Fast and Scalable In-network
Lock Management using Lock Fission

Hanze Zhang, Ke Cheng, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems (IPADS)
Shanghai Jiao Tong University
/ o 2
(11 IPADS (B X FR4tY
I

I’ INSTITUTE OF PARALLEL 1595

AND DISTRIBUTED SYSTEMS SHANGHAI JIAO TONG UNIVERSITY

Locking is Vital for Concurrency Control

-------------------- - - v

App Worker | | Serialize
__ conflicting accesses
~ App Data towards

shared data

lypical scenarios:

Polar™B @ipglsp) druid

Typical Use Case of Distributed Locks

Synchronous

i "
 App Worker |

~ Lock
--- | Service |

Two Trends in Distributed Apps

Workload Exec.Time Data Scale Reference
Txn. Processing TPC-C/TATP 7/2.8 ps | 60M rows DrTM, FaSST, PolarDB
File System Read/Write/Mkdir |/10/20 ps | OB files Assise, Octopus, Tectonic
Key-value Store Search/Insert 8/15 ps 250M keys XStore, RACE, Redis
Microsecond-scale Shared data scale is growing to

execution time becomes common Near-billion-level

Two Trends in Distributed Apps

Distributed lock should be fast on acquisition

and scalable on the number of locks

Distributed Lock Service Architecture

Applications Network
(e.g, TXN, FS)

L ock Manager (LM)

Lock Client (LC)

Distributed Lock Service Architecture

Lock Manager (LM)

Decides whether the lock can be granted | ock table

mode
Maintains lock metadata in a lock table holders

waiters

Distributed Lock Service Architecture

Applications Network
e) W ock Manager (LM)

L ock table

Acuwe

Lock Client (LC) Grant

mode
holders
waiters

Distributed Lock Service Architecture

The efficiency and capacity of LM are essential

for a fast and scalable lock service!

Existing Lock Manager Designs

ApPP App ™ CPU Request buffer NIC
C C {@:}— | ‘E = 5
‘ { { Process one-by-one Receive in batches
Switch
SrvLock

Handle lock requests with
dedicated servers

Existing Lock Manager Designs

App App LM CPU Request buffer NIC
LC LC {@:}— — [EE
‘ { { Process one-by-one i Receive in batches
Switch Queue up
SrvLock Scalable on lock number
Handle lock requests with
dedicated servers Slow due to high queueing delay

Performance Issues of Existing LMs

#1 Large latency variance due to queueing delay

oo - ., | atency variance (| 0th ~ 99t
— SrvéLock : / ()
_ ! ! Update- Uniform | /.26X
> | : Y Zipfian 2.48x
50 : :
5 : : Read- Uniform 1 9.08x
U oos ' |0 | mostly Zipfian | 2.34%
_l l
ol Q:"“": Read- Uniform 0. | 6x
e o o ol Zipfian 1896

Lock grant latency (ps)

Existing Lock Manager Designs

A A Request processing pipeline
PP : PP M
IC | | LC i ,
""""""" ' { { Egress Ingress
Forward - ~ — Lookup
Programmmable Switch LM Lock metadata update
NetlLock
(SIGCOMM20)

Fast-path lock manager
on programmable switch

Existing Lock Manager Designs

App App Request processing pipeline
: LM
C | i Lc | , —
"""""" ' "“"{““" """{"'"' Egress Ingress
Forward - ~ — Lookup
Programmmable Switch LM Lock metadata update
NetlLock

Fast-path lock manager

. Unscalable due to small memory
on programmable switch

(SIGCOMM20) Fast (nearzero queueing delay)

Performance Issues of Existing LMs

#2 Limited acceleration due to poor scalability on #locks

. SrvLock
7> — NetlLock

~ Uniform

| Q0 lelO'. lelOzl) .mlll(.)o | |OI . |02 o
Lock grant latency (us) * million locks

Performance Issues of Existing LMs

#3 High workload sensitivity due to static profiling

-~ Q r

%2

O

“

>

—

+-

2, WAV
-

004 :
.

O

C D +

C

|_

V4

O Ot

O

—

— SrvlLock: — NetlLock

00

(O

*| million locks,
50% requests to

No

Hotspot shift Hotspot shift 2500 hot locks

300 600 800
Time Elapsed (ms)

o

o

Revisit the Lock Acquisition Process

Request i Process Reply

Lock Manager

Suspend
walt queue

lock holders

Our Key Insight

Lock acquisition process can be decoupled into

grant decision and metadata maintenance!

