
Identifying On-/Off-CPU Bottlenecks
Together with Blocked Samples

Minwoo Ahn¹, Jeongmin Han¹, Youngjin Kwon²and Jinkyu Jeong³
¹ Sungkyunkwan University

² Korea Advanced Institute of Science and Technology (KAIST)

³ Yonsei University

OSDI '24

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

2

Past Computers

CPU

Storage Network

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

3

. . .

Past Computers

CPU

Storage Network

Network

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

4

. . .

On-CPU events:
Instructions executed

on the CPU

Past Computers

CPU

Storage Network

Network

Off-CPU events:
Waiting events during execution

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

5

. . .

On-CPU events:
Instructions executed

on the CPU

Past Computers

CPU

Storage Network

Network

Off-CPU events:
Waiting events during execution

Where are
Bottlenecks?

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

6

▪ "kernel software is becoming the bottleneck", XRP [OSDI '22]
▪ "server CPU is becoming the bottleneck", XSTORE [OSDI '20]
▪ "Rocksdb is CPU-bound", Kvell [SOSP '19]
▪ "kernel I/O stack accounts for a large fraction", AIOS [ATC '19]
▪ "storage no longer being the bottleneck", uDepot [FAST '19]

On-CPU Off-CPU (I/O)

→ Bottleneck has shifted from blocking I/O to CPU

Off-CPU (I/O) Off-CPU (I/O)On-CPU On-CPU

Utilize faster
storage device

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

• (Computation) Shifting away from CPU-centric computations

7

▪ "there are spare CPU and network bandwidth", BytePS [OSDI '20]
▪ "rapid increases in GPU will shift the bottleneck towards communication", PipeDream [SOSP '19]
▪ "DNN training is not scalable, mainly due to the communication overhead", ByteScheduler [SOSP '19]

Computation Computation Computation Computation

On-CPU On-CPU On-CPU On-CPU

→ Bottleneck has shifted from CPU computation to I/O and communication

Communication
(I/O)

GPUs (off-CPU) FPGAs (off-CPU)

Computation Computation
Communication

(I/O)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

8

On-CPU

Off-CPU

func A
func B

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

9

On-CPU

Off-CPU

func A
func B func A > func B

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

10

On-CPU

Off-CPU

func A
func B

Which code invoked
off-CPU events?

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

• (Challenge #2) Hard to assess the impact of optimizing off-CPU events

11

func A
func B

Execution time

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

• (Challenge #2) Hard to assess the impact of optimizing off-CPU events

12

func A
func B

Execution time

What if optimized?

Execution time is unchanged
→ B is not on the critical path

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

On-CPU Analysis

• Linux perf sampling (task-clock)

• Feature in Linux kernel’s perf subsystem

• Collects profiling information (e.g., IP and callchain) periodically

• A Low overhead, effective technique to analyze on-CPU behavior

13

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙

∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

Sampling is disabled
during off-CPU periods!

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

On-CPU Analysis

• COZ [SOSP ‘15]

• Predict the impact of optimizing the specific code line without actual optimization

• Virtual speedup

14

<Original application> <Actual speedup>

<Virtual speedup>

If line 320 becomes x% faster,
the program will become y% faster

COZ utilizes on-CPU sampling (Linux perf) → Virtual speedup is limited to only on-CPU events

(x,y)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Off-CPU Analysis

• wPerf [OSDI ‘18]

• Traces all kinds of waiting events including I/O and their dependencies

• Wait-for graph: Dependency graph of executed threads

• Identifying closed loops (i.e., knots) through graph analysis

15

<Example wait-for graph>

Limitations
1) Does not provide context information of the bottleneck
→ Additional effort is needed to determine where to optimize

2) Does not provide the actual impact of optimization
→ Performance gain of the optimization could be marginal

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Summary of the Limitations

→ (Limitation #1) Focuses solely on either on-CPU or off-CPU events

→ (Limitation #2) Causality analysis is not supported for off-CPU events

16

Profiler Profiling Scope
Causality
Analysis

Linux perf
On-CPU

X

COZ (on-CPU only)

wPerf Off-CPU X

Blocked Samples Both on-/off-CPU O

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

17

Blocked samples
(Linux perf subsystem)

Missing off-CPU samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

• Blocked samples: sampling technique for off-CPU events

• Proposed profilers using blocked samples

• bperf: sampling-based statistical profiler on both on-/off-CPU events

• BCOZ: causal profiler that supports virtual speedup on both on-/off-CPU events

18

Blocked samples
(Linux perf subsystem)

Blocked samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Blocked Samples

• Collected information

• IP and callchain

• Off-CPU subclass: reason for the blocking
• Blocking I/O, synchronization, CPU scheduling, etc.

