
SquirrelFS: using the Rust compiler to
check file-system crash consistency

Hayley LeBlanc, Nathan Taylor,
James Bornholt, Vijay Chidambaram

Current approaches to ensuring crash consistency

2

Current approaches to ensuring crash consistency

Testing

3

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

Current approaches to ensuring crash consistency

Testing

● Incomplete
● Requires

specialized tools
4

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

Current approaches to ensuring crash consistency

Testing Verification

● Incomplete
● Requires

specialized tools
5

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

FSCQ (SOSP ‘15), DFSCQ (SOSP ‘17),
Perennial (SOSP ‘19), VeriBetrKV (OSDI ‘20) . . .

Current approaches to ensuring crash consistency

Testing Verification

● Incomplete
● Requires

specialized tools

● Requires specialized
expertise

● Development takes longer
● Often impacts performance 6

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

FSCQ (SOSP ‘15), DFSCQ (SOSP ‘17),
Perennial (SOSP ‘19), VeriBetrKV (OSDI ‘20) . . .

Current approaches to ensuring crash consistency

Testing Verification

● Incomplete
● Requires

specialized tools

● Requires specialized
expertise

● Development takes longer
● Often impacts performance 7

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

FSCQ (SOSP ‘15), DFSCQ (SOSP ‘17),
Perennial (SOSP ‘19), VeriBetrKV (OSDI ‘20) . . .

Current approaches to ensuring crash consistency

Testing Verification

● Incomplete
● Requires

specialized tools

● Requires specialized
expertise

● Development takes longer
● Often impacts performance 8

● No specialized expertise or
tools required

● Statically check critical
properties

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

FSCQ (SOSP ‘15), DFSCQ (SOSP ‘17),
Perennial (SOSP ‘19), VeriBetrKV (OSDI ‘20) . . .

Current approaches to ensuring crash consistency

Testing Verification

● Incomplete
● Requires

specialized tools

● Requires specialized
expertise

● Development takes longer
● Often impacts performance 9

Lightweight static checking of
certain crash-consistency

properties

● No specialized expertise or
tools required

● Statically check critical
properties

eXplode (OSDI ‘06), Yat (ATC ‘14),
CrashMonkey (OSDI ‘18), Hydra (SOSP ‘19),
Vinter (ATC ‘22), Chipmunk (EuroSys ‘23) . . .

FSCQ (SOSP ‘15), DFSCQ (SOSP ‘17),
Perennial (SOSP ‘19), VeriBetrKV (OSDI ‘20) . . .

Rust programming language

10

Rust programming language

High-performance, low-level systems programming language

11

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

12

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races

13

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races
● Memory safety issues

14

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races
● Memory safety issues
● Some crash-consistency bugs! (Corundum ASPLOS ‘21)

15

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races
● Memory safety issues
● Some crash-consistency bugs! (Corundum ASPLOS ‘21)

16

Rust crate for
persistent memory

storage systems

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races
● Memory safety issues
● Some crash-consistency bugs! (Corundum ASPLOS ‘21)

17

Rust crate for
persistent memory

storage systems
Statically checks low-level

crash-consistency properties

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races
● Memory safety issues
● Some crash-consistency bugs! (Corundum ASPLOS ‘21)

18

This work: use Rust to statically check higher-
level crash-consistency properties
in a persistent memory file system

Rust crate for
persistent memory

storage systems
Statically checks low-level

crash-consistency properties

Rust programming language

High-performance, low-level systems programming language

Strong type system that can statically prevent:

● Data races
● Memory safety issues
● Some crash-consistency bugs! (Corundum ASPLOS ‘21)

19

This work: use Rust to statically check higher-
level crash-consistency properties
in a persistent memory file system

