
Fast and Scalable In-network
Lock Management using Lock Fission

Hanze Zhang, Ke Cheng, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems (IPADS)

Shanghai Jiao Tong University

Locking is Vital for Concurrency Control

App Data

App Worker App Worker Serialize
conflicting accesses

towards
shared data

Typical scenarios:

Typical Use Case of Distributed Locks

App Data

App Worker

Lock
Service

① Acquire

② Access

④ Release

③ Process Synchronous

Asynchronous

Two Trends in Distributed Apps

Low execution time Large data scale

Microsecond-scale
execution time becomes common

Shared data scale is growing to
Near-billion-level

Txn. Processing

File System

Key-value Store

TPC-C/TATP

Workload Exec. Time

7/2.8 μs

Read/Write/Mkdir 1/10/20 μs

Search/Insert 8/15 μs

Reference

DrTM, FaSST, PolarDB

Data Scale

160M rows

Assise, Octopus, Tectonic

XStore, RACE, Redis250M keys

10B files

Two Trends in Distributed Apps

Low execution time Large data scale

Microsecond-scale
execution time becomes common

Shared data scale is growing to
Near-billion-level

Txn. Processing

File System

Key-value Store

TPC-C/TATP

Workload Exec. Time

7/2.8 μs

Read/Write/Mkdir 1/10/20 μs

Search/Insert 8/15 μs

Reference

DrTM, FaSST, PolarDB

Data Scale

160M rows

Assise, Octopus, Tectonic

XStore, RACE, Redis250M keys

10B files

Distributed lock should be fast on acquisition
and scalable on the number of locks

Distributed Lock Service Architecture

Network

Lock Client (LC)

Applications
(e.g., TXN, FS)

Lock Manager (LM)
Acquire

Grant

Release

Distributed Lock Service Architecture

Network

Lock Client (LC)

Applications
(e.g., TXN, FS)

Acquire

Grant

Release

Lock Manager (LM)

mode
holders
waiters

Lock tableDecides whether the lock can be granted

Maintains lock metadata in a lock table

Network

Lock Client (LC)

Applications
(e.g., TXN, FS)

Acquire

Release

Distributed Lock Service Architecture

Grant

Lock Manager (LM)

mode
holders
waiters

Lock table

Distributed Lock Service Architecture

Network

Lock Client (LC)

Applications
(e.g., TXN, FS)

Acquire

Grant

Release

Lock Manager (LM)

mode

holders

waiters

Lock table
The efficiency and capacity of LM are essential

for a fast and scalable lock service!

Existing Lock Manager Designs

Switch

LM
LC

App

LC

App

SrvLock
Handle lock requests with

dedicated servers

Request buffer NICCPU

Process one-by-one Receive in batches

Existing Lock Manager Designs

Switch

LM
LC

App

LC

App

SrvLock
Handle lock requests with

dedicated servers

Request buffer NICCPU

Process one-by-one Receive in batches

Scalable on lock number

Slow due to high queueing delay

Queue up

Performance Issues of Existing LMs

0

25

50

75

100

100 101 102

C
D
F
(%
)

SrvLock

10x

100

75

50

25

0
100 101 102

Lock grant latency (µs)

Update-
heavy

Uniform
Zipfian

Read-
mostly

Read-
only

Uniform
Zipfian
Uniform
Zipfian

Latency variance (10th ~ 99th)
17.26x
2.48x
19.08x
12.34x
20.16x
18.96x

#1 Large latency variance due to queueing delay

CD
F

(%
)

SrvLock

Existing Lock Manager Designs

Programmable Switch

LM

LM

LC

App

LC

App

NetLock
(SIGCOMM’20)

Fast-path lock manager
on programmable switch

Request processing pipeline

Ingress

Lock metadata update

Egress

LookupForward

Existing Lock Manager Designs

Programmable Switch

LM

LM

LC

App

LC

App

NetLock
(SIGCOMM’20)

Fast-path lock manager
on programmable switch

Request processing pipeline

Ingress

Lock metadata update

Egress

LookupForward

Fast (near-zero queueing delay)

Unscalable due to small memory

Performance Issues of Existing LMs

#2 Limited acceleration due to poor scalability on #locks

0

25

50

75

100

100 101 102

C
D
F
(%
)

SrvLock
NetLock

100 101 102

30%

1%
Uniform

Zipfian

SrvLock
NetLock

100

75

50

25

0
100 101 102 100 101 102

Lock grant latency (µs)

CD
F

(%
)

*1 million locks

Performance Issues of Existing LMs

#3 High workload sensitivity due to static profiling

Time Elapsed (ms)

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

0

2

4

6

8

0 300 600 800

*1 million locks,
50% requests to
2500 hot locks

SrvLock
NetLock

8

6

4

2

0
0 300 600 800

SrvLock NetLock

Hotspot shift Hotspot shift

Revisit the Lock Acquisition Process

mode
wait queue

lock holders
Grant

Request Reply

SuspendLock Manager

Acquire
Grant

Process

Decision MaintenanceRequest Reply

Our Key Insight

mode
wait queue

lock holders
Grant

Suspend
Lock Manager

Acquire
Grant

Lock acquisition process can be decoupled into
grant decision and metadata maintenance!

