
Burstable Cloud Block Storage
with Data Processing Units

Junyi Shu, Kun Qian, Ennan Zhai, Xuanzhe Liu, Xin Jin

Cloud block storage

2

Proprietary
Protocol

Proprietary
Protocol

…… Compute
Cluster

Partitioning
Cluster

……

Persistence
Cluster

……

Three-layer disaggregated architecture
• Adopted by Alibaba (SIGCOMM ’22), Azure

(NSDI ’23) and others
• Enhanced availability & elasticity

A compute node serves user VMs and
virtual disks (VDs)

The partitioning cluster handles CBS-
specific logic

The persistence cluster is a DFS that
stores data for many services

Cloud block storage

2

Proprietary
Protocol

Proprietary
Protocol

…… Compute
Cluster

Partitioning
Cluster

……

Persistence
Cluster

……

Three-layer disaggregated architecture
• Adopted by Alibaba (SIGCOMM ’22), Azure

(NSDI ’23) and others
• Enhanced availability & elasticity

A compute node serves user VMs and
virtual disks (VDs)

The partitioning cluster handles CBS-
specific logic

The persistence cluster is a DFS that
stores data for many services

VM VM

VD VD VD VD VD……
Storage Agent (SA)

……

Cloud block storage

2

Proprietary
Protocol

Proprietary
Protocol

…… Compute
Cluster

Partitioning
Cluster

……

Persistence
Cluster

……

Three-layer disaggregated architecture
• Adopted by Alibaba (SIGCOMM ’22), Azure

(NSDI ’23) and others
• Enhanced availability & elasticity

A compute node serves user VMs and
virtual disks (VDs)

The partitioning cluster handles CBS-
specific logic

The persistence cluster is a DFS that
stores data for many services

Cloud block storage

2

Proprietary
Protocol

Proprietary
Protocol

…… Compute
Cluster

Partitioning
Cluster

……

Persistence
Cluster

……

Three-layer disaggregated architecture
• Adopted by Alibaba (SIGCOMM ’22), Azure

(NSDI ’23) and others
• Enhanced availability & elasticity

A compute node serves user VMs and
virtual disks (VDs)

The partitioning cluster handles CBS-
specific logic

The persistence cluster is a DFS that
stores data for many services

Beyond elasticity: burst at anytime

3

Burstable VM instance
• Provide a base-level CPU performance
• Able to burst above it anytime
• Suitable for fluctuated workload

Beyond elasticity: burst at anytime

3

Burstable VM instance
• Provide a base-level CPU performance
• Able to burst above it anytime
• Suitable for fluctuated workload

Burstable virtual disk
• Provide a base-level IOPS/bandwidth
• Able to saturate more I/Os when bursting
• I/O utilization is also fluctuated

How is provisionable IOPS/bandwidth determined?

4

Compute
Node

Partitioning
Cluster

Persistence
Cluster

How is provisionable IOPS/bandwidth determined?

4

Compute
Node

Partitioning
Cluster

Persistence
Cluster

Small I/Os

Large I/Os
……

Lots of VDs

Small I/Os

Large I/Os
……

Lots of segments

Small I/Os

Large I/Os
……

Lots of chunks

Various workloads

How is provisionable IOPS/bandwidth determined?

4

Compute
Node

Partitioning
Cluster

Persistence
Cluster

Small I/Os

Large I/Os
……

Lots of VDs

Small I/Os

Large I/Os
……

Lots of segments

Small I/Os

Large I/Os
……

Lots of chunks

Various workloads

• Max IOPS
• Max BPS (bits-per-second)

• Max IOPS
• Max BPS (bits-per-second)

• Max IOPS
• Max BPS (bits-per-second)

Do we have the IOPS/bandwidth to support burst?

5

Proprietary
Protocol

Proprietary
Protocol

…… Compute
Cluster

Partitioning
Cluster

……

Persistence
Cluster

……

Supporting burst requires spare
IOPS/bandwidth at each layer

Do we need to provision
additional resources just for
supporting burst?

