

dLoRA: Dynamically Orchestrating Requests and Adapters for LoRA LLM Serving

Bingyang Wu Ruidong Zhu Zili Zhang

Peng Sun Xuanzhe Liu Xin Jin

LLMs are changing modern applications

LoRA: A popular approach to fine-tune LLMs

- LoRA: Low-Rank Adaptation
 - h = Wx + BAx
- Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the number of trainable parameters by 10,000× and the GPU consumption by 3×

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. **"LoRA: Low-Rank Adaptation of Large Language Models**." *arXiv* (2021).

LoRA: A popular approach to fine-tune LLMs

- LoRA introduces no inference overhead when serving a single LoRA LLM
 - Merge adapter: W' = W + BA
 - Inference with fine-tuned weights: h = W'x

Cloud providers may host many adapters for an LLM

• Different users may use different adapters for different scenarios

Cloud GenAl Service

How to serve LoRA LLMs?

LLM serving solutions

- vLLM [SOSP'23], Orca [OSDI'22], FastServe
- Focus on serving a single LLM
- Traditional model serving orchestrators
 - AlpaServe [OSDI'23], SHEPHERD [NSDI'23], PetS [ATC'22]
 - Ignore characteristics of LoRA and LLM
- Simply combining these solutions leads to fundamental *inefficiency* at both the **replica** level and **cluster** level

Challenge within replicas: Low GPU utilization

- Merged inference: Low utilization when diverse requests arrive
- Example: only 50% GPU utilization

Challenge across replicas: Severe load imbalance

- The burst of variable requests leads to severe load imbalance under static LoRA placement
- Input and output lengths of requests are highly variable

Our design: dLoRA

- Insight: dynamically orchestrate requests and LoRA adapters
- Intra-replica: dynamic batching + memory management
- Inter-replica: proactive dispatching + reactive migration

Intra-replica: Strawman solution

- Unmerged Inference: share the same computation among different requests
- Challenge: extra computational overhead

Intra-replica: Dynamic batching

• Insight: why not use both of merged and unmerged inference?

Intra-replica: Dynamic batching

- Challenge: switching overhead + scheduling overhead
 - Switching overhead >= decoding iteration time
 - Complex scheduling at the granularity of the iteration incurs overhead
- Solution: dynamic batching algorithm

Intra-replica: Dynamic batching

- Solution: dynamic batching algorithm
 - *B_{fcfs}*: set of FCFS requests
 - R_{merge}:
 - When merged:

$$R_{merge} = \{r_i \in R \mid r_i.type == S.type\}$$

• When unmerged:
$$R_{merge} = \arg \max_{l_i \in L} |\{r_i \in R \mid r_i.type == l_i\}|$$

Inter-replica: Proactive dispatching

- Considering both adapter loading time and queuing delay to balance the load
- Challenge: requests' unpredictable long output length also causes load imbalance

Inter-replica: +Reactive request-adapter migration

- Insight: reactively migrate workload to balance the load
- Challenge: dependency between requests and adapters
- Solution: reactive request-adapter co-migration algorithm

Experiment setup

- Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs
- Models: Llama-2 (7B, 13B, 70B) + 128 LoRA adapters
- Workloads:
 - Dataset: ShareGPT
 - Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

Baselines:

- vLLM
- HuggingFace PEFT

End-to-end performance

dLoRA improves the throughput by up to $57.9 \times$ compared to **vLLM** and up to $26.0 \times$ compared to **PEFT** under the SLO requirement

Effectiveness of dynamic batching

dLoRA consistently outperforms both merged-only and unmerged-only under diverse skewness

Effectiveness of dynamic load balancing

(a) Reduction in Queuing Delay. (b) Stability under Different Ratios.

dLoRA outperforms RR by 3.6x and proactive dispatch by 1.4x under the SLO requirement

Conclusion

dLoRA: an efficient serving system for multi-LoRA LLMs

- Intra-replica: dynamically merges and unmerges adapters
- Inter-replica: dynamically migrates both requests and adapters

Thanks!

