
Microkernel Goes General: Performance and 
Compatibility in the HongMeng Production Microkernel

Haibo Chen1,2, Xie Miao1, Ning Jia1, Nan Wang1, Yu Li1, Nian Liu1,

Yutao Liu1, Fei Wang1, Qiang Huang1, Kun Li1, Hongyang Yang1, Hui Wang1, Jie 

Yin1, Yu Peng1, and Fengwei Xu1

1Huawei Central Software Institute  2Shanghai Jiao Tong University



Revisiting Microkernels in an Emerging
Connected Intelligent World

✓ Stringent Security Requirements

High-level Industrial Certifications

Protect Sensitive User Data

✓ Require Specialized Optimizations

Full-system Optimizations

HW & SW Co-design

✓ Fast Evolution

Fast Time to Market, R&D
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Diversified Connected

Devices

Rich Ecosystem Scenario-oriented

Applications
Devices Provider

Services Provider

Offices
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Entertainment

Requirement for OSes



Hard to Meet High Security Demands with Monolithic Kernels

• Reduction of trusted code bases

• ~70% of 1000 CVEs in the last 4 years [1] can avoid by proper isolation [2,3]

• Difficult to satisfy high-level industry certifications [4] 

[1] Analyzing the Linux CVEs in recent 4 years https://cve.mitre.org/.
[2] Elton Lum. Study Confirms That Microkernel Is Inherently More Secure.
[3] Simon Biggs, et al. The jury is in: Monolithic OS design is flawed: Microkernel-based designs improve security. APSys ’18.
[4] Mark Pitchford. Using Linux with critical applications: Like mixing oil and water?
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Tightly-coupled Modules in Monolithic Kernels Impede Specialization

• Hard & costly to apply domain-specific strategies, e.g., QoS-aware allocation

• E.g., Took over 10 years for PREEMPT-RT patch set to be partially merged [1,2,3]

[1] Jonathan Corbet. Approaches to realtime Linux. https://lwn.net/Articles/106010/
[2] Jonathan Corbet. Realtime preemption locking core merged. https://lwn.net/Articles/867919/
[3] Jonathan Corbet. Jonathan Corbet. The real realtime preemption end game. https://lwn.net/Articles/951337/
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Still has not been 
merged into 

mainline Linux [3]

The remarkable 
preemption core locking 

was merged [2]Began in 2004 [1]

Timeline of PREEMPT_RT patch



• Synchronizing with upstream for security patches is expensive

Require large-scale performance regression testing, even rewriting

• No surprise to see massive amounts of products in market run Linux 2.6 [1]

[1] Johannes vom Dorp René Helmke. Home Router Security Report 2022.

Linux 2.6

Linux 4.1

Linux 4.4

Linux 3.1

Other Version

Unknown

Linux versions in 122 models of on-stock 

routers from 7 different vendors in 2022 [1]. 

All top 4 mostly-used Linux versions 

have already reached EOL.

EOL

Evolving Custom Code with Upstream Linux is Costly



Emerging Scenarios Pose Challenges for Microkernels

Domain-specific Scenarios Emerging Scenarios

Routers &
Switches

Robotic 
Arms

Modem 
Chip

Wireless 
Modem Chips

Value security more
Performance
Requirement Prioritize performance, also emphasize security

Resources
Management Coordinated, globalized managementPre-partitioned, self-managed

Software
Ecosystem Pre-determined, source-available Open ecosystem, distributed in binary form

Most SOTA 
microkernels 

target



Contributions: Microkernel Goes General with HongMeng Kernel

• Revisiting microkernel design for emerging scenarios

Identifies the unsolved performance and compatibility challenges

• HongMeng production microkernel

✓ Retains minimality principle

Maintains most benefits of microkernels

✓ Provides structural supports

Addresses the performance and compatibility challenges

• Implemented and deployed in massive production

• Typically with improved performance over Linux



Outline

✓ Revisiting Microkernel for Going General

✓ Implementation and Performance

✓ Lessons and Experiences



Revisiting Conventional Wisdoms in Microkernels

Conventional 
Wisdoms

Problems HongMeng Kernel

Minimality Minimal Core Kernel N/A Retains Minimality

IPC/Isolation

Service 
Partitioning

Access 
Control

Interface

Drivers



Retaining Minimality To Preserve Microkernels’ Benefits

File 
System

Mem
Mgr.

