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Inherited from traditional DNN era, NOT LLM-aware



LLM Characteristic (1): Workload Heterogeneity

• Universal models, diverse applications

• Requests are heterogeneous
• Sequence (input/output) lengths
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LLM Characteristic (1): Workload Heterogeneity

• Universal models, diverse applications

• Requests are heterogeneous
• Sequence (input/output) lengths
• Latency SLOs: interactive vs. offline, ChatGPT plus vs. normal



LLM Characteristic (2): Execution Unpredictability

• Autoregressive execution
• Output lengths not known a priori
• Dynamic GPU memory demands of KV caches

• State of the art: paged memory allocation + preemptive scheduling [1]
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[1] Kwon et al. Efficient Memory Management for Large Language Model Serving with PagedAttention (SOSP '23)



Challenge (1): Performance Isolation

• Preemptions -> poor tail latencies • Performance interference in a batch

Requirement (1): Continuous load balancing

• Load balancing via one-shot dispatching could be suboptimal 
due to unpredictable execution



Challenge (2): Memory Fragmentation

• Load balancing -> fragmentation across instances
• A classic spreading vs. packing tradeoff
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Challenge (2): Memory Fragmentation

• Load balancing -> fragmentation across instances
• A classic spreading vs. packing tradeoff

• Fragmentation -> worse queuing delays (first-token latencies)
• A large space on one instance needed for the prompt
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Challenge (2): Memory Fragmentation

• Load balancing -> fragmentation across instances
• A classic spreading vs. packing tradeoff

• Fragmentation -> worse queuing delays (first-token latencies)
• A large space on one instance needed for the prompt
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Requirement (2): De-fragmentation



Challenge (3): Differentiated SLOs

• Existing systems treat all requests equally

• Urgent requests could be easily interfered by normal ones
• Queuing delays
• Performance interference

Requirement (3): Request priorities



LLMs are Multi-Tenant and Dynamic

Different from traditional DNNs
• Homogeneous requests
• Deterministic, stateless execution

Not new in modern operating / distributed systems
• Processes with dynamic working sets, unknown durations, 

different priorities, …
• Context switching, process migration, …

A behavior that is:

but…



Llumnix: Serving LLMs, the “OS” Way

• Continuous rescheduling across instances
• Combined with dispatching and auto-scaling

• Powerful in various scheduling scenarios

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Normal instance Terminating instance

Running request Rescheduling destination High-priority request

Queuing request



Our aim: make rescheduling the norm in LLM serving

Efficiency

Scalability

Scheduling Benefits

Live migration mechanism

Distributed scheduling architecture

Unified, multi-objective scheduling policy

Design Goals
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How to Reschedule KV Caches?

Rescheduling Downtime
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Downtime and overhead (compute waste) 
growing with sequence lengths

Suspend-and-copy
Downtime for data transfer 
growing with sequence lengths

Llumnix’s live migration
Near-zero downtime and 
overhead by design



Inspiration: VM Live Migration
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Inspiration: VM Live Migration

Virtual Machine (src)

Memory pages

Virtual Machine (dst)

Memory pages

1. Iterative pre-copy with 
dirty page tracing

2. Stop and commit



Inspiration: VM Live Migration

Virtual Machine (src)

Memory pages

Virtual Machine (dst)

Memory pages

Request

KV cache

What are dirty pages?



Live Migration of LLM Requests

• KV caches are append-only
• Copy dirty incremental blocks iteratively
• Downtimes are near-zero and constant

Migration initiated
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Distributed Scheduling Architecture

llumlet

Model Instance

Report loadDispatch

Local Scheduler Migration 
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GPU
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Migration control

Instance
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New requests Instance loads

Trigger migration
Scale

Other control
• Global scheduler for cross-instance 

scheduling

• Distributed llumlets for local scheduling

• A narrow interface: instance load



Scheduling Policy (sketch)

• Virtual usage: unifying multiple objectives

• Policy: load balancing based on virtual usages

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization

Create free space



Scheduling Policy (sketch)

• Virtual usage: unifying multiple objectives

• Policy: load balancing based on virtual usages

Physical usage Virtual usage

(a) Load balancing (b) De-frag (d) Auto-scaling(c) Prioritization



Evaluation

• Implemented as a scheduling layer atop vLLM

• Testbed: 16 A10 GPUs (24GB)
• 4 4-GPU VMs, PCIe 4.0 in each node, 64Gb/s Ethernet across nodes

• Models: LLaMA-7B and LLaMA-30B

• Traces: ShareGPT, BurstGPT, generated power-law distributions



End-to-end Serving Performance (16 LLaMA-7B instances)

• Benefits of migration: compared to dispatch-time load balancing (INFaaS)
• Up to 2.2x/5.5x for first-token (mean/P99) via de-fragmentation
• Up to 1.3x for per-token generation P99 via reducing preemptions

• More gains with more diverse sequence lengths (details in paper)



End-to-end Serving Performance (16 LLaMA-7B instances)

• Benefits of migration: compared to dispatch-time load balancing (INFaaS)
• Up to 2.2x/5.5x for first-token (mean/P99) via de-fragmentation
• Up to 1.3x for per-token generation P99 via reducing preemptions

• More gains with more diverse sequence lengths (details in paper)



Conclusion

• Dynamic workloads need dynamic scheduling
• LLMs are no exception

• Llumnix draws lessons from conventional systems wisdom
• Classic scheduling goals in the new context of LLM serving
• Implementation of rescheduling with request live migration
• Continuous, dynamic rescheduling exploiting the migration

https://github.com/AlibabaPAI/llumnix
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