Atomicity of system calls

Rust crate for
persistent memory

storage systems
Statically checks low-level

crash-consistency properties

SquirrelFS

20

SquirrelFS

Persistent memory file system with statically-checked ordering-related crash-

consistency properties

21

SquirrelFS

Persistent memory file system with statically-checked ordering-related crash-

consistency properties

Static checks rely only on existing Rust features

22

SquirrelFS

Persistent memory file system with statically-checked ordering-related crash-

consistency properties

Static checks rely only on existing Rust features

Introduces Synchronous Soft Updates crash-consistency mechanism

23

SquirrelFS

Persistent memory file system with statically-checked ordering-related crash-

consistency properties

Static checks rely only on existing Rust features

Introduces Synchronous Soft Updates crash-consistency mechanism

Uses the typestate pattern to statically check ordering of durable updates

24

SquirrelFS

Persistent memory file system with statically-checked ordering-related crash-

consistency properties

Static checks rely only on existing Rust features

Introduces Synchronous Soft Updates crash-consistency mechanism

Uses the typestate pattern to statically check ordering of durable updates

Achieves similar or better performance to other PM file systems

25

SquirrelFS

Persistent memory file system with statically-checked ordering-related crash-

consistency properties

Static checks rely only on existing Rust features

Introduces Synchronous Soft Updates crash-consistency mechanism

Uses the typestate pattern to statically check ordering of durable updates

Achieves similar or better performance to other PM file systems

https://github.com/utsaslab/squirrelfs
26

Roadmap

1. Introduction
2. Ordering for crash consistency
3. Typestate pattern
4. SquirrelFS implementation
5. Evaluation

27

Roadmap

1. Introduction
2. Ordering for crash consistency
3. Typestate pattern
4. SquirrelFS implementation
5. Evaluation

28

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

29

Simple example: creating a new file

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

30

Simple example: creating a new file

dentry

Stores file name

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

31

Simple example: creating a new file

dentry inode

Stores file name
Stores file
metadata

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

32

Simple example: creating a new file

dentry inode

Stores file name
Stores file
metadata

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

33

Simple example: creating a new file

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

34

Simple example: creating a new file

dentry

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

35

Simple example: creating a new file

dentry

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

36

Simple example: creating a new file

dentry ?

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

37

Simple example: creating a new file

dentry ?
Setting dentry pointer depends on inode initialization

Ordering for crash consistency

Crash consistency depends on the order of durable updates (Ganger & Patt
‘94, Frost et al. ‘07, Chidambaram et al. ‘12)

38

Simple example: creating a new file

dentry ?
Setting dentry pointer depends on inode initialization

Statically enforcing durable update ordering can prevent
many crash-consistency bugs

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

39

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

40

…[Soft updates] is a significant impediment to progressing in the vfs
layer so we plan to get it out of the way. It is too clever for us to continue

maintaining as it is.
Bob Beck, OpenBSD commit message, 2023

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

41

…[Soft updates] is a significant impediment to progressing in the vfs
layer so we plan to get it out of the way. It is too clever for us to continue

maintaining as it is.
Bob Beck, OpenBSD commit message, 2023

Tracking asynchronous
dependencies

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

42

…[Soft updates] is a significant impediment to progressing in the vfs
layer so we plan to get it out of the way. It is too clever for us to continue

maintaining as it is.
Bob Beck, OpenBSD commit message, 2023

Tracking asynchronous
dependencies

Getting the update
ordering right

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

43

…[Soft updates] is a significant impediment to progressing in the vfs
layer so we plan to get it out of the way. It is too clever for us to continue

maintaining as it is.
Bob Beck, OpenBSD commit message, 2023

Tracking asynchronous
dependencies

Getting the update
ordering right

Fast synchrony with
persistent memory

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

44

…[Soft updates] is a significant impediment to progressing in the vfs
layer so we plan to get it out of the way. It is too clever for us to continue

maintaining as it is.
Bob Beck, OpenBSD commit message, 2023

Tracking asynchronous
dependencies

Getting the update
ordering right

Fast synchrony with
persistent memory

Low-latency durable storage
devices with DRAM-like interface
● Intel Optane DC PM
● Battery-backed DRAM
● Future CXL-attached mem

