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Predictability in Real-World Systems

● Most real-world systems provide users with a time estimate
● Improves service quality
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Can the Cloud do the same?



Can the Cloud provide predictions?

Scheduler

“By the end of 2024, we’re aiming to 
[...] feature compute power 
equivalent to nearly 600,000 H100s.”  
- Meta1

prediction

● Multi-tenant GPU clusters

● Highly loaded

● Predictions can improve experience; if they are reliable

● Growing use-case
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“Your job will 
complete at T”
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What impacts the reliability of predictions?

Scheduler

Failures, Stragglers

prediction

● Several factors can make predictions unreliable
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What impacts the reliability of predictions?

Scheduler

Failures, Stragglers

prediction

● Several factors can make predictions unreliable
● Resource allocation policy (scheduler) is an important contributor
● Preemptive vs. non-preemptive

7

“Your job will 
complete at T”
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Outages
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Role of scheduling in predictability

● Most real-world systems are non-preemptive (FIFO-like)
● Future jobs (e.g., customers) do not impact existing ones

10 FIFO (e.g., queue at a bank)
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Role of scheduling in predictability

● Most real-world systems are non-preemptive (FIFO-like)
● Future jobs (e.g., customers) do not impact existing ones
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● Non-preemptive systems suffer from practical issues
● E.g., Head of line blocking

FIFO (e.g., queue at a bank)
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Role of scheduling in predictability

● Cloud systems employ preemption
● Typically in an unbounded fashion
● E.g., Prioritize shorter jobs (minimize JCTs) or share resources across jobs (fairness)
● Causes unpredictability (prediction error)

5

10

11

10



Role of scheduling in predictability

510

+50%

Shortest-Job-First

10
5

+50%

Fair-Sharing

● Cloud systems employ preemption
● Typically in an unbounded fashion
● E.g., Prioritize shorter jobs (minimize JCTs) or share resources across jobs (fairness)
● Causes unpredictability (prediction error)
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Trade-off between predictability and practicality

Predictable Practical

Fair-sharing,
Shortest-Job-First…

FIFO
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Trade-off between predictability and practicality

Predictable Practical

Fair-sharing,
Shortest-Job-First…

FIFO

Greater than 100% average 
prediction error

10x increase in avg JCTs 
compared to performance 

based schemes!
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Can we offer predictability while balancing other 
practical objectives?

Predictability-Centric Scheduling (PCS)
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PCS in a single slide

● Weighted-Fair-Queueing (WFQ) ➡ Bounded and Controlled Preemption
● Different configurations can achieve different trade-offs

● Simulation based search ➡ Practical way to realize different trade-offs
● Heuristics narrow the search space

● High level interface ➡ Simplify navigating trade-offs
● Reduce trade-offs to Pareto-optimal choices

Operator

Preference
Interface

Solver

Sim 1Sim N

Resources 16



Outline

● Motivation - supporting PCS for ML workloads
● Why provide predictions for ML workloads?
● Feasibility and Challenges

Operator

Preference
Interface

Solver

S1Sim N

Resources

Sched
prediction

● Design
● Use of Weighted-Fair-Queues (WFQ)
● Simulation based search strategy
● High level interface to navigate trade-offs

● Evaluation
● Benefits and feasibility of PCS
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 Why provide predictions for ML workloads?

● Evidence of user frustration in shared GPU clusters

“[...] we do find users frustrated [...] The 
frustration frequently reaches the point 
where groups attempt or succeed at buying 
their own hardware” [Themis, NSDI’20]
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 Why provide predictions for ML workloads?

● Evidence of user frustration in shared GPU clusters

● GPU cluster users are already making predictions [Chronus, SoCC’21]

● User generated predictions can be off by more than 100%

“[...] we do find users frustrated [...] The 
frustration frequently reaches the point 
where groups attempt or succeed at buying 
their own hardware” [Themis, NSDI’20]
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“[...] completion time of a DLT job varies under 
different scheduling algorithms [...] Hence, it is 
infeasible to accurately estimate [...]” [Chronus, SoCC’21]



Feasibility and Challenges - Workload characteristics

??