Request

Acquire

Our Key Insight

Decision

Lock Manager

small,
fixed-size

Maintenance

large,
variable-size

walt queue

lock holders

Reply

Grant

Request

Acquire

Our Key Insight

I ° ° I °
| Decision ' Maintenance
| |

Lock Manager

Can be
asynchronous

On critical-path
mode
lock holders

Reply

Key ldea: Lock Fission

Request Decision Maintenance Reply

On-switch LM On-server LM

> walt queue

* mode

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
—— lock holders
|

|

Key ldea: Lock Fission

Request Decision Maintenance Reply
On-switch LM On-server LM

Memory efficient

> walt queue

* mode

| Fast grant; | Off critical-path
| —— lock holders

Key ldea: Lock Fission

Centralized, Stationary Per-lock, Migratable

Decider

il Agent

g/ couire el s Acquice i I

» |lock holders

Our System: FissLock

App ApPp App
. LC LC . LC
| 2 I N
Programmable Switch Decider
FissLock

On-switch decider and
On-server agents

Agent pool

Aot

Agent table

wait queue

Request processing pipeline

P P ‘ P P P ‘
« « < « «

Egress Ingress

Forward > ~ — Lookup

Lock grant decision

Lock Acquisition VWorkflow

Server | Decider
Client A —m—' mode
Agent Agelnt
location
slele]

Lock Acquisition VWorkflow

Server | Decider
Client A —m mode Free’
Agent Agelnt
location
pool i

Lock Acquisition VWorkflow

Server | Decider
Client A —m—' mode
Agent Agelnt

| location
poOO Server |
&
Agent
lock holders
Client A

Free’

Grant the lock along
with the agent

Lock Acquisition VWorkflow

Server | Decider
Client A mode
Agent Agelnt

| location

200 Server |
Agent
lock holders

Client A

Free’

Grant the lock along
with the agent

Lock Acquisition VWorkflow

Server | Decider
Client A —m—' mode
Agent Agelnt

| location
B Server 2

Conflict?

Server 2

Client B

Agent
alele]

Agent

lock holders

Client B

Lock Acquisition VWorkflow

Server | Decider Server 2
ClientA +ENGUIN— mode COﬂﬁ/Ct? Client B
Agent Agelnt Agent

location —m—’
— Server 2 pool
Agent
Forward the request || 1o 1dars
to be processed by Client B

the agent

Lock Acquisition VWorkflow

Server | Decider Server 2
ClientA +ENGUIN— mode COﬂﬁ/Ct? Client B
Agent Agelnt Agent

location —m—’
— Server 2 pool
Agent
walters lock holders
Client A Client B

Lock Acquisition VWorkflow

Server | Decider
Client A —m—' mode
Agent Agelnt

| location
B Server 2

Shared?

Server 2

Client B

Agent
alele]

Agent

lock holders

Client B

Lock Acquisition VWorkflow

Server | Decider Server 2
Client A —m mode Shared? Client B
Agent Agelnt Agent

location —m_’
200 Server 2 pool
¥ Agent
Forward the request
nd crant the lock lock holders
 Grant mem i Client B

simultaneously

Lock Acquisition VWorkflow

Server | Decider Server 2
Client A —m mode Shared? Client B
Agent Agelnt Agent

location —m—’
200 Server 2 pool
¥ Agent
lock holders
(& — Client B
Client A

Lock Release Workflow

Server |

Client A

Agent
slele]

Agent not local?

Decider

mode

Agent
location

Server 2

Server 2

Client B

Agent
alele]

Agent

lock holders

Client B

Client A

Lock Release Workflow

Server | Decider Server 2
Client A - mode Client B
Agent
A

gent ocation Agent

— Server 2 pool
Agent

/

Agent not /OCG/' lock holders
Client B
Client A

Lock Release Workflow

Server | Decider Server 2
Client A - mode Client B
Agent

Agent Jocation Agent

— Server 2 pool
Agent

/
Agent not /OCG/' lock holders

Client B

Lock Release Workflow

Agent local?

Server | Decider Server 2
Client A mode Client B
Agent
Agent , Agent
| location »* |
POO Server 2 PO©
Agent
walters lock holders
Client A Client B

Lock Release Workflow

Server | Decider Server 2
Client A mode Client B
Release
Agent Agelnt Agent
| location * |
R Server 2 poe
Agent
, warters lock holders
There are waiters? Clori A Ciori B

Lock Release Workflow

Server | Decider Server 2
Client A mode Client B
Release
Agent Agelnt Agent
location »*
— Server 2 pool
Agent
, lock holders
Waiter becomes new holder Clieri A

Lock Release Workflow

Server | Decider Server 2
Client A mode Client B
Rele
Agent Agent Agent
location »*
poo Server 2 ! m i pool
Agent
Migrate the agent to el
Client A

the new holder’s server

Lock Release Workflow

Server | Decider Server 2
Client A mode Client B
- |
Agent Agelnt == Agent
location »r
%0 e Ceverl] [gropemy | P

Agent

lock holders
Client A

Agent

lock holders

Client A

Server |

Client A

Agent
slele]

Agent

lock holders

Client A

Lock Release Workflow

Decider

mode

Agent

location
Server |

Server 2

Client B

Agent
alele]

Challenge: Distributed Lock Operations

How to ensure consistency between decider and agent’

Decider Agent

> walt queue

— mode

» |lock holders

Challenge: Distributed Lock Operations

How to handle lost, reordered, and delayed packets?