Soft updates

Track dependencies between durable in-place updates to enforce crash-consistent
ordering (Ganger & Patt OSDI ‘94)

45

…[Soft updates] is a significant impediment to progressing in the vfs
layer so we plan to get it out of the way. It is too clever for us to continue

maintaining as it is.
Bob Beck, OpenBSD commit message, 2023

Tracking asynchronous
dependencies

Getting the update
ordering right

Fast synchrony with
persistent memory

Statically check ordering
with typestate

Low-latency durable storage
devices with DRAM-like interface
● Intel Optane DC PM
● Battery-backed DRAM
● Future CXL-attached mem

Roadmap

1. Introduction
2. Ordering for crash consistency
3. Typestate pattern
4. SquirrelFS implementation
5. Evaluation

46

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

47

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

48

fn init_inode(i: &mut Inode)

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

49

fn init_inode(i: Inode<Free>)
-> Inode<Init>

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

50

fn init_inode(i: Inode<Free>)
-> Inode<Init>

Consumes
input state and

returns new
state

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

51

Inode<Free>

Inode<Init>

fn init_inode(i: Inode<Free>)
-> Inode<Init>

Consumes
input state and

returns new
state

init_inode

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

52

Inode<Free>

Inode<Init>

fn init_inode(i: Inode<Free>)
-> Inode<Init>

Consumes
input state and

returns new
state

fn set_directory_entry_ptr(
 d: Dentry<Init>,
 i: Inode<Init>
) -> Dentry<Commit>

init_inode

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

53

Inode<Free>

Inode<Init>

fn init_inode(i: Inode<Free>)
-> Inode<Init>

fn set_directory_entry_ptr(
 d: Dentry<Init>,
 i: Inode<Init>
) -> Dentry<Commit>

init_inode

Dentry<Init>

Dentry<Commit>

set_directory_
entry_pointer

The typestate pattern

Encode runtime state in an object’s type with no runtime overhead

54

Inode<Free>

Inode<Init>

fn init_inode(i: Inode<Free>)
-> Inode<Init>

fn set_directory_entry_ptr(
 d: Dentry<Init>,
 i: Inode<Init>
) -> Dentry<Commit>

init_inode

Dentry<Init>

Dentry<Commit>

set_directory_
entry_pointerUpdate

dependencies
encoded in

types

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}

Dentry Inode

55

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
56

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
57

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
58

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
59

Dentry

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
60

Dentry

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
61

Dentry

Typestate for crash consistency

fn create_file(name: String) {
let d = Dentry::get_free_dentry(); // obtain Dentry<Free>
let i = Inode::get_free_ino(); // obtain Inode<Free>
let d = d.set_name(name); // Dentry<Free> -> Dentry<Init>
let d = d.set_directory_entry_ptr(i); // BUG!!

}
62

Dentry ???

63

Roadmap

1. Introduction
2. Ordering for crash consistency
3. Typestate pattern
4. SquirrelFS implementation
5. Evaluation

64

SquirrelFS implementation

Typestate-checked Synchronous Soft Updates for crash consistency

7500 LOC of Rust

Simple durable layout with volatile indexes and allocators

Atomic metadata-related system calls (including rename)

Modeled as a transition system and model checked in Alloy

65

Roadmap

1. Introduction
2. Ordering for crash consistency
3. Typestate pattern
4. SquirrelFS implementation
5. Evaluation

66

Evaluation

Evaluated on 128GB Intel Optane DC Persistent Memory Module

Compared against Ext4-DAX, NOVA, and WineFS

1. How does SquirrelFS compare to other PM file systems?

2. How long does it take to statically check SquirrelFS’s crash-consistency

properties?

