

When will my ML Job finish?

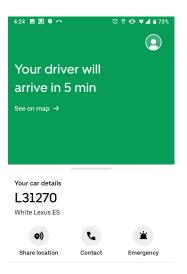
Toward providing Completion Time Estimates through Predictability-Centric Scheduling

Abdullah Bin Faisal,

Noah Martin, Hafiz Mohsin Bashir, Swaminathan Lamelas, Fahad R. Dogar

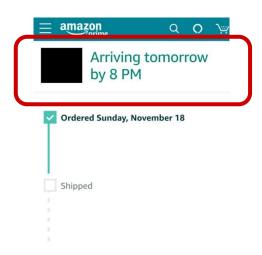
Predictability in Real-World Systems

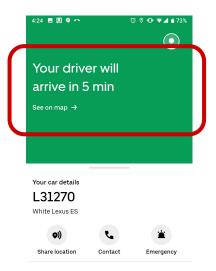
- Most real-world systems provide users with a time estimate
 - Improves service quality



Predictability in Real-World Systems

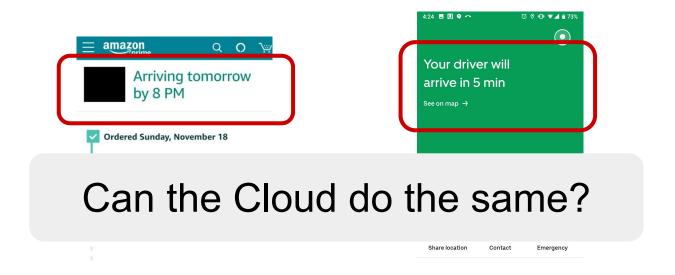
- Most real-world systems provide users with a time estimate
 - Improves service quality





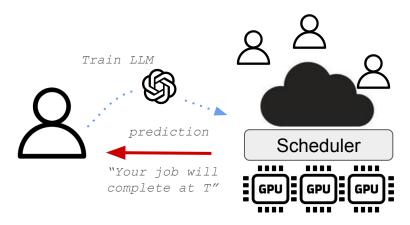
Predictability in Real-World Systems

- Most real-world systems provide users with a time estimate
 - Improves service quality



Can the Cloud provide predictions?

- Multi-tenant GPU clusters
 - Growing use-case
 - Highly loaded
 - Predictions can improve experience; if they are reliable

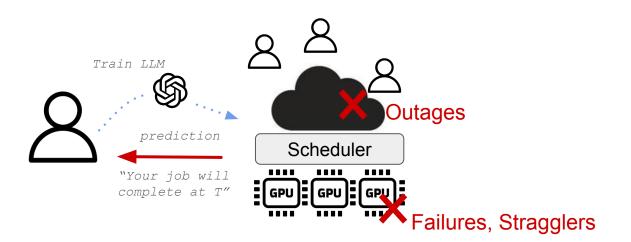


"By the end of 2024, we're aiming to [...] feature compute power equivalent to nearly 600,000 H100s."

- Meta¹

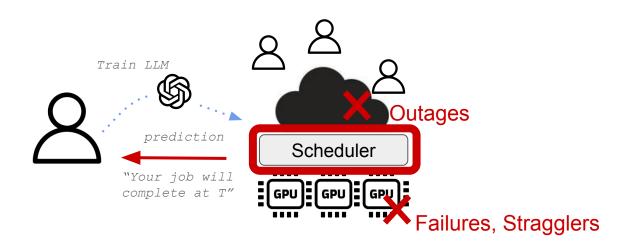
What impacts the reliability of predictions?

Several factors can make predictions unreliable

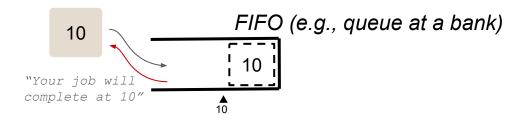


What impacts the reliability of predictions?