??
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“Your job will 
complete at ??”



Feasibility and Challenges - Workload characteristics

● An ML job’s demand function is known or can be estimated

??

??10

5

● Demand function: allocated resources ➡ execution time (#epochs / thrpt)
● Necessary to compute a reasonable prediction
● Has been leveraged by prior systems (e.g., Themis, NSDI’20)
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5

● Demand function: allocated resources ➡ execution time (#epochs / thrpt)
● Necessary to compute a reasonable prediction
● Has been leveraged by prior systems (e.g., Themis, NSDI’20)

● Accuracy of prediction still impacted by scheduler choice!
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Feasibility and Challenges - Workload characteristics

● An ML job’s demand function is known or can be estimated

● Demand functions can be complex
● ML jobs exhibit sub-linear throughput scaling
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Feasibility and Challenges - Workload characteristics

● An ML job’s demand function is known or can be estimated

● Demand functions can be complex
● ML jobs exhibit sub-linear throughput scaling

● Unclear how to allocate GPUs to such jobs!
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Outline

● Motivation - supporting PCS for ML workloads
● Why provide predictions for ML workloads?
● Feasibility and Challenges

● Design
● Use of Weighted-Fair-Queues (WFQ)
● Simulation based search strategy
● High level interface to navigate trade-offs

● Evaluation
● Benefits and feasibility of PCS

Operator

Preference
Interface

Solver

S1Sim N

Resources

Sched
prediction
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Goal I

26

Predictability

Goal II

Balance other 
objectives

Design goals



Background on WFQ
● Different jobs mapped to different queues
● Within a queue, jobs are processed in FIFO order
● Each queue gets a guaranteed resource share (weights)
● # of queues, weights, job mapping criterion etc. are configurable

w1

w2

w3
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Background on WFQ
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● Within a queue, jobs are processed in FIFO order
● Each queue gets a guaranteed resource share (weights)
● # of queues, weights, job mapping criterion etc. are configurable

w1

w2

w3
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small

Large

Medium

Guaranteed resource share + FIFO ordering within queue bounds prediction error

WFQ provides the necessary baseline flexibility 



Spanning the scheduler space with WFQs

● WFQ parameters can be intelligently configured
● Allows to achieve different trade-offs

w1 = 0.33

w2 = 0.33

w3 = 0.33

~Fair-sharing

small

Large

Medium w1 = 1.0 

FIFO

w1 = 0.99

w2 = 0.009

w3 = 0.001

~Shortest-Job-First
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Spanning the scheduler space with WFQs

● WFQ parameters can be intelligently configured
● Allows to achieve different trade-offs

w1 = 0.33

w2 = 0.33

w3 = 0.33

~Fair-sharing

small

Large

Medium w1 = 1.0 

FIFO

w1 = 0.99

w2 = 0.009

w3 = 0.001

~Shortest-Job-First
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WFQ can approximate extreme and potentially intermediate points



WFQ optimization I: Avoiding HOL blocking

● Similar sized jobs are mapped to the same queue (avoids HOL blocking)
● Appropriate number of queues and thresholds

w1

w2

w3
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WFQ optimization II: Handling complex demand functions

● SJF optimal if job’s thrpt scales linearly w.r.t. resources [AFS, NSDI’21]

● Aggressively prioritizing efficient jobs ➡ unpredictability

● Cap a job’s maximum possible allocation
● Compute a job’s efficiency: E(n) = thrpt(n)/n
● Cap maximum allocation to k s.t. E(k) ≥ Emin
● Eminis another configurable parameter
● Higher Emin ➡ higher chances of GPUs being preempted
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Example

● Emin = 0.75, 8 GPU system
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Opportunistic!
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● Emin = 0.75, 8 GPU system

4 gpus freed
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Example

● Emin = 0.75, 8 GPU system

4 gpus freed
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Opportunistic!