67

SquirrelFS performance

68

higher is
better

Compilation and verification times

69

Compilation and verification times

70

System (verified) Lines of code Verification time (s)

FSCQ 31K 39600

VeriBetrKV 45K 6480

Compilation and verification times

71

System (verified) Lines of code Verification time (s)

FSCQ 31K 39600

VeriBetrKV 45K 6480

System (unverified) Lines of code Compilation time (s)

Ext4 45K 38

NOVA 16K 20

WineFS 9K 13

Compilation and verification times

72

System (verified) Lines of code Verification time (s)

FSCQ 31K 39600

VeriBetrKV 45K 6480

System (unverified) Lines of code Compilation time (s)

Ext4 45K 38

NOVA 16K 20

WineFS 9K 13

System (typestate-checked) Lines of code Compile+check time (s)

SquirrelFS 7.5K 10

Conclusion

Typestate pattern statically checks ordering for crash consistency

Synchronous Soft Updates crash-consistency mechanism

Comparable performance to existing PM file systems

https://github.com/utsaslab/squirrelfs

73

Dynamic
testing Verification

SquirrelFS

Extra slides

74

Background: persistent memory

Low latency on the order of DRAM

Byte-addressable via memory loads and stores

Cache-line flushes and memory fences for durability and ordering

Examples:

- Intel Optane DC Persistent Memory Module
- Battery-backed DRAM
- Future devices: Micron, startups, CXL.mem, …

75

Background: soft updates

Crash-consistency mechanism based on ordering in-place updates

Rules:

1. Never point to a structure before it is initialized
2. Never reuse a resource before nullifying existing references to it
3. Never reset the old pointer to a resource before setting the new one

Enforced by tracking update dependencies and ordering durable updates

Reduces write amplification, but increases complexity

76

Soft updates cyclic dependencies example

77

10

Block A (inodes)
“foo”

Block B (dentries)

Soft updates cyclic dependencies example

78

10

Block A (inodes)
“foo”

Block B (dentries)

1. unlink foo

Soft updates cyclic dependencies example

79

10

Block A (inodes) Block B (dentries)

1. unlink foo

“foo”

Soft updates cyclic dependencies example

80

10

Block A (inodes) Block B (dentries)

1. unlink foo

“foo”

Soft updates cyclic dependencies example

81

Block A (inodes) Block B (dentries)

1. unlink foo

“foo”10

Soft updates cyclic dependencies example

82

Block A (inodes) Block B (dentries)

1. unlink foo

“foo”10

Soft updates cyclic dependencies example

83

Block A (inodes) Block B (dentries)

1. unlink foo

2. create bar

“foo”10

Soft updates cyclic dependencies example

84

Block A (inodes) Block B (dentries)

1. unlink foo

2. create bar

“foo”10

20

Soft updates cyclic dependencies example

85

Block A (inodes) Block B (dentries)

1. unlink foo

2. create bar

“foo”10

20 “bar”

Soft updates cyclic dependencies example

86

Block A (inodes) Block B (dentries)

1. unlink foo

2. create bar

“foo”10

20 “bar”

Background: verification

Mathematical proof that a program is correct

Prove that the complex implementation matches a simpler specification of
correctness

Developer writes a proof, computer checks it

Uses verification-aware programming languages or interactive theorem provers

E.g.: Verus verification framework for Rust

87

Typestate in Rust: update operations

impl Inode<Clean,Free> {
fn init(self,...) -> Inode<Dirty,Init> {...}

}
impl Dentry<Clean,Free> {

fn set_name(self, name: String) -> Dentry<Dirty,Init> {...}
}
impl Dentry<Clean,Init> {

fn set_ino(self, ino: Inode<Clean,Init>) -> Dentry<Dirty,Committed> {...}
}

88

Typestate: ensuring persistence

impl<S> Inode<Dirty,S> {
fn flush(self) -> Inode<InFlight,S> {...}

}
impl<S> Inode<InFlight,S> {

fn fence(self) -> Inode<Clean,S> {...}
}

89

Directory entry validity rules

1. If a dentry’s inode number is 0, the dentry is invalid.
2. If dst’s rename pointer points to src, then:

a. If dst.inode != src.inode, both dentries are valid
b. If dst.inode == src.inode, src is invalid

