ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
f 'u sssss 6; 'u sssss é: uuuuuu

AAAAAAAAAAAAAAAAAAAAAA ' ASSOCIATION

Ildentifying On-/Off-CPU Bottlenecks
Together with Blocked Samples

Minwoo Ahn', Jeongmin Han', Youngjin Kwon? and Jinkyu Jeong?

' Sungkyunkwan University
2 Korea Advanced Institute of Science and Technology (KAIST)
3 Yonsei University

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
e Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Computers)

CPU

Ej B

_ Storage Network)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
e Events executed outside the CPU (i.e., off-CPU) have become more diverse

4 Modern Computers)
(" Past Computers) CPUs Accelerators

LLLLLLLL [

_ |my (.
Ej M Es_@ ES@

_ Storage Network) .=00 f

\ Storage

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

* Computing environments are becoming more complex and advanced

e Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Com

puters)

CPU

]

\Storage

; {2}

Network)

-

Modern Computers

CPUs Accelerators
| |

On-CPU events:
Instructions executed
on the CPU

Off-CPU events:
Waiting events during execution

Storage

~

Network

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
e Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Computers N

L~ » Where are
— Ee Bottlenecks?

_ Storage Network)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (1/O) Boundary between CPU-bound and I/O-bound is blurred

On-CPU Off-CPU (1/0) On-CPU Off-CPU (1/0) On-CPU Off-CPU (1/0)
Utilize faster
storage device

— Bottleneck has shifted from blocking I/O to CPU

= "kernel software is becoming the bottleneck", XRP [OSDI '22]
= "server CPU is becoming the bottleneck", XSTORE [OSDI '20]

= "Rocksdb is CPU-bound", Kvell [SOSP '19]

= "kernel /O stack accounts for a large fraction", AlOS [ATC '19]
= "storage no longer being the bottleneck", uDepot [FAST '19]

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/0O) Boundary between CPU-bound and |/O-bound is blurred
e (Computation) Shifting away from CPU-centric computations

On-lCPU On-FPU On-FPU On—FPU
Communication Communication
(1/0) (1/0)

O

& =| GPuUs (off-CPU) FPGAs (off-CPU)

— Bottleneck has shifted from CPU computation to I/O and communication

= "there are spare CPU and network bandwidth", BytePS [OSDI '20]
= "rapid increases in GPU will shift the bottleneck towards communication", PipeDream [SOSP '19]
= "DNN training is not scalable, mainly due to the communication overhead", ByteScheduler [SOSP '19]

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

func A ¢ q
On-CPU { unc

Off-CPU <

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

[func A !
On-CPU{ i\ - ‘ func B'EquncA>funcB

Off-CPU <

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

On-CPU {

Off-CPU < Which code invoked

off-CPU events?

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

 (Challenge #2) Hard to assess the impact of optimizing off-CPU events

func A

func B

Execution time <

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

 (Challenge #2) Hard to assess the impact of optimizing off-CPU events

func A

func B

Execution time < Execution time is unchanged

— B is not on the critical path
What if optimized?

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

On-CPU Analysis

* Linux perf sampling (task-clock)
* Feature in Linux kernel’s perf subsystem
 Collects profiling information (e.g., IP and callchain) periodically

* A Low overhead, effective technique to analyze on-CPU behavior

Task Sampling
(task-clock) ||| -------- Ty | o .

foo foo bar boo boo
foo(----mmoreomeoe : Sampling is disabled o)
L . during off-CPU periods! .-}

Application i i
PP . ! ' User
execution Syscall -————=——=—————m Return to user ————————-—-

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

On-CPU Analysis
COZ [SOSP “15]

* Predict the impact of optimizing the specific code line without actual optimization

* Virtual speedup
TN\ Ao\ o dco il 1IN\ 2o\\[ro i co

NN \\ //////// A

7777777, TS 1 T/ Y777777] :
T2 V837 \&Aw)\% B4 |+ T2[BO) \ A®G) BQ) :
//// /// NN \\ //////// H VIIIIIE N yoz -

Time Time
<Original application> <Actual speedup>

Original runtime (14) + all inserted delay (3)
"
1

1 \\\\ \\ ;/////////%‘;;; 1 [
T1 §“\A 6 . BG3) A C6) e
& \\i\l\%\ ///ﬁ/)/ ZAE t “"m(m)!"“

