) of a circuit
that is performance-equivalent: it takes the same inputs as the
original circuit, and its performance behavior matches that of
the original circuit. The semantics of the LPN circuit’s out-
puts, however, are different. We envision accelerator develop-
ers manually producing the LPN as part of their regular de-
sign process, and shipping it with the accelerator. We show
that doing so is both straightforward for accelerator develop-
ers (takes a few hours) and enables them to better understand
and debug their own designs. We also show that the LPN of an
accelerator need not disclose proprietary intellectual property.

We develop a toolchain (ltc) that, based on an accelera-
tor’s LPN, automatically produces performance interfaces in
the form of simple, human-readable Python programs. Soft-
ware engineers can use these interfaces to make informed de-
cisions at the system design stage without needing to write
code or to purchase the accelerator. ltc also provides a per-
formance simulator that helps engineers understand how to
optimize their code. Since the LPN distills only performance-
relevant details, ltc’s performance-only simulator is orders of
magnitude faster than its state-of-the-art cycle-accurate coun-
terparts that also simulate functionality. Finally, ltc also pro-

vides a formal verification tool that enables software engi-
neers to prove key performance properties before deploying
their systems (e.g., latency bounds for a specific but poten-
tially infinite class of workloads). Our toolchain prototype
works well for fixed-function ASICs (e.g., TPU [49] or the
accelerators on SoC-based SmartNICs [4, 9, 53]) and simple
programmable accelerators. General-purpose programmable
accelerators (e.g., GPGPUs) are left for future work.

We demonstrate ltc’s effectiveness on accelerators used for
deep learning, serialization of RPC messages, JPEG image de-
coding, genome sequence alignment, and on a Reconfigurable
Match Tables (RMT) pipeline used in programmable network
switches. We show that the LPN intermediate representation
can precisely capture the latency and throughput of various
accelerators. Even after LPN simplifications that trade accu-
racy for simulation performance, we show that the IR still has
an average performance-prediction error of only 1.7% across
all accelerators. We present a variety of use cases for the re-
sulting performance interfaces and LPNs, including: enabling
informed decision-making during the system design stage
without requiring elaborate benchmarking; cycle-level perfor-
mance simulation that is up to 7821× faster than state-of-the-
art cycle-accurate simulators, enabling ML compilers to gen-
erate code optimized for the accelerator in seconds instead of
hours; and using formal verification to gain confidence in an
accelerator’s performance before deploying it in production.

The rest of this paper is organized as follows: We provide
an overview of our proposed solution (§2), then define the
new LPN abstraction (§3) and describe the ltc toolchain (§4).
We then evaluate ltc experimentally (§5), discuss further
ideas (§6), present related work (§7), and conclude (§8).

2 Design Overview
To help software engineers reason precisely about accelerator
performance, we introduce the Latency Petri Net (LPN) in-
termediate representation: an abstraction of the accelerator’s
implementation that is performance-equivalent, i.e., its per-
formance behavior (but not functional output) matches that of
the original circuit. We then propose a workflow that uses the
LPN to answer key questions about accelerator performance
at the system design, implementation, and deployment stage
via an extensible toolchain that we call ltc.

The LPN is inspired by classic Petri nets [69], a class of
graphs used for the description and analysis of concurrent sys-
tems and processes. They are used in various domains, includ-
ing the design and verification of digital asynchronous cir-
cuits. We define the LPN in §3, and Fig. 2 shows an example.

Petri nets are a good starting point for the LPN abstraction,
because the key challenge in reasoning about hardware perfor-
mance is not reasoning about the individual components but
rather about the end-to-end performance that emerges when
these components (e.g., multiple pipeline stages) operate to-
gether, in parallel. Petri nets were designed to model concur-
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Figure 1: Proposed two-phase workflow: Hardware engineers distill
their accelerator design into an LPN IR, and tools transform auto-
matically this IR into the forms desired by accelerator users.

rent systems, and they can precisely capture hardware’s inher-
ent parallel and asynchronous execution.

Using a Petri net-like representation also ensures that the
LPN is easy for accelerator developers to produce. This is
because, when generating an LPN, accelerator developers do
not need to reason about the impact of parallel execution on
performance, rather they only need to (abstractly) represent
the individual components and their local interactions. The
ltc toolchain takes the final step to fill in the gaps and turn the
LPN into forms that can be consumed by humans.

Fig. 1 illustrates our proposed workflow, consisting of two
stages that produce and consume the LPN IR, respectively.
The first stage (distillation) involves manually translating the
accelerator’s design into its corresponding LPN (we describe
this in §3.3). We propose that distillation be performed by ac-
celerator developers as part of their regular design process, but
one could also imagine tools that translate Register-Transfer
Level (RTL) designs into LPNs. Since the definitive clock
frequency of the circuit is decided in the post-RTL synthe-
sis stage, the LPN abstraction represents execution latency in
terms of cycles (i.e., an RTL-level metric), not wall-clock time.
The latter is easily calculated once the frequency is known.

The second stage of the workflow (transformation) auto-
matically processes an accelerator’s LPN into actionable in-
formation about accelerator performance. The ltc toolchain
consists of several tools: lpn2pi summarizes the performance
of the accelerator into human-readable, executable Python
programs that enable software engineers to make informed
development decisions without purchasing the accelerator or
porting their code to it. lpn2sim produces an executable sim-
ulator of the LPN that developers and tools can use for fast
performance simulation while optimizing their code. lpn2smt
translates the LPN together with a user-provided performance
property into a verification condition and passes it to the Z3
constraint solver [22] for a proof or refutation of the property.

This two-staged workflow—distilling the accelerator de-
sign into a performance IR and then transforming the IR into
answers to specific questions about performance—provides
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Figure 2: Example hardware pipeline (top) and its LPN (bottom).
This is a simplified version of the deep-learning accelerator in §5.

flexibility and customizability. Since the LPN is a universal
and accurate representation of the accelerator’s performance,
it can be transformed into answers to arbitrary questions about
the accelerator’s performance. We envision the set of tools in
ltc expanding over time, to address other questions one might
ask about an accelerator’s performance.

3 The Latency Petri Net Abstraction
We now define the LPN abstraction, first at a high level (§3.1)
and then more precisely (§3.2); a complete formal definition
is beyond the scope of this paper. We then describe step-by-
step how to distill an accelerator design into its corresponding
LPN (§3.3). Finally, we discuss the use of LPNs to model
components surrounding accelerators, such as memory and
interconnects (§3.4).

3.1 LPN Overview
To illustrate the LPN concept, we use the simple hardware
pipeline shown in Fig. 2. It consists of a fetch unit that brings
instructions into an instruction buffer, followed by an in-order
dispatch to a memory and a compute unit. The memory unit
fetches the operands for compute instructions from memory
into an operands buffer. The memory and compute units op-
erate in parallel, i.e., the memory unit can fetch operands for
a future compute instruction while the compute unit is still
processing the current instruction. Each unit operates on one
instruction at a time, stored in each unit’s local register (Rmem
respectively Rcompute) until the unit finishes processing it.

The memory and compute units have variable latencies
dmem and dcomp, respectively, that take into account the in-
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struction type and when the operand was last accessed. For
simplicity of presentation, we fix the fetch unit’s latency to
20 cycles (fetches 4 instructions at a time), set the instruction
buffer’s maximum size to 8, and let the operands buffer have
infinite capacity, unlike in a real accelerator.

Reasoning about the latency of a sequence of instructions is
challenging, even for such a simple pipeline, due to the fetch,
memory, and compute units operating in parallel. Parallel
execution can both hide latencies (e.g., loads that bring in
the operands for future compute instructions may complete
before the current compute instruction) and introduce stalls
(e.g., in the fetch unit due to back pressure when the memory
and compute units drain the instruction buffer too slowly).

The bottom half of Fig. 2 illustrates the LPN for this sim-
ple pipeline. The LPN is a directed graph with two kinds of
vertices: places (circles) and transitions (rectangles). Adja-
cent vertices in the LPN must be of different kinds, i.e., edges
in the graph can only connect places to transitions and vice-
versa. Each place in the LPN contains tokens (solid black
dots) that collectively represent the state of the circuit, and
tokens are stored and consumed in FIFO order.

An LPN models how data flows through a circuit by en-
abling transitions. Each transition has a guard (not shown)
that determines whether the transition is enabled or not, a de-
lay (δ) that specifies the duration of the transition in cycles,
and a producer function (not shown) that generates new to-
kens. Once a transition is enabled, after the number of cycles
indicated by the delay, it commits, i.e., atomically consumes
input tokens and produces output tokens. We define each of
these operations precisely in the next section.

In Fig. 2, we show the correspondence between the circuit
blocks and the subgraphs of the LPN. For some of the LPN
details, such as the transition delays, one needs to consult the
RTL of the accelerator (not shown). The LPN at the bottom
is an abstract representation of a circuit that is performance-
equivalent to the one at the top: (1) it operates on the same
inputs, using a function (not shown) that converts instructions
to tokens in the special place Pstart ; and (2) given any input,
the number of cycles it takes the LPN to deposit the last token
in Pdone corresponds to the number of cycles the upper circuit
takes to produce its output. However, the LPN’s output tokens
are meaningless other than indicating completion.

3.2 LPN Definition
In essence, an LPN models a system of queues connected by
logic units that consume tokens originating from multiple in-
put queues and generate tokens for designated output queues.
The LPN is a directed dataflow graph in which places Pi rep-
resent the queues, and transitions Tj represent the logic units.
Edges directed from places to a transition are the transition’s
input edges, while those directed from the transition to places
are its output edges. We equip the LPN with a timestamping
machinery CLK to denote when each token in the system was
produced—this is a key ingredient for modeling performance.

An LPN state S = ((s1, . . . ,sn), t) is a tuple consisting of a
collection s1, . . . ,sn of sequences si representing the in-flight
tokens corresponding to places P1, . . . ,Pn, and one global
non-negative number t, the current value of CLK. A token
k = (p, ts) is composed of a map k.p of key-value pairs and
a timestamp. Each key in k.p is the name of a property of k.
Each token has a type, determined by the set of properties (but
not values) that tokens of that type have. All tokens in a partic-
ular place have the same type. The timestamp k.ts denotes the
CLK value when token k was produced. By construction, the
timestamp k.ts of any token in a reachable state S is k.ts≤ S.ts.
The tokens in a place are always consumed in FIFO order,
which is why s1, . . . ,sn are sequences and not mere sets.

A transition T = (γ,δ,π) is a tuple of three functions: a
guard γ, a delay δ, and a producer function π. The guard de-
cides when T is ready to execute: T.γ reads (without con-
suming) a subset of the tokens present in T ’s input places
and returns NotReady if the transition cannot execute at this
time. If it can, then the guard returns Enabled(w1, ...,wk) with
weights wi. To execute, the transition locks the first w1 free
tokens from its 1st input place, the first w2 free tokens from
its 2nd input place, and so on. The guard must guarantee that
∀i,wi is less than or equal to the number of free (not locked)
tokens already present in the transition’s ith input place.

When a guard T.γ switches from NotReady to Enabled, thus
enabling T , the transition does not immediately consume the
tokens but rather locks them for T.δ cycles. The lock means
that no other transition is allowed to consume those tokens.
At the end of the delay T.δ, the transition commits: the locked
tokens are atomically removed from T ’s input places, and the
tokens produced by T.π are pushed to the output places, with
the current CLK (commit time) as their timestamp. Both the
delay T.δ and the producer T.π are arbitrary functions of all
the input tokens that the transition promises to consume.

To avoid race conditions when two transitions share an
input or output place, we require that the two transitions never
be simultaneously enabled. The value of a guard T.γ is not
allowed to change between the moment it switches to Enabled
and the moment when T.δ has elapsed (and T commits).

LPN Semantics. Given an initial LPN state S0 =
((s1, . . . ,sn),0) with all the tokens in s1, . . . ,sn having a times-
tamp equal to 0, we define the semantics of the LPN starting
from S0 as the potentially infinite sequence of states induc-
tively defined by ((s1, . . . ,sn), t)→ ((s′1, . . . ,s

′
n), t

′).
The next state of an LPN is obtained by applying the effects

of all the transitions that are enabled at CLK = t and known to
be ready to commit at CLK = t ′. For a transition Ti to belong
to this group, it must be that the guard Ti.γ returned Enabled at
time ≤ t, its input tokens locked in the corresponding places
were produced before Ti started (i.e., the highest timestamp of
those tokens is tsmax = t ′−Ti.δ), and the earliest time when Ti
can commit is t ′. All transitions known to be ready to commit
at t ′ commit as a group, and they advance the LPN from
((s1, . . . ,sn), t) to ((s′1, . . . ,s

′
n), t

′). When no more transitions
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can ever commit, the LPN has reached its terminal state.
In an LPN, it is possible that Ti.δ = 0. If a commit

at t ′ enables such a 0-delay transition, Ti will also com-
mit at t ′, even if this was not previously apparent, i.e.,
Ti was not previously “known” to be ready to commit
at t ′. Thus, after the first commit, the LPN transitions
((s1, . . . ,sn), t)→ ((s′1, . . . ,s

′
n), t

′), and subsequently it transi-
tions ((s′1, . . . ,s

′
n), t

′)→ ((s′′1 , . . . ,s
′′
n), t

′), i.e., there are multi-
ple states with the same timestamp. The process repeats until
no more transitions can commit at t ′.

LPNs are reminiscent of several extensions of Petri nets [46,
69, 86], mixing the notion of timestamp and information-
carrying tokens with enforced FIFO ordering between tokens.
With an LPN, we can accommodate the different modeling
needs of hardware accelerators, while keeping the underly-
ing models formal and machine-analyzable. We designed the
LPN to provide a favorable trade-off between compactness,
analyzability, expressivity, and ease of manipulation for our
different uses and tools. We chose the name “latency Petri
net” to acknowledge the inspiration we drew from Petri nets,
without implying a theoretical equivalence.

3.3 Distillation: From RTL to LPN
We now describe how a hardware engineer can represent the
performance of an accelerator using an LPN.

Distilling an accelerator’s register-transfer level (RTL) rep-
resentation into its corresponding LPN is an element-wise,
structural conversion of the RTL: FIFO buffers in the RTL be-
come LPN places, and RTL compute elements become LPN
transitions. Transitions can operate in parallel (if enabled at
the same time), so the engineer can produce the performance-
equivalent representation by analyzing in isolation the latency
of each stage of the accelerator pipeline. The LPN then glues
back together this stage-by-stage performance decomposition.

RTL-to-LPN distillation is a five-step process; we describe
each step in reference to the example in Fig. 2.

Step 1 involves listing the places and transitions that map di-
rectly to elements in the RTL: places P1,P2,P3,P4 correspond
to the four buffers/registers, transitions T1 to T5 correspond
to the three units that consume/produce from/to those buffers
plus the two copy actions of instructions to the registers Rmem
and Rcompute. The latter two are not explicit computations in
the block diagram but are units in the RTL source code.

Step 2 involves defining the guard functions and the corre-
sponding weights. For many transitions, becoming Enabled
simply requires the presence of a specific number of tokens
in an input place; their guards do not look at the properties of
those tokens (e.g., T4.γ and T5.γ). Occasionally, guards may
depend on the values of token properties: T2.γ (respectively
T3.γ) will be Enabled if and only if the first free token in P1
has a value corresponding to a memory (respectively com-
pute) instruction, because instructions are dispatched in order.

Most weights returned by the guards are constants (e.g.,
wT1P1 = 4 because the fetch unit fetches 4 instructions at a

time, and wP1T2 = wP1T3 = 1 because both registers store 1 in-
struction at a time). Default weights of 1 are not shown in
Fig. 2. Occasionally, weights may depend on the values of to-
ken properties: wP4T5 determines the number of operands tran-
sition T5 reads, and it is a function of the value of the property
of the token in P3 that specifies the type of instruction. In both
cases, the weights are intuitive for accelerator developers to
define, because they directly correspond to an architectural
quantity: the rate of consumption of tokens in the dataflow.
This also illustrates why weights need to be computable based
on tokens from all of a transition’s input places.

Step 3 involves defining the delay and producer functions
for each transition. The delay typically comes straight from
the RTL. The producer function produces tokens with just
those property values that are strictly necessary for the LPN
to accurately model performance—performance-irrelevant
should be discarded.

Step 4 involves modeling backpressure by adding capac-
ity constraints to each place in the LPN. Take for example
the Mem unit: we add an extra “capacity place” (P2b) with a
fixed initial number of “capacity tokens”, corresponding to
the capacity C of the buffer in question (1 token for P2); this
is a classic Petri net pattern [46]. The capacity place is con-
nected to the transitions incident on the original place (T2 and
T4), but in reverse, to form a loop. We adjust T4’s producer
function to also produce 1 capacity token into the capacity
place P2b, and T2’s guard to require that there be at least 1 ca-
pacity token in P2b to enable T2. This way, when T2 first com-
mits and consumes the initial token in P2b, it cannot commit
again until T4 has committed and deposited a capacity token
in P2b. This models the Mem unit backpressure: no new in-
struction will be copied into Rmem until the previous mem-
ory instruction has finished processing. The same pattern is
applied, for instance, to the P1 place representing the instruc-
tion buffer (Bufinstr), except that there are two consumers for
Bufinstr and the capacity is C = 8, thus 8 initial tokens in P1b.

Finally, step 5 involves adding start and done places (Pstart
and Pdone), and placing the initial tokens. The hardware engi-
neer then provides a “tokens from input” function Ψ to trans-
late the accelerator’s input to the LPN tokens placed in Pstart .
A stream of input data (e.g., an image) can be split into task
units (e.g., individual blocks), and each task becomes a token
that is placed inside Pstart . Depending on the accelerator’s
semantics, a task token could also be an instruction, a short
DNA sequence, etc. When the processing of a task completes,
a “done token” kdone should be produced into Pdone.

Constructing LPNs is a natural fit for accelerator develop-
ment workflows and a materialization of what hardware engi-
neers already have in mind, i.e., a more detailed architectural
diagram annotated with latency expressions. Compared, for
instance, to building a simulator, producing an LPN is easier,
because the accelerator functionality is abstracted away. ltc
provides a Python library with built-in types for places, tran-
sitions, edges, etc. that engineers can use to write the LPN.
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We asked a hardware engineer to produce an LPN for
the Menshen RMT pipeline used in programmable network
switches [82]. After taking 3 days to understand the RTL de-
sign, he produced the corresponding LPN (which we evalu-
ate in §5) in less than 3 hours. This suggests that the manual
distillation step is indeed straightforward for someone who
understands the accelerator’s design. The same engineer also
mentioned that writing the LPN actually helped to better un-
derstand the performance behavior of the circuit.

Finally, in most cases, LPNs do not leak much proprietary
information about the accelerators. Except for the latency
details, an LPN reveals no more information than the high-
level architectural diagrams, which are often made public
anyway. No implementation details appear in the LPN.

3.4 Memory, Caches, and Interconnects
Accelerators are often part of a larger system, and their per-
formance is influenced by the components surrounding them,
such as memory, caches, and interconnects. LPNs can be used
to model these components as well. However, they provide
fewer benefits over other kinds of performance models than
they do for accelerators.

First, LPNs can be constructed even without a reference
RTL implementation, by speculatively modeling the internals
of a hardware component based, for instance, on documen-
tation and online posts. We built an LPN for a sophisticated
PCIe interconnect based on documentation alone, and we de-
scribe this example in §5.

Second, modeling complex memory hierarchies is chal-
lenging, because semantics are tightly intertwined with per-
formance: the latency of a cache access depends on which
entries are present in the cache or not, and knowing this re-
quires tracking the specific contents of the cache, which in
turn requires modeling the semantics of the cache in more
detail than for most accelerators. This is an example where
the ability of an LPN to abstract away functionality is limited,
and thus its advantage over, say, a cycle-accurate simulator is
reduced. One could model the state of the entire cache with a
single token, and each cache line would be an individual prop-
erty of that token. This LPN, though, would likely be more
complex than what the ltc toolchain was designed for.

Nevertheless, an LPN can still abstract away some seman-
tic details of the memory hierarchy and be productively used,
for instance, to model and reason about the parallelism within
the memory subsystem. If we took the RTL of a cache and dis-
tilled it into an LPN by following the steps discussed in §3.3,
we could model the cache’s internal logic (without taking into
account cache state) and simulate it with lpn2sim. This could
help reveal that a particular cache design can only handle 1
cache hit every 2 cycles, whereas a better design could handle
a cache hit every cycle, through pipelining. The pipeline de-
sign does influence cache performance, even if not as much as
replacement strategy and associativity configuration do. An
LPN can help fine-tune the pipeline design.

4 Transforming the LPN
The LPN is an abstraction that is performance-equivalent to
the accelerator; nevertheless, it is not easy to read for those
unfamiliar with the accelerator’s implementation details. As
a result, it is not directly useful to software developers who
want to use the accelerator in their systems. We now describe
how the ltc toolchain bridges this hardware–software gap by
transforming the LPN into representations that software devel-
opers can use in the different stages of system development.

The ltc toolchain currently consists of three main tools:
(1) lpn2pi, which transforms the LPN into human-readable
performance interfaces in the form of executable Python pro-
grams, which are meant to be read as much as executed;
(2) lpn2sim, which merges the LPN with a simulator skele-
ton to produce an executable simulator that both develop-
ers and tools can use for fast performance simulation; and
(3) lpn2smt, which translates the LPN together with a user-
provided performance property into verification conditions
that can be proven or refuted using an SMT solver, to provide
performance guarantees before the system is deployed. ltc
also provides other, simpler tools that we do not describe here,
such as lpnviz, which produces a visualization of the LPN that
hardware developers can use to better understand and debug
the accelerator. We envision both hardware and software en-
gineers contributing more such tools to ltc over time.

While the lpn2sim simulator (just like the RTL) oper-
ates on concrete inputs, both lpn2pi and lpn2smt produce
outputs—performance interfaces and verification conditions,
respectively—that describe performance for an abstract, sym-
bolic input. Since the space of all possible inputs to an acceler-
ator is large, often infinite, producing complete performance
interfaces or verification conditions is intractable for most
LPNs, due to the path explosion problem [11]. We circumvent
this challenge by introducing the notion of input classes for
LPNs, which partition a given input space into input sets for
which, individually, it is feasible to produce complete perfor-
mance interfaces and verification conditions. We now describe
how input classes partition an input space (§4.1), and then de-
scribe lpn2pi (§4.2), lpn2sim (§4.3), and lpn2smt (§4.4).

4.1 Input Classes for lpn2pi and lpn2smt

To use the lpn2pi and lpn2smt tools, one must first constrain
the input space to the one of interest. For example, for the
JPEG Decoder, the user might include all images up to a given
maximum size (number of pixels × pixel depth in bits) and
exclude all others. This input space is then partitioned by
an ltc tool into input classes, with lpn2pi and lpn2smt then
solving the problem for each class independently. This ltc tool
employs symbolic execution [13] to partition the input space.

Intuitively, an input class is a group of inputs for which sim-
ulating the LPN will cause (1) each transition in the LPN to
commit exactly the same number of times for all executions
corresponding to inputs in that class; and (2) the nth commit
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of each transition will consume and produce the same num-
ber of tokens in all executions, for all values of n. (An “execu-
tion” is a complete simulation of the LPN from CLK=0 until
it deposits the last kdone token into Pdone.) For example, if ex-
ecuting the LPN with an input from a class causes transition
T to commit twice during the execution, consuming 3 tokens
for the 1st commit and 4 tokens for the 2nd commit, then ex-
ecuting the LPN with any other input from that class must
also cause T to commit twice and to consume 3 tokens for
the 1st commit and 4 tokens for the 2nd commit. The tokens
consumed and produced in different executions must have
the same type (§3.2), but can have different property values.
Commits of different transitions can be interleaved arbitrar-
ily in different executions for inputs in a class; the only thing
that matters is the commit and token counts. §A.1 in the Ap-
pendix contains a formal definition of input classes.

Input classes are defined such that all inputs in any given
class impose the same pattern on the trace resulting from the
simulation of the LPN. The tools leverage this commonality
to do their analysis once per pattern (which could subsume
many inputs). Even though input classes are not defined based
on human-understandable semantics of the accelerator’s input,
they often do correspond to input types that are intuitive for
users. For example, for the Protoacc LPN (§5), all messages
of a given format constitute one input class. For the JPEG
decoder LPN (§5), all images of the same size form a separate
input class.

As mentioned, ltc includes a preprocessing tool for auto-
matically partitioning the user-specified input space into in-
put classes. It symbolically executes the LPN in a special way
and partitions the input space into sets. One input class can
possibly span multiple sets, but a set never contains inputs
from more than one input class. Then, by operating on each
set in isolation, lpn2pi and lpn2smt can avoid path explosion
and are trivially parallelizable by input set. Please see A.2 in
the Appendix for details of how input classes are generated.

4.2 lpn2pi
The lpn2pi tool transforms the LPN into human-readable per-
formance interfaces represented as executable Python pro-
grams, in the spirit of [42, 43]. The performance interface
takes the same inputs as the accelerator (e.g., a stream of
network packets, multiple RPC messages, a long DNA se-
quence) and returns the start-to-end latency (i.e., total execu-
tion cycles) it would take the accelerator to process that input.
The performance interface describes the start-to-end latency
not with concrete numbers but with formulae, as introduced
in [44] but expressed in terms of properties k.p of initial to-
kens k in the accelerator’s LPN. The performance interface
returns a single formula per input class. We show examples
of lpn2pi-extracted performance interfaces in Figs. 4 - 7.

lpn2pi does not aim for fully precise performance
interfaces—while the LPN has suitable constructs to precisely
represent the accelerator’s asynchrony and parallelism, reflect-

ing these in a precise, closed-form, human-readable formula
is typically intractable. Instead, lpn2pi approximates the accel-
erator’s start-to-end latency, trading precision for human read-
ability and closed-form expressions. Approximation turns out
to be sufficient, because we expect performance interfaces to
be used mostly during the system design stage, when software
engineers are interested in coarser-grained descriptions of per-
formance. In §5, we show that, while approximate, lpn2pi-
extracted interfaces nevertheless enable informed decisions
at the design stage, such as choosing the accelerator configu-
ration that fits best a particular workload profile.

The following three assumptions underlie the approxima-
tion made by lpn2pi: (1) The size of the input is large enough
so that the accelerator’s pipeline is almost always full, i.e.,
the time spent filling and draining the pipeline is a negligible
fraction of the overall start-to-end latency; (2) For all inputs
in any given input class, the accelerator has the same bottle-
neck, i.e., the stage in the accelerator’s pipeline (or transition
in the LPN) that incurs the longest delay is the same for all
inputs in that class; and (3) The bottleneck in the accelerator
pipeline is stable, i.e., it does not shift from one pipeline stage
to another during the processing of an input.

We define the effective delay εT of a transition T in an ex-
ecution of an LPN as the product N× gT of the number of
times N the transition commits in that execution and the av-
erage duration between consecutive commits of that transi-
tion (called average commit gap gT ). The transition with the
largest effective delay is deemed to be the bottleneck. Based
on the three assumptions above, lpn2pi approximates the start-
to-end latency to be the effective delay εT of the bottleneck
transition (i.e., of the bottleneck stage of the pipeline). Recall
that the definition of an input class (§4.1) requires the num-
ber of times each transition commits in an execution to be the
same for all inputs in that class. So, given an input class and a
transition T , N is a constant for all inputs in that class. How-
ever, gT is a symbolic expression parameterized by properties
of the initial tokens, so εT is also a symbolic expression.

Determining εT for each transition comes down to deter-
mining the respective gT . Note that gT does not necessarily
equal T.δ, because a transition may be stalled for an arbitrary
number of cycles (due to its input places not having enough
tokens) or it could be non-blocking and become enabled again
before it commits (i.e., commit multiple times in parallel).

Accurately estimating the average commit gap gT is chal-
lenging in LPNs with loops. In a loop-free LPN, gT for all
transitions is just the maximum of all transition delays. But
with loops, this simple method is no longer accurate. Consider
a simple loop P0→ T1→ P1→ T2→ P0, with initially a single
token in P0 and none in P1. Every time T1 commits, it subse-
quently has to wait for T2 to commit before it can be enabled
again (and T2 also has to wait for T1), so the average commit
gap for both T1 and T2 is the sum of the delays of T1 and T2.

To approximate the gTi
of all transitions Ti in a loop, we

define the loop delay ∆ and a parallel factor FTi for each tran-
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sition Ti in the loop—we estimate gTi
as ∆/FTi . Here is why:

Consider a simple loop that has only one place with M initial
tokens. ∆ is the time it takes for the M initial tokens to com-
plete a full iteration around the loop, with all transitions com-
mitting at least once. Recall that transitions are non-blocking,
in the sense that a transition Ti, once enabled, could become
enabled again before it commits, if the configuration of free
tokens in its input places changes such that Ti.γ is satisfied
once again. As a result, there can be multiple instances of the
same transition enabled at the same time. By FTi we denote
the maximum number of instances of Ti that can be simul-
taneously enabled. Increasing levels of concurrency propor-
tionally reduce the gap between successive commits, so we
estimate the average commit gap for Ti as gTi

= ∆/FTi .
lpn2pi starts out by setting gT =T.δ for each transition T in

the LPN; if T.δ is a general function on input tokens, gT is
the corresponding symbolic expression. Then, for each loop
in the LPN, lpn2pi computes ∆ and the FTi factors, and then
it recomputes gTi

= max(gTi
, ∆/FTi) for each Ti in that loop.

Once lpn2pi has treated each loop once, we say that it has
completed one iteration of the process. Dependencies among
loops and the order in which the loops are treated can influ-
ence the estimated gTi

values, so lpn2pi continues iterating in
order to improve the estimates. The current version of lpn2pi
stops after a fixed number of iterations that is configurable
(default 10). In the next version, lpn2pi will automatically stop
when the gTi

values stabilize, i.e., do not change from one iter-
ation to the next by more than a configurable threshold. Com-
paring changes at the level of symbolic expressions (which
is what some gT values are) is fundamentally hard, so lpn2pi
will instead compare concrete values of these expressions, ob-
tained by randomly sampling the input class and computing
the corresponding concrete values of the expressions. Once it-
erative estimation is complete, lpn2pi derives the start-to-end
latency formula as the maximum of the εT expressions (i.e.,
maxTi(N×gTi

). lpn2pi then uses sympy [61] to simplify the for-
mula to obtain an expression that is easier for humans to read.

lpn2pi repeats the process described in the previous para-
graph for each input class, after which it emits the correspond-
ing interface program in Python, in the form seen in Figs. 4 - 7.

Please refer to A.3 in the Appendix for more details on the
computation of εT , ∆, FTi and on the underlying assumptions.

4.3 lpn2sim

For a given LPN, the lpn2sim tool produces a bespoke cycle-
level performance simulator that can be used by both engi-
neers and tools. As we show in §5.3, the LPN’s power of ab-
straction enables lpn2sim-generated simulators to simulate
performance orders-of-magnitude faster than state-of-the-art
cycle-accurate simulators.

lpn2sim’s simulator is event-driven and works as follows:
In step 0©, it sets the value of CLK to zero, and then repeatedly
performs the following two steps to make forward progress.
In step 1©, the simulator finds all transitions that can commit

at the current CLK value. If more than one can commit, the
one with the smallest ID is committed first. The simulator
repeats this step until no transition can commit at the current
CLK value. In step 2©, the simulator finds the next earliest
timestamp at which a transition can commit. If no transition
can commit, the simulation terminates. Else, the simulator
updates the CLK to that timestamp and goes back to step 1©.

lpn2sim automatically translates the LPN (described by
hardware engineers using our Python API) to an equivalent
C++ program. It first emits equivalent place and transition
objects in C++, and then translates individual delay, guard,
and output functions. To make such automatic translation of
delay, guard, and output functions feasible, our Python API
only allows arithmetic operations and conditionals within
these functions; this proved sufficient for all the accelerators
we evaluated. lpn2sim then combines the translated LPN code
with a simulator skeleton we wrote in C++ and compiles to
an executable.

4.4 lpn2smt

The lpn2smt tool is used to formally reason about performance
properties of an accelerator based on its LPN. It has three in-
puts: the target LPN, the input space ϒ, and a query Φ. The
ϒ parameter is the subspace of inputs that are of interest to
the user. lpn2smt currently supports queries related to latency
bounds of two kinds: what is the upper (lower) bound on la-
tency, or can you prove/disprove expression φ(x) involving
latency x. An example of the latter, which we use in our eval-
uation, is φ(x) : |(E− x)/x|< 0.2, where E is an expression
taken from an (approximate) performance interface. This asks
for a formal proof that E is within 20% of the true latency
for all possible inputs and, if not, asks for a counter-example.
lpn2smt can be extended to support other kinds of queries too.

lpn2smt first partitions ϒ into input classes (§4.1), then de-
rives based on the LPN a precise SMT expression Λi for the
start-to-end latency for each input class i. Then it pieces to-
gether a global latency expression for the entire input sub-
space ϒ as Λϒ = ite(C1,Λ1, ite(C2,Λ2, ite(...))) using the if-
then-else ite operator supported by SMT solvers like Z3 [22]
and the inputs constraints Ci that define the corresponding
input classes. Note that this is a precise expression, not like
lpn2pi’s approximations meant to be human-readable.

For the first kind of query, lpn2smt passes Λϒ to the SMT
solver’s optimizer and asks for a formally verified upper
(lower) bound on Λϒ. For the second kind of query, lpn2smt
passes φ(Λϒ) to the SMT solver and returns either a formal
confirmation that it is true or a counter-example.

The SMT expression Λi for input class i is constructed as
follows: Let Ni be the number of transition commits in an
execution from this class; by the definition in §4.1, there is
a unique Ni for each input class i. lpn2smt instantiates Ni
symbolic timestamps CLK1, CLK2, ... corresponding to when
the transitions committed—the start-to-end latency will be
max j=1..Ni{CLK j}. To compute this expression, lpn2smt in-
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stantiates for each commit j the consumed tokens, and places
them in the corresponding input places. For each such token k,
lpn2smt sets k.p and k.ts to symbolic values constrained to re-
flect the relationship to CLK j. Recall that the number of tokens
produced/consumed by a transition is the same for all inputs
in a class (§4.1). Then lpn2smt uses the “tokens from input”
function Ψ (applied to a suitably constrained symbolic input
from this class) to obtain the initial tokens, and places them
in Pstart . It then uses the transitions’ producer functions to in-
stantiate the transition-produced tokens into the correspond-
ing places. For each initial and produced token k, lpn2smt con-
strains k.p and k.ts according to the function that produced it
and the respective T.δ and CLK j. Then, lpn2smt captures the
constraints resulting from the fact that every consumed token
must either be an initial token or one resulting from a commit.
The constraints that result are propagated to CLK1, CLK2, ...,
and finally lpn2smt computes Λi = max j=1..Ni{CLK j}.

In summary, the LPN is a generic IR that is performance-
equivalent to the accelerator circuit and can be transformed
by tools into higher level representations useful to software
engineers. In this section, we presented three of the tools in
the ltc toolchain: lpn2pi, lpn2sim, and lpn2smt. We envision
both hardware and software engineers contributing more such
tools to ltc, increasing its usefulness over time.

5 Evaluation
In this section, we evaluate ltc on several accelerators and
show that it answers the questions mentioned in §1. We
first describe our experimental setup (§5.1), then present
fine-grained results that shed light on detailed aspects of
LPNs (§5.2), and conclude with higher-level results (§5.3).

5.1 Experimental setup
We evaluate ltc on 5 accelerators (Table 1), each representative
of a particular class of accelerators. We require access to the
RTL, so the evaluation is limited to open-source accelerators.

Apache VTA (Versatile Tensor Architecture) [2] is a deep-
learning accelerator with a compiler stack based on TVM [15].
The accelerator incorporates tensor cores that perform vector
or matrix operations. The design includes parallel units for
compute, load and store operations, which decouples memory
accesses from the compute, to hide memory latencies [74].
VTA can be used to program arbitrary dataflows when exe-
cuting the deep-learning model. Certain high-level machine
learning operations can be implemented with different VTA
instruction sequences. Each instruction sequence exhibits dif-
ferent performance, and so TVM (VTA’s compiler) generates
multiple instruction sequences and selects the best performing
one. This process is called auto-tuning. Our evaluation uses
a workload consisting of 1,500 instruction sequences gener-
ated from auto-tuning ten 2d convolution tasks from ResNet-
18 [34], an 18-layer deep convolutional neural network com-

Accelerator Domain Workload LOC
VTA [2] Deep learning Autotune

ResNet-18 [34]
6,628 Chisel

Protoacc [53] RPC message
serialization

Hyperprotobench [31]
and microbenchmarks

3,197 Chisel

JPEG [80] Image
decoding

30K Flickr [51] and
30K Div2k [50]

7,003 Verilog

Darwin [20] Bioinformatics 10 DNA test
sequences [21]

1,535 Verilog

Menshen [82] Programmable
P4 switch

3 Verilog testbenches
(with up to 100 packets)

11,169 Verilog
+ 4,318 VHDL

Table 1: Open-source accelerators used for evaluating ltc.

monly used to measure auto-tune latency and inference speed.
Protoacc [53] is a hardware accelerator developed by

Google for protocol buffers [71] and integrated into a RISC-V
SoC. We only consider Protoacc’s serializer, which is the most
interesting part of Protoacc: multiple fields within a message
are serialized in parallel within the accelerator. Deserializa-
tion is sequential and thus less interesting. As in the evalua-
tion of the ProtoAcc paper [53], we use the Hyperprotobench
benchmark [31] and their microbenchmarks to measure seri-
alization performance of both large messages (>1MB) and
small messages (<1KB). While Protoacc’s standard testbench
includes a complex memory subsystem (with caches, DRAM,
and TLB), we are only interested here in the performance of
the accelerator itself, i.e., what a vendor would provide an
LPN for. Therefore, in the empirical measurements, we warm
up and overprovision the caches and TLB to prevent them
from disturbing the performance of the accelerator.

JPEG [80] is an image decoder core for FPGAs written
in Verilog. It supports various chroma, fixed and dynamic
Huffman tables, DQT tables for JPEG input streams, etc. Our
workload consists of the Flickr [51] and Div2k [50] datasets.
Each has 30K diverse images, and all images in the Div2k
dataset are high-resolution.

Darwin [20] is a GACT (DNA sequence) alignment accel-
erator. The accelerator has two main stages. The first stage
uses a systolic array to fill scores in a 2D score matrix, and
the second stage computes alignment actions at each step: in-
sertion, deletion, and match. For the workload, we use ten
pairs of test DNA sequences used by the Darwin authors [21].

Menshen [82] is a Reconfigurable Match Tables (RMT)
pipeline used in a programmable P4 network switch [12]:
incoming packets are processed by flowing through a pro-
grammable packet filter, 2 packet header parsers, 5 header
processing stages, and 4 header de-parsers. Menshen extends
the RMT architecture with isolation mechanisms to ensure
that multiple P4 programs running on the same switch do not
suffer from performance interference. It spatially partitions
its stateful resources (match-action table entries and stateful
memories) and uses per-packet configuration overlays for its
stateless resources (packet filter, header parsers, header pro-
cessing stages, and header de-parsers). As workloads, we use
Menshen’s two original device-level testbenches, plus an ad-
ditional testbench based on the original but extended to 100
packets. Menshen contains several closed-sourced IP blocks,
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which restricts some of our experiments.
We ran all experiments on a 2-socket 48-core Intel Xeon

Gold 6248R processor with 376 GiB of memory, 1 thread per
core, running Ubuntu 20.04.4 LTS with the 5.15 Linux kernel.
For the speedup and accuracy baselines, we compare to Verila-
tor [81], the fastest open-source cycle-accurate RTL simulator
available today—it generates optimized C++ code from Ver-
ilog that is 200–1000× faster than interpreted simulators [81].
We use Verilator v5.010 for all accelerators except for VTA,
where we use v4.022, for compatibility reasons. All speedup
comparisons are single-threaded. Verilator v4.022 and v5.010
have negligible performance differences on a single thread.
We use the Clang-11.1.0 compiler. For the PCIe experiments,
we use an AMD Alveo U200 accelerator card connected with
a gen3 x16 PCIe interconnect to a host without DDIO.

We build the LPNs for the above accelerators by manually
inspecting the RTL source code. The LPNs use tokens to ab-
stractly represent the data of various formats and units that
flow through the real hardware. For example, input packets
in Menshen are turned into tokens with a property represent-
ing the type and length of a packet, each 8×8 image block
in JPEG is turned into a token with a property representing
the number of non-zero pixels after quantization, each instruc-
tion in VTA is turned into a token with properties represent-
ing different parts of the decoded instruction, and each field
in a message in Protoacc is turned into a token with proper-
ties representing the type of the field and field length. LPN
transitions represent the different hardware components that
operate in parallel, and LPN places represent the buffers.

5.2 Understanding LPNs in detail
We now provide a quantitative deep-dive into the LPN abstrac-
tion, and we also describe how hardware engineers can them-
selves use LPNs to better understand and debug their designs.

5.2.1 Accuracy and completeness of the LPN
As explained in §2, the LPN representation enables accelera-
tor developers to describe performance in terms that are fa-
miliar to them, and then rely on the ltc toolchain to translate
the LPN to representations palatable to software engineers.

Fig. 3 shows that using the LPN as an IR is justified: across
all benchmarks and all accelerators, the average latency pre-
diction error of the simulator generated by lpn2sim based on
the LPN is 1.7%. The maximum error never exceeds 10%. For
the LPN to be 100% accurate, it would need to retain almost
all the RTL-level details, which is unnecessary in practice.

This means that the LPN provides a performance IR that is
highly accurate and complete, i.e., it contains all the necessary
details to provide predictions that are close to reality. Tools
based on the LPN IR can therefore achieve high accuracy.

5.2.2 Representation efficiency
Besides accuracy and completeness, the utility of an LPN
also depends on its conciseness, ease of update, understand-
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Figure 3: Relative latency prediction errors of the LPN-based simu-
lation vs. Verilator cycle-accurate simulation.

ability by non-technical staff, and so on. As we will show in
Fig. 8, by incorporating only performance-related details and
nothing else, the LPN brings about orders-of-magnitude im-
provements in simulation time. This is one measure of rep-
resentation efficiency. In Table 2 we show the complexity of
the LPNs along different dimensions, which serves as another
measure of representation efficiency.

Accelerator LOC Number of ...
RTL LPN transitions places edges

VTA 6628 Chisel 506 12 22 41
JPEG 7003 Verilog 109 6 16 33
Protoacc 3197 Chisel 758 97 112 365
Darwin 1535 Verilog 214 2 4 6
Menshen 11169 Verilog 544 29 44 85

Table 2: Comparative complexity of LPN and RTL representations.

5.2.3 Hardware engineer effort to write LPNs
As already mentioned, we asked an accelerator developer with
several years of mixed academic and industry experience to
read §3 and write an LPN for Menshen, whose design he
had not seen before. He wrote the LPN without assistance,
and then tested its accuracy with the Menshen testbenches.
After understanding the RTL design, it took him less than 3
hours to write an accurate LPN. He estimated that a developer
who knew the design and did not need to go back and forth
between the RTL and the LPN would take less time.

The Menshen code base is quite substantial. This result
therefore strongly suggests that hardware engineers would
find it acceptable and practical to write LPNs for their accel-
erators, especially if they stand to gain (as we argue below).

5.2.4 Utility to SoC and accelerator developers
Besides being easy to write, we believe LPNs, accompanied
by the ltc toolchain, can improve the productivity of acceler-
ator designers. For example, finding the right configuration
(e.g., sizing the buffers in a programmable switch) is today
labor-intensive and error-prone. The wrong choices for buffer
sizes can affect the delicate internal balance of an accelerator
and lead to performance degradation due to unnecessary stalls.
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We discovered the utility of lpn2smt in optimizing buffer
sizes while trying to prove an upper bound on the stall-to-
cycles ratio (≤ 0.4) for JPEG. In the default configuration,
due to an under-sized buffer in the output unit, the previous
unit was backpressured early. We had lpn2smt find a buffer
size that respects the desired stall-to-cycle ratio: we made
the buffer size symbolic and queried lpn2smt to optimize the
stall-to-cycles ratio. lpn2smt took 3 minutes to return 0.276 as
the optimal ratio and a concrete buffer size that satisfies that
ratio. Changing the buffer size (1 line of RTL) led to a 37%
performance improvement on the Div2k dataset [50]. Since
only some of the images have a stall-to-cycle ratio > 0.4, such
a nuanced performance bottleneck would be hard to find.

5.2.5 LPNs beyond accelerators
The performance of the interconnect and external memory
accesses affects overall performance when running accelera-
tors, so engineers may want to connect LPNs for accelerators
to models for the interconnect and memory, to understand
the overall system performance. LPNs are a natural fit for
modeling interconnects. We inferred hardware details from
PCIe documentations [66], then created an LPN for a recon-
figurable PCIe topology, including root complex and switches,
and connected it to the LPN for JPEG. With a fixed memory-
access latency model, the LPN-based system model achieves
on average 1.9% (maximum 5.1%) relative error compared
to the end-to-end latency measured with the real hardware
system (i.e., a JPEG decoder on an FPGA connected to the
host CPU via PCIe). The image set we evaluated on includes
40 images of varying sizes, and the per-image latency ranges
from 15 microseconds to 100 milliseconds.

5.3 Key results
In this section, we present high-level results that illustrate the
value of LPNs and ltc to accelerator developers and users.

5.3.1 Performance interfaces are human-friendly

This set of results illustrate how LPNs and ltc can answer
questions like “What latency/throughput can I expect from
this accelerator for my code?” and “Which of accelerators X
or Y will best accelerate my workload?”. For the latter, we
were unable to find two open-source accelerators that provide
identical functionality, and so we demonstrate this use case
using two configurations of the same accelerator.

Consider the JPEG performance interface in Fig. 4, pro-
duced by lpn2pi (as explained in §4.2, the variable names
come from the token property names). A quick read conveys
that the latency of decoding an image grows with the num-
ber of blocks in the image; the compression ratio, which is
inversely related to the number of non-zero elements in the
block, affects the latency as well. Developers can visually in-
fer the bounds on accelerator latency. To derive a latency in

seconds, one multiplies the cycles by the clock period. The
@perf_interface decorator adapts the input, based on the “to-
kens from input” function Ψ (§3.3), to make the token proper-
ties (e.g., num_blocks and avg_num_nonzero_perblock) avail-
able to the interface at the right level of abstraction.

1 freq = 75*10**6 # 75MHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_jpeg_decode(img):
5 x = 6*(img.avg_num_nonzero_perblock *3+6)
6 cycles = img.num_blocks*max(x,509)/4
7 return cycles*clk_period
8
9 @perf_interface

10 def tput_jpeg_decode(img):
11 # Images are processed one-by-one
12 # We provide throughput for RGB blocks instead
13 return img.num_blocks / latency_jpeg_decode(img)

Figure 4: Latency and throughput interfaces for the JPEG decoder.
Comments are manually added. The throughput interface is manually
constructed based on the latency interface.

If developers understand the parameters of their workloads,
they can directly look at the performance interface to reason
about the latency distribution for those workloads. Otherwise,
they can generate test cases and quickly run them with the
performance interface, which is executable Python code.

Next, consider the performance interface for Pro-
toacc (Fig. 5), which directly conveys the cost of serializing
different message types. The latency for serializing a series
of messages is just the sum of the latency of serializing in-
dividual messages. As mentioned earlier, lpn2pi extracts the
performance interface for each input class—in this case, in-
put classes correspond to Protoacc message types—and as-
sembles them together. The performance interface raises an
error if the input message is not part of the input classes for
which the performance interface was extracted. Due to space
limitations, we do not show throughput interfaces, as they are
straightforward to derive from the latency interface.

We use two configurations of Protoacc to demonstrate
how performance interfaces can help developers choose be-
tween accelerators, or between different configurations of
the same accelerator, by comparing their performance inter-
faces (Fig. 5). The first configuration is the original Protoacc,
and the second is a smaller configuration of Protoacc with the
number of parallel serialization pipelines reduced from six to
one. From the interface, if the message type is hpbench.m1,
we can infer that, if the total bytes are below 47KB, the origi-
nal Protoacc is faster. And once the total bytes exceed 47KB,
the alternative configuration is faster. This is because, when
the message size is below 47KB, the bottleneck is still in pro-
cessing the message—since the original Protoacc has more
pipelines to process the message in parallel, it is faster. Once
the message size exceeds 47KB, the bottleneck shifts to the
generation of the memory reads/writes, and the alternative
configuration is faster, because it has a higher frequency.

Finally, Fig. 6 shows the extracted performance interface
for Darwin, and Fig. 7 shows the performance interface for
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1 freq = 1.8*10**9 # 1.8GHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_protoacc_serialize(msgs):
5 cycles = 0
6 # Iterate over each message of a list of messages
7 for msg in msgs:
8 # hpbench.m* are Hyperprotobench msg formats
9 if msg.type == hpbench.m1:

10 cycles += max(1468, msg.total_bytes /16+310)
11 elif msg.type == hpbench.m2:
12 cycles += max(2172, msg.total_bytes /16+514)
13 elif msg.type == hpbench.m3:
14 ...
15 else:
16 raise NotImplementedError(
17 f"message type not supported"
18 )
19 return cycles*clk_period

1 freq = 2*10**9 # 2GHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_protoacc_alternative_config_serialize(msgs):
5 # Latency interface for another protoacc

configuration where the number of parallel
pipelines is reduced from 6 to 1.

6 cycles = 0
7 for msg in msgs:
8 if msg.type == hpbench.m1:
9 cycles += max(3609, msg.total_bytes /16+310)

10 elif msg.type == hpbench.m2:
11 cycles += max(4566, msg.total_bytes /16+514)
12 elif msg.type == hpbench.m3:
13 ...
14 else:
15 raise NotImplementedError(
16 f"message type not supported"
17 )
18 return cycles*clk_period

Figure 5: Interfaces for default ProtoAcc (top) and an alternative
configuration of ProtoAcc (bottom). We speculate that the frequency
of the alternative ProtoAcc configuration could be 2GHz (instead of
1.8GHz at the top) because the design is simpler.

1 freq = 250*10**6 #250MHz
2 clk_period = 1/freq
3 num_pe = 4
4 @perf_interface
5 def latency_darwin_gact(dna_pairs):
6 cycles = (dna_pairs.ref_dna_length + num_pe + 2)*

dna_pairs.query_dna_length/num_pe
7 + num_pe + 2 + 3*dna_pairs.steps
8 return cycles*clk_period

Figure 6: Latency interface for Darwin GACT for DNA alignment.

1 freq = 1*10**9 # 1GHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_menshen(pkts):
5 if pkts.type == 0:
6 # length of the packets stream is 100
7 cycles = max(1320, pkts.sum_nr_words + 176)
8 else:
9 ...

10 return cycles*clk_period

Figure 7: Latency interface for Menshen.

Menshen. The interface for Menshen is extracted per packet-
stream with a fixed number of packets but of different sizes.
We do not show interfaces for VTA because (unlike the other
accelerators) it is a programmable domain-specific processor,
so it takes “programs” as input. VTA instruction sequences
contain thousands of instructions produced by compiling a
high-level program with TVM [15]. These performance inter-
faces are therefore program-dependent and long. We expect
developers to use other ltc tools instead of reading these.

5.3.2 Performance interfaces are accurate

We report in Table 3 the accuracy of the ltc-generated perfor-
mance interfaces for latency. As a baseline, we use the Verila-
tor cycle-accurate simulator to run the workloads on the accel-
erators’ RTL. We compare the prediction provided by the per-
formance interfaces to the values reported by Verilator. The
performance interface for Menshen is only evaluated using the
100-packet testbench; the other testbenches contain too few
packets to fill the pipeline, so lpn2pi’s assumptions don’t hold.
Of course, this does not affect the LPN’s accuracy (§5.2).

Prediction error
Accelerator Average Max

JPEG 7.04% 23.39%
Protoacc 2.40% 3.83%
Darwin 0.05% 0.06%
Menshen 9.43% 9.43%
VTA 19.49% 58.93%

Table 3: Prediction accuracy of extracted performance interfaces.

The average relative error is low (<20%) for all five ac-
celerators, despite performance interfaces being approximate.
They aim to capture the major factors that affect latency, not
predict precisely the latency, and (as discussed in §4.2) lpn2pi
introduces some inaccuracies.

The extracted performance interfaces for JPEG and VTA
have the largest maximum errors. As already explained, lpn2pi
does not capture the influence of bottleneck shifts on la-
tency (§4.2). In the JPEG decoder, the input is a stream of
image blocks. If one segment of blocks is highly compressed
and another is less compressed, the bottleneck for processing
segments of blocks will shift back and forth within the ac-
celerator. Similarly, in VTA, each of the parallel components
(fetch, load, compute, or store) can be the bottleneck during
different periods while processing the instructions.

In future work, we plan to extract a performance interface
for each phase of the input stream and add the latencies spent
in each phase to derive the final start-to-end latency.

5.3.3 LPN-based performance simulation is up to 3 or-
ders of magnitude faster than existing simulators

Another set of questions is “How do I generate code optimized
for accelerator X”, “How can I do that quickly, in compile-
and-run cycles typical of software development workflows”,
and “How can I evaluate my envisioned workload on an accel-
erator that isn’t available just yet?” These questions might be
relevant directly to developers, or to tools, such as the TVM
compiler for deep-learning models mentioned in §1. A com-
mon approach to answer such questions, when the real hard-
ware is not available, is to use cycle-accurate simulators.

lpn2sim provides substantial benefits, up to three orders
of magnitude. Fig. 8 shows lpn2sim’s speedup over Verila-
tor. All cycle-accurate simulators simulate both performance
and functionality, which is wasteful when only performance
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questions are being asked. Speedups are more significant with
larger accelerators, because there is more functionality that
the underlying LPN abstracts away.
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Figure 8: Simulation speedup: LPN-based simulation vs Verilator.

Table 4 shows the absolute simulation times. We believe
that orders-of-magnitude changes in performance simulation
time, such as going from ∼2 hours to ∼20 seconds, can bring
about qualitative changes in how the tools are used.

Simulation time
Accelerator Cycle-accurate Verilator LPN-based lpn2sim

VTA 119 min 19 sec
JPEG 2159 min 38 min
Protoacc 25 sec 0.08 sec
Darwin 0.13 sec 0.05 sec

Table 4: Simulation time: LPN-based simulation vs. Verilator.

To get a feel for the impact of faster simulation time on
developer productivity, we benchmark the auto-tuning process
in the TVM compiler, which optimizes deep-learning models
for accelerator targets (§5.1). Auto-tuning can be done either
upon initial compilation, or be manually triggered whenever
there are changes to the model, to the hardware, or to its
configuration. We compare end-to-end compilation time when
TVM uses Verilator vs. lpn2sim. Fig. 9 shows the outcome for
the 10 auto-tune tasks in our workload (§5.1). As part of this
auto-tuning, TVM generates 1,500 sequences of instructions,
ranging from 62 to 159,947 instructions.
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Figure 9: End-to-end compilation time, including auto-tuning. On
top of the compiler+lpn2sim bars we overlay the compiler+lpn2sim
vs. compiler+Verilator speedup. Despite the log-scale y-axis, one
needs to zoom in to see the small amount of time taken by lpn2sim.

lpn2sim reduces auto-tuning time to a negligible amount,
turning a highly non-interactive process into an interactive
compile-and-run cycle. This enables software engineers to
think differently about optimization, and to do it more often
and without the accelerator hardware. Even if engineers had
access to the actual hardware accelerator, using lpn2sim to
auto-tune allows many more developers to do so in parallel.
Compared to cycle-accurate simulation, it saves not only time
but substantial amounts of compute resources and energy.

5.3.4 LPN-based tools enable performance verification

Consider the JPEG decoder in the autonomous driving sce-
nario described in §1. To ensure safe operation in all circum-
stances, engineers need hard guarantees on the accelerator’s
performance, particularly for unseen and untested workloads.
lpn2smt makes it possible to prove non-trivial bounds that are
difficult to infer from source code or semantic interfaces.

The first example is determining, for some image compres-
sion ratio x%, the worst-case and best-case latency, and the
corresponding worst-case and best-case inputs. Take some
specific examples that may be relevant to the engineers: For a
typical 90% compression ratio, lpn2smt proves that the worst-
case decoding latency is 2,290 cycles for 12 RGB (18 YCrCb)
8×8 macro blocks. If the input images consist of 4 least-
compressed and 14 maximally-compressed macro blocks, the
best-case decoding latency is 1,717 cycles, and the difference
between worst-case and best-case latency is 33%. At a 75%
compression ratio, the worst-case and best-case decoding la-
tencies are 3,063 and 2,540 cycles, respectively. lpn2smt took
less than 2 minutes to find and prove these bounds.

Similarly, a Protoacc user may wonder about such bounds
for serializing a message with a fixed number of bytes. We
used lpn2smt to prove that, for message types with 16 fields
(total 10KiB), the latency is between 726 and 1,074 cycles.
SoC designers could leverage this kind of proofs when incor-
porating third-party accelerator blocks into their design and
reason about performance implications.

lpn2smt can also be used to prove bounds on the accuracy of
the performance interfaces produced by lpn2pi. Using lpn2smt,
we verified formally that the latency predicted by JPEG’s
performance interface will always be within at most 43% of
the LPN’s prediction for 12 RGB (18 YCrCb) 8×8 macro
blocks. This result is significant, because the input space is
6418 possible images, and thus infeasible to explore directly.
This bound is not tight, but guaranteed to be correct.

Of course, the strength of the guarantees depends on the ac-
curacy of the LPN. Validation tools (see §6 below) could pro-
vide confidence levels to accompany vendor-provided LPNs.

6 Discussion
In this section, we present further thoughts on how LPNs
can help accelerator vendors, whether LPNs leak intellectual
property, and how LPNs can be validated against the RTL.
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Using LPNs in the accelerator design stage. An LPN can
be written even before the accelerator’s RTL is finalized. This
LPN can be released to software engineers in the same orga-
nization, who can then start optimizing software for the accel-
erator using lpn2sim, as well as identify mismatches in perfor-
mance expectations early (using lpn2pi and lpn2smt), before
the design is finalized. Since accelerator vendors often release
SDKs along with their accelerators, the LPN can help speed
up development by providing visibility into the expected per-
formance behavior of the accelerator before it is built.

How much proprietary information does an LPN re-
veal? To ensure that LPNs can be shared beyond the same
organization and with software developers at large, they must
not leak proprietary information. We argue that this is the case,
since (1) most of the information revealed through the struc-
ture of the LPN is typically already revealed in architectural
block diagrams that are made public by vendors, and (2) while
LPNs provide additional information about the latency of the
different compute stages, they do not describe how the accel-
erator achieves this latency, nor give circuit-level details and
micro-architectural implementation details that are central
to achieving competitive frequency and power consumption.
That said, concerned vendors could still provide lower time-
resolution LPNs, i.e., LPNs with coarser-grained delay func-
tions; this reduces accuracy to safeguard proprietary details.

Validating LPNs. Since LPNs are distilled manually, they
can contain mistakes; hence, after being constructed, LPNs
should be validated. Developers could validate the LPN
against the RTL using their RTL testbenches. Validating an
LPN against the RTL is similar to how engineers validate the
RTL itself using functional simulators, code reviews, and test-
benches. Nevertheless, we plan to pursue building automated
tools that can formally validate LPNs against the RTL.

7 Related Work
Petri nets have long been used to model and evaluate the per-
formance of systems [24]. Furthermore, languages modeling
a system of queues and actors are not a new idea. Kahn net-
works [52], dataflow networks [3, 23], and synchronous lan-
guages [8] share similarities with LPNs: more or less explic-
itly describing the flow of tokens in the system.
Analytical modeling of accelerators: Amid the rise of
domain-specific accelerators and the need for efficient code
generation, research explored semi-analytical modeling for
performance models of Domain Specific Accelerators (DSA).
For example, to search for good tiling and mapping of loop
nests on dense tensor accelerators, [65] proposed performance
models that can quickly evaluate the performance of running
various loopnests on a family of accelerators. [62] tackles a
similar problem for sparse tensor accelerators, and [33] for a
SmartNIC. Those approaches use domain-specific knowledge
in their modeling, so they typically don’t offer abstractions or
methodologies that can be reused in other domains. LPNs are
domain-agnostic and provide a general substrate for building

performance models of accelerators. There are also analytical
models for accelerators that focus on data movement costs or
asynchronous operations with the CPU [1, 19, 75], rather than
the performance of the accelerator itself. Those models have
a coarser modeling granularity than LPNs.
Performance models in the hardware community: The
monograph [26] covers performance modeling techniques in
detail. Analytical models based, for example, on Amdahl’s
law have studied various computing scenarios to establish per-
formance trends [27,36]. Similarly, the roofline model [84] al-
lows simple modeling to compute performance upper bounds.
Other analytical models [56,57] build good predictors of pro-
cessor performance from a few numbers: number of cache
misses, branch mispredictions, etc. Finally, interval simula-
tion [14, 30, 37] measures the distribution of performance-
structuring events (cache misses and mispredictions) and pro-
file the performance of the machine around those events to
produce performance models. The way we construct perfor-
mance interfaces from LPNs leverages similar principles.

Machine learning has been used to produce so-called pre-
dictive performance models of systems [25, 41, 47, 72]. These
models are incomplete representations of performance, as
they can only answer the questions they were trained on.

The use of simulators [10, 39, 76] to model performance is
a battle-tested strategy. To make simulation faster, sampled
simulation has been proposed [83, 85]. Challenges include
computing warm states (caches, predictors, etc.) and identi-
fying representative parts of benchmarks [6, 38, 67]. Finally,
FPGAs [18, 54, 77, 78] can be used to speed up simulation,
but FPGA simulation is possible only when the RTL is avail-
able, and compilation for FPGA is slow.

In contrast to these approaches, LPNs not only produce ac-
curate executable models of hardware but can also be trans-
formed into other useful representations (such as performance
interfaces) to address broader performance questions.

LPNs for accelerators are complementary to host simula-
tors like gem5 [10]. One can replace the gem5+RTL simu-
lation mode with gem5+LPN for accelerators. gem5+RTL
is normally bottlenecked by the RTL simulation, and
gem5+LPN would shift the bottleneck to gem5.

8 Conclusion
Performance interfaces promise to offer a standardized view
of accelerator performance. Despite the complexity of acceler-
ators and system software, the LPN IR we propose can accu-
rately represent the dynamics of various accelerators, and ltc
can answer non-trivial and valuable performance questions.
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Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Sco-
patz, A. SymPy: symbolic computing in Python. PeerJ
Computer Science 3 (Jan. 2017), e103.

[62] Nayak, N., Odemuyiwa, T. O., Ugare, S., Fletcher, C. W.,
Pellauer, M., and Emer, J. S. TeAAL: A declara-
tive framework for modeling sparse tensor accelerators,
2023.

[63] Nider, J., and Fedorova, A. S. The last CPU. In Work-
shop on Hot Topics in Operating Systems (2021).

[64] Norrie, T., Patil, N., Yoon, D. H., Kurian, G., Li, S.,
Laudon, J., Young, C., Jouppi, N. P., and Patterson, D. A.
Google’s training chips revealed: TPUv2 and TPUv3.
In IEEE Hot Chips Symposium (2020).

[65] Parashar, A., Raina, P., Shao, Y. S., Chen, Y.-H., Ying,
V. A., Mukkara, A., Venkatesan, R., Khailany, B., Keck-
ler, S. W., and Emer, J. S. Timeloop: A systematic ap-
proach to DNN accelerator evaluation. In IEEE Intl.
Symp. on Performance Analysis of Systems and Software
(2019).

[66] PCI Express Technology. https://
www.mindshare.com/files/ebooks/PCI%
20Express%20Technology%203.0.pdf.

[67] Perelman, E., Hamerly, G., Biesbrouck, M. V., Sher-
wood, T., and Calder, B. Using SimPoint for accurate
and efficient simulation. In ACM SIGMETRICS Conf.
(2003).