Insight 1: low utilization of backend clusters

6

IOPS/BPS usage is low
• ~78% disk capacity is used
• <20% IOPS/BPS is used
• Vertical CDF -> well balanced load

Insight 1: low utilization of backend clusters

6

IOPS/BPS usage is low
• ~78% disk capacity is used
• <20% IOPS/BPS is used
• Vertical CDF -> well balanced load

Insight 2: diverse utilization of compute clusters

7

IOPS/BPS distribution of all tenants in a compute cluster
• Over 80% of the tenants use only <50% of their provisioned IOPS/BPS
• Overprovisioning tendency is common in public clouds
• Long tail on the need for bursting

Insight 2: diverse utilization of compute clusters

7

IOPS/BPS distribution of all tenants in a compute cluster
• Over 80% of the tenants use only <50% of their provisioned IOPS/BPS
• Overprovisioning tendency is common in public clouds
• Long tail on the need for bursting

Insight 2: diverse utilization of compute clusters

7

IOPS/BPS distribution of all tenants in a compute cluster
• Over 80% of the tenants use only <50% of their provisioned IOPS/BPS
• Overprovisioning tendency is common in public clouds
• Long tail on the need for bursting

Pond [ASPLOS ’23]

Insight 2: diverse utilization of compute clusters

7

IOPS/BPS distribution of all tenants in a compute cluster
• Over 80% of the tenants use only <50% of their provisioned IOPS/BPS
• Overprovisioning tendency is common in public clouds
• Long tail on the need for bursting

Pond [ASPLOS ’23]

What if we just allow tenants to burst in the wild?

8

The base-level tenants suffer high latency
• The traffic created by Victim1 and Victim2 is negligible
• Overall BPS utilization reaches 100% frequently
• Victims experience >10ms average latency (norm is sub-millisecond)

What if we just allow tenants to burst in the wild?

8

The base-level tenants suffer high latency
• The traffic created by Victim1 and Victim2 is negligible
• Overall BPS utilization reaches 100% frequently
• Victims experience >10ms average latency (norm is sub-millisecond)

Why?

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

poll

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

poll control

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

poll control

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Key component of a compute node: xDPU

9

xDPU

User VM

PCIe Bus

NIC FPGA
DMA

Wimpy CPUs
Control Path

Data Path

poll control

Backend
Cluster

/dev/nvme1n1

NVMe Driver

/dev/nvme2n1SA
Dataplane

SA Control
Thread

SA Control
Thread

SA Control
Thread

I/O workflow
• T0: NVMe control command arrives
• T1: data moves to DPU
• T1: control thread polls I/O

metadata
• T2: control thread finish header

encapsulation and send signal
• T3: send I/O when both header and

data are ready

Bottlenecks
• Wimpy CPUs
• Interconnects: PCIe + NIC

Insight 3: load imbalance on xDPU

10

User VM1 User VM2

PCIe Bus

SA Control
Plane

CPU
1-1

NVMe Device 1

SA Control
Thread 4

SA Control
Thread 3

SA Control
Thread 2

SA Control
Thread 1

NVMe Device 2

CPU
1-2

CPU
1-3

CPU
1-4

CPU
2-1

CPU
2-2

CPU
2-3

CPU
2-4

An illustrative example of load imbalance

Insight 3: load imbalance on xDPU

10

User VM1 User VM2

PCIe Bus

SA Control
Plane

CPU
1-1

NVMe Device 1

BURST

SA Control
Thread 4

SA Control
Thread 3

SA Control
Thread 2

SA Control
Thread 1

NVMe Device 2

CPU
1-2

CPU
1-3

CPU
1-4

CPU
2-1

CPU
2-2

CPU
2-3

CPU
2-4

An illustrative example of load imbalance

Insight 3: load imbalance on xDPU

10

User VM1 User VM2

PCIe Bus

SA Control
Plane

CPU
1-1

NVMe Device 1

BURST
IMPACTED

SA Control
Thread 4

SA Control
Thread 3

SA Control
Thread 2

SA Control
Thread 1

NVMe Device 2

CPU
1-2

CPU
1-3

CPU
1-4

CPU
2-1

CPU
2-2

CPU
2-3

CPU
2-4

An illustrative example of load imbalance

Insight 3: load imbalance on xDPU

10

User VM1 User VM2

PCIe Bus

SA Control
Plane

CPU
1-1

NVMe Device 1

BURST
IMPACTED

SA Control
Thread 4

SA Control
Thread 3

SA Control
Thread 2

SA Control
Thread 1

NVMe Device 2

CPU
1-2

CPU
1-3

CPU
1-4

CPU
2-1

CPU
2-2

CPU
2-3

CPU
2-4

An illustrative example of load imbalance

vCPUs are not evenly used
• >80% of the I/Os are processed by

the busiest core on 4-core VMs.