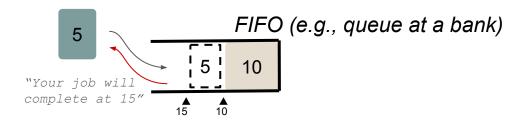
- Several factors can make predictions unreliable
 - Resource allocation policy (scheduler) is an important contributor
 - Preemptive vs. non-preemptive



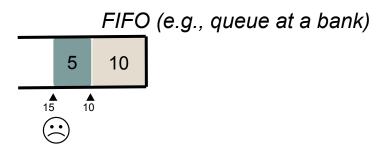
- Most real-world systems are non-preemptive (FIFO-like)
 - Future jobs (e.g., customers) do not impact existing ones



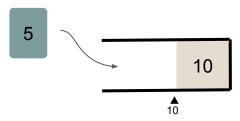
- Most real-world systems are non-preemptive (FIFO-like)
 - Future jobs (e.g., customers) do not impact existing ones



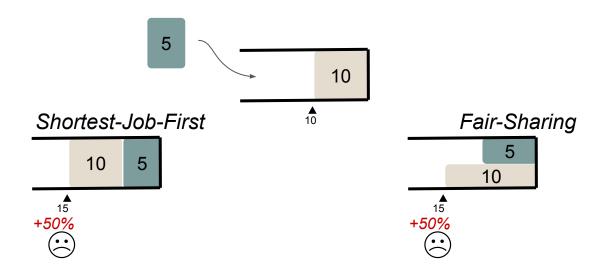
- Most real-world systems are non-preemptive (FIFO-like)
 - Future jobs (e.g., customers) do not impact existing ones
- Non-preemptive systems suffer from practical issues
 - E.g., Head of line blocking



- Cloud systems employ preemption
 - Typically in an unbounded fashion
 - E.g., Prioritize shorter jobs (minimize JCTs) or share resources across jobs (fairness)
 - Causes unpredictability (prediction error)

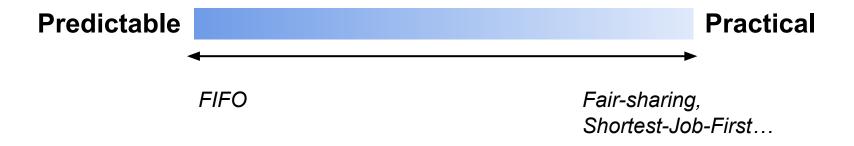


- Cloud systems employ preemption
 - Typically in an unbounded fashion
 - E.g., Prioritize shorter jobs (minimize JCTs) or share resources across jobs (fairness)
 - Causes unpredictability (prediction error)



Trade-off between predictability and practicality

Trade-off between predictability and practicality



10x increase in avg JCTs compared to performance based schemes!

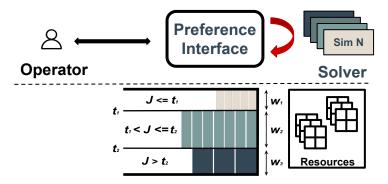
Greater than 100% average prediction error

Can we offer predictability while balancing other practical objectives?

Predictability-Centric Scheduling (PCS)

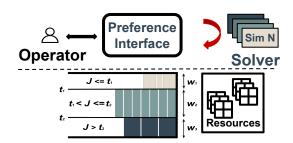
PCS in a single slide

- Weighted-Fair-Queueing (WFQ) → Bounded and Controlled Preemption
 - Different configurations can achieve different trade-offs
- Simulation based search → Practical way to realize different trade-offs
 - Heuristics narrow the search space
- High level interface → Simplify navigating trade-offs
 - Reduce trade-offs to Pareto-optimal choices



Outline

- Motivation supporting PCS for ML workloads
 - Why provide predictions for ML workloads?
 - Feasibility and Challenges
- Design
 - Use of Weighted-Fair-Queues (WFQ)
 - Simulation based search strategy
 - High level interface to navigate trade-offs
- Evaluation
 - Benefits and feasibility of PCS



Why provide predictions for ML workloads?

Evidence of user frustration in shared GPU clusters

"[...] we do find users frustrated [...] The frustration frequently reaches the point where groups attempt or succeed at buying their own hardware" [Themis, NSDI'20]

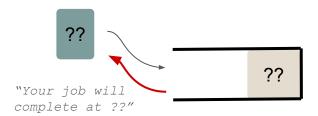
Why provide predictions for ML workloads?