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    871

https://www.kaggle.com/datasets/mingyuouyang/div2k-jpeg-0400
https://www.kaggle.com/datasets/mingyuouyang/div2k-jpeg-0400
https://www.kaggle.com/datasets/mingyuouyang/div2k-jpeg-0400
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://arxiv.org/abs/2105.06619
https://www.mindshare.com/files/ebooks/PCI%20Express%20Technology%203.0.pdf
https://www.mindshare.com/files/ebooks/PCI%20Express%20Technology%203.0.pdf
https://www.mindshare.com/files/ebooks/PCI%20Express%20Technology%203.0.pdf


[68] Performance interfaces (project website). https://
dslab.epfl.ch/research/perf.

[69] Peterson, J. L. Petri nets. In ACM Computing Surveys
(1977).

[70] Pourhabibi, A., Gupta, S., Kassir, H., Sutherland, M.,
Tian, Z., Drumond, M. P., Falsafi, B., and Koch, C. Opti-
mus Prime: Accelerating data transformation in servers.
In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (2020).

[71] Protocol buffers. http://code.google.com/p/
protobuf/. Accessed on 1-Dec-2023.

[72] Qiu, Y., Xing, J., Hsu, K., Kang, Q., Liu, M., Narayana,
S., and Chen, A. Automated SmartNIC offloading in-
sights for network functions. In Symp. on Operating
Systems Principles (2021).

[73] Ranganathan, P., Stodolsky, D., Calow, J., Dorfman, J.,
Hechtman, M. G., Smullen, C., Kuusela, A., Laursen,
A. J., Ramirez, A., Wijaya, A. A., Salek, A., Cheung, A.,
Gelb, B., Fosco, B., Kyaw, C. M., He, D., Munday, D. A.,
Wickeraad, D., Persaud, D., Stark, D., Walton, D., Indu-
palli, E., Perkins-Argueta, E., Lou, F., Wu, H. K., Chong,
I. S., Jayaram, I., Feng, J., Maaninen, J., Lucke, K. A.,
Mahony, M., Wachsler, M. S., Tan, M., Penukonda, N.,
Dasharathi, N., Kongetira, P., Chauhan, P., Balasubra-
manian, R., Macias, R., Ho, R., Springer, R., Huffman,
R. W., Foss, S., Bhatia, S., Gwin, S. J., Sekar, S. K.,
Sokolov, S. N., Muroor, S., Rautio, V.-M., Ripley, Y.,
Hase, Y., and Li, Y. Warehouse-scale video acceleration:
Co-design and deployment in the wild. In Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (2021).

[74] Smith, J. E. Decoupled access/execute computer archi-
tectures. ACM Trans. Comput. Syst. 2, 4 (1984), 289–
308.

[75] Sriraman, A., and Dhanotia, A. Accelerometer: Un-
derstanding acceleration opportunities for data center
overheads at hyperscale. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems
(2020), pp. 733–750.

[76] Sánchez, D., and Kozyrakis, C. ZSim: fast and accurate
microarchitectural simulation of thousand-core systems.
In Intl. Symp. on Computer Architecture (2013).

[77] Tan, Z., Qian, Z., Chen, X., Asanovic, K., and Patterson,
D. A. DIABLO: A warehouse-scale computer network
simulator using FPGAs. In Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems (2015).

[78] Tan, Z., Waterman, A., Avizienis, R., Lee, Y., Cook, H.,
Patterson, D. A., and Asanovic, K. RAMP gold: an
FPGA-based architecture simulator for multiprocessors.
In Design Automation Conf. (2010).

[79] Tork, M., Maudlej, L., and Silberstein, M. Lynx: A
SmartNIC-driven accelerator-centric architecture for
network servers. In Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (2020).

[80] Ultra-Embedded. High-throughput JPEG decoder.
https://github.com/ultraembedded/core_jpeg.
Accessed 1-Dec-2023.

[81] Veripool. The Verilator simulator. https://
www.veripool.org/verilator/. Accessed 1-Dec-
2023.

[82] Wang, T., Yang, X., Antichi, G., Sivaraman, A., and
Panda, A. Isolation mechanisms for high-speed packet-
processing pipelines. In Symp. on Networked Systems
Design and Implem. (2022).

[83] Wenisch, T. F., Wunderlich, R. E., Ferdman, M., Aila-
maki, A., Falsafi, B., and Hoe, J. C. SimFlex: Statistical
sampling of computer system simulation. In IEEE/ACM
Intl. Symp. on Microarchitecture (2006).

[84] Williams, S., Waterman, A., and Patterson, D. A.
Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM 52, 4 (2009).

[85] Wunderlich, R. E., Wenisch, T. F., Falsafi, B., and Hoe,
J. C. SMARTS: Accelerating microarchitecture simula-
tion via rigorous statistical sampling. In Intl. Symp. on
Computer Architecture (2003).

[86] Zuberek, W. Timed Petri nets definitions, properties,
and applications. Microelectronics Reliability (1991).

872    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://dslab.epfl.ch/research/perf
https://dslab.epfl.ch/research/perf
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
https://github.com/ultraembedded/core_jpeg
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/


A Artifact Appendix
Our work is part of the umbrella project on performance
interfaces [68], which aims to increase performance clarity
for systems code and hardware, as well as formally prove
performance properties. All artifact materials are available on
the project website.

The artifact has three parts: LPN, ltc, and the benchmarks.
Both LPN and ltc are available through an lpnlang Python
package. For the first part, LPN includes several constructs
for developers to build their own LPNs. The LPNs we built
also serve as examples of how to use those constructs. For
the second part, we provide simple scripts to run ltc, which
includes using lpn2pi to extract executable performance in-
terfaces, using lpn2smt to verify performance properties, and
using lpn2sim for fast performance simulation. Note, a new
LPN may contain structures that cannot be analyzed by the
tools in ltc; in such cases, ltc will raise an error. Automati-
cally transforming a general LPN as defined in §3 to an LPN
amenable to analysis by ltc’s tools is left as a future work.

In the third part, we provide benchmarks that are used in
the paper and scripts to easily run them. Note that, to simulate
the Protoacc RTL, the whole SoC needs to be simulated, and
the simulation is slow. The simulation speed we provided in
§5 for the Protoacc RTL does not include the SoC simulation.
The artifact contains also a Docker image with a ready envi-
ronment to run the tools and the benchmarks. As LPN simu-
lation normally runs for a very short amount of time, repro-
ducing the results requires that the hardware be kept stable:
disable hyperthreading, disable CPU frequency variation, etc.

We will be updating LPNs to improve readability, usabil-
ity, simulation speed, and accuracy. ltc is also subject to up-
dates that improve accuracy of lpn2pi and/or the time it takes
lpn2smt to prove/disprove performance properties. The ltc
toolchain will evolve to include more tools and improvements.

A.1 Formal definition of an input class
To fully understand how input classes are implemented and
used in ltc, we present here a more detailed definition to com-
plement that of §4.1.

A trace e of an LPN is a sequence of transition-commit
records, represented as tuples 〈Tid ,KI ,KO,s〉. A trace charac-
terizes the outcome of executing an LPN (as per the defini-
tion of “execution” in §4.1). The first component of a record
is the transition Tid whose commit was recorded. The second
and third component is the input set KI , respectively output
set KO, of token IDs corresponding to the tokens consumed
(respectively produced) by the commit of Tid . Once a token is
consumed, it vanishes forever, so a token identifier can appear
at most twice in a trace: as part of the commit that produced
it and (possibly) as part of the commit that consumed it. The
fourth component of a trace record is a sequence number s that
represents the transition’s commit timestamp augmented with
sequencing information s.t. 〈T,∗,KO,s〉∧ 〈T ′,K′I ,∗,s′〉∧ s <

s′ ⇒ transition T committed before transition T ′ (and thus
KO was available at the same time as K′I), even if T and T ′

committed at the same timestamp.
In a valid LPN trace, an input token can never be consumed

before it is produced, i.e., for all records 〈Tid ,KI ,KO,s〉 and
〈T ′id ,K′I ,K′O,s′〉, s < s′⇒ KI ∩K′O = /0

For the rest of this section, timestamps are no longer rele-
vant, so we drop them from our notation. We define the opera-
tor [|.|] that, for a given LPN, takes a set of initial input tokens
and produces a trace e of the execution of that LPN. We define
the relation ∼1 between pairs of traces that determines if the
two traces are equivalent modulo “harmless” permutations of
records as follows (l1++ l2 concatenates sequences l1 and l2):

pre++[〈Tid1 ,KI1 ,KO1〉;〈Tid2 ,KI2 ,KO2〉]++pos
∼1

pre++[〈Tid2 ,KI2 ,KO2〉;〈Tid1 ,KI1 ,KO1〉]++pos

A permutation as shown above is harmless if (1) id1 6=
id2; (2) Tid2 did not consume a token produced by Tid1 in
the corresponding commit, i.e., KO1 ∩KI2 = /0 (trace validity
already implies that KO2 ∩KI1 = /0); and (3) Tid1 and Tid2 do
not conflict, i.e., they do not share an output or an input place.

We define relation e1∼ e2 as the reflexive, transitive clo-
sure of ∼1 over the set of traces of a given LPN. We can now
define the set of all traces that are harmless permutations of
an initial trace e as ē = {e′|e∼ e′}.

Given a trace e, we abstract it by dropping all the token
IDs and keeping only the cardinality of the input and output
sets in each record. Formally, we obtain the abstract trace
α(e) = map(γ,e) by applying the operator γ(〈Tid ,KI ,KO〉) =
〈Tid , |KI |, |KO|〉 to each record in e.

We say that the inputs (i.e., sets of initial tokens) i and i′

are in the same input class if and only if {α(e)|e ∈ [|i|]} =
{α(e)|e ∈ [|i′|]}.

A.2 Input class separation algorithm
Both lpn2pi and lpn2smt rely on a pre-processing step that
partitions a user-defined input space into input classes. This
pre-processing tool employs symbolic execution [13].

Before diving into the details of the tool, we first define the
concept of a conflict-free transition. A transition T is conflict-
free if and only if its input places are not input places for any
other transition, and its output places are not output places for
any other transition.

The tool symbolically executes the LPN with symbolic
inputs, i.e., input space defined by the user. The tool has
three main steps: (1) it first groups LPN transitions into
sorted strongly-connected components (SCCs). Transitions
are grouped into SCCs according to the edge directions re-
gardless of the edge functions. (2) It then iteratively commits
conflict-free transitions. The timestamp of a commit is com-
puted locally based on the tokens (locked in the input places)
and on the transition’s delay. After a transition becomes en-
abled, the tool commits it immediately without waiting for a
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delay and without synchronizing with other transitions’ com-
mits. This implies that a commit with a timestamp ts1 can be
materialized before a commit from another transition with
ts2, where ts1 > ts2, The produced tokens will carry the times-
tamp of the commit that produced them. (3) Once there are
no more conflict-free transitions to commit, it commits one
conflicting transition at a time, synchronously (with priority
given to transitions in SCCs preceding other SCCs); this im-
plies that the earliest commit is materialized first.

After symbolically executing the LPN exhaustively, the
tool will find multiple paths. The input constraints associated
with each path defines an input class.

A.3 Estimating gT and εT in lpn2pi
To complement the description in §4.2, we provide further
details on how gT and εT are estimated, as well as assumptions
made by lpn2pi.

We first define loops and properties of loops that lpn2pi
handles. A loop in LPN is an alternating sequence of places
and transitions Pn→ T1→ P1→ . . . → Tn→ Pn. Assume, for
simplicity, that weights of edges are constants. lpn2pi only
handles loops with the following properties:

1. The loop does not fully contain another loop, i.e., no
strict subset of places and transitions in this loop forms
another loop.

2. The loop has one and only one place with initial tokens.

3. The loop guarantees token conservation. Without loss of
generality, assume the place with initial tokens is Pn, and
it has M initial tokens. Token conservation means that ini-
tial tokens in Pn flow through the transitions, potentially
changing in quantity, but eventually all M tokens flow
back to Pn. This completes an iteration through the loop.
More formally, a loop is token conserving if
wTnPn
wPnT1

× wT1P1
wP1T2

× ...×
wTn−1Pn−1

wPn−1Tn
= 1, where wTiPj is the

weight of the edge from Ti to Pj.

Given these assumptions, the loop delay ∆ and parallel factors
FTi for each transition Ti are calculated as shown below. Recall
that, initially, gT of each transition is set to T.δ, and that εT =
N×gT , where N is the number of commits for transition T .

∆ =
n

∑
i=1

(
Ti.δ+gTi

×
(

FTi

C
−1

))
with FT1 =

M
wPnT1

, FT2 = FT1 ·
wT1P1

wP1T2

, FT3 = . . .

C = min(FT1 ,FT2 , . . . ,FTn)

and gTk
= max

(
gTk

,
∆

FTk

)
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Abstract
The guarantees of formally verified systems are only as

strong as their trusted specifications (specs). As observed by
previous studies [22, 52], bugs in formal specs invalidate the
assurances that proofs provide. Unfortunately, specs—by their
very nature—cannot be proven correct. Currently, the only
way to identify spec bugs is by careful, manual inspection.

In this paper we introduce IronSpec, a framework of au-
tomatic and manual techniques to increase the reliability of
formal specifications. IronSpec draws inspiration from clas-
sical software testing practices, which we adapt to the realm
of formal specs. IronSpec facilitates spec testing with au-
tomated sanity checking, a methodology for writing Spec-
Testing Proofs (STPs), and automated spec mutation testing.

We evaluate IronSpec on 14 specs, including six specs of
real-world verified codebases. Our results show that IronSpec
is effective at flagging discrepancies between the spec and
the developer’s intent, and has led to the discovery of ten
specification bugs across all six real-world verified systems.

1 Introduction

Formal verification has emerged as a promising technique
for increasing the robustness of complex systems by helping
developers prove that their implementation meets a formal
specification. As promising as this approach is, it has a funda-
mental Achilles’ heel: its guarantees of eliminating all bugs
in the implementation rely on the specification being correct.

The crucial observation that the guarantees of a mechanized
proof are only as strong as their specifications is not new and
was first identified in 1985 [33]. Specifications (a.k.a. specs)
are inherently trusted, rather than proven correct. Relying
on trust alone is not enough to ensure that specs remain bug
free. If a spec contains a bug, proving that the system meets
this spec may be meaningless; the proven system could also
contain a bug that is hidden by the buggy spec.

The correctness of specifications is the rock upon which the
entire edifice of formal verification is built.

Despite the importance of writing correct specs, current
best practices rely solely on manual inspection. Developers
argue [25,26] that because specs are typically small compared
to the size of the corresponding proof and implementation,
it is feasible to manually inspect specs thoroughly enough
to ensure that they capture the intended behavior of the
system. While expert developers are more likely to write
correct specs, they are not infallible. As formal verification
becomes widely adopted, more and more non-experts will
write specs, only exacerbating the risk of introducing bugs.
Thus, it is imperative that the process of writing specs be as
robust as possible.

In fact, several studies [22, 32, 52], through extensive man-
ual effort, have shown that formally verified systems—many
of which were developed by experts in formal verification—
contain critical bugs, which originate with problems and in-
consistencies in their specs. For example, in January 2022,
Notional Finance found a double-spending vulnerability in
a deployed verified smart contract missed by manual inspec-
tion [34]. In this case, part of the spec was vacuous, causing
it to be too weak, and thus the proof would still pass with a
buggy implementation.

Since a spec is a formal expression of a developer’s intent,
proving the spec correct is ultimately impossible. Ensuring a
spec matches a developer’s intent will always be best-effort.
Whilst no approach can guarantee a bug-free spec, that does
not mean attempts to do so must exclusively rely on extensive
manual effort and system expertise to resolve. Indeed, there
are no structured or automated approaches for a developer
to debug this complicated state space. To fill this gap, we
propose a means to better handle this challenge.

Inspired by classic testing techniques [17, 24, 48], we in-
troduce IronSpec, a spec testing framework. To enable test-
ing specs, IronSpec adapts the automation of mutation test-
ing [19, 31] and sanity checking along with a customized
manual testing approach inspired by unit testing. Together,
this framework introduces a systematic way to boost assur-
ance that a spec captures the intended behavior of the system.

If there is a bug in a spec, it originates in the same manner
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as any other type of bug; there is a disconnect between the
intent of the developer and what is written. A spec is incorrect
if it is too weak, allowing for the existence of even a single
implementation that exhibits undesired behavior, or if the spec
is too strong, precluding some desired behavior. To identify
spec bugs, we leverage the insight that spec bugs manifest
themselves as a consequence of a disconnect of intent to
search for and highlight such disconnects through structure
and automation.

IronSpec aids in pinpointing where the developer’s intent
diverged from the current spec by providing various tools
that encapsulate this notion. Common cases where the in-
tent of the developer deviated from the spec can be flagged
with IronSpec’s Automatic Sanity Checker. If a system has a
passing proof, IronSpec leverages this to provide additional
automation with spec mutation testing. Mutation testing can
automatically identify cases where the behavior of the imple-
mentation differs from the spec, by using the proof to identify
relevant mutations. The hints of potential intent disconnect
provided by automation are bolstered by a manual methodol-
ogy for writing Spec-Testing Proofs (STPs). STPs are inspired
by traditional unit testing and allow developers to test if their
understanding of what behavior the spec should allow matches
the current spec. STPs can be used to investigate the hints
provided by automation to either confirm the existence of a
bug or to absolve the disconnect as intended behavior.

We evaluate IronSpec by testing six specs produced in-
house, two specs containing artificial bugs that were studied
in Abreu et al. [6], and six specs of open-source verified sys-
tems. We demonstrate the effectiveness of the automation and
manual testing methodology of IronSpec by describing ten
spec bugs found across a verified Distributed Validator Proto-
col [4], a verified SAT solver [7], a verified QBFT system [2],
a formal spec of the Eth2.0 spec [1], daisy-nfsd [15], and a
verified AWS Encryption SDK library [3].

Overall, this paper makes the following contributions:

• Introduces IronSpec, a spec testing framework that al-
lows developers to pinpoint places where the current
spec may have diverged from their original intent.

• Proposes an Automatic Sanity Checker, a testing method-
ology for writing Spec-Testing Proofs (STPs), which are
applicable to test specs even in the absence of a com-
pleted proof or implementation, and describes how to
adapt mutation testing to specs to automatically identify
divergences between the spec and the implementation.

• Demonstrates the effectiveness of IronSpec, by illustrat-
ing how we applied IronSpec to six real-world, verified
systems leading to the discovery of ten spec bugs.

2 Manually Scrutinizing Specifications

Relying on manual inspection alone to ensure an intended
specification is not practical. Fonseca et al. [22] performed a

study aimed to challenge the assumption that just because a
system is verified, it is bug-free. In this study, the authors thor-
oughly examined three formally verified distributed systems,
IronFleet [26], Verdi [53], and Chapar [41] and identified six-
teen bugs across their specifications, verification tools, and
their unverified shim layers. Two of these bugs were found
to be in specifications. This study was chiefly manual and
required close examination of the respective specifications to
identify. The authors do introduce some basic automation, yet
their techniques still rely predominantly on manual effort and
expertise in the system. This work demonstrated the need for
and acknowledges the lack of a more rigorous and automated
approach to testing formal specifications. Similarly, Yang et
al. [54] conducted a bug study of compilers and discovered
two bugs within the verified compiler CompCert due to under-
specification, and similarly observed that specifications are
complex and lack scrutiny.

The concerning discovery of these previous works identi-
fies the gap that this work aims to fill; to provide a means for
developers to help automatically and methodically identify
specification bugs across the spectrum of specifications.

Complicating this problem, specifications can take on dif-
ferent forms, making uniform debugging approaches difficult.
In their simplest form, specifications can be in-line predicate
assertions [29]; boolean functions that check the state of the
system against some property. A more specific class of predi-
cate assertions based on the Floyd-Hoare style logic [21, 28]
are preconditions and postconditions, which establish invari-
ants about the state of the program before and after the exe-
cution of a piece of code. For more complex systems, rather
than directly proving properties about the system, it can be
easier [26, 53] to prove state machine refinement [37]. For
refinement, the specification is an abstract state machine that
encapsulates the desired behavior of the system.

To highlight the subtlety of trying to manually ensure a
specification is correct, consider an incorrect specification
for a simple Sort method found on line 3 of Specification 1.
This Sort method takes a sequence of integers as input and
promises to return a sorted sequence of integers in ascend-
ing order. The specification for this method is a single post-
condition which ensures that the value at every index in the
output sequence is less than or equal to the value at subse-
quent indices. At first glance, this may seem to be a correct
specification for Sort—a mistake that many newcomers to
verification make.

However, this specification is incorrect, as it neglects to
mention any relationship between the input and output se-
quences. This is considered a buggy specification because
a proof could still pass even with an incorrect implementa-
tion that exhibits undesired behavior, erroneously giving the
illusion of correctness. For example, if the input sequence
were [1,6,7,2], an incorrect implementation could arbitrar-
ily return [1,42,100] or even the empty sequence [ ]. The
incorrect implementation for Sort in Specification 1 is triv-
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Specification 1 Incorrect Sort Spec
1 method Sort(input:seq<int>)
2 returns (out:seq<int>)
3 ensures forall i | 0 <= i < |output| - 1 ::
4 out[i] <= out[i+1]
5 { return []; }

Specification 2 Correct Sort Spec
1 method Sort(input:seq<int>)
2 returns (out:seq<int>)
3 ensures forall i | 0 <= i < |output| - 1 ::
4 out[i] <= out[i+1]
5 ensures multiset(input) == multiset(output)
6 { /* body omitted */ }

ial and always returns an empty sequence. Yet, the proof for
this method would still pass, as this trivial implementation
satisfies the incorrect, too-weak specification.

Manually identifying a spec bug, like that in Specification 1,
can be challenging. In fact, a correct specification for Sort
should also capture the relationship between the input and
output by adding an additional post-condition to ensure that
the multiset of the input is equal to the multiset of the output,
see line 5 in Specification 2.

The opposite case, where a specification is too strong, can
be equally as important and challenging to manually iden-
tify. For example, if we replace line 5 in Specification 2 with
ensures input == output, the specification becomes un-
necessarily strong. Multisets do not take order into account,
whereas sequences do, so the updated postcondition is overly
strong. The only input and output pair that could satisfy this
specification is if the sequences are identical and already in
ascending order. Even if one has a correct implementation of
Sort, proving that the implementation upholds this specifica-
tion is impossible. To debug the inevitably failing proof, the
developer must examine their implementation for bugs, check
their proof for missing invariants and manually inspect their
spec to make sure it captures the intended behavior. Having
high confidence in the spec would make this scenario much
more unlikely and would give the developer more time to
focus on the proof itself, knowing they are proving the right
property.

3 How To Test A Specification

It is challenging to diagnose spec bugs because specs are
trusted, and a buggy spec can often be at odds with a devel-
oper’s original understanding of the system. Complicating
the problem, specs are often intended to be abstract, allowing
different, correct implementations to meet the spec. Hence,
we introduce IronSpec, a framework for testing specs to help
gain confidence that a spec is bug-free. This work represents
the first systematic effort to bridge the gap between the mature

and extensive work in software testing and the lack of rigor
in ensuring spec correctness.

IronSpec is inspired by the insight that the existence of
a spec bug is inherently due to a disconnect between what
the developer intended and what properties were actually
captured in the spec. IronSpec provides tools to allow a tester
to identify and test possible occurrences where the original
intent of the developer may have diverged from the current
spec. Some aspects of IronSpec only rely on the spec and
have no dependence on the existence of an implementation or
a passing proof. However, if there is an implementation and
a corresponding passing proof, IronSpec can leverage this to
use the implementation as an additional reference point to
help focus the testing process.

This section introduces and provides a high-level overview
behind the ideas of why each testing component of IronSpec
is useful in exposing disconnects between the intent of the
developer and their spec. Section 4 discusses each in more
detail.

3.1 Testing Specifications In The Absence Of
A Passing Proof

Akin to test-driven development [10], it is desirable to test a
spec without requiring a proof or corresponding implementa-
tion. If there is a bug in the spec when it comes time to write a
proof, a developer may struggle and expend unnecessary man-
ual effort in debugging in the wrong place. The Automatic
Sanity Checker and Spec-Testing Proofs (STPs) provide two
frames of reference for a tester to check their specs against,
even in the absence of an implementation and proof.

Regardless of the context of the system, it is clearly never in-
tended for a verified method to be permitted to return arbitrary
values. If the spec is too weak, an incorrect implementation
might be free to return any value, unconstrained by the spec.
The Automatic Sanity Checker raises high-confidence flags
when the spec of a verified method fails to properly constrain
its output based on the given input. The sanity checker also
alerts the developer to partially constrained input and output,
which provide weaker hints to the existence of spec bugs but
are also worthwhile to investigate further.

Because the Automatic Sanity checker only looks for under-
constrained input and output, this technique can be used even
in the absence of an implementation or proof. Section 4.1
describes the Automatic Sanity Checker in more detail.

The Automatic Sanity Checker excels at automatically find-
ing common spec bugs by leveraging generic code patterns,
but cannot leverage any user-provided hints and insights. We
address this gap by introducing a methodology for manu-
ally writing Spec-Testing Proofs (STPs). STPs are inspired
by traditional unit tests and are proofs about the spec for
context-specific input and output. STPs help developers ex-
pose differences between the expected behaviors they intend
to include in the spec and what is currently permitted. This
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testing methodology is useful in the presence of a passing
or failing proof, but can also be applied in the absence of a
proof. Section 4.2 explains how to write STPs and interpret
their results.

An STP is, by definition, a proof; this is the key difference
between STPs and standard unit tests. Since STPs are proofs,
STPs help to answer different questions than what unit tests
allow for. Instead of attempting to prove a general property, an
STP demonstrates the validity of the spec for a specific, con-
cretized value or a range of values. This testing methodology
exploits the insight that crafting proofs for specific cases is
often less challenging than producing a comprehensive proof
and can frequently be proved by the verifier with minimal
manual intervention. Each STP is a small proof about distinct
properties of the spec. The steps of writing STPs are generic,
and so can be useful tools in investigating the correctness of
many variations of specs.

Differing from a failed unit test, if an STP fails to verify,
it could be for various reasons. The STP may fail due to a
divergence between the expectation of the spec and the STP,
indicating a bug. If the tester suspects that a disconnect caused
the failed proof, the appropriate next step is to write a con-
crete Counterexample STP. The counterexample proves that
unintended behavior is permitted by the spec. Alternatively,
an STP may fail because the STP body lacks sufficient proof
annotations for the verifier to prove the final postcondition.
Distinguishing between a spec bug and the need to add proof
to the body of the STP is impossible to immediately diag-
nose for every case because in this work we are targeting
undecidable programs.

3.2 Testing Specifications With The Assistance
Of A Passing Proof

Even when a system is verified with a passing proof, it is still
possible for the system to contain bugs if the spec itself is
buggy; thus testing a spec at this point is still very valuable. A
too-weak spec could allow for a proof to pass with an incor-
rect implementation, falsely giving the illusion of correctness.
Alternatively, even if the current implementation contains no
bugs, a too-weak spec could allow for a buggy update to the
current implementation, such that a proof would still pass
with the same too-weak spec. Relying on a developer to write
a bug-free implementation given a buggy spec, goes against
the very reason to verify systems in the first place; so it is just
as vital to identify spec bugs when the proof passes.

Using the Automatic Sanity Checker and writing STPs
are applicable when testing a spec with a passing proof, but
the proof and implementation together contain untapped in-
formation that can further assist testing. Like the spec, the
implementation also captures the intent of the developer. Iden-
tifying the difference of intent between the behavior allowed
by the spec and what is actually in the implementation, calls
the developer’s attention to potential disconnects. IronSpec

can take advantage of the proof and implementation to auto-
matically test a spec with mutation testing. Mutation testing
identifies cases when the spec is weaker than the current im-
plementation. IronSpec uses the passing proof as a reference
point to automatically distinguish cases where the existing
implementation is weaker than the behavior allowed by the
spec. Further details concerning how IronSpec adapts muta-
tion testing to specs are described in Section 4.3.

Departing from traditional mutation testing, IronSpec starts
with a spec, implementation, and passing proof and then only
mutates the spec. IronSpec relies on an existing passing proof
to indicate whether a mutation should be killed, whereas tradi-
tional mutation testing relies on a test suite. A mutation is kept
and considered alive if the original proof still passes with the
mutated spec, indicating that the implementation also meets
this different spec. The behavior allowed by the original spec
but not the mutated spec serves as an example of a subset of
behavior that may not be intended.

The existence of even a single alive spec mutation serves
as a flag to the developer. An alive mutation is clear evidence
that a different spec still allows the proof to pass with the
unmodified implementation, and represents specific behavior
unaccounted for by the original spec. The difference between
the original spec and the passing mutated spec is a strong hint
for the tester to determine if that specific behavior is intended.
Identifying alive mutations is accomplished automatically, but
understanding the implication of any such alive mutation can-
not be automated and ultimately still relies on the developer’s
intuition to understand.

An alive mutation is simply a hint highlighting a diver-
gence between the spec and the implementation. However,
not all alive mutations immediately lead to the discovery of a
spec bug. If a spec is correct but also weaker than the current
implementation, there is a chance for an alive mutation to be
considered a false positive and marked as intended behavior.
In a contrasting, albeit rare case, if both the spec and imple-
mentation are buggy, but the implementation is not weaker
than the buggy spec, then no alive mutations may be found.

To reduce the chance of false positives only a subset of
the generated mutations are eventually considered. Logically
equivalent or weaker mutations than the original spec and mu-
tations that trivially make the proof pass can be safely ignored.
The details for how specs are mutated and what constitutes
valid mutations are expounded upon in Section 4.3.

Note that we deliberately mutate only specs and not im-
plementations for two reasons. Firstly, specs are smaller than
implementations, therefore reducing the number of mutations
necessary to consider. Secondly, mutating only the spec rather
than the implementation is advantageous for automation.
Specs, being boolean functions, enable automatic filtering
of irrelevant mutations. Assuming the proof passes given the
original spec, any logically weaker spec mutation will still
allow the proof to pass and does not provide any new relevant
information. By automatically checking the relative logical
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strength of a mutated spec in relation to the original, weaker
mutations can be identified and ignored. This automation
is impossible when mutating the implementation, as deter-
mining relative logical strength is not possible in all cases.
Logical relationships can be determined automatically for
boolean functions, like specs, whereas not all imperative code
shares this attribute. Implementation-based mutations would
increase the manual burden on the tester, as many more false
positives would be an unavoidable outcome that would require
manual effort to sift through. The process of automatically
filtering spec mutations is further explained in Section 4.3.2.

In certain cases, mutation testing is also useful in identi-
fying too-strong specs. A spec in the Hoare-Logic style can
also be considered incorrect by virtue of having a too strong
precondition. IronSpec’s mutation testing is still applicable
in this case. If the spec mutation target is a precondition,
rather than attempting to identify where the spec is discon-
nected from the implementation due to weakness, IronSpec
reverses the criteria used to determine relevant mutations by
considering mutations that are weaker than the original spec.

Mutation testing does not provide complete coverage of
spec testing but rather focuses the attention of the tester on a
disconnect between the spec and the implementation. STPs
can be used to help fill this gap. Focusing on writing STPs
about the discrepancy hinted at by an alive mutation leads to
a more efficient way of identifying bugs. STPs guided by the
hint of alive mutations can allow a tester either to arrive at a
counterexample, showing a bug in the spec, or to absolve the
alive mutation as intended behavior.

4 The IronSpec framework

IronSpec consists of three spec testing tools; an Automatic
Sanity Checker, a methodology for writing Spec-Testing
Proofs (STPs), and an automatic mutation testing framework.
Each assists in identifying and flagging divergences between
the developer’s intent and the existing spec.

The IronSpec prototype is built in C# as an extension to
Dafny [40], a verification-aware programming language that
enables verification with the Z3 SMT solver, and also supports
practical imperative implementations by compiling to C#,
Java, JavaScript, and Go. IronSpec was applied to test specs
written in Dafny, but the concepts of how to test specifications
are not Dafny-specific and could be re-implemented in other
environments.

4.1 Automatic Sanity Checker
The Automatic Sanity Checker (ASC) examines the input,
output, and spec of verified methods to identify cases where
the spec may be weaker than intended. The ASC implemen-
tation consists of approximately 300 lines of C# code and
achieves this check by traversing the AST of the method un-
der test while maintaining some local state. Table 1 outlines

Table 1: Automatic Sanity Checking Flags
Flag Severity Condition

LOW
Post conditions only depend

on a portion of the input

MED
Only part of the output is

constrained by the postconditions

HIGH
None of the postconditions
depend on any of the input

HIGH
None of the output is constrained

by any of the postconditons

the properties that are checked and their assigned severities.
All of these properties can be determined by examining the
AST, and as such, they can be checked efficiently without
invoking a verifier. Either of the HIGH severity flags signifies
a high likelihood of spec bugs, whereas the other severity
levels indicate a cause for additional manual inspection. Both
HIGH severity flags reveal a weakness in the flagged spec.
If the postconditions do not depend on the input, then the
weakness is in regard to the lack of necessity for that input.
Whereas, if the postconditions do not constrain the output, an
implementation with a passing proof could return arbitrary
output values. Regardless of the particular functionality of the
system, either case represents a clear disconnect between the
intent of a correct spec and the current spec.

The power of the Automatic Sanity Checker arises from ex-
ploiting the relationship between a spec and the input/output
of its corresponding method. Both HIGH severity flags signal
the condition when the spec constraints on the input/output
of the method are non-existent. If no postcondition depends
on any of the input values, then an obvious aspect of the spec
is missing. The buggy sort spec in Specification 1 exempli-
fies this scenario. The spec is not constrained at all by the
input, making the spec weak enough to allow for a proof of an
incorrect implementation to pass. Similarly, if a method has
an output not constrained by its postconditions, an incorrect
implementation can return any output. The lower severity
flags hint to partial violations of the general properties and do
not immediately indicate bugs; rather, they signal a missing
part of the spec that could be the source of a bug.

4.2 STP Methodology

The testing methodology outlines four classes of STPs. The
first three help guide developers in understanding the Useful-
ness, Correctness, and Provability of their specs. Lastly, if
there is a bug in the spec, developers can prove its existence
with a Counterexample STP. The methodology focuses on
specs written following the Hoare-Logic style [51] but can
be applied to any type of predicate-based spec. All types of
STPs enable the developer to prove a specific property about
their spec. A developer proves that context-specific input and
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Lemma 3 General Precondition STP
1 lemma PreconditionSTP(in:InType)
2 requires TestInputProperty(in)
3 ensures Precondition(in)
4 // or !Precondition(in)

Lemma 4 General Postcondition STP
1 lemma PostconditionSTP(in:InType,out:OutType)
2 requires TestInputProperty(in,out)
3 ensures Precondition(in)
4 ensures Postcondition(in,out)
5 // or !Postcondition(in,out)

output values are valid or invalid, and gauge if those results
match their intent based on their understanding of what the
spec should or should not permit. Lemma 5 is an example
of an STP which tests if a sort spec is strong enough to re-
ject specific invalid values. A passing STP shows that the
intent of the developer matches the spec and is a proof for
that particular property of the spec.

4.2.1 Writing STPs

The construction of different types of STPs share many simi-
larities, but the results are interpreted differently. STPs also
enable decoupling of pre- and postconditions so that they can
be tested individually. The general form for these STPs are
found in Lemmas 3 and 4.

Usefulness STPs help to answer the question of whether
the preconditions are weak enough to remain useful; the pre-
conditions should accept all intended valid inputs. Usefulness
STPs follow the general form of Lemma 3. The specific input
values are defined as part of the precondition for this lemma
as the TestInputProperty, and should be a value that the
test writer expects to be a valid input allowed by the spec. The
postcondition for a Usefulness STP should be the precondi-
tions from the spec, i.e. ensures Precondition(in).

Correctness STPs examine whether the postconditions are
strong enough to reject all intended invalid outputs. Writing
Correctness STPs is based on the general form of Lemma 4.
To test if the postcondition is strong enough to reject buggy
behavior, the test writer supplies an output value that is ex-
pected to be invalid and should not be allowed by the spec
i.e. ensures !Postcondition(in). To isolate testing the
postcondition from the precondition, the test writer should
also prove that the undesired output does not satisfy the spec
as a result of an invalid input value (Line 3 in Lemma 4),
ideally with a separate Usefulness STP validating the input.

Conversely to Usefulness and Correctness STPs, Provabil-
ity STPs test whether the preconditions are strong enough
and whether the postconditions are weak enough for the ex-
istence of a provable implementation. Provability STPs are
most useful before having a passing proof, as a passing proof
is evidence that the spec has this property. That said, they

Lemma 5 Correctness STP Example - Incorrect Sort Spec
1 lemma CorrectnessSTPSort(
2 input:seq<int>, sorted:seq<int>)
3 requires input == [42, 1, 500]
4 requires sorted == [42, 500]
5 ensures !SortSpec(input, sorted)
6 { }

can still provide value in the presence of a passing proof, as
they can test the strength of transitions in a state machine (see
Section 5.2.2).

STPs for Provability are concerned with both preconditions
and postconditions, thus follow the structure from both Lem-
mas 3, and 4. Precondition STPs prompt the test writer to
prove that expected invalid input should not pass the precondi-
tion, i.e. ensures !Precondition(in). Whereas postcon-
dition STPs check that input and output expected to be permit-
ted by the spec is allowed by the postconditions, i.e. ensures
Postcondition(in,out).

If suspecting a spec bug, a test writer can also directly write
a Counterexample STP. A passing Counterexample STP is
concrete evidence of a bug in the spec. Counterexample STPs
can take on two different forms but are still derivative of
Lemma 4 if concerned with postconditions and Lemma 3 for
preconditions. A Counterexample STP can either show that
an expected valid input-output pair is rejected by the spec
or that an expected invalid input-output pair is accepted.

4.2.2 Adding Proof Help To STPs

When an STP fails to verify, it could be due to a divergence
between the expectations of the test writer and the current
spec, indicating a spec bug, which can be confirmed with
a Counterexample STP, or it could be the result of the fun-
damental undecidability of this type of problem. If it is the
latter case, it is possible to circumvent this roadblock in some
instances by adding additional proof to the STP body.

The process of proving an STP is no different than writing a
proof for any lemma, but the specificity of the STP narrows the
scope necessary to reason about. However, before spending
the manual effort to add proof annotations to the body of an
STP, the first step is to negate the conclusion, i.e. the ensures
of the STP. Negating the conclusion transforms an STP into
a Counterexample STP. Thus, if the proof now passes there
is a clear indication of a bug.

As an example of the process of writing an STP, consider
the Correctness STP in Lemma 5 for the incorrect sort spec
from Specification 1. This STP tests that the sort spec should
reject the case when the output sequence is sorted, but only
contains a subset of the original input. The Sort method does
not have a precondition, so any input sequence would satisfy
a Usefulness STP, so this step can be skipped. Running a ver-
ifier on this STP would initially result in failing to prove the
postcondition automatically. Before spending manual effort to
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Table 2: Mutation Operators
Operator Description

AOR Arithmetic Operator Replacement
LOR Logical Operator Replacement
ROR Relational Operator Replacement
COI Constant Operator Insertion
UOR Unary Operator Replacement
ENO Expression Negation Operator

VNOR Variable Name Operator Replacement
SOR Set Operator Replacement
HOR Heap Operator Replacement

prove this STP, the first step is always to negate the postcon-
dition (i.e. changing Line 5 to ensures SortSpec(input,
sorted)), transforming the Correctness STP into a Coun-
terexample STP. The attempt to prove this counterexample
would now pass and serves as a concrete example of where
the spec has diverged from the test writer’s understanding.

4.3 Mutation Testing
If the system has a passing proof, IronSpec can leverage the
proof and implementation as a reference point for further au-
tomation. IronSpec systematically generates a set of specifica-
tion mutations, slight syntactical modifications of the original
spec, but only considers those that are not weaker than the
original spec. If the original proof still passes with one of
these stronger specs, this alerts the developer to the original
spec being weaker than the implementation; a disconnect that
may hint at an unintentional spec weakness.

All mutations are subjected to three verification-assisted
checks, outlined in the following subsections. Each of these
checks filter the set of mutations by discarding irrelevant
mutations; any discarded mutation is deemed killed. If a mu-
tation is still alive after all three checks, it serves as a hint of
a potential spec bug.

4.3.1 Mutation Generation

We generate mutations inspired by the method-level mutation
operators from MuJava [44,45] and from a study that used the
Z3 SMT solver to optimize a set of mutation operators based
on subsumption relationships [23]. We further introduce an
additional predicate-based mutation operator, Set Operator
Replacement (SOR). SOR introduces mutations about set
inclusion, for example, an expression, e∈ s, would be mutated
to become, e /∈ s or vice versa.

The IronSpec prototype is implemented in Dafny, so all
mutations are applied to expressions in the Dafny AST. For
Dafny expressions that reason about the heap, we introduce
the Heap Operator Replacement (HOR) mutation operator,
which mutates expressions containing the Dafny keyword

Lemma 6 IsAtLeastAsWeak Lemma
1 lemma IsAtLeastAsWeak(p:Params)
2 requires OriginalPredicate(p:Params)
3 ensures MutatedPredicate(p:Params)

Predicate 7 Mutation Target Example
1 predicate SafetyProperty(p:Params)
2 { SubPredA(p) ==> SubPredB(p) }

old. The full list of the mutation operators used in IronSpec
is shown in Table 2.

Each generated mutated spec is the result of IronSpec ap-
plying a single mutation operator at a time. The set of all
mutated specs consists of all possible single-operator muta-
tions for a given spec applied to each subexpression in the
mutation target.

An example of one of the many possible spec mutants start-
ing with the single postcondition from Specification 1 would
be: forall i | 0 <= i < |output| - 1 :: out[i] <
out[i+1]. This mutation is generated using the Relational
Operator Replacement (ROR) mutation operator which gen-
erates mutations by replacing relational-based operators from
the set of {==, <, <=, >, >=, !=}. One application of
this mutation operator results in replacing the <= to a < in the
RHS of the forall expression.

4.3.2 First Pass: Logical Redundancy

Not all mutations produced from the original spec are relevant.
A spec defines a set of behaviors, and a passing proof shows
that the behavior of a specific implementation is a subset of
the behavior allowed by the spec. A spec that is weaker than
the original would allow a larger set of implementations to
satisfy this subset property. Any mutated spec that is logi-
cally equivalent or weaker than the original spec would not
provide any new information to the tester about the current
implementation and can be safely disregarded.

A mutation can cause a spec to become weaker if it weakens
a postcondition or if it strengthens a precondition. Either case
allows for a larger set of implementations to satisfy the spec.
Therefore, for each mutation to a postcondition, IronSpec tests
if the mutation is at least as weak as the original spec.

Definition 4.1. Given predicates S and S′ with parameters p,
S is at least as weak as predicate S′ iff ∀p.S′(p) =⇒ S(p)

IronSpec captures this definition by automatically formu-
lating Lemma 6 for the original and mutated specs. If this
lemma passes, then the mutated spec must be equivalent to or
weaker than the original spec, indicating that it can be killed.

Conversely, if the mutation modified a precondition, Iron-
Spec checks the opposite, to see if the mutation is at least as
strong as the original spec. The lemma to check if a spec is at
least as strong as the original is similar to Lemma 6, but with
the requires and ensures reversed.
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Spec B

Original Spec
Spec A

Spec C

Figure 1: A mutated spec can either be strictly weaker (Spec
A), strictly stronger (Spec C), logically equivalent, or partially
stronger and weaker (Spec B) than the original spec.

As an example of Definition 4.1, consider Figure 1, where
each circle represents the set of behaviors allowed by each
respective spec. Any behavior in the circle encapsulated by
the Original Spec is still inside the set of allowable behaviors
of Spec A, making Spec A strictly weaker than the Original
Spec and thus would be automatically discarded based on
the result of Lemma 6. Both Specs B and C are not at least
as weak as the Original Spec and would survive the Logical
Redundancy pass.

The IsAtLeastAsWeak lemma is generated automatically to
test the spec’s overall safety property, rather than directly test-
ing the mutated expression. This is important to avoid false
positives. For example, consider if SubPredB(p) in Predi-
cate 7 contains the mutated expression. Testing the IsAtLeast-
AsWeak Lemma with just SubPredB(p) may fail, indicating
that this mutation is stronger than the unmodified version of
SubPredB(p), but this mutation may cause its caller, Predi-
cate 7, to become weaker.

4.3.3 Second Pass: Vacuity

IronSpec’s second pass aims to identify the mutations
that cause vacuity [36]. For example, if a mutation to
SubPredA(p) from Predicate 7 resulted in it always eval-
uating to false, then Predicate 7 would always be true. A
vacuous spec would allow for the system’s proof to pass triv-
ially because any behavior of the system would be allowed by
the vacuous spec. Checking vacuity is more complicated than
purely checking if the mutated predicate is itself vacuous, as
the conditions of a predicate that calls the mutated predicate,
in conjunction with the mutated predicate could result in the
caller becoming vacuous. This is especially important with
specs that are state machines where a mutation could cause a
state transition to become false, removing that behavior from
the spec. IronSpec automatically generates a lemma to check
for vacuity by considering the full call path.

4.3.4 Third Pass: Full Proof

The final check is to see if the full proof will pass with the
mutated spec. In this final pass, the system is re-verified with

the addition of the mutated spec to ensure that no intermediary
lemmas now fail. If the full proof passes, the mutation is
considered alive and serves as a flag to the developer to re-
examine the spec.

4.3.5 Hierarchical Classification of Alive Mutations

Rather than providing the tester with a list of all alive muta-
tions, IronSpec performs an additional pass to characterize
the alive mutations, minimizing the output to the most rel-
evant. To maximize the hint provided by an alive mutation,
IronSpec evaluates the set of alive mutations to calculate a
Direct Acyclic Graph (DAG) indicating which mutations are
weaker or stronger in relation to one another. The DAG is
structured so that each node is stronger than all of its children.
The tester need only further concern themselves with the root
of each connected component of this mutation DAG, as all
children are weaker than the root in each component. This
hierarchical classification is inspired by previous research to
classify and remove equivalent mutations [8, 23, 46, 50].

4.4 Using Alive Mutations As Hints For STPs
When testing specs, human intuition is always the final oracle,
thus, STPs are still needed to finish the investigation started by
mutation testing. On their own, alive mutations only indicate a
relative divergence between the spec and the implementation,
but these hints can be used to write focused STPs. The relative
strength of an alive mutation can be used to shrink the state
space necessary to test, focusing on the divergence between
the original spec and the mutation.

Armed with an alive mutation, a test writer can effectively
exploit its hint by deviating from the standard guidelines of
writing STPs and work backwards from the spec difference.
The spec difference is the set of behaviors allowed by the orig-
inal spec S and not by the alive mutation S′; essentially S−S′.
The spec difference embodies the fundamental insight Iron-
Spec is based on; it captures a specific disconnect between the
original spec and the implementation. The behavior allowed
by this reduced expression is permitted by the original spec,
but not by the more restrictive mutation. The spec difference
uniquely presents the tester with this subset of behavior to
determine if that particular disparity is intended.

Working backwards allows the test writer to find concrete
values that satisfy only the spec difference, achieving more
concentrated STPs. Typically, when writing STPs, a tester
starts by manually specifying values they intend for the spec
to allow or disallow. This process increases in difficulty with
the additional constraint that these intended values also need
to satisfy the spec difference. The shift of working backwards
helps to alleviate this burden.

Driven by the insight that the actual semantic change be-
tween the mutation and the original spec is small—only a
single mutation—the expression of the spec difference is min-
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Table 3: Spec bugs identified using the Automatic Sanity
Checker. All bugs were confirmed with Counterexample STPs
based on the initial hint of either MED or HIGH flags.

Bug Specification Method Name Flag
TS1 TrueSat [7] Formula Ctor HIGH
TS2 TrueSat [7] Start MED

ETH1 Eth2.0 [1] on_block MED
AES1 AWS ESDK [3] Encrypt MED
AES2 AWS ESDK [3] Decrypt MED

imal. Working backwards allows the test writer to generate
any input and output, and then use the verifier to check that
the input and output are accepted by the expression constitut-
ing the spec difference. After generating such values, the final
decision relies on the tester to decide whether the input-output
pair is intended. At this stage, the existence of an unintended
value is a counterexample to the original spec.

5 Evaluation

We evaluate the effectiveness of the IronSpec prototype by
applying the Automated Sanity Checker, the STP Method-
ology and the automated mutation testing framework to test
14 different specifications written in Dafny [40]. Six of these
specifications are produced in-house and include artificially
introduced bugs, with an additional two specs containing arti-
ficial bugs described by Abreu et al. [6]. Six of the specifica-
tions are of real-world, open-source verified systems, which
include: QBFT [2], DVT [4], TrueSat [7], Eth2.0 [1], daisy-
nfsd [15] and an AWS Encryption SDK library [3].

When testing a spec, the ultimate oracle is the test writer,
thus the final step is always to write an STP. When testing
a spec, a tester could start with any aspect of IronSpec. We
discuss the various facets of IronSpec by highlighting their
use in supplying the initial hints used to discover ten spec
bugs, all confirmed by their corresponding authors.

We consider all spec bugs identified and discussed in this
section useful and significant; all could have allowed or did
allow an incorrect implementation that would violate safety
while still allowing the proof to pass.

The IronSpec artifact is publicly available on GitHub [5].

5.1 Automatic Sanity Checking Evaluation
Applying the Automatic Sanity Checker to the six open-
source verified systems led to the discovery of five spec bugs
across three specs, listed in Table 3.

Of the bugs identified, only TS1 was identified immediately
with a HIGH severity flag, whereas the other four bugs were
each discovered in less than an hour by writing STPs based on
the hint of MED severity flags. The corresponding implemen-
tation for all five spec bugs appeared correct, but the specs

were buggy, being too weak. To confirm these spec bugs, we
wrote buggy implementations as Counterexample STPs for
each spec and demonstrated that the proof still passed.

Spec bugs TS2, ETH1, AES1, and AES2 were identified
by investigating each respective MED severity flag. We found
that in these cases, the bug was a result of the output consist-
ing of a complex datatype with many sub-fields and having
postconditions concerning only a subset of these fields. This
combination allows for a different implementation to update
the remaining unspecified fields arbitrarily.

A MED severity flag is not as strong of a hint of a spec bug
as a HIGH severity flag because the unspecified fields may or
may not be critical for safety. The HIGH severity flag raised
for TS1 was; “None of the postconditions depend on any of
the input.” This spec bug allows a buggy implementation to
completely ignore the input values when constructing the
output. The authors have remedied bugs TS1 and TS2 with a
pull request we submitted.

The two bugs, AES1 and AES2, from the AWS Dafny
Encryption SDK library (ESDK) [3] are both cases of spec
weakness. The Dafny ESDK is a verified SDK used as a ref-
erence to build ESDKs for other languages. These bugs exist
for the high-level methods of Encrypt and Decrypt. They
are caused by a combination of the postconditions under-
constraining the output and because the postconditions of
sub-methods are not exported. This underspecification al-
lows for the proof of trivially incorrect implementations for
Encrypt and Decrypt to pass, such as returning a ciphertext
or plaintext consisting of a zero byte regardless of the input.

Specs with output containing complex datatypes with many
sub-fields are a critical source of spec bugs. Judging from
the results of applying the Automatic Sanity Checker, under-
constraining complex output can easily be overlooked. To
avoid these types of spec bugs, it is vital to specify the ex-
pected values for all sub-fields of the output.

5.2 STP Methodology Evaluation

In this section we describe our experience in writing Useful-
ness, Correctness, and Provability STPs for specs following
the Hoare-Logic style; and in the cases of identifying a spec
bug, Counterexample STPs. We discuss the effectiveness of
these STPs to expose differences in what behaviors the spec
allows in contrast to a test writer’s expectations in the pres-
ence of artificially introduced bugs.

We also discuss a case study, where following the STP
methodology we discovered three spec bugs in a verified
QBFT protocol. We wrote STPs for all open source specs,
and when an STP failed to verify and the result conflicted
with our understanding of the spec, we wrote Counterexample
STPs to prove the existence of a spec bug. For brevity, the case
study in this subsection focuses on the QBFT spec, where
STPs acted as the initial flag that hinted at the existence of a
spec bug.
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Figure 2: STP coverage for various buggy sort specs

5.2.1 STPs For Contrived Spec Bugs

We wrote STPs for five specs written in-house that follow the
Hoare-Logic style. These specs include methods for finding
the max of two integers (Max), sorting a sequence of integers
(Sort), searching for an integer in a sequence (Binary Search),
a cryptocurrency token creation contract (Token-with-revert-
external-wre), and an auction contract (SimpleAuction-with-
revert-external-wre). The Token and SimpleAuction specs
were modified from Cassez et al. [14].

We wrote a total of 70 STPs for all variations of the con-
trived specs. The bugs introduced into the specs vary, but
the resulting specs comprised an approximately equal split
between too-strong and too-weak specs. Only 30% of these
STPs (21) needed additional proof help and of those, each
STP needed, on average, an additional 1.7 lines of proof help.
The STP suite was successful in all cases in identifying intro-
duced spec bugs—confirming the notion that a failing STP
is a reliable flag suggesting a discrepancy between the intent
encoded in the STPs and the spec.

Not all classes of STPs are useful in identifying all spec
bugs because of the different natures of each type of STP. To
demonstrate why writing a diverse suite of STPs is useful,
consider Figure 2 that shows the coverage of 21 STPs across
10 different bugs for a Sort spec. In this experiment, the suite
of STPs consisted of Correctness and Provability STPs be-
cause the different Sort specs were all postconditions, and
Usefulness STPs are only concerned with preconditions. Each
row corresponds to a different introduced bug and each col-
umn matches to a different STP. A darkened cell indicates
that a specific STP successfully identified the bug after trans-
forming the failing STP into a passing Counterexample STP.
The bug was identified if a row contained a single darkened
cell, whereas each column gives insight into the coverage of
a single STP in identifying different bugs. The bottom row
is a heat map corresponding to the ratio of bugs identified
by each STP. The two STPs that uncovered zero spec bugs
tested trivial enough cases such that they passed with all of
the buggy specs. Depending on the spec bug, there were cases
where the Correctness STPs were insufficient to identify the
bug on their own, and there were cases where the same was
true of the Provability STPs. So, when writing STPs it is im-
portant to have good coverage of different types of STPs to
increase testing effectiveness.

Lemma 8 Simplified QBFT Provability Adversary STP
1 lemma AdversaryForwardMessageSTP(
2 a:Adversary,
3 a’:Adversary,
4 inMsgs: set<Message>,
5 outMsgs: set<Message>)
6 requires validAdversaryConfig(a,a’,inMsgs)
7 requires inMsgs == {ProposalMsg(CS1,block)}
8 requires outMsgs == {NewBlockMsg(CS1,block)}
9 ensures AdversaryNext(a, a’, inMsgs, outMsgs)

5.2.2 STPs: QBFT Case Study

Writing STPs for the QBFT spec [2], a Byzantine fault-
tolerant consensus protocol used in the Ethereum ecosys-
tem [47], led to the discovery of three spec bugs confirmed
by the authors. The spec in this system consists of a single
safety property, Blockchain Consistency, and the environment,
which includes the high-level distributed system, the network,
and the adversary which are all modeled as a state machine.
Upon manual inspection of these STPs, we found that the
adversary spec was incomplete, based on our understanding
of what the adversary spec should be. The overall proof still
passed even in the presence of these three bugs because they
essentially cancel each other out; two making the spec weaker
than it should be, and the other making the spec stronger.

The first bug identified in the adversary spec was an ex-
ample of the spec being too strong; limiting the actions of
what an adversarial node should be able to do. The initial hint
indicating the possibility of this case was provided by failing
Provability STPs. The initial reason for writing Provability
STPs was to answer if the adversary spec was too strong;
which is answered by the general form of Provability STPs.
An overly restricted adversary model would weaken and per-
haps invalidate the guarantees of the overall proof. Following
the guidelines for writing STPs in Section 4.2.2, negating the
conclusion of the failing Provability STPs led to the discovery
of a passing Counterexample STP. Lemma 8 is a simplified
example of such a failing Provability STP.

The failing simplified STP in Lemma 8 hints at the fact that
the ability of the adversary to extract signed data structures is
unnecessarily restricted. In the system model for QBFT, and
other Byzantine fault-tolerant consensus protocols, a Byzan-
tine node should be allowed to behave arbitrarily while not vi-
olating cryptographic assumptions. In this QBFT spec, adver-
saries are only able to extract and forward CommitSeals(CS)
from a subset of received message types. The STP in Lemma 8
specifies the behavior of an adversary node receiving a
Proposal message signed with a quorum of CS1, and con-
structing and sending a NewBlock message containing the
block and CS1 data structures copied from the Proposal
message. The postcondition for this STP stipulates that this
scenario constitutes a valid state transition from state a to
state a’. After observing that this STP failed to immediately
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Lemma 9 Simplified QBFT Adversary Correctness STP
1 lemma AdversaryForgeMessageSTP(
2 a:Adversary,
3 a’:Adversary,
4 inMsgs: set<Message>,
5 outMsgs: set<Message>)
6 requires validAdversaryConfig(a,a’,inMsgs)
7 requires outMsgs == {ProposalMsg(CS2)}
8 // forged msg
9 ensures !AdversaryNext(a,a’,inMsgs,outMsgs)

verify, negating the conclusion to, !AdversaryNext(a, a’,
inMessages, outMessages), resulted in the proof passing
for this transformed counterexample STP.

While investigating the implications of the behavior in the
failing STP, we modified the adversary spec, weakening it to
allow an adversary to forward CS1 regardless of what message
first contained it. After making this change, the full system’s
safety proof failed. To differentiate the proof failure from a
now incomplete lemma, we constructed and proved a concrete
counterexample resulting in a violation of the system’s safety
property, confirmed by the authors.

The second bug in the adversary spec is an example of the
spec being too weak. This weakness is the reason why we
can show a concrete counterexample to safety after address-
ing the first spec bug. The spec allows an adversarial node
to send a Proposal message containing a block data struc-
ture with arbitrary values, including using the CommitSeals
of honest nodes even if the adversary had not previously re-
ceived such CommitSeals in previously received messages.
CommitSeals are only used to make a final decision of com-
mitting a block, but this weakness in the spec allows an ad-
versary to propose new blocks containing CommitSeals as
if from honest nodes. This behavior allows an adversary to
send a message that appears to be signed by an honest node,
violating the security assumptions made by the QBFT system
model. The STP in Lemma 9 is a simplified version of the
Correctness STP used to discover this spec bug.

The third bug identified is related to the previous bug and
is concerned with the underspecified spec of the function get-
NewBlock(). This function is empty-bodied and only contains
the spec. Due to the underspecification of this function, a
caller of this function, including an honest node can immedi-
ately send a message, such as a Proposal message, contain-
ing a full quorum of commit seals. If a buggy implementation
is provided for this function, it too, could lead to a violation
of the safety property.

5.2.3 STP Discussion

STPs enable fine-grain testing of specs and have been effec-
tive at helping to identify all ten spec bugs in the six open-
source verified systems. By leveraging the insight that writing
proofs for specific values is easier than a general proof, the

manual effort required to write STPs remains minimal.
In the QBFT spec the presence of three spec bugs, two

manifesting as a weakness in the spec and the other coun-
teracting the first by overly restricting the adversary, makes
manually or automatically identifying these bugs extremely
difficult. Following the STP testing methodology, we effi-
ciently, and without being experts in the system, identified
these disconnects between what was written in the spec and
our understanding of the intent of the spec.

5.3 Mutation Testing Evaluation
We applied IronSpec’s automatic mutation testing to a set
of six in-house specs, the two spec examples from Abreu et
al. [6], and the spec of six open-source verified codebases. The
evaluation attempts to answer how prevalent alive mutations
are in specs, and how useful the provided hints are in assisting
to identify spec bugs.

All mutation testing experiments were performed on a clus-
ter of 21 servers where each node was equipped with two Intel
E5-2660 v2 10-core CPUs at 2.20 GHz and with 256GB ECC
Memory. In each experiment, one root node would create all
mutations and send all subsequent verification requests in
each stage of the mutation testing process to be processed in
parallel at the other 20 nodes in the cluster using Dafny ver-
sion 3.8.1. The results from running IronSpec can be found in
Table 4 and are further explained in the following subsections.

5.3.1 In-House Specifications

In addition to the five in-house specs introduced in Sec-
tion 5.2.1, we applied mutation testing on a simple key-value
store state machine spec.

The top half of Table 4 contains the experimental results of
running mutation testing on the in-house specs. Each buggy
spec was tested with a correct implementation (C) and an
incorrect implementation (I). Mutation testing all in-house
specs with a correct spec and a correct implementation re-
sulted in no alive mutations.

Mutation testing identified relevant alive mutations, regard-
less of whether the implementation is correct. For all six incor-
rect specs, mutation testing resulted in helpful alive mutations.
The only exception is Sort (C), whose implementation con-
tained additional loop invariants that caused the proof to fail
when using weaker preconditions. In all other cases alive mu-
tations were useful hints in manually identifying a weakness
in the spec.

5.3.2 Alive Mutations in Open Source Systems

The Div and NthHarmonic specs are simple buggy specs
introduced by Abreu et al. [6], where the authors proposed
initial techniques to repair simple spec errors in Dafny. The
alive mutations IronSpec found for these specs coincide with
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Table 4: Results from running IronSpec’s automatic mutation testing. In-House, buggy, specs marked with “(C)” correspond
to experiments with a buggy spec but a correct implementation, whereas “(I)” indicates a buggy spec with an incorrect
implementation. The Predicate Name is the specific mutation target within a spec. Spec LOC is the size of the mutation target,
and Proof/Impl LOC is the size of the full end-to-end implementation and proof. Mutations are the total number of mutations
generated, Alive Mutations indicate the number of alive mutations after all three passes and hierarchy classifications.

Specification Predicate Name Spec
LOC

Proof/Impl
LOC # Mutations # Alive Mutations Time

In
-H

ou
se

Sp
ec

s

Max (C) maxSpec 2 5 80 1 11.3s
Max (I) 7 4 7.5s
Sort (C) sortSpec 1 55 50 0 4.5s
Sort (I) 4 1 7.3s

Binary Search (C) searchSpec 4 31 170 1 10.4s
Binary Search (I) 18 2 24.3s

KV SM (C) Query Op 4 187 37 7 21s
KV SM (I) 7 28.8s

Token-wre (C)
GInv 1 87 13 1 7.8s

Token-wre (I) 91 1 7.8s
SimpleAuction-wre (C)

GInv 9 181 187 3 15.25s
SimpleAuction-wre (I) 3 15.5s

O
pe

n-
So

ur
ce

Sp
ec

s Div Div 3 14 50 3 3.5s
NthHarmonic NthHarmonic 1 4 11 2 3s

QBFT NetworkInit 3
15071

44 3 80 min
QBFT AdversaryNext 48 197 7 162 min
QBFT AdversaryInit 3 35 4 80 min

Distributed Validator AdversaryNext 23 24747 110 7 191 min
daisy-nfsd GETATTR 4 18 35 1 4.3 min
daisy-nfsd WRITE 7 54 119 3 4.6 min

the conclusions made by Abreu et al. in demonstrating that
these specs are buggy by being too weak.

QBFT Of the 44 generated mutants for the initial state of the
network state machine spec, NetworkInit, three mutations
remained alive as the roots of their respective components in
the mutation DAG. Upon manual inspection of the surviving
mutants, the spec differences all referenced an aspect of the
Network’s state that was never mentioned elsewhere. Thus,
any value for part of the state would be considered “safe”.
These mutations do not imply the existence of a bug, but
neither are they strictly false positives; rather they are exam-
ples of spec bloat. These alive mutations should still serve as
flags to the developer, forcing them to answer the question of
whether this state is needed, and if so why are these parts of
the state not referenced?

The alive mutations for the AdversaryNext and
AdversaryInit predicates, both parts of the adversary state
machine spec can be considered false positives. The alive
mutations were all stronger mutations, but it is always safe
to restrict the actions allowed by an adversarial node. Some
alive mutations implied that the proof would still pass with no
adversaries in the system, or only taking trivial actions. This
observation led us to question and then to test with STPs if

the adversary spec was initially more restricted than it should
be, leading to the bugs discussed in Section 5.2.2.

