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This work: use Rust to statically check higher-
level crash-consistency properties 
in a persistent memory file system

Atomicity of system calls

Rust crate for 
persistent memory 

storage systems
Statically checks low-level 

crash-consistency properties
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Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt 
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)
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Simple example: creating a new file

dentry ?
Setting dentry pointer depends on inode initialization

Statically enforcing durable update ordering can prevent 
many crash-consistency bugs
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Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}

Dentry Inode
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SquirrelFS implementation

Typestate-checked Synchronous Soft Updates for crash consistency

7500 LOC of Rust

Simple durable layout with volatile indexes and allocators

Atomic metadata-related system calls (including rename)

Modeled as a transition system and model checked in Alloy
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Evaluation

Evaluated on 128GB Intel Optane DC Persistent Memory Module

Compared against Ext4-DAX, NOVA, and WineFS

1. How does SquirrelFS compare to other PM file systems?

2. How long does it take to statically check SquirrelFS’s crash-consistency 

properties?
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SquirrelFS performance
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System (verified) Lines of code Verification time (s)

FSCQ 31K 39600

VeriBetrKV 45K 6480

System (unverified) Lines of code Compilation time (s)

Ext4 45K 38

NOVA 16K 20

WineFS 9K 13

System (typestate-checked) Lines of code Compile+check time (s)

SquirrelFS 7.5K 10



Conclusion

Typestate pattern statically checks ordering for crash consistency

Synchronous Soft Updates crash-consistency mechanism

Comparable performance to existing PM file systems

https://github.com/utsaslab/squirrelfs
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Background: persistent memory

Low latency on the order of DRAM

Byte-addressable via memory loads and stores

Cache-line flushes and memory fences for durability and ordering

Examples:

- Intel Optane DC Persistent Memory Module
- Battery-backed DRAM
- Future devices: Micron, startups, CXL.mem, …

75



Background: soft updates

Crash-consistency mechanism based on ordering in-place updates

Rules:

1. Never point to a structure before it is initialized
2. Never reuse a resource before nullifying existing references to it
3. Never reset the old pointer to a resource before setting the new one

Enforced by tracking update dependencies and ordering durable updates

Reduces write amplification, but increases complexity
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Background: verification

Mathematical proof that a program is correct

Prove that the complex implementation matches a simpler specification of 
correctness

Developer writes a proof, computer checks it

Uses verification-aware programming languages or interactive theorem provers

E.g.: Verus verification framework for Rust 
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Typestate in Rust: update operations

impl Inode<Clean,Free> { 
fn init(self,...) -> Inode<Dirty,Init> {...} 

}
impl Dentry<Clean,Free> { 

fn set_name(self, name: String) -> Dentry<Dirty,Init> {...} 
}
impl Dentry<Clean,Init> {

fn set_ino(self, ino: Inode<Clean,Init>) -> Dentry<Dirty,Committed> {...}
}
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Typestate: ensuring persistence

impl<S> Inode<Dirty,S> { 
fn flush(self) -> Inode<InFlight,S> {...} 

}
impl<S> Inode<InFlight,S> { 

fn fence(self) -> Inode<Clean,S> {...}
}
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Directory entry validity rules

1. If a dentry’s inode number is 0, the dentry is invalid.
2. If dst’s rename pointer points to src, then:

a. If dst.inode != src.inode, both dentries are valid
b. If dst.inode == src.inode, src is invalid
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Typestate in SquirrelFS

Operational typestate

● What operations have been performed on this object?
● Is it free? Initialized? Allocated but not initialized?

Persistence typestate

● Have the most recent updates been made durable?

Typestate transition functions make persistent updates and return the new 
typestate
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SquirrelFS crash consistency bugs

1. A cache line flush persistence function was passed a reference to a page 
pointer, rather than the page pointer itself (typestate transition body)

2. Missing case to free orphaned dir pages (recovery code)
3. Allocated but orphaned directory entries towards parent link count (recovery 

code)
4. Used persistent inode number, rather than inode table index, in inode table 

scan (recovery code)
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SquirrelFS architecture

PM

DRAM

Virtual File System

global metadata indexes

icache
individual 

inode indexes

global CPU 1 CPU 2

inode table

page 
allocator

page 
allocator

inode 
allocator

page descriptor table page descriptor table

pages pages
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Bugs found with typestate 

● Missing persistence primitives
○ E.g.: initial implementation of write was missing flush/fence calls after setting new page 

backpointer
● Incorrect ordering

○ E.g.: initial rename implementation incorrectly updated link count before clearing a directory 
entry, which could result in a dangling link later on
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Bugs found with Alloy model

● Recovering from renames
○ Initial model did not include any crash recovery logic; we believed it was not necessary
○ Model found a counterexample where invalid directory entries could reappear after a crash 

during rename
○ Fixed by adding mandatory post-crash cleanup of rename pointers

● Handling . and .. dentries
○ Originally stored durably and included in update ordering rules
○ Alloy model repeatedly found issues with these rules, particularly during rename
○ Now stored only in volatile memory
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Microbenchmark: system call latency
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Macrobenchmark: filebench
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Application benchmark: RocksDB
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Application benchmark: LMDB
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SquirrelFS mount times

System state Mount time (s)

Normal mount

mkfs 5.80

Empty 5.51

Full 30.50

Recovery mount
Empty 5.76

Full 55.50
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Ordering for crash consistency

Running example: creating a new file

122



Ordering for crash consistency

Running example: creating a new file

123

dentry



Ordering for crash consistency

Running example: creating a new file

124

dentry inode



Ordering for crash consistency

Running example: creating a new file

125

dentry inode



Ordering for crash consistency

Running example: creating a new file

126

dentry inode

Invariant: a directory entry never points to an uninitialized inode
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Invariant: a directory entry never points to an uninitialized inode

Ordering rule: inode must be initialized at the same time or before directory 
entry pointer is set
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Running example: creating a new file
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dentry

Invariant: a directory entry never points to an uninitialized inode

Ordering rule: inode must be initialized at the same time or before directory 
entry pointer is set

Statically enforcing durable update ordering can prevent crash-consistency bugs



Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates
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Soft updates: crash consistency from ordered in-place durable updates
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Soft updates: crash consistency from ordered in-place durable updates
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Soft updates: crash consistency from ordered in-place durable updates
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entry Managing update dependencies in 

asynchronous soft updates is 
notoriously difficult

Synchronous soft updates eliminates 
most complexity!

Fast persistent memory storage 
enables performant synchrony
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Inode<Clean, Free> Inode<Dirty, Init> Inode<InFlight, Init> Inode<Clean, Init>

without 
typestate

with 
typestate

dentry dentry dentry dentry

Ordering encoded in function signatures:
impl Inode<Clean,Free> {fn init(self) -> Inode<Dirty, Init> {...}}
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Ordering for crash consistency

Running example: creating a file
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A

?
Creating link from A → foo is dependent on initialization of foo

Just two swapped operations can cause serious bugs!

Statically enforcing durable update ordering can prevent crash-consistency bugs



Compilation times

System (unverified) Lines of code Compilation time (s)

Ext4 45K 38

NOVA 16K 20

WineFS 9K 13

SquirrelFS 7.5K 10
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System (verified) Lines of code Verification time (hours)

FSCQ 31K 11

VeriBetrKV 45K 1.8
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