
Llumnix: Dynamic Scheduling for
Large Language Model Serving

Biao Sun*, Ziming Huang*, Hanyu Zhao*, Wencong Xiao, Xinyi Zhang, Yong Li, Wei Lin
(* Equal contribution)

Alibaba Group



LLM Serving Today: A Cluster Perspective

Dispatcher

Model Instance

Inference Engine

Model Instance

Inference Engine

Model Instance

Inference Engine

• A request dispatcher + multiple instances of an inference engine

LLM service

Users



LLM Serving Today: A Cluster Perspective

Dispatcher

Model Instance

Inference Engine

Model Instance

Inference Engine

Model Instance

Inference Engine

• A request dispatcher + multiple instances of an inference engine

LLM-tailored, optimizing single-instance performance



LLM Serving Today: A Cluster Perspective

Dispatcher

Model Instance

Inference Engine

Model Instance

Inference Engine

Model Instance

Inference Engine

• A request dispatcher + multiple instances of an inference engine

LLM-tailored, optimizing single-instance performance

Inherited from traditional DNN era, NOT LLM-aware



LLM Characteristic (1): Workload Heterogeneity

• Universal models, diverse applications

• Requests are heterogeneous
• Sequence (input/output) lengths

Summarize:

Write:

Polish:



LLM Characteristic (1): Workload Heterogeneity

• Universal models, diverse applications

• Requests are heterogeneous
• Sequence (input/output) lengths
• Latency SLOs: interactive vs. offline, ChatGPT plus vs. normal



LLM Characteristic (2): Execution Unpredictability

• Autoregressive execution
• Output lengths not known a priori
• Dynamic GPU memory demands of KV caches

• State of the art: paged memory allocation + preemptive scheduling [1]

GPU

Request queue

Iteration N

Running req block Free block Preempted/queuing req

GPU

Request queue

Iteration N+1

Alloc

Alloc

Preempt

Preempted

[1] Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention (SOSP '23)



Challenge (1): Performance Isolation

• Preemptions -> poor tail latencies • Performance interference in a batch

Requirement (1): Continuous load balancing

• Load balancing via one-shot dispatching could be suboptimal 
due to unpredictable execution



Challenge (2): Memory Fragmentation

• Load balancing -> fragmentation across instances
• A classic spreading vs. packing tradeoff

Queuing

Spreading Packing



Challenge (2): Memory Fragmentation

• Load balancing -> fragmentation across instances
• A classic spreading vs. packing tradeoff

• Fragmentation -> worse queuing delays (first-token latencies)
• A large space on one instance needed for the prompt

400 450 500 550 600 650 700
Time (s)

0

250

500

750

1000

1250

1500

1750

2000
N 

m
 o
f B

lo
ck
s

Instance 0
Instance 1

Instance 2
Instance 3

Total Free

He
ad

-o
f-l

in
e 

de
m

an
d 

/ 
to

ta
l f

re
e 

(b
lo

ck
s)



Challenge (2): Memory Fragmentation

• Load balancing -> fragmentation across instances
• A classic spreading vs. packing tradeoff

• Fragmentation -> worse queuing delays (first-token latencies)
• A large space on one instance needed for the prompt

400 450 500 550 600 650 700
Time (s)

0

250

500

750

1000

1250

1500

1750

2000
N 

m
 o
f B

lo
ck
s

Instance 0
Instance 1

Instance 2
Instance 3

Total Free

He
ad

-o
f-l

in
e 

de
m

an
d 

/ 
to

ta
l f

re
e 

(b
lo

ck
s)

Requirement (2): De-fragmentation



Challenge (3): Differentiated SLOs

• Existing systems treat all requests equally

• Urgent requests could be easily interfered by normal ones
• Queuing delays
• Performance interference

Requirement (3): Request priorities



LLMs are Multi-Tenant and Dynamic

Different from traditional DNNs
• Homogeneous requests
• Deterministic, stateless execution

Not new in modern operating / distributed systems
• Processes with dynamic working sets, unknown durations, 

different priorities, …
• Context switching, process migration, …

A behavior that is:

but…



Llumnix: Serving LLMs, the “OS” Way

• Continuous rescheduling across instances
• Combined with dispatching and auto-scaling

• Powerful in various scheduling scenarios

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Normal instance Terminating instance

Running request Rescheduling destination High-priority request

Queuing request



Our aim: make rescheduling the norm in LLM serving

Efficiency

Scalability

Scheduling Benefits

Live migration mechanism

Distributed scheduling architecture

Unified, multi-objective scheduling policy

Design Goals



Our aim: make rescheduling the norm in LLM serving

Efficiency

Scalability

Scheduling Benefits

Live migration mechanism

Distributed scheduling architecture

Unified, multi-objective scheduling policy

Design Goals



How to Reschedule KV Caches?