DVT The Distributed Validator Technology Protocol (DVT)
spec and proof [4] captures the behavior of an Ethereum Val-
idator, where a group of nodes coordinates to perform the
Ethereum validator duties. The DVT spec consists of the de-
sired non-slashable attestation property and the environment,
with the latter defined as the high-level distributed system, an
adversary, and the network. All aspects of the environment
are modeled as state machine specs. The non-slashable attes-
tation property ensures that the system avoids committing a
slash-able offense and produces valid attestations.

Applying mutation testing to the AdversaryNext predi-
cate in the adversary spec resulted in seven alive mutations.
One of the mutations was a false positive. Three of the muta-
tions hinted towards a limitation of the messages allowed to
be sent by an adversary, leading to a similar discovery as in
the first QBFT bug. The remaining three alive mutations were
concerned with the creation of attestations. This weakness
lies in the spec’s lack of specificity regarding the attestations
an adversary can create. Armed with this observation, we
show with a counterexample that this weakness could lead to
a safety violation.
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daisy-nfsd Applying the mutation framework to daisy-
nfsd’s [15] top-level NFS API spec resulted in alive mutations
in two different methods’ specs, GETATTR and WRITE. These
mutations hint at the same spec weakness that both methods
contain; one that would allow for a different trivial implemen-
tation to always return an error. This bug was confirmed by
the authors as a known issue in their spec.

5.3.3 Combining STPs With Mutation Testing Hints

An alive mutation is a compelling hint that the spec may
be weaker than intended, but it is just a hint; writing STPs
(Section 4.4) is always the final step in testing. Consider the
DVT spec bug from Section 5.3.2. The original mutation tar-
get predicate is non-trivial and consists of 22 lines including
multiple quantified conjuncts. Working backwards from the
alive mutations and focusing only on the expression derived
by the difference between the original spec and an alive mu-
tation, resulted in shrinking the 22-line predicate into only
a single conjunct. Writing STPs concerning this single con-
junct is much more tractable than writing STPs for the entire
predicate. The tradeoff of the slightly increased manual effort
to calculate the simplified expression and writing STPs con-
cerning it outweighs the effort needed to consider the entire
spec.

5.3.4 Mutation Testing Discussion

Mutation testing supplied the hints that led to the discovery of
spec bugs in two verified codebases. These results exemplify
the usefulness of adding automation to search for disconnects
between the implementation and the spec. The insight of iden-
tifying tangible differences as potential areas of disconnected
intent is a beneficial hint that can be leveraged to identify
spec bugs. The results in Table 4 demonstrate that even with
a small set of mutations, we were successful in identifying
spec weaknesses.

The large increase in execution time of running mutation
testing taken between different specs can be attested to the
varying sizes of the full system proof and the time that it takes
to verify the entire proof with the mutations that survive the
first two passes. For instance, even running the full end-to-end
proof once of the unmodified QBFT system can take approxi-
mately an hour to complete. The cost of running IronSpec on
a large verified system is worth the execution time to debug a
potential spec bug.

The results of testing specs with mutation testing demon-
strate the effectiveness of this approach, but we did find that
not all alive mutations led to the discovery of spec bugs. While
the possibility of discovering false positive alive mutations
exists, all cases were quickly diagnosed. Of the 61 alive mu-
tations identified across all tested specs, we consider 13 to be
false positives, because the spec weaknesses they hint at were
deemed intended. All mutations for QBFT’s AdversaryNext

and AdversaryInit were considered false positives. A sin-
gle alive mutation in the set of alive mutations for both DVT
AdversaryNext and daisy-nfsd WRITE were also character-
ized as false positives. The one false positive mutation found
in DVT AdversaryNext was classified as such because it
would have only allowed the adversary to make attestations
already created, which would not have led to any unintended,
incorrect behavior.

Verified methods that modify ghost state are at a higher risk
of mutation testing producing false positives. Ghost state is
only maintained for the sake of the proof, and often, undercon-
strained postconditions related to ghost state would not result
in a buggy implementation. The false positive mutation in
daisy-nfsd’s WRITE method hinted towards underconstrained
ghost state that was modified in the method’s implementa-
tion. Nevertheless, the daisy-nfsd authors confirmed that a
different implementation, which modified this ghost state dif-
ferently, would not lead to a safety violation or break the proof.
However, they did acknowledge that this weakness was not
immediately apparent.

Rather than finding false positives, it is also possible, es-
pecially with larger systems, for no alive mutations to be
identified. For QBFT, DVT, and daisy-nfsd there were other
spec mutation targets we applied IronSpec to, which resulted
in no alive mutations. For example, in both QBFT and DVT,
the alive mutations identified were part of the trusted speci-
fied environment, whereas no alive mutations were found for
their respective safety properties, Blockchain Consistency and
non-slashable attestation.

The IronSpec prototype takes the first steps to bring au-
tomation and structure to testing specs. The prototype targets
Dafny specs, but the conceptual techniques are not tied to
Dafny.

5.4 Amount Of Manual Effort Required

In the same way testing traditional software systems requires
developer effort, testing specifications does too. IronSpec pro-
vides a framework and automation aid to help developers in
this endeavor. If one is willing to spend the effort to verify
their system, it is worth spending a few additional hours to
gain confidence in proving the intended property. While man-
ual effort is unavoidable, this effort can be greatly reduced
as the automation of IronSpec helps to focus the developer’s
attention on a few potentially problematic aspects of the spec.

The majority of manual effort we expended in apply-
ing IronSpec was spent on understanding each system well
enough to interpret the hints from the automation of IronSpec
and to write appropriate STPs. Even so, the amount of manual
effort expended remained relatively low despite not having
specific expertise in each system. For example, the specifica-
tion bug identified in daisy-nfsd took approximately 1-2 hours
to determine from first examining the code base and running
IronSpec to confidently identifying the spec bug. When test-
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ing daisy-nfsd, it took minutes to run the mutation framework,
and the rest of the time was spent comprehending the hint
of the alive mutation, writing STPs, and understanding the
underlying system well enough to determine if the flagged
behavior was intended. In conversations with the daisy-nfsd
authors, they admitted that this spec bug was subtle. Famil-
iarity and expertise in a system and its spec will only help to
further reduce the necessary manual effort.

Writing STPs for complex systems takes more effort than
for simple examples. Yet, the limited scope of writing STPs
with concrete values drastically limits the size of any poten-
tial additional proof annotations needed for those STPs in
comparison to what would be necessary for proof of the un-
constrained behavior. The effort of writing STPs varied per
the complexity of the system. Writing a comprehensive suite
of STPs ranged from a few hours to multiple days worth of
effort for the larger QBFT and DVT specs. Writing-focused
STPs based on alive mutations ranged from tens of minutes
to hours per alive mutation.

6 Related Work

Kemmerer [33] first identified the potential benefits of test-
ing specifications. Kemmerer proposed a technique based
on symbolic execution to check if a spec satisfied the
English-based functional requirements. Since then, several
studies have proposed techniques to test informal user require-
ments [13, 18, 35, 42, 43].

The closest related previous work is the study by Fonseca
et al. [22], which manually and painstakingly identified weak-
nesses in verified codebases, including two spec bugs. Other
works have also begun to apply more structured approaches
to increase reliability in formal methods. Kupfeman [36]
discussed the possible advantages of vacuity and coverage
checks for temporal-logic model-checking tools. Inspired by
vacuity testing, and the concept of unit proofs from Chong et
al. [16], Priya et al. [52] performed a case study of some AWS
verified libraries, uncovering some hidden bugs. Bernardi et
al. [11] also identified formal specifications as a weak point in
the verification process, and proposed to reuse specifications
once correct, for smart contracts. Le Traon et al. [38] even
discussed the notion of applying a mutation analysis to Eiffel
contracts.

With verification becoming more commonplace and the
discovery of spec bugs in verified systems, a few, mostly man-
ual efforts have attempted to identify spec bugs. The 2022
Notional Finance bug found in verified code inspired Certora
to investigate ways to introduce testing into the verification
process [49]. Recently, Abreu et al. [6] proposed initial efforts
in using the dynamic invariant inference tool Daikon [20] to
aid in automatically repairing specifications. When faced with
a failing proof, their prototype assumes that the implementa-
tion is correct, and uses the implementation to generate test
cases for the spec. Any failing tests present an opportunity to

attempt to fix the spec by suggesting strengthening or weaken-
ing modifications. Of course, this approach only works if the
implementation is correct, which partially defeats the purpose
of performing verification in the first place.

Testing and formal methods share a close relationship and
a common goal. Often, rather than questioning specs, devel-
opers have relied on specs or other formal methods to assist in
testing traditional software [11, 16, 27, 39]. Works concerned
with the Oracle problem [9, 12] have often utilized specs thus.
There has even been work to test verification tools [30].

7 Conclusion

The correctness of specifications is the rock upon which the
entire edifice of formal verification is built. As formal verifi-
cation becomes increasingly popular, it is imperative that the
foundation be as solid as possible.

This work proposes IronSpec, a systematic framework of
manual and automated approaches to aid developers in find-
ing bugs in their specs. We show how IronSpec was used to
identify a number of subtle bugs in the specs of open-source
codebases, without requiring copious amounts of expertise on
the proven system. We believe IronSpec is a necessary step
forward towards writing correct software.
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Abstract
The rapid advancement of computer system components has
necessitated a comprehensive profiling approach for both
on-CPU and off-CPU events simultaneously. However, the
conventional approach lacks profiling both on- and off-CPU
events, so they fall short of accurately assessing the overhead
of each bottleneck in modern applications.

In this paper, we propose a sampling-based profiling tech-
nique called blocked samples that is designed to capture
all types of off-CPU events, such as I/O waiting, blocking
synchronization, and waiting in CPU runqueue. Using the
blocked samples technique, this paper proposes two profilers,
bperf and BCOZ. Leveraging blocked samples, bperf profiles
applications by providing symbol-level profile information
when a thread is either on the CPU or off the CPU, awaiting
scheduling or I/O requests. Using the information, BCOZ per-
forms causality analysis of collected on- and off-CPU events
to precisely identify performance bottlenecks and the poten-
tial impact of optimizations. The profiling capability of BCOZ
is verified using real applications. From our profiling results
followed by actual optimization, BCOZ identifies bottlenecks
with off-CPU events precisely, and their optimization results
are aligned with the predicted performance improvement by
BCOZ’s causality analysis.

1 Introduction

Application profiling encompasses the analysis of two types
of events: on-CPU events and off-CPU events. Profiling
on-CPU events aims to analyze instructions executed on a
CPU [1,4,7,15,17,19–21,33,45,53,54]. In contrast, profiling
off-CPU events aims to analyze waiting events within an ap-
plication such as waiting for blocking I/O completion, locks,
scheduling, etc [27, 35, 38, 39, 55, 58].

In the past, applications were clearly characterized as either
CPU-boud or I/O-bound due to the use of slow I/O devices
such as HDD or SATA SSD. Therefore, existing profiling tools
have applied bottleneck analysis techniques separately for on-
CPU events or off-CPU events. However, with the recent

advancements in fast storage and many-core CPUs, modern
applications often exhibit complex behaviors. Especially, their
performance bottleneck is combined by on-CPU events and
off-CPU events, necessitating the need for comprehensive pro-
filing of both on-CPU and off-CPU events simultaneously and
capturing their interactions. For example, with the emergence
of NVMe SSDs and ultra-low latency SSDs, the critical path
of I/O-intensive applications often shifts from I/O to CPU
events [23, 30–32]. Consequently, studies have focused on
optimizing on-CPU events rather than I/O events to enhance
the performance of I/O-intensive applications [23, 30–32].

However, existing profilers focus on analyzing only on-
CPU [17, 20, 33] or off-CPU events [3, 38], so they cannot
analyze the complicated behaviors of modern applications.
COZ [15], a state-of-the-art causal profiler, estimates per-
formance gain through its virtual speedup approach. COZ
intentionally delays competing threads to estimate the perfor-
mance impact by optimizing certain code lines without actu-
ally optimizing them. However, COZ applies virtual speedup
profiling exclusively to on-CPU events as it lacks the capabil-
ity to incorporate execution information from off-CPU events.
wPerf [58], a state-of-the-art off-CPU analysis profiler, traces
waiting events between threads during the execution and re-
ports the result in the form of a graph (called a wait-for graph).
While wPerf can analyze interactions between on-CPU and
off-CPU events, it falls short in assessing the actual impact
of bottlenecks on application performance. Furthermore, al-
though wPerf identifies off-CPU bottlenecks, it lacks detailed
information about the application contexts related to these
bottlenecks. These limitations require programmers to at-
tempt optimizations for various bottlenecks to achieve actual
performance improvements and demand additional effort to
pinpoint the application code to be optimized (Section 2.2).

This paper introduces a new profiling technique called
blocked samples, which is designed to capture off-CPU events.
Drawing inspiration from the event-based sampling (e.g.,
Linux perf subsystem [17]), our approach employs sampling-
based profiling of off-CPU events. Similar to Linux perf, the
blocked samples technique periodically captures snapshots of
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events with designated information, such as the instruction
pointer (IP) and the call stack of each thread. However, unlike
Linux perf, which disables profiling while the target thread is
blocked, the blocked samples technique overcomes this limita-
tion by allowing sampling of off-CPU events while the target
thread is blocked. Leveraging the information provided by
blocked samples, we aim to devise profiling techniques that
consider both on-CPU and off-CPU events simultaneously,
identify bottlenecks and estimate their performance impact if
optimized.

To demonstrate our idea, we devise two profilers, bperf
and BCOZ. bperf is an easy-to-use sampling-based profiler,
following the interfaces of the familiar Linux perf tool. bperf
incorporates the blocked samples technique. By considering
the sampling results that include blocked samples, bperf ac-
curately calculates the overhead of each event. This enables
bperf to provide precise overhead information for both on-
CPU and off-CPU events. Additionally, bperf reports detailed
information about the sampled off-CPU events such as call
stacks, kernel stacks, and blocking types (e.g., I/O, synchro-
nization, scheduling, etc.), assisting users in gaining a deeper
understanding of overheads.

BCOZ is a causal profiler that leverages the concept of
virtual speedup [15] for off-CPU events obtained by blocked
samples. BCOZ provides estimated performance improve-
ment not only of a single off-CPU event but also of a function
involving multiple on-/off-CPU events. Additionally, BCOZ
supports a per-subclass virtual speedup technique, which esti-
mates the potential speedup if off-CPU events of a particular
type are optimized, such as using faster I/O devices or elimi-
nating CPU scheduling delays. This feature allows users to
consider various optimization alternatives, such as upgrading
I/O devices or assigning additional CPU cores.

Our evaluation results demonstrate that BCOZ successfully
identifies bottlenecks of real applications including both on-
and off-CPU events. Specifically, BCOZ identifies various
bottlenecks of the RocksDB key-value store [50] with read-
intensive and write-intensive workloads. We observe that with
various memory configurations and workload patterns, diverse
parts of the program exhibit distinct performance bottlenecks.
BCOZ precisely identifies such bottlenecks and provides an
estimated speedup of the optimization of each bottleneck. We
verify that the reported virtual speedup results are also aligned
with the actual speedup when various optimization techniques
are applied. These results prove the effectiveness of BCOZ
by profiling on- and off-CPU events simultaneously.

Our contributions are summarized as follows:
• We demonstrate the need for integrated profiling of both

on-CPU and off-CPU events to overcome the limitations of
conventional profilers (Section 2).

• We propose a new sampling technique called blocked sam-
ples, designed for capturing off-CPU events. By incorporat-
ing blocked samples with on-CPU samples, we enable the
identification of application bottlenecks related to both on-

Figure 1: Motivational example of mixed on-/off-CPU events.

and off-CPU events (Section 3.1).
• We introduce two profilers, bperf and BCOZ, that utilize

the blocked samples technique. These profilers provide
insights into the overhead of off-CPU events and uncover
potential performance improvement opportunities that were
previously unrecognized (Section 3.2 and 3.3).

• We present practical use cases of our profilers, bperf and
BCOZ. Through profiling, we identify off-CPU bottlenecks
in applications. Then, we validate the identified bottlenecks
through simple optimizations or comparison with previous
optimization studies (Section 4).

2 Background

2.1 Sampling-based Profiling
Sampling-based profiling (e.g., task-clock in Linux perf [17])
is a widely used and efficient method for profiling the ap-
plication execution with low overhead [17, 20, 33]. It peri-
odically captures (or samples) the execution information of
programs on the CPU such as the instruction pointer (IP)
and the callchain of each thread (or CPU). With the sam-
pling results, profilers can report statistical overhead [17, 33],
perform causal analysis [15], and visualize callchains of cap-
tured events [21]. However, identifying the exact bottleneck
in sampling-based profiling remains challenging due to the ab-
sence of off-CPU events, such as I/O waiting, synchronization,
and CPU scheduling.

We illustrate the limitations of profiling without off-CPU
events using a simple example program. Figure 1 presents
an example of an application involving both on-/off-CPU
events. In this example, two threads are executed concurrently
and are synchronized through a barrier that is implemented
using a mutex and condition variable. Thread 1 executes
compute_light, which is a small on-CPU computation (iter-
ative integer increment), one 4-KB disk write (pwrite), and
eight 512-byte disk reads (pread). The two types of off-CPU
events, hence disk write and reads, are the majority of the
execution of Thread 1. Thread 2 executes compute_heavy
only, which performs a large on-CPU computation. We adjust
the computation load of Thread 2 to make two distinct cases:
Case 1 where Thread 2 is on the critical path and Case 2
where Thread 1 is on the critical path, as shown in the right
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Figure 2: Sampling-based profiling result of Case 2.

part of the figure. In Case 1, the bottleneck is compute_heavy.
In Case 2, the bottlenecks are compute_light and the I/O
events, and their optimization leads to performance improve-
ment. However, in both cases, the optimization of one thread
does not improve the performance indefinitely due to the bar-
rier synchronization between the two threads; the critical path
changes from one to the other. Hence each optimization has
limited global impact on the performance [15, 58].
Limitation of On-CPU Analysis with Sampling. Consider
Case 2 where the actual bottleneck is the off-CPU events
(i.e., pread/pwrite), the on-CPU analysis only cannot iden-
tify the correct bottleneck. Figure 2 shows the profiling re-
sults of Case 2 with the Linux perf tool [17], a popular on-
CPU sampling-based profiler. In the figure, each line repre-
sents the overhead portion, command name, shared object
name, and event symbol; [.] and [k] indicate user-level and
kernel-level symbols, respectively. Due to the tool’s inabil-
ity to capture off-CPU events caused by the blocking I/O
events, it only reports the overhead of on-CPU events such
as compute_heavy, compute_light and Linux kernel in-
ternal events. The C library function related to pread (i.e.,
__libc_pread64) is captured, but it includes only the on-
CPU parts, indicating only 0.10% of the overhead. Conse-
quently, the user may examine the results shown in the figure,
identify the compute_heavy event as the significant over-
head among on-CPU events, and focus on optimizing it even
though the computation of Thread 2 is not on the critical path.
This limitation necessitates off-CPU analysis and causality
analysis to precisely identify the performance bottleneck.

2.2 Off-CPU Analysis

Basic Utilities. Basic utilities, such as top or iostat, can
provide information of the overall I/O usage. However, these
utilities are primitive and ineffective for detailed analysis of
I/O events and correlating those to application contexts, such
as IP and callchain.
Off-CPU Tools. Various off-CPU profiling tools [27, 35, 38,
39, 55, 58] exist to support profiling of off-CPU events. How-
ever, these profilers are limited in terms of (1) focusing on
a specific type of off-CPU events (e.g., syncperf [35]) or (2)
providing unsorted information (e.g., off-CPU time distribu-
tion [14], call-chains of off-CPU events [40]), which requires

(a) Case 1 in Figure 1. (b) Case 2 in Figure 1.

Figure 3: wait-for graph results of Figure 1. For Case 1, the
knot includes both I/O and synchronization (barrier), while
the knot in Case 2 includes only I/O.

a programmer’s additional efforts to identify important bot-
tlenecks and their impact on the program performance. For
example, off-CPU flamegraph [39] provides and visualizes
the overhead of off-CPU events and their callchains. However,
the tool does not provide the performance impact of each off-
CPU event; an off-CPU event with the largest overhead does
not necessarily mean its optimization results in performance
improvement to the same extent [15, 58].
wPerf. wPerf [58] is a state-of-the-art profiler that traces all
types of waiting events including off-CPU events and reports
their relationship in the form of a wait-for graph. Moreover,
wPerf identifies bottlenecks by analyzing the global impact of
waiting events on other threads. Hence, wPerf reports the per-
formance bottleneck by identifying waiting events for which
all the worker threads are waiting to progress; these waiting
events are called a knot. Each knot contains a bottleneck.

However, we observe two important limitations when iden-
tifying bottlenecks using wPerf. Let us explain the limitations
using the example program in Figure 1.
Profiling Result. Figure 3 shows the profiling result of Case 1
and Case 2 in Figure 1 using wPerf. In this figure, the vertices
labeled T1 and T2 correspond to Thread 1 and Thread 2,
respectively, and sda represents the disk, hence an I/O device.
sda← T1 indicates that Thread 1 is waiting for completion
of disk I/O requests (i.e., pread and pwrite), and sda 99K
T1 represents the I/O device is waiting for I/O requests from
Thread 1 (i.e., compute_light) [58]. Moreover, T1 99K T2
(Case 1), and T1 L99 T2 (Case 2) indicate the waiting period
caused by the synchronization (barrier). The numbers on
the edges are the global impact of each edge reported by the
wPerf which can be interpreted as waiting time.

Firstly, wPerf does not precisely identify bottlenecks and
their actual impact on the program performance. In Figure 3a,
the red box denotes the knot of Case 1. Hence, Thread 1/2
and sda are the bottlenecks. In addition, sda, hence the disk,
has the largest global impact; the edge has the weight of 54.37
which is an order of magnitude larger than the weight of the
other edges. Hence, the profiling result mislead to optimizing
I/O events associated with sda. However, as shown in Case
1 in Figure 1, optimizing pread or pwrite does not improve
the performance since the real bottleneck is Thread 2 (i.e.,
compute_heavy). Consequently, wPerf’s bottleneck identifi-
cation can be imprecise and can yield a waste of ineffective
optimization efforts.

Secondly, wPerf can identify bottlenecks approximately
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but detailed information or context can be missing, which
necessitates programmers’ additional efforts to figure out
bottleneck points in program codes. In Figure 3b, the knot in-
cludes T1 and sda. Both are in Thread 1, which are the correct
bottlenecks of Case 2 in Figure 1. However, Thread 1 runs
three different events, compute_light, pread and pwrite,
each of which is on the critical path. As shown in Figure 1,
the eight disk reads have the most significant impact on the
program performance in Case 2. However, the profiling re-
sult of wPerf demonstrates only sda has the biggest impact
and blurs the precise bottleneck identification among the two
off-CPU events. For instance, the programmer may try to op-
timize pwrite but may fail to improve the write performance
while the code compute_light has a latent performance im-
provement since the code is implemented inefficiently. Con-
sequently, wPerf’s analysis result is less informative and re-
quires additional efforts before targeting events to optimize.

2.3 Causal Profiling
Optimization of bottlenecks identified through conventional
profiling does not always guarantee performance improve-
ment [15, 58]. This is especially true for multi-threaded ap-
plications since events with significant overhead may not be
on the critical path (e.g., compute_heavy in Case 2 of Fig-
ure 1). Causal profiling [15] is a profiling methodology that
estimates the actual impact of optimization on the program
performance.
Virtual Speedup. Virtual speedup is a core technique for
performing the causality analysis. It offers an estimation of
potential performance improvement by virtually speeding
up a particular event (e.g., a program code line) [1, 15, 26,
45, 46]. The virtual speedup technique does not require the
actual optimization of a particular code line but can assess
the causality of the performance optimization. This can be
achieved by delaying concurrently running events (or threads).
Hence, if a particular event is sped up by a certain amount, it
can be simulated by delaying other concurrent events by that
amount but not the target event itself.

Figure 4 illustrates an example of the virtual speedup tech-
nique by showing the timeline of a two-threaded application.
Figure 4a shows the original timeline and Figure 4b shows the
actual speedup case when the execution time of function B is
optimized from 3 to 2, and as a result the total execution time
is reduced by 1. Figure 4c shows the virtual speedup case.
The virtual speedup technique speeds up a particular function
(B in this case) virtually by delaying co-running threads on
every invocation of the target function. This has an effect
of which the target function is sped up since other than the
function is delayed by the same amount. Hence, in this exam-
ple, whenever B is called, the other thread is injected a delay
of the amount to speed up. The virtual speedup technique
measures the speedup by identifying the difference between
the actual runtime, 16 in this case, and the expected execution

(a) Original application (b) Actual speedup

(c) Virtual speedup

Figure 4: Illustration of virtual speedup when speeding up B.
X(n) means function X runs for n time units.

time if function B is not sped up. The expected execution time
without speedup is 17, which is obtained by that whenever
B is invoked, all the threads are delayed by 1. Hence, the
application’s virtual speedup is 1 (17 minus 16).

COZ. COZ [15] is an implementation of the causal profiler
employing the virtual speedup method. It reports to a user
with information about the application’s bottlenecks and pro-
vides an estimation of performance improvement for each
optimization point. To apply the virtual speedup technique,
COZ employs sampling-based profiling using the Linux perf
subsystem. Periodically, COZ reads sampling results, IPs and
callchains of each thread. Then, when the target code line to
speed up is being executed, COZ applies the virtual speedup
technique by delaying the execution of other threads, hence
forcing sleep of co-running threads.

COZ carefully handles dependencies between threads and
injects delays between threads with dependency in order to
avoid incorrect estimation of virtual speedup. For example,
if thread A is woken up by thread B, any injected delays to
thread B while thread A is sleeping are considered the in-
jected delays to thread A as well. This is because thread A
is woken up after thread B has consumed its injected delays.
In other words, if thread A is delayed by the same amount
of injected delay after its wakeup, thread A experiences dou-
ble delays from one source of delay injection. Accordingly,
COZ manages dependencies arising from thread synchroniza-
tion primitives (e.g., mutex, condition variable), and exempts
delays during thread wakeups.

COZ employs two optimization methods to enhance its
profiling performance. First, COZ processes multiple sam-
ples in batches. Second, it tries to skip consuming delays
whenever all the threads need to consume the same amount
of delay. This helps reduce the profiling time since otherwise,
all the injected delays may increase the application’s runtime
significantly.

Profiling Result. While causal profiling is effective and infor-
mative in specifying bottlenecks and providing the estimated
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(a) Case 1

(b) Case 2

Figure 5: Virtual speedup result of Figure 1.

outcome of bottleneck optimization, it lacks the capability
of considering off-CPU events for profiling, often leading to
incorrect profiling results. Figure 5 shows the profiling result
of the example program in Figure 1 using COZ. In this figure,
the x-axis represents the reduction in the execution time of a
particular line, while the y-axis indicates the predicted overall
runtime reduction of the program if that specific line speeds
up by x%. For instance, a 0% program speedup indicates no
performance improvement, whereas a 75% program speedup
implies the runtime is reduced by 75%.

In Case 1, the actual bottleneck is compute_heavy but
COZ fails to identify its potential performance improvement
if it is optimized. Actually, COZ identifies marginal virtual
speedup of all the four events in Case 1 as shown in Figure 5a.
A similar phenomenon happens in Case 2 of the same example
program as shown in Figure 5b. These results stem from the
fact that COZ does not consider off-CPU events.

The causal profiling is an essential technique considering
the ever-increasing complexity of applications on modern
computer systems. However, the inability to profile off-CPU
events is a critical limitation of existing causal profiling. The
CPU performance improvement has stopped due to the end of
Moore’s law and Dennard scaling, and domain-specific accel-
erators, such as GPUs, FPGAs, and Smart SSDs, are gaining
significant attention [25]. These heterogeneous computing
environments make the behavior of applications more compli-
cated with various off-CPU events for offloading computation
to such accelerators. In addition, various low-latency I/O de-
vices, such as CXL memory expander [16], RDMA-capable
several-hundred gigabit network interface cards [49], flash-
based or persistent memory-based solid-state drives [41, 59],
are making application behavior increasingly complex. Tradi-
tional I/O-boundness or CPU-boundness is no longer a proper

Figure 6: Blocked samples and conventional samples.

application classifier. The mixture of both I/O- and CPU-
bound applications require sophisticated performance profil-
ing methodology. Among these, profiling on-CPU and off-
CPU events together is especially important for optimizing
application performance.

3 Design and Implementation

In this section, we present our methodology to profile on-
CPU and off-CPU events simultaneously. Our methodology
begins with proposing a new method of sampling off-CPU
events, called blocked samples (Section 3.1). Then, we present
two profilers for accommodating blocked samples: bperf, an
easy-to-use sampling-based profiler (Section 3.2) and BCOZ,
a causal profiler that profiles both on- and off-CPU events
simultaneously and estimates potential speedup of optimiza-
tions (Section 3.3).

3.1 Blocked Samples
Blocked samples captures information of blocking events
of threads, such as waiting for I/O completion, waiting for
synchronization (e.g., mutex, condition variable), waiting for
CPU scheduling, etc. The conventional on-CPU event sam-
pling is thread-oriented (e.g., task-clock of the Linux perf sub-
system [17]). When a thread executes its instructions on the
CPU, the event-based sampling periodically collects a sample,
hence snapshot, of thread context (e.g., IP and callchain) as
shown in Figure 6. When a thread is blocked, the sampling is
paused until the thread is woken up and resumes its execution.
Different from the conventional on-CPU sampling, blocked
samples augments the missing samples while threads are
blocked, providing the execution context of blocking periods
(shaded boxes in Figure 6).

Each blocked sample contains four attributes for tracking an
off-CPU event: IP, callchain, weight, and type. The IP is the
address of the last instruction before a thread is blocked. This
is actually the return address of invoking a CPU scheduler
(e.g., schedule or io_schedule in Linux). The callchain is
the call stack of functions from the main function of a thread
to the current instruction before being blocked.

The length of a blocking event can be varied (e.g., a few
microseconds for CPU time-sharing or hundreds of millisec-
onds for disk I/O). Hence, one blocking event can contain
multiple blocked samples of the same properties (i.e., identi-
cal IP, callchain, etc.). We encode the number of repeats to the
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weight field, saving space and time when handling blocked
samples.

The type field is used to categorize blocked samples into
the following subclasses:
• I/O: The I/O subclass corresponds to an off-CPU event that

occurs when a thread requests and waits for an I/O event.
Specifically, when a current thread submits a synchronous
I/ O request and is blocked by invoking a CPU scheduler
(e.g., a task_struct with in_iowait set in Linux), this
blocking event is categorized as the I/O subclass.

• Synchronization: The synchronization subclass refers to
an off-CPU event where a thread is waiting for a lock
or condition variable. To identify synchronization sub-
classes, we slightly modified a process control block (e.g.,
task_struct in Linux) to include a field (in_lockwait)
that identifies lock waiting. The field is set/cleared when
a thread sleeps/wakes using the kernel-supported synchro-
nization primitives (e.g., futex of Linux).

• Scheduling: The scheduling subclass refers to the off-CPU
event that occurs when a thread is runnable but not sched-
uled on a CPU.

• Others: This subclass refers to off-CPU events that does
not correspond to the above subclasses. Typically, off-CPU
events related to sleeping (e.g., usleep) are in this category.

Implementation. Blocked samples are collected by extend-
ing the task-clock event in the Linux kernel’s perf subsystem.
The original sampling using task-clock collects samples by
using a periodic timer (e.g., high-resolution timer). While a
task is running on the CPU, the timer allows periodic sam-
ple collection. Meanwhile, when a task is off-CPU, hence
blocked, the timer is paused until the task resumes execution.

Blocked samples augment the original task-clock-based
sampling by including the blocking state of a thread. As
the blocking state of a thread remains unchanged until the
thread resumes its execution, our scheme captures the block-
ing state at the moment a thread resumes, rather than relying
on the periodic timer. This is achieved by incorporating three
task scheduling-related operations: schedule-out, wake-up and
schedule-in functions.

First, when a thread is scheduled out, our scheme records
the subclass of the thread’s blocking, along with a timestamp
marking the start of the off-CPU interval. Then, when the
thread is woken up, our scheme records a timestamp to mark
the end of the off-CPU interval. When the thread is eventu-
ally scheduled in, we record a timestamp and calculate the
blocking interval (Tblocked) and the waiting interval for CPU
scheduling (Tsched) as shown in Figure 6. For threads that are
runnable but remain in the runqueue due to CPU contention,
the off-CPU interval has no wake-up timestamp and hence be-
longs to the scheduling subclass of blocked samples. Finally,
in the schedule-in function, if the blocking interval overlaps
with one or more sampling points in time, a new sample is cre-
ated. This sample contains the IP, callchain, weight and type
attributes. For example in Figure 6, the two off-CPU events,

Figure 7: bperf sampling results of Case 1 in Figure 1.

Tblocked and Tsched contain two sampling points. Hence, two
blocked samples, one for blocking and the other for schedul-
ing, are collected. If an off-CPU interval does not overlap
with any sampling points, no blocked samples are collected.
This approach minimizes the overhead of the collection of
blocked samples, even with frequent off-CPU events, as the
three hook points only perform timestamping.

A single blocking event can encompass multiple sampling
points. This means that the blocking event can generate mul-
tiple blocked samples. However, since these samples share
identical attributes, our scheme avoids replicating them. In-
stead, it encodes the repetition using the weight field of a
blocked sample. This approach reduces both the space and
time overhead associated with handling blocked samples.

3.2 bperf

bperf is an online profiling tool that profiles applications
using sampling-based profiling and provides statistics of sam-
pling results. bperf is an extension of the Linux perf tool [17]
to support blocked samples. Similar to perf, bperf can be an
online or offline tool as its sampling-based profiling can be
attached and detached at any time while a program is run-
ning and its profiling overhead is generally low (1.6%), as
demonstrated in Section 4.4.

Basically, treating blocked samples has no significant differ-
ence from handling conventional on-CPU samples. Samples
are classified using their IP and callchain. Using the infor-
mation, their statistics are reported such as overhead portion,
function symbol, and the object file as shown in Figure 7.

We extend the Linux perf tool to (1) interpret the weight
field of blocked samples and (2) annotate a subclass to blocked
samples. Firstly, when bperf processes blocked samples, the
weight field denotes the number of repetitions of the same
event. Therefore, this repetition is taken into account when
calculating the statistics. Secondly, bperf examines the sub-
class of blocked samples and annotates their subclass type
in the reported result. Currently, bperf uses the following
annotations, I for the I/O subclass, L for synchronization, S
for scheduling and B for the rest. This information enables
the user to identify and analyze the performance impact of
blocked samples distinguished by each subclass.
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Figure 7 shows the profling result of the example program
in Figure 1 using bperf. As compared to the results of the
original perf sampling (Figure 2), bperf provides on-CPU
and off-CPU events together, thereby allowing developers
to understand the overhead of various events more precisely.
In Thread 1, pread incurs the largest overhead, followed by
pwrite, and pthread_cond_wait ranks third. In Thread 2,
compute_heavy dominates the thread’s execution time.

The advantages of using bperf are two-fold. First, bperf
can allow in-depth analysis of blocking events and their in-
teractions inside the operating system kernel. For example,
fsync is a complex operation that accompanies many types
of disk writes. Without bperf, only a tiny amount of user-
level and kernel-level codes are collected as on-CPU sam-
ples. With bperf, various off-CPU samples are collected to
allow in-depth understanding of the fsync operation, such as
write-back of data blocks, waking up and waiting for jbd2
file system journaling thread, write-back of journal blocks
and commit blocks. Consequently, bperf allows profiling of
the interaction between kernel services (e.g., fsync call) and
accompanying off-CPU events (e.g., data-block writes, syn-
chronization with jbd2) with the detailed information of their
callchains.

Second, the profiling results using bperf can provide the
following performance optimization guidelines.
• When profiling results show a substantial overhead at-

tributed to I/O subclasses, this suggests that the application
spends a significant portion of time waiting for I/O opera-
tions, such as synchronous I/O. To enhance performance un-
der these conditions, upgrading to faster I/O devices could
be considered. Alternatively, adopting asynchronous I/O
interfaces could help minimize the blocking time associated
with I/O operations [43, 58].

• When profiling results attribute a large overhead of schedul-
ing subclasses, the result indicates the application threads
are spending a large fraction of time in CPU runqueues
waiting for scheduling. An optimization guideline can be
(1) adjusting the number of threads [58], (2) allocating
more CPU resources to an application [47, 58], (3) pinning
threads to cores to avoid the performance noise caused by
CPU load balancers [36, 37], etc.

• When the overhead of the synchronization subclass is no-
table, performance improvement can be attained by optimiz-
ing the events executed within the critical section through
application analysis [35].

3.3 BCOZ

This section introduces BCOZ, a causal profiler designed to
identify performance bottlenecks. BCOZ is an offline tool
that is designed to help programmers identify performance
bottlenecks and improve the performance of their programs.
At its core, BCOZ profiles on- and off-CPU events collected
by blocked samples and estimates performance improvement

through virtual speedup. BCOZ precisely identifies interac-
tions between on- and off-CPU events with symbol-level
information obtained from blocked samples. This section
explores the challenges of accurately estimating the virtual
speedup of off-CPU events and discusses various features that
are useful for analyzing applications with off-CPU events to
optimize performance.
Sampling Kernel Codes. Off-CPU events are tightly coupled
with the operation of the operating system kernel codes. Such
events occur through the use of operating system services,
such as blocking system calls, synchronization primitives, and
multi-tasking. In particular, applications with a high number
of blocked samples tend to include frequent interactions with
kernel [8,9]. Hence, not only the period during which a thread
is blocked but also the kernel operations for such kernel ser-
vices are important for analyzing and estimating the speedup
of their optimization. Accordingly, it is necessary to capture
samples for kernel operations and support virtual speedup on
those. The original COZ captures only user-space samples
for its virtual speedup. However, BCOZ captures samples
from not only user space but also kernel space to identify
the target of virtual speedup. The target of virtual speedup is
basically selected as a part of user-space code. Then, every
sample includes their callchain. If the sample includes the
instruction pointer of the kernel space, the callchain contains
both user-space and kernel-space ones because bperf collects
both of them. BCOZ considers them as a unified callchain
and identifies the target of virtual speedup by traversing the
callchain from the kernel space to the user space.
Virtual Speedup of Blocked Samples. Estimating the vir-
tual speedup of blocked samples is the core of the causality
analysis of off-CPU events. BCOZ needs special care when
processing blocked samples in order to produce correct vir-
tual speedup estimation. Recall that blocked samples are cap-
tured when a thread is scheduled in. Such blocked samples
are queued to the perf subsystem and are reported to BCOZ.
BCOZ handles blocked samples in batches similar to what
COZ does. Processing blocked samples indicates that if a
blocked sample is the target of virtual speedup, a proper delay
is injected to other co-running threads as in COZ [15]. A
blocked sample contains a callchain from the kernel space
to the user space. Hence, if the user-space callstack contains
target code lines to speed up, the blocked sample becomes the
target of virtual speedup. For example, if pread is the target
of virtual speedup, not only on-CPU samples such as library
codes or kernel I/O stack but also off-CPU samples for disk
I/Os issued by these code lines are the target of the virtual
speedup. This is because such on-/off-CPU samples have a
callchain whose user-space part contains pread.

Additionally, special care is required in handling depen-
dencies during the virtual speedup of blocked samples. As
blocked samples are processed after a blocking event, hence
an I/O event, is finished, the processing of blocked samples
can incorrectly inject delays to threads which have depen-
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Figure 8: Illustration of virtual speedup when the target in-
cludes the off-CPU event while another thread waits for the
completion of the target.

dency on the blocking event. For instance, as illustrated in
Figure 8, thread A indirectly wait on I/O issued by thread
B, and hence after thread B finishes its synchronous I/O, it
wakes up thread A. The problem happens if the synchronous
I/O becomes the target of speedup. When the blocked sam-
ples associated with the I/O are processed sometime after
the wake-up operation, the delay injected to thread A, which
is for the virtual speedup of the I/O event, makes thread A
experience unnecessary delay. In other words, if thread A is
injected with the delay, the situation is like the I/O is not sped
up. This is because if the I/O event is sped up, the execution of
threads waiting for the I/O event directly or indirectly should
be boosted as the I/O waiting time is reduced. With the virtual
speedup technique, such threads should not be delayed.

To this end, BCOZ processes blocked samples for vir-
tual speedup before conducting the thread wakeup opera-
tions in synchronization primitives (e.g., mutex_unlock and
cond_signal). In the example, the blocked samples of the
I/O event are processed before waking up thread A. By do-
ing so, once blocked samples contain the target for virtual
speedup, the delays for the virtual speedup are not injected to
thread A as thread A is not running. Therefore, the delays are
exempted in thread A.
Subclass-Level Virtual Speedup. Optimizing off-CPU
events sometimes requires different types of optimization at-
tempts compared to optimizing code. For instance, enhancing
the execution environment can often achieve greater perfor-
mance gains than optimizing the application’s code, such as
upgrading from HDDs to flash-based SSDs in database appli-
cations [51]. Conversely, some applications may exhibit no or
marginal performance improvement even when faster hard-
ware devices are employed [23,30,32] due to application-side
bottleneck. Similarly, the scheduling subclass off-CPU events
have no particular code lines to attempt to optimize. These
off-CPU events are challenging to optimize and may require
prior knowledge of the optimization effects.

BCOZ provides a subclass virtual speedup technique de-
signed to predict the performance gains from optimizing a
specific type of off-CPU events. Hence, the target for virtual
speedup is not selected from the application code but from the
class of off-CPU events. Applying virtual speedup at subclass

(a) BCOZ results of Case 1 in Figure 1

(b) BCOZ results of Case 2 in Figure 1

Figure 9: Profiling results of Figure 1 using BCOZ.

granularity is straightforward. During the sample processing,
instead of checking whether the sample’s callchain includes
the target code, it checks whether the type field of blocked
samples (Section 3.1) matches the target subclass.

Please note that the synchronization subclass does not
support this subclass-level virtual speedup. From an actual
optimization perspective, it is not possible to speed up the
lock waiting period itself. Instead, the optimization focuses
on speeding up the operations in the critical section. Hence
speeding up the lock waiting period is invalid but speeding
up the critical section is valid. In other words, the virtual
speedup of critical sections can be done when the critical
section is selected as the target of speedup. Therefore, we
exclude the synchronization subclass from the subclass-level
virtual speedup technique.
Selecting Virtual Speedup Targets. BCOZ supports both
automated virtual speedup target selection and explicit target
designation, similar to COZ. The automated target selection
conducts virtual speedup for multiple targets in a single run by
monitoring frequently sampled code lines during execution
and dynamically changing the targets [15]. Where BCOZ
differs from COZ is that conducting virtual speedup is not
limited to on-CPU events executed by the target code line, but
also includes virtual speedup for off-CPU events of the target.
Additionally, BCOZ can designate an off-CPU subclass rather
than a code line as a target for subclass-level virtual speedup.
If a particular off-CPU subclass dominates in the sampling
result, users can designate such subclass as a virtual speedup
target to assess whether optimizing for that off-CPU event
can yield performance improvements.
Profiling Results using BCOZ. Figure 9 provides a sum-
mary of the virtual speedup results of the example program
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depicted in Figure 1. This result illustrates that the actual
performance improvements can be achieved by optimizing
compute_heavy in Case 1 and I/O operations (especially
pread) in Case 2. Furthermore, the virtual speedup results
indicate the actual performance gains are bounded by the
point at which the critical path moves. Consequently, by fil-
tering out the false bottlenecks, we can prevent unnecessary
optimization efforts for users.

4 Evaluation

In this section, we illustrate the experience of application
profiling with bperf and BCOZ. The goal of our evaluation is
to answer the following questions: (1) Do bperf and BCOZ
identify bottlenecks precisely? (2) Does the estimated virtual
speedup align with the actual speedup? (3) As compared to
other state-of-the-art profilers (i.e., COZ and wPerf), are bperf
and BCOZ more useful?

4.1 Experimental Setup
All experiments were conducted on a machine equipped
with two Intel Xeon Gold 5218 CPUs (2.30 GHz, 16 phys-
ical cores), 375 GB DDR4 DRAM, and a flash-based SSD
(PM983), which can deliver performance of up to 540 K I/O
operations per second (IOPS). We modified the perf subsys-
tem of the Linux kernel 5.3.7 to support blocked samples,
which requires to modification of 295 lines of code. Further-
more, bperf was developed based on the perf tool of the Linux
kernel. Finally, BCOZ is implemented based on the existing
COZ code [13].

The application codes are complied to include frame point-
ers to correctly trace callchain. Hence, we disabled frame
pointer omitting using -fno-omit-frame-pointer option.
This is necessary for BCOZ (and COZ [15]).

We present virtual speedup results obtained through either
the automated target selection mode or the subclass-level
virtual speedup method, as explained in Section 3.3. In the
automated target selection mode, the profiler produces virtual
speedup graphs for frequently executed lines of code, from
which we select the top-N results that demonstrate a positive
speedup value. In the subclass-level virtual speedup method, a
dominant off-CPU event is manually selected for conducting
the virtual speedup profiling.

We measured performance using throughput, defined as the
number of processed queries per second, where any perfor-
mance enhancement reflects as an improvement in throughput.
This is based on the assumption that reducing query process-
ing time will naturally lead to increased query throughput,
especially in environments where clients continuously submit
queries, as in RocksDB. However, as the program speedup
in the virtual speedup graphs indicates the percentage of the
reduction in execution time, a simple conversion is necessary
to translate it to the throughput improvement. A program

(a) Causality analysis using BCOZ

(b) Optimization results

Figure 10: Results of (a) causality analysis, and (b) actual
optimization in Prefix Dist.

speedup of y% means that the time it takes to process the
same number of queries is now reduced to (100− y)% of the
original, indicating that the throughput has increased by 100

100−y
times. For instance, 75% program speedup is translated as 4x
throughput improvement.

4.2 Case Study: RocksDB
In this section, we provide our experience of profiling
RocksDB, a widely used log-structured merge (LSM) tree-
based key-value store. By profiling RocksDB in various sys-
tem configurations, we aim to identify off-CPU event bot-
tlenecks that were previously difficult to pinpoint. We also
validate these bottlenecks by attempting actual optimizations
or comparing them with findings from previous studies on
RocksDB optimization.
Optimization 1: Block Cache Contention. As a first op-
timization, we identify and address the bottleneck of block
cache operations in a read-intensive workload. Figure 10
shows the profiling results for read-only execution of Prefix
Dist [10], an open-sourced real-world workload by Facebook.
In this experiment, the key-value size is 91 bytes (48 bytes
key and 43 bytes value), the block cache size is 10 GB, the
workload runs eight worker threads, and the dataset is set to 1-
billion key-value pairs. The workload performs using a single
shard to reproduce the well-known lock contention problem
of RocksDB’s LRU-based block cache [6].

Figure 10a illustrates the virtual speedup results us-
ing by BCOZ (solid line) and COZ (dotted line). In
the results, two operations, GetDataBlockFromCache and
ReadBlockContents are identified as bottlenecks. The
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Figure 11: The wait-for graph and identified knots using wPerf

worker threads of RocksDB handles get operations by (1)
looking up desired blocks (e.g., filter, index and data block)
from the block cache (GetDataBlockFromCache) and (2) is-
suing block I/O requests to underlying disks upon a cache
miss from the block cache (ReadBlockContents). The cache
lookup operation is the real bottleneck since all the workers
are contending on the lock of the block cache. As shown in
Figure 10a, BCOZ shows up to 60% speedup when the cache
lookup operation is optimized and up to 20% speedup when
the block read I/O operation is optimized. Although the two
operations accompany off-CPU events, COZ does not show
any virtual speedup result for the two operations because it
cannot take off-CPU events into account for profiling.

In order to verify the virtual speedup results, we conducted
optimization of the two operations. First, we replaced the
flash-based SSD with a faster one [44] which delivers perfor-
mance of up to 1,500 K IOPS; this optimization is denoted
as SSD+. We expect the speedup of ReadBlockContents.
Figure 10b, however, shows no performance gain with SSD+
since the lock contention is the major bottleneck. Our second
optimization is to apply sharding. The block cache is parti-
tioned to multiple shards, which is denoted as Shard-N where
N is the number of shards. As shown in the figure, Shard-N
shows improved performance. The more shards there exist,
the less lock contention occurs thereby showing more im-
proved throughput. This tendency is shown in the virtual
speedup analysis of BCOZ in Figure 10a.

To compare profiling capability of wPerf, we use wPerf
to analyze the application again. Figure 11 shows the profil-
ing results of wPerf, the initial knot (left) and the knot after
trimming edges with a small global impact [58] (right). After
trimming the low-weight edges (right), the wait-for graph
identifies only the I/O (HARDIRQ) as the bottleneck. This pro-
filing result requires a programmer’s additional efforts to
identify which user-level functions incur such bottlenecks. In
addition, improving the I/O performance (SSD+) does not
lead to actual performance improvement, which may increase
the user’s burden of profiling. The wait-for graph before trim-
ming (left) is too complex but provides two bottleneck points:
(1) worker --> HARDIRQ edge indicates the I/O waiting of
worker threads and (2) worker <--> worker edge indicates
lock waiting between worker threads. Therefore, the strategy
that the user can try is to optimize the I/O event of the worker
thread or to solve the lock contention. However, wPerf does

(a) Causality results

(b) Optimization result (c) Knots in wait-for graph

Figure 12: Results of (a) causality analysis, (b) actual opti-
mization, and (c) wPerf in all random.

not provide the potential speedup when the bottlenecks are
optimized. One lucky programmer may attempt to optimize
the lock contention and success to improve the performance.
Meanwhile, one unlucky programmer may attempt to opti-
mize the block read I/O operations and may not be able to
improve the performance. Therefore, the missing causality
analysis of wPerf can increase the burdens of users.

Optimization 2: Block Read Operation. After resolving
the block cache contention by sharding, we profiled RocksDB
again with the all random workload in order to identify and op-
timize off-CPU events. The configurations of the workload re-
main unchanged, except that the block cache size is reduced to
128 MB to incur a large amount of off-CPU events, hence disk
read I/Os. Figure 12 shows the profiling result of the work-
load using BCOZ and wPerf. The profiling results of BCOZ
demonstrate the three bottleneck points, IndexBlockIter,
GetFilterPartitionBlock, DataBlockIter, which han-
dle index blocks, filter blocks and data blocks, respectively.
All the operations are off-CPU-intensive operations. In addi-
tion, the I/O subclass-level virtual speedup is applied and de-
picted as I/O subclass. As shown in the figure, each of the
three operations shows from 15% to 40% of speedup and their
aggregated speedup is more than 70% (I/O subclass). Among
the three operations, GetFilterPartitionBlock shows the
largest expected speedup. An LSM tree has multiple lev-
els and a key-value entry can exist in any of the levels. In
each level, a key-existence test is done using a bloom filter.
Therefore, GetFilterPartitionBlock performs the key ex-
istence testing using the filter blocks that need to be fetched
from the disk. Since a single get operation traverses multiple
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(a) Knots in the wait-for graph of wPerf. (b) Compaction thread. (c) Worker thread.

Figure 13: Results of (a) wPerf, (b) compaction thread, and (c) worker thread in fillrandom.

levels of the LSM tree, optimizing the filter read I/O operation
is expected to show the largest performance gain.

Our optimization strategy is to apply asynchronous I/O to
fetch filter blocks of the next levels of the LSM tree. Hence,
for a get operation, our optimization performs a read of the
filter blocks speculatively through the LSM tree. Hence, while
the first level is processing the key existence test, the filter
blocks of successive levels are speculatively fetched thereby
reducing the read I/O waiting time. Our experimental results
show that our optimization results in 77.3% of performance
gain as shown in Figure 12b.

We compared the profiling result of BCOZ with wPerf. The
wait-for graph of wPerf is shown in Figure 12c. As shown in
the figure, the knot is HARDIRQ, which denotes the disk. How-
ever, wPerf provides no more information on the bottleneck.
Hence, the user’s additional effort is necessary to specify
the bottleneck. In addition, the lack of the causality analysis
causes users to hesitate about which of the I/O operations to
speed up. However, BCOZ provides the causality analysis to
off-CPU events and illustrates that the filter I/O operations
have the largest potential speedup. This analysis is followed
by successful optimization of the filter I/O operations by par-
allelizing filter I/O operations by using asynchronous I/O.
Optimization 3: Write-intensive Workload. Our next opti-
mization attempt is the write-intensive workload, fillrandom
against RocksDB. For this experiment, we utilized a key-value
size of 1 KB, with 16 worker threads concurrently writing
a total of 10 million records. Figure 13 shows the profiling
result using BCOZ and wPerf. First, wPerf identifies two po-
tential bottlenecks: the COMPACTION thread and the HARDIRQ
I/O thread. The initial wait-for graph was too complex and we
applied the merging similar threads technique [58] to obtain
the wait-for graph of the figure. From the wait-for graph, we
can identify two bottlenecks: (1) the compaction operation of
the LSM tree and (2) the write I/O operations of the worker
threads (W*, the merged worker threads). Since the worker
threads perform write-ahead-logging (WAL), WAL write I/Os
can be the bottleneck. For the compaction, wPerf does not
specify among the operations of compaction the significant
overhead. In addition, wPerf reports that HARDIRQ shows a
bigger global impact than COMPACTION.

Meanwhile, BCOZ provides more informative analysis

Figure 14: Results of actual optimizations in fillrandom.

results. First, BCOZ identifies the compression operation
(CompressBlock), which is on-CPU, as the significant bot-
tleneck as shown in Figure 13b. Although BCOZ can es-
timate the potential speedup of I/O operations (pread and
pwrite), their speedup is expected to be marginal. Second,
BCOZ expects marginal speedup for the WAL operations as
shown in Figure 13c. Third, BCOZ analyzes that the con-
tention between the worker threads (JoinBatchGroup) is the
bottleneck and its optimization can potentially improve the
performance. Finally, BCOZ identifies the write throttling
(DelayWrite) of the RocksDB’s memtable write policy as
the bottleneck.

The actual optimizations of the identified bottlenecks are
performed as follows. First, the WAL operation is optimized
by (1) using a RamDisk as the WAL storage and (2) disabling
WAL (no-WAL). Second, the compaction operation is opti-
mized by (1) disabling compression (Compress+) and (2) al-
locating many compaction threads (Comp+). Figure 14 shows
the performance of the RocksDB fillrandom workload when
the optimizations are applied. Third, the writeback stall is re-
lieved by increasing the number of maximum memtables from
2 to 16 (Stall). As shown in the figure, WAL-related optimiza-
tions show marginal performance gain. This result indicates
that BCOZ estimates the potential speedup correctly. In ad-
dition, Compress+ and Comp+ show improved performance,
which is also predicted by BCOZ. Also, Stall shows the
largest performance gain, which is estimated by BCOZ in Fig-
ure 13c. In the meantime, wPerf only identifies COMPACTION
and HARDIRQ as the potential bottleneck points. HARDIRQ has
shown marginal performance since worker threads are re-
ported to wait for the I/O thread but accelerating WAL opera-
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(a) Line-level virtual speedup (b) Subclass-level virtual speedup (c) Virtual speedup vs. actual speedup

Figure 15: Virtual speedup results of NPB-is under the CPU contention.

tions show no performance gain. From these results, BCOZ
is effective in specifying performance bottlenecks.

Profiling Accuracy. Although BCOZ is proven to effec-
tively identify performance bottlenecks, predicting the po-
tential speedup accurately is sometimes difficult and intri-
cate. For example, BCOZ predicts that optimizing the block
cache lock contention can lead to 50% of program speedup
(or doubling the throughput) as shown in Figure 10a. How-
ever, after relieving the block cache contention by applying
sharding, the performance has been improved by four times,
which is more than two times higher than the expected im-
provement. This is because sharding not only relieves the
lock contention of cache lookup (GetDataBlockFromCache)
but also reduces the contention of other operations (e.g.,
PutDataBlockToCache). Furthermore, certain optimizations
may speed up a target code line but increase the amount of
other events. For example, BCOZ predicts that optimizing
CompressBlock will result in a 32% program speedup (or
1.47x throughput improvement) in Figure 13b, but the actual
throughput improvement is 1.26x. This is because, by dis-
abling compression, CompressBlock is no longer invoked,
but this optimization has the side effect of increasing the total
amount of disk I/Os.

Therefore, virtual speedup results can under- or over-
estimate actual speedup. However, the strength of BCOZ (and
COZ) lies in their ability to precisely identify specific lines
that could potentially lead to actual speedup when optimized.
Our evaluation results have shown that optimizing these pre-
dicted lines can indeed lead to actual speed improvements.

Takeaway. During the profiling of RocksDB, we have iden-
tified bottlenecks that align with those mentioned in existing
RocksDB optimization studies. Firstly, we examined the over-
head and virtual speedup results of the compaction, which
involved a mix of off-CPU events (I/O subclass) and on-
CPU events. The potential for performance improvement
through compaction optimization, as indicated in numerous
studies [2,12,28,42,48], was validated using bperf and BCOZ.
The significance of the proposed profiling techniques has be-
come evident as the existing Linux perf tool or COZ could not
easily or accurately predict the bottlenecks in the absence of
blocked samples. Furthermore, the necessity to optimize oper-

ations related write stalls and batched group writing was also
identified by BCOZ. These operations have been also identi-
fied as bottlenecks in previous studies [11,18,24,29,34,52,56].
Finally, we have examined the bottleneck caused by I/O sub-
class off-CPU events during the execution of RocksDB and
validated the performance improvement.

4.3 Case Study: NAS Parallel Benchmark
In this section, we evaluate the effectiveness of the scheduling
subclass and subclass-level virtual speedup. For this experi-
ment, we use a compute-intensive workload, is (integer sort)
from the NAS parallel benchmark [5].

As discussed in Section 3.3, virtual speedup of application
code lines can be ineffective if application threads are con-
tending on the CPU cores. To demonstrate this situation, we
intentionally controlled the number of CPU cores assigned to
the NPB-is workload. The workload is configured to run 32
threads and the number of cores is varied from 1 to 32 cores.
Figure 15a illustrates the profiling result of the main compu-
tation code lines using COZ and BCOZ when the number of
cores is limited to one. As shown in the figure, COZ has esti-
mated marginal performance improvement. On the contrary,
BCOZ has predicted potential performance improvement if
these code lines are optimized. Under high CPU contention
(32 threads vs. 1 core), off-CPU events are frequent as the
threads are frequently scheduled out due to the high CPU con-
tention. In this case, BCOZ is able to estimates the optimiza-
tion opportunity that when such scheduling subclass off-CPU
events are removed, the performance can be improved.

Figure 15b presents the profiling results for the schedul-
ing subclass-level virtual speedup as the number of cores
increases from 1 to 32. With the highest CPU contention
(using only one core), the estimated program speedup is at
its peak. As the number of cores increases, thereby reducing
CPU contention, the estimated program speedup decreases.
Since the number of assigned CPU cores is fewer than the
program’s 32 threads, these profiling results seems valid.

To validate the virtual speedup profiling results, we mea-
sure the program performance with varying the number of
cores. This approach reflects the optimization strategy of allo-
cating additional CPU cores to mitigate CPU contention. Fig-
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(a) Performance overhead

(b) CPU cycle overhead
Figure 16: Overhead analysis results of bperf.

ure 15c shows both the virtual and actual program speedups
as the number of cores changes from X to 32 (X->32), transi-
tioning from high CPU contention to no CPU contention. As
shown in the figure, the actual speedup generally corresponds
with the speedup predicted by BCOZ. These results confirms
that it is important to correctly profile off-CPU events in
highly parallel workload, and BCOZ leverages blocked sam-
ples to provide valuable profiling results to users.

4.4 Profiling Overhead

bperf. We compare the overhead of bperf with existing pro-
filing techniques, (1) tracing which profiles only off-CPU
events (sched_switch and sched_wakeup) using Linux
perf’s tracing mode [17, 38, 58], and (2) sampling which sam-
ples only on-CPU events using Linux perf’s sampling mode
(task_clock) [17]. All these tools have the same goal of
profiling statistical overheads of target programs, but their
profiling coverage are different: tracing focuses on off-CPU
events, sampling focuses on on-CPU events, and bperf covers
both on- and off-CPU events. For the sampling methods, the
sampling period is set to 1 ms, which is identical in all the
experiments in the evaluation section.

Figure 16 shows the overhead of the three profilers with
the workloads used in the experiments as well as additional
workloads, NPB-ep [5] and hackbench [22] to cover on-CPU-
intensive and off-CPU-intensive cases, respectively. Among
the workloads, RocksDB-X indicates the RocksDB workload
used in Optimization-X in Section 4.2. We measured two
types of overhead. First, the performance overhead refers
to the performance drop of profiled applications (runtime
increase for hackbench and throughput decrease for the rest of

Figure 17: Overhead breakdown results of BCOZ.

applications) as compared to the baseline, which runs without
any profilers (Figure 16a). Second, the extra CPU overhead
refers to the additional CPU cycles consumed by using the
profilers as compared to the baseline (Figure 16b). The values
shown in the figures are the average of 10 runs.

Overall, the three profilers show acceptable performance
drops, no more than 4% on average. Tracing, sampling and
bperf have shown the average performance drop by 3.6%,
0.9% and 1.6%, respectively. Specifically, tracing shows no-
table performance drops with the workloads showing frequent
off-CPU events (i.e., RocksDB-1, 2 and hackbench). Tracing
records profiling information (i.e., IP and callchain) on every
thread state transitions, leading to high overhead when off-
CPU events are frequent. In contrast, bperf hooks into all the
state transitions like tracing but only records timestamps for
each transition. Profiling information is recorded only if an
off-CPU interval overlaps with sampling points, resulting in
low profiling overhead.

As compared to sampling, bperf enables profiling of off-
CPU events at a low cost. bperf shows the additional perfor-
mance overhead by only 0.7% (1.6% for bperf – 0.9% for
perf) and extra CPU cycles by 1.4% (3.7% for bperf – 2.3%
for perf). Considering that the profiling capability of bperf is
greater than perf, we believe these overheads are acceptable.

As the mechanism of bperf inherits from perf, it can be
attached and detached at any time while the profiling target
application is running. As the overhead of bperf is low, we
believe it can be an online tool for collecting statistical over-
heads of applications in production.
BCOZ. Figure 17 illustrates the overhead of profiling appli-
cations with BCOZ. The BCOZ overhead is categorized into
three parts: startup, sampling, and delays. Startup represents
the overhead of collecting debug information, which is the
duration between BCOZ’s bootstrapping and the application’s
main function (i.e., libc_start_main()), on average 1.4%.
Sampling encompasses the overhead incurred when there’s
no virtual speedup delay (i.e., 0% line speedup) consisting of
the bperf’s sampling overhead and BCOZ’s intervention to
read samples and verify whether they include speedup targets,
on average 12.6%. Finally, delays entail additional overhead
when BCOZ is fully enabled, averaging 13.6%. The delays
overhead does not refer to the amount of delays injected for
virtual speedup, but the increase in the end-to-end execution
time of the application.

The overhead of BCOZ is not light considering its end-to-
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end overhead of 27.6% on average and up to 64.7%. However,
such profilers show similar performance overheads. For exam-
ple, COZ has demonstrated its overhead of 17.5% on average
and up to 65% [15]. As these profilers insert additional delays
while the application is running, the end-to-end execution
time can be increased. These overheads can be reduced when
the inserted delays are limited, cooling-off times are inserted
between virtual speedup experiments, etc [15]. Such remedies
can be effective in reducing the profiling overhead, but it re-
mains uncertain whether the results provided are sufficient to
identify bottlenecks and their potential for performance gain.

5 Related Work
On-CPU Event Profilers. Conventional profilers [17, 19–
21, 33] that rely on existing on-CPU events (such as CPU
usage and execution time) face challenges when identify-
ing bottlenecks in modern applications. This is primarily
because the event with the longest execution time in a multi-
threaded application does not necessarily represent the criti-
cal performance path, and they do not account for off-CPU
events. In the context of multi-threaded applications, there
are causal profiling studies aimed at analyzing the impact
of optimizing each individual event on overall application
performance [1, 4, 7, 15, 45, 53, 54]. COZ [15], for instance,
provides performance improvement predictions by applying
virtual speedup to each event using the sampling results from
the Linux perf subsystem. However, COZ’s virtual speedup is
limited to on-CPU events sampled by the Linux perf subsys-
tem. It is not capable of estimating virtual speedup of events
that include off-CPU events.
Off-CPU Event Profilers. Existing studies have focused on
analyzing off-CPU event bottlenecks [27,35,38,39,55,57,58].
Some studies analyze application bottlenecks by measuring
the duration of off-CPU events [27,39,55]. However, in multi-
threaded applications, the longest event may not always repre-
sent the critical path of the application [15, 58]. Furthermore,
nested off-CPU events can have varying performance impact
on event duration and overall application performance [58].
Therefore, analyzing performance using the duration of off-
CPU events leads to incorrect conclusions.

