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Various applications are powered by LLMs

Search OS

2

Chat Program



Key/Value Caches

LLM Inference

To be , or not to be that is a question, .

Prefill Phase Decoding Phase

Each color represents one complete forward pass

3



LLM Inference Latency

To be , or not to be that is a question, .

Prefill Phase Decoding Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)

Latency = TTFT + TPOT * #Token
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Different apps have various latency requirements  

Chat

Program

Search

TTFT TPOT

Low 
(< 1s)

Match read speed (~ 
100ms)

Very Low 
(~ 200ms)

Match read speed (~ 
100ms)

Very Low 
(~ 200ms)

Very Low 
(~ 50ms)
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Our Goal

Use the fewest #GPUs to serve as many 
requests as possible while subject to 

various latency requirements of apps.

● Service Level Objective (SLO)

● SLO Attainment

● Per-GPU Goodput

Formally, our goal is to maximize the Per-GPU Goodput
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Existing systems maximize the overall throughput
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Source: Gyeong-In Yu, et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models”

Existing approach: Batch requests in prefill and decoding phase together



Problem 1: Prefill-Decoding Interference 

Batching prefill and decoding phase together hurt both TTFT and TPOT 
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longer decoding time 

longer prefill time 



Problem 2: Resource and Parallelism Coupling

GPU 1

GPU 2

Inter-op Parallelism Intra-op Parallelism

Batching the two phases make them share the same parallel strategy
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      Prefill phase: compute-bound      Decoding phase: memory-bound

Key/Value Caches

To be , or not to be that is a question, .

Prefill Phase Decoding Phase

Problem 2: Resource and Parallelism Coupling
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Problem 2: Resource and Parallelism Coupling

Coupling leads to overprovision resources to meet the more demanding SLO



Opportunity: Disaggregating Prefill and Decoding
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● Prefill-Decoding interference is immediately eliminated
● Naturally divide the SLO satisfaction problem into two optimizations:

○ Prefill instance optimizes for TTFT.
○ Decoding instance optimizes for TPOT.
○ Choose the most suitable parallelism and resource allocation for each phase.



Opportunity: Disaggregting Prefill and Decoding

13

Colocation

Disaggregation (2P1D)



Challenges of Disaggregation

● Communication overhead for KV-Cache transmission
● The optimization target — per-GPU goodput, is difficult to optimize: 

○ the workload pattern
○ SLO requirements
○ parallelism strategies
○ resource allocation
○ network bandwidth
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DistServe Overview

● Placement for High Node-Affinity Cluster
● Placement for Low Node-Affinity Cluster
● Online Scheduling Optimization

Definition of Placement: 
(1) parallelism strategy for prefill/decoding instance
(2) the number of each instance to deploy
(3) how to place them onto the physical cluster

Featured algorithms:
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Placement for High Node-Affinity Cluster

Assumption:
● Nodes are connected with high bandwidth network, e.g., InfiniBand.
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Observation:
● We can optimize prefill and decoding instances separately.

Algorithm Sketch:
● Use simulation to measure the goodput for a specific parallelism config.

● Obtain the optimal parallelism config for each phase.

● Use replication to match the overall traffic.



Placement for Low Node-Affinity Cluster

Example:
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Prefill.s0

Node 0

Decode.s0

Prefill.s1

Node 1

Decode.s1

Assumption:
● GPUs inside one node are connected with NVLINK.

Observation:

● KV-Cache transmission only happens between the same layer.

Algorithm Sketch:

● Similar to the previous one 
but add the constraint to 
require the same stage of 
prefill/decoding instances to 
be on the same node. 



Online Scheduling Optimization

● Scheduling to reduce pipeline bubbles
● Combat workload burstiness
● Periodic Replaning
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Evaluations

● Setup: 
○ 4 x DGX-A100, each with 8 x NVIDIA A100-80GB
○ intra-node network bandwidth: 600GB/s
○ cross-node network bandwidth 25Gbps

● Workloads: 

● Metric: SLO Attainment
● Baseline: vLLM, DeepSpeed-MII
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End-to-end Experiment – Chatbot
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Dotted line: 90% SLO attainment point.

4.6x 2x 1.6x 

1.8x 1.7x 1.8x 



Latency Breakdown

21

< 0.1% 

30ms 



Summary

● DistServe disaggregates prefill from decoding to serve LLM inference:
○ Bandwidth-aware placement algorithm to minimize communication overhead
○ Co-optimize the parallelism strategies for prefill/decoding instances
○ Online scheduling to handle real-world workload

● Experiments show that DistServe can serve 7.4x more requests or 12.6x 
tighter SLO, compared to SOTA systems, while staying within latency 
requirements for > 90% of requests. 

https://github.com/LLMServe/DistServe
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