Evidence of user frustration in shared GPU clusters

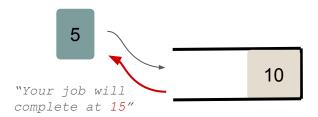
"[...] we do find users frustrated [...] The frustration frequently reaches the point where groups attempt or succeed at buying their own hardware" [Themis, NSDI'20]

- GPU cluster users are already making predictions [Chronus, SoCC'21]
 - User generated predictions can be off by more than 100%

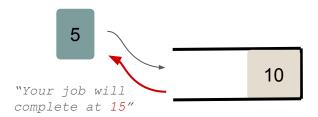
"[...] completion time of a DLT job varies under different scheduling algorithms [...] Hence, it is infeasible to accurately estimate [...]" [Chronus, SoCC'21]



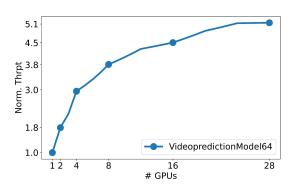
- An ML job's demand function is known or can be estimated
 - Demand function: allocated resources → execution time (#epochs / thrpt)
 - Necessary to compute a reasonable prediction
 - Has been leveraged by prior systems (e.g., Themis, NSDI'20)



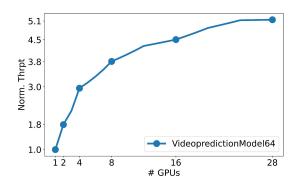
- An ML job's demand function is known or can be estimated
 - Demand function: allocated resources → execution time (#epochs / thrpt)
 - Necessary to compute a reasonable prediction
 - Has been leveraged by prior systems (e.g., Themis, NSDI'20)
- Accuracy of prediction still impacted by scheduler choice!



- An ML job's demand function is known or can be estimated
- Demand functions can be complex
 - ML jobs exhibit sub-linear throughput scaling

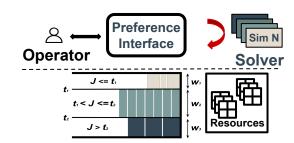


- An ML job's demand function is known or can be estimated
- Demand functions can be complex
 - ML jobs exhibit sub-linear throughput scaling
- Unclear how to allocate GPUs to such jobs!



Outline

- Motivation supporting PCS for ML workloads
 - Why provide predictions for ML workloads?
 - Feasibility and Challenges
- Design
 - Use of Weighted-Fair-Queues (WFQ)
 - Simulation based search strategy
 - High level interface to navigate trade-offs
- Evaluation
 - Benefits and feasibility of PCS



Design goals

Predictability

+

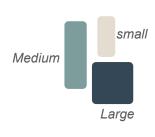
Balance other objectives

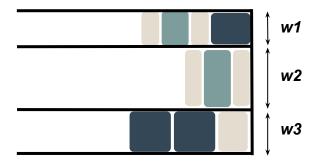
Goal I

Goal II

Background on WFQ

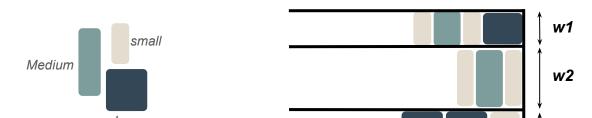
- Different jobs mapped to different queues
- Within a queue, jobs are processed in FIFO order
- Each queue gets a guaranteed resource share (weights)
- # of queues, weights, job mapping criterion etc. are configurable





Background on WFQ

- Different jobs mapped to different queues
- Within a queue, jobs are processed in FIFO order
- Each queue gets a guaranteed resource share (weights)
- # of queues, weights, job mapping criterion etc. are configurable

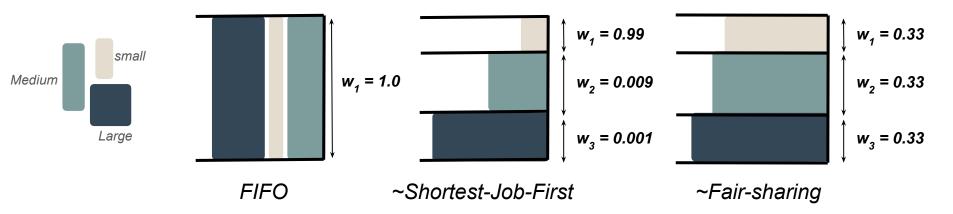


Guaranteed resource share + FIFO ordering within queue bounds prediction error

WFQ provides the necessary baseline flexibility

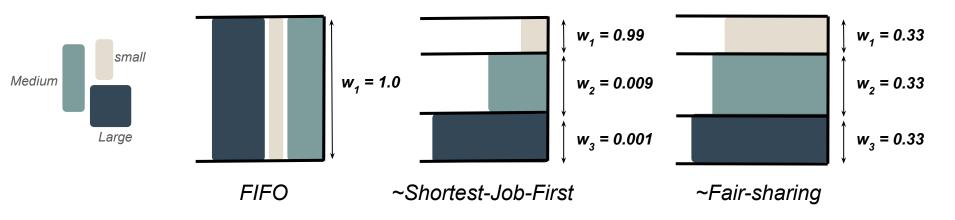
Spanning the scheduler space with WFQs

- WFQ parameters can be intelligently configured
 - Allows to achieve different trade-offs