Other studies identify application bottlenecks by specifi-
cally targeting off-CPU events related to synchronization [35,
57]. However, as mentioned earlier, the off-CPU bottlenecks
in modern applications are diverse and encompass various
aspects, including device I/O. Therefore, relying on profil-
ing specific off-CPU events has limitation of supporting the
various applications.

wPerf [58] is a state-of-the-art study focused on analyz-
ing off-CPU bottlenecks in applications, wait-for graphs are
constructed to identify off-CPU events that act as bottlenecks.
However, as discussed in Section 2.2, wPerf has several lim-
itations. wPerf does not precisely pinpoint the performance
bottleneck of applications. Also, wPerf lacks the capability of

causality analysis, so it could not analyze the actual impact
on application performance when optimizing a performance
bottleneck. Finally, wPerf identifies bottlenecks but misses
detailed information, requiring additional efforts from devel-
opers to understand the exact performance bottleneck.

6 Conclusion
Existing profilers face limitations when it comes to identify-
ing modern application bottlenecks that involve a mix of on-
and off-CPU events. These profilers treat on- and off-CPU
events as separate dimensions, making it difficult to perform
comprehensive profiling and interpret the results. Moreover,
even if the bottleneck of an application is identified, it remains
uncertain whether optimizing the bottleneck will result in ac-
tual performance improvements. To address this problem,
this paper introduces a sampling technique called blocked
samples, which enables the identification of application bot-
tlenecks by integrating on- and off-CPU events within the
same dimension. We present bperf, a Linux perf tool that
utilizes the proposed blocked samples technique to identify
application bottlenecks based on event execution time, and
BCOZ, a causal profiler that offers a virtual speedup for off-
CPU events. By profiling the RocksDB application using
these two profilers, we are able to uncover previously uniden-
tified bottlenecks related to I/O and synchronization tasks.
Furthermore, by virtually speeding up these tasks, we identify
optimization possibilities that were overlooked in existing
RocksDB optimization studies.

We plan to extend blocked samples to include richer infor-
mation for profiling. The current blocked samples consider
the operations inside an I/O device as a black box. However,
I/O devices may have their internal operations, which can be
the hint of performance optimization opportunities for appli-
cations. For example, disk-internal events, such as garbage
collection, and valid page copying, are important events for
storage applications to establish their optimization strategies.
In this regard, we plan to augment blocked samples with I/O
device-internal operations thereby allowing applications to
employ expanded optimization strategies.
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A Artifact Appendix

A.1 Abstract
Blocked samples is a profiling technique based on sampling,
that encompasses both on- and off-CPU events simultaneously.
Based on blocked samples, we present two profilers: bperf, an
easy to-use sampling-based profiler and BCOZ, a causal pro-
filer that profiles both on- and off-CPU events simultaneously
and estimates potential speedup of optimizations.

A.2 Scope
Our artifact can be used to identify bottlenecks across various
applications and pinpoint code lines in need of optimization.
Particularly, our approach is an efficient profiling technique
for applications where both on- and off-CPU events are mixed.

A.3 Contents
Our artifact consists of three subdirectories:
blocked_samples (source code of Linux kernel with
bperf), bcoz (source code of BCOZ), and osdi24_ae
(OSDI’24 artifacts evaluation). Descriptions of each
subdirectory are as follows.
blocked_samples. This directory includes an extended
Linux perf subsystem for blocked samples. Blocked sam-
ples is a profiling technique based on sampling, that encom-
passes both on- and off-CPU events simultaneously. Further-

more, the original Linux perf tool is replaced with our bperf
(blocked_samples/tools/perf).
bcoz. This directory includes source code of BCOZ. BCOZ is
a causal profiler that leverages the concept of virtual speedup
for both on-CPU and off-CPU events using blocked samples.
At its core, BCOZ profiles on-/off-CPU events (i.e., blocked
samples) collected by our extended Linux perf subsystem and
estimates performance improvement through virtual speedup.
BCOZ is extended from COZ [15], a causal profiler for only
on-CPU events.
osdi24_ae. This directory is for the OSDI ’24 artifacts evalua-
tion. It includes instructions for reproducing the experimental
results in the paper.

The instructions in the Getting Started with Blocked Sam-
ples section of README.md in the root directory help verify
whether blocked samples functions correctly.

A.4 Hosting
The GitHub repository for the artifacts is available on
https://github.com/s3yonsei/blocked_samples.

A.5 Requirements
The Linux kernel version for blocked samples is 5.3.7 and we
have verified that blocked samples operates correctly on the
Ubuntu 20.04 LTS server. We will soon release the support
for blocked samples on the latest Linux kernel version in the
repository.
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Abstract
Low-rank adaptation (LoRA) is a popular approach to fine-
tune pre-trained large language models (LLMs) to specific
domains. This paper introduces dLoRA, an inference serv-
ing system for LoRA models. dLoRA achieves high serving
efficiency by dynamically orchestrating requests and LoRA
adapters in terms of two aspects: (i) dynamically merge and
unmerge adapters with the base model; and (ii) dynamically
migrate requests and adapters between different worker repli-
cas. These capabilities are designed based on two insights.
First, despite the allure of batching without merging a LoRA
adapter into the base model, it is not always beneficial to
unmerge, especially when the types of requests are skewed.
Second, the autoregressive nature of LLM requests introduces
load imbalance between worker replicas due to varying input
and output lengths, even if the input requests are distributed
uniformly to the replicas. We design a credit-based batch-
ing algorithm to decide when to merge and unmerge, and
a request-adapter co-migration algorithm to decide when to
migrate. The experimental results show that dLoRA improves
the throughput by up to 57.9× and 26.0×, compared to vLLM
and HugginFace PEFT, respectively. Compared to the con-
current work S-LoRA, dLoRA achieves up to 1.8× lower
average latency.

1 Introduction

Large language models (LLMs) are changing the landscape
of modern applications. LLMs such as GPT4 [1] and Llama-
2 [2] are pre-trained on a large corpus to achieve outstanding
capabilities on generic tasks. These pre-trained LLMs (a.k.a.
base LLMs) can be fine-tuned to a specific domain to optimize
particular application scenarios, e.g., fine-tuning Llama-2 for
better code generation [3]. LLM platforms [4–7] provide fine-
tuning APIs and services for developers to fine-tune LLMs
and build domain-specific applications. For example, OpenAI
provides fine-tuning APIs for fine-tuning GPT-4 and Comple-
tions API to access these fine-tuned LLMs [4].

Low-rank adaptation (LoRA) [8, 9] is a popular approach
to fine-tuning LLMs. It is a type of parameter-efficient fine-
tuning [10] that reduces fine-tuning costs by updating only

a small portion of model parameters. LoRA exploits the low
dimensionality of parameter updates in fine-tuning and repre-
sents them with pairs of two small matrices called LoRA
adapters. Fine-tuning a base LLM amounts to training a
LoRA adapter for a specific domain while keeping the base
LLM unchanged. Compared to the fully fine-tuning GPT-3
175B, LoRA can reduce the number of updated parameters by
10,000× and the GPU consumption by 3× while achieving
comparable model quality [8]. At inference time, the LoRA
adapter can be merged with the base LLM thus introducing
no extra inference overhead.

Serving a set of LoRA model fine-tuned on a base LLM
(i.e., LoRA as a service) introduces new challenges to LLM
inference serving. Existing LLM inference systems such as
Orca [11] and vLLM [12] focus on serving a single model,
while in the scenario of LoRA as a service, there are mul-
tiple models. Conceivably, one can use Orca or vLLM to
serve each LoRA model and adopt an existing model serving
orchestrators like SHEPHERD [13] and AlpaServe [14] to
manage multiple LoRA models. This simple approach does
not consider the characteristics of LoRA model serving and
has the following two fundamental problems.

First, serving each LoRA model separately introduces a
high memory footprint, and suffers from low GPU utilization
as the GPUs cannot be efficiently multiplexed across mod-
els. The problem is particularly acute for LLMs as LLMs
have large sizes. An alternative approach is to directly use
unmerged LoRA adapters, i.e., keeping the base LLM un-
changed and storing the set of LoRA adapters alongside.
When serving different types of requests, it can batch the
shared base LLM computation across requests to increase effi-
ciency. This unmerged approach, however, does not work well
when the requests are skewed on a particular LoRA adapter,
whereas the merged approach can further reduce computa-
tional costs to increase efficiency.

Second, LLM tasks have variable input and output lengths,
which naturally introduces load imbalance between different
worker replicas. Due to the autoregressive pattern of LLMs,
simply dispatching requests to different worker replicas uni-
formly does not work well, as the execution time and GPU
memory consumption of requests are diverse [11, 12]. The
LoRA as a service scenario further exacerbates the problem,
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as LoRA adapter orchestration across worker replicas also
needs to be taken into consideration. The dependency between
LoRA adapters and requests as well as the GPU memory com-
petition between them make the problem even harder than
traditional load balancing problems.

We introduce dLoRA, a new inference serving system for
LoRA models to address these two problems. Compared to
previous practices in LoRA serving, dLoRA further improves
efficiency with two special capabilities. First, dLoRA can dy-
namically merge and unmerge LoRA adapters with the base
model in each worker replica. Second, dLoRA can dynami-
cally migrate LoRA adapters and requests between worker
replicas. Exploiting the capabilities of dLoRA efficiently has
two technical challenges. The first one is how to decide when
to merge and unmerge adapters. The second one is how to
decide which adapters and requests to migrate. We propose
two techniques to address these two problems.

To address the first problem, we propose a dynamic cross-
adapter batching technique. Based on the request arrival pat-
tern and current state, dLoRA dynamically switches between
merged and unmerged inference with different batching strate-
gies to reduce the end-to-end latency. To decide an appropri-
ate switching time, dLoRA dynamically adjusts the switching
threshold with the thresholds tuning according to the request
pattern to reduce switching overhead. dLoRA adopts a credit-
based batch generator to generate potentially efficient batch-
ing plans without harming the fairness of requests. A final
decision is made by taking all factors into account, including
execution time, queuing delay, and switching overhead.

To address the second problem, we propose a request-
adapter co-migration technique. Except for proactively dis-
patching requests based on current requests and adapter dis-
tribution, it also dynamically migrates requests and replicates
adapters to handle unpredictable load imbalance across repli-
cas. We formulate the problem as an integer linear program-
ming (ILP) problem and compute an optimal solution to min-
imize the load imbalance. To address the high overhead of
ILP, we amortize the overhead by reducing the frequency of
ILP solving and relaxing the problem to a selective migration
problem inspired by selective replication [15–17].

In summary, we make the following contributions.
• We identify the inefficiencies of current LLM serving sys-

tems in the LoRA model serving scenario, and articulate
the challenges of serving LoRA models.

• At the worker level, we propose a dynamic cross-adapter
batching technique to dynamically switch between merged
and unmerged modes to reduce the end-to-end latency.

• At the cluster level, we propose a request-adapter co-
migration technique to dynamically migrate requests and
adapters to balance the load across the cluster.

• We design and implement dLoRA with the preceding two
techniques. The evaluation results based on real-world
workload traces show that dLoRA achieves up to 57.9× and
26.0× higher throughput than vLLM [12] and HuggingFace
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Figure 1: LoRA optimization.

PEFT library [10], respectively. By leveraging dynamic or-
chestration mechanisms, dLoRA also achieves up to 1.8×
lower average latency compared to the concurrent work
S-LoRA [18].

2 Background and Motivation

2.1 Parameter-Efficient Large Language Models

Large language models. Large language models (LLMs) try
to maximize the next token predictability given the previous
tokens. At the inference time, LLMs show an autoregressive
pattern. For each request, an LLM iteratively generates tokens
based on the prompt (i.e., input tokens) and previous output to-
kens once a time until it generates an end-of-sentence marker.
This autoregressive nature makes LLM inference exhibit two
characteristics. The first one is variable inference latency de-
pending on the input and output lengths [12, 19]. The second
one is significant GPU memory consumption of intermediate
states of requests. To reduce redundant computation, LLMs
cache the intermediate states of previous tokens, called key-
value (KV) cache, in the GPU memory [20]. Similar to prior
work [12], we use intermediate states to refer to the key-value
cache. As the size of the KV cache is proportional to the
number of input and output tokens, the memory consumption
of LLM inference is also variable. The KV cache consumes
a large amount of GPU memory and may bound the perfor-
mance of LLM inference due to the limited GPU memory
capacity [12, 19].

Low-rank adaptation. Fine-tuning adapts a pre-trained LLM
to a specific domain without training an LLM from scratch.
Low-rank adaptation (LoRA) [8, 9, 21] is a popular class of
parameter-efficient fine-tuning methods [10], as it can achieve
competent performance by only fine-tuning a small number of
trainable parameters, called the adapter. Furthermore, LoRA
does not introduce extra inference latency. Inspired by the
phenomenon of low “intrinsic rank” of weight updates, the
core of LoRA is to represent each weight update as two rank
composition matrices with much smaller ranks. During fine-
tuning, LoRA only needs to optimize these two rank compo-
sition matrices, while keeping the pre-trained weights frozen.
Figure 1 shows an example. For a pre-trained weight W with
the shape of d ×d, LoRA represents weight updates ∆W as
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two smaller matrices A and B with the shape of r × d and
d × r respectively, where r is much smaller than d. During
fine-tuning, as shown in Figure 1(a), LoRA only updates A
and B and keeps W frozen, which significantly reduces com-
putation and memory consumption. At the inference time, as
shown in Figure 1(b), LoRA can merge the multiplied matrix
B×A (i.e., ∆W ) into W to eliminate extra inference overhead.
Given the benefits of LoRA, it is widely adopted to enhance
the capability of LLMs, such as long sequence [22] and multi-
modal input [23]. It can be used in all dense layers of LLMs,
but it is typically used to adapt attention weights [8].

2.2 Inference Serving Systems

LLM serving systems. Many techniques have been devel-
oped to improve the efficiency of LLM inference by leverag-
ing the characteristics of LLMs. Orca [11] proposes iteration-
level scheduling to batch requests of different lengths at the
granularity of iterations. Completed requests can be removed
immediately and newly arrived requests can be inserted into
the batch without waiting for the completion of the current
batch. The state-of-the-art solution vLLM [12] further intro-
duces an on-demand block-based GPU allocation mechanism
called PagedAttention to reduce GPU memory fragmentation
caused by variable and unpredictable KV cache, thereby in-
creasing the maximum batch size. However, they only focus
on the single LLM serving scenario. When serving multiple
LoRA LLMs, they cannot share the common base model and
thus cause severe redundant memory consumption.

HuggingFace PEFT [10] is a popular library for parameter-
efficient fine-tuning. It can also be used to serve multiple
LoRA LLMs shared with the same base LLM. However, it
can only serve requests destined to the same adapter once
at a time by swapping between different adapters, leading
to low efficiency. Besides, it lacks support for cluster-level
management for requests and adapters.

Traditional DNN serving systems. Many DNN serving sys-
tems can orchestrate multiple DNN models in a cluster, such
as SHEPHERD [13] and AlpaServe [14]. However, they also
do not support sharing the base model among different models
and do not target autoregressive LLMs. PetS [24] can serve
multiple parameter-efficient non-autoregressive transformer
models in a single server, but it cannot serve autoregressive
LLMs and does not consider LoRA. Besides, it does not sup-
port cluster-level management for requests and models. In
short, existing DNN serving systems also cannot serve multi-
ple LoRA LLMs in the cluster wide efficiently.

2.3 Challenges

To serve a large number of requests, a serving system usu-
ally deploys multiple replicas of the same base LLM, with
each handling a subset of the requests. Nevertheless, when
employing existing systems (such as vLLM and PEFT) to
serve LoRA LLMs, we identify two primary challenges.
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Figure 2: Challenges in existing LoRA serving.

GPU underutilization within a replica. In a model replica, a
single base model is accompanied by multiple LoRA adapters
for different types of requests. The aforementioned PEFT only
accommodates batching requests with the same LoRA adapter
(i.e., the same type of requests). When serving one type of
request, PEFT forces other types of requests to wait until the
completion of the current batch. The serving system has to
handle low-frequency types of requests one by one, which
cause severe GPU underutilization. Figure 2(a) illustrates an
example. When three requests arrive simultaneously, even if
the max batch size is three, PEFT has to process these three
requests separately: one batch for a request destined to the
type A adapter and another batch for two requests destined
for the type B adapter. As a result, the serving system only
utilizes 50% of the total GPU resources and doubles the total
latency for the requests destined to the type B adapter. This
example indicates that although LoRA does not introduce ex-
tra inference latency for a single request, it is still challenging
to serve multiple LoRA LLMs efficiently.

Load imbalance across replicas. To manage multiple repli-
cas in a cluster, a serving system usually adopts a global sched-
uler to dispatch each incoming request to a specific replica.
However, there exists load imbalance across replicas from two
aspects. First, due to the limited GPU memory, one adapter
type may only reside in a subset of replicas. When a burst
of requests destined for this adapter type arrives, only a few
replicas are utilized, while other replicas are idle. Figure 2(b)
shows an example that sending requests based on the Azure
trace [25] adopted by a previous DNN serving work [14]
to a cluster with eight replicas, where 32 types of adapters
are uniformly loaded in the eight replicas. In this case, the
burst of requests leads to severe load imbalance across repli-
cas. The difference in queuing delay between replicas can be
up to 8.0×. Second, even if the requests are dispatched uni-
formly across replicas, the variable input and output lengths
of requests still lead to load imbalance inevitably. The statis-
tics of ShareGPT [26], the datasets collected from real-world
conversations with ChatGPT [27], show that the input and
output lengths of requests are highly variable. The longest
input length and output length of requests are longer than the
average lengths by 636.7× and 163.9× respectively, which
implies extremely diverse execution time and GPU memory
consumption among requests. The load imbalance caused by
variable input and output lengths undermines the system’s
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overall inference efficiency and significantly increases laten-
cies for requests on the overloaded replica.

3 Overview

dLoRA is an inference serving system that serves multiple
LoRA models in a cluster. Within a replica, dLoRA employs
a novel cross-adapter batching technique to process requests
to different LoRA adapters in a single batch and improves
the GPU utilization (§4). Across replicas, dLoRA dynami-
cally migrates LoRA adapters and requests in the cluster to
achieve better load balancing (§5). Figure 3 shows the overall
architecture of dLoRA.

Intra-replica. dLoRA deploys a set of worker replicas in a
cluster. Each replica contains a subset of LoRA adapters and
one base model on several GPUs.

Dynamic batching. Within a replica, dLoRA uses a local
cross-adapter batching technique to process requests from
the global scheduler. The replica maintains a queue to buffer
incoming requests and schedules a batch of requests to the
execution engine with dynamic batching to achieve optimal
tradeoff between merged and unmerged inference.

Memory management. dLoRA efficiently manages the GPU
memory of LoRA adapters and requests within a single
replica. The memory manager allocates the GPU memory
to the LoRA adapters and the intermediate states of requests.
The two different types of memory may race for the lim-
ited GPU memory, which harms the serving performance. To
mitigate this, the memory manager dynamically adjusts the
memory allocation for adapters and requests based on the
current GPU memory usage and workload pattern. Besides,
the memory manager also swaps the unused adapters and
requests to the host memory.

Inter-replica. To manage multiple replicas in the cluster,
dLoRA uses a load balancer to solve the aforementioned load
imbalance problem. Due to the variable input and output
lengths of LLM requests, dLoRA introduces proactive and
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Figure 4: Unmerged inference.

reactive mechanisms to solve the imbalance problem before
and after it occurs, respectively.

Proactive mechanism. The proactive mechanism, upon receiv-
ing user requests, directs them to a specific replica based on
a two-fold dispatching policy. For short-term load dynamics,
the mechanism proactively selects the replica with the most
available resources to load the corresponding adapter and pro-
cess the request. For long-term load dynamics, the mechanism
proactively loads and replicates adapters for future predictable
load spikes.

Reactive mechanism. The proactive mechanism alone is not
sufficient since the resource usage (i.e., input and output
length) of a request is variable. The load imbalance prob-
lem still occurs. To address this issue, dLoRA introduces a
reactive mechanism to handle such a situation. Specifically,
there is a global monitor that periodically collects the resource
usage of each replica. Once the monitor detects a replica with
a heavy load, it notifies the re-balance trigger. The reactive
mechanism then employs a request-adapter co-migration al-
gorithm to find the optimal migration plan and sends the plan
to the cluster’s migration controller. The controller then mi-
grates requests’ intermediate states and loads LoRA adapters
across different replicas to achieve load balancing.

4 Dynamic Batching

4.1 Unmerged Inference

In §2.3, we discuss the limitations of merged inference in
terms of significant queuing delay and poor GPU utilization
when serving multiple LoRA LLMs. However, the character-
istics of LoRA LLMs provides an opportunity.

Unmerged inference. Figure 1(b) shows that the fine-tuned
weights and the pre-trained weights are merged to serve a
request (i.e., y = (W +BA)x), as initially suggested in the
LoRA paper [8]. This approach is termed merged inference.
An alternative approach is unmerged inference to process
requests with different types in a single batch. Specifically,
unmerged inference separates the computation of the pre-
trained LLM weights and each LoRA adapter weights. During
inference, different types of requests can be batched together
to share the same computation with the pre-trained LLM
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weights and process different computation with LoRA adapter
weights at parallel.

Figure 4 demonstrates unmerged inference. Consider two
different requests, x0 and x1, with their respective LoRA
adapters, adapter0 and adapter1. During inference, the base
model inference Wx is batched together as W × [x0,x1]. Si-
multaneously, the LoRA adapter inference BAx is computed
separately for each request as B0A0x0 and B1A1x1 in paral-
lel. Finally, the base model inference and the LoRA adapter
inference are aggregated to obtain the final results y0 =
Wx0 +B0A0x0 and y1 =Wx1 +B1A1x1. Unmerged inference
improves the GPU computation efficiency by improving the
batch size. However, this solution poses a new challenge.

Extra Computation Overhead. Although unmerged infer-
ence accelerates the requests processing with different types,
the benefit of unmerged inference technique is not a free lunch.
Unmerged inference requires computing three matrix multi-
plications for each request, i.e., Wx, Ax and BAx, and a matrix
addition for result aggregation. As a result, unmerged infer-
ence introduces extra computation overhead of two additional
matrix multiplications (i.e., separate computation for adapter
inference) and one additional matrix addition in each layer.

Figure 5 illustrates the overhead associated with unmerged
inference. We conduct an experiment to compare the exe-
cution time of the base LLM computation, denoted as Wx
(equivalent to original LoRA LLM inference), with the LoRA
adapter computation BAx. The experimental setup follows §7.
The results, depicted in the figure, reveal that the execution
time for the LoRA adapter computation BAx is 38.9% of the
baseline LLM computation Wx. This finding suggests that
unmerged inference might not always yield performance ben-
efits. On the contrary, performance may degrades when only
processing few types of requests.

4.2 Dynamic Batching with Thresholds Tuning

In the preceding discussion, we highlight how unmerged infer-
ence incurs additional computational overhead, while merged
inference leads to significant queuing delays and low GPU
efficiency. A combined approach of these two batching meth-
ods can potentially offer a more balanced tradeoff between
queuing delay and computational overhead. Yet, determining
the optimal batching strategy, within a constrained schedul-
ing time frame, is challenging. First, the decision needs to

Algorithm 1 Dynamic Batching
1: function DYNAMICBATCHING(B f c f s,R,S,L)
2: Input: FCFS requests B f c f s, Request R = {r1,r2, ...,rn}
3: Replica state S, LoRA adapters L = {l1, l2, ..., lm}
4: Output: The batch of requests to be executed Bnext
5: // Adaptive switching between different modes
6: if S.state == unmerge then
7: Rmerge = argmaxli∈L |{ri ∈ R | ri.type == li}|
8: if |Rmerge|/|B f c f s|> αswitch then
9: S.state, S.type = merge, Rmerge.type

10: return Bnext = Rmerge[: max_bs]
11: else
12: return Bnext = B f c f s

13: else
14: Rmerge = {ri ∈ R | ri.type == S.type}|
15: if |Rmerge|/|B f c f s|< βswitch then
16: S.state = unmerge
17: return Bnext = B f c f s
18: else
19: return Bnext = Rmerge[: max_bs]

made at the granularity of the iteration while each iteration of
LLM inference is typically around tens or hundreds of mil-
liseconds [11, 19]. To avoid the performance degradation, the
decision must be made swiftly. Second, the unpredictability
of request arrival patterns and request execution time fur-
ther complicates this decision-making [13, 14, 26]. Last but
not least, switching between the two inference methods in-
troduces non-negligible overhead (i.e., an additional matrix
multiplication BA and a matrix addition/subtraction between
base LLM and adapter). We propose a dynamic batching
technique to choose the inference method at runtime.

Algorithm. Algorithm 1 outlines the pseudo-code. Each iter-
ation begins by assessing the replica’s state (line 6). In the un-
merged state, the algorithm estimates potential performance
gains from merged inference. It selects the LoRA adapter
with the most requests (line 7) and evaluates its performance
against the default first-come-first-serve (FCFS) order (line
8). We use the (FCFS) as the default scheduling choice. Dy-
namic batching is orthogonal to the underlying scheduling
policy; other policies can also be used. If the size ratio exceeds
the switching threshold αswitch, indicating a performance en-
hancement, the algorithm switches to merged inference (line
9) and processes the requests from the corresponding adapter
type (line 10). If not, it continues with the FCFS batch (lines
11–12). In scenarios of merged inference, the algorithm first
batches requests matching the active adapter, i.e., Rmerge (line
14). If the FCFS batch size ratio to Rmerge is smaller than the
threshold βswitch or the active LoRA adapter is not in the set of
legal adapters L (line 15), the unmerged state (i.e., processing
B f c f s) is deemed advantageous (lines 16–17). Otherwise, the
algorithm remains the merged state (lines 19).

Adaptive threshold tuning. The switching threshold αswitch
and βswitch are the key parameters of the algorithm. Figure 6
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illustrates the two thresholds between merged and unmerged
inference. The horizontal axis represents the ratio between
|Rmerge| and |B f c f s|.

Our first insight is that the switching overhead can be amor-
tized across multiple future iterations. For example, assume
that the switching overhead from unmerged to merged infer-
ence is 100 ms, and assume that merged inference of one
iteration is 50 ms and unmerged inference of one iteration is
100 ms. Let the number of iterations in current processing is
three, and the overall execution time is 300 ms if the status is
unmerged inference. However, if we switch to merged infer-
ence at the beginning, the overall execution time is 250 ms
for three iterations, i.e., switching overhead 100ms plus three
iterations of 150 ms. In this case, the switching overhead is
amortized across the three iterations. Our second insight is
that leveraging historical retrospection is possible, despite the
unavailability of future knowledge. Continuing with the ex-
ample, at the beginning of the first iteration, the total number
of iterations remains unknown. If requests are finished in one
iteration, merging inferences offers no advantage. However,
if processing spans two or more iterations, it becomes plau-
sible to anticipate additional future iterations. Under such
circumstance, switching to merged inference is still timely.

Based on the two insights, we propose an adaptive thresh-
old tuning algorithm. The algorithm first introduces the break
point on iteration granularity, which is marked by events such
as replica switching, changes in Rmerge, or after processing
a set number of iterations. Upon reaching a break point, the
algorithm tunes the thresholds based on the data collected
from the preceding period, stretching from the current to the
previous break point. The pseudo-code is outlined in Algo-
rithm 2. In cases where the previous period’s replica state
is unmerge, we focus on tuning αswitch. Let the number of
the iterations in the previous period be NI and the merged re-
quests, Rmerged [: maxbs], in the ith iteration be Bi and B f c f s in
the ith iteration be B′

i. The throughput of the merged inference
Tmerge and the throughput of the unmerged inference Tunmerge
are calculated in lines 4–5. The iteration time can be profiled
accurately [19]. A higher Tmerge leads to a reduction in αswitch
by a decrement factor γdec. Otherwise, it is increased by a
multiplication factor γmul . If the replica state in the previous
period is merge, the algorithm tries to tune βswitch. The tun-
ing is similar to the case of αswitch, and we omit the details
for brevity. This method ensures the adaptability of the two
thresholds to varying request characteristics.

Starvation prevention. Although dynamic batching acceler-
ates LoRA LLM serving, it may cause starvation. Specifically,

Algorithm 2 Adaptive Threshold Tuning
1: Input: Candidate period NI , Merged batches B1,B2, ...,BI ,

Switching overhead tM , Current switching threshold αswitch
2: Output: New switching threshold αswitch
3: function ADAPTIVETUNING(NI , {Bi}, tM , αswitch)

4: Tmerge =
∑

NI
i=1 |Bi|

∑
NI
i=1 IterationTime(Bi)+tM

5: Tunmerge =
∑

NI
i=1 |B′

i|
∑

NI
i=1 IterationTime(B′

i)

6: if Tmerge > Tunmerge then
7: αswitch = αswitch − γdec
8: else
9: αswitch = αswitch × γmul

10: return αswitch

because dynamic batching prefers processing requests with
the most loaded LoRA adapter type, it may starve other types
of requests. To address this problem, we use a credit-based
mechanism to prevent starvation. The basic idea involves al-
locating a credit to each LoRA adapter. This credit is then
transferred to any preempted adapter. When the credits of
certain adapters exceed a threshold, the algorithm prioritizes
processing requests with these adapters. Detailed explanations
are provided in §A.1.

4.3 LoRA Adapter Offloading

Besides GPU computational resources, GPU memory re-
sources are also heavily used by LLM inference workloads.
Sharing a base LLM across LoRA LLMs mitigates the GPU
memory footprint, yet memory scarcity persists, especially
when storing multiple LoRA adapters. For instance, a single
LoRA adapter for Llama-7B requires 56 MB of GPU memory,
which is comparable to the intermediate states (i.e., key-value
cache) of 7 tokens. As the number of LoRA adapters increases,
only a small fraction of GPU memory is available for storing
intermediate states of requests. To this end, we employ a swap-
ping mechanism that swaps LoRA adapters and intermediate
request states between GPU and host memory. The compact
size of LoRA adapter facilitates rapid swapping. Such pro-
cess is further accelerated by overlapping the swapping with
execution using prefetching techniques [19]. Regarding GPU
memory distribution, dLoRA adopts a workload-aware alloca-
tion algorithm for balancing LoRA adapters and intermediate
request states, as detailed in §5.

5 Dynamic Load Balancing

To address the load imbalance problem across replicas for
LoRA serving, we combine proactive and reactive mecha-
nisms. Specifically, we follow the existing approach [13, 14]
to adopt a proactive mechanism that dispatches requests to
replicas. The challenge of LoRA serving as discussed in §2.3
is that the variable input and output lengths of LLM requests
cause load imbalance even if the proactive mechanism bal-
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Figure 7: Workload pattern.

ances the load when dispatching requests. Therefore, we de-
sign a reactive mechanism that migrates requests and adapters
between replicas to reactively address such load imbalance.

5.1 Proactive Mechanism

We first introduce the dispatcher that proactively dispatches
requests to replicas and loads LoRA adapters to GPUs ac-
cording to the workload patterns (i.e., the arrival pattern of
requests). Figure 7 shows a production trace used by prior
works on inference serving [13, 14]. The workload pattern
of this trace can be examined from both long-term and short-
term perspectives. In the long term, the pattern exhibits pre-
dictability and periodicity, e.g., low load at midnight and high
load during daytime. On the other hand, in the short term,
the pattern is marked by unpredictability and burstiness. We
follow existing work [13, 14] to adopt a proactive mechanism
based on these characteristics for LoRA serving.

Guided by the predictable long-term workload, it is possi-
ble to preload LoRA adapters to GPU memory to reduce the
adapter loading time. During the adapter preload process, we
follow the existing work [13] to maximize the minimum burst
tolerance of LoRA adapters. The burst tolerance of an adapter
in our scenario is defined as the ratio of the peak capacity to
the average load of the adapter, where the average load can
be obtained from the historical long-term workload. Different
from the previous DNN serving scenarios, we find that the
peak capacity of a LoRA adapter is dominated by the GPU
memory allocation between LoRA adapters and requests’ in-
termediate states. As more LoRA adapter is preloaded into
the GPU memory, more replicas can serve this type of re-
quest immediately. However, it leaves less GPU memory for
requests’ intermediate states, which limits the peak serving
throughput. Therefore, we define the peak capacity of a LoRA
adapter as the number of requests that can be served by the
unallocated GPU memory where the corresponding LoRA
adapter resides. Based on this metric, the dispatcher of dLoRA
greedily preloads the LoRA adapter with the lowest burst tol-
erance to a replica without this adapter until the minimum
burst tolerance decreases to find an optimal placement plan.

Due to the unpredictable short-term pattern of the work-
load, there also exists a short-term burst of certain LoRA
adapters’ requests. Such short bursts may cause the burst re-
quests to be dispatched to a small set of replicas with the
corresponding LoRA adapters. This leads to severe load im-

balance and long queuing delay od requests. On the contrary,
if the burst requests are dispatched to other replicas without
the corresponding adapter, it incurs additional loading time
and consequently harms the serving performance. To address
this problem, dLoRA use an adapter-aware dispatch policy
with dynamic LoRA loading to consider all these factors.
Specifically, dLoRA calculates an estimated pending time
for each replica, which includes the time to load the LoRA
adapter (if not already loaded) and the estimated queuing time
on this replica. Based on this metric, dLoRA dispatches re-
quests to the replica with the shortest estimated pending time
to balance the load across replicas. This is especially effective
in mitigating issues caused by sudden bursts of requests and
consequent queuing delays in heavily loaded replicas.

5.2 Reactive Migration

Although proactive dispatching can mitigate the load imbal-
ance problem, the system still suffers from load imbalance
caused by variable input and output lengths of LoRA requests
(§2.1). Therefore, even if the workload arrival pattern is stable
and entirely predictable, the load imbalance still occurs when
some requests in some replicas have longer execution times
than others. The GPU memory consumption of requests also
suffers from the same load imbalance problem. Some repli-
cas may hold substantial intermediate states of requests even
larger than the GPU memory capacity, which causes frequent
swapping between GPU memory and host memory. Other
replicas may hold a smaller amount of intermediate states of
requests. Such load imbalance harms the serving performance
and cannot be solved by only proactively dispatching.

Dynamic adapter-request co-migration. To address the
load imbalance problem, we propose a adapter-request co-
migration technique. The main idea is to migrate LoRA
adapters and requests (with intermediate states) from over-
loaded replicas to others. Such migration reactively balances
the load across replicas. As shown in Figure 8, replica 0 is
overloaded with long-context requests while replica i is un-
derloaded with short-context requests. The load imbalance
can be mitigated by migrating some requests from replica
0 to replica i and loading corresponding adapters. However,
it is not trivial to decide the optimal migration plan. Before
introducing the algorithm in detail, we first model the reactive
migration problem. The key notations are listed in Table 1.

Objective: overall running time. The goal of the migration
algorithm is to minimize the overall running time among
all replicas. The overall running time is determined by the
placement of requests and LoRA adapters. We define two
0-1 matrices x and y to represent the placement of requests
and LoRA adapters, respectively. Specifically, xi, j and yk, j are
0-1 variables that indicate whether request i or adapter k is
in the replica j. Furthermore, we break x into two matrices
xG and xH to represent the placement of requests in the GPU
memory and host memory, respectively. The request with its
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Symbol Description

xG
i, j Whether requests i is in the replica j’s GPU memory.

xH
i, j Whether requests i is in the replica j’s host memory.

xi, j Whether requests i is in the replica j.
yk, j Whether adapter k is in the replica j.
MR

i The memory consumption of request i.
MA

k The memory consumption of adapter k.
MG

j GPU memory capacity of replica j.
MH

j Host memory capacity of replica j.
Li Average exec time of requests with request i’s adapter.
γ Migration factor to control the request migration frequency.
η Affinity factor to control the affinity between requests.

Table 1: Key notations in the migration problem.

intermediate results is either resident in the GPU memory or
host memory (i.e., xi, j = xG

i, j + xH
i, j ≤ 1).

The overall running time of requests on each replica in-
cludes execution time and swapping overhead. On replica j,
the execution time of request i is Lixi, j, where Li is the average
execution time of requests i. We scale the execution time by
multiplying a migration factor γ to account for the migration
time of request i. γ is calculated as the ratio of total exe-
cuted time, including the migration time, to the total executed
time without migration, inhibiting the frequent migration be-
tween replicas. As for swapping overhead, it is represented
as MR

i xH
i, j/B, where MR

i is the memory consumption and B is
the PCIe bandwidth. As a result, the overall running time of
replica j is estimated as ∑i

(
γ×Lixi, j +MR

i xH
i, j/B

)
. Because

the dynamic batching algorithm prefers to batch requests with
the same type, we also add a penalty term η∑k yk, j to repre-
sent the affinity among the same type of requests, where η is
a hyperparameter. For all parallel replicas, the overall running
time is the maximum running time of all replicas:

Min.
(

max
j

∑
i
(γ×Lixi, j +MR

i xH
i, j/B)+η∑

k
yk, j

)
Adapter-request matching constraints. Different from classi-
cal load balancing problems [15–17], the adapter-request co-
migration algorithm needs to consider both the migration of
requests and the loading of LoRA adapters at the same time.
One request can only be migrated to the replica only if there
is a corresponding adapter available, which is formulated as
following adapter-request matching constraints:

∀i, j, yi, j ≥ xi, j

Memory constraints. For each replica, the GPU memory con-
sumption cannot exceed the GPU memory capacity. We define
MG

j as the GPU memory capacity and MH
j as the host memory

capacity of replica j. We get two constraints for GPU and
Host memory, respectively:{

∀ j, ∑i MR
i · xG

i, j +∑k MA
k · yk, j ≤ MG

j

∀ j, ∑i MR
i · xH

i, j ≤ MH
j

Existence constraints. Last but not least, the existence con-
straints ensure that each request is only placed in one replica,
which is represented as:

∀i, ∑
j

xi, j = 1

ILP formulation. Given the above objective and con-
straints, we formulate the co-migration problem as an
ILP problem, where matrices xG, xH , and y are the vari-
ables. dLoRA solves the problem with the off-the-shelf ILP
solver [28] and gets the optimal placement plan (i.e., xG, xH ,
and y). According to this plan, dLoRA migrates the intermedi-
ate states of requests and loads LoRA adapters simultaneously.
dLoRA also reserves a chunk of memory in each replica,
which is utilized to replicate additional LoRA adapters to
maximize the burst tolerance as described in the proactive
mechanism (§5.1). With this approach, dLoRA’s co-migration
algorithm effectively achieves load balancing across replicas
with optimal performance.

Selective migration with constraints relaxation. The above
ILP formulation offers an optimal migration plan, but its large
decision space introduces computation overhead. As the GPU
cluster and request number expand, the ILP’s complexity in-
creases exponentially. To address this, dLoRA employs two
domain-specific heuristics to accelerate such solving process.

Our first insight is that migration is necessary primarily dur-
ing extreme load imbalance. Therefore, dLoRA only triggers
the migration algorithm when the available GPU memory of
a replica is beyond a memory threshold or the queuing delay
of requests in a replica is beyond a computation threshold.
This approach effectively minimizes the migration frequency,
thereby amortizing the migration overhead. Besides, simi-
lar to selective replication [15–17], dLoRA only considers
migration between top K overloaded replicas and top K un-
derloaded replicas. As a result, the complexity of the selective
migration only depends on K rather than the cluster scale.

Our second insight is that the ILP problem can be simplified
by relaxing the constraints. In practice, migration is imple-
mented as token transfer and subsequent intermediate state
reconstruction, which is much faster than direct intermediate
state migration [12]. As a result, dLoRA does not differentiate
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the requests on the GPU memory and host memory. Instead,
dLoRA only considers the total memory consumption of re-
quests and LoRA adapters. We assume that additional mem-
ory consumption is swapped out to the host memory which is
always sufficient in practice. Therefore, memory constraints
are negligible, with only the swapping overhead added to the
total execution time.

Last, to reduce the complexity of the ILP problem, the
variable matrix x is relaxed to the real number. Given the real
number matrix x, the placement of each request is determined
by the largest element in the corresponding row of x. For
instance, request i is placed in replica j′ if xi, j′ = max j xi, j.
With these techniques, dLoRA is able to solve the optimal
adapter-request co-migration plan within milliseconds.

6 Implementation

We implement a prototype of dLoRA based on vLLM [12]
with about 6.2K LOC. We use vLLM to build dLoRA as
vLLM is the state-of-the-art serving system with advanced
features such as PagedAttention and iteration-level schedul-
ing. The prototype includes a FastAPI [29] frontend, a global
scheduler, and GPU-based execution engines. The frontend
of dLoRA extends the vLLM FastAPI [29] frontend, enables
client-specific LoRA adapter selection per request. dLoRA’s
global load balancer is responsible for dispatching requests
to LLM replicas and dynamically migrating requests. It uses
Ray [30] actor to interact with execution engines in the clus-
ter and utilizes Pulp [28] to solve the ILP problem defined
in §5. The execution engine also uses Ray [30] actor for key-
value cache management and LoRA adapter management. To
support unmerged inference in §4, we transform the LoRA
type of each request into a one-hot vector and generate a
request-type mapping matrix of the current batch. We then
utilize the einsum function provided by PyTorch to achieve
parallel matrix multiplication and integrate it into the execu-
tion engine. We add LoRA adapters to the vLLM execution
engine and swap adapters between GPU and host memory
asynchronously to reduce overhead. As for model executor,
we implement LoRA inference for popular LLMs, includ-
ing OPT [31] and Llama-2 [2]. dLoRA also accomplishes
Megatron-LM [32] style tensor parallelism on LoRA adapters
to support distributed execution of large models which can
not fit in a single GPU, e.g., Llama-2-70B. dLoRA can be
integrated with other frameworks, such as Ray Serve [33]. On
the server side, similar to HuggingFace PEFT [10], the cluster
administrator needs to provide additional LoRA information,
including LoRA adapter weights, LoRA adapter name and
its dependency on the base LLM, before launching the ser-
vice. dLoRA takes charge of other things. When sending a
request to dLoRA, the client side specifies the LoRA adapter
name in the request. dLoRA dispatches the request to the
corresponding LoRA adapter and returns the result.

Model Size # of Layers # of Heads Hidden Size

Llama-2-7B 13GB 32 32 4096
Llama-2-13B 26GB 40 40 5120
Llama-2-70B 132GB 80 64 8192

Table 2: Model configurations.

7 Evaluation

In this section, we first demonstrate the end-to-end perfor-
mance improvements of dLoRA over state-of-the-art LLM
serving systems under diverse workloads and models. Then,
we evaluate the design choices of dLoRA and show the effec-
tiveness of each component.

7.1 Experiment Setup

Testbed. We evaluate dLoRA on a four-node GPU cluster,
each with eight NVIDIA A800 80GB GPUs, i.e., 32 GPUs in
total. Each node is equipped with 128 CPUs, 2048 GB of host
memory, and a 200 Gbps InfiniBand NIC. We use PyTorch
12.1.0 and NVIDIA CUDA 12.2 for our evaluation.

Models. We choose the widely-used open-sourced LLMs,
Llama-2 model series [2], as the pre-trained LLMs (i.e., base
LLMs) for our evaluation. We use various Llama-2 models
with different sizes, including Llama-2-7B, Llama-2-13B, and
Llama-2-70B. The details of these models are shown in Ta-
ble 2. The rank of LoRA adapters is set to 8, as used in the
evaluation of prior work [8, 9].

Workloads. Similar to prior work [12], we generate work-
loads based on the ShareGPT dataset [26]. ShareGPT is a
dataset collected from real-world conversations with Ope-
nAI ChatGPT shared by users. We sample the arrival pattern
of requests based on the production traces, Microsoft Azure
function trace 2019 (MAF1) [34] and 2021 (MAF2) [25].
Although these traces are collected from Azure serverless
functions, they are also widely used as the proxy of the LLM
inference traces by prior work on model serving [13, 14]. Be-
cause the number of functions is larger than that of LLMs, we
sort the functions based on the function invocation frequen-
cies and map the functions to LoRA LLMs in a round-robin
manner. To demonstrate different load patterns, we define the
skewness as the number of each round-robin mapping. For
example, if we map the first 10 functions to the first LoRA
LLM, the second 10 functions to the second LoRA LLM, and
so on, the skewness is 10. The larger the skewness, the more
skewed the workload. To illustrate the impact of increasingly
longer requests [35], we also scale the input and output length
of requests by a scale ratio factor in §7.4.

Metrics. We use the average latency as the primary metric to
evaluate the performance of dLoRA. Following prior work
on LLM serving [11, 12], the average latency is calculated by
dividing the sum of each request’s end-to-end latency by the
total number of output tokens. To compare different systems,
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Figure 9: Average latency of different serving systems with Llama-2 models.

we set a latency service level objective (SLO) and compare
the maximum throughput achieved by each system under the
SLO. Similar to prior work, we set the latency SLO to 10×
of the latency of a single iteration in the decoding phase.
Specifically, SLO is 0.5 seconds based on our profiling.

Baselines. Because there is no existing system that specifi-
cally targets LoRA LLM serving. We compare dLoRA with
two state-of-the-art LLM serving systems.
• vLLM (uniform allocation) [12]: vLLM is the state-of-

the-art LLM serving system. It is a general-purpose LLM
serving system, and ignores the multi-LLM serving sce-
nario. To evaluate the performance of vLLM in the LoRA
serving setting, we deploy multiple vLLM instances on
the same cluster and uniformly allocate resources between
them.

• PEFT [10]: PEFT is a HuggingFace library for parameter-
efficient fine-tuning models. Although it can be used to
serve LLMs, it does not support advanced features like
selective batching [11] and PagedAttention [12]. To con-
duct a fair comparison, we implement these features for
PEFT. PEFT batches requests based on their types and
swap adapters between batches if necessary.

7.2 End-to-End Performance

We first compare end-to-end performance of dLoRA with
vLLM (uniform allocation) and PEFT under MAF1 and
MAF2 workload traces on Llama-2-7B, Llama-2-13B and
Llama-2-70B models. The first column of Figure 9 shows
the performance of these LLM serving systems when serving

128 Llama-2-7B models. Since Llama-7B is relatively small,
the total GPU memory can accommodate full parameters of
all models. However, vLLM (uniform allocation) and PEFT
cannot dynamically batch different types of requests (i.e., un-
merged inference) based on different workload patterns. In
this case, dLoRA improves the throughput by up to 10.6×
compared to vLLM (uniform allocation) and up to 11.5×
compared to PEFT under the SLO requirement.

The second column of Figure 9 shows the performance
of these LLM serving systems when serving 128 Llama-2-
13B models. Since Llama-13B is larger than Llama-7B, the
total GPU memory cannot accommodate full parameters of
all models. As a result, vLLM (uniform allocation) which
treats each LoRA LLM as an individual LLM has to swap
the model parameters between host and GPU memory. Thus,
dLoRA improves the throughput by up to 53.0× compared
to vLLM (uniform allocation) under the SLO requirement.
PEFT shares the base LLM between different LoRA LLMs to
reduce memory footprint, but it does not have adapter-request
migration. This significantly degrades the performance of
PEFT. As a result, dLoRA improves the throughput by up to
15.0× compared to PEFT under the SLO requirement.

The third column of Figure 9 shows the performance im-
provement of dLoRA when serving 32 Llama-2-70B models
in the cluster. Llama-2-70B is even larger than the GPU mem-
ory capacity of a single NVIDIA A800 80GB GPU. There-
fore, the Llama-2-70B is partitioned across 4 GPUs with
the tensor parallelism. As shown in Figure 9, the techniques
employed by dLoRA integrate effectively with existing paral-
lelism strategies and dLoRA improves the throughput by up
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Figure 10: Effectiveness of the credit-based dynamic batching
algorithm.

to 57.9× compared to vLLM (uniform allocation) and up to
26.0× compared to PEFT under the SLO requirement.

7.3 Effectiveness of Dynamic Batching

To show the effectiveness of dynamic batching with thresh-
olds tuning, we compare the performance of dLoRA with
strawman solutions described in §4. The experiments are
conducted in a single NVIDIA A800 80GB GPU to serve
8 LoRA Llama-2-7B models, which avoids the effect of the
adapter-request co-migration algorithm.

Figure 10(a) shows the average latency under diverse skew-
ness. The arrival rate is set to make the average latency of
dLoRA approximately equal to the SLO requirement. The first
strawman solution, Merged-only, which always uses merged
inference, performs poorly when the skewness is low, i.e.,
the type of requests is diverse, since it cannot serve different
requests at the same time. Therefore, dLoRA improves the la-
tency by up to 3.9×. The other strawman solution, Unmerged-
only, which always uses unmerged inference, performs simi-
larly no matter how the skewness changes. However, when the
skewness is high, i.e., a few types of requests are dominant,
Unmerged-only cannot take advantages of merged inference
to avoid extra computation overhead caused by the adapter
computation. Consequently, dLoRA improves the latency by
up to 2.4× compared to Unmerged-only. In short, dLoRA dy-
namically switches between merged and unmerged inference
based on the runtime workload, and always outperforms the
two strawman solutions and achieves the optimal tradeoff.

In addition to the average latency, we also record the
P90 latency of the three solutions with the same setting. As
shown in Figure 10(b), dLoRA outperforms Merged-only and
Unmerged-only by up to 5.2× and 2.5×, respectively. This
consistent performance improvement indicates that although
dLoRA may preempt some requests to serve other requests,
the credit-based starvation prevention mechanism of dynamic
batching improve performance while avoiding starvation.

7.4 Effectiveness of Dynamic Load Balancing

To show the effectiveness of the proactive and reactive dy-
namic load balancing, we compare the performance of dLoRA
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Figure 11: Effectiveness of the adapter-request co-migration
algorithm.

with two strawman solutions. We measure the average queu-
ing delay of requests, an important indicator of load imbal-
ance. Due to the limited budget, this experiment is conducted
on a server with 8 NVIDIA A800 80GB GPUs. Figure 11(a)
shows the experiment result. The first strawman solution is RR
that directly dispatches requests to the corresponding LoRA
LLMs preloaded by the workload-aware adapter placement
in a round-robin manner without considering the bursty load
imbalance (§5). Since RR does not consider the bursty load
imbalance at all, dLoRA outperforms RR by 3.6× under the
SLO requirement. The second strawman solution is Proactive
Dispatch which only supports proactive mechanism in §5.1
without reactive migration. However, due to the variable and
unpredictable length of requests, Proactive Dispatch cannot
handle this unpredictable run-time load imbalance. In con-
trast, dLoRA dynamically migrates requests between replicas
to balance the load and outperforms Proactive Dispatch by
1.4× under the SLO requirement.

We also evaluate the stability of the dynamic load balanc-
ing algorithm under different scale ratio factors of input and
output length of requests. Figure 11(b) shows the average
latency of requests under different ratios. Because RR can-
not dynamically change LoRA adapter distribution across
replicas as the ratio increases, the average latency of requests
increases rapidly, and thus the average latency of RR is up
to 23.5× higher than dLoRA. Although Proactive Dispatch
Only is able to dynamically load LoRA adapters and dispatch
the requests to mitigate load imbalance (i.e., it outperforms
RR by up to 6.5×), it is not able to migrate requests between
replicas to handle increasingly variable requests, leading to
unpredictable load imbalance. As a result, the average latency
of Proactive Dispatch is up to 2.39× higher than dLoRA.

7.5 Scalability and Overhead

For a cluster-scale serving system, we conduct evaluations
to analyze the scalability of dLoRA. Figure 12 shows the
throughput of dLoRA under different numbers of adapters.
We increase the number of adapters increases while keeping
the arrival rate constant. As the number of adapters increase,
dLoRA achieves stable throughput. However, vLLM (uniform
allocation) faces scalability challenges because it has to main-
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Figure 13: GPU utilization of dLoRA.
tain separate instances of full LLM weights for each LoRA
LLM whcih incurs high memory footprint. PEFT struggles to
scale efficiently as well because it cannot dynamically batch
different types of requests. Moreover, the two baselines can-
not manage the load imbalance between replicas. As a result,
the throughput of vLLM (uniform allocation) and PEFT de-
creases by up to 3.0× and 1.5× respectively, as the number
of adapters increases to 128.

We also evaluate the runtime overhead of dLoRA. Fig-
ure 15 breaks down the total latency of dLoRA’s inference
into three parts: the solving time of the ILP solver for the dy-
namic co-migration algorithm, the switching overhead of the
dynamic batching algorithm, and the actual inference time. As
shown in this figure, the overhead introcduced by dLoRA, i.e.,
ILP solving time and the switching overhead, are negligible
compared to the actual inference time. The actual inference
time consistently accounts for over 96.7% of the total latency,
regardless of the arrival rate. The negligible runtime overhead
of dLoRA mainly comes from the fact that dLoRA migrates
requests or switches inference mode occasionally and the
overhead is amortized by a number of iterations.

7.6 GPU Utilization

To show the GPU utilization, we measure the streaming mul-
tiprocessor (SM) utilization and GPU memory utilization
of each replica in the cluster.The setup is the same as §7.4.
dLoRA serves the Llama-2-13B model. The request rate is
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set to make the average latency of dLoRA approximately
equal to the SLO requirement. We also measure the opti-
mal SM utilization and GPU memory utilization when all
requests belong to the same type, and vLLM always uses
merged inference. As shown in Figure 13, although requests
belong to different LoRA types, dLoRA achieves nearly the
same SM utilization and GPU memory utilization compared
to the optimal utilization, which indicates that dLoRA effec-
tively utilizes the GPU resources and avoids resource waste
as shown in Figure 2(a). Besides, the SM utilization and GPU
memory utilization among replicas are balanced, which shows
the effectiveness of the dynamic load balancing algorithm.

7.7 Comparison with Concurrent Work

S-LoRA [18] is a concurrent work for serving multiple LoRA
LLMs. S-LORA also tries to batch requests destined for dif-
ferent LoRA adapters. However, S-LoRA does not consider
the load imbalance between replicas and is not able to dynam-
ically switch between merged and unmerged inference. The
parallelism strategy proposed by S-LoRA is also orthogonal
to dLoRA. Figure 14 compares dLoRA with S-LoRA using
the same setting as §7.3. As shown in the figure, no matter
how the skewness changes, dLoRA consistently outperforms
S-LoRA by up to 1.8× in terms of average latency. The reason
is that S-LoRA statically serves requests by unmerged-only
inference, which ignores the opportunity of using merged
inference to reduce the computation overhead. In contrast,
dLoRA exploits this opportunity and is more effective in
handling diverse requests with different LoRA types.

8 Related Work

LLM serving systems. Recently, many works have been
proposed for LLM serving. Orca [11] proposes iteration-
level scheduling to continuously batch requests with different
lengths at the iteration level. vLLM [12] proposes a Page-
dAttention operator and a block-based KV cache manage-
ment mechanism to reduce GPU memory fragmentation. Fast-
Serve [19], DeepSpeed-FastGen [36], and SARATHI [37]
leverage the characteristics of LLM serving to schedule re-
quests with different lengths. Nvidia FasterTransformer [38],
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DeepSpeed Inference [39], and the Google serving system
for PaLM [40] optimize the GPU/TPU implementation and
parallelism specifically for LLM inference. FlexGen [41] uses
offloading to improve the throughput of LLM serving. SpecIn-
fer [42] uses speculative decoding to reduce the latency of
LLM serving systems. SpotServe [43] tries to leverage spot in-
stances to reduce the cost of LLM serving. These works focus
on the optimization of a single LLM. In contrast, dLoRA is a
serving system for multiple LoRA LLMs in a GPU cluster.

S-LoRA [18] and Punica [44] are concurrent works that
also propose to serve multiple LoRA LLMs by batching re-
quests destined for different adapters. S-LoRA proposes a new
parallelism strategy, which is orthogonal to dLoRA. Punica
uses an ad-hoc migration strategy to reduce the number of
used GPUs, which is also different from dLoRA. dLoRA pro-
poses dynamic load balancing algorithms to balance the load
among GPUs, which is not considered in Punica and S-LoRA.
They also overlook the opportunity of using merged inference
to further reduce the latency of LLM serving by only adopting
a merged-only inference strategy.

Traditional DNN serving systems. Many production-ready
DNN serving systems have been developed, such as Tensor-
flow Serving [45] and Triton Inference Server [46], but they
do not have LLM-specific optimizations. Some recent DNN
serving systems, such as Clipper [47], ClockWork [48], SH-
PHERD [13], Tabi [49], and Paella [50] serves multiple DNN
models in cluster wide, but they mainly focus on small DNN
models, such as ResNet and BERT. AlpaServe [14] leverages
diverse parallelism strategies to accelerate serving multiple
large DNN models in a GPU cluster, but it does not target
autoregressive LLM serving and LoRA models. PetS [24]
considers the scenario of serving multiple parameter-efficient
DNN models in a GPU server, but it does not consider serv-
ing autoregressive LLMs in a GPU cluster and the unique
system characteristics of LoRA adapters. DVABatch [51]
uses multi-entry multi-exit batching to serve diverse models
simultaneously, but it does not target either LLMs or LoRA.

Load balancing. Load balancing has been studied in many re-

search fields, such as networking and cloud computing. Many
load balancers, such as Ananta [52], Beamer [53] and Ma-
glev [54], try to improve the performance of dispatching pack-
ets, but as discussed above, it is not sufficient to solve load
imbalance in our scenario. Other kinds of load balancers, such
as Pegasus [15], Scarlett [16] and E-Store [55], adopt selec-
tive replication or migration to balance the load. However,
they are not suitable for our scenario, and the dependency
between requests and adapters makes the load imbalance in
our scenario even more complicated.

9 Conclusion

We present dLoRA, an inference serving system for LoRA
models. dLoRA dynamically orchestrates requests and
adapters for efficient LLM serving in each worker replica
and across worker replicas. For each replica, dLoRA employs
a dynamic batching technique to leverage both merged and
unmerged inference to improve the efficiency of LLM serving.
For the cluster, dLoRA employs a dynamic load balancing
technique to migrate both requests and adapters to balance
the load among worker replicas. Based on these techniques,
we build a system prototype of dLoRA. Evaluation on pro-
duction traces shows that dLoRA achieves up to 57.9× and
26.0× higher throughput than vLLM and HugginFace PEFT.
dLoRA also achieves up to 1.8× lower average latency than
the concurrent work S-LoRA.
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A Appendix

A.1 Starvation Prevention of Algorithm 1

Algorithm 3 shows the pseudo-code of the credit-based dy-
namic batching algorithm to prevent starvation. Initially, we
assign the same credit to each LoRA adapter, which guar-
antees the fairness in the beginning. Whenever a request is
not served in the FCFS order, the credit of the corresponding
LoRA adapter needs to be transferred to the requests that
orignially should be served in the FCFS order (line 14 and
line 21). In this, way, if a LoRA adapter is not served for a
long time, it will accumulate enough credit and our algorithm
always serves them first (lines 11–15). We also prevent the
LoRA adapter to merge into the base LLM weights when
it does not have sufficient credit (line 18). To mitigate the
oscillation of starvation prevention between different LoRA
adapters, we set a threshold Tstarve to decide the starvation
(lines 6–10). This parameter can be tuned to make a tradeoff
between performance and fairness.

Algorithm 3 Credit-based Dynamic Batching
1: function CREDITBATCHING(B f c f s,R,S,L)
2: Input: FCFS requests B f c f s, Request R = {r1,r2, ...,rn}
3: Replica state S, LoRA adapters L = {l1, l2, ..., lm}
4: Output: The batch of requests to be executed Bnext
5: // Stavation Prevention
6: for l ∈ L do
7: if li.state == Sstarve ∧ li.credit < Tnormal then
8: li.state = Snormal
9: else if li.credit > Tstarve then

10: li.state = Sstarve

11: Lstarve = {li ∈ L | li.state == Sstarve}
12: Bstarve = {ri ∈ R | ri.type ∈ Lstarve}[: max_bs]
13: if |Bstarve|> 0 then
14: transfer_credit(Bstarve,B f c f s)
15: return Bnext = Bstarve

16:
17: // Adaptive switching between different modes
18: Leligible = {li| li.creidt ≥ credit({ri| ri.type== li},B f c f s)}
19: RET =DYNAMICBATCHING(B f c f s,R,S,Leligible)
20: if RET ! = B f c f s then
21: transfer_credit(RET,B f c f s)

22: return Bnext = RET
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Abstract
The rise of large language models (LLMs) has enabled

LLM-based applications (a.k.a. AI agents or co-pilots), a new
software paradigm that combines the strength of LLM and
conventional software. Diverse LLM applications from differ-
ent tenants could design complex workflows using multiple
LLM requests to accomplish one task. However, they have
to use the over-simplified request-level API provided by to-
day’s public LLM services, losing essential application-level
information. Public LLM services have to blindly optimize
individual LLM requests, leading to sub-optimal end-to-end
performance of LLM applications.

This paper introduces Parrot, an LLM service system that
focuses on the end-to-end experience of LLM-based applica-
tions. Parrot proposes Semantic Variable, a unified abstrac-
tion to expose application-level knowledge to public LLM
services. A Semantic Variable annotates an input/output vari-
able in the prompt of a request, and creates the data pipeline
when connecting multiple LLM requests, providing a natu-
ral way to program LLM applications. Exposing Semantic
Variables to the public LLM service allows it to perform con-
ventional data flow analysis to uncover the correlation across
multiple LLM requests. This correlation opens a brand-new
optimization space for the end-to-end performance of LLM-
based applications. Extensive evaluations demonstrate that
Parrot can achieve up to an order-of-magnitude improvement
for popular and practical use cases of LLM applications.

1 Introduction

Large language models (LLMs) have demonstrated a remark-
able language understanding capability [7, 41]. This enables
a paradigm shift in application development. In this new
paradigm, one or multiple application entities, known as AI
agents or co-pilots, communicate with LLMs via natural lan-
guage, known as “prompts”, to accomplish a task collabo-

∗This work is partially done while Chaofan Lin’s internship and Dr. Chen
Chen’s visting scholar in Microsoft Research.

ratively. For example, Meeting applications like Microsoft
Teams or Google Meet can summarize meeting discussions
through LLMs [33]. Search engines like Google and Bing
can be enhanced with Chat ability through LLMs [14, 34].
It is believed such LLM-based applications will become the
mainstream applications in the near future [13].

To accomplish a task, LLM-based applications typically
require multiple rounds of conversation. The conversation, im-
plemented through multiple API calls to LLM, demonstrates
complex workflow patterns. Figure 1 illustrates several popu-
lar conversation patterns. For example, a meeting summary
application [8, 33] often divides a lengthy document into mul-
tiple shorter sections, each satisfying the length constraint
of the LLM conversation and thus can be summarized and
combined into the final summary through the Map-Reduce
or chaining summary patterns. Chat-based applications, e.g.,
Bing Copilot [34], call LLM APIs multiple times to generate
answers based on user queries. Multiple agents, each repre-
senting a different role played by different LLM calls, can
collaborate to achieve a task [22, 47, 54].

Public LLM service providers have to face diverse tenants
and applications, each with different workflows and perfor-
mance preference. However, existing API design for LLM
service provision is still request-centric. Public LLM services
only observe tons of individual requests, without knowing any
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Figure 1: The workflow of popular LLM-based applications.
The final result requires multiple LLM requests.
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application-level information, e.g., which requests belong to
the same application, how different requests are connected, or
whether there are any similarities. The lost application-level
information makes public LLM service blindly optimize the
performance of individual requests, leading to sub-optimal
end-to-end performance of LLM applications. In this paper,
we observe there exist significant opportunities to improve
the end-to-end experience of LLM applications by exploiting
the application-level information, especially the correlation
of multiple LLM requests.

