
dLoRA: Dynamically Orchestrating Requests
and Adapters for LoRA LLM Serving

Bingyang Wu Ruidong Zhu Zili Zhang
Peng Sun Xuanzhe Liu Xin Jin

LLMs are changing modern applications

Chat Search Program

Autoregressive Generation

I think this greatis <EOS>

2

LoRA: A popular approach to fine-tune LLMs
• LoRA: Low-Rank Adaptation

• ℎ = 𝑊𝑥 + 𝐵𝐴𝑥
• Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the number

of trainable parameters by 10,000× and the GPU consumption by 3×

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
"LoRA: Low-Rank Adaptation of Large Language Models." arXiv (2021). 3

LoRA: A popular approach to fine-tune LLMs
• LoRA introduces no inference overhead when serving a single LoRA LLM

• Merge adapter: 𝑊′ = 𝑊 + 𝐵𝐴
• Inference with fine-tuned weights: ℎ = 𝑊′𝑥

Fine-tuning Merged Inference

4

Cloud providers may host many adapters for an LLM
• Different users may use different adapters for different scenarios

Pretrained LLM User 1: Summarization

User 2: Proofreading

User 3: Coding

Customized LoRA Adapters

Cloud GenAI Service

Inference APIs

Requests

Responses

Inference APIs

Requests

Responses

…

5

How to serve LoRA LLMs?
• LLM serving solutions

• vLLM [SOSP’23], Orca [OSDI’22], FastServe
• Focus on serving a single LLM

• Traditional model serving orchestrators
• AlpaServe [OSDI’23], SHEPHERD [NSDI’23], PetS [ATC’22]
• Ignore characteristics of LoRA and LLM

• Simply combining these solutions leads to fundamental
inefficiency at both the replica level and cluster level

6

Challenge within replicas: Low GPU utilization

• Merged inference: Low utilization when diverse requests arrive
• Example: only 50% GPU utilization

BS

Time

Requests

Idle
Idle

Type B
Type A

MAX_BS

7

Challenge across replicas: Severe load imbalance
• The burst of variable requests leads to severe load imbalance

under static LoRA placement
• Input and output lengths of requests are highly variable

� 	
 � �
 � �
�� ����"

�

	�

��

��

���
��
�
��
�
!�
��
��

$
��
�
�

�#�#���������%

8

Our design: dLoRA
• Insight: dynamically orchestrate requests and LoRA adapters
• Intra-replica: dynamic batching + memory management
• Inter-replica: proactive dispatching + reactive migration

9

Intra-replica: Strawman solution

• Unmerged Inference: share the same computation among
different requests

• Challenge: extra computational overhead

d
x!

d

y! y"

A" ∈ R#×%

B" ∈ R%×#

A! ∈ R#×%

B! ∈ R%×# Pretrained
Weights
W ∈ R#×#

x"

10

Intra-replica: Dynamic batching

• Insight: why not use both of merged and unmerged inference?

d
x!

d

y! y"

A" ∈ R#×%

B" ∈ R%×#

A! ∈ R#×%

B! ∈ R%×# Pretrained
Weights
W ∈ R#×#

x"

No additional inference overhead,
but longer queuing delay

Shorter queuing delay,
but extra computational cost

11

Intra-replica: Dynamic batching

• Challenge: switching overhead + scheduling overhead
• Switching overhead >= decoding iteration time
• Complex scheduling at the granularity of the iteration incurs overhead

• Solution: dynamic batching algorithm

12

Intra-replica: Dynamic batching

• Solution: dynamic batching algorithm
• 𝐵!"!#: set of FCFS requests
• 𝑅$%&'%:

• When merged:
• When unmerged:

Unmerged inference
is better

Merged inference
is better

Maintaining the status quo
(switching overhead)

β!"#$%& α!"#$%&
|R'()*(|
|B+%+!|

13

Inter-replica: Proactive dispatching

• Considering both adapter loading time and queuing delay to
balance the load

• Challenge: requests’ unpredictable long output length also
causes load imbalance

Dispatcher

Requests

Replica 0 Replica i

…
…

GPU

Host

Job
Queue

Wait

…

GPU

Host

Job
Queue

1

2

Upload3

Exec21Exec4

14

Inter-replica: +Reactive request-adapter migration
• Insight: reactively migrate workload to balance the load
• Challenge: dependency between requests and adapters
• Solution: reactive request-adapter co-migration algorithm

Replica 0 Replica i

Job Queue

Migrate

Job Queue

GPU

Host

GPU

Host

…

15

Experiment setup

• Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs
• Models: Llama-2 (7B, 13B, 70B) + 128 LoRA adapters
• Workloads:

• Dataset: ShareGPT
• Trace: Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

• Baselines:
• vLLM
• HuggingFace PEFT

16

End-to-end performance

dLoRA improves the throughput by up to 57.9× compared to vLLM
and up to 26.0× compared to PEFT under the SLO requirement 17

Effectiveness of dynamic batching

dLoRA consistently outperforms both merged-only and
unmerged-only under diverse skewness

18

Effectiveness of dynamic load balancing

dLoRA outperforms RR by 3.6x and proactive dispatch by 1.4x under the SLO requirement

19

Conclusion

• dLoRA: an efficient serving system for multi-LoRA LLMs
• Intra-replica: dynamically merges and unmerges adapters
• Inter-replica: dynamically migrates both requests and adapters

Thanks!

21

bingyangwu@pku.edu.cn

