
Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao
Yifan Yuan†, Ren Wang†

The University of Texas at Arlington, Intel Labs†

NOMAD: Non-Exclusive Memory Tiering via

Transactional Page Migration

The new memory hierarchy

• Diverse memory devices with distinct characteristics

- High bandwidth memory (HBM), Compute Express Link (CXL)-based

memory, persistent memory, and storage-class memory

- They differ in speed, size, cost, scalability, persistence, etc.

- but all are byte-addressable via ordinary load and store inst.

• Memory hierarchy with tiered memory

- Performance remains hierarchical but the gaps narrow

- Memory management becomes non-hierarchical

The key is page management in the OS

Tiered memory management in the OS

CXL / PMemDRAMPerformance tier

CPUs CPU-less

High $/GB

Low capacity

High performance

Low $/GB

High capacity

Low performance

DDR4 / DDR5 CXL.mem / DDR-T

Capacity tier

Memory caching

Traditionally, OS employs inclusive caching to manage

data between DRAM and disks

• 1-3x orders of magnitude performance and

capacity gaps

• Data is replicated in and must be served from the

performance tier

• data is not directly accessible by the CPU from the

capacity tier

DRAM

Persistent storage

Capacity tier

Performance tier

CPUs

Performance tier hit rate is paramount

Memory tiering

Traditionally, OS employs inclusive caching to manage
DRAM + disks

DRAM

Capacity tierPerformance tier

CXL / PMemNow OS employs exclusive tiering:

• 2-3x performance gap and within one order of

magnitude capacity gap

• Data only resides in one of the tiers

• Data migration to keep hot data in the performance tier

CPUs

Is exclusive tiering the optimal solution?

Synthetic workload

• WSS fits in the performance tier

• Initial page placement in the capacity tier

• Zipfian access pattern

• Evaluate TPP [ASPLOS’23], the default tiering

approach in Linux

TPP improves fast-tier hit rate, but page
migration can be prohibitively expensive

16x

30%

Key issues in tiered memory management

• How to accurately determine page temperature (hotness)?

• How to efficiently migrate pages between tiers?

DRAM CXL / PMem

NUMA hint page faults
Page fault-based tracking

• AutoNUMA, TPP [ASPLOS’23]

• Mark all pages in slow memory as protected

• Any access triggers a hint (minor) page fault,

upon which a migration decision is made

• Accurate

• Expensive

Memory access tracking

Memory access tracking

Page table scanning

• Nimble [ASPLOS’19], Multiclock [HPCA’22],

TMTS [ASPLOS’23]

• Difficult overhead-accuracy tradeoff

DRAM CXL / PMem

Scan page table

Scan page table

Page fault-based tracking

• AutoNUMA, TPP [ASPLOS’23]

DRAM CXL / PMem
Hardware sampling, e.g., Intel PEBS

• TMTS [ASPLOS’23], Memtis [SOSP’23]

• Lightweight

• Coarse-grained, inaccurate

Memory
access

address
Event

0xffff1234 load

0xffffabcd TLB miss

… …

PEBS

Memory access tracking

Page table scanning

• Nimble [ASPLOS’19], Multiclock [HPCA’22], TMTS

[ASPLOS’23]

Page fault-based tracking

• AutoNUMA, TPP [ASPLOS’23]

Hardware sampling, e.g., Intel PEBS

• TMTS [ASPLOS’23], Memtis [SOSP’23]

Page migration

Page table scanning

• Nimble [ASPLOS’19],

 Multiclock [HPCA’22], TMTS [ASPLOS’23]

Page fault-based tracking

• AutoNUMA, TPP [ASPLOS’23]

Synchronous migration, on the critical path of
data access, expensive

Asynchronous migration handled by a
separate kernel thread, off the critical path of
data access

Can tiered memory management be both
accurate and lightweight?