• New subclasses can be defined as needed

• Weight: # of repeats
• Encode the number of blocked samples with the same attributes

19

IP: boo()
Callchain: foo()->bar()->boo()
Subclass: blocking I/O
Weight: 3

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

bperf : Statistical Profiler on Both On-/Off-CPU Events

• Extension of Linux perf tool to support blocked samples

• Sample accounting
• bperf accounts blocked samples with on-CPU samples on the same dimension

• bperf classifies samples considering IP, callchain, and subclasses of blocked samples

• Result reporting
• New symbol annotations for blocked samples

• [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others

• Both the last user-level IP and last kernel-level IP are reported for blocked samples

• Enables an in-depth understanding of off-CPU events

20

while(N++ < 100000) {
write();
fsync();

}

Data block write

Waiting for jbd2 thread

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

BCOZ : Causal Profiler on Both On-/Off-CPU Events

• Extension of COZ to support blocked samples

• Virtual speedup of blocked samples

21

Thread 2

Thread 1

A B B (blocking I/O) C

Virtual speedup target: B

Expected runtime
(original runtime + inserted delay)

Thread 2

Thread 1

A B B (blocking I/O)

Predicted speedup

<Virtual speedup without blocked samples>

<BCOZ>

Original runtime

Actual runtime Expected runtime

Predicted
speedup

Delay caused by blocked samples

Identified bottleneck by BCOZ: B
→ Optimizing B is most important!

D E

C D E

Identified bottleneck by COZ: E
→ Optimizing B yields marginal gains

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Features and Challenges of BCOZ

• Features

• Sampling kernel codes

• Virtual speedup of blocked samples

• Subclass-level virtual speedup

• Challenges

• Conflicts with optimization of original COZ

• Dependency handling + batch processing of samples

22

→ For more details, please refer to the paper

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Experimental Setup

• CPU: Intel Xeon Gold 5218 2.30GHz * 2

• OS: Ubuntu 20.04 Server (Linux kernel version: 5.3.7)

• Memory: DDR4 2933MHz, 384GB

• Storage devices: Samsung NVMe PM1735 (1,500K IOPS)

• Questions:

• Q1) Can blocked samples identify true bottlenecks?

• Q2) Differences from wPerf's results?

• Q3) Profiling overhead?
• Comparison of tracing (off-CPU only), sampling (on-CPU only), bperf (both on-/off-CPU)

• BCOZ overhead analysis

→ Please refer to the paper

23

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Summary of the Profiling Results

• Results included in the paper

• Results not included in the paper (optimization is ongoing)

24

Benchmark Workload Identified bottlenecks Optimization Speedup? Known solution?

RocksDB

prefix_dist Block cache contention - Sharding O (3.4x) Yes

allrandom Block read I/O - Asynchronous I/O O (1.8x) No

fillrandom Compaction, write stall

- No block compression
- Increase the number of
compaction thread
- Reduce write stall

O (2.6x) Yes

NPB Integer sort CPU contention - Allocate more CPU cores O (16.4x) Yes

Benchmark Identified Bottlenecks

HPCG Serialized SYMGS (Symmetric Gauss Seidel) kernel

LLaMA-cpp Blocking I/O in ggml_vec_dot

Case study 1

Case study 2

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Problem: frequent block (filter, index, data) read I/Os

Case Study 1– RocksDB (Block Read Operation)

25

Memory

Storage

F F I I D… …

…

…

L0

L1

Ln

Block cache

SST file

Filter blocks (F)

Index blocks (I)

Data blocks (D)

…
Cache miss leads to read I/OF

→ n * reads

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

→ 1 * read

→ 1 * read

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

26

<bperf>

<BCOZ>

→Optimizing disk I/O of
filter block is most important!

Blocking disk I/O
Context information

<Wait-for graph of wPerf>

Identified bottleneck: blocking disk I/O
(Worker*→HARDIRQ)

→Contexts related to disk I/Os are missing
(Limitation #1)

Causality analysis

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

27

<bperf>

<BCOZ>

→Optimizing disk I/O of
filter block is most important!

Blocking disk I/O
Context information

<Wait-for graph of wPerf>

Identified bottleneck: blocking disk I/O
(Worker*→HARDIRQ)

→Contexts related to disk I/Os are missing
(Limitation #1)

Causality analysis

Filter? Index? Data block?

?