Decider Agent

> walt queue

— mode . —

- . - - - .

» |lock holders

Challenge: Distributed Lock Operations

How to handle switch, server, or simultaneous failures?

Agent

> walt queue

» |lock holders

Challenge: Distributed Lock Operations

A new “Lock Fission Protocol’” handles them all!

(see details in our paper §4)

On-switch Decider Design

How to maximize the utilization of limited switch memory (<I10OMB)?

On-switch Decider Design

Switch memory Is organized as fixed-size registers

mode | 2 bits

-7 S~ register | |/2/4/8 bytes or |bit

[]

Unit is too large for lock mode!

On-switch Decider Design

Each pipeline stage allows accessing exactly one register

RA Index
_-- ~a o i Can not access

r ‘=| partiallmultiple registers!

On-switch Decider Design

Ihere is no shared memory across pipeline stages

j= ks o o © é S

< 54—454—454—04—04 84 (\34
ol g & g [g |= |
LL S S U

On-switch Decider Design

Ihere is no shared memory across pipeline stages

:' L
:_c% o ks v v :5: :%—:
< EEF_E<_E’<__8<__8<_'Q:< S
:OI O O - — :T)I :OI
Rl = = 1N !
l : l : l '
L L L_

Memory used by control stages (e.g., forward) are wasted!

On-switch Decider Design

A pipeline design that supports over |.5M locks!

(see details in our paper 85.2)

Evaluation Setup

Testbed Comparing targets
|2 cores A """ | """" A """ : """" App
Sooo Pz o TP g im IC 8
OO00 | x 8 e b ke Agents
|00Gbps } | | | [
NIC St Switch LM Switch [PETE
SrvLock NetLock FissLock

Intel Tofino Switch

*All systems use 80 cores in total for LC and 8 cores for LM / Agents

Microbenchmark:ls FissLock Fast?

Write-heavy (50%) Read-Mostly (90%) Read-Only (100%)
100f 7 e T e
757 1C
D)
50 3
|3 — SrvLock
— NetlLock

— FissLock

ueydiz

T q0T i g0 10T q02 g0 for q07
T
Lock Grant Latency (us) [million locks

Microbenchmark:ls FissLock Fast?

FissLock has low and stable grant latency

under various workloads!

Microbenchmark: Is FissLock Scalable?

16+
’g — NetlLock
s 12| — FissLock
5
S 8
o0
D)
O
o o
3 - *Uniform RM workload
— 0L . . . | | . .
102 103 104 105 106 107 Wlth /60 C/Ieﬂts

Number of Locks

Microbenchmark: Is FissLock Scalable?

16
— NetlLock

1ol — FissLock

Both are low because
of high contention

\ /\e - 56-€ *Uniform RM workload
102 108 10* 10° 10° 107 with |60 clients

Lock Throughput (M rps)
(00)

Number of Locks

Microbenchmark: Is FissLock Scalable?

16 |

12

Lock Throughput (M rps)
(00)

NetLock’s switch capacity

— NetlLock ‘
— FissLock

o oERy

i o——oi0-09©

103 104 10° 106 107
Number of Locks

FissLock’s switch capacity

*Uniform RM workload
with 160 clients

Microbenchmark: Is FissLock Scalable?

16
— NetlLock

1ol — FissLock

Lock Throughput (M rps)
(00)

*Uniform RM workload
1(')2 1(')3 1(')4 165 1(')6 1(')7 with | 60 clients

Number of Locks

Microbenchmark: Is FissLock Scalable?

FissLock can manage millions of locks efficiently!

Lock Throughput (M rps)

Microbenchmark: Is FissLock Stable?

Hotspot shift

VW

il S S

Hotspot shift

0 300

600

Time Elapsed (ms)

— SrvlLock
— NetlLock

— FisslLock

*| million locks

50% requests to
2500 hot locks

Microbenchmark: Is FissLock Stable?

FissLock achieves stable performance

regardless of workload patterns!

Transaction throughput (M/s)

Transaction Benchmark

TATP TPC-C

Read-intensive (80%) Write-intensive (92%)

A

0.8
2 A 04
0

B Srvlock M NetlLock M FissLock

Conclusion

 Distributed lock services need to be fast and scalable

* Key technique: lock fission (decouple grant decision and data maintenance)

* Challenges:
* Distributed lock operations (84 lock fission protocol)
* Memory-efficient on-switch design (85.2 on-switch decider)
* Evaluation: 90% tall latency cut, 2x transaction throughput boost,

scales to millions of locks

