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Predictability in Real-World Systems

e Most real-world systems provide users with a time estimate
® Improves service quality
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Predictability in Real-World Systems

e Most real-world systems provide users with a time estimate
® Improves service quality
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Can the Cloud do the same?
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Can the Cloud provide predictions?

e Multi-tenant GPU clusters

e (Growing use-case
e Highly loaded

e Predictions can improve experience; if they are reliable

Train LLM &

& 2

“By the end of 2024, we’re aiming to

prediction
< Scheduler [...] feature compute power
“Your job will [ TTTNCTTTNCTTT ] equivalent to nearly 600,000 H100s.”
complete at T” § GPU § GPU § GPU E _ Meta1




What impacts the reliability of predictions?

e Several factors can make predictions unreliable
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What impacts the reliability of predictions?

e Several factors can make predictions unreliable

e Resource allocation policy (scheduler) is an important contributor
e Preemptive vs. non-preemptive
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Role of scheduling in predictability

e Most real-world systems are non-preemptive (FIFO-like)
e Future jobs (e.g., customers) do not impact existing ones

FIFO (e.g., queue at a bank)
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Role of scheduling in predictability

e Most real-world systems are non-preemptive (FIFO-like)
e Future jobs (e.g., customers) do not impact existing ones

e Non-preemptive systems suffer from practical issues
e E.g., Head of line blocking

FIFO (e.g., queue at a bank)
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Role of scheduling in predictability

e Cloud systems employ preemption
e Typically in an unbounded fashion
e E.g., Prioritize shorter jobs (minimize JCTs) or share resources across jobs (fairness)
e Causes unpredictability (prediction error)
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Role of scheduling in predictability

e Cloud systems employ preemption
e Typically in an unbounded fashion
e E.g., Prioritize shorter jobs (minimize JCTs) or share resources across jobs (fairness)
e Causes unpredictability (prediction error)
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Trade-off between predictability and practicality

Predictable Practical
-

FIFO Fair-sharing,
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Trade-off between predictability and practicality

Predictable

<

Practical

FIFO

10x increase in avg JCTs
compared to performance
based schemes!

|
Fair-sharing,
Shortest-Job-First...

Greater than 100% average
prediction error
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Can we offer predictability while balancing other
practical objectives?

Predictability-Centric Scheduling (PCS)
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PCS in a single slide

e \Weighted-Fair-Queueing (WFQ) = Bounded and Controlled Preemption
e Different configurations can achieve different trade-offs

e Simulation based search = Practical way to realize different trade-offs
e Heuristics narrow the search space

e High level interface = Simplify navigating trade-offs
e Reduce trade-offs to Pareto-optimal choices
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Outline

e Motivation - supporting PCS for ML workloads
e \Why provide predictions for ML workloads?
e Feasibility and Challenges

e Design

e Use of Weighted-Fair-Queues (WFQ)
e Simulation based search strategy
e High level interface to navigate trade-offs

e Evaluation

e Benefits and feasibility of PCS
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Why provide predictions for ML workloads?

e Evidence of user frustration in shared GPU clusters

“[...] we do find users frustrated [...] The
frustration frequently reaches the point
where groups attempt or succeed at buying

their own hardware” [Themis, NSDI’20]
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Why provide predictions for ML workloads?

e Evidence of user frustration in shared GPU clusters

“[...] we do find users frustrated [...] The
frustration frequently reaches the point
where groups attempt or succeed at buying

their own hardware” [Themis, NSDI’20]

e GPU cluster users are already making predictions (cronus. secc21)
e User generated predictions can be off by more than 100%

“[...] completion time of a DLT job varies under
different scheduling algorithms [...] Hence, it is
infeasible to accurately estimate [...]" (chronus, socc21]
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Feasibility and Challenges - Workload characteristics
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Feasibility and Challenges - Workload characteristics

e An ML job’s demand function is known or can be estimated

e Demand function: allocated resources = execution time (#epochs / thrpt)
e Necessary to compute a reasonable prediction
e Has been leveraged by prior systems (e.g., Themis, NSDI'20)
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Feasibility and Challenges - Workload characteristics

e An ML job’s demand function is known or can be estimated

e Demand function: allocated resources = execution time (#epochs / thrpt)
e Necessary to compute a reasonable prediction
e Has been leveraged by prior systems (e.g., Themis, NSDI'20)

e Accuracy of prediction still impacted by scheduler choice!
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Feasibility and Challenges - Workload characteristics

e An ML job’s demand function is known or can be estimated

e Demand functions can be complex
e ML jobs exhibit sub-linear throughput scaling
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Feasibility and Challenges - Workload characteristics

e An ML job’s demand function is known or can be estimated

e Demand functions can be complex
e ML jobs exhibit sub-linear throughput scaling

e Unclear how to allocate GPUs to such jobs!
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Outline

e Design
e Use of Weighted-Fair-Queues (WFQ)
e Simulation based search strategy
e High level interface to navigate trade-offs

e Evaluation
e Benefits and feasibility of PCS
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Design goals