90

Traditional soft updates rename

source destination

inode

91

link count: 1

Traditional soft updates rename

source destination

inode

92

link count: 2

Traditional soft updates rename

source destination

inode

destination

93

link count: 2

Traditional soft updates rename

source destination

inode

destination

94

link count: 2

Key problem: not enough
information in crash state to

recovery correctly

Traditional soft updates rename

source destination

inode

destination

95

link count: 2

Traditional soft updates rename

source destination

inode

source destination

96

link count: 2

Traditional soft updates rename

source destination

inode

source destination

97

link count: 1

Traditional soft updates rename

destination

inode

destinationsource

98

link count: 1

Atomic rename with SSU

source destination

inode

99

Atomic rename with SSU

source destination

inode

rename pointer

100

If dst’s rename pointer points to src, then:

1. If dst.inode != src.inode, validity
determined by inode number

2. If dst.inode == src.inode, src is
invalid

Atomic rename with SSU

inode

rename pointer
source destination

101

If dst’s rename pointer points to src, then:

1. If dst.inode != src.inode, validity
determined by inode number

2. If dst.inode == src.inode, src is
invalid

Atomic rename with SSU

inode

rename pointer
source destination

102

If dst’s rename pointer points to src, then:

1. If dst.inode != src.inode, validity
determined by inode number

2. If dst.inode == src.inode, src is
invalid

Atomic rename with SSU

inode

source destination

103

If dst’s rename pointer points to src, then:

1. If dst.inode != src.inode, validity
determined by inode number

2. If dst.inode == src.inode, src is
invalid

Atomic rename with SSU

inode

destinationsource

104

If dst’s rename pointer points to src, then:

1. If dst.inode != src.inode, validity
determined by inode number

2. If dst.inode == src.inode, src is
invalid

Typestate in SquirrelFS

Operational typestate

● What operations have been performed on this object?
● Is it free? Initialized? Allocated but not initialized?

Persistence typestate

● Have the most recent updates been made durable?

Typestate transition functions make persistent updates and return the new
typestate

105

SquirrelFS crash consistency bugs

1. A cache line flush persistence function was passed a reference to a page
pointer, rather than the page pointer itself (typestate transition body)

2. Missing case to free orphaned dir pages (recovery code)
3. Allocated but orphaned directory entries towards parent link count (recovery

code)
4. Used persistent inode number, rather than inode table index, in inode table

scan (recovery code)

106

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2
107

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2

inode table

108

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2

inode table
pages pages

109

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2

inode table
page descriptor table page descriptor table

pages pages

110

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2

inode table
page descriptor table page descriptor table

pages pages

111

page
metadata:

inode, offset
in file

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2

inode table

inode
allocator

page descriptor table page descriptor table

pages pages

112

page
metadata:

inode, offset
in file

SquirrelFS architecture

PM

DRAM

Virtual File System

global CPU 1 CPU 2

inode table

page
allocator

page
allocator

inode
allocator

page descriptor table page descriptor table

pages pages

113

page
metadata:

inode, offset
in file

SquirrelFS architecture

PM

DRAM

Virtual File System

global metadata indexes

icache
individual

inode indexes

global CPU 1 CPU 2

inode table

page
allocator

page
allocator

inode
allocator

page descriptor table page descriptor table

pages pages

114

page
metadata:

inode, offset
in file

Bugs found with typestate

● Missing persistence primitives
○ E.g.: initial implementation of write was missing flush/fence calls after setting new page

backpointer
● Incorrect ordering

○ E.g.: initial rename implementation incorrectly updated link count before clearing a directory
entry, which could result in a dangling link later on

