Managing Memory Tiers with CXL
in Virtualized Environments

Yuhong Zhong & & Daniel S. Berger 8 W Carl Waldspurger* Ryan Wee &
Ishwar Agarwal I Rajat Agarwall Frank Hady1 Karthik Kumar i
Mark D. Hill Mosharaf Chowdhury Asaf Cidon &

& Columbia University & Microsoft Azure W University of Washington

*Carl Waldspurger Consulting I Intel @ University of Wisconsin-Madison University of Michigan

1

Executive Summary

Background:

* CPU core counts scaling faster than memory capacity

 CXL enables second-tier memory to facilitate core scaling

* But CXL adds latency that hurts performance if not mitigated

» Software tiering helps some but is not well suited for public clouds

Contributions:

* Intel Flat Memory Mode: First hardware-managed memory tiering for CXL
* But still has limitations that degrade workloads

* Memstrata: Memory allocator for hardware tiering to mitigate outliers

* Slowdown reduces to ~5% vs. unattainable one-tier memory

300

CPU core count exponentially increasing

250

200

150

100

CPU Core Count

50

@@= Core Count

Source: Micron’s Perspective on Impact of CXL on DRAM Bit Growth Rate

Memory capacity per core decreasing

=== Memory Capacity per Core

120

100

80

60

40

20

Memory Capacity per Core (GB)

CXL Enables Memory Capacity Scaling

Higher latency

A

~200 pins

CPU ~16 pins
DDR — CXL

Local Memory CXL Memory

Higher CXL Latency Can Degrade Workloads

 CXL latency (220 ns) = 2x local memory latency (100 ns)
* CXL slowdowns workloads by up to 62%
* Memory tiering: place data between local and CXL memory

Cloud requirements for CXL include:
* Minimal slowdown
* Low CPU overhead

* Huge page friendly

Das Sharma et al., An Introduction to the Compute Express Link (CXL) Interconnect, CSUR 2024

Combining Software and Hardware for Memory Tiering

Software Tiering Hardware Tiering Software + Hardware Tiering
HeMem (SOSP °21) Intel Flat Intel Flat Memory Mode and
TPP (ASPLOS ’23) M trat

MEMTIS (sosp23) | Memory Mode emstrata

Minimal slowdown Minimal slowdown

Low CPU overhead ' X High overhead Low overhead Low overhead
Huge page friendly | X Unfriendly Friendly Friendly
\
|

Introduced in this work

Prior Work: Software-Managed Memory Tiering

Use hypervisor/OS to identify popular pages and decide page
placement

Host Physical Address Space (HPA)
A

Local Memory CXL Memory
i i ,’I /1;" ”””””””
: : III ””” Ill ”””
; ; LT 7 — Guest-to-host page table
1 1 g T /
: : ””” ll /”’ Il
! i ¢”’ II,/”’ II

Guest Physical Address Space (GPA)

Software Tiering at Odds With Virtualization

Issue 1: High CPU overhead

* Instruction sampling (PEBS, IBS) is disabled in clouds

* Frequent page table scans incur excessive CPU overhead
Issue 2: Huge page penalty!'!

* Virtualization uses larger page sizes (2 MB, 1 GB) to reduce TLB cost

7’

R
Page Table e \,\\}“e
Sl

< X

W Lower TLB cost
PTE (2 MB){ e or Larger Pages <

Cold Data -7 o

X Coarse data placement

[1] Calciu et al., Rethinking Software Runtimes for Disaggregated Memory, ASPLOS 2021

Introducing Hardware Tiering for CXL

We introduce Intel Flat Memory Mode:

* First hardware-managed cacheline-granular memory tiering for CXL

* Data placement managed by the CPU memory controller
* Zero CPU overhead

* Huge page friendly
 Available in Intel Xeon 6 Processor

Associativity and Mapping of Intel Flat Memory
Mode

Local memory as a direct-mapped, exclusive cache of CXL memory

B N GB CXL Memory

1 Data Placement Managed by CPU Memory Controller

A N GB Local Memory
A T e
4 -----=»
A B
- e

64B Line 64B Line
\

Y
Physical Memory Address Space (2N GB) 10

Local Memory Miss in Intel Flat Memory

Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines

N GB

CXL Memory

> e=> W

Local Memory

>

L
—_— iy
L™
-_—
L
L
L
L
— oy

—

_Y_I

64B Line

1. Main memory access (e.g., LLC miss)

1

Physical Address Space

11

Local Memory Miss in Intel Flat Memory

Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines

N GB

CXL Memory

N GB

Local Memory

{><->>(->w

»
N
o
.
>
o)

1

1. Memory access

2. Read local memory and miss

Physical Address Space

12

Local Memory Miss in Intel Flat Memory
Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines

B N GB CXL Memory

t3. Read CXL memory

A N GB Local Memory

1 2. Read local memory and miss

A B Physical Address Space
- 1

64B Line 1. Memory access
13

Local Memory Miss in Intel Flat Memory

Mode

When a main memory access misses in local memory, the
hardware will “swap” the two cache lines

Physical Address Space

A N GB CXL Memory
4. “Swap” lines t Serve data
B N Local Memory
1 2. Read local memory and miss
A B
- 1
64B Line

1. Memory access

14

Hardware Tiering Alone Still Has Limitations

Challenge 1: Some workloads have
heavy local memory misses

26% workloads have > 5% slowdown
(“outlier” workloads)

|
J \
1 o
0.8 ~
w 0.6
8 0.4 —=Hardware Tiering
—==Software Tierin PP
0.2 g (TPP)
0

0% 10% 20% 30% 40% 50%
Slowdown vs. Local Memory Only

Challenge 2: No performance isolation
across VMs

Local memory contention across VMs
(more than 50% slowdown)

Mapped to same local memory range

VM 1 Memory VM 2 Memory

~ -
~ -
\~ ’f

bl

- ~

- ~
- \~

Local Memory

15

Adding Dedicated Local Memory for Outliers

Question: How to allocate dedicated local memory across VMs?