Spanning the scheduler space with WFQs

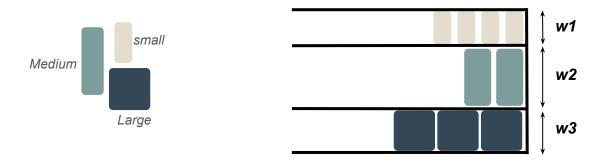
- WFQ parameters can be intelligently configured
 - Allows to achieve different trade-offs



WFQ can approximate extreme and potentially intermediate points

WFQ optimization I: Avoiding HOL blocking

- Similar sized jobs are mapped to the same queue (avoids HOL blocking)
 - Appropriate number of queues and thresholds



WFQ optimization II: Handling complex demand functions

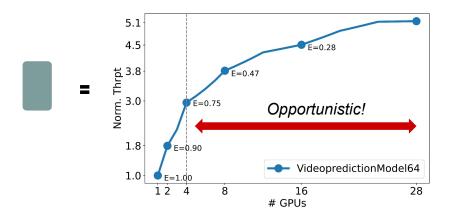
- SJF optimal if job's thrpt scales linearly w.r.t. resources [AFS, NSDI'21]
 - Aggressively prioritizing efficient jobs
 unpredictability

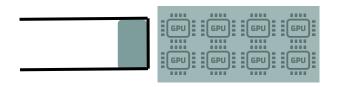
- Cap a job's maximum possible allocation

- Compute a job's efficiency: E(n) = thrpt(n)/n
- Cap maximum allocation to k s.t. $E(k) \ge E_{min}$
- E_{min}is another configurable parameter
- Higher E_{min} → higher chances of GPUs being preempted

Example

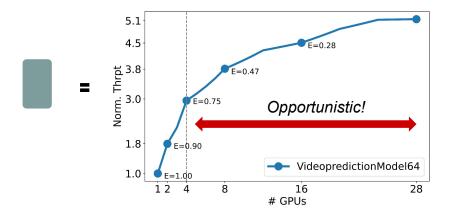
• E_{min} = 0.75, 8 GPU system

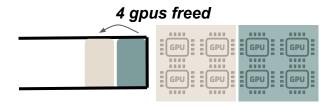




Example

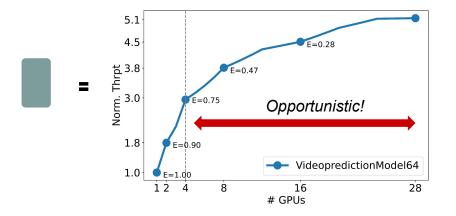
• $E_{min} = 0.75$, 8 GPU system

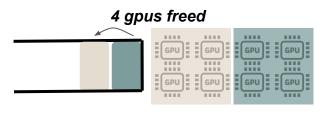




Example

• E_{min} = 0.75, 8 GPU system

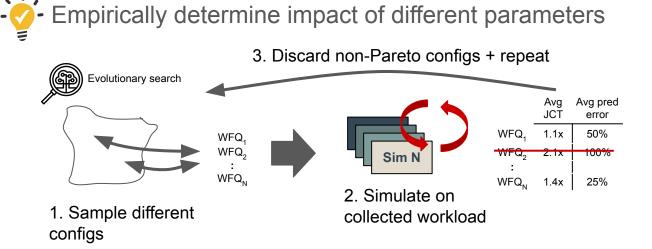




Conservative strategy trades off predictability for additional performance

Searching for WFQ configurations

- # queues, weights, E_{min} etc. jointly influence trade-offs
 - Hard to reason about the combined impact



Narrowing the search space

- Search space is combinatorial + large
 - ~ O(# queues * thresholds * weights * E_{min})

- Increase the likelihood of a random sample being Pareto-optimal

Intelligently parameterize configurations

Example: Use exponentially shrinking weights

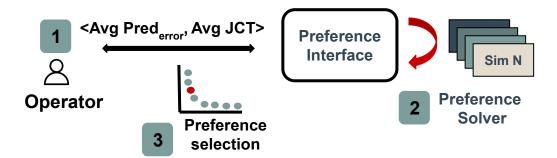
- Assigning exponentially lower weights to longer jobs improves performance
- Formally: $W_k \propto \exp(-k * W)$
- Larger W → more aggressive shrinking; W=0 → fair division
- Other heuristics discussed in the paper!