Our Key Insight

mode
wait queue

lock holders

Decision MaintenanceRequest Reply

small,
fixed-size

large,
variable-size

Acquire
Grant

Lock Manager

Our Key Insight

mode
wait queue

lock holders

On critical-path

Can be
asynchronous

Acquire
Grant

Decision MaintenanceRequest Reply
Lock Manager

Key Idea: Lock Fission

mode wait queue

lock holders

Acquire
Grant

On-switch LM On-server LM

Decision MaintenanceRequest Reply

Key Idea: Lock Fission

mode wait queue

lock holders

Acquire
Grant

On-switch LM On-server LM

Fast grant;
Memory efficient

Off critical-path

Decision MaintenanceRequest Reply

Key Idea: Lock Fission

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Centralized, Stationary Per-lock, Migratable

wait queue

lock holders

Agent

wait queue

lock holders

Agent

wait queue

lock holders

Agent

wait queue

lock holders

Agent

Acquire

Our System: FissLock

Programmable Switch

LC
App

LC
App

LC
App

Decider

A A…

FissLock
On-switch decider and

On-server agents

Request processing pipeline

Ingress

Lock grant decision

Egress

LookupForward

A

Agent pool
Agent table

Agent holders
wait queue

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location

Acquire

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Free?
Agent

location

Acquire

nil

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Grantlock holders

Agent

Client A

Agent
location
Server 1

Acquire Free?
Grant the lock along
with the agent

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

lock holders

Agent

Client A

Agent
location
Server 1

Free?
Grant the lock along
with the agent

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Acquire Conflict?
Server 2

Client B

Agent
pool

lock holders

Agent

Client B

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Acquire Conflict?
Server 2

Client B

Agent
pool

lock holders

Agent

Client B

Acquire

Forward the request
to be processed by
the agent

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Acquire Conflict?
Server 2

Client B

Agent
poolAcquire

lock holders

Agent

Client B
waiters

Client A

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Acquire Shared?
Server 2

Client B

Agent
pool

lock holders

Agent

Client B

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Acquire Shared?
Server 2

Client B

Agent
pool

lock holders

Agent

Client B

Acquire

Grant

Forward the request
and grant the lock
simultaneously

Lock Acquisition Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Acquire Shared?
Server 2

Client B

Agent
poolAcquire

Grant
lock holders

Agent

Client B
Client A

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Server 2

Client B

Agent
pool

lock holders

Agent

Client B
Client A

Agent not local?

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Release

Server 2

Client B

Agent
poolRelease

lock holders

Agent

Client B
Client A

Agent not local?

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Release

Server 2

Client B

Agent
poolRelease

lock holders

Agent

Client B

Agent not local?

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Server 2

Client B

Agent
pool

lock holders

Agent

Client B
waiters

Client A

Release

Agent local?

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Server 2

Client B

Agent
pool

lock holders

Agent

Client B
waiters

Client A

Release

There are waiters?

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Server 2

Client B

Agent
pool

lock holders

Agent

Client A

Release

Waiter becomes new holder

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 2

Server 2

Client B

Agent
pool

lock holders

Agent

Client A

Release

Grant

Migrate the agent to
the new holder’s server

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 1

Server 2

Client B

Agent
pool

lock holders

Agent

Client A

Release

Grant

lock holders

Agent

Client A

Grant

Lock Release Workflow

mode

DeciderServer 1

Client A

Agent
pool

Agent
location
Server 1

Server 2

Client B

Agent
pool

lock holders

Agent

Client A

Challenge: Distributed Lock Operations

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Acquire

How to ensure consistency between decider and agent?

Challenge: Distributed Lock Operations

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Acquire

How to handle lost, reordered, and delayed packets?

Challenge: Distributed Lock Operations

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Acquire

How to handle switch, server, or simultaneous failures?

Challenge: Distributed Lock Operations

mode
wait queue

lock holders
Acquire

Grant

Decider Agent

Acquire

A new “Lock Fission Protocol” handles them all!
(see details in our paper §4)

On-switch Decider Design

How to maximize the utilization of limited switch memory (<10MB)?

