

Taming Throughput-Latency Tradeoff in LLM Inference with **Sarathi-Serve**

Amey Agrawal¹, Nitin Kedia², Ashish Panwar², Jayashree Mohan², Nipun Kwatra², Bhargav Gulavani², Alexey Tumanov¹, Ramachandran Ramjee²

¹Georgia Institute of Technology, ²Microsoft Research India

Technology

ChatGPT sets record for fastest-growing user base -

analyst note

By Krystal Hu

February 2, 2023 7:33 AM PST · Updated a year ago

\frown	\frown	\frown
	Aa	<

CLIMATE

Google's carbon emissions surge nearly 50% due to AI energy demand

PUBLISHED TUE, JUL 2 2024-3:41 PM EDT | UPDATED MON, JUL 8 2024-9:32 AM EDT

Can we maintain low latency with high throughput?

In this talk...

Latency-throughput tradeoff: Analyzing LLM batching policies

Slack in LLM Inference **5 ***

Stall-free batching: Leveraging chunked prefill to overcome the latency-throughput tradeoff

Evaluations: Key results and analysis

What causes the latency-throughput tradeoff in LLM inference systems?

GPU Utilization **GPU Utilization**

How to improve parallelism during decode phase? 🤔

Timeline

A, B enter

Decode efficiency increases linearly with batch size 🚀

The Prefill-Decode Scheduling Conundrum

Timeline

The Latency-Throughput Tradeoff

Existing batching policies make a harsh latency-throughput tradeoff

How can be we achieve both high throughput and low-latency? 🤔

The Prefill-Decode Scheduling Conundrum

Latency = 16ms

Mixed Batching

Idea

Fused computation of prefill and decodes

Challenge

😭 Naively combining prefill and decode operations leads to increase in latency

Necode-only Decode + Full Prefill

Key Insight

Prefill computation can be done at a marginal cost with careful batching

Observation: Arithmetic Intensity Slack

Key Idea

Split large prefills into smaller chunks – just enough to consume the leftover compute budget in decode batches

Time to first token (TTFT): Time required for the first token to show up from the time user submits a request

Time between tokens (TBT): Latency between each output token

Capacity: Maximum QPS that can be served while satisfying latency SLOs

Problem: State-of-the-art systems sacrifice decode latency to achieve higher throughput

Key Insight - Low arithmetic intensity of decodes allows for adding compute intensive prefills with negligible decode latency cost

Key Results - We achieve optimality in both latency and throughput simultaneously leading up to 6x higher capacity under SLO constraints

Industry Adoption - Available in all major serving frameworks and more.