115

Bugs found with Alloy model

● Recovering from renames
○ Initial model did not include any crash recovery logic; we believed it was not necessary
○ Model found a counterexample where invalid directory entries could reappear after a crash

during rename
○ Fixed by adding mandatory post-crash cleanup of rename pointers

● Handling . and .. dentries
○ Originally stored durably and included in update ordering rules
○ Alloy model repeatedly found issues with these rules, particularly during rename
○ Now stored only in volatile memory

116

Microbenchmark: system call latency

117

Macrobenchmark: filebench

118

Application benchmark: RocksDB

119

Application benchmark: LMDB

120

SquirrelFS mount times

System state Mount time (s)

Normal mount

mkfs 5.80

Empty 5.51

Full 30.50

Recovery mount
Empty 5.76

Full 55.50

121

Ordering for crash consistency

Running example: creating a new file

122

Ordering for crash consistency

Running example: creating a new file

123

dentry

Ordering for crash consistency

Running example: creating a new file

124

dentry inode

Ordering for crash consistency

Running example: creating a new file

125

dentry inode

Ordering for crash consistency

Running example: creating a new file

126

dentry inode

Invariant: a directory entry never points to an uninitialized inode

Ordering for crash consistency

Running example: creating a new file

127

Invariant: a directory entry never points to an uninitialized inode

Ordering for crash consistency

Running example: creating a new file

128

dentry

Invariant: a directory entry never points to an uninitialized inode

Ordering for crash consistency

Running example: creating a new file

129

dentry

Invariant: a directory entry never points to an uninitialized inode

Ordering for crash consistency

Running example: creating a new file

130

dentry

Invariant: a directory entry never points to an uninitialized inode

Ordering for crash consistency

Running example: creating a new file

131

dentry

Invariant: a directory entry never points to an uninitialized inode

Ordering rule: inode must be initialized at the same time or before directory
entry pointer is set

Ordering for crash consistency

Running example: creating a new file

132

dentry

Invariant: a directory entry never points to an uninitialized inode

Ordering rule: inode must be initialized at the same time or before directory
entry pointer is set

Statically enforcing durable update ordering can prevent crash-consistency bugs

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

133

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

134

Free

Init

free
inode

a. initialize
inode

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

135

Free

Init

Free

Init

free
inode

a. initialize
inode

b. initialize
directory entry

free directory
entry

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

136

Free

Init

Free

Init

Committed

free
inode

a. initialize
inode

b. initialize
directory entry

c. set directory
entry inode #

free directory
entry

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

137

Free

Init

Free

Init

Committed

free
inode

a. initialize
inode

b. initialize
directory entry

c. set directory
entry inode #

free directory
entry Managing update dependencies in

asynchronous soft updates is
notoriously difficult

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

138

Free

Init

Free

Init

Committed

free
inode

a. initialize
inode

b. initialize
directory entry

c. set directory
entry inode #

free directory
entry Managing update dependencies in

asynchronous soft updates is
notoriously difficult

Synchronous soft updates eliminates
most complexity!

Synchronous soft updates (SSU)

Soft updates: crash consistency from ordered in-place durable updates

139

Free

Init

Free

Init

Committed

free
inode

a. initialize
inode

b. initialize
directory entry

c. set directory
entry inode #

free directory
entry Managing update dependencies in

asynchronous soft updates is
notoriously difficult

Synchronous soft updates eliminates
most complexity!

Fast persistent memory storage
enables performant synchrony

The typestate pattern

140

struct inode

Inode<Clean, Free>

without
typestate

with
typestate

dentry

The typestate pattern

141

struct inode

Inode<Clean, Free>

without
typestate

with
typestate

dentry

Are there
unflushed
updates?

The typestate pattern

142

struct inode

Inode<Clean, Free>

without
typestate

with
typestate

dentry

Are there
unflushed
updates?

Current SSU
state?

The typestate pattern

143

in
iti

al
iz

e
struct inode struct inode

Inode<Clean, Free> Inode<Dirty, Init>

without
typestate

with
typestate

dentry dentry

Are there
unflushed
updates?