Insight 4: resource competition on xDPU

11

Case 1: victim latency at burst
• Within a thread, higher burst results

in latency increase of victims

Case 2: different products
• Different products vary in their ability

to compete for resources

Opportunity, challenges, and goal

12

• Non-bottleneck: low backend resource utilization
• Opportunity: diverse utilization on compute nodes
• Challenge 1: load imbalance among threads
• Challenge 2: undesired resource allocation within a thread

Opportunity, challenges, and goal

12

• Non-bottleneck: low backend resource utilization
• Opportunity: diverse utilization on compute nodes
• Challenge 1: load imbalance among threads
• Challenge 2: undesired resource allocation within a thread

We need to design an I/O scheduling system on xDPU that:
1) keeps the load balanced among threads to avoid congestion;
2) and allocates resources with a thread to support burst and limit
tenant interference.

BurstCBS Overview

13

SA
 D

at
a

Pl
an

e

FP
G

A
SA Control

Thread

SA Control
Thread

SA Control
Thread

SA Control
Thread

SA Control Plane

Burstable I/O
Scheduler

Vectorized I/O
Cost Estimator

High-Perf
Queue Scaling

Inter-thread
load balance

Intra-thread
scheduling

FPGA-assisted inter-thread load-balancing

14

1-to-1 mapping
• Causes load imbalance when a vCPU starts bursting
• Work stealing can alleviate load imbalance
• ~35% throughput loss

Ingress
Queue 1

Ingress
Queue 2

Ingress
Queue 3

Ingress
Queue 4

Egress
Queue

1

Egress
Queue

3

SA Control
Thread 1

SA Control
Thread 2

Egress
Queue

2

Egress
Queue

4

vCPU vCPU vCPU vCPU

wimpy core wimpy core

FPGA-assisted inter-thread load-balancing

14

1-to-1 mapping
• Causes load imbalance when a vCPU starts bursting
• Work stealing can alleviate load imbalance
• ~35% throughput loss

Ingress
Queue 1

Ingress
Queue 2

Ingress
Queue 3

Ingress
Queue 4

Egress
Queue

1

Egress
Queue

3

SA Control
Thread 1

SA Control
Thread 2

Egress
Queue

2

Egress
Queue

4

vCPU vCPU vCPU vCPU

wimpy core wimpy core

FPGA-assisted inter-thread load-balancing

14

1-to-1 mapping
• Causes load imbalance when a vCPU starts bursting
• Work stealing can alleviate load imbalance
• ~35% throughput loss

Ingress
Queue 1

Ingress
Queue 2

Ingress
Queue 3

Ingress
Queue 4

Egress
Queue

1

Egress
Queue

3

SA Control
Thread 1

SA Control
Thread 2

Egress
Queue

2

Egress
Queue

4

vCPU vCPU vCPU vCPU

wimpy core wimpy core

FPGA-assisted inter-thread load-balancing

14

1-to-1 mapping
• Causes load imbalance when a vCPU starts bursting
• Work stealing can alleviate load imbalance
• ~35% throughput loss

Ingress
Queue 1

Ingress
Queue 2

Ingress
Queue 3

Ingress
Queue 4

Egress
Queue

1

Egress
Queue

3

SA Control
Thread 1

SA Control
Thread 2

Egress
Queue

2

Egress
Queue

4

vCPU vCPU vCPU vCPU

wimpy core wimpy core

FPGA-assisted inter-thread load-balancing

14

1-to-1 mapping
• Causes load imbalance when a vCPU starts bursting
• Work stealing can alleviate load imbalance
• ~35% throughput loss