First, multiple consecutive LLM requests may be depen-
dent: the result of one request could be the direct input of
the next request. Therefore, it is desirable to colocate those
requests together and execute them consecutively on the LLM
service side. However, unaware of their dependencies, these
requests have to be executed interactively between the client
side of LLM-based applications and the public LLM ser-
vices. These clients, often located on the other end of the
Internet, can only issue the second request after they receive
the result of the first request. This unnecessarily incurs extra
overhead of consecutive requests on network latency as well
as losing the opportunity of co-scheduling these consecutive
requests (§3).

Second, LLM requests may have diverse scheduling pref-
erence, even within a single application. For example, in Fig-
ure 1a, to reduce the end-to-end latency, the requests represent-
ing multiple Map tasks should be batched more aggressively
to increase the throughput of the Map tasks; while the Re-
duce task, due to its scarcity, should be optimized for latency.
Unfortunately, public LLM services cannot discriminate the
difference between the two types of tasks. As a result, the
current practice is to blindly optimize the latency for individ-
ual requests, which might not be desirable for the end-to-end
experience.

Third, there exists a high degree of commonality across
LLM requests. Popular LLM applications (e.g., Bing Copi-
lot [32], GPTs [42]) use a long system prompt, including task
definitions, examples, and safety rules, to guide the behavior
of LLM applications. The long system prompt is usually static
and common for all users. As existing public LLM services
treat each request individually, these common prefix prompts
are provided repeatedly in each request, leading to a great
waste of storage, computation, and memory bandwidth. Our
analysis of a production LLM-based search engine shows
that over 94% of tokens in the requests are repeated across
different users.

Although we have seen some emerging engine-level tech-
niques [25,56,63] proposed to optimize the above three cases,
they all work based on certain application-level knowledge,
which is lost in nowadays public LLM services. In a nut-
shell, due to the lack of understanding of the correlations of
LLM requests, existing LLM services cannot leverage the
three opportunities, leading to high end-to-end service latency
and reduced throughput. Based on the above facts and in-

Figure 2: The communication of consecutive LLM requests
in multi-agent applications.

sights, we introduce Parrot, an LLM service system that treats
LLM applications as first-class citizens. Parrot retains most of
application-level information by a simple abstraction Seman-
tic Variable, achieving a perfect balance between increasing
system complexity and bringing new information for opti-
mization. A Semantic Variable is a text region in the prompt
with a specific semantic purpose, such as a task instruction, a
list of few-shot examples, an input, or an output. A Semantic
Variable can also work as the data pipeline that connects mul-
tiple LLM requests. Semantic Variable naturally exposes the
information of prompt structures and correlations of requests
to LLM services. By inspecting Semantic Variable at runtime,
Parrot can perform conventional data flow analysis to derive
the data dependency between LLM requests just-in-time.

By analyzing the application-level information, Parrot’s
unified abstraction naturally enables joint optimizations,
which bring better global optimality. The same data pipeline
built by Semantic Variables can enable multiple optimizations
simultaneously, including hiding data pipeline’s latency, ob-
jective deduction for a better scheduling and commonality
analysis to perform de-duplication. Parrot’s scheduling also
takes different opportunities into accounts under the unified
abstraction. Our extensive evaluation of Parrot on popular
LLM-based applications, including the production and open-
source projects, shows Parrot achieves up to 11.7× speedup
or 12× higher throughput compared with the state-of-the-
art solutions. Parrot is open-sourced at https://github.
com/microsoft/ParrotServe, including the code for arti-
fact evaluations to reproduce our experiment results.

2 Background

LLM Service. Most LLM services are provisioned as a
conditional generation service via a text completion API.

Completion(prompt : str)−→ generated_text : str.

The application client provides a text prompt, and the LLM
service responds with the generated text. Behind the API,
an LLM service provider runs one or multiple clusters of
LLM inference engines. A request scheduler dispatches LLM

930    18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/ParrotServe
https://github.com/microsoft/ParrotServe


0 1000 2000 3000 4000
Prompt Length (# of tokens)

0
1000
2000
3000
4000
5000

Ti
m

e 
(m

s)

End-to-end Time (P99))
GPU Inference Time
Other Overhead (median)

(a) Latency Breakdown

LLM Step A
LLM Step B

Scheduler

Internet

LLM App

Other LLM Apps

A B

LLM Engine LLM Engine LLM Engine
A

Queue

B

①

②

③

Query

Response

④

(b) Current LLM Services

LLM Engine LLM Engine LLM Engine

Scheduler

LLM Step A
LLM Step B

①

②

Internet

A B

A B Queue

Query

Response

LLM App

Other LLM Apps

(c) Our system: Parrot

Figure 3: The end-to-end latency breakdown of current LLM services. The source of the overhead comes from network and
queuing due to chatty interaction between LLM application and LLM services, which is eliminated in our system Parrot.

requests from a queue to an LLM inference engine, which
uses a set of GPUs to conduct the LLM inference.

LLM-based Applications. Figure 1 highlights the repre-
sentative workflows of how LLM is used in the applications.
Due to the limited context window of LLMs (e.g., 4,096 for
GPT-3.5-Turbo [40]), data analytics on long documents fol-
low a map-reduce style (Figure 1a) or chain style (Figure 1b)
workflow to generate the final results. It splits the long tran-
script into chunks, uses multiple requests to generate partial
results for each chunk (the Map task), and combines them
altogether (a Reduce task) or incrementally (the chain style)
to generate the final result. Chat-based search engine in Fig-
ure 1c may use consecutive LLM requests to discern query
intention, enrich the query with supplementary information,
retrieve related data, undergo a safety check, and finally gen-
erate the response. Multi-agent in Figure 1d and Figure 2 is
another type of workflow using multiple LLM requests, each
with a designated role. Different roles work collaboratively on
the same task, e.g., AutoGen [54] and MetaGPT [22] use the
roles like product manager, architect, engineer, and QA tester.
They communicate with each other on a software project.
Each role is supported by one or multiple LLM requests to
act as the designed role to generate their responses.

3 Problems of Serving LLM Applications

Although LLM’s text completion API provides a flexible way
of building LLM applications, it loses the application-level
information to public LLM services, leading to the following
challenges.

Excessive Overhead of Consecutive Requests. As demon-
strated in Figure 1, LLM applications frequently make multi-
ple LLM calls to complete a single task. Due to the request-
centric design of existing public LLM services, which gener-
ate responses for each request individually, developers have to
parse the output of an LLM request and compose the prompts
for subsequent LLM requests on the client side. Figure 3a
shows our empirical study of the latency breakdown of the
LLM calls from a popular LLM application in our production,
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Figure 4: Request-centric scheduling v.s. application-centric
scheduling for the map-reduce style document summary task.

which uses a chain-style workflow. The prompt lengths range
from 150 to 4000 tokens and the output length is around 50
tokens. We find there is a significant portion of the latency of
LLM API call originates outside the LLM engine (30 ∼ 50%
on average and over 70% in the worst cases). The overhead in-
creases with the growing length of prompts. The high latency
can sometimes result in API timeouts and resubmissions.

Such overhead is due to the chatty interaction between
LLM services and clients. Figure 3b illustrates the overhead
of a simple two-step LLM application (e.g., chain-style sum-
mary of two text chunks). Existing LLM services are unaware
of the dependency among such requests, where the output of
the previous request may be the direct input of the next one.
For such consecutive and dependent requests, the client has
to wait for the arrival of the response to the first LLM request
( 2 ) before submitting the next LLM request ( 3 ). This un-
necessarily incurs heavy network latency because clients and
LLM services are typically in different data centers. More-
over, the next LLM request has to suffer extra queuing delays
( 4 ), because requests from other applications may arrive
between the consecutive LLM requests.

LLM-based App. # Calls Tokens Repeated (%)∗

Long Doc. Analytics 2 ∼ 40 3.5k ∼ 80k 3%
Chat Search 2 ∼ 10 5k 94%

MetaGPT [22] 14 17k 72%
AutoGen [54] 17 57k 99%

∗We count a paragraph as repeated if it appears in at least two LLM requests.

Table 1: Statistics of LLM calls of LLM applications.
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[system](#instructions) 
## You are the chat mode 
of Microsoft Bing search: 
- You identify as Microsoft 
Bing search to users, 
**not** an assistant. 
- You should ……

[system](#context) 
- New conversation with user A. 
- Time at the start of this conversation is 
Sun, 30 Oct 2022 16:13:49 GMT. The 
user is located in Redmond, Washington, 
United States. 
[user](#message) Hi. ……

[system](#context) 
- New conversation with user B. 
- Time at the start of this conversation is 
Mon, 20 Nov 2023 16:13:49 GMT. The 
user is located in London, UK. 
[user](#message)
Explain AI agent for a kid.

Task Role (static) Few-shot Examples (quasi-static) User Input (dynamic)

+ +

Figure 5: The prompt structure of search copilot shows a long
prompt reused by different user queries.

In Table 1, we evaluated four popular LLM applications.
The first two are from our production, and the last two are
popular open-source projects. They all require tens of LLM
calls to complete a single task, which results in high user-
perceived latency. Our evaluation in §8.2 shows LLM services
that treat requests individually could slow down the end-to-
end latency by over 2×. An LLM service can eliminate the
overhead if it can handle consecutive requests in a batch.
Parrot adopts such an approach. As shown in Figure 3c, the
two steps of the same application are scheduled together, thus
allowing the output of Step A to be fed directly into Step
B—with the network and queuing overhead bypassed.

Misaligned Scheduling Objectives. Due to the lost appli-
cation information (workflow and application performance
objective), existing public LLM services have to blindly use
a universal treatment for all requests, e.g., optimizing per-
request latency [44]. However, LLM-based applications are
more concerned about the end-to-end experience, rather than
individual requests. This misaligned optimization objectives
may negatively impact end-to-end performance. Considering
the map-reduce document summary in Figure 1a, the system
should minimize the end-to-end time it takes to receive the
final summary, rather than the latency of individual requests.
The LLM services optimized for individual requests are not
optimal for end-to-end latency.

As depicted in Figure 4, current LLM services must limit
the number of concurrent requests running on each LLM en-
gine to control the latency of individual requests. However,
there is a trade-off between latency and throughput in LLM in-
ference. Increasing the batch size can bring up to 8.2× higher
throughput but lead to 95% higher latency [9]. Yet, if we un-
derstand the application-level performance objective, which
in this case is the end-to-end latency, we can determine that
the ideal scheduling strategy should maximize the throughput
(using higher batch sizes) during the map stage and minimize
request latency during the reduce stage. This strategy reduces
end-to-end latency by 2.4×. Moreover, it uncovers the po-
tential to enhance cluster throughput without compromising
the end-to-end latency of LLM applications. This insight is
essential for addressing the conflict between rising demand
and limited hardware resources. It underscores the necessity
of scheduling LLM requests from the perspective of LLM
applications, but it also presents the challenge of managing
diverse LLM requests with varying performance objectives.

Parrot LLM EngineParrot LLM EngineParrot LLM Engine

Parrot APIs w/ Semantic Variables

Parrot Manager w/ Inter-Request Analysis

Parrot 
App-centric 
LLM Service

Applications

Internet

Applications (front-end)

Parrot Front-end Others (LangChain, SK, etc.)

Perf. Objective Deduction

Sharing Prompt Prefix App-centric Scheduling

Efficient GPU KernelsContext Management

Contextual Fill / Gen

Inter-Request Comm.

Figure 6: Parrot system overview.

Redundant Computations. Currently, most LLM-based
applications exhibit a high degree of redundancy in the
prompts of their requests. For instance, Bing Chat [32] has
handled more than 1 billion chat prompts. These prompts
share the same system prompts that defines the functionality
of Bing Chat. OpenAI introduces GPTs [42] to let users cus-
tomize a ChatGPT for a specific purpose whose prompt tem-
plate is the same across users. The commonality in prompts
is crucial as it delineates the functionality and restrictions
of LLM-based applications. The prompt structure in Fig-
ure 5 [52] includes a role definition, several examples to
enhance the precision of LLM’s behaviors and user query
details. While the user input is dynamic, the task role is al-
ways fixed, and the few-shot examples could be quasi-static in
that the same type of tasks use the same examples. This is why
more than 94% of prefix tokens could be repetitively used
across LLM requests for various users (Table 1). Such com-
monality also exists in multi-agent applications. For example,
MetaGPT [22] and AutoGen [54] recurrently incorporate con-
versation history into the prompt over several rounds of LLM
requests, leading to 72% and 99% redundancy respectively.
These redundant sections excessively utilize GPU memory
bandwidth and are computed for multiple times. Earlier re-
sults have proposed optimizations in LLM engines to avoid
redundant GPU memory of shared prompt [25]. However, it is
hard for public LLM services to swiftly detect and co-locate
the prompt-sharing requests, which be dynamically generated,
from tons of diverse requests from diverse applications. With-
out knowledge about the prompt structure, extensive token-
by-token matching for every LLM request is expensive at the
cluster level. Hence, if the cluster scheduler of public LLM
service cannot dispatch prompt-sharing requests to the same
engine, the engine-level redundancy avoidance optimizations
would be hard to take effect.

4 Parrot Design

Figure 6 depicts the overview of Parrot’s design. Parrot pro-
vides a natural way of programming LLM applications with
Semantic Variable annotations (§4.1), which is compatible of
existing LLM orchestration frameworks, e.g., LangChain [8].
Centering on this abstraction, Parrot Manager is designed
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import Parrot as P
from Parrot.PerformanceCriteria import LATENCY

@P.SemanticFunction
def WritePythonCode(task: P.SemanticVariable):
""" You are an expert software engineer.

Write python code of {{input:task}}.
Code: {{output:code}}

"""

@P.SemanticFunction
def WriteTestCode(

task: P.SemanticVariable,
code: P.SemanticVariable):

""" You are an experienced QA engineer.
You write test code for {{input:task}}.
Code: {{input:code}}.
Your test code: {{output:test}}

"""

def WriteSnakeGame():
task = P.SemanticVariable("a snake game")
code = WritePythonCode(task)
test = WriteTestCode(task, code)
return code.get(perf=LATENCY), test.get(perf=LATENCY)

Figure 7: Example: a multi-agent application in Parrot.

to schedule LLM requests at a cluster-level, by deriving the
application-level knowledge (§4.2) and optimizing end-to-end
performance of application (§5). The manager will schedule
the LLM requests to LLM Engine, which is formed by a GPU
server (or a group of servers) in the cluster that can serve LLM
requests independently.

4.1 Semantic Variable
Parrot treats an LLM request as a semantic function1 im-
plemented using natural language and executed by LLMs.
A Semantic Variable is defined as a input or output vari-
able of a semantic function, which is referred as a place-
holder in the prompt. Figure 7 shows a simplified example of
multi-agent application like MetaGPT [22]. It contains two
SemanticFunctions, one for the software engineer to write
code and one for the QA engineer to write test code. It has
three Semantic Variables: task, code, and test, for task de-
scription, the code to be developed by the software engineer,
and the test code to be developed by the QA engineer, re-
spectively. Although existing LLM orchestration frameworks
(e.g., LangChain [8]) also allow placeholders in a prompt,
however, the placeholders are rendered with real data before
the submission, hence public LLM services cannot detect such
a structure. Instead, Parrot relies on Semantic Variables to
preserve the prompt structure for further inter-request analysis
in public LLM services side.

In addition to the semantic functions, LLM application
developers can further define orchestration functions that con-
nect multiple semantic functions (e.g., WriteSnakeGame in
Figure 7). The Semantic Variables connecting multiple se-
mantic functions form the data pipeline of multiple LLM

1The term semantic function is borrowed from Semantic Kernel [36].

task

code

WritePythonCode

WriteTestCode

test

You are an expert software engineer. Write python code of

You are an expert ...... code of: {{input:task}}. Code:

Hash( )

Hash( )

① PrefixHash()

④ GetPerfObj() Latency   

③ GetConsumers() [Request( )]

② GetProducer()  Request( )WritePythonCode

WriteTestCode

Figure 8: Primitives (selected) for Inter-Request Analysis.

requests in the public LLM service. A simple data flow
analysis of the semantic functions can be done to reveals
the connections of multiple LLM requests. E.g., in Figure 7,
the code variable connects the two LLM requests originat-
ing from WritePythonCode and WriteTestCode, showing
their sequential dependency. Different from traditional com-
pletion API, Parrot splits a completion request to submit
operation and get operation (§7). A function calling of
SemanticFunction will trigger the submit API to submit a
LLM request with its prompt and input Semantic Variables.
The execution of a SemanticFunction is asynchronous
thus it returns the futures of the output Semantic Variables.
Through the get API, applications can fetch the value of
an output Semantic Variable from the public LLM service
in an on-demand manner. This asynchronous design allows
Parrot-powered LLM service to receive all LLM requests not
blocked by native functions and analyze their relationships
just-in-time.

The get operation supports annotation of performance cri-
teria, showing the end-to-end performance requirement of
an application, which can be end-to-end latency or through-
put (extensible to more criteria like per-token latency when
streaming, and time-to-first-token). For example, the final out-
puts, code and test in Figure 7, are fetched using get with
an objective of end-to-end latency. Criteria of middle vari-
ables will be automatically deduced and propagated from final
outputs (§5.2). After propagation, each variable is attached to
a criterion, which finally works by serving as a hint to Parrot’s
scheduler (§5.4).

4.2 Primitives of Inter-Request Analysis
In general, Parrot perform inter-request analysis mainly by
two types of application-level information deduced from Se-
mantic Variable: DAG of requests and prompt structure. Fig-
ure 8 illustrates the DAG workflow of the example shown in
Figure 7 and the primitives used for inter-request analysis and
optimizations.

DAG-based analysis. As requests, or SemanticFunctions,
are submitted beforehand, Parrot can receive them all at once
and analyze their correlations just-in-time on the service side.
Parrot maintains a DAG-like data structure in each user’s
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registered session. Each node is either a request or a Seman-
tic Variable that connects different requests. When a request
comes, Parrot inserts it to DAG by linking edges with Seman-
tic Variables it refers through placeholders in the prompts.
Parrot can perform conventional dataflow analysis [1, 38]
using the primitives to get the producer and consumers of Se-
mantic Variables (i.e., GetProducer and GetConsumers) to
recover dependency of LLM requests. Using the request DAG
and the annotated performance criteria (via GetPerfObj) of
final output Semantic Variables, Parrot can deduct the request-
level scheduling preference by analyzing the DAG and the
performance objective of final outputs (§5.2).

Prompt structure-based analysis. Based on the prompt
structure declared by Semantic Variables, Parrot supports ex-
tracting the hash values of an LLM request at multiple po-
sitions split by Semantic Variables (i.e., PrefixHash). For
example, the prompt of WritePythonCode has two potential
sharing prefix: the text before {{input:task}} and the text
before {{output:code}}, thus there will be two prefix hash
values generated. The prefix hashes of LLM requests will
be used by swift detection of commonality across multiple
requests, supporting both static and dynamically generated
contents, as well as within the same type of application or
even across applications (§5.3).

5 Optimizations with Semantic Variable

5.1 Serving Dependent Requests

To avoid the unnecessary client-side execution, it requires
the dependency of requests at the application level, which
is lost in today’s public LLM services. With the DAG and
primitives illustrated in §4.2, Parrot serves dependent requests
efficiently through a graph-based executor. The executor polls
constantly and sends it to corresponding engine once ready
(i.e. producer requests are all finished), which allows instant
execution and maximizes batching opportunities. For con-
secutive execution of dependent requests, materialized value
is transmitted through a message queue allocated for cor-
responding Semantic Variable, avoiding unnecessary chatty
communication between clients and LLM services.

The value of a Semantic Variable in a request may require
transformation before being exchanged, e.g., the value of a
Semantic Variable is extracted from the JSON-formatted out-
put of an LLM request, which is then fed into consecutive
LLM requests. Similar to existing message queue systems
that support message transformation (e.g., Kafka [5]), Parrot
also supports string transformation to manipulate Semantic
Variables during value exchanging among LLM requests. Par-
rot supports most output parsing methods of LangChain [8],
which covers most use cases of LLM applications.

1

35

46

7

x.get(perf=LATENCY)

Task 
Group 0

Task 
Group 1

2 y.get(perf=LATENCY)

Figure 9: Performance deduction for an LLM-based applica-
tion generating two latency-sensitive Semantic Variable.

5.2 Performance Objective Deduction
To optimize the end-to-end performance of applications, we
need to know the application-level performance criteria. To
help deriving the request-level scheduling preference from the
end-to-end application’s performance requirement, we need
to understand the workflow of the LLM application, which is
the DAG of LLM requests derived by Parrot’s primitives.

When an application annotates a Semantic Variable to pre-
fer higher throughput, all requests generating this Seman-
tic Variable (both directly or indirectly) will be marked as
throughput-preferred when scheduling. This scheduling pref-
erence is usually beneficial for offline data processing, such
as bulk document analysis.

Handling latency-sensitive applications is more intricate.
As demonstrated in Figure 4, achieving low end-to-end la-
tency may sometimes require prioritizing throughput at the
Mapping stage. The latency of individual requests can sacri-
ficed so as to reduce the completion time of the entire DAG of
requests. Parrot analyzes LLM requests in reverse topological
order, beginning with those linked to latency-critical Semantic
Variable, as depicted in Figure 9. With the extracted DAG,
LLM requests that directly result in latency-critical Seman-
tic Variables are labeled as latency-sensitive (Request 1 and
2), as are their immediate predecessors (Request 3). Parallel
LLM requests at the same stage are grouped into a task group
(Task Groups 0 and 1). The scheduler should minimize the
latency of the entire task group, often leading to a higher batch
capacity for higher throughput of token generation.

5.3 Sharing Prompt Prefix
When an LLM request is scheduled to an LLM engine, a con-
text on the engine is created to store the state of the model
execution for this request (mainly KV cache). Existing works
have proposed to share the KV cache of common prefix of
prompts in LLM engines to save the GPU memory. However,
as we have explained in §3, today’s public LLM service face
diverse applications and requests, which is hard to identify
the commonality at the cluster level. Token-by-token compar-
ison is impractical due to high time complexity, especially for
very long context with massive requests. In Parrot, by expos-
ing Semantic Variables to LLM service, we can understand
the prompt structure to automatically detect the commonality
more efficiently at the granularity of Semantic Variables.
Using Parrot’s primitive of PrefixHash, Parrot only needs
to check the hash value at positions after each Semantic Vari-
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able in a request’s prompt. Parrot maintains a key-value store,
where each entry maps a (hashed) prefix of tokens to a list of
requests, thus the scheduler can quickly check the opportunity
in an online manner, supporting both static and dynamically-
generated prompt within one application or even across dif-
ferent applications.

Furthermore, we propose better GPU kernel for the atten-
tion computation of the requests with a common prefix. We
first leverage vLLM’s paged memory management [25] to
save the redundent GPU memory. But vLLM’s kernel still
suffers from redundant computation and memory loading
of the shared tokens. Therefore, we design a new Attention
decoding algorithm by combining FlashAttenation [12] and
PagedAttention [25] that treat the shared and non-shared to-
ken separately. This significantly accelerates the attention of
shared contexts (implementation details in §7).

5.4 Application-Centric Scheduling

Parrot’s scheduling is a problem that matches LLM requests
to LLM engines, i.e. the cluster-level scheduling, while the
engine-level scheduling will be covered in the implementa-
tion details of the engine in §7. To fix the problem of ex-
isting public LLM service that blindly optimize diverse in-
dividual requests, Parrot’s scheduling policy leverages the
application-level knowledge to optimize the end-to-end per-
formance. Specifically, the primary goal of Parrot’s scheduler
is to meet the varied performance goals of LLM applications
while optimizing GPU cluster utilization. As explained in §3,
a conflict arises when combining throughput and latency ori-
ented requests: large batch sizes increase throughput and GPU
efficiency but degrade latency, and vice versa. Transformer-
based LLM inference is largely memory-bound, with latency
influenced by the count of concurrent tokens within the engine.
To meet performance targets of LLM applications, particu-
larly latency, an LLM engine must regulate the token count
below a specified threshold, which is determined by the LLM
request with the most strict latency constraint. Therefore, Par-
rot’s scheduling principles are twofold: (1) group LLM re-
quests with similar performance requirements to circumvent
the conflict, and (2) maximize opportunities for sharing across
requests.

Algorithm 1 outlines the scheduling process of Parrot. With
the extracted DAG, the system arranges the LLM requests
according to their topological order (line 1). Parrot tends to
schedule requests belonging to the same application together
to avoid the slowing down of interleaved scheduling (§8.2).
For requests identified as part of a task group through Parrot’s
performance objective deduction, the scheduler attempts to
allocate the entire task group together (line 4-line 5). Addi-
tionally, if Parrot detects other queued requests or running
contexts with a common prefix, it tries to assign them to
the same LLM engine (line 3, line 6-line 9), to utilize Par-
rot’s context fork to reduce the redundant computation and

Algorithm 1: Parrot’s Request Scheduling.
Data: Q: the request queue

1 Q.sort() ; /* Topological order */
2 for r ∈ Q do
3 SharedReqsInQueue, CtxInEngine =

FindSharedPrefix(r);
4 if r.TaskGroup ̸=∅ then
5 r∗ = FindEngine(r.TaskGroup);
6 else if SharedReqsInQueue ̸=∅ then
7 r∗ = FindEngine(SharedReqsInQueue);
8 else if CtxInEngine ̸=∅ then
9 r∗ = FindEngine(r, filter=CtxInEngine);

10 if r∗ = ∅ then
11 r∗ = FindEngine(r);

12 Q.remove(r∗);

GPU memory transactions. For an LLM request without the
above opportunity, Parrot schedules the request independently
(line 10-line 11). Due to limited space, we omit the details of
how Parrot chooses LLM engines (i.e., FindEngine). Briefly,
Parrot finds the engine that satisfies the scheduling preference
of a request while minimizing the negative impacts. For in-
stance, if a latency-sensitive request is scheduled to an LLM
engine that can run up to 64,000 tokens of throughput-driven
requests, its capacity will be significantly reduced to 2,000 to
satisfy its strict latency requirement. But, if it is scheduled to
an engine that has already been running a latency-sensitive
request, the capacity reduction is negligible.

6 Discussion

Dynamic Applications and Function Calling. Currently,
Parrot only supports cloud-side orchestration of LLM requests
without involving dynamic control flow and native functions
(e.g., Python Code). They still require client-side execution.
We intentionally disable the offloading of these functions
to public LLM services to minimize the security risks of
malicious injection. For private LLM services whose LLM
applications are trusted or there is a trusted zone to execute
these functions, Parrot’s APIs can be easily extended with
conditional connections and native code submission. More-
over, these extensions further enable new optimizations, e.g.,
we can speculatively pre-launch high-probability branches in
dynamic applications based on past profiles. This also proves
the potential of Parrot’s design when facing new types of
applications. We leave these extensions as future works.

Other Applications of Inter-Request Analysis. The inter-
request analysis in Parrot enables a new optimization space
not limited to the ones we introduced in §5. A large-scale
service has more scheduling features to consider, including
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handling outliers [3], job failures [58], delay scheduling [57],
fairness [15,61], starvation [17], or supporting heterogeneous
clusters [24, 37], which have been widely studied in other
systems. Parrot provides a new view from the perspective
of LLM-based applications: we need to understand the inter-
connection and commonality of LLM requests to optimize
applications’ end-to-end performance. These features can be
revisited in the LLM service system by considering the new
characteristics of LLM applications. In this paper, we focus
on Parrot’s mechanisms and a few use cases, leaving other
optimizations as promising future works.

Parrot with LLM Orchestration Frameworks. There
have been several frameworks for developers to build LLM-
based applications, e.g., LangChain [8], SemanticKernel [36],
and PromptFlow [35]. The key function of these frameworks
is to “glue” different LLM calls to accomplish a complex
task (aka. LLM orchestration). Parrot can be integrated with
these frameworks by extending their calling of LLM service
APIs with Semantic Variables. Most of these frameworks
have already used a template-based approach in which devel-
opers can design a template with placeholders, and render the
placeholders at runtime. These placeholders naturally have
the same concept as Parrot’s Semantic Variable. However,
because these frameworks will render the template prompt
before the submission, LLM services lose the information on
the prompt structure. To make these frameworks compatible
with Parrot, both the template itself and the variables to render
the template (using Semantic Variable in Parrot) need to be
wrapped as a SemanticFunction so the necessary informa-
tion is exposed to Parrot’s LLM service.

7 Implementation

Parrot is an end-to-end LLM service for LLM applications,
implemented on Python with about 14,000 lines of code. Its
front-end provides the abstraction of Semantic Variable, and
SemanticFunction, which is transformed into Parrot’s APIs
(implemented with FastAPI [48]) to be submitted as LLM
requests. A centralized Parrot manager handles the manage-
ment of LLM requests, including Semantic Variables, com-
munication, and scheduling. We also build an LLM engine
based on efficient kernels from vLLM [25], xFormers [26],
and ourselves. The engine supports advanced features for
LLM serving, including paged memory management [25] and
continues batching [56]. Parrot’s front-end and manager are
implemented in 1,600 and 3,200 lines of Python, respectively.
Parrot’s LLM engine is implemented in 5,400 lines of Python
and 1,600 lines of CUDA. We have implemented OPT [60]
and LLaMA [51] with PyTorch [45] and Transformers [53].

APIs. Applications programmed by SemanticFunctions
or other frontends are finally lowered to requests to universal

APIs through different adapters. Parrot provides OpenAI-like
APIs with the extension of Semantic Variables. The request
body of two operations mentioned in §4.1 is shown as follows:

(submit) {"prompt": str, "placeholders": [{"name":
str, "in_out": bool, "semantic_var_id": str,
"transforms": str}, ...], "session_id": str}

↪→

↪→

(get) {"semantic_var_id": str, "criteria": str,
"session_id": str}↪→

In addition to the static string prompt, Parrot preserves the
input and output placeholders. A placeholder is associated
with a semantic variable either for rendering the input or
parsing the output. As introduced in §5.1. Parrot supports
transformations before the input or after the output. Parrot
also supports other APIs for setting and fetching the value of
Semantic Variables. The error message will be returned when
fetching an Semantic Variable, whose intermediate steps fail
(including engine, communication, and string transformation).

Kernel Optimization. vLLM’s GPU kernel, while capable
of reusing results cached in GPU memory for shared prefix to-
kens in a prompt, sometimes excessively reloads these tokens
from global to shared memory, impeding attention score com-
putations. Using OpenAI Triton [43] and CUDA, we have
developed a novel GPU kernel, integrating concepts from
PagedAttention [25] and FlashAttention [11, 12], to acceler-
ate attention decoding computation involving shared prefixes.
This kernel retains PagedAttention’s approach of storing the
key-value (KV) cache in disparate memory segments and
utilizes a page table per request to monitor block status and
placement. Furthermore, employing FlashAttention princi-
ples, the kernel maximizes data reuse within shared memory.
Unlike reloading tiles repeatedly in the PagedAttention’s im-
plementation, it loads KV cache tiles for the shared prefix
to shared memory only once, diminishing memory transac-
tions between the L2 Cache and Shared Memory. The kernel
initially calculates interim attention metrics (including atten-
tion scores, qk_max, exp_sum) for the shared prefix using the
loaded tiles and records these back to HBM. Subsequently, it
processes the new tokens’ partial attention beyond the prefix,
amalgamating this with the prefix’s interim results to derive
the ultimate attention output.

Universal Engine Abstraction. Parrot’s cluster manager
controls multiple engines running various models, tokeniz-
ers, KV cache layouts, etc. To enable Parrot’s optimizations,
LLM engines need to support (1) stateful generation (e.g.,
guidance [18]) and (2) sharing KV cache states across dif-
ferent requests. Hence we propose a universal abstraction to
describe the minimal capability required to LLM engines to
be integrated into Parrot.
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def Fill(token_ids: List[int], context_id: int,
parent_context_id: int)↪→

def Generate(sampling_configs: Dict, context_id:
int, parent_context_id: int)↪→

def FreeContext(context_id: int)

These three methods not only cover the basic completion
functionality of LLM inference engine, but also provide a
flexible context management interface. The Fill method pro-
cesses the initial prompt tokens, calculates and fills the KV
cache into corresponding context. The Generate method pro-
duces tokens via generative decoding that produces one token
per iteration until it reaches the length limit, user-defined
termination character or EOS (end-of-sequence) token, un-
der certain sampling configurations (e.g. temperature). Fills
and Generates are scheduled and batched by engine’s sched-
uler per iteration using continuous batching [56]. Creating
and forking contexts can also be realized with these two
methods by setting context_id and parent_context_id,
respectively. The FreeContext method explicitly frees a con-
text (i.e. free its KV cache in GPU memory). Separating
Fill and Generate not only fits Semantic Variable naturally:
constant text and input values are processed by Fill; the out-
put values are generated by Generate, but also breaks the
request-level dependency into a finer granularity, enabling
more parallel execution opportunities [2, 21, 46, 64].

8 Evaluation

8.1 Experimental Setup

Testbed. We evaluate Parrot with two separate setups for
single-GPU and multi-GPU experiments. The single-GPU
evaluations use a server with a 24-core AMD-EPYC-7V13
CPUs equipped with one NVIDIA A100 (80GB) GPU. The
multi-GPU evaluations use a server with 64-core EPYC AMD
CPU and four NVIDIA A6000 (48GB) GPUs. Both servers
run CUDA 12.1 and cuDNN 8.9.2.

Workloads. Our evaluations are performed to run four rep-
resentative LLM applications. Each LLM engine uses one
GPU and runs a LLaMA 13B or LLaMA 7B model [51] .
For LLM-based data analytics on long documents, we use the
Arxiv dataset [27], executing chain and map-reduce summa-
rizations on an extensive collection of academic papers. To

Workload
Serving

Dependent
Requests.

Perf. Obj.
Deduction

Sharing
Prompt

App-centric
Scheduling

Data Analytics ✓ ✓ ✓
Serving Popular
LLM Applications ✓ ✓

Multi-agent App. ✓ ✓ ✓ ✓
Mixed Workloads ✓ ✓ ✓

Table 2: The workloads and the optimizations taking effect.
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Figure 10: Latency (per output token) of vLLM with varying
token capacities and request rates. Requests are sampled from
ShareGPT [50] and their arrival time follows Poisson distri-
butions.

investigate the sharing opportunities of LLM-based applica-
tions with many users, we run the prompts from Bing Copilot
and GPTs [42] with synthesized user queries. For multi-agent
applications, we build a multi-agent programming application
using MetaGPT [22], which contains a system architect to
design APIs, multiple programmers to write code for different
files, reviewers to share review comments. The programmers
will also revise the code based on comments. For chat ser-
vice workloads, we derived scenarios from the ShareGPT
dataset [50], which mirrors real LLM chat conversations. Ac-
cording to the distribution of our measurement, we introduced
a random delay of 200 ∼ 300 ms to LLM requests to emulate
typical network overhead seen over the Internet. To create
realistic workloads, we documented the LLM responses us-
ing GPT-4 [41], ensuring the LLaMA models generated text
of similar length for system performance analysis. Table 2
presents the workloads and their optimizations in Parrot.

Baseline. We benchmark Parrot against sate-of-the-art so-
lutions for building LLM applications and serving LLM re-
quests. The majority of LLM applications used in our baseline
comparisons are developed using LangChain [8], which is the
predominant framework for LLM application development.
The LLM applications in baselines leverage OpenAI-style
chat completion APIs as provided by FastChat [62]. FastChat
is a widely recognized open-source LLM serving system
with over 30,000 stars on its repository. Incoming requests to
FastChat are allocated to LLM engines that run either Hug-
gingFace’s Transformers library [53] or vLLM [25], both of
which incorporate cutting-edge enhancements for LLM exe-
cution, such as FlashAttention [12], PagedAttention [25], and
continuous batching techniques [56]. The default scheduling
strategy employed by FastChat assigns incoming requests
to the LLM engine with the smallest current queue. Since
existing LLM services typically expose their functionality
through "chat" completion APIs, baseline assessments treat
all requests as independent and assume a high sensitivity to
latency. To manage token generation response times, each
LLM engine is subject to a capacity threshold, which is the
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Figure 11: Average E2E latency of chain summarization with
varying output lengths and chunk sizes.

aggregate token count from all active requests on the engine.
Since existing LLM token generation is usually bound by

memory bandwidth, the per-token generation latency of an
engine is mainly affected by the number of running tokens in
a batch. As depicted in Figure 10, our experiments indicate
that the latency per output token, i.e. TPOT (Time-per-output-
token) for vLLM, with continuous batching enabled, experi-
ences a notable uptick when the engine’s workload using a
batch capacity beyond 6144. In our evaluation, we use the
setting that an LLM engine can keep its generation latency
under 40 ms/s for latency-sensitive requests, consistent with
our experience of OpenAI’s LLM services. When all LLM
engines hit their maximum capacity, any additional LLM re-
quests are queued in a FIFO (First In, First Out) manner,
awaiting the completion and release of resources by ongoing
tasks. Serving longer context (e.g., 32k or even 1M tokens)
within a satisfactory latency require either more GPUs using
tensor-parallel [49] or sequence-parallel [6] approaches, or
approximate attention (e.g., StreamingLLM [55]), which is
beyond the scope of this paper.

8.2 Data Analytics on Long Documents

Our experimental analysis within data analytics randomly
picks ten long documents from the Arxiv-March dataset [27],
using chain-summary and map-reduce summary. Each docu-
ment has over 20,000 tokens. The results measures the mean
end-to-end latency across all documents.

Chain-style Applications. Our evaluation demonstrates
how Parrot enhances chain summarization by mitigating the
excessive communication overhead stemming from client in-
teractions. Figure 11 presents the average end-to-end latency
for summarizing a single document using one LLM engine
(A100, LLaMA 13B) . We adjust the chunk size (the count of
tokens per chunk) and the output length, with results shown in
Figure 11a and Figure 11b, respectively. Parrot achieves a re-
duction in end-to-end latency by as much as 1.38× and 1.88×
compared to the baselines employing vLLM and Hugging-
Face, respectively. The efficiency of Parrot primarily stems
from the decreased network latency, which is a consequence
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Figure 12: Average E2E latency of chain-summary with back-
ground requests or other chain-summary applications.
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Figure 13: The difference in E2E latency of the 25 chain-
summary application between Baseline and Parrot. All appli-
cations finish earlier in Parrot.

of reduced client interaction. As the output length increases,
the time spent on generation becomes more significant, lead-
ing to a diminishing advantage for Parrot over the baseline. By
increasing the chunk size, we decrease the number of chunks,
yet the extent of the speedup is contingent upon the network
latency savings for each chunk. Given that token generation is
substantially more time-consuming than prompt processing,
we observe a consistent speedup with variable chunk sizes
and a fixed output length (1.2× and 1.66× relative to vLLM
and HuggingFace, respectively). This indicates that Parrot’s
optimization for dependent LLM requests is particularly bene-
ficial for shorter outputs, which are prevalent in various LLM
applications such as summarization, short answer generation,
scoring, and choice provision. Due to HuggingFace’s slower
performance relative to vLLM, subsequent evaluations focus
solely on the comparison between Parrot and vLLM.

Figure 12a extends the evaluation by introducing back-
ground LLM requests at varying rates to examine the capa-
bility of Parrot in mitigating additional queuing delays for
dependent requests. Parrot slashes the end-to-end latency by a
factor of 2.38× in comparison to the baseline (vLLM). With
Parrot, as soon as the summary for the first chunk is completed,
the subsequent chunk is processed immediately by incorporat-
ing the summaries of previous chunks into the prompt, which
aids in generating the summary for the next chunk. In con-
trast, the baseline treats all LLM requests individually. As a
result, in addition to the network latency from client interac-
tions, subsequent requests must re-enter the queue, leading
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Figure 14: Average E2E latency of Map-Reduce document
summary with varying output lengths and chunk sizes.

to added queuing delays. Figure 12b further illustrates the
end-to-end latency when multiple chain-summary applica-
tions are submitted concurrently, with each application tasked
with generating a summary for a separate document. Parrot
manages to reduce the average end-to-end latency for all ap-
plications by 1.68× without slowing down any applications
compared to the baseline according to Figure 13. The base-
line, by interleaving the execution of different applications,
exacerbates the slowdown of the end-to-end latency for all
applications. These experiments validate that recognizing the
interconnections of LLM requests can significantly enhance
end-to-end performance, as opposed to processing requests
in isolation.

Map-Reduce Applications. An alternative implementation
of the document summarization application follows the map-
reduce paradigm as depicted in Figure 1a. This approach
consists of multiple parallel mapping LLM requests, where
each request summarizes a distinct segment of the document,
followed by a reducing LLM request that aggregates these
individual summaries into a final summary. As shown in
Figure 14, Parrot realizes a 2.37× acceleration over the base-
line with one LLM engine (A100, LLaMA 13B). Since the
mapping LLM requests are independent, they are dispatched
concurrently by both Parrot and the baseline. The primary ad-
vantage of Parrot stems from its deduction of a performance
objective that identifies the mapping tasks as a task group.
By recognizing this relationship, Parrot is capable of optimiz-
ing the latency of the entire task group through larger batch
sizes, which in turn enhances throughput. In contrast, the
baseline processes each LLM request in isolation, operating
under the presumption that they are all sensitive to latency.
This constrains the baseline to utilize a limited token capacity
(4096 tokens) on the LLM engine to achieve optimal latency
for individual tasks, which is detrimental to the end-to-end
performance of applications. It underscores the necessity for
LLM services to distinguish LLM requests to optimize the
end-to-end performance of varied LLM applications.
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Figure 15: Latency of Bing Copilot with varying batch sizes.

8.3 Serving Popular LLM Applications

Production applications need to face massive users. As ex-
plained in Figure 5, developers often need to use a very long
system prompt to define the behavior of LLMs. Therefore,
users of the same LLM application often use the shared
prompt, which can benefit from Parrot’s context fork mech-
anism and Parrot’s scheduling policy that co-locates LLM
requests sharing a long prompt prefix. Because we do not
have access to the intermediate steps of Bing Copilot, we only
evaluate the final request generating the response to users.
We synthesized 64 requests from the length distribution we
measured using Bing Copilot. The system prompt length is
about 6000 tokens. The output lengths ranges from 180 to
800 tokens. Figure 15 shows the average request latency of
Bing Copilot of Parrot and the baselines. Because the LLM
service in the baseline system does not know the prompt struc-
ture, it is hard to infer the shared prompt from massive LLM
requests. Compared to the baseline without sharing prompt,
Parrot achieves 1.8×∼ 2.4× speedup for batch sizes of 8 and
16. Further increasing the batch size leads to out-of-memory
due to the massive KV cache of shared system prompt. We
also build an advanced baseline using vLLM’s paged atten-
tion to support sharing the prompt with a static prefix. Both
Parrot and vLLM use the paged memory management [25],
thus both systems can hold the same number of tokens in
an LLM engine (A100, LLaMA 7B). Parrot further achieves
1.1×∼ 1.7× speedup over vLLM because of the better GPU
kernel. Although vLLM can save extra memory usage of the
shared prompt, its GPU kernel still has to reload the tokens
repeatedly. Given that the token generation of LLMs is bound
by memory bandwidth, such redundant memory loading slows
down the end-to-end inference. By combining FlashAtten-
tion and PagedAttention, Parrot only needs to load the tokens
of the shared prompt once, when computing the attention
from the diverged tokens of different users. Parrot’s speedup
of shared prompt mainly comes from the token generation,
thus the longer output length leads to higher improvement.
Figure 16 shows Parrot achieves 1.58× and 1.84× speedup
compared to vLLM using paged attention, showing 40 ms
per-output-token latency at a batch size of 32.

In Figure 17, we further evaluated the serving of multiple
GPTs applications [42], each of which has multiple users, in
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Figure 16: Latency per output token of Bing Copilot.
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Figure 17: Serving multiple GPTs applications.

a multi-GPU cluster. Four A6000 (48GB) GPUs are deployed
with four LLM engines (LLaMA 7B). We select four GPTs
applications in four popular categories including productivity,
programming, image generation, and data analysis. The LLM
requests are randomly generated from the four categories with
equal probability. LLM requests arrive at fixed rates following
Poisson distribution. Parrot can sustain 12× higher request
rates compared to the baseline without sharing. Because the
baseline’s scheduling policy is not aware of the shared prompt
within each LLM application, the requests are mixed in all
LLM engines making it impossible to reuse the common
prompt prefix. Parrot’s scheduling policy co-locates LLM
requests of the same applications to maximize the sharing op-
portunity, achieving both lower inference latency and higher
cluster throughput. After turning off such affinity scheduling
policy, Parrot only exhibits 3× higher request rates compared
to the baseline, because the requests with shared prefix are
often dispatched to different engines thus reduced the sharing
opportunities. Moreover, Parrot’s attention kernel helps Parrot
to achieve 2.4× higher rate compared to Parrot using vLLM’s
PagedAttention, by avoiding the redundant memory loading
for attention of shared prompts.

8.4 Multi-agent Applications

We assess the performance of multi-agent systems utiliz-
ing MetaGPT [22] within Parrot. A workflow is constructed
with three distinct roles. Initially, the Architect outlines the
project’s file structures and specifies APIs within each file
for a given task. Subsequently, multiple Coders undertake the
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Figure 18: The latency and memory usage for multi-agent
programming, with varying number of files to program.

project implementation, with each focusing on a specific file.
Following the integration of the code from all files, several
Reviewers engage in the process, each examining and com-
menting on a single file. The Coders then revise their code
based on these comments. This review-and-revision cycle
is iterated three times to produce the final code. Figure 18
illustrates the latency and memory consumption of Parrot
compared to baseline systems on one A100 running LLaMA
13B. Parrot achieves a speedup of up to 11.7× compared
with the latency-centric baseline. The primary improvement
is attributed to Parrot’s capability to deduct the performance
objectives for LLM requests based on the end-to-end perfor-
mance criteria. For this specific multi-agent scenario, the goal
is to minimize the time taken to deliver the final code. Parrot
identifies multiple task groups within the parallel processes of
coding, reviewing, and revising, facilitating larger batch sizes
to enhance throughput and reduce the completion time of task
groups. We also contrast Parrot with an throughput-centric
baseline that uses larger batch on purpose to optimize cluster
throughput, which also shows higher concurrency and better
completion time than the latency-centric baseline.

Even when compared to the throughput-centric baseline,
Parrot demonstrates superiority, being faster by up to 2.45×.
This enhancement mainly stems from Parrot’s ability to
decrease redundancy through its prompt structure analysis,
which contributes a 2.35× acceleration. Given the interactive
nature of the roles in MetaGPT, there is considerable overlap
in the context among different roles, which Parrot capitalizes
on by sharing this common context as a prompt prefix. The
static prefix sharing mechanism from vLLM does not work
in this dynamic scenario. Without a grasp of the prompt’s
structure, it cannot identify dynamically generated Semantic
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Variables that could also be shared during runtime. As de-
picted in Figure 18b, Parrot without this sharing capability
would hit the GPU memory ceiling. Additionally, Parrot’s spe-
cialized GPU kernel for processing the shared prefix achieves
a further 1.2× speedup when there are 16 files, compared to
using vLLM’s PagedAttention, due to the reduced memory
transactions.

8.5 Scheduling of Mixed Workloads

To assess the performance of Parrot on a multi-GPU setup, we
configure a cluster with four A6000 (48GB) GPUs, each host-
ing a separate LLM engine (LLaMA 7B), resulting in a total
of four LLM engines. We emulate a real-world scenario where
LLM services encounter a variety of demands by injecting a
mix of requests from chat applications at a rate of 1 req/s and
from data analytic tasks (i.e., map-reduce applications) previ-
ously analyzed in §8.2. Requests from the chat applications
are characterized by their need for low latency, whereas the
map-reduce applications prioritize high throughput, creating a
challenge when they are concurrently processed by the same
LLM engine. We benchmark Parrot against two reference
implementations: one tailored for latency, limiting engine ca-
pacity to reduce decoding time, and another for throughput,
utilizing full engine capacity to maximize GPU utilization.

The results depicted in Figure 19 demonstrate that Par-
rot attains a 5.5× and 1.23× improvement in normalized
latency (measured as request latency per number of output
tokens) [25, 56] for chat applications in comparison to the
latency-focused and throughput-focused baselines, respec-
tively. In terms of token generation speed for chat applications,
Parrot delivers performance on par with the latency-centric
baseline and outperforms the throughput-centric baseline by
1.72×. For map-reduce applications, Parrot reaches a 3.7×
speedup over the latency-centric baseline and is 1.05× more
efficient than the throughput-centric baseline. Parrot excels
by providing both low latency for chat applications and high
throughput for map-reduce applications. It mitigates the con-
tention between chat and map-reduce workloads by intelli-
gently scheduling them on separate engines. These findings
underscore the significance of specialized handling for diverse
requests to enhance the overall performance of LLM services.

9 Related Works

Deep Learning Serving Systems. The field of model serv-
ing has seen a surge of research activity in recent years,
with many systems developed to address the different chal-
lenges of deep learning model deployment. The systems in-
clude Clipper [10], TensorFlow Serving [39], Clockwork [19],
REEF [20], AlpaServe [28], which have explored many as-
pects including batching, caching, placement, scheduling,
model parallelism for the serving of single or multiple models.
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Figure 19: The mixture of chat and map-reduce applications.

These systems were proposed for serving general deep learn-
ing models, which have less consideration about the unique
requirements of large language models, e.g., autoregressive
decoding. Orca [56] proposed a fine-grained scheduling mech-
anism that can batch multiple LLM requests at the iteration
level, which is also known as continuous batching. vLLM
proposes PagedAttention [25] allows the batching of LLM
requests with different lengths using non-contiguous memory,
increasing memory utilization. These systems for LLM serv-
ing still treat LLM requests separately, missing the opportuni-
ties to understand the interconnections within an application
and exploit the commonality of different requests. Parrot is
orthogonal to them. With more application-level knowledge
exposed by Semantic Variables, Parrot can do data flow analy-
sis on LLM requests, which enables a brand new optimization
space with the final goal of optimizing the end-to-end perfor-
mance of applications, rather than individual requests.

LLM Orchestrator Frameworks. LLM orchestration
frameworks help developers create and manage applications
powered by LLMs. They simplify the process of prompt de-
sign, and orchestration of multiple LLM requests, which en-
able developers to interact with LLMs easily. LangChain [8]
is a Python framework that provides many workflow patterns,
e.g., chain, map-reduce so that developers can easily cus-
tomize their own LLM applications. Semantic Kernel [36]
introduces Planners are semantic agents that can automati-
cally generate plans based on the needs of the users. Prompt-
Flow [35] supports chains of native and semantic functions
and visualizes them as a graph. LlamaIndex [29] allows de-
velopers to use natural language queries to retrieve relevant
documents. Parrot is orthogonal to these frameworks and can
be easily integrated with these frameworks to support Parrot’s
APIs with Semantic Variable abstraction, as discussed in §6.

DAG-aware System Optimizations. Dependency graphs
or DAGs (Directed Acyclic Graphs) widely exist in many
kinds of systems, and many optimizations have been proposed
to optimize the systems by exploiting the DAG information.
Tez [4], Dryad [23], and Graphene [16] use the task depen-
dency to optimize the scheduling and packing of parallel data
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analytic workloads. SONIC [30], Caerus [59], and Orion [31]
optimize serverless functions from the aspects of communica-
tion, latency, and cost. Parrot learns from the previous system
works and realizes the importance of correlations of LLM
requests to optimize the end-to-end performance of LLM ap-
plications. This motivates Parrot to build APIs for exposing
such dependency information. Moreover, it is unique to LLM
applications to understand the prompt structure in addition to
request-level dependency, which is necessary for communica-
tion and identifying commonality across LLM requests. This
motivates us to propose the Semantic Variable abstraction,
instead of just using a DAG of requests.

10 Conclusion

This paper proposes Parrot that treats LLM applications as
first-class citizens and targets to optimize the end-to-end per-
formance of LLM applications, instead of only optimizing
individual LLM requests. We propose Semantic Variable as
the key abstraction that exposes the dependency and common-
ality of LLM requests, enabling a new optimization space.
Our evaluation shows Parrot can optimize LLM-based ap-
plications by up to 11.7×. We envision this new angle of
efficiency improvement of LLM applications brings a broad
future direction to study other scheduling features like the
fairness of end-to-end performance of LLM applications.
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Abstract
Minimizing monetary cost and maximizing the goodput of
inference serving systems are increasingly important with the
ever-increasing popularity of deep learning models. While it is
desirable to spatially multiplex GPU resources to improve uti-
lization, existing techniques suffer from inter-model interfer-
ence, which prevents them from achieving both high compu-
tation and memory utilizations. We present USHER, a system
that maximizes resource utilization in a holistic fashion while
being interference-aware. USHER consists of three key com-
ponents: 1) a cost-efficient and fast GPU kernel-based model
resource requirement estimator, 2) a lightweight heuristic-
based interference-aware resource utilization-maximizing
scheduler that decides the batch size, model replication degree,
and model placement to minimize monetary cost while satis-
fying latency SLOs or maximize the goodput, and 3) a novel
operator graph merger to merge multiple models to minimize
interference in GPU cache. Large-scale experiments using
production workloads show that USHER achieves up to 2.6×
higher goodput and 3.5× better cost-efficiency compared to
existing methods, while scaling to thousands of GPUs.

1 INTRODUCTION

Driven by the breakthroughs achieved by Deep Learning (DL)
models in a wide variety of domains [1–3], machine learn-
ing (ML) inference has emerged as the dominant workload
that underpins many real-world applications. Our quest for
improving the capability and accuracy of DL models has led
to models growing in size rapidly [4]. While the success of
DL models has been celebrated, it has come with a significant
monetary cost: the increase in model sizes and popularity of
ML model-based applications demand the use of expensive
and power-hungry GPUs, leading to ML inference accounting
for more than 90% of production costs [5]. Forecasts paint
a gloomy picture: annual data center infrastructure and op-
erating costs are projected to increase to over $76 billion by
2028 due to the rapid increase of the number of GPUs in the
data centers, which is more than twice the estimated annual
operating cost of Amazon AWS [6].

The exorbitant operating cost requirement has led to several
systems innovations; state-of-the-art ML inference systems

incorporate several optimizations that increase the utilization
of GPUs. The fundamental technique to improve the utiliza-
tion of a GPU is to use batching, where multiple inputs are
combined and passed together through the model. Batching
inputs together results in an increase in the compute require-
ments and thus improves the utilization of the GPU, albeit
at the expense of increased latency. Unfortunately, batching
is insufficient to optimally utilize a GPU because it is a sin-
gle knob that influences two GPU resources: memory and
compute, and thus is unable to saturate both resources at the
same time. Moreover, since real-world batch sizes are not
continuous in nature, there is no fine-grained control over the
resources—while one batch size may severely underutilize
the GPU in terms of memory or compute, the next possible
batch size may not fit in the given resources or violate the
strict latency Service-Level-Objective (SLO) (§2.1). When
combined with the fact that request rates vary over time [3],
real-world deployments have reported low GPU utilization
averaging between 25% to below 50%, which has become
a thorny pain point in reducing the total operational cost of
large GPU clusters [7–10].

A natural solution to this problem is to place and simul-
taneously execute multiple models in a GPU. Unfortunately,
previous research works have shown that this could result
in interference between models due to resource contention
which could introduce significant increase in inference la-
tency, thus leading to SLO violation [11, 12]. An alternative
is to leverage virtualization technologies that can divide the
GPU resources; sadly GPU virtualization technologies avail-
able today are rudimentary and inflexible at best. NVIDIA
Multi-Process Service (MPS) [13] facilitates simultaneous
execution of multiple spatially multiplexed models by logi-
cally partitioning the computation space of the GPU among
the models. Several scheduling systems [4, 14] have been
proposed that leverage MPS and decide how much GPU com-
putation space to allocate to each model to satisfy the latency
SLO of the model requests based on offline profiling and
place the models to the GPUs in such a manner that maxi-
mizes the utilization of the computation space of the GPUs.
However, these works solely focus on compute utilization
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and largely overlook the maximization of memory space uti-
lization. NVIDIA multi-instance GPU (MIG) addresses the
problem of inter-model interference by physically partition-
ing the computation and memory spaces of the GPU [15].
However, MIG only provides rigid partitioning, leading to
GPU overprovisioning, and hence underutilization, and is
only available in the latest generation of GPUs.

In this paper, we propose USHER, an end-to-end inference
serving system that optimizes both GPU computation and
memory utilizations by spatially multiplexing its resources in
an interference-aware fashion. We design USHER from first-
principles, based on a systematic analysis of performance and
interference characteristics of the state-of-the-art solutions on
real-world data traces (§2). Our analysis reveals several key
observations. First, we may need to divide the workload of a
model into multiple GPUs even when one GPU is enough to
complete the workload within the latency SLO. Also, we need
to perform this workload division holistically for all models.
Second, not only the model parameter size, but also the intri-
cate relationship between batch size, batch size-dependent re-
source requirements, and SLO contributes to making a model
computation-heavy or memory-heavy. USHER leverages such
observations in designing its three key components.

To accurately estimate the computation and memory re-
quirements of a new model without incurring the prohibitive
cost of offline profiling, USHER proposes a novel low-level
GPU kernel analysis-based approach that first estimates which
GPU kernels of the model will be executed concurrently and
then sums up the resource requirements of those kernels. Fi-
nally, it takes the maximum sum across all sets of concurrent
kernels as the highest resource requirement of the model
(§3.2).

Based on the estimation, USHER needs to decide on the
placement of each model that maximizes resource utiliza-
tion without interference in both computation and memory
spaces. Towards this, USHER incorporates a novel variant
of a multi-dimensional bin packing scheduler [16–20]. To
address the exponential complexity of holistic workload di-
vision, the scheduler first creates moderate-sized groups of
models to maximize the probability of spatially multiplex-
ing computation-heavy models with memory-heavy models
within a group. Then, the scheduler decides the optimal work-
load division, batch size, and GPU placement decisions holis-
tically for all models within a group by a heuristic algorithm
(§3.3).

Finally, to minimize the cache interference among multi-
ple spatially multiplexed models, USHER proposes a novel
method that merges the computation graphs of multiple DL
models to maximize the usage of GPU cache contents. Ex-
isting works [21–23] on computation graph merging reduce
memory requirements by sharing weights across multiple
models, which cannot maximize GPU cache usage. To this
end, USHER merges the graphs in a manner that when the
weight submatrix that is similar across different models is

present in the GPU cache, the matrix multiplications of the
different models associated with the submatrix are performed
at the same time (§3.4).

We implemented USHER on Tensorflow (§4) and evalu-
ated it on a wide variety of models and workloads using
both real testbed and simulations. Our evaluation shows that
USHER achieves up to 2.6× higher goodput and 3.5× bet-
ter cost-efficiency against Shepherd [3], GPUlet [14], and
AlpaServe [4], three representative state-of-the-art baselines
(§5).

Overall, we make the following contributions in this paper:

1. We systematically analyze the underutilization of resources
and inter-model interference in the state-of-the-art infer-
ence serving systems.

2. We propose USHER, a system that spatially multiplexes the
inference serving of multiple DL models in an interference-
aware and resource utilization-maximizing manner.

3. We evaluate USHER against the state-of-the-art baselines
and show that it significantly outperforms them.

Table 1: DL models used in experiments.
Task

& Domain Model Name Number of
Parameters

Latency
SLO Dataset

Object detection
(CNN-based

vision models)

YOLO-v3 [24] 8.8M 197ms
COCO [25]R-CNN [26] 42M 284ms

MobileNetSSD-v2 [27] 15M 93ms

Object recognition
(CNN-based

vision models)

ResNet-50 [28] 24M 108ms

ImageNet [29]

ResNet-101 [28] 44M 198ms

ResNeXt-50 [30] 25M 116ms

ResNeXt-101 [30] 89M 407ms

SqueezeNet [31] 0.42M 14ms

ShuffleNet-v2 [32] 2M 40ms

MobileNet-v2 [33] 3.4M 64ms

DenseNet-121 [34] 7.6M 202ms

DenseNet-201 [34] 14.1M 405ms

Inception-ResNet-v2 [35] 56M 439ms

Inception-v3 [36] 25M 116ms

Inception-v4 [35] 43M 204ms

EfficientNet-B7 [37] 66M 217ms

Language translation
(Transformer-based

language model)

GNMT
[38] 278M 66ms

WMT
2019 [39]

Text classification
(Transformer-based

language model)

BERT
[40] 110M 35ms

IMDB
Movie

Review [41]

Text generation
(Transformer-based
language models)

GPT-2 [42] 1.5B 140ms WikiText [43]
Llama-2 [44]
(Large model) 13B 834ms

2 EXPERIMENTAL ANALYSIS

We use Cuti and Muti to denote GPU computation and mem-
ory utilization, respectively, and use Creq and Mreq to denote
their requirement from a model. Creq (or Mreq) of a model
is the highest percentage of the total computation (or mem-
ory) space of a GPU consumed by the model at any point
during its execution. We further use Rreq to denote the sum
of Mreq and Creq. We use C-heavy and M-heavy to denote
computation-heavy and memory-heavy, respectively. We use
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Figure 1: Performance of existing systems.
GPU# to denote the total number of GPUs required to satisfy
the SLOs, and use model# to denote the number of models in
a GPU. We use C-space and M-space to denote the available
capacity of a GPU in computation and memory, respectively.

As [3, 14], we conducted analytical experiments using a
mix of convolutional neural network (CNN) and Transformer
models, which are typically the most widely used DL models
in production deployments [3]. The 20 models used in our
experiments are shown in Table 1. We got the trained models
from HuggingFace repository [45]. The inference requests
are also taken from the datasets. As [4, 14], the SLO of a
model is taken as double the average inference latency of a
single request in a Nvidia V100 GPU. As [3], the experiments
were conducted on a GPU cluster formed by 12 Amazon
EC2 servers of type p3.2xlarge. Each server has one Nvidia
V100 GPU with 5760 computation cores, 16 GB GPU mem-
ory, one 2.3 GHz processor with 8 CPU cores, and 61 GB
host memory. For the large model Llama-2, we utilized the
DeepSpeed library [46] to partition the model into multiple
partitions, allowing each partition to be loaded onto a GPU.
Throughout the remainder of the paper, when referring to a
model, it denotes the entire model for small models and a
model partition for large models. Also, multiplexing refers to
spatial multiplexing. As [3, 4], we used the Microsoft Azure
Function trace 2019 [47] for the inference request rates and
assigned the 46,000 function streams from the trace to the 20
models in a round-robin manner.

2.1 Performance of Existing Systems
We used Shepherd [3] to represent systems that do not allow
spatial multiplexing and use GPUlet [14] and AlpaServe [4] to
represent systems that allow spatial multiplexing. They aim to
maximize GPU computation utilization and goodput. Good-
put is defined as the number of inference requests completed
within their latency SLOs per unit time.

Fig. 1 shows the average Cuti and Muti of each GPU. Shep-
herd achieves 41%-97% and 51%-97% Cuti and Muti, respec-
tively. Though Shepherd uses batching to increase utilization
(Ruti), it also increases the inference latency and memory
requirement, which may become a bottleneck and limit the
Cuti. GPUlet and AlpaServe increase the Cuti and Muti to
55%-97% and 54%-99%, respectively, due to their spatial mul-
tiplexing. However, there is still room for improvement. Also,

Shepherd, GPUlet, and AlpaServe produce 14.2%-52%, 7%-
40.1%, and 5.3%-44.9% |Cuti−Muti| values, respectively.
This is because the Creq and Mreq of a model are not necessar-
ily correlated and hence, maximizing Cuti does not necessarily
maximize Muti. Next, to study interference among models,
we measured the goodput of each model with and without mul-
tiplexing in GPUlet and AlpaServe, and calculated their ratios.

Figure 2: Impact of inter-model
interference on goodput.

Fig. 2 shows the CDF
of models versus the ra-
tio. We see that 87%
and 100% of the mod-
els have a ratio ≤
0.55 in GPUlet and
AlpaServe, respectively,
meaning their goodputs
are decreased by almost
half due to the interfer-
ence. GPUlet tries not to place the models in one GPU if their
interference estimated by a regressor is high. However, it does
not capture the interference among three or more models, and
also does not address the cache interference problem.

