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Burstable VM instance
• Provide a base-level CPU performance
• Able to burst above it anytime
• Suitable for fluctuated workload

Burstable virtual disk
• Provide a base-level IOPS/bandwidth
• Able to saturate more I/Os when bursting
• I/O utilization is also fluctuated
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Supporting burst requires spare 
IOPS/bandwidth at each layer

Do we need to provision 
additional resources just for 
supporting burst?
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The base-level tenants suffer high latency
• The traffic created by Victim1 and Victim2 is negligible
• Overall BPS utilization reaches 100% frequently
• Victims experience >10ms average latency (norm is sub-millisecond)

Why?
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vCPUs are not evenly used
• >80% of the I/Os are processed by 

the busiest core on 4-core VMs.
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Case 1: victim latency at burst 
• Within a thread, higher burst results 

in latency increase of victims

Case 2: different products
• Different products vary in their ability 

to compete for resources
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• Non-bottleneck: low backend resource utilization
• Opportunity: diverse utilization on compute nodes
• Challenge 1: load imbalance among threads
• Challenge 2: undesired resource allocation within a thread

We need to design an I/O scheduling system on xDPU that:
1) keeps the load balanced among threads to avoid congestion;
2) and allocates resources with a thread to support burst and limit 
tenant interference.
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• Always load balanced
• At line rate with no throughput loss
• Consumes more FPGA resources
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I/O memory buffer lifecycle
• Main goal is to avoid slow & heavy operations on the critical path
• VM/VD/IOQ metadata prefilling becomes non-trivial for supporting 1m+ IOPS
• Two-tier memory pool to avoid prefilling while supporting more I/Os

Memory 
allocation

Retrieve from global 
memory pool Add to global 

memory poolPrefill 
metadata Critical path

Retrieve from 
IOQ memory pool

Add to IOQ 
memory pool

I/O 
processing

Infrequent path
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Supports burst while protecting base-level tenants 
• Predicts usage of next window based on statistics of last N windows
• Leverages unused provisioned resources for bursting
• Provide fallback mechanisms for base-level tenants protection
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burst burst burst burst
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Evaluation
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• Setup
• One compute node equipped with the newest version of xDPU

• Baselines
• BaseCBS & WildCBS

• Workload
• BPS-intensive: 4-128KB, which are the most common I/O sizes
• IOPS-intensive: 4-16KB, which resembles many transactional DBs
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Linear scaling & near-perfect load balancing
• Linear throughput scaling when adding more control threads
• Load is balanced among all the threads 

1.94x
Max/Min≈1



How does a burst tenant impact its neighbors?
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Achieves near-ideal performance isolation
• Up to 85% latency reduction

IOPS-intensive workload

BPS-intensive workload

85%



What is the maximum burst capability?
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Supports similar level of burst to WildCBS
• Only 5%-8% throughput loss due to global shared resource pool



Application performance improvement
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Effectively reduces latency of transactional databases
• ~60% latency reduction on MySQL and RocksDB write operations
• Up to 83% latency reduction on our internal relational database service



Application performance improvement (cont.)
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Benefits for our internal relational database service
• Average query latency: up to 47ms -> less than 10ms



More details in our paper
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• Handling of I/O cost mis-estimation

• Scheduler scalability

• Responsiveness to sudden tenant activation

• …



Conclusion

shujunyi@pku.edu.cn

Thanks!
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• BurstCBS: an I/O scheduling system that supports burst and keeps 

performance interference limited
• High performance queue scaling for efficient load balancing among threads

• Burstable I/O scheduler and vectorized I/O cost estimator for intra-thread scheduling

• BurstCBS provides up to 85% average latency reduction during bursts