Rescheduling Downtime

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d Recompute

Downtime and overhead (compute waste) 
growing with sequence lengths

Suspend-and-copy
Downtime for data transfer 
growing with sequence lengths

Llumnix’s live migration
Near-zero downtime and 
overhead by design



Inspiration: VM Live Migration

Virtual Machine (src)

Memory pages

Virtual Machine (dst)

Memory pages

1. Iterative pre-copy with 
dirty page tracing



Inspiration: VM Live Migration

Virtual Machine (src)

Memory pages

Virtual Machine (dst)

Memory pages

1. Iterative pre-copy with 
dirty page tracing



Inspiration: VM Live Migration

Virtual Machine (src)

Memory pages

Virtual Machine (dst)

Memory pages

1. Iterative pre-copy with 
dirty page tracing

2. Stop and commit



Inspiration: VM Live Migration

Virtual Machine (src)

Memory pages

Virtual Machine (dst)

Memory pages

Request

KV cache

What are dirty pages?



Live Migration of LLM Requests

• KV caches are append-only
• Copy dirty incremental blocks iteratively
• Downtimes are near-zero and constant

Migration initiated

Stage-0

Compute

Mem

Time

…

…

Stage-1

…

Compute

Mem …

Stage-N

Migration completes

Source Instance

Destination Instance

Decoding

KV Cache

Legend

Mem copy

Downtime



Our aim: make rescheduling the norm in LLM serving

Efficiency

Scalability

Scheduling Benefits

Live migration mechanism

Distributed scheduling architecture

Unified, multi-objective scheduling policy

Design Goals



Distributed Scheduling Architecture

llumlet

Model Instance

Report loadDispatch

Local Scheduler Migration 
Coordinator

GPU

Executor

llumlet

Executor

Instance

Instance

Migration control

Instance

Global Scheduler

New requests Instance loads

Trigger migration
Scale

Other control
• Global scheduler for cross-instance 

scheduling

• Distributed llumlets for local scheduling

• A narrow interface: instance load



Scheduling Policy (sketch)

• Virtual usage: unifying multiple objectives

• Policy: load balancing based on virtual usages

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Create free space



Scheduling Policy (sketch)

• Virtual usage: unifying multiple objectives

• Policy: load balancing based on virtual usages

Physical usage Virtual usage

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization



Evaluation

• Implemented as a scheduling layer atop vLLM

• Testbed: 16 A10 GPUs (24GB)
• 4 4-GPU VMs, PCIe 4.0 in each node, 64Gb/s Ethernet across nodes

• Models: LLaMA-7B and LLaMA-30B

• Traces: ShareGPT, BurstGPT, generated power-law distributions



End-to-end Serving Performance (16 LLaMA-7B instances)

• Benefits of migration: compared to dispatch-time load balancing (INFaaS)
• Up to 2.2x/5.5x for first-token (mean/P99) via de-fragmentation
• Up to 1.3x for per-token generation P99 via reducing preemptions

• More gains with more diverse sequence lengths (details in paper)



End-to-end Serving Performance (16 LLaMA-7B instances)

• Benefits of migration: compared to dispatch-time load balancing (INFaaS)
• Up to 2.2x/5.5x for first-token (mean/P99) via de-fragmentation
• Up to 1.3x for per-token generation P99 via reducing preemptions

• More gains with more diverse sequence lengths (details in paper)



Conclusion

• Dynamic workloads need dynamic scheduling
• LLMs are no exception

• Llumnix draws lessons from conventional systems wisdom
• Classic scheduling goals in the new context of LLM serving
• Implementation of rescheduling with request live migration
• Continuous, dynamic rescheduling exploiting the migration

https://github.com/AlibabaPAI/llumnix



Thanks