I .
////////' \ NNNAN \\u§ /////// : 1
T2 B0 %\A(G) \n\ 35 o i

Ll // NANNN 1 NN

<Virtual speedup>

If line 320 becomes x% faster,
the program will become y% faster

100% =
75% =

Program Speedup

0% _f | |
0% 50% 100%
Line Speedup

COZ utilizes on-CPU sampling (Linux perf) = Virtual speedup is limited to only on-CPU events

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Off-CPU Analysis

e wPerf [OSDI ‘18]
* Traces all kinds of waiting events including I/O and their dependencies

* Wait-for graph: Dependency graph of executed threads
* |ldentifying closed loops (i.e., knots) through graph analysis

ParallelGC* RespProc(MemStore)
[)

Bottleneck ‘

Streamer(Log)

Strgam emStore)

P Zo Limitations
N yd,%fﬂw/ 1) Does not provide context information of the bottleneck
P —> Additional effort is needed to determine where to optimize

ConcurrentGC
\ |

ey SO PanlieiGs : : L
" LogRoller « 2) Does not provide the actual impact of optimization
S - Performance gain of the optimization could be marginal

- 1P Client(HDFS)

<Example vx;a_ii—for graph>

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Summary of the Limitations

— (Limitation #1) Focuses solely on either on-CPU or off-CPU events
- (Limitation #2) Causality analysis is not supported for off-CPU events

: - Causality
Profiler Profiling Scope R
Linux perf X
On-CPU
Coz /\(on-CPU only)
wPerf Off-CPU X
Blocked Samples | Both on-/off-CPU @)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Our Approach: Blocked Samples

e Goal: sampling on- and off-CPU events simultaneously

Missing off-CPU samples

Task Sampling - - mmmmmmmmmmmmmmm e >
(task-clock) | | | | | |
foo foo bar boo boo foo
‘ foo(------------ . oo)
Blocked samples bar{ ---------s o)
. Application | |
(Linux perf subsystem) P ! User
execution --—-------————- Syscall ————————————- Return to user ---——
; : Kernel
‘ boo(---« e)

/O requestl Off-CPU Lnterrupt

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Our Approach: Blocked Samples

e Goal: sampling on- and off-CPU events simultaneously
* Blocked samples: sampling technique for off-CPU events

* Proposed profilers using blocked samples
* bperf: sampling-based statistical profiler on both on-/off-CPU events

* BCOZ: causal profiler that supports virtual speedup on both on-/off-CPU events

Blocked samples

Task Sampling - - - eeeeeeeee———_________ >
(task-clock) | | | | | |
foo foo bar boo boo foo

‘ foo(------------ , ¢ -----o-)
Blocked samples bar(s)
. Application | i
. | U
(Llnux perf SUbSyStem) execution -———————————- SyslcaII ————————————— Return to user il
| : Kernel
‘ boo(---« e)

/O requestl Off-CPU Lnterrupt

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Blocked Samples

e Collected information

e |P and callchain

* Off-CPU subclass: reason for the blocking

* Blocking I/O, synchronization, CPU scheduling, etc.
* New subclasses can be defined as needed

* Weight: # of repeats

* Encode the number of blocked samples with the same attributes

Task Sampling - ee———
(task-clock) | | | | | | | | |
foo foo bar boo| boo boo boo |boo foo

)

(I/0) (1/0) (I/0 IP: boo()
L ! .” hain: f b b
o W Callchain: oo().-> ar()->boo()
Application | | U Subclass: blocking I/0
tion ————————————— Syscall ————————————— Return to user ---—-- .
execution Sysicall Return Ito user — Welght: 3
boo(---» e)

1/O requestl Off-CPU llnterrupt

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

bperf: Statistical Profiler on Both On-/0ff-CPU Events

* Extension of Linux perf tool to support blocked samples

* Sample accounting

* bperf accounts blocked samples with on-CPU samples on the same dimension

* bperf classifies samples considering IP, callchain, and subclasses of blocked samples

e Result reporting
* New symbol annotations for blocked samples
* [1]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others
* Both the last user-level IP and last kernel-level IP are reported for blocked samples

* Enables an in-depth understanding of off-CPU events

Overhead Command Shared Object Symbol
while(N++ < 100000) {
vvrite(); test_io [kernel.vmlinux] [?!_Y??t?ggﬁgage_bit
fSVT]C(); test_io [kernel.vmlinux] |[B] jbd2_log_wait_commit