B NGB CXL Memory Dedicated Local Memory

4 (l 1

4

A N GB Local Memory M GB

o — e __ 1 -

H ~——— i Data always stay in local memory
64B Line{ A B

J\ J

Host Physical Memory Address Space
(Flat Memory Mode, 2N GB)

Y
Host Physical Address Space
(Dedicated, M GB)

16

Memstrata: Memory Allocator for Hardware Tiering
* Alightweight memory allocator in the hypervisor
* Dynamically allocates dedicated memory to eliminate outliers

* Provides performance isolation between VMs using page coloring

Memstrata + hardware tiering reduces slowdown from 34% to ~5%
across all workloads

17

Memstrata Dynamically Allocates Dedicated Pages

Memstrata
: : Dynamic P
|Identify Outliers ynamic Fage
Allocator
Slowdown: 2% Slowdown: 0% Slowdown: 15% ™.
VM 1 VM 2 VM 3 :
HW-Tiered HW-Tiered HW-Tiered
Pages Pages Pages
Dedicated Dedicated Dedicated
Pages Pages t Pages
Software o e

Hardware

Dedicated
Local Memory

Hardware-Tiered Memory

ldentifying Outliers in Hypervisor Is Challenging

Challenges:
* Hypervisor is unaware of VM workloads
* Hardware tiering only provides system-wide local memory miss rate

We build a lightweight prediction model to identify outliers using
low-level performance metrics

* Per-core metric: L3 miss latency correlates with miss ratio

19

Memstrata Dynamically Allocates Dedicated Pages

Memstrata
|Identify Outliers Dynamic Page
Allocator
Slowdown: 2% Slowdown: 0% Slowdown: 15%
VM 1 VM 2 VM 3
HW-Tiered HW-Tiered HW-Tiered
Pages Pages Page Pages
exchange
Dedicated Dedicated :r; Dedicated
Pages Pages Pages
Software
Hardware
Hardware-Tiered Memor Dedicated
y Local Memory

Memstrata Dynamically Allocates Dedicated Pages

Memstrata
Dynamic Page
Allocator

|dentify Outliers

Slowdown: 3%

Slowdown: 2% Slowdown: 0% —Stewdowrr—+5%—
VM1 VM 2 VM 3
<:| HW-Tiered
HW-Tiered Pages
Pages HW-Tiered | Page
Pages exchange | pedicated
Dedicated Pages
Pages ——>
Software
Hardware
Hardware-Tiered Memory Dedicated
Local Memory

Evaluate 115 Popular Cloud Workloads

Pre-production Intel Xeon 6 CPU with real CXL cards from Astera Labs

-_-___-__---—-------------—--.
_—__- '--~-
_——— -~-
- o
- S
- -~y
- ~N

-

"\

§~~ ’f
]
h-

——
-
bl -
-y -
-~y ——
e e e ——— L
- -

115 workloads in total

22

N
\
Y

Memstrata Eliminates Outliers With Low CPU Overhead

« Sample workloads from representative Azure workload compositions
* Continuous VM arrivals and departures
* Memstrata mitigates outliers with low CPU overhead (< 3% of a core)

B HW-Tiered ®m HW-Tiered + Memstrata

34%

©
o
15%
- 15% -
. 12&11/
Q@ 10% °10%10%
S oo, “I 08 6w
- AT
-g 0% in --:I---_--_ -a_ = - _
Q ¥ 9 N\ X 9 & O NN 2 & N XA 2O
3 %6/%0 / /\O\ij)gxégx (}/ N %Q/Qk:)c)(,/ {b\&é\ Q/\Q/QOKO\)Q\Q Q)G\ NT\@ OKCQ/QGQ’ o '/\
D N 0@0% '\/ooc‘ﬁ\:\/o P B AP TA Ll S LIS
\OQ&{Q/CO ,\Q); Q7 \9% 56\6\ ¢ Qj\j\ K \é\\'@\ P %Q(ogqf c_,Q 2 0’} © @6\1\¥§'\$0\~Q QR %Q(b \.\\6’ ® K
o < xS :
o ® & &\6\ @& S % SR S N\
& > v S P &L N
o \'bo" 6@% O

23

Executive Summary

Background:

* CPU core counts scaling faster than memory capacity

 CXL enables second-tier memory to facilitate core scaling

* But CXL adds latency that hurts performance if not mitigated

» Software tiering helps some but is not well suited for public clouds

L L ey e
Source Code

Contributions:

* Intel Flat Memory Mode: First hardware-managed memory tiering for CXL
e But still has limitations that slowdown workloads

* Memstrata: Memory allocator for hardware tiering to mitigate outliers

* Slowdown reduces to 5% vs. unattainable one-tier memory

“ yz@cs.columbia.edu

24