Conservative strategy trades off predictability for additional performance



Searching for WFQ configurations

● # queues, weights, Emin etc. jointly influence trade-offs
● Hard to reason about the combined impact

● Empirically determine impact of different parameters

1. Sample different 
configs

Sim 1Sim 1Sim 1Sim N

2. Simulate on 
collected workload

Avg 
JCT

Avg pred
error

WFQ1 1.1x 50%

WFQ2 2.1x 100%
:

WFQN 1.4x 25%

3. Discard non-Pareto configs + repeat

WFQ1
WFQ2

:
WFQN
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 Evolutionary search



Narrowing the search space

● Search space is combinatorial + large
● ~ O(# queues * thresholds * weights * Emin)

● Increase the likelihood of a random sample being Pareto-optimal
● Intelligently parameterize configurations

Example: Use exponentially shrinking weights

● Assigning exponentially lower weights to longer jobs improves performance
● Formally: wk ∝ exp(-k * W)
● Larger W ➡ more aggressive shrinking; W=0 ➡ fair division
● Other heuristics discussed in the paper!
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Simplify navigating trade-offs

● Exact trade-offs are unknown a priori
● Trade-off space is workload dependent
● Can’t say: “give me 10% error but okay to take a 1.5x performance hit”

<Avg Prederror,
 Avg JCT>

Operator

1

Preference 
selection3

Sim 1Preference
Interface

Preference
 Solver

Sim 1Sim 1Sim N

2

● Operators specify higher level objectives; PCS provides Pareto-optimal choices
○ Supported Objectives: Prediction error, JCTs, unfairness
○ Supported Measures: Avg + specific percentiles
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Outline

● Motivation - supporting PCS for ML workloads
● Why provide predictions for ML workloads?
● Feasibility and Challenges

● Design
● Use of Weighted-Fair-Queues (WFQ)
● Simulation based search strategy
● High level interface to navigate trade-offs

● Evaluation
● Benefits and feasibility of PCS

Operator

Preference
Interface

Solver

S1Sim N

Resources

Sched
prediction
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Evaluation - Key questions

● How does PCS perform for realistic workloads?

● Can the simulation-based search find the Pareto-frontier?

● How effective are the heuristics in improving search efficiency?
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How does PCS fare under realistic settings?

● Testbed setup
○ 16 GPU cluster (NVIDIA P100s)

● Workload
○ AutoML jobs - each job spawns 1-20 DNN trials
○ Poisson job arrivals at 80% load

● Comparison points
○ Performance baseline: AFS (NSDI’21); efficiency + size based scheduling
○ Predictability baseline: FIFO

● Metrics
○ JCTs
○ Prediction error = (JCT - JCTpred) / JCTpred
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Achieving intermediate trade-offs

42



Achieving intermediate trade-offs
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30%



Providing reliable predictions with PCS
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Providing reliable predictions with PCS

45

80%



Can the simulation-based search find the Pareto-frontier?

● Run search on two realistic traces (Philly)

46

Trace 1 Trace 2



Can the simulation-based search find the Pareto-frontier?

● Run search on two realistic traces (Philly)
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How effective are heuristics in improving search efficiency?

● Track percentage of Pareto-frontier discovery w/ & w/o heuristics w.r.t. budget
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How effective are heuristics in improving search efficiency?

● Track percentage of Pareto-frontier discovery w/ & w/o heuristics w.r.t. budget
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Summary 

● Providing predictions improves user experience
● Predictability vs. Practicality trade-off -> existing schedulers lie on extremes

● WFQ to bound prediction errors and offer flexibility
● Simulation-based search to achieve Pareto-optimal WFQ configurations
● High-level interface to simplify navigating the trade-off space
● PCS achieves lower prediction errors while being competitive with other 

schedulers
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Thank you!
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