Ingress
Queue 1

Ingress
Queue 2

Ingress
Queue 3

Ingress
Queue 4

Egress
Queue

1

Egress
Queue

3

SA Control
Thread 1

SA Control
Thread 2

Egress
Queue

2

Egress
Queue

4

vCPU vCPU vCPU vCPU

wimpy core wimpy core

Ingress
Queue 1

Ingress
Queue 2

Egress
Queue

1-1

Egress
Queue

2-1

SA Control
Thread 1

SA Control
Thread 2

Egress
Queue

1-2

Egress
Queue

2-2

vCPU vCPU

wimpy core wimpy core

1-to-N mapping
• Always load balanced
• At line rate with no throughput loss
• Consumes more FPGA resources

Efficient tiered memory pooling

15

I/O memory buffer lifecycle
• Main goal is to avoid slow & heavy operations on the critical path
• VM/VD/IOQ metadata prefilling becomes non-trivial for supporting 1m+ IOPS
• Two-tier memory pool to avoid prefilling while supporting more I/Os

Critical path

Memory
allocation

Retrieve from
memory pool

Add to
memory pool

Prefill
metadata

I/O
processing

Global memory pool

Efficient tiered memory pooling

15

I/O memory buffer lifecycle
• Main goal is to avoid slow & heavy operations on the critical path
• VM/VD/IOQ metadata prefilling becomes non-trivial for supporting 1m+ IOPS
• Two-tier memory pool to avoid prefilling while supporting more I/Os

Critical path

Memory
allocation

Retrieve from
memory pool

Add to
memory pool

Prefill
metadata

I/O
processing

Global memory pool

Critical path

Memory
allocation

Retrieve from
memory pool

Add to
memory pool

I/O
processing

I/O Queue dedicated memory pool

Prefill
metadata

Efficient tiered memory pooling

15

I/O memory buffer lifecycle
• Main goal is to avoid slow & heavy operations on the critical path
• VM/VD/IOQ metadata prefilling becomes non-trivial for supporting 1m+ IOPS
• Two-tier memory pool to avoid prefilling while supporting more I/Os

Critical path

Memory
allocation

Retrieve from
memory pool

Add to
memory pool

Prefill
metadata

I/O
processing

Global memory pool

I/O queue ↑ ↑ ↑
of I/Os per queue ↓ ↓ ↓

Critical path

Memory
allocation

Retrieve from
memory pool

Add to
memory pool

I/O
processing

I/O Queue dedicated memory pool

Prefill
metadata

Efficient tiered memory pooling

15

I/O memory buffer lifecycle
• Main goal is to avoid slow & heavy operations on the critical path
• VM/VD/IOQ metadata prefilling becomes non-trivial for supporting 1m+ IOPS
• Two-tier memory pool to avoid prefilling while supporting more I/Os

Memory
allocation

Retrieve from global
memory pool Add to global

memory poolPrefill
metadata Critical path

Retrieve from
IOQ memory pool

Add to IOQ
memory pool

I/O
processing

Infrequent path

Existing systems for intra-thread scheduling

16

BaseCBS
• Isolated performance
• Does not support burst

VM1

VM2

VM3

I/O Loop

Existing systems for intra-thread scheduling

16

BaseCBS
• Isolated performance
• Does not support burst

VM1

VM2

VM3

I/O Loop

Existing systems for intra-thread scheduling

16

BaseCBS
• Isolated performance
• Does not support burst

WildCBS
• Support maximum burst
• Latency increase on base-level tenants

VM1

VM2

VM3

I/O Loop VM1

VM2

VM3

I/O Loop

Assume I/O queue of VM2 is always full

Existing systems for intra-thread scheduling

16

BaseCBS
• Isolated performance
• Does not support burst

WildCBS
• Support maximum burst
• Latency increase on base-level tenants

VM1

VM2

VM3

I/O Loop VM1

VM2

VM3

I/O Loop

Assume I/O queue of VM2 is always full

Burstable I/O scheduler

17

Supports burst while protecting base-level tenants
• Predicts usage of next window based on statistics of last N windows
• Leverages unused provisioned resources for bursting
• Provide fallback mechanisms for base-level tenants protection