Proc.
Mgr.

Device
DriverLeast-privileged

& Well-isolated
OS Services

Power
Mgr.

Minimal
Core Kernel

HongMeng Kernel

• Minimal core kernel

Scheduler, IPC, access control, 

essential drivers like tty

• Fine-grained access control

• Decoupled, least-privilege, and 

well-isolated OS services

Core Kernel
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Stack
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Revisiting Conventional Wisdoms in Microkernels

Conventional 
Wisdoms

Problems HongMeng Kernel
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Rapidly Increased IPC Frequency Amplifies Performance Degradation

High IPC frequency leads to 2x to 3x 
performance degradation in phones

In-production Typical Usage

70x

IPC CDF

IPC Frequency CDF in Various Scenarios

12x

Syscall 
CDF

Partly due to the high syscall frequency.

Revisiting
IPC



Class 2: 
Address Space 
Isolation

Isolation Classes Tailor Isolation for Services and Scenarios

Power 
Mgr.

EL0/Ring3

EL1/Ring0
+ Address space switches
+ Privilege-level switches > 50% Overhead

IPC 

Core Kernel ABI Shim
Class 0: 
Core TCB

File 
System

Mem
Mgr.

Proc.
Mgr.

1376 cycles in 
seL4 w/ fastpath

Differentiated Isolation Classes in HongMeng

APP
Class 2: Address Space Isolation

Class 0: Trusted Code Bases

- No isolation is enforced

• Relax isolation for trusted services

• Classify services and define isolation

Can be relaxed
for mature and

verified services!

Revisiting
IPC



How Does Class 1 Relax Isolation and Speedup IPC?

+ Lightweight domain switch

Class 2: 
Address Space 
Isolation

EL0/Ring3

EL1/Ring0

Class 0: 
Core TCB

Class 1: 
Mechanism-
enforced Isolation

Power 
Mgr.APP

File 
System

Mem
Mgr.

Proc.
Mgr.

Domain 1Domain 0

Differentiated Isolation Classes in HongMeng

752 cycles

- IPC only Involves Lightweight 

Domain Switches

1376 Cycles => 752 Cycles

- Restrict Cross Domain Accesses

Intel PKS or ARM watchpoint
Domain 2

Core Kernel ABI Shim

Class 1: Mechanism-enforced Isolation

Gate Gate

- Forbid Privileged Instructions

Lightweight CFI + secure monitor

- Threat Model

Additional attack surfaces

Revisiting
IPC

Device
Drivers

Thermal
Mgr.



Revisiting Conventional Wisdoms in Microkernels

Conventional 
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Problems HongMeng Kernel
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Extra IPC
Mem -> FS

In-production Typical Usage

Minor page fault CDF in Smartphones

Double-bookkeeping of Page Cache

Higher IPC frequency and memory overhead

Multi-server Design Causes State Double Bookkeeping

Paging for mapped files is 2x slower than Linux

Class 0: 
Core TCB

Class 1: 
Mechanism-
enforced Isolation

File 
System

Mem
Mgr.

Proc.
Mgr.

Gate Gate

Domain 1Domain 0 Domain 2

Core Kernel ABI Shim

Page Cache Page Cache

Page Fault

Extra IPC

Revisiting
Partitioning



Coalescing Coupled Services in Performance-critical Scenarios

• Coalescing coupled services

- Reducing IPC frequency

- Eliminating double-bookkeeping

Page Fault Latency of mapped files
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Flexibly Assemble the System for Various Scenarios

• Service coalescing and isolation 

classes are configurable during 

deployment

Accommodate various scenarios

• Separate or enforce stronger 

isolation when new attack emerges
Class 0: 
Core TCB

Core Kernel

HongMeng Kernel in Routers and Secure OS (TEE)

Class 2: 
Address Space 
Isolation

File 
System

Mem
Mgr.