Predictability

Goal |

+

Balance other
objectives

Goal Il
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Background on WFQ

e Different jobs mapped to different queues

e \Within a queue, jobs are processed in FIFO order

e Each queue gets a guaranteed resource share (weights)

e # of queues, weights, job mapping criterion etc. are configurable

o
small S
Medium

B -
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Background on WFQ

e Different jobs mapped to different queues

e \Within a queue, jobs are processed in FIFO order

e Each queue gets a guaranteed resource share (weights)

e # of queues, weights, job mapping criterion etc. are configurable

small
Medium
. l “

A

Guaranteed resource share + FIFO ordering within queue bounds prediction error

WEFQ provides the necessary baseline flexibility
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Spanning the scheduler space with WFQs

e WWFQ parameters can be intelligently configured
e Allows to achieve different trade-offs

w, = 0.99 w, = 0.33

small
Medium . w, = 0.009 w, = 0.33
Large w, =0.001 w,=0.33

FIFO ~Shortest-Job-First ~Fair-sharing
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Spanning the scheduler space with WFQs

e WWFQ parameters can be intelligently configured
e Allows to achieve different trade-offs

w,=0.99 w,=0.33
small
Medium . w, = 0.009 w,=0.33
Large w, =0.001 w,=0.33
FIFO ~Shortest-Job-First ~Fair-sharing

WFQ can approximate extreme and potentially intermediate points
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WFQ optimization I: Avoiding HOL blocking

e Similar sized jobs are mapped to the same queue (avoids HOL blocking)
e Appropriate number of queues and thresholds

small
Medium .

Large

w1

w2

w3

31



WFQ optimization Il: Handling complex demand functions

e SJF optimal if job’s thrpt scales linearly w.r.t. resources pes. nsorz1)
e Aggressively prioritizing efficient jobs = unpredictability

« !

-&- Cap a job’s maximum possible allocation
e Compute a job’s efficiency: E(n) = thrpt(n)/n
e Cap maximum allocation to ks.t. E(k) 2E__
e E __is another configurable parameter

e Higher E_. ™ higher chances of GPUs being preempted
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Example

e E_=0.75,8 GPU system
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Example

e E_=0.75,8 GPU system

E=0.75
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Example

e E_=0.75,8 GPU system
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Conservative strategy trades off predictability for additional performance
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Searching for WFQ configurations

e # queues, weights, E__etc. jointly influence trade-offs
e Hard to reason about the combined impact

y _ g Empirically determine impact of different parameters

—
=2

3. Discard non-Pareto configs + repeat

Evolutionary search / \
Z Avg Avg pred
JCT error
WFQ1 WFQ1 1.1x 50%
WF(Q2 m VVr\al2 <. TA 'UuU70
WFQ, WFQ, 14x | 25%

2. Simulate on

1. Sample different collected workload
configs
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Narrowing the search space

e Search space is combinatorial + large
e ~ O(# queues * thresholds * weights * E

min)

!

-@" Increase the likelihood of a random sample being Pareto-optimal
e Intelligently parameterize configurations

Example: Use exponentially shrinking weights

e Assigning exponentially lower weights to longer jobs improves performance
e Formally: w, oc exp(-k * W)

e Larger W = more aggressive shrinking; W=0 = fair division

e Other heuristics discussed in the paper!
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Simplify navigating trade-offs

e Exact trade-offs are unknown a priori
e Trade-off space is workload dependent

e Can'’t say: “give me 10% error but okay to take a 1.5x performance hit”

a

-@"~ Operators specify higher level objectives; PCS provides Pareto-optimal choices
o  Supported Objectives: Prediction error, JCTs, unfairness

o Supported Measures: Avg + specific percentiles
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Outline

e Evaluation
e Benefits and feasibility of PCS
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Evaluation - Key questions

e How does PCS perform for realistic workloads?

e Can the simulation-based search find the Pareto-frontier?

e How effective are the heuristics in improving search efficiency?
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How does PCS fare under realistic settings?

e Testbed setup
o 16 GPU cluster (NVIDIA P100s)

e Workload
o AutoML jobs - each job spawns 1-20 DNN trials
o Poisson job arrivals at 80% load
e Comparison points
o Performance baseline: AFS (NSDI'21); efficiency + size based scheduling
o Predictability baseline: FIFO
e Metrics
o JCTs
o Prediction error = (JCT - JCTpred) / JCTpred
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Achieving intermediate trade-offs
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Achieving intermediate trade-offs
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Providing reliable predictions with PCS

Fraction of Jobs
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Providing reliable predictions with PCS
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Can the simulation-based search find the Pareto-frontier?

e Run search on two realistic traces (Philly)

| @ FIFO - : FIFO - -
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Can the simulation-based search find the Pareto-frontier?

e Run search on two realistic traces (Philly)
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How effective are heuristics in improving search efficiency?

e Track percentage of Pareto-frontier discovery w/ & w/o heuristics w.r.t. budget
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How effective are heuristics in improving search efficiency?

e Track percentage of Pareto-frontier discovery w/ & w/o heuristics w.r.t. budget
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Summary

e Providing predictions improves user experience
e Predictability vs. Practicality trade-off -> existing schedulers lie on extremes

e WWFQ to bound prediction errors and offer flexibility

e Simulation-based search to achieve Pareto-optimal WFQ configurations

e High-level interface to simplify navigating the trade-off space

e PCS achieves lower prediction errors while being competitive with other
schedulers

References:

50


https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

Thank you!



