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Various applications are powered by LLMs
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LLM Inference
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LLM Inference Latency

Prefill Phase Decoding Phase

Time To First Token (TTFT) Time Per Output Token (TPOT)
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Latency = TTFT + TPOT * #Token



Different apps have various latency requirements
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Our Goal

Use the fewest #GPUs to serve as many
requests as possible while subject to
various latency requirements of apps.

e Service Level Objective (SLO)
e SLO Attainment
e Per-GPU Goodput



Existing systems maximize the overall throughput

Existing approach: Batch requests in prefill and decoding phase together
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Problem 1: Prefill-Decoding Interference

Batching prefill and decoding phase together hurt both TTFT and TPOT

longer decoding time
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Problem 2: Resource and Parallelism Coupling

Batching the two phases make them share the same parallel strategy

Inter-op Parallelism Intra-op Parallelism
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Problem 2: Resource and Parallelism Coupling

Prefill phase: compute-bound  Decoding phase: memory-bound
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Problem 2: Resource and Parallelism Coupling

Coupling leads to overprovision resources to meet the more demanding SLO
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Opportunity: Disaggregating Prefill and Decoding

e Prefill-Decoding interference is immediately eliminated

e Naturally divide the SLO satisfaction problem into two optimizations:
o  Prefill instance optimizes for TTFT.
o Decoding instance optimizes for TPOT.
o Choose the most suitable parallelism and resource allocation for each phase.
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Opportunity: Disaggregting Prefill and Decoding
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Challenges of Disaggregation

e Communication overhead for KV-Cache transmission
e The optimization target — per-GPU goodput, is difficult to optimize:

o the workload pattern
SLO requirements
parallelism strategies
resource allocation
network bandwidth

o O O O
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DistServe Overview

Definition of Placement:
(1) parallelism strategy for prefill/decoding instance
(2) the number of each instance to deploy
(3) how to place them onto the physical cluster

Featured algorithms:

e Placement for High Node-Affinity Cluster
e Placement for Low Node-Affinity Cluster
e Online Scheduling Optimization
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Placement for High Node-Affinity Cluster

Assumption:

e Nodes are connected with high bandwidth network, e.g., InfiniBand.

Observation:

e We can optimize prefill and decoding instances separately.

Algorithm Sketch:
e Use simulation to measure the goodput for a specific parallelism config.
e Obtain the optimal parallelism config for each phase.

e Use replication to match the overall traffic.
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Placement for Low Node-Affinity Cluster

Assumption:

e GPUs inside one node are connected with NVLINK.

Observation:

e KV-Cache transmission only happens between the same layer.

Algorithm Sketch: Example:

e Similar to the previous one Node 0 Node 1

but add the constraint to Prefill.s0 N

Prefill.s1

require the same stage of
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Online Scheduling Optimization

e Scheduling to reduce pipeline bubbles
e Combat workload burstiness
e Periodic Replaning
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Evaluations

e Setup:
o 4 x DGX-A100, each with 8 x NVIDIA A100-80GB
o intra-node network bandwidth: 600GB/s
o cross-node network bandwidth 25Gbps

e Workloads:

le—3 le—3 le—3
Application Model Size TTFT TPOT Dataset 8] | mmm Input (avg=755.5) ! Input (avg=171.3) | 15 % Input (avg=1738.3)
Output (avg=200.3) 6 Output (avg=98.2) Output (avg=90.7)
Chatbot OPT-13B 26GB 0.25s 0.1s ShareGPT [8] | 10
Chatbot OPT-66B 132GB 2.5s 0.15s ShareGPT [8] 4
Chatbot OPT-175B 350GB 4.0s 0.2s ShareGPT [8] 5
Code Completion OPT-66B 132GB 0.125s 0.2s HumanEval [14] ol
Summarization OPT-66B 132GB 15s 0.15s  LongBench [13] 0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
# Tokens # Tokens # Tokens
Table 1: Workloads in evaluation and latency requirements. (a) ShareGPT (b) HumanEval (c) LongBench

e Metric: SLO Attainment
e Baseline: VLLM, DeepSpeed-MII
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End-to-end Experiment - Chatbot
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Latency Breakdown
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e DistServe disaggregates prefill from decoding to serve LLM inference:
o Bandwidth-aware placement algorithm to minimize communication overhead
o Co-optimize the parallelism strategies for prefill/decoding instances
o  Online scheduling to handle real-world workload

e Experiments show that DistServe can serve 7.4x more requests or 12.6x
tighter SLO, compared to SOTA systems, while staying within latency
requirements for > 90% of requests.

O https://qithub.com/LLMServe/DistServe

a zhongyinmin@pku.edu.cn
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