---[.] fsync
} test io [kernel.vmlinux] [k] copy user_enhanced fast string
test io [kernel.vmlinux] [k] _raw spin_unlock irqrestore

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

BCOZ: Causal Profiler on Both On-/0ff-CPU Events

* Extension of COZ to support blocked samples

Expected runtime
Original runtime (original runtime + inserted delay)

N7

* Virtual speedup of blocked samples

Thread 1

/ Predicted speedup

Identified bottleneck by COZ: E

- Optimizing B yields marginal gains

v\

A

Virtual speedup target: B

Thread 2 B (blocking 1/0)

<Virtual speedup without blocked samples>

Actual runtime Expected runtime
< =
Predicted
speedup

P o
< »

Thread 1

Delay caused by blocked samples

Thread 2 B (blocking 1/0)

Y
Identified bottleneck by BCOZ: B@
<BCOZ> - Optimizing B is most important!

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Features and Challenges of BCOZ

* Features
* Sampling kernel codes
* Virtual speedup of blocked samples
 Subclass-level virtual speedup

* Challenges

* Conflicts with optimization of original COZ
* Dependency handling + batch processing of samples

- For more details, please refer to the paper

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Experimental Setup

* CPU: Intel Xeon Gold 5218 2.30GHz * 2

e OS: Ubuntu 20.04 Server (Linux kernel version: 5.3.7)

* Memory: DDR4 2933MHz, 384GB

 Storage devices: Samsung NVMe PM1735 (1,500K IOPS)

* Questions:
* Q1) Can blocked samples identify true bottlenecks?
* (Q2) Differences from wPerf's results?

—> Please refer to the paper

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Summary of the Profiling Results

e Results included in the paper

Benchmark | Workload | Identified bottlenecks Optimization Speedup?| Known solution?
prefix_dist | Block cache contention | - Sharding O (3.4x) Yes Case study 2
allrandom Block read 1/0 - Asynchronous I/0O O (1.8x) No Case study 1
RocksDB - No block compression

- Increase the number of

fillrandom | Compaction, write stall compaction thread O (2.6x) Yes
- Reduce write stall
NPB Integer sort CPU contention - Allocate more CPU cores | O (16.4x) Yes

* Results not included in the paper (optimization is ongoing)

Benchmark Identified Bottlenecks
HPCG Serialized SYMGS (Symmetric Gauss Seidel) kernel
LLaMA-cpp Blocking 1/0 in ggml_vec_dot

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1- RocksDB (Block Read Operation)

* Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

* Problem: frequent block (filter, index, data) read 1/Os

ictcl
cPU |—| |—| |—| r Data exists!
Filter test)LI Filter test/l/—| Filter test)LI . Filter test)L

Stor Index Data
orage block I/O | block /O

Block cache

| || p || Cache miss leads to read /O

/ SSTfile

/
U

/s Index blocks (1) | | = 1 * read

4

Ln B @ B _______ \L Data blocks (D)j - 1 * read

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1- RocksDB (Block Read Operation)

* Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk 1/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000
Overhead Command Shared Object Symbol
- db_bench_vanill T1libpthread-2.30.s0 [I] _ libc_pread64
- _ libc_preadb4
- rocksdb: :PosixRandomAccessFile: :Read
rocksdb: :RandomAccessFileReader: :Read

Identified bottleneck: blocking disk I/0
(Worker*>HARDIRQ)

Worker-1

- rocksdb: :BlockFetcher: :ReadBlockContents

- 45.09% rocksdb::BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdhb: :Block>
- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb::DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb::IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: : ParsedFullFilterBlock>
rocksdb::PartitionedFilterBlockReader: :GetFilterPartitionBlock

Causality analysis <bperf>
;{9100 ® /O subclass
§ 80 m GetFilterPartitionBlock (1/O)
'§ 60 IndexBlocklter (1/0)
cg 40 *DataBlocklter (10) —> Optimizing disk 1/0 of <Wait-for graph of wPerf>
g 20 filter block is most important! _ o
2 0 . — Contexts related to disk 1/Os are missing

0O 10 20 30 40 50 60 70 80 90 100
Line Speedup (%)

<BCOZ>

(Limitation #1)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1- RocksDB (Block Read Operation)

* Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk 1/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000 .
Filter? Index? Data block?