Simplify navigating trade-offs

- Exact trade-offs are unknown a priori
 - Trade-off space is workload dependent
 - Can't say: "give me 10% error but okay to take a 1.5x performance hit"
- -

Operators specify higher level objectives; PCS provides Pareto-optimal choices

- Supported Objectives: Prediction error, JCTs, unfairness
- Supported Measures: Avg + specific percentiles



Outline

- Motivation supporting PCS for ML workloads
 - Why provide predictions for ML workloads?
 - Feasibility and Challenges
- Design
 - Use of Weighted-Fair-Queues (WFQ)
 - Simulation based search strategy
 - High level interface to navigate trade-offs
- Evaluation
 - Benefits and feasibility of PCS

Evaluation - Key questions

How does PCS perform for realistic workloads?

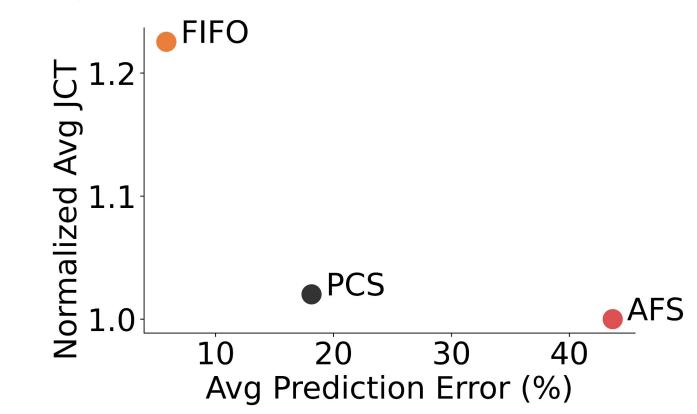
Can the simulation-based search find the Pareto-frontier?

How effective are the heuristics in improving search efficiency?

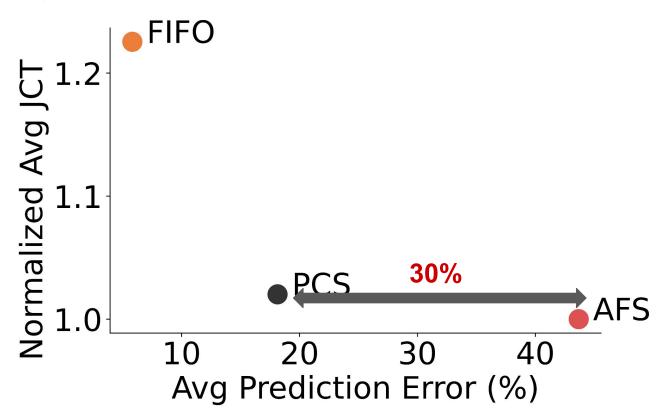
How does PCS fare under realistic settings?

- Testbed setup
 - 16 GPU cluster (NVIDIA P100s)
- Workload
 - AutoML jobs each job spawns 1-20 DNN trials
 - Poisson job arrivals at 80% load
- Comparison points
 - Performance baseline: AFS (NSDI'21); efficiency + size based scheduling
 - Predictability baseline: FIFO
- Metrics
 - JCTs
 - Prediction error = (JCT JCTpred) / JCTpred