Goals:

• Enable the CPU to freely access both fast and slow memory

• Move page migration off the critical path of users’ data access

Our solution: NOMAD

Approaches:

• Transactional page migration

• Non-exclusive tiering via page shadowing

NOMAD is a page fault-based page
management approach and is orthogonal to
the existing work on memory access tracking

Transactional page migration

Key idea:

• Keep pages accessible during

migration

• Invalidate the migration if pages

are dirtied

DPFN0

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Flip bit

Transactional page migration (TPM)

1. Clear the dirty bit in PTE

Major steps:

DPFN0

Page table entry (PTE)

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

D

Issue a TLB shootdown. The page remains
accessible

1. Clear the dirty bit in PTE

 2. Copy page

Major steps:

DPFN0

Page table entry (PTE)

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Copy

Transactional page migration

D0x0

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Transactional page migration

Major steps:

1. Clear the dirty bit in PTE

 2. Copy page

3. Unmap page

Issue a second TLB shootdown, after which
the page becomes inaccessible until it is

remapped

DPFN1

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Transactional page migration

Major steps:

1. Clear the dirty bit in PTE

 2. Copy page

3. Unmap page

If D bit is clean:

 4. Map the page to destination

Major steps:

DPFN0

Page table entry

PFN0

Old page New page

PFN1

virtual
page

Application
MMU

Transactional page migration

1. Clear the dirty bit in PTE

 2. Copy page

3. Unmap page

If D bit is dirty:

 4. Remap the page to source

and migration is aborted

CXL / Pmem pageApplication

MMU

Page faultCold Cold

HotHot

Tail

Tail

Head

Head

CPU1

CPU2

kpromote

User
space

Kernel
space

• Queue both hot/cold pages
in PCQ via exactly one
fault/page

• Decide whether to promote
a page to MPQ on every
subsequent fault by
scanning the PTEs of pages
in PCQ

• Kernel thread kpromote
asynchronously performs
TPM on pages in MPQ

Promotion
candidate queue

(PCQ)

Migration
pending queue

(MPQ)

Minimizing the number of page faults – 2Q design

Exactly one per page

Page shadowing

DRAM page CXL/PMem page

Application

Performance tier Capacity tier

Promote

PFN0

PFN 0PFN 1

Page table entry

Shadow R/W bit Hardware R/W bit

load 0x7fff1234

Key idea:
Temporarily keep a shadow
copy of a page promoted
from slow to fast memory

Page shadowing

Key Value

PFN 1 PFN 0

… …

DRAM page CXL/PMem page

Application

Performance tier Capacity tier

Promote

PFN1

PFN 0PFN 1

Page table entry

Shadow R/W bit Hardware R/W bit

load 0x7fff1234

NOMAD uses an XArray to
index shadow pages

Page shadowing

store 0x7fff1234

Key Value

PFN 1 PFN 0

… …

DRAM page CXL/PMem page

Application

Performance tier Capacity tier

Promote

PFN1

PFN 0PFN 1

Page table entry

Shadow R/W bit Hardware R/W bit

NOMAD marks all master
pages as read-only

Evaluation
Testbeds:

• Intel Xeon Cascade Lake + Intel Optane persistent memory (PMem)

• Intel Sapphire Rapids CPU + Intel Agilex FPGA-based CXL memory (CXL-FPGA)

• AMD Geona CPU + Micron ASIC-based CXL memory (CXL-product)

Baselines for comparison:

• Transparent page placement (TPP), ASPLOS’23, a page fault-based and the

default tiered memory management scheme in Linux

• Memtis, SOSP’23, a PEBS-based hardware sampling approach

DRAM CXL / PMem

Micro-benchmarks

Working set size Resident set size

Small WSS

Medium WSS

Large WSS

Approaching DRAM performance
(best case)

Graceful degradation during
intensive thrashing

(worst case)

Migration in-progress Migration stable

Small WSS Large WSS

Important tradeoffs

1
3

2

2

Testbed: CXL-FPGA

1. NOMAD significantly
outperforms TPP during
active migration and for
large WSS

1

2. Sampling-based approach
(Memtis) achieves stable
performance during
thrashing but fails to
optimally place hot data in
fast memory

3. NOMAD is more effective
for read-only workloads and
suffers from migration
abortions for write-intensive
workloads

Sampling-based vs. page fault-based approaches
Testbed: PMem

Although the sampling-based approach
maintains high throughput during thrashing
thanks to a lack of migrations, its latency is sub-
optimal, suggesting page migration is ineffective

Lower is better

Conclusions

NOMAD is a tiered memory management mechanism that features

• Transactional page migration

• Page shadowing

• Non-exclusive memory tiering

Results show that NOMAD is significantly more efficient than the state-of-the-

art tiered memory management scheme in Linux but call for more research on

• The optimal strategy to enable/disable page migrations under high

memory pressure

Open sourced at: https://github.com/lingfenghsiang/Nomad

https://github.com/lingfenghsiang/Nomad

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

