
Using Dynamically Layered Definite Releases
for Verifying the RefFS File System

Mo Zou12, Dong Du12, Mingkai Dong12, Haibo Chen123

1 IPADS, Shanghai Jiao Tong University
2 Engineering Research Center for Domain-specific Operating Systems

3 Huawei Technologies Co. Ltd

Widely deployed yet hard to be bug-free

Verification is a promising approach
AtomFS [SOSP’19]

DaisyNFS [OSDI’22]

Goal: verify the liveness of a concurrent file system
Each operation terminates under fair scheduling

File Systems are Important but Complex

2

Only safety property

A Study of Termination Bugs

3

213 termination bugs in Linux FSs (2020-2023)

Classification of termination bugs

Deadlock Livelock Infinite loop

Concurrent Non-concurrent

Deadlocks are dominant
A thread becomes blocked, waiting for an action that never
happens; none of involved threads can make progress

78% 4% 18%

A Study of Termination Bugs

4

This talk: focuses on deadlocks

Observations

Observation1: ad-hoc synchronization

Observation2: nested waiting

Observation3: dynamic waiting order

Observation1: Ad-hoc Synchronization

5

46% of deadlocks involve ad-hoc synchronization

Unlike lock/unlock, no specific pattern; hard to analyze

while (1) {
 …
 if (cond)
 break;
}

Transaction completion,
flushing of dirty inodes or others

Observation2: Nested Waiting

6

79% of deadlocks involve nested waiting
Task A waits for Task B; Task B also waits for some task

Wait for

Wait for

// unlink (or rmdir)
inode_lock(parent);
…
inode_lock(child);
…
inode_unlock(parent);

unlink

Task B

Task A requests

!!Circular wait

"!A global order of waits-for
dependencies (but still absent)

Observation 3: Dynamic Waiting Order

7

In 8% of deadlocks, the waiting order is not statically known

For instance, the parent-child waiting order is dynamic

A

B

/

A B

/

A

B

/

mv /A/B /B mv /A /B/A

Wait for
A: B:

Wait for
A:B:

Challenging to formalize and reason about

Limitations of Previous Work

8

Ad-hoc
sync

Nested waiting
(modularly)

Dynamic
waiting order

Deadlock-freedom
verification work
[ESOP’19, POPL’22]

LiLi [POPL’16, POPL’18]

TaDA Live [TOPLAS’22]

! "

"

" "

!
Limited support

No executable or
mechanized proof

Modular liveness verification of FS remains an open problem

Only small
examples

Contributions

MoLi*: a framework for verifying concurrent FSs
Acyclic waits-for graph

RefFS: the first to guarantee both safety and liveness

A protocol-level proof of Linux VFS’s directory locking rules
Found a bug; confirmed and fixed

* Modular Liveness verification

9

Outline

MoLi*: a framework for verifying concurrent FSs
Acyclic waits-for graph

RefFS: the first to guarantee both safety and liveness

A protocol-level proof of Linux VFS’s directory locking rules
Found a bug; confirmed and fixed

* Modular Liveness verification

10

Acyclic Waits-for Graph

11

T1

T3

Blocked thread Unblocking actionWait for

T2

Ad-hoc
Acyclic waits-
for graph

Layering of Unblocking Actions

12

Ad-hoc

Acyclic waits-for graph

Action Action’

Lower-numbered Higher-numbered

Wait for

Layer: 2

Layer: 1

Layer: 3

Dynamic Layering based on State

13

A
B

/

Ad-hoc

Acyclic waits-for graph

Layer: 2

Layer: 1

Layer: 3

A:
B:

A
B

/

Ad-hoc

Acyclic waits-for graph

Layer: 3

Layer: 1

Layer: 2

A:
B:

A global order for each state

The MoLi Framework

14

MoLi framework

Acyclic waits-for graph methodology
Encode into

Safety and
Liveness

Implementation
(Coq modelled)

Proof

Inference
rules

Specification
Unblocking action
Layer function

Soundness
proof

Coq

Outline

MoLi*: a framework for verifying concurrent FSs
Acyclic waits-for graph

RefFS: the first to guarantee both safety and liveness

A protocol-level proof of Linux VFS’s directory locking rules
Found a bug; confirmed and fixed

* Modular Liveness verification

15

Define a waits-for order between inode locks

Order1: parent-child order

Application to a Concurrent File System—
Specifying Parent-Child Order

16

A

/

B

Per-inode lock

Parent

Child

Layer: 0

Layer: 1 Layer: 1 Layers dynamically defined on state

Acyclic by definition

Layer = distance from root

Locking Order for Rename

17

Order2: old and new parent order
An order between any two directories
Transitive with parent-child order

Concurrent renames

A

/

B
! A

/

X

B

!