Current SSU
state?

The typestate pattern

144

in
iti

al
iz

e

flu
sh

struct inode struct inode struct inode

Inode<Clean, Free> Inode<Dirty, Init> Inode<InFlight, Init>

without
typestate

with
typestate

dentry dentry dentry

Are there
unflushed
updates?

Current SSU
state?

The typestate pattern

145

in
iti

al
iz

e

flu
sh

fe
nc

e

struct inode struct inode struct inode struct inode

Inode<Clean, Free> Inode<Dirty, Init> Inode<InFlight, Init> Inode<Clean, Init>

without
typestate

with
typestate

dentry dentry dentry dentry

Are there
unflushed
updates?

Current SSU
state?

The typestate pattern

146

in
iti

al
iz

e

flu
sh

fe
nc

e

struct inode struct inode struct inode struct inode

Inode<Clean, Free> Inode<Dirty, Init> Inode<InFlight, Init> Inode<Clean, Init>

without
typestate

with
typestate

dentry dentry dentry dentry

Ordering encoded in function signatures:
impl Inode<Clean,Free> {fn init(self) -> Inode<Dirty, Init> {...}}

Ordering for crash consistency

Running example: creating a file

147

A

Ordering for crash consistency

Running example: creating a file

148

A foo

Ordering for crash consistency

Running example: creating a file

149

A foo

Ordering for crash consistency

Running example: creating a file

150

A

Ordering for crash consistency

Running example: creating a file

151

A

Ordering for crash consistency

Running example: creating a file

152

A

?

Ordering for crash consistency

Running example: creating a file

153

A

?
Creating link from A → foo is dependent on initialization of foo

Ordering for crash consistency

Running example: creating a file

154

A

?
Creating link from A → foo is dependent on initialization of foo

Just two swapped operations can cause serious bugs!

Ordering for crash consistency

Running example: creating a file

155

A

?
Creating link from A → foo is dependent on initialization of foo

Just two swapped operations can cause serious bugs!

Statically enforcing durable update ordering can prevent crash-consistency bugs

Compilation times

System (unverified) Lines of code Compilation time (s)

Ext4 45K 38

NOVA 16K 20

WineFS 9K 13

SquirrelFS 7.5K 10

156

System (verified) Lines of code Verification time (hours)

