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LLMs are changing modern applications

Chat Search Program

Autoregressive Generation

I think this greatis <EOS>
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LoRA: A popular approach to fine-tune LLMs
• LoRA: Low-Rank Adaptation

• ℎ = 𝑊𝑥 + 𝐵𝐴𝑥
• Compared to fully fine-tuning GPT-3 175B, LoRA can reduce the number 

of trainable parameters by 10,000× and the GPU consumption by 3×

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 
"LoRA: Low-Rank Adaptation of Large Language Models." arXiv (2021). 3



LoRA: A popular approach to fine-tune LLMs
• LoRA introduces no inference overhead when serving a single LoRA LLM

• Merge adapter: 𝑊′ = 𝑊 + 𝐵𝐴
• Inference with fine-tuned weights: ℎ = 𝑊′𝑥

Fine-tuning Merged Inference
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Cloud providers may host many adapters for an LLM
• Different users may use different adapters for different scenarios

Pretrained LLM User 1: Summarization

User 2: Proofreading

User 3: Coding

Customized LoRA Adapters

Cloud GenAI Service

Inference APIs

Requests

Responses

Inference APIs

Requests

Responses

…
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How to serve LoRA LLMs?
• LLM serving solutions

• vLLM [SOSP’23], Orca [OSDI’22], FastServe
• Focus on serving a single LLM

• Traditional model serving orchestrators
• AlpaServe [OSDI’23], SHEPHERD [NSDI’23], PetS [ATC’22]
• Ignore characteristics of LoRA and LLM

• Simply combining these solutions leads to fundamental 
inefficiency at both the replica level and cluster level
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Challenge within replicas: Low GPU utilization

• Merged inference: Low utilization when diverse requests arrive
• Example: only 50% GPU utilization

BS

Time

Requests

Idle
Idle
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Challenge across replicas: Severe load imbalance
• The burst of variable requests leads to severe load imbalance 

under static LoRA placement
• Input and output lengths of requests are highly variable
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Our design: dLoRA
• Insight: dynamically orchestrate requests and LoRA adapters
• Intra-replica: dynamic batching + memory management
• Inter-replica: proactive dispatching + reactive migration
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Intra-replica: Strawman solution

• Unmerged Inference: share the same computation among 
different requests

• Challenge: extra computational overhead

d
x!

d

y! y"

A" ∈ R#×%

B" ∈ R%×#

A! ∈ R#×%

B! ∈ R%×# Pretrained
Weights
W ∈ R#×#

x"

10



Intra-replica: Dynamic batching

• Insight: why not use both of merged and unmerged inference?
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No additional inference overhead,
but longer queuing delay
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but extra computational cost
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Intra-replica: Dynamic batching

• Challenge: switching overhead + scheduling overhead
• Switching overhead >= decoding iteration time
• Complex scheduling at the granularity of the iteration incurs overhead

• Solution: dynamic batching algorithm 
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Intra-replica: Dynamic batching

• Solution: dynamic batching algorithm
• 𝐵!"!#:  set of FCFS requests
• 𝑅$%&'%:

• When merged: 
• When unmerged:

Unmerged inference
is better

Merged inference
is better

Maintaining the status quo 
(switching overhead)
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Inter-replica: Proactive dispatching

• Considering both adapter loading time and queuing delay to 
balance the load

• Challenge: requests’ unpredictable long output length also 
causes load imbalance
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Inter-replica: +Reactive request-adapter migration 
• Insight: reactively migrate workload to balance the load
• Challenge: dependency between requests and adapters
• Solution: reactive request-adapter co-migration algorithm
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Experiment setup

• Testbed: 4 nodes * 8 NVIDIA A800-80GB GPUs
• Models: Llama-2 (7B, 13B, 70B) + 128 LoRA adapters
• Workloads:

• Dataset: ShareGPT
• Trace:  Microsoft Azure function trace 2019 (MAF1) and 2021 (MAF2)

• Baselines:
• vLLM
• HuggingFace PEFT

16



End-to-end performance

dLoRA improves the throughput by up to 57.9× compared to vLLM
and up to 26.0× compared to PEFT under the SLO requirement 17



Effectiveness of dynamic batching

dLoRA consistently outperforms both merged-only and 
unmerged-only under diverse skewness
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Effectiveness of dynamic load balancing

dLoRA outperforms RR by 3.6x and proactive dispatch by 1.4x under the SLO requirement
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Conclusion

• dLoRA: an efficient serving system for multi-LoRA LLMs
• Intra-replica: dynamically merges and unmerges adapters 
• Inter-replica: dynamically migrates both requests and adapters

Thanks!
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