On-switch Decider Design

Switch memory is organized as fixed-size registers

… …

mode 2 bits

register 1/2/4/8 bytes or 1bit

Unit is too large for lock mode!

On-switch Decider Design

Each pipeline stage allows accessing exactly one register

Register array indexRegister value … …

RA index
Can not access
partial/multiple registers!

On-switch Decider Design

There is no shared memory across pipeline stages
Fo

rw
ar

d

ag
en

t l
oc

.

ag
en

t l
oc

.

m
od

e

m
od

e

Se
lec

tio
n

Lo
ok

up

On-switch Decider Design

Memory used by control stages (e.g., forward) are wasted!

Fo
rw

ar
d

ag
en

t l
oc

.

ag
en

t l
oc

.

m
od

e

m
od

e

Se
lec

tio
n

Lo
ok

up

There is no shared memory across pipeline stages

On-switch Decider Design

A pipeline design that supports over 1.5M locks!
(see details in our paper §5.2)

Evaluation Setup

Intel Tofino Switch

100Gbps
NIC

12 cores

× 8

Testbed Comparing targets

Switch

LM
LC
App

×7

SrvLock
Switch

LM

LM

LC
App

×7

NetLock
Switch

LC
App

× 8
Agents

FissLock

*All systems use 80 cores in total for LC and 8 cores for LM / Agents

Decider

Microbenchmark: Is FissLock Fast?

Lock Grant Latency (µs)

CD
F

(%
)

0

25

50

75

100

0

25

50

75

100

100 101 102 100 101 102 100 101 102

Write-heavy (50%) Read-Mostly (90%) Read-Only (100%)

U
niform

Zipfian

NetLock
FissLock

SrvLock

*1 million locks

Microbenchmark: Is FissLock Fast?

Lock Grant Latency (µs)

CD
F

(%
)

0

25

50

75

100

0

25

50

75

100

100 101 102 100 101 102 100 101 102

Write-heavy (50%) Read-Mostly (90%) Read-Only (100%)

U
niform

Zipfian

NetLock
FissLock

SrvLock

*1 million locks

FissLock has low and stable grant latency
under various workloads!

Microbenchmark: Is FissLock Scalable?

NetLock
FissLock

Number of Locks

0

4

8

12

16

102 103 104 105 106 107

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

*Uniform RM workload
with 160 clients

Microbenchmark: Is FissLock Scalable?

NetLock
FissLock

Number of Locks

0

4

8

12

16

102 103 104 105 106 107

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

Both are low because
of high contention

*Uniform RM workload
with 160 clients

Microbenchmark: Is FissLock Scalable?

NetLock
FissLock

Number of Locks

0

4

8

12

16

102 103 104 105 106 107

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

FissLock’s switch capacity

NetLock’s switch capacity

*Uniform RM workload
with 160 clients

Microbenchmark: Is FissLock Scalable?

NetLock
FissLock

Number of Locks

0

4

8

12

16

102 103 104 105 106 107

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

5.5x
2x

*Uniform RM workload
with 160 clients

*Uniform RM workload
with 160 clients

Microbenchmark: Is FissLock Scalable?

NetLock
FissLock

Number of Locks

0

4

8

12

16

102 103 104 105 106 107

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

5.5x
2xFissLock can manage millions of locks efficiently!

Microbenchmark: Is FissLock Stable?

NetLock
FissLock

Time Elapsed (ms)

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

*1 million locks
50% requests to
2500 hot locks

0

2

4

6

8

0 300 600 800

SrvLock

Hotspot shift Hotspot shift

*1 million locks
50% requests to
2500 hot locks

Microbenchmark: Is FissLock Stable?

NetLock
FissLock

Time Elapsed (ms)

Lo
ck

 T
hr

ou
gh

pu
t (

M
 rp

s)

0

2

4

6

8

0 300 600 800

SrvLock

Hotspot shift Hotspot shift

FissLock achieves stable performance
regardless of workload patterns!

Transaction Benchmark

TATP TPC-C

1.6
2.1

3.7

0

2

4

Tr
an

sa
ct

io
n

th
ro

ug
hp

ut
 (M

/s) 0.8

0.4
0.34 0.35

0.79

SrvLock NetLock FissLock

Write-intensive (92%)Read-intensive (80%)

Conclusion
• Distributed lock services need to be fast and scalable

• Key technique: lock fission (decouple grant decision and data maintenance)

• Challenges:

• Distributed lock operations (§4 lock fission protocol)

• Memory-efficient on-switch design (§5.2 on-switch decider)

• Evaluation: 90% tail latency cut, 2x transaction throughput boost,

scales to millions of locks