Observation 1. The existing inference serving systems
cannot maximize Cuti or Muti, and their model multi-
plexing significantly reduces the goodput due to model
interference. In addition, maximizing Cuti does not
necessarily maximize Muti.

2.2 Opportunity of Workload Division
By equally dividing the workload (i.e., number of incoming
requests per unit time) of a model into multiple GPUs, we
essentially replicate the whole model in those GPUs. We use
replication degree (RD) to denote the number of replicas of a
model. In the example in Fig. 3a, models M1, M2, and M3
have 70%, 65%, and 40% Mreq (with 10%, 5%, and 10% for
parameters, and the rest for intermediate data), respectively, to
meet their SLOs with BS (batch size) = 8. Hence, the average
Muti equals 70%+65%+40%

3 = 58.33%. Though the three GPUs
have 30%, 35%, and 60% of the GPU memory unused, they
are not enough to host any other model. Now, due to the strict
latency SLO requirement, it is not possible to increase the BS
of any model any further to increase the memory utilization
since increasing the BS also increases the per-batch inference
latency. Reducing the BS of M1 by half essentially conducts a
workload division and lowers the intermediate data amount by
half in each GPU where M1 is hosted, resulting in 40% Mreq
in such a GPU. Fig. 3b shows a multiplexing schedule. The
total number of GPUs (GPU#) is still 3 with 61.66% average
Muti. Fig. 3c shows another multiplexing schedule, which
performs workload division also for M2 and M3, and results in
2 GPU# and 100% Muti. This example shows that to increase
Ruti in multiplexing, we may need to divide the workload
to more GPUs than the minimum required and we need to
decide the optimal workload division schedule holistically
(instead of independently) for all models.
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Figure 3: Performing workload division holistically for all mod-
els increases resource utilization.

(a) Resource utilization of each
GPU by workload divison.

(b) Number of spatially multi-
plexed models in each GPU using
workload division.

Figure 4: Effectiveness of holistic workload division.

We then experimented to test the impact of workload di-
vision. We first used Shepherd to decide the BS (bs

i ) and the
minimum RD (rd

i ) of each model i to complete its workload
within the SLO. Then, for each model i independently, we
created 2rd

i replicas of each model with BS= bs
i

2 and placed
them to randomly selected GPUs with enough available C-
spaces and M-spaces to host the model replicas. In our next
experiment, to perform holistic workload division, we created
all possible configurations, i.e., {(BS, RD) for each model
i within range [bs

i ,
bs

i
2 ] and [rd

i ,2rd
i ]}. Then, for each config-

uration, we placed the model replicas to randomly selected
GPUs having enough resources. Finally, we chose the best
configuration that resulted in the lowest GPU#. Fig. 4 shows
the average Cuti and Muti, and model# in each GPU for both
experiments. Independent workload division increases the
average Cuti and Muti by 3.5% and 3.8%, respectively, com-
pared to Shepherd shown in Fig. 1 and the GPU# is decreased
from 12 to 11. The holistic workload division further increases
the average Cuti and Muti by 4.7% and 5.1%, respectively,
leading to another decrease of GPU# by 1, even with a simple
strategy of random GPU placement.

Observation 2. In spatial multiplexing-based infer-
ence serving, unlike existing systems, we may need to
divide the workload of a model even when one GPU is
enough to complete the workload within SLO in order
to increase the overall resource utilization.

Observation 3. Optimal workload division should not
be decided independently for each model. Instead, a
holistic approach that considers all models simultane-
ously is essential.

2.3 Study on C-heavy and M-heavy Models

In this experiment, we did the same holistic workload divi-
sion experiment described above, except that, for each con-
figuration, we first ordered the models in descending order
of Creq+Mreq and followed this order of models to place the
model replicas to randomly selected GPUs with enough spare
resources. Fig. 5 shows the results. The average Cuti and
Muti increase by 5.3% and 4.9%, respectively, compared to
the holistic approach in Fig. 4a, leading to a further decrease
of GPU# by 1. Also, the average model# in a GPU increases
by 0.24 compared to the holistic approach in Fig. 4b. Due
to the ordering of the models, less spare resources remain in
the GPUs after the model placement, leading to less resource
fragmentation and better utilization.

(a) Resource utilization of each
GPU by sorting the models accord-
ing to total resource requirements.

(b) Number of spatially multi-
plexed models in each GPU using
the sorting approach.

Figure 5: Considering a model’s total resource requirement in
model replica placement.

The general notion assumes large models have high Creq
and Mreq, while small models have low Creq and Mreq. How-
ever, this distinction overlooks the impact of BS in inference
serving. Increasing BS may boost resource use but risks la-
tency violations and memory overflow. This highlights the
delicate balance of Cuti and Muti in workload scheduling.

For example, when we executed LlaMA-2 (with 13 bil-
lion parameters) with BS=4 in a Nvidia H100 GPU, it takes
up almost all GPU memory, but has 45% Cuti unused. In-
creasing BS any further overflows the memory. Hence, it is
M-heavy instead of C-heavy, despite being a large model. On
the other hand, MobileNetV2 (only 3.4 million parameters)
with BS=128 reaches up to 93% Cuti but has 30% Muti. In-
creasing BS any further violates its 64ms SLO. Hence, it is a
C-heavy model instead of M-heavy model.

Fig. 6a shows the CDF of models versus the ratio
Creq/Mreq of a model. We see that 22% of the models
have ratios ≤0.75, indicating they are M-heavy. Also, 28% of
the models have ratios in (1.35,1.65], indicating they are C-
heavy. Llama-2 is an M-heavy model (i.e., Mreq/Creq≥1.2).
Among the other small models, 39% are M-heavy, 2% have
comparable Creq and Mreq, and the rest are C-heavy (i.e.,
Creq/Mreq≥1.2).
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(a) CDF of models vs. Creq/Mreq. (b) Resource utilization by multiplexing C-
heavy and M-heavy models.

(c) Model# by multiplexing C-heavy and
M-heavy models.

Figure 6: Computation-heavy and memory-heavy models.

Figure 7: Spatially multiplexing a computation-heavy model
with a memory-heavy model increases resource utilization.

Observation 4. Unlike common belief, model param-
eter size alone cannot dictate whether a model is C-
heavy or M-heavy. Even a small model can surpass a
larger one in Creq, driven by the intricate relationship
between BS, BS-dependent resource needs, and SLO.

We next investigate whether multiplexing a C-heavy model
with an M-heavy model improves Ruti. Let us consider 4
models M1, M2, M3, and M4 in Fig. 7 with BS=32. Their
Creq are 50%, 20%, 40%, and 40%, and their Mreq are 20%,
20%, 60%, and 60% respectively. Hence, M1 and M2 are
C-heavy and M3 and M4 are M-heavy. First, we multiplex
M1 and M2 in the same GPU as shown in Fig. 7a, which
results in 100% Cuti but 40% Muti. M3 and M4 cannot be
multiplexed due to lack of memory, resulting in 3 GPU#, 60%
average Cuti and 53.33% average Muti. Alternatively, if we
multiplex M1 with M3 and M2 with M4 as shown in Fig. 7b,
it results in 2 GPU#, 90% average Cuti and 80% average Muti.
Hence, multiplexing a C-heavy model with a M-heavy model
maximizes resource utilization.

To experimentally validate this, we did the same experi-
ment described in §2.3, except that we interleave C-heavy
models with M-heavy models in the ordered list. Figs. 6b
and 6c show the results. The average Cuti and Muti increase
by 12.1% and 11.8%, respectively, compared to the holistic

(a) Weight similarity across CNN
models.

(b) Weight similarity across Trans-
former models.

Figure 8: Weight similarity across models.

approach in Fig. 4a, Also, the average model# increases by
0.6 compared to the holistic approach in Fig. 4b, and hence,
GPU# is decreased by 2.

Observation 5. Multiplexing C-heavy model with an
M-heavy model increases both Cuti and Muti of a GPU.

2.4 Models’ Weight Overlapping
Previous studies [48, 49] have indicated that CNN models
have significant weight overlapping (i.e., similar parameter
values) in earlier layers because the first few convolutional lay-
ers function as feature-extractors [48] and are task-agnostic.
Also, to reduce training cost, the task-specific transformer
models are typically trained not from scratch, but from pre-
trained task-agnostic foundation models using transfer learn-
ing. Additionally, for both models, people generally customize
a task-specific pretrained model for their own datasets by fine-
tuning only the last few layers. These indicate the potential
for weight similarity across models. Motivated by these, we
evaluated the weight similarity across models. Specifically,
for each pair of CNN models and Transformer models, we
measured the weight similarity between the two models in
the pair.

Given CNN models A and B, we first find the weight sim-
ilarity between every possible pair of convolutional layers
across the two models. Then, we take the average weight sim-
ilarity of all pairs of layers as the weight similarity between
the two models. To find the weight similarity between layer
i ∈ LA and layer j ∈ LB, where Lx denotes the set of all con-

volutional layers in model x, we calculated 2×|max(W i
A∩W j

B)|
|W i

A|+|W
j

B |
,

where max(W i
A∩W j

B) denotes the longest common submatrix
between weight matrices W i

A and W j
B . We consider two weight

values as the same if their absolute difference is very low (i.e.,
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≤ 10−7). We did the same experiment for the attention layers
of the Transformer models.

Fig. 8 shows the results for randomly chosen 1k CNN
and 1k Transformer models from HuggingFace trained model
repository [45]. For the CNN models, 52% model pairs
have weight similarity within (45%,65%]. For the Trans-
former models, 70% model pairs have weight similarity within
(55%,70%] in between themselves.

Observation 6. There are significant weight overlap-
pings between different CNN models, and also between
different Transformer models.

Figure 9: System overview of USHER.

3 SYSTEM DESIGN OF USHER

3.1 Overview
Observation(O)1 motivates us to propose a new system to
maximize both computation and memory utilizations of GPUs
in an interference-aware manner to minimize the inference
serving cost. We design USHER based on O2-O6.

Given models with request rates and a cluster of GPUs
(that may be heterogeneous), USHER decides the schedule
that includes the configuration (BS,RD), GPU allocation, and
placement of the model replicas of each model. We consider
two scenarios with different goals in this paper: (i) non-fixed
cluster, where USHER aims to minimize the monetary cost
while satisfying the SLOs of all models [12, 14, 50], and (ii)
fixed-cluster, where USHER aims to maximize goodput [3, 4].

USHER has following major methods as shown in Fig. 9.

(1) GPU Kernel based Resource Requirement Estimator
(GK-Estimator)(§3.2). The estimator quickly and cor-
rectly calculates the Creq and Mreq of a model in a GPU
type based on a given configuration.

(2) Interference-Aware Resource-Utilization-Maximizing
Scheduler (IR-Scheduler)(§3.3). Instead of solving an
optimization problem, which has high complexity, USHER
provides a lightweight heuristic to quickly derive the sched-
ule. It first groups the models in a manner that maximizes
the opportunity of multiplexing C-heavy and M-heavy mod-
els within a group. Then, within each group, it chooses the
configuration that results in the placement with the best per-
formance regarding the specific goal (by leveraging O2-5).
The IR-Scheduler ensures each model replica gets its Creq
and Mreq in the GPU where it is placed, thus ensuring there
is no inter-model interference in C-space and M-space.

(3) Operator Graph Merger (OG-Merger)(§3.4). After
deciding the placement, OG-Merger merges as many op-
erator graphs of the models assigned to a GPU as possible
to minimize inter-model interference in the GPU cache.
After the merging, the merged graph is allocated the sum
of the resources allocated to the models (decided by the
IR-Scheduler) whose graphs have been merged. Note that
the IR-Scheduler does not satisfy the cache requirements of
the models, which we found to be almost 100% in the setup
in §2. Hence, satisfying the cache requirement results in un-
derutilization of C-space and M-space. That is why USHER
addresses cache interference separately in OG-Merger.

In USHER, the input to the IR-Scheduler includes the
request rate (i.e., workload) of each model and the types
of GPUs in the system ( 1 ). During decision making, IR-
Scheduler uses GK-Estimator ( 2 ) to estimate Creq and Mreq
given a configuration ( 3 ), and finally outputs the optimal
schedule ( 4 ). Then, OG-Merger merges the models placed
to the same GPU ( 5 ). Then, the system starts serving the
inference requests. As [14, 50], when a model’s workload
changes significantly, i.e., by 0.5k requests/second, (which
may happen after 45s-300s as shown in §5.4), USHER is used
again to adapt to the new workload pattern.

3.2 Kernel-based Resource Requirement Estimator
Offline profiling is a common approach for estimating the
Creq and Mreq of each new model [3,4,12,14,50]. However,
it is costly and time-consuming. To address this challenge, we
propose the GK-Estimator that estimates the resource require-
ment of each model independently by analyzing its low-level
GPU kernels without actually running the model in a GPU.
We use Mreq as an example to explain how GK-Estimator
works. Every model can be treated as a computational graph,
in which a node is an operator and an edge is a tensor (i.e,
multi-dimensional matrix) denoting model input or intermedi-
ate data generated by a model layer. Internally, each operator
execution involves sequentially calling one or more GPU ker-
nel APIs defined in the GPU programming framework (e.g.,
CUDA for Nvidia GPUs, ROCm for AMD GPUs). For each
operator defined in ONNX [51], we found which GPU kernels
are called by an ML framework during the execution of the
operator by using Nvidia Profiling tool [52]. We noticed that
1, 2, 3, and 4 GPU kernels are called for 2%, 8%, 56%, and
34% of the operators, respectively.

The operators of a new model are usually from a pre-known
set of operators [53, 54]. Therefore, GK-Estimator uses a
regression model that quickly computes the memory required
by the intermediate data generated by an operator based on
the sizes of the input tensors and mathematical operations of
the operator. Then, for a sequential DL model, its Mreq is
the sum of the model parameter size and the highest memory
required by an operator. The memory requirement for a model
with parallel branches (e.g., Inception model, illustrated in
Fig. 10a), the Mreq of the intermediate data is the sum of
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(a) Operator-level
computation graph

(b) Kernel-level computation graph

Figure 10: Conversion of an operator-level computation graph
for a CNN to its kernel-level computation graph.

Mreqs of the intermediate data from kernels that are executed
concurrently. Then, as shown in Fig. 10, first, GK-Estimator
converts the operator-level computation graph to a kernel-
level computation graph by replacing each operator with the
sequence of GPU kernels it calls. This sequence is found
offline for each operator in ONNX. Then, it finds each set of
kernels that will be executed concurrently. Next, for each set,
it estimates the Mreq of the intermediate data generated by
each kernel of the set by a regression model (called Mreq-
Regressor) and then sums up the Mreqs of all the kernels in
the set. Finally, it takes the sum of the model parameter size
and the maximum memory requirement from all sets as the
Mreq of the model.

The start time of the first kernel of the model (i.e., the kernel
that directly gets the model input) is 0thms. To identify which
kernels will be executed concurrently, GK-Estimator first finds
the start time of each kernel. It uses another regression model
to estimate the execution time duration of each kernel (called
Time-Regressor). The kernels with a start time difference
of no more than τms (e.g., 0.001ms) are considered to be
potentially running concurrently.

To build Mreq-Regressor and Time-Regressor, we use a
stacked model (a combination of lasso regression, kernel ridge
regression, gradient boost regression, and XGBoost regres-
sion models) for higher accuracy [55]. The inputs to both
the regressors include the following features that impact the
resource requirement and execution time duration of a kernel:
batch size, sizes of the kernel’s parameter weight tensor and
its input intermediate data tensor, the number of floating-point
operations of the kernel, and GPU type. Note that none of
the features depend on the kernels of the other models that
the IR-Scheduler may potentially place to the same GPU.
We trained the regression models offline using all the GPU
kernels for all the operators defined in ONNX. The training
takes 1.3hr in a V100 GPU. We conducted an experiment
and found that this kernel analysis approach achieves 99.98%

accuracy in estimating the Creq and Mreq of the models in
Table 1 with BS 2. We also measured the accuracy of each of
the constituting regression models in the stacked model and
found that they provide 23%-40% less accuracy compared to
the stacked model.

3.3 Interference-aware and Resource Utilization-
maximizing Scheduler

USHER first groups the models such that the models inside a
group are highly probable to be multiplexed in an interference-
aware and resource utilization-maximizing manner. Then,
inside each group, based on O3, USHER decides the GPU
allocation and placement decisions holistically for all models
of the group. Below, we first describe the grouping process
(§3.3.1) and then the scheduling process (§3.3.2).

3.3.1 Model Grouping
Based on O4 and O5, multiplexing a C-heavy model with an
M-heavy model maximizes Ruti. Such multiplexing makes
the Cuti and Muti of a GPU comparable. If a GPU’s C-space
is much lower than its M-space or vice versa, it may not be
able to host an additional model. Based on this, we follow one
principle during multiplexing models. That is, the sum of the
Creqs of the models is nearly equal to the sum of the Mreqs of
the models in the GPU (i.e., ∑i Creqi ≈ ∑i Mreqi). Based on
this, USHER groups the models such that ∑i Creqi ≈∑i Mreqi
for the models in each group.

Before conducting the grouping, USHER first finds the
Creq and Mreq of each model. USHER calculates the average
Rreq across all possible BS and GPU type combinations
using GK-Estiamtor (described in §3.2). For a GPU type,
USHER stops at the BS for which the Creq or Mreq exceeds
the maximum C-space or M-space of the type, respectively.

Next, USHER performs the grouping using a variant of
k-means clustering [56]. The algorithm clusters a set of ele-
ments into nearly equal-sized groups so that the sum of the
distances between elements within each group is minimized,
while the sum of the distances between groups is maximized.

At the beginning, each group consists of a single model.
USHER calculates the distance between every two models as
D = |∑i Creqi−∑i Mreqi|. Then, it uses the k-means algo-
rithm to group the models into several groups, where each
group consists of two models such that D is minimized, i.e.,
∑i Creqi ≈ ∑i Mreqi for each group. Next, considering each
group as an element, USHER executes another pass of the
algorithm. This process merges two groups created by the
previous pass to one and increases the number of models in
each group by two times. As a result, if we decide to have at
most 2p (i.e., 4) models in each group, we need to perform
p passes of the algorithm. Finally, the models are grouped
into several groups and the set of the groups is denoted by
G = {G1,G2, ...,Gn}.
3.3.2 Scheduling: Deciding Configuration and Placement
After grouping the models, for every model in each model
group Gi, IR-Scheduler decides the schedule. Below, we use
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Algorithm 1 Interference-aware and resource utilization-
maximizing scheduler for G.
1: for each Gi ∈G do
2: Generate all possible configurations={(BS, RD) for each

model M ∈ Gi}.
3: for each configuration do:
4: cost, total_goodput = PLACEMENT(configuration)

5: Schedule as per the configuration for which all of the requests are
completed within their latency SLOs, i.e., total_goodput =
total_workload and the cost is minimum.

the non-fixed cluster as an example to present the method
and then extend it for the fixed cluster. Based on O2, work-
load division (i.e., RD>1) may increase the utilization even
when one model replica is enough to complete all of the infer-
ence requests within the latency SLO. During the scheduling,
first, USHER takes all possible configurations, i.e., {(BS, RD)
for each model in the group Gi} (Algorithm 1). For each
configuration, it finds the placement to minimize the cost (Al-
gorithm 2). Finally, USHER chooses the configuration and
placement that result in the minimum cost.

The placement algorithm tries to assign one group of mod-
els Gi to the same GPU set to maximize Cuti and Muti. There-
fore, to assign the models in Gi, the algorithm prioritizes the
GPUs that are already assigned with the models in Gi, and
initializes a new GPU only when no used GPU can host a
model. To avoid resource fragmentation and increase Ruti, it
prioritizes the models Gi that have high Creq and Mreq and
aims to place it to a GPU that leaves the lowest C-space and
M-space after hosting it. Additionally, based on O5, USHER
takes placement decisions alternatively between C-heavy and
M-heavy models. The scheduling algorithm is shown in Al-

Algorithm 2 Placement algorithm for model group Gi.
1: procedure PLACEMENT (configuration)
2: GiGPU ← GPU group for Gi, initially empty
3: for each M ∈ Gi do
4: Calculate its Creq and Mreq in each type of GPU
5: if Creq > maxC or Mreq > maxM (highest-capacity GPU) then
6: return Infeasible_configuration

7: Group the models into C-heavy and M-heavy models
8: Sort two groups in descending order of Creq+Mreq:

{M1,M2, . . . ,Mn} and {M′1,M′2, . . . ,M′m}
9: final_model_list←{(M1,M′1),(M2,M′2), . . . ,(Mn,M′m)}

10: for each M ∈ final_model_list do
11: MODEL_REPLICA_PLACEMENT_WITHIN_GiGPU()
12: MODEL_REPLICA_PLACEMENT_OUTSIDE_GiGPU()
13: for each model replica of M do
14: NEW_LOWEST_COST_GPU_INITIALIZATION()
15: Assign the new GPU to GiGPU .
16: for each M ∈ Gi do
17: goodputM = min (achieved_goodputM , workloadM)
18: total_goodput = ∑MgoodputM
19: return additional costs for initializing new GPUs and

total_goodput for the taken placement decision.

gorithm 1. The algorithm finds the best placement decision
for each possible configuration by calling the PLACEMENT()

algorithm (Lines 1-4). The set of possible values of BS of a
model is: {4, 8, 16, 32, 64, 128}, and the set of possible val-
ues of RD of a model is: {m · cl

M}, m = 1,2, ...,6, where cl
M

is the minimum possible value of RD of model M to satisfy
its SLO. It is calculated as the minimum number of GPUs of
the highest GPU type required to complete all of the model
M’s requests within the SLO considering the highest possible
BS in each GPU. The highest possible BS is taken as the
minimum value between 128 and the BS beyond which its
Mreq exceeds the memory capacity (maxM) of the highest
capacity GPU type. This way, as the maximum possible value
of RD of a model can be as much as 6 times the minimum
possible value, the scheduling algorithm conducts workload
division based on O2.

The placement algorithm is shown in Algorithm 2. USHER
first calculates the Creq and Mreq for each model in each GPU
type according to the configuration given as input using GK-
Estimator (Lines 3-4). Then it further groups the models in
the model group Gi into C-heavy and M-heavy models (Line
7). A model is C-heavy if its average C-req/M-req ≥ 1.2, and
is M-heavy if M-req/C-req ≥ 1.2. Next, USHER sorts each of
the two sub-groups in the descending order of the Creq+Mreq
(Line 8). After that, USHER pairs up each two models from
the two sub-groups to create final_model_list (Line 9).
Finally, USHER inserts the models that are neither C-heavy
nor M-heavy into the list while maintaining the descending
order of Creq+Mreq.

Then, USHER picks up a pair or a model one by one from
the list to be assigned to a GPU. Specifically, USHER calls the
MODEL_REPLICA_PLACEMENT_WITHIN_GiGPU function (Line
11). The function places as many model replicas of M as pos-
sible to the mode’s GPU group (denoted by GiGPU ). The GPU
group of a model group is defined as the group of GPUs that
hosts most of the model replicas of the model group. Basically,
when USHER initializes a new GPU for any model replica
of model group Gi, the new GPU is added to the GPU group
GiGPU . This way, USHER tries to place the model replicas in
the same model group to the GPUs of the same GPU group.
If multiple GPUs are available for a model or a pair, USHER
chooses the one that leaves the lowest C-space+M-space after
hosting it to avoid resource fragmentation.

After that, USHER calls MODEL_REPLICA_PLACEMENT_
OUTSIDE_GiGPU that places as many remaining model
replicas of M as possible to the GPUs of the other
GPU groups (Line 12). Finally, for each model replica
that is not placed to any GPU yet, USHER calls
NEW_LOWEST_COST_GPU_INITIALIZATION that initializes a
new GPU of the GPU type that can host the model or pair with
the minimum cost and assigns the GPU to GiGPU (Lines 13-
15). At last, the placement algorithm returns to the scheduling
algorithm the additional costs for initializing the new GPUs
and the total goodput across all the models (Line 19). As [14],
goodput of a model is taken as the ratio between the batch
size and the expected time (including in-queue wait time) to
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complete a batch. The execution time of a batch is calculated
using the Time-Regressor in §3.2.

For the fixed cluster setup, the modifications are as fol-
lows. First, the maximum value of model replication degree
is capped by the total number of GPUs in the cluster. Second,
in Algorithm 1, USHER schedules as per the configuration for
which the total_goodput is maximum.

3.4 Operator Graph Merging to Minimize Cache Inter-
ference

To minimize interference in GPU cache, among the mod-
els assigned to one GPU, USHER merges as many operator
graphs of the models as possible into a single graph. To per-
form maximal operator graph merging, USHER first groups
the models to sub-groups based on their architectural similar-
ity (i.e., the structure and the constituting operators) (§3.4.1).
Then, for each sub-group, motivated by O6, USHER decides
which operators across multiple graphs to merge based on
their weight similarity (§3.4.2). Finally, during the merging
process, USHER extracts away the largest common weight
submatrix between the operators that need to be merged and
ensures that the matrix multiplications associated with the
submatrix for different inputs of different models are pro-
cessed at the same time, while the submatrix is in the GPU
cache (§3.4.3).

Figure 11: Operator merging in G1 and G2 to maximize GPU
cache usage. Attn-Q refers to the Attention Query operator.

(a) Executing on
W s at the same
time.

(b) Executing the remaining operations us-
ing separate operators.

Figure 12: Creating a new operator GEMM.

3.4.1 Grouping Architectural-Similar Operator Graphs
The models with architectural-similar operator graphs are
more likely to have high similarity in their weights [54]. Based
on this, USHER uses DBSCAN algorithm [57] to group the

models assigned to a GPU based on architectural similar-
ity. Given a set of elements, DBSCAN algorithm can cluster
the elements with very little distance (i.e., 10−7) between
themselves within the same group, without requiring any pre-
determined number of groups or number of elements within
a group. Inside DBSCAN algorithm, USHER uses graph edit
distance [58] to calculate the distance to measure the architec-
tural similarity between two operator graphs. Basically, the
edit distance algorithm finds how many addition/deletion/re-
placement of operators need to be performed to make the two
operator graphs identical. A shorter distance means higher
architectural similarity.

3.4.2 Graph Matching in an Architectural-Similar Group
Among the models in an architectural-similar group. USHER
first randomly takes two models. Then, it generates a bipartite
graph B containing the operators of both models. An edge e
exists between two vertices from the two graphs if and only if
all of the following conditions are satisfied: (i) same type (i.e.,
either convolutional operator or attention operator), (ii) same
starting time (explained in §3.2), (iii) the weight similarity
between the operators (described in §2.4) is no less than ω

(e.g., 40%). It is assigned as the edge weight.
After generating B , USHER finds the maximal weighted

matching using Hungarian algorithm [59] in B , which chooses
a set of independent edges (i.e., that do not share any common
vertex) such that the sum of weights is maximized. The two
endpoint operators of each of the chosen edges are matched
and will be merged (explained in §3.4.2). Then, USHER ran-
domly takes another model from the remaining models and
generates a new bipartite graph B ′ using B and the other
model by repeating the same procedure. This process repeats
until no more models in the group can be merged.

3.4.3 Operator Merging Process
As an example of operator merging, we describe the pro-
cess for two Query operators in the attention layers of two
Transformer models. It is a matrix multiplication operation:
I′1 =W1I1, where I1 is the input and W1 is the Query weight
matrix. Now, we explain how USHER modifies this operation
for operator merging. If I1 and I2, as well as W1 and W2, do
not have the same size, we apply zero padding to make them
the same size.

Fig. 11 shows the overall process of merging two Query
operators of two graphs. USHER creates a Super-Operator to
merge operators, which consists of several individual opera-
tors, each of which performs a specific task as described below.
First, it extracts out the largest common submatrix between
W1 and W2, denoted by AW1,W2 using template matching [60].
It creates a matrix W s, which contains AW1,W2 at the same po-
sition as W1 (or W2), and zeros in other entries. It also creates
another matrix W R

1 , which is the same as W1, except that the
entries associated with AW1,W2 are all zero, and creates ma-
trix W R

2 from W2 similarly. Second, as illustrated in Fig. 12a,
USHER concatenates the inputs I1 and I2 into a matrix as
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Ic = [I1, I2] and creates a new general matrix multiplication
(GEMM) operator that performs W sIc = [W sI1,W sI2]. This
way, the new GEMM operator executes the matrix operations
of the original two operators corresponding to AW1,W2 at the
same time, while W s is still loaded in the GPU cache, thus
maximizing its usage.

Also, as illustrated in Fig. 12b, for each of the original
operators, USHER creates a Query operator to perform the
remaining matrix multiplication operations that are not asso-
ciated with W s: W R

1 I1 and W R
2 I2. Third, I′1 can be calculated

simply as I′1 = W sI1 +W R
1 I1. However, the entries in W sI2

need to be repositioned. This is because AW1,W2 is positioned
in W s according to its position in W1. This repositioned W sI2
would be generated if AW1,W2 were positioned in W s accord-
ing to its position in W2. Finally, after the repositioning, I′2 is
calculated as I′2 =W sI2 +W R

2 I2.
While merging a Super-Operator with another Query op-

erator Oq, USHER merges each Query operator inside the
Super-Operator with Oq.

4 IMPLEMENTATION DETAILS

We developed USHER using Python and the implementation
is available at [61]. We used Tensorflow for the inference
executions of the models, but note that our techniques are
general and can be incorporated on other serving platforms.
After the XLA operator graph optimization [62] is performed
on the operator graph in TensorFlow, we converted it into
the framework-independent ONNX format to ensure USHER
works for other ML frameworks (e.g., PyTorch, MXNet) as
well. We found the GPU kernels called by an ML framework
during the execution of an operator by profiling the oper-
ator using Nvidia Nsight [52] with the print-gpu-trace
option turned on. We used achieved_occupancy and
dram_utilization options in Nsight to measure the Creq
and Mreq of a kernel, respectively. In each GPU, we used
Nvidia MPS [13] to divide the GPU computation resource
among the models based on their requirements. After merg-
ing the operator graphs in ONNX format, we applied the
TVM optimization [63] from Nvidia TensorRT [64] to further
optimize the merged graph and executed the merged graph
as a single CUDA Context in MPS, which was allocated the
sum of CUDA_MPS_ACTIVE_THREAD_PERCENTAGEs assigned
to the models whose operator graphs were merged.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup
Unless otherwise specified, the experiment settings are the
same as those in §2. In addition to the models described
in Table 1, we also used two multi-model applications that
include multiple DL models [2, 50]: video surveillance (SLO:
500ms) [2] and social media (SLO: 750ms) [65]. In addition
to the Microsoft Azure Function trace 2019 (MAF1) with
steady and dense request arrival rates, we also experimented
with MAF trace 2021 (MAF2) with bursty arrival rates [66].

(a) MAF1 (b) MAF2
Figure 13: Goodput comparison of different methods in real
testbed for a fixed cluster.

(a) MAF1 (b) MAF2
Figure 14: GPU computation and memory utilization compari-
son of different methods in real testbed for a fixed cluster.

Testbed. We conducted both real testbed and simulation ex-
periments. The real testbed is a cluster with 6 AWS EC2
p3.8xlarge servers, each of which consists of 4 V100 Nvidia
GPUs and the GPUs are inter-connected via NVLinks. In the
simulation, we increased the number of GPUs up to 6000
to simulate a large enterprise-grade GPU cluster [67]. As
it is prohibitively expensive to actually execute the models
using these many GPUs, we report the result directly from the
scheduler decision, without actually running the models. In
simulation, we experimented with tremendously large work-
loads reaching up to 15M requests/second to simulate the
large workloads in enterprise-grade clusters. We tested for
both fixed and non-fixed cluster setups. We compared USHER
with Shepherd [3], GPUlet [14], and AlpaServe [4].

5.2 Comparison Results
Our key results include: USHER (i) achieves up to 2.6× higher
goodput in a fixed cluster and (ii) requires up to 3.5× lower
cost in a non-fixed cluster.
5.2.1 Fixed Cluster
Fig. 13 shows the average goodput in the real testbed with
varying average workloads (averaged across the total dura-
tion of 2 weeks for a trace). Fig. 14 shows the average Cuti
and Muti per GPU. USHER achieves 1×-2.6× higher good-
put, 22%-24.2% higher Cuti and 38.9%-40.1% higher Muti
compared to Shepherd. This is because USHER performs

(a) MAF1 (b) MAF2
Figure 15: Goodput comparison of different methods in simula-
tion for a fixed cluster.
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(a) MAF1 (b) MAF2
Figure 16: Number of used GPUs in real testbed for a homoge-
neous non-fixed cluster. The maximum number of GPUs was 24.

model multiplexing in each GPU in an interference-aware
manner, whereas Shepherd allows only one model in each
GPU. We observed that the models in each of the following
sets were multiplexed in USHER for at least half the total dura-
tion of the experiment: {YOLO-v3, ResNeXt-101, Inception-
v4, GNMT, BERT}, {ResNet-101, EfficientNet-B7, BERT,
GPT-2}, {SqueezeNet, Llama-2}, and {R-CNN, ShuffleNet-
v2, GNMT, GPT-2}.

USHER achieves 1×-2.2× higher goodput, 19%-23%
higher Cuti and 25.1%-32.2% higher Muti compared to
GPUlet and AlpaServe. GPUlet and AlpaServe only try to
optimize the GPU computation use, while USHER addresses
the interference between models not only in the computation
space but also in the memory and cache spaces. Also, USHER
has several strategies in its IR-scheduler such as multiplexing
C-heavy models with M-heavy models and holistic workload
division to maximize the utilizations of both computation
and memory spaces. USHER performs consistently for both
traces, indicating its resilience to different request arrival pat-
terns. The minimal rescheduling overhead of USHER (i.e.,
0.51s from Table 2) enables it to quickly adapt to the bursty
workload of MAF2. Nonetheless, if the workload exhibits
very frequent burstiness, then the benefits of USHER may be
reduced. However, such extreme workloads are uncommon in
real-world settings [3, 4] (e.g., the production workload illus-
trated in §5.4, where burstiness occurs after every 45s-300s)
and thus the rescheduling overhead of USHER is reasonable
enough to not have any adverse impact on its performance.

Goodput of USHER becomes stable at around 47k reqs/s,
whereas Shepherd, GPUlet, AlpaServe become stable at much
less goodput values. At this point, the method has used up
all the GPU resources in the fixed cluster. Fig. 14 establishes
that merely increasing the workload cannot saturate the GPUs.
This is because it is the batch size that mainly determines the
resource consumption of a model and a system cannot choose
a larger batch size that leads to a latency exceeding the SLO.
To cope up with the increased workload, a system scales out,
i.e., increases the number of used GPUs.

Fig. 15 shows the goodput in simulation with varying num-
ber of V100 GPUs. USHER achieves 1.5×-1.9× higher good-
put compared to the comparison methods due to the same
reasons described above. With the increase in the number of
GPUs, the goodput of USHER increases 1.6×-2.1× faster than
other methods, indicating the higher scalability of USHER.

(a) MAF1 (b) MAF2
Figure 17: GPU computation and memory utilization of different
methods in real testbed for a homogeneous non-fixed cluster.

(a) MAF1 (b) MAF2
Figure 18: Number of used GPUs of different methods in simu-
lation for a homogeneous non-fixed cluster.

5.2.2 Non-fixed Cluster
For the non-fixed cluster, we first considered homogeneous
V100 GPUs. Then, the cost is proportional to the number of
used GPUs. We report the average number of GPUs required
by a method at a second. Next, we considered heterogeneous
GPUs: K80, V100, A100, and H100. The GPU types have
varying costs following AWS on-demand pricing [68].
Homogeneous GPUs. Fig. 16 shows the number of used
GPUs in a homogeneous real testbed to complete all infer-
ence requests within their SLOs. Fig. 17 shows the average
Cuti and Muti per GPU. USHER requires 2.5×-3× fewer
GPUs, and achieves 19.3%-24.4% and 24.9%-40% higher
Cuti and Muti, respectively, compared to Shepherd, GPUlet,
and AlpaServe. As the comparison methods either do not
employ multiplexing or suffer from increased latency due to
inter-model interference, they require more GPUs.

Fig. 18 shows the number of used GPUs in simulation.
USHER uses 1.7×-2.1× fewer GPUs due to the same reasons
explained above. In both real testbed and simulation, with
the increase of the workloads, the increase rate in the number
of GPUs of USHER is slower than other methods especially
when the workload is very high. These results show the cost-
effectiveness of USHER even for large workloads.

(a) MAF1 (b) MAF2
Figure 19: Cost comparison in real testbed for a heterogeneous
non-fixed cluster. The maximum cost/hr was 105$.

Heterogeneous GPUs. Fig. 19 shows the cost per hour with
varying workloads in a heterogeneous real testbed. Fig. 20
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(a) MAF1 (b) MAF2
Figure 20: GPU computation and memory utilization compari-
son in real testbed for a heterogeneous non-fixed cluster.

(a) MAF1 (b) MAF2
Figure 21: Cost comparison of different methods in simulation
for a heterogeneous non-fixed cluster.
shows the average Cuti and Muti per GPU. USHER requires
2.8×-3.5× lower cost, and achieves 19%-24.1% and 25.2%-
40.3% higher Cuti and Muti, respectively, due to the same
reasons explained above. USHER performs slightly better for
heterogeneous GPUs compared to homogeneous GPUs as
USHER can choose the optimal GPUs from varying GPU
types depending on their cost-performance trade-offs.

(a) MAF1 (b) MAF2
Figure 22: Goodput comparison with varying SLO values in real
testbed for a fixed cluster. S denotes the default SLO (Table 1).

Fig. 21 shows the cost per hour in simulation. USHER
incurs 1.9×-2.2× lower cost for the same reasons described
above. With the increase in workload, its cost increases
slower than other methods, especially when the workload is
very high.
Overheads. Table 2 presents the average time overhead and
average impact on accuracy of different methods. USHER’s
grouping of models takes only 0.1s and it needs to be up-
dated only when there is addition or deletion of models in
the system. The decision-making times of the scheduling in
different methods are comparable. This is because all the
methods employ time-efficient heuristics to accelerate the
scheduling process in order to excel in autoscalability when
workload changes (§5.4). USHER’s operator graph merging
takes slightly more time than its scheduling. Hence, after the
scheduling, the requests are executed using individual model
graphs. After the graphs are merged, the requests are then
executed on the merged graph. For the models whose GPU

(a) MAF1 (b) MAF2
Figure 23: Number of used GPUs with varying SLO values in
real testbed for a homogeneous non-fixed cluster. The maximum
number of GPUs was 24. S denotes the default SLO (Table 1).

Table 2: Overheads of the methods.
Methods Grouping

of models
Scheduling algorithm Operator

graph merging based
on weight similarity

Impact on model
accuracy due to operator

graph merging
Decision
making

Model
loading

USHER 0.1s 0.51s 0.63s 2.3s -0.0003%

Shepherd 0 0.5s 0.62s 0 0

GPUlet 0 0.46s 0.64s 0 0

AlpaServe 0 0.63s 0.65s 0 0

placement has changed during scheduling, each method takes
0.69s-0.72s to load the models from host memory to GPU
memory. Table 3 presents the average model loading time of
USHER for each model shown in Table 1. Rescheduling does
not happen so frequently [3,4], e.g., after every 45s-300s from
Fig. 24. As a result, considering the scheduling time required
in USHER, there is enough time left before another schedul-
ing occurs to realize the benefits of USHER. The accuracy
loss is only 0.0003% per request batch of a model due to the
operator graph merging. This is because, while finding the
longest common submatrix in the merging process, USHER
takes two weight values as the same only when their absolute
difference is very low (i.e., ≤ 10−7) (§2.4). Table 3 shows
the average accuracy loss per request batch for each model in
USHER.

5.3 Performance on Varying SLOs
5.3.1 Fixed Cluster
Fig. 22 shows the goodput with varying SLO values in the
same real testbed setup of Fig. 13 with workload=256k re-
qs/sec. In the figure, S denotes the default SLO of each model
as defined in §2, and m f S denotes that the SLO is multiplied
by m f ∈ {0.4,0.6,0.8,1,1.2,1.4}. USHER achieves 2.2×-
2.7× higher goodput than the comparison methods for the
same reason described in §5.2.1. As SLO decreases, goodput
also decreases for each method. This is because, in the fixed
GPU resources of the cluster, more requests miss their SLO
deadlines as the SLO becomes stricter. The result shows that
USHER retains its higher goodput compared to the existing
methods even when the SLO is ultra-low.

5.3.2 Non-fixed Cluster
Fig. 23 shows the number of used GPUs with varying SLO
values in the same real testbed setup of Fig. 16 to complete
all inference requests within their SLOs with workload=8k
reqs/sec. The result shows that USHER achieves 3.2×-4.3×
fewer GPUs than the comparison methods for the same reason
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Table 3: Model loading and accuracy overheads in USHER.

Model name Model
loading

Impact on model
accuracy due to operator

graph merging

YOLO-v3 0.44s -0.0002%

R-CNN 0.57s -0.0003%

MobileNetSSD-v2 0.495s -0.0003%

ResNet-50 0.51s -0.0002%

ResNet-101 0.586s -0.0004%

ResNeXt-50 0.531s -0.0004%

ResNeXt-101 0.7s -0.0003%

SqueezeNet 0.31s -0.0001%

ShuffleNet-v2 0.39s -0.0002%

MobileNet-v2 0.395s -0.0002%

DenseNet-121 0.4s -0.0002%

DenseNet-201 0.49s -0.0002%

Inception-ResNet-v2 0.6s -0.0002%

Inception-v3 0.53s -0.0003%

Inception-v4 0.58s -0.0003%

EfficientNet-B7 0.64s -0.0004%

GNMT 0.89s -0.0002%

BERT 0.78s -0.0004%

GPT-2 1.18s -0.0004%

Llama-2 1.59s -0.0003%

described in §5.2.2. As SLO decreases, the number of used
GPUs increases for each method. This is because each method
needs to create more replicas of a model to execute more
requests in parallel as the SLO becomes stricter. Otherwise,
the requests would have to wait longer for the required GPU
resource, leading to SLO violation. The result shows that
USHER retains its superior cost-efficiency compared to the
existing methods even when the SLO is very strict.

5.4 Microanalysis on Autoscalability
To better evaluate the system autoscalability during reschedul-
ing, we measured the number of used GPUs and the in-queue
wait time of a request at each second during a randomly cho-
sen window of 1000 seconds. We used the MAF2 trace in the

Figure 24: Microanalysis on autoscalability.

homogeneous non-fixed cluster real testbed. Fig. 24 shows the

Table 4: Performance of USHER’s GK-Estimator.

Methods Accuracy of computation
requirement calculation

Accuracy of memory
requirement calculation Cost Time

USHER’s
GK-Estimator 99.98% 99.98% 0 31.6ms

Profiling 100% 100% 42.7$ 4.8hr

(a) Goodput (b) GPU utilization
Figure 25: Performance of different variants of USHER.

results. Each method increases the number of GPUs when the
workload surges up and decreases it when the workload surges
down. USHER requires 1.6×-3.9× fewer GPUs compared to
the comparison methods, due to its interference-minimizing
and resource utilization-maximizing design. The in-queue
wait time is almost the same for all the methods and also
varies by only 0.8ms-1.4ms as the workload surges up or
down. This means that all the methods excel in autoscalabil-
ity, but USHER requires much fewer GPUs.

5.5 Ablation Study
In this section, we evaluate the effectiveness of each proposed
strategy of USHER. We first evaluated the cost- and time-
efficiency of USHER’s GK-Estimator compared to the existing
profiling approaches in estimating the resource requirements
of a new model. Table 4 shows the results averaged across
the models in Table 1. The GK-Estimator takes 100% less
cost and time with comparable accuracy. This is because the
profiling approach needs to actually execute the model in the
GPUs for different BSs and GPU types, whereas USHER’s
GK-Estimator only needs to analyze the kernel-level compu-
tation graph.

To measure the effectiveness of the other methods in
USHER, we created several variants of USHER as follows. 1)
USHER/CM skips the step to classify the models in a group
to C-heavy and M-heavy. 2) USHER/WD does not conduct
workload division between multiple GPUs if one GPU can
support the workload to satisfy the SLO. 3) USHER/S does
not sort the models based on their computation and memory
requirements. 4) USHER/M does not have the OG-Merge.

Fig. 25 shows the goodput and GPU utilization perfor-
mance of USHER and its different variants in the same setup
as Fig. 13a with workload=256k reqs/s. The results show that
USHER achieves 24.3%-51.6% higher goodput than USH-
ER/CM, USHER/WD, and USHER/S. This is because, by
skipping a method in each of these variants, the Cuti and
Muti decrease by 24%-41.4% and 42%-59.6%, respectively,
resulting in much lower goodput. USHER achieves 55.7%
higher goodput than USHER/M because OG-Merge reduces
the interference in GPU cache, resulting in lower latency.
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(a) Impact of τ (b) Impact of ω

Figure 26: Sensitivity of USHER on its parameters.

5.6 Sensitivity on Parameters
We did the following experiments in the fixed cluster real
testbed setup using MAF1 trace with 256k reqs/s workload.
Impact of τ (in §3.2). Fig. 26a shows the accuracy and time
for resource estimation of a model with varying values of τ.
All τ values lead to the same time for resource estimation.
However, we chose τ = 0.001ms as it leads to the highest
accuracy of resource estimation since it can correctly capture
which GPU kernels will be executed concurrently.
Impact of ω (in §3.4.2) Fig. 26b shows the goodput of
USHER for different values of ω. We chose ω = 40% as it
provides the highest goodput. When ω > 40%, the number
of operators that can be merged is reduced, leading to higher
cache interference. When ω < 40%, more operators can be
merged. However, the overhead of additional operations in
Fig. 11 outweighs the benefit.

6 LIMITATIONS AND DISCUSSION

Precision Quantization. The current version of USHER im-
plements FP16 quantization of weights. In the future, we will
explore the impact of various precision quantizations (e.g.,
FP8, FP32) on various factors such as accuracy, interference,
and resource utilization and extend USHER to adaptively se-
lect the most suitable precision quantization for each model
based on the above factors.
Model Parallelism. USHER supports model parallelism out of
the box for large models. We assume that model parallelism
is enabled by the underlying framework (e.g., DeepSpeed
decides how to do model parallelism on Llama-2 in our ex-
periments (§2)), and USHER simply uses it. An interesting
future work would be to jointly optimize the model paral-
lelism and placement strategies of USHER to further enhance
the resource utilization.

7 RELATED WORK

Inference Serving Systems without Spatial Multiplexing.
Many of the systems avoid spatial multiplexing of models
within a GPU to prevent inter-model interference [3, 7, 11, 65,
69–81]. Shepherd [3] aggregates request streams into similar-
sized groups for high computation utilization and schedules
placement to maximize goodput within each group. Several
methods [7, 65, 71–76] rely on profiling to find the optimal
request batch size for each model, aiming for high GPU
utilization and goodput. However, these methods suffer from
low resource utilization due to lack of spatial multiplexing

(§2.1). Additionally, offline profiling to calculate the resource
requirements of a model is time-consuming and costly.
Inference Serving Systems with Spatial Multiplexing. A
set of systems adopt spatial multiplexing to enhance GPU
utilization while maximizing goodput [1, 2, 4, 12, 14, 21, 23,
50,82–85]. GPUlet [14] proposes a heuristic for placing mod-
els in GPUs to maximize computation space utilization. Al-
paServe [4] explores the best placement scheduling by lever-
aging model parallelism. However, due to inter-model inter-
ference in spatial multiplexing, these systems may suffer from
longer inference latency (§2.1). Additionally, these systems
fail to maximize both GPU computation and memory uti-
lizations (§2.1). Orion [86] is a recent work that maximizes
resource utilization by spatially multiplexing the best-effort
jobs (e.g., training), while avoiding multiplexing the high-
priority jobs (e.g., inference) so that they are not impacted by
inter-model interference. However, in our scenario where all
the jobs are high-priority inference, Orion will fail to maxi-
mize utilization due to the lack of multiplexing. A group of
methods [21–23] propose merging layers and sharing param-
eter weights across multiple models to reduce the memory
requirement. However, the merging processes cannot solve
the interference in GPU cache as they do not maximize the
usage of cache contents.

8 CONCLUSION

Spatial multiplexing has the potential to increase resource
utilization of the GPUs to design a cost-efficient inference
serving system. However, it requires careful system design to
address the challenges of spatial multiplexing, i.e., maximiz-
ing the utilizations of both computation and memory spaces,
while minimizing inter-model interference. To this end, we
propose USHER. USHER has a lightweight interference-aware
scheduler that schedules the models to jointly maximize GPU
computation and memory utilizations. During the scheduling,
USHER uses a novel lightweight GPU kernel-based estima-
tor to compute the resource requirement of each model. Fi-
nally, USHER has a novel operator graph merging approach
to minimize interference in GPU cache. Experimental results
on both real testbed and large-scale simulations show that
USHER achieves up to 2.6× higher goodput and 3.5× better
cost-efficiency compared to existing systems.
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Abstract
High-demand LLM inference services (e.g., ChatGPT and
BARD) support a wide range of requests from short chat con-
versations to long document reading. To ensure that all client
requests are processed fairly, most major LLM inference ser-
vices have request rate limits, to ensure that no client can dom-
inate the request queue. However, this rudimentary notion of
fairness also results in under-utilization of the resources and
poor client experience when there is spare capacity. While
there is a rich literature on fair scheduling, serving LLMs
presents new challenges due to their unpredictable request
lengths and their unique batching characteristics on parallel
accelerators. This paper introduces the definition of LLM
serving fairness based on a cost function that accounts for the
number of input and output tokens processed. To achieve fair-
ness in serving, we propose a novel scheduling algorithm, the
Virtual Token Counter (VTC), a fair scheduler based on the
continuous batching mechanism. We prove a 2× tight upper
bound on the service difference between two backlogged
clients, adhering to the requirement of work-conserving.
Through extensive experiments, we demonstrate the superior
performance of VTC in ensuring fairness, especially in con-
trast to other baseline methods, which exhibit shortcomings
under various conditions. The reproducible code is available
at https://github.com/Ying1123/VTC-artifact.

1 Introduction

In a very short time, Large Language Models (LLMs), such
as ChatGPT-4 Turbo [36], have been integrated into various
application domains, e.g., programming assistants, customer
support, document search, and chatbots. The core functional-
ity rendered by LLM providers to these applications is serving
their requests. In addition to the response accuracy, the re-
quest response time is a key metric that determines the quality

∗Part of the work was done when Ying was visiting UC Berkeley.

of service being provided. Furthermore, LLM providers seek
to utilize their resources efficiently so they can reduce costs
and increase their competitiveness in the market.

Today’s LLM serving systems [20, 24] typically use First-
Come-First-Serve (FCFS) to schedule incoming requests.
While simple, this scheduling discipline has several draw-
backs. One such drawback is the lack of isolation: a client
sending a disproportionate number of requests can negatively
impact the service of all the other clients sharing the same
server (i.e., slow down their requests or even cause timeouts)
even when they send very little traffic. In multi-tenant person-
alized serving (S-LoRA [43], Punica [8]) that uses a dedicated
adapter for each user, it is important to ensure fairness among
the adapters as well. One solution to address this problem is
to limit the incoming load of each client. Many of the existing
LLM services do this today by imposing a request-per-minute
(RPM) limit [37] for each client.

Unfortunately, RPM can lead to low resource utilization. A
client sending requests at a high rate will be restricted even if
the system is underutilized. This leads to wasted resources, an
undesirable situation given the cost and the scarcity of GPUs.
Thus, we want a solution that provides not only isolation (like
RPM limit) but also high resource utilization.

This is a common problem in many other domains like
networking and operating systems. The solution of choice to
achieve both isolation and high resource utilization in those
domains has been fair queueing [30]. Fair queueing ensures
that each client will get their “fair share”. In the simplest case,
if there are n clients sharing the same resource, the fair share
is at least 1/n of the resource, which means that each client
gets at least 1/n of the resource. Furthermore, if some clients
do not use their share, other clients with more demands can
use it, hence leading to higher resource utilization.

In this paper, we apply fair sharing to the domain of LLM
serving at the token granularity. We do it at the token rather
than request granularity to avoid unfairness due to request
heterogeneity. Consider two clients, client A sends requests
of 2K tokens each (both input and output), and client B sends
requests of 200 tokens each. Serving an equal number of
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requests for each client would be unfair to client B as her re-
quests consume much fewer resources than client A’s requests.
This is similar to networking where fair queuing is typically
applied to the bit granularity, rather than packet granularity.

Despite these similarities, we cannot directly use the al-
gorithms developed for networking and operating systems,
as LLM serving has several unique characteristics. First, the
request output lengths are unknown in advance. In contrast, in
networking, the packet lengths are known before the packet
is scheduled. Second, the cost of each token can vary. For
instance, the cost of processing an input (prompt) token is typ-
ically lower than that of an output token, because input token
processing is parallelizable. In contrast, the cost of sending a
bit or the cost of a CPU time slice are the same irrespective of
the workload. Third, the effective capacity of an LLM server
(i.e., processing rate expressed in token/sec when the request
queue is non-empty) can vary over time. For example, longer
input sequences take more memory. This limits the number of
batched parallel requests during generation, leading to GPU
under-utilization and a lower processing rate. In contrast, the
network or CPU capacity is assumed to be fixed.

In this paper, we discuss the factors that need to be consid-
ered when defining fairness in the context of LLM serving.
We show how different definitions can be incorporated into
a configurable service cost function in Section 3. While the
cost function can be customized, a simple metric of count-
ing input and output tokens at different prices is extensively
used in analysis for the sake of simplicity. We then present a
fair scheduling algorithm called Virtual Token Counter (VTC)
that can be easily adapted for different service cost functions.
At a high level, VTC tracks the services received for each
client and will prioritize the ones with the least services re-
ceived, with a counter lift each time a client is new to the
queue. It updates the counters at a token-level granularity
on the fly, which addresses the unknown length issue. VTC
integrates seamlessly with current LLM serving batching tech-
niques (Section 2.1), and its scheduling mechanism does not
depend on the server’s capacity, overcoming the problem of
the dynamically fluctuating server capacity. We also provide
theoretical bounds of fairness for VTC in Section 4.1. The
serving architecture of VTC is illustrated in Figure 1.

In summary, this paper makes the following contributions:

• This is the first work to discuss the fair serving of Large
Language Models to the best of our knowledge. We
identify its unique challenges and give the definition of
LLM serving fairness (Section 3).

• We propose a simple yet effective fair-serving algorithm
called VTC. We provide rigorous proofs for VTC on
fairness guarantee, which gives fairness bound within
2× of the optimal bound (Section 4).

• We conduct in-depth evaluations on our proposed al-
gorithm VTC. Results confirm that our proposed algo-
rithms are fair and work-conserving (Section 5).

Client 1
Client 2

Queue

Virtual
Token

Counter

Finish Request

Update counter

Next Request

LLM execution
Engine

Send requests

Client 1 counter
Client 2 counter

Increase

Select

Figure 1: Serving architecture with Virtual Token Counter
(VTC), illustrated with two clients. VTC maintains a queue
of requests and keeps track of tokens served for each client.
In each iteration of the LLM execution engine, some tokens
from some clients are generated. The counters of these clients
are correspondingly updated. When the condition of adding
new requests is satisfied (e.g. memory is released when some
other requests finish), VTC will be invoked to choose the
requests to be added. VTC achieves fairness by prioritizing
clients with the lowest counter and carefully handling clients’
leave and rejoin (Section 4.1).

2 Background

In this section, we first introduce how an LLM serving system
operates. Then we describe existing methods for ensuring
fairness in LLM serving.

2.1 Large Language Models Serving
LLM serving with a single request First, a request con-
tains information about its arrival time (a), input tokens (x),
and its associated client (u). Formally, we represent a request
using a three-tuple (a, x, u). The system generates output to-
kens based on the input tokens. For instance, the input tokens
can be an incomplete sentence, and the system generates the
rest of the sentence [35].

The generation procedure consists of two stages: the ini-
tial prefilling stage, and the decoding stage [39]. Mathemati-
cally, x is a sequence of tokens (x1,x2, ...,xn). In the prefilling
stage, the LLM computes the probability of the first new to-
kens: P(xn+1|x1, ...,xn). In the decoding stage, the system au-
toregressively generates a new token. At time t (t ≥ 1), the
process is written as: P(xn+t+1|x1, ...,xn+t).

The decoding stage ends when the LLM generates a spe-
cial end-of-sentence (EOS) token or the number of generated
tokens reaches a pre-defined maximal length.

LLM serving with multiple requests In the online serv-
ing scenarios, multiple clients submit requests to the serving
system. To process these requests, the system maintains two
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concurrent streams: A monitoring stream adds requests to
a waiting queue; an execution stream selects and executes
request(s) from the waiting queue.

Naively, the execution stream can choose to execute re-
quests one by one. However, this is highly GPU inefficient
due to various natures of the LLM generation procedure. For
instance, the decoding steps must be carried out sequentially
where the arithmetic intensity is relatively low in a single step.
Contemporary serving systems usually perform batching that
executes multiple requests concurrently to maximize the sys-
tem throughput. The most widely used approach in LLM
serving is continuous batching [50]. Algorithm 1 shows the
pseudocode for continuous batching.2 The monitoring stream
enqueues requests to a waiting queue. The execution stream
performs a check on whether there are finished requests at the
end of each decoding step. If there are, the system removes
these requests and adds new requests from the queue.

Fairness with continuous batching We can naturally inte-
grate fairness policies into the continuous batching algorithm,
by designing a fair select_new_requests() function in Al-
gorithm 1. Intuitively, the execution stream should keep track
of how much service a particular client has received, and pri-
oritize clients that haven’t received much service in the next
selection. We formally define fairness in the LLM serving
context in Section 3 and design a method with theoretical
guarantee in Section 4.

We adopt a continuous batching scheme in which a re-
quest only leaves the batch when it generates an EOS token
or reaches the pre-defined maximum number of generated
tokens (i.e., no preemption). This paper focuses on integrat-
ing fair scheduling with continuous batching, and we leave
an investigation on preemption as an orthogonal future work
(discussed in Appendix C.3).

Algorithm 1 LLM serving with Continuous batching

1: Initialize current batch B← /0, waiting queue Q← /0

2: ▷ with monitoring stream:
3: while True do
4: if new request r arrived then
5: Q← Q+ r
6: ▷ with execution stream:
7: while True do
8: if can_add_new_request() then
9: Bnew← select_new_requests(Q)

10: prefill(Bnew)
11: B← B+Bnew

12: decode(B)
13: B← filter_finished_requests(B)

2For a simple presentation, we consider an implementation that only uses
continuous batching for decode steps but keeps the prefill step separated. as
how TGI [21] adopted the original proposed iteration-level scheduling in
Orca [50]. For more discussions, see Appendix C.1.

2.2 Existing Fairness Approaches
Fairness is a key metric of interest in computer systems that
provide service to multiple concurrent clients [5]. A fair LLM
serving system should protect clients from a misbehaving
client who may try to overload the serving system by submit-
ting too many requests.

RPM Limit Per Client As a common practice of API man-
agement (e.x. [37]), specific rate limits are established for
each client’s API usage to prevent potential abuse or misuse
of the API and ensure equitable access for all clients. This
limitation is on the metric request-per-minute (RPM). Once
a client reaches the RPM limit, the client is only allowed
to submit more requests in the next time window. However,
it’s important to note that while these limits are effective in
managing resource allocation during periods of high demand,
they may not be work-conserving when the number of ac-
tive clients is low. In such scenarios, the system’s capacity
might be underutilized, as the imposed limits prevent the full
exploitation of available resources.

Fair Queueing [30] The fairness problem has been exten-
sively studied in the past for traditional compute resources,
such as CPU cycles and network bandwidth. Fair queuing and
its variants (e.g., Weighted Fair Queuing (WFQ) [11], Self-
clocked Fair Queueing [15], and Start-time Fair Queueing
(SFQ) [17]) have been proposed to achieve the fair allocation
of link bandwidth in packet-switching networks.

In the traditional packet-switching network, a flow f is
referred to as a sequence of packets p0

f , p1
f , . . . pn

f transmit-

ted by a source. Each packet p j
f is of length l j

f . A flow is
backlogged during the time interval [t1, t2) if it has one or
more outstanding packets waiting in the queue at any time
t ∈ [t1, t2).

All fair queueing algorithms maintain a system virtual
time, v(t), which intuitively measures the service received by
a continuously backlogged flow in terms of bits forwarded.
Each packet, p is associated two tags: Start tag S(p) and a
Finish tag F(p) = S(p)+ lp. The Start tag (a.k.a. packet’s
virtual starting time) is computed based on both the system
virtual time and the Finish tag (a.k.a. packet’s virtual finishing
time). These algorithms schedule packets in the ascending
order of either the Finish or Start tags.

In networking, fairness is simply defined as follows: for any
two flows, f and g, that are backlogged during time interval
[t1, t2), we have∣∣Wf (t1, t2)−Wg(t1, t2)

∣∣≤U( f ,g), (1)

where Wf (t1, t2) and Wg(t1, t2) denote the service received in
bits by flow f and g, respectively, during interval [t1, t2), and
U( f ,g) is a function of the properties of flows f and g (e.g.,
maximum packet length) and the system (e.g., link capacity).
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Intuitively, for packets-switching networks, the allocation of
a link bandwidth is fair if, for any time interval during which
two flows are backlogged, each of these flows receives approx-
imately the same service in terms of the number of bits being
forwarded during that interval. A scheduling algorithm is said
to be work-conserving if a link always forwards packets when
the queue is not empty [23].

There exists a distinct strand of research [3, 6, 47] focusing
on the fair scheduling of preemptible tasks (e.g., CPU schedul-
ing). The Completely Fair Scheduler (CFS) [1], implemented
in Linux 2.6.23 and applying fair queuing to CPU scheduling,
is closely related to our algorithm. In CFS, a “vruntime” is
maintained for each task, and the task with the smallest “vrun-
time” is scheduled next. The tasks can be presented with a
small time slice, aiming to maximize overall CPU utilization
while also maximizing interactive performance.

2.3 Challenges

There are several unique challenges in LLM serving that pre-
vent a direct application of fair-queuing-like algorithms. The
first challenge is that the definition of fairness in the context
of LLM serving is unexplored, and likely very different than
that discussed in fair-queuing literature.

Traditional fairness is defined by measuring the cost of
requests, which is usually a fixed value that is easy to esti-
mate in either network or operating systems. For example,
in networking, requests correspond to packets, and the cost
is usually the number of bits of a packet. However, in LLM
generations, how to define the cost of a request is not obvi-
ous. The cost per token can vary. Especially, processing an
input (prompt) token is typically less expensive than process-
ing an output token, as input tokens are processed in parallel
while output tokens must be generated sequentially. Batching
the output tokens from different requests can parallelize the
fully connected layers but is still slower than processing input
tokens for the attention layers.

Additionally, in LLM serving, the server has variable token-
rate capacity, although the memory allocated for a batch is
constant. Firstly, even if the request queue is not empty, we
are not guaranteed that each batch is full. This is because we
need to preserve spaces for future generated tokens, and also
because the tokens added to the batch are not at the token
but the request granularity. Secondly, the number of tokens
processed highly depends on the requests’ arrival patterns
because of the continuous batching mechanism (Section 2.1).
Furthermore, the capacity depends on the mix between input
and output tokens of existing requests. If all requests have long
past tokens, then the capacity is likely to be low (See Figure 2).
Then there is no way to define a fixed amount of equal share.