Proc.
Mgr.

EL0/Ring3

EL1/Ring0

APPs

Revisiting
Partitioning



Revisiting Conventional Wisdoms in Microkernels

Conventional 
Wisdoms

Problems HongMeng Kernel

Minimality Minimal Core Kernel N/A Retains Minimality

IPC/Isolation
All Services at 

Userspace
Overly Strong Considering

High IPC Frequency
Isolation Classes

Service 
Partitioning

Static Multi-server State Double Bookkeeping Flexible Composition

Access 
Control

Capabilities Hide Kernel Objects Address Tokens

Interface

Drivers



Why are Capabilities Slow When Updating Objects?

Capability-based Access Control

Core 
Kernel

Cap 1

Capabilities

Page TableCap Group

Obj1 Obj2

Serialize Operation1

OP

Data

Cap

New Data

Cap 2

EL0/Ring3

EL1/Ring0

+ Serialize operation

Memory
Manager

Cap Call2

+ Privilege level switch

Deserialize & Apply Updates3

+ Referring the cap table

Involve kernel 
unexpectedly

on critical path.

+ Deserialize operation

Minor page fault CDF in Smartphones

Kernel -> Mem IPC

Overhead of Capabilities

Revisiting
Capabilities



Core 
Kernel

Address Tokens Use Addresses as Tokens

Address-token-based Access Control 
in HongMeng Kernel

Metadata

Kernel 
Object

Address Tokens

Kernel Object Manager

• Token: Slot id -> Address

OS 
Services

Revisiting
Capabilities



Core 
Kernel Metadata

Kernel 
Object

Address Tokens

KO Addr

KO Addr

Map to Grant 
(RW/RO)

Kernel Object Manager

• Token: Slot id -> Address

OS 
Services

• Map to grant, Unmap to revoke

• Read object directly w/o kernel 

involvement

Mapping to OS Services for Granting Objects

Address-token-based Access Control 
in HongMeng Kernel

Revisiting
Capabilities



Core 
Kernel Metadata

Kernel 
Object

Address Tokens

KO Addr

KO Addr

Map to Grant 
(RW/RO)

Kernel Object Manager

Read Write

New Value

• Token: Slot id -> Address

- RW: Direct accesses to 

restricted obj (for security)

OS 
Services

Bypassing the Core Kernel When Updating RW Objects

Address-token-based Access Control 
in HongMeng Kernel

• Map to grant, Unmap to revoke

• Read object directly w/o kernel 

involvement

Revisiting
Capabilities



• Token: Slot id -> Address

- RW: Direct accesses to 

restricted obj (for security)

- RO: Writev syscall + verify 

permission in kernel

OS 
Services

Core 
Kernel Metadata

Kernel 
Object

Address Tokens

KO Addr

KO Addr

Map to Grant 
(RW/RO)

Kernel Object Manager

Read OnlyVerify

New Value

Eliminating Serialization When Updating RO Objects

Address-token-based Access Control 
in HongMeng Kernel

• Map to grant, Unmap to revoke

• Read object directly w/o kernel 

involvement

Revisiting
Capabilities



Address Tokens Enable Efficient Objects Co-management

• Enables efficient co-management

- Performant policy-free 

kernel paging

- Efficient implementations 

of functions like poll

Memory
Manager

Core 
Kernel

Co-managed 
Object

Page Table

Co-managed 
Object

Pre-allocated
Pages

In-kernel paging fastpath 0
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Policy-free Kernel Paging 
Enabled by Address Tokens 