Old parent New parent

Locking order for and ?

rename2

rename1

Code for Acquiring the Two Parents

18

1 def lock_rename(old, new){
 2 if(old == new) {
 3 inode_lock(old);
 4 return;
 5 }
 6 mutex_lock(rename_mutex);
 7 if (ancestor(new, old)) {
 8 inode_lock(new);
 9 inode_lock(old);
10 return;
11 }
12 inode_lock(old);
13 inode_lock(new);
14 return;
15 }

A

/

X

B

!
"#"#$%&'(#)*)+#,!(-./
!!!!!!$#01,#2,3+#4

rename1

rename2

rename1

A

/

B
! "!Ancestor-first

Two parents are the same : acquire one

Default order: old parent first

Problem: order cannot be defined only with FS state

Approach: use ghost state

Layer = longest distance from root

Acyclic by construction

Specifying Rename Order with Ghost State

19

A

/

B

lock_rename(A, B) lock_rename(B, A)

A

/

B

Layer: 0

Layer: 1 Layer: 2

Layer: 0

Layer: 1Layer: 2

1 def lock_rename(old, new){
 …
 6 mutex_lock(rename_mutex);
 7 if (ancestor(new, old)) {
 8 inode_lock(new);
 9 inode_lock(old);
10 return;
11 }
Ghost state = old → new
12 inode_lock(old);
13 inode_lock(new);
Clear ghost state
14 return;
15 }

The RefFS File System

RefFS: a concurrent, in-memory FS running on fuse
Reference counting for highly concurrent traversals

20

A

/

Lock coupling

A

/

Reference counting

5!Bypass Prevent
use-after-free

6!Bypass

Concurrent operations

More
parallelism

Outline

MoLi*: a framework for verifying concurrent FSs
Acyclic waits-for graph

RefFS: the first to guarantee both safety and liveness

A protocol-level proof of Linux VFS’s directory locking rules
Found a bug; confirmed and fixed

* Modular Liveness verification

21

A Directory Order Bug in Linux VFS

22

Parent

Child

Non-cross-directory rename

Order1: parent-child order Order2: unrelated directory order
under rename_mutex

Increasing address order for

Commit 28ecee: rename additionally
lock source subdirectory
New order: source/target subdirectories

Problem: address order not transitive with parent-child order

Bug confirmed and fixed (we prove the fix correct)

A Directory Order Bug in Linux VFS

23

C

A

Parent

Child

B

Address order

Address order Address:
A < B < C

See paper

/

A B

C

t1:rename(/A, /B) t2: rmdir(B,C)

t3: rename(/A/X, /B/C/Y)

X

Linux Doc has a proof, but still misses the bug
Proof by contradiction

Detailed but lacks intuition

We submit a proof patch* to the Linux Doc
Define the locking order; effective in preventing bugs

Proof Patch for the Linux VFS

24

Suppose deadlocks are possible. Consider the minimal deadlocked set of threads. […] we have a cross-directory
rename that locked Dn and blocked on attempt to lock D1 [..] Dn and D1 would have to be among those. Which pair
could it be?
It can’t be the parents – indeed, since […]
It can’t be a parent and its child; otherwise we would’ve had a loop, since […]
…
That concludes the proof, since the set of operations with the properties required for a minimal deadlock can not exist.

* https://lore.kernel.org/linux-fsdevel/20240412161000.33148-1-lostzoumo@gmail.com/

Evaluation

How much is the proof effort?

How well does RefFS perform?

25

Proof Effort

MoLi: reuse a prior framework (for AtomFS); add liveness

RefFS: reuse AtomFS; prove reference counting and liveness
0.4K lines of code, 32K lines of proof

Proof ratio 80:1 (AtomFS is 100:1)

26

Performance

RefFS achieves overall better performance than AtomFS
Reference counting instead of lock coupling

Slower than ext4/tmpfs due to lacked optimizations

27

 0

 2

 4

 6

 8

git-clone make-xv6 cp-qemu largefile smallfile

R
u

n
n

in
g

 t
im

e
(s

ec
o

n
d

s)

RefFS
AtomFS

DaisyNFS
Ext4

TmpFS

Application performance

More in the Paper

Program logic of MoLi
Rely-guarantee style liveness reasoning
Modular reasoning about nested waiting

Support for infinite loop and livelock

Proof of RefFS
Reference counting
Non-atomic abstraction

28

Summary

MoLi: verifying liveness based on an acyclic waits-for graph

RefFS: the first concurrent FS to guarantee liveness
Dynamic layering of lock release actions

Application to the Linux VFS
We believe the methodology is applicable beyond FS

29

https://ipads.se.sjtu.edu.cn/projects/reffs Thanks!