The second challenge is the characteristic of unknown out-
put length before finishing a request. This prevents a direct
adaptation of classical algorithms like SFQ and Deficit Round
Robin (DRR) [45] into the LLM serving. SFQ-style algo-

prompt one decode token

Increased time
for decode tokens

higher 
throughput 
for shorter 
requests

lower 
throughput 
for longer 
requests

Figure 2: An illustration of how request length can affect the
cost and server capacity in terms of throughput. The visual-
ized length is not precise but for illustration purposes only.

rithms can provide good bounds in fairness by setting the
Start and Finish tags through virtual time, as introduced in
Section 2.2. However, computing Start and Finish tags re-
quires knowing the request length in advance. DRR performs
round-robin scheduling with a “deficit counter” mechanism
to achieve fair scheduling of packets of variable length. In
DRR, each client is assigned a specific quantum of service. It
tracks the “deficit” of service for each client to ensure fairness
over time. During each round, the scheduler allows each client
to dispatch as many requests as possible, provided that the
total length of these requests does not exceed the sum of the
client’s assigned quantum for that round and any accumulated
deficit from previous rounds. Without knowing the length
in advance, DRR cannot determine how many jobs can be
scheduled within the quantum. Compared to CPU schedul-
ing, although exploring adequate preemption is worthwhile in
LLM serving, it cannot occur frequently. We need to define
service fairness in LLM serving and operate at the granularity
of individual tokens when frequent preemption is not possible.
Additionally, the Completely Fair Scheduler (CFS) in CPU
scheduling does not account for the concurrency of each task.
It seeks fairness among individual tasks rather than among
streams of tasks that can be executed concurrently. 3

We will give the definition for LLM serving fairness in
Section 3 and give a scheduling algorithm to achieve the
LLM serving fairness in Section 4. We will outline our algo-
rithm in a basic format for clarity, while details on its general
form and integration with existing serving frameworks can
be found in Appendix C.1. Although our algorithm is closely
related to CFS, we also discuss the adaptation of DRR in Ap-
pendix C.2. Further discussions on future work are included
in Appendix C.3.

3 Definition of Fairness in LLM Serving

In this section, we discuss the cost of a request, and the mea-
surement of the service a client has received (Section 3.1).
After defining the measurement of service, we can define
fairness among clients in Section 3.2.

3Our algorithm does not consider preemption. Discussion about preemp-
tion is in Appendix C.3.
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Notation Explanation

Wf (t1, t2) service received by f during interval [t1, t2) (write
as W (t1, t2) when f is clear in the context)

np number of processed input tokens
nq number of processed output tokens
wp weight of input tokens in the cost function
wq weight of output tokens in the cost function

h(np,nq) customized cost function

ci virtual token counter for client i
Q waiting queue of requests to be processed

i ∈ Q ∃r ∈ Q, r is a request from client i
Linput maximum number of input tokens in a request
Lout put maximum number of output tokens in a request

M maximum number of tokens that can be fitted in a
running batch

U invariant bound: max(wp ·Linput ,wq ·M)

Table 1: The upper half includes notations for service mea-
surement. The lower half includes notations for the VTC
algorithm and its analysis. The terms np,nq can refer to either
a single request or a single client, depending on the context.

3.1 Measurement of Service

In this subsection, we discuss the measurement of the service
a client has received. Specifically, we define Wf (t1, t2) and
Wg(t1, t2) from Equation (1) in the context of LLM serving.
We omit the subscript and write W (t1, t2) when the client is
clear from the context or is irrelevant. The number of pro-
cessed input and output tokens are denoted as np,nq. Nota-
tions that will be introduced and used multiple times in this
paper are summarized in Table 1.

Number of tokens A straightforward way to measure the
service provided to a client is by summing the number of
input tokens that have been processed and the number of
output tokens that have been generated so far, i.e., W (t1, t2) =
np(t1, t2)+nq(t1, t2) during the time window [t1, t2).

Number of FLOPs Alternatively, one can measure the total
FLOPs used in each stage, i.e., W (t1, t2) = FLOPinput(t1, t2)+
FLOPoutput(t1, t2). This can be more precise because it cap-
tures the difference among tokens in attention computation,
where tokens with longer prefixes require more computation.

However, both of these formulations cannot accurately re-
flect the actual LLM serving cost: The computation of the
tokens at the prefill stage can be parallelized and achieve high
GPU utilization. However, at the generation stage, we can
only generate tokens one by one, as each token depends on
all previous tokens as described in Section 2.1.

Weighted number of tokens To better reflect the actual
LLM serving cost, a more accurate measure should capture
the difference in costs of the prefilling and generation phases.
One simple way to implement this idea is by using a weighted
combination of the prefilling (input) tokens and decoding
(output) tokens, inspired by the pricing mechanism used in

OpenAI’s API4. Formally, let wp be the weight of input to-
kens and wq be the weight of output tokens. Then, we have
W (t1, t2) = wp · np(t1, t2)+wq · nq(t1, t2). Due to its simplic-
ity, we will use this measure extensively in our analysis and
evaluation.

Customized, unified representation. The definition of
fairness in LLM serving can also be extended to other aspects,
such as the weighted number of FLOPs or a more sophisti-
cated method introduced in [31] that uses piecewise linear
functions for the number of input and output tokens. Gen-
erally, the service can be represented as a function of the
number of input and output tokens (np,nq, respectively). Let
h(np,nq) be the cost function that is monotonically increasing
according to np and nq. Our method can easily accommodate
different h (Section 4.2).

3.2 Fairness in LLM Serving
In this paper, we apply fair sharing to the domain of LLM serv-
ing to provide performance isolation across multiple clients
sharing the same LLM server. In particular, we employ the
classic formulation of max-min fairness [5], which computes
a fair share for the clients sharing a given server. In a nutshell,
given the metric of service fairness, if a client sends requests
at no more than its fair share, all its requests are served. In
contrast, if a client sends requests at more than its fair share,
its excess requests will be delayed or even dropped. As a
result, a misbehaving client cannot deny the service to other
clients, no matter how many requests it sends. To achieve max-
min fairness, an idealized serving system follows desirable
properties as below:

1. Backlogged clients Any two clients f ,g that are contin-
uously backlogged during a given time interval [t1, t2)
should receive the same service during this interval, i.e.
Wf (t1, t2) =Wg(t1, t2).

2. Non-backlogged clients Client f that is continuously
backlogged during time interval [t1, t2) should not re-
ceive less service than another client, g, that is not con-
tinuously backlogged during the same time interval, i.e.,
Wf (t1, t2)≥Wg(t1, t2).

3. Work-conservation As long as there are requests in the
queue, the server should not be idle.

The first property means that two clients sending requests at
more than their fair share will get the same service, regardless
of the discrepancy between their sending rates. The second
property says that a client sending requests at a higher rate
will not get less service than a client sending at a lower rate.
Basically, the first two properties say that a misbehaving client
is contained (i.e., doesn’t receive more service than other
backlogged clients), and not punished (i.e., doesn’t receive

4https://openai.com/pricing
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less service than other non-backlogged clients). Finally, the
work conserving property aims to maximize the utilization,
addressing a key weakness of the RPM-based solutions.

The three properties above assume an idealized fair serving
system. A practical system will approximate these properties.
In general, the best we can achieve is deriving bounds that
are independent of the length of the time interval, e.g., in the
first property, the difference between Wf (t1, t2) and Wg(t1, t2)
is bounded by a value that is independent of t2− t1. We give
the formal guarantees provided by our method in Section 4.1.

4 Achieving Fairness

In this section, we present our algorithm VTC with proved
fairness properties in Section 4.1, and show its generalization
for customized service measurement in Section 4.2. Variants
of VTC, including weighted VTC and VTC with length pre-
diction, are introduced in Section 4.3 and Section 4.4.

4.1 Virtual Token Counter (VTC)
Based on insights from prior discussions, we’ve identified
key challenges inherent in large language model (LLM) serv-
ing that hinder direct adaptation of existing algorithms to
deliver approximately fair LLM service. We then propose the
Virtual Token Counter (VTC), a mechanism for achieving
fair sharing in LLM Serving (Algorithm 2). To quantify the
service received by a client we use the weighted number of
tokens metric, as described in Section 3.1. We discuss the
generalization to other metrics in Section 4.2.

Intuitively, VTC tracks the services received for each client
and will prioritize the ones with the least services received,
with a counter lift each time a client is new to the queue. The
counter lift is needed to fill the gap created by a low load pe-
riod of the client, so that it will not be unfairly served more in
the future. In other words, the credits for a client are utilized
immediately and cannot be carried over or accumulated. The
virtual counters are updated each time a new token is gener-
ated, which can reflect the services received instantly. This
operates at the token-level granularity, and thus addresses the
unknown length issue. VTC can be easily integrated into the
continuous batching mechanism, and its scheduling mecha-
nism does not depend on the server’s capacity, overcoming
the problem of variable token-rate capacity.

Algorithm 2 shows how VTC can be implemented in the
continuous batching framework described in Section 2.1.
A more general integration for VTC is described in Ap-
pendix C.1. It maintains a virtual counter for each client,
denoted as {ci}. The counters are initialized as 0 (line 2). The
program runs with two parallel streams.

The monitoring stream listens to the incoming requests,
described in lines 5-14. The new request will be added to the
waiting queue Q immediately. If the new request is the only
request in Q for its sender client, a counter lift (lines 8-13)

Algorithm 2 Virtual Token Counter (VTC)

Input: request trace, input token weight wp, output token
weight wq, upper bound from Equation (2) denoted as U .

1: let current batch B← /0

2: let ci← 0 for all client i
3: let Q denote the waiting queue, which is dynamically

changing.
4: ▷ with monitoring stream:
5: while True do
6: if new request r from client u arrived then
7: if not ∃r′ ∈ Q,client(r′) = u then
8: if Q = /0 then
9: let l← the last client left Q

10: cu←max{cu,cl}
11: else
12: P←{i | ∃r′ ∈ Q,client(r′) = i}
13: cu←max{cu,min{ci | i ∈ P}}
14: Q← Q+ r
15: ▷ with execution stream:
16: while True do
17: if can_add_new_request() then
18: Bnew← /0

19: while True do
20: let k← argmini∈{client(r)|r∈Q} ci
21: let r be the earliest request in Q from k.
22: if r cannot fit in the memory then
23: Break
24: ck← ck +wp · input_length(r)
25: Bnew← Bnew + r
26: Q← Q− r
27: forward_prefill(Bnew)
28: B← B+Bnew

29: forward_decode(B)
30: ci← ci +wq · |{r | client(r) = i,r ∈ B}|
31: B← filter_finished_requests(B)

will happen. Because this client could have been underloaded
before, its counter could be smaller than the other active coun-
ters. However, since the credits cannot be carried over, we
need to lift it to the same level as other active counters, thus
maintaining fairness among this client and others. Lines 9-10
address the scenario where the entire system was in an idle
state. We do not reset all the counters to avoid nullifying a
previously accumulated deficit upon a system restart.

The execution stream is the control loop of an execution
engine that implements continuous batching. Line 17 controls
the frequency of adding a minibatch Bnew of new requests
into the running batch B. Commonly, the server will add a
new minibatch after several decoding steps. The minibatch
Bnew is constructed by iteratively selecting the request from
the client with the smallest virtual counter (lines 20-26). The
counters will be updated when adding new requests according
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to the service invoked by the input tokens (line 24). After
each decoding step (line 29), {ci} will be updated immedi-
ately according to the service invoked by the newly generated
output tokens (line 30).

The VTC algorithm is (mostly) work-conserving because
it only manipulates the dispatch order and does not reject a
request if it can fit in the batch.

4.1.1 Fairness for backlogged clients in VTC

In this subsection, we provide the theoretical guarantee for
fairness among overloaded clients in VTC. More precisely,
the overload of a client is reflected by its backlog, which
can be formally defined as follows. Intuitively, a client being
backlogged means its requests are queued up.

Definition 4.1 (Backlog). A client f is backlogged during
time interval [t1, t2), if at any time t ∈ [t1, t2), f has a request
that is waiting in the queue.

We adapt the traditional definition of fairness for back-
logged clients in the network to our scenario. The follow-
ing definition formally defined the item 1 introduced in Sec-
tion 3.2, that for any interval, and any two continuously back-
logged clients during the time interval, the difference of their
received service should be bounded by a value that is inde-
pendent of the interval length.

Definition 4.2 (Fairness adapted from [16]). Let Wf (t1, t2)
be the aggregated service received by client f in the interval
[t1, t2). A schedule is fair w.r.t. δ, if for any clients f and g, for
all intervals [t1, t2) in which clients f and g are backlogged,
we have |Wf (t1, t2)−Wg(t1, t2)| ≤ δ.

In the rest of the paper, as in Algorithm 2, we let Q denote
the set of requests in the waiting queue. We abuse the notation
of i ∈ Q for a client i to indicate there exists r ∈ Q, such
that r is a request from client i. Let Linput and Lout put be the
maximum number of input and output tokens in a request.
Let M be the maximum number of tokens that can be fitted
in a running batch. Lemma 4.3 reflects the core design of
Algorithm 2, that the virtual counters for active clients are
chasing each other to ensure their maximum difference is
bounded. The missing proof for Lemma 4.3 and all following
theorems are in Appendix A.

Lemma 4.3. The following invariant holds at any time in
Algorithm 2 when Q ̸= /0:

max
i∈Q

ci−min
i∈Q

ci ≤max(wp ·Linput ,wq ·M) (2)

We then introduce our main theorem which provides a
bound for Definition 4.2.

Theorem 4.4 (Fairness for overloaded clients). For any
clients f and g, for any time interval [t1, t2) in which f and g

are backlogged, Algorithm 2 guarantees 5

|Wf (t1, t2)−Wg(t1, t2)| ≤ 2max(wp ·Linput ,wq ·M).

Proof. For any f , if f is backlogged during time t1 to t2, we
have Wf (t1, t2) = c(t2)f − c(t1)f . This is because the line 7 will
not be reached for client f during t1 to t2, and the c f keeps
increasing during t1 to t2 by adding wp product the number
of served input tokens and wq product the number of served
output tokens. By Lemma 4.3, from Equation (2), we have

|Wf (t1, t2)−Wg(t1, t2)| ≤ |c
(t1)
f − c(t1)g |+ |c(t2)f − c(t2)g |

≤ 2max(wp ·Linput ,wq ·M)

Remark 4.5. An empirical illustration of this theorem can be
found in Figure 3a, where the difference between services
received by backlogged clients is bounded, regardless of how
long they have been backlogged.
Remark 4.6. Line 13 can be modified to take any value
between min{ci|∃r′ ∈ Q,client(r′) = i} and max{ci|∃r′ ∈
Q,client(r′) = i}. The proof of Theorem 4.4 should still hold.
Remark 4.7. To tighten the bound in Theorem 4.4, we can
restrict the memory usage for each client in the running batch.
This might compromise the work-conserving property, as we
will demonstrate in Theorem 4.8. Therefore, there is a trade-
off between achieving a better fairness bound and maintaining
work conservation. Heuristically, predicting the request length
in advance could result in a smaller discrepancy, as detailed
in Section 4.4. Additionally, preemption is another method to
achieve smaller differences, discussed in Appendix C.3.

We also prove in the next theorem that the bound in The-
orem 4.4 is tight within a factor of 2 for a family of work-
conserving schedulers. We say a scheduler is work-conserving
if it stops adding requests to a partially-filled minibatch (line
22 in Algorithm 2) only when it runs out of memory6 but not
for fairness reasons.

Theorem 4.8. For any work-conserving schedule without
preemption, there exists some query arrival sequence such
that for client f ,g and a time period t1, t2, such that

|Wf (t1, t2)−Wg(t1, t2)| ≥ wq ·M,

where clients f ,g are backlogged during the time [t1, t2).

As we mentioned before, output tokens are more expensive
than input tokens, so normally we have wq > wp. Therefore
the right-hand side of the inequality in Theorem 4.4 is 2wq ·M,
which is 2× of the lower bound in Theorem 4.8.

5The service of a served request incurred by pre-filling (service for input
tokens) is counted at the time when the request is added to the running batch
(line 24 in Algorithm 2), rather than the time when prefill is finished. This is
because we want to count the input tokens immediately to avoid selecting all
the same k at line 20 in Algorithm 2 for Bnew.

6Different implementation may have different criteria of “not enough
memory”. This can only be achieved heuristically because the number of
output tokens is unknown before it finishes.
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4.1.2 Fairness for non-backlogged clients in VTC

In this subsection, we discuss item 2 in Section 3.2. A back-
logged client will not receive less service than another client.
This can be reflected in the following theorem.

Theorem 4.9. If a client f is backlogged during time interval
[t1, t2), for any client g, there is

Wf (t1, t2)≥Wg(t1, t2)−4U.

Here U is the upper bound from Equation (2).

In addition to that, clients who send requests constantly
less than their share should have their requests serviced nearly
instantly. This property intuitively can be implied by the first
item in Section 3.2, as if a low-rate client cannot be served
on time, it becomes backlogged, which requires the same
level of service with backlogged clients. We formally prove
this property to offer a fairness assurance for clients who are
not overloaded. This intuitively acts as a safeguard against
misbehaving clients [10].

We start with Definition 4.10 and Theorem 4.11 discussing
the aspect of latency bounds. Intuitively, if a client is not
backlogged and has no requests running, the next request from
it will be processed within a latency bound that is independent
of the request rate of other clients.

Definition 4.10. Assume there are n active clients during [t1,
t2), and the server capacity at time t ∈ [t1, t2) is defined as
S(t), where ∫ t2

t1
S(t)dt =

n

∑
i=1

Wi(t1, t2)

Because the server capacity is always positive and bounded,
there exists a,b ∈ R+ such that ∀ t, a < S(t)≤ b.

Theorem 4.11. Let A(r) and D(r) denote the arrival time
and dispatch time of a request r. Assume there are in total n
clients, ∀t1, t2, if at t1, a client f is not backlogged and has no
requests in the running batch, then the next request r f with
t1 < A(r f )< t2 will have its response time bounded:

D(r f )−A(r f )≤ 2 · (n−1) ·
max(wp ·Linput ,wq ·M)

a
(3)

Here a is the lower bound of the capacity in Definition 4.10.

Remark 4.12. The bound in Theorem 4.11 is irrelevant to
the request rate of others, giving an upper bound for latency
against ill-behavior clients.

The above is about one request not getting delayed. The
following theorem shows that during time period [t1, t2), if
there are n active clients sending requests, and client f is
sending requests with a rate constantly less than 1/n of the
server’s capacity (with some constant gap), client f should
have all its requests been served.

Theorem 4.13. (Fairness for non-overloaded clients) For
any time interval [t1, t2), we claim the following.

Assume a client f is not backlogged at time t1 and for any
time interval [t, t2), t1 ≤ t < t2, f has requested services less
than T (t,t2)

n(t,t2)
−5U, where T (t, t2) is the total services received

for all clients during the interval [t, t2), n(t, t2) is the number
of clients that have requested services during the interval, and
U is the upper bound from Equation (2).

Then, all of the services requested from f during the inter-
val [t1, t2) will be dispatched.

4.2 Adapt to Different Fairness Criteria
Algorithm 2 is designed for fairness with the service function
W (t1, t2) as a linear combination of the number of processed
input tokens and the number of generated tokens. For a differ-
ent definition of W (t1, t2), Algorithm 2 can be easily modified
to update the counter according to the other definitions de-
scribed in Section 3.1.

Assume we aim for fairness using ∑r h(nr
p,n

r
q) as the metric

of service, where h is a specific function. In this context, r
indexes the served requests, and nr

p,n
r
q represent the number

of input and output tokens served for request r, respectively.
Line 24 will be changed to

ck← ck +h(nr
p,0).

Line 30 will be changed to

ci← ci + ∑
r|client(r)=i,r∈B

(
h(nr

p,n
r
q)−h(nr

p,n
r
q−1)

)
.

The fairness bound will also be changed according to h(·, ·).
Under the assumption that output tokens are more expensive
than input tokens, the bound will become the maximum value
of aggregated h(·, ·) for a set of requests that can be fitted
in one running batch. Algorithm 4 in Appendix C.1 is the
pseudocode of a general VTC framework.

4.3 Weighted VTC
VTC can be applied when clients have tiers. Similar to
weighted fair queuing, clients can have different weights
to represent their priority in service. If a client f has a
weight w1, that is twice the weight w2 of client g, client
f is expected to receive twice the service than client g.
When they are continuously backlogged during the interval
[t1, t2), we want

∣∣∣W f (t1,t2)
w1

− Wg(t1,t2)
w2

∣∣∣ to be bounded instead of∣∣Wf (t1, t2)−Wg(t1, t2)
∣∣.

Weighted VTC can be easily implemented by modifying
the lines that update the virtual tokens. For example, the line
22 in Algorithm 4 will be changed to

ci← ci +
∑r|client(r)=i

(
h(nr

p,n
r
q)−h(nr(old)

p ,nr(old)
q )

)
wi

.
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Here ci is the virtual counter of client i, and wi is its corre-
sponding weight.

4.4 VTC with Length Prediction
As mentioned in Remark 4.7, using VTC with length pre-
diction can heuristically reduce the service discrepancy. In
standard VTC, the counters only reflect served tokens. Tokens
generated in the future can only be passively added to the
counter. This results in a large service discrepancy because re-
quests are overly added due to underestimation of their costs
at the time of prompting, leading to the forced serving of
over-compensated output tokens. Incorporating a prediction
mechanism can help reduce this variance.

The theoretical worst-case scenario won’t change, accord-
ing to the lower bound proved in Theorem 4.8. But practically,
the average-case service discrepancy could be smaller.

The modified pseudocode of VTC with length prediction
is described in Algorithm 3 in Appendix B.3. Intuitively,
when a request r is selected, the cost associated with the
predicted number of output tokens is immediately added to
the virtual counter of the client sending the request. During the
actual decoding process, adjustments are made to the virtual
counter based on the actual number of output tokens produced.
If the actual number of tokens exceeds the prediction, the
virtual counter is increased accordingly. Conversely, if fewer
tokens are generated than predicted when finished, the virtual
counter is reduced. The effectiveness of the length predictor
is contingent upon both the workload and the accuracy of
predictions, as demonstrated in our evaluations.

5 Evaluations

In this section, we evaluate VTC against other alternatives
under different workloads. The results confirm the fairness
properties introduced in Section 3 of VTC, and show that all
other alternatives will fail in at least one workload.

5.1 Setup
Implementation We implement our VTC and other base-
line schedulers in S-LoRA [43], a system that serves a large
amount of LoRA adapters concurrently. Its backbone is a gen-
eral serving system adapted from LightLLM [29]. It includes
the implementation of continuous batching [50] and Page-
dAttention [24]7. Our VTC scheduler is built on top of those
two techniques. Our implementation is elegant and can be
implemented as a thin layer on top of the existing scheduler, it
contains only about 100 lines of code on top of S-LoRA. The
simplicity demonstrates its wide applicability. Fairness can
be considered among general clients, and our experiments are
done in this way. But we would like to note that fairness also

7with block size equals 1.

could be taken into consideration among adapters, especially
under the scenario of personalization that uses one adapter
per customer, which originally motivated this paper.

Baselines In this section, we benchmark VTC and the base-
lines as below:

• First Come First Serve (FCFS): In the First-Come-First-
Serve method, requests are handled strictly in the order
they are received, irrespective of the requesting client.
This is the default scheduling strategy in many preva-
lent LLM serving systems, including vLLM [24] and
Huggingface TGI [20].

• Request per minute (RPM): This method limits the max-
imum number of requests that a client can make to the
server within a one-minute timeframe. The definition of
service corresponds to Section 3. When a client exceeds
this limit, subsequent requests are blocked until the limit
resets at the start of the next minute.

• Least Counter First (LCF): This is a variant of VTC with-
out the counter lift component. Each client will maintain
a counter for the service it received so far. The request
from the client with the smallest counter will be sched-
uled each time.

We also benchmark the VTC with length predictions as de-
scribed below:

• VTC (predict): This variant of VTC, detailed in Algo-
rithm 3, utilizes the average output length of the last five
requests from each client to predict the output length.

• VTC (oracle): This variant employs a hypothetical output
length predictor that achieves 100% accuracy.

Synthetic Workload We run Llama-2-7b on A10G (24GB),
using the memory pool for the KV cache with size 100008.
We use various workloads to demonstrate different aspects of
fairness, and compare VTC with other baselines. The detailed
results are in Section 5.2. We start with synthetic workloads
to give a clear message for fairness properties.

Real Workload To validate the effectiveness of VTC in
more complex real-world scenarios, we also experiment with
VTC and other baselines under workloads constructed from
the trace log of LMSYS Chatbot Arena [52, 53], which is an
LLM serving platform for real-world clients.

Ablation Study In the ablation study, to evaluate the impact
of different memory pool sizes and request lengths on the
scheduling fairness, we run Llama-2-13b on A100 (80GB)
with a memory pool of size 35000 and 65000 respectively. For
each memory pool size, we evaluate the absolute difference
in the accumulated service of two clients.

8There are in total 10000 tokens for KV cache that can be stored on GPU.
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Metrics We apply the weighted number of tokens described
in Section 3.1 as the measurement of services in our evalua-
tion. Following OpenAI pricing, we set wp = 1 and wq = 2.

• The service received by client i at time t is measured as
Wi(t−T, t +T ) for a certain T .

• The absolute difference in service between clients is
quantified based on accumulated services, represented
as maxi, j |Wi(0, t)−Wj(0, t)|.

• The response time of client i at time t is measured as the
average first token latency of the requests sent by client
i during the time window [t−T, t +T ].

In all settings, we set T = 30 seconds.
We employ service difference as a quantitative metric to

assess the deviation from ideal fairness. A smaller difference
in service indicates more equitable scheduling. Formally, the
service difference between two clients is defined as the min-
imum of two values: the difference between their received
services, and the difference between the lower service and its
corresponding request rate. For example, consider two clients
that received services s1 and s2, such that s1 ≤ s2, and let r1
denote the request rate sent from the first client. Then the
service difference is defined as min(s2− s1, |r1− s1|).

VTC Variants The experiments for weighted VTC are pre-
sented in Appendix B.1, demonstrating its capability to serve
clients with varying priorities. To illustrate the versatility of
the service function beyond the linear model used in our pri-
mary analysis, we evaluate a profiled service cost function
in Appendix B.2, which is a quadratic function. Additional
experiments on VTC with length prediction are detailed in
Appendix B.3.

5.2 Results on Synthetic Workloads
We design a set of experiments to visualize the fairness prop-
erties of VTC. We start with synthetic traces to show plots
reflecting the ideal case’s fairness. We experiment from the
simplest setting, where clients send requests following a uni-
form distribution with the same input and output length, to
complex settings, where requests arrive stochastically, with
various input and output lengths.

Constant request rates We start with scenarios where re-
quests arrive deterministically with the same input and output
length. In Figure 3, two clients send requests at different rates,
but are both constantly overloaded. In this case, Figure 3a
shows VTC can keep the difference between services received
by both clients to be small. FCFS cannot maintain fairness,
which always serves more for the client who is sending re-
quests at a higher rate. Figure 3b shows the real-time received
service rate for two clients in VTC, which confirms that the
two received the same level of services at any time interval.
This experiment empirically validates Theorem 4.4.
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Figure 3: Two clients with different request rates and both
overloaded. Client 1 sends 90 requests per minute. Client 2
sends 180 requests per minute, both evenly spaced out so that
each request is sent at a consistent time interval throughout
the minute. Every request has input lengths of 256 and output
lengths of 256. Both clients are backlogged because they
exceed the server capacity.

0 200 400
Time (s)

0.0

250.0

500.0

750.0

Se
rv

ice
Client 1 Client 2 Client 3

(a) Received service rate (VTC).

0 200 400
Time (s)

0.0

50.0

100.0

150.0

Re
sp

on
se

 T
im

e 
(s

)

Client 1 Client 2 Client 3

(b) Response time (VTC).

Figure 4: Client 3 who is overloaded can consume more than
its share as Clients 1 and 2 are sending requests lower than
their share. Clients 1, 2, and 3 send 15, 30, and 90 requests
per minute, respectively, under uniform distribution. Requests
have input lengths of 256 and output lengths of 256. Client 3
is backlogged, while Clients 1 and 2 are not.

In Figure 4, three clients send requests at around 2/13,
4/13, and > 7/13 of the server’s capacity, respectively. In
this case, Clients 1 and 2 can be served immediately when
their requests arrive (Figure 4b), and Client 3 will consume
the remaining capacity (more than 1/3), which is an empirical
illustration of the work-conserving property of VTC. The
service received for Client 1 and Client 2 have a ratio 1 : 2,
which is consistent with their request rates (15 versus 30).

ON/OFF request pattern In real-world applications,
clients usually do not always send requests to the server. They
may occasionally be idle (“OFF” phase). We call this the
“ON/OFF” pattern. In Figure 5, Client 2 is always in the “ON”
phase, sending requests at a rate of 120 per minute. Client 1
sends 30 requests per minute (less than half of the capacity)
during the ON phase and switches to OFF phase periodically.
Since Client 1 uses less than half the system capacity when it
is in the ON phase, its requests are mostly processed before
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it switches to the OFF phase (Figure 5b). When it is in the
OFF phase, Client 1 thus takes all the system capacity. The
total service rate remains the same, which confirms VTC’s
flexibility in achieving work-conserving.

On the contrary, in Figure 6, client 1 sends much more
than half the capacity during the ON phase, and makes itself
always backlogged. Thus, even when it is in the OFF phase,
it is still in the backlog status. In this case, Client 1 and Client
2 should still receive the same level of service rate.
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Figure 5: ON/OFF request pattern. Client 1 sends 30 requests
per minute (less than half of the capacity) during the ON phase
and switches to OFF phase periodically. Client 2 is always in
the ON phase, sending requests at a rate of 120 requests per
minute (larger than half of the capacity). Requests have input
lengths of 256 and output lengths of 256.

0 200 400 600
Time (s)

0.0

200.0

400.0

600.0

Se
rv

ice

Client 1 Client 2

(a) Received service rate (VTC).

0 200 400 600
Time (s)

0.0

200.0

400.0

Re
sp

on
se

 T
im

e 
(s

)

Client 1 Client 2

(b) Response time.

Figure 6: ON/OFF request pattern. Client 1 sends 120 requests
per minute constantly during the ON phase (over its share),
and stops sending during the OFF phase. Client 2 sends 180
requests per minute all the time (over its share). Requests
have input lengths of 256 and output lengths of 256.

Variable input/output length and poisson process In this
experiment, we simulate scenarios where requests arrive
stochastically. Furthermore, they send requests with different
input and output lengths. In both Figure 7 and Figure 8, Client
1 sends requests with a high rate and Client 2 sends requests
with a rate lower but still over its share. Requests arrive ac-
cording to a Poisson process with the coefficient of variance
1. In Figure 7, client 1 sends short requests, and client 2 sends
long requests. In Figure 8, Client 1 sends requests with short
input and long output, while Client 2 sends requests with long
input and short output. Similarly, with the observation before,
VTC maintains a bounded difference between the services
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Figure 7: Client 1 sends 480 requests per minute. Client 2
sends 90 requests per minute. Requests arrive according to a
Poisson process with the coefficient of variance 1. Requests
sent from Client 1 have input lengths of 64 and output lengths
of 64. Requests sent from Client 2 have input lengths of 256
and output lengths of 256.
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Figure 8: Client 1 sends 480 requests per minute. Client 2
sends 90 requests per minute. Requests arrive according to a
Poisson process with the coefficient of variance 1. Requests
sent from Client 1 have input lengths of 64 and output lengths
of 512. Requests sent from Client 2 have input lengths of 512
and output lengths of 64.

received by two clients. FCFS cannot preserve fairness ac-
cording to Figure 7b and Figure 8b. This confirms that VTC
can work under stochastic workloads with variable lengths.

Isolation To illustrate the isolation property, we use the
setup with a deterministic arrival pattern and the same input
length and output length of 256. In Figure 9, Client 1 sends
30 requests per minute, which is under half of the server’s
capacity. Client 2 acts as an "ill-behaved" client. It sends
requests at a linearly increasing rate, and gradually over half
of the system capacity. We observe that the response time
of requests from client 1 is roughly unchanged, empirically
validating the property stated in Theorem 4.13.

Distribution shift In reality, clients’ behavior may change
over time. To this end, we evaluate the robustness of VTC
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Figure 9: Client 1 sends 30 requests per minute, Client 2
sends 120 requests per minute, in a uniform arrival pattern.
Requests have input lengths of 256 and output lengths of 256.
Client 1 sends 30 requests per minute, which is under half
of the server’s capacity. Client 2 sends requests at a linearly
increasing rate, and gradually over half of the system capacity.
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Figure 10: Clients send requests in three phases, all with
uniform arrival patterns. The first 5 minutes is ON/OFF phase.
Client 1 sends 30 requests per minute during the ON phase
(less than its share) and stops sending during the OFF phase.
Each ON or OFF phase has 60 seconds. The second 5 minutes
is the overload phase. Both Client 1 and Client 2 send 60
requests per minute, which causes the server to be overloaded.
In the last 5 minutes, Client 1 sends 30 requests per minute
(less than its share), and Client 2 sends 90 requests per minute,
which causes the server to be still overloaded. Requests all
have input lengths of 256 and output lengths of 256.

when the distribution of client requests shifts. In Figure 10,
we construct a 15-minute workload comprising three phases.
The first phase is an ON/OFF phase, in which Client 1 sends
requests less than its share only during the ON phase and stops
during the OFF phase. Client 2 sends requests at a constant
rate, which makes the server overloaded. We can observe the
pattern for the first phase to be similar to Figure 5a, which
maintains a constant total service. During the second phase,
because the two clients both send requests over their share, a
fair server should let them receive the same level of service.
Figure 10a demonstrates that VTC yields a desired pattern,
similar to that shown in Figure 3b. Figure 10b reveals that
LCF disproportionately serves Client 1, as it inherits Client
1’s deficit from the first phase. In the last phase, the serving
pattern for VTC and LCF are similar, because they simply
serve all requests from Client 1 immediately as Client 1 sends
requests under its share.
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Figure 11: Request rate distribution during the sampled 10
minutes duration with re-scale. The figure on the left denotes
the real-time request rate for the 27 clients. A few clients have
sent many more requests than others, reflecting the original
trace of a few most popular models. The figure on the right
depicts the total request rate from all 27 clients.
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Figure 12: Response time of 4 selected clients when using
FCFS (Left) and VTC (Right) in real traces. Each curve cor-
responds to one client. There are some curves that show dis-
connected because, during some periods, a client may have
no requests served. Requests distribution see Figure 11.

5.3 Results on Real Workloads

We construct real workload traces from the traces of LMSYS
Chatbot Arena [52, 53], following a similar process in [43].
The trace is from a server that serves multiple LLMs. To adapt
it to our setting, we treat each LLM as a client. In total, there
are 27 clients. To sample from this log, we define D, the dura-
tion, and R, the request rate. We then sample R∗D requests
from the trace, and re-scale the real-time stamps to [0,D]. We
use a duration of 10 minutes to be consistent with previous
experiments, and a request rate of 210 requests per minute
for the whole system. With the adapted workload, we run
Llama-2-7b on A10G (24GB). In summary, the prompts from
the 27 clients are collected from the real world interactions,
which will be sent to the server for inference on Llama-2-7b.
The timestamps are re-scaled from the real-world trace.

For better visualization of the evaluation results, we se-
lect two clients that send the most requests and two clients
that send a medium number of requests. We sort 27 clients
according to the number of requests they send, and depict
the statistics of the 13th,14th and 26th,27th clients. We do
not choose clients that send the least requests because they
typically only send requests in a small interval.

Request distribution The request rate distribution is vi-
sualized in Figure 11. The request rate of individual clients
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Figure 13: Response time of 4 selected clients (all 27 clients
when rpm=5) when using RPM in real traces. Left-upper to
right-bottom corresponds to a different rate limit (5, 15, 20,
30 requests per minutes, respectively). There are some curves
that show disconnected because, during some periods, a client
may have no requests served.
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Figure 14: Throughput of RPM versus different number of
requests per minute threshold. Compared with VTC, RPM
consistently exhibits a lower throughput.

and the total request rate are all highly dynamic. The input
and output length distribution is depicted in Figure 20 in the
Appendix. The average input length is 136, and the average
output length is 256. The input and output lengths have the
range of [2,1021] and [2,977], respectively.

Effect on response time Figure 12 shows the response time
of 4 selected clients on the real trace. With FCFS scheduling,
the response time of all clients increases drastically because
some clients send over their share, monopolizing the service
and impacting other clients. With VTC, only clients that send
requests over its share will have a drastic increase in the
response time.

Analysis of request rate per limit approach In Figure 13,
we show the response of RPM approach with different rate
limits. In Figure 14, we show the corresponding throughput
comparison with VTC. These plots reveal a core dilemma
of the RPM approach - the system has to choose between
fairness or throughput, but not both. If the rate limit is low,
then the system rejects many requests from clients that send

over their share. This opens the capacity for clients with fewer
requests. As demonstrated in the uppermost plot in Figure 13,
all requests have a similar response time. However, this low
rate limit rejects more requests than needed, causing a lower
throughput (cluster-wise throughput is ≈ 340 output tokens
per second when RPM=5, as opposed to ≈ 779 tokens per
second in VTC or FCFS). When the rate limit is set higher,
the system throughput is gradually increasing, i.e., increasing
from 340 tokens to 747 tokens per second. However, the
response time for all requests grows up. When the request rate
is set higher and higher, the response time curve converges to
the one in FCFS, and there is no fairness guarantee anymore.
In other words, the RPM approach can be summarized as
follows: it functions as an FCFS (First-Come, First-Served)
approach with admission control (rate limiting), rather than
as a truly fair scheduler. Its fairness is achieved by rejecting
numerous requests from other clients, which compromises
the overall system throughput.

Quantitative Measurement We measured the maximum
and average service difference described in Section 5.1 dur-
ing the time window (10 minutes) in which we ran the ex-
periments. Table 2 is a summary for all baselines using this
quantitative measurement for real workload trace.

Scheduler Max Diff Avg Diff Diff Var Throu Isolation

FCFS 759.97 433.53 32112.00 777 No
LCF 750.49 323.82 29088.90 778 Some9

VTC 368.40 251.66 6549.16 779 Yes
VTC(predict) 365.47 240.33 5321.62 773 Yes
VTC(oracle) 329.46 227.51 4475.76 781 Yes

RPM(5) 143.86 83.58 1020.46 340 Some
RPM(20) 446.76 195.71 7449.79 694 Some
RPM(30) 693.66 309.45 24221.31 747 Some

Table 2: The service difference is counted by summing the
service difference between each client and the client who re-
ceived the maximum services. Throughput is the total number
of tokens (including input and output tokens) processed di-
vided by the total execution time.

5.4 Ablation Study

In Figure 15, we evaluate how different memory pool sizes
and request lengths will affect scheduling fairness. As shown
in Figure 15a, with a larger memory pool size, the attain-
able batch size becomes larger. Therefore, there is greater
variation in the absolute difference of accumulated services
received by the clients when the memory pool is 65000 than
that is 35000, which empirically validates Theorem 4.4. Fig-
ure 15b demonstrates that larger request lengths will also
lead to greater variations in the service difference. This is

9LCF achieves isolation if the workload does not change. However, the
isolation can be broken by newly joined clients whose virtual counter is
lagging behind.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation    977



200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0 1e5

Ab
so

lu
te

 D
iff

er
en

ce
 in

 S
er

vi
ce

VTC-512-35000 VTC-512-65000

(a) Different memory pool size.
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Figure 15: In all settings, both clients are sending requests
of the same lengths with uniform arrival patterns. They send
requests with different request rates but are both backlogged.
Three different request lengths (256*2, 512*2 and 768*2) are
evaluated for the 35000 KV cache setting.

caused by the unknown output length of request generation.
At line 24 in Algorithm 2, the most conservative way of only
counting the input tokens leads to over-compensation for the
smallest counter, as all the potential output tokens are not
counted. A shorter request length has a milder effect of over-
compensation. The curves of (512∗2) and (768∗2) show the
same variance. This is because at length (512∗2), the upper
bound given by VTC has been reached.

6 Related Works

Fairness in scheduling Achieving fairness in scheduling
resources in a multi-client environment has been a long-
standing topic in computer science [14, 41, 42, 51]. Among
these, Fair Queuing [30] has been adapted into many vari-
ants for different contexts such as CPU scheduling [3], link
bandwidth allocation [11, 15, 17, 23, 38], and memory al-
location [33]. Deficit round robin [45] and stochastic fair
queuing [27] are non-real-time fair queuing algorithms for
variable-size packets, providing guarantees for long-term fair-
ness. There are also real-time fair queuing algorithms (e.g.,
WFQ [11] and SFQ [17]) that can make more strict short-term
delay guarantees [12]. Our scheduling algorithm is different
from these algorithms because we need to consider the batch-
ing effects across multiple clients’ requests and deal with
unknown request length. Further, we need to accommodate
a flexible notion of fairness on both performance and GPU
resource consumption.

Fairness in ML training Within the realm of deep learn-
ing, research has delved into scheduling jobs in shared clus-
ters [7, 26, 32, 40], with a primary focus on long-duration
training jobs. Machine Learning training jobs have unique
characteristics and traditional fair schedulers [18,22] designed
for big-data workflow usually fail [26]. In particular, Them-
sis [26] points out that ML jobs are device placement sensitive,
where jobs will be envious of other’s placement even if they

are assigned the same number of resources. It then defines a
finish-time fairness metric to measure fairness in ML training
scenarios. Pollux [40] further points out that ML jobs should
jointly consider the throughput and the statistical efficiency,
and develop a goodput-based scheduler that further improves
the finish-time fairness of ML jobs. In this paper, we con-
sider fairness in LLM serving. The fairness problem in LLM
serving is quite different from the fairness problem in model
training. In model training, different clients’ GPUs are iso-
lated and the problem is which GPUs are assigned to each
client. Achieving fairness in LLM serving requires design for
a different set of issues, including how to batch requests from
multiple clients to achieve high GPU utilization.

LLM Serving Systems How to improve the performance
of LLM serving systems has recently gained significant at-
tention. Notable techniques cover advanced batching mecha-
nisms [13, 50], memory optimizations [24, 44], GPU kernel
optimizations [2, 9, 34, 48], model parallelism [2, 25, 39], pa-
rameter sharing [55], and speculative execution [28, 46] were
proposed. FastServe [49] explored preemptive scheduling to
minimize job completion time (JCT). However, none of these
works consider fairness among clients. Our work bridges this
gap, and our proposed scheduling methods can be easily in-
tegrated with many of these techniques. Our implementation
used for this paper is built atop continuous batching (iteration-
level scheduling) [50]10 and PagedAttention [24].

7 Conclusion

We studied the problem of fair serving in Large Language
Models (LLMs) with regard to the service received by each
client. We identified unique characteristics and challenges
associated with fairness in LLM serving, as compared to tradi-
tional fairness problems in networking and operating systems.
We then defined what constitutes fairness and proposed a fair
scheduler, applying the concept of fair sharing to the domain
of LLM serving at the token granularity.
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A Missing Proofs in Proving Fairness of VTC

Lemma A.1. In Algorithm 2, mini∈Q(ci) is non-decreasing
during the time when Q ̸= /0.

Proof. We prove the lemma by case study on each line of
changing the ci’s.

• In the initialization, all ci = 0, lemma holds.
• If the condition of line 7 is satisfied, at lines 8-14, a

new client will be added to Q. If lines 9-10 are reached,
the mini∈Q(ci) is equals to its value at the last time
when Q ̸= /0. If lines 12-13 are reached, since cu =
max{cu,mini∈Q ci}, the mini∈Q(ci) will not change.

• At line 24 and line 30, the ci’s can only increase, so that
mini∈Q(ci) is non-decreasing.

• At line 26, if a client has cleared all its requests from
Q, that the client is removed from Q, mini∈Q(ci) cannot
decrease.

Lemma A.2. The following invariant holds at any time in
Algorithm 2 when Q ̸= /0:

max
i∈Q

ci−min
i∈Q

ci ≤max(wp ·Linput ,wq ·M) (2)

Proof. We prove the lemma by induction. During the induc-
tion, for each line of change of ci in Algorithm 2, we use c′i
to denote the new value and ci to denote the original value.
Similarly, we use Q′ to donate the new value and Q to denote
the original value. We also use c(t)i to denote the value of ci at
time t, and Q(t) to denote the value of Q at time t.

1. In the initialization, all ci = 0, Equation (2) holds.

2. If a client u /∈ Q receive a new request and thus Q′ =
Q ∪ {u}, line 12-13 will be reached, and thus c′u =
max{cu,mini∈Q ci} ≥mini∈Q ci. Then we have,

min
i∈Q′

c′i = min{c′u,min
i∈Q

ci}= min
i∈Q

ci. (4)

Let t be the last time that u was in Q before the change,
and thus c(t)u = cu. From Equation (2), there is

max
i∈Q(t)

c(t)i − min
i∈Q(t)

c(t)i ≤max(wp ·Linput ,wq ·M).

Then we have

c(t)u ≤ max
i∈Q(t)

c(t)i ≤ min
i∈Q(t)

c(t)i +max(wp ·Linput ,wq ·M).

From Theorem A.1, there is mini∈Q(t) c(t)i ≤mini∈Q ci, so
we have

cu = c(t)u ≤min
i∈Q

ci +max(wp ·Linput ,wq ·M),

which can derive

c′u =max{cu,min
i∈Q

ci}≤min
i∈Q

ci+max(wp ·Linput ,wq ·M).

Combine with Equation (2) and Equation (4), there is

max
i∈Q′

c′i = max{c′u,max
i∈Q

ci}

≤min
i∈Q

ci +max(wp ·Linput ,wq ·M)

≤min
i∈Q′

c′i +max(wp ·Linput ,wq ·M)

Therefore, Equation (2) holds after the change.

3. If a client u is left from Q at line 26, the differ-
ence maxi∈Q ci−mini∈Q ci will not increase. Because
max(C′)−min(C′)≤max(C)−min(C),∀C ⊇C′,C′ ̸=
/0. Therefore, Equation (2) still holds.

4. At line 24, since ck = mini∈Q ci, there is

min
i∈Q

ci ≤min
i∈Q

c′i ≤ c′k ≤min
i∈Q

ci +wp ·Linput . (5)

From Equation (2), we have

max
i∈Q

ci ≤min
i∈Q

ci +max(wp ·Linput ,wq ·M).

Because:
max
i∈Q

c′i = max(max
i∈Q

ci,c′k)

We have:

max
i∈Q

c′i ≤max(min
i∈Q

ci+max(wp ·Linput ,wq ·M),c′k) (6)

In Equation (5) we have derived that:

c′k ≤min
i∈Q

ci +wp ·Linput

Thus:

c′k ≤min
i∈Q

ci +wp ·Linput

≤min
i∈Q

ci +max(wp ·Linput ,wq ·M)

Thus:

max(min
i∈Q

ci +max(wp ·Linput ,wq ·M),c′k) =

min
i∈Q

ci +max(wp ·Linput ,wq ·M).

Thus Equation (6) gives:

max
i∈Q

c′i ≤min
i∈Q

ci +max(wp ·Linput ,wq ·M) (7)

Finally, combining the inequality from Equation (5) that

min
i∈Q

ci ≤min
i∈Q

c′i,

we arrive at:

max
i∈Q

c′i ≤min
i∈Q

c′i +max(wp ·Linput ,wq ·M).

Therefore, Equation (2) holds.
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5. At line 30, let k = argmaxi∈Q c′i, so that c′k = maxi∈Q c′i.
Let r be the last one among requests from k that have
been scheduled. Let t be the time when r was selected
at line 21. Since r is the last one been scheduled from k,
there is

max
i∈Q

c′i = c′k ≤ c(t)k +wq ·M (8)

Because request r from client k has been scheduled at
time t, from line 20, there is c(t)k = mini∈Q(t) c(t)i . From

Lemma A.1, we have mini∈Q(t) c(t)i ≤ mini∈Q c′i. Com-
bine with Equation (8), we have

max
i∈Q

c′i−min
i∈Q

c′i ≤ wq ·M.

Therefore, Equation (2) holds.

Theorem 4.8. For any work-conserving schedule without
preemption, there exists some query arrival sequence such
that for client f ,g and a time period t1, t2, such that

|Wf (t1, t2)−Wg(t1, t2)| ≥ wq ·M,

where clients f ,g are backlogged during the time [t1, t2).

Proof. Consider at time 0 the client f sends a list of requests
which cannot fit in the memory at once. Because of work-
conserving, client f will fill the whole running batch. In this
case, client f is backlogged, and any new query is not pro-
cessed until the existing queries finish processing. Assume
that all existing queries finish at time T , and that at time ε

with ε close to 0, a second client g sends another batch of
requests. Now during the time interval [ε,T ], both clients f ,g
are backlogged since there exist queries from both clients in
the queue. At time T , client f received service from the first
batch of processing, which can be up to wq ·M if the memory
is luckily fully utilized. Thus we have

Wf (ε,T ) = wq ·M.

On the other hand, client g did not receive any service during
the time period [ε,T ]. Thus Wg(ε,T ) = 0. In this case, we
have constructed an instance with

|Wf (t1, t2)−Wg(t1, t2)| ≥ wq ·M.

Theorem 4.11. Let A(r) and D(r) denote the arrival time
and dispatch time of a request r. Assume there are in total n
clients, ∀t1, t2, if at t1, a client f is not backlogged and has no
requests in the running batch, then the next request r f with
t1 < A(r f )< t2 will have its response time bounded:

D(r f )−A(r f )≤ 2 · (n−1) ·
max(wp ·Linput ,wq ·M)

a
(3)

Here a is the lower bound of the capacity in Definition 4.10.

Proof. Let the counter for f be c f after line 13 for r f . Before
Dr f , since r f is always in the queue, the counter for f will not
be lifted. Since there is no running batch of f in the server,
line 21 will select r f to be the next one for f . Lemma 4.3
shows that for any other client g,

cg− c f < max(wp ·Linput ,wq ·M).

In the worst case where these counters are incremented se-
quentially, it will take at most 2∗ (n−1)∗ max(wp·Linput ,wq·M)

a .
Thus, giving a bound for the dispatch time of r f .

Theorem 4.9. If a client f is backlogged during time interval
[t1, t2), for any client g, there is

Wf (t1, t2)≥Wg(t1, t2)−4U.

Here U is the upper bound from Equation (2).

Proof. If g is not backlogged during the entire [t1, t2), then
Wg(t1, t2)≤U , the theorem trivially holds. Next, assume g is
backlogged at some point during [t1, t2). Let t ′1, t ′2 be the first
time and the last time g is backlogged between [t1, t2). Since
there is no request submitted in [t1, t ′1) and [t ′2, t2), we have

Wg(t1, t ′1)≤U, Wg(t ′2, t2)≤U. (9)

Since ci’s in Algorithm 2 are non-decreasing,

c(t1)f ≤ c
(t ′1)
f ≤ c

(t ′2)
f ≤ c(t2)f , (10)

c(t1)g ≤ c
(t ′1)
g ≤ c

(t ′2)
g ≤ c(t2)g . (11)

According to Lemma 4.3 there is,

c
(t ′2)
g ≤ c

(t ′2)
f +U, c

(t ′1)
g ≥ c

(t ′1)
f −U.

By Equation (10) and Equation (11):

c
(t ′2)
g ≤ c(t2)f +U, c

(t ′1)
g ≥ c(t1)f −U.

Since Wg(t ′1, t
′
2)≤ c

(t ′2)
g − c

(t ′1)
g , there is

Wg(t ′1, t
′
2)≤ c(t2)f − c(t1)f +2U.

Combine with Equation (9), there is:

Wg(t1, t2) =Wg(t1, t ′1)+Wg(t ′1, t
′
2)+Wg(t ′2, t2)

≤ c(t2)f − c(t1)f +4U.

Since f is backlogged during (t1, t2),

Wf (t1, t2) = c(t2)f − c(t1)f

Thus:
Wf (t1, t2)≥Wg(t1, t2)−4U
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Theorem 4.13. (Fairness for non-overloaded clients) For
any time interval [t1, t2), we claim the following.

Assume a client f is not backlogged at time t1 and for any
time interval [t, t2), t1 ≤ t < t2, f has requested services less
than T (t,t2)

n(t,t2)
−5U, where T (t, t2) is the total services received

for all clients during the interval [t, t2), n(t, t2) is the number
of clients that have requested services during the interval, and
U is the upper bound from Equation (2).

Then, all of the services requested from f during the inter-
val [t1, t2) will be dispatched.

Proof. We prove by contradiction. Assume there is a request
from f that has not been dispatched in t2, i.e., f is backlogged
at t2. Since f is not backlogged at t1, there exists a (non-
empty) set of time steps such that f becomes backlogged. We
let t be the largest element in the set, i.e. f is backlogged at
any time in [t, t2). We claim that Wf (t, t2)≥ T (t,t2)

n(t,t2)
−4U .

From the pigeonhole principle, there is at least one client
g who has received services Wg(t, t2) ≥ T (t,t2)

n(t,t2)
. If f = g, the

claim holds. If not, from Theorem 4.9, we have

Wf (t, t2)≥Wg(t, t2)−4U ≥ T (t, t2)
n(t, t2)

−4U.

Since f swicthes from non-backlogged to backlogged at
t, requests sent before t at most contributes a U increase
in Wf (t, t2). Thus, requests sent in (t, t2) at least contribute
to T (t,t2)

n − 5U , which contradicts to the assumption in the
theorem.

B Advanced VTC Variants

This section presents additional experiments on various vari-
ants of VTC. Appendix B.1 evaluate weighted VTC, which
is introduced in Section 4.3. In Appendix B.2, we show con-
cretely how VTC can be tailored to specific cost functions,
using a profiled service cost function as an example. In Ap-
pendix B.3, we include more analysis of VTC with length
prediction, which is introduced in Section 4.4. We empirically
show its effectiveness in obtaining a better service discrep-
ancy.

For all experiments shown in this section, we run Llama-2-
7b on A10G (24GB), using the memory pool of 10000 tokens
for KV cache.

B.1 VTC for Weighted Fairness
Figure 16 demonstrates the effectiveness of the weighted VTC
in managing clients with varied priority levels. We conducted
a test using a synthetic workload involving four overloaded
clients. The results depicted in Figure 16a were achieved
using standard VTC, which illustrates the comparable levels
of service received by all four clients. In contrast, Figure 16b,
which was obtained through the application of weighted VTC,

shows differentiated service levels. The clients were assigned
weights of 1, 2, 3, and 4, respectively, and the resulting service
distribution closely adhered to these ratios.
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Figure 16: Received service during the 10 minutes of the
synthetic overloaded workload with input and output length
both at 256. The figure on the left is obtained through standard
VTC. The figure on the right is obtained through weighted
VTC with weights 1:2:3:4 for the 4 clients.

B.2 VTC with Profiled Cost Function
In this section, we demonstrate the generalizability of the
token cost function used in VTC (see Section 4.2) by using a
profiled service cost function.

To match our experimental setup, we profiled the infer-
ence time for Llama-2-7b on an A10G (24GB) across various
conditions, as shown in Figure 17. We employed a batch
size that utilizes the entire memory pool for each data point
corresponding to specific input and output lengths. Conse-
quently, shorter lengths allow for larger batch sizes, while
longer lengths necessitate smaller ones. The prefill time is
determined by dividing the total prefill time of the batch by
the batch size. Similarly, the decode time is calculated by
dividing the time taken to decode all tokens in the batch by
the batch size. The function h(np,nq) is defined as the sum of
prefill and decode times for the data point with input length
np and output length nq.

When considering the same total number of input and out-
put tokens, the decode time for scenarios involving all output
tokens is about 2 to 5 times the prefill time for scenarios in-
volving all input tokens. The profiled cost function does not
follow a linear model. We proceeded to fit the profiled data
points and adjusted the coefficients to derive the following
cost function:

h(np,nq) = 2.1 ·np +nq +0.04 ·npnq +0.032 ·n2
q +11.46

We conducted real trace experiments using this profiled
cost function as the metric, the results of which are presented
in Table 3. The disparity between VTC and other baseline
methods is insignificant because clients with low request rates,
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Figure 17: Profiled prefill and decode time in different settings.
For each data point, the batch size is set to the maximum to
fulfill the memory pool (full utilization). The prefill time and
decode time are all divided by the batch size. For the figure
on the right, the legend for each curve denotes its number of
input tokens.

when starved, do not substantially impact the overall service
difference. However, as observed in Figure 18, VTC success-
fully maintains low response times for clients with low request
rates, a feat not matched by other baselines except for LCF. In
the case of LCF, clients with consistently high request rates
face undue penalties, resulting in excessively high response
times. We reinforce our findings by assessing the profiled cost
function on a synthetically overloaded workload to highlight
the differences between VTC and FCFS, as shown in Table 4.

The results empirically show that VTC can achieve fairness
using a customized cost function. However, our goal is not
to determine the optimal cost function or pricing model, as
these can vary based on numerous factors in a production
environment and may change over time. The investigation
into the cost function and pricing model is designated for
future research.

Scheduler Max Diff Avg Diff Diff Var Throu Isolation

FCFS 743.23 457.29 26645.42 777 No
LCF 709.35 384.78 23299.20 778 Some

VTC 707.35 368.74 21918.67 780 Yes
VTC(predict) 617.22 337.05 11803.41 778 Yes
VTC(oracle) 387.43 277.18 4541.57 783 Yes

RPM(5) 230.78 151.00 823.15 340 Some
RPM(20) 445.34 270.51 5938.52 694 Some
RPM(30) 801.16 377.22 25980.39 747 Some

Table 3: Results run on real workload under the profiled cost
function introduced in Appendix B.2. The service difference
is counted by summing the service difference between each
client and the client who received the maximum services.
Throughput is the total number of tokens (including input and
output tokens) processed divided by the total execution time.

Scheduler Max Diff Avg Diff Diff Var Throughput

FCFS 323.18 317.13 15.98 876
VTC 137.27 74.87 2819.40 900

VTC(oracle) 4.28 0.34 0.91 893

Table 4: Results run on the synthetic overloaded workload
with 2 clients under the profiled cost function introduced in
Appendix B.2. The work difference is counted by summing
the work difference between each client and the client who
received the maximum services.

B.3 VTC with Length Prediction

The adapted pseudocode for VTC with length prediction is
detailed in Algorithm 3. In line 25, the cost associated with the
predicted number of output tokens is preemptively calculated.
Lines 32-37 describe the adjustments made to the cost to
correspond with the actual number of output tokens produced.

Figure 19 demonstrates how length prediction reduces ser-
vice discrepancies among clients in a synthetic workload
scenario where all clients are overloaded. "VTC (oracle)"
refers to a simulation using a predictor with 100% accuracy.
"VTC (±50%)" simulates a predictor that randomly selects a
value within 50% of the actual output length, either above or
below. While standard VTC ensures that the absolute differ-
ences in services received by clients remain bounded and do
not grow over time, VTC with length prediction significantly
lowers these differences throughout the test period, even with
a prediction error margin of 50%. Table 5 and Table 6 provide
quantitative assessments of the service discrepancies among
overloaded clients under the same conditions.

Scheduler Max Diff Avg Diff Diff Var Throughput

VTC 192.88 103.77 6981.24 893
VTC (±50%) 33.98 12.54 111.94 904
VTC (oracle) 5.87 0.51 1.71 895

Table 5: Results run on 10-minute synthetic workload same
with Figure 19 for 2 clients. The service difference is counted
by summing the work difference between each client and the
client who received the maximum services. Throughput is the
total number of tokens (including input and output tokens)
processed divided by the total execution time.

C Discussions

C.1 VTC Integration in Real Systems

In Algorithm 2, we have shown an example of VTC inte-
gration with continuous batching. In implementation, VTC
integration should be a simple change in the request scheduler.
Generally, for an existing serving system, there are three mod-
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Figure 18: Response time of the 27 clients during the 10
minutes of real trace simulation using different schedulers.
The VTC style schedulers are using the profiled cost function
introduced in Appendix B.2. There are some curves that show
disconnected because, during some periods, a client may have
no requests served. Requests distribution see Figure 11.

ules that need to be modified. First, the monitoring stream
handles counter-lifting when a new request comes, as shown
in Algorithm 4, which is the same as in Algorithm 2. Second,
when new tokens have been processed, the counters should
be updated according to a pre-defined cost function as dis-
cussed in Section 4.2. Third, when new requests need to be
selected for processing, we schedule the request from a user
with the lowest counter first. The added modules are demon-
strated in Algorithm 4. We are assuming a customized cost
function h(np,nq) as introduced in Section 3.1. At line 22,
nr

p,n
r
q denote the number of processed input and output to-

kens, and nr(old)
p ,nr(old)

q denote the number of processed input
and output tokens before processing the new tokens.

Those modules for maintaining the virtual token counters
and selecting requests according to the counters could be
additive features of an existing serving system. However, in
some cases, VTC is possibly in conflict with a scheduling
algorithm that optimizes performance while being against
fairness. Cache-aware scheduling introduced in [54] is an
example in which requests with shared prefixes will always
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Figure 19: The figures illustrate the maximum difference in
accumulated service received by clients during a 10-minute
period of synthetic workload, where both the input and output
lengths are set at 256. The left figure is derived from a simula-
tion involving two clients, while the right figure comes from
a simulation involving eight clients. In both scenarios, the
request rate for each client surpasses the available capacity,
resulting in continuous backlogging of each client.

Scheduler Max Diff Avg Diff Diff Var Throughput

VTC 322.16 162.20 5151.49 875
VTC (± 50%) 99.43 66.32 487.10 875
VTC (oracle) 43.23 36.34 56.52 875

Table 6: Results run on 10-minute synthetic workload same
with Figure 19 for 8 clients. The service difference is counted
by summing the work difference between each client and the
client who received the maximum services. Throughput is the
total number of tokens (including input and output tokens)
processed divided by the total execution time.
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Figure 20: Request input and output length distribution in the
real workload trace during the sampled 10 minutes duration
with re-scale. The average input length is 136, and the average
output length is 256. The input and output lengths have the
range of [2,1021] and [2,977], respectively.

be prioritized. A natural solution to combine the two is adding
a policy of switching between the two schedulers by setting
tolerable fairness bounds. We leave such exploration as future
research.

C.2 Adapted Deficit Round Robin
We have briefly discussed in Section 2.3 why Deficit Round
Robin (DRR) cannot be directly applied. In this section, we
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Algorithm 3 VTC with Length Prediction

Input: request trace, input token weight wp, output token
weight wq, upper bound from Equation (2) denoted as U .

1: let current batch B← /0

2: let ci← 0 for all client i
3: let Q denote the waiting queue, which is dynamically

changing.
4: ▷ with monitoring stream:
5: while True do
6: if new request r from client u arrived then
7: if not ∃r′ ∈ Q,client(r′) = u then
8: if Q = /0 then
9: let l← the last client left Q

10: cu←max{cu,cl}
11: else
12: P←{i | ∃r′ ∈ Q,client(r′) = i}
13: cu←max{cu,min{ci | i ∈ P}}
14: Q← Q+ r
15: ▷ with execution stream:
16: while True do
17: if can_add_new_request() then
18: Bnew← /0

19: while True do
20: let k← argmini∈{client(r)|r∈Q} ci
21: let r be the earliest request in Q from k.
22: if r cannot fit in the memory then
23: Break
24: ck← ck +wp · input_length(r)
25: ck← ck +wq · predicted_out put_length(r)
26: Bnew← Bnew + r
27: Q← Q− r
28: forward_prefill(Bnew)
29: B← B+Bnew

30: forward_decode(B)
31: ▷ Adjust the cost of output tokens
32: for each r ∈ B do
33: δ← out put_len(r)− predicted_out put_len(r)
34: if δ > 0 then
35: cclient(r)← cclient(r)+wq

36: if r is finished and δ < 0 then
37: cclient(r)← cclient(r)+wq ·δ
38: B← filter_finished_requests(B)

discuss an adaptation of Deficit Round Robin [45] and show
it is equivalent to our proposed VTC scheduler.

The original DRR can be described as follows:
1. The algorithm maintains a constant Q, which is the quan-

tum that each client has.
2. Every client maintains a variable Ci that represents its

deficit, which is initialized as 0.
3. On each round, the algorithm visits each client with a

Algorithm 4 General VTC

Input: request trace, input token weight wp, output token
weight wq, upper bound from Equation (2) denoted as U .

1: let current batch B← /0

2: let ci← 0 for all client i
3: let Q denote the waiting queue, which is dynamically

changing.
4: ▷ with monitoring stream:
5: while True do
6: if new request r from client u arrived then
7: if not ∃r′ ∈ Q,client(r′) = u then
8: if Q = /0 then
9: let l← the last client left Q

10: cu←max{cu,cl}
11: else
12: P←{i | ∃r′ ∈ Q,client(r′) = i}
13: cu←max{cu,min{ci | i ∈ P}}
14: Q← Q+ r
15: ▷ when process new request:
16: if add_new_request() then
17: let k← argmini∈{client(r)|r∈Q} ci
18: let r be the earliest request in Q from k.
19: Q← Q− r
20: original process when selecting r.
21: ▷ when new tokens been processed:

22: ci← ci +∑r|client(r)=i

(
h(nr

p,n
r
q)−h(nr(old)

p ,nr(old)
q )

)

non-empty queue and schedules its requests as many as
possible if the incurred cost P is less than or equal to
Q+Ci. The Ci is then updated to Q+Ci−P if P >Ci or
Ci−P if else.