Revisiting
Capabilities

Slightly Faster



Revisiting Conventional Wisdoms in Microkernels

Conventional 
Wisdoms

Problems HongMeng Kernel

Minimality Minimal Core Kernel N/A Retains Minimality

IPC/Isolation
All Services at 

Userspace
Overly Strong Considering

High IPC Frequency
Isolation Classes

Service 
Partitioning

Static Multi-server State Double Bookkeeping Flexible Composition

Access 
Control

Capabilities Hide Kernel Objects Address Tokens

Interface (subset-)POSIX Require More than POSIX ABI-compliant Shim

Drivers



POSIX-compliant is Not Enough for an Open Ecosystem

Syscall Distributions in Smartphones

Eco-compatible Requires
More Than POSIX

Routers Smart Vehicles

In-production Typical Usage

ioctl

ioctl

Use ioctl to extend system API

1

1

1

epoll ppoll

ppollepoll

No Central Repository for
Global States

For example, file descriptor (fd), poll list
Distributed in different services

Hard to implement epoll, fork efficiently

2

2

2
2

Revisiting
Interface



Core Kernel

Proc.
Mgr.

Class 2: 
Address Space 
Isolation

EL0/Ring3

EL1/Ring0

Class 1: 
Mechanism-
enforced Isolation

Class 0: 
Core TCB

Mem
Mgr.

File 
System

Power
Mgr.

Native 
Driver

Gate

AOSP/OpenHarmony

AOSP/OpenHarmony App

Binary Compatible

ABI-compliant Shim

Linux Syscall

Class 0

• ABI-compliant Shim

Redirect Linux syscall

• Central Repository

For global states like the file descriptor

Efficient Implementation of poll

• Supports Complex Frameworks

OpenHarmony & AOSP

IPC

IPC

IPC

fd table

Device
Drivers

IPC

Achieving Linux Binary Compatible via ABI-compliant Shim

Revisiting
Interface



Revisiting Conventional Wisdoms in Microkernels

Conventional 
Wisdoms

Problems HongMeng Kernel

Minimality Minimal Core Kernel N/A Retains Minimality

IPC/Isolation
All Services at 

Userspace
Overly Strong Considering

High IPC Frequency
Isolation Classes

Service 
Partitioning

Static Multi-server State Double Bookkeeping Flexible Composition

Access 
Control

Capabilities Hide Kernel Objects Address Tokens

Interface (subset-)POSIX Require More than POSIX ABI-compliant Shim

Drivers VM/Transplanting Require Performant Reuse Driver Containers



Massive Drivers Require Performant Reuse 

Transplanted Runtime

Unmodified Linux Driver

VM Manager Core Kernel

Mapper 
Services

Unmodified Linux Driver

Linux Virtual Machine

VM-based Methods [2]Transplanting Runtime [1]

Compatibility & Engineering Issues Performance Issue

Rewriting Drivers

> 5,000 person-years

Native Device Driver

Engineering Issue

[1] Weisbach, Hannes. DDEKit Approach for Linux User Space Drivers
[2] LeVasseur, Joshua, et al. Unmodified Device Driver Reuse and Improved System Dependability via Virtual Machines. OSDI ’04.

Double-
management 

of threads 
and memory

Core Kernel Core Kernel

700+ drivers are required by vehicles and smartphones to function correctly 

Revisiting
Drivers



How Do Driver Containers Reuse Linux Device Drivers?

Driver Containers in HongMeng

Core Kernel

Linux Runtime

Linux Driver

DC-Base

Hardware

Apps

/dev/a

Linux Driver Container

Device
Manager

ioctl(fd,…)2 3 IPC

Control the 
hardware

4

1 Register

Virtual File System

EL0/Ring3

EL1/Ring0

• Provides a Linux runtime at userspace for 

unmodified Linux drivers

Similar to LKL/UML [1,2] but targets driver reuse

• DC-base redirects necessary KAPIs

Kthread, Kernel Memory

Forbids double management

• Minor modifications to upgrade (< 100 

changes from 4.19 to 5.10)

[1] Octavian Purdila, et al. LKL: The Linux kernel library. RoEduNet ’10
[2] Jeff Dike. User-mode Linux.

