
DistServe: Disaggregating Prefill and Decoding for
Goodput-optimized Large Language Model Serving

Yinmin Zhong Shengyu Liu Junda Chen Jianbo Hu
Yibo Zhu Xuanzhe Liu Xin Jin Hao Zhang

1

Various applications are powered by LLMs

Search OS

2

Chat Program

Key/Value Caches

LLM Inference

To be , or not to be that is a question, .

Prefill Phase Decoding Phase

Each color represents one complete forward pass

3

LLM Inference Latency

To be , or not to be that is a question, .

Prefill Phase Decoding Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)

Latency = TTFT + TPOT * #Token

4

Different apps have various latency requirements

Chat

Program

Search

TTFT TPOT

Low
(< 1s)

Match read speed (~
100ms)

Very Low
(~ 200ms)

Match read speed (~
100ms)

Very Low
(~ 200ms)

Very Low
(~ 50ms)

5

Our Goal

Use the fewest #GPUs to serve as many
requests as possible while subject to

various latency requirements of apps.

● Service Level Objective (SLO)

● SLO Attainment

● Per-GPU Goodput

Formally, our goal is to maximize the Per-GPU Goodput
6

Existing systems maximize the overall throughput

7
Source: Gyeong-In Yu, et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models”

Existing approach: Batch requests in prefill and decoding phase together

Problem 1: Prefill-Decoding Interference

Batching prefill and decoding phase together hurt both TTFT and TPOT

8

longer decoding time

longer prefill time

Problem 2: Resource and Parallelism Coupling

GPU 1

GPU 2

Inter-op Parallelism Intra-op Parallelism

Batching the two phases make them share the same parallel strategy

9

10

 Prefill phase: compute-bound Decoding phase: memory-bound

Key/Value Caches

To be , or not to be that is a question, .

Prefill Phase Decoding Phase

Problem 2: Resource and Parallelism Coupling

11

Problem 2: Resource and Parallelism Coupling

Coupling leads to overprovision resources to meet the more demanding SLO

Opportunity: Disaggregating Prefill and Decoding

12

● Prefill-Decoding interference is immediately eliminated
● Naturally divide the SLO satisfaction problem into two optimizations:

○ Prefill instance optimizes for TTFT.
○ Decoding instance optimizes for TPOT.
○ Choose the most suitable parallelism and resource allocation for each phase.

Opportunity: Disaggregting Prefill and Decoding

13

Colocation

Disaggregation (2P1D)

Challenges of Disaggregation

● Communication overhead for KV-Cache transmission
● The optimization target — per-GPU goodput, is difficult to optimize:

○ the workload pattern
○ SLO requirements
○ parallelism strategies
○ resource allocation
○ network bandwidth

14

DistServe Overview

● Placement for High Node-Affinity Cluster
● Placement for Low Node-Affinity Cluster
● Online Scheduling Optimization

Definition of Placement:
(1) parallelism strategy for prefill/decoding instance
(2) the number of each instance to deploy
(3) how to place them onto the physical cluster

Featured algorithms:

15

Placement for High Node-Affinity Cluster

Assumption:
● Nodes are connected with high bandwidth network, e.g., InfiniBand.

16

Observation:
● We can optimize prefill and decoding instances separately.

Algorithm Sketch:
● Use simulation to measure the goodput for a specific parallelism config.

● Obtain the optimal parallelism config for each phase.

● Use replication to match the overall traffic.

Placement for Low Node-Affinity Cluster

Example:

17

Prefill.s0

Node 0

Decode.s0

Prefill.s1

Node 1

Decode.s1

Assumption:
● GPUs inside one node are connected with NVLINK.

Observation:

● KV-Cache transmission only happens between the same layer.

Algorithm Sketch:

● Similar to the previous one
but add the constraint to
require the same stage of
prefill/decoding instances to
be on the same node.

Online Scheduling Optimization

● Scheduling to reduce pipeline bubbles
● Combat workload burstiness
● Periodic Replaning

18

Evaluations

● Setup:
○ 4 x DGX-A100, each with 8 x NVIDIA A100-80GB
○ intra-node network bandwidth: 600GB/s
○ cross-node network bandwidth 25Gbps

● Workloads:

● Metric: SLO Attainment
● Baseline: vLLM, DeepSpeed-MII

19

End-to-end Experiment – Chatbot

20

Dotted line: 90% SLO attainment point.

4.6x 2x 1.6x

1.8x 1.7x 1.8x

Latency Breakdown

21

< 0.1%

30ms

Summary

● DistServe disaggregates prefill from decoding to serve LLM inference:
○ Bandwidth-aware placement algorithm to minimize communication overhead
○ Co-optimize the parallelism strategies for prefill/decoding instances
○ Online scheduling to handle real-world workload

● Experiments show that DistServe can serve 7.4x more requests or 12.6x
tighter SLO, compared to SOTA systems, while staying within latency
requirements for > 90% of requests.

https://github.com/LLMServe/DistServe

22

zhongyinmin@pku.edu.cn

https://github.com/LLMServe/DistServe
mailto:zhongyinmin@pku.edu.cn