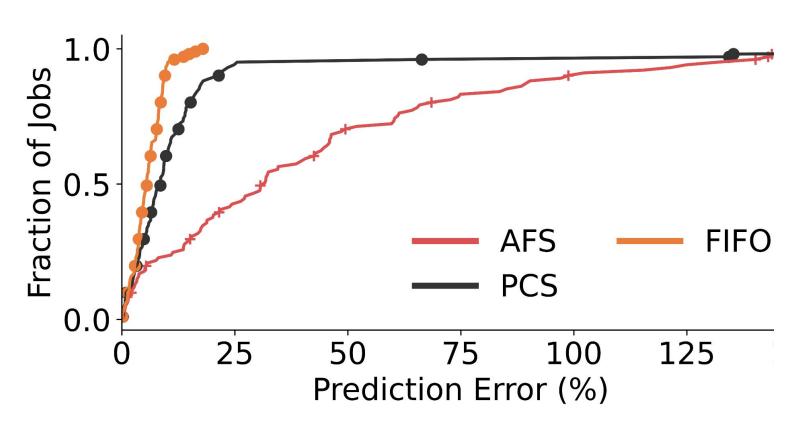
Achieving intermediate trade-offs



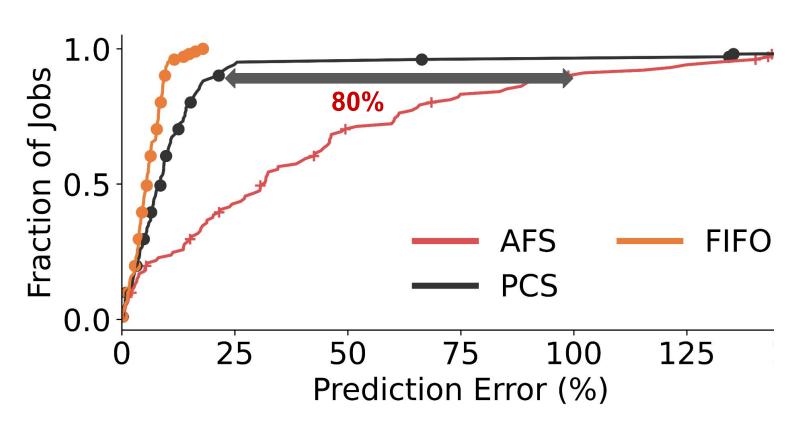
Achieving intermediate trade-offs



Providing reliable predictions with PCS

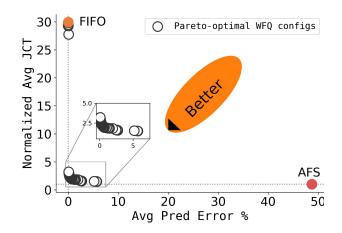


Providing reliable predictions with PCS

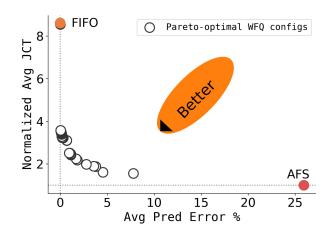


Can the simulation-based search find the Pareto-frontier?

Run search on two realistic traces (Philly)



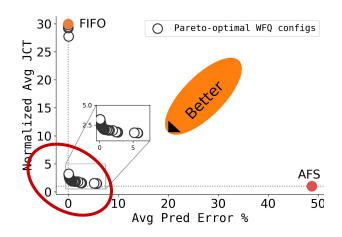
Trace 1



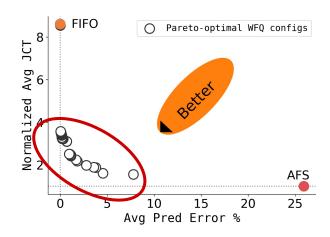
Trace 2

Can the simulation-based search find the Pareto-frontier?

Run search on two realistic traces (Philly)



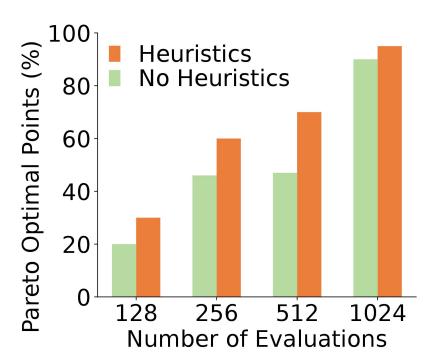
Trace 1



Trace 2

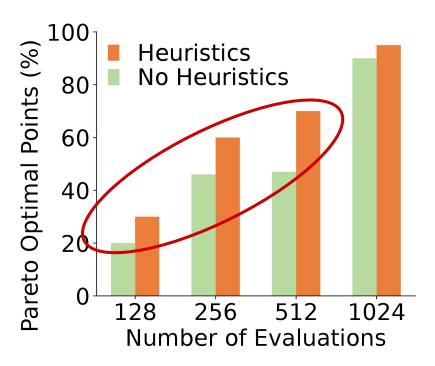
How effective are heuristics in improving search efficiency?

Track percentage of Pareto-frontier discovery w/ & w/o heuristics w.r.t. budget



How effective are heuristics in improving search efficiency?

Track percentage of Pareto-frontier discovery w/ & w/o heuristics w.r.t. budget



Summary

- Providing predictions improves user experience
 - Predictability vs. Practicality trade-off -> existing schedulers lie on extremes
- WFQ to bound prediction errors and offer flexibility
- Simulation-based search to achieve Pareto-optimal WFQ configurations
- High-level interface to simplify navigating the trade-off space
- PCS achieves lower prediction errors while being competitive with other schedulers

References:

source: https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

Thank you!