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Locking is Vital for Concurrency Control
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Typical Use Case of Distributed Locks
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Two Trends in Distributed Apps

Workload Exec.Time Data Scale Reference
Txn. Processing TPC-C/TATP 7/2.8 ps | 60M rows DrTM, FaSST, PolarDB
File System Read/Write/Mkdir |/10/20 ps | OB files Assise, Octopus, Tectonic
Key-value Store Search/Insert 8/15 ps 250M keys XStore, RACE, Redis
Microsecond-scale Shared data scale is growing to

execution time becomes common Near-billion-level



Two Trends in Distributed Apps

Distributed lock should be fast on acquisition

and scalable on the number of locks



Distributed Lock Service Architecture

Applications Network
(e.g, TXN, FS)

L ock Manager (LM)

Lock Client (LC)



Distributed Lock Service Architecture

Lock Manager (LM)

Decides whether the lock can be granted | ock table

mode
Maintains lock metadata in a lock table holders

waiters




Distributed Lock Service Architecture
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Distributed Lock Service Architecture

The efficiency and capacity of LM are essential

for a fast and scalable lock service!



Existing Lock Manager Designs
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Handle lock requests with
dedicated servers



Existing Lock Manager Designs

____________________________________

App App LM CPU Request buffer NIC
LC LC {@:}— — [ EE
‘ { { Process one-by-one i Receive in batches
Switch Queue up
SrvLock Scalable on lock number
Handle lock requests with
dedicated servers Slow due to high queueing delay



Performance Issues of Existing LMs

#1 Large latency variance due to queueing delay
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Existing Lock Manager Designs

____________________________________

A A Request processing pipeline
PP : PP M
IC | | LC i ,
""""""" ' { { Egress Ingress
Forward - ~ — Lookup
Programmmable Switch LM Lock metadata update
NetlLock
(SIGCOMM20)

Fast-path lock manager
on programmable switch



Existing Lock Manager Designs

____________________________________

App App Request processing pipeline
: LM
C | i Lc | , —
"""""" ' "“"{““" """{"'"' Egress Ingress
Forward - ~ — Lookup
Programmmable Switch LM Lock metadata update
NetlLock

Fast-path lock manager

. Unscalable due to small memory
on programmable switch

(SIGCOMM20) Fast (nearzero queueing delay)



Performance Issues of Existing LMs

#2 Limited acceleration due to poor scalability on #locks

. SrvLock
7> — NetlLock

~ Uniform

| Q0 lelO'. lelOzl ) .mlll(.)o | |OI . |02 o
Lock grant latency (us) * million locks



Performance Issues of Existing LMs

#3 High workload sensitivity due to static profiling

-~ Q r

%2

O

“

>

—

+-

2, WAV
-

004 :
.

O

C D +

C

|_

V4

O Ot

O

—

— SrvlLock: — NetlLock

00

(O

*| million locks,
50% requests to

No

Hotspot shift Hotspot shift 2500 hot locks

300 600 800
Time Elapsed (ms)

o

o



Revisit the Lock Acquisition Process

Request i Process Reply

Lock Manager

Suspend
walt queue

lock holders



Our Key Insight

Lock acquisition process can be decoupled into

grant decision and metadata maintenance!
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Acquire

Our Key Insight
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Acquire

Our Key Insight
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Key ldea: Lock Fission
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Key ldea: Lock Fission

Request Decision Maintenance Reply
On-switch LM On-server LM

Memory efficient

> walt queue

* mode

| Fast grant; | Off critical-path
| —— lock holders




Key ldea: Lock Fission

Centralized, Stationary Per-lock, Migratable

Decider
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Our System: FissLock

____________________________________
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On-switch decider and
On-server agents

Agent pool

Aot

Agent table

wait queue

Request processing pipeline

P P ‘ P P P ‘
« « < « «

Egress Ingress

Forward > ~ — Lookup

Lock grant decision




Lock Acquisition VWorkflow

Server | Decider
Client A —m—' mode
Agent Agelnt
location
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Lock Acquisition VWorkflow
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Lock Acquisition VWorkflow

Server | Decider
Client A —m—' mode
Agent Agelnt
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lock holders
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Free’

Grant the lock along
with the agent



Lock Acquisition VWorkflow
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Lock Acquisition VWorkflow
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Lock Acquisition VWorkflow
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Lock Acquisition VWorkflow
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Lock Acquisition VWorkflow
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Lock Acquisition VWorkflow

Server | Decider Server 2
Client A —m mode Shared? Client B
Agent Agelnt Agent

location —m_’
200 Server 2 pool
¥ Agent
Forward the request
nd crant the lock lock holders
 Grant  mem i Client B

simultaneously




Lock Acquisition VWorkflow
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Lock Release Workflow
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Lock Release Workflow
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Lock Release Workflow
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Lock Release Workflow

Agent local?
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Lock Release Workflow
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Lock Release Workflow
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Lock Release Workflow
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Lock Release Workflow
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Challenge: Distributed Lock Operations

How to ensure consistency between decider and agent’

Decider Agent

> walt queue
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» |lock holders




Challenge: Distributed Lock Operations

How to handle lost, reordered, and delayed packets?

Decider Agent

> walt queue

—  mode . —

- . - - - .

» |lock holders




Challenge: Distributed Lock Operations

How to handle switch, server, or simultaneous failures?

Agent

> walt queue

» |lock holders




Challenge: Distributed Lock Operations

A new “Lock Fission Protocol’” handles them all!

(see details in our paper §4)




On-switch Decider Design

How to maximize the utilization of limited switch memory (<I10OMB)?




On-switch Decider Design

Switch memory Is organized as fixed-size registers

mode | 2 bits

-7 S~ register | |/2/4/8 bytes or |bit

[ ]

Unit is too large for lock mode!



On-switch Decider Design

Each pipeline stage allows accessing exactly one register
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On-switch Decider Design

Ihere is no shared memory across pipeline stages
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On-switch Decider Design

Ihere is no shared memory across pipeline stages
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Memory used by control stages (e.g., forward) are wasted!



On-switch Decider Design

A pipeline design that supports over |.5M locks!

(see details in our paper 85.2)




Evaluation Setup

Testbed Comparing targets
|2 cores A """ | """" A """ : """" App
Sooo Pz o TP g im IC 8
OO00 | x 8 e b ke Agents
|00Gbps } | | | [
NIC St Switch LM Switch [PETE
SrvLock NetLock FissLock

Intel Tofino Switch

*All systems use 80 cores in total for LC and 8 cores for LM / Agents



Microbenchmark:ls FissLock Fast?
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Microbenchmark:ls FissLock Fast?

FissLock has low and stable grant latency

under various workloads!




Microbenchmark: Is FissLock Scalable?
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Microbenchmark: Is FissLock Scalable?

16
— NetlLock

1ol — FissLock

Both are low because
of high contention
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Microbenchmark: Is FissLock Scalable?
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Microbenchmark: Is FissLock Scalable?
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Microbenchmark: Is FissLock Scalable?

FissLock can manage millions of locks efficiently!




Lock Throughput (M rps)

Microbenchmark: Is FissLock Stable?
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Microbenchmark: Is FissLock Stable?

FissLock achieves stable performance

regardless of workload patterns!



Transaction throughput (M/s)

Transaction Benchmark
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Conclusion

 Distributed lock services need to be fast and scalable

* Key technique: lock fission (decouple grant decision and data maintenance)

* Challenges:
* Distributed lock operations (84 lock fission protocol)
* Memory-efficient on-switch design (85.2 on-switch decider)
* Evaluation: 90% tall latency cut, 2x transaction throughput boost,

scales to millions of locks



