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Locking is Vital for Concurrency Control

App Data

App Worker App Worker Serialize 
conflicting accesses 

towards 
shared data

Typical scenarios:



Typical Use Case of Distributed Locks
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Two Trends in Distributed Apps
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Distributed lock should be fast on acquisition 
and scalable on the number of locks
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holders
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Lock tableDecides whether the lock can be granted

Maintains lock metadata in a lock table
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Network
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Applications
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mode
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The efficiency and capacity of LM are essential 

for a fast and scalable lock service!
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Existing Lock Manager Designs

Switch

LM
LC

App

LC

App

SrvLock
Handle lock requests with

dedicated servers

Request buffer NICCPU

Process one-by-one Receive in batches

Scalable on lock number

Slow due to high queueing delay

Queue up



Performance Issues of Existing LMs
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Existing Lock Manager Designs

Programmable Switch

LM

LM

LC

App
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App

NetLock
(SIGCOMM’20)

Fast-path lock manager
on programmable switch

Request processing pipeline

Ingress

Lock metadata update

Egress

LookupForward

Fast (near-zero queueing delay)

Unscalable due to small memory



Performance Issues of Existing LMs

#2 Limited acceleration due to poor scalability on #locks
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Performance Issues of Existing LMs

#3 High workload sensitivity due to static profiling

Time Elapsed (ms)

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

0

2

4

6

8

0 300 600 800

*1 million locks, 
50% requests to 
2500 hot locks

SrvLock
NetLock

8

6

4

2

0
0                          300                           600        800

SrvLock NetLock

Hotspot shift Hotspot shift



Revisit the Lock Acquisition Process

mode
wait queue

lock holders
Grant

Request Reply

SuspendLock Manager

Acquire
Grant

Process



Decision MaintenanceRequest Reply

Our Key Insight

mode
wait queue

lock holders
Grant

Suspend
Lock Manager

Acquire
Grant

Lock acquisition process can be decoupled into
grant decision and metadata maintenance!



Our Key Insight
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Our Key Insight

mode
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On critical-path

Can be
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Key Idea: Lock Fission

mode wait queue

lock holders
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On-switch LM On-server LM

Fast grant;
Memory efficient
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Key Idea: Lock Fission
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Our System: FissLock

Programmable Switch
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Lock Release Workflow

mode

DeciderServer 1

Client A

Agent 
pool

Agent 
location
Server 2

Server 2

Client B

Agent 
pool

lock holders

Agent

Client B
Client A

Agent not local?



Lock Release Workflow

mode

DeciderServer 1

Client A

Agent 
pool

Agent 
location
Server 2

Release

Server 2

Client B

Agent 
poolRelease

lock holders

Agent

Client B
Client A

Agent not local?



Lock Release Workflow

mode

DeciderServer 1

Client A

Agent 
pool

Agent 
location
Server 2

Release

Server 2

Client B

Agent 
poolRelease

lock holders

Agent

Client B

Agent not local?



Lock Release Workflow

mode

DeciderServer 1

Client A

Agent 
pool

Agent 
location
Server 2

Server 2

Client B

Agent 
pool

lock holders

Agent

Client B
waiters

Client A

Release

Agent local?



Lock Release Workflow
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Lock Release Workflow
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Lock Release Workflow
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Challenge: Distributed Lock Operations
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How to ensure consistency between decider and agent?



Challenge: Distributed Lock Operations
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Challenge: Distributed Lock Operations

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Acquire

How to handle switch, server, or simultaneous failures?



Challenge: Distributed Lock Operations

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Acquire

A new “Lock Fission Protocol” handles them all!
(see details in our paper §4)



On-switch Decider Design

How to maximize the utilization of limited switch memory (<10MB)?



On-switch Decider Design

Switch memory is organized as fixed-size registers

… …

mode 2 bits

register 1/2/4/8 bytes or 1bit

Unit is too large for lock mode!



On-switch Decider Design

Each pipeline stage allows accessing exactly one register

Register array indexRegister value … …

RA index
Can not access 
partial/multiple registers!



On-switch Decider Design
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On-switch Decider Design

Memory used by control stages (e.g., forward) are wasted!
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On-switch Decider Design

A pipeline design that supports over 1.5M locks!
(see details in our paper §5.2)



Evaluation Setup
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Microbenchmark: Is FissLock Fast?
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*1 million locks

FissLock has low and stable grant latency 
under various workloads!
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*Uniform RM workload
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Microbenchmark: Is FissLock Scalable?
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Microbenchmark: Is FissLock Stable?
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FissLock achieves stable performance 
regardless of workload patterns!



Transaction Benchmark
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Conclusion
• Distributed lock services need to be fast and scalable

• Key technique: lock fission (decouple grant decision and data maintenance)

• Challenges:

• Distributed lock operations (§4 lock fission protocol)

• Memory-efficient on-switch design (§5.2 on-switch decider)

• Evaluation: 90% tail latency cut, 2x transaction throughput boost, 

scales to millions of locks