Overhead Command Shared Object Symbol
- db_bench_vanill T1libpthread-2.30.s0 [I] _ libc_pread64
- _ libc_preadb4
- rocksdb: :PosixRandomAccessFile: :Read
rocksdb: :RandomAccessFileReader: :Read

- rocksdb: :BlockFetcher: :ReadBlockContents

- 45.09% rocksdb::BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :Block>
- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb::DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb::IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :ParsedFullFilterBlock>
rocksdb::PartitionedFilterBlockReader: :GetFilterPartitionBlock

Causality analysis <bperf>
;\‘?IOO ® |/O subclass
§ 80 m GetFilterPartitionBlock (I/O) |
2 60 IndexBlocklter (I/O)) :
2, + DataBlocklter (1/0 . . : -
2 40 talecdter (I79) - Optimizing disk 1/0 of .
— - e
5 2 filter block is most important! . o
g0 — Contexts related to disk |/Os are missing

0O 10 20 30 40 50 60 70 80 90 100
Line Speedup (%)

<BCOZ>

(Limitation #1)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1- RocksDB (Block Read Operation)

* Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Optimization: asynchronous |/O for filter and index blocks

Data exists!
Filter test Filter test Filter test ves Filter test

<Before> _ _ . .
Storage — Filter | | Filter | | Filter Filter | | Index Data
g block 1/0 block 1/0 block 1/0 block 1/0 block I/O | block /0O
_ 35
CPU I I I I Data exists! 230
§25 1.8x
Storage — Filter Filter ‘320]
<After> & block 1/0 block 1/0 E1s
Filter Index 2 10
block 1/0 block I/0 = 5
Filter Data block = 0
block I/0O /O

\ J \] Baseline AIO
\ Y

Next level filter block (Last level only) Index block

<Optimization results>
- Blocking I/O decreased by 74%

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 - RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix _dist), large block cache (10% of dataset size)
* Problem: block cache lock contention

2 % S

Block cache

Frequent block cache access leads to lock contention

=
\——————————————’

”

N\

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 - RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix _dist), large block cache (10% of dataset size)

* Identified bottlenecks: lock-waiting =100
N ® GetDataBlockFromCache (lock)

W ReadBlockContents (I/O)

o0
O

Samples: 1M of event 'task-clock', Event count (approx.): 1097249000000
Overhead Command Shared Object Symbol
+ db_bench_vanill [kernel.vmlinux] [k] native queued spin_lock_slowpath
db_bench_vanill 1libpthread-2.30.so0 |[L] _ 111 lock wait
- 24.09% 111 _lock wait
- _ pthread _mutex_ lock

o)
o

- rocksdb: :port::Mutex::Lock
- 12.51% rocksdb: :LRUCacheShard: : Lookup
rocksdb: :ShardedCache: : Lookup
- rocksdb: :BlockBasedTable: : GetEntryFromCache
+ 8.05% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :Block> 0 10 20 30 40 50 60 70 80 90 100
+ 4.46% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :ParsedFullFilterBlock> : 0
+ 11.55% rocksdb: :LRUCacheShard: :Release Llne Speedup (/0)

db_bench_vanill [kernel.vmlinux] [k] _raw_spin_unlock_irgrestore 9 OptImIZIng |OCk—C0ntenti0n iS more

db_bench_vanill libpthread-2.30.so [[I] _ Llibc pread6s Jfele[al-HVA®] important than disk 1/0

Identified bottleneck: blocking disk /O, lock-waiting

(|
o

Program Speedup (
o S

(Worker*—>HARDIRQ, Worker* €< —->Worker*) (Limitation #1)
WO;E;;;V (S i o e S - Codes that invoke lock-contention are missing
Wor?g-—-lglA‘ lngg}./Wo er-3 - Worﬁﬁbl orker-3 (L|m|tat|0n #2)
Y 6/(N7 W . - Actual impact of optimizing blocking disk I/O is missing
WQ%EPS

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 - RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix _dist), large block cache (10% of dataset size)

* Identified bottlenecks: lock-waiting =100
N ® GetDataBlockFromCache (lock)