FSCQ 31K 11

VeriBetrKV 45K 1.8

	Slide: 1
	Current approaches to ensuring crash consistency (1)
	Current approaches to ensuring crash consistency (2)
	Current approaches to ensuring crash consistency (3)
	Current approaches to ensuring crash consistency (4)
	Current approaches to ensuring crash consistency (5)
	Current approaches to ensuring crash consistency (6)
	Current approaches to ensuring crash consistency (7)
	Current approaches to ensuring crash consistency (8)
	Rust programming language (1)
	Rust programming language (2)
	Rust programming language (3)
	Rust programming language (4)
	Rust programming language (5)
	Rust programming language (6)
	Rust programming language (7)
	Rust programming language (8)
	Rust programming language (9)
	Rust programming language (10)
	SquirrelFS (1)
	SquirrelFS (2)
	SquirrelFS (3)
	SquirrelFS (4)
	SquirrelFS (5)
	SquirrelFS (6)
	SquirrelFS (7)
	Roadmap
	Roadmap
	Ordering for crash consistency (1)
	Ordering for crash consistency (2)
	Ordering for crash consistency (3)
	Ordering for crash consistency (4)
	Ordering for crash consistency (5)
	Ordering for crash consistency (6)
	Ordering for crash consistency (7)
	Ordering for crash consistency (8)
	Ordering for crash consistency (9)
	Ordering for crash consistency (10)
	Soft updates (1)
	Soft updates (2)
	Soft updates (3)
	Soft updates (4)
	Soft updates (5)
	Soft updates (6)
	Soft updates (7)
	Roadmap
	The typestate pattern (1)
	The typestate pattern (2)
	The typestate pattern (3)
	The typestate pattern (4)
	The typestate pattern (5)
	The typestate pattern (6)
	The typestate pattern (7)
	The typestate pattern (8)
	Typestate for crash consistency
	Typestate for crash consistency
	Typestate for crash consistency
	Typestate for crash consistency
	Typestate for crash consistency
	Typestate for crash consistency (1)
	Typestate for crash consistency (2)
	Typestate for crash consistency (3)
	Slide: 17
	Roadmap
	SquirrelFS implementation
	Roadmap
	Evaluation
	SquirrelFS performance
	Compilation and verification times (1)
	Compilation and verification times (2)
	Compilation and verification times (3)
	Compilation and verification times (4)
	Conclusion
	Extra slides
	Background: persistent memory
	Background: soft updates
	Soft updates cyclic dependencies example (1)
	Soft updates cyclic dependencies example (2)
	Soft updates cyclic dependencies example (3)
	Soft updates cyclic dependencies example (4)
	Soft updates cyclic dependencies example (5)
	Soft updates cyclic dependencies example (6)
	Soft updates cyclic dependencies example (7)
	Soft updates cyclic dependencies example (8)
	Soft updates cyclic dependencies example (9)
	Soft updates cyclic dependencies example (10)
	Background: verification
	Typestate in Rust: update operations
	Typestate: ensuring persistence
	Directory entry validity rules
	Traditional soft updates rename (1)
	Traditional soft updates rename (2)
	Traditional soft updates rename (3)
	Traditional soft updates rename (4)
	Traditional soft updates rename (5)
	Traditional soft updates rename (6)
	Traditional soft updates rename (7)
	Traditional soft updates rename (8)
	Atomic rename with SSU (1)
	Atomic rename with SSU (2)
	Atomic rename with SSU (3)
	Atomic rename with SSU (4)
	Atomic rename with SSU (5)
	Atomic rename with SSU (6)
	Typestate in SquirrelFS
	SquirrelFS crash consistency bugs
	SquirrelFS architecture (1)
	SquirrelFS architecture (2)
	SquirrelFS architecture (3)
	SquirrelFS architecture (4)
	SquirrelFS architecture (5)
	SquirrelFS architecture (6)
	SquirrelFS architecture (7)
	SquirrelFS architecture (8)
	Bugs found with typestate
	Bugs found with Alloy model
	Microbenchmark: system call latency
	Macrobenchmark: filebench
	Application benchmark: RocksDB
	Application benchmark: LMDB
	SquirrelFS mount times
	Ordering for crash consistency (1)
	Ordering for crash consistency (2)
	Ordering for crash consistency (3)
	Ordering for crash consistency (4)
	Ordering for crash consistency (5)
	Ordering for crash consistency (6)
	Ordering for crash consistency (7)
	Ordering for crash consistency (8)
	Ordering for crash consistency (9)
	Ordering for crash consistency (10)
	Ordering for crash consistency (11)
	Synchronous soft updates (SSU) (1)
	Synchronous soft updates (SSU) (2)
	Synchronous soft updates (SSU) (3)
	Synchronous soft updates (SSU) (4)
	Synchronous soft updates (SSU) (5)
	Synchronous soft updates (SSU) (6)
	Synchronous soft updates (SSU) (7)
	The typestate pattern (1)
	The typestate pattern (2)
	The typestate pattern (3)
	The typestate pattern (4)
	The typestate pattern (5)
	The typestate pattern (6)
	The typestate pattern (7)
	Ordering for crash consistency (1)
	Ordering for crash consistency (2)
	Ordering for crash consistency (3)
	Ordering for crash consistency (4)
	Ordering for crash consistency (5)
	Ordering for crash consistency (6)
	Ordering for crash consistency (7)
	Ordering for crash consistency (8)
	Ordering for crash consistency (9)
	Compilation times

