
Lyft and the California
Consumer Privacy Act

Bootstrapping user data deletions and export.
Alejo Grigera Sutro & Shankar Garikapati

PEPR 2022

Lyft In A Nutshell

18 Million
Riders on our platform.

>1,000
Microservices powering the platform.

10 Years
Lyft has been in business.

CCPA Wasn’t A Task. It Was A Beginning

Signed Privacy Legislation

Privacy Legislation In Committee

2022-05-18, Source: https://iapp.org/resources/article/us-state-privacy-legislation-tracker/

Some business functions need data
to be consistent in order to work
properly. We can’t have people
deleting their account halfway
through a ride.

Changing user data should always be
done with care! Our solution has to
be trustworthy, reliable, and- most
importantly- useful to our users.

Our products are as diverse as our
users. That can mean special
infrastructure or needs, so whatever
we build has to work everywhere.

One-size-fits-all solution. Secure and usable. Balances competing needs.

Export & Deletion Strategic Goals

Solutions &
Implementation

Our Platform & Architecture

Lyft teams design, build, and manage microservices on
AWS infrastructure. Services interact with each other
using RPC and do not share any stateful resources.

Non-monolithic infrastructure
Teams follow a decentralized governance structure.
They’re responsible for all technical aspects of the
software they build.

High freedom, high responsibility

Photos by Alecsander Alves (Left) & Ian Dooley (Right)

We wanted a common API with one standard SLA that
applies across a diverse set of services.

Centralization wasn’t an option

Any centralized solution would fail, since they can’t
accommodate local conditions. Some services and
datastores have huge differences in their latencies and
operating costs.

Decentralization wasn’t an option either

Not very effective from a business perspective. The cost to
benefit ratio of a decentralized system was poor. Setting up
and managing any coordination mechanism would be
expensive.

Strategic Goal:

A One-Size-Fits-All Solution

Photo by Bridget Braun

Shared Responsibility model

1
Federated Architecture
● Cater to local conditions, while pursuing high level privacy goals uniformly
● Keep data lifecycle ownership with product teams

2
A Simple Finite State Machine
● Tasks as a building block to get things done
● Use intuitive, meaningful states like pending, events sent, completed, and failed

3
Event-Driven Philosophy
● Allow services to manage their own local state and interact with the orchestrator
● Allow messages can be arbitrarily delayed and reordered
● Use a robust set of checks to ensure safety and liveness

Datastore E
Datastore E

Orchestrating
Service

Service B

Erasure Requests

Web front
end

Datastore
Catalog

Sanction
endpoints

Datastore AService A

User requests
deletion through
front end.

We obtain list of
services from the
catalog.

Async calls to and from
services to trigger and signal
completion of erasure.

Endpoints are checked
immediately. We wait some
time, check endpoints again,
and fan out the erasure.

1

3
4

2

Datastore B

Datastore C

Datastore D

3rd party
propagation

Analytics
orchestration

Offline
assets

Offline
assets

Offline
assets

Offline
assets

Services
Services

Datastores
Datastores

Orchestrating
Service

Web front
end

Datastore
Catalog

Export
schema

metadata

Final data area

Data staging area

Service
datastores

Services

We obtain list of
services and
export schema.

Async calls to and from
services to trigger and record
completion of export.

Services write exported data
to a staging area.

Data is collated into final format
and validated.

User is notified via email that
their export is ready and they
must sign in again to retrieve it.

2
3

45

6

User requests
deletion through
front end.

1

Analytics
orchestration

Export Requests

Designed for safety

We wanted systems to help protect developers from
making mistakes. To build a secure and reliable system, we
would need automation that catches problems early and
raises warnings when it’s still easy to make changes.

Principle of least astonishment

Deletion and export mechanisms should be designed so
that product engineers can easily understand how the
whole system works, and what part they are responsible for.
This helps them to debug and fix any problems.

Strategic Goal:

Secure, Reliable, And Usable

Photo by Alex Smith

1
Maximize Developer Experience
● Privacy as Code, using privacy annotations in Terraform, IDL files
● Overcome human errors/omissions with code automation and testing
● Use abstraction to provide a uniform experience

2
DRY Principle
● Common libraries that cater to a wide range of microservices
● Observability tools and runbooks to diagnose failures

Bake Privacy into SDLC

1

Some deletions may have hurdles
There may be valid and important use cases where data
deletion could cause serious problems. If the service is still in
progress or if we have pending payments to drivers or from
riders, we don’t want to delete data prematurely.

Sanction Endpoints delegate the decision
Our solution is to allow services with better context and
situational awareness to assess the decision. When situations
complicate deletion, we try to inform the user about limitations
and what options they might have available.

Data Vaulting offers a compromise
Competing requirements- especially legal ones- might force
us to store data for a long time. Vaulting lets us extract data
from various datastores, store a copy in a high-security and
purpose-limited vault, and then delete the originals.

Strategic Goal:

Balancing Competing Needs

Photo by Airfocus

Exactly-once vs at-least-once guarantee
Deleting user data once may not be sufficient. Data
might be in transit from other internal data-storage
systems.

Since ETL processes can be brittle, designing for an
optimal scenario is not sufficient, especially for
destructive operations that involve rewriting offline
datastores with layers of abstraction.

Design for failures

Need for analytics orchestration

Photos by Jorik Kleen (Left) & Kaspars Eglitis (Right)

1 Avoid distributed coordination

2 Systems & users are unpredictable

3 Good observability for End-to-End Signals

Engineering lessons learned

Then What
Happened?

On time, too!
• One-size-fits-all solution by using a federated

process that “shifts left” privacy concerns.

• Secure and usable by developing event-driven
models that make system diversity a strength.

• Balanced competing needs with fault-tolerant,
non-blocking, idempotent actions and vaulting.

We built & launched it

And Our Planning Paid Off

Scale
Through mindful system development, we can cater to diverse
services and technical configurations.

Observability
Logging infrastructure and careful tracking of
requests let us troubleshoot problem areas.

Resilience
No single points of failure that threatens
business systems.

Thank you
Lyft is hiring in US and Mexico! If you’re passionate
about privacy and security by design and building
the infrastructure that powers it all, come join our
team.

https://www.lyft.com/careers

AlejoGrigeraSutro@lyft.com

SGarikapati@lyft.com

https://www.lyft.com/careers