Burstable I/O scheduler

17

Supports burst while protecting base-level tenants
• Predicts usage of next window based on statistics of last N windows
• Leverages unused provisioned resources for bursting
• Provide fallback mechanisms for base-level tenants protection

base base base base

burst burst burst burst

Burstable I/O scheduler

17

Supports burst while protecting base-level tenants
• Predicts usage of next window based on statistics of last N windows
• Leverages unused provisioned resources for bursting
• Provide fallback mechanisms for base-level tenants protection

base base base base

burst burst burst burst

Burstable I/O scheduler

17

Supports burst while protecting base-level tenants
• Predicts usage of next window based on statistics of last N windows
• Leverages unused provisioned resources for bursting
• Provide fallback mechanisms for base-level tenants protection

base base base base

burst burst burst burst

Burstable I/O scheduler

17

Supports burst while protecting base-level tenants
• Predicts usage of next window based on statistics of last N windows
• Leverages unused provisioned resources for bursting
• Provide fallback mechanisms for base-level tenants protection

base base base base

burst burst burst burst

Shared token pool

Vectorized cost estimator

18

SSD cost estimation
• SSD as a black-box
• Scalar cost with linear estimation: ReFlex [ASPLOS ’17], IOCost [ASPLOS ’22]
Heterogeneity in consumed resources on xDPU
• Small I/Os are bottlenecked on CPU time
• Large I/Os are bottlenecked on NIC bandwidth

I/O type CPU time Data egress Admittable #
of I/Os per
ms (100Gb
NIC)

Admittable #
of I/Os per
ms (CPU)

4KB write 1.16us 4KB 3276 862

128KB write 6.18us 128KB 102 161

Vectorized cost estimator

18

SSD cost estimation
• SSD as a black-box
• Scalar cost with linear estimation: ReFlex [ASPLOS ’17], IOCost [ASPLOS ’22]
Heterogeneity in consumed resources on xDPU
• Small I/Os are bottlenecked on CPU time
• Large I/Os are bottlenecked on NIC bandwidth

I/O type CPU time Data egress Admittable #
of I/Os per
ms (100Gb
NIC)

Admittable #
of I/Os per
ms (CPU)

4KB write 1.16us 4KB 3276 862

128KB write 6.18us 128KB 102 161

Cost = max(2, 1)

Wasted
resources

Scalar

Vectorized cost estimator

18

SSD cost estimation
• SSD as a black-box
• Scalar cost with linear estimation: ReFlex [ASPLOS ’17], IOCost [ASPLOS ’22]
Heterogeneity in consumed resources on xDPU
• Small I/Os are bottlenecked on CPU time
• Large I/Os are bottlenecked on NIC bandwidth

I/O type CPU time Data egress Admittable #
of I/Os per
ms (100Gb
NIC)

Admittable #
of I/Os per
ms (CPU)

4KB write 1.16us 4KB 3276 862

128KB write 6.18us 128KB 102 161

Cost = max(2, 1)

Wasted
resources

Scalar Vector

Cost = <2, 1>

Evaluation

19

• Setup
• One compute node equipped with the newest version of xDPU

• Baselines
• BaseCBS & WildCBS

• Workload
• BPS-intensive: 4-128KB, which are the most common I/O sizes
• IOPS-intensive: 4-16KB, which resembles many transactional DBs

Is load balanced among multiple threads?

20

Linear scaling & near-perfect load balancing
• Linear throughput scaling when adding more control threads
• Load is balanced among all the threads

1.94x
Max/Min≈1

How does a burst tenant impact its neighbors?

21

Achieves near-ideal performance isolation
• Up to 85% latency reduction

IOPS-intensive workload

BPS-intensive workload

85%

What is the maximum burst capability?

22

Supports similar level of burst to WildCBS
• Only 5%-8% throughput loss due to global shared resource pool

Application performance improvement

23

Effectively reduces latency of transactional databases
• ~60% latency reduction on MySQL and RocksDB write operations
• Up to 83% latency reduction on our internal relational database service

Application performance improvement (cont.)

24

Benefits for our internal relational database service
• Average query latency: up to 47ms -> less than 10ms

More details in our paper

25

• Handling of I/O cost mis-estimation

• Scheduler scalability

• Responsiveness to sudden tenant activation

• …

Conclusion

shujunyi@pku.edu.cn

Thanks!
26

• BurstCBS: an I/O scheduling system that supports burst and keeps

performance interference limited
• High performance queue scaling for efficient load balancing among threads

• Burstable I/O scheduler and vectorized I/O cost estimator for intra-thread scheduling

• BurstCBS provides up to 85% average latency reduction during bursts