Revisiting
Drivers



Improving Performance via Control/Data Plane Separation

Driver Containers in HongMeng

Linux Runtime

Linux Driver

Hardware

DC-Base

Linux 
Driver 

Container

EL0/Ring3

EL1/Ring0

Core Kernel

Native 
Driver

Twin Driver

Slow Path

init/wake

• Cumbersome Procedure (init/wake) in userspace

BIO Read BIO Write

HongMeng HongMeng

Fast Path
IO IRQ

• I/O requests to rewritten twin drivers

Can be configured to use weaker isolation

Revisiting
Drivers
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Implementation and Deployment of HongMeng Kernel

• Core kernel ~90 thousands LoC, OS services over 1 million LoC, written in subset C

• Deployed in tens of millions of devices

• Same codebase with different configurations

• Certified with CC-EAL6+ (security) and ASIL-D (safety)

OS Kernel for 
Smartphones/Tablets

OS Kernel for 
Smart Vehicles

OS Kernel for 
Routers/Switches



Performance Comparison in Micro-benchmark

• Improved network

• Improved context switches

• Similar memory and file operations

• Issues with Fork/Clone

Can be accelerated through parallelism

LMBench Results

Q1: How well does HongMeng perform compared to Linux in micro-benchmark? 

network Avg. +21%

Context Switches +32%

mem + file Similar

Fork -75%
Clone -48%



Q2: Will microkernel architecture lead to a higher load?

19% lighter loads in typical scenarios (the less the better)

N
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Load Comparison in Typical Use Case
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End-to-End Comparison of Startup Time and Frame Drops

Q3: How does HongMeng perform in real-world scenarios compared to Linux?
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17% shorter app startup time in top30 applications (the less the better)

10% less frame drops in typical usage lasting 24 hours
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Being Compatible at First, then Nativize Gradually

Being compatible is a crucial first step for commercial deployment

Third-party apps & 
drivers are distributed 

in binary form

Products require
unified codebase 

for various platforms

Linux HongMeng



Configurable Composition is Critical for Cross-Scenario Deployment

Core Kernel

Proc.
Mgr.

Class 2: 
Address Space 
Isolation

Class 1: 
Mechanism-
enforced Isolation

Class 0: 
Core TCB

Mem
Mgr.

File 
System

Power
Mgr.

Apps

Core Kernel

Native 
Driver

Thermal
Mgr. …

… File 
System

Proc.
Mgr.

Secure Applications

…

Custom LibC

HongMeng Kernel in Smartphones
HongMeng Kernel in Secure OS

Trusted Execution Environment (TEE)

…
Other Scenarios

Same codebase with different configurations



Future Work: Accommodating Heterogenous Hardware

XPU CPU NPU

Heterogenous Processing Unit Non-Cache-Coherence Manycore

Core Core Core Core
Core Core Core Core

Core Core Core Core

Serves as a solid starting point for applying
heterogenous-oriented architectures [1,2]

in production heterogeneous systems

Distributed
OS Services

Distributed
OS Services

Scales out software with 
distributed/partitioned OS services

HongMeng

[1] Baumann, Andrew, et al. The multikernel: a new OS architecture for scalable multicore systems. SOSP ’09
[2] Shan, Yizhou, et al. LegoOS: A disseminated, distributed {OS} for hardware resource disaggregation. OSDI ’18

HongMeng

Custom OS 
Services

HongMeng

OS Services

HongMeng
Custom OS 

Services

High Speed Soft-bus RPC
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Conclusions

• HongMeng general-purpose microkernel

• Retaining Minimality

Minimal core kernel with decoupled, well-isolated, least-privileged OS services

• Prioritizing Performance

Structural supports includes isolation classes, flexible composition, and address tokens

• Maximizing Compatibility

Achieves Linux ABI compliance and performant driver reuse

• Deployed in production and typically with improved performance
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