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Executive Summary

Background:

* CPU core counts scaling faster than memory capacity

 CXL enables second-tier memory to facilitate core scaling

* But CXL adds latency that hurts performance if not mitigated

» Software tiering helps some but is not well suited for public clouds

Contributions:

* Intel Flat Memory Mode: First hardware-managed memory tiering for CXL
* But still has limitations that degrade workloads

* Memstrata: Memory allocator for hardware tiering to mitigate outliers

* Slowdown reduces to ~5% vs. unattainable one-tier memory
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CXL Enables Memory Capacity Scaling

Higher latency

A

~200 pins

CPU ~16 pins
DDR — CXL

Local Memory CXL Memory




Higher CXL Latency Can Degrade Workloads

 CXL latency (220 ns) = 2x local memory latency (100 ns)
* CXL slowdowns workloads by up to 62%
* Memory tiering: place data between local and CXL memory

Cloud requirements for CXL include:
* Minimal slowdown
* Low CPU overhead

* Huge page friendly

Das Sharma et al., An Introduction to the Compute Express Link (CXL) Interconnect, CSUR 2024



Combining Software and Hardware for Memory Tiering
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Prior Work: Software-Managed Memory Tiering

Use hypervisor/OS to identify popular pages and decide page
placement
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Software Tiering at Odds With Virtualization

Issue 1: High CPU overhead

* Instruction sampling (PEBS, IBS) is disabled in clouds

* Frequent page table scans incur excessive CPU overhead
Issue 2: Huge page penalty!'!

* Virtualization uses larger page sizes (2 MB, 1 GB) to reduce TLB cost
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[1] Calciu et al., Rethinking Software Runtimes for Disaggregated Memory, ASPLOS 2021



Introducing Hardware Tiering for CXL

We introduce Intel Flat Memory Mode:

* First hardware-managed cacheline-granular memory tiering for CXL

* Data placement managed by the CPU memory controller
* Zero CPU overhead

* Huge page friendly
 Available in Intel Xeon 6 Processor



Associativity and Mapping of Intel Flat Memory
Mode

Local memory as a direct-mapped, exclusive cache of CXL memory
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Local Memory Miss in Intel Flat Memory

Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines
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Local Memory Miss in Intel Flat Memory

Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines
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Local Memory Miss in Intel Flat Memory
Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines

B N GB CXL Memory

t3. Read CXL memory
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Local Memory Miss in Intel Flat Memory

Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines

Physical Address Space
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Hardware Tiering Alone Still Has Limitations

Challenge 1: Some workloads have
heavy local memory misses

26% workloads have > 5% slowdown
(“outlier” workloads)
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Challenge 2: No performance isolation
across VMs

Local memory contention across VMs
(more than 50% slowdown)

Mapped to same local memory range
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Adding Dedicated Local Memory for Outliers

Question: How to allocate dedicated local memory across VMs?

B NGB CXL Memory Dedicated Local Memory
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Memstrata: Memory Allocator for Hardware Tiering
* Alightweight memory allocator in the hypervisor
* Dynamically allocates dedicated memory to eliminate outliers

* Provides performance isolation between VMs using page coloring

Memstrata + hardware tiering reduces slowdown from 34% to ~5%
across all workloads
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Memstrata Dynamically Allocates Dedicated Pages

Memstrata
: : Dynamic P
|Identify Outliers ynamic Fage
Allocator
Slowdown: 2% Slowdown: 0% Slowdown: 15% ™.
VM 1 VM 2 VM 3 :
HW-Tiered HW-Tiered HW-Tiered
Pages Pages Pages
Dedicated Dedicated Dedicated
Pages Pages t Pages
Software o e

Hardware

Dedicated
Local Memory

Hardware-Tiered Memory




ldentifying Outliers in Hypervisor Is Challenging

Challenges:
* Hypervisor is unaware of VM workloads
* Hardware tiering only provides system-wide local memory miss rate

We build a lightweight prediction model to identify outliers using
low-level performance metrics

* Per-core metric: L3 miss latency correlates with miss ratio
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Memstrata Dynamically Allocates Dedicated Pages
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Memstrata Dynamically Allocates Dedicated Pages
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Evaluate 115 Popular Cloud Workloads

Pre-production Intel Xeon 6 CPU with real CXL cards from Astera Labs
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Memstrata Eliminates Outliers With Low CPU Overhead

« Sample workloads from representative Azure workload compositions
* Continuous VM arrivals and departures
* Memstrata mitigates outliers with low CPU overhead (< 3% of a core)
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Executive Summary

Background:

* CPU core counts scaling faster than memory capacity

 CXL enables second-tier memory to facilitate core scaling

* But CXL adds latency that hurts performance if not mitigated

» Software tiering helps some but is not well suited for public clouds
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Contributions:

* Intel Flat Memory Mode: First hardware-managed memory tiering for CXL
e But still has limitations that slowdown workloads

* Memstrata: Memory allocator for hardware tiering to mitigate outliers

* Slowdown reduces to 5% vs. unattainable one-tier memory
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