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Optimization: asynchronous I/O for filter and index blocks

28

CPU

Storage
Filter

block I/O
Filter

block I/O

Filter
block I/O

Index
block I/O

Data block
I/O

Data exists!

Filter
block I/O

…

Next level filter block (Last level only) Index block

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test
<Before>

<After>

<Optimization results>

1.8x

→ Blocking I/O decreased by 74%

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Problem: block cache lock contention

Use Case 2 – RocksDB (Block Cache Contention)

29

…

Block cache

…

…

Lookup/Insert/Release/…

Frequent block cache access leads to lock contention

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 – RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Identified bottlenecks: lock-waiting

30

. . .

Lock-waiting

Context information

Blocking I/O

→ Optimizing lock-contention is more
important than disk I/O

Identified bottleneck: blocking disk I/O, lock-waiting
(Worker*→HARDIRQ, Worker*→Worker*)

(Limitation #2)
→ Actual impact of optimizing blocking disk I/O is missing

(Limitation #1)
→ Codes that invoke lock-contention are missing

Causality analysis

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 – RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Identified bottlenecks: lock-waiting

31

. . .

Lock-waiting

Context information

Blocking I/O

→ Optimizing lock-contention is more
important than disk I/O

Identified bottleneck: blocking disk I/O, lock-waiting
(Worker*→HARDIRQ, Worker*→Worker*)

(Limitation #2)
→ Actual impact of optimizing blocking disk I/O is missing

(Limitation #1)
→ Codes that invoke lock-contention are missing

Causality analysis

Lock or I/O?

Lookup? Insert?
Release??

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Use Case 2 – RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Optimization: apply sharding

32

<Optimization results>

3.4x gain from sharding

→ Lock-contention decreased by 97%

Marginal gain from blocking disk I/O

…

Block cache

…

…

Lookup/Insert/Release/…

2 31 62 63 64…Shards

<Optimization (sharding)>

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Conclusion

• Profiling modern applications has become more challenging

• Blocked samples collects off-CPU events information

• bperf, provides statistical profiling of both on-/off-CPU events

• BCOZ, provides virtual speedup of both on-/off-CPU events

• Blocked samples, a general solution for off-CPU sampling

• Planning on enriching blocked samples with off-CPU information details
(device-internal ops.)

33

Blocked samples is available at:
https://github.com/s3yonsei/blocked_samples

Thank you!

https://github.com/s3yonsei/blocked_samples

Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples, OSDI '24, Santa Clara, CA, US, July 10-12, 2024

Q&A

34

bperf BCOZ

Overhead Symbol
40.00% [I/O] fsync

- 25.00% [.] foo
- 15.00% [.] boo

20.00% [LOCK] mutex_lock
--- [.] bar

15.00% [.] compute
. . . P

ro
gr

am
 s

p
ee

d
u

p
 (

%
)

Line speedup (%)

I/O

boo (I/O)

foo

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

Blocked samples

Blocked samples
(Linux perf subsystem)

	슬라이드 1: Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples
	슬라이드 2: Trend of Computing Environments
	슬라이드 3: Trend of Computing Environments
	슬라이드 4: Trend of Computing Environments
	슬라이드 5: Trend of Computing Environments
	슬라이드 6: Bottlenecks of Modern Applications
	슬라이드 7: Bottlenecks of Modern Applications
	슬라이드 8: Profiling Challenge
	슬라이드 9: Profiling Challenge
	슬라이드 10: Profiling Challenge
	슬라이드 11: Profiling Challenge
	슬라이드 12: Profiling Challenge
	슬라이드 13: On-CPU Analysis
	슬라이드 14: On-CPU Analysis
	슬라이드 15: Off-CPU Analysis
	슬라이드 16: Summary of the Limitations
	슬라이드 17: Our Approach: Blocked Samples
	슬라이드 18: Our Approach: Blocked Samples
	슬라이드 19: Blocked Samples
	슬라이드 20: bperf : Statistical Profiler on Both On-/Off-CPU Events
	슬라이드 21: BCOZ : Causal Profiler on Both On-/Off-CPU Events
	슬라이드 22: Features and Challenges of BCOZ
	슬라이드 23: Experimental Setup
	슬라이드 24: Summary of the Profiling Results
	슬라이드 25: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 26: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 27: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 28: Case Study 1– RocksDB (Block Read Operation)
	슬라이드 29: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 30: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 31: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 32: Use Case 2 – RocksDB (Block Cache Contention)
	슬라이드 33: Conclusion
	슬라이드 34: Q&A