W ReadBlockContents (I/O)

o0
O

Samples: 1M of event 'task-clock', Event count (approx.): 1097249000000
Overhead Command Shared Object Symbol
+ db_bench_vanill [kernel.vmlinux] [k] native queued spin_lock_slowpath
db_bench_vanill 1libpthread-2.30.so0 |[L] _ 111 lock wait
- 24.09% 111 _lock wait
- _ pthread _mutex_ lock

o)
o

- rocksdb: :port::Mutex::Lock
- 12.51% rocksdb: :LRUCacheShard: : Lookup
rocksdb: :ShardedCache: : Lookup
- rocksdb: :BlockBasedTable: : GetEntryFromCache
+ 8.05% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :Block> 0 10 20 30 40 50 60 70 80 90 100
+ 4.46% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :ParsedFullFilterBlock> : 0
+ 11.55% rocksdb: :LRUCacheShard: :Release Llne Speedup (/0)

db_bench_vanill [kernel.vmlinux] [k] _raw_spin_unlock_irgrestore 9 OptImIZIng |OCk—C0ntenti0n iS more

db_bench_vanill libpthread-2.30.so [[I] _ Llibc pread6s Jfele[al-HVA®] important than disk 1/0

) ALOCk or |/O? (Limitation #1)

(|
o

Program Speedup (
o S

- Codes that invoke lock-contention are missing

(Limitation #2)

, Lookup? Insert?
? P - Actual impact of optimizing blocking disk 1/0 is missing

H Release?

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 - RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix _dist), large block cache (10% of dataset size)

* Optimization: apply sharding

Marginal gain from blocking disk I/0
3.4x gain from sharding

250 -
1Lookup/lnsert/ReIease/ £.200 -
150
Shards|| 1 || 2 || 3 62 || 63 || 64 = 100
=
v v v v v v %58 |_’ ’_| H
7~ 7~ 7~ AN N\ N B [5) + I <+ No) o <t
B KB} KX Block cache BN KX KX £ s 2] ?é = ;a %
----- e e = g Z 8|2 | 2|22
=| =I =I A e e
T i ! 10 Lock Contention

—> Lock-contention decreased by 97%

% & R 0 RN B 0 0§ TN
' —] -
-
—
-
— — _-——

<Optimization results>

<Optimization (sharding)>

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Conclusion

* Profiling modern applications has become more challenging
* Blocked samples collects off-CPU events information

* bperf, provides statistical profiling of both on-/off-CPU events
e BCOZ, provides virtual speedup of both on-/off-CPU events

* Blocked samples, a general solution for off-CPU sampling

* Planning on enriching blocked samples with off-CPU information details
(device-internal ops.)

Blocked samples is available at:
https://github.com/s3yonsei/blocked samples

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Thank you!
you! |6

AVAILABLE

REPRODUCED

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

https://github.com/s3yonsei/blocked_samples

Q&A

Overhead
40.00%

bperf
20.00%

15.00%

Symbol

[1/0] fsync
-25.00% [.] foo
-15.00% [.] boo
[LOCK] mutex_lock
- [.] bar

[.] compute

Blocked samples

(Linux perf subsystem)

Task Sampling

(task-clock)

/O

BCOZ

boo (I/0)

Program speedup (%)

bar boo|l boo boo boo

(/0) (1/0) (I/0)

Application
execution

Syscall

boo (I

Off-CPU

-----)
1/O requestl Ilnterrupt

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

	슬라이드 1: Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples
	슬라이드 2: Trend of Computing Environments
	슬라이드 3: Trend of Computing Environments
	슬라이드 4: Trend of Computing Environments
	슬라이드 5: Trend of Computing Environments
	슬라이드 6: Bottlenecks of Modern Applications
	슬라이드 7: Bottlenecks of Modern Applications
	슬라이드 8: Profiling Challenge
	슬라이드 9: Profiling Challenge
	슬라이드 10: Profiling Challenge
	슬라이드 11: Profiling Challenge
	슬라이드 12: Profiling Challenge
	슬라이드 13: On-CPU Analysis
	슬라이드 14: On-CPU Analysis
	슬라이드 15: Off-CPU Analysis
	슬라이드 16: Summary of the Limitations
	슬라이드 17: Our Approach: Blocked Samples
	슬라이드 18: Our Approach: Blocked Samples
	슬라이드 19: Blocked Samples
	슬라이드 20: bperf : Statistical Profiler on Both On-/Off-CPU Events
	슬라이드 21: BCOZ : Causal Profiler on Both On-/Off-CPU Events
	슬라이드 22: Features and Challenges of BCOZ
	슬라이드 23: Experimental Setup
	슬라이드 24: Summary of the Profiling Results
	슬라이드 25: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 26: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 27: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 28: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 29: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 30: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 31: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 32: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 33: Conclusion
	슬라이드 34: Q&A