The obstacle to applying DRR in LLM serving is that we
do not know how many requests we should schedule to meet
the requirement of P ≤ Q+Ci since the number of output
tokens is unknown in advance.

We then give an adapted version for LLM serving:
1. The algorithm maintains a constant Q, which is still the

quantum that each client has.
2. Every client maintains a variable Ci that represents its

debt, which is initialized as 0.
3. In each round, the algorithm processes each client. If

Ci ≤ 0, it refills Ci by adding Q to it. Should the updated
Ci become positive, the algorithm schedules as many
requests as possible, such that the cost associated with
the prompt tokens P slightly exceeds Ci with the addi-
tion of the last scheduled request. After scheduling, P is
subtracted from Ci.

4. Each time a new token is decoded, the associated cost
is deducted from the respective Ci. Consequently, Ci
may become negative, exceeding the value of Q multi-
ple times, and it might require waiting through several
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rounds before it can be scheduled again.

Fairness is no longer strictly bounded by Q, yet a smaller Q
promotes a tighter constraint. When Q = ε is extremely small,
smaller than the cost of a single prompt token, the algorithms
revert to functioning like the VTC algorithm. This is because
each round results in one of two outcomes: either all Ci values
remain non-positive, prompting another round, or the highest
Ci turns positive and the corresponding client is scheduled.
The client with the highest Ci is the one who has received the
least service, which corresponds to having the smallest virtual
counter in VTC.

If a client has no requests in the queue at a given time, it
will cease to be refilled once Ci ≥ 0. When a new request
arrives, its Ci will be within (0,ε], approximating maxi Ci.
The maxi Ci remains within the range of (0,ε] because the
algorithm persistently adds ε to Ci to maintain it positive, but
then rapidly pulls it back into the negative by scheduling new
requests. This process mirrors the counter lift mechanism in
VTC.

In addition to its similarity to VTC, practically, simulating
repeated round-robin with a small quantum Q is inefficient.
Therefore, we focus solely on analyzing VTC in this paper,
leaving the discussion of the round-robin simulation here for
reference.

C.3 Future Work

Preemption As we mentioned in Section 2.1, this paper
focuses on how to integrate fair scheduling with continuous
batching, and leaving an investigation on preemption as an
orthogonal future work. But we still would like to discuss
how preemption will affect the VTC algorithm, and point out
a possible future research on it.

The nature of unpredictable length in a no-preemption
framework directly affects the fairness bound in the main the-
orem Theorem 4.4, which is U = 2max(wp ·Linput ,wq ·M).
Intuitively, the worst case occurs when many requests from
one client are added, generating a large number of tokens
that cannot be preempted. During the process, other clients
cannot catch up arbitrarily because the memory is occupied.
Essentially, this is caused by an underestimation of a future
number of tokens, similarly explained in the ablation study
(Section 5.4) and VTC with length prediction (Section 4.4).

In Theorem 4.7, we mentioned that we could restrict the
memory usage for each client in the running batch to obtain
a better bound. However, this can potentially lower the over-
all throughput because the memory may not always be fully
utilized. Having a preemption mechanism could be a good
solution to address the problem of underestimating and tight-
ening the bound. Basically, if the difference in service is larger
than a threshold, we can preempt the requests in processing
and swap in requests from clients with lower counters.

VTC for distributed systems Integrating VTC in a dis-
tributed LLM serving system is an interesting direction for
future work. For a distributed setup where there are many
replicas of serving engines, we will have a central request
dispatcher where we can keep the token counter and enforce
the algorithm (this is similar to hierarchical fair sharing [4] in
the network domain, and multi-queue fair queuing [19]). The
bound now is dependent on the total memory capacity of all
the serving engines. However, in the distributed setting, the
counter will be updated by different serving engines concur-
rently, raising the problem of counter synchronization, which
will be interesting to explore as a future work.

VTC and Auto-scaling The VTC algorithm does not rely
on a constant capacity. Adding and removing GPUs will
not affect the algorithm but may need a hierarchical virtual
counter as discussed in the paragraph about distributed sys-
tems. However, auto-scaling is a possible approach to mitigate
the issue of throughput degradation in RPM. The resources
can be auto-scaled to fit the fluctuating traffic, but this requires
flexible and responsive resource management. Auto-scaling
has its own challenges, including operational cost overhead,
inaccurate workload prediction, and delays. A combination of
VTC and auto-scaling is a future direction worth exploring.
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Abstract

In this work, we reveal that the kernel-by-kernel execution
scheme in the existing machine learning optimizing compilers
is no longer effective in fully utilizing hardware resources pro-
vided by the advances of modern GPU architectures. Specifi-
cally, such scheme suffers from severe non-computation over-
head and off-chip memory traffic, making the optimization
efforts from the state-of-the-art compiler techniques greatly
attenuated on the newer generations of GPUs. To address
this emerging challenge, we propose MonoNN, the first ma-
chine learning optimizing compiler that enables a new mono-
lithic design and optimization space for common static neural
network (NN) inference tasks on a single GPU. MonoNN
can accommodate an entire neural network into a single
GPU kernel, drastically reducing non-computation overhead
and providing further fine-grained optimization opportuni-
ties from the newly formed monolithic optimization space.
Most importantly, MonoNN identifies the resource incom-
patibility issue between various NN operators as the key
design bottleneck for creating such a monolithic optimiza-
tion space. Then MonoNN effectively tackles it by system-
atically exploring and exploiting the parallelism compensa-
tion strategy and resource trade-offs across different types
of NN computations, and by proposing a novel schedule-
independent group tuning technique to significantly shrink
the extremely large tuning space. Finally, MonoNN provides
a compiler implementation that incorporates our proposed
optimizations and automatically generates highly efficient
kernel code. Extensive evaluation on a set of popular produc-
tion inference tasks demonstrates that MonoNN achieves an
average speedup of 2.01× over the state-of-the-art frame-
works and compilers. Specifically, MonoNN outperforms
TVM, TensorRT, XLA, and AStitch by up to 7.3×, 5.9×,
1.7× and 2.9× in terms of end-to-end inference performance,
respectively. MonoNN source code is publicly available at
https://github.com/AlibabaResearch/mononn.
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Figure 1: Low hardware utilization for inference caused by
growing non-computation overhead.

1 Introduction

In recent years, machine learning (ML) inference tasks
have become one of real-world systems’ most fundamen-
tal computation types. Existing optimization approaches
[2, 7, 18, 24, 39, 41, 42] transform an ML computational graph
into hundreds or thousands of computation kernels, and of-
fload them onto high-performance AI accelerators, e.g., GPUs,
for drastic latency reduction. However, with the increasing
hardware advances of these complex GPUs on computation
capability, the traditional kernel-by-kernel execution scheme
is no longer effective in fully utilizing hardware resources.

Take XLA [2] as an example, which is one of the most pop-
ular and effective optimizers for ML workloads, Fig.1a shows
the non-computation overheads (i.e., the end-to-end inference
latency minus the pure kernel execution time on GPU) of five
popular models on two generations of NVIDIA GPUs. Typi-
cally, the non-computation overhead mainly originates from
frequent context switches between the host and GPU, e.g.,
framework scheduling and kernel launching. With the signifi-
cant increase in computing power from T4 to A10, although
the NN operators are executed faster, the non-computation

⋄Work was done when interned at Alibaba.
∗Equal contribution.
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overheads tend to dominate the end-to-end performance, As
illustrated in Fig.1b, the achieved end-to-end performance
speedup can be far less than the kernel execution speedup
when shifting across generations of hardware.

Moreover, the recent increase in computing power remains
faster than that of memory bandwidth in recent generations
of GPUs [42], making off-chip memory traffic among differ-
ent GPU kernels within a model a significant performance
bottleneck. Furthermore, there is a common scenario that
often occurs in real-world systems and exacerbates the situa-
tion: CPUs are usually busy with data pre-/post-processing
for real-time ML tasks, causing further delays in schedul-
ing and launching their GPU kernels and subsequently in-
creasing the non-computation overhead. To the best of our
knowledge, although the kernel fusion scope and the corre-
sponding techniques might be different, all the existing ML
compilers [7, 18, 24, 39, 41, 42] suffer from performance is-
sues discussed above due to the fundamental kernel-by-kernel
execution scheme. Therefore, there is an urgent demand for
a general solution with minimal non-computation overhead
that can be widely applied to common ML inference tasks.

In this paper, we make a key observation that there exists
a monolithic design and optimization space accommodating
a wide spectrum of prevalent static DNN models in single
GPU inference (Sec.3). MonoNN keeps the computation flow
of the entire neural network on the GPU side without going
back to the host to seek scheduling control. Such a scheme
effectively avoids the non-computation overhead caused by
the CPU-GPU context switch. With the structure of modern
static DNNs consisting of repetitive layers, it would be more
justified to aggressively enlarge the fusion scope, even result
in a single kernel1.

However, it is non-trivial to provide a general optimiza-
tion scheme to consolidate all types of computations of an
entire neural network into a monolithic kernel, while guaran-
teeing high performance and providing further fine-grained
optimization opportunities from the newly formed monolithic
optimization space. We observe that the main difficulty in
forming such an optimization space is resource incompatibil-
ity between different types of neural network computations.
On the one hand, a resource configuration that favors some
operators can lead to a dramatic drop in performance on some
other operators (e.g., low thread-level parallelism for GEMM
computation is inefficient for element-wise operators). On
the other hand, the resource configuration (e.g., parallelism
configuration, register, and shared memory allocation) is fixed
during the lifetime of a GPU kernel. Failure in reconciling
such resource incompatibility in a monolithic kernel will re-
sult in poor performance. Furthermore, accommodating all
operators of a complete NN into one GPU kernel results in an
extremely large optimization space, making it very difficult
for performance tuning on the whole computation graph.

1We also present a study on the fusion granularity under the monolithic
optimization space in Sec.7.3

To address these emerging problems, we propose MonoNN,
an ML optimizing compiler that enables a new monolithic
optimization space for common NN inference tasks on mod-
ern GPU-centric architectures. Specifically, to address the
significant resource incompatibility issue and accommodate
the different resource requirements from various operators,
we propose a context-aware instruction rescheduling tech-
nique (Sec.4.2.2). The key insight is to exploit the hidden
instruction-level parallelism (ILP) for memory-intensive com-
putations (e.g., element-wise, reduction) to compensate for
the loss of the thread-level parallelism (TLP) under the mono-
lithic kernel context. To further accelerate memory access,
MonoNN classifies the memory access patterns into stream-
ing and temporal, and comprehensively exploits all types of
on-chip memory resources for the access patterns accordingly
(Sec.4.3). It further exploits whole-graph level transformation
inside the kernel to rearrange independent subgraphs together
to reduce global thread barrier overhead (Sec.4.4). Finally, we
systematically abstract the optimization space of the mono-
lithic kernel and propose a schedule-independent group tuning
approach to drastically compress the tuning space (Sec.5). Ex-
tensive evaluation on a set of neural network inference tasks
demonstrates that MonoNN outperforms the state-of-the-art
optimizers with an average of 2.01× speedup. Specifically,
MonoNN outperforms TVM, TensorRT, XLA, and AStitch
by up to 7.3×, 5.9×, 1.7× and 2.9× in end-to-end inference
performance. To summarize, this work makes the following
contributions:
• To the best of our knowledge, MonoNN is the first ML opti-

mizing compiler that discovers a new monolithic optimiza-
tion space for common static DNNs’ inference scenarios
that are served on a single GPU, and provides automatic
high-performance kernel generation. This is also the first
study that explores and evaluates this monolithic optimiza-
tion design space and its limitations so that the community
has a better understanding of the tradeoffs;

• It is the first optimizing compiler that explicitly exploits
instruction-level parallelism optimization for memory-
intensive operators to compensate for thread-level paral-
lelism loss, enabling a new optimization dimension for
neural network inference optimization;

• MonoNN enables a sophisticated compression mechanism
to significantly shrink the tuning space for our proposed
monolithic NN kernel;

• Extensive evaluation results have demonstrated the effec-
tiveness of MonoNN on both single inference tasks as well
as multi-inference processing scenarios.

2 Background and Motivation

Emerging Challenges in Optimizing NN Inference. From
an optimization perspective, operators in neural network
(NN) models can be classified into two categories,
compute-intensive operators and memory-intensive opera-
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Figure 2: T5 model latency statistics under each CPU pres-
sure. The input sequence length is 128. (a): P50/P70/P90 tail
latency. (b): latency distribution.

tors. Compute-intensive operators are typically composed
of heavy arithmetic computations (e.g., GEMM and Conv),
while memory-intensive operators are typically bounded by
memory bandwidth (e.g., element-wise and reduction opera-
tions). Note that previous studies [18, 41, 43] have concluded
both types of operators can dominate the execution time.

With the rapid growth of computing power for recent GPU
generations2, the execution time of compute-intensive opera-
tors decreases drastically. For example, Tensor Core brings an
order of magnitude improvement in arithmetic unit through-
put for compute-intensive operators since NVIDIA Volta ar-
chitecture [3] (similarly, Matrix Core was also introduced
in AMD GPUs since CDNA architecture [8]). However,
there exists a disproportionate performance gain between
hardware throughput improvement and end-to-end inference
speedup. For instance, for the two common inference GPUs,
NVIDIA A10 GPU has 1.9× more half-precision floating
point throughput than its predecessor NVIDIA T4, while
we only observe a 1.6× end-to-end inference speedup for
the BERT model3 [19] with XLA compiler optimization en-
abled [2]. Furthermore, we identified two emerging funda-
mental difficulties in optimizing inference scenarios on in-
creasingly advanced modern GPUs:

(i) Continuous advances in computation throughput leads
to an increasing portion of non-computation overhead.

Faster GPUs can offer shorter per-kernel execution in NN
inference. However, the major portion of performance gains
from hardware speed improvements for regular-size models
begins to diminish as non-computation overhead becomes
a notable portion of end-to-end latency. This new bottle-
neck mainly originates from frequent non-computation over-
head which includes (1) context switch between host and
GPU accelerator due to framework scheduling and kernel
launch, and (2) off-chip memory traffic between operators.

2In this work, we focus our discussion on the most widely-adopted
general-purpose AI accelerators: GPUs. Although the technical terminolo-
gies used in this paper are adopted from NVIDIA GPUs [4, 5], our proposed
techniques aim to serve as general principles that are valuable for modern
general-purpose machine learning system designs, and are applicable to other
SIMT accelerators [8].

3Data is collected under TensorFlow XLA v2.7 with Tensor Core enabled,
using 1 as the batch size and 128 as the sequence length.
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Figure 3: Number of inference GPU kernels for existing
frameworks and MonoNN (1).

As the breakdown of the overall context switch overhead
in Fig.1a, our measurements indicate that the framework
scheduling accounts for 38.3% while the kernel launching
overhead accounts for around 61.7% (see Sec.7.2.5 for more
details). As for off-chip memory traffic, the memory band-
width growth across hardware generations is generally slower
than that for arithmetic throughput. Fig.1a demonstrates the
non-computation inference overhead via XLA optimizations
for five common models. It is worth noting that A10 suffers
from more severe non-computation inference overhead than
its predecessor T4 as newer generations of GPUs have much
shorter per-kernel duration. Fig.1b illustrates that there is an
average of 1.64× kernel execution speedup benefiting from
shifting the underlying accelerator from T4 to A10. Unfortu-
nately, such speedup decreases to 1.48× for the end-to-end
latency as the non-computation overhead is not the highest
optimization priority for the existing inference engines. Thus,
the non-computation inference overhead for neural network
models is becoming increasingly essential for the next gener-
ations of faster GPU hardware [6].

(ii) Ever-present, non-negligible CPU workloads exacer-
bate non-computation overhead.

Moreover, a commonly neglected factor is that CPU is usu-
ally busy with pre- and post-processing of input and output
for NN tasks in real-world execution. Thus, CPU contention
often further delays the scheduling and kernel launching of a
large number of GPU kernels within a model execution. This
further exacerbates the CPU-GPU context switch overhead
and makes it a much more severe problem, causing an addi-
tional slowdown of model inference tail latency. In Fig.2a,
when measuring the tail latency under XLA optimizations on
a server with a 64-core CPU (128 threads) and an NVIDIA
A10 GPU under 50% (70%) CPU utilization, the tail latency
increases by 25% (52%), 26% (58%), and 26% (82%) at P50,
P70, and P95, respectively, over the latency of an idle CPU.
Fig.2b shows a detailed inference latency distribution of 1000
times of inference when CPU is under various utilization.
With the increasing CPU contention, the end-to-end inference
latency belongs to a wider range of much slower outliers. Note
that it is impractical to designate a specific CPU core exclu-
sively just for kernel launching in the datacenter because the
CPUs are typically very busy performing pre-/post-processing.
Besides, designating such a core requires a hardcoded list of
CPU cores to be isolated from the default CPU scheduler in
the system boot phase, resulting in rebooting for every new
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Figure 4: Different resource requirements between compute-
intensive operators and memory-intensive operators for Ten-
sorRT BERT inference. Each data point may represent multi-
ple GPU kernels with similar resource usage within a model.

inference service deployment.

Challenges in the State-of-The-Art Designs. TVM [18]
applies a basic fusion strategy but still unnecessarily launches
a large number of kernels. Some recent works propose more
advanced fusion techniques to alleviate the problems above.
AStitch [41, 42] leverages hierarchical GPU memory to fuse
multiple memory-intensive operators with complex data de-
pendencies into a single GPU kernel, named stitch optimiza-
tion. TensorRT [11] also exploits a similar strategy since v8.

Although it helps reduce the kernel number to some ex-
tent, it still results in a large number of kernels since it is
not capable to fuse globally along with all the compute-
intensive operators, for which the bottlenecks that we dis-
cussed above still exist. As illustrated in Fig.3, TVM, XLA,
TensorRT, and AStitch are all launching a large number of
kernels during model inference. Furthermore, Rammer [24]
partially addresses this problem with a persistent-thread tech-
nique [14, 17] to generate the schedule of multiple operators
within one kernel. However, Rammer is incapable of handling
the resource incompatibility between different operators in
an entire neural network (see Sec.3.1). As a result, Rammer
has to partition the neural network into separate GPU kernels
for NN inference. For example, Rammer still launches 734
kernels on GPU for BERT-Large [19] model inference.

3 Monolithic Optimization Space

To address the emerging challenges discussed in Sec.2, we
explore the monolithic optimization space where the entire
neural network can be compiled into a single GPU kernel.
This approach is appealing because it only incurs minimal
non-computation overhead and enables the opportunities for
whole graph optimization within the same kernel space. How-
ever, a general approach enabling this optimization space is
non-trivial, especially when handling various NN models with
very different execution patterns. Here we summarize two ma-
jor challenges to auto-generate a highly-efficient GPU kernel
containing all the operators of a given neural network.
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Figure 5: Optimization space comparison.

3.1 Main Challenges of Enabling A Monolithic
Kernel Optimization Space

Challenge 1: Resource incompatibility between compute-
intensive and memory-intensive operators. The resource
incompatibility between compute-intensive and memory-
intensive operators hinders the state-of-the-art techniques to
consolidate all operators into a monolithic kernel. Compute-
intensive operators usually require a large amount of on-
chip resources (e.g., registers and shared memory) whereas
memory-intensive ops rely on massive concurrent threads to
hide off-chip memory access. Thus, it is extremely difficult
to accommodate all types of operators by creating a GPU
kernel with both high on-chip usage and massive concurrent
threads due to the resource constraints on modern GPUs. For
example, the active TLP on an SM core will inevitably drop
when a kernel uses a large number of registers and shared
memory due to the limited on-chip resources. We illustrate
this phenomenon quantitatively using GPU kernels from a
TensorRT optimized BERT [19] and the Pareto-optimal on-
chip resource allocation curve on an NVIDIA A10 GPU in
Fig.4. Compute-intensive kernels in NN models tend to be
closer to the upper-left corner, representing high on-chip re-
source allocation and relatively low achieved concurrently
active threads. In contrast, memory-intensive kernels tend to
be closer to the bottom-right corner, representing low on-chip
resource allocation and massive concurrently active threads
(or high TLP). All data points in Fig.4 are subject to resource
constraints and thus will not be above the Pareto-optimal
curve.

Challenge 2: Extremely high implementation cost and
huge tuning space. Modern ML models usually consist of
thousands of operators with diverse computation patterns,
resulting in intricate data dependencies. Manual implemen-
tation and optimization are no longer viable for developing
a monolithic kernel. In terms of compiler optimization, the
monolithic kernel approach significantly expands the opti-
mization search space as all the operators coexist within the
same kernel. Consequently, it becomes exceedingly challeng-
ing to identify suitable configurations and implementations
for each operator to achieve optimal end-to-end inference
efficiency within a monolithic kernel collectively.
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3.2 A High-level Glance of MonoNN
The ultimate objective of MonoNN is to create an efficient
joint optimization space for both compute-intensive operators
(CI Ops) and memory-intensive operators (MI Ops). However,
as elaborated in Fig.4 and Sec.3.1, these two types of operators
naturally reside in disjoint optimization space in conventional
solutions due to resource incompatibility. We conceptually
illustrate this observation in Fig.5(a).

MonoNN enables a new monolithic optimization space
that can effectively accommodate both CI Ops and MI Ops.
The key idea is to align the optimization space of MI Ops as
closely as possible with that of CI Ops (Fig.5(b)). Specifically,
MonoNN leverages the hidden instruction-level parallelism
(ILP) to offset the reduction in TLP for memory-intensive
subgraphs, thereby achieving a similar resource allocation to
CI Ops (Sec.4.2.2). Furthermore, MonoNN strategically uti-
lizes abundant on-chip resources, including registers, shared
memory, and cache, to buffer and prefetch off-chip data based
on an analysis of memory access patterns (Sec.4.3). This ap-
proach enables both CI Ops and MI Ops to coexist within the
same monolithic kernel efficiently. Additionally, MonoNN
explores global optimization opportunities to minimize global
synchronizations between computations, further enhancing
the efficiency of neural network models (Sec.4.4).

4 System Design

4.1 Overview of MonoNN
Fig.6 illustrates the overview of MonoNN. MonoNN first for-
mulates the input neural network into different subgraphs
for subsequent optimizations (Fig.6(1), Sec.4.2.1). Then,
MonoNN enables the hidden parallelism of memory-intensive
subgraphs through context-aware instruction rescheduling
(Fig.6(2), Sec.4.2.2), and comprehensively optimizes the us-
age of various on-chip resources according to memory ac-
cess patterns (Fig.6(3), Sec.4.3). Next, it reorders and clus-
ters subgraphs to reduce the required Global Thread Barriers
(GTBs) to minimize the synchronization overhead (Fig.6(4),
Sec.4.4). Finally, MonoNN abstracts, compresses, and tunes
for the large monolithic optimization space with schedule-
independent group tuning, and compiles the monolithic kernel
into an executable binary (Fig.6(5)-(6), Sec.5).

4.2 Exploiting Hidden Parallelism for
Memory-intensive Subgraphs

We address the resource incompatibility issue discussed in
Sec.3 for memory-intensive computations with context-aware
instruction rescheduling (the compute-intensive computations
will be discussed in Sec.4.5.) MonoNN performs instruction
rescheduling under the context of monolithic optimization
space to recover potential TLP loss for memory-intensive
computations with high-level instruction-level parallelism
(ILP) enhancement. Thereby, MonoNN fully leverages the
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Figure 6: MonoNN overview. SIS: Schedule-independent
subgraph. EWS: Element-wise subgraph. OCS: Output-only
contracted subgraph.

abundant registers under the new monolithic optimization
space to unleash the hidden potential of reaching high perfor-
mance.

4.2.1 Memory-intensive Subgraph Formulation
Before unveiling the details of context-aware instruction
rescheduling, we first present how subgraphs are formulated
as the basic units of optimization exploration. MonoNN con-
verts the whole graph of a model into one kernel. Instead of
optimizing and generating the code of the whole graph all
in one shot, MonoNN generates the schedules4 of different
partitions (i.e., subgraphs) of the graph separately under the
same monolithic context, and then stitches them together with
shared memory or global memory data buffering.

Subgraph Formulation. The compute-intensive operators
divide the whole computation graph into a set of memory-
intensive subgraphs. We use the following criterion to further
categorize memory-intensive subgraphs based on data depen-
dencies between data elements in input and output tensors.

Formally, for a subgraph with m input tensors
[X0,X1, · · ·Xm−1] and n output tensors [Y0,Y1, · · ·Yn−1],
the computation of the subgraph is: [Y0,Y1, · · ·Yn−1] =
f ([X0,X1, · · ·Xm−1]). If each pair of Xi ∈ [X0,X1, · · ·Xm−1]

and Yi ∈ [Y0,Y1, · · ·Yn−1] that ∂Yi
∂Xi
̸= 0 satisfies

∀ey ∈ Yi,
∣∣∣{ex| ∂ey

∂ex ̸= 0,ex ∈ Xi}
∣∣∣ ≤ 1, in which ex rep-

resents a scalar data element in tensor Xi and ey represents
a scalar data element in tensor Yi. It indicates that all data
elements in any of the output tensors rely on at most one data
element in one input tensor. We call a subgraph with such
property as an element-wise subgraph (or EWS).

4In code generation, schedule means how the threads are mapped to
hardware to process the data (e.g., tiling size, on-chip resource configuration,
parallelism configuration for GEMM code generation).
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Figure 7: Context-aware instruction rescheduling for softmax computation.

Otherwise, if there exists an output tensor element that
relies on multiple input tensor elements, the subgraph contains
contraction operations that combine several data elements
into one (one-on-many element-level data dependency). We
refer to such a subgraph as a contracted subgraph (CS). In
machine learning graphs, contractions are often represented
by reduce operations (e.g., reduce-sum) in the intermediate
representation (IR). If all the reduce ops of a subgraph are
the output operations, we call the subgraph an output-only
contracted subgraph (OCS). Note that a CS is either an OCS
or could be decomposed into OCS and EWS.

Basic Codegen Scheme. MonoNN will first identify all
the largest OCS through reverse traversal on the memory-
intensive subgraphs. The remaining subgraphs are then EWS,
which can be converted into DOALL loop [13] (i.e., loop with
no inter-iteration dependency) for full parallelization.

An OCS contains the contraction computation in reduce
op. The reduce ops in typical inference graphs are doing
contraction over elements residing in a continuous address in
memory (e.g., Reduce([x,y]) => [x,1]). For reduce ops on
GPU, the non-contracted dimension (e.g., x in the above exam-
ple) forms a DOALL loop without inter-iteration dependency.
Whereas the inner contracted dimension (e.g., y in the above
example) forms a DOACROSS loop [13] with inter-iteration
dependency due to contraction computation. Note that in
some cases, it might be beneficial to use a uniform schedule
for adjacent subgraphs with loop fusion if certain locality
constraints are met. For example, in Fig.7(a), an OCS fol-
lowed by an EWS can use a uniformed schedule by fusing the
outer loop, as the output of OCS can buffer on on-chip cache
for subsequent read from EWS. This technique, also known
as stitch fusion [42], is shown as dotted lines in Fig.7(a).
We call subgraphs that have independent schedule schedule-
independent subgraphs, SIS in short. Several subgraphs that
use a uniform schedule after loop fusion are regarded as one
SIS (e.g., Fig.7(b) shows an SIS after fusing an OCS and an
EWS). The schedule within an SIS is constrained by loop

structure and block locality, while the schedules among differ-
ent SIS are independent. Different SIS with its own schedule is
finally stitched together under MonoNN with global memory
buffering for intermediate transferring.

4.2.2 Context-Aware Instruction Rescheduling
We illustrate how to enable the hidden parallelism given an
SIS subgraph with the example in Fig.7(a). Note that the
contracted dimension of the reduce op is N, which maps to
the inner loop (i.e., parallel threads within a thread block),
The non-contracted dimension is M, which maps to the outer
loop (i.e., different thread blocks).

According to the property of OCS, it can be divided into
a sub-EWS followed by a reduce op. Thus, the inner loop
of OCS, which is a DOACROSS loop, can be converted to a
sub-DOALL loop (Fig.7(c)) followed by the corresponding
reduction. With the conversion above, the inner-loop of the
SIS is converted to the computation sequence of “sub-DOALL
loop⇒ reduction⇒ sub-DOALL loop” (Fig.7(b)-(c)).

The key insight of context-aware instruction rescheduling
is to rearrange the instructions according to the property of
the DOALL loop.

In Fig.7(c), the DOALL loop has no inter-iteration depen-
dencies, allowing MonoNN to explore the default schedule as
well as the ILP enhanced schedules (e.g., 2X ILP) by merging
instructions from different iterations into parallel instructions
within the same iteration to ensure stall-free instruction issue.
Theoretically, all schedules shown in Fig.7(c) achieve near-
maximum overall parallelization (T LP× ILP), with the de-
fault schedule yielding varied TLP for different operators, thus
necessitating numerous GPU kernels. In contrast, MonoNN
can identify a schedule that maximizes overall parallelization
and optimally fits TLP into a single monolithic kernel. The
optimization space for utilization abundant registers (Fig.7(d))
and corresponding performance in the monolithic kernel will
be explored, as determining the best scheduling factor in-
volves balancing ILP and resource usage. We will discuss
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Figure 8: On-chip resource exploitation for layer norm.

how to find the optimal rescheduling factor for each SIS in
Sec.5

4.3 On-Chip Resource Exploitation
For an SIS memory-intensive subgraph, global memory ac-
cess often takes up a significant amount of execution time,
particularly when thread-level parallelism (TLP) is limited in
a monolithic context. Along with boosting parallelism through
instruction rescheduling as discussed in Sec.4.2.2, MonoNN
performs a comprehensive on-chip memory resource exploita-
tion to maximize the use of memory resources based on access
patterns.

We observe that there are two major memory access pat-
terns for an SIS subgraph: (1) Streaming: Each element of the
input tensor is accessed once in the computation graph. (2)
Temporal, Each data item in the input tensor is read multiple
times by its consumers, commonly due to broadcast opera-
tors in modern ML models. MonoNN implements a series of
memory access optimizations based on these patterns.

(I) Streaming Access Optimization. MonoNN leverages
the abundant shared memory resource allocated by the
compute-intensive computations in the monolithic kernel to
pipeline the streaming global memory access with other com-
putations. As mentioned, the outer loop of an SIS subgraph
is a DOALL loop, where different iterations are independent.
MonoNN organizes the computations between different itera-
tions of the outer loops to form a computation pipeline and a
memory copy pipeline. Particularly, during the computation
of each outer loop iteration, it will prefetch the streaming
accessed input data for the next iteration into the shared mem-
ory buffer. Fig.8 presents the input data access pipelining for
layer norm [15]. LN Body represents the main layer norm
computation and Element-wise affine represents the following
element-wise affine transformation parameterized by Gamma

and Beta. The memory access to input X is prefetched onto
shared memory in the computation pipeline, fully overlapping
the data fetching and computation. Note that the input X in
Fig.8 is consumed by multiple operators. If the shared mem-
ory is not enough for the data buffering, MonoNN will not
make a pipelined buffer X. Instead, MonoNN will buffer X on
the register file (or local memory if facing register spills), for
which the multiple consumers will reuse the data through the
faster register file rather than the global memory.

(II) Temporal Access Optimization. If the input data ac-
cess is temporal rather than streaming, MonoNN will annotate
cache hints to these memory operations to guide the cache
behavior to preserve the data on the cache as long as possible
(e.g., evict_last in NVIDIA GPU semantics). MonoNN will
annotate memory read as temporal access from the node with
a smaller tensor shape until an empirical value is reached to
accommodate as many tensors as possible and prevent cache
thrashing. As shown in Fig.8, Gamma and Beta have tem-
poral locality because they are connected to the subsequent
broadcast op. A load of Gamma and Beta will be annotated
with evict_last for longer cache occupation, improving the
temporal locality in SIS.

4.4 Global Thread Barrier Merging
As mentioned in Sec.4.2, there are cross thread block data
dependencies between different SIS subgraphs. MonoNN in-
serts global thread barrier (GTB) between SIS subgraphs
to ensure correctness. Note that GTBs are also required be-
tween compute-intensive operators and SIS subgraphs. Simi-
lar with [42], GTB in MonoNN is implemented in two stages:
one-block-wait-all and one-block-notify-all. Each block has
a flag in global memory (typically cached in GPU L2) to
represent whether the corresponding thread block has arrived.
The first thread block waits for all the remaining blocks to
report waiting, and then notifies them to proceed. Further-
more, the inner-kernel GTB is much shorter than the non-
computation overhead as the latter is composed of both kernel
launching and framework scheduling overheads. The over-
head measurement results of inner-kernel GTB [42] and kernel
launching [37] from the previous studies are aligned with our
observation that a typical kernel launching overhead is often
multiples of a GTB length, e.g., a single kernel launching with
framework scheduling is around 8∼ 10 microseconds which
is 4∼ 5× of a GTB length.

Longest-path based GTB merging. One GTB introduces
minimal synchronization overhead, but this can accumulate
when the number of GTBs is large. We have observed that
some SIS subgraphs do not exhibit producer-consumer or
topology dependencies. By clustering these independent SIS
subgraphs in topological order, MonoNN can eliminate the
need for GTBs between them. To address graph complexity,
we propose the longest-path based GTB merging approach
to find the optimal SIS clustering strategy. For example, in
Fig.9, the nodes (A-E) represent the SIS subgraphs, with GTBs
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required between them (indicated by edges). MonoNN calcu-
lates the longest path to each node from the first node. Nodes
with the same longest path length (e.g., B and D in Fig.9) can
be clustered together for GTB merging. Traditional topology
ordering methods only order nodes and do not cluster them,
making them inadequate for guiding GTB merging.

4.5 Optimizing Compute-Intensive Operators
While the memory-intensive subgraphs are effectively opti-
mized to maximally leverage on-chip resources, the compute-
intensive operators in MonoNN directly adopt the existing
implementations from CUTLASS [1] as tunable basic build-
ing blocks: the tuning space of CUTLASS is included in the
tuning space for the monolithic kernel.

5 The MonoNN Compiler
This section details the design and implementation of an opti-
mizing compiler that automatically generates efficient mono-
lithic kernels using the techniques outlined in Sec.4. Unlike
previous works that focus on tuning single operators or sub-
graphs [18,42], MonoNN optimizes the entire graph, resulting
in a vast optimization space. This complexity makes finding
the optimal global configuration challenging. We explain how
we systematically abstract this extensive optimization space in
Sec.5.1 and how we reduce it to efficiently identify a suitable
global configuration in Sec.5.2.

5.1 Optimization Space Abstraction
First, we categorize the proposed optimizations into two types:
(1) Deterministic optimizations are always beneficial. Includ-
ing comprehensive on-chip resource exploitation (Sec.4.3)
and global thread barrier merging (Sec.4.4). (2) Tunable
optimizations: All other optimizations not included in the
deterministic category are considered tunable. We classify
the tunable factors of the monolithic kernel into three main
classes:

(I) Code generation schedule of each operator in a neu-
ral network. In the code generation process, element-wise
operators follow the code generation schedule of reduce op-
erators through input-inline. Thus, we only need to tune the

schedule of reduce operators and compute-intensive oper-
ators (CI Ops). Note that a grid-stride loop will be used to
iterate over its input elements if an element-wise operator
cannot find a reduce or CI Ops that it associates with. There
are two common schedules for row-major reduce operators.
One is to reduce a row of elements with all threads in a thread
block. The other one is to reduce a row with one warp. For
CI Ops, MonoNN will jointly consider all the tunable factors,
including tiling size, on-chip resource configuration, paral-
lelism configuration, hardware intrinsic (e.g., Tensor Core
instruction and CUDA async-copy), input prefetching, etc.

(II) Context-aware instruction rescheduling factor. ILP
is important for the SIS subgraphs to compensate for paral-
lelism loss under the constraint TLP in a monolithic kernel. A
too-small rescheduling factor may be insufficient to improve
the overall parallelism. A rescheduling factor that is too large
will use massive registers and may cause register spilling.
MonoNN explores a spectrum of the rescheduling factors for
each memory-intensive operator (MI Op). Specifically, for
each MI Op, MonoNN explores up to 32X rescheduling fac-
tors 5 via context-aware instruction rescheduling. In Sec.7.2.1,
we quantitatively evaluate how different ILP rescheduling fac-
tors impact MI Ops on performance.

(III) TLP and on-chip resource of the overall monolithic
kernel. TLP on GPUs is defined as the thread block size and
number of blocks for a GPU kernel, and on-chip resource
constraints are critical performance factors for efficient pro-
gram execution. For the monolithic kernel, these factors not
only affect the optimal execution configuration (e.g., tiling
size) for CI ops, but also impact the optimal rescheduling
for context-aware instruction rescheduling and optimal code
generation schedule for memory-intensive subgraphs (e.g.,
warp reduction vs block reduction). The candidate block sizes
for tuning are 128 and 256 for MonoNN, which are the main
block sizes used in the existing machine learning compil-
ers [2, 7] and CUTLASS for achieving good performance
for both CI Ops and MI Ops. Other block sizes may also be
trivially included to the optimization space. Our monolithic
kernel requires that all thread blocks be able to be scheduled
onto GPU concurrently in one wave to avoid deadlock in syn-
chronization. Thus, the total thread block number should be
no more than the max number of thread blocks that GPU can
tolerate. Specifically, the number of candidate TLP choices is
NT LP =

∣∣∣{128,256}
∣∣∣×Nblocks−per−sm = 2×Nblocks−per−sm,

where Nblocks−per−sm =
∣∣∣{1,2, ...,Nmax−blocks−per−sm}

∣∣∣ We
empirically choose Nmax−blocks−per−sm as 5 because too many
co-existing thread blocks will result in insufficient available
on-chip cache per block and further slow down CI Ops.

5The range of ILP is constrained by on-chip resources and thus is up to
32 for hardware we evaluated.
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5.2 Schedule-Independent Group Tuning
5.2.1 Extremely Large Tuning Space
The tuning complexity on the optimization space is up to:
Onaive = (SC)

NC×(SM×NILP)
NM×NT LP.

6 Indicates the code
generation schedules for CI ops ((SC)

NC ), schedules and ILP
sizes for SIS ((SM ×NILP)

NM ), and candidate TLP sizes for
the monolithic kernel (NT LP). All operators in an SIS share the
uniform schedule. If there exists a reduce operator in the SIS,
we only need to enumerate the schedule of one reduce opera-
tor; otherwise, it will adopt a grid-stride loop as the schedule.
A uniformed ILP will apply to all operators in the same SIS
since all operators in the same SIS share similar resource and
parallelism requirements. Unfortunately, this is an excessive
tuning space and will have a size of approximately 10500 for
a BERT-base model.

5.2.2 Tuning Space Compression
We make two important observations for the monolithic ker-
nel. (1) A monolithic kernel is separated into a set of SISs and
CI Ops by GTBs. The code generation schedules for differ-
ent subgraphs are not interleaved. We call an SIS or a CI Op
as a schedule-independent group (SIG). (2) The connection
between two schedule-independent groups is the TLP and
on-chip resource allocation. Meanwhile, the overall kernel’s
TLP and on-chip resource allocation are fixed throughout
the monolithic kernel. According to the observations above,
the code generation schedule of different SIGs can be safely
tuned individually without missing the optimal solution.

Based on the above observations, we propose schedule-
independent group tuning to compress the tuning space sig-
nificantly. Different SIGs are tuned independently for each
candidate TLP setting. Particularly, MonoNN concatenate the
best-tuned configurations of all the SIGs to get the overall best
configuration. Finally, we chose the TLP setting that performs
the best and all its associated configurations.

For a schedule-independent group that is a CI Op, we enu-
merate SC code generation schedules. There are NC such
groups, and the overall complexity is NC × SC under each
overall TLP configuration. For a schedule-independent group
that is an SIS subgraph, we enumerate the possible code gen-
eration schedules and overall ILP sizes. There are NM such
groups, and the overall complexity is NM×SM×NILP under
each overall TLP configuration. As a result, the shrunken
tuning complexity of our monolithic kernel is up to:

Oopt = (NC×SC +NM×SM×NILP)×NT LP.

It is worth noting that MonoNN will check the SIG hash
and reuse the tuning result if an identical SIG has been tuned
previously. This will prevent duplicated tuning effort under
repetitive neural network layers.

6NC (or NM): number of CI ops (or SIS). SC (or SM): possible schedules
of CI ops (or SIS). NILP (or NT LP): possible ILP (or TLP) sizes.

Algorithm 1 Monolithic Kernel Tuning
1: procedure GETTUNINGSPACETLP
2: Cblock−size←{128,256}
3: Cblocks−per−sm←{1, ...,Nmax−blocks−per−sm}
4: return Cblock−size X Cblocks−per−sm

5: procedure OPTIMIZEMISIS(SIS, TLP)
6: CandidateILPFactors←{1,2,3, ...,32}
7: BestSolution,BestTime← NULL,∞
8: for ILP ∈CandidateILPFactors do
9: S,Time← Pro f ileAndOptimize(SIS,T LP, ILP)

10: if Time < BestTime then
11: BestSolution,BestTime← S,Time
12: return BestSolution,BestTime
13: procedure OPTIMIZEFORTLP(TLP)
14: Solution,TotalTime←{},0
15: for SIG ∈ GetAllSIG() do
16: if IsCIOp(SIG) then
17: S,Time← Pro f ileAndOptimize(SIG,T LP)
18: else ▷ Is MI SIS
19: S,Time← OptimizeMiSIS(SIG,T LP)
20: Solution← Solution∪{S}
21: TotalTime← TotalTime+Time
22: return Solution,TotalTime
23: procedure MONONNTUNE
24: BestSolution,BestTime← NULL,∞
25: for T LP ∈ GetTuningSpaceT LP() do
26: S,Time← OptimizeForT LP(T LP)
27: if Time < BestTime then
28: BestSolution,BestTime← S,Time
29: return BestSolution,BestTime

Algo.1 details the tuning procedure in MonoNN begins
with sampling MonoNNTune in line 25. MonoNN takes
Cartesian product between candidate block size Cblock−size
and co-existing blocks per SM Cblocks−per−sm (line 4). The
optimal solution under each TLP will be tuned independently
(line 26). MonoNN will optimize every SIG in the neural
network (line 15). For memory-intensive subgraphs, the best
solution across all rescheduling factors will be selected as the
final solution of the current subgraph (line 10-12). MonoNN
iterates over the solution under each distinct TLP and chooses
the one with the shortest duration as the final solution (line 26-
29).

5.3 Implementation
We implement MonoNN with 64k lines of C++ code on top
of XLA compiler [2] and integrate it into TensorFlow [12]
framework as a drop-in replacement to the backend execution
engine. This allows MonoNN to accelerate existing Tensor-
Flow models without requiring any code changes. Addition-
ally, MonoNN can compile a neural network into a standalone
assembly file that can be directly executed, potentially offer-
ing better performance by eliminating the runtime overhead
from the deep learning framework. In Sec.7, we only report
the performance number from the first mode for a fair com-
parison across frameworks. Unlike AStitch [42], MonoNN
does not support cross-block reduction. We are not aware
of any performance degradation on evaluated models as the
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reduction dimension for these popular models are all small.

6 Scope, Impact, and Limitations

The current optimization scope of MonoNN mainly focuses
on general static DNNs where different layers have similar
computational sizes. For example, MonoNN effectively sup-
ports various popular Transformer models without dynamic
control flows, including Transformer encoder models such as
BERT, encoder-decoder models such as T5, and every step of
the decoder models such as GPT-like models. We compare the
performance of different fusion granularity in Sec.7.3, rang-
ing from basic element-wise fusion, stitch fusion, layer-wise
monolithic kernel (i.e., one monolithic kernel per layer) to a
single monolithic kernel of the entire model.

MonoNN established a new monolithic optimization space
for common static DNN inference scenarios by resolving the
long-existing global optimization challenge within a single
kernel, addressing the resource incompatibility problem of
various operators. MonoNN introduce key contributions such
as Context-Aware Instruction Rescheduling (Sec.4.2.2), On-
Chip Resource Exploitation (Sec.4.3), and Global Thread
Barrier Merging (Sec.4.4). Moreover, MonoNN is designed to
be forward-looking, performing even more effectively for the
upcoming GPU architectures. The increased computing power
of future GPUs will likely exacerbate issues related to off-
chip memory access and CPU-GPU context switch overhead.
Moreover, as supported by [6], distributed shared memory
access can enable more flexible and efficient intermediate
data buffering for large-scale operator fusion.

Despite the contribution of MonoNN, several potential lim-
itations should be noted. (1) MonoNN mainly addresses com-
mon static DNN inference scenarios rather than the models
with dynamic control flows [22, 36]. However, users can still
optimize the subgraphs separated by control flow operators
using MonoNN techniques. (2) MonoNN focuses on DNN
inference scenarios that fit within a single GPU, covering a
wide range of real-world inference service cases. Extending
MonoNN to incorporate collective communication primitives
is beyond the scope of this work, but users can still optimize
the subgraphs separated by the communication operators us-
ing MonoNN. (3) MonoNN may be less effective for DNNs
with varied tensor sizes in different layers due to the imbal-
anced workloads in the single monolithic kernel. While our
experiments did not show significant performance regression,
this potential limitation in the monolithic kernel should be
highlighted.

7 Evaluation
Model specifications: We use a set of representative machine
learning applications as our evaluation workloads, including
BERT-Base, BERT-Large [19], Transformer T5-Small, T5-
Base [30] for natural language processing, ViT [20] for image

recognition (with both Convolution and Transformer com-
ponents), CLIP [29] for computer vision and text, OPT [38]
for text generation (OPT-125M version). All the models are
publicly available from Huggingface [34]. For all BERT-like
and Transformer-like models, we used sequence length equal
to 128 unless specified elsewhere.

Software specifications: We compare MonoNN against
TensorFlow [12] (v2.7), XLA [2] (v2.7), TensorRT v8.27

(via TF-TRT integration [7]), TVM (commit f6f9056) [18],
AStitch [42], Rammer [24], PyTorch [28] (v1.12.1), and CUD-
AGraph [9] (via PyTorch integration). We use CUDA v11.6
and cuDNN 8 for all the experiments8. We enable Tensor
Cores for all the frameworks we evaluated except in Sec.7.5
cause Rammer [24] only supports SIMT cores.

Hardware Platforms: A10 server: NVIDIA A10 GPU
(Ampere), and two Intel(R) Xeon(R) Platinum 8369B CPUs.
T4 server: NVIDIA T4 GPU (Turing), and two Intel(R)
Xeon(R) Platinum 8163 CPUs. A100 server: NVIDIA A100
80GB SXM (Ampere), and two Intel(R) Xeon(R) Platinum
8369B CPUs.

7.1 End-to-End Performance Comparison
7.1.1 Overall Results
Fig.10 shows the end-to-end performance speedup on
NVIDIA A10, T4, and A100 GPU for all experiments with
three batch size variations. Geo Mean refers to the geometric
mean across all models. All the execution time is normalized
against the best optimizer in the group. TVM failed to opti-
mize OPT, ViT, and CLIP due to incomplete operator support.
PyTorch-CUDAGraph failed to optimize OPT, CLIP, and T5
for unsupported operations in the graph-capturing phase.

As demonstrated in Fig.10, on A10 GPU, MonoNN achieve
6.9×, 1.4×, 1.6×, 1.8×, 6.6×, and 2× average speedup over
Tensorflow, XLA, TVM, TensorRT, PyTorch, and PyTorch-
CUDA Graph on batch size 1, respectively. In addition, for
batch size 16, and 32, MonoNN achieve on average 1.88×,
and 1.80× speedup over baselines. On NVIDIA T4, MonoNN
achieve 6.5×, 1.4×, 2.3×, 2.8×, 5.8×, 2.3×, and 1.8× av-
erage speedup over Tensorflow, XLA, TVM, TensorRT, Py-
Torch, PyTorch-CUDA Graph, and AStitch on batch size 1, re-
spectively. In addition, for batch size is 16, MonoNN achieves
on average 1.91× speedup over all baselines. We also have
comprehensively tested MonoNN on A100 as detailed in
Fig.10c.

Given the diverse set of baselines we compare against,
the extent of performance improvements can vary. MonoNN
consistently achieves the best performance across all base-
lines, with significant improvements observed for all test-
ing batch sizes. It is important to note that reduced per-
formance gains with larger batch sizes are anticipated, as

7TensorRT 8 is the latest version at the time of submitting the paper (Dec.
2022), with much performance improvement compared to TensorRT 7.

8AStitch is using its released artifact (CUDA 10.2 and cuDNN 7).
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(c) NVIDIA A100
Figure 10: MonoNN End-to-End speedup (higher is better).

larger batches generally lead to better device utilization, leav-
ing less room for performance enhancements. For exam-
ple, XLA/TensorRT/MonoNN show on average 4.9×->2.6×-
>2.3× / 3.8×->2.3×->2.0× / 6.9×->3.4×->3.0× perfor-
mance gain over the TF baseline when expanding the batch
size from 1 -> 16 -> 32 on A10 respectively.

We test CUDA Graph via Pytorch integration. Despite the
failure in some of the models in our benchmark, CUDA Graph
achieves on average 2.6×, 0.95×, 0.98× speed up over Py-
Torch when batch size is 1,16,32 on A10. Obviously, the
performance gain of the CUDA Graph diminishes drastically
(even with no performance gain) when the batch size is larger
than one. The average speedup is far less than the achieved
performance speedup of MonoNN. Specifically, MonoNN
outperforms PyTorch-CUDA Graph by an average of 2×
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Figure 11: MPS Performance.

(batchsize=1) and continues to outperform it when batchsize
is larger than 1. We attribute the reason as follows. On the
one hand, MonoNN can perform various optimizations in
the monolithic optimization space that CUDA Graph cannot,
e.g., whole graph-level optimizations, instruction reschedul-
ing, on-chip resource exploitation, and GTB merging. On the
other hand, as pointed out by previous literature [37], a new
GPU kernel has several types of overhead (e.g., kernel launch-
ing, kernel initialization) but CUDA Graph can only optimize
kernel launching.

XLA achieves the best average speedup among our base-
lines. But XLA can only explore register-level data buffer-
ing rather than multi-dimensional optimization techniques
in MonoNN. We only run AStitch [42] experiment on T4
GPU (with CUDA 10.2) because the artifact released does
not support newer NVIDIA A10 architecture.

In addition, we evaluate MonoNN and the baselines on A10
using longer input for the BERT model. We use an input se-
quence length equal to 512, which is the maximum sequence
length supported by the model’s pre-trained positional embed-
ding. As illustrated in Tab.1, MonoNN achieves on average
1.94×, 1.52×, and, 1.48× speedup over baselines when batch
size is 1/16/32 respectively.

TF XLA TRT PT PT-CG MonoNN

BS=1 0.27 0.90 0.44 0.39 0.57 1
BS=16 0.40 0.87 0.75 0.63 0.62 1
BS=32 0.42 0.90 0.79 0.63 0.63 1

Table 1: Normalized performance.

Among the evaluated models, the OPT-125M model has
the smallest computation shape; only a single output token is
generated at each step. This results in severe non-computation
overhead, making MonoNN especially advantageous.

7.1.2 Impact on Throughput with MPS
This section is to demonstrate that MonoNN’s optimiza-
tions can perform well for GPU-shared scenarios for higher
throughput. In the real-world inference scenario, a common
approach is to share a single GPU with multiple inference
tasks to improve inference throughput and hardware utiliza-
tion. NVIDIA Multi-Process Service (MPS) [10] is one of the
most widely adopted solutions for GPU sharing. We test our
solution with MPS for BERT-Base, ViT, CLIP, and T5-Base
on A10 and plot the latency-throughput curve in Fig.11. The
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Figure 12: Ablation study on NVIDIA A10.

numbers on the line indicate how many instances are used in
MPS. The batch size is one in this experiment. MonoNN con-
sistently outperforms baselines, achieving 1.5×−2× QPS
throughput under the same latency constraint. It demonstrates
that a monolithic kernel is capable of delivering meaningful
speedup in GPU-shared inference. In practice, we divide TLP
for each instance by the number of instances co-existing in
MPS to ensure all instances can run concurrently on a single
GPU.

7.1.3 Ablation Study
Fig.12 dissects the main optimizations in MonoNN. We build
MonoNN-Base, a lightweight monolithic kernel generator that
has all the optimization techniques of MonoNN except for
the three: context-aware instruction rescheduling, comprehen-
sive on-chip resource exploitation and global barrier merging.
Note that MonoNN-Base is different from the baselines in
Fig.10. MonoNN-Base is already a strong baseline that has
many basic optimization techniques. It is a single monolithic
kernel with minimal non-computation overhead, achieving
better performance than TensorFlow and on par with XLA.
We then build MonoNN-O1-O3 by gradually applying the
above optimizations one by one in order. MonoNN-O3 is the
full MonoNN. We observe 5%, 6%, and 12% speedup for
O1, O2, and O3 optimization on batch size 1, and 35%, 15%,
and 3% speedup on batch size 16. Context-aware instruction
rescheduling shows much more performance gain for batch
size 16 because larger tensor shapes need higher parallelism,
thus requiring ILP compensation more. In addition, we ob-
serve instruction rescheduling does not improve performance
on OPT-125M model as the text generation model only pro-
duces a single token in each inference and a small tensor shape
does not need a larger rescheduling factor. Comprehensive
on-chip resource exploitation also shows higher performance
gain on batch size 16 as larger tensors need more compre-
hensive solutions to accelerate off-chip memory access. GTB
Merging shows larger performance gain when batch size is
one because synchronization overhead is invariant to batch
size and thus will take a larger portion when kernel duration
is short.

7.2 MonoNN Optimization Breakdown
In this section, we dissect our optimization techniques pro-
posed in Sec.4 and present a deep-dive into the solution gen-
erated by MonoNN with both conceptual and quantitative
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Figure 13: Identified SIS and OCS on a BERT layer, including
TLP and on-chip resource usage of the monolithic kernel and
instruction rescheduling factor (IRF) for each SIS.
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(a) Instruction Reschedule in Layer Norm Operator (SIS 6 in Fig.13).
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(b) Instruction Reschedule in GELU Operator (SIS 5 in Fig.13).
Figure 14: Context-aware instruction rescheduling analysis.

analysis to help understand optimizations in monolithic ker-
nel better. Fig.13 shows the identified CI Ops and SIS in a
BERT-Base model. We present a detailed analysis when the
inference batch size is 16 on NVIDIA A10.

7.2.1 Context-Aware Instruction Rescheduling Analysis
Context-Aware Instruction Rescheduling (Sec.4.2.2) can in-
crease ILP with more register usage. We show the reschedul-
ing analysis of two subgraphs in Fig.14. As demonstrated in
Fig.14a, when the rescheduling factor is too low, the average
number of warps per SM per cycle that stall on off-chip mem-
ory access is high due to the low parallelism (both TLP and
ILP), resulting in high inference latency. On the other hand, a
too-high factor will cause register pressure and even register
spilling. Slight register pressure often does not indicate degra-
dation in performance, but register spilling often results in
drastic performance degradation. We observe register pressure
when the rescheduling factor is 10 and register spilling when
the rescheduling factor is larger than 22. The best factor for
SIS6 is 12. SIS5 in Fig.14b has less register usage compared
to SIS6, for which the best rescheduling factor is 26.

7.2.2 On-chip Resource Exploitation Analysis
Comprehensive On-chip Resource Exploitation (Sec.4.3) can
further exploit the on-chip cache and shared memory based
on the data access pattern of the subgraph. Fig.15a shows
performance improvement after applying this optimization
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Figure 15: Operator latency breakdown.

for subgraphs corresponds to Fig.13, achieving 1.3× speedup
on average. Note that this is additional performance gain over
Context-Aware Instruction Rescheduling.

7.2.3 Performance of Compute Intensive Operators
We also detailed the performance of CI Ops in the monolithic
kernel. All CI Ops need to follow the same TLP setting but the
tensor shape for each CI Op could be different. Thus, handling
different tensor shapes with a unified TLP setting is critical.
MonoNN achieves this by leveraging intra-thread block tun-
ing choices from CUTLASS. Through extensive evaluation,
we found that intra-block tuning can generate satisfactory
solutions for CI Ops. We illustrate the performance of CI Ops
in monolithic kernel in Fig.15b. With the highly-tuned open-
source vendor code (i.e., CUTLASS), all operators achieve
on-par performance with the cuBLAS. Surprisingly, in some
cases, the CI Op found by MonoNN is slightly better than
cuBLAS. The reason we judiciously suspect is MonoNN per-
forms an exhaustive search over all possible solutions whereas
cuBLAS uses heuristics.

7.2.4 Global Thread Barrier Merging Analysis
GTB is necessary for a monolithic kernel to ensure correct-
ness. But each GTB involves a small overhead, approximately
2us based on our evaluation. Thus we need to minimize such
overhead with longest-path based GTB merging (Sec.4.4). We
compare GTB number before and after merging optimization.
We observe 516, 658, 319, 710, and 366 GTBs in BERT-Base,
CLIP, OPT-125M, T5-Base, and ViT model respectively. The
GTB number reduced to 146, 185, 185, 315, and 184 respec-
tively after GTB merging.

7.2.5 Dissecting Non-computation Overhead

Bert-Base ViT T5-Base OPT-2

Framework 0.41 0.57 0.44 0.61
Kernel Launch 0.71 0.51 0.72 1.74

Table 2: Context switch overhead breakdown (in ms).

Framework scheduling overhead and kernel launching over-
head are two major sources of non-computation overhead.
Tab.2 shows the separated framework scheduling and kernel
launching overhead after optimization with XLA. It shows
that the kernel launch overhead accounts for 61.7% of the
overhead on average, larger than that of framework overhead.

To measure the two kinds of overhead, we build two XLA
variants. The first variant XLA-framework executes all frame-
work scheduling logic as XLA, except it does not launch GPU
kernel but returns immediately for each operator. Therefore,
the inference latency of XLA-framework is pure framework
overhead. The second variant XLA-framework-and-kernel has
the same functionality as XLA, except that it launches empty
GPU kernels (GPU kernels that do nothing) rather than the
original kernels. The inference latency of XLA-framework-
and-kernel is the summation of framework overhead and ker-
nel launch overhead.

7.3 Fusion Granularity Analysis

EleWise Stitch Layer Layer+CUDAGraph Monolithic

OPT 0.68 0.73 0.93 0.93 1
MultiModal 0.49 0.61 1.10 1.10 1

Table 3: Relative performance at each fusion granularity

We further analyze how kernel fusion granularity impacts
inference performance on the models we evaluated to have
a better understanding of the optimization space we pro-
posed. Specifically, we control the fusion scope of MonoNN
to generate code at different fusion granularity. From small to
large, 1) EleWise: Element-wise fusion [2, 18]. 2) Exhaus-
tive memory-intensive fusion (Stitch): perform exhaustive
fusion optimization on memory-intensive subgraphs using
shared memory and global memory. This scope is similar to
TensorRT [11] and AStitch [42]. 3) Layer: each layer of the
neural network will be generated into a kernel with mono-
lithic optimization. Note that from this scope, efficient code
generation is unrealistic without the techniques proposed in
this work. 4) Layer+CUDAGraph additionally apply CUDA
Graph to the generated kernels. 5) Monolithic: the entire neu-
ral network is fused into a single kernel.

We choose OPT-125M and a customized multimodal model
and benchmark them on A10 with a batch size equal to one.
The multimodal model contains a transformer-based text en-
coder and a CNN+transformer-based image encoder. The
setting with the best performance is highlighted in bold. We
observe for a regular model like OPT with repetitive layers,
monolithic kernel trend to achieve the best performance be-
cause all the optimization choices are essentially the same
across layers. But for the multimodal model with complex
structure, we observe the text encoder and image encoder
trend to explore different optimization spaces due to diver-
gence in computation tensor shape.

7.4 MonoNN Tuning Speed

MonoNN uses a grid search tuner with caching to tune the
entire network. The modern neural network usually has many
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Bert-Base Bert-Large T5-Small T5-Base

MonoNN 22 70 17 68
TVM 172 220 51 116

Table 4: MonoNN end-to-end compilation time in minutes.

repetitious layers so that MonoNN avoids tuning them redun-
dantly by caching the result from previous layers. We further
apply many engineering-level optimizations to speed up tun-
ing, which will not be highlighted in this paper. To this end,
we found that MonoNN tuner can provide satisfactory tuning
speed. We detailed quantitative numbers in Tab.4 collected
from A10 GPU.

7.5 Comparison with Rammer
We compare MonoNN with Rammer [24] on BERT-Large in-
ference. Rammer failed in optimizing all Huggingface public
models in Fig.10 due to unsupported operators (e.g., Ein-
sum, BroadcastTo). The only common inference model that
we can find is the BERT-Large model from Rammer’s of-
ficial repository using fixed batch size 1. Thus, we cannot
test other batch sizes on Rammer. In addition, Rammer does
not support Tensor Cores. We thus compare with Rammer
on NVIDIA T4 GPU after disabling Tensor Core usage for
MonoNN. MonoNN shows 1.28× speedup over Rammer on
BERT-Large model when using batch size equal to one and
sequence length equal to 512.

8 Related Work

Most of the popular ML compilers focus on either single-
operator or subgraph-level kernel generation. [16, 18, 26, 31,
32, 39, 41, 43] focus on compute-intensive operators opti-
mization, with basic fusion support for memory-intensive
ops, whereas [27, 41, 42] explore the stitch optimization of
memory-intensive subgraphs. From graph level, [23, 33] ex-
plore graph transformation optimizations to accelerate neural
network execution, which is orthogonal to our work.

Notably, holistic optimizations for machine learning work-
loads have received increased attention in recent years. Ver-
saPipe [40] utilizes persistent-thread technique [14, 17] to
execute a computation graph in a pipelined manner, in which
the large kernel is spitted into several small kernels to avoid
resource incompatibility problem. This approach is not suf-
ficient to support computation graphs with massive opera-
tors, like machine learning graphs. Rammer [24] utilizes the
persistent-thread technique to support large scope fusion, in
which the task re-slicing and scheduling help to fill up ex-
ecution units. Rammer does not touch the incompatibility
problem and cannot support the monolithic optimization of
an entire neural network efficiently. For example, the demoed
BERT model of Rammer consists of 734 kernels on GPU. The
persistent thread scheduling of VersaPipe and Rammer also

introduces extra scheduling overhead, while MonoNN applies
effective static scheduling to avoid such overhead. Moreover,
neither VersaPipe nor Rammer explores the optimizations
of on-chip resource exploitation and GTB merging like in
MonoNN. BOLT [35] can fuse GEMM and its following op-
erations into single kernels under restricted locality constrain.
It cannot generate the monolithic kernel due to the incompati-
bility problem. Müller et al. [25] manually fuse all operators
of a tiny MLP, small enough to fit on-chip, into a single GPU
kernel for accelerated execution. In contrast, MonoNN ex-
plores a general approach for automatically high-performance
code generation for common-sized models. There are ad hoc
solutions to speed up single operator (e.g., LayerNorm) with
instruction level parallelism on GPU [21]. None of the above
work tackles the challenge of monolithic kernel generation.

9 Conclusion

We reveal that the kernel-by-kernel execution scheme is
no longer effective in fully utilizing modern GPUs for
various machine learning workloads, causing notable non-
computation overhead and off-chip memory traffic. We pro-
pose the monolithic kernel execution scheme to tackle these
problems, providing a vast new optimization space. We pro-
pose context-aware instruction rescheduling and compre-
hensive on-chip resource exploitation techniques to cope
with the incompatibility problem between compute-intensive
and memory-intensive operators. We systematically abstract
the monolithic optimization space and propose schedule-
independent group tuning approach to compress the extremely
large tuning space. We develop a compiler integrating the op-
timizations automatically. Extensive evaluation on a set of
inference tasks demonstrates that MonoNN outperforms state-
of-the-art optimizers with on average 2.01× speedup.
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